The University of Southampton
University of Southampton Institutional Repository

The Role of diapycnal mixing in coupled atmosphere-ocean general circulation models

The Role of diapycnal mixing in coupled atmosphere-ocean general circulation models
The Role of diapycnal mixing in coupled atmosphere-ocean general circulation models
The value of ocean diapycnal diffusivity (v) sets the rate at which dense bottom water can be mixed
up through the stratified water column and thus plays an important role in the meridional overturning
circulation (MOC). Previous idealised experiments and simplified theory suggest that the strength of
the MOC and the ocean heat transport scale with the v. This study investigates the dependence of
the MOC and other parameters on v using atmosphere-ocean general circulation models (AOGCM).
Firstly, the dependence of the MOC strength on v is studied using a low resolution AOGCM with
realistic geometry, FORTE, with spatially constant v values ranging from 0.1 cm2/s to an unrealistic
high value of 5 cm2/s. At the cyclostationary state, global MOC strength is found to scale with v
(in agreement with previous studies) according to a power law of 0.5. No power law is found for the
MOC in the individual basins. The increase in MOC strength in the Atlantic and Pacific Oceans is
associated with an increase in the ocean heat transport. The atmosphere responds to the change in
the ocean state by a decrease of its energy transport and surface winds. Only a partial compensation
is found between the ocean and atmosphere energy transport. The strength of v is found to have a
strong impact on coupled phenomena, such as a cessation of El Niño at high v.
Secondly, similar experiments are conducted with a state-of-the-art AOGCM, ECHAM5/ MPIOM.
In this model, v is derived from a constant background diapycnal diffusion (b), wind induced
mixing, the Richardson number and the convective adjustment. A set of 3 coupled experiments is
conducted, with b = 0.1, 0.25 and 1 cm2/s. The scaling law from simple theory and the previous
experiments with FORTE is not observed with this coupled model. At the cyclostationary state, the
MOC strength weakens by 16% as b increases from 0.1 to 1 cm2/s. This behavior is not found
when the experiments are repeated with an ocean-only model. The reduction in MOC in the coupled
model is linked to a strong reduction in the convective mixing at high latitudes. The convective
mixing is reduced by a continuous strong freshening in the Arctic region due to an increase in surface
air temperature and melting of the sea-ice in the coupled experiments, which is not observed in the
ocean-only experiments.
The responses of the two coupled models show many similarities as b increases. Both models
show convection in the Pacific for high values of b. The main difference is the response of the MOC
in the Atlantic is linked to the different locations of the deep convection and their relative changes in
the models.
I conclude that the diapycnal mixing and the ocean-atmosphere interactions both control the strength
of the MOC, and their influences cannot be considered separately.
Dubois, Clotilde
f97bd1ba-fcac-4f07-a232-a9bc07970738
Dubois, Clotilde
f97bd1ba-fcac-4f07-a232-a9bc07970738

Dubois, Clotilde (2006) The Role of diapycnal mixing in coupled atmosphere-ocean general circulation models. University of Southampton, School of Ocean and Earth Science, Doctoral Thesis, 132pp.

Record type: Thesis (Doctoral)

Abstract

The value of ocean diapycnal diffusivity (v) sets the rate at which dense bottom water can be mixed
up through the stratified water column and thus plays an important role in the meridional overturning
circulation (MOC). Previous idealised experiments and simplified theory suggest that the strength of
the MOC and the ocean heat transport scale with the v. This study investigates the dependence of
the MOC and other parameters on v using atmosphere-ocean general circulation models (AOGCM).
Firstly, the dependence of the MOC strength on v is studied using a low resolution AOGCM with
realistic geometry, FORTE, with spatially constant v values ranging from 0.1 cm2/s to an unrealistic
high value of 5 cm2/s. At the cyclostationary state, global MOC strength is found to scale with v
(in agreement with previous studies) according to a power law of 0.5. No power law is found for the
MOC in the individual basins. The increase in MOC strength in the Atlantic and Pacific Oceans is
associated with an increase in the ocean heat transport. The atmosphere responds to the change in
the ocean state by a decrease of its energy transport and surface winds. Only a partial compensation
is found between the ocean and atmosphere energy transport. The strength of v is found to have a
strong impact on coupled phenomena, such as a cessation of El Niño at high v.
Secondly, similar experiments are conducted with a state-of-the-art AOGCM, ECHAM5/ MPIOM.
In this model, v is derived from a constant background diapycnal diffusion (b), wind induced
mixing, the Richardson number and the convective adjustment. A set of 3 coupled experiments is
conducted, with b = 0.1, 0.25 and 1 cm2/s. The scaling law from simple theory and the previous
experiments with FORTE is not observed with this coupled model. At the cyclostationary state, the
MOC strength weakens by 16% as b increases from 0.1 to 1 cm2/s. This behavior is not found
when the experiments are repeated with an ocean-only model. The reduction in MOC in the coupled
model is linked to a strong reduction in the convective mixing at high latitudes. The convective
mixing is reduced by a continuous strong freshening in the Arctic region due to an increase in surface
air temperature and melting of the sea-ice in the coupled experiments, which is not observed in the
ocean-only experiments.
The responses of the two coupled models show many similarities as b increases. Both models
show convection in the Pacific for high values of b. The main difference is the response of the MOC
in the Atlantic is linked to the different locations of the deep convection and their relative changes in
the models.
I conclude that the diapycnal mixing and the ocean-atmosphere interactions both control the strength
of the MOC, and their influences cannot be considered separately.

Text
Dubois_2006_PhD.pdf - Other
Download (10MB)

More information

Published date: September 2006
Organisations: University of Southampton

Identifiers

Local EPrints ID: 63133
URI: http://eprints.soton.ac.uk/id/eprint/63133
PURE UUID: f5f7e92b-16d6-4000-a62c-bcaf02469463

Catalogue record

Date deposited: 12 Sep 2008
Last modified: 15 Mar 2024 11:35

Export record

Contributors

Author: Clotilde Dubois

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×