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UNIVERSITY OF SOUTHAMPTON 

 

ABSTRACT 

 

FACULTY OF ENGINEERING SCIENCES & MATHEMATICS 

SCHOOL OF OCEAN & EARTH SCIENCES 

Doctor of Philosophy 

 

GROWTH & MOTION AT THE WEDDELL SEA ICE EDGE 

by  Martin Jonathan Doble 

 
The formation of sea ice in the presence of turbulence was studied using data from drifting buoy 

deployments and ice sampling in the Weddell Sea during April 2000. The study sought to 

improve understanding of pancake ice in terms of dynamics, heat fluxes, ice growth rates and 

mechanisms.  

Ice motion at high frequencies was examined using GPS buoy positions at a 20-minute 

sampling interval. Relative motions of the buoy array were characterised by a marked 

oscillation at the highest frequencies, with an RMS value two orders of magnitude higher than 

previously seen in the Weddell Sea. This motion ceased overnight as the pancakes consolidated. 

Wave forcing, either surface gravity or internal, was postulated as the cause. The oscillation was 

found to significantly influence the proportions of pancake and frazil ice, though the nature of 

the ice cover meant that ice production rates were unaffected, in contrast to the enhanced growth 

this would imply for congelation ice. Momentum transfer parameters were found to be similar 

to those found for the Greenland Sea Odden ice tongue.  

Pancakes were found to be dominantly thickened by over-topping of the surrounding 

frazil ice crystals, termed ‘scavenging’, and gave rise to distinct morphologies, which were 

classified. A physical model was developed to describe the evolution of the pancake ice cover to 

consolidation. Ice production in the pancake/frazil process was found to proceed at 

approximately double the rate of the equivalent congelation ice cover, or 0.58 times the limiting 

free-surface frazil production. It was suggested that the discrepancy will seriously impact large-

scale modelling attempts to simulate heat and momentum fluxes between the ocean and 

atmosphere, as well as salt rejection and subsequent water mass modification, though it is 

acknowledged that further field measurements are required to place some currently empirical 

parameters into a physical context.  
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This section gives a general overview of the formation of Antarctic sea ice, from its 

turbulent beginnings to the familiar pack ice. The present lack of knowledge concerning 

the process is highlighted and buoy deployments - designed to examine growth and 

motion at the advancing ice edge - are described. The aims of the thesis are then set out, 

and an overview of the thesis structure given.



                                                                                                         Chapter 1: Introduction 
   

 2 

1.1 The Southern Ocean ice cover 

The seasonal variability of the sea ice cover in the Southern Ocean is one of the most 

climatically important features of the southern hemisphere. The area of the planet's 

surface involved is enormous: the sea ice extent in the Antarctic varies from a minimum 

of 4x106 km2 at the end of summer (mostly confined to thick, deformed, ice in the far 

south-western corner of the Weddell Sea) to a maximum of 19x106 km2 in winter. Yet 

the processes by which the ice forms, especially in the outer part of the pack, are not 

well understood and have only been studied in situ since 1986 (Wadhams et al. 1987). 

Investigations of sea ice have instead tended to concentrate on the more easily-

accessible Arctic, where large-scale ice features allow satellite motion-tracking without 

recourse to expensive in situ instrumentation, and the persistence of ice throughout the 

year allows its study in summer, when most cruises to ice covered regions occur.  

 

Young ice at the Antarctic ice edge is, by definition, a far more transient form and one 

which requires the deployment of in situ instrumentation from cruises during the Austral 

winter. The ice cover begins to advance northwards from March onwards, when cooling 

of the ocean surface seaward of the summer ice edge starts to freeze the surface waters. 

The high turbulence levels of the Southern Ocean do not allow this ice to form the 

familiar coherent sheet (termed ‘congelation ice’). Ice instead forms as a suspension of 

unconsolidated crystals, known as frazil or grease ice. These are mixed down into the 

water by the ocean wind and wave fields, often occurring as linear streaks (Figure 1.1), 

herded into Langmuir plumes (Dethleff 2005; Kempema and Dethleff 2006) with 

volume concentration around 20-40% (Martin and Kaufmann 1981; Smedsrud and 

Skogseth 2006) though values of up to 57% have been observed in the laboratory 

(Newyear and Martin 1997). The mixing allows the continued exposure of sea surface 

to the colder air, the maintenance of a high ocean-atmosphere heat flux and 

consequently a much higher ice production rate than would be achieved under calm 

conditions.  

 

Early studies of frazil crystal formation rates and processes tended to focus on 

freshwater cases, since these have direct impact in colder countries, such as blocking the 

cooling water intakes of Canadian power stations (Osterkamp 1978). There has been a 
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resurgence of interest in oceanic frazil formation, however, though this has focussed on 

production in polynyas (Alam and Curry 1998; Smedsrud and Skogseth 2006), and 

under ice shelves (Smedsrud and Jenkins 2004). Frazil production in polynyas is 

parameterised in terms of fetch, a threshold wind speed for frazil formation and the 

frazil collection depth at the downwind edge of the polynya. These have a strong 

influence on ice production within the polynya and, consequently, how long the polynya 

remains open and active, but are not applicable to the wave-induced turbulence of the 

advancing marginal ice zone (MIZ) considered here. 

 

 

 
 
Figure 1.1: Frazil ice forming in a coastal polynya off Kap Norvegia in the 
Antarctic. Air temperature was -17°C with a wind speed of 20 m s-1.  

 

 

In the case of ice shelves, rising, supercooled water forms frazil (termed ‘platelet ice’ in 

this context) as it flows underneath the ice shelf under buoyancy forcing. Accumulation 

of this frazil forms ‘marine ice’, which becomes visible as striking dark-green ice when 

icebergs, calved from the ice shelf, turn over as they melt (Warren et al. 1993).  



                                                                                                         Chapter 1: Introduction 
   

 4 

 
Figure 1.2: A ‘green’ iceberg, formed from frazil ice accumulating at depth under 
an Antarctic ice shelf. This iceberg was photographed in open water north of the 
Weddell Sea ice edge. Also evident are bands of sediment, presumably scavenged 
by the rising frazil crystals.  

 

 

In the MIZ, the frazil suspension gradually consolidates into small cakes – known as 

‘pancake ice’ – by the agglomeration of the crystals, driven by the absorption of short-

wave energy by the frazil slick and augmented by the cyclic compression and 

rarefaction under the influence of passing troughs and peaks (respectively) of longer 

waves. Agglomeration is  assumed to occur both from below and laterally as the 

buoyant crystals rise to the surface, with the consolidation being driven by the 

temperature gradient to the cold atmosphere (Shen et al. 2001). A frazil slick has never 

been observed to be deeper than the pancakes embedded within it, though upward-

looking sonars have observed the presence of deep scattering layers in coastal polynyas 

(Drucker et al. 2003), suggesting this does occur in the presence of wind-induced 

mixing. The frazil crystals are sintered together at their point of contact, minimising 

their surface free energy (Martin 1981). This overcomes their noted reluctance to stick 
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together, caused by an enveloping layer of brine (Hanley and Tsang 1984), contrasting 

with the behaviour of freshwater frazil crystals which rapidly form relatively strong 

aggregations or “flocs” (Martin 1981). Using shadowgraph techniques, brine has been 

observed streaming from crystals both as they ascend under buoyancy forcing after their 

initial formation, and from an established frazil layer (Ushio and Wakatsuchi 1993). 

This brine drainage continues as the pancakes age, with relatively open structure 

allowing very rapid salinity reduction compared to the congelation ice equivalent.  

 

The pancakes are initially only a few centimetres in diameter and are known as ‘shuga’ 

(Figure 1.3) in their earliest agglomerations (Armstrong et al. 1973) or ‘dollar pancakes’ 

(Wadhams and Wilkinson 1999) as the disc form becomes more pronounced. The size 

of the pancakes is controlled by the dominant wavelength (λ) present. Tank experiments 

 

 

 
 
Figure 1.3: Shuga; the first stage in the agglomeration of frazil crystals in the 
pancake cycle. The photograph was taken looking straight down from the ship’s aft 
deck, with the individual agglomerations around 5 cm diameter.  
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suggest that pancakes are approximately 0.01λ in diameter (Leonard et al. 1998b) and a 

theoretical framework which broadly matched this result was developed by Shen et al. 

(2001). Lateral growth occurs by the freezing on of frazil crystals from the surrounding 

slush and by the agglomeration of other mature pancakes. Frazil is piled onto the edges 

of the pancakes as they come together, forming slushy ridges up to several centimetres 

high. Vertical thickening can also occur by rafting one pancake onto another, through 

either large-scale or local compression.  

 

 

 
 

Figure 1.4: Mature pancake ice, displaying multiple rafting and agglomeration of 
smaller pancakes. Raised rims are particularly evident in this view. The stick 
towards the middle of the photograph is one metre long.  

 

 

The wavelength/pancake size relation continues to evolve as the shortest waves are 

damped in their progress across the ice cover and the dominant wavelength increases, 

until pancakes of more than 5 m diameter and 50 cm thickness are observed. Only at a 
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considerable distance from the ice edge – up to 270 km (Wadhams et al. 1987) - is the 

ocean swell damped enough to allow the pancakes to freeze together to form a 

continuous ice sheet, termed “consolidated pancake ice”. This then thickens, by the 

usual processes of congelation ice growth on its underside and snowfall on its upper 

surface, to form the familiar pack ice.  

 

The pancake cycle thus exerts a dominant influence on Antarctic ice types (Weeks 

1998) and textural investigations of ice in the central Weddell Sea have revealed that 

pancake ice growth is the dominant mechanism for pack ice formation in this area 

(Clarke and Ackley 1984; Gow et al. 1987; Lange et al. 1989; Lange and Eicken 1991).  

 

The importance of pancake ice formation lies in the fact that an ice cover of reasonable 

thickness can establish itself despite a high oceanic heat flux (Squire 1998).  The ice 

growth is thought to occur at near the open water rate (Wadhams et al. 1987), though 

quantitative estimates of growth rates during pancake formation are currently entirely 

lacking. Once the cover cements together to become continuous, growth drops rapidly 

to the low levels consistent with a c.50 cm thick ice cover. This subsequent rate is in 

fact almost zero in the Weddell Sea, since the oceanic heat flux then almost balances the 

loss by conduction through the ice (Gordon and Huber 1990). Wadhams et al. (1987) 

estimated that only 4 cm of further ice growth took place after the pancake ice cover 

consolidated.  

 

This thesis aims to increase our understanding of these early stages of ice growth, using 

data from a drifting buoy array, deployed into the Weddell Sea pancake ice by the 

author in April 2000. The next sections detail these buoy deployments and set out the 

scope of the thesis.  

 

 

1.2 Data sources 

The dearth of knowledge about pancake ice has stemmed largely from the fact that no in 

situ instrumentation had been deployed into a pancake zone, other than three position-

only buoys into the Odden region of the Greenland Sea (Wilkinson 2005). Field 
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experiments in the MIZ instead focussed on instrumenting relatively large floes before 

recovery a short time afterwards, most notably as part of the MIZEX (Bering Sea, 

February 1983; Fram Strait, July 1983; Greenland Sea, June-July 1984) and LIMEX 

(Newfoundland, March 1987 & March 1989) experiments (Wadhams and Squire 1986; 

Wadhams et al. 1988; Liu et al. 1992). The only previous experimental data covering 

the growth of pancake ice and its transition to pack ice came from tank experiments 

(Shen and Ackley 1995; Leonard et al. 1998a; Onstott et al. 1998). These suffered from 

something of a scaling problem, since frazil crystals are ‘life-sized’ while other 

parameters are not. Limitations of satellite systems (i.e. the Argos system) made the 

satellite telemetry of large amounts of data impossible and locations were infrequently 

(three-hourly) and inaccurately (c.350 m accuracy) assessed (Geiger et al. 1998).  

 

The author therefore proposed and was funded (Natural Environment Research Council 

Grant No. GR3/12952) to design and deploy an array of six drifting buoys into the 

advancing ice edge region of the Weddell Sea, during the ANT-17/3 cruise of the Alfred 

Wegener Institute’s research vessel Polarstern (Doble et al. 2001). The buoys were 

designed to survive harsh impact conditions while mimicking the response of the 

pancakes to wind and waves. They were also designed to freeze into the ice once the 

pancakes consolidated, with a tapered hull shape allowing the buoys to be squeezed up 

and out of the ice should significant convergence be encountered. Figure 1.5 shows one 

of buoys afloat, shortly after deployment down the ship’s stern ramp.  

 

The buoys were comprehensively instrumented, measuring their GPS position every 

twenty minutes, meteorological parameters (wind speed and direction, air temperature) 

every hour and a vertical wave spectrum every three hours. Data were transmitted over 

the Orbcomm low-Earth orbit (LEO) satellite system (Meldrum et al. 2000) to cope with 

the relatively large data volumes generated. A standard MetOcean surface velocity 

profiling barometer (SVPB) buoy was incorporated in the design, as a backup to the 

untried and hastily-assembled Orbcomm system. The SVPB independently transmitted 

air pressure data and Argos positions to the Global Telecommunications System (GTS) 

for use by operational weather forecasting models (Tenhunan et al. 2007).   

 



                                                                                                         Chapter 1: Introduction 
   

 9 

 

 
 

Figure 1.5: One of the six ‘pancake buoys’, afloat in the Weddell Sea. 
The orange sphere in the middle of the buoy is the self-contained 
MetOcean SVPB Argos buoy.  

 

 

The buoys were deployed in a ‘five dice’ pattern; with one buoy at each corner of a 

c.100 km square and the fifth unit in the centre. The array was positioned near the centre 

of the Weddell Gyre (Kottmeier et al. 1997), in order to minimise advection and hence 

maximise residence time in the ice. An additional unit was deployed  c.300 km further 

to the west, to verify that the motion of the main array was representative of the ice edge 

as a whole. This is subsequently referred to as the “long-scale buoy”. This arrangement 

was found to provide the best compromise between cost and dynamical information in 

previous MIZ campaigns (e.g. the MIZEX experiments in the Arctic, 1983-9).  

 

Deployment positions are shown in Figure 1.6, which also shows the ice concentration 

at their deployment, from passive microwave (SSM/I) satellite data. An algorithm 

developed by the Danish Technical University (DTU) was used to process the raw 

SSM/I data as this had been optimised for young, wet ice, such as pancakes (Pedersen 



                                                                                                         Chapter 1: Introduction 
   

 10 

and Coon 2004). The numbers show the nomenclature employed for the buoys, which 

are numbered sequentially (DML4 – DML9) according to their electronics package.  

 

 

 
 

Figure 1.6: Buoy deployments (blue dots) at the ice edge of the Weddell Sea, 
shown superimposed on SSM/I ice concentration (colour scale in percent) 
for 20 April 2000. Low concentration areas in the far west and southeast are 
the algorithm’s response to glacial ice shelves, not indicated by the grey land 
mask. The ship track is shown in white. The numbers indicate the buoy IDs 
referred to in the text.  

 

 

The buoys proved to be very robust, with all six units surviving the critical pancake 

consolidation phase. The resulting dataset is unique, since no-one had previously placed 

buoys so close to the advancing ice edge and watched consolidation proceed.  

 

Further data are provided by the European Centre for Medium-range Weather 

Forecasting (ECMWF), in the form of six-hourly analyses of meteorological parameters 

obtained via the British Atmospheric Data Centre (BADC).  The author also took part in 

the collaborative European INTERICE project at the Hamburg large-scale ice tank 

facility (Thomas and Wilkinson 2001), which provided verification of processes 

inferred from the Weddell field experiment.
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1.3 Scientific Aims 

This thesis aims to produce a better understanding and parameterisation of the pancake 

ice cover in terms of ocean-ice-atmosphere heat fluxes, momentum transfer and ice 

growth. Pancake ice is a difficult medium to study given its small size and rapidly 

changing aggregations, and the dynamic environment essential for its formation and 

survival. Much therefore remains to be done in understanding its formation and 

response to wind and wave forcing. We cannot hope to portray the overall ice cover 

accurately without knowing the evolution of ocean-atmosphere heat flux, ice formation 

(and concomitant salt injection to the upper ocean), drift and deformation across this 

vast area of the Antarctic. Specific questions which the thesis seeks to answer are: 

 

• What are the characteristics of the unconsolidated ice motion (both absolute and 

relative) at time scales which are newly-resolvable by these GPS data (20 minute 

intervals), but not seen in Argos positions (three hour intervals)? How do the air-

ice momentum transfer coefficients change as the ice consolidates and ages? 

What are representative values of wind factor and turning angle for Antarctic 

pancake ice? 

• What is the rate of ice production during pancake formation? How does it 

compare to the two limiting cases of congelation ice growth (slowest) and frazil 

ice production at a free surface (fastest)? What are the processes involved in 

building a pancake from the surrounding frazil slush? 

• What are the implications of any differential motion (convergence/divergence 

cycles) for ocean-atmosphere heat flux and hence ice production within the ice 

cover? Do current models accurately represent these values? 

 

 

1.4 Thesis structure 

The study consists of three data chapters, preceded by an introductory chapter and 

followed by a discussion chapter which brings the results together into a coherent 

whole. The output of one chapter is used in the next, moving towards a better 

parameterisation of the young ice cover in terms of ocean-ice-atmosphere heat and 

momentum fluxes. The data chapters of the thesis are: 
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Chapter Two (Dynamics) presents a detailed analysis of the drifting buoy data, with 

particular emphasis on the additional information provided by the high resolution 

(temporal and spatial) of the buoy locations. The onset of consolidation (when pancakes 

freeze together to form a continuous pack) is established and the dynamical contrast 

between the two regimes examined, particularly with respect to the momentum transfer 

and differential kinematic parameters (DKPs). The analysis is used as input to later 

chapters.  

 

Chapter Three (Thermodynamics) describes a new mechanism for the growth of 

pancake ice and uses modelling to support the hypothesis. In doing so, an attempt is 

made to quantitatively describe the growth rate of pancakes by both ‘classical’ and 

novel mechanisms, in an advance to the oft-stated but never qualified “fast”. The air-ice 

momentum transfer parameters calculated in the previous chapter are used to drive the 

kinematic portion of a thermodynamic-kinematic model, which tracks the movement of 

the ice back from the observation time to its formation and extracts the appropriate 

forcing from ECMWF and in situ meteorological data as it goes. The thermodynamic 

model then uses this forcing to grow ice forwards in time, using both congelation and 

free-surface frazil parameterisations. The observed pancake thicknesses (corrected for 

area and volume concentration) are then compared to these two limiting cases to derive 

a comparative rate for ice production.  

 

Chapter Four (Growth and motion) combines the growth model and rates, developed 

in the Chapter 3, with the DKPs developed in Chapter 2 to examine the implications of 

differential motion for ice production. The divergence-convergence cycles undergone 

by an ice cover are often termed the “ice accordion” since the motion enhances ice 

production by exposing open water during the divergent events (allowing rapid ice 

growth) and redistributing ice (building ice thickness) during convergence. We 

postulate that any motion at the short time scales measured by the buoys has a 

significant impact on the magnitude of the ocean-atmosphere heat flux within the ice 

cover and the volume of ice produced as a result. To elucidate this effect, the 

thermodynamic growth model is combined with a model for the redistribution of ice 

thickness by deformation (rafting and ridging), driven by the previously-calculated 
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DKPs. Ice is grown applying the growth rate versus thickness relations determined in 

the previous chapter. The combined model is driven with both the 20-minute forcing 

measured by the buoys, and with a low-pass filtered timeseries more representative of 

previous, Argos-based, instruments.  

 

A final chapter then discusses the results and conclusions of the thesis, and suggests 

further work to deal with the remaining questions.  
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CHAPTER 2: DYNAMICS  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The aim of this chapter is to determine the particular dynamic characteristics of pancake 

ice, contrast them with the more familiar pack-ice and examine whether high-frequency 

motion plays a significant role.  



 Chapter 2: Dynamics 
   

15 

2.1 Introduction 

The main innovation of the Weddell Sea buoys was to measure accurate GPS positions 

at relatively short time intervals. The unconstrained nature of the pancake ice suggested 

that motions at higher frequencies than traditional Argos measurements could resolve  

may be significant and that short time-scale alternations of convergence and divergence 

might have important implications for overall ice production rates through exposure of 

new sea surface. Studies by Leppäranta and Hibler (1987), for instance, suggested that 

more than 25% of the energy of the strain rate invariants in sea ice may occur at periods 

between 30 minutes and three hours. Though the 1983 Marginal Ice Zone Experiment 

(MIZEX ’83) measured the positions of ice floes at three-minute intervals (using radar 

transponders), such high-frequency measurements have never been performed in the 

highly mobile pancake zone, to the author’s knowledge.  

 

The GPS positions, apart from being more frequent, are also considerably more 

accurate, allowing an improved representation of the buoys’ (hence the ice’s) drift.  The 

location qualities of the two systems are demonstrated by Figure 2.1, which compares a 

section of drift track: GPS locations clearly show loops and meanders in the track, 

which are masked by the poor quality of the Argos fixes. 
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Figure 2.1: A section 
of drift track, showing 
the greatly increased 
quality of locations 
afforded by the 20-
minute interval GPS 
locations (red), over 
the more traditional 
Argos system (blue).  
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The buoys were originally deployed at a slight embayment in the ice edge - as seen in 

Figure 1.6 - and it was expected that the boundary between pancake and pack ice (the 

consolidation boundary) would advance smoothly through the buoy array as the season 

progressed. In fact, the ice advanced northwards on either side of the array while 

remaining essentially stationary at the buoys’ longitude, leaving the buoys in a deep 

embayment. This bay then froze rapidly, with the 60% ice concentration contour 

advancing more than three degrees of latitude between April 30th and May 4th, leaving 

the buoys far from open water and the influence of wave action. The progress of the 

60% ice concentration contour is shown in Figure 2.2, colour-coded by day-of-year: 

 

 
Figure 2.2: Position of the 60% SSM/I-derived ice concentration contour, 
showing the pinching-out and rapid freezing of the embayment into which 
the buoys were deployed. Colour scale shows day-of-year. The buoys were 
deployed between Days 108 and 110.  

 

 

This extensive freezing was driven by both the removal of the wave field’s mechanical 

constraint and a significant drop in air temperature. Both aspects resulted from a low-

pressure system passing over the embayment, with its associated winds switching from 
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relatively warm (-2°C) on-ice northerlies, to cold (-17°C) off-ice southerlies, with 

reduced fetch and thus reduced ability to raise a significant wave field.  

 

Though unforeseen, this rapid transition from unconsolidated pancakes to a situation 

where the buoys are embedded deep within the consolidated pack ice is ideal for 

comparing the dynamical behaviour across a sharp consolidation boundary, and this is 

done in the following sections. The timing of consolidation at each buoy site is 

examined in the next section.  

 

 

2.2 Detection of consolidation 

The most reliable indication of the onset of consolidation is the wave spectra measured 

by the buoys, since the passage of waves is the physical phenomenon which prevents 

the freezing together of the pancakes and hence maintains the unconsolidated cover. 

Figure 2.3 shows the significant waveheight, Hs, and mean period T1  for three of the 

buoys, located at the outer, middle and inner pancake zones. Parameters are calculated 

from spectral moments transmitted by the buoys: 

 
2/1

0.4 mH s =  (Eq. 2.1) 

101 / mmT =  (Eq. 2.2) 

 

 

where mn is  the nth spectral moment, calculated using the relation:  
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    (Eq. 2.3) 

 

where p(i) is the power spectral density (PSD) vector, Δf is the frequency interval of the 

calculated PSD and fcentre is the centre frequency of a given interval. Though rather an 

abstract concept, spectral moments allow the calculation of parameters without 

requiring the subjective choice of thresholds, as would be necessary for time domain 

approaches.  
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Figure 2.3: Significant waveheight and mean period for three buoys in the array, 
showing the sharp reduction following consolidation on May 3rd.  

 

 

Waveheights decreased with distance from the ice edge, with the outer buoys measuring 

a peak value of around 3 m and inner buoys showing little vertical motion at any time. 

Wave motion effectively ceased for all buoys by May 3rd 2000. Mean wave periods 

evolved from low initial values (7 – 8 seconds) at the outer buoys, to a consolidated 

value of more than 20 seconds by May 3rd. Inner buoys displayed a period close to 20 

seconds throughout.  

 

Determination of the exact time of consolidation was made with reference to the full 

spectra for each buoy, such as that shown in Figure 2.4, and the buoy heading (its 

orientation with respect to magnetic north), which also showed considerable contrast 

across the boundary: the axisymmetric buoys were free to rotate in pancakes, but 

remained fixed once the ice sheet consolidated.  
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Dates of consolidation, and hence the duration of the pancake phase at each buoy, are 

shown in Table 2.1.  

 

 
Figure 2.4: The evolution of power spectral density (PSD), 
displayed here as a contour plot of log10(PSD) in units of m2s. The 
sharp drop in power at the consolidation boundary (May 3rd) is 
clearly shown.  

 

 

Table 2.1: Buoy deployment details. Columns give the position of the buoy within 
the ice edge (i.e. outer is furthest north), together with the dates of deployment, 
consolidation (transition from pancake to pack ice) and last transmission over the 
two satellite systems. All dates refer to the year 2000.  

 
 

Buoy 
ID 

Argos 
ID 

WMO 
ID 

Position Deployed Consol/d 
 

Last 
Orbcomm 

Last 
Argos 

DML4 16187 71583 Inner 19 Apr 20 Apr 15 May 15 May 

DML9 19080 71581 Inner 17 Apr 18 Apr 3 Aug 3 Nov 

DML5 19075 71511 Centre 18 Apr 29 Apr 13 Oct 24 Oct 

DML7 19079 71513 Outer 18 Apr 2 May 30 May 14 Sept 

DML8 19076 71512 Outer 17 Apr 3 May 14 Jul 20 Dec 

DML6 19081 71582 Long-scale 20 Apr 30 Apr 13 Jul 15 Sept 
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2.3 GPS issues 

Before comparing drift behaviour across the consolidation boundary, it should be noted 

that the consolidation of the outer buoys on May 2nd and 3rd coincided almost exactly 

with the ending of intentional degradation of GPS accuracy available to civilian users. 

This degradation – termed selective availability, or SA – was removed at 0430Z on May 

2nd 2000. It must be ensured that the dynamical differences in the behaviour of pancake 

and pack ice, derived from these GPS positions, are free from the effects of the varying 

positional accuracy between SA and non-SA eras. 

 

To this end, data from a GPS base station installed at the German Neumayer station 

(70°39’S, 8°15’W) prior to the deployments is examined. The base station was installed 

at the beginning of the cruise to enable differential post-processing correction of the 

buoy positions and achieve an SA-era position accuracy of around 10 m.  

 

The statistical distribution of position errors before and after the SA transition was 

examined. The situation is slightly complicated by the fact that Neumayer is moving 

slowly northwards as its ice shelf advances towards the sea. The position error was 

calculated from both the mean and median position during Week 18 (the consolidation 

week). Little difference in statistical descriptors was found between the two methods, 

and the mean was used for further work since this includes all data and is a more 

statistically valid approach. Identical length data (3082 points) were used before and 

after the SA transition.  

 

The difference in errors either side of the transition is striking. Position data had a 

median of 18.0 m and variance 143.9 m during the SA era. In the post-SA era, median 

and variance were 2.8 m and 5.2 m respectively. Both ‘before’ and ‘after’ data fail the 

Kolmogorov-Smirnov test for normality, but fitted gamma distributions well. No 

statistically-significant difference (using the Mann-Whitney rank sum test) was found 

between modelled distributions and the actual data, to a high confidence level (P=0.729 

and 0.745 respectively). Modelled and real data are shown in Figure 2.5.  
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Velocity errors were examined and also fitted gamma distributions to a high degree 

(P=0.902 and 0.964). Median error speeds were 0.89 cm s-1 and 0.13 cm s-1, with 

variances of 4.5 cm s-1 and 0.03 cm s-1 for SA and post-SA eras respectively. These 

errors are smaller than would be obtained from applying the mean position error for 

each period, i.e. we might expect the velocity errors to be of the order of: 

 

2 err
err err

xu v
t

= =
Δ

   (Eq. 2.4) 

 
 

where uerr, verr are the component velocity errors, xerr  is the mean position error and Δt 

is the timestep (Geiger et al. 1998). This gives expected scalar velocity errors of 3.4 cm 

s-1 and 0.5 cm s-1 for SA and post-SA eras respectively, whereas we achieve 
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Figure 2.5: Modelled and real 
data compared for SA (top) and 
post-SA era (bottom) position 
errors for the Neumayer station 
DGPS base station. The gamma 
distributions can be seen to fit 
the data well.  
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approximately one third of these figures. The magnitude of these speed errors (c.f. an 

RMS drift speed around 25 cm s-1) shows the value of GPS fixes over Argos positions: 

Argos velocity errors are typically around 5 cm s-1, with a three hour fix interval (Geiger 

et al. 1998).  

 

Modelled errors were used to degrade the post-SA buoy positions, to achieve the same 

error distribution as the SA-era fixes and ensure that any dynamical differences are due 

to physical, rather than instrumental, changes. A series of random numbers fitting the 

SA model were generated and imposed at a random angle on the post-SA positions. The 

resulting distribution is similar to the SA-era data (P=0.790 from Mann-Whitney). All 

further analysis was performed on this “error normalised” position data.  

 

An additional complication arises, since the buoys experienced differing rates of GPS 

position loss (drop-out) during their lifetimes. A GPS almanac bug in the buoy control 

code resulted in an increasing rate of drop-outs after the initial deployment. Remotely 

rebooting the units over the two-way Orbcomm satellite link cured the problem, but 

marked differences remain between buoys and with time. Daily valid fix proportions (of 

the required 72 per day) are shown in Figure 2.6, which displays the steady decline 

during the first 25 days of deployment.  
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Figure 2.6: The proportion of daily valid fixes achieved by each buoy 
in the array, prior to being remotely-rebooted to cure the problem.  
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These missing fixes tend to reduce the high-frequency power present in a buoy’s drift 

record, reinforcing the expected decline in HF power caused by increasing rectification 

of the ice movement as the pack consolidates. The effect will be minimised for DML7 

and DML9, however, since these retain a similar fix rate throughout the period of 

interest. Missing fixes were interpolated to the standard 20-minute interval using a cubic 

spline technique. The interpolation is demonstrated in Figure 2.7, which shows a large 

gap in DML5’s record (this buoy had the most numerous drop-outs)  
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Figure 2.7: Cubic spline interpolation of DML5’s drift track. Actual position 
fixes are indicated by crosses, with the cubic spline interpolated portion of 
the track shown in red. The spline follows the curvature of the track at either 
end of the gap, filling it in a more realistic manner than simple linear 
interpolation (straight blue line).  

 

 

 

Drift analysis 
 
Analysis of the buoy drift data is split into three sections: 

 

• Drift of the individual buoys 

• Transfer functions between buoy drift and wind forcing 

• Relative motion of the buoys in the array 
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Each is considered first in the time domain, then in the frequency domain. Since the 

drift parameters were expected to vary as the ice cover evolved, calculations were 

generally done using a running window, set to 10 days duration, moving forwards at 

one-day intervals. The window length was chosen to be similar to the duration of the 

pancake phase of the outer buoys, while providing sufficient samples within the window 

to allow robust calculations.  

 

 

2.4 Drift velocities 

 

2.4.1 Time Domain 

The buoys had initial scalar drift speeds of between 22 and 35 cm s-1. The scalar speed 

of each buoy was largely determined by its v-component (north-south, approximately 

perpendicular to the ice edge). The drift speed of all buoys fell gradually during the 

deployment, reaching a minimum of 18 cm s-1 by August (mid-winter) shown in Figure 

2.8. The trend was not reflected in the 10-day average winds (ECMWF, 10 m level), 

which remained around 4 m s-1 throughout.  

 

During the initial period, the outer buoys had significantly higher drift speeds (29 – 35 

cm s-1) than the inner buoys (23 cm s-1), with the central buoy having an intermediate 

response (29 cm s-1). The disparity was not reflected in the local wind forcing, as 

measured by the buoys’ anemometers. The behaviour was a robust character of the 

motion, since very similar trends were observed with varying lengths of the running 

window. Scalar variance – defined as the root-sum-square of the component velocity 

variances (Kottmeier et al. 1997) – was low, at around 2 cm s-1. Drift speeds for all 

remaining buoys became very similar past Day 160 once the array was embedded in the 

pack ice far from the open ocean. Drift speeds continued to fall past Day 180, mostly 

explained by the reduction in wind speed experienced by the array, before picking up 

once more as the only surviving buoy began to be influenced by the increasing wind 

speeds above the Antarctic Circumpolar Current (ACC) at the northern limit of the pack 

ice.  
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2.4.2 Frequency domain 

The relatively low number of samples during the unconsolidated phase (less than 1118) 

makes producing a useful power spectral density something of a challenge. The 

following methods were compared: 

• Simple periodogram, 1024-point FFT (zero padded when shorter) with various 

windows applied. The Kaiser window, with β  set to 7 to ensure the window 

drops to zero at record ends, provided the best compromise between spectral 

resolution and variance 

• Welch averaged/overlapped segments, using (a) 2x512-point segments, (b) 

4x256-point segments, overlapped by 50% of their width and windowed with 

boxcar, Hamming, Kaiser and Parzen windows. This is a similar method to that 

 
Figure 2.8: Scalar RMS drift speeds for all buoys, for the entire duration of 
their deployments, calculated with a running 10 day window advancing in 
one day steps. Also plotted is the scalar wind speed measured by the central 
buoy (DML5), scaled by 0.1 to plot on the same axes. 
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used in the on-board wave spectrum algorithm of the buoys themselves, as it 

gives the smallest possible variance per data point 

• Thompson’s multi-taper method, with various time-bandwidth parameters. This 

gave inferior results in the high-frequency part of the spectrum 

 

The two-segment, overlapped Welch method with Hamming window gave the best 

results and this was used in all further FFTs. Example v-component spectra for DML7 

(outer MIZ) and DML4 (inner MIZ) are shown in Figure 2.9, together with those for the 

in situ (1 m ASL) windspeed measured at DML7. Spectra are plotted for the pre-

consolidation period of DML7 and for an equivalent period (11 days) post-

consolidation.  

 

 
 

Figure 2.9: v-component drift spectra for outer (DML7) and inner (DML4) 
ice edge buoys. Only one spectrum is plotted for the inner buoy, since the 
post-May 2nd spectrum is very similar to that shown and is therefore 
omitted for clarity. Also shown are spectra for the scalar in situ windspeed 
measured at DML7. 
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All spectra show increasing spectral power towards the low-frequency end of the 

spectrum. This ‘red noise’ behaviour is characteristic of many geophysical parameters 

and persists here when the mean (DC component) of the drift is removed, as done here.  

 

Considerable contrast is evident between pre- and post-consolidation spectra for the 

outer buoy, with higher power at all frequencies and an order of magnitude increase at 

high frequencies during the pancake phase. The increased contribution of motion at 

timescales shorter than six hours is clearly shown by the elevated power in DML7’s pre-

consolidation spectrum. This energy is not present post-consolidation. The scalar in situ 

wind spectra show no such contrast. The inner buoy displays little change in its spectra 

between the two periods, and the post-May-2nd spectrum is omitted for clarity. Power in 

both phases is similar to that shown by DML7’s post-consolidation spectrum.  

 

The significant peak in the buoys’ post-consolidation drift at around 12 hours was 

investigated using rotary spectra (Emery and Thomson 1998) to determine whether its 

origin was tidal or inertial: inertial motions only appear in the counter-clockwise (CCW) 

component for the Southern Hemisphere, while tidal cycles appear in both clockwise 

(CW) and CCW spectra. Figure 2.10 shows the peak in the CCW spectrum only, 

indicating the inertial nature of the oscillation. The inertial influence is expected, since 

the array was deployed in an area of very little tidal influence (Padman and Kottmeier 

2000). Also marked on Figure 2.10 is the inertial period at the buoy’s latitude, given by: 

 

 

T = π / ω sin φ  = 12.85 hours  (Eq. 2.5) 

 

 

Where φ is the latitude and ω is the angular velocity of the Earth, 7.272×10-5 rads s-1. 

The dominance of the inertial peak suggests that the pack ice is essentially in free-drift 

behaviour throughout, since relatively compact ice fields tend to damp inertial motion 

due to phase mismatches between nearby interacting inertial cycles (McPhee 1980).  
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Figure 2.10: Rotary spectra for DML8, showing the inertial 
peak in the CCW spectrum only. The inertial period of 12.85 
hours is indicated by the dotted line. (Matlab code for rotary 
spectra courtesy of Timo Vihma, FIMR).  

 

 

 

The effect of missing fixes on the HF spectra, mentioned in the previous section, was 

investigated by imposing an artificial drop-out rate on otherwise complete data. Even 

inflicting the maximum loss rate seen (32%) had very little effect on the resulting 

spectrum, and any differences in this portion of the spectrum result from physical 

differences alone.  

 

The time evolution of the spectra was examined with reference to the spectral slope (α). 

Slope was calculated from the spectrum between 3-hour and 12-hour periods, 

corresponding to the largely linear (in log-log space) portion of the spectrum. Spectral 

slope is defined as:  

S αω −=    (Eq. 2.6) 

 

where S is power spectral density and ω is the angular frequency. Results are displayed 

in Figure 2.11, for the u-component of motion; v-component results are similar.  
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Spectral slopes for the various buoys largely overlay, showing a trend towards 

increasing values – i.e. a reduction in HF motion – until Day 190 (mid July), with a 

similar gradient decrease (increase in HF motion)  thereafter. The decrease after Day 

190 suggests that the pack ice is becoming less constrained after this date, consistent 

with its generally divergent nature towards the maximum ice extent. Values are lower 

during the pancake phase than generally seen in the literature (e.g. 3, Leppäranta 2005), 

consistent with the increased influence of HF motion. They compare with typical values 

of 5/3 for oceanic velocity spectra at centimetric scales and 2 at eddy scales. The slope 

for the outer buoys therefore suggests that the ice cover is responding to the oceanic 

velocities almost without modification (value close to 2).  
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Figure 2.11: Spectral slope with time for the full duration of the buoy deployments. 

 

 

Variations in integrated power at high- and low-frequencies over time were also studied, 

since changes in the spectral slope give no information on the magnitude of power at 

any frequency, only its variation over the chosen spectrum. The division between LF 

and HF regimes was set at 15 hours period, to include the inertial component, and was 

also investigated at 4 hours cutoff. Results are shown in Figure 2.12 for a 15 hour 
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cutoff. Both cutoff values showed a similar trend, with HF power dropping 

exponentially (linearly on a log scale) until Day 200 and then increasing thereafter. 

Characteristics for all buoys again largely overlay, mirroring the character of the α 

curve. The HF power and α, which both depend on the freedom of movement, correlate 

at  -0.65 < r < -0.88. Power at LF shows a contrasting character, oscillating around a 

more constant value.  
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Figure 2.12: Integrated power spectral density per bandwidth, for HF (top) 
and LF (bottom) periods. HF power shows a cyclical character as constraint 
is increased then relaxed, while LF power is more constant throughout.  
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The analysis shows that the increase in spectral slope seen previously arises from a very 

marked reduction in the HF power, which drops by two orders of magnitude between 

the pancake era and the point of ‘maximum constraint’ (Day 200), while the lower 

frequency power has a more constant character, oscillating around a mean value and 

represents the overall advection in the Weddell Gyre. Since the scalar drift speed 

(Figure 2.8)  mirrors the form of the HF curve, it can be concluded that this high-

frequency energy contributes significantly to the overall motion of the buoys during 

their initial deployments.  

 

All parameters suggest a cycle of constraint: As the ice edge advances past the buoys, 

constraint increases to a maximum in mid-August (Day 200), after which the 

increasingly divergent nature of the pack ice reduces constraint once more, before the 

ice finally breaks up at its northern limit in December. The pancake regime does not 

appear radically different from the pack ice in this aspect of the study, and can be 

considered a starting point in the cyclical evolution of constraint from the ice’s 

formation to its break-up.  

 

2.4.3 Wavelet Analysis 

The ten-day running window used in the preceding analysis necessarily averages the 

parameter under study over the window period. It is perhaps interesting to examine 

whether the unconstrained high-frequency motion is a continuous feature of the 

pancakes’ motion, or whether it is more periodic, varying as low pressure systems pass 

the array. Reducing the FFT window length often gives rather arbitrary results, 

however, as the number of points in the FFT drops to below tractable values. 

Frequencies are also treated inconsistently in such an analysis, since low frequencies are 

only represented by a limited number of cycles in each window (reducing frequency 

localisation - the routine’s ability to discriminate the frequency of a component) while 

high frequencies have so many cycles in the window that it is difficult to determine 

where the component begins and ends (time localisation).  

 

Wavelet analysis offers a possible solution to the problem, though it has been criticised 

for providing ‘pretty pictures’ but little quantitative information, especially with regard 
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to statistical significance. Wavelet routines with significance and confidence testing 

have been developed (Torrence and Compo 1998), however, and these are used here in 

an attempt to overcome such objections.  Details of the wavelet analysis are given in 

Appendix A.  

 

Wavelet spectra are shown for the central buoy (DML5, Figure 2.13) for the initial 

period of interest (to Day 142). The v-component velocity is chosen since it shows the 

greatest contrast between pancake and pack ice regimes, though the u-component results 

are similar. The figure demonstrates the additional insight that wavelet analysis can 

provide: Though the high frequency energy is clearly evident throughout the first half of 

the timeseries (top graph), it shows considerable power variation in the wavelet 

spectrum (middle graph), alternating between periods of high energy (yellow) in the 1-6 

hour band and even higher energy episodes when the orange colour intrudes into the 

same band. The periodicity in this variation is of the order of five days, which is 

approximately the time taken for an atmospheric low-pressure system to pass the array, 

from the initial, compacting, northerly winds to the final, rarefying, southerlies. Such a 

conclusion suggests that the highest frequency energy is forced by the wind, but this is 

not supported by analysis of the in situ wind records themselves, which show no such 

variation in HF power. The wavelet analysis therefore gives the insight to suggest that 

variations in the buoys’ HF motion are caused indirectly by the winds – for instance by 

the wind direction determining the state of compression of the pancake zone, and hence 

its ability to respond to other, possibly oceanic, forcing.  

 

DML5’s inertial energy appears non-significant (bottom graph) and the inner buoys 

display even less power in this band, suggesting that these latter buoys undergo more 

damped motion from the start of their records. Intermittent oscillations are seen in the 

outer buoy’s plots.  
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Figure 2.13: Wavelet power spectrum for the central buoy (DML5) around the consolidation boundary. Top graph shows the 
scalar velocity timeseries. Middle graph shows the wavelet power spectrum, with the cone of influence marked as a yellow 
line and the 95% confidence contour marked as a thick blue line overlaying a thicker yellow contour. The bottom graph shows 
the integrated wavelet power across 10-15 hour scales, and is a measure of the total power in the inertial 12 hour peak. The 
dotted line corresponds to the 95% significance level.
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2.5 Momentum transfer coefficients 

The preceding analysis demonstrated progressively decreasing scalar drift speeds in the 

presence of relatively constant wind forcing.  These results imply either that the ability 

of the wind to transfer its momentum to the ice is changing – due, for instance to the ice 

roughness changing as the ice evolves – or that the influence of other forcing, not 

related directly to the local wind speed (such as the large-scale wind curl which drives 

the Weddell Gyre), is varying. The transfer of energy from the atmosphere to the ice 

and hence to the ocean is important for the modelling community. Parameters must be 

known accurately in order to model the drift of the ice. The track and hence residence 

time of a particular piece of ice in the pack determines its rate of formation, thickening 

(thermodynamically and by deformation) and subsequent melt. Such information allows 

estimation of heat, salt and momentum fluxes throughout the polar oceans and is crucial 

to understanding the physical processes operating there. Accordingly, these momentum 

transfer parameters are investigated in some detail in this section, since values for 

Antarctic pancake ice are currently entirely unconstrained.  

 

Momentum transfer from surface winds to buoys or ice can be described by a simple 

linear ratio, known as the wind factor, α, with turning angle, δ, between the wind and 

the forced object (CCW in the Southern hemisphere). Linear ratios have been shown to 

approximate the non-linear momentum balance well (McPhee 1980; Thorndike and 

Colony 1982; Martinson and Wamser 1990; Kottmeier et al. 1992), especially for thin 

Antarctic ice where the Coriolis term is relatively small. Alternative methods, such as 

the solution of quadratic drag coefficients, involve assumptions about the roughness 

lengths of air and water interfaces which are unknown (Thomas 1999).  

 

Wind factor and turning angle were calculated using both the winds measured by the 

buoys (1 m ASL) and ECMWF 10 m winds, both interpolated to the 20 minute fix 

interval using a cubic spline. Points with a wind speed value of less than 1 m s-1 were 

removed, to eliminate sensor freeze-up events (actually quite rare) and light-and-

variable conditions. Turning angle was calculated after removing outlying points, which 

were defined as being those exceeding an absolute angle of more than 120°.  
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In situ wind directions were unfortunately not available from DML6, DML7 and 

DML8, due to faults in their compasses. Though the headings of other buoys varied 

through the full 360° during the unconsolidated phase, headings for these three buoys 

varied through very limited angles (e.g. 280° to 360° for DML7). This is unlikely and 

points to a fault in these compass units (Honeywell HMR3000) or in their calibrations. 

It was not possible to perform an in-hull calibration of the compass units, as the buoys 

were constructed on board the ship in the presence of many hard- and soft-iron 

influences, but these results indicate that this is essential if reliable directions are to be 

obtained from future deployments.  

 

The wind direction is calculated (post-transmission) as a combination of the wind sensor 

direction with respect to an on-board reference and the buoy magnetic heading. 

Magnetic deviation in the area of the buoys is almost exactly zero, and is ignored. The 

wind direction information for these three buoys must therefore be completely 

disregarded, which is unfortunate, since these are the buoys which remained in pancake 

ice the longest.  

 

ECMWF 10 m winds are generated from pressure analyses at the lowest model level (30 

m), estimating the surface roughness length and atmospheric stability (Kottmeier et al. 

1997). These 10 m results were then interpolated from the ECMWF 1.125°×1.125° grid 

to a 0.5°×0.5° grid, using the Kriging technique.  

 

 

 

2.5.1 Buoy and model winds compared 

The correspondence between modelled (10 m) winds and measured (1 m) winds was 

examined in terms of their correlation, velocity ratios and turning angles, for scalar 

speeds and vector components. Results are shown in Table 2.2. Values for the 

magnitude relation are very consistent and have low standard deviations, though the 

turning angles have a greater spread.  
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Table 2.2: Magnitude ratio and angle (degrees) between buoy-mounted wind 
measurements (1 m ASL) and ECMWF 10 m model output, for the whole 
lifetime of each buoy, expressed as the median and standard deviation (SD). 
Directions are omitted for buoys with faulty compasses. Calculations for 
DML5 do not include the period of open water drift at the end of its 
deployment.  

 

DML Median 

v1/v10 

SD 

v1/v10 

Median 

Angle 

SD 

Angle 

4 0.60 0.24 73 34 

5 0.56 0.29 53 53 

6 0.56 0.26   

7 0.57 0.85   

8 0.60 0.37   

9 0.59 0.31 50 28 

Mean 0.58  59  

 

 

The published literature contains few references to winds at this low height, which was 

dictated by stability requirements in the heavy icing conditions that the buoys were 

expected to experience. Rare measurements come from ice camps in mature pack ice 

such as the 0.6 m measurements at Ice Station Weddell (Andreas and Claffey 1995), for 

which the V0.6:V10 ratio was ~0.25. A minimum height of 4 m is more usual, with  

quoted transfer coefficients over winter pack ice of 0.53 to 0.55 (with respect to the 

geostrophic wind), with a turning angle of 7-30o (Vihma et al. 1996; Uotila et al. 2000). 

 

Buoy winds were then rotated by the mean angle calculated above and correlation 

between buoy and model winds examined, for vector and scalar components. Results 

are shown in Table 2.3. Coefficients are high for all valid components and scalar 

speeds. They are similar to those seen in published literature (e.g. Uotila et al. 2000) 

though sensor heights were typically 4 m there, and give some confidence in the 



 Chapter 2: Dynamics 
  

37 

ECMWF results. It should be noted that the buoys were transmitting pressure data to the 

Global Telecommunications System (GTS) throughout their lives, giving the model 

unusually well-constrained surface pressure fields for the region. They are not, 

therefore, independent functions and we would expect results for the Weddell Sea to be 

significantly worse in the absence of this mesoscale array.  

 

 

Table 2.3: Correlation components (rS
2) between ECMWF 10 m winds 

and the buoy 1 m winds rotated by the mean angle of 59°. Component 
correlations cannot be calculated for buoys with faulty compasses.  

 
 

DML u-component v-component Scalar 

4 0.84 0.92 0.80 

5 0.84 0.86 0.73 

6   0.77 

7   0.70 

8   0.71 

9 0.90 0.92 0.76 

 

 

 

ECMWF winds might be expected to be less accurate while the array is close to the ice 

edge, since local effects of the ice-ocean boundary are not explicitly accounted for by 

that model. While the lack of outer-buoy wind directions hampers this comparison,  

the change in correlation between model and in situ wind speeds can be examined. This 

was done, splitting the record at Day 125 (when the outer buoys consolidated) and 

comparing correlation coefficients for the two (similar length) periods until DML4 

stopped transmitting on Day 136. Table 2.4 gives the coefficients, and a plot of model 

and in situ winds for outer and inner arrays is shown in Figure 2.14. 
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Table 2.4: Correlation coefficients between in situ and 10 m model 
winds for the early buoy lifetimes, contrasting the success of the 
model winds at the outer and inner ice edge. In situ winds are low-
pass filtered with a 6 hour cutoff to match the sampling interval of the 
model winds.  

 

 Buoy ID <Day 125 Day 125-136 

DML4 0.77 0.83 Inner ice edge 

DML9 0.66 0.76 

DML7 0.63 0.89 Outer ice edge 

DML8 0.52 0.82 
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Figure 2.14: Timeseries of outer (top) and inner (bottom) ice edge 
windspeeds (m s-1), illustrating the inferior performance of the model 
during the initial consolidation phase, for both outer and inner arrays. In 
situ winds are 6 hour low-pass filtered. Only one model wind speed per 
graph is shown, as these are very similar for the two similarly-positioned 
buoys.  
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Correlation coefficients are notably lower during the early phase of the buoy 

deployments, as expected from the previous analysis and discussion. Correlations are 

lower for the outermost buoys than for those further towards the consolidated pack ice, 

reflecting the poor performance of the ECMWF results in the outer zone and the 

influence of effects there which are largely unparameterised in that model. The finding 

renders the failure of the onboard compasses of the outermost buoys more unfortunate, 

reliable wind directions – and therefore components – are therefore lacking for the 

period of greatest interest.  

 

2.5.2 Buoy transfer functions 

The foregoing analysis established that both the buoy and model measurements of wind 

forcing are essentially reliable and self-consistent, excepting the directions from the 

outer buoys. We now move on to apply these fields to determine transfer coefficients 

for the various ice conditions encountered.  

 

In order to isolate wind stress effects it is necessary to remove non-wind-based motions 

– such as inertial loops - from the timeseries. This would suggest a LP filter excluding 

periods of less than, say, 14 hours. The in situ wind record clearly shows strong 

variability at periods much shorter than this, however. We therefore compared results 

using the 14 hour filter with those using a cutoff designed to exclude only transient 

timescales of the ocean boundary layer (OBL). For thin Antarctic ice, steady state is 

achieved within an hour of any change in external forcing (Martinson and Wamser 

1990) and a two-hour LPF is chosen here. Tests demonstrated that the effect on mean 

drift rates for this filter period is negligible.  

 

Wind factor and turning angle were calculated using three methods: 

• Linear regression  

• Two/four-parameter matrix solution  

• Constrained regression 

 

Simple linear regression has problems, since it gives rise to non-zero intercepts (drift 

present in the absence of any wind forcing) which constitute residual currents and 
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integrate the unknown effects of non-wind-based factors, such as wave radiation 

pressure. The small number of points available during the unconsolidated phase of 

many buoys represents a challenge to the regression routine and may result in higher 

residuals – and consequently lower regression gradients – than would otherwise be the 

case.  

 

The matrix approach finds a least-squares solution to the equation below (Vihma et al. 

1996): 

 

V V
a a
a a

Vi z res= ×
⎛
⎝
⎜

⎞
⎠
⎟ +11 12

21 22

  (Eq. 2.7) 

 
 
where Vi are the component velocities of the ice, Vz are the forcing velocities and Vres 

are the residual velocities. This four-parameter case can be simplified to a two-

parameter system, constraining a11 = a22 = b1   and  a12 = -a21 = b2.  The wind factor is 

then constant, given by the root-sum-square of the coefficients, and the turning angle is  

tan-1(b2/b1).  We also calculated the ‘degree of explanation’:  

 

R2
2

0
21= − σ

σ
ε    (Eq. 2.8) 

 
 
where σε

2 is the variance of the residual current and σ0
2 is the variance of the observed 

ice drift.  

 

Though generally the most reliable approach, the two-parameter method is unable to 

resolve any parameters for in situ winds for the failed compass buoys, since derivation 

of the wind factor is no longer divorced from the turning angle. We therefore also 

present results from a third method, which uses fixed residuals applied a posteriori to 

constrain the regression gradient.  

 

Results are shown in Figure 2.15, for one outer (DML8) and one inner (DML9) buoy. 

The wind factor, turning angle and residuals are plotted for the three schemes, for a ten-

day running window across the first two months of deployment.  
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Simple regression using in situ winds for DML8 showed a downward trend in wind 

factors, from around 5% to 3% by mid June. Residuals were very high (12 cm s-1) pre-

consolidation, reducing gradually to 3 cm s-1 in two weeks – a value they remained 

close to from thereon. This value was therefore chosen for the constrained regression 

scheme. Other buoys had rather haphazard results with simple regression, reflecting the 

difficulties of the method with scattered data and a low number of samples. Constrained 

regression using in situ winds and 3 cm s-1 residuals for DML8 showed a clear reduction 

from around 6.8% in the pancake phase to 3.8% by mid-June. DML9, in contrast 

showed no clear trend in its constrained regression result with in situ winds, remaining 

around 4-5% throughout. Constrained regression with 10 m winds and DML8 showed a 

reduced but similar trend, dropping from 3.5% to 3.0% over the same period, with the 

inner buoy showing no clear trend and lower values (c. 2.6%). Two-parameter results 

were very similar to constrained regression results for 10 m winds. The two-parameter 

scheme showed little long-term trend with in situ winds for the inner buoy, with values 

remaining around 3% throughout.  

 

For turning angle, simple and constrained regression gave very similar results for the 

valid (inner) buoys’ in situ winds (c. –68o). Two-parameter, 10 m, results were similar 

for all buoys, staying relatively constant between –10o to –20o. Regression schemes 

gave similar values to the two-parameter method where the simple regression residuals 

were low. When these residuals rose, however – due to the low windspeed points being 

removed and significantly reducing the number of samples available to the algorithms - 

turning angle was significantly reduced (became less negative). Two-parameter 

residuals tended to follow a similar form to the regression results, but did not perturb the 

turning angle, which remained relatively constant throughout.  

 

Correlation coefficients for DML8’s 10 m constrained regression rose from a minimum 

of c. 0.5 during the pancake phase to a relatively constant 0.85 once consolidation 

occurred. In situ winds fared rather better during the pancake phase, correlating at rS
2 = 

0.7, rising to 0.9 post-consolidation for the constrained regression scheme. Both 

coefficients for the inner buoy (DML9) remained around 0.85 throughout for in situ 

winds. For DML9’s 10 m winds, both coefficients followed that of DML8 closely.  
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Figure 2.15: Wind factor (top), turning angle (middle) and residuals (bottom) for outer (DML8) and inner 
(DML9) array buoys, with the various schemes described in the text. 



Chapter 2: Dynamics 
   

43 

 

The success of the methods can be visualised by using the various coefficients to drive 

the buoys along simulated tracks. Figure 2.16 (a) shows the simulated drift for the 

lifetime of DML4, using its in situ winds to drive the simulations. Both regression and 

two-parameter techniques give a reasonable simulated track, reproducing all the major 

features of the motion, though in a slightly distorted manner. The two-parameter 

solution gives improved tracking of the rectangular portion of the track in its south-most 

location, however. Removing the residuals from the two-parameter solution shows the 

important role that these play in determining the motion, with the track becoming 

significantly displaced towards the southeast. The results of a fourth method – using 

median values of α and δ timeseries to give more stable results in the early deployment 

phase – are also shown, though, since the method also assumes zero residuals, its 

performance is similarly poor. Figure 2.16 (b) shows simulated tracks for the same 

buoy, using ECWMF 10 m winds. The lower temporal resolution of these winds is 

clear, with the simulated tracks lacking the detail of the actual buoy track. Major 

features are again well-reproduced, however, with a surprisingly accurate final position. 

 

For the other, longer-lived buoys of the main array, simulations are presented (Figure 

2.17) for the initial (pancake) phase and then for the remaining lifetime of each buoy. 

Only modelled (ECMWF) winds are shown, since three of these four buoys had faulty 

wind directions. As before, the two parameter technique consistently gives the best 

results and this success suggests that any momentum transfer parameters should be 

derived using this technique. Accordingly, values derived from valid in situ and 

ECMWF winds are presented in Table 2.5. Averaging results for the various buoys 

gives wind factors of 4.8% and 2.9% for 1 m and 10 m winds, respectively. Turning 

angles were 68º and 13º, for 1 m and 10 m winds, respectively. Residual component 

currents were rather low for in situ winds, at 0.6 cm s-1 and 1.6 cm s-1, but significantly 

higher for modelled winds, at -4.5 cm s-1 and +2.3 cm s-1. This is more likely to be a 

failing of the modelled winds than a real effect. Degree of explanation is high for in situ 

winds (0.83) and modelled winds post-consolidation (0.80), but lower for modelled 

winds in the pancake phase (0.58), as expected from the foregoing correlation analysis.   
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Figure 2.16: Simulated drift tracks of DML4 using (a - top) in situ and (b- bottom) 
ECMWF 10 m  winds.  
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 b) 
 
 
 
 
 
 
 
 
 
 
 
           
  d) 
 
 
 
 
 
 
 
 
 
 
           
  f) 
 
 
 
 
 
 
 
 
 
 
           
  h) 
 
 
 
 
 

Figure 2.17 (a)-(h): Simulated drift tracks for pancake regime (LHS) and pack ice phase (RHS) 
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Table 2.5: Results from the two-parameter matrix solution, for (a) in situ winds, 
and (b) 10m model winds. Values are quoted during pancake/consolidated phases.  
DML4 and DML9 did not remain unconsolidated long enough to give meaningful 
figures. In situ results are omitted for the failed-compass buoys, since the nature of 
the solution does not allow any parameters to be calculated in the absence of valid 
wind directions. Timeseries have a two hour LPF applied before calculation, and 
points with wind speed <1m/s are omitted.  

 
 
 

a) in situ winds 
 

 α, % δ, o Ures, cm/s Vres, cm/s R2 Comment 

DML4  - / 4.2 - / -90 - / -2.7 - / 1.9 - / 0.85 To day 136  

DML5 (4.9) / 5.4 (-83) / -66 (0.6) / 1.9 (1.6) / 1.8 (0.04) / 0.84 To day 190  

DML9 - / 4.5 - / -64 - / 0.4 - / 1.3 - / 0.81 To day 190  

2h mean - / 4.8 - / -68 - / 0.6 - / 1.6 - / 0.83  

14h mean - / 4.9 - / -64  - / 0.5 - / 1.4 - / 0.89  

 
 

b) 10m model winds 
 

 α, % δ, o Ures, cm/s Vres, cm/s R2 Comment 

DML4 - / 2.4 - / -19 - / -4.8 - / 2.1 - / 0.70 To day 136  

DML5 2.5 / 3.2 -16 / -13 -3.3 / -0.4 3.3 / -0.2 0.66 / 0.81 To day 190 

DML6 2.8 / 3.1 -13 / -10 -4.4 / 1.6 1.7 / 0.8 0.70 / 0.87 To day 190  

DML7 3.2 / 3.7 -9 / -9 -3.8 / -7.3 1.9 / 0.8 0.46 / 0.78 To day 145  

DML8 2.9 / 3.3 -13 / -10 -5.9 / -1.0 2.4 / -1.5 0.57 / 0.84 To day 190  

DML9 - / 2.7 - / -15 - / -2.3 - / 1.7 - / 0.75 To day 190 

2h mean 2.9 / 3.0 -13 / -13 -4.5 / -1.3 2.3 / 0.4 0.58 / 0.80  

14h mean 2.9 / 3.0 -13 / -12 -4.6 / -1.3 2.4/ 0.5 0.66 / 0.86  
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Literature values for pancake ice transfer coefficients are entirely lacking for the 

Antarctic and sparsely reported for the northern hemisphere. For the Odden region of 

the Greenland Sea, which consists of pancakes with no constraining boundary, 

Wilkinson and Wadhams (2003) reported a 10 m wind factor of 2.7% with a turning 

angle of 10°.  These values were used by Pederson and Coon (2004) and are broadly 

consistent with the present study. Wind factor values for Antarctic pack ice are more 

common and are widely reported to vary, both seasonally and spatially. Authors 

variously quote 1.9% (August) to 2.7% (October) (Hoeber 1991); 3.4% in the MIZ to 

2.4% in pack ice (Vihma and Launianen 1993); and 1.8% (Wamser and Martinson 

1993). Differences are commonly ascribed to melting, which smoothes the underside of 

the floes and stabilises the oceanic boundary layer, decreasing momentum exchange and 

friction (McPhee 1987). Vihma and Launianen (1993) noted that the wind factor 

depended more on the location of the buoys with respect to the ice edge than seasonal 

influences, however. 

 

 

2.6 Relative motion 

Having examined the motion of individual buoys and the relation between wind forcing 

and ice movement, the next step is to investigate relative motions across the buoy array 

and pancake zone. It is relative motions which largely determine the final character of 

an ice region, since sustained convergence results in a highly deformed (and therefore 

thick) ice cover, criss-crossed by linear pressure ridges and less-defined rubble fields. 

The contribution of deformed ice to the mass balance of ice covered seas is currently a 

major topic of interest in the Arctic (e.g. the current Sea Ice: Dynamic Nature of the 

Arctic (SEDNA) experiment in the Beaufort Sea), since the contribution of deformed 

ice will significantly change the response of the Arctic pack ice to continuing global 

change. Deformed ice has been studied less in the Antarctic, primarily due to 

accessibility issues and the lack of military submarine voyages to the region, which 

otherwise would provide thousands of kilometres of upward-looking sonar data, as they 

have done in the Arctic (Rothrock et al. 1999; Wadhams and Davis 2000).  
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Conversely, sustained divergence (an increase in area) exposes open water to the cold 

air temperatures, allowing ice formation in an ice cover that may otherwise have 

reached its thermodynamic thickness limit. Alternating divergence-convergence cycles 

are most effective in driving ice formation, as the thin skim of ice is rapidly deformed to 

form thick ice before open water is again exposed for more growth.  

 

The motions of the buoy array are therefore examined, particularly with regard to any 

divergence-convergence cycles which may occur at the higher frequencies whose 

examination is made possible by the 20-minute sampling interval of the buoys. Relative 

motions in an array are defined with respect to the centroid of the array. This is defined 

such that the sum of all distances in the array (x, y co-ordinates) from the centroid is 

zero. It can be visualised as the centre-of-gravity of a polygon with a buoy at each 

vertex.  

 

 

2.6.1 Time domain 

The behaviour of the array can be best visualised by splitting the buoys into two sub-

arrays: the outer, more unconsolidated triangle of DML 5-7-8 and the inner triangle of 

DML 4-5-9. DML5 forms a common element in these two arrays. Figure 2.18 (a) and 

(b) plot the positions of the buoys in each array with respect to the array centroid with 

time, as a three-dimensional surface. It is clear that the outer array undergoes 

significantly more compression from its deployment, flattening to an almost linear form 

between Days 116 and 122. The array then re-establishes its shape under the influence 

of northerly winds from the passing low-pressure system. The inner array presents 

considerably more resistance to deformation, reflected by its more stable shape. Both 

arrays then diverge by similar amounts, reflecting the fact that sea ice is rather strong in 

compression but very weak in tension.  

 

Relative motions between buoys were then studied quantitatively in terms of the 

standard differential kinematic parameters (DKPs) (Thorndike and Colony 1982; Crane 

and Wells 1994; Kottmeier et al. 1997; Geiger et al. 1998) which compute the 

deformation rates of the array using the spatial derivatives of the buoy velocities with  
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Figure 2.18: The relative positions of inner (top) and outer (bottom) 
arrays, plotted relative to the centroid of each array as a three-
dimensional surface. 



Chapter 2: Dynamics 
   

50 

respect to the array centroid. We calculate the three invariant terms: divergence, 

vorticity and maximum shear and the two variants; shear and stretch. Divergence is the 

rate of change of area without change of orientation or shape; shearing is the rate of 

shape change produced by differential motion parallel to the sides of the area, without a 

change of that area; vorticity is the rate of rotation without area or shape change (no 

deformation). Invariant terms give results independent of the co-ordinate system chosen. 

Variant terms, dependent on the chosen co-ordinates, are useful when seeking 

information about the array with respect to external influences such as topography. The 

Cartesian co-ordinate system aligns with the ice edge in the current study and x is 

therefore taken parallel to longitude, while y is parallel to latitude.  

 

DKPs were calculated by the line integral method detailed in Lindsay (2002), for all five 

buoys of the main array: 

 

Invariant terms 

 

y
v

x
uDivergence

∂
∂

+
∂
∂

=    (Eq. 2.9) 

y
u

x
vVorticity

∂
∂

−
∂
∂

=     (Eq. 2.10) 

Max 
22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
x
v

y
u

y
v

x
uShear  (Eq. 2.11) 

Variant terms 
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The above quantities are calculated using the relation: 
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where (xi, yi) are the locations relative to the array centroid and (ui, vi) are the velocities 

with respect to the centroid. A is the area of the array, given by: 
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1    (Eq. 2.15) 

 

DKPs are presented for outer and inner arrays in Figure 2.19, plotting full-resolution 

parameters in light blue. The DKPs are also plotted with a two-hour LPF applied to 

highlight their oscillatory nature. Full-resolution DKPs show a high-amplitude, 

oscillatory character prior to consolidation in all cases. The parameters for the inner 

array have significantly less amplitude than those displayed for the outer buoys (the 

array DKPs are all plotted at the same scale). Actual translation of the array during these 

high magnitude differential events was small, with mean centroid velocities not 

exceeding 7 cm s-1, directed towards the north-east. Secular divergence was largely 

negative until May 1st but became dominantly positive afterwards. The high frequency 

motion was not a function of the sign of the divergence, however – later prolonged 

convergent episodes (e.g. June 5th – 15th) elicited no such response from the array. 

Vorticity was dominantly negative (clockwise) until May 3rd, and then became 

oscillatory, with a clear semi-diurnal signal that was also evident in the post-

consolidation divergence.  

 

ECMWF 10 m winds were extracted at each buoy’s position as well as at the array 

centroid and rotated by the turning angle calculated in the previous section prior to 

determination of their equivalent DKPs. These are largely uncorrelated during the 

pancake phase for the outer array, as expected from the model’s poor performance 

there. Large amplitude excursions in max shear, shear and stretch at the consolidation 

boundary closely follow the wind forcing, however, and the sign of these DKPs matches 

thereafter. Correlation is better for the inner array, though divergence is poorly tracked. 

Shear and max shear match particularly well for this latter array.  
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Figure 2.19: Divergence and vorticity plotted at 20-minute resolution (light blue) 
and with a two-hour LPF applied (dark blue). The top two graphs show the outer 
array (DML 5-7-8) while the bottom two graphs show the inner array (DML 4-5-
9). RMS error in the divergence, due to “worst case” position/velocity errors of the 
individual buoys is 3.4×10-7 s-1,  two orders of magnitude below the plotted signal.  
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Results are summarised, along with results for the full array, in Table 2.6. The table 

shows full-resolution (20 minute) results for all derivatives and invariants, together with 

the scale of each array in terms of the median separation between buoys and the median 

area. Correlation coefficients compare like with like, applying a low pass filter to the 

drift results (12 hour) to match that implied by the six hour sampling interval of the 

ECMWF winds. The oscillatory character of the timeseries, around a near-zero mean 

resulted in standard deviation and RMS values being almost identical and hence only 

RMS values are quoted.  

 

 
Table 2.6: RMS values for derivatives and invariants for full, inner (DML 4-5-9) 
and outer (5-7-8) arrays. Values for the drift derivatives and invariants are quoted 
at full resolution. The correlation coefficients between wind and drift invariants are 
quoted with the drift values low-pass filtered to match the ‘native filter’ applied by 
the wind’s sampling interval (i.e. LPF=12 hours for ECMWF 10 m winds). Winds 
are rotated by the turning angle prior to calculation. The median area of the array 
over the period of interest (a divisor in calculating the invariants from derivatives) 
is also tabulated, together with the median spacing between buoys.  

 

Array Full Full Inner Inner Outer Outer 

Period Pre Post Pre Post Pre Post 

du/dx (×10-6 s-1) 0.8 0.7 1.4 0.9 1.5 1.3 

dv/dx (×10-6 s-1) 0.9 0.8 2.1 1.1 1.6 1.3 

du/dy (×10-6 s-1) 2.7 1.2 3.0 1.0 10.0 4.2 

dv/dy (×10-6 s-1) 4.1 1.4 5.1 1.2 14.5 3.6 

Median spacing (km) 82 132 48 80 33 54 

Median area (km2) 3390 8733 1186 3212 575 1457 

Div (×10-6 s-1) 4.1 1.7 5.1 1.5 14.5 4.0 

Vort. (×10-6 s-1) 3.0 1.5 4.1 1.4 10.5 4.5 

Max Shear (×10-6 s-1) 4.9 2.0 6.4 2.2 17.6 5.6 

Div   rS
2  10 m 0.13 -0.23 0.04 -0.10 0.23 -0.21 

Vort rS
2  10 m 0.69 0.72 0.54 0.50 0.31 0.69 

Max shear rS
2  10 m 0.32 0.28 0.22 0.19 0.02 0.30 
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The dominant nature of the meridional derivatives is evident, with values for the outer 

array being three times that for the inner (or full) arrays during the unconsolidated 

phase. RMS values of the invariants drop by approximately three times across the 

consolidation boundary in all cases. Correlation coefficients with 10 m wind results are 

negligible for divergence in all cases (rS
2 = 0.13 before consolidation, -0.23 afterwards) 

and pronounced for vorticity (rS
2 = 0.69 before consolidation, 0.72 afterwards). 

Vorticity correlation for the outer array more than doubles after consolidation, from 

0.31 to 0.69, while values are similar across inner and full arrays throughout. Max shear 

correlation is low and variable in all cases. Vorticity was also well correlated with the 

sea level pressure measured by the buoys (rS
2 = 0.60). The effects of poor model winds 

during the unconsolidated phase were difficult to estimate, however, since the lack of in 

situ wind directions precluded any calculation of the 1 m wind DKPs for the array.  

 

Major vorticity events have been shown to be present in the atmospheric pressure record 

with effectively zero lag (Crane and Wadhams 1996). In the current study, correlations 

with the atmospheric pressure record were better than 0.32, reaching 0.68 in older pack 

ice (DML 5-8-9, Days 140-160). An association with strong low-pressure events is clear 

from comparison of the timeseries, and is ascribed to the array position being at similar 

latitudes to the centre of these strong cyclonic events. Calculating the Laplacian of 

pressure improves the correlation further. The relation breaks down towards the end of 

the longest-duration array (Figure 2.20), as advection takes it northwards out of the 

major storm paths.  

 

The real value of the post-SA/DGPS position values becomes apparent when comparing 

the significance level of these DKP signals with respect to their error variance. Previous 

studies have noted the high-frequency nature of deformation events (Geiger et al. 1998) 

and bemoaned the low signal-to-noise ratios that conventional Argos buoys implied. 

Error variance of the velocity derivatives is given by (Thorndike and Colony 1982): 
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Figure 2.20: Atmospheric pressure at DML5 (red) plotted against 24-hour-filtered 
array vorticity (10 m winds). The association between strong low-pressure events 
and negative vorticity is clear in the early part of the record, though the relation 
breaks down towards the end.  

 

 

 

   

    σε   =  22

24
xt ΔΔ

σ    (Eq. 2.16) 

 

 

where σ2 is the typical position error variance, Δx is the spacing of measurement points 

and Δt is the time interval of position fixes. Error variances for typical Argos buoys and 

the current buoys in ‘worst-case’ and ‘best case’ scenarios are shown in Table 2.7. Δx is 

taken as 200km in all cases. The post-SA position accuracy and the pre-SA differential 

position variances (20 m) give equivalent error variances to the three-hourly Argos 

fixes. Failed DGPS corrections during the SA-era increase this error significantly. Using 

two hour interval positions – broadly equivalent to most Argos studies – gives error 

standard deviations an order-of-magnitude better than achievable using Argos.  
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Table 2.7: Standard deviations of the velocity derivative error between 
typical Argos buoys and the current study, for various combinations of 
position error (σ) and sampling interval (Δt). 
  

 σ (m) Δt (sec) σε  (s-1) 

Argos 200 10,800 2×10-7 

STiMPI ‘worst case’: SA, DGPS failed 100 1,200 8×10-7 

STiMPI ‘best case’: post-SA or DGPS 20 1,200 2×10-7 

STiMPI 2hr LPF, post-SA or DGPS 20 7,200 3×10-8 

 

 

 
2.6.2 Frequency domain 

Power spectral densities were calculated on either side of the consolidation boundary for 

the buoy invariants and are shown for the divergence of the inner array in Figure 2.21, 

together with equivalent spectra for their in situ winds. Results for vorticity were 

similar. The inner array is shown here, since all buoys had valid wind directions to 

enable this comparison to be performed. Figure 2.22 shows the divergence spectra for 

the full array. Drift divergence spectra had similar contrasts to those seen in the drift 

components themselves: power was higher in the unconsolidated phase and was 

especially elevated for periods less than six hours. Wind divergence spectra showed 

increased power pre-consolidation, in contrast to the wind speed spectra, which showed 

no actual increase in wind speeds across the consolidation boundary. Increased 

divergence in the absence of increased wind speeds suggest that the wind directions 

across the array were more disparate pre-consolidation than post-consolidation, 

consistent with the presence of the various mesoscale ice edge effects discussed 

previously. No evidence of elevated power at periods shorter than six hours is present in 

the wind data, though the one-hour sampling interval precludes examination below two-

hours period. The oscillating ‘tail’ of the wind spectra below two hours in Figure 2.21 

arises from interpolating the wind sampling interval to 20 minute intervals.  
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Figure 2.21: Divergence spectra for the inner, three-buoy, array, for similar-length 
periods before and after the consolidation. Equivalent spectra for the in situ wind 
measured by the buoys are also shown. Buoy divergence shows increased power at 
all frequencies pre-consolidation, but most markedly below 6 hours period. Wind 
divergence has higher power pre-consolidation, but HF power does not reflect the 
buoy results. The loss of resolution after two hours period is evident in the wind 
spectra; a consequence of the one hour sampling interval for these data (c.f. 20 
minutes for buoy drift). The 95% confidence interval is marked.  
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Figure 2.22: Divergence spectra for the full five-buoy array. The 
contrast between pre- and post-consolidation regimes is similarly 
dramatic, showing around two orders of magnitude increase at the 
highest frequencies. The development of the inertial peak post-
consolidation is also particularly marked.  

 

 

 

The evolution of the power in the DKP spectra was next investigated, as done for drift 

spectra in Section 2.3.2. The spectrum was divided into low-frequency (< 2 cpd) and 

high-frequency (2-36 cpd) portions. The integrated power in each frequency band was 

calculated for a ten-day running window, advancing in two day steps along the lifetime 

of the longest-lived array (DML 5-8-9) and plotted on a semi-logarithmic scale in 

Figure 2.23. The integrated power of the 10 m model wind DKPs is also plotted, 

calculated with the same running window, to a maximum frequency of 2 cpd.  
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Figure 2.23: Integrated LF and HF drift DKP power and integrated wind 
DKP power plotted against the centre day of a ten-day window in which they 
were calculated. Spectra are not bandwidth-normalised.  

 

 

 

For the drift DKPs, an exponential (log-linear) decay in both frequency bands is clear, 

with a minimum power around Day 150 and a less marked minimum at Day 130, 

matching similar features in the wind record. The decline in HF power is considerably 

steeper than for LF, as might be expected. Integrated wind DKPs show a similar 

decaying trend with a similar slope to the LF drift DKPs and it is clear that wind forcing 

is the dominant forcing at these low frequencies. Minima in the wind DKPs also 

correspond to features in the HF drift DKPs, implying that the wind forcing has a 

significant role in this higher frequency motion too, in contrast to the earlier analysis. 

Divergence of the wind is an order of magnitude less than the other wind DKPs which 
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are at least two orders of magnitude higher than for the buoy drift DKPs, in agreement 

with published results (Kottmeier et al. 1997).  

 

RMS values of the DKPs showed marked variation with the period of low-pass filter 

applied and this prompted investigation of the dependence of the magnitude on 

sampling interval. This was done for all three arrays (inner, outer and full), calculating 

values for two periods, corresponding to the unconsolidated phase for the outer buoys 

and an equivalent period afterwards. Results are plotted for divergence in Figure 2.24.  

 

 

 
  

Figure 2.24: RMS divergence for the outer (DML 5-7-8) and inner (DML 
4-5-9) arrays, plotted after the application of various low pass filters 
(LPFs). The ‘native’ low pass filter, imposed by the sampling interval, is 
40 minutes period. The dotted line indicates the usual limit of Argos-
based investigations, at a sampling interval of around three hours (LPF = 
6 hours). A distinct break-point in the curve is seen at two hours.   
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The main feature of the graph is the steep decline in the magnitude of the outer array’s 

pre-consolidation divergence with increasing filter length. A distinct break-point occurs 

at an LPF of two hours, after which reduction occurs at a lesser rate. The pre-

consolidation period for the inner array has a similar form, though less exaggerated. A 

significant reduction in magnitude is seen between pre- and post-consolidation traces 

for both arrays, but particularly for the outer array, as might be expected. The post-

consolidation outer array also shows a step at around 12 hours, following the removal of 

inertial motions not present in the pre-consolidation record. Results for vorticity were 

very similar and are not shown.  

 

 

2.7 Discussion 

The boundary between unconsolidated pancake ice and consolidated pack ice was 

clearly established with reference to wave parameters, buoy headings and drift 

dynamics. The high drift speeds encountered during the pancake phase fell gradually 

throughout the winter, only increasing when the ice neared its northern limit and began 

to break up and enter the Southern Ocean as individual floes. Scalar drift speeds during 

the pancake phase are higher than other studies (focussing on pack ice) have found in 

the region – e.g. 15 cm s-1 (Vihma and Launianen 1993; Vihma et al. 1996; Uotila et al. 

2000), 17 cm s-1 (Massom 1992) and 11 cm s-1 (Geiger et al. 2000). The domination of 

the v-component reflects the approximately east-west alignment of the ice edge at the 

time of deployment and the consequent freedom in the north-south direction. 

Examination of the array shape showed strong variation in north-south separations as 

passing low pressure systems first compacted the unconsolidated ice with northerly 

winds, then rarefied the ice cover with southerlies. The pancake ice was unable to 

transmit the stress necessary to resist deformation, in contrast to the consolidated pack 

ice, and a buoy (or the ice) was thus free to move in response, giving rise to the high 

speeds observed. As buoys became consolidated, their freedom to respond to wind 

forcing was progressively reduced.  

 

The most notable result of this work is the elucidation of high-amplitude, high-

frequency divergence (and other invariants) for the unconsolidated ice. Drift spectra 
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showed significantly elevated  spectral power at periods shorter than six hours in the 

pancake phase, approximately two orders of magnitude higher than previously seen for 

Weddell Sea pack ice (Kottmeier and Sellmann 1997). These high amplitude, 

oscillatory motions ceased overnight at the consolidation boundary. Though in situ 

winds showed increased power throughout the spectrum prior to consolidation, no 

comparable elevation of the HF spectrum was seen in those records.  

 

The question naturally arises as to the forcing for these high frequency motions. Three 

candidates are suggested and these are examined in turn.  

 

1. Surface gravity waves 

The most evident form of higher-frequency motion is that caused by the passage of 

swell waves through the ice. While their primary role is preventing the pancake-frazil 

mixture freezing into a solid sheet – as discussed in Chapter 1 – swell waves cause the 

pancakes to move apart on each crest and move together in the troughs, as well as 

driving them in the down-wave direction.  

 

The magnitude of the down-wave motion of pancakes is difficult to estimate. The usual 

mechanism – wave radiation pressure (Longuet-Higgins and Stewart 1964) – is 

applicable to objects whose dimensions are comparable with the wavelength of the 

driving waves. This is clearly not the case for pancakes, whose sub-metre diameters are 

around two orders of magnitude less than the wavelength of the shortest period waves 

impinging on them (c.150 m for a 10 s period wave). Accordingly, the energy reflection 

coefficient (Wadhams 1973) becomes vanishingly small and very little force is imparted 

to the pancake. An equivalent theory for the wave-induced motion of smaller elements 

was introduced by Ruhmer et al. (1979), who accounted for the ice elements sliding 

down a wave slope.  

 

The approach was developed by Hopkins and Shen (2001), who added collisions to the 

model and simulated pancake drift numerically. Though an exact formulation for the 

real drift speed is hard to determine, and appears to be rather sensitive to wave 

amplitude, it is stated that the ice drift velocity approaches the water surface velocity at 
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low amplitudes. Taking a typical wave amplitude in the pancake zone as 1 m, with a 10 

s period, their formulation gives an ice drift of around 18 cm s-1. This gives 216 m 

motion between GPS fixes, which is of the same order as observed and suggests that no 

significant increase in the divergence signal would be observed if motions were sampled 

at higher frequency. It is unclear how surface waves would give rise to an oscillatory 

signal at the sampled interval, however.  

 

Anomalous motion has been observed previously, during the MIZEX West experiments 

in the Bering Sea. Though never published, radar transponders mounted on small floes 

there were observed to circulate within ice edge bands. A complex interaction of short 

period waves within the band was postulated, though never developed. 

 

Actual displacement through the surrounding frazil during the passage of swell waves 

appears to be minimal (pers. obs.), though the very large number of such events during a 

prolonged ice growth period suggests that even a small contribution-per-cycle may be 

important. Attempts to parameterise this mutual oscillation have encountered problems, 

with theoretical and measurement approaches giving inconsistent and contradictory 

results (Frankenstein 1996). Wave-tank experiments using polypropylene floes and urea 

ice in the CRREL outdoor tank found the results to depend on the initial conditions. The 

floe motions were quasi-periodic with outbreaks of chaotic behaviour and the 

theoretical treatment consistently under-predicted the collision frequency and duration, 

while over-predicting the oscillation amplitude (Frankenstein 1996). It is suggested that 

the inconsistent tank results may arise from the scaling problems referred to previously, 

i.e. that the frazil crystals are life-sized while the wave amplitudes and periods are not. 

It is not immediately clear how the required measurements could be made in the field, 

however. The very hostile environment encountered during pancake ice formation 

makes the observation and recording of centimetric pancake-to-pancake distances at 

sub-second intervals very difficult indeed, when the observation platform is heaving in a 

significant swell, high windspeeds and icing conditions.  
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2. Mesoscale wind and currents  

The ice edge is an area of extreme contrasts in both thermal regime and surface 

roughness. Near the ice edge, in a strip of a width of a few baroclinic Rossby radii, the 

wind stress profiles are affected by several factors such as the roughness and 

compactness of the ice as well as by the stability of the atmospheric boundary layer 

(Guest and Davidson 1991). Such spatial variations of the wind stress give rise to 

divergences or convergences of the Ekman transport near the edge and thus generate up- 

or downwelling, and oceanic jets. Additionally, the surface temperature gradient across 

the MIZ generates a secondary circulation, or “ice breeze”, causing atmospheric 

boundary layer convergence and deformation. This convergence effect is increased by 

the contrast in wind turning angles between water (relatively smooth) and MIZ ice 

(rough). Both effects favour the establishment of sharp, quasi-stationary temperature 

fronts, wind speed jets and strong vertical velocities near the ice edge. The effects are 

very sensitive to the balance between the ice breeze and geostrophic wind speeds and 

the exact angle of both relative to the ice edge (Guest et al. 1995), particularly in the 

case of winds parallel to the ice edge.  

 

All of these factors suggest that the outer buoys will experience a significantly altered 

wind and/or current forcing to the inner buoys in the array. The in situ wind speed 

records, though showing differences between buoys, do not support a step change in 

high frequency wind forcing, however. It is also not clear how the forcing could be 

dominantly oscillatory. The role of water stress cannot be evaluated, since no current 

information was acquired, though it appears unlikely that ice edge currents would vary 

at the very high frequency observed, or, again, be oscillatory.  

 

3. Internal waves 

The observed motion might arise from coupling between internal waves and surface 

velocity. This was considered by Muench et al. (1983) in the formation of ice edge 

bands, though velocities in their shallow water case were insufficient to explain the 

observed motion. In the present case, CTD casts at each deployment station measured a 

density difference of 0.25 kg m-3 across the thermocline, which existed between depths 

of 60 and 110 m.  This gives a Brunt-Väisälä frequency of 7×10-3 Hz, or a buoyancy 
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period of around 15 minutes. The maximum surface velocity that an internal wave of 

this frequency will produce is around 3×10-2A, where A is the amplitude of the vertical 

displacement at the interface. This might be of order 10 m, giving a maximum 

horizontal velocity at the surface of 30 cm s-1. The displacement integrated over one 

half period of the internal wave is therefore around 70 m, and internal waves thus 

appear to be a viable candidate for the observed motion.  

 

Translation under wave action, whether surface or internal, may thus account for the 

elevated high frequency power observed. Clearly, the consolidation process either 

removes such forcing or prevents the ice from responding to it and can account for the 

contrast between results for the two ice types. Measuring buoy positions at still shorter 

sampling intervals would allow the mechanism to be established with more confidence.  

 

The question then arises whether the accuracy of the GPS position fixes would make 

shorter sampling intervals feasible. Errors are difficult to estimate realistically, but if we 

assume a square array with buoys at each vertex, at mutual distance d, then an upper 

bound for the deformation error is (Lindsay 2002): 

 

td
e
Δ

=ε   (Eq. 2.17) 

 

where e is the positional error (assumed independent) and Δt the fix interval. Positively 

correlated errors – as is likely if the buoys are calculating their positions from the same 

GPS satellites – can cancel, reducing uncertainty. This suggests that the fix interval 

could be significantly reduced without errors becoming significant. With SA-era 

accuracy, a timestep of five minutes would produce an error of 1×10-6 s-1 and post-SA, 

i.e. current, accuracy levels would allow this sampling interval to be reduced still 

further, to less than one minute for the same error.  

 

It would be interesting to discover whether the upward trend in the RMS magnitude 

continues down to this level. If the driving factor in these oscillations is a mechanism 

such as translation by wave radiation pressure, then we would expect a positive result, 
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given the short period of the waves (7-8 seconds). Such a short interval would also 

resolve any oscillatory motion at internal wave periods. 

 

The existence of the high-amplitude, high-frequency relative motions may have major 

implications for model rheologies of the region. Crushing thin ice during convergent 

events and exposing sea surface during divergence cycles is a particularly efficient ice 

growth process at high-frequencies (Padman and Kottmeier 2000; Koentopp et al. 2005) 

and the new values may therefore imply much increased ocean-atmosphere heat flux, 

ice growth and salt rejection to the ocean in the ice edge region. In order to estimate the 

contribution of these oscillatory events, we must combine the dynamics investigated in 

this chapter with an understanding of the thermodynamic growth of pancake ice and 

hence derive quantitative values for ice production rates in the pancake zone. This is 

done in the next chapter, using results from in situ ice sampling during the Polarstern 

cruise.  

 

 

2.8 Summary 

 

• The boundary between unconsolidated  pancake ice and consolidated pack ice 

was established with reference to wave parameters measured by the buoys. The 

outermost buoys consolidated on May 2/3, after approximately two weeks 

deployment. 

• Drift speeds were significantly higher during the unconsolidated phase and 

exhibited significantly elevated (an order of magnitude) spectral energies at 

periods shorter than six hours, compared to the immediately following 

consolidated motion. The difference was not reflected in the measured winds. 

• The HF motion followed a cycle of constraint, having a maximum during the 

pancake phase, a mid-winter minimum and an increase towards break-out at the 

northern pack ice edge, during the following summer. Spectra at this latter 

maximum did not exhibit the elevated energies present in the pancake phase, 

however. The LF motion spectra maintained a more constant character 

throughout.   
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• It proved difficult to establish representative momentum transfer parameters for 

the pancake ice, due to the failure of the digital compasses in the outermost 

buoys and the resulting lack of reliable wind directions there. ECMWF winds 

were not reliable close to the ice edge, due to the many unparameterised 

mesoscale processes there. Best values were a wind factor of 2.9% and turning 

angle of 13° for the ECMWF 10 m winds, similar to that found in the Odden.   

• Relative motions of the buoys, expressed by their differential kinematic 

parameters (DKPs) showed a striking contrast across the consolidation 

boundary. High amplitude, high frequency oscillations ceased almost overnight. 

RMS values were around two orders of magnitude higher than previously 

measured for Weddell Sea pack ice 

• Power spectral densities of the DKPs exhibited elevated values at periods shorter 

than six hours, in the same manner as seen for the individual buoy drift 

components.  

• RMS values of the divergence (and other invariants) showed a marked 

dependence on sampling interval, halving at two hours resolution compared to 

the full resolution data 

• Possible forcing mechanisms were investigated and waves, either surface gravity 

or internal, were postulated as the source. It was noted that higher frequency 

measurements, coupled with relative water velocity measurements, would be 

required to investigate the mechanism further.  

 

 

 

 

 

 

 

 

 

Results from this Chapter were published as Doble and Wadhams (2006) as part of a JGR 
Special Section titled “Small scale kinematics and dynamics of sea ice: models and 
observations”. That paper is included as Appendix C to this thesis.  
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CHAPTER 3: THERMODYNAMICS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter sets out in situ measurements performed in the pancake zone of the central 

Weddell Sea, aimed at elucidating initial ice formation processes and providing a first 

quantitative estimate of pancake ice growth rates.  

 

Previously undescribed pancake morphologies are discussed and a new growth 

mechanism is introduced to account for these, supported by direct observations from ice 

tank experiments. Growth periods contributing to pancake building are identified and 

the rate of pancake formation compared to that which would have occurred by 

congelation ice growth and frazil ice production at a free surface, calculated using a 

kinematic-thermodynamic model.  
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In order to quantify the rate of ice growth during pancake formation, the ice properties – 

thickness, porosity, area concentration – must be determined and the meteorological 

forcing known. Intensive ice sampling was therefore carried out at each buoy 

deployment location: six sampling locations formed a trapezoidal area of dimensions 80 

km perpendicular to the ice edge and 110 km parallel to the edge. A seventh location 

was sampled 310 km further west.  

 

3.1 Overview of ice/ocean/atmosphere conditions 

Helicopter reconnaissance flights were carried out prior to the sampling stations, in 

order to determine the best locations for buoy deployments and place the local 

conditions in a wider context. Tracks of the flights are shown in Figure 3.1, 

superimposed on the ship’s cruise track, with sampling stations marked. The ship was 

steaming east to west.  

 

 

 
Figure 3.1: Helicopter reconnaissance and aerial photography flights (coloured 
polygons), superimposed on the ship’s cruise track and the sampling (and buoy 
deployment) stations. No buoy was deployed at Station 0. Also indicated is the 
approximate limit of consolidated pack ice (solid black lines).  



Chapter 3: Thermodynamics 
 

70 

Vast fields of frazil ice were observed along the ice edge during the first flight (April 

15th) for more than two degrees of longitude. The frazil fields consolidated overnight 

and were observed as young, wet pancakes during a helicopter flight the following day 

(April 16th). These young pancakes are shown in Figure 3.2, overleaf, which also shows 

the penetrating wave energy so important in their formation.  

 

As well as basic reconnaissance, the helicopter flights were also used to fly downward-

looking aerial photography transects across the pancake zone and into the consolidated 

pack ice. A Vinten 70 mm aerial camera was attached to the helicopter’s skids and fired 

automatically every five seconds, to produce a continuous photo-transect during the 

flight. Figure 3.3 shows one example frame, over flying the ship to confirm dimensions 

on the photographic negative.  

 

 

 
 
Figure 3.3: An example photograph taken by the downward looking 70 mm 
camera. The ship (length 118 m) was overflown at operational height (400 
m) to provide verification of the frame geometry from known dimensions 
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Figure 3.2: (a), top: Pancakes near the ice edge, observed from the ship’s helicopter 
at 3000 ft. The penetrating wave energy can be seen, propagating from top right to 
bottom left. Also visible are stratus clouds, typical of the ice edge region (b), 
bottom: A closer view of the same area showing the individual pancakes. The open 
water patches and ripple-like waves are caused by a surfacing pod of Minke 
whales, common in the area.  
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Areal coverage of each ice type was then determined from these transects. The 70 mm 

negatives were scanned and analysed using the freeware “Scion Image” programme. Ice 

type coverage at each station is shown in Table 3.1.   

 

 

Table 3.1: Fractional area coverage of ice types at each sampling station. Ice types 
are classified as: pancakes  fp; frazil  ff; open water  fow and thin congelation ice or 
older consolidated floe pieces  ffloe. Inner/outer/middle refer to the stations’ position 
with respect to the ice edge.  

 

Station fp ff fow ffloe 

0 (outer) 0.55 0.35 0 0.10 

1 (outer) 0.60 0.35 0.05 0 

2 (inner) 0.60 0 0.20 0.20 

3 (middle) 0.55 0.30 0.05 0.10 

4 (outer) 0.50 0.40 0.10 0 

5 (inner) 0.65 0.30 0 0.05 

6 (long scale) 0.45 0.40 0 0.15 

 

 

The very young ice cover at the outer ice edge showed a very gradual reduction in frazil 

or young pancake concentration to the north. The term ‘ice edge’ is therefore rather 

subjective, and in this study was taken as the point at which the ice cover became so 

diffuse that damping of incident swell waves was considered negligible. The outer 

sampling stations (1 & 4) were performed within 15 km of this line. Mature pancakes 

upwards of 1 m diameter formed the remainder of the study area, from a penetration of 

approximately 54 km to 95 km from the ‘edge’. The first inner station (2) was 

performed to the south of the new frazil formation zone (c. 94 km penetration), and no 

frazil was seen in this area. Consolidated pack ice was found at 10-15 km further 

penetration from the line joining the two inner stations. 
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The final station (6), to the west of the main area, took place within 4 km of the ice 

edge, though this was of an entirely different character since the cover had been 

compacted southward into a sharply defined edge by an approaching deep low pressure. 

This pressure system had not yet begun to influence the main area during the study, 

though subsequent rapid southerly movements of the drifting buoys confirmed that this 

occurred shortly after Polarstern left the region.  

 

CTD profiles were also taken at each sampling location and showed a mixed layer 

salinity of 34.35 psu within 0.01 oC of its freezing point. Mixed layer depth was 

approximately 60 m, indicating that the maximum winter depth had not yet been 

achieved, as expected. Profiles at Station 3 (the middle buoy) are shown in Figure 3.4 

and are typical of the array area.  

 

 
 

Figure 3.4: CTD profile at Station 3 (DML5), in the centre of the array. 
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Meteorological conditions were determined from in situ measurements while the ship 

and buoys were in the vicinity, and ECMWF re-analysis fields beforehand. An example 

of the gridded ECMWF sea level pressure and 10 m winds is shown in Figure 3.5, 

superimposed on ice concentration from the SSM/I instrument using the DTU 

algorithm. 

 
 

 
 

 
Figure 3.5: Example output from the ECMWF model of sea level pressure 
(black contours) and 10 m winds (white arrows, length proportional to 
windspeed). Data are superimposed on a background of passive-microwave-
derived ice concentration, using the DTU algorithm (courtesy Leif Toudal, 
DTU). Dark blue represents open water, dark red is 100% ice concentration. 
The black line shows the 60% ice concentration limit. The continuous white 
line shows the ship’s track as it approached the sampling area. The 
embayment into which the buoys were deployed can be seen, centred on 
30°W.  

 
 
 
Meteorological conditions during April 2000, derived from the European Centre for 

Medium-range Weather Forecasts (ECMWF) analyses (ECMWF 1997), show two 
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periods of low air temperature and high wind. These occurred from April 7th – 10th and 

again from April 15th – April 17th. They were separated by a period of calm and 

relatively high air temperatures (-3oC), which also occurred following the second low-

temperature event, i.e. during buoy deployment and sampling operations. 

 

Weather conditions were therefore extremely favourable as they represent two distinct 

ice formation events separated and followed by essentially ‘steady state’ periods during 

which ice neither melted nor grew significantly. The two ice growth periods are referred 

to as “Event 1” and “Event 2” from hereon. This allowed the date of frazil and pancake 

ice formation in the region to be determined with some degree of confidence, 

considerably simplifying the task of establishing ice growth rates.  
 
 

3.2 Ice sampling 

3.2.1  Methods 

Pancake ice was lifted onto Polarstern’s working deck using a one metre square ‘ice 

basket’ and the aft crane. The basket retained seawater in its lower section to minimise 

brine drainage and temperature changes in the recovered pancake before sectioning. 

Once on deck and removed from the basket, the pancakes were immediately cut in two 

along one diameter. A vertical temperature profile was then taken down the centre of 

one half, using an electronic probe thermometer inserted to several centimetres depth 

from the exposed wall at 5 cm intervals. Ice samples were then quickly taken and 

bottled for later salinity analysis, as described in Wadhams et al. (1996). Samples were 

also taken from the top surface and rim if the pancake had not been submerged during 

the lifting process. All sampling was done as quickly as possible to minimise brine 

drainage during the sampling process, though it is accepted that some drainage is 

inevitable. A remotely-operated vehicle (ROV), carrying an upward-looking video and 

35 mm still camera, was deployed at three stations (0, 3 & 6) to verify that the pancakes 

sampled were representative of the general pancake population. Figure 3.6 shows a view 

of the pancakes at Station 3, taken from the ROV.  
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The frazil ice filling the interstices between pancakes was also sampled, using the ship’s 

‘mummy chair’ and aft crane. Sampling was done using a 30 cm length of polythene 

tubing, 8 cm in diameter, with slots cut in the side and open base covered by 300 μm 

plankton netting. The device was weighted to allow it to sink through thick frazil layers. 

Sampling was done by dropping the device down through the frazil, moving it to one 

side and pulling it up through the frazil slush. Water drained through the plankton mesh 

and the resulting frazil crystals were bottled, melted and analysed for salinity and 

melted volume. Figure 3.7 shows the author engaged in frazil sampling operations at 

Station 3: the “frazilometer” can be seen on the end of the rope.  

 

 

Figure 3.6: A view of the ice cover at 
Station 3, taken from the Sprint ROV. 
The ROV was operated by Andreas 
Starmans (AWI), who otherwise 
employed it largely for examination of 
seabed life during the cruise.  

Figure 3.7: The author and 
Oliver Peppe (Dunstaffnage 
Marine Laboratory) conducting 
frazil fishing operations at 
Station 3. Sampling was done 
from the ‘mummy chair’ to avoid 
biasing results due to 
compression of the 
frazil/pancake mixture observed 
close to the ship’s side.  
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3.2.2  Results 

A total of 36 pancakes were lifted at seven stations. The pancakes presented some 

unusual morphologies which have not previously been described in the literature. They 

were divided into six classes depending on their major features, and example 

photographs of each type are shown in Figure 3.8.  

 

 

 
 

Figure 3.8: Photographs of pancakes divided into six types according to their features. The 
pictures show, from top left: Type-A: the classic pancake, formed from cyclic accretion of 
frazil ice; Type-B: a pancake having a highly porous lower layer, similar to the overlying 
layer; Type-C: a pancake with a low-porosity bottom layer, representing an older pancake 
on top of which the younger top layer has been formed; Type-D: a pancake with a 
columnar ice bottom layer; Type-E: a pancake formed from an agglomeration of two or 
more similar pancakes; Type-F: a pancake with rafted pancakes included. 
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Type-A describes the ‘classic’ pancake form – largely flat or saucer-shaped, with lesser 

or greater development of raised rims. Stations 1 & 4  ( the outer ice-edge locations) 

consisted entirely of this type. Type-B pancakes had a characteristic two-layer structure, 

with the bottom layer formed from frazil ice retaining a high porosity similar to the 

overlying layer. Salinities of lower and upper layer were very similar for this type, 

though a clear ‘step’ between the two layers existed - the upper layer having a larger 

diameter than the lower. Type-C pancakes had a frazil-grown lower layer of 

significantly lower porosity than the overlying layer and were found exclusively at 

station 6. These layers displayed a lower salinity than the upper layer (e.g. 3.2 psu vs. 

5.6 psu) and were also clearly stepped. Type-D pancakes had a bottom layer of 

columnar ice up to 44 cm thick, which often displayed open, rotted brine channels. 

Vertical temperature profiles throughout type-D pancakes were essentially isothermal, 

indicating that the columnar ice was not actively growing. A clear demarcation existed, 

both externally and in section, between the bottom and the overlying frazil-grown layer, 

with the now-familiar step being particularly marked. Salinities of the lower layers of 

this type were again much lower than their overlying layers (e.g. 3.7 psu vs. 6.3 psu). 

Examples were found at all stations other than the two ice-edge locations. Top layers of 

all two-layer types were commonly wedge-shaped, as can be seen in the photographs of 

Figure 3.8, with the top surface at a considerable angle to the bottom surface of the 

pancake. Type-E pancakes are formed as an agglomeration of smaller pancakes, and 

type-F pancakes are rafted. The ROV flights showed that the proportion of rafted 

pancakes was low in the experimental area, other than in the immediate area beside the 

ship where they had been pushed aside by the hull. It should be emphasised that no 

difference between types A-D could be discerned from visual examination of their top 

surfaces from the ship.  

 

The properties of all 36 pancakes sampled are detailed in Table 3.2, which also 

classifies the pancakes according to the above scheme.  
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Table 3.2: Summary of measurements for the 36 sampled pancakes. Type refers to the 
classification given in Figure 3.8.  Thickness h and salinity S are given for both pancake layers 
(top and bottom), where present, with NA (not applicable) entered for the lower layer 
measurements of single-layer pancake types. A dash indicates that no measurement was taken. 
Superscripts next to salinity measurements refer to the number of samples contributing to this 
figure (one, if not indicated). Question marks in the thickness columns indicate that the 
complicated pancake structure made attribution of the layers unreliable. Shaded cells serve to 
separate the stations. Outer-middle-inner refer to the position in relation to the ice edge.  
 

Station No. Type htop, cm hbottom, 
cm Stop, psu Sbottom, 

psu 
0 (outer) 1 B, E 15 10 12.9 12.5
0 (outer) 2 D 9 44 - 5.1
0 (outer) 3 D 22 22 7.62 3.7
0 (outer) 4 B 20 6 - -
1 (outer) 5 A 5 NA 11.6 NA
1 (outer) 6 A 8 NA 11.8 NA
1 (outer) 7 A 7 NA 11.6 NA
1 (outer) 8 A 7 NA 12.810 NA
1 (outer) 9 A 5 NA 13.0 NA
2 (inner) 10 D 29 20 - 4.5
2 (inner) 11 D 25 25 6.3 2.4
2 (inner) 12 D 23 35 - 5.2
2 (inner) 13 D 27 17 10.9 4.8
2 (inner) 14 D 20 15 6.814 6.45

3 (middle) 15 D 19 33 - -
3 (middle) 16 D 27 29 11.7 4.23

3 (middle) 17 B, F ? ? - -
3 (middle) 18 A 9 NA - NA
3 (middle) 19 B, F 12 6 - -
3 (middle) 20 D, F 19 22 - -
3 (middle) 21 D 15 26 - -
4 (outer) 22 A 11 NA - NA
4 (outer) 23 A, E 10 NA - NA
4 (outer) 24 A 10 NA 11.17 NA
4 (outer) 25 A 11 NA - NA
4 (outer) 26 A 9 NA - NA
5 (inner) 27 B 14 6 - -
5 (inner) 28 D ? ? - -
5 (inner) 29 B 20 10 - -
5 (inner) 30 B, F 20 9 - NA
5 (inner) 31 D 21 14 - -
6 (long scale) 32 C 25 23 11.7 -
6 (long scale) 33 C 16 16 13.1 3.62

6 (long scale) 34 C 22 17 6.7 3.2
6 (long scale) 35 C 18 14 - -
6 (long scale) 36 C 25 10 - -
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Samples taken from the very top surface of the pancakes were always markedly more 

saline than the body of the pancake itself, usually double the bulk value or greater (e.g. 

15.2 psu vs. 6.4 psu). Rim salinities were comparable to the upper bulk layer (e.g. 6.0 

psu vs. 5.6 psu). The bulk salinities of the pancake ice formed at each station rank with 

distance from the ice edge: the outer stations (0, 1 & 4) have the highest salinities at 

11.0, 12.5 and 11.1 psu respectively, the middle station (3) has an intermediate salinity 

(8.2 psu) and the inner ice edge stations (2 & 5) have the lowest (6.4 and 5.4 psu). 

 

A total of 59 frazil samples were taken and allowed to thoroughly drain before bottling 

the resulting crystals. Frazil salinities were invariably greater than that of pancakes 

recovered at the same location. The youngest pancakes, at stations 1 and 4, had 

salinities approximately 5 psu lower than the corresponding frazil. Frazil salinities 

ranged from 9.5 psu (station 6) to 18.9 psu (station 1). Frazil salinities were consistent 

within a station while displaying distinct differences between stations. This coherence at 

a particular station suggests that the sampling method was consistent. It is interesting to 

note that the mean frazil salinities at a station also tend to indicate its distance from the 

ice edge; with the outer stations most saline and intermediate stations (0, 3) also fitting 

the pattern. No frazil was present at the first inner station (2). The second inner station 

(5) is the only one not to fit the pattern, having a mean frazil salinity higher than that for 

the intermediate station 3 (14.2 psu versus 11.7 psu).  

 

We also calculate the frazil slick ‘solid ice equivalent’ (SIE) thickness from the melted 

sample volumes. It has been shown that the salinity of any brine enveloping the drained 

mixture is very similar to that of the seawater surrounding it (Smedsrud and Skogseth 

2006), therefore the seawater volume fraction in the melted sample (Vfsw) is related to 

the salinity of the melted sample (Sm) by: 

 

   Sm = Ssw . Vfsw   (Eq. 3.1) 

 

 

The original volume of frozen ice is then given by: 
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Where Vmelt is the volume of the melted sample and 0.92 is a volume correction factor 

based on the relative densities of fresh water (1000 kg m-3) and pure ice (920 kg m-3). 

The SIE thickness of the frazil slick is then given simply by: 

 

hSIE = Vice / πr2   (Eq. 3.3)  

 

where r is the radius of the sampling device (4 cm). Note that the method requires no 

assumptions about the volume fraction of ice in either the frazil slick or the drained 

sample. The change in density between the seawater at its freezing point and at the 

melted sample temperature (15°C) is ignored, since the effect is small (0.2%) compared 

with sampling inaccuracies, as indicated by the spread of results at each station. 

Volume, salinity and the derived SIE slick thickness for each frazil sample are detailed 

in Table 3.3.  

 

3.2.3  Discussion 

The greater salinity of the current study’s upper pancake layers compared to their lower 

(observed in all cases) contrasts with previous pancake measurements, performed in the 

Odden region of the Greenland Sea during winter cruises in 1993, 1997 and 2000 

(Wadhams et al. 1996; Wadhams and Wilkinson 1999). Those pancakes displayed 

increasing salinity with distance from the top surface, consistent with the classic bottom 

accretion process. The salinity of the pancake falls rapidly after formation since its 

highly porous structure allows unimpeded gravity-driven brine drainage (Tison and 

Verbeke 2001). The underside remains the most saline, however, since the enveloping 

layer of brine around those frazil crystals has had less time to drain. Melt- and rainwater 

flushing also occurs in the Odden region (Wadhams and Wilkinson 1999), due to air 

temperatures frequently rising above 0oC, and reinforces the characteristic profile. 

Odden pancakes were apparently all single-layer types (excluding simple rafted 

examples). The unusual structure of the Weddell Sea pancakes in relation to this  
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Table 3.3: Frazil sample details. Volume refers to the melted volume and hSIE is the 
solid ice equivalent thickness of the frazil slick, calculated according to Equations 
3.1-3.3. Shading serves to delimit measurements at each station. Inner/outer/middle 
refer to the stations’ location with respect to the ice edge.  
 

 

Station No. Vol 
cm3 

Salinity 
psu 

hSIE 
cm 

0 (outer) 366 16.5 4.1 
0 (outer) 482 14.4 6.1 
0 (outer) 362 14.1 4.6 
0 (outer) 55 17.4 0.6 
1 (outer) 84 18.9 0.8 
1 (outer) 164 16.3 1.9 
1 (outer) 90 16.9 1.0 
1 (outer) 138 16.0 1.6 
1 (outer) 80 14.2 1.0 
1 (outer) 50 15.8 0.6 
3 (middle) 218 12.0 3.1 
3 (middle) 220 10.4 3.3 
3 (middle) 289 12.3 4.0 
3 (middle) 440 11.2 6.4 
3 (middle) 448 11.8 6.4 
3 (middle) 444 12.3 6.2 
3 (middle) 424 11.6 6.1 
3 (middle) 157 11.5 2.3 
3 (middle) 310 11.7 4.4 
3 (middle) 304 11.3 4.4 
3 (middle) 122 13.6 1.6 
3 (middle) 400 11.1 5.9 
4 (outer) 238 16.7 2.6 
4 (outer) 100 17.1 1.1 
4 (outer) 273 16.7 3.0 
4 (outer) 194 17.7 2.0 
4 (outer) 202 14.0 2.6 
4 (outer) 338 15.9 3.9 
4 (outer) 142 16.6 1.6 
4 (outer) 126 16.2 1.4 

Station No. Vol 
cm3 

Salinity 
psu 

hSIE 
cm 

4 (outer) 196 16.6 2.2 
4 (outer) 144 17.2 1.6 
4 (outer) 376 17.9 3.9 
4 (outer) 140 18.5 1.4 
4 (outer) 135 16.5 1.5 
5 (inner) - 13.6 - 
5 (inner) 273 13.0 3.7 
5 (inner) 180 15.1 2.2 
5 (inner) 230 12.9 3.1 
5 (inner) 268 12.0 3.8 
5 (inner) 136 15.3 1.6 
5 (inner) 266 13.3 3.5 
5 (inner) 124 14.6 1.5 
5 (inner) 209 18.3 2.1 
5 (inner) 142 14.2 1.8 
5 (inner) - 13.6 - 
6 (long scale) 126 12.0 1.8 
6 (long scale) 475 9.8 7.3 
6 (long scale) 468 9.4 7.4 
6 (long scale) 476 8.5 7.8 
6 (long scale) 590 9.0 9.4 
6 (long scale) 528 8.7 8.5 
6 (long scale) 285 10.0 4.4 
6 (long scale) 350 8.4 5.7 
6 (long scale) 290 10.5 4.4 
6 (long scale) 382 10.3 5.8 
6 (long scale) 254 9.4 4.0 
6 (long scale) 395 8.4 6.5 
6 (long scale) 576 8.4 9.4 
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familiar morphology therefore brings into question the bottom accretion process as the 

sole formation method. 

 

The higher salinity of the upper layer is not unusual for consolidated Weddell Sea pack 

ice; Eicken (1992) found this to be the most common salinity profile, and arises since 

the salinity of congelation ice is closely related to its growth velocity (Cox and Weeks 

1988). The initial, fastest, growth therefore results in the highest salinity ice. Top layer 

salinity enhancement can also occur by upward brine expulsion and impeded brine 

drainage from later top-layer accretions such as snow ice formation, which is common 

in the Weddell Sea (Lange et al. 1990). The post-consolidation evolution of the ice 

tends to blur any salinity contrasts within the original layers, giving similar profiles for 

largely frazil-grown (granular) ice or dominantly congelation ice cores. These top-layer 

salinity enhancement processes do not occur in unconsolidated, growing pancakes, 

however. Individual frazil crystals reject most of their brine in their buoyant ascent to 

the bottom surface of the slick (Ushio and Wakatsuchi 1993) and the pancake is thus 

built from relatively constant salinity material. No significant snow deposit was 

observed on the pancakes and no barrier exists to brine drainage through the pancake, 

except perhaps in the case of type-D pancakes.  

 

The type-D pancakes are particularly striking, since no mechanism exists whereby 44 

cm of congelation ice can form beneath a frazil-grown layer whose salinity and porosity 

suggest it is only a few days old at most. The relative layer porosities observed in type-

C pancakes are also reversed from the expected bottom accreted types, which typically 

have a “slushy” bottom surface and hard top surface (Shen et al. 2001). We therefore 

postulate that existing pieces of ice act as platforms for the accretion of a younger top 

layer. That platform can variously be an existing, much older pancake (resulting in a 

type-C composite) or a thin columnar ice piece (giving a type-D pancake). Type-B 

pancakes represent a midpoint between type-A and type-C, since frazil rafting can 

commence as soon as a type-A pancake has grown to sufficient strength to act as a rigid 

platform without breaking. This explains the lack of contrast between the porosities of 

bottom and top layers seen in type-B pancakes, since the age difference between the 

layers is small. The mechanism is conceptually similar to the more familiar rafting 
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process, though in this case the over-riding ice is unconsolidated frazil rather than a 

solid ice piece. The top growth mechanism thus gives rise to a coherent ‘family’ of 

pancakes. The bottom accretion mechanism is inconsistent with the salinity and 

temperature profiles and cannot account for the observed morphologies. 

 

Top layer growth of pancakes has been directly observed by the author under laboratory 

conditions in ice-tank experiments at the HSVA “Arctelab” facility in Hamburg, 

Germany, as part of the INTERICE program (Thomas and Wilkinson 2001).  

Congelation ice pieces, formed overnight in the still tank, were placed in the wave-

influenced area during the next day’s pancake ice growth. Frazil ice accretion occurred 

rapidly on top of these platforms, forming type-D pancakes. This top layer was 

considerably thicker than the conventional (type-A) pancake growth which occurred 

alongside over the same period (thickness 2 cm versus 0.5 cm for the type-As). Salinity 

of the two type-D layers showed similar contrast to those in the field, at 15 psu upper 

versus 11.9 psu lower. Type-B/C pancakes were also commonly observed in the tank 

and Figure 3.9 illustrates one such example, clearly showing the more open, porous, top 

layer.  

 

The top surface of pancakes observed in the ice tank was invariably wet, indicating a 

constant supply of water – and hence frazil – to the top surface. The alternative 

explanation of this wet surface - melting due to elevated salinity - is discounted, since it 

would have required a surface salinity of over 150 psu in the c. –10oC air temperatures 

present in the tank; an order of magnitude greater than measured. 

 

Derived frazil slick thicknesses (Table 3.3) are low, with a mean of 2.9 cm and standard 

deviation of 1.7 cm, excluding the long-scale station (6) which was not representative of 

the main array area. This equates to a physical slick thickness (dividing by the volume 

fraction) of 7.2 ±2.4 cm. Though the physical slick thickness was never measured 

directly, observations from the ROV suggest that this value is reasonable, since the 

pancakes were always observed to have considerably more draft that the surrounding 

frazil crystals.  
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Figure 3.9: A type-C pancake formed in the HSVA wave-tank. The line indicates 
the division between layers of markedly different porosity.  

   

 

Frazil salinities are rather low compared with field measurements of actively forming 

grease ice (generally more than 20 psu) made in Størfjorden (Smedsrud and Skogseth 

2006). This is consistent with the timing of formation, based on ECMWF temperature 

and wind fields, if it is assumed that a frazil suspension ages (reduces in salinity with 

time) in the same manner as pancakes. Though a frazil slick cannot ‘reject’ brine in the 

same way as pancakes – it is after all simply a suspension of pure ice in seawater – it is 

presumed that the slick becomes gradually more compact (in volume terms) as the 

buoyancy of the individual crystals continues to reduce the seawater-filled pore space in 

the absence of turbulence. The proportion of seawater is therefore reduced, together 

with the bulk salinity. This supposition is bolstered by the relatively high volume 

concentrations observed in the slicks (c. 0.4) compared to other field and laboratory 

observations, which suggest values closer to 0.2 or 0.3 (Voropayev et al. 1995; Winsor 

and Björk 2000; Smedsrud 2001; Smedsrud and Skogseth 2006). Such an observation 

also suggests that the frazil volume concentration should vary across the stations in the 

same manner as salinity, though this was not systematically studied at the time.  
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3.3  Modelling layered pancake growth 

The two-layer structure observed complicates the establishment of growth rates for 

pancake ice, since it is likely that upper and lower layers grow at differing rates, given 

the distinct mechanisms involved. We expect the overtopping process to allow faster 

accretion since the frazil crystals are directly exposed to the cold air temperatures. To 

establish these rates, the formation of the layers was examined with reference to a 

kinematic-thermodynamic ice model. The two-layer structures are reproduced by 

identifying distinct growth events from the meteorological record and growing ice 

layers accordingly.  

 

3.3.1  Methods  

The model is divided into kinematic and thermodynamic parts. The kinematic model 

begins from a known observation time and position (such as an ice station) and 

calculates the backwards trajectory, using wind factors and turning angles derived in the 

previous chapter, until the beginning of a formation event. Forcing data is extracted 

along this track. The thermodynamic model then grows ice forwards from this event 

time, using the extracted data to force a simple, one-dimensional, energy balance model. 

Full details of the energy balance model are given in Appendix B. Six-hourly time-steps 

are used to grow: 

 

(i) A congelation ice cover, as would occur in the absence of any oceanic 

turbulence.  

(ii) Frazil ice. It is assumed that the presence of the frazil slick does not 

modify the ocean-atmosphere heat flux and that the whole ‘open water’ 

heat flux is used for ice production. This represents the maximum 

possible ice production rate for a given forcing, as used in previous 

studies (Bauer and Martin 1983; Alam and Curry 1998).  

 

We expect the rate of ice production for upper and lower layer pancake growth to lie 

between these limits and compare the observed rates with the modelled bounds.  
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3.3.1.1  Data Assimilation 

Forcing fields were taken from merged in situ and model data: Polarstern 

meteorological data, transferred to the standard levels from sensor heights following 

Smith (1988), are used while the ship occupied the main study area (days 106.5-110.0); 

ECMWF analysis data are used at other times. Parameters used are sea-level 

atmospheric pressure, wind at 10 m height, 2 m air temperature, 2 m dewpoint 

temperature (when using model data), relative humidity (when using ship data) and 

cloud cover fraction. When in situ data are used, these are taken as representative of the 

entire (relatively small) survey area. Though not ideal, the errors resulting from this 

approach are considerably smaller than the discrepancy between ECMWF and in situ 

measurements during this period, discussed below. 

 

Comparisons of in situ and model data show that the ECMWF data significantly under-

represent the severity of low air temperature events – a tendency also seen in previous 

comparisons (Markus et al. 1998; Vihma et al. 2002) and attributed to over-estimation 

of the cloud cover fraction (Vihma et al. 2002). This is unfortunate, since 

thermodynamic growth models are particularly sensitive to air temperature variations. 

To increase the validity of the ice growth model during purely model-forced periods, we 

therefore calculate a  Tmodel to Tin situ  relation, shown as a scatter plot in Figure 3.10.  

 

Scatter between the two data sets is large, principally due to the effect of varying 

ECMWF wind directions, which do not account for mesoscale effects near the ice edge. 

When ECMWF and in situ wind directions are aligned – whether ‘off ice’ or from the 

ocean to the north – offset and scatter are reduced. The absence of reliable in situ wind 

direction measurements from the outer buoys (discussed in Section 2.5) makes it 

difficult to establish a systematic correction for this factor, however. Considerable 

scatter also arises when comparing values in the relatively coarse ECMWF grid (1.125° 

× 1.125°) to the point measurements from the buoy. An empirical approach is therefore 

taken to matching the two datasets: In situ air temperatures above –5oC are generally 

higher than modelled, while temperatures lower than –8oC are fitted with a considerable 

offset. Modelled values between –8oC and –5oC bear little consistent relation to in situ 
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measurements, and we fit these values using a line of continuity between the two outer 

ranges. 
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Figure 3.10: In situ air temperatures plotted against ECMWF 2 m 
temperature analysis, from day 111 (April 20th) to day 140 (May 19th). 
Symbols indicate results taken from three outer ice edge buoys - 
released at stations 0, 1 & 4 - with the ECMWF forcing extracted 
along their track. The three-piece line indicated was used to relate the 
two temperatures. The dotted line indicates the ideal correspondence 
between the two parameters. 

 

 

The equations relating modelled and in situ temperatures are:  

 

 

 
 
 
 
 
 
 

Tmodel > -5oC: T = 0.47 Tmodel – 1.08 (Eq. 3.4) 

-8oC ≤ Tmodel ≤ -5oC: T = 2.83 Tmodel + 10.94 (Eq. 3.5) 

Tmodel < -8oC: T = 1.08 Tmodel – 3.07 (Eq. 3.6) 
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The effect of the correction on the ECMWF 2 m temperature timeseries is illustrated in 

Figure 3.11(a). High temperatures between the ice growth events are slightly elevated 

and the severity of the low temperature events is greatly enhanced. The ship data during 

event 2 are far more closely tracked by the corrected forcing. Buoy data, from day 111 

(April 20th), are also better followed though with variable success. The increased 

variability of the buoy data - swinging rapidly between extremes of temperature as the 

wind direction changes from an off-ocean to an off-ice direction – is clearly 

demonstrated and is poorly tracked by the model. The corrected forcing is taken in 

preference to the ‘raw’ model data, though we are aware of the empirical nature of this 

correction and continue to cite uncorrected forcing results throughout, in addition to the 

corrected figures. The dotted line (close to 0°C) shows the temperature (actually            

– 0.6°C) at which we consider the surface of the pancakes to undergo melt. Air 

temperatures – either modelled or corrected – only exceed this value early in the period 

shown, around Day 85. No surface melt occurs during our periods of interest, indicated 

by the two arrows in the diagram.  

 

Figure 3.11 (b) plots ECMWF “total cloud cover”, Tcc, and relative humidity, Rh, taken 

from shipboard measurements or calculated from the ECMWF 2 m dewpoint 

temperature fields (Rogers and Yau 1989), as appropriate. The cloudy nature of the ice 

edge is clearly indicated by the  Tcc plot, which rarely deviates from unity. The relative 

humidity oscillates within a fairly narrow range of values, being mostly around 90%.  

 

Wind speed - Figure 3.11 (c) – and direction – Figure 3.11 (d) - are plotted for ECMWF 

output and in situ measurements. The model output shows the familiar properties, 

discussed in the previous chapter, of being relatively poor while the buoys were close to 

the ice edge (days 111 – 120) but reliable once they became embedded in the pack ice. 

Ship and buoy air pressure measurements were transmitted to the global 

telecommunication system (GTS) and used by the ECMWF model. Modelled winds are 

therefore not independent of the in situ measurements.  
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Figure 3.11: ECMWF 
parameters compared to in 
situ measurements. Top 
graph shows ECMWF 2 m 
air temperature (blue), 
buoy (DML5) 1 m air 
temperature (red) and the 
model forcing corrected 
according to Eq. 3.4-3.6 
(green). The ice formation 
events of interest are 
indicated by arrows. The 
second panel plots total 
cloud cover (Tcc), from 
ECMWF output and 
relative humidity (merged 
ECMWF and ship’s data). 
Bottom two panels show 
wind speed and direction, 
for ECMWF and DML5. 
Buoy data have been 
scaled and rotated by 
factors derived in the 
previous chapter’s 
analysis. The buoy 
anemometer displays a 
short freeze-up event at the 
end of its record.  
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3.3.1.2  Kinematic model 

Momentum transfer parameters were derived from the analysis in the previous chapter, 

using the two-parameter regression method (Vihma et al. 1996). Values used were: 

 

 Wind factor = 0.029 

 Turning angle = 13o (to the left) 

 Residual current, u-component = -0.045 ms-1 

 Residual current, v-component = +0.023 ms-1 

 
 
3.3.1.3 Thermodynamic model 

The thermodynamic model used here is a simple, one-dimensional, flux balance model.  

Full details of the model are given in Appendix B, with an overview presented here. The 

model is run twice for each case study – once to determine the sheet ice thickness that 

would have grown in the absence of turbulence (congelation ice) and once for frazil ice 

(the maximum possible ice production).  

 

Congelation ice 

The thin, young ice considered in the congelation model makes it unnecessary to use 

complex, snow-covered, multi-layer ice models (Rudels et al. 1999). The snow-free 

assumption is reasonable since no significant snow layer was observed in the area 

during the experiment. We assume the ice can be approximated by a homogeneous 

conducting slab; though non-linear profiles have been observed in Weddell Sea ice, 

these are ascribed to “drastic air temperature excursions” (Eicken 1992) and are a 

transient feature for ice less than c.0.8 m thickness (Maykut 1978), as here.  

 

At the top surface of the ice, the ice temperature depends on the balance of the various 

fluxes impinging upon it. We first solve for terms that do not depend on that surface 

temperature, then iteratively solve the balance equation to achieve a zero net flux. If 

balance cannot be achieved, then the top surface of the ice is melting. The surface 

temperature is then set to its melting point (around -0.6°C at the observed salinity of 11 

psu) and the flux imbalance used to melt ice at the surface. In fact, top melt never 
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occurred during the study period, with any thickness reductions resulting from bottom 

melt, at the ice-ocean interface.  

 

At this bottom surface of the ice, growth or melt depends on the balance between the 

ocean-ice heat flux and the conductive heat flux from the ocean to the ice. This latter 

term depends on the ice surface temperature, calculated in the previous step. The net 

heat flux then grows or melts ice depending on its sign. The bottom surface of the ice is 

assumed to be at the freezing temperature of seawater (Tf = -1.89oC) for the measured 

mixed-layer salinity (34.35 psu, held constant).  

 

Frazil ice 

Frazil ice growth is accomplished using a similar scheme, omitting the conduction terms 

and setting the surface temperature to the freezing temperature of seawater, since there 

is no sheet of ice to develop a temperature gradient across. The net ocean-atmosphere 

flux is used to grow ice, taking the latent heat of fusion given by Markus et al. (1998) 

for ice crystals forming in freezing seawater (234.14 kJ kg-1). This is considerably less 

than used for congelation ice formation (295.8 kJ kg-1).  

 

For both ice types, the resulting ice growth rate (dh/dt) is multiplied by the time step 

and added to the existing ice thickness. The model then repeats the process for all time 

steps until the end of the period of interest. For direct comparison with the model, 

observed ice thicknesses are converted to their solid ice equivalents. The experiment 

determined that approximately 30% of the pancake volume was porous space, and 

observed pancake layer thicknesses are reduced accordingly - multiplying by the 

volume concentration of ice (Vp = 0.7). Volume concentration of the frazil slicks (Vf ) 

was observed to be 0.4 (Doble et al. 2000). Total equivalent ice production must also 

account for the area fraction of each ice type (fp, ff) to conserve ice volume. The final 

observed solid ice thickness per unit area sea surface is therefore: 

 

 

Hobs = hp Vp fp  + hf Vf ff (Eq. 3.7)
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where hp and hf are the observed pancake and frazil slick thicknesses, respectively.  

 

The ice thickness is constrained to a minimum value of 1x10-5 m in order to avoid a 

“divide by zero” error in the calculation of the conductive heat fluxes.  Negative values 

of ice thickness are similarly avoided by the use of this constraint, though the heat input 

to the mixed layer that this process would imply is disregarded. The treatment is 

justified, since the ice formed during our period of interest never melts back to this 

minimum thickness once growth begins.  

 

 

3.3.1.4 Validation 

The model was first  tested against periods of known buoy drift and in situ data (i.e. 

after Day 110.0).  Layered growth is not considered in this first instance. Buoy motion 

was well tracked, though the ECMWF forcing significantly under-estimated the amount 

of ice produced compared to the buoy meteorological data. The empirical correction 

factor improved results considerably, but since it was devised for this period, we cannot 

be confident that similar improvements will hold for other times. A summary of the 

results is given in Table 3.4, below, and example output plots are shown in Figure 3.12.   

 

 
Table 3.4: Ice thicknesses (cm) from runs of the model particle-tracking and ice 
growth, using known trajectories and in situ data from drifting buoys, for 
congelation (cong) and frazil ice growth. Thicknesses are given in terms of ‘solid 
ice equivalents’ and errors refer to the difference between results using buoy 
forcing and that extracted from the ECMWF fields, calculated according to 
Equation 3.7. 

 

‘Raw’ ECMWF 

ice thickness, cm 

‘Corrected’ ECMWF 

ice thickness, cm 

In situ forcing 

ice thickness 

Position 
error, m 

Buoy ID 

Cong Frazil Error Cong Frazil Error Cong Frazil RMS 

DML5 7.0 21.3 -38% 9.9 24.8 +6% 9.7 23.9 2150 

DML7 6.2 18.1 -82% 8.7 19.9 -30% 11.3 29.1 2687 

DML8 6.1 19.1 -67% 7.6 20.9 -34% 10.2 28.8 2327 
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Figure 3.12: Model output, comparing buoy (blue), ECMWF (red) and ‘corrected’ 
ECMWF forcing (green). The top left graph shows the evolution of ice thickness for 
congelation ice (solid) and frazil ice (dashed). Solid ice equivalents are plotted in all 
cases. Also marked (blue star) is the simple degree-day figure for congelation ice. Real 
versus backwards-modelled tracks are shown top right. Middle left shows air 
temperatures at the buoy location from buoy, ECMWF and corrected ECMWF forcing. 
Also shown are the calculated ice surface temperature (magenta) and the freezing 
temperature of seawater (black, dashed). Middle right shows 10 m windspeeds from 
ECMWF and buoy (scaled using the 1m – 10m relation derived in the previous 
chapter). Also displayed are the ice concentration at the buoy location, derived from 
DTU SSM/I images, and the evolving pancake salinity, according to the scheme in 
Wilkinson & Wadhams (2003).  



Chapter 3: Thermodynamics 
 

95 

Over a 10 day timescale the buoy tracks gave RMS position errors (between actual buoy 

and backwards-modelled tracks at the end of the simulation) of approximately 2.5 km. 

Modelled advection over the period of interest displaced the ice position by only c. 40 

km. This is of the same order as an ECMWF model grid cell (1.125o × 1.125o or 125 × 

41 km at this latitude) and gives confidence in the forcing extracted along the track. 

 

The calculated congelation ice thickness was also compared with that from a simple 

degree-day relation (Lebedev 1938), as an external check on the model validity: 

 

 

  ( )[ ] 58.08.133.1 ∑ −−= aTh   (Eq. 3.8) 

 

 

where Ta is air temperature and the coefficients of 1.33 and 0.58 are derived 

empirically.  

 

 

3.3.2  Results 

3.3.2.1  Determination of layer growth periods 

Modelled fluxes for congelation and frazil ice growth over the period encompassing the 

two growth events discussed are shown in Figure 3.13. Layered growth is not 

considered for the moment; graphs are shown simply for homogenous ice at the back-

tracked location of station 5 and use the corrected ECMWF forcing data. Turbulent 

fluxes dominate the energy balance for both types of ice growth, with the sensible heat 

flux (QH) being approximately double the latent heat (QE) contribution. The conductive 

heat flux through the top surface of the congelation ice (QC), though larger in magnitude 

than the turbulent flux (up to 290 Wm-2), is balanced by an almost equal and opposite 

sign flux across the ocean-ice interface (not shown). Net longwave (QBnet) and 

shortwave (QSnet) fluxes are small in comparison. The onset of these events is essentially 

coincident for all six main area stations.  
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Modelled frazil production indicates positive net fluxes (Qnet) corresponding to ice melt 

only for brief periods around noon between the events. These occur in phase with the 

downwelling SW radiation (QS) when the relatively high air temperatures and low 

winds result in very small heat loss by the ocean. The conductive heat flux from the 

ocean to the ice (QCB) is only slightly negative (c.-10 Wm-2) between events and is 

smaller in magnitude than the oceanic heat flux Fw. Melt therefore occurs on the bottom 

surface of the modelled congelation ice growth, reducing ice thickness by c.1 cm 

between growth events.  
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Figure 3.13: Modelled heat fluxes using corrected ECMWF forcing. Fluxes for (a) 
congelation ice growth and for (b) free-surface frazil growth are shown, both at the 
back-tracked location of station 5. The distinct ice growth events are clearly shown, 
with turbulent heat fluxes dominating. 

 

 

 

Evolution of ice thickness at the back-tracked location of Station 5 is shown in Figure 

3.14. 
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Figure 3.14: Equivalent solid ice thicknesses for congelation (blue: ECMWF 
forcing, cyan: corrected forcing) and frazil ice (red: ECMWF, magenta: 
corrected forcing), across the two ice formation events. A slight melting of 
the congelation ice between events can be seen, which occurs as bottom 
melt. The red star indicates the value calculated from the degree-day 
relation, demonstrating just how well tuned this early, empirical model, 
actually is. 

 

 

The model is next used to determine the ice growth during each separate “event”, or ice 

growth period, to compare the observed layer thicknesses with the two limiting 

modelled results (congelation and frazil).  

 

Each “event” is taken to have resulted in the growth of one pancake layer. Type-A 

pancakes were observed to have grown entirely during event 2. Modelled growth of 

these was therefore begun at the start of Event 2 (day 106) and stopped at the 

observation time. We assume that the top layers of two-layer types also formed during 

this latter event. Growth of this layer was begun at the end of Event 1 (day 101.5), 

however, since a platform for its growth already existed at this time and the presence of 
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type-B pancakes suggested that top layer growth proceeded soon after the platforms 

were grown.  Bottom layers are taken to have formed during Event 1, and all bottom 

layer growth was therefore begun at the start of Event 1 and halted at the end of that 

event, on day 101.5. This was done since the top layer of frazil-grown ice is porous to 

seawater, resulting in the upper and lower surfaces of the submerged platform being at 

the same temperature. We have seen that the greatest heat fluxes for congelation ice 

growth are conductive and sensible and both of these will be zero for the submerged ice 

platform. Duration of modelled growth periods is shown in Figure 3.15 for clarity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.15: Duration of modelled growth periods overlaid on the 
calculated ice formation rates (dh/dt, m s-1).  

 
 
 
3.3.2.2  Event 2 
The simulation was first run for the most recent growth period, for all main-area 

stations. The long-scale station 6 was omitted from these calculations since a third frazil 

formation event was underway there before observations were taken. Figure 3.16 shows 
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the modelled solid ice equivalent thickness for congelation and frazil growth, with the 

observed mean layer thicknesses at each station marked. Observed thicknesses are 

corrected for volume concentration and area according to equation (3.7). Error bars 

indicate the standard deviation of observed ice cover thickness. Corrected modelled 

thickness is less than the ‘raw’ figure due to the five days of relatively high air 

temperatures after Event 1, and the resulting positive temperature correction.  

 

 

 
 

Figure 3.16: Modelled and observed ice thickness for Event 2 (i.e. single layer 
pancakes and top layers). Observed ice thickness at each ice station is plotted 
together with the corresponding modelled thickness for congelation and frazil 
ice growth at that observation time. Mean equivalent layer thicknesses are 
plotted, with error bars indicating their standard deviation. The modelled 
congelation and frazil ice growth which would have occurred under the same 
forcing is indicated both for ‘raw’ and corrected forcing. Corrected forcing 
results are also linked by dash-dotted lines. Station numbers (Sta.) 
corresponding to each observation are shown above the x-axis. 
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The ice cover observed at the three ‘type-A’ stations (1, 3 & 4: Type-A pancakes plus 

frazil) has equivalent solid ice thicknesses (3.5±0.6 cm, 5.5 cm, 5.2±0.3 cm 

respectively) significantly less than even the congelation ice growth value. Mean 

thicknesses of the top layers lie significantly above the congelation ice equivalent, 

however, with the upper range of observed values reaching approximately double the 

congelation ice figure or half the maximum physically-possible value.   

 

 

3.3.2.3  Event 1 

Results for bottom-layer growth are shown in Figure 3.17. Corrected modelled growth 

in this case is higher than the uncorrected results, due to significantly colder corrected 

air temperatures during the formation event. The area fraction for pancakes grown 

during this event is assumed equal to that seen at the end of Event 2, neglecting type-A 

pancake formation in the interstices and the slightly larger diameter of the top layers. 

We do not include any contribution from the frazil ice remaining in the interstices 

between pancakes since it could not be directly measured. Thickness for type-D bottom 

layers is not adjusted for porosity (since they are columnar, not granular ice) or area, 

since they formed in large areas of calm water identical to that considered for the 

modelled congelation ice growth.  

 

Observed thickness of type-D platforms is much higher than modelled growth, implying 

that these were formed earlier and advected into the area. It would actually require 250 

degree-days to grow the mean 33 cm columnar ice layer observed at station 0: both 

events combined constitute only 44 degree-days, equivalent to 12 cm ice growth. 

  

The type-B lower layers grown during this event are analogous to the type-A pancakes 

seen after Event 2. They demonstrate similar low growth rates, with their equivalent 

solid ice thickness plotting well below that of the modelled congelation ice at stations 0, 

3 and 5, and support the surprisingly slow type-A growth seen during Event 2.  
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Figure 3.17: Modelled and observed ice thickness for Event 1 (bottom layer growth)  
 

 

 

3.3.2.4  Combined growth 

The disparate rates of formation ascribed to the two processes combine to produce a 

two-layer pancake whose overall rate of thickness increase must lie between that of 

each layer. This ‘overall growth rate’ is perhaps the most important parameter, since it 

is the overall thickness of the pancake which determines the fluxes across the ocean-air 

interface and the mass of salt rejected to the mixed layer.  

 

We therefore model growth beginning at the start of Event 1 and continuing to the 

observation time. Results are presented in Figure 3.18. Equivalent thicknesses are 

presented only for type-B pancakes, since they are the only two-layer, frazil-grown 

pancakes considered here. Results match the congelation ice equivalents closely, though 
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actual pancake thickness (i.e. not corrected for volume or area) is approximately double 

the congelation equivalent.  

 

 

 
 

Figure 3.18: Modelled and observed ice thickness for Type-B pancakes (two 
frazil layers) formed across both events.  

 

 

 

3.3.2.5  Sensitivity tests 

The model’s response to variations in forcing parameters was tested. Results are 

summarised in Table 3.5. The table shows modelled growth at the back-tracked location 

of station 3, beginning at the start of Event 1 and continuing until the observation time.  

Oceanic heat flux influences ice production by approximately half the proportion of the 

change in that parameter (e.g. a reduction of 60% in Fw increases congelation ice 
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thickness by 30%). A fixed cloud cover fraction shows the model to be relatively 

insensitive to this parameter, since cloud has two opposing effects; cutting down 

incident solar radiation but increasing downwelling longwave radiation through 

increased effective emissivity of the air. Given the relatively advanced season and short 

daylight hours, it is the longwave effect which dominates, increasing ice growth with 

reduced cloud cover. Relative humidity affects the latent heat flux, which has a small 

contribution to the overall flux balance and is reflected in the minor response of the 

model. 

 

 

Table 3.5: Sensitivity of the model to changes in forcing parameters. Figures in 
the ‘variation’ column show the minimum-normal-maximum values through 
which the parameter was varied, if held constant, or the offset from the varying 
value. Changes are expressed as percentages of the final uncorrected ice 
thickness for congelation ice (hc) and frazil ice (hf) growth modes. Growth was 
modelled at the back-tracked location of station 3, beginning at the start of 
event 1 and continuing to the observation time.  

 

Parameter Variation hc error, % hf error, % 

Cloud fraction, Tcc 0.6 – var - 1 +24 / -3  +31 / -3 

Relative humidity, Rh 80 – var - 95 +3 / -1 +5 / - 8 

Oceanic heat flux, Fw 10 – 25 - 40 +30 / -26 - 

Air temperature, Ta ±1oC  -21 / +19 -25 / +25 

Wind speed, v10 ±2 ms-1  +7 / -12 +19 / -20 

 

 

 

The model is considerably more sensitive to changes in air temperature and windspeed, 

however, with the magnitude of the response being broadly equivalent to the percentage 

change in the parameter. The parameters dominate the equations for the turbulent 

fluxes, which themselves dominate heat exchange across the ocean-ice-atmosphere 

boundaries. ECMWF windspeeds have been found to be accurate (Section 2.5.1), but 
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the disparity between ECMWF and in situ air temperatures is more marked. Application 

of the empirical correction factors has been found to increase the accuracy of the 

ECMWF results significantly, however, though calculated ice thickness can still be 

under-estimated by up to 30% (see Table 3.4).  

 

The final thickness that a congelation ice cover can achieve (the equilibrium thickness) 

was also investigated, varying the oceanic heat flux and downwelling shortwave 

radiation. Results are shown in Figure 3.19, plotted as the change in ice thickness in a 

given time step for various starting ice thicknesses.  

 

 

 
 

Figure 3.19: The effect of varying oceanic heat flux (Fw, W m-2) and 
downwelling shortwave variation (GR, W m-2) on the equilibrium thickness 
of a congelation ice sheet. Thickness increase in a given time step (here, 200 
minutes) is plotted against starting ice thickness in the simulation. A 
negative growth rate indicates that the ice sheet has exceeded its 
thermodynamic limit for those conditions.  
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A negative growth indicates that the ice sheet is thicker than its thermodynamic limit for 

the given conditions. Varying the oceanic heat flux from 15 – 25 W m-2 changes the 

equilibrium thickness from 72 cm to 40 cm for a fixed downwelling shortwave flux of 

100 W m-2. With Austral winter conditions (24 hour darkness), the same change in 

oceanic heat flux changes equilibrium thickness from 1 m to 55 cm. While not directly 

applicable to the above simulations, which never achieve solid ice equivalent 

thicknesses of this level, the exercise does serve to indicate the pivotal role of oceanic 

heat flux in controlling the overall ice thickness in the Weddell Sea.  

 

 

3.3.2.6 Growth Rates 

Published work on frazil ice growth usually quotes the growth rate in terms of 

kilograms of ice per square metre of sea surface per hour (or second). This implies a 

constant forcing over the period of interest, in terms of the net heat flux and turbulence 

levels which together control ice production in this regime. While often valid for 

laboratory experiments, this constant flux assumption is clearly not valid in the field. 

The relative ice production for congelation, frazil and observed cases can be examined 

in terms of this rate, however, and it is interesting to do so, in order to allow comparison 

with previous work.  

 

Ice production is therefore re-calculated as rates for the two events and combined ice 

growth, in an equivalent manner as for Sections 3.3.2.2-4. Figure 3.20 reproduces the 

ice thicknesses originally plotted in Figure 3.16, converted to solid ice production rates 

according to the formula: 

 

    Rate = h.ρi / Δt   (Eq. 3.9) 

 

 

Where h is the relevant ice thickness (SIE, m), ρi is the pure ice density (920 kg m-3) 

and Δt is the duration of the event (seconds). Event 2 is considered to last from day 

106.0 to 108.0: Δt is thus 172,800 s for all points except Station 0, which was measured 



Chapter 3: Thermodynamics 
 

106 

before the end of the event and whose Δt is adjusted accordingly. The lines plotted 

represent the least-squares fit to each mechanism’s rates.  

 
 

 
Figure 3.20: Pancake top layer (SIE) growth rates at the four stations where 
these types were found, compared to modelled frazil and congelation ice 
growth rates during Event 2. Lines indicate the least-squares fit. Top layer 
rates are plotted correcting for volume and area fraction at each station.  

 

 

 

Growth rates for both events and for the overall (combined) growth are summarised in 

Table 3.6 and the top layer growth rate once again stands out as being significantly 

greater than bottom layer (accretion) growth, at 5.5×10-4 kg m-2 s-1. 
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Table 3.6: Ice growth rates (SIE) calculated according to Equation 3.8, for 
modelled congelation and frazil growth in the two events, and for the observed ice 
production (pancakes + frazil, corrected for volume fractions and area fractions).  

 

×10-4 kg m-2 s-1 
Modelled 

Congelation 
Modelled 

Frazil 
Observed  

Event 1 Bottom 3.9 12.0 2.0 

Top 5.5 Event 2 

Bottom 
4.2 9.5 

2.5 

Combined Both 2.2 9.7 2.0 

 

 
 

3.3.3  Discussion 

The solid ice equivalent thickness of the type-A and lower layer type-B pancakes is 

unexpectedly low, given previous conjecture about pancake formation rates (Wadhams 

et al. 1987; Hopkins and Shen 2001). A clear disparity in ice growth rates exists 

between type-A pancakes and the type-B/D top layers, however. The consistency of rates 

for a given mechanism (accretion or scavenging) and the disparity between these 

mechanisms gives confidence that separate and disparate processes are occurring as 

stated, however.  

 

The disparity becomes more marked if we consider that top layer growth occurred with 

the existing platforms (from Event 1) significantly reducing the area of sea surface 

available for ice production during the second event. These bottom layers must have 

occupied a similar area fraction at the beginning of Event 2 to that seen at its end, 

implying that only c.40% of the total area was available for frazil production during this 

event.   

 

An opposing consideration is the fate of the frazil fraction remaining at the end of Event 

1. The transient nature of the positive heat flux episodes indicates that significant melt 

did not occur and the lack of granular ice underneath the type-D congelation ice 
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suggests that the frazil did not accrete below the platforms in the five days between 

events. The frazil layer was also never observed to extend deeper than the pancakes 

during ROV flights, though these were conducted in conditions of low turbulence. It 

must therefore either have remained as frazil ice (increasing the thickness of the frazil 

slick observed at the end of Event 2) or have accreted to the top surface of the 

platforms, adding to the perceived top layer production during Event 2. Either process 

would contribute additional volume to the ice formed during Event 2 and require a 

downward correction in the equivalent solid ice thickness due to that event.  

 

The balance of these opposing corrections is unknown in the absence of comprehensive 

field or ice tank observations over similar periods. It is probable that an upwards 

correction in rate due to the pancakes occupying their existing areal fraction will 

dominate, since the contribution from remaining frazil is reduced by Vf = 0.4 and the 

smaller area fraction of this ice type. The true equivalent top layer thickness is therefore 

likely to be higher than Figure 3.16 indicates. Consideration of the overall growth 

removes the need for the effective area and Event 1 frazil corrections and gives a more 

reliable comparison to congelation and frazil equivalent thickness.  

 

It seems unlikely that classical (accretion) pancake growth proceeds at a rate below that 

of congelation ice (2.0 versus 2.2×10-4 kg m-2 s-1), however, and this unexpectedly-low 

rate may arise from errors induced by the many assumptions required.  

 

Foremost amongst these is the assumption that the sea surface was ‘ready to freeze’ at 

the onset of Event 1. If this was not the case, then a considerable fraction of the Event 1 

cooling may have been required before frazil formation could begin and formation rates 

of classical pancakes would then increase significantly.  Supporting the assumption, it is 

noted that the ECMWF data show an extended period of low temperatures (-15°C) five 

days prior to the onset of Event 1. It is suggested that this period pre-conditioned the 

surface water for frazil formation, since temperatures did not rise to above the freezing 

point of water in the intervening period. The frazil formed during Event 1 was observed 

to be relatively new (as demonstrated by the lack of pancakes and its salinity), 
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confirming that frazil/pancake formation from this previous event did not occur: a 

situation which would otherwise cause a downward revision in the Event 1 rates.  

 

The period between events, when ocean-atmosphere fluxes are almost zero and the 

oceanic heat flux becomes significant, is another possible source of this error. Higher air 

temperatures than the ECMWF temperature data suggest, or higher values of oceanic 

heat flux than assumed, might lead to significant melting of the frazil or pancake ice 

during this finely-balanced period. If melt occurs, ice production during the first event 

would be significantly under-represented. The sea surface temperature would also 

become elevated to the north of the ice edge, requiring the re-establishment of a 

freezing surface layer before frazil and pancake production could begin during the 

second event. The same error in forcing would thus lead to a consistent error in pancake 

growth rates for the classical mechanism, as seen. A similar effect would also apply to 

upper layer growth, however, since frazil production during this process will also be 

delayed until an appropriate sea surface temperature is regained. The disparity between 

the formation rates arising from the two mechanisms therefore remains a robust 

conclusion.  

 

It should also be borne in mind that the new pancakes studied are rather thin in 

comparison with a typical final pancake thickness of c.50 cm. Further thickness 

increases will be dominated by the top growth process, increasing the overall rate 

towards that of the faster mechanism. Equivalent congelation ice growth is also greatly 

reduced once the ice cover begins to thicken to these levels, thus pancake and 

congelation ice growth rates can be expected to diverge more significantly in the latter 

stages of the pancakes’ evolution.  

 

We note that the type-A pancakes sampled here were strong compared with those seen 

in the Odden in 1997 – none were broken during removal from the lifter, even when 

they were only 5 cm thick. This arises due to the lower air temperature events here 

compared to the Odden area, and suggests that only a short time need elapse before 

frazil-rafting can begin. The overtopping mechanism may therefore be extremely 

common in the Antarctic, though the absence of the obvious type-D pancakes has 



Chapter 3: Thermodynamics 
 

110 

allowed the two layer types to remain undetected until now. Type-D pancakes may be 

unusual and confined to an ‘oscillating’ ice edge, which allows the juxtaposition of low 

freeboard congelation ice and frazil growth. The disparity in growth rates between the 

two mechanisms  (5.5  versus 2.2×10-4 kg m-2 s-1) suggests that top layer growth will 

dominate pancake ice accretion where it occurs.  

 

The lack of two layer pancakes seen in the Odden may be due to the surface melt 

conditions common in that region. Surface melt flushing would tend to remove the 

signature of top layer growth in pancakes which have experienced higher air 

temperatures for any length of time. A cruise to the region in March 2001 encountered 

pancakes which had not experienced a melt flushing event, however (Doble, 

unpublished data). These consistently displayed similar salinity profiles to the Weddell 

Sea pancakes, suggesting that the top growth process may dominate there too.  

 

The modelled frazil ice production is a theoretical maximum and assumes that the 

presence of frazil ice crystals at the sea surface does not reduce the ocean-atmosphere 

heat flux. This assumption is based on the low volume concentration of the frazil slick 

(≤0.4) which may be effectively ‘transparent’ to heat exchange. Tank measurements 

suggest that the rate may be reduced, however: Smedsrud (2001) obtained a rate of 

3×10-4 kg m-2 s-1 during experiments at the Hamburg HSVA facility where the net heat 

flux to the atmosphere was estimated as 257 W m-2.  This compares with the modelled 

frazil production rate here of 9.5×10-4 kg m-2 s-1 during Event 2, with a similar net heat 

flux.  

 

The two rates may not be directly comparable, however, since the growth of frazil ice is 

limited by heat transfer away from the growing crystal, specifically by a parameter 

termed the Nusselt number (Nu), which is the ratio between the actual (turbulent) heat 

transfer and that which would occur by conduction alone (Holland et al. 2007). 

Estimation of Nu is far from straightforward, requiring knowledge of micro-scale 

parameters such as the turbulent dissipation rate and the turbulence intensity of the 

fluid, as expressed by the Prandtl number and the Kolmogorov length scale. Indeed, a 

series of papers have appeared which mis-parameterise the choice of Nu, following an 
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initial mistake by Hammar and Shen  (1995) and frazil production was subsequently 

over-estimated by factors typically 10-100 (Holland et al. 2007). Turbulence levels in 

the HSVA tank are rather low in comparison with real field conditions. Frazil ice 

formation there proceeds to form an almost 100% ice cover consisting of rectilinear 

pancakes, which extend across the whole width of the tank and directly abut one-

another in an articulated fashion (pers. obs.), as shown in Figure 3.21.  This is rather 

unlike the outcome in the field and demonstrates the relatively low level of turbulence 

generated.     

 

Other rate estimates include those for a 500 m wide polynya (Bauer and Martin 1983), 

at  8.6×10-4 kg m-2 s-1  for a net heat flux of 290 W m-2 (10m/s wind at –10oC), to 

58×10-4 kg m-2 s-1  with a net heat flux of 1950 W m-2 (30m/s at –40oC).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: ‘Pancake’ ice cover generated in the HSVA wave tank during the 
INTERICE III experiment, demonstrating the relatively low levels of turbulence 
encountered there compared to the field.  
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Ultimately the absolute rate of frazil production in a free surface situation serves to give 

a comparison (and upper limit) with the observed ice production during pancake 

growth, and inaccuracies in its value do not impact the absolute rate calculated for the 

observed ice cover. The frazil-relative rate does provide a more robust quantification 

than the congelation-relative rate, however,  since this latter figure will vary as the 

congelation ice growth rate slows with increasing ice thickness. Field measurements to 

determine the effect of a significant frazil slick thickness on ocean-atmosphere heat 

exchange are required to better constrain the frazil ice production. This is far from being 

an easy measurement to make practically, however, given the high wind and wave states 

implied and the concomitant sampling difficulties. Tank measurements cannot provide 

realistic wave periods or amplitudes to ensure the frazil-seawater mixing processes are 

correctly simulated, however, since the frazil crystals are life-sized while the waves are 

not. Discrete numerical simulations perhaps offer the best way forward in this respect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results from this chapter were published as Doble et al. (2003). The paper is included as 
Appendix D to this thesis. 
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3.4 Summary 

The chapter describes in situ measurements of pancake and frazil ice at seven stations 

across the experimental area. Ice area fraction, thickness, salinity, porosity (volume 

fraction) and morphology are discussed.  

 

Two layers, with disparate salinities and porosities are identified in all the mature 

pancakes examined and the pancakes are classified into six types accordingly. Growth 

of bottom layers is attributed to classical accretion of the frazil slick, while it is 

suggested that top layers are dominantly grown by rafting of frazil crystals onto the top 

surface of existing pancakes or congelation ice fragments. Salinity and porosity data are 

used to support this hypothesis, together with direct observations in the HSVA ice tank.  

 

The time period when each layer was formed is identified with reference to two distinct 

cold air outbreaks in the meteorological record. The backwards trajectory of the 

observed ice is established with reference to the wind factor and turning angle 

calculated in the previous chapter, and the meteorological forcing extracted along this 

track.  

 

The forcing is then used as input to a one-dimensional flux balance model, to simulate 

ice growth during the formation of the two layers. Observed ice thickness is compared 

to that which would have occurred under calm conditions (a minimum figure) and to the 

ice production for frazil ice growth alone. This latter case provides a maximum figure, 

since it assumes that the presence of a frazil slick does not reduce the ocean-atmosphere 

heat flux.  

 

Calculated growth rates were markedly different for bottom and top layer growth, 

reflecting the disparate mechanisms at work. Ice production during the accretion of 

classical pancakes was found to be similar to that of thin congelation ice. The ice 

production during top layer formation was approximately double the bottom layer value 

and half the maximum simulated figure from frazil growth.  
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CHAPTER 4: THE CONTRIBUTION OF HF MOTION TO ICE GROWTH 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth rates of pancake ice have been examined and it has been determined that high-

frequency motion plays a significant role in the pancakes’ movement. These findings 

are next combined to determine the influence of that high-frequency motion on ice 

formation in the pancake zone: does the observed high-frequency motion have a 

significant impact on ice production? How the particular characteristics of the 

pancake/frazil mixture influence the volume of ice produced is examined, by comparing 

ice production to that of a congelation ice cover undergoing the same differential 

motion.  
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4.1 Introduction 

Oscillating divergence-convergence events (the “ice accordion”) are known to play a 

significant role in increasing ice production as part of congelation ice growth. The thin 

skim of ice formed in open water patches is deformed to a significant thickness during 

convergence, re-exposing open water during the divergent part of the cycle. Figure 4.1 

illustrates the effect for fixed meteorological forcing (Ta = -10°C, v10 = 5 ms-1). The blue 

curve shows the evolving ice thickness for an undisturbed ice sheet, where the 

increasing ice thickness progressively insulates the ocean from the cold atmosphere, 

gradually slowing ice growth.  The red line applies the open-water growth rate (dh/dt) at 

all timesteps, simulating the removal of the thin skim of ice by convergent crushing 

before the open water area is re-established by the ensuing divergence. Over the two 

days illustrated, the latter case produces nearly twice as much ice as the undisturbed ice 

sheet.  

 

 
Figure 4.1: Congelation ice growth with fixed meteorological forcing, 
illustrating the effect of the ice accordion. The blue curve shows the 
thickness evolution of undisturbed ice, which slows as the ice cover 
thickens, while the red curve maintains the open-water growth rate 
throughout. The graph shows 144 cycles, equating to two days.  
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The role of convergence-divergence is less clear for a frazil-pancake mixture, however, 

where the frazil area produces ice at close to the open water value in any case. In the 

absence of platforms which the frazil can overtop (and hence remove frazil from the 

slick), oscillating divergent-convergent cycles would serve only to temporarily thin and 

thicken the frazil slick, since a frazil ice suspension of any significant thickness would 

relax to occupy the positively divergent area.  

 

It was seen in the previous chapter that the presence of pancakes, in their role as 

accretion platforms for the frazil, play an important role in removing frazil from the 

slick and building the pancake thickness towards its final (consolidation) value. Without 

this continual removal of frazil crystals, the slick would eventually become so thick that 

the buoyancy of the submerged crystals would lift the surface crystals out of the water, 

severely limiting heat fluxes across the ocean-atmosphere interface. This was not 

observed in the Weddell Sea, even at the inner stations where consolidation occurred 

very quickly afterwards. It does occur in the Greenland Sea, however:  Figure 4.2 shows 

such a frazil slick in the Odden in March 2001. It is suggested that this only occurs in 

the Odden, since the ice tongue there never becomes sufficiently wide to damp out the 

considerable wave energy of the winter Greenland Sea. Rather than the ice tongue 

growing laterally,  pancakes are instead advected southwards to melt in the warmer 

waters south of Jan Mayen island (Wilkinson and Wadhams 2003) . Frazil production 

thus continues in the Odden without consolidation occurring. In the Weddell Sea, 

however, the freezing surface continues to advance northwards, widening the frazil-

pancake zone and damping wave energy sufficiently to allow consolidation to occur 

long before frazil production of this magnitude has taken place.  

 

The formation of pancakes does not appear to increase overall ice production, since the 

area of the sea surface that they occupy is no longer available for frazil ice formation. 

The role of the pancakes in controlling overall ice volume production is a balance 

between removing frazil crystals from the slick, continuing the very strong heat 

exchange between the ocean and the atmosphere (positive, termed ‘scavenging’ from 

hereon), and occupying otherwise frazil-producing area through their lateral growth 

(negative). 
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Figure 4.2: A very dense frazil slick observed in the Odden (Greenland Sea) during 
a cruise aboard R/V Jan Mayen by the author as part of the CONVECTION project. 
The frazil slick has become so thick that the topmost crystals have been lifted out 
of the water, draining to appear white in the image. The large pancakes in this 
image are approximately 2 m diameter. Large amplitude swell waves (6 m) can be 
seen propagating through the mixture (see horizon).  
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The role of this former, frazil scavenging, process is examined using the observed 

pancake top layer growth, observed buoy motions and modelled frazil ice production. 

Only top layer growth is considered, since the previous chapter’s analysis showed that 

its rate was significantly greater than the lower layer accretion process and this is 

expected to begin immediately after the creation of initial platforms, dominating 

subsequent ice production in the pancake cycle. The simple conceptual framework used 

in this chapter makes the following assumptions: 

 

1. The thickening of the pancakes’ top layers only occurs by frazil scavenging due 

to their translation through the frazil slick. In fact it is expected that frazil 

scavenging also occurs as the pancakes tip in the wavefield and scoop frazil onto 

their top surfaces, but this does not present an objection given the 

phenomenological nature of the parameterisation 

2. Pancakes actually ‘travel through’ the frazil ice surrounding them during their 

displacement, rather than the whole frazil-pancake matrix translating together. 

Observations suggest this is only partly true and this also contributes to the 

phenomenological nature of the parameterisation 

3. The area occupied by the pancakes does not contribute to ice production. This 

consideration was irrelevant when examining the relative growth rates in the 

previous chapter, but is central to the model here in that ice production only 

occurs in the interstitial frazil slick  

4. Concomitantly, lateral growth of the pancakes, and hence reduction of area 

available for frazil production, is ignored. Observations suggest that this 

assumption is robust, since the area fraction of pancakes does not grow as they 

mature: pancake area fractions were similar at all stations and did not appear to 

be a function of pancake diameter, thickness or proximity to the consolidation 

boundary (see Table 3.1) 

5. The 20 minute interval data captures all the pancake movement and no higher-

frequency motions exist. This is a necessary assumption, since no higher 

frequency data exist, but is unlikely to be the case in the presence of waves. Any 

higher frequency motion is parameterised in the empirical value of the tuning 

parameters developed.  
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The frazil scavenging process is first examined with a simple model domain and a 

phenomenological parameterisation of the process is derived. The empirically-derived 

parameter is then used in a full dynamic-thermodynamic model which combines the 

findings of the two previous chapters to examine the amount of ice production in the 

frazil/pancake process compared to that which would occur under the same 

meteorological and dynamic forcing for a congelation ice cover. The role of HF motion 

in ice production for both cases is examined, and the effect on the balance between 

frazil and pancake ice remaining at the end of the simulation is discussed.  

 

4.2 Convergence induced thickening 

The movement of the outer array during Event 2 is considered, as this was previously 

identified as the source of the pancake top layers, grown by frazil scavenging. During 

Event 2, the thermodynamic model used in Chapter 3 grows an average of 1 mm of 

frazil solid ice equivalent (SIE) per 20 minute timestep (a rate of 8×10-4 kg m-2 s-1) in 

the area fraction of frazil ice (0.35, averaging the values at the outer array buoy 

locations, Stations 1, 3 and 4 – see Table 3.1).   

 

The volume of ice transferred from frazil to pancakes by the scavenging process is 

given by: 

 

εft hatdivV ...Δ=    (Eq. 4.1) 

 

where div is the array divergence calculated in Chapter 2, at is the area of the array, hf is 

the frazil slick thickness (SIE) and ε is the scavenging efficiency, expressed as the 

fraction of frazil volume traversed that goes to thicken the pancakes through 

scavenging. If a 100% scavenging efficiency is assumed for the moment – i.e. all the 

newly-formed frazil ice traversed by pancakes during the compression is scooped onto 

the surface of those pancakes – then a volume of 6.4×104  m3 of ice is scavenged during 

each cycle. Distributed over the area fraction of pancakes (0.65), this thickens the 

pancakes by 2.8×10-5 m during every cycle. We assume that area percentages remain 

constant despite the thickening pancakes. The duration of Event 2 (two days) represents 

144 cycles of 20 minute compression-rarifaction. Thickening of the pancakes due to 
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compressive frazil scavenging is then 144 x 2.8×10-5 = 4 mm SIE. This is clearly much 

less than the 5 cm SIE observed in the field and initially suggests that frazil scavenging 

is not, in fact, an effective mechanism to build pancakes.  

 

This figure does not allow for the pre-existing thickness of the frazil slick however: the 

pancakes are in fact pushed through a frazil layer considerably thicker than 1 mm during 

each compression cycle. It was established in Chapter 3 that the existing frazil slick 

formed at the end of Event 1 did not undergo significant melt in the intervening time 

until Event 2. The thickness of that slick is unknown, but the model runs (Figure 3.17) 

give a figure of 40 cm SIE (corrected ECMWF forcing). This was partially transformed 

into the lower layers of the observed pancakes with 7 cm SIE thickness, requiring 13 cm 

of frazil SIE, taking account of the area fractions. This suggests that the frazil slick 

available for building top layers had an SIE thickness of approximately 27 cm at the 

beginning of Event 2.  

 

Taking this thickness into Equation 4.1, the compressive scavenging now equates to a 

pancake thickening-per-cycle of 7.5 mm SIE. Over the 144 cycles of Event 2, this 

produces a total pancake thickening of 108 cm, which is an order of magnitude more 

than observed. A simple estimate of the scavenging efficiency, ε, is thus  5/108 = 5%. 

This appears to be rather high, given the author’s observations, but is a 

phenomonological value, subject to all the assumptions set out previously.  

 

4.3 Establishment of an ice cover 

The foregoing sections have established that the frazil scavenging which takes place 

during the high frequency motions of the pancakes may be highly significant in building 

pancake thickness, though may not influence the overall ice production to the same 

extent. To examine the effect of these high-frequency dynamics on ice production, the 

thermodynamic model discussed in Chapter 3 is coupled to an ice redistribution model, 

driven by the dynamics (specifically the divergence DKP) calculated in Chapter 2. The 

redistribution model deforms the ice cover in response to convergent or divergent 

dynamics and modifies its thickness and area accordingly. Ice volume is conserved 

during deformation events. The thermodynamic model then grows or melts ice on the 
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resulting ice cover at each time step. The model deals with both congelation and 

frazil/pancake ice within the area enclosed by the array. It is assumed that no ice volume 

exchange occurs with the area surrounding the array: ice cannot be pushed outside the 

area enclosed by the array. Application of this hybrid model allows the following 

questions to be examined: 

 

• How does HF motion, as expressed by frazil scavenging, influence ice 

production in the frazil/pancake process?  

• What are the contributions of the various processes (scavenging, deformation, 

thermodynamics) to the final thickness of a frazil-pancake ice cover? 

• What is the ice production in a congelation ice cover undergoing the same 

motion? Hence, does the frazil-pancake cycle produce significantly more ice for 

the same forcing? 

• Does the scavenging parameterisation result in a final (consolidation) thickness 

for the pancakes which is similar to observations? 

• How does this final thickness compare with the rate-based approach developed 

in Chapter 3? 

 

The intention is to establish whether the findings of the previous chapters have a 

significant impact on the amount and timing of ice production during the frazil-pancake 

cycle, and hence whether they need to be taken into account in larger-scale models 

concerned with ice formation or water mass modification.  

 

 

4.3.1 Congelation redistribution model 

The behaviour of a congelation ice cover is considered first, since this is the simpler of 

the two cases. The framework follows that of Thorndike et al (1975) in that the initial 

thickness and area fraction of an arbitrary number of ice classes are specified. Ice is 

grown or melted on each ice class for the duration of the timestep, according to the 

thermodynamic model described in the previous chapter. The ice cover is then 

deformed, using the change in area determined from the buoy positions. Open water is 

created during divergent events and the thinnest ice class present is crushed during 
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convergent events. If that ice class is exhausted before the convergence ends, the 

remaining convergence is carried forward to the next ice class. The area and mean 

thickness of each class are then recalculated accordingly. The type of deformation 

(ridging or rafting) is not considered, since the new class area defines the mean 

thickness for that class, without reference to its probability distribution function. 

Energetics (e.g. Hopkins (1998)) is not considered: the ice cover is taken to be infinitely 

weak. Spatial information about the structure of the ice is not considered. Ice volume is 

conserved during deformation events and the resulting ice cover re-classified before the 

next timestep. For comparison with the thickening of pancake ice at Station 1, initial 

conditions were set as shown in Table 4.1, equivalent to the 0.35 fraction of frazil ice 

and 0.65 fraction of 10 cm thick (7 cm SIE) pancakes, considered earlier. There is no 

predictable thickness to guide the choice of ice classes, as is commonly done for pack 

ice models (Haapala and Leppäranta 1996; Leppäranta 1998) other than open water 

(Class 1). 

 

 

Table 4.1: Initial values for the redistribution model in congelation ice mode. Open 
water makes up Ice Class 1, with a limiting thickness to avoid divide-by-zeros in 
the growth model. Other ice classes are shown, defined by their limiting thickness.  

 

Ice Class 1 2 3 4 5 6 

Limit, cm 1 10 20 30 40 9999 

Area fraction 0.35 0.65 0 0 0 0 

Initial thickness, cm 1x10-5 7 0 0 0 0 

 

 

 

The model outputs thicknesses and areas of each ice class, together with the net ice 

production (m3) and the ‘equivalent thickness’, H:  
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where a(i), h(i) are the areas and thicknesses of each ice class (1:n) and atotal is the area 

enclosed by the array. The dynamic resolution can be varied from the maximum, 20 

minute, value to any chosen interval. The reduction in dynamic resolution is imposed as 

a low-pass filter (LPF) on the buoy motions. The filtered change-in-area is then applied 

at 20 minute intervals, regardless of the dynamic resolution chosen. Meteorological 

forcing is also applied at 20 minute intervals regardless of the LPF chosen, using cubic 

spline interpolation from the one hour native interval. This scheme ensures that only 

differences in the fine-scale motion of the buoys are contrasted: no difference in 

meteorological forcing is applied.  

 

Model runs were then performed at 20 minute, 2 hour and 6 hour resolutions to examine 

the effect on modelled ice production.  An example of model output for a congelation 

ice run (20 minute resolution) is shown in Figure 4.3. Starting area of the array was 

1.8×109 m2, reducing to 5.1×108 m2 at consolidation – a reduction of 72% in area. 

Convergence thus plays a dominant role in the ice dynamics, with the array only 

beginning to diverge significantly towards the end, after Day 122. Relatively cold air 

temperatures quickly grow ice on this open water and the final array area is evenly 

divided between very thin (5.6 cm) new ice and the much thicker ice (59.7 cm) resulting 

from the long convergence. Elevated air temperatures at the beginning of the run (days 

113 -116) melt a significant amount of ice before the cold air outbreaks begin once 

more. Total ice production over this period was 6.72×107 m3, representing an 81% 

increase from the initial volume. Average ice thickness over the area of the array was 

29.8 cm at the end of the simulation, compared to 4.6 cm at the beginning. Ice growth 

was responsible for 13.3 cm of the increase, with deformation accounting for the 

remaining 11.9 cm. The model was then run with reduced resolution forcing and the 

results for ice production and equivalent thickness are shown in Table 4.2.  
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Figure 4.3: Redistribution model output for congelation ice. The top graph shows the 
array area (outline curve) and the contributions to it from the various ice classes, 
indicated in the legend. The period is dominantly convergent, reducing to nearly a quarter 
of its original area in the first five days. Thicker ice is formed during the convergence, 
indicated by the progressive increase in ice class. Middle graph shows the equivalent ice 
thickness over the array area (E: thick black curve) and for each ice class. Bottom graph 
shows the contribution of each ice class to overall array volume. Also shown is the net ice 
production (P: thick black curve). Though Class 6 covers less than half the final array 
area, it is the dominant contribution to total final volume, at just under 60 cm thickness.  



Chapter 4: HF ice growth 
 

125 

  
Table 4.2: Results for the congelation redistribution model runs for various time 
steps. The table shows the cumulative percentage convergence (Σ conv) and 
divergence (Σ div) over the model run (days 111-124), calculated from the buoys’ 
positions, the equivalent thickness H (from Equation 4.2) and total ice production 
(V prod). The last column calculates the change in ice volume production from the 
six-hour run. 

 

Step Σ conv, 

% 

Σ div,

% 

H,    

cm 

V prod, 

x107 m3 

% 6 hr 

change 

20 mins 201 129 29.8 6.72 8 

2 hours 144 72 29.1 6.41 3 

6 hours 131 59 28.9 6.23 0 

 

 

 

The effect of the high frequency motion on the ice production within the array is in fact 

rather small, only increasing by 8% over the six-hour filtered result, though the 

cumulative convergence (sum of all convergent events, with respect to the original area 

of the array) increases from 131% to 201% and the cumulative divergence from 59% to 

129%.  

 

This surprising result was examined by plotting the difference in ice production between 

the 20 minute and six-hour runs, together with the air temperature time series from buoy 

DML8 (Figure 4.4). The high frequency (20 minute interval) ice production curve 

increases with respect to the six-hour filtered results dominantly during divergent 

periods with low air temperatures, where more open water areas for rapid ice growth are 

created. These open water areas have a large contrast in heat flux compared to the 

compact, converged ice. The low-temperature event centred on Day 120 does not give 

rise to increased production in the 20 minute resolution run since sustained secular 

convergence occurs and the amplitude of the high-frequency oscillatory divergence 

drops sharply over this period (see Figure 2.19a).  
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Figure 4.4: (top) the difference in ice production volume between the 20 
minute model run and the six-hour filtered run. (bottom) air temperature 
from buoy DML8.  

 

 

Ultimately the difference in ice production is not large because the area involved in the 

high-frequency oscillations is small compared to overall area of the array. A typical 

divergence of 1.5×10-5 s-1 implies that an area of around 9×106 m2 is involved in each 

convergent-divergent oscillation, which represents less than 2% of even the final, 

reduced, array area. If an open water area is re-established with every second timestep 

(i.e. the ice grown in the previous timestep is removed to allow maximum congelation 

ice growth rate each time), the ice grown on this area will have a thickness of 

approximately 37 cm, using the buoy meteorological forcing. This gives a total ice 

volume production in the oscillating area of  3×106 m3, which represents around 5% of 

the total volume production over the array. The area involved in the oscillation is 
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therefore significantly more productive than the array area as a whole (producing 5% of 

the ice volume in less than 2% of the area), but cannot significantly influence the overall 

ice production due to its small area fraction.  

 

Of course, the analysis of Chapter 2 established that a consolidated ice cover would not 

undergo such high-frequency motions. The purpose of the exercise is to establish a 

comparative figure to that which would arise under the same forcing and deformation as 

the frazil-pancake model. Accordingly, we note that the equivalent thickness over the 

area of the array was 29.8 cm at the end of the simulation, compared to 4.6 cm at the 

beginning. The increase is evenly divided between thermodynamic growth (13.4 cm) 

and convergence (11.8 cm). 

 

 

 4.3.2 Frazil/pancake redistribution model 

For the frazil/pancake calculation, only two ice classes – frazil ice and pancake ice – 

exist. The five assumptions detailed in Section 4.1 are maintained, and the model 

parameterises the following processes: 

 

• Frazil ice is scavenged, thickening the pancakes, during convergent events, 

according to Equation 4.3, overleaf 

• Convergence reduces frazil area and thickens the frazil slick (and vice versa) 

• A minimum frazil area of 10% is maintained, dictated by the maximum 

hexagonal close packing of the (assumed) circular pancakes 

• Further convergence induces rafting of the pancakes. Though this is a discrete 

process – an individual pancake’s thickness can only increase by multiples of the 

pancake thickness – the number of pancakes taking part in the rafting is variable, 

and this is indistinguishable in the model domain from fractional thickening. 

 

While sufficient frazil area exists, pancakes scavenge frazil ice according to the 

following equation:  
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Where hp is the pancake thickness, ΔAf is the reduction in frazil area due to 

convergence, hf is the frazil slick thickness, ε is the scavenging efficiency and Ap is the 

area of pancake ice. The numerator expression represents the volume of scavenged 

frazil ice, equivalent to that given in Equation 4.1.  

 

Two additional processes are parameterised in the model, following initial trials.  

 

If the frazil area is small and compression continues, then the frazil slick thickness 

between the pancakes will increase to very large values. Such a slick would greatly 

exceed the draft of the surrounding pancakes and in fact spread out underneath the 

pancakes to occupy their area as well. This is therefore allowed to occur in the model. 

The frazil area is split into ‘frazil-with-a-free-surface’ and ‘frazil-under-pancakes’. The 

partitions are tracked separately, with the frazil retreating from underneath the pancakes 

once the slick thickness drops below the pancake draft once more. Volume fractions are 

accounted for when determining whether the frazil can under-ride the pancakes. Ice 

production only occurs in the frazil-with-free-surface fraction. Reduction in the volume 

concentration of the frazil slick with depth is not parameterised, since no reliable field 

measurements exist.  

 

During prolonged divergent events, the model created large area fractions of frazil ice, 

which subsequently produced large ice volumes and resulted in unrealistically-high 

frazil slick thicknesses. The model was therefore refined to mimic the transformation of 

frazil ice into pancakes seen in the field. Transformation only occurs if the frazil area 

exceeds 35% of the array area. This value was commonly observed in the field and it is 

assumed that smaller areas of frazil are disrupted by the existing pancakes travelling 

through them during the scavenging process and are thus unable to consolidate into 

pancakes. Larger area fractions of frazil are required to ‘age’ (in accordance with 

helicopter observations at the ice edge) before transformation into pancakes takes place, 

and hence the age of each positive increment in frazil area is tracked. Once an area of 
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greater than 35% has exceeded the age threshold (24 hours, in accordance with field 

observations), 65% of that area is transformed into new pancakes of the observed 5 cm 

solid ice equivalent thickness, having regard to volume fractions. If insufficient frazil 

volume is available (i.e. the slick is too thin), then the transformation still occurs but the 

new pancake thickness is adjusted accordingly. Transformation may not in itself reduce 

frazil area to less than 35%, though this may occur during subsequent convergence. 

Total frazil and pancake volume is conserved during the transformations, with the 

partition between free frazil and under-pancake frazil adjusted before thermodynamic 

growth occurs in the timestep.  

 

Model output is shown, with settings equivalent to the congelation model, in Figure 4.5.  

The array area follows the same form as before, this time divided between only frazil 

and pancake ice. Compression quickly takes up the initial 35% frazil area, reducing it to 

the minimum 0.1 fraction specified. No initial frazil conversion to pancakes takes place, 

since the frazil fraction has dropped below the 0.35 threshold before it has aged 

sufficiently. Divergence restores sufficient fraction to convert after day 116, increasing 

the pancake area fraction in stages from thereon.  

 

Pancake thickness rises quickly once the initial frazil compression is complete, through 

a combination of rafting and frazil scavenging. It should be noted that the thicknesses 

plotted in the middle graph are averaged over the area occupied by the pancakes. 

Average thickness therefore drops when thin, new, pancakes are added to that area 

following conversion from frazil ice. Equivalent thickness over the whole array area is 

44 cm.  

 

Total ice volume produced in this scenario is 1.32×108 m3, representing an increase of 

over 96% on the congelation equivalent presented in the previous section. This growth, 

which occurs purely in the interstitial frazil fraction, is partitioned between the final 

frazil slick (8.1×107 m3), frazil scavenged onto the pancakes (3.5×107 m3) and frazil 

transformed into new pancakes (1.6×107 m3). Final pancake thickness is around 40 cm 

SIE, or 57 cm actual thickness. Scavenging only contributes 10.6 cm of this SIE  
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.  
Figure 4.5: Output of the frazil/pancake redistribution model. The top graph shows the 
areas of frazil and pancake ice. Positive steps in pancake area indicate the conversion of 
‘aged’ frazil to thin pancakes. A minimum fraction of 0.1 frazil is maintained, in 
accordance with hexagonal close packing. The middle graph shows the thickness of 
pancakes, indicating that due to scavenged frazil ice (cyan) and conversion from frazil 
(blue dashed). Also shown are the frazil slick thickness between pancakes (red) and 
underneath the whole area (magenta). The bottom graph shows the volume of the 
various fractions, including the thermodynamically-grown component (green). Blue 
dots on the upper bound of the graphs indicate that pancake rafting is taking place.  
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thickness, with rafting being the dominant thickening mechanism at 18.2 cm 

contribution. This is expected given the sustained compression undergone by the array. 

New pancakes, transformed from frazil ice contribute less than 5 cm of the final 

thickness. Final frazil slick thickness exceeds that of the pancakes, in volume fraction 

terms, with 9.4 cm SIE frazil underlying the whole area. Table 4.3 summarises the 

output of the model for various resolutions.  

 

 

Table 4.3:  Model output volumes and thicknesses for dynamic 
forcing with various low-pass filters (LPF) applied. Total and partial 
pancake thicknesses are shaded. The ‘total’ figure also includes the 7 
cm SIE starting thickness of the pancakes 
 

LPF 20 mins 2 hrs 6 hrs 

Total ice production, x107 m3 13.2  13.8  13.7 

Frazil volume, x107 m3 8.9 10.9 11.3 

Pancake volume, x107 m3 13.8 11.9 11.3 

Equivalent thickness, cm 44.0 45.0 45.0 

Total pancake thickness, cm 40.6 36.2 36.0 

Scavenged contribution, cm 10.6 6.4 5.5 

Transformed contribution, cm 4.8 4.6 4.2 

Rafted contribution, cm 18.2 18.2 19.3 

Interstitial frazil thickness, cm 23.3 20.8 20.7 

Under-riding frazil, cm 9.4 14.2 14.8 

 

 

 

The application of high-resolution (20 minute) dynamic forcing has very little effect on 

overall ice production in the frazil/pancake model. This is expected, since such forcing 

only serves to thin-and-thicken the frazil slick, as discussed, unlike the congelation ice 

case. The major effect of the high-frequency forcing is to increase the volume fraction 
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accounted for by pancakes and reduce the frazil fraction. This arises from increased 

scavenging of the frazil slick by the pancakes, as demonstrated by almost double the 

contribution from scavenging at 20-minute intervals (10.6 cm) as for two-hour (6.4 cm) 

or six-hour (5.5 cm) forcing. This is understandable, given the increased path length that 

the pancakes are subjected to with the high-frequency dynamics. Figure 4.6 shows the 

dependence of total pancake thickness, the scavenged contribution and total frazil 

thickness on ε. Physical thickness are shown, as opposed to solid ice equivalents. The 

point at which frazil ceases to be deeper than the pancakes is then shown by the crossing 

point of the two curves (ε  ≅ 17%).  Other contributions to pancake thickness (rafting, 

transformation) remain similar, as would be expected from the dominance of large-scale 

dynamics in these processes.  

 

 

 
Figure 4.6: The effect of scavenging efficiency ε  on the scavenged 
and total pancake thickness. Also shown is the total frazil thickness 
(interstitial + under-riding). All figures are generated at the full (20 
minute) resolution forcing and show physical (rather than SIE) 
thicknesses.  
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The scavenging efficiency has a rather linear effect on the contribution of frazil ice until 

a value of 0.25, where the contribution reaches 40 cm physical thickness. The frazil 

slick thickness drops rapidly over the same interval, resulting in a severely reduced 

frazil volume for the scavenging to operate upon. Increasing scavenging efficiency 

beyond this point therefore has a much smaller effect. The ‘irreducible’ frazil thickness 

of 20 cm with 100% scavenging efficiency results from the divergent period at the end 

of the simulation: the pancakes do not converge sufficiently to scavenge the ice 

produced during this cold-air outbreak.  

 

Also interesting is to examine how the choice of ε impacts the influence of the HF 

motion, in terms of the scavenged contribution to pancake thickness. Scavenged layer 

thickness for 20-minute and six-hour resolution runs is plotted in Figure 4.7. Increasing 

scavenging efficiency increases the influence of the HF motion until a maximum is 

reached at around ε  ≅ 17% - the same value at which frazil ceases to under-ride the 

pancakes in the full resolution simulation.  

 

 
 
Figure 4.7: The thickness of the scavenged pancake layer versus 
scavenging efficiency, plotted for 20-minute forcing (blue) and six-
hour forcing (red). The black curve shows the difference between the 
two forcing results. All figures are solid ice equivalents. 
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Beyond this, the increased scavenging exhausts the frazil reservoir more quickly at full 

resolution, while the six-hour forcing continues to scavenge effectively. An ε value of 

0.5 is sufficient for even the six hour forcing to scavenge all the available frazil and 

build an equivalent layer thickness to that seen in the full resolution simulation.   

 

 

The primary aim of the model is to compare ice volume production between high- and 

low-frequency forcing, and between congelation and frazil/pancake ice covers. The lack 

of observations of thickness or area during the consolidation period, combined with the 

interacting processes parameterised in the model, leave the output values open to 

question, however. Most questionable is the tuning parameter ‘MINFRAC’ – the 

minimum area fraction of aged frazil that must exist before transformation into 

pancakes occurs. The value of 0.35 was chosen with respect to field observations which 

showed this value to be fairly constant across the pancake zone, and a physical 

justification was suggested. No frazil ice was observed at Station 2, however, and this 

constraint may be erroneous in the presence of the sustained compression undergone by 

the array. The parameter effectively controls the surface area available for ice 

production, since the model only produces ice in the area occupied by interstitial frazil. 

The effect of varying MINFRAC is shown in Table 4.4, in terms of volume production 

and mean pancake thickness.  

 

Turning off the constraint (setting it equal to the maximum packing density) severely 

limits ice production to unrepresentative levels. Production and maximum thickness are 

reasonably stable around values suggested by observations, however (range 0.3 to 0.4).  

 



Chapter 4: HF ice growth 
 

135 

 
Table 4.4: Dependence of ice volume production and equivalent 
thickness H on MINFRAC; the minimum area fraction of frazil ice 
necessary to allow its conversion to pancakes. A value of 0.1 is 
equivalent to removing the parameter, since this minimum fraction 
cannot be reduced due to packing density constraints. The value 
chosen in the model (0.35) is shown in bold.  

 

MINFRAC Volume x107 m3 H, cm 

(0.1) 5.8 29.4 

0.2 9.0 35.6 

0.3 11.7 41.1 

0.35 13.2 44.0 

0.4 14.5 46.6 

0.5 16.6 50.9 

 

 

 

 

4.3.3 Rate–based approach 

The explicit dynamics-based approach used in the previous sections can be compared 

with the rate-based method developed in Chapter 3. The thermodynamic model is run 

with the buoys’ meteorological forcing to determine the frazil production rate, per 

square metre of interstitial frazil area (i.e. taking no account of the area fraction of 

frazil). The production per timestep is then adjusted by the ratio determined in Section 

3.3.2.6 to determine the ice production in the frazil-pancake cover. This is finally 

combined with the area of the array during that step and the cumulative ice production 

estimated. The procedure is expressed in Equation 4.4 and illustrated in Figure 4.8: 
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Where RR is the relative rate of top layer formation, compared to frazil ice (5.5:9.5), FRi 

is the calculated frazil formation rate at timestep i and ai is the area of the array at 

timestep i. ρi is the density of ice and Δt is the timestep in seconds.  

 

 

 
 

Figure 4.8: The rate of ice production until consolidation. The blue line 
plots the rate per square metre of frazil ice, the red line shows the rate per 
square metre of total array area and the black line applies the rate ratio to 
the blue curve to give the effective top layer ice production, as determined 
in Section 3.3.2.6.  

 

 

The exercise suggests a total volume production of around 1.44×108 m3, which 

represents an increase of only 10% over the figure produced by the redistribution model.  

 

 

4.4 Discussion 

The agreement between rate-based and redistribution models for ice production is 

initially surprising, since the former model does not explicitly parameterise the change 

in productive area. The area fraction of frazil within the array is constrained within the 

limits of 10% (maximum packing density of pancakes) and around 35%, however, since 

transformation into pancakes is allowed to occur above that value. The rate ratio of 
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5.5:9.5 was developed with a similar area fraction (0.35) and, presumably, a similar 

dynamic regime. Though the buoy array undergoes dramatic convergence during the 

period of investigation, such convergence is quite normal given the constant passage of 

low-pressure atmospheric systems past the ice edge. Such self-similar area fractions and 

dynamic conditions suggest that the rate ratio may vary significantly in other 

applications, however.  

 

The redistribution model offers a more widely applicable solution to the modelling of 

frazil-pancake ice covers. The simulation results in a frazil slick thickness which is 

significantly higher than field observations suggest is realistic, however. The very 

limited number of observations in the Weddell Sea and Odden have never observed the 

frazil slick to be deeper than the pancakes embedded within it, whereas the model 

suggests a physical frazil thickness of nearly 82 cm, compared to a physical pancake 

thickness of 58 cm. The interacting nature of the various processes in the model render 

it difficult to establish which factor is responsible for this shortcoming, since frazil slick 

thickness may be reduced by any of the following means: 

 

1. The scavenging efficiency can be increased. The 5% value is based on a 

modelled frazil thickness at the end of Event 1, which may itself be erroneous. 

Significant increases in the value of the parameter are required to reduce final 

frazil thickness to values more in line with field observations, though the model 

is relatively insensitive for ε > 25%, at which point frazil thickness is more in 

line with observed conditions in the field. Such a radical shift in value for ε  

would require that the frazil slick thickness at the end of Event 1, from which the 

value was originally derived, was in fact 17 cm instead of the modelled 27 cm, 

which is quite possible. Ice volume production is unchanged. 

2. The scavenging efficiency may vary with the area fraction of the slick. It can be 

envisaged that significantly reduced frazil area fractions are more efficiently 

scavenged onto the surface of the pancakes, since a mutual barrier exists to 

prevent the frazil crystals being pushed aside rather than over the pancakes. This 

is similar to the formation of pancake rims described in Pedersen and Coon 

(2004), which describes frazil being “pumped over the two converging edges of 
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cakes”. No data exist on this process, though it may be tractable to numerical 

simulation or study in an ice tank. Again, ice volume production is unaffected.  

3. Significant volumes of frazil may be transformed into pancakes by the 

‘classical’ bottom accretion method, not parameterised here 

4. The rate of frazil production may drop as the frazil slick thickens, as discussed 

in Chapter 3 

5. Ice volume may not be conserved within the array.  

 

The uncertainly over the scavenging efficiency hampers the assessment of the 

importance of the high frequency motion, since it directly impacts the one process 

which varies significantly with this small-scale oscillation. The impact of the process 

varies significantly over the range 0.10 < ε < 0.25  and is relatively insensitive at other 

values. This range also encompasses the ‘maximum impact value’ of 0.175, at which the 

HF relative motion has the most effect on scavenged layer thickness, as indicated by the 

maximum difference between 20-minute and six-hour results.  

 

It is interesting to note that this maximum impact coincides with the disappearance of 

the under-riding frazil layer. The correspondence is far from co-incidental and 

demonstrates an emergent property of the model parameterisation, which does not 

consider the under-riding frazil to participate in the scavenging process. The under-

riding frazil thus acts as a reservoir to replace the interstitial frazil removed by 

scavenging, enabling the increased scavenging efficiency to directly increase the 

scavenged volume. Once this reservoir is exhausted, however, continued scavenging 

will deplete the interstitial frazil thickness, reducing the impact of more efficient frazil 

removal. The six-hour simulation can then ‘catch up’ with the 20-minute results, since it 

takes longer for this reservoir to be depleted in the absence of the HF motion.  
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4.6 Summary 

 

• The concept of ‘scavenging efficiency’ was introduced and defined as the 

percentage of frazil slick volume traversed by the pancakes which goes to 

increase the top layer thickness of those pancakes. A value of 5% was derived 

with reference to the magnitude of the divergence calculated in Chapter 2 and 

the top layer pancake growth determined in Chapter 3.  

• The effect of the high frequency oscillations on a hypothetical congelation ice 

cover was examined using a redistribution model. 20-minute and six-hour 

resolution dynamic forcing resulted in a difference in ice production of 8% - a 

similar order to the percentage of total array area involved in the oscillation. 

• A frazil-pancake redistribution model is described, incorporating many of the 

processes occurring during pancake formation. The new ice production is found 

to be insensitive to the high-frequency oscillations, though these increase the 

volume of ice scavenged from the surrounding frazil slick. The balance between 

final pancake and frazil volumes is thus significantly different.  

• The HF motion had maximum effect on the scavenged ice volume at a 

scavenging efficiency of 17%, which corresponded to full utilisation of the 

under-riding frazil volume.  

• Ice production was found to be approximately double that of a congelation ice 

cover undergoing the same dynamical and meteorological forcing. 

• Ice production was compared to the rate-based model of Chapter 3, and good 

agreement was found (within 10%), though that model takes no account of 

convergent dynamics. It is suggested that the convergent regime was similar 

during the formation of the observed pancakes (prior to buoy deployment) and 

hence the rate ratio was pre-tuned for the representative dynamics.  

• It was suggested that the frazil slick thickness produced at the end of the 

simulation by the redistribution model was too high compared with field 

observations and possible reasons were examined, centring on the value of the 

scavenging efficiency parameter. Increasing this from 5% to 25% gave results 

which were more in accordance with field measurements.  
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The observations and analysis in this thesis have examined the formation of sea ice in 

the presence of turbulence and quantified the high frequency motion and growth rate of 

this ice for the first time. A new mechanism for the transformation of frazil to pancake 

ice was introduced and a coherent ‘family’ of pancake morphologies delineated. The 

findings were combined in a physical model to simulate the timing and volume of ice 

production in the region, from the beginnings of the ice cover to its final consolidation 

thickness. As is normal in scientific investigations, the journey has thrown up many 

questions along the way and underlined the uncertainties in our understanding of the 

young sea ice cover, mostly arising from a lack of field observations.  

 

The following chapter highlights the major findings of the study and discusses their 

merits and shortcomings. The importance of the study is considered in the wider context 

of determining the timing and volume of ice production in large scale models. Finally, 

further investigations are suggested to address the main uncertainties. 

 

5.1 Dynamics 

Striking differences were seen between the drift of pancake ice and the immediately-

following consolidated pack ice. Relative motion between the buoys displayed the most 

marked change, with DKPs during the pancake phase exhibiting high amplitude 

oscillations which ceased overnight when the ice cover consolidated. The amplitude of 

the DKPs (1.5×10-5 s-1) was approximately two orders of magnitude higher than 

previously seen in Weddell Sea pack ice and was dominantly due to the meridional 

component, consistent with the zonal orientation of the ice edge and the consequent 

freedom in the north-south direction. The high amplitude oscillations were only evident 

at the full, 20-minute resolution: two-hour low pass filtered DKPs showed a much 

reduced contrast across the consolidation boundary. The relatively short sampling 

interval of the buoys (compared with previous Argos-based investigations) was thus 

able to demonstrate this motion for the first time, though short sampling interval GPS 

drifters have been used in previous experiments in other regions (e.g. Leppäranta et al. 

2001). The MIZ has long been recognised as having higher magnitude DKPs than pack 

ice (e.g. Hibler III et al. 1974) but the pancake ice was found to be unique in having 

such an elevated level of energy at periods less than six hours, having an almost ‘flat’ 
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(white noise) spectrum in this range, as opposed to the red-noise (reducing power with 

increasing frequency) character of the both the consolidated ice cover and the summer 

MIZ as the buoys broke out into the open ocean at the end of December.  

 

The forcing mechanism responsible for this HF motion is currently unclear, though the 

action of waves – either surface gravity or internal – is postulated as the most likely 

candidate. Investigation of pancakes’ motion during convergence-divergence appeared 

intractable with significant theoretical difficulties and inconclusive ice tank results 

(Frankenstein 1996). The stochastic approach detailed in Shen and Squire (1998) 

parameterises collisions between pancakes to determine their contribution to wave 

attenuation and may be adaptable to consider relative separations between pancakes, 

though it necessarily deals with monochromatic waves rather than real-world spectra.  

  

Other parameters suggested that the unconsolidated pancake phase represented a 

starting point (minimum) in a cycle of constraint. This constraint reached a maximum in 

mid-August (mid winter), when the buoys were embedded deep in the pack ice of the 

Weddell Sea, and was progressively relaxed as the buoys approached the ice edge at the 

end of winter. The cycle of constraint was largely expressed at periods shorter than 12-

hours, though simple drift speeds exhibited the same trends.  

 

Derivation of momentum transfer functions (wind factor, turning angle) for pancake ice 

were hampered by the failure of the on-board compasses for those buoys which 

remained in unconsolidated ice for the longest. ECMWF winds were not accurate while 

the buoys were close to the ice edge, but best fit values of 2.9% and 13° with respect to 

the 10 m winds were in accordance with values derived from the northern hemisphere 

Odden. The agreement suggests that these values can be used globally for pancake ice.  

 

 

 

5.2 Thermodynamics 

Two disparate mechanisms of frazil ice transformation into pancakes were identified: 

the classical accretion process by which the frazil first begins to agglomerate; and the 
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significantly faster subsequent frazil over-topping which occurs once platforms exist to 

support it. A ‘family’ of pancake types was identified which was consistent with the two 

processes, including a composite congelation-frazil structure (Type-D). It is suggested 

that these were examined during earlier studies of the area (Lange et al. 1989; Lange 

and Eicken 1991) but were not recognised at the time.  

 

Many uncertainties have emerged during the course of this study, centred on the 

modification of ocean-atmosphere heat fluxes by the evolving pancake-frazil ice cover. 

The treatment of Chapter 2 makes no assumptions about any reduction in heat flux, 

since the frazil production modelled there simply represents a maximum rate for 

comparison with the observed pancake and frazil thicknesses. The redistribution model 

presented in Chapter 4 does assume that (a) only the interstitial frazil area contributes to 

ice production; and (b) the rate is not modified from the ‘free surface’ figure. These two 

assumptions have opposite effects on the ice production. Chapter 4’s model produces a 

frazil slick which is far thicker than the limited field observations would suggest, 

though the overall volume (and hence equivalent thickness) of the ice cover is in close 

agreement with the figure suggested by field measurements. It is left to the ‘scavenging 

efficiency’ tuning factor to reduce the frazil thickness to values which are perceived to 

be less extreme, shifting the volume to be dominantly pancake ice as observed.  

 

Little literature exists to aid our understanding of these effects. Most measurements and 

theory development have been focussed on frazil formed at low area concentrations in 

relatively small leads or polynyas, which is subsequently herded downwind until it 

collects against the edge of the lead or polynya and freezes into a solid ice sheet. 

Important considerations in this type of modelling are wind speed and fetch (lead 

width), which indirectly parameterise the turbulence which both limits frazil production 

and mixes the frazil crystals down into the water column, determining their volume 

concentration.  

 

These parameters have little relevance to the vast frazil/pancake fields of the Antarctic: 

turbulence levels there are largely determined by the high amplitude swell impinging on 

the ice cover from the Southern Ocean. Turbulence is thus determined by non-local 
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wind forcing (distant storms) and the dimensions of the ice cover (thickness, area 

concentration, distance) between the measurement site and the open ocean, plus the 

properties of the waves themselves (amplitude, period). Pedersen and Coon (2004) 

nonetheless presented a non-physical best-fit of Alam and Curry’s (1998) wind speed to 

ice thickness relation for the Odden. This is partly justified since the relatively small-

scale of the Odden implies a closer proximity to storm wind forcing and a far less 

significant degree of damping of the resulting ocean waves by the ice cover. They found 

that an empirical ‘lead width’ of 1.5 km fitted the observed pancake thickness best, 

though the scatter was considerable.   

 

Additional disconnections between the lead-derived and MIZ frazil treatments are the 

lack of a ‘dead zone’ in the MIZ, where the frazil damps the short period waves and 

consolidates, other than at the limit of the frazil-pancake zone itself. Langmuir 

circulation appears to play little or no role in the frazil-pancake cover, which invariably 

forms a homogenous mixture and is not observed to organise into downwind rows, 

except in very low areal concentrations at the ice edge.  

 

Conceptually, it seems unlikely that only the interstitial frazil area contributes to ice 

production. Indeed, it is difficult to see how 35% of the productive area can produce ice 

at 58% of the overall free-surface rate – as demonstrated by modelled top layer growth 

in Chapter 3 - with this assumption intact. The pancakes are small and highly mobile 

and it is therefore not unreasonable to assume that the entire area “sees” the cold 

atmosphere at the integrated timescales over which heat loss from the ocean occurs. The 

situation is analogous to the heat exchange over leads, where the area-integrated heat 

flux is initially very sensitive to lead width and spacing, but becomes markedly less 

sensitive as ice concentrations drop below about 70% (Worby and Allison 1991). 

Worby and Allison point out that the air over the additional open water area has 

“already been modified” by the open water immediately upwind. Additionally, the 

pancakes are porous, unlike congelation ice, and the water within them is therefore less 

insulated from the cold air than would be the case under a congelation ice sheet.  

 



Chapter 5: Discussion 
 

145 

An opposite effect is the modification of ocean-atmosphere heat fluxes by the presence 

of a frazil/pancake ice cover. Turbulent fluxes dominate heat exchange during frazil 

formation and the various methods of calculating these each use parameters that are 

modified by an ice cover. Bulk formulae use an exchange coefficient, while Monin-

Obukov similarity theory requires a roughness length, which is certainly different from 

the open water value. Very thick frazil slicks, such as that observed in the Odden 

(Figure 4.2) will modify the area-integrated surface temperature from the freezing point 

of seawater, as will the presence of pancakes, the cooling of whose top surfaces will 

also account for some fraction of the heat flux which would otherwise contribute to ice 

formation (Leonard et al. 1998). 

  

Given the supposed over-production of Chapter 4’s frazil model, the rate reduction 

effect may be expected to dominate. This expectation is enhanced by the tank 

measurements of Smedsrud (2001), which determined a rate less than one third of the 

unmodified production with similar fluxes, though various reservations were expressed 

(Chapter 3) as to the equivalence of tank and field conditions, centring on the relative 

turbulence and mixing levels.  

 

5.3 Scavenging model 

The scavenging redistribution model, presented in Chapter 4 represents a first attempt at 

realistically simulating the timing and volume of ice production in the period before 

consolidation. It is perhaps fortuitous that the model reproduces the 60 cm thick ice 

cover suggested by earlier field observations (Wadhams et al. 1987), given the many 

assumptions discussed above. Consolidation is directly caused by the cessation of wave 

motion, rather than thickening of the pancakes per se, of course. Attenuation of the open 

ocean wave field occurs as the waves pass through the frazil-pancake zone from the 

open ocean. The loss of energy by the waves is a complex function of the penetration, 

ice concentration, the dimensions of the various ice types present and the wave 

properties (period, amplitude) themselves.  

 

The model does give considerable insight into the processes involved, though it pushes 

the existing data to the limits of their applicability. Its usefulness lies in defining the 
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questions that need to be asked to improve the model, discussed in Section 5.4.2, which 

centre on placing the phenomenological parameterisation of scavenging efficiency into 

a more physically justified framework . 

 

5.4 Conclusions 

The thesis began by posing three main questions which bear repeating here: 

 

1. What is the rate of ice production during pancake formation? 

2. What are the implications of differential motion for ice production? 

3. Do the results have any relevance for the wider modelling community and hence 

require incorporating into larger-scale models? 

 

Though many new questions have arisen in the course of the investigation, the study has 

provided robust answers to these questions and these are summarised below.  

 

Ice production in the pancake/frazil process proceeds at approximately double the rate 

of a thin congelation ice cover. This doubling holds for both the ice cover observed 

during the field experiment (top layers) and during the subsequent modelled growth to 

consolidation. The rate of ice formation, relative to the limiting free-surface frazil 

production, was found to be 0.58 during the formation of the pancakes’ top layers. 

Applying this ratio to the meteorological data provided by the buoys until the onset of 

consolidation gave a total ice production figure (1.4×109 m3) within 10% of the value 

determined by the redistribution/scavenging simulation (1.3×109 m3). The congelation 

redistribution model formed 6.8×108 m3 during the same period. Mean ice production 

was determined as 5.5×10-4 kg m-2 s-1 during the formation of the top layers, 80% more 

than tank experiments with a comparable ocean-atmosphere heat flux (Smedsrud 2001) 

but well below estimates for frazil production in polynyas (Bauer and Martin 1983).  

 

Initial stages of pancake formation appeared to be much slower, producing ice at 

approximately the same rate as for congelation ice. Several explanations for this 

discrepancy were advanced, primarily due to the unknown state of the sea surface 

temperature prior to the freezing event (was it immediately ‘ready to freeze’ at the onset 
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of the cold air outbreak?) and possible melting of the frazil and pancake cover between 

the two formation periods which the poor ECMWF 2 m air temperatures during that 

period cannot adequately constrain.  

 

The oscillatory motion at high frequencies, which appeared so dramatic in the DKPs for 

the outer array, did not significantly enhance ice production in the hypothetical 

congelation ice cover. The impact of the motion was of the same order as the fractional 

area undergoing the motion (8% and 5% respectively).  

 

For frazil/pancake ice, HF motion significantly affected the partitioning of ice volume 

between frazil and pancake phases, through increased scavenging of the frazil crystals 

onto the top surface of the pancakes. The HF motion had maximum effect when the 

interstitial frazil thickness matched the pancake thickness at the end of the simulation. 

For the simulated period, this corresponded to a scavenging efficiency, ε, of 17%, at 

which value the proportion of pancake ice was modified from 61% (six-hour forcing) to 

79% (20-minute forcing) of the total ice volume. The model did not incorporate any 

mechanism for enhancing ice production with HF motion in a frazil/pancake ice cover, 

however, since the frazil slick was assumed not to modify the sea-air heat flux from the 

open water value and relaxes to take up any divergent area.  

 

5.4.1 Implications for large scale models 

The main impact of this study for the modelling community has been to quantitatively 

demonstrate the discrepancy between ice production by congelation (as is generally the 

case for the Arctic) and by the frazil-pancake process (which dominates Antarctic ice 

production), with the latter rate being generally double the congelation value.   

 

Such a discrepancy will seriously impact large-scale modelling attempts to simulate 

heat and momentum fluxes between the ocean and atmosphere, as well as salt rejection 

and subsequent water mass modification. Failure to properly account for these processes 

can have dramatic results in the peak of the growth season: Hibler and Ackley (1983) 

found that their model under-represented ice coverage by over one million square 

kilometres and the actual ice edge advance was typically much faster than modelled. 
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Constraining the ice edge location with respect to satellite imagery removes the 

coverage shortfall, but ice volume continues to be significantly under-represented.  

 

The agreement between the simple, rate-based, parameterisation and the more complex 

scavenging/transformation approach suggests that the incorporation of a simple “rate 

tuning factor” (=2) into large scale models would be a worthwhile enhancement.  

 

The assumptions and empirical parameters used in this study render the conclusions 

open to question, however. Does the suggested rate factor hold for all cases, even those 

with disparate meteorological forcing, or does it just apply to this single case study? 

What variation can be expected? Only a robust physical parameterisation can address 

these questions, and future work to constrain these processes is therefore considered in 

the next section.  

 

Dynamically, the inclusion of the newly-demonstrated high frequency differential 

motion appears unnecessary for these larger scale models. Our current, limited, 

understanding of the heat fluxes between ocean and atmosphere in the presence of a 

frazil-pancake ice cover – and hence the parameterisation in the model - suggests that 

convergence-divergence cycling has no effect on the overall ice production in such a 

system, only determining the balance between pancake and frazil ice volumes. The 

limited enhancement of ice production in a hypothetical congelation ice cover 

undergoing the same motion suggests that the effect of any ‘missing’ process on ice 

production would be minor.  

 

5.4.2 Future work 

Shortcomings of the models presented in this study have two main areas where 

assumptions or empirical parameterisations are required in place of robust physical 

justifications. These relate to (a) the value of the scavenging efficiency parameter, ε, 

and (b) the effect of the frazil/pancake ice cover on ocean-atmosphere heat fluxes. 

Future studies to address these problems are therefore discussed.  

 

Scavenging efficiency 
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Accurate knowledge of the path length traversed by an individual pancake is required to 

constrain the scavenging efficiency. Uncertainties arise in two phases of the motion: (a) 

the oscillation observed in the DKPs, where even the mechanism responsible for the 

pancakes’ motion on the 20 minute timescale is undetermined; and (b) the smaller-scale 

displacements which take place as swell waves move through the ice cover.   

 

In the first instance, the post-SA era GPS accuracy can be exploited to decrease the 

interval between position measurements still further, to around one minute. This 

sampling rate would determine whether oscillation occurred at internal-wave periods 

(10-15 minutes), as postulated, and will give accurate ‘long-period’ (compared to swell 

wave periods) measurements of an individual pancake’s path length.   

 

Centimetric scale measurements of the separation between adjacent pancakes as swell 

waves move past are required to examine compression/rarefaction at the trough/crest of 

the waves and the down-wave motion. Tank experiments form an obvious first step, 

though attempts by other investigators have been inconclusive. Field measurements are 

more difficult to achieve, though video photography from a hovering helicopter is 

suggested, possibly using marked pancakes (e.g. red dye or chalk powder).  

 

The partitioning between top-layer growth and bottom or lateral accretion is also crucial 

to assigning the correct importance to the scavenging process. Again, tank 

measurements are the obvious way forward. A first attempt at this was made by the 

author in the Hamburg ice tank in 2001, placing markers on the top of growing 

pancakes and observing subsequent top layer growth, as reported in Doble et al. (2003). 

A more systematic approach is required which also marks the bottom surface, and this 

will be done in future experiments at the same facility.  

 

Ocean-atmosphere heat fluxes 

Heat flux measurements over a growing pancake-frazil ice cover are required to resolve 

these problems, relating the measured heat flux to that which would be expected in the 

absence of the ice cover. The author is not aware of any such field measurements to 

date, and the unique nature of the ice cover makes the usual measurement methods 
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difficult to apply. Over consolidated pack ice, turbulent heat fluxes are usually 

measured from meteorological buoys with air temperature and wind speed sensors at 

two heights (usually 2m and 4m). The turbulent heat fluxes can then be calculated by 

Monin-Obukov similarity theory (e.g. Vihma et al. 2002).  

 

Such buoy-based measurements are difficult or impossible in a growing pancake ice 

field, partly due to stability of the buoy in the wavefield (any inclination will wildly 

vary the measurement height), partly due to the variation of the buoy’s height with 

respect to the atmospheric boundary layer as it rises and falls in the waves and partly 

due to icing from the freezing spray encountered there. Instrumented turbulence masts 

on ships suffer the same problems as the vessel pitches in the waves – such masts are 

always carefully dismounted and covered when outside the pack ice in freezing 

conditions (pers. obs.) for just these reasons.  

 

Aircraft-based observations remain feasible, however, either using towed sondes from 

helicopters (Vihma et al. 2005) or instrumented fixed-wing aircraft. Measurements 

require co-ordination with in situ observations of pancake and frazil thickness, as has 

been done for investigations of leads in pack ice (e.g. Lüpkes et al. 2004). A series of 

measurements over varying area fractions of frazil and pancake ice are required to 

untangle the effects of the frazil and pancake fractions, i.e. whether the area covered by 

pancakes contributes to the heat fluxes in the same manner as the frazil slick on the 

integrated timescales of interest, as postulated. Transects perpendicular to the ice edge, 

from open water to pack ice, are suggested as the most valuable measurements to 

resolve this issue.  

 

 

 



151 

References 
 
Alam, A. and J. A. Curry (1998). Evolution of new ice and turbulent fluxes over freezing winter 

leads. J. Geophys. Res. 103(C8): 15,783-15,802. 
Andreas, E. L. and Claffey (1995). Air-ice drag coefficients in the Western Weddell Sea. J. 

Geophys. Res. 100(C3): 4821-4831. 
Armstrong, T., B. Roberts and C. Swithinbank (1973). Illustrated Glossary of Snow and Ice. 

Cambridge, Scott Polar Research Institute/UNESCO. 
Bauer, J. and S. Martin (1983). A model of grease ice growth in small leads. J. Geophys. Res. 

88(C5): 2912-2925. 
Budillon, G., G. Fusco and G. Spezie (2000). A study of surface heat fluxes in the Ross Sea 

(Antarctica). Antarctic Science 12(2): 243-254. 
Clarke, D. B. and S. F. Ackley (1984). Sea ice structure and biological activity in the Antarctic 

marginal ice zone. J. Geophys. Res. 89(C2): 2087-2095. 
Cox, G. F. N. and W. F. Weeks (1988). Numerical simulations of the profile properties of 

undeformed first-year sea ice during the growth season. J. Geophys. Res. 93(C10): 
12,449-12,460. 

Crane, D. and P. Wadhams (1996). Sea-ice motion in the Weddell Sea from drifting buoy and 
AVHRR data. J. Glaciol. 42(141): 249-254. 

Crane, D. R. and S. Wells (1994). Sea ice kinematics data collection for use in empirical 
modelling. Oceanology International, Kingston upon Thames, Spearhead Exhibitions 
Ltd. 

Dethleff, D. (2005). Entrainment and export of Laptev Sea ice sediments, Siberian Arctic. J. 
Geophys. Res. 110(C07009): doi:10.1029/2004JC002740. 

Doble, M., M. Coon and O. Peppe (2001). Study of the winter Antarctic marginal ice zone. 
Berichte zur Polar- und Meeresforschung 402: 158-161. 

Doble, M. J., M. D. Coon and O. Peppe (2000). Cruise Report: F/S Polarstern ANT-XVII/3. 
Cambridge, Scott Polar Research Institute. 

Doble, M. J., M. D. Coon and P. Wadhams (2003). Pancake ice formation in the Weddell Sea. J. 
Geophys. Res. 108(C7): doi: 10.1029/2002JC001373. 

Doble, M. J. and P. Wadhams (2006). Dynamical contrasts between pancake and pack ice, 
investigated with a drifting buoy array. J. Geophys. Res. 111(C11S24): 
doi:10.1029/2005JC003320. 

Drucker, R., S. Martin and R. Moritz (2003). Observations of ice thickness and frazil ice in the 
St. Lawrence island polynya from satellite imagery, upward looking sonar and 
salinity/temperature moorings. J. Geophys. Res. 108(C5): doi:10.1029/2001JC001213. 

ECMWF (1997). The description of the ECMWF/WCRP Level III-A Global Atmospheric Data 
Archive. Reading, U.K., European Centre for Medium-range Weather Forecasts. 

Eicken, H. (1992). Salinity profiles of Antarctic sea ice: field data and model results. J. 
Geophys. Res. 97(C10): 15,545-15,557. 

Emery, W. J. and R. E. Thomson (1998). Data Analysis Methods in Physical Oceanography. 
Oxford, Pergamon. 

Frankenstein, S. (1996). The effects of waves on pancake ice. Dept. of Civil and Environmental 
Eng. New York, Clarkson University. Ph.D.: 244. 

Geiger, C. A., S. F. Ackley and W. D. Hibler III (1998). Sea ice drift and deformation processes 
in the Western Weddell Sea. Antarctic Sea Ice: Physical Processes, Interactions and 
Variability. M. O. Jeffries. Washington D.C., Amer. Geophys. U. 74: 141-160. 

Geiger, C. A., Y. Zhao, A. K. Liu and S. Hakkinen (2000). Large scale comparison between 
buoy and SSM/I drift and deformation in the Eurasian Basin during winter 1992-1993. 
J. Geophys. Res. 105(C2): 3357-3368. 

Gordon, A. L. and B. A. Huber (1990). Southern Ocean winter mixed layer. J. Geophys. Res. 
95(C7): 11,655-11,672. 



152 

Gow, A. J., S. F. Ackley, K. R. Buck and K. M. Golden (1987). Physical and structural 
characteristics of Weddell Sea pack ice. Hanover, N.H., Cold Regions Res. and Eng. 
Lab. 

Guest, P. S. and K. L. Davidson (1991). The aerodynamic roughness of different types of sea 
ice. J. Geophys. Res. 96(C3): 4709-4721. 

Guest, P. S., J. W. Glendening and K. L. Davidson (1995). An observational and numerical 
study of wind stress variations within marginal ice zones. J. Geophys. Res. 100(C6): 
10,887-10,904. 

Haapala, J. and M. Leppäranta (1996). Simulations of the Baltic Sea ice season with a coupled 
ice ocean model. Tellus 48A: 622-643. 

Haarpaintner, J., J.-C. Gascard and P. M. Haugen (2001). Ice production and brine formation in 
Storfjorden, Svalbard. J. Geophys. Res. 106(C7): 14,001-14,013. 

Hammar, L. and H. T. Shen (1995). Frazil evolution in channels. J. Hydraulic Res. 33: 291-306. 
Hanley, T. O. D. and G. Tsang (1984). Formation and properties of frazil in saline water. Cold 

Regions Science and Technology 8: 209-221. 
Hibler III, W. D. and S. F. Ackley (1983). Numerical simulation of the Weddell Sea pack ice. J. 

Geophys. Res. 88(C5): 2873-2887. 
Hibler III, W. D., W. F. Weeks, A. Kovacs and S. F. Ackley (1974). Differential sea ice drift I: 

Spatial and temporal variations in sea ice deformation. J. Glac. 13(69): 437-455. 
Hoeber, H. (1991). Sea-ice dynamics in the Weddell Sea in winter. Ann. Glaciol. 15: 9-16. 
Holland, P. R., D. L. Feltham and S. F. Daly (2007). On the Nusselt number for frazil ice 

growth - a correction to "Frazil evolution in channels" by Lars Hammer and Hung-Tao 
Shen. J. Hydraulic Res. 45(3): 421-424. 

Hopkins, M. A. (1998). Four stages of pressure ridging. J. Geophys. Res. 103(C10): 21,883-
21,891. 

Hopkins, M. A. and H. H. Shen (2001). Simulation of pancake ice dynamics in a wave field. 
Ann. Glaciol. 33: 355-360. 

Kempema, E. W. and D. Dethleff (2006). The role of Langmuir circulation in suspension 
freezing. Ann. Glaciol. 44: 58-62. 

Koentopp, M., O. Eisen, C. Kottmeier, L. Padman and P. Lemke (2005). Influence of tides on 
sea ice in the Weddell Sea: Investigations with a high-resolution dynamic-
thermodynamic model. J. Geophys. Res. 110(C02014): doi:10.1029/2004JC002405. 

Kondo, J. (1975). Air-sea bulk transfer coefficients in diabatic conditions. Boundary Layer 
Meteorol. 9: 91-112. 

Kottmeier, C., S. F. Ackley, E. Andreas, D. Crane, H. Hoeber, J. King, J. Launianen, D. 
Limbert, D. Martinson, R. Roth, L. Sellmann, P. Wadhams and T. Vihma (1997). Wind, 
temperature and ice motion statistics in the Weddell Sea. Geneva, World Climate 
Research Programme. 

Kottmeier, C., J. Olf, W. Frieden and R. Roth (1992). Wind forcing and ice motion in the 
Weddell Sea region. J. Geophys. Res. 97(D18): 20,373-20,383. 

Kottmeier, C. and L. Sellmann (1997). Buoy based observations of mixed layer variability in 
the Weddell Sea. Cambridge, International Programme for Antarctic Buoys. 

Laevestu, T. (1960). Factors affecting the temperature of the surface layer of the sea. 
Commentat. Phys. Math. 25: 1-36. 

Lange, M. A., S. F. Ackley, P. Wadhams, G. S. Dieckmann and H. Eicken (1989). Development 
of sea ice in the Weddell Sea. Ann. Glaciol. 12: 92-96. 

Lange, M. A. and H. Eicken (1991). Textural characteristics of sea ice and the major 
mechanisms of ice growth in the Weddell Sea. Ann. Glaciol. 15: 210-215. 

Lange, M. A., P. Schlosser, S. F. Ackley, P. Wadhams and G. S. Dieckmann (1990). 18O 
concentrations in sea ice of the Weddell Sea, Antarctica. J. Glaciol. 36(124): 315-323. 

Large, W. G. and S. Pond (1982). Sensible and latent heat flux measurements over the ocean. J. 
Phys. Oceanog. 12: 464-482. 



153 

Lebedev, V. V. (1938). Rost l'do v arkticheskikh rekakh i moriakh v zavisimosti ot 
otritsatel'nykh tempertur vozdukha. Problemy Arktiki 5: 9-25. 

Leonard, G. H., H. Shen and S. F. Ackley (1998a). Dynamic growth of a pancake ice cover. 
14th International Symposium on Ice: Ice in Surface Waters, Potsdam, New York, 
Balkema. 

Leonard, G. H., H. H. Shen and S. F. Ackley (1998b). Initiation and evolution of pancake ice in 
a wave field. Antarctic J. 33. 

Leppäranta, M. (1998). The dynamics of sea ice. The Physics of Ice Covered Seas. M. 
Leppäranta. Helsinki, Helsinki University. 1: 305-342. 

Leppäranta, M. (2005). The Drift of Sea Ice. Chichester, Springer. 
Leppäranta, M. and W. D. Hibler (1987). Mesoscale sea ice deformation in the Greenland Sea 

marginal ice zone. J. Geophys. Res. 92(C7): 7060-7070. 
Leppäranta, M., Z. Zhanhai, J. Haapala and T. Stipa (2001). Sea-ice kinematics measured with 

GPS drifters. Ann. Glac. 44: 151-156. 
Lindsay, R. W. (2002). Ice deformation near SHEBA. J. Geophys. Res. 107(C10): doi: 

10.1029/2000JC000445. 
Liu, A. K., P. W. Vachon, C. Y. Peng and A. S. Bhogal (1992). Wave attenuation in the 

marginal ice zone during LIMEX. Atmos. Ocean 30(2): 192-206. 
Longuet-Higgins, M. S. and R. H. Stewart (1964). Radiation stresses in water waves; a physical 

discussion, with applications. Deep Sea Res. 11: 529-562. 
Lüpkes, C., J. Hartmann and G. Birnbaum (2004). Convection over Arctic leads. Berichte zur 

Polar- und Meeresforschung(481): 47-62. 
Lytle, V. I. and S. F. Ackley (1996). Heat flux through sea ice in the western Weddell Sea: 

convective and conductive transfer processes. J. Geophys. Res. 101(C4): 8853-8868. 
Markus, T., C. Kottmeier and E. Fahrbach (1998). Ice formation in coastal polynyas in the 

Weddell Sea and their impact on oceanic salinity. Antarctic Sea Ice: Physical 
Processes, Interactions and Variability. M. O. Jeffries. Washington D.C., Amer. 
Geophys. U. 74: 273-292. 

Martin, S. (1981). Frazil ice in rivers and oceans. Ann. Rev. Fluid Mech. 13: 379-397. 
Martin, S. and P. Kaufmann (1981). A field and laboratory study of wave damping by grease 

ice. J. Glaciol. 27(96): 283-313. 
Martinson, D. G. (1990). Evolution of the Southern Ocean winter mixed layer and sea ice: open 

ocean deepwater formation and ventilation. J. Geophys. Res. 95(C7): 11,641-11,654. 
Martinson, D. G. and R. A. Iannuzzi (1998). Antarctic ice-ocean interaction: Implications from 

bulk property distributions in the Weddell Gyre. Antarctic Sea Ice: Physical Processes, 
Interactions and Variability. M. O. Jeffries. Washington D.C., Amer. Geophys. U. 74: 
243-272. 

Massom, R. A. (1992). Observing the advection of sea ice in the Weddell Sea using buoy and 
satellite passive microwave data. J. Geophys. Res. 97(C10): 15,559-15,572. 

Maykut, G. A. (1978). Energy exchange over young sea ice in the central Arctic. J. Geophys. 
Res. 83(C7): 3646-3654. 

Maykut, G. A. (1982). Large-scale heat exchange and ice production in the central Arctic. J. 
Geophys. Res. 87: 7971-7984. 

Maykut, G. A. (1986). The surface heat and mass balance. The Geophysics of Sea Ice. N. 
Untersteiner. Washington, Plenum Press. 146. 

Maykut, G. A. and P. E. Church (1973). Radiation climate of Barrow, Alaska, 1962-1966. J. 
Appl. Meteorol. 12: 620-628. 

Maykut, G. A. and D. K. Perovich (1987). The role of shortwave radiation in the summer decay 
of a sea ice cover. J. Geophys. Res. 92(C7): 7032-7044. 

McPhee, M. (1987). A time-dependent model for turbulent transfer in a stratified oceanic 
boundary layer. J. Geophys. Res. 92(C7): 6977-6986. 

McPhee, M., C. Kottmeier and J. H. Morison (1999). Oceanic heat flux in the central Weddell 
Sea during winter. J. Phys. Oceanog. 29: 1166-1179. 



154 

McPhee, M. G. (1980). An analysis of pack ice drift in summer. Sea Ice Processes and Models. 
R. S. Pritchard. Seattle, University of Washington Press: 62-75. 

Meldrum, D. T., D. J. L. Mercer and O. C. Peppe (2000). Orbcomm - an Antarctic evaluation. 
Developments in Buoy Technology, Communications and Data Applications: DBCP 
Scientific and Technical Workshop, Victoria, Canada, WMO, Geneva. 

Muench, R. D., P. H. LeBlond and L. E. Hachmeister (1983). On some possible interactions 
between sea ice and waves in the marginal ice zone. J. Geophys. Res 88(C5): 2819-
2826. 

Newyear, K. and S. Martin (1997). A comparison of theory and laboratory measurements of 
wave propagation and attenuation in grease ice. J. Geophys. Res. 102(C11): 25,091-
25,099. 

Onstott, R. G., P. Gogineni, A. J. Gow, T. C. Grenfell, K. C. Jezek, D. K. Perovich and C. T. 
Swift (1998). Electromagnetic and physical properties of sea ice formed in the presence 
of wave action. IEEE Trans. Geosci. Rem. Sens. 36(5): 1764-1783. 

Osterkamp, T. E. (1978). Frazil ice formation: A review. Proc. Amer. Soc. of Civil Engineers: 
1239-1255. 

Padman, L. and C. Kottmeier (2000). High-frequency ice motion and divergence in the Weddell 
Sea. J. Geophys. Res. 105(C2): 3379-3400. 

Pedersen, L. T. and M. D. Coon (2004). A sea ice model for the marginal ice zone with an 
application to the Greenland Sea. J. Geophys. Res. 109(C03008): 
doi:10.1029/2003JC001827. 

Rogers, R. R. and M. K. Yau (1989). A Short Course in Cloud Physics. Oxford, Pergamon 
Press. 

Rothrock, D. A., Y. Yu and G. A. Maykut (1999). Thinning of the Arctic sea ice cover. 
Geophys. Res. Lett. 26(23): 3469-3472. 

Rudels, B., H. J. Friedrich, D. Hainbucher and G. Lohmann (1999). On the parameterisation of 
oceanic sensible heat loss to the atmosphere and to ice in an ice-covered mixed layer in 
winter. Deep Sea Res. 46(6-7): 1385-1426. 

Ruhmer, R. R., R. Crissman and A. Wake (1979). Ice transport in the Great Lakes. Ann Arbor, 
Great Lakes Env. Res. Lab. 

Shen, H. H. and S. F. Ackley (1995). A laboratory-produced pancake ice cover in a two-
dimensional wave field. Antarctic J. 30: 106-107. 

Shen, H. H., S. F. Ackley and M. A. Hopkins (2001). A conceptual model for pancake ice 
formation in a wave field. Ann. Glaciol. 33: 361-367. 

Shen, H. H. and V. A. Squire (1998). Wave damping in compact pancake ice fields due to 
interactions between pancakes. Antarctic Sea Ice: Physical Processes and Variability. 
M.O.Jeffries. Washington, Amer. Geophys. U. 74: 325-341. 

Simonsen, K. and P. M. Haugan (1996). Heat budgets of the Arctic Mediterranean and sea 
surface heat flux parameterizations for the Nordic Seas. J. Geophys. Res. 101(C3): 
6553-6576. 

Smedsrud, L. H. (2001). Frazil ice entrainment of sediment: large-tank laboratory experiments. 
J. Glac. 47(158): 461-471. 

Smedsrud, L. H. and A. Jenkins (2004). Frazil ice formation in an ice shelf water plume. J. 
Geophys. Res. 109(C03025): doi:10.1029/2003JC001851. 

Smedsrud, L. H. and R. Skogseth (2006). Field measurements of Arctic grease ice properties 
and processes. Cold Reg. Sci. & Tech. 44: 171-183. 

Smith, S. D. (1988). Coefficients for sea surface wind stress, heat flux and wind profiles as a 
function of wind speed and temperature. J. Geophys. Res. 93(C12): 15,467-15,472. 

Squire, V. A. (1998). The marginal ice zone. The Physics of Ice Covered Seas. M. Leppäranta. 
Helsinki, University of Helsinki. 1: 381-446. 

Tenhunan, T., T. Vihma and M. J. Doble (2007). Mesoscale modelling of the atmosphere over 
Antarctic sea ice: a case study. Monthly Weather Rev. In press. 



155 

Thomas, D. (1999). The quality of sea ice velocity estimates. J. Geophys. Res. 104(C6): 13,627-
13,652. 

Thomas, D. N. and J. P. Wilkinson (2001). European ARCTELAB large scale facility: Final 
report, INTERICE 3. Bangor, University of Wales. 

Thorndike, A. S. and R. Colony (1982). Sea ice motion in response to geostrophic winds. J. 
Geophys. Res. 87(C8): 5845-5852. 

Thorndike, A. S., D. A. Rothrock, G. A. Maykut and R. Colony (1975). The thickness 
distribution of sea ice. J. Geophys. Res. 80(33): 4501-4513. 

Tison, J.-L. and V. Verbeke (2001). Chlorinity/salinity distribution patterns in experimental 
granular sea ice. Ann. Glaciol. 33: 13-20. 

Torrence, C. and G. P. Compo (1998). A practical guide to wavelet analysis. Bull. of the Amer. 
Met. Soc. 79(1): 61-78. 

Uotila, J., T. Vihma and J. Launianen (2000). Response of the Weddell Sea pack ice to wind 
forcing. J. Geophys. Res. 105(C1): 1135-1151. 

Ushio, S. and M. Wakatsuchi (1993). A laboratory study on supercooling and frazil ice 
production processes in winter coastal polynyas. J. Geophys. Res. 98(C11): 20,321-
20,328. 

Vihma, T. and J. Launianen (1993). Ice drift in the Weddell Sea in 1990-1991 as tracked by a 
satellite buoy. J. Geophys. Res. 98(C8): 14,471-14,485. 

Vihma, T., J. Launianen and J. Uotila (1996). Weddell Sea ice drift: kinematics and wind 
forcing. J. Geophys. Res. 101(C8): 18,279-18,296. 

Vihma, T., C. Lüpkes, J. Hartmann and H. Sarvijarvi (2005). Modelling of cold-air advection 
over Arctic sea ice in winter. Boundary Layer Met. 117(2): 275-300. 

Vihma, T., J. Uotila, B. Cheng and J. Launianinen (2002). Surface heat budget over the Weddell 
Sea: buoy results and model comparisons. J. Geophys. Res. 107(C2): 
10.1029/2000JC000372. 

Voropayev, S. I., H. J. S. Fernando and L. A. Mitchell (1995). On the rate of frazil ice formation 
in Polar regions in the presence of turbulence. J. Phys. Oceanog. 25: 1441-1450. 

Wadhams, P. (1973). Attenuation of swell by sea ice. J. Geophys. Res. 78: 3552-3563. 
Wadhams, P., J. C. Comiso, E. Prussen, S. Wells, M. Brandon, E. Aldworth, T. Viehoff, R. 

Allegrino and D. R. Crane (1996). The development of the Odden ice tongue in the 
Greenland Sea during winter 1993 from remote sensing and field observations. J. 
Geophys. Res. 101(C8): 18,213-18,235. 

Wadhams, P. and N. R. Davis (2000). Further evidence of ice thinning in the Arctic Ocean. 
Geophys. Res. Lett. 27(24): 3973-3975. 

Wadhams, P., M. A. Lange and S. F. Ackley (1987). The ice thickness distribution across the 
Atlantic sector of the Antarctic Ocean in midwinter. J. Geophys. Res. 92(C13): 14,535 - 
14,552. 

Wadhams, P. and V. A. Squire (1986). The effect of the marginal ice zone on the directional 
wave spectrum of the ocean. J. Phys. Oceanog. 16(2): 358 - 376. 

Wadhams, P., V. A. Squire, D. J. Goodman, A. M. Cowan and S. C. Moore (1988). The 
attenuation rates of ocean waves in the marginal ice zone. J. Geophys. Res. 93(C6): 
6799-6818. 

Wadhams, P. and J. P. Wilkinson (1999). The physical properties of sea ice in the Odden ice 
tongue. Deep Sea Res. 46(6-7): 1275-1301. 

Wakatsuchi, M. and N. Ono (1983). Measurements of salinity and volume of brine excluded 
from growing sea ice. J. Geophys. Res. 88: 2943-2951. 

Wamser, C. and D. G. Martinson (1993). Drag coefficients for winter Antarctic pack ice. J. 
Geophys. Res. 98(C7): 12,431-12,437. 

Warren, S. G., C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin and I. Allison (1993). 
Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice 
shelves. J. Geophys. Res. 98(C4): 6921-6928. 



156 

Weeks, W. F. (1998). Growth conditions and structure and properties of sea ice. Physics of Ice 
Covered Seas. M. Leppäranta. Helsinki, University of Helsinki. 1: 25-105. 

Weller, G. (1972). Radiation flux investigation. AIDJEX Bulletin 14: 28-30. 
Wilkinson, J. P. (2005). Sea ice, convection and the Greenland Sea. School of Ocean & Earth 

Science. Southampton, University of Southampton. Ph.D.: 257. 
Wilkinson, J. P. and P. Wadhams (2003). A salt flux model for salinity change through ice 

production in the Greenland Sea and its relationship to winter convection. J. Geophys. 
Res. 108(C5): doi:10.1029/2001JC001099. 

Winsor, P. and G. Björk (2000). Polynya activity in the Arctic Ocean from 1958 to 1997. J. 
Geophys. Res. 105(C4): 8789-8803. 

Worby, A. P. and I. Allison (1991). Ocean-atmosphere energy exchange over thin, variable 
concentration Antarctic pack ice. Ann. Glac. 15: 184-190. 

 
 



Appendix A 
 

157 

Appendix A: Wavelet algorithm details 
 

 

A Morlet wavelet was used, since it is (a) non-orthogonal; most commonly used in time 

series analysis where smooth continous variations in wavelet amplitude are expected, 

and (b) complex, to return phase and amplitude information – better adapted for 

capturing oscilliatory behaviour (Torrence and Compo 1998). The Morlet wavelet has 

the additional advantage that its scale s is almost equivalent to the Fourier period λ for 

the commonly used mother wavenumber of 6 (in fact  λ = 1.03s).  

 

Scales are chosen such that the smallest (s0) is equal to the Nyquist frequency, 2∆t, or 

40 minutes. The largest scale should be less than half the total length of the timeseries, 

and we choose a scale equivalent to the duration of the pancake phase, O(10 days). The 

family of scales is defined as 

 

0.2 j j
js s δ=     (Eq. A.1) 

 

where δj is the sub-scale interval. Choosing δj = 0.25 gives sufficient resolution 

between scales and implies a maximum j of 64, corresponding to a maximum scale of 

approximately 7 days.   

 

Time series are padded with zeroes to the next largest power of two samples, in order to 

remove edge effects for large scale wavelets. Zero-padding introduces edge effects of its 

own, however, decreasing the wavelet power at larger scales as more zeroes enter the 

analysis. The “cone of influence”, or the region where edge effects become important, is 

therefore marked. It is defined as the e-folding time for the autocorrelation of wavelet 

power at each scale.  

 

To determine significance levels (and remove the major objection to wavelet analysis) it 

is necessary to determine the background spectrum on top of which the signal of interest 

is imposed. The spectral analysis of the preceding section suggested a red noise 
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background – i.e. having increasing power with decreasing frequency. This background 

spectrum can be modelled as: 

 

( )
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1 2 cos 2kP
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α α π
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+ −

  (Eq. A.2) 

 

where k = 0 …M/2 is the frequency index and α is the ‘assumed lag-1 autocorrelation’ 

(Torrence & Compo, 1998). This lag-1 autocorrelation is given by (Emery & 

Thompson, 1998): 
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An alpha value of zero gives a white noise spectrum and a value of 1 gives a pure red 

noise spectrum. The velocity spectra in the present study deviate only slightly from this 

latter log-log linearity, and this is confirmed by their α values close to unity, typically 

0.97-0.98. If a peak in the wavelet power spectrum is above this background level, it 

can be assumed to be a true feature at a given confidence level. The confidence testing 

performed here assumes a normally distributed random input variable, choosing the 

confidence level as the chi-squared percentile at two degrees of freedom. This 

assumption is justified in the case of the component velocities, but not in the case of 

scalar speeds, since these appear to have Rayleigh distribution instead.  
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Appendix B: Thermodynamic model details 
 

 

This Appendix gives details of the equations underlying the thermodynamic ice growth 

model described in Chapter 3. The model is one dimensional and treats the ice as a 

homogenous conducting slab. Figure B.1 shows the various heat fluxes at the top and 

bottom surfaces of the ice.  

 

 

Figure B.1: The model scheme, showing heat fluxes at top and bottom surfaces of 
the ice. A linear temperature profile is indicated, from T0, the surface ice 
temperature to Tf, the freezing point of seawater, at the bottom surface. Negative 
terms (away from an interface) are shown in red.  

 

 

 

At the top surface of the ice the heat fluxes are: 

 

QS – I0 + QB – Qup + QH + QE + QC = Qnet (Eq. B.1)

 

Where α is the albedo, QS is the downwelling SW radiation flux, I0 is the SW radiation 

which penetrates the ice, QB is the downwelling longwave (LW) radiation flux from the 
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air, Qup is the upwelling LW radiation flux from the ice surface, QH is the sensible heat 

flux, QE is the latent heat flux and QC is the conductive heat flux upward to the ice 

surface. Terms away from the surface are negative, those towards the surface are 

positive, as commonly used in ice modelling. The sum is zero if the ice surface is below 

freezing point, with the balance determined by the (unknown) ice surface temperature, 

T0  (Maykut 1986).  

 

Terms which do not depend on T0  (independent terms; QS, I0, QB) are solved first, the 

equation (B.1) is solved iteratively to give T0  . If the melting temperature  (-0.6oC at an 

assumed constant salinity of 11 psu, as observed for the pancakes) is reached without 

balance being achieved – i.e. Qnet is still on a downward trend – the surface temperature 

is set to this melting value (Simonsen and Haugan 1996) and the unbalanced flux is 

used to melt ice on the top surface according to the equation:  

 

∂
∂ ρ
h
t

Q
L

top net

i

= −  
(Eq. B.2)

 

where L is the latent heat of fusion, taken as that for ice with 10% brine volume = 295.8 

kJ kg-1 (Haarpainter et al, 2001). The negative sign indicates that a positive Qnet 

(towards the air-ice interface) will reduce ice thickness. In fact, top melt never occurred 

during the period of interest, with all ice thickness reductions coming from bottom melt 

instead. 

 

At the bottom surface the situation is simpler, with just the ocean-ice heat flux (Fw , 

positive from the ocean to the ice) and the conductive heat flux from the ocean to the ice 

(QCB , negative away from the ice-ocean interface) contributing. No balance occurs, and 

the net heat flux at the bottom surface of the ice either grows or melts ice depending on 

its sign. The bottom surface of the ice is assumed to be at the freezing temperature of 

seawater (Tf = -1.89oC) for the measured mixed-layer salinity (34.35 psu, held constant). 

The rate of change in ice thickness at the bottom surface is then given by (Maykut and 

Perovich 1987): 
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( )∂
∂ ρ

h
t L

Q F
i

CB w= − +
1

 
(Eq. B.3)

 

 

where h is the ice thickness (m), ρi is the density of ice (taken as 920 kg m-3) and L is 

the latent heat of fusion, 295.8 kJ kg-1 - equivalent to ice containing 10% brine volume 

(Haarpaintner et al. 2001). Estimates of Fw in the study area range from 5 Wm-2 (Lytle 

and Ackley 1996), through 27.4 Wm-2 (McPhee et al. 1999) to more than 40 Wm-2 

(Gordon and Huber 1990). An intermediate value of 25 Wm-2 (Martinson 1990; 

Martinson and Iannuzzi 1998) is used, since the relatively thick pycnocline at the 

beginning of winter will reduce the heat flux to well below its maximum value.  

 

Frazil ice growth was accomplished using a similar scheme, omitting the conduction 

terms and setting T0 = Tf. The equation, balanced by the ice formation and taking heat 

gain by the ocean as positive, becomes: 

 

t
hLQQQQQ iSupBEH ∂

∂
−=+−++ ρ  (Eq. B.4)

   

where 
t
h
∂
∂  is the frazil formation rate in metres per second of equivalent solid ice and L 

is the latent heat of fusion for frazil ice. The value for L is problematic since sea ice is a 

multiphase medium which changes its volume of brine inclusion both instantaneously 

during the formation of frazil and over the longer ageing process undergone by 

pancakes and consolidated ice. Haarpainter et al (2001) took the value for ice crystals 

forming in freezing seawater given by Markus et al. (1998); 234.14 kJ kg-1 and this is 

followed in the current model. The value is considerably less than used for the 

congelation ice growth process (L = 295.8 kJ kg-1). The ice density, ρf,  is taken as 950 

kg m-3  (Martin and Kaufmann 1981). This is higher than the value taken for 

congelation ice, since the crystals are considered as a solid mass, lacking the 10% brine 

volume assumed for the consolidated ice. 
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The detailed derivations of the individual fluxes are next discussed.  

 

Independent terms 

The downwelling short-wave radiation flux (sum of direct and diffuse) is derived from 

the  QS0, or “global radiation” term modified by the albedo of the surface, α, calculated 

for young ice (Maykut 1982): 

 

QS = (1-α) QS0 (Eq. B.5)

where   

α = 0.08 + 0.44h0.28 (Eq. B.6)

  

and h is the ice thickness in m. Albedo is calculated as that of snow-free thin-ice 

(Weller 1972). For the times when the ship was not on station, the shortwave 

downwelling flux is derived from basic equations: 

 
 

ηcos0STQ rso =  (Eq. B.7)
 
 

Tr is the clear-sky transmittance, S0 the solar constant (1353 Wm-2) and cos η the solar 

zenith angle. Tr is usually taken from the Zillman model most commonly used for polar 

conditions, e.g. (Markus et al. 1998). An alternative formulation, which gives higher Tr, 

was developed from this model for polar regions (Budillon et al. 2000). Though less 

commonly used in the literature, it is a refinement of the more-widely used model and 

this is adopted here: 

 

Tr = 
046.010)cos1(cos

cos
5 +×++ −

peηη
η  (Eq. B.8)

 

   

where ep is the water vapour pressure (in hPa or mb) at the ambient air temperature Ta. 

It is derived from the saturation vapour pressure over water (es), given by the 

experimentally-determined equation (Rogers and Yau 1989) below. This is valid to 
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within 0.1% in the range –30oC to 35oC. For this equation, Ta is required in oC rather 

than Kelvin: 

 









+

=
5.243

67.17exp112.6
a

a
s T

Te  
(Eq. B.9)

 

   

The final vapour pressure is then modified by the relative humidity, given in the in situ 

data. The solar zenith angle (degrees from the vertical) is given by:  

 

τιφιφη coscoscossinsincos +=  (Eq. B.10)

 

where φ is the latitude and ι, the solar inclination angle  

 

)172cos(44.23 d−=ι  (Eq. B.11)

 

where d is the day-of-year. τ is the solar hour angle,  

 

)12(15 st−=τ  (Eq. B.12)

 

ts is the solar time (hours), which is 4 minutes behind UTC for every degree West of 

longitude: 

15/lonUTCts +=  (Eq. B.13)

 

The downwelling  SW flux is reduced by the cloud correction factor, Cf,   which is 

calculated from the fractional cloud cover, Tcc, (Laevestu 1960): 

 

Cf = 1 - 0.6 Tcc
3 (Eq. B.14)

 

The measured in situ “globRad” is then finally obtained: 
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QS = Qs0.Cf (Eq. B.15)

 

This short wave flux is partially absorbed by the ice, with that fraction being given by 

(Maykut 1982): 

  

I0 = 0.805 QS exp(-1.5h + 0.15) (Eq. B.16)

 

The net downwelling shortwave flux is therefore  

 

QSnet = QS – I0 (Eq. B.17)

 

 

The downwelling longwave flux, QB,  is given by (Maykut and Church 1973): 

  

Q TB a a= ε σ 4  (Eq. B.18)

 

where Ta is the air temperature in Kelvin, σ is the Stephan-Boltzmann constant 

(5.67×10-8 W m-2 K-4) and εa is the emissivity of the air, which increases with cloud 

cover fraction Tcc: 

 

εa = 0.7829(1 + 0.2232 Tcc
2.75) (Eq. B.19)

 

Dependent terms 

Dependent terms are derived in an iterative loop, designed to balance the Qnet term at 

the (unknown) surface temperature, T0. If the air temperature is less than the freezing 

temperature of seawater, Tf, surface temperatures between Ta and the melting 

temperature for ice of 11 psu (the observed value) (Tmelt = -0.6oC) are tested. If the air 

temperature is greater, only temperatures between Tf and Tmelt are used. The search for 

T0 and the balance of fluxes as this varies is illustrated in Figure B.2.  
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Figure B.2: Heat flux values using fixed meteorological data and varying the 
surface ice temperature, T0. The net downwelling shortwave flux QSnet is fixed. The 
net downwelling longwave flux QBnet is slightly positive at the lowest T0 values, but 
becomes negative due to the increasing emission from the ice surface (Qup) as the 
temperature increases. The sign of the sensible heat flux QH depends on the balance 
of the (Ta – T0) term. The latent heat flux QE becomes more negative as the 
increasing T0 allows the saturation specific humidity at that temperature to rise. 
The conduction term QC is positive (from ocean to atmosphere) while the air 
temperature is lower than the ice base temperature. The zero value of Qnet occurs at 
a surface temperature of –7.7oC in this case, between Ta (-10°C) and the freezing 
temperature of 34.45 psu seawater (-1.9oC). Steps in the turbulent and net fluxes 
arise from changes in the turbulent heat coefficient lookup values.  
 

 

 

 

 

Qup, the longwave flux upwards from the ice surface is given by:  

 

Q Tup i= ε σ 0
4  (Eq. B.20)

 

where εi
  is the emissivity of the ice surface, taken as a constant 0.97.  
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QE, the latent heat flux arising from evaporation/sublimation is given by:   

 

)(10 SAEAE qqVLCQ −= ρ  (Eq. B.21)

 

where ρa is the density of moist air, L is the latent heat of vaporisation (over water) or 

sublimation (over ice), CE is the turbulent exchange coefficient, v10 is the wind speed at 

10 m height. qa and qS are the specific humidity at Ta and the saturation specific 

humidity at T0, respectively.  

 

The saturation vapour pressure  es  is first determined over water as defined in Eq. B.9. 

This is valid to within 0.1% in the range –30oC to 35oC. The programme takes an 

additional water/ice flag, which if set to ice (= 1) corrects the saturation vapour pressure 

(for both temperatures) to that over ice, with T expressed in Kelvin: 

 

e e
Ti s

a

=








27315
2 66

.
.

 
(Eq. B.22)

 

The vapour pressure ep is then given by multiplying the saturation pressure by the 

relative humidity, which lies in the range 0→1. This is required for the Ta relation only.  

 

Vapour pressures are then converted to specific humidities (the mass of water vapour 

per unit mass of moist air) according to: 

 

( )
q e

p e
=

− −
ε

ε1
 (Eq. B.23)

 

where ε is the ratio of gas constants for dry air and water vapour (~0.622) and p is the 

atmospheric pressure. Values for the partial specific humidity at Ta and the saturated 

specific humidity at T0 are calculated.  
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The mixing ratio (mass of water vapour per unit mass of dry air), w, at Ta is also needed 

and is given by 

 

ep
ew
−

= ε  (Eq. B.24)

 

The density of moist air at Ta is then calculated using a correction to the usual gas 

equation (T in Kelvin) 

 

( ) a
A TwR

p
6.01+

=ρ  (Eq. B.25)

 

where p is the mean sea level pressure in Pa (= mb×100), Ta is in Kelvin and R is the 

gas constant for dry air (287 J kg-1 K-1) 

 

L is the latent heat of vaporisation (over water) or sublimation (over ice). L over ice is 

virtually constant at negative temperatures, ranging from 2834 kJ kg-1 at 0oC to 2839 kJ 

kg-1 at –40oC. A constant figure of 2837 kJ kg-1, corresponding to –10oC, is taken. The 

water/ice flag, if set to water, determines the temperature-dependent latent heat of 

vaporisation as (Rogers and Yau 1989):  

 

L = (-2.4Ta + 2501)×103  (Eq. B.26)

 

 

The turbulent exchange coefficient CE itself depends on wind speed and atmospheric 

stability. Estimates in the literature range from 1.1×10-3 (Large and Pond 1982) to 

2.5×10-3 (Maykut 1978). An intermediate value of 1.75×10-3 was used by Budillon et al 

(2000) in the Ross Sea. A lookup table containing 7 classes of surface-air temperature 

difference and 6 classes of windspeed, is used to derive an appropriate value. The table 

is derived from an appendix by Kondo (1975). The lookup table is defined in Table B.1. 
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Table B.1: Look-up table for the turbulent heat coefficient CE. Column headings 
give the middle range of windspeeds over which the value is defined. Row 
headings give the range of temperature differences (surface-air) 

 

 2 4 6.5 9 13 18 

20 2.0 1.9 1.8 1.7 1.5 1.4 

10 2.0 1.7 1.6 1.5 1.4 1.4 

5 2.0 1.6 1.5 1.4 1.4 1.3 

2 2.0 1.4 1.4 1.3 1.3 1.3 

0 1.1 1.1 1.2 1.2 1.2 1.2 

-2 0.2 0.7 1.0 1.1 1.2 1.2 

-5 0.1 0.3 0.8 0.9 1.1 1.2 

 

 

QH, the sensible heat flux resulting from the processes of conduction and convection, is 

given by: 

 

( )010 TTVCCQ aHpAH −= ρ  (Eq. B.27)

 

where CH is the turbulent exchange coefficient, discussed above, and Cp is the specific 

heat capacity of air, taken as 1004 J K-1 kg-1. The sensible and latent heat fluxes are 

sometimes lumped together under the heading of “turbulent heat flux” (Haarpaintner et 

al. 2001), but are parameterised separately in this model.  

 

QC, The conductive heat flux through the ice (positive towards the surface, out of the 

ice) is given by: 

 

( )0TT
h

Q f
i

C −=
κ  (Eq. B.28)
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where κi is the conductivity of the ice of salinity Si psu (Ti in oC). Si is held constant at 

11 psu.   

 

i

i
i T

S13.0
0 +=κκ  (Eq. B.29)

 

and κ0 is the conductivity of pure ice,   

 

( )iT0057.0exp828.90 −=κ  (Eq. B.30)

 

The ice temperature Ti is assumed to be the mean of the surface (T0) and base 

temperatures (assumed to be the freezing point, Tf).  

 

The conductive heat flux through the bottom of the ice (QCB, positive downwards) is 

given in a similar manner to Equation B.28, with Tf and T0 reversed – i.e. the term in 

brackets becomes (T0 – Tf). Conductivity is calculated in an exactly similar manner.   

 

A summary of global constants used in the programme is given in Table B.2.  
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Table B.2: Global constants used in the flux balance model 
 
 

 

Symbol Value Description 

DT 21600 s Timestep (six hours) 

HMIN 0.01 m Minimum ice thickness 

SAL_ICE 11.00 psu Salinity of top surface of pancakes 

SAL_ML 34.45 psu Mixed layer salinity 

MELT_TEMP -1.89oC Melting temperature of the pancake surface 

FW 25 Wm-2 Oceanic heat flux 

RHOI 920 kg m-3 Density of pancake ice 

L_SUBLIM 2837 kJ kg-1 Latent heat of sublimation 

L_FUSION 295.8 kJ kg-1 Latent heat of fusion 

SIGMA 5.67×10-8 W m-2 K-4 Stefan-Boltzmann constant 

ABS_ZERO -273.15 K Absolute zero (used for °C to K conversion) 

EI 0.97 Emissivity of ice 

CP 1004 J K-1 kg-1 Specific heat capacity of air 

 
 

 


