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In general ocean circulation models (OGCMs) diapycnal diffusion arises not
only from the discretisation of the explicit diffusion, but also by numerically
induced diffusion, caused, e.g., by common discretisations of advective
transport.

In the present study, three different diagnostics to analyse the mean
diapycnal diffusivities of individual tracers (vertically and horizontally) are
introduced: (i) The divergence method based on the work of Ledwell

et al. (1998) infers the mean diapycnal diffusivity from the
advection-diffusion equation. (ii) The tracer flux method based on the work
of Griffies et al. (2000), that determines the diapycnal flux crossing an
isopycnal layer, is modified for the analysis of mean diapycnal diffusivities
of a passive tracer. (iii) The variance method based on the work of
Morales Maqueda and Holloway (2006) is a more general approach
as the diapycnal diffusion is analysed by the variance decay of the total
tracer concentration.

These methods can be used for the analysis of the diffusivity of passive
tracer independent of the model set-up, e.g. the advection scheme used, but
support only information about mean diapycnal diffusivity of that tracer
field rather than for each individual layer. The applicability of these
methods is tested in a set of 1- and 2-dimensional case studies. The effect
of vertical advection and of diverging and converging isopycnals is shown
separately. In all three methods used, the transformation of the tracer onto
isopycnals leads to errors in the diagnosed diffusivities. It turns out that
the tracer flux method is the most robust method and therefore the method
of choice. In order to keep the errors as small as possible, longer time mean
values should be analysed.
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Chapter 1

Introduction

In this thesis, methods to analyse diapycnal mixing in z-level models will be

developed and tested in idealised 1- and 2-dimensional case studies in order

to estimate values for the numerically induced diffusivity. To motivate this

work, the following questions are discussed:

1. What is diapycnal diffusion and why is it important?

2. How significant is the implicit diffusion induced by numerical schemes

in ocean general circulation models?

In the following, the process of diapycnal mixing will be explained including

its role in the ocean circulation. Additionally a status of science will be

given, first from the observational side and second in the view of the

modeller, including an explanation of numerically induced diffusivity.

What is diapycnal diffusion and why is it important?

In general, diffusion describes the mixing of molecules as a result of random

thermal motion. A mathematical description of diffusion is derived from

Fick’s law (Fick, 1855): The net movement of a diffusing substance per

unit area of a cross section (the direct flux) is proportional to the spatial

derivative of the concentration and towards lower concentration. The

constant of proportionality is the diffusion coefficient (diffusivity).
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The diapycnal diffusion is this small scale mixing process across surfaces of

equal density. In a motionless case with a horizontal stratification, the

diapycnal diffusion is only determined by the Brownian motion. In the

ocean, this process is intensified by small-scale turbulence and also known

as turbulent diffusion. The resulting effect of the diapycnal mixing is the

change of the water mass properties, hence the position of the centre of

mass of the water column is changed. That means that part of the kinetic

energy contained in the turbulence is transformed into potential energy.

In order to understand the role of diapycnal diffusion in the ocean, it is

necessary to get an overview of the large scale circulation. The meridional

overturning circulation (MOC) is the zonally integrated volume transport,

which results in a vertical circulation loop. In the Atlantic ocean, the MOC

is characterised by the northwards flow of warm surface waters and the

return flow of cold and dense waters at greater depth. In the high northern

latitudes formation of dense water masses take place (e.g. Marshall and

Schott, 1999). The meridional circulation loop is closed by upwelling of

deep waters through the pycnocline in low latitudes and in the Southern

Ocean.

The thermal forcing, heating and cooling at the surface is not able to drive

the MOC, which is described earliest in its basic form in the theorem

postulated by Sandström (1908) and discussed in many recent studies

(e.g. Paparella and Young, 2002; Wunsch and Ferrari, 2004).

The thermal forcing is determined by the buoyancy exchange at the surface.

One resulting process is the deep water formation in the high latitudes.

The dense waters are formed by deep convection. The convective mixing of

an unstable stratified water column reduces its potential energy. This

potential energy needs to be resupplied. As both, the heating and the

cooling happens at the surface, so at the same geopotential level, the

thermal energy the ocean receives cannot be converted in an efficient way

into kinetic energy. The thermohaline driving mechanism on its own results

in a very weak horizontal circulation only in the upper layers, and

homogenous cold waters in the deep ocean (Sandström, 1908; Wunsch

and Ferrari, 2004). This is completely different from the observed
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meridional circulation and the observed stable oceanic stratification.

In the traditional studies, Sandström (1908, 1916) and later Jeffreys

(1925) suggested, that additionally to the thermohaline forcing small-scale

mixing processes are necessary. These transport heat down from the surface

into the deeper water masses across isopycnal surfaces (Wunsch and

Ferrari, 2004) in order to drive the MOC and close the energy balance.

Since the observed oceanic structure is different from the scenarios

described by Sandström (1908), the theorem itself says therefore, that the

observed structure and the associated flow is not the result of direct

buoyancy forcing. In addition to Sandström’s theorem, Paparella and

Young (2002) showed that a flow that is generated by buoyancy forces

acting at the surface alone cannot generate interior turbulence. This

mechanism is described in detail by Munk and Wunsch (1998). What

can generate the interior turbulence in that case? By a combination of

winds and tides, internal waves are generated in the ocean, which dissipate

into small-scale motion and therefore cause turbulent mixing. Without

interior turbulence (diapycnal mixing), the fluid sinking to the seafloor

cannot be lightened by the mixing necessary for it to reach the surface

across the deep stable stratification. Consequently this raises the question

of how big the diapycnal diffusion in the ocean really is.

Currently there are two distinct processes considered as driving mechanisms

of the MOC: (i) the diapycnal mixing of heat and salt by small-scale

turbulence, and (ii) the wind driven upwelling in the Southern Ocean

(Wunsch and Ferrari, 2004; Kuhlbrodt et al., 2007). To what

extent the diapycnal diffusion is the dominant driving mechanism of the

MOC is currently under debate, but it is certainly an important factor.

Initially the diapycnal mixing coefficient was assumed to be uniform

throughout the oceans interior, mainly because of the lack of data and in

order to simplify matters. This implied a uniformly distributed slow

upwelling over larger regions of the ocean (Stommel and Arons, 1960).

From observations of oceanic carbon-14, Munk (1966) was able to

separately estimate global means of the vertical velocity w and the
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eddy-coefficient κ , interpreted as diapycnal diffusivity (1 × 10−4 m2/s) for

large scales. Since then, a diapycnal diffusivity of 1 × 10−4 m2/s was widely

seen as the mixing coefficient needed in order to return the deep water

masses back to the surface. In fact, Munk (1966) showed that the MOC

strength and the global mean value of the diapycnal diffusivity are

proportional to each other.

Osborn and Cox (1972) and Osborn (1980) estimated values for the

diapycnal diffusivity in the upper 1000 m below the mixed layer, using

direct measurements on subcentimeter scales. However, the direct

open-ocean estimates generally failed to produce values of κ exceeding

about 0.1 × 10−4 m2/s. This is only about one tenth of the value believed

necessary to support the observed basin-wide circulation.

Given the uncertainties of the representativeness of the direct and local

estimates of diffusivities and of the theoretical assumptions, there was a

need for more direct measurements. With the North Atlantic Tracer Release

Experiment (NATRE) Ledwell et al. (1993, 1998) introduced a method

to estimate local diapycnal diffusivities from tracer measurements. An inert

tracer dye (sulfur hexafluoride) was deployed in a controlled fashion on an

isopycnal surface at about 300 m depth in the eastern North Atlantic. The

estimated diapycnal diffusivities of the order of 0.1 × 10−4 m2/s confirmed

the estimates of Osborn and Cox (1972) and are also shown by Moum

and Osborn (1986) and Oakey et al. (1994) for mixing rates away

from topographic features and boundaries. Even lower values can be found

close to the equator as shown by Gregg et al. (2003).

On the other hand, along continental slopes (Moum et al., 2002) or close

to highly variable bottom topography (Polzin et al., 1997; Ledwell

et al., 2000; Garabato et al., 2004) strong mixing with a diffusivity

coefficient of up to 100 × 10−4 m2/s can be found. Additionally,

experiments in boundary regions, primarily in easier settings such as lakes

show, that there is enhanced diapycnal mixing in regions with strong

isopycnal slopes (Ledwell and Hickey, 1995; Wuest and Lorke,

2003). Munk and Wunsch (1998) take into account such highly variable

mixing and reestimated the basin average diapycnal diffusivity. They



1. Introduction 28

hypothesised that the power which is required to mix water with a uniform

diapycnal diffusion coefficient of 1 × 10−4 m2/s is the same as if

concentrated mixing with a much higher coefficient as e.g. 100 × 10−4 m2/s

occurs in only 1% of the oceans.

It appears straightforward to use numerical ocean general circulation

models (OGCMs) in order to study regions where intense mixing is

suggested and to gain insight into how the meridional overturning is

influenced by the diapycnal mixing. Bryan (1987); Zhang et al. (1999)

and Mignot et al. (2006) showed that the heat transport and the MOC

are very sensitive to the diapycnal diffusivity used. Additionally, the

studies by Marotzke (1997) and Scott and Marotzke (2002) showed

the influence of mixing locations on the meridional overturning and the

importance of mixing only at the boundaries. These studies conclude that

mixing at the boundary is the more efficient driving process for the

overturning circulation in comparison with the mixing in the interior.

In addition to the suggested influence of the diapycnal mixing on the large

scale circulation such as the MOC, it is also an important process for the

ecology, chemistry, optical properties and the spreading of water masses.

Pelegri and Csanady (1991) and Pelegri et al. (1996) showed that

diapycnal mixing has a maximum at the location of the nutrient stream

associated with observed nutrient anomalies along the Gulf stream along

the western boundary of the subtropical North Atlantic. They suggest that

diapycnal mixing associated to the passage of steep meanders brings

nutrients from the nutrient stream to the shallow photic layers. Jenkins

and Doney (2003) suggested with the mechanism of the subtropical

nutrient spiral, that diapycnal mixing is an important process for the

nutrient supply in the surface waters near Bermuda.

In the analysis of biogeochemical models, Oschlies and Garcon (1999)

showed in a model intercomparison that although the explicit diffusion is

kept constant changes in the advection schemes lead to an increase of the

primary production by a factor of two. This indicates that the diapycnal

diffusion in these models depends strongly on the discretisation of the

advection on the model grid, e.g. on numerically induced diffusion.
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What is the numerically induced diffusion?

In general the motion of a fluid can be described by the Navier-Stokes

equations, a set of coupled differential equations which establish relations

among the rate of change of the variables of interest. Solving the

Navier-Stokes equations numerically would require a very fine grid to

resolve all turbulence scales and it would also require a fine resolution in

time, as turbulent flow (diapycnal mixing) is always unsteady. This is not

given in OGCMs, therefore the Reynolds-averaged Navier-Stokes equations

are used. That means to ignore small-scale vortices (or eddies) in the

motion and to calculate a large-scale motion with an eddy viscosity that

characterises the transport and dissipation of energy in the smaller-scale

flow and an eddy diffusivity.

The diapycnal mixing in models is not only determined by the

parameterisation of the explicit diffusive mixing, but also by the

numerically induced diffusion. Numerically induced diffusion in z-level

models arises from discretisation errors, particulary of the advection terms

or from problems to adequately resolve boundary layers on the model grid,

as a result of the insufficient horizontal and vertical resolution. Lee et al.

(2002) showed that the numerically induced diffusion associated with the

advection scheme in high-resolution z-coordinate models may drive

unrealistically high rates of diapycnal mixing.

The advection in numerical models can be realised by a wide range of

advection schemes. Present advection schemes lead in general to spurious

effects, given by two most important effects: First, the advection scheme

can induce additional diffusion, e.g. in the upstream scheme. For tracers,

these advection schemes do not conserve the variance. Second, the

advection scheme can cause dispersion, which is the case when centred

differences in space and time are used. Consider for instance the analytical

case in which the tracer moves with a constant velocity. Numerical

dispersion of the advection scheme will lead to different advection velocities

depending on frequency. This means that in the model advection velocities

are different to the analytical case, i.e. incorrectly represented. This effect
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can be suppressed by an increase of the explicit diffusion in the model.

Usually the advection schemes used in OGCMs generate both, numerically

induced diffusion and dispersion. Note, that not only the spatial

discretisation of the advection but also the discretisation in time may result

in a numerically induced diffusion.

Before giving an overview of the different methods that are used in z-level

models in order to diagnose the numerically induced diffusivity, it is

necessary to introduce the terminology used in this study. In the following

the explicit diffusivity is the diffusion which is used for the parameterisation

of the diffusive mixing in the model input. Opposite to this, the diagnosed

diffusivity denotes the sum of the explicit diffusivity and the numerically

induced diffusivity. For the analysis of the diagnosed diffusivity only the

fields of the model output are used. The difference between the diagnosed

and the explicit diffusivity is the numerically induced diffusivity.

Following the work of Winters et al. (1995) and Winters and

D’Asaro (1996), Griffies et al. (2000) analysed the diagnosed

diffusivity by comparing the change in the density with time with the

diapycnal flux of the density. This diagnostic only permits the analysis of

the basin averaged diffusivity. However, they are able to quantify mean

values for the induced diffusivity, the disadvantage of this method is the

restriction to the analysis of basin wide parameters.

A different approach was carried out by Morales Maqueda and

Holloway (2006). They analysed the decay of the tracer variance and

related it to a diffusive term. Although they are able to analyse values for

the induced diffusivity for each grid box, their analysis is restricted to

models where the linear second-order moment (SOM) advection scheme is

used. More generally, the diagnostic suggested by Burchard and

Rennau (2007) also based on the variance decay of individual tracers,

similar to the approach by Morales Maqueda and Holloway (2006).

However, here, the tracer variance decay is used as a direct measure for the

mixing.

In the present study, three different methods will be tested in order to
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analyse diagnosed diffusivities of individual tracers. These tests will be

done in idealised 1- and 2-dimensional case studies, in which it is possible

to separate between different mechanisms, i.e. the effect of advection

and/or of diverging and converging isopycnals with time. All methods

analyse a mean value for the diagnosed diffusivity, which is depth

independent (for the 2-dimensional case also independent of the horizontal

axis), but time dependent.

The evolution of the tracer with time is a result of the dynamics in the

model including the boundary (surface and lateral) tracer fluxes. Therefore

diagnostic methods need to take account of tracer fluxes across the

boundaries (and possible interior sources). However the passive tracer

employed here does not have any such sources. For all three methods the

temporally changing tracer field is used for the analysis of the diagnosed

diffusivity. This has the advantage that the methods, so long as they work,

can be used for the analysis of OGCMs in the same way as shown in this

thesis for the analysis of the 1- and 2-dimensional case studies. The results

show the patch-averaged diapycnal diffusion of the tracer. This leads to the

possibility to directly compare the results of the OGCMs with those from

observational studies. Releasing the tracer in different regions, such as the

interior at the position where the NATRE studies took place or in more

turbulent regions e.g. at the western boundary, provides information about

local rates of diapycnal mixing in that region as well as the numerically

induced diffusion.

Since the diagnosed diffusivity is the sum of the explicit diffusivity and the

numerically induced diffusivity, it is necessary to weight the explicit

diffusivity. The difference between the weighted and the diagnosed

diffusivity is the numerically induced diffusivity.

Methods Before it is possible to analyse the diapycnal diffusivity in

OGCMs by performing tracer experiments in close analogy to experiments

that have been performed in the real ocean (Ledwell et al., 1998), it is

necessary to test the robustness of the different diagnostics in a set of one-

and two-dimensional case studies. The present work is restricted to results
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of these case studies.

In the first method, it will be tested, in how far it is useful to use the same

method as described by Ledwell et al. (1998) for the analysis of the

diapycnal diffusivity in models. This method is denoted as the divergence

method. In the second one, the same approach is used as done in Griffies

et al. (2000), but modified in such a way that no longer is the basin wide

mean analysed; instead the tracer mean diapycnal diffusivity is calculated

for each time step. It will be denoted as the tracer flux method.

Since the method used by Burchard and Rennau (2007) is not

differentiating between the diapycnal and the isopycnal component of the

induced mixing, the last method described is a variation of the method

introduced by Morales Maqueda and Holloway (2006). Instead of

analysing the variance decay for each model box, the variance decay for the

whole tracer volume is analysed. This will be denoted as the variance

method.

Although all three methods are not able to resolve the model induced

diffusion for each grid box, it is possible to analyse local rates depending on

the tracer field. The advantage on the other hand is, that all methods are

independent of the advection scheme used in the model and the model grid,

equidistant or non-equidistant z-levels or layers.

In this thesis, the analysis is focused on methods to diagnose diapycnal

diffusivities. This gives the possibility to directly compare the model results

with the observational studies of e.g. Ledwell et al. (1998). Although

the diagnosed diffusivity depends strongly on the actual tracer distribution,

the analysis of e.g. tracer fluxes will not lead to different results in the

divergence method and the tracer flux method. For these methods the

diapycnal flux due to diffusion is directly correlated to the diagnosed

diffusivity. Despite the difficulties in evaluating it, and its crudity as a

measure of mixing, diffusivity is a familiar concept, whose values are

immediately meaningful, and which can be compared with observation.
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Outline The thesis is divided into two different parts, one concerned with

the 1-dimensional case studies and the second part with the 2-dimensional

case studies. In Part I, a detailed description of the three different methods

is given (Chapter 2), restricted to the analysis of the one-dimensional

experiments. In Chapter 3, the model set-up is introduced and the results

for a set of experiments, where only the tracer is considered, are shown

using an equidistant and a non-equidistant z-level grid.

Since for the analysis of experiments including vertical advection and/or

diffusion in temperature and salinity, it is necessary to transform the tracer

on isopycnals, Chapter 4 introduces the mapping scheme for the

transformation of the tracer on isopycnal layers as well as the consequences

in the diagnostics. Additionally the sensitivity of the three methods to the

transformation of the tracers onto isopycnals will be shown. It turns out,

that the method based on the analysis similar to Ledwell et al. (1998)

(divergence method) is very sensitive to the transformation.

The two remaining methods, the tracer flux and the variance methods,

analyse the diffusion from the temporal evolution of the tracer with time.

In order to analyse the diapycnal diffusion for cases, with non-stationary

isopycnals, the relative movement of the isopycnals with time can be

divided into two different classes: (i) a parallel movement and (ii)

divergence and convergence of the isopycnal layers. For the analysis of the

tracer flux method, it is not important if these relative movements of the

isopycnals are a result of vertical or horizontal flows, only the relative

movement of the tracer to the isopycnal layers are important. Also

horizontal flows are only able to generate a parallel displacement or

divergence and convergence of the isopycnals. Therefore only case studies

including vertical advection or diffusion are presented in this study.

In Chapter 5, the effect of the vertical advection on the results of the

diagnosed diffusivity will be analysed. In this case, the vertical advection is

restricted to an exact parallel movement of the isopycnals in order to

suppress the consequences of diverging or converging isopycnals. The effect

of converging and diverging isopycnals is separately analysed in Chapter 6,

where diffusion acts on tracer, temperature and salinity. The results of the
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first part are summarised in Chapter 7.

In Part II, the same experiments as shown in Part I for the 1-dimensional

model are repeated for the 2-dimensional model. In Chapter 8, the results

for the variance method, which is based on the work of

Morales Maqueda and Holloway (2006), are shown including

changes in the method according to the additional dimension. Chapter 9 is

structured in the same way, only that here the results for the tracer flux

method, which is based on the ideas of Griffies et al. (2000), are shown.

Chapter 10 summarises the main results of the second part and gives an

outlook for the application of these methods for the analysis of numerically

induced diffusion in OGCMs.

It turns out that the tracer flux method, where temporal change of the

total amount of tracer above an isopycnal equals the diapycnal flux through

the isopycnal, can be used. In order to keep the errors as small as possible,

it is useful to analyse longer time mean values as the combination of the

advection and the transformation of the tracer onto isopycnals induces

oscillations. The results of the variance method show that for the variance

method it is not possible to separate the diapycnal from the isopycnal

diffusion.



Part I

1-dimensional Experiments



Chapter 2

Methods to analyse diapycnal

diffusion in z-level models

In the following, three different methods of diagnosing diffusion will be

introduced. The divergence method is based on the description by

Ledwell et al. (1998) and the tracer flux method on the description by

Griffies et al. (2000) and their application in numerical models. Both

of these methods derive from the assumptions of the advection-diffusion

equation and their parameterisation in the model set-up. Finally, the

variance method (Morales Maqueda and Holloway, 2006) will be

used, where the diagnosed diffusivity is inferred from the variance decay of

the tracer. All three methods give a mean value for the diagnosed

diffusivity of the tracer volume.

For all three methods, the diagnosed diffusivity is estimated from the

temporally changing tracer field in the model output. The diagnosed

diffusivity is the sum of the explicit and the numerically induced diffusivity.

In order to estimate values for the numerically induced diffusivity, it is

necessary to weight the explicit diffusivity in such a way that it can be

directly compared to the depth independent value of the diagnosed

diffusivity. For all three implicit methods, a weighting of the explicit

diffusion coefficient will be introduced as well.

The introduction of the three different methods, as shown in this chapter,
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will be reduced to the analysis of simple 1-dimensional experiments, while

diffusion of density is not considered here. In these special cases the vertical

diffusion is equal to the diapycnal diffusion and the analysis can be done on

z-coordinates. The adjustment of the diagnostics for the analysis of

2-dimensional experiments will be shown in the second part of this thesis.

2.1 The divergence method

The diagnostics of analysing the diapycnal diffusivity described by

Ledwell et al. (1998) are based on the temporal evolution of the

diapycnal spreading of the isopycnally integrated tracer field. This analysis

uses the advection-diffusion equation and gives information only about

vertical mean values for the diapycnal diffusivity and vertical velocity.

Different to the approach of Ledwell et al. (1998), in the simplified

1-dimensional models considered here the tracer concentration only depends

on the vertical dimension, thus no extra isopycnal interpolation is needed.

Following Ledwell et al. (1998), the diagnosed diffusivity is obtained by

the advection-diffusion equation. The advection-diffusion equation in a

1-dimensional form is given by

∂C

∂t
+

∂(w · C)

∂z
=

∂

∂z

(

κ ·
∂C

∂z

)

, (2.1)

where C = C(z, t) is the tracer concentration, w = w(z, t) is the vertical

velocity, κ = κ(z, t) is the vertical diffusivity, z is the depth and t is the

time. In close analogy to the method used in the observational studies

(Ledwell et al., 1993, 1998), the diffusivity and the vertical velocity are

taken as depth independent, leaving

∂C

∂t
= κ ·

∂2C

∂z2
− w ·

∂C

∂z
, (2.2)

where κ = κ(t) denotes the mean diffusivity and w = w(t) the mean

vertical velocity. In general, solving Equation 2.2 with the method of the
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least squares fit gives values for the mean diffusivity and the mean vertical

velocity.

In order to test the robustness of this method, in Chapter 3 experiments

are analysed without vertical advection. In this case, the

advection-diffusion equation (see Equation 2.2) can be reduced to

∂C

∂t
= κ ·

∂2C

∂z2
. (2.3)

In the following, this method will be referred to as the divergence method.

The method of the least squares fit requires that the vertical integral of the

square of the difference between the temporal development of the tracer

and the diffusive term should be minimal, leading to

∫
(

∂C

∂t
− κ

∂2C

∂z2

)2

dz
.
= min,

where the integral is taken over the total depth. As the integral has to be a

minimum, this also means that the derivative with respect to κ is required

to be equal to zero.

∂

∂κ

∫
(

∂C

∂t
− κ

∂2C

∂z2

)2

dz = 0

→

∫
(

∂C

∂t
− κ

∂2C

∂z2

)

·
∂2C

∂z2
dz = 0. (2.4)

This leads to the general form of the mean diffusivity κ for the case, in

which only the tracer is diffusive (w = 0), as follows

κ =

∫

(

∂C
∂t

· ∂2C
∂z2

)

dz
∫ (

∂2C
∂z2

)2
dz

(2.5)

The mean diffusivity κ depends only on the temporal derivative of the

tracer and its curvature. In order to analyse the mean diffusivity in

numerical models Equation 2.5 needs to be discretised on the model grid.
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Different to the analysis of observational studies, in models the temporal

derivative of the tracer can be estimated in two different ways.

First, the temporal derivative can be determined from the temporal

evolution of the tracer field. The resulting diffusivity includes the explicit

and the numerically induced diffusivities and will be denoted as diagnosed

diffusivity κdiag−L = κdiag−L(t) in the following. Second, in models the

temporal derivative of the tracer can be reduced to explicit diffusive flux

divergence which is generated in the model set-up by the explicit diffusion

term. The resulting weighting of the explicit diffusivity is denoted as

weighted diffusivity κw−L = κw−L(t) in the following.

Diagnosed diffusivity For the analysis of the diagnosed diffusivity, the

temporal derivative of the tracer is estimated from the temporal evolution

of the tracer field. The discretisation of the temporal derivative of the

tracer concentration is given by

∆C

∆t
=

Ct+∆t
k − Ct

k

∆t
, (2.6)

where k is the index of the depth levels, t the time index and ∆t is the

time-step. The dicretisation of the spatial derivative needs to be done in

exactly the same way, as in the model set-up. Therefore it is also important

to be aware of the integration scheme used. For the models used in this

thesis, the implicit Eulerian backwards scheme is used. This means for the

discretisation of the mean diffusivity (Equation 2.5) that the spatial

derivative has to be taken at time-step t + ∆t. Additionally, the

discretisation of the spatial derivatives is realised by a centred differences

scheme, leading to

∆2C

∆z2
=

1

∆zk

·

(

Ct+∆t
k−1 − Ct+∆t

k

∆z̃k−1

−
Ct+∆t

k − Ct+∆t
k+1

∆z̃k

)

, (2.7)

where k is the index of the depth levels, ∆z is the thickness of the z-levels

and ∆z̃ is the thickness of the levels of the temperature grid (for more

detail see Section 3.1).
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Discretising Equation 2.5 with the temporal derivative given in Equation

2.6 and the spatial derivative given in Equation 2.7 the diagnosed

diffusivity κdiag−L is defined as

κdiag−L =

∑n

k=1

(

∆C
∆t

· ∆2C
∆z2 · ∆zk

)

∑n

k=1

(

(

∆2C
∆z2

)2
· ∆zk

) , (2.8)

where n is the number of model levels. The diagnosed diffusivity κdiag−L is

the sum of the explicit and the numerically induced diffusivities.

Weighted diffusivity On the other hand, the contribution towards the

temporal change of the tracer field generated by the explicit diffusive flux

divergence in the model set-up only is given by

∂C

∂t
=

∂

∂z

(

κ ·
∂C

∂z

)

. (2.9)

In the following κexpl = κexpl(z, t) denotes the explicit diffusion coefficient.

The discretised form of the explicit diffusive flux divergence
∂
∂z

(

κ · ∂C
∂z

)

=
∂Fexpl

∂z
is denoted as ∆Fexpl in the following, leading to the

discretisation of the temporal derivative as follows

∆C

∆t
= ∆Fexpl. (2.10)

In the model set-up used in this study, the parameterisation of the explicit

diffusive flux divergence is defined by

∆Fexpl =
1

∆zk

·

(

κexpl
t+∆t
k−1 ·

Ct+∆t
k−1 − Ct+∆t

k

∆z̃k−1
− κexpl

t+∆t
k

·
Ct+∆t

k − Ct+∆t
k+1

∆z̃k

)

,

(2.11)

where ∆z is the thickness of the z-levels and ∆z̃ is the thickness of the

levels of the temperature grid. The discretisation of the spatial derivative is

the same as given in Equation 2.7.



2.2. The tracer flux method 41

Discretising Equation 2.5 with the temporal change of the tracer

concentration given by the diffusive flux divergence in Equation 2.11 and

the spatial derivative given in Equation 2.7, the weighted diffusivity κw−L is

defined as

κw−L =

∑n

k=1

(

∆Fexpl ·
∆2C
∆z2 · ∆zk

)

∑n

k=1

(

(

∆2C
∆z2

)2
· ∆zk

) , (2.12)

where n is the number of z-levels in the model. The weighted diffusivity

κw−L is only a function of the explicit diffusivity κexpl and the spatial

derivatives of the tracer concentration, but does not depend on the

temporal derivatives, which is different to the diagnosed diffusivity κdiag−L.

Note, both the weighted diffusivity κw−L and the diagnosed diffusivity

κdiag−L are time dependent, but depth independent values.

The definitions of the weighted and the diagnosed diffusivities are

independent of the model grid. The method can also be used for all

different model types, but the discretisation needs to be adjusted to the one

used in the model set-up.

2.2 The tracer flux method

In the method of Griffies et al. (2000), the main interest is the amount

of flux crossing a particular isopycnal surface, which can be found by

analysing the temporal change of the tracer above the isopycnal. By using

the cumulative integral of the advection-diffusion equation, the same flux is

analysed. Similar to the approach in Griffies et al. (2000), the tracer

flux method as defined here basically analyses the diapycnal flux crossing a

particular isopycnal layer.

The cumulative integral of the advection-diffusion equation is given by

∂

∂t

∫ 0

z′=z

Cdz′ = −κ
∂C

∂z

∣

∣

∣

z
+ w · C

∣

∣

∣

z
, (2.13)
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where C = C(z, t) is the tracer concentration, z denotes the depth,

κ = κ(z, t) the vertical diffusivity and w = w(z, t) the vertical velocity. In

principle Equation 2.13 can be solved with the method of the least squares

fit finding depth and time depending values for the diffusivity κ and the

vertical velocity w similar to the analysis described by Griffies et al.

(2000). However, the focus of this study is the analysis of vertical mean

values for κ and w, as those can be directly compared to the results of the

divergence method and later to the diffusivities found in observational

studies.

In the following κ = κ(t) is the mean vertical diffusivity and w = w(t) the

mean vertical velocity. In this case the cumulative integrated

advection-diffusion equation is given by

∂

∂t

∫ 0

z′=z

Cdz′ = −κ
∂C

∂z

∣

∣

∣

z
+ w · C

∣

∣

∣

z
. (2.14)

Solving Equation 2.14 with the method of the least squares fit, mean values

for the vertical diffusivity and the vertical velocity can be found. For a

better illustration, it will be focused on the solution of the case with no

explicit vertical velocity (w = 0). In this case Equation 2.14 can be reduced

to

∂

∂t

∫ 0

z′=z

Cdz′ = −κ
∂C

∂z

∣

∣

∣

z
. (2.15)

This means that the change of the total amount of tracer above one level is

equal to the diffusive flux through that level. Therefore the method is

denoted as tracer flux method. Equation 2.15 can now be solved with the

method of the least squares fit, which leads to

∫ 0

z=−h

(

∂

∂t

∫ 0

z′=z

Cdz′ + κ
∂C

∂z

∣

∣

∣

z

)2

dz
.
= min,

where h denotes the total depth of the water column. As the integral over

dz is required to be a minimum, the drivative ∂/∂κ has to equal zero, giving
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∂

∂κ

∫ 0

z=−h

(

∂

∂t

∫ 0

z′=z

Cdz′ + κ
∂C

∂z

∣

∣

∣

z

)2

dz = 0,

→

∫ 0

z=−h

((

∂

∂t

∫ 0

z′=z

Cdz′ + κ
∂C

∂z

∣

∣

∣

z

)

·
∂C

∂z

∣

∣

∣

z

)

dz = 0. (2.16)

Solving Equation 2.16 for the mean diffusivity κ gives

κ =

∫ 0

z=−h

(

∂
∂t

∫ 0

z′=z
Cdz′ · ∂C

∂z

∣

∣

∣

z

)

dz

∫ 0

z=−h

(

∂C
∂z

∣

∣

∣

z

)2

dz
(2.17)

The result of the least squares fit (see Equation 2.17) shows how the mean

value is weighted. Different to the result of the divergence method, the

mean diffusivity analysed by the tracer flux method is weighted by the

tracer gradient. For the analysis of numerical models, Equation 2.17 needs

to be discretised on the model grid. This discretisation can be done in two

different ways, leading to the definitions of the diagnosed and the weighted

diffusivities.

Diagnosed diffusivity The diagnosed diffusivity is the total diffusivity

of the tracer patch, including the explicit and the numerically induced

diffusivity. For the analysis of the diagnosed diffusivity, denoted as

κdiag−G = κdiag−G(t) in the following, the temporal change of the total

amount of tracer above an isopycnal is determined by the temporal

evolution of the tracer field. For the analysis the change of the total

amount of tracer above an isopycnal with time needs to be discretised in

the model grid:

k
∑

m=1

∆ (C · ∆z)

∆t
=

k
∑

m=1

Ct+∆t
m · ∆zm − Ct

m · ∆zm

∆t
, (2.18)

where the cumulative sum is taken over the m levels. The vertical tracer

gradient at the level k + 1 for the model parameterisation used in this

thesis (centred differences) is given by
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∆C

∆z

∣

∣

∣

k+1
=

Ct+∆t
k − Ct+∆t

k+1

∆z̃k

, (2.19)

where ∆z̃ is the thickness of the temperature grid. Discretising Equation

2.17 with the temporal change of the total amount of tracer above an

isopycnal given in Equation 2.18 and the tracer gradient given in Equation

2.19, the diagnosed diffusivity κdiag−G is defined as

κdiag−G =

−
∑n

k=1

(

∆C
∆z

∣

∣

∣

k+1
·
∑k

m=1
∆(C·∆z)

∆t
· ∆z̃k

)

∑n

k=1

(

(

∆C
∆z

∣

∣

∣

k+1

)2

· ∆z̃k

) , (2.20)

where n is the number of model levels. As already mentioned for the

diagnostics of the divergence method, the discretisation of the derivative in

time and space needs to be done in the same way as in the model set-up.

Weighted diffusivity The weighted diffusivity includes only the explicit

diffusion of the tracer. Different to the analysis of the diagnosed diffusivity,

the change of the total amount of tracer above an isopycnal is discretised

by the explicit diffusive flux:

∂

∂t

∫ 0

z′=z

Cdz′ = −κ
∂C

∂z

∣

∣

∣

∣

∣

z

. (2.21)

The explicit diffusive flux Fexpl = κ∂C
∂z

∣

∣

k+1
as defined in the model set-up is

given by

Fexpl = κexpl ·
Ct+∆t

k − Ct+∆t
k+1

∆z̃k

, (2.22)

where κexpl = κexpl(z, t) denotes the explicit diffusion coefficient as defined

in the model and ∆z̃ is the thickness of the temperature grid. The

discretisation of the tracer gradient is identical to the one shown in

Equation 2.19. Discretising Equation 2.17 with the explicit diffusive flux
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(Equation 2.22) and the tracer gradient (Equation 2.19), the weighted

diffusivity κw−G is defined as

κw−G =

∑n

k=1

(

∆C
∆z

∣

∣

∣

k+1
· Fexpl · ∆z̃k

)

∑n

k=1

(

(

∆C
∆z

∣

∣

∣

k+1

)2

· ∆z̃k

) , (2.23)

where n is the number of model levels. The definitions of the depth

independent values for the weighted diffusivity κw−G and the diagnosed

diffusivity κdiag−G can be analysed independent on the model set-up used,

but it is important to choose the discretisation of the different terms in

exactly the same way as done in the model set-up. For implicit

time-stepping schemes, the spatial derivative needs to be estimated at

time-step t + ∆t.

2.3 The variance method

A different way to analyse numerically induced diffusion is introduced by

Morales Maqueda and Holloway (2006). In their work they calculate

the numerically induced diffusivity by considering the variance decay of the

tracer within a constant volume.

The tracer variance of one model box is calculated after applying the

diffusion (and before the advection). Then the variance of the same volume

is estimated. Finally, the change in the variance after applying the

advection operator of that special volume is linked to a diffusive term. This

is the diffusivity, which is only caused by the parameterisation of the

advection in the model since the analytical form of the advection operator

would not lead to a change in the tracer variance.

The aim of the variance method is, to find a more general method inferred

from the variance decay of the tracer, which is not restricted by the model

set-up. By estimating the variance decay of the whole tracer volume, this

requirement is fulfilled.
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The variance method links the temporal change in the variance of the

whole tracer volume to a mean diffusivity. This is a depth independent

parameter and gives a more general approach, which can be used

independent of the used advection scheme in the model set-up.

Diagnosed diffusivity The total variance of the tracer concentration C

is denoted as σ2 and defined as follows:

σ2 =
1

2

n
∑

k=1

C2
k∆zk, (2.24)

where n denotes the number of model levels and ∆z the level thickness.

According to Morales Maqueda and Holloway (2006), the link

between the diffusion κvar and the temporal change of the variance σ2 can

be written as

∆σ2

∆t
= −κvar ·

n
∑

k=1

[

(

∆C

∆z

)2

· ∆z̃k

]

, (2.25)

where ∆σ2

∆t
is the variance decay and ∆C

∆z
the tracer gradient.

The tracer gradient is given by

∆C

∆z
=

Ct+∆t
k−1 − Ct+∆t

k

∆z̃k−1
, (2.26)

where Ct+∆t
k denotes the tracer concentration at the depth index k and the

time-step t + ∆t and ∆z̃ denotes the level thickness of the temperature

grid. The temporal change in the tracer variance is given by

∆σ2

∆t
=

1

∆t
·

(

1

2

n
∑

k=1

(Ct+∆t
k )2∆zk −

1

2

n
∑

k=1

(Ct
k)

2∆zk

)

, (2.27)

where n is the number of model levels. Solving Equation 2.25 for the

diagnosed diffusivity κvar leads to
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κvar =
−∆σ2

∆t
∑n

k=1

(

(

∆C
∆z

)2
· ∆z̃k

) , (2.28)

where n is the number of model levels as well. This is the formulation of

diagnosing diffusivity according to changes in the tracer variance as used

below.

Weighted diffusivity In order to compare the diagnosed diffusivity κvar

with the explicit diffusion coefficient, κexpl needs to be weighted in the same

way as κvar is weighted, which is by the square of the tracer gradient. The

weighted diffusivity for the variance method is denoted as κw. The variance

decay, which is given by the term of the explicit diffusivity is given by

∆σ2

∆t
= −

n
∑

k=1

[

κexpl ·

(

∆C

∆z

)2

· ∆z̃k

]

. (2.29)

The discretisation of the tracer gradient is the same as given in Equation

2.26. Similarly, the variance decay according to the weighted diffusivity κw

is given by

∆σ2

∆t
= −κw ·

n
∑

k=1

[

(

∆C

∆z

)2

· ∆z̃k

]

. (2.30)

By substituting Equation 2.29 in 2.30, the weighted diffusivity κw is given

by

κw =

∑n

k=1

(

κexpl ·
(

∆C
∆z

)2
· ∆z̃k

)

∑n

k=1

(

(

∆C
∆z

)2
· ∆z̃k

) . (2.31)

The discretisation of the tracer gradient is the same as given in Equation

2.26. In order to compare the variance method with the tracer flux method

(see Section 2.4), the tracer flux through an isopycnal layer, given by

κexpl ·
∂C
∂z

= Fexpl is discretised in the same way as in Equation 2.22
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method diagnosed diffusivity weighted diffusivity

divergence κdiag−L =
−

Pn
k=1

“

∆C
∆t

·
∆2C

∆z2

”

∆zk

Pn
k=1

“

∆2C

∆z2

”2
∆zk

κw−L =
Pn

k=1

“

∆Fexpl

∆z
·
∆2C

∆z2

”

∆zk

Pn
k=1

“

∆2C

∆z2

”2
∆zk

tracer flux κdiag−G =
−

Pn−1
k=1

„

∆C
∆z

∣

∣

k+1
·

Pk
m=1

∆(C·∆z)
∆t

«

∆z̃k

Pn−1
k=1

„

∆C
∆z

∣

∣

k+1

«2

∆z̃k

κw−G =

Pn−1
k=1

„

Fexpl·
∆C
∆z

∣

∣

k+1

«

∆z̃k

Pn−1
k=1

„

∆C
∆z

∣

∣

k+1

«2

∆z̃k

variance κvar =
−

∆σ2

∆t
Pn

k=1(∆C
∆z )

2
·∆z̃k

κw =
Pn

k=1(Fexpl·
∆C
∆z )∆z̃k

Pn
k=1(∆C

∆z )
2
∆z̃k

Table 2.1: Summary of the diagnosed and the weighted diffusivity for all
three different methods, the discretised form is shown.

Fexpl = κexpl ·
Ct+∆t

k − Ct+∆t
k+1

∆z̃t+∆t
k

.

That leaves the general form of the discretisation of the weighted diffusivity

κw =

∑n

k=1

(

Fexpl ·
∆C
∆z

· ∆z̃k

)

∑n

k=1

(

(

∆C
∆z

)2
· ∆z̃k

) , (2.32)

where n is the number of model levels.

2.4 Summary and comparison

In Table 2.1, the discretised forms of the diagnosed and the weighted

diffusivities for all three different methods are summarised. This makes a

direct comparison of the different methods easier. In all three methods, the

weighted diffusivity gives the mean value of the explicit model diffusion.

Comparing the weighted diffusivity analysed by the divergence method



2.4. Summary and comparison 49

with the weighted diffusivity diagnosed by the tracer flux method shows

that the results are generally different. Whereas the diffusivity in the

divergence method is weighted by the curvature of the tracer, the diffusivity

of the tracer flux method is weighted by the tracer gradient. Only in

experiments, where the explicit diffusivity coefficient is constant with

depth, the results for the weighted diffusivities for both methods are

identical. In general, it cannot be expected that the results for the

divergence and the tracer flux methods are the same.

A comparison between the weighted diffusivity of the tracer flux and the

variance method shows that both discretised forms are identical. Thus a

direct comparison between these two methods is possible and the results for

the weighted diffusivity should be consistent in all shown experiments.

Note, the diagnosed diffusivity analysed by the variance method is identical

to the one analysed by the tracer flux method, when diffusion and

advection are discretised by the Crack-Nicholson scheme (centred

differences in space and time), as the variance is conseved.



Chapter 3

1-dimensional case study: The

simple tracer problem

In the previous chapter, three different methods for analysing diagnosed

diffusivities have been introduced: the divergence method, the tracer flux

method and the variance method. In order to test the robustness of these

methods, in the following a set of 1-dimensional experiments will be

analysed, where diffusion acts on tracer only.

First, the model set-up and the configuration of the different experiments

will be introduced. Then, the results for these experiments using an

equidistant and a non-equidistant vertical grid will be shown.

3.1 Model configuration

The model used is a 1-dimensional z-level model. The implemented tracer

spreads only in a diffusive manner. In this case the weighted and the

diagnosed diffusivity analysed by the divergence or the tracer flux method

should give the same results.

The diffusion is implemented into the model as a Eulerian backward time

stepping scheme. This scheme is usually chosen to discretise diffusion in

OGCMs, as it is more stable compared to e.g. the Eulerian forward scheme.
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Depending on the size of the explicit diffusion coefficient κexpl, the model

using the Eulerian forward scheme might become unstable. In that case, it

is necessary to reduce the time-step; then the results converge towards the

ones of the model with the Eulerian backward scheme. The temperature

and salinity fields, hence the density, and the used explicit diffusion

coefficients stay constant with time for the experiments shown in this

chapter.

For the case, in which the tracer spreads only in a diffusive manner, the

tracer evolves by:

∂C(z, t)

∂t
=

∂

∂z

(

κexpl(z) ·
∂C(z, t)

∂z

)

, (3.1)

where C is the concentration of the tracer, κexpl is the explicit diffusivity

coefficient, z is the depth and t is the time. Note, the explicit diffusivity

coefficient κexpl is taken as time independent, but depth dependent. For the

Eulerian backward scheme, Equation 3.1 needs to be discretised in time on

the model grid as follows:

C(z, t + ∆t) = C(z, t) +
∂

∂z

(

κexpl(z) ·
∂C(z, t + ∆t)

∂z

)

· ∆t, (3.2)

where ∆t is the time-step, which is one day for the experiments shown. The

effect of this choice on the results of the experiments will be discussed later.

As the analysis for the diffusivity requires tracer conservation, noflux

boundary conditions are considered in this model.

For the discretisation, the same definition of the grid as in MOM 2

described in Pacanowski (1995) is used, where the grid is u-centered,

where the w-points are in the centre of two T -points. This means, the

tracer concentration is not necessarily defined in the middle of each box. As

already mentioned in Chapter 2, ∆z is the thickness of the model box of

the tracer and ∆z̃ is the vertical distance between two tracer points (the

thickness of the temperature box). The discretisation of the explicit

diffusion is realised by the centred differences scheme. Note, according to

the analysis of the diagnosed diffusivity, it is important to discretise the
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Experiment expl. diff.
coefficient

A−const constant
A−incr lin. increase
A−decr lin. decrease
A−oc non-linear

Table 3.1: Experiments of the
1-dimensional case studies, for
both initial tracer conditions.

methods always in exactly the same way as the model itself is dicretised.

To work out step by step the way of analysing diapycnal diffusivities and

numerical influences on the method, first the results of all experiments

using a uniform grid with a level thickness of 20 m will be shown. After

that, the same experiments using non-equidistant z-levels will be repeated.

The non-equidistant grid has got 45 vertical levels, with spacing of 10 m in

the uppermost level and a smooth increase to 250 m at 2500 m depth.

Below 2500 m the vertical grid box thickness is constantly 250 m up to a

maximum depth of 5500 m. All experiments are integrated over a period of

six months.

3.1.1 Experiments

In the following a set of experiments will be introduced, which only vary in

the explicit diffusion coefficient used in order to analyse the sensitivity of

the three methods. In these experiments the diffusion acts on the tracer

only and the explicit diffusivity is constant with time. Temperature and

salinity are also constant with time, hence the density is stationary. The

experiments differing in the explicit diffusion coefficient are denoted as:

(i) A−const: κexpl is constant with depth

(ii) A−incr: κexpl increases linearly with depth

(iii) A−decr: κexpl decreases linearly with depth

(iv) A−oc: κexpl is non-linear with depth.

An overview of the experiments is also shown in Table 3.1. The constant

explicit diffusion coefficient in experiment A−const has a value of 4cm2/s.

Figure 3.1 shows the explicit diffusion coefficients for experiment A−incr
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Figure 3.1: Time invariant diffusion coefficient for three different experi-
ments: a) linearly increasing with depth (A−incr), b) linearly decreasing
with depth (A−decr) and c) non-linear, as expected in the interior of the
ocean (A−oc).
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Figure 3.2: Symmetric (solid)
and asymmetric (dashed) ini-
tial profiles of the tracer dis-
tribution.

(a), A−decr (b) and A−oc (c) for the equidistant model grid. The non-linear

explicit diffusivity is chosen to be similiar to values typically found in the

ocean interior in OGCMs with a coarse horizontal resolution of 4/3◦. As, in

general, OGCMs have a non-equidistant depth grid with a higher resolution

at the surface, the linear interpolation of the explicit diffusivity coefficient

onto an uniform grid with a level thickness of 20 m is smoothing the

maximum of the explicit diffusivity coefficient directly at the surface.

In the NATRE experiments, described e.g. by Ledwell et al. (1998), the

tracer (sulfur hexafluoride) was released into the ocean in controlled fashion

at a depth of 300 m. In order to mimic this initial condition, the tracer with

a concentration of 1 mol/m3 is initialised in one grid box at a depth of

300 m (see Figure 3.2, solid line).

In the ocean, or also in OGCMs, the tracer distribution with depth does

not necessarily stay symmetric with depth, as a result of diffusion and
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Figure 3.3: Spreading of the tracer concentration with time for experiment
A−const, a) using the symmetric initial tracer condition and b) using the
asymmetric initial tracer condition.

advection. To get more general information about the robustness of the

methods, experiments using a second initial condition as shown in Figure

3.2 (dashed line) will be presented as well. The vertical structure of the

second initial tracer condition is asymmetric with depth with a second

weaker maximum in the tracer concentration at a depth of 350 m.

In order to get similar results for the experiments using the uniform and

the non-uniform grid, the initial tracer condition is defined on the

non-uniform grid and linearly interpolated onto the uniform grid.

3.2 Experiments with equidistant z-levels

In this section, the results of the experiments A−const, A−incr, A−decr

and A−oc are shown using the equidistant depth grid in the model set-up

with a level thickness of 20 m. The diagnostics will be divided by showing

the results using the divergence and the tracer flux method first, as both

methods infer from the advection-diffusion equation. Second, the results of

the variance method will be presented.

To give an overview, Figure 3.3 shows the temporal evolution of the tracer

field using a) the symmetric and b) the asymmetric initial tracer condition

for experiment A−const (κexpl = 4cm2/s). The spreading of the tracer with

time is similar for the other experiments with different explicit diffusion

coefficients and therefore is not separately shown.
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Figure 3.4: Diagnosed diffusivities κdiag−L (red) and κdiag−G (green) and
weighted diffusivities κw−L (magenta) and κw−G (cyan) for the experiments:
a) A−incr, b) A−decr and c) A−oc with symmetric initial tracer condition
(weighted diffusion overlaid by diagnosed diffusion).
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Figure 3.5: Diagnosed diffusivities κdiag−L (red) and κdiag−G (green) and
weighted diffusivities κw−L (magenta) and κw−G (cyan) for the experiments:
a) A−incr, b) A−decr and c) A−oc with asymmetric initial tracer condition
(weighted diffusion overlaid by diagnosed diffusion).

3.2.1 Results of the divergence and the tracer flux

methods

In the experiments shown in this section there is only vertical diffusion

acting on the tracer. As the divergence and the tracer flux methods are

discretised in exactly the same way as done in the model set-up, there is no

numerically induced diffusion expected in the results of the diagnosed

diffusivity.

The simplest experiment for both initial tracer conditions is experiment

A−const, where the explicit diffusion coefficient is constant with depth and

with time. As expected, the diagnosed diffusivities κdiag−L and κdiag−G and

weighted diffusivity κw−L and κw−G reflect the exact value of 4 cm2/s of the

homogeneous explicit diffusion coefficient.

Figure 3.4 shows the results for the diagnosed diffusivities κdiag−L (red) and
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κdiag−G (green) and for the weighted diffusivities κw−L (magenta) and κw−G

(cyan) for the experiments A−incr (a), A−decr (b) and A−oc (c), using the

symmetric initial tracer condition. This allows a direct comparison between

the results of the weighted and the diagnosed diffusivities as well as a

comparison between the divergence and the tracer flux method.

For both methods and also for all three experiments, the weighted and the

diagnosed diffusivity within one method give almost identical results. This

means that the tracer-based methods of diagnosing diapycnal diffusion are

not sensitive to the vertical structure of the explicit diffusion coefficient.

A comparison of the diffusivities analysed by the divergence method with

the ones analysed by the tracer flux method show substantial differences in

the results. Although, the results of both methods decrease with time e.g.

in experiment A−incr (Figure 3.4 a), the temporal development is different:

κdiag−G decreases with a quicker rate in comparison to κdiag−L. The results

of experiment A−decr show the opposite behaviour, where κdiag−L decreases

with a quicker rate than κdiag−G. In experiment A−oc, the results for both

methods also differ, whereas κdiag−G decreases monotonically, the values of

κdiag−L slowly increase after the second month.

Figure 3.5 shows the results of the experiments, A−incr, A−decr and A−oc,

where the asymmetric initial tracer condition is used. Again, the results for

the diagnosed diffusivity and the weighted diffusivity within one method

are consistent. A comparison of the results estimated by the divergence

method with the ones estimated by the tracer flux method shows again

significant differences in the temporal development.

In summary, both methods can be used for the analysis of diapycnal

diffusion. As the weighting over the tracer cloud is different, the results

estimated by the divergence method are not consistent with the ones

estimated by the tracer flux method. Furthermore, the methods are robust

with respect to a depth dependent explicit diffusion coefficient and to the

initial tracer condition used.
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3.2.2 Results of the variance method

In this section, the analysis of the experiments A−const, A−incr, A−decr

and A−oc is repeated for both initial tracer conditions using the variance

method. Figure 3.6 shows the results for the diagnosed diffusivity κvar

(green) and the weighted diffusivity κw (blue) for experiment A−const,

when the symmetric initial tracer condition is used. The weighted

diffusivity κw is identical to the constant value of 4 cm2/s of the explicit

diffusion coefficient. The diagnosed diffusivity κvar on the other hand shows

a ∼ 5% higher value at the beginning and a strong convergence towards the

expected value of 4 cm2/s afterwards.

In contrast to the results of the divergence and the tracer flux method,

there is a numerically induced diffusivity in the results of the variance

method. This induced diffusivity is a result of the discretisation of the

tracer concentration on the vertical model grid and will be discussed in

more detail at the end of this section.

A similar behaviour can be seen for experiment A−incr, shown in Figure

3.7. The initial difference between the diagnosed diffusivity κvar and the

weighted diffusivity κw is again about 5%. During the first month the

diagnosed diffusivity is strongly converging towards the values of the

weighted diffusivity and afterwards the differences are smaller than 1%.

The results of experiment A−decr show an even higher difference between

κvar and κw of ∼ 20% and also a stronger decrease of κvar during the first

half of the first month (see also Figure 3.8). After that the difference

between κvar and κw is again smaller than 1%.

The behaviour of the diagnosed diffusivity κvar in relation to the weighted

diffusivity κw in experiment A−oc is slightly different (Figure 3.9). Note,

the explicit diffusion coefficient in this experiment is much smaller

compared to the ones used in the previously shown experiments. The

diagnosed diffusivity κvar is only ∼ 1% larger than the weighted diffusivity

κw at the beginning and decreases slowly towards the values of κw at a

relatively constant rate.
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Figure 3.6: κvar (green) and κw

(blue) with time for experiment
A−const (symmetric initial tracer
condition).
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Figure 3.7: κvar (green) and κw

(blue) with time for experiment
A−incr (symmetric initial tracer
condition).
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Figure 3.8: κvar (green) and κw

(blue) with time for experiment
A−decr (symmetric initial tracer
condition).
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Figure 3.9: κvar (green) and κw

(blue) with time for experiment
A−oc (symmetric initial tracer con-
dition).

Using the symmetric initial tracer condition, all experiments show

differences between the results of the diagnosed diffusivity κvar and the

weighted diffusivity κw. Using the asymmetric initial tracer condition, the

results (see Figure 3.10 - 3.13) show a smaller difference between κvar and

κw compared to the analogous experiments using the symmetric initial

tracer condition.

Figure 3.10 shows the results for κvar and κw of experiment A−const. The

diagnosed diffusivity κvar at the beginning of the experiment is ∼ 4% larger

compared to the weighted diffusivity κw. During the first month κvar

decreases quickly towards the values of κw. In comparison with the
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Figure 3.10: κvar (green) and κw

(blue) with time for experiment
A−const (asymmetric initial tracer
condition).
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Figure 3.11: κvar (green) and κw

(blue) with time for experiment
A−incr (asymmetric initial tracer
condition).
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Figure 3.12: κvar (green) and κw

(blue) with time for experiment
A−decr (asymmetric initial tracer
condition).
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Figure 3.13: κvar (green) and κw

(blue) with time for experiment
A−oc (asymmetric initial tracer con-
dition).

analogous experiment in which the symmetric initial tracer condition is

used, there is less induced diffusivity when the asymmetric initial tracer

condition is used.

A similar change can be found in experiment A−incr (see Figure 3.11).

Again, κvar is ∼ 4% lager than κw and after the first month the differences

are very small.

Figure 3.12 shows the results for experiment A−decr. The diagnosed

diffusivity κvar at the beginning is ∼ 16% larger than κw; compared to

∼ 20% in the analogous experiment in which the symmetric initial tracer

condition is used. The rapid decrease of the induced diffusivity occurs in
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less than half a month and the remaining difference between κvar and κw is

very small (<< 1%).

Finally the results of experiment A−oc are shown in Figure 3.13. There is

no significant difference between the diagnosed diffusivity κvar and the

weighted diffusivity κw during the whole experiment.

The results of the variance method show an induced diffusivity which is not

resolved in the results of the divergence and the tracer flux methods. The

diagnosed diffusivities analysed by the divergence or the tracer flux method

must give the same results compared to the weighted diffusivity, as the

fluxes used for the analysis are defined in exactly the same way, as it is

done in the model set-up.

In the analytical tracer field the explicit vertical diffusion does not lead to

an induced diffusivity in the results of κvar. The explicit diffusion in the

model used is implemented with a Eulerian backwards time stepping

scheme. This scheme does not conserve the variance and leads in the

analysis of the diagnosed diffusivity κvar to an induced diffusion. This effect

can be reduced by decreasing the time-step of the model. To give an

example, decreasing the time-step by a factor of 5 (1/5 day) leads to an

induced diffusivity of only ∼ 1% in κvar at the beginning of the experiment.

This is five times smaller compared to the induced diffusivity previously

shown. Further reductions of the time-step lead to an even smaller induced

diffusivity.

The results show that these effects are pronounced when there is a strong

tracer gradient, as it is the case in the beginning of the experiments. These

effects are also strong in regions where the explicit diffusion coefficient is

large. If the explicit diffusion coefficient is small, as e.g. in experiment

A−oc, the induced diffusivity is also small, as the changes in the discrete

vertical profile of the tracer are small. Additionally, a weaker tracer

gradient, as is used for the asymmetric initial tracer condition, results in

lower values of the induced diffusivity.
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3.3 Experiments with non-equidistant

z-levels

Traditionally, most of the OGCMs are set-up with non-equidistant

depth-levels in order to better resolve the near-surface layers and the

thermocline at low computational costs. In the following, all the

experiments shown above for the equidistant depth-grid are repeated with

non-equidistant depth-grid in the model set-up instead. Only results for the

cases in which the symmetric initial tracer condition is used will be

discussed, as the asymmetric initial tracer condition yields similar results.

In Figure 3.14, the results for experiment A−const are shown. The

weighted diffusivities resolving from the diagnostics of the three methods

are identical to the constant value of 4 cm2/s of the explicit diffusion

coefficient. Also, the diagnosed diffusivities κdiag−L (red) and κdiag−G

(green), the results of the divergence and the tracer flux methods, are both

consistent with the constant explicit diffusion coefficient. Note, as the

values for κdiag−L, κw−L, κdiag−G, κw−G and κw are all the same, the blue

line of κw overlays the other ones in Figure 3.14. The diagnosed diffusivity

κvar (black) analysed by the variance method show a similar behaviour

compared to the analogous experiments with equidistant grid, only at the

beginning of the experiment the induced diffusion is slightly smaller.

Also the results of experiment A−incr (Figure 3.15) show similar results

compared to the ones of the analogous experiments with equidistant grid.

The diagnosed and the weighted diffusivity analysed by the divergence

method show almost identical results, the same can be found for the results

of the tracer flux method. Note, in Figure 3.15 the diagnosed diffusivity

κdiag−G (green) and the weighted diffusivity κw−G (cyan) have the same

behaviour as the weighted diffusivity κw (blue), and therefore κdiag−G and

κw−G can not be seen separately. The same effect can be seen in the figures

of the next two experiments.

The results of the weighted diffusivity κw analysed by the variance method

is, as expected, consistent with the results of the tracer flux method. The
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Figure 3.14: Diagnosed and
weighted diffusivities for all meth-
ods for experiment A−const with
non-equidistant z-levels (κdiag−L,
κw−L, κdiag−G, κw−G, κw equal to
4 cm2/s).
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Figure 3.15: Diagnosed and
weighted diffusivities for
all methods for experiment
A−incr with non-equidistant
z-levels (κdiag−L = κw−L and
κdiag−G = κw−G = κw).

diagnosed diffusivity κvar on the other hand shows numerically induced

diffusion at the beginning of the experiment which decreases afterwards,

when κvar converges towards the values of κw.

Note, the results using the non-equidistant depth grid are not exactly the

same compared to the analogous experiments with the equidistant z-grid.

The difference between both experiments is, however, small and and can be

ascribed to small differences in the definition of the initial tracer condition

used.

Similar results can be found for experiment A−decr (Figure 3.16). The

results analysed by the divergence or the tracer flux method show almost

identical results for the weighted and the diagnosed diffusivities. The

weighted diffusivity κw, analysed by the variance method, is consistent with

the results κdiag−G and κw−G, as seen in the previous experiments. The

diagnosed diffusivity κvar show similar results as the ones of the analogous

experiments with equidistant z-levels, with a strong convergence towards

the value of κw.

Also in the last experiment, A−oc (Figure 3.17), the results for the three

methods are consistent with the ones of the analogous experiments with

equidistant z-grid.
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Figure 3.16: Diagnosed and
weighted diffusivity using
all methods for experiment
A−decr using non-equidistant
z-levels (κdiag−L = κw−L and
κdiag−G = κw−G = κw).
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Figure 3.17: Diagnosed and
weighted diffusivity using all
three methods for experiment
A−oc using non-equidistant
z-levels (κdiag−L = κw−L and
κdiag−G = κw−G = κw).

In summary it can be said, that the analysis of the divergence and the

tracer flux methods is robust with respect to the resolution of the vertical

model grid. In consequence of the derivation of these two methods there is

no induced diffusivity, as the discretisation of the terms for the diagnosed

diffusivity is exactly the same as used for the discetisation of the model.

The results of the diagnosed diffusivity analysed by the variance method

show a slightly smaller amount of induced diffusion, which can be ascribed

to the slight differences in the initial tracer conditions used for the

experiments with equidistant z-levels.

3.4 Summary

In these simple 1-dimensional experiments, where diffusion acts on the

tracer only, it is possible to use the method described by the observational

study of e.g. Ledwell et al. (1998), referred to as divergence method in

this study. The diagnosed diffusivity κdiag−L analysed by this method is

determined by the discretisation of the temporal derivative and the

curvature of the tracer, which is done in exactly the same way as for the

discretisation of the explicit diffusion in the model set-up.
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Additionally, it is possible to weight the explicit diffusion coefficient in such

a way that the difference between the diagnosed diffusivity κdiag−L and the

weighted diffusivity κw−L is the numerically induced diffusivity. In these

simple cases, the results for the diagnosed and the weighted diffusivitiy are

almost identical, independent of the vertical structure of the explicit

diffusion coefficient and the initial tracer condition used and also

independent of the z-grid used in the model.

Similar to the approach used in the divergence method, the tracer flux

method infers from the cumulative integral of the advection-diffusion

equation, similar to the idea of Griffies et al. (2000). The cumulative

integral of the advection-diffusion equation says that the change of the total

amount of tracer mass above one level is equal to the tracer flux through

that level. Similar to the results of the divergence method, the diagnosed

diffusivity κdiag−G and the weighted diffusivity κw−G analysed by the tracer

flux method show consistent results independent of the vertical structure of

the explicit diffusion coefficient, the initial tracer condition used and the

vertical structure of the model grid.

A comparison between the results analysed by the divergence method to

the ones analysed by the tracer flux method shows that, although the

weighted and the diagnosed diffusivities within each method are consistent,

the results for both methods differ. These differences between the methods

can be ascribed to the different weighting used in the diagnostics.

The different results for the mean diffusivity of the tracer cloud are leading

to the question, which one is now the “correct” diapycnal diffusivity of the

tracer. The diffusivity is a value which is defined on each z-level. For an

exact analysis, it would be necessary to determine the diagnosed diffusivity

on each interface. As the analysis is not appropriate to resolve the vertical

behaviour of the diagnosed diffusivity, it is only possible to analyse a mean

value. Taking the mean of a depth depending parameter can always be

done in different ways; in general it cannot be reduced to only one correct

weighting. For the information about the values for the mean diffusivity

itself it always has to be taken into account by which weighting the mean

values are estimated. For this study, it is of minor interest which weighting
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will be used. The important information is the difference between the

diagnosed diffusivity and the weighted diffusivity, as this will give evidence

about the numerically induced diffusivity. The results show that for this

comparison both methods are suitable, at least in the simple experiments

just presented.

A more objective analysis is shown by the diagnostics of the variance

method, based on the work described by Morales Maqueda and

Holloway (2006). In this case the decay of the total tracer variance is

estimated and linked to a vertical mean value of the diagnosed diffusivity,

which is an analysis independent of the diffusion scheme used.

The diffusion is discretised by a centred differences scheme and

implemented into the model as a Eulerian backward time stepping scheme.

This time stepping scheme does not conserve the variance and leads to a

small amount of induced diffusion in the results of the diagnosed diffusivity

κvar , 5 − 1% in the cases shown. A decrease of the time-step leads to a

reduction of the numerically induced diffusion. For the analysis of OGCMs,

this is of minor importance, as the time-step used is generally chosen to be

so small that this effect can be neglected.



Chapter 4

Transformation onto isopycnals

In OGCMs, both advection and diffusion do not act only on passive tracer

fields, but also on the fields of temperature and salinity. The mixing in

temperature and salinity leads in these cases to a temporal change of the

density, which can be interpreted as a vertical movement of the isopycnal

layers. In order to diagnose the diapycnal diffusivity, the tracer needs to be

transformed onto isopycnal layers. Note, in experiments with more than

one dimension, the mapping of the tracer onto isopycnals is also

fundamental in experiments, where temperature and salinity are constant

with time, in order to diagnose the diapycnal diffusivity, as the isopycnal

layers are not necessarily isobaric.

In the following, the mapping scheme used for the further analysis will be

introduced. Then, the methods of diagnosing diffusion will be transformed

to be applicable in isopycnal coordinates. In the last section, the robustness

of the three methods will be tested with respect to the sensitivity of the

results according to changes in the transformation axis used.

4.1 Mapping of the tracer

In general, normal interpolation routines, such as linear, spline etc., are not

tracer conserving. As the analysis using either of the methods requires

tracer conservation, those normal interpolation routines cannot be used. In
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Figure 4.1: Schematics
of the transformation
of z-grid (red) onto the
new σ-axis (black, grey
shaded).

the following a discrete mapping scheme will be introduced. This mapping

is the only one used for the transformation of the tracer onto isopycnal

layers for all different cases shown in this study.

In the following σn are the pre-defines isopycnal levels and σ(n) are the

layers the tracer is transformed to. Figure 4.1 shows the schematics of the

tansformation of the tracer concentration (original in red, transformed

shaded in grey) for the easiest case in which

σn < σ(n) < σn+1 < σ(n + 1) < σn+2; the other cases will be discussed

afterwards. Starting at the surface in the first grid box, the tracer has the

concentration C(1), the density in that box is homogenous and has a value

of σ(1) and the thickness of that box is ∆z(1).

In order to divide the tracer mass C(1)×∆z(1) of the first grid box onto σ1

and σ2, the conservation of mass gives:

∆z(1) · σ(1) = ∆z1(1) · σ1 + ∆z2(1) · σ2

where ∆z1(1) is the thickness of the tracer volume which goes into the new

σ1-box and ∆z2(1) is the thickness of the tracer volume which goes into the

new σ2-box (for the illustration see Figure 4.1). Additionally, the thickness

of the first layer is also conserved, which gives:

∆z(1) = ∆z1(1) + ∆z2(1)

The layer thickness ∆zt of the transformed tracer concentration is then

given by
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∆zt(1) = Σn∆z1(n)

...

∆zt(k) = Σn∆zk(n), (4.1)

where n is the number of sublayers all going into the σk layer and ∆zt(k) is

the thickness of the σk layer. In the case shown in Figure 4.1 n is always

equal to 2. As the thickness of the σ-layers is known, the transformed

tracermass Cm can be calculated as well, following Equation 4.1:

Cm(1) = ∆z1(1) · C(1)

Cm(2) = ∆z2(1) · C(1) + ∆z2(2) · C(2)

...

Cm(k) =
∑

n

∆zk(n) · C(n) (4.2)

This leads to the transformed tracer concentration Ct

Ct(1) =
Cm(1)

∆zt(1)

...

Ct(k) =
Cm(k)

∆zt(k)
(4.3)

With this transformation, the tracer mass is conserved. The distribution of

the tracer is not exactly conserved, so the mapping potentially induces

diffusion. Note, the transformation of the tracer onto isopycnals using other

interpolation routines, e.g. linear, spline, etc., leads to potentially induced

diffusion in the results. A linear interpolation of the tracer e.g. results

generally in a larger and unpredictable induced diffusivity compared to the

one induced by the mapping scheme used in this study.

In the schematics of Figure 4.1 the simplest case of the transformation is

shown. Figures 4.2 and 4.3 show two different schematics for the other
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cases occurring dependent on the number of σ-layers used for the

transformation. Using about the same amount of σ-layers than there are

z-levels in the model, the transformation is straight forward, as already

shown in the schematics of Figure 4.1.

More generally, it is also possible that the spacing of the σ-layers of the

transformation axis is coarser compared to the spacing of the density profile

of the tracer, as shown in Figure 4.2. In such a case, where

σ1 < σ(1) < σ(2) < σ(3) < σ2, the tracer concentrations of three levels

(σ(1 − 3)) are divided into two layers (σ1−2). This implies a mixing of the

tracer concentration. Whereas increasing the number of layers of the

transformation, the thickness of the σ-layers starts to alternate, as shown in

Figure 4.3. In this case the noise in the spatial derivatives can get quite

large. Increasing the number of layers of the transformation further, the

transformation also results in layers with zero thickness.
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4.2 Diagnosing diffusion in σ-space

It is necessary to transform the advection-diffusion equation into σ-space,

the new coordinate system, for diagnosing diffusion by the divergence or

the tracer flux method in experiments where the depths of the isopycnal

layers change with time. For the analysis of diagnosing diffusion by the

variance method it is not necessary to transform the tracer into σ-space as

long as only 1-dimensional experiments are analysed. But it is useful, as a

comparison between the variance decay in z-space with the variance decay

in σ-coordinates gives evidence about the quality of the transformation

with respect to the method used.

4.2.1 Transformation of the advection-diffusion

equation onto isopycnals

The advection-diffusion-equation in z-coordinates is given by

∂C

∂t
= κ

∂2C

∂z2
− w

∂C

∂z
,

where C denotes the tracer concentration, κ the vertical diffusivity, w the

vertical velocity, z the depth and t the time. The diffusivity κ and the

vertical velocity w are taken as depth independent, as it is done in the

assumptions of the divergence and the tracer flux methods as well.

In the following, Ct denotes the transformed tracer concentration and zt the

transformed depth in σ-coordinates. The used transformation is given by

∂

∂t

∣

∣

∣

z
=

∂

∂t

∣

∣

∣

σ
−

∂zt

∂t

∣

∣

∣

σ

∂

∂t

∣

∣

∣

σ
.

In the continuous case used here the derivatives by ∂z can be directly

transformed as

∂Ct

∂zt

=
∂C

∂z
, (4.4)
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but the transformation of the temporal change of the tracer is not that

easy, as

∂Ct

∂t

∣

∣

∣

σ
6=

∂Ct

∂t

∣

∣

∣

z
. (4.5)

In order to determine the temporal derivative of the transformed tracer

correctly, it is important to take into account the change of the layer

thickness with time, which is given by

∂Ct

∂t

∣

∣

∣

σ
=

∂C

∂t

∣

∣

∣

z
+

∂zt

∂t

∣

∣

∣

σ
·
∂Ct

∂zt

. (4.6)

As the derivatives by ∂z are not affected by the transformation, the

advection-diffusion equation in z-space can be written as follows

∂C

∂t

∣

∣

∣

z
= κ

∂2Ct

∂z2
t

− w
∂Ct

∂zt

. (4.7)

Replacing Equation 4.7 in Equation 4.6 gives

∂Ct

∂t

∣

∣

∣

σ
−

∂zt

∂t

∣

∣

∣

σ
·
∂Ct

∂zt

= κ
∂2Ct

∂z2
t

− w
∂Ct

∂zt

. (4.8)

The vertical velocity w in equation 4.8 is the total vertical change of the

isopycnal layer. This includes the movement of the isopycnal layer due to

advection and also due to diffusion. The schematic in Figure 4.4 illustrates

the two different components of the vertical velocity w. The advective

component can be written as the temporal change of depth, and the

interfacial velocity wI is the diffusive component.
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w =
∂zt

∂t

∣

∣

∣

σ
+ wI , (4.9)

which is equivalent to

∂zt

∂t

∣

∣

∣

σ
= w − wI . (4.10)

Now, substituting Equation 4.10 in Equation 4.8 gives

∂Ct

∂t

∣

∣

∣

∣

∣

σ

− (w − wI) ·
∂Ct

∂zt

= κ
∂2Ct

∂z2
t

− w
∂Ct

∂zt

. (4.11)

This can be reduced to

∂Ct

∂t

∣

∣

∣

σ
= κ

∂2Ct

∂z2
t

− wI

∂Ct

∂zt

. (4.12)

As ∂zt can be written as

∂zt =
∂zt

∂σ
· ∂σ →

∂

∂zt

=
1

∂zt

∂σ

·
∂

∂σ
, (4.13)

and replacing Equation 4.13 in Equation 4.12 gives

∂zt

∂σ

∂Ct

∂t

∣

∣

∣

∣

∣

σ

= κ
∂

∂σ

∂Ct

∂zt

− wI

∂Ct

∂σ
. (4.14)

This equation (4.14) can also be written as

∂

∂t

(

∂zt

∂σ
· Ct

)

−
∂

∂t

∣

∣

∣

σ

(

∂zt

∂σ

)

· Ct = κ
∂

∂σ

∂Ct

∂zt

−
∂

∂σ
(wICt) +

∂wI

∂σ
Ct. (4.15)

As the temporal derivative is taken at a constant density σ, the second

term on the left hand side in Equation 4.15 can be written as

∂

∂t

∣

∣

∣

σ

(

∂zt

∂σ

)

=
∂

∂σ

(

∂zt

∂t

)

=
∂

∂σ
(w − wI) (4.16)
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according to Equation 4.10. Now, substituting Equation 4.16 in Equation

4.15 gives

∂

∂t

(

∂zt

∂σ
· Ct

)

−
∂w

∂σ
· Ct = κ

∂

∂σ

∂Ct

∂zt

−
∂

∂σ
(wICt) (4.17)

The change of the vertical velocity with σ is given by ∂w/∂σ. As one of the

properties of water is its incompressibility, any value of this term different

from zero means that there must be an along isopycnal transport. In the

analysis of the 1-dimensional experiments, this term must be equal to zero,

as in one dimension, there is no along isopycnal flow possible. This leaves

the transformed advection-diffusion equation in σ-space, as follows

∂

∂t

(

∂zt

∂σ
· Ct

)

= κ
∂

∂σ

∂Ct

∂zt

−
∂

∂σ
(wICt) . (4.18)

Equation 4.18 needs to be discretised in order to diagnose the diffusion in

the model. Therefore we define

Cm =
∆zt · Ct

∆σ
(4.19)

and the tracer gradient

Cgrad =
∆Ct

∆zt

. (4.20)

The transformed advection-diffusion equation is given in its discretised

form as follows

∆Cm

∆t
= κ

∆Cgrad

∆σ
−

∆ (wICt)

∆σ
(4.21)

For the analysis of the diagnosed diffusion by the divergence and the tracer

flux method, both methods do not support the information to analyse a

depth dependent interfacial velocity wI . Similar to the diagnostics of the

mean values of κ, Equation 4.21 is solved by the method of the least

squares fit and this method is only able to analyse a mean value of wI .
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For the analysis of the diagnosed diffusivity κdiag−G, the cumulative integral

of the advection-diffusion equation is used. For the transformed case the

cumulative integral of Equation 4.21 gives

s
∑

s1=1

∆ (Ct,s1 · zt,s1)

∆t
= κ

∆Ct,s

∆zt,s

∣

∣

∣

s+1
− wICt,s

∣

∣

∣

s+1
, (4.22)

where the sum is taken between the first and the density layer s. The form

of the integrated advection-diffusion equation in σ-coordinates is very

similar to the form of the same equation in z-coordinates. The main

difference is that in σ-space, the vertical velocity is reduced to the

interfacial velocity wI . This interfacial velocity is only non-zero in cases,

where the isopycnals are moving due to diffusion in temperature and

salinity.

4.2.2 Change in the diagnostics

The main changes in the diagnostics occur in the divergence and in the

tracer flux methods. These changes infer from the different

advection-diffusion equation in σ-layers. The methods are the same, as

again the method of the least squares fit is used for the analysis of the

diagnosed diffusivity and the diagnosed interfacial velocity. Therefore, the

procedure of solving Equation 4.18 and 4.22 will not be shown in more

detail.

The interfacial velocity differs only from zero in the cases, where diffusion

acts on temperature and salinity. In the cases, where diffusion acts on the

tracer only, the interfacial velocity is zero. Therefore, the results of the

least squares fit for these cases are shown for the divergence and the tracer

flux methods. Note, using the method of the least squares fit in

σ-coordinates means that the sum has to be taken over the density layers.

The diagnosed diffusivity κdiag−L,σ estimated by the divergence method is

given by
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κdiag−L,σ =

∑n

s=1

(

∆Cm,s

∆t
·

∆Cgrad,s

∆σs
∆σs

)

∑n

s=1

(

∆Cgrad,s

∆σs

)2

∆σs

, (4.23)

where Ct is the transformed tracer, Cm as defined in Equation 4.19, Cgrad

the tracer gradient (see Equation 4.20), ∆σ the difference between the

density classes, t the time and n the number of layers used for the

transformation. The sum is taken over all density classes. The diagnosed

diffusivity κdiag−G,σ estimated by the tracer flux method is given by

κdiag−G,σ =

∑n

s=1

(

∆Ct

∆zt

∣

∣

∣

s+1
·
∑s

s1=1

(

∆(Ct,s1 ·∆zt,s1)
∆t

)

· ∆σs

)

∑n

s=1

(

∆Ct

∆zt

∣

∣

∣

s+1

)2

∆σs

, (4.24)

where n is the number of the density classes. In the following experiments,

it is always necessary to transform the tracer onto isopycnals, therefore the

notation of the diagnosed diffusivities will be reduced to κdiag−L and κdiag−G.

In order to be able to compare the diagnosed diffusivity with the weighted

one directly, also the weighted diffusivity needs to be transformed into

σ-coordinates. Therefore, the explicit diffusion coefficient needs to be

transformed onto isopycnals. This is realised by a linear interpolation and

the linearly interpolated explicit diffusion coefficient is denoted as κexpl,σ.

The term of the explicit diffusive flux κexpl,σ · ∆Ct

∆zt
is defined as Fexpl in the

following. The weighted diffusivity κw−L,σ estimated by the divergence

method is given by

κw−L,σ =

∑n

s=1

(

∆Fexpl,s

∆zt,s
·

∆Cgrad,s

∆zt,s
· ∆σs

)

∑n

s=1

(

∆Cgrad,s

∆zt,s

)2

∆σs

. (4.25)

Similar the weighted diffusivity κw−G,σ analysed by the tracer flux method

in σ-coordinates is given by



4.3. Sensitivity study: variation of the density layers 76

κw−G,σ =

∑n

s=1

(

Fexpl,s ·
∆Ct

∆zt

∣

∣

s+1
· ∆σs

)

∑n

s=1

(

∆Ct

∆zt

∣

∣

s+1

)2

· ∆σs

. (4.26)

In the following, the notation of the weighted diffusivity will be also

reduced to κw−L and κw−G. The sum over ∆σ in the denominator and the

numerator in the definitions of the weighted and the diagnosed diffusivities

can be interpreted as a weighting of the mean values by the grid of the

transformation axis used. In the following the grid is chosen to be

equidistant for most of the times.

For the diagnostics of the variance method in 1-dimensional experiments, it

is not necessary to transform the tracer onto isopycnals before analysing

the diagnosed diffusivity κvar. The variance of the tracer is a depth

independent value and as long as the experiments are reduced to one

dimension, the tracer does not have to be transformed onto isopycnals.

Nevertheless, it is an interesting aspect how the mapping of the tracer

affects the diagnostics of the tracer variance. Therefore, a comparison

between the diagnostics of the diffusivity κvar in z -levels and in σ-layers

will be included in the following.

4.3 Sensitivity study: variation of the

density layers

In the schematics of the tracer transformation in Section 4.1 three different

cases are described, which can occur using the introduced way of the tracer

mapping. Therefore, it is useful to analyse the influence of the chosen

transformation on the results of the diagnosed diffusivities.

The results of Chapter 3 show that only in the experiment in which (i) the

explicit diffusion coefficient is constant (4 cm2/s), (ii) diffusion acts on the

tracer only and (iii) the density is stationary, the results for the divergence

and the tracer flux methods should be identical. Additionally, there is no

numerically induced diffusion in this experiment. This means, differences in



4.3. Sensitivity study: variation of the density layers 77

0 1 2 3 4 5 6
4

4.5

5

5.5

6

6.5

7

time [months]

di
ffu

si
vi

ty
 [c

m
2 /s

]
75

65

55

45

35

25

a)

0 1 2 3 4 5 6
4

4.5

5

5.5

6

6.5

7

time [months]

di
ffu

si
vi

ty
 [c

m
2 /s

]

75

65

55

45

35

25

b)

Figure 4.5: Variation of the transformation axis (25 - 75 equidistant σ-levels),
a) using the divergence method (κdiag−L) and b) using the tracer flux method
(κdiag−G).

the values of the diagnosed diffusivities κdiag−G and κdiag−L to the expected

value of 4 cm2/s are caused by the mapping of the tracer onto isopycnals

only.

In the following, two different cases are shown: first, the number of density

layers is smaller than in the original model grid and second, the

transformation contains more layers than model levels. The used

transformation axis always covers the complete density range of the model

and is divided into equidistant ∆σ. The model used for this experiment has

got 75 equidistant z-levels with a thickness of 20 m.

Figure 4.5 shows the results for the diagnosed diffusivities κdiag−L (a) and

κdiag−G (b) using a smaller number of density layers than z-levels for the

transformation. In these cases, the transformation is similar as shown in

the schematics of Figure 4.2.

The results show that independent of the method used, the diagnosed

diffusivity mainly reacts to the changes in the resolution of the

transformation during the first month. This can be ascribed to the

relatively narrow tracer distribution close to the beginning of the

experiment, which is not necessarily resolved by the transformation axis

used. A decrease in the resolution of the transformation results in an

overestimation of the diagnosed diffusivities.

Although the main behaviour in Figure 4.5 a) and b) is the same, there are
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Figure 4.6: Variation of the transformation axis (75 - 140 equidistant σ-
levels), a) using the divergence method (κdiag−L) and b) using the tracer flux
method (κdiag−G).

some differences in the results of the two different methods. Using the

divergence method, the results are more sensitive to the number of density

layers used for the mapping. The values of the diagnosed diffusivity κdiag−L

are higher compared to the analogous results using the tracer flux method.

Additionally, the diagnosed diffusivity κdiag−L is in some cases

underestimating the expected constant value of 4 cm2/s, whereas the results

of κdiag−G seem to converge towards the level of 4 cm2/s.

Figure 4.6 shows the results for the other case (a, results of the divergence

and b, of the tracer flux method), where the number of the density layers

used for the mapping are higher than the number of model levels (see also

the schematics in Figure 4.3). In these cases, the influence of the used

transformation profile and also the difference between the used methods

increase.

Using the divergence method, only the cases using 75 and 80 layers for the

transformation lead to results close to the expected value. Increasing the

number of layers used for the mapping leads to a quick decrease in the

diagnosed diffusivity. This can be explained by the effect, that using more

layers for the transformation than z-levels, the transformed thickness of the

new layers vary strongly. This leads to a very noisy signal in the derivatives,

as in some layers the transformed layer thickness is zero or close to zero.

On the other hand, the tracer flux method uses the cumulative sum of the



4.3. Sensitivity study: variation of the density layers 79

temporal derivative of the tracer, which is less noisy. But, also in Figure 4.6

b), the diagnosed diffusivity decreases with an increase of the number of

layers used for the transformation.

The effect of the decrease in the values of κdiag−G as a result of an increase

in the resolution of the transformation can be explained by the definition of

κdiag−G, which is given in Equation 4.24 and its discrete form is

κdiag−G =

∑n

s=1

(

∆Ct

∆zt

∣

∣

∣

s+1
·
∑s

s1=1

(

∆(Ct·∆zt)
∆t

)

· ∆σs

)

∑n

s=1

(

(

∆Ct

∆zt

∣

∣

∣

s+1

)2

· ∆σs

) ,

where n is the number of layers used for the transformation. Increasing the

number of layers used for the transformation mainly has an impact on the

gradient of the transformed tracer ∆Ct/∆zt|s+1. The high vertical variation

of the tracer concentration and the thickness of the layers do not lead to

large variations in the cumulative sum
∑s

s1=1
∆(Ct·dzt)

∆t
. This means that the

decrease of the diagnosed diffusivity is a result of spurious changes in the

spatial derivative of ∆Ct/∆zt|s+1.

As the spatial derivative of the tracer is squared in the denominator, the

reduction as a result of the mapping is squared as well. This means that an

increase in the number of layers used for the transformation by a factor of 2

leads to an increase of the tracer gradient by the factor of 2 in the

numerator and an increase by the factor of 4 in the denominator, which

results in a reduction of 2 in the diagnosed diffusivity. And indeed, Figure

4.6 shows, that an increase of the number of layers to 140 (nearly a factor

of 2) gives a diagnosed diffusivity of ∼ 2.2 cm2/s, which is consistent with

the explanation.

A high resolution in the transformation results in layers with zero thickness

which lead to a biased spatial derivative. The cumulative integral of the

advection-diffusion equation describes that the change of the tracer mass

above an isopycnal layer is equal to the tracer flux through that isopycnal

layer. This means that in layers with zero thickness, the total change of the
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tracer mass above the isopycnal is equivalent to the total change of the

tracer mass above the appropriate z-level. Therefore, it is useful to define

the tracer gradient on that isopycnal to be equivalent to the tracer gradient

on the appropriate z-level. For layers with a non-zero thickness, the tracer

gradient will be linearly interpolated onto the new σ-grid.

Using 75 equidistant layers for the mapping in combination with the linear

interpolation of the tracer gradient onto isopycnals, the diagnosed

diffusivity κdiag−G is already consistent with the value of the explicit

diffusion coefficient and stays consistent by a further increase of the

resolution of the transformation. Also decreasing the number of layers to a

lower amount z-levels lead to robust results for the diagnosed diffusivity; in

this example, the number of layers can be decreased to the amount of 65.

For the diagnostics of the tracer flux method, the transformation of the

tracer gradient leads to robust results independent of the used

transformation, as long as the resolution of the new grid spacing is not

getting coarser than the density profiles in the z-grid.

This idea cannot be applied to the divergence method. Inferred from the

advection-diffusion equation, the temporal derivative of the tracer and also

its curvature need to be estimated for each layer separately. After the

mapping, the temporal derivative gets zero in all those layers with a zero

thickness, which is not generally the case for each experiment, but for the

shown one with the constant explicit diffusion coefficient. The curvature,

on the other hand, is biased by the spurious distribution as a result of the

tracer mapping. Transforming only the tracer gradient linearly onto

isopycnals leads to an imbalance in the advection-diffusion equation.

Although it is not necessary to transform the tracer onto isopycnals for the

diagnostics of the variance method in 1-dimensional experiments, the

sensitivity of the variance decay with respect to the resolution of the

transformation will be analysed in the following. As a reminder, the

diagnosed diffusivity κvar estimated by the variance method is given in its

discretised form in Equation 2.28



4.3. Sensitivity study: variation of the density layers 81

0 2 4 6
3.95

4

4.05

4.1

4.15

4.2

4.25
di

ffu
si

vi
ty

 [c
m

2 /s
]

time [months]

 

 

k
w

k
diag

, 75

k
diag

, 150
Figure 4.7: Linearly
transformed tracer
gradient used in the
analysis of the variance
method of experiment
A−const: κvar for 75
(red) and 150 (green)
equidistant σ-layers,
and κw (blue).

κvar =
−∆σ2

∆t
∑n

k=1

(

(

∆C
∆z

)2
· ∆z̃k

) ,

where n is the number of z-levels. The variance decay of the tracer is only

affected by the mapping, if the transformation leads to a spurious mixing of

differing tracer concentrations (as shown in Figure 4.1 and 4.2).

Considering a high resolution in the transformation used (Figure 4.3), the

variance decay ∆σ2/∆t is not affected by the mapping at all. As the results

of the divergence and the tracer flux methods already show, there is a great

effect of the mapping on the spatial derivatives. Therefore, the results for

the diagnosed diffusivity κvar shown in the following are estimated using

the linearly interpolated tracer gradient.

Figure 4.7 shows the diagnosed diffusivity κvar using 75 equidistant σ-layers

for the transformation (red) and twice as many layers than levels (green).

Compared to the induced diffusivity shown in Section 3.2.2, using the same

amount of layers as model levels, the diagnosed diffusivity κvar is

underestimated during the whole experimental time. Doubling the number

of layers leads to consistent results to the analysis of the diagnosed

diffusivity in z-space.

In summary it can be said that the results analysed by the tracer flux

method are more stable according to the used transformation axis compared

to the divergence method. But although they are more stable as long as the

transformation is using the same amount of layers, doubling the number of
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layers leads to a reduction of 50% in the values for the diagnosed diffusivity.

The linear transformation of the tracer gradient onto isopycnals leads to

stable results for the tracer flux method, which are independent of the

transformation axis used. Additionally, the diagnostics of the variance

method also lead to stable results in the diagnosed diffusivity κvar , if the

resolution of the transformation axis is relatively high.

As the results of the divergence method are highly sensitive with respect to

the transformation of the tracer onto isopycnals, the diagnostics in the

following chapters will focus on the analysis of the tracer flux and the

variance method.



Chapter 5

The role of advection

In the following, the effect of a vertical change of the density layers with

time on the diagnostics of the tracer flux and the variance methods will be

shown. Therefore, experiments with an implemented vertical advection and

no additional explicit diffusion will be analysed. The corresponding effect of

the vertical advection acting on temperature and salinity can be interpreted

as a vertical movement of the isopycnals.

In general, vertical advection does not lead to an exact parallel movement

of the isopycnals but also to small diverging or converging effects. However,

in this chapter the easiest case is considered, where the advection generates

an exact parallel movement of the isopycnals.

The vertical advection is realised in the model by using the centred

differences scheme in space and an Eulerian backwards scheme in time. In

order to gain some understanding of the processes by which advection

affects the analysis, the discussion will be limited to a basic experiment,

where the explicit vertical velocity is constant with depth and time, having

a value of 4 × 10−6 m/s ≈ 0.34 m/day with a downwards direction.

As already mentioned, the advection scheme used is mainly dispersive and

only a small amount of numerically induced diffusion is expected. This

represents the worst case scenario for the analysis, because the signal which

needs to be analysed is relatively small. On the other hand this gives us the

possibility to clearly analyse the effect of the parallel movement of the
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isopycnals in combination with the tracer mapping on the diagnosed

diffusivities. In the current chapter, the focus is on biasing effects that

result from the diagnostics. In this respect, it is not necessary to compare

the results of different advection schemes.

First, details about the experimental set-up are given. After that the

results of the tracer flux and the variance methods will be shown in detail.

5.1 Experiment

The aim of this experiment is to create an exactly parallel movement of the

isopycnal layers in the original z-level model. In this case, the divergence or

convergence of the isopycnals is eliminated.

In general, the density in the model is a non-linear function depending on

temperature and salinity. The corresponding effect of the advection in

temperature and salinity in combination with the non-linear density

equation does not necessarily lead to a parallel movement of the isopycnal

layers. In order to eliminate converging and diverging effects, the density is

chosen to be linearly dependent on the temperature. Additionally, the

initial temperature profile is chosen to be linear. A perfect advection

scheme would result in a parallel movement of the isopycnals, even for a

non-linear equation of state. As the isopycnal movement is exactly parallel,

the interfacial movement of the isopycnals is zero (wI = 0), which is

important for the diagnostics of the tracer flux method.

The temporal change of the isopycnal layers with time is shown in Figure

5.1. The model grid is chosen to be equidistant with a level thickness of

20 m and the initial tracer condition is chosen to be symmetric with depth.

Also for this experiment, a relatively long time-step of one day is used,

where long is relative to ∆z
w

, such that w·∆t
∆z

= 0.17. A reduction of the

time-step was found to generate an even smaller amount of numerically

induced diffusion, similar as shown for the results of the variance method in

Section 3.2.2. For the analysis of the robustness of the methods the effect of

the time-step on the value of the results is of minor interest.
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Similar to the experiments shown in Chapter 3, the tracer is released at a

depth of ∼ 300 m. The temporal development of the tracer concentration is

shown in Figure 5.2, where the large effect of the dispersion generated by

the advection scheme is shown. The boundary conditions in the model

set-up are closed, which lead to difficulties in the density field close to the

boundary (e.g. empty boxes). These effects can be neglected, as the tracer

does not reach the surface or bottom boundary region.

5.2 Diagnostics using the tracer flux method

In the diagnostics of the tracer flux method, the interfacial velocity is equal

to zero (wI = 0), as the temporal change of the isopycnal layers occur in a

parallel way. In order to stay close to the analysis of the z-level experiments

in Chapter 3, the initial density profile is used as a transformation axis for

the mapping of the tracer onto isopycnal layers.

Figure 5.3 shows the results for the diagnosed diffusivity κdiag−G (red).

Note, the transformed tracer is used for the estimate of the spatial

derivatives. As there is no explicit diffusion in this experiment, the

weighted explicit diffusion coefficient κw−G (blue) is zero. Surprisingly, the

diagnosed diffusivity κdiag−G in Figure 5.3 shows fluctuations with a

frequency of about two months and an amplitude of ±0.45 cm2/s. These

fluctuations are generated by a combination of the tracer mapping and the
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shaded the transformed tracer concentration.

vertical movement of the tracer. The transformed tracer concentration

needs two months to move from one σ-layer to the next considering the

layer thickness of 20 m and the vertical velocity of 4 × 10−6 m/s. Using the

density profile at a different time for the mapping of the tracer onto

isopycnals, the results show the same behaviour. The only difference is a

time shift of the frequency.

In order to explain the combined effect of the mapping and the vertical

advection on the diagnostics, we first consider only the effect of remapping

the tracer as density is advected. Figure 5.4 shows the schematics of the
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mapping for this idealised case. The black lines show the grid at the

time-step t. The isopycnal layers σn move with the constant vertical

velocity wz towards greater depths. Densities at the z-levels are σk0(t).

Initially at t=0, σk0(t) = σn. The z-grid at time-step t + ∆t is visualised by

the blue dashed lines, which is the same depth grid, as for time-step t (the

black lines). As the advection is highly idealised, the tracer is completely

covered by z-box k0, which has the density σk0 , here visualised by the blue

shaded box. The tracer concentration in this experiment is defined to be

C = 0 for k 6= k0 and C = C0 for k = k0. Since we assume tracer is not

advected, these tracer values do not change as functions of z.

The mapping divides the tracer concentration into the density layers σn and

σn+1. The thickness of the z(k0)-level is defined by ∆z and the tracer mass

is the given by C0 · ∆z. As the tracer mass is divided into σn and σn+1, a

fraction f is defined moving into the layer σn+1. So, the fraction of the

tracer mass C0 is given by

C0 · ∆zt(n2) = f · C0 · ∆z.

This is the only tracer mass which is added to the layer σn+1, so the tracer

mass in this layer is given by

Ct(n + 1) · ∆z = f · C0 · ∆z. (5.1)

As the fraction f of the tracer mass moves into σn+1, it leaves the fraction

(1 − f) to go into σn. Similar to Equation 5.1, the transformed tracer mass

in layer σn can be written as

Ct(n) · ∆z = (1 − f) · C0 · ∆z. (5.2)

In this experiment the advection has a constant velocity of wz. As a result

of the transformation, the constant velocity in z-levels is transformed into a

constant velocity in σ-layers which is denoted as wσ in Figure 5.4. The

vertical velocity depends only of the rate of change of the fraction f ,
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−∆f

∆t
∆z = wσ, so the temporal derivative of the transformed tracer mass

Ct · ∆z is given by

∆ (Ct(n) · ∆z)

∆t
= −wσ · C0. (5.3)

∆ (Ct(n + 1) · ∆z)

∆t
= −wσ · C0. (5.4)

There is no change in the tracer on any other layer. As a reminder, the

diagnosed diffusivity κdiag−G was given in Section 4.2.2, Equation 4.24, and

in its discretised form

κdiag−G =

−
∑n

s=1

(

∆Ct

∆zt

∣

∣

∣

s+1
·
∑k

s1=1

(

∆(Ct·∆zt)
∆t

)

· ∆σs

)

∑n

s=1

(

(

∆Ct

∆zt

∣

∣

∣

s+1

)2

· ∆σs

)

In the present idealised case, the spatial derivatives can be written as

∆Ct

∆z

∣

∣

∣

∣

∣

n

=
(1 − f) · C0

∆z
(5.5)

∆Ct

∆z

∣

∣

∣

∣

∣

n+1

=
(1 − 2f) · C0

∆z
(5.6)

∆Ct

∆z

∣

∣

∣

∣

∣

n+2

=
f · C0

∆z
(5.7)

That leaves for the diagnostics of κdiag−G using Equation 5.3 and 5.4 to

calculate the rate of change of the column-integrated tracer:

κdiag−G =
−wσ · (1 − 2f) · ∆z

(1 − f)2 + (1 − 2f)2 + f 2
(5.8)

As the vertical velocity wσ and ∆z are constant, the diagnosed diffusivity is

only a function of the fraction f , which can vary between 0 and 1. The

denominator of Equation 5.8 is always positive, the sign of the diagnosed



5.2. Diagnostics using the tracer flux method 89

t

w

C

σ

∂ > 0z∂
Ct Figure 5.5: Schematics of

an idealised tracer (grey)
mapped onto the ”new” σ-
layers (green) during the
first month, or generally
during the first half of one
wavelength.

σ

= 0

C t

w

t∂C
∂z

Figure 5.6: Schematics of
an idealised tracer (grey)
mapped onto the ”new” σ-
layers at the end of month
one (red) , where the tracer
maximum is exactly split
onto two new layers.

C

σ

t

w

< 0t∂C
z∂

Figure 5.7: Schematics of
an idealised tracer (grey)
mapped onto the ”new”
σ-layers (blue) during the
second month, or generally
during the second half of
one wavelength.

diffusivity κdiag−G is determined by the term (1 − 2f). This means that the

values for the diagnosed diffusivity can be divided into three different cases:

first, where (1 − 2f) is positive, second, where (1 − 2f) is equal to zero and

third, where (1 − 2f) gets negative. These cases are shown in the

schematics in the Figures 5.5 - 5.7

In Figure 5.5 the grey shaded region is the tracer concentration in z-levels

(before the mapping). The green shaded region is the transformed tracer

concentration on the fixed σ-layers. In this case, the fraction f is always

greater than 0.5, as the tracer has moved less than half of one model box.
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That leaves (1 − 2f) > 0, so the diagnosed diffusivity is always positive.

In the case, where the tracer has moved exactly half of the length of one

model box, its mass is divided equally into σn and σn+1 and f = 0.5 (see

Figure 5.6). The denominator is equal to 0.5 and as the numerator is given

by (1 − 2f) = 0, the diagnosed diffusivity in this case gets zero.

In the last case (Figure 5.7), the tracer has already moved more than one

half model box, so that f > 0.5. This means that (1 − 2f) < 0 and the

diagnosed diffusivity gets negative.

This mechanism is responsible for the results of the diagnosed diffusivity

κdiag−G in the analysis of experiments with implemented advection. This

means that the diagnosed diffusivity shown in Figure 5.3 is only a result of

the combined effect of the mapping and the vertical movement, but not the

result of numerically induced diffusion generated by the advection scheme

used.

In Section 4.3, the sensitivity of the mapping to the spatial derivatives and

the change of the results in the diagnosed diffusivity have been discussed.

In the current case, where the vertical velocity is constant, the linear

transformation of the tracer gradient onto isopycnals shows exactly the

same dependence on the fraction f , as shown for the derivative of the

transformed tracer.

∆Ct

∆z

∣

∣

∣

∣

∣

s+1

=
∆C

∆z

∣

∣

∣

∣
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·
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∆z
+

∆C

∆z

∣

∣

∣

∣

∣

k+1

·
∆zt(n1)

∆z
, (5.9)

where s denotes the σ layer and k the z-level. For the idealised case

without dispersion the spacial derivative in level k0 is equal to −C0/∆z and

in level k0 + 1 equal to C0/∆z. That leaves for the transformed derivative

in σn+1, including the definition of the fraction f (see Figure 5.4)

∆Ct

∆z

∣

∣

∣

∣

∣

n+1

= −
C0

∆z
·
f · ∆z

∆z
+

C0

∆z
·
(1 − f) · ∆z

∆z
=

(1 − 2f) · C0

∆z
(5.10)

which is identical to Equation 5.6, the derivative of the transformed tracer.
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tracer mapping; the weighted
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The effect of the mapping is very large, but also a longer time mean does

not give mapping invariant results for the diagnosed diffusivity κdiag−G. The

values of the longer time mean, e.g. a mean over one wavelength, are

getting close to zero, but vary slightly from wavelength to wavelength and

these values are also sensitive according to the used transformation axis.

Using the initial density profile for the transformation axis, the mean of the

diagnosed diffusivity κdiag−G is 0.016cm2/s. In Section 5.3, the diagnosed

diffusivity analysed by the variance method shows that the numerically

induced diffusion in this experiment is about one order of magnitude

smaller (∼ 1.7 × 10−3 cm2/s).

The sensitivity study (see Section 4.3) of the mapping shows that an

increase of the number of σ-layers leads to more robust results. Note, also

the tracer is advected. An increase of the number of layers by the factor of

e.g. 5 (as shown in Figure 5.8), does not result in a decrease of the

amplitude of the spurious fluctuations in the results of the diagnosed

diffusivity, but in a decrease of the mean value (−0.03 cm2/s). A further

increase in the resolution of the transformation does not reduce this effect,

the mean value of the diagnosed diffusivity decreases further.

The advection scheme used (centred difference in space) is very dispersive,

only the implementation into the model by the Eulerian backwards time

stepping scheme might result in a small amount of numerically induced

diffusion. The diagnosed diffusivity associated with the transformation is

larger and masks the amount of numerically induced diffusion.
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Figure 5.9: Blue: the tracer
maximum as a function of time
is shown; red: the density σ at
the tracer maximum.
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Figure 5.10: Diagnosed diffu-
sivity κdiag−G (blue) using 5
times more layers than levels
for the mapping and density σ
at the maximum of the trans-
formed tracer (red).

In order to give an overview about what happens in the model, Figure 5.9

shows the maximum of the tracer concentration (blue) and the density at

the tracer maximum (red). This shows how the layers move and also how

the maximum concentration is affected by the vertical advection.

Additionally, it shows the linearly decreasing density in the z-level boxes.

Using 5 times more layers than levels for the transformation, the frequency

in the fluctuations of the diagnosed diffusivity (Figure 5.10, blue) is directly

correlated to the density at the tracer maximum (red). As expected, within

one wavelength the tracer maximum is located in the same σ-layer.

In the analytical case, the value of the velocity wσ (see the schematics in

Figure 5.4) should be identical to the explicit vertical velocity wexpl used in

the advection scheme in the model. The velocity wσ is equal to the sum of

the temporal change of the fraction f and the layer thickness, as follows

wσ =
∆f

∆t
· ∆z. (5.11)

Using the initial density profile for the tracer mapping, the transformed

layer thickness in each layer is constantly 20 m and identical to the level

thickness. Figure 5.11 a) shows the fraction f, which is in each layer



5.2. Diagnostics using the tracer flux method 93

a)

0 2 4 6
22.2

22.25

22.3

22.35

22.4

time [months]

de
ns

ity

 

 

0

0.2

0.4

0.6

0.8

1

b)

Figure 5.11: Fraction f of the transformation, a) using the initial density
profile for the mapping for the mapping, b) using 5 times more layers than
levels for the mapping.

constantly increasing. The rate of change of the fraction f is constant

(∂f/∂t = const.). The vertical velocity in that case is also constant with

depth and with time, except when f changes from 1 to 0.

An increase in the resolution of the transformation leads to changes in the

fraction f . Figure 5.11 b) shows the fraction f where an equidistant

transformation axis with 5 times more layers than levels is used. The

changes in f do not occur simultaneously in a depth independent way. This

means that the velocity wσ is not constant with depth. Additionally, the

temporal change of the fraction f , as long as staying in one layer, is not

constant any longer. An increase in the resolution of the transformation

leads to a temporal change in the layer thickness. The combination of these

effects generates high changes in the velocity wσ and results also in negative

mean values of wσ. This results in the diagnosed diffusivity in a small

decrease of the amplitude of the fluctuations and also in a downwards shift,

which leads to negative mean values.

On one hand, the diagnostics of the tracer flux method require a high

resolution of the transformation used for the mapping in order to get robust

results. On the other hand, the vertical advection causes spurious changes

in the diagnosed diffusivity due to a high resolution of the transformation

used. Therefore, it might be useful to increase the vertical resolution of the

model itself.

In the following, results of experiments will be shown using the same

experimental set-up, only the vertical resolution is increased to a level
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Figure 5.12: Diagnosed diffusivity (red) for model with fine resolved vertical
grid (level thickness of 5 m): a) using initial density profile for the tracer
mapping, b) using 5 times more layers than levels for the transformation.
The weighted diffusivity κw−G (blue) in both Figures is zero.

thickness of 5 m. This includes that the initial tracer condition is linearly

interpolated onto the new model grid which leads to a decrease in the

tracer gradient of the initial tracer condition.

Figure 5.12 a) shows the results for the diagnosed diffusivity κdiag−G , where

the initial density profile is used for the tracer mapping onto isopycnals.

The amplitude in the diagnosed diffusivity is about 5 times smaller

compared to the one of the analogous experiments with the coarser vertical

grid, but still of the same order of magnitude as the explicit diffusion

coefficient expected in the interior ocean (e.g. in OCCAM, the explicit

diffusion coefficient in the region of the NATRE experiments is 0.1 cm2/s).

The mean value of the diagnosed diffusivity κdiag−G is ∼ 7.7 × 10−3 cm2/s.

In comparison to the mean induced diffusivity analysed by the variance

method (∼ 5.7 × 10−3 cm2/s, see Section 5.3), the mean value of κdiag−G is

overestimating the numerically induced diffusivity by ∼ 35%.

A further increase of the vertical resolution in the model results in a further

decrease of the amplitude of the fluctuations in the diagnosed diffusivities.

For the realisation in OGCMs a high vertical resolution might lead to

mixing problem e.g. at the surface. Note, the amplitude of the diagnosed

diffusivity using the initial density profile for the mapping decreases linearly

with a decrease of the level thickness in the model set-up.
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In Figure 5.12 b) the results for the diagnosed diffusivity κdiag−G (red) using

5 times more layers than levels for the tracer mapping are shown. The

amplitude in κdiag−G is much smaller with a negative mean value, although

it is very small (−0.019 cm2/s).

In summary, it can be said that the combination of vertical advection and

transformation of the tracer onto isopycnals causes problems in estimating

the diagnosed diffusivity using the tracer flux method. A high vertical

resolution in the model set-up reduces this effect in such a way that the

fluctuations of the spurious diffusivity is reduced, but the mean values are

still sensitive with respect to the transformation used. The spurious

diffusivity as a combined effect of the mapping and the vertical movement

of the tracer is larger than the numerically induced diffusion as a result of

the advection scheme used.

5.3 Diagnostics using the tracer variance

The diagnostics of the variance method infer from the analysis of the

variance decay. The variance, as defined here, is a depth independent

parameter. As the present experiment covers only one dimension, the

temporal change of the variance of the total tracer volume can be analysed

in z-coordinates. A comparison to the variance decay arising from the

transformed tracer in σ-coordinates shows the effect of the tracer mapping

on the results of the diagnosed diffusivity.

Figure 5.13 shows the variance of the tracer in z-levels (red) and the

variance of the transformed tracer on isopycnals (blue). The tracer variance

σ2(z) in z decreases constantly with time at a low rate. Using the initial

density profile as a transformation axis for the mapping, the variance σ2(σ)

of the transformed tracer shows a completely different behaviour with a

periodic oscillation. Similar to the diagnosed diffusivity κdiag−G (as shown

in section 5.2), the cycle of the variance σ2(σ) has a frequency of about 2

months. Estimating the diagnosed diffusivity κvar from the variance in

σ-coordinates gives almost identical results compared to the previous one of
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Figure 5.13: Variance of
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layers.

the diagnosed diffusivity κdiag−G (see Figure 5.3).

In order to understand the combined effect of the mapping and the vertical

movements of the isopycnals on the change of the variance, the same

idealised case is considered without dispersion in the tracer concentration.

Figure 5.14 shows the similar schematics, as already shown in Section 5.2.

The black lines show the grid at the time-step t. The isopycnal layers σ(z)

move with a constant vertical velocity wz towards greater depths (σn is

becoming σk0). The z-grid at time-step t + ∆t is visualised by the blue

dashed lines, which is the same depth grid, as for time-step t (the black

lines). As the advection is highly idealised, the tracer is completely covered

by z-box k0, which has the density σk0 , here visualised by the blue shaded

box. The tracer concentration in this experiment is defined to be C = 0 for

k 6= k0 and C = C0 for k = k0.

The mapping divides the tracer mass into the density layers σn and σn+1.

The thickness of the z(k0)-level is defined by ∆z and the tracer mass is the

given by C0 · ∆z. As the tracer mass will be divided into σn and σn+1, a

fraction f is defined moving into the layer σn+1.

The variance at a given time t is given by

σ2(t) =
1

2

s
∑

n=1

(Ct(n)2 · ∆z), (5.12)

where s denotes the number of layers. According to the schematics in
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Figure 5.14, the transformed tracer only covers the isopycnal boxes of σn

and σn+1. This means that the tracer concentration in those boxes is given

by

Ct(n, t) = (1 − f) · C0 (5.13)

and

Ct(n, t) = f · C0. (5.14)

So, the variance can be written as

σ2(t) =
1

2
· ((1 − f) · C0)

2 · ∆z +
1

2
· (f · C0)

2 · ∆z. (5.15)

For the analysis of the diagnosed diffusivity κvar, the temporal change of the

variance, given by ∂
∂t

σ2, needs to be estimated. In this case, the fraction f

is the only time depending parameter in the function of σ2(t). That leads to
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∆σ2

∆t
=

1

2
·
∆
[

(1 − f)2]

∆t
· C2

0 · ∆z +
1

2
·
∆ [f 2]

∆t
· C2

0 · ∆z, (5.16)

which is equivalent to

∆σ2

∆t
=

1

2
· (2f − 2)

∆f

∆t
· C2

0 · ∆z +
1

2
· 2f

∆f

∆t
· C2

0 · ∆z

∆σ2

∆t
= (2f − 1)

∆f

∆t
· C2

0 · ∆z. (5.17)

As the vertical velocity wz is constant, the rate of change of the fraction f

can be expressed as a velocity, which is denoted as wσ in the schematics of

Figure 5.14 and can be written as

wσ =
∆f

∆t
· ∆z. (5.18)

Substituting Equation 5.18 in Equation 5.17, the rate of change of the

variance can be expressed as

∆σ2

∆t
= (2f − 1) · C2

0 · wσ (5.19)

As introduced in Section 2.3, the diagnosed diffusivity κvar is given in

Equation 2.28 by

κvar =
−∆σ2

∆t
∑

k

[

(

∆C
∆z

)2
· ∆z

] (5.20)

In the present example, where the advection is constant, the diagnosed

diffusivity can be written as

κvar =
(1 − 2f) · C2

0 · wσ
(

(1 − f)2 + (1 − 2f)2 + f 2
)

·
(

C0

∆z

)2
· ∆z

→ κvar =
(1 − 2f) · wσ · ∆z

(1 − f)2 + (1 − 2f)2 + f 2
(5.21)
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Figure 5.15: Diagnosed diffu-
sivity κvar using the tracer gra-
dient in z (red) and using the
transformed tracer gradient in
σ (blue), 5 times more layers
than z-levels are used for the
transformation.

This means that in the idealised case with constant advection, the

diagnosed diffusivity κvar is only a function of the rate of change of the

fraction f . Additionally, the relation between κvar and f is the same as the

relation between the diagnosed diffusivity κdiag−G and f in the diagnostics

of the tracer flux method (as shown in Section 5.2).

In Section 4.3, the results showed that an increase in the resolution of the

transformation leads to more robust results in the variance decay. By

increasing the resolution using 5 times more layers than original z-levels,

the variance of the transformed tracer is equal to the variance of the tracer

in z-coordinates (same as red line in Figure 5.13).

As the results for the variance are independent of the used grid, either

inferring from the tracer concentration in z-levels or from the transformed

tracer in σ-layers, the results for the diagnosed diffusivity depend on the

values of the tracer gradient. In these 1-dimensional experiments, the tracer

gradient can be estimated in z-levels and can be interpolated onto σ-layers.

Figure 5.15 shows the diagnosed diffusivity κvar(z) (red), where the

variance decay is divided by the tracer gradient in z-levels and the

diagnosed diffusivity κvar(σ) (blue), where the variance decay is divided by

the transformed tracer gradient. The diagnosed diffusivity κvar(z) has got a

nearly constant value of 1.72 × 10−3 cm2/s. This means that there is a

numerically induced diffusion as a result of the Eulerian backwards time

stepping scheme.
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Figure 5.16: High vertical
model resolution: diagnosed
diffusivity κvar using the tracer
gradient in z (red) and using
the transformed tracer gradi-
ent in σ (blue), using 5 times
more layers than z-levels for
the transformation.

Using the transformed tracer gradient for the estimation of the diagnosed

diffusivity κvar(σ), the maximum values are twice as high compared to the

numerically induced diffusivity κvar(z) and the frequency of the fluctuations

depend on the number of layers chosen for the transformation.

The results of the tracer flux method show that an increase in the

resolution of the vertical model grid leads to a decrease in the amplitude of

the spurious fluctuations of the diagnosed diffusivity. In the following the

results will be shown using the same experiment with the high vertical

resolution and a level thickness of 5 m. The initial tracer condition is

linearly interpolated onto the new model grid.

Figure 5.16 shows the results for the diagnosed diffusivities κvar(z) (red, the

tracer gradient is taken in z-levels) and κvar(σ) (blue, the transformed

tracer gradient is taken in σ-layers). Using 5 times more layers than levels

for the transformation (as done for the results shown in Figure 5.16), the

variance decay is independent if either analysed in z- or in σ-coordinates.

The mean values for the diagnosed diffusivities are higher compared to the

ones found in the analogous experiment with the coarser vertical resolution.

The results for the diagnosed diffusivity κvar(z) using the tracer gradient in

z-levels for the analysis increase from a value of 5.6 × 10−3 cm2/s to

5.75 × 10−3 cm2/s. The diagnosed diffusivity κvar(σ) (the transformed

tracer gradient is used here) in Figure 5.16 shows high frequency variations

with an amplitude of ±0.2 × 10−3cm2/s. The amplitude of these variations
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are smaller compared to the ones in the results of the analogous experiment

with the coarse vertical model grid (Figure 5.15). The mean value of

κvar(σ) is with ∼ 6 × 10−3cm2/s only ∼ 8% higher compared to the values

of the diagnosed diffusivity κvar(z).

In summary, it can be said that the numerically induced diffusion in this

1-dimensional model, as a result of the vertical advection, can be

determined by the variance method. The values of the induced diffusivity

for typical velocities, as they are found in the interior ocean, are relatively

low with values of about 1.72 × 10−3 cm2/s in a model with a level

thickness of 20 m and ∼ 5.7 × 10−3 cm2/s in a model with a smaller level

thickness of 5 m. An increase in the vertical resolution of the model results

in a smaller difference between the diagnosed diffusivity κvar(z) in z-levels

and κvar(σ) analysed after the transformation onto isopycnals.

5.4 Summary

In this chapter, the analysis of the experiment which includes a constant

vertical advection is presented. The set-up of the experiment is chosen in

such a way that as a result of the constant advection, the isopycnal layers

move in a parallel manner. This gives the possibility to analyse the effect of

the tracer mapping onto isopycnal layers in combination with a movement

of the isopycnals without the effect of diverging or converging isopycnals.

The results of the tracer flux method show a high dependence of the

diagnosed diffusivity κdiag−G on the transformation of the tracer onto

isopycnals. The values of the diagnosed diffusivity κdiag−G show fluctuations

with an amplitude of ±0.45 cm2/s. The frequency of these fluctuations

depends on the layer thickness used for the transformation. An increase of

the number of layers used for the transformation leads to an increase in the

frequency of the fluctuations. The amplitude of these fluctuations depends

on the level thickness; therefore an increase in the number of layers used for

the tracer mapping does not result in a decrease of the amplitude.

Although, the instantaneous effect of the mapping on the diagnosed
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diffusivity κdiag−G is very large, the mean values are very small

(o(10−2cm2/s)). This is still about one order of magnitude larger than the

numerically induced diffusivity.

An increase in the vertical resolution of the model leads to a decrease in the

amplitude of the fluctuations in the diagnosed diffusivity. Additionally,

using a high number of layers for the tracer mapping, the amplitude of the

fluctuations decreases even further without resulting in artificially high

negative values. In order to analyse a mean induced diffusivity, it should be

possible to use the tracer flux method, as long as the vertical resolution is

relatively high.

The approach of the variance method gives the possibility to analyse the

diagnosed diffusivity in the original z-coordinates. The results of the

diagnosed diffusivity in z-levels show, that there is a small amount of

numerically induced diffusion which is generated by the vertical advection

scheme used. A finer vertical resolution (to a level thickness of 5m) leads to

an increase in the numerically induced diffusivity, as a result of the different

gradients in the initial tracer distribution. The study of Lee et al. (2002)

predicts that a finer vertical resolution of the model grid leads to an

increase of the numerically induced diffusion, which is consistent with our

results although a different advection scheme has been tested. For both

experiments (fine and coarse vertical grid) the numerically induced diffusion

decreases linearly with a decrease of the time-step used.

Analysing the diagnosed diffusivity on isopycnal layers leads also to a high

dependence of the results on the used transformation axis. Different to the

results of the tracer flux method, an increase in the number of layers used

for the mapping leads to a constant overestimation of the diagnosed

diffusivity with a mean value of ∼ 35%. An increase in the vertical

resolution of the model reduces the difference between the diagnosed

diffusivity κvar(z), analysed on z-levels, and the diagnosed diffusivity

κvar(σ), analysed on isopycnals, to only ∼ 8%.

In the observational studies done by Ledwell et al. (1998), this problem

is avoided as they are defining the layers with reference to the layer, where
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the tracer was released. With this definition, it doesn’t matter, if the

isopycnals are moving in a parallel manner, but the problem of diverging

and converging isopycnals will be neglected this way.



Chapter 6

The role of diffusion in

temperature and salinity

In the previous chapter the tracer flux and the variance methods had been

used to analyse the diagnosed diffusivities in experiments with implemented

vertical advection. The vertical advection results in that particular case in

a parallel movement of the isopycnal layers. In general, the vertical

advection does not lead to an exact parallel movement of the isopycnals but

also to small diverging and converging effects. The current chapter focuses

on the analysis of experiments, where explicit diffusion acts on tracer,

temperature and salinity. The corresponding effect in the density can be

interpreted as an interfacial movement of the isopycnal layers, which leads

to divergence or convergence in the isopycnals.

The results of 1-dimensional experiments with explicit diffusion of the

tracer, the temperature and the salinity fields will be shown and discussed.

Note, these experiments do not implement explicit vertical velocity

(wexpl = 0). Similar to the previous chapter, the discussion will be divided

into the diagnostics of the variance method, and the diagnostics of the

tracer flux method.

In order to get an overview of the influence of the diffusion in temperature

and salinity, the whole set of experiments (except A−decr) will be repeated,

as shown in Chapter 3: (i) A−const, where the explicit diffusion coefficient
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Figure 6.1: a) Initial density profile, b) set of the time series of profiles for
experiment A−const.

is constant, (ii) A−incr, where the explicit diffusion coefficient is linearly

increasing with depth and (iii) A−oc, where it is non-linear with depth, as

is expected in the ocean interior.

The fourth experiment A−decr, with high values in the explicit diffusion

coefficient close to the surface, will not be repeated. As in this simple

model the boundaries are closed, problems in the surface layers, such as e.g.

empty boxes, arise from high explicit diffusion coefficients in this region.

The initial tracer condition is chosen to be symmetric with depth, as the

asymmetric initial tracer condition yields similar results. The model grid is

again chosen to be equidistant with a level thickness of 20 m.

Different from the experiments presented in Chapter 3, the initial density

profile is not exactly linear, instead slightly non-linear, as expected in the

ocean interior. Figure 6.1 a) shows the initial density profile and b) the set

set of the time series of profiles resulting for the experiment A−const, in

which the explicit diffusivity is set constant with depth with a value of

4cm2/s.

A linear initial density profile would only result in changes starting at the

upper and lower boundary slowly moving towards the inner water masses.

But in such a case, the tracer would not reach the region in which the

isopycnals change with time. Using the non-linear initial density profile, the

main changes occur at a depth of ∼ 300 m, the depth in which the tracer is

released.
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6.1 Diagnostics using the variance method

The results presented in Chapter 4 show, that using the variance method

(Section 2.3), the diagnosed diffusivity κvar is independent of the

transformation of the tracer onto isopycnals. As already seen in the

previous chapter, the advection of temperature and salinity has no impact

on the temporal change of the tracer variance and therefore also not on the

diagnosed diffusivity κvar(z), as for the estimation of the variance it is not

necessary to map the tracer onto isopycnals. The reason for this was given

by the depth independent value of the variance.

The diffusion in temperature and salinity, and their corresponding effect on

the density distribution, has no impact on the tracer variance for the same

reason. Only the transformation of the tracer onto isopycnals, might change

its variance, which is a result only of the mapping itself.

In order to analyse the diagnosed diffusivity κvar(σ), the variance of the

transformed tracer needs to be estimated for each time-step before taking

the temporal difference. The sensitivity studies showed, that the variance of

the transformed tracer is independent of the chosen transformation, if the

resolution of that transformation is high enough. The variance decay of the

tracer is independent of the interfacial movement of the isopycnals. For

these 1-dimensional experiments, it is not necessary to transform the tracer

gradient onto isopycnals, but in terms of analysing higher dimensional

models, it is of greater interest to determine the effect of the interfacial

velocity on the transformed tracer gradient.

Figure 6.2 shows the results of experiment A−const for the weighted

diffusivity κw (blue), diagnosed diffusivity κvar(z) analysed in z-levels

(green) and the diagnosed diffusivity κvar(σ) (red) analysed in σ-layers. In

Figure 6.2 a) 75 equidistant layers are used for the transformation (the

same amount than z-levels in the model), in b) 150 (twice as many layers

than levels) and in c) 750 layers (10 times more layers than model levels).

Only the results for the diagnosed diffusivity κvar(σ) depend on the number

of layers used for the mapping.
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Figure 6.2: Experiment A−const, diffusion acts on tracer temperature
and salinity: diagnosed diffusivities κvar(z) (green) and κvar(σ) (red) and
weighted diffusivity (blue) using (a) 75 layers, (b) 150 layers and (c) 750
layers for the tracer transformation.

As expected, the results for the diagnosed diffusivity κvar(z) (green) and

the weighted diffusivity κw (blue) are identical to the ones shown in Section

3.2.2, where diffusion acts on the tracer only. In all cases shown in Figure

6.2, the variance of the transformed tracer is consistent with the variance of

the tracer in z-levels. The difference of diagnosed diffusivity κvar(σ) (red)

to the values of κvar(z) (green) are an effect caused by the transformation

of the tracer gradient onto isopycnal layers.

In Figure 6.2 a), where 75 layers are used for the mapping, the diagnosed

diffusivity κvar(σ) shows ∼ 5% higher values at the beginning of the

experiment. Between the end of the first until the third month the

diagnosed diffusivity κvar(σ) fluctuates around the expected value.

Increasing the number of layers used for the transformation by a factor of

two (see Figure 6.2 b.), the amplitude and the frequency of the fluctuation

of the diagnosed diffusivity κvar(σ) increase. The difference between κvar(σ)

and κvar(z) at the beginning of the experiment is already ∼ 10%. A further

increase of the number of layers (750) used for the transformation (see

Figure 6.2 c.) leads to a further increase of the frequency of the fluctuations

of the diagnosed diffusivity.

These different results for the diagnosed diffusivity κvar(σ) are only a result

of the different number of layers used for the transformation. They show

that the transformation of the tracer gradient reacts sensitively to an

interfacial velocity, similar to the analysis of the experiment with advection



6.1. Diagnostics using the variance method 108

a)

0 1 2 3 4 5 6
3.5

4

4.5

5

time [months]

di
ffu

si
vi

ty
 [c

m
2 /s

]

 

 

k
w

k
var

(z)

k
var

(σ)

b)

0 1 2 3 4 5 6
3.5

4

4.5

5

time [months]

di
ffu

si
vi

ty
 [c

m
2 /s

]

 

 

k
w

k
var

(z)

k
var

(σ)

c)

0 1 2 3 4 5 6
3.5

4

4.5

5

time [months]

di
ffu

si
vi

ty
 [c

m
2 /s

]

 

 

k
w

k
var

(z)

k
var

(σ)

Figure 6.3: Experiment A−incr, diffusion acts on tracer temperature
and salinity: diagnosed diffusivities κvar(z) (green) and κvar(σ) (red) and
weighted diffusivity (blue) using (a) 75 layers, (b) 150 layers and (c) 750
layers for the tracer transformation.

(see Section 5.2).

The results for experiments A−incr, as shown in Figure 6.3, are similar.

The diagnosed diffusivity κvar(z) (green) and the weighted diffusivity κw

(blue) are not affected by the interfacial movement of the isopycnals and

show exactly the same behaviour as in the experiments with stationary

isopycnals (see Section 3.2.2).

The diagnosed diffusivities κvar(σ) (red) are sensitive towards changes of

the transformation axis, although in the shown cases the variance of the

tracer is not affected by the mapping. In Figure 6.3 a) 75 equidistant layers

are used for the mapping of the tracer and the tracer gradient. The

diagnosed diffusivity shows high frequency fluctuations (5− 1%) around the

expected values.

An increase of the number of layers used for the transformation by a factor

of two (Figure 6.3 b.) shows an increase of the amplitude of the

fluctuations in the diagnosed diffusivity κvar(σ) (up to 20% at the

beginning) associated with a decrease in the frequency. A further increase

of the number of layers (750, see Figure 6.3 c.) leads to a further increase in

the frequency of the fluctuations. Additionally, the fluctuations are no

longer around the expected value of κvar(z), but biased highly with a

maximal difference of 25% at the beginning of the experiment.

The pattern of the high frequency fluctuations arises from the movement of

the tracer maximum in relation to the isopycnal surfaces. So the effect is
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Figure 6.4: Experiment A−oc, diffusion acts on tracer temperature and salin-
ity: diagnosed diffusivities κvar(z) (green) and κvar(σ) (red) and weighted
diffusivity (blue) using (a) 75 layers, (b) 150 layers and (c) 750 layers for the
tracer transformation.

artificially caused by the combination of the mapping and the interfacial

movement.

In the last experiment, A−oc, the explicit diffusion coefficient is non-linear

with depth and much lower compared to the one in the previously shown

experiments. The results for the diagnosed diffusivity κvar(z) and the

weighted diffusivity κw, as shown in Figure 6.4, are consistent to the results

of the experiments with stationary isopycnals.

A comparison of the diagnosed diffusivity κvar(σ) varying the number of

layers of the transformation axis (Figure 6.4 a. 75, b. 150 and c. 750)

shows a wide range in the results. As the diffusion in this experiment is

very low, the high frequency pattern, seen in the previous two experiments,

cannot be found in this case. This is a result of the low relative movement

between the tracer and the isopycnals (the tracer maximum and the

maximum of the gradient are not moving from one isopycnal layer to the

next one so quickly).

Similar to the results of the experiments including advection, these studies

show that the weak point of the diagnostics lays in the transformation of

the tracer gradient. As long, as the tracer gradient can be used in its

original z-coordinates, the diagnosed diffusivity κvar can be analysed

correctly. The relative movement of the isopycnals to the z-grid in

combination with the transformation used leads to errors in the diagnostics.

In terms of analysing experiments of higher dimensions, the awareness of
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Figure 6.5: Experiments with fine resolved vertical grid (level thickness of
5 m) using twice as many layers than levels for the mapping, a)A−const, b)
A−incr and c) A−oc.
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Figure 6.6: Experiments with fine resolved vertical grid (level thickness of
5 m) using 10 times as many layers than levels for the mapping, a)A−const,
b) A−incr and c) A−oc.

these problems is necessary, as generally, the tracer field has to be

transformed onto isopycnals.

The spurious fluctuations in the diagnosed diffusivity κvar(σ) are caused by

the mapping of the tracer gradient onto isopycnals and are always large, if

the tracer gradient is strong. In general, OGCMs use an even coarser grid

than chosen for the shown experiments, where the z-levels are uniform with

a thickness of 20 m. The combination of a decrease in the level thickness

and the linear interpolation of the initial tracer condition onto the fine

resolved grid results in smaller tracer gradients. By choosing z-levels with a

thickness of 5 m, the error, which is caused by the mapping, gets very small.

Figure 6.5 and 6.6 show the results for all three experiments, a)A−const, b)

A−incr and c) A−oc, with the higher resolution of the vertical model grid.

In Figure 6.5 twice as many layers then levels (600) are used for the

transformation onto isopycnals and 10 times more layers than levels (3000)
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are used in Figure 6.6 for the mapping. Note, in this case, the model depth

reaches only 1500m, as the tracer reaches no greater depths.

For the experiments, where the explicit diffusion coefficient is relatively

high (A−const and A−incr: both times ∼ 4 cm2/s in the region of interest),

the influence of the mapping on the results of the diagnosed diffusivity

κvar(σ) is getting very small (max. of 1% during the first month, else

<< 1%). In the experiment A−oc, where the explicit diffusion coefficient is

small (∼ 0.48 cm2/s), the maximal changes in the fluctuations of the

diagnosed diffusivity κvar(σ) are about 1.5%, and different from the results

of the coarser model resolutions, the temporal behaviour is similar to the

behaviour of the diffusivity κvar(z), although there are fluctuations.

In summary, it can be said that an increase in the vertical resolution of the

model grid reduces the error in the diagnosed diffusivity, which is caused by

the combination of the mapping of the tracer onto isopycnals and the

interfacial movement of the isopycnals.

6.2 Diagnostics using the tracer flux method

The results in Chapter 5 already showed that using the diagnostics of the

tracer flux method is not an appropriate method for the analysis of models,

if isopycnals are not constant in time. Different to the parallel movement of

the isopycnals the result of an implemented vertical advection, diffusion in

temperature and salinity leads to a rather small rate of change of the

isopycnal interface. This vertical movement of the interfaces depends on the

used explicit diffusion coefficient and leads to divergence and convergence in

the isopycnal layers. Although being aware that divergence and

convergence in the isopycnals have an effect on results of the diagnosed

diffusivity κdiag−G, the observational studies (Ledwell et al., 1998)

neglect these effects in their analysis. In models, these changes in the

diagnosed diffusivity due to diverging or converging isopycnals are part of

the numerically induced diffusivity. The numerically induced diffusivity

includes all different sources which lead to differences between the weighted
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and the diagnosed diffusivity, which are a result of the model

parameterisation itself.

For the analysis of these experiments, it is necessary to diagnose the

interfacial velocity (derivation is shown in section 4.2). To get an idea

about the amount and vertical structure of the interfacial velocity, an

overview for all three experiments is given before the results for the

diagnosed diffusivities are shown. The initial density profile used in the

model set-up is slightly non-linear with depth (see Figure 6.1) and the

initial tracer distribution is symmetric with depth.

According to the transformation of the advection-diffusion equation (see

also Section 4.2), the interfacial velocity wI is given by

wI =
∂σ
∂t
∂σ
∂z

. (6.1)

The total change of the density in z-coordinates, given by the model

equation, is the explicit diffusion term of the density, as follows

∂σ

∂t
=

∂

∂z

(

κexpl

∂σ

∂z

)

. (6.2)

Substituting Equation 6.1 in Equation 6.2, the interfacial velocity of the

isopycnal layer can be written as a function of z

wI =
∂
∂z

(

κexpl
∂σ
∂z

)

∂σ
∂z

. (6.3)

To give an overview about the values of the interfacial velocity, Figures 6.7

- 6.9 show the interfacial velocity in the depth range of interest for the

experiments A−const, A−incr and A−oc.

The interfacial velocity wI according to Equation 6.3 for experiment

A−const, where the explicit diffusion coefficient is constant with depth,

between 150 and 550 m depths is shown in Figure 6.7. The maximum

values of ∼ 4 × 10−4 cm/s can be found at the beginning of the experiment
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Figure 6.7: Interfacial veloc-
ity wI of the isopycnal layer,
estimated by the explicit dif-
fusion coefficient for the ex-
periment A−const.

0 2 4 6

−500

−400

−300

−200

de
pt

h 
[m

]

time [months]

 

 

−1

0

1

2

3

4

5
x 10

−4

Figure 6.8: Interfacial veloc-
ity wI of the isopycnal layer,
estimated by the explicit dif-
fusion coefficient for the ex-
periment A−incr.

0 2 4 6

−500

−400

−300

−200

de
pt

h 
[m

]

time [months]

 

 

−4

−2

0

2

4

x 10
−5

Figure 6.9: Interfacial veloc-
ity wI of the isopycnal layer,
estimated by the explicit dif-
fusion coefficient for the ex-
periment A−oc.

at a depth of ∼ 280 m. This maximum value decreases with time to values

of ∼ 1 × 10−4 cm/s and the velocity gradients decrease as well.

The results for the interfacial velocity wI in experiment A−incr are similar

(see Figure 6.8) as the values of the explicit diffusivity in the depth of

∼ 300 m are also ∼ 4 cm2/s. The maximum values of wI are

∼ 5 × 10−4 cm/s, which are slightly higher compared to the previous

experiment, however the temporal development is the same. The maximum

value decreases also with time to values between ∼ 1 − 2 × 10−4 cm/s and

also the gradients decrease.
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Figure 6.9 shows the results for the last experiment, A−oc, where the

explicit diffusion coefficient is more than one order of magnitude smaller

compared to the explicit diffusion coefficients in A−const and A−incr. In

this case, the interfacial velocity wI shows maximal positive values in the

surface regions of ∼ 4 × 10−5 cm/s, but in the region of 300 m depths,

where the tracer is released, the values of wI are negative with values of

∼ −4 × 10−5 cm/s. This can be ascribed to the fact, that the profile of the

explicit diffusion coefficient in this experiments is non-linear and decreases

strongly in the depth range between ∼ 200 − 350 m.

A comparison between the flux which is caused by the interfacial velocity

(wI · C) and the diffusive flux of the tracer (κexpl · ∂C/∂z) shows that the

ratio is rather small (<< 1). This means that the analysis of the interfacial

velocity has a rather small effect on the diagnostics of the diffusivity. Only

at the tracer maximum the ratio is large, which is caused by the very small

tracer gradients.

Solving the advection-diffusion equation (in σ-co-ordinates) with the

method of the least squares fit can only be done, if the diagnosed diffusivity

κdiag−G and the interfacial velocity are taken as depth independent (vertical

mean). This diagnosed interfacial velocity will be denoted as wI . In the

following, the results for the diagnosed diffusivity κdiag−G will be shown and

discussed, followed by the results of the diagnosed interfacial velocity wI .

Figure 6.10 shows the results of the diagnosed diffusivity κdiag−G (red) for

the experiment A−const. Using the same amount of layers as levels (75) for

the tracer mapping (see Figure 6.10 a), the values for the diagnosed

diffusivity are up to 14% smaller compared to the value of the weighted

diffusivity κw−G (blue), which is 4 cm2/s. Doubling the number of layers

(see Figure 6.10 b) does not change the shape of the diagnosed diffusivity,

but the values of κdiag−G are slightly higher leading to a maximal difference

of ∼ 8% to the expected value κw−G. Using 10 times more layers than levels

(750) for the transformation of the tracer (see Figure 6.10 c), the temporal

behaviour of the diagnosed diffusivity gets noisier and differs with a

maximum of ∼ 7.5% from the value of the explicit diffusivity.
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Figure 6.10: Diagnosed diffusivity κdiag−G (red) and weighted diffusivity κw

(blue) for experiment A−const, using 75 layers (a), 150 (b) and 750 (c) layers
for the transformation.
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Figure 6.11: Diagnosed diffusivity κdiag−G (red) and weighted diffusivity κw

(blue) for experiment A−incr, using 75 layers (a), 150 (b) and 750 (c) layers
for the transformation.

In Figure 6.11, the results of the diagnosed diffusivities of experiment

A−incr are shown. Already in Figure 6.11 a), where 75 layers are used for

the transformation, the diagnosed diffusivity κdiag−G shows fluctuations

with periods of about one month. The values of κdiag−G are ∼ 15% smaller

compared to the values of the weighted diffusivity κw−G.

Doubling the number of layers (shown in Figure 6.11 b.), the frequency of

the fluctuations have still a period of about one month, but the values are

slightly higher, now differing about ∼ 10% from the weighted diffusivity. A

further increase of the number of layers used for the mapping (see Figure

6.11 c.) results in a higher frequency (about 7 days) and a smaller

amplitude, but a longer time mean still gives smaller values (∼ 10%) for the

diagnosed diffusivity compared to the values of the weighted diffusivity.

The results for the last experiment, A−oc, are shown in Figure 6.12. Using

75 layers for the transformation (shown in Figure 6.12 a.), the diagnosed
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Figure 6.12: Diagnosed diffusivity κdiag−G (red) and weighted diffusivity κw

(blue) for experiment A−oc, using 75 layers (a), 150 (b) and 750 (c) layers
for the transformation.

diffusivity is ∼ 8% higher compared to the values of the weighted

diffusivity. Increasing the number of layers by a factor of two (see Figure

6.12 b.), the difference between the weighted and the diagnosed diffusivity

decreases to ∼ 5%. Note, also the values of the weighted diffusivity

decrease if the number of layers used by the transformation is increased.

This can be ascribed to the fact that the weighted diffusivity is also

analysed in σ-coordinates. Thus the explicit diffusion coefficient needs to be

transformed onto isopycnals, realised by a linear interpolation in the same

way as introduced for the tracer gradient. An increase in the number of

layers is therefore changing the values of the explicit diffusivity which are

weighted. Increasing the number of layers further to 750 (see Figure 6.12

c.), the weighted diffusivity decreases by another ∼ 1 − 2% and the

difference to the diagnosed diffusivity is still ∼ 5%, but κdiag−G starts

getting noisy.

The analysis of the mean interfacial velocity wI is shown in Figure 6.13

a)-c) for all three experiments. The mean interfacial velocity for experiment

A−const (see Figure 6.13 a.) using the same amount of layers as levels (as

shown in blue) gives values varying between ∼ 2.5 and 1.3 × 10−4 cm/s.

Increasing the number of layers used for the transformation by the factor of

two (red line), the mean interfacial velocity increases also to values between

∼ 3.5 and 1.5 × 10−4 cm/s.

From the analysis of the interfacial velocity wI , estimated by the term of

the explicit diffusion, values in the range of ∼ 1 − 3 × 10−4 cm/s (compare
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Figure 6.13: Diagnosed interfacial
velocity wI using the same amount
of layers as levels for the map-
ping (blue) and twice as many (red)
for the experiment A−const (a),
A−incr (b) and A−oc (c).

Figure 6.7) would be expected. Although, the results for the two different

numbers of layers used for the transformation differ, they are both in the

range of the values expected from the analysis of the depth dependent value

for the interfacial velocity wI .

Using 10 times more layers than levels, the mean interfacial velocity wI

increases to values of about one order of magnitude higher compared to the

expected value; therefore this case is not shown in Figure 6.13 a).

Additionally, the mean interfacial velocity is getting noisier with the

increase of the number of layers used for the transformation.

Figure 6.13 b) shows the results of the mean interfacial velocity wI for

experiment A−incr. The values are about twice as high compared to the

previous experiment varying between ∼ 5 − 3 × 10−4 cm/s using the same

number of layers as levels for the mapping (blue line). Using twice as many

layers than model levels for the mapping (red line) the values of wI vary

between ∼ 6.4 − 3.8 × 10−4 cm/s. This is also consistent with the results of

the depth dependent value of the interfacial velocity wI as shown in Figure

6.8 in the depth region of interest.
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Increasing the number of layers used for the mapping by a factor of 10

compared to the number of model levels, the mean interfacial velocity wI is

about one order of magnitude higher compared to the expected values, and

it also gets very noisy.

For the last experiment, A−oc, the results for the mean interfacial velocity

wI are shown in Figure 6.13 c). The values for the velocity, as already

mentioned for the analysis of the interfacial velocity wI , are about one

order of magnitude smaller compared to the results of the previous two

experiments and do have the opposite sign, with values varying between

∼ −4.3 and −3 × 10−5 cm/s. The temporal behaviour of the mean

interfacial velocity wI using the same number of layers as levels for the

transformation (blue line) is different from the one using twice as many

layers than levels for the mapping (red line), but the range of the values of

wI is the same.

Similar to the results of the previous experiments, also the results in this

experiment are highly influenced by the transformation of the tracer onto

isopycnals, using 10 times more layers than model levels. This is not

restricted by a change in the values, also the noise in the mean velocity is

increasing.

In order to explain this effect, it is necessary to go back to the origin of the

tracer flux method, the cumulative integral of the

advection-diffusion-equation in σ-coordinates:

s
∑

s1=1

∆ (Ct,s1 · ∆zt,s1)

∆t
= κdiag−G ·

∆Ct,s

∆zt,s

∣

∣

∣

s+1
− wI · Ct,s

∣

∣

∣

s+1

In the sensitivity studies (see Section 4.3), the analysis of the case with no

interfacial velocity (wI = 0) showed that the results are sensitive to changes

in the transformation axis used. The sensitivity depends on the change of

the vertical tracer distribution by the mapping onto isopycnals. This

biasing effect was reduced by mapping the tracer gradient onto isopycnals.

In the present case, the tracer gradient is also mapped onto isopycnals, but

the tracer distribution is mapped discretely into σ-space. That means, by
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Figure 6.14: Diagnosed diffusivity κdiag−G (red) and weighted diffusivity κw−G

(blue) for experiment A−const, using 75 layers (a), 150 (b) and 750 (c) layers
for the transformation, where wI is considered to be zero.
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Figure 6.15: Diagnosed diffusivity κdiag−G (red) and weighted diffusivity κw−G

(blue) for experiment A−incr, using 75 layers (a), 150 (b) and 750 (c) layers
for the transformation, where wI is considered to be zero.

increasing the number of layers used for the transformation, also the

number of layers with a zero thickness increase. As a result the spurious

interfacial velocity is quiet large.

As already mentioned, the flux which is caused by the interfacial velocity

(wI · C) is much smaller compared to the diffusive flux of the tracer

(κexpl · ∂c/∂z). Thus in the following, the results for the same experiments

are shown, but in the analysis the mean interfacial velocity wI is neglected.

Assuming wI = 0, Figures 6.14 - 6.16 shows the results for the diagnosed

diffusivity κdiag−G, using the same number of layers as levels (a), twice as

many (b) and 10 times more layers than levels (c).

The results for the diagnosed diffusivity κdiag−G of experiment A−const are

shown in Figure 6.14. Independent how many layers are chosen for the

transformation, the diagnosed diffusivity varies with ±5 − 6% around the

expected value of 4 cm2/s.
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Figure 6.16: Diagnosed diffusivity κdiag−G (red) and weighted diffusivity κw−G

(blue) for experiment A−oc, using 75 layers (a), 150 (b) and 750 (c) layers
for the transformation, where wI is considered to be zero.

Using the same number of layers as levels, or twice as many (a, b) does not

change neither the frequency, which has a wavelength of about 6 months,

nor the noise in the diagnosed diffusivity. Increasing the number of layers

further (10 times as many than levels), there is still a longer time change

with a wavelength of ∼ 6 months, but this change is overlaid by

fluctuations with a much higher frequency. Different to the results, where

the diagnostic of the interfacial velocity was included, the variation of the

diagnosed diffusivity κdiag−G is now centred around the value of the

weighted explicit diffusion coefficient κw−G (blue).

Similar results can be found for the experiment A−incr in Figure 6.15.

Using the same number of layers as model levels (Figure 6.15 a), there is a

∼ 10% variation around the expected values of the weighted diffusivity.

Increasing the number of layers by a factor of two, the amplitude of the

fluctuations also increases to maximal 12%. A further increase of the

number of layers used for the transformation (Figure 6.15 c), does not lead

to a further increase in the amplitude, only the frequency of the variations

increases.

Similar to the previous results, the variations of the diagnosed diffusivity

are centred around the weighted explicit diffusion coefficient. In comparison

to the analysis including the approximation of the mean interfacial velocity,

the amplitude of the variations in the diagnosed diffusivity is higher, the

frequency is about the same, but the mean values are much closer to the

value of the weighted explicit diffusion coefficient.
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Figure 6.17: Diagnosed diffusivity κdiag−G (red) and weighted diffusivity κw−G

(blue) for experiments with fine resolved vertical grid (level thickness of 5 m)
using twice as many layers than levels for the mapping: a) A−const, b)
A−incr and c) A−oc.

a)

1 2 3 4 5
3.6

3.7

3.8

3.9

4

time [months]

di
ffu

si
vi

ty
 [c

m
2 /s

]

 

 
k

w
−
G

k
diag

−
G

b)

1 2 3 4 5

3.7

3.8

3.9

4

4.1

4.2

4.3

time [months]

di
ffu

si
vi

ty
 [c

m
2 /s

]

 

 
k

w
−
G

k
diag

−
G

c)

1 2 3 4 5

0.44

0.45

0.46

0.47

0.48

time [months]

di
ffu

si
vi

ty
 [c

m
2 /s

]

 

 
k

w
−
G

k
diag

−
G

Figure 6.18: Diagnosed diffusivity κdiag−G (red) and weighted diffusivity κw−G

(blue) for experiments with fine resolved vertical grid (level thickness of 5 m)
using 10 times as many layers than levels for the mapping: a) A−const, b)
A−incr and c) A−oc.

In the last experiment, A−oc, the results of the diagnosed diffusivity are

slightly different (Figure 6.15). The diffusive spreading of the tracer is so

slow, that although, the transformation uses 10 times more layers than

levels (Figure 6.15 c), the diagnosed diffusivity does not show high

frequency fluctuations. The diagnosed diffusivity gives in all three cases

close results compared to the weighted diffusivity, with a maximal

difference of ∼ 5%.

These results show, in line with the analysis from Chapter 5, that the

combination of the transformation of the tracer gradient and the diffusive

movement of the isopycnals leads to spurious diffusion in the results. The

symptoms in the results are the same compared to the ones found in the

results of the experiments including vertical advection: the stability of the

fluctuations and the decrease of the wavelength initiated by an increase in
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the resolution of the transformation axis. In Chapter 5 the results showed,

that the spurious diffusivity can be reduced by an increase in the vertical

resolution of the model grid. Thus, the analysis of the diagnosed diffusivity

will be repeated using a level thickness of 5 m in the model set-up.

Figure 6.17 and 6.18 show the results of the diagnosed diffusivity κdiag−G

for a) experiment A−const, b) experiment A−incr and c) experiment A−oc.

Twice as many layers than levels are used for the mapping in Figure 6.17

and 10 times more layers than levels in Figure 6.18.

The diagnosed diffusivity in experiment A−const does not differ much from

the results of the experiments using the coarser vertical model resolution.

The main difference between the results of the two model resolutions is the

much smaller amplitude of the high frequency fluctuations. This suggest

the possibility that the results show the induced diffusivity, which is caused

by the divergence and convergence of the isopycnals.

Note that the definition of the tracer flux method infers on a comparison

between the flux of the tracer through one isopycnal layer and the total

change of the tracer above that layer. The diffusion of temperature and

salinity leads to convergences and divergences of density fluxes. The density

fluxes can be interpreted as isopycnals moving upwards or downwards,

which in turn can lead to changes in the total amount of tracer above the

isopycnal layer. This effect can cause an induced diffusivity, which only will

be analysed by the diagnosed diffusivity κdiag−G.

Figure 6.19 a) shows the temporal change of the density for experiment

A−const. In this experiment, the isopycnals are converging, e.g. in the

depth between 200 and 300 m, and at different depth diverging, e.g. after

the second month above 200 m. This change in the direction of the

isopycnal movement might result in an induced positive or negative

diffusivity.

In the next two experiments, A−incr and A−oc, the results of the diagnosed

diffusivity κdiag−G are very close to the weighted explicit diffusivity

coefficient κw−G. Similar to the results of the first experiment, the

amplitude of the high frequency fluctuations are very small. That means,



6.2. Diagnostics using the tracer flux method 123

a)

time [months]

de
pt

h 
[m

]

 

 

0 2 4 6
−500

−400

−300

−200

−100

25.8

26

26.2

26.4

26.6

26.8

b)

time [months]
de

pt
h 

[m
]

 

 

0 2 4 6
−500

−400

−300

−200

−100

25.8

26

26.2

26.4

26.6

26.8

c)

time [months]

de
pt

h 
[m

]

 

 

0 2 4 6
−500

−400

−300

−200

−100

25.8

26

26.2

26.4

26.6

26.8

Figure 6.19: Density with time for the model set-up using a fine resolved
vertical grid with a level thickness of 5m: a) A−const, b) A−incr and c)
A−oc.

there is only a very small amount of induced diffusivity in these

experiments.

In order to link the difference between the diagnosed diffusivity κdiag−G and

the weighted explicit diffusivity coefficient κw−G to the time dependent

change of the isopycnals, Figure 6.19 b) shows the density for experiment

A−incr. At the beginning of the experiment, there is a slight convergence

of the isopycnals in the region between 300 and 200 m depth, which is

getting smaller with time. This can be linked to the slightly smaller

diagnosed diffusivity during the first two months. The main feature in the

behaviour of the isopycnals is the very strong nearly parallel movement of

the isopycnals between 300 and 500 m, which might be the reason for the

small amount of induced diffusivity.

In experiment A−oc, the vertical movement of the isopycnals is so slow,

that one cannot say if and where the isopycnals are diverging and

converging. This is consistent with the small difference between the

weighted and the diagnosed diffusivity. Although, the uncertainty of the

method might cause similar changes in the diagnosed diffusivity, which

might be the reason for the difference between both values.

Note, in the analysis using the higher vertical model resolution, the effect of

neglecting the mean interfacial velocity wI in the diagnostics is of minor

importance. The effect on the results of the diagnosed diffusivity is < 0.1%.
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Thus in the following of the thesis, the mean interfacial velocity is assumed

to be zero (wI = 0).

In summary, it can be said that in these experiments the effect of the

diffusive density on the tracer mapping leads to uncertainties in the results

of 5 − 10%, depending on the value of the explicit diffusion coefficient. The

diagnostics of the mean interfacial velocity in combination with a high

number of layers used for the mapping leads to a sensitivity according to

the mapping. Therefore, it is useful to neglect the analysis of the mean

interfacial velocity.

An increase of the number of z-levels in the model, still shows high

frequency fluctuations in the results of the diagnosed diffusivity, but the

amplitude is very small. This indicates that the difference between the

diagnosed and the weighted diffusivity is the amount of induced diffusivity,

which is caused by the divergence and convergence of the isopycnal layers.

In the analysis described by Ledwell et al. (1998), the diagnosed

diffusivity is estimated by neglecting the effect of the temporal diverging or

converging isopycnals. They find errors of ∼ 11 − 17%, which they address

mainly to the assumption of neglecting the effect that the isopycnals may

diverge and converge. In the simple 1-dimensional model, using the coarser

vertical resolution, the errors are slightly smaller, which occur here by the

combination of the tracer mapping and the diverging and converging

isopycnals.

6.3 Summary

In this chapter the analysis of the diagnosed diffusivity, using the variance

and the tracer flux method, has been given for experiments in which tracer,

temperature and salinity are diffusive. The diffusion in temperature and

salinity leads to an interfacial movement of the isopycnal layers and results

in a diverging or converging behaviour.

For the analysis of the diagnosed diffusivity using the variance method it is

not necessary to transform the tracer onto isopycnals. The difference
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between the diagnosed diffusivity κvar(z), analysed in z-levels, and the

diagnosed diffusivity κvar(σ) is the artificial effect of the mapping on the

diagnostics. As long as the model resolution is relatively coarse (level

thickness of 20 m), the diagnosed diffusivity κvar(σ) shows high frequency

fluctuations and the longer time mean is slightly larger compared to the

results of κvar(z). An increase in the vertical resolution of the model (level

thickness of 5 m) leads to a decrease in the fluctuations of κvar(σ) and the

values for the longer time mean are consistent with the values of κvar(z).

The difference between κvar(z) and κvar(σ) is large, when the tracer

gradient is strong. This is the case, when the model resolution is coarse and

the tracer distribution is still narrow.

In the diagnostics of the tracer flux method the divergence or convergence

of the isopycnal layers with time lead to changes in the temporal derivative

of the total amount of tracer above an isopycnal. This can result in an

artificially induced diffusion. For these experiments, the analysis of the

mean interfacial velocity wI is required. However, the effect of the tracer

transformation onto isopycnals leads to major errors in the values for the

diagnosed interfacial velocity. Therefore, it is useful to neglect the

diagnosed interfacial velocity in the diagnostics.

The diagnosed diffusivity κdiag−G in the experiment with the coarse vertical

resolution shows changes with an amplitude of ∼ 8 − 10%, although a high

number of layers is used for the transformation. An increase in the vertical

model resolution leads to high frequency fluctuations with a very small

amplitude. Additionally, the effect of the diagnosed interfacial velocity on

the results of the κdiag−G is smaller than 0.1%. Therefore, the diagnostics of

the interfacial velocity can be neglected in the analysis of the tracer flux

method.



Chapter 7

Summary: Part I

In this part, three different methods to analyse diagnosed diffusivities in

one-dimensional models have been introduced. The divergence method and

the tracer flux method both start from the advection-diffusion equation.

The different approach of the variance method based on the variance decay

of the tracer field.

Divergence method Analysing the diagnosed diffusivity by the

divergence method tests in how far this method, which is introduced and

used in a similar way by observationalists (Ledwell et al., 1993, 1998),

can be used for the analysis of z-levels models. It turns out that as long as

the diffusion acts on the tracer only, the values for the diagnosed and the

weighted diffusivities are identical. The results are consistent independent

of the definition of the vertical shape of the explicit diffusion coefficient in

the model set-up and also independent of the z-level grid, either uniform or

non-uniform.

For the analysis of diapycnal mixing in experiments, when the isopycnal

layers are not constant with time, the transformation of the diagnostics

from z-space into σ-space is necessary. The results of the diagnosed

diffusivity are very sensitive with respect to changes in the resolution of the

transformation, as shown in the sensitivity studies. It is not possible to

modify the divergence method in order to get robust results.
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In the analysis of the diapycnal diffusivity as introduced and used in the

work of Ledwell et al. (1998), the tracer data reflect only a part of the

injected tracer and therefore, it is necessary to inter- and extrapolate the

tracer field onto the known isopycnal field. In the observational studies, the

density structure of local profiles are well known with a high vertical

resolution. The temporal change of the tracer concentration is analysed as

a function of height above the target density surface, which is the density

surface, where the tracer was initialised. With this transformation of the

advection-diffusion equation effects caused by the parallel movement of the

isopycnals are eliminated. For a model study, such a definition is not

suitable, as the combination of the discrete and coarse model grid and the

interpolation of the tracer field onto a high resolved density field lead to

spurious changes in the vertical structure of the tracer, which are larger

than changes inferring from the model integration itself.

The process neglected in the observational study (Ledwell et al., 1998)

is the effect of diverging and converging isopycnals, which is found to be the

main error source in their analysis. The results of the 1-dimensional case

studies show, that converging or diverging isopycnals can result in a

numerically induced diffusion.

Tracer flux method The diagnostics of the tracer flux method based on

the analysis of the basin wide average value for the diagnosed diffusivity by

Griffies et al. (2000), but is modified in such a way that the mean

diffusivity of a tracer field is diagnosed. The results of experiments where

diffusion acts on the tracer only showed consistent values for the diagnosed

and the weighted diffusivities. Although the results are consistent within

the tracer flux method itself, they cannot be directly compared to the

results of the divergence method as the weighting of both methods differs.

This means in general that for the comparison of different methods, it is

always necessary to take into account how the values are weighted.

For the analysis of the diagnosed diffusivity in experiments where the

isopycnals are not constant in time the tracer flux method also requires a

transformation of the tracer onto σ-coordinates. The sensitivity studies
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showed that a modification of the tracer flux method is necessary in order

to get robust results with respect to changes in the resolution of the

transformation. This modification is realised by the linear transformation

of the tracer gradient onto isopycnal layers. As long as the transformation

is not getting coarser than the density profiles in the model, the tracer flux

method leads to robust results independent of the transformation axis used.

In order to analyse the effect of a parallel movement of the isopycnal layers

on the robustness of the tracer flux method, experiments with an

implemented constant vertical advection were shown. In these experiments,

the density equation was chosen to be linear, in order to eliminate any

diverging or converging effects in the temporal change of the isopycnal

layers. The advection scheme used in this model is a centred differences

scheme in space and a Eulerian backwards scheme in time. This is mainly

dispersive, but might generate a small amount of numerically induced

diffusivity as a result of the discretisation in time. However, the results

show that the combination of the mapping and the vertical movement of

the isopycnals lead to high changes in the diagnosed diffusivities. These

changes depend linearly on the movement of the transformed tracer from

one layer to the next one. The amplitude of these fluctuations decreases by

an increase in the vertical resolution of the model grid. Considering mean

values of these fluctuations over at least one wavelength, the values are of

the order of O(10−2 cm2/s), which is about one order of magnitude larger

than the numerically induced diffusion in this experiment. An increase in

the vertical resolution of the model grid leads to a reduction of the mean

values (O(10−3 cm2/s)), which is still masking the numerically induced

diffusion.

The effect of diverging or converging isopycnals on the results of the

diagnosed diffusivity is even larger. An increase in the vertical resolution of

the model grid to a level thickness of 5 m leads to robust results with

respect to changes in the resolution of the transformation used. The results

suggest that diverging isopycnals lead to negative induced diffusivities and

converging isopycnals to positive induced diffusivities.

In principle, it is also possible, analogue to the studies of Griffies et al.
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(2000), to analyse the vertical behaviour (and only horizontal mean values)

of the diapycnal diffusion by the tracer flux method. In the analysis

described by Griffies et al. (2000), a different transformation of the

tracer onto isopycnals has been used.

In the study performed by Griffies et al. (2000), the diapycnal diffusion

of the density is analysed. Therefore the density is sorted to a reference

density profile by keeping the information of both the density and the

volume of each water parcel during the sorting. This leads to a significant

amount of small scale structure as a result of the sorting map which

interleaves the horizontal and the vertical stratification of the unsorted

fluid. As a result, the analysed diapycnal diffusivity is extremely noisy. In

order to avoid the influence of the mapping, vertical mean values for the

density and also for the gradient are taken for the analysis in order to

smooth out the fine vertical steps. Using the mapping introduced in the

current study the analysis done by Griffies et al. (2000) can be done

without restrictions.

Variance method The diagnostics of the variance method are based on

the analysis of the variance decay. The variance of the tracer, as defined

here, is a depth independent value and depends only on the tracer

concentration in each model box. This is a different approach compared to

the one of the previous two methods, where the diffusive flux is the

determining process for the analysis of the diagnosed diffusivity.

The Eulerian backwards time stepping scheme, which is used in this model

to implement the explicit diffusion and the vertical advection, does not

conserve the variance. The leads in the diagnosed diffusivities of the

experiments in which diffusion acts on the tracer only to a numerically

induced diffusivity, which depends on the time-step used. A decrease of the

time-step results in a smaller amount of numerically induced diffusion. The

vertical advection also generated a small amount of numerically induced

diffusion (∼ 1.7 × 10−3 cm2/s in the specific case shown). Diffusion in

temperature and salinity do not generate changes in the tracer variance.

As in Part II of this thesis, diapycnal diffusivities in 2-dimensional case
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studies will be analysed, it is useful to examine the effect of the tracer

mapping on the robustness of the variance method. It turns out, that

similar to the results of the tracer flux method, a constant vertical

advection (also with the restriction, that the isopycnals are moving in an

exactly parallel manner) leads to spurious fluctuations in the diagnosed

diffusivities. This effect can be ascribed to the combination of the mapping

and the vertical movement of the isopycnals. The diagnosed diffusivity

depends linearly on the movement of the tracer concentration from one

layer to the next one. The values are always larger than the values of

diagnosed diffusivity analysed in z-levels.

An increase in the vertical resolution leads to a decrease of these spurious

differences in the diagnosed diffusivities. However, the diagnosed diffusivity

κvar(σ) shows high frequency fluctuations, but using a level thickness of

5 m, κvar(σ) is only ∼ 8% larger than the exact value κvar(z). The

combined effect the transformation into σ-coordinates and the vertical

movement of the isopycnals, lead to spurious fluctuations in the diagnosed

diffusivities analysed in σ-layers. However, these spurious fluctuations are

very small (< 1%).

Conclusion The diagnostics of the tracer flux and the variance method

show that a fine resolved vertical grid is necessary in order to get robust

results with respect to changes in the resolution of the tracer

transformation. In these simple case studies the levels thickness is chosen to

be 5 m. This is a value, which can be realised in OGCMs, as a higher

vertical resolution might lead to problems in the surface circulation.

The 1-dimensional case studies show, that the results of the tracer flux

method are very sensitive to the resolution of the transformations used as a

result of the combined effect of the tracer mapping onto isopycnals and the

movement of the isopycnal interfaces. The difficulties in applying this

method in z-level models arise from these transformations. In

isopycnal-coordinate models, the same approach can be used without

restrictions, as there it is not necessary to transform the tracer onto

isopycnals. The problem which arises from the transformation of the tracer
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onto isopycnal layers also affects the other methods tested here to quantify

diapycnal diffusion in a z-level model. Despite the difficulties in evaluating

it, and its crudity as a measure of mixing, it is a familiar concept, whose

values are immediately meaningful.

In general, the diapycnal diffusivity, in this study estimated by the

diagnosed diffusivity, is the sum of the explicit diffusivity and the

numerically induced diffusivity, a result of e.g. the discretisation of

advection or an effect of converging and diverging isopycnals. The

diagnosed vertical diffusivity is equal to the (suitably weighted) explicit

diffusivity only where there is not numerically induced diffusivity, e.g. in

the experiments in which the only process is vertical diffusion.

In the following the diagnostics of 2-dimensional case studies will be shown,

where the experiments are restricted to the fine resolved vertical grid.



Part II

2-dimensional Experiments



Chapter 8

2-dimensional case studies:

Diagnostics using the variance

method

The results of the 1-dimensional case studies showed that it is possible to

link the variance decay to a diapycnal diffusivity. In order to analyse

OGCMs, the variance method introduced in Chapter 2 needs to be applied

and tested in idealised experiments of higher dimensions. In this chapter,

all the different cases shown in Part I of this thesis for the 1-dimensional

experiments will be repeated for 2-dimensional experiments, including

changes in the diagnostics that account for the additional dimension.

The analysis of 3-dimensional experiments is similar to that of

2-dimensional experiments. Thus, the results of the 2-dimensional

experiments already gives an idea about what to expect for the analysis of

OGCMs.

First, the variance method for the analysis of 2-dimensional case studies

will be introduced. Second, the results using horizontal isopycnals will be

shown and after that the same experiments will be repeated using a

non-horizontal initial density field.
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8.1 Changes in the method

Before it is possible to diagnose diffusivities in models with two dimensions,

the method needs to be adapted. In general, the physics in higher

dimensional experiments allow the tracer not only to move in the diapycnal

direction, but more likely along the isopycnals. Therefore, it is necessary to

separate the diapycnal mixing from the mixing along the isopycnals. This

was not necessary for the analysis of the 1-dimensional experiments, as the

diffusivity estimated by the variance decay was equivalent to the diapycnal

diffusivity.

Diagnosed diffusivity In order to get an overview about the

applicability of the variance method in 2-dimensional experiments, three

different ways of analysing the variance decay will be introduced. In

experiments with only vertical diffusion or vertical advection, the diagnosed

diffusivity can be estimated from the decay of the sum of the variance in

z-coordinates. This assumption is not suitable for a general analysis, as in

this case, the variance decay caused by diapycnal mixing is not separated

from the one caused by along isopycnal mixing. Therefore, the tracer will

first be integrated along the isopycnal layers before estimating its variance.

This step includes the transformation of the tracer onto isopycnals and the

along isopycnal integration of the tracer, both potential sources of spurious

mixing. Therefore, the effect of the tracer transformation onto isopycnals

on the results will be shown separately, as well as the effect of the along

isopycnal integration of the tracer.

First case In the first case, the diagnosed diffusivity is analysed by the

decay of the integrated variance. In the 2-dimensional experiments, the

variance σ2 of the total tracer is given by

σ2 =
1

2

m
∑

i=1

((

n
∑

k=1

C(i, k)2∆z(k)

)

· ∆x(i)

)

, (8.1)

where C is the tracer concentration in z-levels, ∆z is the thickness and ∆x
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the horizontal width of each model box, n denotes the number of model

levels and m the number of columns. Note, the temporal change of the

variance σ2, as given in Equation 8.1, is not separating between changes

caused by diapycnal mixing and those due to along isopycnal mixing. The

diagnosed diffusivity κvar,z in z-coordinates is defined as follows

κvar,z =
−∆σ2

∆t

∑m

i=1

(

∑n

k=1

(

(

∆C(i,k)
∆z(k)

)2

· ∆z(k)

)

· ∆x(i)

) . (8.2)

Note, this diagnosed diffusivity κvar,z will only be used as a reference value

for the sensitivity studies with horizontal isopycnals (see Section 8.2).

Second case In the second case, the analysis of the diagnosed diffusivity

is modified in such a way, that changes in the results are only an effect of

the tracer mapping. The variance σ2
s of the transformed tracer is given in

σ-coordinates by

σ2
s =

1

2

m
∑

i=1

((

l
∑

s=1

Ct(i, s)
2 · ∆zt(i, s)

)

· ∆x(i)

)

, (8.3)

where Ct denotes the transformed tracer, ∆zt is the layer thickness of the

density class and ∆x the horizontal width of each model box, l denotes the

number of layers of the used transformation and m the number of columns.

The diagnosed diffusivity κvar,σ is then given by

κvar,σ =
−∆σ2

s

∆t

∑m

i=1

(

∑l

s=1

(

(

∆Ct(i,s)
∆zt(i,s)

)2

· ∆zt(i, s)

)

· ∆x(i)

) . (8.4)

Note, the difference between κvar,z and κvar,σ gives only evidence about the

effect of the tracer transformation into σ-coordinates in the diagnostics, but

is still not separating between diapycnal and isopycnal diffusivities.

The separation between the diapycnal and the isopycnal diffusivity is

mainly important for the analysis of OGCMs, as the along isopycnal



8.1. Changes in the method 136

diffusivity of the tracer is at least one order of magnitude larger compared

to the diapycnal diffusivity and will therefore always mask that signal.

Third case In the third case, the analysis of the diagnosed diffusivity will

be modified further in order to separate the diapycnal from the isopycnal

component of the diagnosed diffusivity. For the realisation, the idea from

the analysis done by Ledwell et al. (1998) is used. This is basically a

reduction of the, in this case, 2-dimensional tracer field to a 1-dimensional

one, by averaging the tracer along the isopycnals, before the diagnosed

diffusivity is estimated.

For the along isopycnal average, the mean tracer concentration Cint is

defined as follows

Cint(s) =

∑m

i=1(Ct(i, s) · ∆zt(i, s) · ∆x(i))
∑m

i=1(∆zt(i, s) · ∆x(i))
, (8.5)

where Ct denotes the transformed tracer, ∆zt is the layer thickness of the

density class and ∆x the horizontal width of each model box, m the

number of columns and s denotes number of density classes used for the

transformation. The variance σ2
int of the averaged tracer is given by

σ2
int =

1

2

l
∑

s=1

(

Cint(s)
2 · ∆zint(s)

)

, (8.6)

where ∆zint(s) =
∑m

i=1(∆zt(i, s) · ∆x(i)) denotes the integrated layer

thickness.

When the tracer concentration is not spread equally along the isopycnal

layer, the along isopycnal average of the tracer leads to a spurious mixing,

as the tracer mass of different concentrations are mixed together. This

spurious mixing might result in an artificial change of the variance decay.

For the diagnostics of the variance method, also the diapycnal tracer

gradient needs to be determined. For the 2-dimensional case studies, it is

necessary to average the transformed tracer along the isopycnal layers

before estimating its diapycnal gradient. The sensitivity study of the
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1-dimensional experiments showed (see Section 4.3) that the results are

very sensitive to the mapping by analysing the gradient of the transformed

tracer. This can be reduced by linearly interpolating the tracer gradient

into σ-space.

To avoid these problems in the analysis of the 2-dimensional experiments, a

similar assumption to that employed previously for the analysis of the

1-dimensional experiments is made. Instead of analysing the gradient of the

integrated tracer concentration, the isopycnal mean value of the linearly

(vertically) interpolated tracer gradient is taken. The averaged tracer

gradient is denoted as ∆Ct/∆zt.

This means that the diagnosed diffusivity κvar−int,σ of the integrated tracer

is given by

κvar−int,σ =
−

∆σ2
int

∆t

∑l

s=1

(

(

∆Ct

∆zt

)2

· ∆zint(s)

) , (8.7)

where σ2
int is the variance of the averaged tracer Ct, ∆zint is the

horizontally integrated layer thickness and ∆Ct/∆zt is the isopycnal mean

of the linearly transformed tracer gradient. Additionally to the analysis of

the diagnosed diffusivity, it is necessary to compute the weighting of the

explicit diffusion coefficient on the 2-dimensional grid in order to allow a

comparison of the weighted diffusivity with the diagnosed one.

Weighted diffusivity The weighted diffusivity can be estimated in two

different ways: first in z-coordinates, which is a useful way, as long as the

isopycnals are horizontal. Second in σ-coordinates, which is the weighting

used for the more general analysis.

The variance decay of the total tracer, which is given by the term of the

explicit diffusivity in 2-dimensional experiments is given by

∆σ2

∆t
=

m
∑

i=1

(

n
∑

k=1

(

κexpl(i, k) ·

(

∆C(i, k)

∆z(k)

)2

· ∆z(k)

)

· ∆x(i)

)

, (8.8)
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where C is the tracer concentration (in z-levels), ∆z is the level thickness

and ∆x the horizontal width of each model box, n the number of model

levels and m the number of horizontal units. By substituting Equation 8.8

into Equation 8.2, the weighted diffusivity κw,z in z-coordinates is given by

κw,z =

∑m

i=1

(

∑n

k=1

(

κexpl(i, k) ·
(

∆C(i,k)
∆z(k)

)2

· ∆z(k)

)

· ∆x(i)

)

∑m

i=1

(

∑n

k=1

(

(

∆C(i,k)
∆z(k)

)2

· ∆z(k)

)

· ∆x(i)

) . (8.9)

In order to estimate the explicit diapycnal flux of the tracer in

σ-coordinates, the explicit diffusion coefficient needs to be interpolated onto

isopycnals. The linear interpolated explicit diffusion coefficient will be

denoted as κexpl,σ in the following. The tracer gradient is invariant to a

transformation from z- space into σ-space. Thus, the weighted diffusivity

κw,σ is given by

κw,σ =

∑m

i=1

(

∑l

s=1

(

κexpl,σ(i, s) ·
(

∆Ct(i,s)
∆zt(i,s)

)2

· ∆zt(i, s)

)

· ∆x(i)

)

∑m

i=1

(

∑l

s=1

(

(

∆Ct(i,s)
∆zt(i,s)

)2

· ∆zt(i, s)

)

· ∆x(i)

) , (8.10)

where Ct is the transformed tracer concentration and zt the transformed

depth. The difference between the weighted diffusivity κw,σ and the

diagnosed diffusivity κvar−int,σ is the amount of induced diffusivity caused

by the artefacts of the model discretisation, only if the tracer mapping and

the along isopycnal integration do not lead to an additional spurious

diffusivity in the results.

In the following, first, results of the experiments with horizontal isopycnals

will be shown including the analysis of the sensitivity of the transformation

onto isopycnals. The results will focus on a comparison of the different

diagnosed diffusivities, as this gives evidence about the influence of the

transformation on the method and the along isopycnal integration of the
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tracer concentration. Second, the analysis for the same experiments will be

repeated using an initial density field with non-horizontal isopycnals, as it

is expected in the interior ocean in coarse resolution OGCMs.

8.2 Results: horizontal isopycnals

In this section, experiments with horizontal isopycnals will be analysed. A

sensitivity study of the dependence of the results on the number of layers

used for the tracer mapping gives evidence about the robustness of the

analysis. Additionally, the effect caused by the additional mixing due to the

along isopycnal integration of the tracer will be shown. This will be realised

by two different initial tracer conditions.

As long as the isopycnals are horizontal, the weighted diffusivity κw,z

analysed in z-coordinates gives the same results as the weighted diffusivity

κw,σ analysed in σ-coordinates; therefore only the results of κw,z will be

shown in this section. In the following, it will be focused on possible

sources of spurious mixing in the analysis of κvar−int,σ.

The structure of the following section is similar to the analysis of the

1-dimensional case studies. First, experiments are shown in which only the

tracer is diffusive. Second, the effect of vertical advection is analysed.

Finally, results for the experiments including diffusion in tracer,

temperature and salinity are shown. But before this, an overview of the

model configuration and the experimental set-up will be given in more

detail.

8.2.1 Model configuration and experiments

The results of the 1-dimensional experiments showed, that a high vertical

resolution of the model leads to more robust results. This was especially

the case in experiments with implemented vertical advection or with

additional diffusion in temperature and salinity. Therefore, the
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Figure 8.1: Initial density field for
the 2-dimensional case studies with
horizontal isopycnals.

2-dimensional experiments are limited to the model set-up using a high

vertical resolution with a level thickness of 5 m.

The horizontal grid is chosen to be equidistant and has an arbitrary

number of 15 equidistant horizontal boxes. The width of the horizontal

boxes is defined to be equal to 1.

The diffusion and later the advection scheme in the 2-dimensional model

are implemented as a Eulerian backwards scheme, the same as used in the

1-dimensional configuration. The diffusion and advection are both realised

in the model with a centred differences scheme. Note, that the experiments

are only used to test the robustness of the methods of diagnosing diffusion

and weighting the explicit diffusion coefficient in a more dimensional model

and to see the influence of the used density regime.

The initial density condition is shown in Figure 8.1, where the isopycnals

are horizontal. Note, the density is not linearly increasing with depth,

which is different to the configuration of the 1-dimensional experiments, but

is a closer realisation for a comparison with the non-horizontal initial

density field used in Section 8.3 (non-horizontal isopycnals in the initial

density field).

In general, mimicking the tracer release experiments described by Ledwell

et al. (1998) in OGCMs, the tracer must be initialised in the model in one

single model box. As a results of advection and diffusion, the tracer spreads

along the isopycnal layers and also in a diapycnal manner. In the idealised

2-dimensional case studies, there is no horizontal movement of the tracer

included. This means that initialising the tracer in one model box leads to

exactly the same results as shown for the 1-dimensional experiments.

Shortly after releasing the tracer in the ocean (similar in OGCMs), the
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Figure 8.2: Initial tracer field, with
a tracer maximum in the middle
and fading concentration towards
the outer sides; isopycnals are hori-
zontal.
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Figure 8.3: Initial tracer field, where
the tracer is equally labelled along
one isopycnal layer; isopycnals are
horizontal.

tracer is concentrated at its releasing position with areas of low

concentration around that maximum. After some time, the tracer

maximum is less sharp and the concentration is spread more equally on the

isopycnal layers. To mimic these two different distribution in the idealised

2-dimensional case studies, two initial tracer conditions are defined.

In Figure 8.2, the idealisation of the first case is shown. The tracer

maximum is concentrated in the middle of the horizontal field with a fading

concentration towards the outer sides; which is denoted as horizontally

varying initial tracer condition. Figure 8.3 shows the idealisation of the

second case, where the tracer mass is equally spread along the isopycnal

layer, which is denoted as equally labelled initial tracer condition in the

following.

This model set-up will be used to repeat the same experiments as discussed

for the 1-dimensional model: first, experiments in which diffusion acts on

the tracer only, second, where vertical advection is added and third,

experiments in which diffusion acts on tracer, temperature and salinity. In

the experiments including only vertical diffusion, either in the tracer field or

additionally in the temperature and salinity fields, a variation of the explicit

diffusion coefficient is used (analogous to the 1-dimensional case studies):

(i) A−const with a constant explicit diffusion coefficient (4 cm2/s),

(ii) A−incr where the explicit diffusion coefficient is linearly increasing
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Figure 8.4: Field of the
non-linear explicit diffu-
sion coefficient as used in
experiment A−oc; isopyc-
nals are horizontal.

Experiment explicit diffusion coefficient

A−const constant with x and z
A−incr linearly increasing with σ,constant with x
A−horiz linearly decreasing with x, constant with depth
A−oc non-linear in both dimensions

Table 8.1: Experiments of the 2-dimensional case studies.

with sigma and

(iii) A−oc where the explicit diffusion coefficient is non-linear with depth

and also along the horizontal unit (Figure 8.4).

Note, the explicit diffusion coefficient in experiment A−incr is defined to be

constant along the isopycnals, so it is linearly increasing with the density.

In 2-dimensional experiments, it is also possible to vary the explicit

diffusion coefficient along the horizontal direction. Therefore, results of a

fourth experiment, A−horiz, will be shown, where the explicit diffusion

coefficient decreases linearly from 3.1 to 0.2 cm2/s along the horizontal

direction and stays constant with depth. Table 8.1 gives an overview of all

four experiments.

8.2.2 Diffusion acts on the tracer only

For the experiments shown in this section, it is not necessary to transform

the tracer onto isopycnals or to diagnose the diffusivity of the along

isopycnal integrated tracer, as the isopycnals are horizontal and the vertical
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Figure 8.5: Diffusivities for experiment A−const (2-dimensional), diffusion
acts on tracer, isopycnals are horizontal: a) horizontally varying initial tracer
condition, b) initial tracer is equally labelled along one isopycnal.

diffusion acts on the tracer only. Therefore, the following experiments will

be taken as sensitivity studies to analyse the effect of the tracer mapping

onto isopycnals and the along isopycnal integration of the tracer on the

results of the diagnosed diffusivity.

The effect of the transformation of the tracer onto σ-coordinates on the

results of the weighted diffusivity κw,σ is very small (∼ 0.3%). The focus in

this section is the comparison of the diagnosed diffusivities. Thus only the

results of κw,z will be shown in this section and the notation is reduced to

κw.

As long as the resolution of the transformation is chosen to be coarser than

the density profiles in the model, the results are robust (maximal changes of

1%) according to changes in the resolution of the transformation axis used.

For the results shown in the following, twice as many layers than model

levels are used for the transformation of the tracer and the tracer gradient.

Figure 8.5 shows the results for the diagnosed and the weighted diffusivities

in experiment A−const. The results are independent of the initial tracer

condition used. The values for the weighted diffusivity κvar,z are identical

with the constant value of 4 cm2/s of the explicit diffusion coefficient.

The diagnosed diffusivity κvar,z (blue) essentially gives the exact value for

the diffusivity in this experiment, without any error caused by the mapping

or the interpolation of the tracer. The values for the diagnosed diffusivities
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Figure 8.6: Diffusivities for experiment A−incr (2-dimensional), diffusion
acts on tracer, isopycnals are horizontal: a) horizontally varying initial tracer
condition, b) initial tracer is equally labelled along one isopycnal.

κvar,σ (green) and κvar−int,σ (red) are identical, therefore κvar,σ cannot be

seen separately in Figure 8.5. This means that there are no differences

resulting from the along isopycnal integration of the tracer. The only

differences (< 1%) are caused by the interpolation of the tracer and the

tracer gradient onto isopycnals. An increase in the number of layers used

for the mapping is reducing this effect.

Similar to the results of the previous experiment, the results for the

diagnosed and weighted diffusivities of experiment A−incr (Figure 8.6) are

independent of the initial tracer condition used. At the beginning of the

experiment, the difference between κw and κvar,z shows, that the amount of

numerically induced diffusion is similar to the one in the analogous

1-dimensional experiment. The results for the diagnosed diffusivities κvar,σ

and κvar−int,σ are identical, and very similar to the ones of κvar,z . The effect

of the mapping is small (< 1%) and decreases further with an increase in

the resolution of the transformation.

For the two shown experiments, A−const and A−incr, the results are

independent of the initial tracer condition used. The explicit diffusion in

both experiments is defined to be constant along the isopycnals and as both

initial tracers are released in the same isopycnal layer, the values for the

diagnosed diffusivities have to be identical.

As long as the explicit diffusion stays constant along the isopycnals, the

mean tracer gradient is changed in exactly the same way, as the
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Figure 8.7: Diffusivities for experiment A−horiz (2-dimensional), diffusion
acts on tracer, isopycnals are horizontal: a) horizontally varying initial tracer
condition, b) initial tracer is equally labelled along one isopycnal.

concentration is mixed along the isopycnals. Therefore, the results for κvar,σ

and κvar−int,σ have to be identical as shown in the results.

In experiment A−horiz (Figure 8.7) the explicit diffusion coefficient is

linearly decreasing along the horizontal distance and stays constant with

depth. Different to the results of the previous two experiments, the

diagnosed and the weighted diffusivities differ with respect to the used

initial tracer condition, which can be ascribed to the along isopycnal

variation of the explicit diffusion coefficient used.

Using the horizontally varying initial tracer condition (Figure 8.7 a), the

difference between κw (black) and κvar,z (blue) is ∼ 3% at the beginning

with a converging behaviour during the experiment. The effect of the tracer

mapping leads to a slightly larger diffusivity κvar,σ (∼ 0.6%) during the first

half of the experiment and the results are consistent with the values of

κvar,z during the rest of the experiment. The along isopycnal integration of

the tracer has a large effect on the results. Although the values of κvar−int,σ

are very similar to the ones of κvar,σ at the beginning of the experiment,

towards the end κvar−int,σ is ∼ 3% smaller than κvar,σ.

Using the equally labelled initial tracer condition (Figure 8.7 b), the results

for the diagnosed diffusivities κvar,z and κvar,σ are almost identical with the

ones of the weighted diffusivity κw. This means that there is no numerically

induced diffusivity in this experiment and the tracer mapping does not lead

to a spurious diffusivity in κvar,σ. The along isopycnal integration of the
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Figure 8.8: Diffusivities for experiment A−oc (2-dimensional), diffusion acts
on tracer, isopycnals are horizontal: a) horizontally varying initial tracer
condition, b) initial tracer is equally labelled along one isopycnal.

tracer leads to a maximum difference of ∼ 40% between κvar−int,σ and κvar,σ

at the end of the experiment.

The variation of the explicit diffusivion along the isopycnals leads to

spurious changes in the diagnosed diffusivity κvar−int,σ. The spurious

mixing of the tracer concentration leads to artificial changes in the variance

decay different to the spurious changes in the mean tracer gradient.

In the last experiment, A−oc (Figure 8.8), the explicit diffusion coefficient is

changing with depth and additionally along the horizontal distance.

Therefore, the results are expected to show the effects caused by the

vertical variation of the explicit diffusivity as well as the effects by the

horizontal variation.

Using the horizontally varying initial tracer condition (Figure 8.8 a), the

numerically induced diffusivity, given by the difference between κw (black)

and κvar,z (blue), is ∼ 2% at the beginning decreasing to ∼ 0.6%. The effect

of transforming the tracer into σ-coordinates, given by the difference

between κvar,z and κvar,σ, leads to a further increase of the diagnosed

diffusivity of 0.6%. The along isopycnal integration of the tracer leads to

∼ 2% smaller values for the results of κvar−int,σ towards the end of the

experiment, whereas at the beginning this effect is nearly zero. The

spurious mixing caused by the transformation and the along isopycnal

integration of the tracer is larger than the numerically induced diffusivity

and masking its signal.
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Using the equally labelled initial tracer condition (Figure 8.8 b), the

difference between κw, κvar,z and κvar,σ is slightly smaller compared to the

ones shown for the horizontally varying initial tracer condition. The along

isopycnal integration of the tracer leads to an increase of the diagnosed

diffusivity of ∼ 2% towards the end of the experiment, whereas at the

beginning there is no difference between the values of κvar,σ and κvar−int,σ.

In summary, it can be said that the effect of the tracer mapping on its own

on the results is very small (1%). By increasing the number of layers used

for the transformation, this small effect can be reduced further.

As long as the explicit diffusion is constant along the isopycnal layers, the

along isopycnal integration of the tracer does not lead to any spurious

diffusion in the results, κvar,σ and κvar−int,σ are identical. Whereas the along

isopycnal integration of the tracer field leads to a spurious diffusivity which

is larger than the numerically induced diffusivity. In these cases it is not

possible to draw conclusions about the numerically induced diffusivity from

the values of κvar−int,σ.

For the analysis of OGCMs this means that in general it is not possible to

separate the diapycnal and the isopycnal mixing by integrating the tracer

isopycnally before estimating its variance decay. Only in the special case,

where the vertical diffusion is constant along the isopycnals it seems

possible. As the isopycnals are restricted to be horizontal and there is only

vertical diffusion implemented in these experiments, further experiments

need to be done in order to get more general results.

8.2.3 The effect of vertical advection

In this section, experiments will be analysed where vertical advection is

implemented in the model with a centred differences scheme in space and a

Eulerian backwards scheme in time. The vertical velocity is constant with a

value of 4 × 10−6 m/s ≈ 0.35 m/day with a downwards direction, the same

as chosen in the analogous 1-dimensional experiments shown in Chapter 5.

The implemented advection acts on temperature and salinity and the
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corresponding effect in density can be interpreted as a vertical movement of

the isopycnal layers. In order to restrict this movement to be exactly

parallel, it is necessary to define the density to be a linear function of e.g.

the temperature. Additionally, the temperature in this case is chosen to be

linear as well. Firstly, results will be shown, where the vertical movement of

the isopycnals is parallel, without converging and diverging effects.

Secondly, the same experiment will be repeated using the non-linear density

equation as it is done for the analysis of OGCMs, in order to be able to

compare the results with the ones of the analogous experiment using

non-horizontal isopycnals. In the second case, temperature and salinity are

not restricted to be linear with depth.

As the isopycnals are defined to be horizontal in this section, the

implemented advection leads in both cases to a horizontally uniform change

in the isopycnal layers. This means that the along isopycnal integration of

the tracer does not lead to a spurious diffusivity in the results. Therefore,

only the results for κvar,z and κvar−int,σ will be compared, the difference is

the spurious diffusivity caused by the tracer transformation into σ-space.

The results in the previous section showed that as long as the explicit

diffusion coefficient is constant along the isopycnals the results are

indifferent to the initial tracer condition used. The same effect can be seen

in the results of the experiment with vertical advection. The diagnostics for

both initial tracer conditions give exactly the same results, therefore only

one Figure will be shown.

In Figure 8.9 a) the results for the diagnosed diffusivity κvar,z (blue) and

κvar−int,σ (red), where twice as many layers than levels are used for the

transformation, are shown for the experiment using the linear density

equation. The differences between κvar,z and κvar−int,σ are small (∼ 3%) and

similar to the ones shown for the 1-dimensional experiments. A further

increase in the number of layers used for the transformation leads to an

increase in the frequency of the fluctuations in κvar−int,σ, but not to a

further reduction of the amplitude.

In the second experiment (8.9 b), the chosen density equation is non-linear.
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Figure 8.9: 2-dimensional experiment including vertical advection (horizontal
isopycnals): diagnosed diffusivity κvar,z (blue) and κvar−int,σ using twice as
many layers than levels (red) and 5 times more than levels (green), a) linear
density equation and b) realistic density estimation.

The vertical movement of the isopycnal layers in this case is not restricted

to be exactly parallel, but can also have slightly converging and diverging

components. The values for the diagnosed diffusivity κvar,z are consistent

with the ones using the linear equation in the density.

Using twice as many layers than model levels for the mapping, the

diagnosed diffusivity κvar−int,σ (red) shows variations with an amplitude of

±3.5 × 10−3 cm2/s, which is about one order of magnitude larger compared

to results in Figure 8.9 a) where the linear density equation has been used.

An increase in the resolution of the transformation axis by using 5 times

more layers than levels for the mapping reduces this effect. The amplitude

decreases to ±0.15 × 10−3 cm2/s, which is similar to the results shown in

Figure 8.9 a). A further increase in the number of layers used for the

mapping does not lead to a further reduction in the amplitude of the high

frequency fluctuations in κvar−int,σ.

The high amplitude in the fluctuations of κvar−int,σ in the case where twice

as many layers than levels are used for the mapping, can be ascribed to the

fact that although the number of layers of the transformation axis are the

same, the resolution in the region of interest is coarser compared to the

analogous case, where the density is chosen to be linear. This coarser

resolution leads to a spurious mixing as a result of the tracer mapping.
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The mean values of the diagnosed diffusivity κvar−int,σ give only a very

small variation of maximal 0.5% with respect to the changes in the

resolution of the transformation axis. More generally, the mean values of

κvar−int,σ are overestimating the diagnosed diffusivity κvar,z by ∼ 3%.

In summary, the results for the weighted and the diagnosed diffusivities are

independent of the used initial tracer condition. Additionally, the

interpolation of the tracer does not cause spurious changes in the results.

Using the linear density equation, the results for the diagnosed diffusivities

κvar,z and κvar−int,σ are consistent with the results of the analogous

1-dimensional experiments. A change in the density assumptions leads to a

major increase in the amplitude of the diagnosed diffusivity κvar−int,σ when

twice as many layers than levels are used for the transformation. An

increase in the resolution of the transformation axis reduces this effect and

leads to a consistency in the values of κvar when the density is chosen to be

linear.

For the analysis of the diapycnal diffusion in σ-space, the resolution of the

transformation needs to be higher than the resolution of the density profiles

in the model, similar as seen in the diagnosed diffusivities of the

1-dimensional experiments in Chapter 5.

8.2.4 Diffusion acts on tracer, temperature and

salinity

In the experiments shown in this section not only the tracer but also

temperature and salinity are diffusive. The corresponding effect in the

density can be interpreted as an interfacial movement of the isopycnal

layers. As in the current section, the analysis is restricted to experiments

with horizontal isopycnals, only the results of the experiments A−const and

A−incr will be shown. In A−oc and A−horiz the explicit diffusivity

coefficient does not stay constant along the isopycnals, which leads to

non-horizontal layers.

In the following, twice as many layers than levels are used for the tracer
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Figure 8.10: Diffusivities for experiment A−const (2-dimensional), diffusion
acts on tracer, temperature and salinity, isopycnals are horizontal: a) hori-
zontally varying initial tracer condition, b) initial tracer is equally labelled
along one isopycnal.

mapping. An increase in the number of layers used for the mapping leads

to an increase of the frequency of the fluctuations, but only to a small

decrease in the amplitude.

As the variance of the tracer is not affected by the interfacial movement of

the isopycnals, the results for the diagnosed diffusivities κvar,z and the

weighted diffusivity κw are identical to the ones shown for the experiments

where only the tracer was diffusive (see also Section 8.2.2). Additionally, as

seen in Section 8.2.2, the results for the diagnosed diffusivities κvar,σ and

κvar−int,σ are identical as long as the explicit diffusion coefficient stays

constant along the isopycnal layers, which is the case in the following

experiments. Therefore, the results of κvar−int,σ will be compared with the

ones of κvar,z and the difference is the spurious diffusivity which results

from the tracer mapping.

The results of experiment A−const (Figure 8.10) are independent of the

used initial tracer condition, as the explicit diffusion coefficient is constant

along the horizontal distance. The weighting of a constant diffusivity is

always consistent with the value of that diffusivity, thus the results for the

weighted diffusivities κw,z and κw,σ are identical and equal 4 cm2/s. In

Figure 8.10, the weighted diffusion is shown by κw (black).

As expected, the results for the diagnosed diffusivity κvar,z are consistent

with the ones of the analogous experiments where the diffusion acts on the
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Figure 8.11: Diffusivities for experiment A−incr (2-dimensional), diffusion
acts on tracer, temperature and salinity, isopycnals are horizontal: a) hori-
zontally varying initial tracer condition, b) initial tracer is equally labelled
along one isopycnal.

tracer only. The tracer mapping into σ-space leads to small scale

fluctuations in the values for κvar−int,σ around the values of κvar,σ. The

spurious diffusivity generated by the tracer mapping is much smaller than

the numerically induced diffusivity.

In experiment A−incr, the results for the weighted and the diagnosed

diffusivity are also independent of the initial tracer condition used (Figure

8.11). The diagnosed diffusivitiy κvar−int,σ shows small scale fluctuations

around the values of κvar,z . An increase in the number of layers used for the

transformation results in an increase of the frequency, but there are no

significant changes in the amplitude of the fluctuations in κvar−int,σ.

For the analysis of the experiments with non-horizontal isopycnals, the

weighted diffusivity will be analysed with respect to the isopycnal layers.

To test the robustness of the mapping, the results of κw(z) and κw(σ) are

both given in Figure 8.11. The difference between the weighted diffusivities

κw(z) and κw,σ are very small (∼ 0.3%), with an off-set like character.

Although it is not resolved in Figure 8.11, the weighted diffusivity κw,σ

shows fluctuations with a similar frequency as seen for κvar−int,σ and a very

small amplitude.

Similar to the results of the 1-dimensional experiments, diffusion in

temperature and salinity does not lead to changes in the diagnosed

diffusivities analysed by the variance method. As an effect of the tracer
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mapping, the results of the diagnosed diffusivity κvar−int,σ show small scale

fluctuations around the values of κvar,z . This means, that it is possible to

analyse the diapycnal diffusivity by integrating the tracer along the

isopycnals before estimating its variance decay. Note, this result is

restricted to experiments where the explicit diffusivity is constant along the

isopycnal layers.

The effect of the transformation on the results of the weighted diffusivity

κw,σ is so small that in the following analysis only the results of κw,σ will be

shown for the values of the weighted diffusivity.

8.3 Results: isopycnals as in the ocean

interior

In this section, the same experiments as shown in Section 8.2 will be

repeated using a non-horizontal initial density field in the model set-up. As

the isopycnals in this section are not horizontal any longer, the initial tracer

conditions need to be redefined on the new isopycnal field, which will be

shown in the next section. In the following, the diagnosed and the weighted

diffusivity will be analysed in σ-coordinates only. The difference between

κvar,σ and κvar−int,σ gives evidence about the effect of the along isopycnal

integration of the tracer.

8.3.1 Changes in the initial conditions

The model configuration is the same as described in Section 8.2.1, except

the initial density and the initial tracer conditions are chosen to be different.

The initial density field is shown in Figure 8.12, which is similar to the one

expected in a low resolution OGCM (e.g. 4/3◦). Note, in the interior the

isopycnals are not parallel, the horizontal gradient is small in comparison to

the vertical one and they also slightly diverge along the horizontal direction.

Figure 8.13 shows the initial tracer condition where the tracer maximum is

located in the middle of the isopycnal layer and the concentration is fading
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the 2-dimensional case studies using
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Figure 8.13: Isopycnally varying ini-
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middle and fading concentration to-
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Figure 8.14: Equally labelled ini-
tial tracer condition: the tracer is
equally labelled along one isopycnal
layer; isopycnals are non-horizontal.

towards the outer sides of that isopycnal layer; also denoted as isopycnally

varying initial tracer condition. The second initial tracer condition is shown

in Figure 8.14. There the tracer mass is spread equally along the isopycnal

layer; thus it is also denoted as equally labelled initial tracer condition. As

the isopycnals diverge towards the western side, the equal spreading of the

initial tracer mass leads to a decrease in its concentration.

In the following, first results of experiments in which the vertical diffusion

acts on the tracer only will be presented including a comparison of the

different ways of analysing the diagnosed diffusivity. Second, the effect of

the vertical advection is analysed followed by the diagnostics of experiments

where the vertical diffusion acts also on temperature and salinity.
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Figure 8.15: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ (bue) and κvar−int,σ (red) using 2× (solid), 5× (dashed) and 10× (dot-
ted) more layers than levels for the mapping for A−const (2-dimensional), a)
isopycnally varying initial tracer condition and b) equally labelled along one
isopycnal (diffusion acts on tracer, isopycnals are non-linear).

8.3.2 Diffusion acts on the tracer only

In the experiments shown in this section the vertical diffusion acts on the

tracer only, temperature and salinity are both stationary. This will give

evidence about the direct effect of the slightly sloping isopycnals on the

results of the variance method. For the diagnosed diffusivity κvar−int,σ,

results using twice as many layer, 5 times and 10 times more layers than

levels for the transformation will be shown. For the diagnostics of κvar,σ,

the change in the number of layers used for the mapping on the results is

rather small (< 1%), therefore only results using twice as many layers than

levels will be shown.

The results for the diagnosed diffusivity κvar,σ and the weighted diffusivity

κw,σ in experiment A−const are independent of the used initial tracer

condition (Figure 8.15). The results for the weighted diffusivity κw,σ are

identical to the constant value of 4 cm2/s of the explicit diffusion

coefficient. The diagnosed diffusivity κvar,σ shows an induced diffusivity of

∼ 10% at the beginning of the experiment with a strong decrease during

the first month. After that, the values for κw,σ and κvar,σ are very similar.

The results for the diagnosed diffusivity κvar−int,σ are highly dependent on

the initial tracer condition used. First, the results for κvar−int,σ are shown

for both initial tracer conditions and then an explanation for the differences
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will be given.

Using the isopycnally varying initial tracer condition (Figure 8.15 a), the

results for the diagnosed diffusivity κvar−int,σ are highly dependent on the

number of layers used for the transformation of the tracer onto isopycnals.

Using twice as many layers than model levels for the transformation (red,

solid line), κvar−int,σ is underestimating the values of κvar,σ during the first

two months (∼ 10%) and gives close results from the second month

onwards. Using 5 times more layers than levels for the mapping, the values

of the diagnosed diffusivity κvar−int,σ (red, dashed line) are about 10 − 20%

larger after the second month compared to the reference values of κvar,σ,

with a slow diverging behaviour. Increasing the number of layers by using

10 times more layers than levels leads to a further increase in the diagnosed

diffusivity κvar−int,σ (red dotted line, ∼ 45% larger).

Using the equally labelled initial tracer condition (Figure 8.15 b), the

results for κvar−int,σ are independent on the resolution of the transformation

axis used. There is a maximum difference between κvar,σ and κvar−int,σ of

5% at the beginning of the experiment.

The high influence of the transformation only occurs in the analysis of

κvar−int,σ for the experiments with the isopycnally varying initial tracer

condition. This mean that the combination of the mapping and the along

isopycnal integration of the isopycnally varying tracer concentration leads

to a spurious diffusivity which is highly sensitive to the resolution of the

transformation used and masks the signal of the numerically induced

diffusivity. This spurious diffusivity is denoted as mapping-integration error

in the following.

In order to explain, why the mapping-integration error occurs only in the

experiments where the isopycnally varying initial tracer condition is used,

first an example of the transformed tracer will be given for both initial

tracer conditions. Second, profiles of the along isopycnal integrated tracer

for different resolutions of the transformation used will be shown.

Figure 8.16 shows the tracer mass after the transformation of the tracer

using twice as many layers than levels at the end of experiment A−const.
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Figure 8.16: Tracer mass after mapping (2× more layers than levels), for
A−const, a) isopycnally varying initial tracer condition and b) equally la-
belled one.
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Figure 8.17: Profile of the along isopycnal integrated tracer at the end of
experiment A−const, a) isopycnally varying initial tracer condition and b)
equally labelled along one isopycnal.

Irrespective which initial tracer condition is used, in each profile of the

transformed tracer, there are layers with no tracer mass.

In the following, only the density range where the tracer is initialised is

considered. Using the isopycnally varying initial tracer condition (Figure

8.16 a), it is more likely that tracer with a low concentration is mixed into

layers with no concentration by the along isopycnal integration of the tracer.

This leads to an increase in the vertical variation of the integrated tracer

concentration, as is will be shown in the following. When on the other hand

the equally labelled initial tracer condition is used (Figure 8.16 b), it is

more likely that tracer with a high concentration is mixed into layers with

no concentration by the along isopycnal integration of the tracer.

The difference can be seen in the profiles of the along isopycnal integrated
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tracer as a function of σ at the end of experiment A−const (Figure 8.17),

using twice as many layers than levels (green), 5 times (red) and 10 times

(blue) more layers than levels. By increasing the number of layers used for

the transformation in the experiment where the isopycnally varying initial

tracer condition is used (Figure 8.17 a), the fluctuations of the vertical

profiles of the along isopycnal integrated tracer increase as well. These high

vertical variations of the tracer profiles are caused by a combination of the

transformation and the along isopycnal integration and lead to changes in

the variance decay of the integrated tracer and therefore in the results of

κvar−int,σ.

When on the other hand the equally labelled initial tracer condition is used

(Figure 8.17 b), the profile of the integrated tracer using twice as many

layers than levels (green) show very small variations in the vertical profile.

An increase in the number of layers used for the tracer mapping leads also

to an increase of the variance of the integrated tracer profile. The main

effect can be found by increasing the number of layers used for the

transformation by a factor of 10, as there are layers with no tracer

concentration, which does not lead to a change in the variance decay of the

integrated tracer.

The sensitivity studies of the 1-dimensional experiments showed (Section

4.3) that using a transformation axis with a coarse resolution for the tracer

mapping, the diagnosed diffusivities are artificially too small. A high

resolution in the transformation was necessary in order to get robust results.

For the analysis of the 2-dimensional experiments, this means that there are

two effects working in opposite directions (especially using the isopycnally

varying initial tracer condition): First a relatively high number of layers is

needed for the transformation in order to get a robust analysis, as spurious

mixing leads to a decrease in the diagnosed diffusivity. Second, the high

resolution of the transformation leads to a high mapping-integration error,

which is much larger than the numerically induced diffusivity.

In experiment A−incr (Figure 8.18), the results for the diagnosed

diffusivity κvar,σ and the weighted diffusivity κw,σ are independent of the

initial tracer condition used and consistent with the results of the analogous
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Figure 8.18: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ (bue) and κvar−int,σ (red) using 2× (solid), 5× (dashed) and 10× (dot-
ted) more layers than levels for the mapping for A−incr (2-dimensional), a)
isopycnally varying initial tracer condition and b) equally labelled along one
isopycnal (diffusion acts on tracer, isopycnals are non-linear).

experiment using horizontal isopycnals.

Using the isopycnally varying initial tracer condition (Figure 8.18 a), the

diagnosed diffusivity κvar,σ, using twice as many layers than model levels for

the mapping, is slightly smaller than κvar,σ during the first two months and

larger with a diverging tendency afterwards. Increasing the number of

layers used for the transformation leads to an increase of the

mapping-integration error in the results of the diagnosed diffusivity κvar,σ,

similar as seen in the results of A−const.

Using the equally labelled initial tracer condition (Figure 8.18 b), the

results for the diagnosed diffusivity κvar−int,σ are indifferent to the

resolution of the transformation used. The maximal difference between

κvar,σ and κvar−int,σ is ∼ 5% and similar as in the result of A−const.

The diagnosed diffusivity κvar,σ and the weighted diffusivity κw,σ of

experiment A−horiz (Figure 8.19) are consistent with the results of the

analogous experiment using horizontal isopycnals. Using the isopycnally

varying initial tracer condition (Figure 8.19 a), the diagnosed diffusivity

κvar−int,σ shows the similar dependency on the transformation used as in

the previous two experiments. Whereas, using the equally labelled initial

tracer condition (Figure 8.19 b), the values of κvar−int,σ are independent of

the number of layers used for the transformation. The differences between
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Figure 8.19: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ (bue) and κvar−int,σ (red) using 2× (solid), 5× (dashed) and 10× (dot-
ted) more layers than levels for the mapping for A−horiz (2-dimensional), a)
isopycnally varying initial tracer condition and b) equally labelled along one
isopycnal (diffusion acts on tracer, isopycnals are non-linear).

the diagnosed diffusivities κvar,σ and κvar−int,σ are the result of the

mapping-integration error.

The results for the last experiment, A−oc, are shown in Figure 8.20. Using

the isopycnally varying initial tracer condition (Figure 8.20 a), the

difference between the weighted diffusivity κw,σ and the diagnosed

diffusivity κvar,σ is ∼ 5% at the beginning with a converging tendency. The

diagnosed diffusivity κvar−int,σ using twice as many layers than model levels

start at a ∼ 8% lower value than κvar,σ. An increase in the number of layers

used for the transformation also leads to an increase in the values of the

diagnosed diffusivity κvar−int,σ.

Using the equally labelled initial tracer condition (Figure 8.20 b), the

differences between the weighted diffusivity κw,σ and the diagnosed

diffusivity κvar,σ are ∼ 4% at the beginning and decrease towards the end of

the experiment. The values for the diagnosed diffusivity κvar−int,σ are

smaller compared to ones of κvar,σ. Although it seems that the differences

of κvar−int,σ are relatively high and depend on the number of layers used for

the mapping, due to the small range in the y-axis, there is only a variation

of ∼ 1% in the values for κvar−int,σ.

Already in these simple experiments, a slight slope of the isopycnals leads

to an increase of the difference between the diagnosed diffusivities κvar,σ
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Figure 8.20: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ (bue) and κvar−int,σ (red) using 2× (solid), 5× (dashed) and 10× (dot-
ted) more layers than levels for the mapping for A−oc (2-dimensional), a)
isopycnally varying initial tracer condition and b) equally labelled along one
isopycnal (diffusion acts on tracer, isopycnals are non-linear).

and κvar−int,σ in the experiments using the isopycnally varying initial tracer

condition. For these cases, the results of the diagnosed diffusivity κvar−int,σ

are highly sensitive to the number of layers used for the mapping of the

tracer onto isopycnals. A high number of layers results in a high variation

in the vertical profile of the integrated tracer. This high vertical variation

causes a spurious change in the variance decay of the integrated tracer,

which was denoted as mapping-integration error, and leads to an increase in

the diagnosed diffusivity κvar−int,σ. The effect of the mapping-integration

error on the results of the diagnosed diffusivity κvar−int,σ is larger than the

numerically induced diffusivity itself.

When on the other hand the equally labelled initial tracer condition is used,

the mapping-integration error is very small (< 1%). Similar to the results

of the analogous experiments with horizontal isopycnals, only an explicit

diffusivity which varies along the isopycnal layers leads to a spurious

diffusivity in the results of κvar−int,σ, which masks the numerically induced

diffusivity.

8.3.3 The effect of vertical advection

In this section, the analysis of the experiment with implemented vertical

advection is repeated for the 2-dimensional case with non-horizontal
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Figure 8.21: a) Density field at the beginning of the experiment with imple-
mented advection and b) after six months of model integration.

isopycnals. The vertical velocity is constant with a value of

4 × 10−6 m/s ≈ 0.35 m/day and a downwards direction. The experimental

set-up is not limited to a purely parallel movement of the isopycnals, as the

density equation is non-linear and the gradients in temperature and salinity

vary along the isopycnal layers.

To give an overview, Figure 8.21 a) shows the initial density field and b) the

density field at the end of the experiment. For the assumed temperature

and salinity profiles the effects of the non-linear density equation are larger

towards the surface layers and smaller towards greater depth.

The analysis in the previous section showed, that in the experiments with

non-horizontal isopycnals a high number of layers used for the mapping

might result in an overestimated diagnosed diffusivity κvar−int,σ due to the

mapping-integration error. Therefore, the diagnosed diffusivities κvar,σ and

κvar−int,σ are analysed first by using the same amount of layers as there are

model levels and second by using twice as many layers than levels.

In Figure 8.22 the results for the diagnosed diffusivities κvar,σ (blue) and

κvar−int,σ (red) are shown using the same amount of layers as model levels

for the mapping. For both initial tracer conditions, the diagnosed

diffusivities κvar,σ and κvar−int,σ show the same frequency in the fluctuations.

Using the isopycnally varying initial tracer condition (Figure 8.22 a), the

amplitude of the variations in the diagnosed diffusivities κvar,σ is slightly

larger (±0.014 cm2/s) compared to the amplitude in κvar−int,σ

(±0.008 cm2/s). The mean value for the diagnosed diffusivity κvar,σ is
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Figure 8.22: Diagnosed diffusivity κvar−int,σ (blue) and κvar−int,σ (red) for the
experiment including a constant advection using the same amount of layers
than levels for the mapping, a) isopycnally varying initial tracer condition
and b) equally labelled along one isopycnal (isopycnals are non-horizontal).
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Figure 8.23: Diagnosed diffusivity κvar−int,σ (blue) and κvar−int,σ (red) for
the experiment including a constant advection using twice as many layers as
levels for the tracer mapping, a) isopycnally varying initial tracer condition
and b) equally labelled along one isopycnal (isopycnals are non-horizontal).

6.6 × 10−3 cm2/s and also slightly larger compared to the mean value of

κvar−int,σ (6.1 × 10−3 cm2/s).

Using the equally labelled initial tracer condition (Figure 8.22 b), the

diagnosed diffusivities κvar,σ and κvar−int,σ are very similar, except for the

beginning when the amplitude of κvar−int,σ is slightly smaller than the one

of κvar,σ. The amplitude for both values is much smaller (±0.007 cm2/s)

compared to the one using the isopycnally varying initial tracer condition.

The mean values for the diagnosed diffusivity κvar,σ is ∼ 6.4 × 10−3 cm2/s

and slightly smaller compared to the one of κvar−int,σ (∼ 6.9 × 10−3 cm2/s).

Increasing the number of layers used for the transformation by a factor of
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two, the diagnosed diffusivities κvar,σ and κvar−int,σ are not similar any

longer (Figure 8.23). Note, the limits of the y-axis in Figure 8.23 a) and b)

differ by about one order of magnitude.

Using the isopycnally varying initial tracer condition (Figure 8.23 a), the

amplitude of the diagnosed diffusivity κvar,σ is, as expected, much smaller

compared to the previously shown results. The mean value of κvar,σ is

6.5 × 10−3 cm2/s and similar to the previous results. For the analysis of

κvar,σ the variance of the tracer is estimated for each of the horizontal

profiles and an increase in the number of layers used for the mapping leads

to a reduction of the spurious diffusivity which is causd by the mapping

itself, as already shown in the 1-dimensional experiment (Chapter 5).

The amplitude of the fluctuations in the diagnosed diffusivity κvar−int,σ is

much larger compared to the amplitude of the fluctuations using the lower

number of layers for the transformation and also the mean value is larger

(∼ 8.6 × 10−3 cm2/s). The effect of the high amplitude in the fluctuations

of the diagnosed diffusivity κvar−int,σ is a result of the mapping-integration

error.

When on the other hand the equally labelled initial tracer condition is used

(Figure 8.23 b.), the amplitude of the diagnosed diffusivity κvar,σ decreases

when the number of layers used for the tracer mapping is increased. The

mean value (κvar,σ = 6.5 × 10−3 cm2/s) does not change. The amplitude of

the fluctuations in the diagnosed diffusivity κvar−int,σ is similar compared to

the previous ones (Figure 8.22 b). Also the mean value of κvar−int,σ is

similar to the previous one with a value of ∼ 7.0 × 10−3 cm2/s.

Similar to the experiments, where the diffusion acts on the tracer only,

there are two different mechanisms, which cause problems in the analysis.

First, using a low number of layers for the transformation, the mapping

itself generates a spurious mixing, which leads to changes in the variance

decay. Second, an increase in the number of layers used for the tracer

transformation leads to high variations in the profiles of the integrated

tracer, which is caused by the combination of the mapping and the along

isopycnal integration and leads to an increase of the mapping-integration
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error. This second effect only affects the diagnosed diffusivity κvar−int,σ in

experiments where the isopycnally varying initial tracer condition is used.

The effect of the mapping-integration error on κvar−int,σ is so large that also

the mean values are masked and overestimate the numerically induced

diffusivity (by ∼ 30%).

The results of the 2-dimensional experiments with implemented vertical

advection show that it is not possible to analyse the diapycnal diffusion for

each time-step. Whereas, it is possible to analyse time mean values of the

numerically induced diffusion, which are taken at least over one wavelength.

Different to the results of the equally labelled initial tracer condition, using

the isopycnally varying one it is only possible to analyse mean values of

κvar−int,σ when the mapping-integration error is low. Therefore, it is

necessary to choose a relatively coarse resolution for the transformation,

e.g. where the same number of layers as model levels are used.

8.3.4 Diffusion acts on tracer, temperature and

salinity

In the last section of this chapter, experiments where the vertical diffusion

acts on tracer, temperature and salinity will be analysed. The

corresponding effect of diffusion in temperature and salinity can be

interpreted as an interfacial movement of the density. As an interfacial

movement of the isopycnals does not lead to changes in the variance decay,

the results for the diagnosed diffusivity κvar,σ are expected to be identical

with the results of the analogous experiments in which diffusion acts on the

tracer only (Section 8.3.2).

It is also expected that the combination of the tracer mapping using a high

resolution in the transformation axis and the along isopycnal integration of

the tracer will lead to high values of spurious diffusivity, the

mapping-integration error, in the results of κvar−int,σ in experiments that

use the isopycnally varying initial tracer condition. First, results are shown

using the same amount of layers as model levels and second, using twice as

many layers than levels.
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Figure 8.24: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ and κvar−int,σ using the same number of layers as levels for A−const
(2-dimensional); a) isopycnally varying and b) equally labelled initial tracer
condition (diffusion acts on tracer, temperature and salinity, isopycnals are
non-horizontal).

As expected, the results of the weighted diffusivity κw,σ and the diagnosed

diffusivity κvar,σ in experiment A−const (Figure 8.24) closely reproduce the

results of the analogous experiment where diffusion acts on the tracer only

and are independent of the initial tracer condition used. The values of κw,σ

are consistent with the constant value of 4 cm2/s of the explicit diffusivity.

Using the isopycnally varying initial tracer condition (Figure 8.24 a), the

results of the diagnosed diffusivity κvar−int,σ are smaller than the results of

κvar,σ, 10% at the beginning and 5% after the second month converging to a

difference of ∼ 2% at the end of the experiment. Using the equally labelled

initial tracer condition (Figure 8.24 b), the diagnosed diffusivity κvar−int,σ is

systematically smaller than κvar,σ (∼ 1%) during the first four months and

shows a small increase during the last two months of the experiment. This

is also similar to the results of the analogous experiment with stationary

isopycnals.

Increasing the number of layers of the transformation axis by a factor of 2

(Figure 8.25) does not lead to changes in the results of κw,σ and κvar,σ.

Using the isopycnally varying initial tracer condition (Figure 8.25 a), the

diagnosed diffusivity κvar−int,σ (red) shows non-periodic fluctuations with a

maximal amplitude of ±1.5 cm2/s. A further increase in the number of

layers used for the mapping leads to an increase in amplitude and frequency
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Figure 8.25: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ and κvar−int,σ using twice as may layers than levels for the mapping,
for A−const (2-dimensional); a) isopycnally varying and b) equally labelled
initial tracer condition (diffusion acts on tracer, temperature and salinity,
isopycnals are non-horizontal).
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Figure 8.26: Profile of the along isopycnal integrated tracer at the end of
experiment A−const, a) isopycnally varying initial tracer condition and b)
equally labelled along one isopycnal.

of these fluctuations. When on the other hand the equally labelled initial

tracer condition is used (Figure 8.25 b), the results for the diagnosed

diffusivity κvar−int,σ are consistent with the ones shown in Figure 8.24 b),

except for the small fluctuations.

The reason of this large increase in the fluctuations of the diagnosed

diffusivity κvar−int,σ using the higher resolved transformation can be

ascribed to the mapping-integration error, which is large in experiments

where the isopycnally varying initial tracer condition is used. Figure 8.26

shows the vertical profiles of the isopycnally integrated tracer concentration

at the end of experiment A−const using the same amount of layers as levels
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Figure 8.27: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ and κvar−int,σ using the same number of layers as levels for the mapping,
for A−incr (2-dimensional); a) isopycnally varying and b) equally labelled
initial tracer condition (diffusion acts on tracer, temperature and salinity,
isopycnals are non-horizontal).

for the transformation (red) and twice as many than levels (blue). In

contrast to Figure 8.17 higher transformations are not considered here.

Only the experiment using the isopycnally varying initial tracer condition

shows a high vertical variation in the profile of the integrated tracer

concentration for the case, where twice as many layers than levels have been

used for the mapping. As this effect leads to a large mapping-integration

error in the results or κvar−int,σ, only the results using the same amount of

layers as levels will be shown for the following experiments.

As expected, also for experiment A−incr (Figure 8.27), the results for κw,σ

and κvar,σ closely reproduce the ones of the analogous experiment in which

the diffusion acts on the tracer only. For both initial tracer conditions, the

results for the diagnosed diffusivity κvar−int,σ are systematically smaller

than the values of κvar,σ. Using the isopycnally varying initial tracer

condition (Figure 8.27 a), κvar−int,σ shows high frequency fluctuations with

a very small amplitude and the difference to κvar,σ is ∼ 7% . When on the

other hand the equally labelled initial tracer condition is used (Figure 8.27

b) the diagnosed diffusivity κvar−int,σ is ∼ 2% smaller than κvar,σ at the

beginning of the experiment and ∼ 5% smaller towards the end of the

experiment. For both initial tracer conditions the mapping-integration error

leads to a spurious diffusivity in κvar−int,σ which is larger than the
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Figure 8.28: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ and κvar−int,σ using the same number of layers as levels for the mapping,
for A−horiz (2-dimensional); a) isopycnally varying and b) equally labelled
initial tracer condition (diffusion acts on tracer, temperature and salinity,
isopycnals are non-horizontal).

numerically induced diffusivity.

In experiment A−horiz (Figure 8.28), the results for κw,σ and κvar,σ are also

independent on the interfacial movement of the isopycnal layers and closely

reproduce the results of the analogous experiment with stationary

isopycnals. Using the isopycnally varying initial tracer condition (Figure

8.28 a), the diagnosed diffusivity κvar−int,σ underestimates the values of

κvar,σ constantly by ∼ 6%. When the equally labelled initial tracer

condition is used ( Figure 8.28 b), the results for the diagnosed diffusivity

κvar−int,σ are almost identical with the one of the analogous experiment,

with stationary isopycnals.

Also in the last experiment, A−oc (Figure 8.29), the results of κw,σ and

κvar,σ are almost identical with the ones shown in Section 8.3.2. Using the

isopycnally varying initial tracer condition (Figure 8.29 a), the diagnosed

diffusivity κvar−int,σ is ∼ 10% smaller than the values of κvar,σ, whereas

using the equally labelled initial tracer condition the difference is only

∼ 3% (Figure 8.29 b).

In summary it can be said, that the interfacial movement of the isopycnals

itself does not cause any spurious mixing in the model itself, as the results

of the diagnosed diffusivity κvar,σ are almost identical with the ones of the

analogous experiment with stationary isopycnals.
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Figure 8.29: Weighted diffusivity κw,σ (green) and diagnosed diffusivities
κvar,σ and κvar−int,σ using the same number of layers as levels for the mapping,
for A−oc (2-dimensional; a) isopycnally varying and b) equally labelled initial
tracer condition (diffusion acts on tracer, temperature and salinity, isopycnals
are non-horizontal).

Using the equally labelled initial tracer condition, the integration of the

tracer leads to an additional spurious diffusivity in κvar−int,σ only in

experiment A−horiz, similar to the results shown in Section 8.3.2. In the

other experiments, κvar−int,σ underestimates the values of κvar,σ by at most

∼ 10%.

Using the isopycnally varying initial tracer condition, the combination of a

high resolution in the transformation axis used and the along isopycnal

integration of the tracer leads to a spurious diffusivity, the

mapping-integration error, in the results. Therefore, a relatively low

resolution for the transformation axis was used. The resulting values of

κvar−int,σ are generally 10 − 20% too small compared to the reference values

of κvar,σ.

In all experiments, the spurious diffusivity which is a result of the

mapping-integration error is larger than the numerically induced diffusivity,

which is given by the difference between κvar,σ and κw,σ.

For the analysis of tracer fields in OGCMs this implies that the spurious

diffusivity as a result of the mapping-integration error, which is generated

by the analysis of κvar−int,σ is mostly larger than the numerically induced

diffusivity. Therefore it does not seem to be useful to analyse the

numerically induced diffusivity in complex models by the variance method.
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As the results of the diagnosed diffusivity κvar,σ are robust, it is still

possible to analyse the diffusivity, which is caused only by the

parameterisation of the (vertical) explicit diffusion scheme in the model.

This analysis can be done, as diffusion and advection are usually treated

separately in different model steps.

8.4 Summary

In this chapter the robustness of the variance method in 2-dimensional

experiments was tested. To this extent, experiments used an initial density

field with horizontal isopycnals and non-horizontal isopycnals, as one would

expect in the oceans interior. In order to obtain more general information

about the sensitivity of the method all experiments are performed for two

different initial tracer conditions: first, with the initial tracer concentration

varying along the isopycnal layer and second, with the tracer concentration

initialised equally along the isopycnal surface.

Horizontal isopycnals The results of the basic experiments in which the

isopycnals are horizontal showed that as long as the mixing, either due to

vertical diffusion or vertical advection, is constant along the isopycnal

layers, it is possible to analyse the diapycnal diffusivity separately by

integrating the tracer isopycnally before estimating its variance decay. Only

in these cases, there is no spurious diffusivity in the results of κvar−int,σ

caused by the along isopycnal integration of the tracer.

For experiments which include vertical advection, the transformation of the

tracer onto isopycnals leads to spurious diffusivities in the results for

κvar−int,σ and κvar,σ, so the diapycnal diffusivity cannot be estimated for

each time-step. Nevertheless, mean values taken over at least one

wavelength give close results to the diagnosed diffusivity κvar,z estimated in

z-levels.
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Non-horizontal isopycnal The results of the experiments with

non-horizontal isopycnals showed that, using the isopycnally varying initial

tracer condition, the integration of the tracer along the isopycnals leads to

large instabilities in the results of κvar−int,σ. The results for κvar−int,σ are

highly sensitive to an increase in the resolution used for the mapping, which

results in a large amount of spurious diffusivity as a result of the

mapping-integration error.

The spurious diffusivity as a result of the mapping-integration error arise

from the combined effect of the transformation and the along isopycnal

integration of the tracer. Contrary, the numerically induced diffusion in the

current idealised case studies arises from discretisation errors of the vertical

diffusion and the vertical advection as a result of insufficient vertical and

horizontal resolution. The spurious diffusivity of the mapping-integration

error is always larger than the numerically induced diffusivity and therefore

masks its signal.

As long as the diffusion acts on the tracer only, there is no

mapping-integration error in the experiments when the equally labelled

initial tracer condition is used. In experiments in which the diffusion acts

on tracer, temperature and salinity, the spurious diffusivity, which is caused

by the mapping-integration error is larger than the signal of the numerically

induced diffusivity.

In experiments with implemented vertical advection, the spurious

diffusivity resulting from the mapping-integration error leads to an increase

in the amplitude of the high frequency fluctuations of the diagnosed

diffusivity. The tracer mapping on its own also results in artificial

fluctuations in the results of κvar,σ, as shown in Chapter 5 in detail. Using

the equally labelled initial tracer condition, it is still possible to estimate

mean values of the diagnosed diffusivity κvar−int,σ which give close results to

the expected value. Whereas using the isopycnally varying initial tracer

condition, also the mean values are affected by the spurious mixing of the

mapping-integration error.

In general, it seems not useful to analyse the diapycnal diffusivity in
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complex OGCMs by the variance method. As long as it is not necessary to

separate between the isopycnal and the diapycnal diffusivity, it is always

possible to use the variance method in order to analyse the numerically

induced diffusivity in more dimensional models.

The results of the 1-dimensional experiments already showed, that

depending on the grid used (examples are shown for uniform and

non-uniform grids), there is induced diffusion, as a result of the

discretisation of the explicit diffusion and which does not necessarily

decrease with a reduction of the time-step. The vertical diffusion in

OGCMs is generally computed in a separate step as well as the vertical

advection. By implementing the analysis presented here into the model

itself, it should be possible to analyse the numerically induced diffusivities

due to discretisation errors of the explicit vertical diffusion and compare it

with the weighted one and also the numerically induced diffusion as a result

of the vertical advection. This can be also done for the analysis of tracers in

e.g. biogeochemical models, where it should be possible to generate a

horizontal map of the diagnosed diffusivities, determined only by the

explicit vertical diffusion. It can be expected, that the difference between

the weighted and the diagnosed diffusivity is only significant in regions,

where the difference between the analytical distribution and the

discretisation onto the model grid is large, as it was shown in the

1-dimensional experiments. This is usually the case when the tracer

gradient is strong or the model grid is coarse.



Chapter 9

2-dimensional case study:

Diagnostics using the tracer

flux method

The studies of the 1-dimensional experiments showed that the results

analysed by the tracer flux method are more robust in experiments with a

high vertical resolution in the model set-up. In this chapter, the results of

the tracer flux method for 2-dimensional experiments will be shown using a

fine resolved vertical model grid with an equidistant level thickness of 5 m.

First, the changes in the tracer flux method for the analysis of

2-dimensional experiments will be shown. Second, the set of experiments

will be analysed, (i) including vertical diffusion only in the tracer field, (ii)

including vertical advection and (iii) including vertical diffusion of tracer,

temperature and salinity, using horizontal isopycnals and third using

non-horizontal isopycnals.

9.1 Changes in the method

For the analysis of 2-dimensional experiments using the tracer flux method

(Section 2.2) it is generally necessary to use the cumulative integral of the

transformed advection-diffusion equation in order to analyse the diapycnal
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diffusivity. Only in the idealised case, where the isopycnals are horizontal

this is not necessary. In the following the analysis will be only done in

σ-coordinates.

In general it can be said, that the cumulative sum of the advection-diffusion

equation is valid in each column of the model, as

s
∑

s1=1

(

∆ (Ct(i, s1) · ∆zt(i, s1))

∆t

)

∣

∣

∣

i
= κ
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∆zt(i, s)

∣

∣

∣

i,s+1
−wICt(i, s)

∣

∣

∣

i,s+1
, (9.1)

where Ct denotes the transformed tracer concentration, ∆zt the

transformed layer thickness, s the density layer this equation is given for

and i the index of the horizontal unit. The transformed tracer

concentration Ct and the layer thickness ∆zt both depend on the horizontal

and the vertical grid, in the following the notation will be reduced to

Ct(i, s) = Ct and ∆zt(i, s) = ∆zt. The diagnosed diffusivity κdiag−G and the

interfacial velocity wI are both vertical mean values, but depend on the

horizontal distance.

Diagnosed diffusivity In order to analyse vertical and horizontal mean

values of the diagnosed diffusivity and the interfacial velocity, it is

necessary to integrate Equation 9.1 along the isopycnals. In the following

the mean diagnosed diffusivity is denoted as κG−int,σ and the interfacial

velocity as wI . Note, κG−int,σ and wI are taken are taken as vertically and

horizontally independent, but time dependent. The horizontal sum of

Equation 9.1 is then given by

m
∑

i=1

(

s
∑

s1=1

(

∆ (Ct · zt)

∆t

)

· ∆x

)

= −κG−int,σ ·
m
∑

i=1

(

∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)

+wI

m
∑

i=1

(

Ct

∣

∣

∣

i,s+1
· ∆x

)

.

(9.2)

Solving Equation 9.2 with the method of the least squares fit, mean values
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for the diagnosed diffusivity κG−int,σ and the interfacial velocity wI can be

found.

In the idealised experiments, in which either the vertical diffusion acts on

the tracer only or there is only vertical advection implemented in the model

set-up, the interfacial velocity is zero. Additionally, the results of the

1-dimensional experiments showed, that the diagnostics of the interfacial

velocity only has a minor effect on the results of the diagnosed diffusivity.

The transformation of the tracer onto isopycnals by using a high resolution

in the transformation leads to large errors in the results of the diagnosed

interfacial velocity. Therefore, it is useful to neglect the analysis of the

mean interfacial velocity, assuming wI = 0 in the following.

In this case, the change of the total amount of tracer mass above an

isopycnal layer will be compared with the sum of the diapycnal fluxes

through the isopycnal. The method of the least squares fit requires

l
∑

s=1

([

m
∑

i=1

(

s
∑

s1=1

(

∆ (Ct · ∆zt)

∆t

)

· ∆x

)

+κG−int,σ ·

m
∑

i=1

∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

]2

· ∆σ

)

.
= min,

(9.3)

where ∆σ is the difference of the density classes used for the

transformation. As the sum over ∆σ is required to be a minimum, the

derivative ∂/∂κG−int,σ has to be equal to zero leading to

l
∑

s=1

[(

m
∑

i=1

(

s
∑

s1=1

(

∆ (Ct · ∆zt)

∆t

)

· ∆x

)

+ κG−int,σ

m
∑

i=1

(

∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)

)

·

(

m
∑

i=1

∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)

· ∆σ

]

= 0.

(9.4)

Solving Equation 9.4 for the term of the diagnosed diffusivity κG−int,σ gives
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κG−int,σ =
−
∑l

s=1

[

∑m

i=1

(

∑s

s1=1

(

∆(Ct·∆zt)
∆t

)

· ∆x
)

·
∑m

i=1

(

∆Ct

∆zt

∣

∣

i,s+1
· ∆x

)

· ∆σ
]

∑l

s=1

[

{

∑m

i=1

(

∆Ct

∆zt

∣

∣

i,s+1
· ∆x

)}2

· ∆σ

] .

(9.5)

For the analysis of the diagnosed diffusivity κG−int,σ, Equation 9.5 needs to

be discretised on the model grid in exactly the same way as done in the

discretisation of the model set-up (see also Section 2.2 for more detail). In

order to analyse the numerically induced diffusivity, it is necessary to

weight the explicit diffusion coefficient in a comparable way as it is done for

the diagnosed diffusivity.

Weighted diffusivity The weighted explicit diffusion coefficient will be

denoted as κw−G,σ in the following and is vertically and horizontally

independent, but time dependent. The analysis has to be done on the

transformed σ-grid, similar as used for the analysis of the diagnosed

diffusivity. Therefore, the explicit diffusion coefficient needs to be

interpolated onto isopycnals. The linearly interpolated explicit diffusivity

will be denoted as κexpl,σ in the following. Note, κexpl,σ is a function of

density and depth, whereas the weighted diffusivity κw−G,σ is a vertical and

horizontal mean value.

The change of the total amount of tracer mass above the isopycnal σ which

is only caused by the flux of the explicit diffusion is given by

m
∑

i=1

(

s
∑

s1=1

(

∆ (Ct · ∆zt)

∆t

)

· ∆x

)

= −
m
∑

i=1

(

κexpl,σ ·
∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)

(9.6)

Substituting Equation 9.6 into Equation 9.2 yields for the weighted

diffusivity κw,σ
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−

m
∑

i=1

(

κexpl,σ ·
∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)

= −κw,σ ·

m
∑

i=1

(

∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)

. (9.7)

Similar to the method for the 1-dimensional models, Equation 9.7 can be

solved using the method of the least squares fit, leading to

κw−G,σ =

∑l

s=1

[

∑m

i=1

(

κexpl,σ ·
∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)

·
∑m

i=1

(

∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)

· ∆σ

]

∑l

s=1

[

{

∑m

i=1

(

∆Ct

∆zt

∣

∣

∣

i,s+1
· ∆x

)}2

· ∆σ

] .

(9.8)

In order to analyse the weighted diffusivity κw,σ in numerical models,

Equation 9.8 needs to be discretised on the model grid.

In the present analysis, the diagnostics of κw−G,σ and κG−int,σ are based on

the least squares fit taken in σ-coordinates. This can be interpreted as a

weighting of the results by the spacing of the isopycnal grid. In contrast,

the results of the 1-dimensional experiments (Chapter 3) were weighted by

the level thickness. This means, that the results for the diagnosed and the

weighed diffusivities shown in this chapter will not necessarily be identical

to the ones shown in the 1-dimensional experiments.

In the following, first the results of experiments using horizontal isopycnals

will be shown and second, the same experiments will be repeated using

non-horizontal isopycnals. As long as only the tracer is diffusive, κG−int,σ

and κw−G,σ should give identical results.

9.2 Results: horizontal isopycnals

In order to test the robustness of the tracer flux method in 2-dimensional

models, idealised experiments with horizontal isopycnals are analysed first.

The initial tracer conditions and the experimental set-up are identical to
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Figure 9.1: Initial density field for
the 2-dimensional case studies with
horizontal isopycnals.
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Figure 9.2: Initial tracer field, with
a tracer maximum in the middle
and fading concentration towards
the outer sides (horizontal isopyc-
nals).
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Figure 9.3: Initial tracer field,
where the tracer is equally labelled
along one isopycnal layer (horizontal
isopycnals).

the ones used in Chapter 8 and will be repeated first. Second, the results of

experiments, in which only the tracer is diffusive, are shown. Third,

experiments including vertical advection are analysed and in the last

subsection, experiments including vertical diffusion of tracer, temperature

and salinity will be shown.

9.2.1 Initial conditions

The experimental set-up of the experiments shown in this section is the

same as already described in Section 8.2.1. To get a quick overview, Figure

9.1 (identical with Figure 8.1) shows the initial density condition, with

horizontal isopycnals. Note, that density is not linearly increasing with

depth.

In Figure 9.2 (the same as Figure 8.2) shows the initial tracer condition,

where the tracer maximum is located in the middle of the horizontal field
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Figure 9.4: Weighted diffusivity κw−G,σ equal to diagnosed diffusivity κG−int,σ

for A−incr (2-dimensional, diffusion acts on tracer, horizontal isopycnals): a)
horizontally varying and b) equally labelled initial tracer condition.

with a fading concentration towards the outer sides, denoted as horizontally

varying initial tracer condition. Figure 9.3 (Figure 8.3) shows the equally

labelled initial tracer condition, where the tracer mass is equally spread

along the isopycnal layer.

9.2.2 Diffusion acts on the tracer only

The sensitivity studies in the 1-dimensional experiments (see also Section

4.3) showed, that it is necessary to use more layers than levels in order to

get robust results for the diagnosed diffusivity. Indeed the results for the

diagnosed diffusivity κG−int,σ are independent on the used number of layers

for the mapping as long as the resolution of the transformation is not

getting coarser than the density profiles in the model. In the following there

are twice as many layers than levels used for the tracer mapping onto

isopycnals. Note, the tracer gradient is also transformed linearly onto

isopycnals as introduced in Section 4.3.

The easiest experiment is A−const, where the explicit diffusion coefficient is

constant with depth and also along the horizontal direction. Irrespective

which initial tracer condition is used, the results for the weighted diffusivity

κw−G,σ and also for the diagnosed diffusivity κG−int,σ are identical with the

value of 4 cm2/s of the constant explicit diffusion coefficient.

The results for experiment A−incr (Figure 9.4) are also independent of the
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Figure 9.5: Weighted diffusivity κw−G,σ equal to diagnosed diffusivity κG−int,σ

for A−horiz (2-dimensional, diffusion acts on tracer, horizontal isopycnals):
a) horizontally varying and b) equally labelled initial tracer condition.
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Figure 9.6: Weighted diffusivity κw−G,σ equal to diagnosed diffusivity κG−int,σ

for A−oc (2-dimensional, diffusion acts on tracer, horizontal isopycnals): a)
horizontally varying and b) equally labelled initial tracer condition.

used initial tracer condition, which can be ascribed to the constancy of the

explicit diffusion coefficient along the isopycnal layers. The values of the

diagnosed diffusivity κG−int,σ are almost identical to the ones of the

weighted diffusivity κw−G,σ.

Independent of the used initial tracer condition, the values for κG−int,σ and

κw−G,σ of experiment A−horiz (Figure 9.5) are also almost identical. Using

the horizontally varying initial tracer condition (Figure 9.5 a), the values

for κG−int,σ and κw−G,σ are slightly lower (1.48 cm2/s decreasing to

∼ 1.39 cm2/s) compared to the ones for the equally labelled initial tracer

condition (∼ 1.65 cm2/s decreasing to 1.29 cm2/s, Figure 9.5 b).

Also in the results for experiment A−oc, the values for κG−int,σ are

consistent with the ones of κw−G,σ (Figure 9.6). Using the horizontally
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varying initial tracer condition, the values decrease from ∼ 0.485 cm2/s to

∼ 0.45 cm2/s. For the equally labelled initial tracer condition, the values

for the weighted and the diagnosed diffusivity vary between ∼ 0.44 cm2/s

and ∼ 0.41 cm2/s.

As expected, the results for the diagnosed diffusivity κG−int,σ and the

weighted diffusivity κw−G,σ are almost identical independent on the vertical

or horizontal structure of the explicit diffusivity used. Here, it should be

added, that in analogous experiments using models with a coarser vertical

resolution, the results of the diagnosed and the weighted diffusivity are also

almost identical, although the values might vary compared the ones shown.

The reason can be found in the origin of the tracer flux method. The

change in the total amount of tracer mass above an isopycnal is compared

with the tracer flux through the isopycnal. As the different terms are

discretised in exactly the same way as it is done in the model set-up, the

values for κG−int,σ and κw−G,σ should be consistent, independent of the

resolution of the model grid.

9.2.3 The effect of vertical advection

In this section, the experiment with an implemented constant vertical

advection in the tracer, the temperature and the salinity fields are shown.

The explicit vertical velocity is constant and has a value of

4 × 10−6 m/s ≈ 0.35 m/day.

The results of the 1-dimensional experiments with implemented vertical

advection showed that the combination of the transformation of the tracer

and the vertical movement of the isopycnals cause high frequency

fluctuations in the values of the diagnosed diffusivity. The implemented

vertical advection was restricted to a parallel movement of the isopycnals

by defining the density equation to be linear. Defining the density to be

linear in the experiments with horizontal isopycnals, the results for the

diagnosed diffusivity are, as expected, exactly the same as the ones

previously shown for the 1-dimensional experiments.
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with time for experiment with
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lel, although temperature and
salinity are non-linear and the
density equation is non-linear.
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Figure 9.8: Diagnosed diffusivity
κG−int,σ for experiment with imple-
mented vertical advection: a) using
a profile of the initial density con-
dition for the mapping and b) us-
ing twice as many layers than model
levels for the transformation and c)
using 5 times as many.

Using the non-linear density equation in combination with non-linear initial

temperature and salinity fields, the advection does not only lead to an exact

parallel downward movement of the isopycnals, but might also result in a

small amount of divergence or convergence of density classes. As the initial

temperature and salinity fields in this experiment are horizontally uniform,

the density fields stay horizontal throughout the whole experiment.

Figure 9.7 shows the temporal development of the isopycnals with time.

Although temperature and salinity vary non-linearly with depth and the

used density equation is non-linear as well, the downward movement of the

isopycnals with time is almost parallel. The divergence and convergence in

the Figure is so small, that it cannot be seen.
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Figure 9.8 a) shows the results for the diagnosed diffusivity κG−int,σ, where

a profile of the initial density is used as the transformation axis of the

mapping. The values and the frequency are still similar compared to the

results of the 1-dimensional case studies and also the mean value of κG−int,σ

is consistent with a value of 7.7 × 10−3 cm2/s. The numerically induced

diffusivity analysed by the variance method has a value of

∼ 6.7 × 10−3 cm2/s (see Section 8.2.3). The results are independent of the

initial tracer condition used, therefore only one Figure is shown.

Increasing the resolution of the transformation by using twice as many

layers than levels, the amplitude of the fluctuations in κG−int,σ is reduced

by ∼ 50% and the mean value is −0.14 × 10−3 cm2/s (Figure 9.8 b). A

further increase in the number of layers used for the mapping (5× more

layers) leads to a further reduction in the amplitude of the fluctuations and

also to a further decrease of the mean value to −0.02 cm2/s (Figure 9.8 c).

The spurious effect of the increase in the number of layers used for the

tracer mapping leads to negative mean values of κG−int,σ, similar as found

in the 1-dimensional case studies. The negative mean values are an artificial

effect of the tracer mapping.

In summary, the amplitude of the fluctuations in the diagnosed diffusivity

is of the same order as the explicit diffusivity expected in the ocean interior

of OGCMs. The time averaged values of κG−int,σ are of the order of

o(10−3 cm2/s). An increase in the resolution used for the mapping results in

a decrease of the averaged κG−int,σ to negative values of the order of

o(10−2 cm2/s). Depending on the periodic structure of the fluctuations of

κG−int,σ, the mean should be taken over at least one wavelength. The

spurious effect of the mapping is too large for a robust analysis at each

time-step and also leads to large errors on the mean values of κG−int,σ,

which mask the signal of the numerically induced diffusivity.
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Figure 9.9: Diagnosed diffusivity κG−int,σ (red, solid line) using twice as many
layers than levels for the mapping and 10× more layers than levels (red,
dashed line) and weighted explicit diffusivity coefficient κw−G,σ (blue) for
a) experiment A−const and b) experiment A−incr (diffusion acts on tracer,
temperature and salinity; horizontal isopycnals).

9.2.4 Diffusion acts on tracer, temperature and

salinity

In this section, experiments are analysed, in which the vertical diffusion

acts not only on the tracer, but also on temperature and salinity. The

corresponding effect in the density can be interpreted as an additional small

scale movement of the isopycnal interfaces. Because the experiments are

reduced to the cases with horizontal isopycnals, only the results for

experiment A−const and A−incr will be shown.

The results for the diagnosed diffusivity κG−int,σ and the weighted

diffusivity κw−G,σ for both experiments are consistent to ones in the

analogous 1-dimensional experiments. Additionally, κG−int,σ and κw−G,σ are

independent of the initial tracer condition used, therefore only one figure

will be shown for each experiment. The mean interfacial velocity wI , has

only a minor (<< 0.1%) effect on the result of κG−int,σ. Therefore, wI = 0

can be assumed in the following analysis.

Figure 9.9 a) shows the results of experiment A−const for the diagnosed

diffusivity κG−int,σ using twice as many layers than levels (red, solid) and 10

times more layers than levels (red, dashed) and the weighted diffusivity

κw−G,σ (blue). The results for κw−G,σ are identical to the value of the
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explicit diffusion coefficient. An increase in the resolution of the

transformation leads to a decrease in the values of κG−int,σ. The maximum

difference of ∼ 1% is very small and decreases with time.

The results for the diagnosed diffusivity in experiment A−incr (Figure 9.9

b) are also robust with respect to changes in the transformation axis used

as the maximal difference in the values of κG−int,σ is smaller than 1%.

As long as the isopycnals are horizontal the results of the 2-dimensional

experiment are consistent to the results of the analogous 1-dimensional

experiments. Additionally, the results are robust according to the

transformation onto isopycnal layers, which can be ascribed by the high

vertical resolution in the model itself.

9.3 Results: isopycnals as in the ocean

interior

In this section the effect of the non-horizontal density field on the

diagnostics of the tracer flux method will be analysed. One effect of the

different initial density field is that the values of the diagnosed and the

weighted diffusivity are not necessarily identical with the results shown in

the previous section.

In the following, first the initial conditions of the experimental set-up will

be repeated (same conditions as shown in Section 8.3.1). Second,

experiments where vertical diffusion acts on the tracer only will be shown,

third, the effect of implemented vertical advection is analysed and last the

effect of diffusion in tracer, temperature and salinity.

9.3.1 Initial conditions

Figure 9.10 (identical with Figure 8.12) shows the initial density field, were

the isopycnal layers are sloping and diverge along the horizontal direction.

In Figure 9.11 (the same as Figure 8.13) the isopycnally varying initial
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Figure 9.10: Initial density field
with non-horizontal isoycnals for the
2-dimensional case studies.
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horizontal isopycnals: initial tracer
field, with a tracer maximum in the
middle and fading concentration to-
wards the outer sides.
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Figure 9.12: Equally labelled initial
tracer condition for non-horizontal
isopycnals: tracer is equally labelled
along one isopycnal layer.

tracer condition is shown, the tracer maximum is located in the middle of

the horizontal field with a fading concentration towards the outer sides.

Figure 9.12 (Figure 8.14) shows the equally labelled initial tracer condition,

where one isopycnal layer is labelled with the equal tracer mass.

The vertical model grid is chosen to be equidistant with a level thickness of

5 m. The horizontal grid is also chosen to be equidistant with a box width

equal to 1. The model set-up is the same as the one introduced in Section

8.2.1.

9.3.2 Diffusion acts on the tracer only

In the experiments shown in this section the vertical diffusion acts on the

tracer only, temperature and salinity are both stationary. The results for

the diagnosed and the weighted diffusivity base on the integrated
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Figure 9.13: Weighted diffusivity κw−G,σ equal to diagnosed diffusivity
κG−int,σ for A−incr (2-dimensional, diffusion acts on tracer, non-horizontal
isopycnals): a) isopycnally varying and b) equally labelled initial tracer con-
dition.

advection-diffusion equation. Similar as in the analogous experiments with

horizontal isopycnals, the tracer flux through the isopycnal layer and the

change of the total amount of tracer mass above the isopycnal is discretised

in the analysis in exactly the same way as it is done in the model

discretisation. Therefore, it can be expected that the results for κG−int,σ

and κw−G,σ are very similar in this section.

In the following the results for the diagnosed diffusivity are independent of

the number of layers used for the transformation of the tracer into

σ-coordinates, as long as the transformation is not getting coarser than the

density profiles in the model. For the results shown, twice as many layers

than levels are chosen for the tracer mapping.

In the results of experiment A−const, the diagnosed diffusivity κG−int,σ and

the weighted diffusivity κw−G,σ are identical to the constant value of

4 cm2/s of the explicit diffusion coefficient. The results are independent of

the initial tracer condition used.

Irrespective which initial tracer condition is used, the results for the

diagnosed diffusivity κG−int,σ and the weighted diffusivity κw−G,σ in

experiment A−incr are almost identical (Figure 9.13). Because the explicit

diffusion coefficient in this experiments is defined to be constant along the

isopycnal layers, the results for the two initial tracer conditions differ only

slightly towards the end of the experiment. This effect is caused by the
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Figure 9.14: Weighted diffusivity κw−G,σ equal to diagnosed diffusivity
κG−int,σ for A−horiz (2-dimensional, diffusion acts on tracer, non-horizontal
isopycnals): a) isopycnally varying and b) equally labelled initial tracer con-
dition.
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Figure 9.15: Weighted diffusivity κw−G,σ equal to diagnosed diffusivity
κG−int,σ for A−oc (2-dimensional, diffusion acts on tracer, non-horizontal
isopycnals): a) isopycnally varying and b) equally labelled initial tracer con-
dition.

slightly diverging isopycnals along the horizontal direction.

Also in experiment A−horiz, κG−int,σ and κw,σ show almost identical results

(Figure 9.14) for both initial tracer conditions. The similar effect can be

found in experiment A−oc. The values of κG−int,σ and κw,σ are consistent

for both initial tracer conditions, although the explicit diffusivity is

non-linear with depth and non-linear along the isopycnal layers.

In summary it can be said, that as long as the isopycnals layers are

stationary and the diffusion acts on the tracer only, the results for the

diagnosed diffusivity κG−int,σ and the weighted diffusivity κw−G,σ are almost

identical and robust with respect to the mapping of the tracer onto

isopycnals.
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Figure 9.16: Diagnosed diffu-
sivity κG−int,σ for experiment
including advection (non-
horizontal isopycnals) using
the isopycnally varying initial
tracer condition, using the
same amount of layers as levels
(blue), twice as many (red),
5 times more (green) and 10
times more layer than levels
(magenta).
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Figure 9.17: Diagnosed dif-
fusivity κG−int,σ (red) for ex-
periment including advection
(non-horizontal isopycnals) us-
ing the equally labelled ini-
tial tracer condition, using the
same amount of layers as lev-
els (blue), twice as many (red),
5 times more (green) and 10
times more layer than levels
(magenta).

9.3.3 The effect of vertical advection

In this section, the experiment with an implemented constant vertical

advection in tracer, temperature and salinity are shown. The explicit

vertical velocity is 4 × 10−6 m/s which is equal to 0.35 m/day. For these

experiments, the used density equation is non-linear in order to be more

realistic. The change in the density field is already shown in Figure 8.21 in

Section 8.3.3 and will therefore not be repeated.

Figure 9.16 shows the results for the diagnosed diffusivity κG−int,σ where

the isopycnally varying initial tracer condition is used. For the mapping of

the tracer onto isopycnals, results are shown using the same amount of

layers as levels (blue), twice as many (red), 5 times more (green) and 10

times (magenta) more layers than levels for the mapping of the tracer onto

isopycnals. As a reference the weighted diffusivity (black) which is equal to
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zero is shown as well.

Already an increase of the number of layers used for the mapping from the

same amount as levels to twice as many leads to a reduction in the

amplitude of the high frequency fluctuations of 75%. A further increase in

the number of layers leads to a further reduction in the amplitude. The

time averaged values of κG−int,σ vary between values of 6.7 × 10−3 cm2/s

(κG−int,σ) and 1.7 × 10−3 cm2/s (κG−int,σ, 5×), except using 10 times more

layers than levels, the mean value gets negative (−3.8 × 10−3 cm2/s). The

analysis of the variance method (Section 8.3.3) showed that the numerically

induced diffusivity in this experiment is 6.7−3 cm2/s. The time averaged

diagnosed diffusivity, when the same amount of layers as levels is used for

the transformation, is consistent with the numerically induced diffusivity.

In Figure 9.17 the results for the diagnosed diffusivity are shown where the

equally labelled initial tracer condition is used. The amplitudes for all

shown realisations of the used number of layers for the tracer

transformation are smaller compared to the results of the experiments with

the isopycnally varying initial tracer condition. Additionally, the results

using 10 times more layers than levels are staying almost always positive.

The time averaged diagnosed diffusivity, when the same number of layers as

levels is used for the transformation, has a value of 6.9 × 10−3 cm2/s and

overestimates the numerically induced diffusivity by ∼ 3%. An increase in

the resolution of the transformation leads to a decrease of the time

averaged values of κG−int,σ (5.3 × 10−3 − 0.78 × 10−3 cm2/s).

The results of these experiments show, that the analysis of a tracer field,

which is uniformly distributed along the isopycnals, leads to a smaller

amplitude in the fluctuations of the diagnosed diffusivity, which are caused

by the tracer mapping. By analysing time averaged values for the

diagnosed diffusivities, close results to the numerically induced diffusivity

can be found for the cases where the same number of layers as levels is used

for the transformation of the tracer. These close results might be a result of

averaging effects by the horizontal integration of the tracer mass and the

tracer gradient. Similar to the results of the experiments with horizontal
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isopycnals, the time-scale of the mean values depends on the periodic

structure of the fluctuations and should last at least over one wavelength.

An increase in the resolution of the tracer transformation leads to a

decrease of the time averaged diapycnal diffusivities.

9.3.4 Diffusion acts on tracer, temperature and

salinity

In the experiments shown in this section tracer, temperature and salinity

are diffusive. The corresponding effect of the diffusion acting on

temperature and salinity can be interpreted as an interfacial movement of

the isopycnals. The effect of the interfacial velocity is of minor importance

for the analysis of the diagnosed diffusivity in experiments with a high

vertical resolution (< 1%), therefore wI = 0 is assumed in the following.

The results for the weighted diffusivity κw−G,σ in the experiments shown in

the following are, as expected, identical to the ones of Section 9.3.2. The

results of the diagnosed diffusivity κG−int,σ are robust with respect to

changes in the resolution of the transformation axis used (< 0.1%), as long

as the resolution is not getting coarser than the density profiles in the

model.

In experiment A−const (Figure 9.18), the results for the diagnosed

diffusivity κG−int,σ are smaller compared to the weighted one for both initial

tracer conditions. The interfacial movement of the isopycnal layers with

time is so small, that a direct comparison between the isopycnal fields does

not show a diverging or converging behaviour. Therefore, Figure 9.19 shows

the difference of the initial density field and the density field at the end of

the experiment, to get an idea about the temporal change of the isopycnal

field. The difference of the interfacial velocities can be interpreted as a

divergence or convergence of the isopycnal layers.

Negative values in the difference of the densities can be interpreted as an

upward movement of the isopycnals. The tracer in these experiments is

released at a depth between 300 m (eastern side) and 400 m (western side).
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Figure 9.18: Weighted diffusivity κw−G,σ and diagnosed diffusivity κG−int,σ

for A−const (2-dimensional): a) isopycnally varying and b) equally labelled
initial tracer condition (diffusion acts on tracer, temperature and salinity,
non-horizontal isopycnals).
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Figure 9.19: Difference of
the density field at the
beginning and at the end
of experiment A−const.

The upward movement of the isopycnals at 300 m depth is large compared

to the one at 400 m depth, which means that the isopycnals are diverging.

The smaller values in the diagnosed diffusivity κG−int,σ can be ascribed to

the divergence of the isopycnals.

Also in experiment A−incr, the diagnosed diffusivity κG−int,σ (red) is

constantly smaller (1 − 20%) than the weighted diffusivity κw−G,σ (blue),

independent of the initial tracer condition used (Figure 9.21). The

difference of the initial density field with the one at the end of the

experiment is shown in Figure 9.21. Similar to the difference shown for

experiment A−const, the values of the difference in the depth region

between 300 and 400 m are negative and increase with depth, which can

also be interpreted as a divergence of the isopycnals. This means, that the
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Figure 9.20: Weighted diffusivity κw−G,σ and diagnosed diffusivity κG−int,σ

for A−incr (2-dimensional): a) isopycnally varying and b) equally labelled
initial tracer condition (diffusion acts on tracer, temperature and salinity,
non-horizontal isopycnals).
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Figure 9.21: Difference of
the density field at the
beginning and at the end
of experiment A−incr.

divergence of the isopycnals leads to a negative induced diffusivity in the

results for the diagnosed diffusivity κG−int,σ of experiment A−incr.

A similar effect can be seen in the results of experiment A−horiz (Figure

9.23), where κG−int,σ is smaller than κw−G,σ for both initial tracer

conditions. The difference in the density fields (Figure 9.23) gives the

impression that the slightly diverging isopycnals in the depth between 300

and 400 m lead to a negative induced diffusivity.

Contrary, in the results for the last experiment, A−oc (Figure 9.24), the

diagnosed diffusivity is not constantly smaller than the weighted diffusivity.

Using the isopycnally varying initial tracer condition (see Figure 9.24 a.),

κG−int,σ starts at a lower value than κw−G,σ, but increases constantly and

from the second month onwards, κG−int,σ is larger than κw−G,σ. In Figure
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Figure 9.22: Weighted diffusivity κw−G,σ and diagnosed diffusivity κG−int,σ

for A−horiz (2-dimensional): a) isopycnally varying and b) equally labelled
initial tracer condition (diffusion acts on tracer, temperature and salinity,
non-horizontal isopycnals).
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Figure 9.23: Difference of
the density field at the
beginning and at the end
of experiment A−horiz.

9.24 b), where the results of the equally labelled initial tracer condition are

shown, the values for κG−int,σ are nearly constantly higher ( ∼ 1%).

The positive values in the difference of the density field in the depth

between 300 and 400 m, as shown in Figure 9.25, represent a downward

movement of the isopycnals. The values close to the depth of 300 m are

larger than the ones in 400 m depths, which can be interpreted as a

convergence of the isopycnals. This means that the positive induced

diffusivity can be ascribed to a convergence of the isopycnal layers.

In summary it can be said that the results presented in this section are

robust with respect to changes in the resolution of the tracer

transformation, as long as the used transformation is not getting coarser
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Figure 9.24: Weighted diffusivity κw−G,σ and diagnosed diffusivity κG−int,σ

for A−oc (2-dimensional): a) isopycnally varying and b) equally labelled
initial tracer condition (diffusion acts on tracer, temperature and salinity,
non-horizontal isopycnals).
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Figure 9.25: Difference of
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of experiment A−oc.

than the density profiles which can be found in the model. The rate of

change in the density fields, which is realised here by taking the difference

of the density at the beginning and the end of the experiment, gives an idea

about the diverging and converging behaviour of the isopycnals with time.

The results suggest, that diverging isopycnals lead to negative values, and

converging isopycnals to positive values of the numerically induced

diffusivity.

9.4 Summary

The experiments in which the vertical diffusion acts on the tracer only show

almost identical results for the diagnosed and the weighted diffusivity
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independent of the used initial tracer condition and the slope of the

isopycnals. Additionally, these results showed that this method is robust

according to the transformation of the tracer onto isopycnals, as long as the

resolution does not get coarser than the density profiles of the model.

Also the analysis of experiments in which the vertical diffusion acts on

tracer, temperature and salinity showed that the results for the diagnosed

and the weighted diffusivity are robust with respect to changes in the

resolution of the transformation used. The criterion, that the resolution of

the transformation used should not be coarser than the density profiles in

the model, is identical to the one mentioned above. The comparison

between the values of the diagnosed and the weighted diffusivity in relation

to the temporal change in the isopycnal layers showed that a divergence of

the isopycnals leads to negative values and a convergence to positive values

of the numerically induced diffusivity.

Already the results of the 1-dimensional experiments showed that

experiments which include a constant vertical advection lead to spurious

fluctuations in the values of the diagnosed diffusivity. Also the spurious

effect on the time averaged values of the diagnosed diffusivity was at least

one order of magnitude larger than the numerically induced diffusivity.

These spurious fluctuations can also be found in the results of the

2-dimensional experiments. Using a higher resolution of the transformation

than the resolution of the z-level model grid, the amplitude of these high

frequency fluctuations is reduced by more than 50%.

The time average values of the diagnosed diffusivity give close results to the

numerically induced diffusivity, but only when the transformation of the

tracer is kept close to the resolution of the density profiles in the model. An

increase of the resolution of the transformation leads to a decrease of the

mean diagnosed diffusivities, which masks the numerically induced

diffusivity. Depending on the periodic structure of the high frequency

fluctuations, the mean values should be estimated at least over one

wavelength.
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Summary: Part II

In the following, the applicability of the variance and the tracer flux

method to infer diapycnal diffusivities in a set of idealised 2-dimensional

case studies is summarised.

Variance method

For the analysis of the diagnosed diffusivity using OGCMs it is necessary to

separate the variance decay of the total tracer volume between diffusivities

caused by diapycnal mixing from those caused by isopycnal mixing. The

separation of these two processes is carried out in the present study by

interpolating the tracer along isopycnal layers before estimating its variance

decay. Additionally, the uncertainty resulting from the transformation of

the tracer concentration onto isopycnal layers is separated from the

mapping-integration error (combined uncertainty due to transformation of

the tracer onto isopycnals and along isopycnal integration). The results

show that:

(i) analysing the diagnosed diffusivity without separating the diapycnal

from the isopycnal diffusion, the mapping of the tracer onto isopycnals

leads to minor uncertainties in the diagnosed diffusivities.

(ii) for horizontal isopycnals and constant along-isopycnal explicit diffusion

coefficients, the diagnosed diffusivities are independent of the horizontal
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distribution of the tracer concentration and insensitive to the vertical

resolution of the transformation.

(iii) in more general experiments, where the isopycnals are non-horizontal

or the explicit diffusion coefficient changes along the isopycnal layers, the

along-isopycnal integration of the tracer concentration results in a spurious

mixing of the tracer (mapping-integration error). This leads to spurious

changes in the variance decay of the integrated tracer concentration in all

experiments. This spurious diffusivity is larger than the numerically

induced diffusivity. The latter arises from discretisation errors of the

vertical advection and diffusion as a result of the Eulerian backwards

time-stepping scheme.

Conclusions The variance method cannot be used reliably for the

analysis of mean diapycnal diffusivities of passive tracers in models with an

isopycnal component in the tracer flow, which is always the case in OGCMs.

In general, diffusion and advection in OGCMs are computed as separate

steps. Therefore, it is possible to analyse vertically averaged fields of

diagnosed diffusivities, which can be inferred from the spatial discretisation

of the explicit diffusion only. This limited analysis is not restricted to

z-level models, but can also be used in σ-layer models.

In σ-layer models, numerically induced diffusion is generated by the

diapycnal (vertical) advection. In general, diapycnal and isopycnal

advection are computed in separate steps. In these models it is possible to

analyse the numerically induced diffusion by the variance method. The

diagnosed diffusivity analysed by the variance decay of the total tracer

gives the value for the numerically induced diffusivity.

Tracer flux method

The modification of the tracer flux method to analyse 2-dimensional

experiments leads to robust estimates of diagnosed diffusivities in

experiments where vertical diffusion acts on the tracer only, independent of

the horizontal distribution of the tracer and of the density distribution.
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Diagnosed diffusivities from the experiments in which vertical diffusion acts

on tracer, temperature and salinity are insensitive to changes of the spatial

resolution of the transformation. The corresponding effect of diffusion in

temperature and salinity can be interpreted as a divergence or convergence

of the isopycnal layers. In the diagnosed diffusivities converging isopycnals

lead to positive induced diffusivities and diverging isopycnals to negative

induced diffusivities. The resolution of the transformation should not be

coarser than the resolution of the density profiles in the model. The

diagnosed diffusivities are even more robust compared to those from

analogous experiments in the 1-dimensional case studies.

Diagnosed diffusivities from experiments including vertical advection show

spurious fluctuations. These result from the transformation of the tracer

concentration onto isopycnals and from the vertical movement of the

isopycnal layers. The amplitude in these fluctuations is smaller than that of

the analogous experiment of the 1-dimensional case studies. This might be

a result of averaging effects. Considering the time mean values over one or

more wavelengths of the fluctuations in the diagnosed diffusivity, the values

of the diagnosed diffusivity are of o(10−3 cm2/s), which is the same order of

magnitude as the numerically induced diffusivity. In fact, if the

transformation of the tracer is chosen to be similar to the density profiles in

the model, the mean diagnosed diffusivity differs from the numerically

induced diffusivity only by about 3%. An increase of the resolution of the

transformation leads to a spurious decrease of the mean diagnosed

diffusivities which masks numerically induced diffusivity.

Conclusions Using the tracer flux method it is not possible to directly

analyse the diagnosed diffusivity at each time step, but it should be

possible to analyse time mean values over longer periods. The minimum

suitable averaging integral depends on the periodic structure of the

spurious fluctuations and should at least include one wavelength.

It is necessary to repeat the set of experiments in 3-dimensional case

studies. There, one may assume, that again only results for experiments

including vertical advection are sensitive to the transformation of the tracer
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onto isopycnals. In the 2-dimensional case studies the spurious effects in

the time averaged values of the diagnosed diffusivity is less than in

1-dimensional cases due to averaging effects. One can speculate that

3-dimensional case studies may possibly show a further reduction of these

spurious effects caused by the tracer mapping.

A fine resolved vertical grid is important for the analysis of diagnosing

diffusion. Increasing the vertical resolution can be done in OGCMs at

relatively low computational costs in comparison to an increase in

horizontal resolution. Direct comparison of weighted and diagnosed

diffusivities provides a measure of the numerically induced diffusivity. This

might shed light on the mechanisms driving the meridional overturning

circulation in models. Additionally the tracer flux method can be used for

the analysis of any passive tracer in any model.



Chapter 11

Summmary and Outlook

Summary Three different diagnostics have been introduced to analyse

the mean diapycnal diffusivity of a passive tracer. The methods were tested

in a set of 1-and 2-dimensional case studies. The effect of a parallel vertical

movement and of converging and diverging isopycnal layers is shown

separately.

The first method is the divergence method, which infers the mean diapycnal

diffusion from the advection-diffusion equation. It turns out that the results

are very sensitive to the resolution of the density grid that is used. The

errors are small, only if the thickness of the isopycnal layers onto which the

tracer is reassigned is close to the thickness of the original model levels.

In the method of choice, the tracer flux method, the temporal change of the

total amount of tracer above an isopycnal equals the diapycnal flux through

the isopycnal. This method works reasonably well: In order to keep errors

as small as possible longer time mean values should be analysed, as the

combination of the advection and the transformation of the tracer onto

isopycnals induce oscillations. As long as the vertical velocity is constant,

the frequency of the oscillations are proportional to relation of the vertical

velocity to the layer thickness of the transformed grid ( w
∆zt

). The amplitude

is proportional to the vertical change in the tracer concentration (∆C).

This means that either increasing the resolution of the vertical model grid

or changing the initial tracer condition by decreasing ∆C lead to a decrease
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of the spurious oscillations.

The third method is the variance method, that links the tracer variance

decay to a mean diffusivity. In 2- and 3-dimensional experiments it is not

possible to separate the diapycnal from the isopycnal diffusion.

Discussion and Outlook The results of the tracer flux method indicate

that it should, in principle, be possible to analyse diapycnal diffusivities in

OGCMs. However further analysis is still required to determine better the

conditions required for the methods to work well. The comparison between

the 1- and 2-dimensional experiments indicates that the biasing effect

resulting from the tracer mapping and the relative movement of the

isopycnals can be reduced by analysing a wider area with weak tracer

gradients.

The 1- and 2-dimensional case studies also indicate that for diagnosing

diffusivities a finely resolved vertical model grid is necessary. Increasing the

vertical resolution can be done in OGCMs at relatively low computational

costs in comparison to an increase in horizontal resolution. To what extent

an increase in the vertical resolution or an initial tracer field with relatively

weak gradients is important for a robust analysis of the diagnosed

diffusivity in OGCMs needs to be verified in the future work.

The aim of this thesis was to analyse mean values of the diapycnal

diffusivity for tracer fields in order to find a tool to analyse values which

can be directly compared to the observational studies. This also helps to

understand how far the results of the observational studies depend on the

method used. How well can vertical profiles of the diagnosed diffusivity be

analysed in z-level models? In principle, it should be possible, analogously

to the studies of Griffies et al. (2000), to analyse the vertical behaviour

of the diapycnal diffusivity by the tracer flux method.

As a further outlook, the analysis of diapycnal mixing in biogeochemical

coupled models is also an important tool in order to analyse basic processes

in these models, as these processes are currently poorly understood. The

tracer flux method, as introduced in this thesis, analyses the mean



diapycnal diffusivity of the whole tracer volume. In order to analyse tracers

which are not restricted to a local tracer patch, it is necessary to modify

the tracer flux method for the analysis of a fixed region. Therefore it is

necessary to consider the lateral tracer fluxes leaving the region of interest.

Additionally, sinks and sources of tracers such as e.g. nutrients needs to be

included in the diagnostic method as well.

Knowing the amount of numerical mixing in a z-level models, will, for

example, allow a quantitative study of the interaction between diapycnal

mixing and the absorption of carbon dioxide (CO2) in the ocean in

connection with climate change on glacial and interglacial time-scales.
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Hochgebirge. Göteborgs K. Vetensk. Vitterhetssamhällets Handkl., 27,

p 48.

Scott, J. R. and J. Marotzke, 2002: The location of diapycnal mixing

and the meridional overturning circulation. J. Phys. Oceanogr., 32,

p 3578 – 3595.

Stommel, H. and A. B. Arons, 1960: On the abyssal circulation of the

world ocean - I. Stationary planetary flow patterns on a sphere. Deep–Sea

Res., 6, p 140 – 154.

Winters, K. B. and E. A. D’Asaro, 1996: Diascalar flux and the rate

of fluid mixing. J. Fluid Mech., 317, p 179 – 193.

Winters, K. B., P. N. Lombard, J. J. Riley and E. A. D’Asaro,

1995: Available potential energy and mixing in density-stratified fluids.

J. Fluid Mech., 289, p 115 – 128.

Wuest, A. and A. Lorke, 2003: Small-scale hydrodynamics in lakes.

Ann. Rev.Fluid Mech., 35, p 373 – 412.

Wunsch, C. and R. Ferrari, 2004: Vertical Mixing, Energy, and the

General Circulation of the Oceans. Ann. Rev. Fluid Mech., 36, p 281 –

314.

Zhang, J., R. Schmitt and R. Huang, 1999: The relative influence of

diapycnal mixing and hydrologic forcing on the stability of the

thermohaline circulation. J. Phys. Oceanogr., 29, p 1096 – 1108.


