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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS, SCHOOL OF
OCEAN AND EARTH SCIENCES
Doctor of Philosophy
APPLICATION OF SYNCHRONISATION THEORY TO PLANKTON
PATCHINESS

by Emma Jane Guirey

This study applies a metapopulation dynamics approach to modelling a distri-
bution of plankton by representing a region of ocean as an ensemble of plankton
populations interacting through the stirring and mixing effects of the flow. The
methods of synchronisation theory are applied within this framework to gain insight
into emergent spatial structure in biophysical simulations.

The manifestation of synchronisation, including statistically stable local cluster-
ing of populations, frequency-locking or phase-locking of the entire ensemble and
fully synchronised dynamics, is found to depend upon: the biological model used;
the strength of mixing between populations; the number of populations or, equiva-
lently, spatial resolution of the modelled region; the level of mismatch between and
spatial arrangement of population natural frequencies; the strength of stirring of the
ensemble at spatial scales larger than the grid-cell. The study therefore highlights a
number of biophysical modelling parameters determining the properties of emergent
spatial structure in simulations of surface ocean biological dynamics.

This study shows that persistent spatial heterogeneity (patchiness) can result
from what intuitively should be a homogenising influence: mixing can increase the
level of disorder between the plankton populations. Furthermore, the work shows
that synchronisation effects occur generically under a range of simulation scenarios,
giving confidence that synchronisation theory can explain some of the spatial struc-
ture, or ‘patchiness’, observed in plankton distributions, and providing one possible
answer as to how populations of planktonic organisms maintain coherent spatial

structures under the mixing and stirring action of the oceanic flow.
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Chapter 1

Introduction

1.1 Overview

This study applies the methods and results of synchronisation theory (Pikovsky
et al., 2001) to the long-standing oceanographic puzzle of plankton patchiness (Bain-
bridge, 1956; Steele, 1978). We aim to use synchronisation theory to explore the
spatiotemporal patterns observed both in real-world plankton distributions and bio-
physical simulations by viewing a distribution of plankton as an interacting ensemble
of individual plankton sub-populations. A similar approach has been successfully
employed by terrestrial ecologists in the study of the ubiquitous phenomenon of
synchronised population dynamics in a variety of species (e.g. Moran, 1953; Ranta
et al., 1995) and has been shown by Hillary and Bees (2004a) to be applicable to the
study of oceanic plankton, raising a number of questions about how synchronous
effects arise in spatially-extended ecosystem models (as discussed in Section 1.2.6).
This study aims to address some of these questions, yielding results about spatial
synchrony in marine biophysical models and what synchronisation theory can tell
us about the way in which plankton are distributed in the ocean.

This brief overview will be expanded in Section 1.2 before giving the specific

aims of the study and an outline of the thesis in Section 1.3.



1.2 Background

Plankton are free-floating aquatic microscopic plants and animals that largely drift
with any current (Lalli and Parsons, 1997). They are heterogeneously, or patchily,
distributed in the ocean over a wide range of scales. This section aims to show how
synchronisation theory, which is concerned with systems of interacting oscillators,
is directly applicable to the investigation of plankton patchiness. Sections 1.2.1
and 1.2.2 will describe the patchiness phenomenon, its significance, and some of
the factors involved in its initiation and maintainence. The typical approach to
biophysical modelling of a plankton distribution will be described in Section 1.2.3.
It will be shown that a distribution of plankton may be represented as an ensemble
of interacting plankton populations, each represented by an independent plankton
ecosystem model, making the methods of synchronisation theory directly relevant.
Synchronisation theory and its use in population dynamics in general and plankton

dynamics in particular will be discussed in Sections 1.2.4 to 1.2.6.

1.2.1 Plankton patchiness

That the distribution of plankton in the ocean is spatially and temporally hetero-
geneous on scales of centimetres to several hundred kilometres is a well known phe-
nomenon. It has been observed visually for many years from ships (see Bainbridge
(1956) for collated examples from as far back as 1773) as discoloured patches of wa-
ter and also by microscope in collected biological samples (e.g. Popova et al., 2002).
More recently, patchiness in oceanic phytoplankton has been strikingly observed by
satellite, even being reported by national newspapers (Connor, 2004).

Patchiness and its consequences are not fully described or understood (Mar-
tin, 2003). The main debates include: What generates and maintains patchiness?
What are the respective roles of physical and biological drivers of patchiness (e.g.
Srokosz et al., 2003; Folt and Burns, 1999)?7 What sets the observed spatial scales
and structure (e.g. Skellam, 1951; Petrovskii, 1999; McLeod et al., 2002)? How is
patchiness best described and characterised (e.g. Platt and Denman, 1975; Lovejoy
et al., 2001)?



Whilst it is very unlikely that patchiness is caused and maintained by solely
biological factors or solely physical ones, and that in reality the situation is probably
far more complicated than that with multiple drivers being the norm (Folt and
Burns, 1999), it is still useful to try to examine the processes separately and also
to examine the extent to which physical structure determines the spatial structure
of biological variables. Indeed, studies (Srokosz et al., 2003; Martin, 2000; Popova
et al., 2002) suggest that the effects of the physical flow and the biological dynamics
can in some cases be separable, with the flow setting the size and shape of patches,
and the biology governing the amplitude of biomass within the patches. Other
studies show the biology and physical flow to act together to determine patch sizes
(e.g. McLeod et al., 2002). It may be difficult to distinguish between direct physical
effects on patchiness (e.g. stirring), indirect physical mechanisms which trigger
biological effects on patchiness (e.g. upwelling of nutrients), and direct biological
effects (e.g. swarming of zooplankton), especially when more than one factor acts
at once.

Patchiness occurs on a wide range of scales, and the influence of biological over
physical factors varies with the scale of patchiness in question. For example, at
scales of 10-100 km patchiness may result from the upwelling and trapping effects of
eddies and currents, whilst at scales of 100m to 1 km patchiness may be the result
of aggregation for mating by zooplankton (Folt and Burns, 1999). If physical and
biological processes are acting at the same scale, such as in the case of mesoscale
physical processes and some zooplankton behaviour, then the effects of the two may

be difficult to differentiate (Fielding et al., 2001).

1.2.1.1 Biological drivers of patchiness

The patchiness structure is strongly influenced by the physical flow. If plankton were
distributed uniformly in the ocean, however, no amount of horizontal movement by
the physical flow could create patchiness from this homogeneity. The heterogeneity
must be generated by some inbalance in the conditions required for phytoplank-
ton growth and survival. Anything that generates patchiness in the availability of

nutrients, other essential vitamins or light has the potential to generate plankton



patchiness, as has patchiness in the distribution of those organisms that graze upon
phytoplankton (Barnes and Hughes, 1982).

Phytoplankton patchiness, once established, can be self-sustaining (Smith et al.,
1996; Young et al., 2001). For example, division products of a single plankter tend
to stay together in the water, so that initial heterogeneities are amplified (Barnes
and Hughes, 1982; Young et al., 2001). Nutrient recycling may be another positive
feedback; once clusters of organisms form, material is exuded into the water and
made available for uptake by other organisms, perhaps of another species. Vertical
self-sustained patchiness may be caused by shading of lower layers by dense aggre-
gates of organisms at the surface, preventing sufficient light for growth from reaching
phytoplankton at depth (Huppert et al., 2004).

Zooplankton behaviour is more complicated because they are capable of greater
movement independently of the flow. Zooplankton prey upon phytoplankton; wher-
ever there is aggregation of the prey, we would expect aggregation of the foraging
predator, since some zooplankton are capable of remote food location. Hence phyto-
plankton patchiness may generate zooplankton patchiness. Conversely, patchy zoo-
plankton grazing upon areas of high phytoplankton biomass may cause patchiness
in the latter (Folt and Burns, 1999), i.e. top-down rather than bottom-up control.
Equally, higher predators that depend upon zooplankton for food are patchily dis-
tributed in the ocean so that zooplankton distribution may become patchy through
grazing or predator avoidance. Some higher predators may even force schooling
of zooplankton. Examples of this, given by Barnes and Hughes (1982), are forced
schooling of euphasiids by some sharks in temperate zones, and encircling of prey
in a net of bubbles by whales.

Regions of high or low phytoplankton biomass may be positively or negatively
correlated with regions of high or low zooplankton biomass as a result of predator-
prey interactions (e.g. Steele and Henderson, 1992; Srokosz et al., 2003; Popova et al.,
2002) and the behaviour and physiology of the different organisms (e.g. different
buoyancy properties of phytoplankton and zooplankton; Reigada et al., 1998).

Aside from food location, zooplankton may aggregate for other reasons. Zoo-

plankton are usually sparse in open ocean waters, with a few patches a thousand



times more dense than the median; consequently, aggregation into patchiness to
mate is a survival mechanism (Folt and Burns, 1999). This swarming behaviour,
the mechanisms of which are not understood, is an example of biologically driven
and maintained patchiness. After reproduction, the progeny may remain together in
the water for some time before dispersal, since they will be less motile than the adult
organisms and so have different response times, prolonging the patchiness (Lalli and
Parsons, 1997).

Many zooplankton undertake coordinated diurnal vertical migration (DVM):
they vary their vertical position in the water column by as much as 1000 m during
the diurnal cycle, according to a regular pattern. This is a strong mechanism for
generating vertical spatial patchiness, which is probably a result of optimal foraging
and predator avoidance (Lalli and Parsons, 1997).

The processes mentioned above are mostly small-scale mechanisms, operating at
timescales of a few hours or a day, and at lengthscales of a few hundred metres (see
Barnes and Hughes (1982) for a table summarising temporal and spatial scales of
patchiness processes). Indeed, it has been suggested that biological processes are
generally responsible for the small-scale patchiness observed in the ocean (Popova
et al., 2002). Physical mechanisms may also be responsible for small-scale patchiness
(e.g. wave action; Langmuir circulation - see below), but in general the physical flow

sets the large-scale structures.

1.2.1.2 Physical drivers of patchiness

Any physical mechanism generating patchiness in nutrient and light supply has the
potential to generate patchiness in plankton distributions.

High productivity is often associated with frontal regions, where two distinct wa-
ter masses meet. This high productivity may be due to associated upwelling, which
brings fresh nutrients to the surface from depth, or because the nutrient content
of the mixed water is more suitable for phytoplankton growth than that of either
discrete water mass (Slobodkin, 1999) (for example, if the different water masses
contain a different amount of the nutrients required for phytoplankton growth).

Additionally, studies have shown that aggregation of certain phytoplankton species



may result from the interaction of their inherent buoyancy properties with the sub-
duction of water masses at fronts (Kemp et al., 2006). Zooplankton may then also
respond to the elevated phytoplankton concentration, aggregating along the front
(Fielding et al., 2001). Light availability can also vary at fronts if, for example, the
water mass containing a particular population of plankton is subducted at the front,
generating vertical patchiness.

Upwelling regions are also associated with mesoscale eddies, again bringing nu-
trients to the surface, stimulating phytoplankton growth. Additionally, since eddies
can act as trapping regions, preventing cross-flow between the ambient water and
material within the eddy, patchiness at the mesoscale can result or be sustained
(Gargon et al., 2001). This patchiness may last for months as the eddies travel
across the ocean. This has been seen in rings spun off, for example, from the Gulf
Stream (Barnes and Hughes, 1982).

Recently, a hurricane passing across the North Atlantic was observed by satellite
to leave high productivity regions in its wake, due to stirring up by the hurricane of
the lower, nutrient-rich layers (Connor, 2004). Another “seed heterogeneity” (Mar-
tin, 2003) that can generate patchiness in phytoplankton distribution is fertilisation
by iron, another requirement for plankton growth, in areas of iron depletion. In
the case of Abraham et al. (2000), the iron fertilisation in a patch of water in the
Southern Ocean was deliberate for experimental purposes; satellite imagery showed
evidence of an area of high productivity caused by the iron fertilisation. Similar ef-
fects may arise from dust storms or volcanic eruptions sporadically depositing large
amounts of iron into the ocean (Duce and Tindale, 1991).

We can think of the above mechanisms as creating an initial patchy stucture
of water with high biomass levels, surrounded by less densely populated waters.
An interesting question is how this stucture is modified by, and interacts with, the
physical flow. For a thorough review of this matter, focusing on the effects of lateral
stirring and mixing, see Martin (2003). What follows is a brief discussion of the
main issues.

Some studies suggest thinking of any spatial stucture as comprising many indi-

vidual patches of varying size, so that we should in theory be able to examine the



dynamics of a single “patch” in isolation (Kierstead and Slobodkin, 1953; Petrovskii,
1999). This approach allows simplification of what is obviously a complex structure.

Initial studies in this area looked at the interaction of the effects of phytoplankton
growth and diffusion. Assuming an exponential growth of phytoplankton, Kierstead
and Slobodkin (1953); Skellam (1951) found there to be a critical length scale of
patch, proportional to % (where D is the diffusive rate and k the growth rate),
at which growth just balances diffusion. Below this lengthscale, growth is too slow
and the patch is dispersed. Above the critical length, the patch persists. This
kind of model came to be known as KiSS, after the authors Kierstead, Slobodkin
and Skellam who first used it (Kierstead and Slobodkin, 1953; Slobodkin, 1999;
Skellam, 1951). Later studies sought to improve the representation of the biology,
by including grazing by zooplankton, and the physics, by considering the scale-
dependence of diffusivity (Petrovskii, 1999). These studies confirmed the idea of
a critical lengthscale for patch persistence. However, as Martin (2003) points out,
the value of that critical lengthscale depends on the biological and physical models
used, something demonstrated in a broader context in this thesis.

Diffusion, in the models above, is a dissipative influence: the biology has to fight
to retain structure in the face of the smoothing effect of diffusion, which drives the
system towards homogeneity. This need not be the case. Turing (1952) proposed a
model, now known as the Turing mechanism, whereby steady state spatial hetero-
geneity may result from the interaction of two chemical (or biological) species with
different diffusivities. Suppose one species (say, zooplankton) exerts a control (in
this case, grazing pressure) over the other (in this case, phytoplankton), and that
the first species diffuses more quickly than the second. If the two are perturbed from
equilibrium locally, then the smoothing effect of diffusion will work more quickly on
the first species (zooplankton) than the second, relaxing the control and allowing the
second species to flourish (a phytoplankton bloom). However, since the first species
has already spread out beyond the range of the second, a barrier is formed which
restricts the spread of the bloom. In this way, permanent spatial heterogeneities
may result. For more detail, see Turing (1952) and Murray (1989).

Whilst diffusive processes have historically been seen as the fundamental pro-



cesses behind plankton patchiness structure, Abraham (1998) argued that patchi-
ness can also be affected by non-diffusive advection, or stirring. The bias towards
diffusion-based theories has been partly because, unlike diffusion, it was difficult to
adequately incorporate a turbulent flow into a plankton population model (Abra-
ham, 1998).

We see evidence from satellite images of horizontal stirring by the flow as it
draws plankton patches out into long tendrils and filaments (e.g. Robinson, 1997;
Abraham et al., 2000). As well as influencing the spatial structure, stirring may
affect the persistence of a particular patch in time, by increasing the entrainment of
nutrients along the patch boundary (Abraham et al., 2000).

Such filaments were shown by Martin (2000), who looked at the combined ef-
fects of diffusion, population growth and straining by the flow, to have a minimum
width. This minimum width was found to be affected by the parameters of the flow
only: effective diffusivity and rate of strain. Diffusion has a widening effect; strain a
lengthening and narrowing effect. The biological parameter, the growth rate, deter-
mined the amplitude of the population within the filament. Martin (2000), however,
assumed unlimited exponential growth of the population; McLeod et al. (2002) used
a more realistic growth term that accounted for growth limitation inflicted by zoo-
plankton grazing and nutrient depletion. There, the biological parameters were
found to influence the minimum filament width, showing that such studies are sen-
sitive to the biological dynamics at work and the choice of how to model them. This
issue will be addressed further in this thesis.

Neufeld and Lopez (1999) and Neufeld et al. (2002) focused on turbulent effects,
studying the evolution of an active tracer stirred by chaotic advection. The tracer
model used was intended to represent a chemical species, but could equally be taken
to represent phytoplankton. Once again, the final structure observed depended
upon the balance between the population propagation, in the form of a reaction-
diffusion front, and stretching by the chaotic advection. In the case of relatively
slow stirring compared with phytoplankton growth, a steady filamental structure
was found to persist. When the stirring rate was fast, patchiness was smoothed out

into a homogeneous steady state.



An interesting special case is that of Langmuir circulations. These arise when
moderate winds blow persistently in one direction across the sea surface. The re-
sult is a series of parallel vortices, rotating along horizontal axes aligned with the
wind, with adjacent rolls turning in opposite directions. This creates a series of
convergent and divergent bands (Barnes and Hughes, 1982). This physical regime
interacts with the buoyancy properties and swimming tendencies of phytoplankton
and zooplankton. Any downward-swimming or sinking organism will tend to ag-
gregate in upwelling areas; upward-swimming or floating organisms, in downwelling
areas. Neutrally buoyant organisms, or those without swimming abilities, become
randomly distributed. The net result is a spatially and taxonomically patchy distri-
bution (Lalli and Parsons, 1997; Bees et al., 1998).

The general conclusion to be reached is that whether coherent features in plank-
ton distributions persist is dependent upon the balance between dissipative forces
and plankton population propagation. The distribution of an inert tracer under the
influence of a physical flow will inevitably be determined by that flow. Active trac-
ers, such as phytoplankton, are capable of retaining independent structure under

this influence.

1.2.2 Significance of plankton patchiness

The study of plankton and their spatial and temporal distributions is important for
two primary reasons.

First, plankton play a major role in the carbon cycle. The growing awareness of
possible anthropogenic forcing of the global carbon cycle has increased interest in
its study; this is impossible without a model of the upper ocean ecosystem (Popova,
1995) and an understanding of the biological pump, to which plankton are key
(Sarmiento and Gruber, 2006).

Second, phytoplankton are the main primary producers of the marine ecosystem
(Lalli and Parsons, 1997) and plankton in general are a vital component of all marine
food webs. Hence understanding how plankton are distributed is useful in the study
of all other marine life. Of particular interest are those food webs of which humans

are a part, i.e. those containing commercial fisheries species.
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Patchiness in plankton distributions has been shown to be linked with levels of
primary production (e.g. Smith et al., 1996; Martin and Richards, 2002). Addition-
ally, heterogeneity can affect the ecosystem dynamics themselves by impacting upon
the stability and persistence of a population (Steele, 1974). For example, in their
study of freshwater protists, Holyoak and Lawler (1996) found that a patchy popu-
lation has a reduced risk of extinction, since migration between interacting patches
allows recolonisation of depleted patches.

Since current Global Carbon Cycle Models (GCCM’s) are incapable of resolving
features of the mesoscale and smaller (Fasham, 2003), which is the scale at which
much of the variability in plankton distribution is seen (Steele, 1978), they may be
incurring large errors. A better understanding of heterogeneity in real-world and
modelled plankton dynamics may therefore improve our ability to model, understand

and predict carbon cycle dynamics.

1.2.3 Modelling plankton distributions

In general, the time evolution of an ocean biogeochemical tracer C, such as phy-
toplankton or nitrogen concentration, may be expressed by continuous reaction-

diffusion-advection equations

%—f+g-v0—f{v20 = f(C) (1.1)
advection — diffusion = sources — sinks (1.2)

where u = (u, v, w) represents the flow and K is the diffusivity such that each each
variable evolves according to the physical advection and diffusion terms on the left
and chemical and biological reaction terms, represented by the function f, on the
right. A typical approach for biogeochemical modelling is to take a simplified version
of the equations, discretised in space and time, and integrate each of the equations
forward in time (Fasham, 2003).

The biological dynamics in each spatial “grid-cell” is represented by a plank-
ton ecosystem model which attempts to break down the complicated structure of
a marine ecosystem into a number of components (the set of tracers) and the in-

teractions between them. Components are assumed to be well-mixed within each
10



grid-cell so that grid-cell populations are considered rather than individual organ-
isms. The choice and number of components varies between models, reflecting the
modelling aims and assumptions of different studies: degree of realism must be bal-
anced against computational and analytical tractability. The model components
become the variables of the dynamical system. For example, many studies consider
only nutrient, phytoplankton and zooplankton (e.g. Steele and Henderson, 1981),
whilst the Fasham et al. (1990) model contains seven components and the ERSEM
(European Regional Seas Ecosystem Model Baretta et al., 1995) has a substantially
larger number of interacting components.

The flow of matter as a result of interactions between and processes affecting the
ecosystem components is parameterised in the model as a function of the biological
variables. The usual functional forms and accompanying parameters are based on a
combination of mechanistic understanding, field work and laboratory-based studies
(see e.g. Sarmiento and Gruber, 2006) and are all subject to a lesser or greater degree
of contention and uncertainty. In many cases, modellers may select a biological
model “off the shelf” through subjective choice or simply because a model is well-
studied; a particular set of biological model parameters will be chosen and the model
and parameters applied uniformly across the entire area of study (Fasham, 2003).

The spatial resolution of the simulation is dictated by a variety of factors such as
available computing power, the sampling resolution of observations that the study
aims to reproduce or, again, subjective choice. Most current GCCM'’s have a spatial
resolution of no better than 1 degree (about 100 km). Any unresolved biological or
physical processes must be parameterised in the model.

The coupled biophysical model can then be used to investigate and predict ob-
served features of plankton distribution and production for the global ocean or
a particular region (e.g. Levy and Klein, 2004; Abraham, 1998). Although much
progress has been made, and studies are aided by the wealth of high resolution data
that came with the advances in ocean remote sensing, error still arises from problems
such as a lack of a mechanistic basis for many of the equations describing evolution
of biological variables, insufficient data to constrain model parameters, variation and

inadequecy in the way in which the physical flow is represented, and coarse spatial
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resolution due to computational expense.

1.2.4 Synchronisation theory

The earliest recorded interest in the synchronisation phenomenon was by Christiaan
Huygens, the Dutch astronomer, mathematician and physicist, who observed in 1673
how two swinging pendulum clocks hanging from a wooden beam may become either
frequency-locked with a constant phase-lag of 7 or fully synchronised as a result of
vibrations, caused by the motion, travelling along the beam (Pikovsky et al., 2001).
More recently, examples of synchronisation in systems of interacting oscillators have
been found in all areas of science including electronics (e.g. Taherion and Lai, 1999;
Neff and Carroll, 1993), biology (e.g. Strogatz and Stewart, 1993), epidemiology
(e.g. Boccaletti, 2002), lasers (e.g. Barbay et al., 2000) and human behaviour (e.g.
Néda et al., 2000).

In essence, the standard type of biophysical model described above consists of an
ensemble of interacting grid-cells, in each of which the biology evolves according to
the chosen ecosystem model, with the interaction provided by the prescribed physical
circulation model. Such a system becomes the concern of the area of mathematics
known as synchronisation theory, which studies how the natural rhythms of indi-
vidually oscillating objects adjust as a result of couplings between them (Pikovsky
et al., 2001). This coupling may take the form of direct interaction, where coupled
oscillators directly influence one anothers behaviour through explicit coupling, or in-
direct influence, where coupling is due to an external force, or a combination of the
two. The geometry of the coupling, such as interaction between nearest-neighbour
(local coupling) or all oscillators (global coupling) will depend upon the particular
system under study.

Suppose we have an ensemble of n interacting oscillators s;. By the term “os-
cillator” we mean behaviour which is time-varying, including for example periodic,
chaotic or noisy oscillation. If the interaction between the oscillators causes their
states to become uniform in time, i.e. s1(t) = s9(t) = ... = s,(t), then the system
is said to be fully synchronised. In this case, the coupling is sufficient to unify the

system and lock the frequencies, phases and amplitudes.
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Full synchronisation is not the only kind of synchronous behaviour observable in
theoretical and real-world systems of coupled oscillators. If the coupling overcomes a
natural disorder in frequencies, where the natural frequency of each oscillator is the
frequency at which it would oscillate in isolation of interaction, causing all oscillators
to evolve at a common frequency, then the system is described as frequency-locked
(e.g. Sherratt et al., 2000). In this case, if there exists a constant phase lag between
frequency-locked oscillators then the system is said to be in a state of lag synchrony
(Taherion and Lai, 1999; Rosenblum et al., 1997). For a zero phase lag, we call
the system phase synchronised (Blasius and Stone, 2000). In this state of phase-
locking, oscillator amplitudes may still differ. Only when frequencies, phases and
amplitudes are all locked do we call the system fully synchronised. In addition,
instead of synchrony occurring across the whole ensemble, the system may break
up into subgroups of (fully/phase/frequency, etc) synchronised oscillators, with no
synchrony between subgroups. This is referred to as cluster synchronisation (Osipov
and Sushchik, 1997; Belykh et al., 2003; Pascual et al., 2002). As the strength of
interaction between oscillators is increased from zero, the usual transition is from
asynchronous oscillations to clustering to frequency locking to lag synchrony to phase
locking to full synchrony. However, Blasius and Montbrié (2003) have shown that
the increase in synchrony with increasing coupling may not always be monotonic and
that in some cases the onset of coupling can lead to an initial increase in disorder in
the system. This phenomenon will be seen for a lattice of interacting non-identical
plankton populations in Chapter 3 of this thesis.

Many interesting examples of synchrony in coupled oscillators and the manner
in which they are coupled may be found in Strogatz (2003). Examples with greater
mathematical detail may be found in Pikovsky et al. (2001). For the purposes of

the present study, we focus on examples of synchronisation in population dynamics.

1.2.5 Application of synchronisation theory to population
dynamics

Synchronised fluctuations across large distances have been documented in the popu-

lation numbers of a wide variety of species. Examples include spatial synchrony in ro-
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dent (Sherratt et al., 2000; Ydenberg, 1987; Haydon et al., 2001), bird (Ranta et al.,
1995), fish (Ranta et al., 1995), mammal (Haydon et al., 2001; Grenfall et al., 1998),
insect (Benton et al., 2001) and plankton (Strogatz and Stewart, 1993) species.

A well-studied example which serves to illustrate some of the processes at work
is the cycle of Canadian hare and lynx numbers (Elton and Nicholson, 1942), which
oscillate on a roughly ten-year cycle. Remarkably, the abundances in regions thou-
sands of miles apart are in phase, although amplitudes differ. It has been hypoth-
esised that the main synchronising agents at work on the population numbers are,
(i) migration between adjacent populations (Blasius and Stone, 2000) and, (ii) the
influence of a common environmental forcing - both continuous seasonal forcing and
sporadic stronger forcing events such as storms (Moran, 1953). The direct coupling
of the dispersal between populations and the indirect coupling of a common envi-
ronment both cause the individually oscillating hare-lynx prey-predator populations
to adjust their oscillations to a common frequency.

The ubiquitousness of synchronisation phenomena in population dynamics has
led Ranta et al. (1995) to claim that studying spatial synchrony, where previously the
focus has been on the temporal fluctuations of individual populations, should help
ecologists to get to the core of the workings of population dynamics. To this end,
studies have been carried out using a combination of empirical data and ecosystem
modelling to try to identify synchronised dynamics in spatially extended populations
to elucidate the main synchronising influences, or forms of coupling, at work. There
has been a certain amount of debate over whether direct or indirect influences are
of most importance in maintaining synchrony (Blasius and Stone, 2000).

Modelling approaches to synchrony in natural populations generally consider a
spatial distribution as a metapopulation: the internal dynamics of each population
is modelled as an independently oscillating ecosystem and the lattice or chain of
populations interacts according to the prescribed coupling (Hanski, 1998). This
approach, combined with results on synchronisation theory from the mathematical
and physical literature has led to some interesting results on how spatial synchrony
might emerge in spatially-extended ecosystems.

Some studies have focused on the indirect coupling effect of a common or corre-
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lated environmental forcing, such as correlation between the climates affecting each
population. Moran (1953) studied the previously-mentioned synchrony observed be-
tween hare-lynx populations in Canada and suggested that, for a population with
linear internal dynamics, the correlation between populations should be equal to
the environmental correlation. This has latterly been referred to as the Moran effect
but there is uncertainty over how well the theory extends to nonlinear population
dynamics and how to separate the effect from synchronisation caused by dispersal
(e.g. Ranta et al., 1995).

One study, by Grenfall et al. (1998), looked at the synchronised fluctuations in
the density of feral sheep populations on separate islands of the St Kilda archipelago.
In this case, there is no inter-population dispersal, so that observed synchrony arises
from a correlated environment. Grenfall et al. (1998) hypothesised that environ-
mental shocks such as March gales or increased temperatures in April are able to
influence the phase of oscillation of the sheep populations, either negatively in the
case of adverse or positively in the case of favourable weather conditions, to bring
the separated populations into synchrony.

Ranta et al. (1995) collated examples of spatial synchrony in different species
from all over Finland. They noted the common pattern of decreasing levels of syn-
chrony with increasing distance between populations. They used a metapopulation
model to investigate the relative influences of internal dynamics, dispersal and the
Moran effect on setting this observed pattern by selecting three different population
models and coupling the metapopulation by either dispersal, environmental forcing
or both. As expected, Ranta et al. (1995) found that the Moran effect was capable of
establishing synchrony but that there was no trend with increasing distance between
populations. This effect was seen when coupling the populations by dispersal alone
and the level of synchrony was not enhanced by including environmental forcing.

Similarly, the study by Sherratt et al. (2000) on field voles in northern Eng-
land found that small levels of migration were sufficient to reproduce the observed
spatial patterns of synchrony and travelling waves without the need to include en-
vironmental forcing. The presence of a travelling wave indicates that as a result of

small-scale migration (voles typically migrate over small distances of order 100 m)
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between neighbouring populations the metapopulation is able to lock in frequency
but not in phase. Sherratt et al. (2000) used several forms of coupling in their mod-
elling study, with voles all either migrating over short distance or with some able
to travel further. Their results showed that the form of coupling is important in
establishing the precise patterns observed, e.g. the speed of the resulting travelling
wave. The vole data and the modelling results of Sherratt et al. (2000) are good
examples of frequency synchronisation and clustering in coupled populations.

Haydon et al. (2001) also illustrate the importance of the strength and extent of
coupling in establishing synchrony. They looked at fluctuations in mink and muskrat
populations across the whole of Canada, which, when converted into a time-series of
phases, show patterns of synchrony. They used the phase data to identify whether
the phase of oscillation of each population generally draws closer to that of its
neighbours with each year, indicating a constant level of direct coupling, or whether
the phases drift apart and are sporadically brought sharply together, indicating
environmental shocks. They found that the level of coupling varied across the region,
resulting in varying level of synchrony. The variation in coupling strength was
hypothesised to be related to varying topography from west to east across Canada,
e.g. asmaller amount of migration may be possible in the more difficult mountainous
terrain of the western part of Canada, disrupting the synchronising influence.

Another important observation by Haydon et al. (2001) was that the two species
under consideration, mink and muskrat, although exhibiting similar spatial patterns
of synchrony, are time-lagged with respect to one another; mink lag 1 to 2 years
behind the muskrat, although both cycle with an 8 to 10 year cycle. Haydon et al.
(2001) believe that this reflects the different density-dependent internal dynamics of
the two species. This indicates the importance of recognising the two influences of
the internal dynamics of each population comprising the metapopulation and the
way in which these populations are coupled in setting the type of emergent spatial
structure observed.

Finally, Ydenberg (1987) proposed that some species may become synchronised
not by the Moran effect or disperal but because of a nomadic predator. If the

predator is able to distribute itself among the prey depending on the prey density,
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and if this is able to influence the phase of oscillation of the prey species, then
synchrony might result. For example, if the fluctuations in prey populations com-
prising the metapopulation are all in phase then the predator would distribute itself
evenly throughout the region and synchrony would be maintained. If certain pop-
ulations were in a low or high phase, the predator would move away from or into
those areas, respectively, and, if the prey species could somehow alter its phase,
then synchrony may be restored. Ydenberg (1987) hypothesised that the change
in phase of oscillation of the prey species may result from direct predation or from
survival mechanisms in the prey such as changes in foraging or breeding patterns
as a result of intense predation. Ydenberg (1987) suggested that this synchronising
mechanism might be more applicable than the Moran effect for species where syn-
chronised dynamics have been observed over distances large enough (of order 1000
km) for significant climatic variation.

We see that ecologists have applied synchronisation theory to a variety of terres-
trial ecosystems by modelling an area of interest as a spatially-extended metapop-
ulation of discrete populations, interacting directly or indirectly via, for example,
migration or a common environmental forcing. Such studies have been successful in
yielding results on the causes of the common phenomenon of synchrony in terrestrial
population dynamics. To summarise, the occurence and nature of synchrony have
been shown to depend upon the internal dynamics of the individual populations, the
form (e.g. direct or indirect interaction), strength (e.g. rate and extent of dispersal)
and time dependence (e.g. constant or peaking sporadically) of the coupling between
populations, and the geometry and extent of the metapopulation (e.g. number of

and distance between populations).

1.2.6 Application of synchronisation theory to plankton patch-

iness

The approach described above may be applied to the study of plankton distribu-
tions: by viewing the distribution of plankton in an area of ocean as an interacting
ensemble of individual plankton populations, it is apparent that synchronisation

theory is directly applicable to plankton patchiness and should have much to tell us
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about emergent structure in modelled and real-world plankton distributions. Since
synchronisation theory is concerned with oscillators, this assumes that plankton dy-
namics are oscillatory (which we take here to mean time-varying and not necessarily
oscillatory with a regular period) at least some of the time and may be realistically
represented as such. We justify this assumption on the basis of modelling work (e.g.
Ryabchenko et al., 1997), empirical work (Fussman et al., 2000).

A distribution may be thought of as a metapopulation of plankton populations,
interacting via, for example, the physical flow, external forcing and/or dispersal
of individuals between populations. This is analogous to the standard biophysical
modelling approach outlined in Section 1.2.3. The application of synchronisation

theory to plankton population modelling is discussed below.

e Direct coupling

Since plankton are largely incapable of movement independent of ocean cur-
rents, the most obvious example of direct coupling between plankton popu-
lations might be dispersal caused by mixing and stirring. Another example
would be migration by those zooplankton that are more capable of independent

movement, perhaps for the purposes of foraging and mating.

Hillary and Bees (2004a,b) carried out the first studies in this area by consider-
ing a lattice of plankton populations, represented by the Nutrient-Phytoplankton-
Zooplankton (NPZ) model of Steele and Henderson (1981) with a fixed set of
spatially uniform parameter values, coupled via a simple nearest-neighbour
flux between patches. By varying the strength of coupling between popula-
tions and looking at the stability of the fully synchronised state, they were able
to establish a critical strength of coupling required for homogeneous dynamics
to persist. Using this general set-up, Hillary and Bees (2004a) were able to
explore a number of different factors affecting the ability of the system to syn-
chronise. Their results suggested some dependence of the critical coupling on
the number of populations comprising the lattice, a result seen in terrestrial

studies (e.g. Ripa, 2000; Ylikarjula et al., 2000).

As well as considering a lattice of identically-represented plankton populations

Hillary and Bees (2004a) also looked at the more realistic case of spatially
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varying dynamics by applying a small mismatch to the zooplankton mortality
parameter of each population. For certain values of coupling, phase synchrony
was found to result, with populations frequency locked and in-phase but with
differing amplitudes. As described in Section 1.2.5, this is a phenomenon
commonly observed in non-plankton ecological data (Elton and Nicholson,

1942).

For the same system, Hillary and Bees (2004a) also found that for biological
parameters normally resulting in chaos in the uncoupled NPZ dynamics, a
smaller critical coupling was required for a smooth relationship, such as that
of phase synchrony, to exist between patches. This suggests that chaos aids
the formation of stable synchrony in a metapopulation, agreeing with the
conclusion of Ripa (2000) that unstable local dynamics are an aid to dispersal

as a synchronising mechanism.

The set-up used by Hillary and Bees (2004a) is a simple example of a coupled
biophysical model: biological dynamics are represented by an ecosystem model
common to all grid-cells and the nearest-neighbour coupling approximates the
advective and diffusive processes of the physical flow. The studies of Hillary
and Bees (2004a,b) have highlighted a number of the factors affecting the
emergent structure in such a model; the number of populations (or grid-cells)
in the lattice, the type of coupling, the choice of biological model and the
corresponding parameters and whether or not spatial variation in underlying
dynamics is considered. All of these effects require further study to establish

their relative importance.

Indirect coupling

Since fluctuations in plankton abundances are driven by such influences as
variations in sunlight and wind-induced sea-surface mixing, it is equally con-
ceivable that plankton populations could become spatially synchronised by
common environmental influences. As a simple example, Strogatz and Stewart
(1993) describe how the glow rhythm of the bioluminescent algae Gonyaulax

is, under usual conditions, synchronised between individuals, each having a
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nearly 24 hour period. If kept in a dim tank in a laboratory, the individuals
quickly become desynchronised with a wider range of frequencies of oscillation,
indicating that it is not direct coupling between individuals but the indirect

coupling of the day-night light cycle that causes the synchrony.

Hillary and Bees (2004a) considered the effect of indirect coupling on the
plankton lattice by formulating the dynamics in terms of a drive-response
system, where the usual NPZ system is driven by either a Rossler oscillator or a
slightly different NPZ system. These two different forcings represent the cases
of driving by an abstract external force unrelated to the NPZ dynamics, such as
weather, or driving by an independent influence acting on similar time scales,
respectively. Again, the strength of the driving force was varied and the critical
coupling required for synchrony calculated. Their results indicated that the
different time-scales on which the driving force acted influenced the strength of
coupling required for homogeneous dynamics, with a driving force with higher

frequency able to synchronise the populations for a smaller coupling strength.

Finally, the emergent structure in a plankton metapopulation could be in-
fluenced by a nomadic higher predator, as suggested by Ydenberg (1987) for
terrestrial species. Malchow et al. (2000) explored this possibility by coupling
a plankton biomass model to a rule-based fish dynamics model. Schools of fish
were able to alter their position in the simulation based on feeding preferences
and rules of movement. Spatially patchy dynamics were found to result with

some evidence of clustering.

The work described here has demonstrated the applicability of synchronisation

theory to the study of spatial patterns in plankton distributions by viewing a region

of ocean in an Eulerian sense as an ensemble of interacting plankton populations.

This approach is analogous to the way in which modellers simulate ocean biogeo-

chemistry, so that synchronisation theory has the potential to yield results on the

emergent spatial organisation of plankton seen in these simulations and in the ocean.

So far, there is some indication of the influence of a number of factors, including

the strength and geometry of interaction, the number of populations comprising the

ensemble and the dynamic properties of the individual populations, on the ability
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of such a simulation to manifest synchronised dynamics. There is also some sug-
gestion that the synchronisation phenomena seen in terrestrial population dynamics
(as described in Section 1.2.5), such as phase-synchrony and the breaking down of
the ensemble into synchronised clusters, may carry over to oceanic studies, where
the complicated interaction between populations caused by the diffusive and advec-
tive properties of the physical flow provide a new challenge for the application of
synchronisation theory to spatiotemporal population dynamics. Further work is re-
quired to determine the relative importance of these factors and their consequences

for patterns of patchiness in plankton in the ocean.

1.3 Aims and outline

By applying the methods of synchronisation theory to a region of ocean modelled
as an interacting lattice of plankton populations, this study aims to address the

following principal questions.

e What determines the ability of a matrix of interacting oscillatory plankton

populations to exhibit synchronised population dynamics?

e What are the consequences for biophysical modelling studies of plankton patch-

iness?

e Ultimately, how useful can the methods of metapopulation dynamics and syn-
chronisation theory be in the study of spatial patterns of plankton patchiness

in the ocean?

Chapter 2 begins, for mathematical simplicity, with the case of identically rep-
resented populations. We carry out a thorough investigation of a number of factors
suggested by the work of Hillary and Bees (2004a,b) to impact upon the ability
of the plankton population ensemble to exhibit synchronised dynamics. We deter-
mine the influence of (i) the number of populations comprising the ensemble, (ii)
the biological model used to represent the dynamics of the individual plankton pop-

ulations and (iii) the biological model parameters. Population are coupled by a
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simple nearest-neighbour coupling term representing mixing and stirring between
populations at sub-grid-cell scales.

In Chaper 3 we improve the realism of the simulation, allowing spatial variation
in the population dynamics by considering a lattice of non-identical populations.
At the same time, we extend the approach from the 1-dimensional chain considered
in Hillary and Bees (2004a,b) to the oceanographically more relevant case of a 2-
dimensional lattice of populations. The biological model used for each population
is the same but spatial variation is introduced by applying a small mismatch to
the accompanying biological parameters. It will be seen that this introduces a rich
array of synchronisation effects such as clustering and frequency locking. We inves-
tigate the impact of the strength of interaction between populations, the number of
populations comprising the ensemble and the spatial resolution of the simulation.

Continuing with non-identical oscillators, Chapter 4 will consider the impact
of advection of populations on the emergent spatial properties seen in previous
studies, investigating in particular the robustness of the results of Chapter 3 to
the more realistic representation of the effects of physical flow on the populations.
This moves the study firmly away from analogies with terrestrial metapopulation
studies, providing an initial look at how the synchronous properties of the plankton
metapopulation might be modified by the stirring action of the flow acting at scales
larger than the individual populations.

In Chapter 5 we summarise the results on synchronisation in a lattice of plank-
ton populations and discuss the impact of these results on biophysical modelling
studies. We draw conclusions about what synchronisation theory can tell us about
emergent spatial structure both in simulations and in oceanic plankton distributions
and attempt to answer the question of how useful synchronisation theory can be in
the study of plankton patchiness, as well as discussing future directions for research

motivated by the findings and limitations of this study.
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Chapter 2

Identical Oscillators

2.1 Introduction

In this chapter, we carry out an initial investigation into the synchronous properties
that may emerge in biophysical modelling of the ocean, and the role of some of the
modelling parameters involved. !

As described in the previous chapter, a typical biophysical model may be thought
of as an ensemble of interacting plankton populations, so that the methods and
results of synchronisation theory are directly applicable. The biological dynamics
are typically represented by a plankton ecosystem model common to all grid-cells
of a spatial simulation. A wide range of models exists, reflecting the variety of
ocean regions and modelling aims that have been the concerns of different studies
(Totterdell, 1993). It has not generally been considered what impact the choice of
grid-cell ecosystem model, from the many developed in the literature, might have
upon the results of biophysical modelling. This chapter therefore aims to address
the following question: for oceanographic modelling, what impact does the choice of
biological representation at grid-cell level, and the number of grid-cells used, have
upon the dynamic features of the full coupled biophysical system?

Specifically, we will consider a chain of n grid-cells with a nearest-neighbour cou-
pling (with no-flux boundary conditions) designed to approximate mixing processes

between adjacent grid-cells. This mixing is a proxy for the effectively diffusive effects

!The results presented in this chapter have been published in Guirey et al. (2007).
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of flow at scales smaller than the grid-cell.

The biology within each grid-cell is identically represented by a plankton ecosys-
tem model. We consider three different plankton models, all of which are typical
of those used in the literature to represent upper-ocean biological processes. The
models, which will be introduced in Section 2.2.1, all represent plankton population
dynamics but differ in terms of state variables and functional forms. Within this
framework, by varying the strength of the flux between grid-cells we will establish
the strength of coupling required for the system to exhibit synchronised (spatially
homogeneous) dynamics as a function of the choice of (i) biological model, (ii) biolog-
ical model parameter values, and (iii) the number of grid-cells forming the ensemble.
As the coupling is increased from zero, the strength of interaction at which emergent
structure becomes stably synchronised is referred to as the critical coupling.

It is necessary in this initial chapter to consider the simplest possible case; later
chapters will build upon its results. Namely, we consider the case of identical oscil-
lators: the biology within each grid-cell of the ensemble is represented by the same
system of ordinary differential equations and accompanying set of parameter values.
Realistically, we would expect spatial and temporal variation in plankton dynamics;
for example, phytoplankton growth rates may vary spatially as a result of differences
in temperature or species composition. We incorporate such variation in Chapter 3.

Ecosystem models may exhibit different types of dynamical behaviour, from
steady state to limit cycles to chaos, depending upon the functional forms used to
represent biological processes and the choice of parameter values (e.g. Edwards and
Brindley, 1999). This change in dynamical behaviour is also observed in empirical
plankton studies (Fussman et al., 2000). Work has shown that a coupled system
of identical oscillators, such as that being considered here, will always synchronise
stably regardless of coupling strength if the individual oscillators exhibit steady
state or limit cycle solutions (Pikovsky et al., 2001); this is a property that vanishes
immediately if we consider nonidentical oscillators (representing spatial variation),
because the mismatch in representation of each oscillator introduces a desynchronis-
ing influence that is lacking in the system of identical oscillators. On the other hand,

a system of coupled chaotic oscillators has an inherent desynchronising mechanism
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provided by the exponential divergence of nearby trajectories that is characteristic
of a chaotic system (Strogatz, 1994), even when each oscillator is represented iden-
tically mathematically. Hence, since identical coupled limit-cycle or steady-state
oscillators will always stably synchronise, we only need in this chapter to focus on
regions of model parameter space for which the models exhibit chaotic dynamics.
In particular, we determine the ability of the coupled system to synchronise for the
“most chaotic” (i.e. nearby trajectories separate most rapidly) region of parameter
space. Behaviour at this most extreme point will then bound the behaviour for
the whole of parameter space, as will be explained in Section 2.2.4. The effects of
the noise and spatial variation in parameters that would, in the real-world case, be
inherent in the system, are not directly studied in this chapter. However, Chapter
3 will build on these results by considering the more biologically realistic scenario

of non-identically represented patches.

2.2 Methods

2.2.1 The biological models

To reduce typical models of the global ocean carbon cycle to the simplest possi-
ble case, we consider an ensemble of effectively diffusively-coupled grid-cells. The
plankton population dynamics within each grid-cell, which may be thought of as
a region of ocean of, as yet, unspecified length-scale, is represented by a plankton
ecosystem model typical of those used in the literature. In particular, we have a
chain of n coupled grid-cells, with the plankton population within each grid-cell
evolving according to
vi=F(vi) +ev-q

where v = (vi_1, vi, Viz1) and each population v; = (s1,52,...,S,,) consists of m
species s; at position ¢ along the chain. The scalar € in units of d~' determines the

strength of coupling between grid-cells, and the vector

(1,-2,1)  ieln—1]
(1,-1,0) i=n
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specifies the coupling configuration, i.e. nearest-neighbour coupling with no-flux
boundary conditions.

The function F is the system of differential equations representing the biological
evolution of each patch in isolation. The basic biological models selected for this
study were first formulated by Steele and Henderson (1981) and Hastings and Pow-
ell (1991) (hereafter referred to as SH81 and HP91, respectively), and are typical of
those used in biophysical modelling studies of the pelagic ocean (Totterdell, 1993).
The models were selected as examples that use different sets of state variables (i.e.
differing in their choice of which components of the ecosystem to explicitly repre-
sent) and different functional forms for the trophic interactions, relecting different
assumptions made about the modelled environment. A brief description of the mod-
els will be given here, but fuller details may be found in the above references and
in Edwards and Brindley (1996) and Edwards (2001) for SH81 and Caswell and
Neubert (1998) for HP91.

Both SH81 and HP91 are zero-dimensional models representing, by a system of
autonomous ordinary differential equations, the processes occurring in a physically
homogeneous upper ocean layer. SH81 (equations 2.1-2.3, with parameters given in
Table 1), however, contains an implicit, biologically-inactive (P = 0) deeper layer
with a fixed nutrient content, which acts by way of vertical mixing as a nutrient
source for the upper layer biology.

SH81 models nutrient (N), phytoplankton (P) and zooplankton (Z) concentra-

tions as follows:

dN aN CBP?
— = - P+rP
dt (e + N)(b+ cP) r +u2+P2

= —uptake + respiration + Z excretion + Z predators excretion 4+ mixing,

Z +~dZ + k(Ny — N) (2.1)

dpP aN (P?
— = P—rP— >
dt (e+ N)(b+ cP) p? + P?

= uptake — respiration — grazing by Z — sinking — mixing,

Z —sP— kP (2.2)

dz CaP?

26



= growth due to grazing on P — higher predation.

Figure 2.1 shows a schematic of the model, indicating the flow of matter between
components of the ecosystem.

The change in the autotrophic phytoplankton concentration is modelled as the
sum of their growth, co-limited by nutrients and light (represented as a self-shading
term), and losses due to respiration, mixing and sinking out of the upper layer, and
grazing by zooplankton. Of the material grazed by zooplankton, a fixed fraction « is
assimilated, contributing to zooplankton growth. A parameterisation of predation
by higher predators closes the food chain from above. A fixed proportion of the
material grazed by zooplankton and higher predators is excreted back to the nutrient
pool. The zooplankton are assumed to possess enough mobility to remain within
the mixed layer.

To investigate the effect of a simple change of functional form, leaving choice of
state variables and general structure intact, a variation on the above model with
alternative nutrient uptake term mlj will also be considered and is hereafter
referred to as SH81b. Here, we have a scenario where self-shading by the phyto-
plankton is assumed to be a negligible component of the light limitation.

The model HP91 was not specifically formulated to represent a plankton ecosys-
tem, rather as a generic three-species food chain, but Caswell and Neubert (1998)
and Srokosz et al. (2003) applied the model to a plankton ecosystem by taking the

three trophic levels to represent phytoplankton, herbivorous zooplankton (H) and

carnivorous zooplankton (C') components:

dP P o PH
= RP(1-=—)— 24
dt R < K) by + P (24)

= logistic growth — grazing by H,

dH cqauPH ayHC
— = — —diH 2.
dt bh+P b+ H d (2:5)

= growth due to grazing on P — grazing by C' — natural mortality,

dC CQCLQHC
—_ 2 2.
dt T . (26)



= growth due to grazing on H — higher predation,

with parameter values given in Table 1. The model schematic is shown in Figure
2.2.

In HP91, carnivores are explicitly modelled and nutrient concentrations are not;
that is, nutrients are taken to be non-limiting to phytoplankton growth. The model
is somewhat simpler than SH81 in that recycling processes are not considered, so
that the fundamental flow structure differs. This chain-like structure is crudely rep-
resentative of a more productive region, so that the absence of a nutrient compart-
ment and the simple structure are consistent. Phytoplankton population increases
according to logistic growth, limited by a carrying capacity, and decreases due to
grazing by herbivores, which are in turn grazed by carnivores. At each trophic level,
a fixed proportion of grazed material is assimilated and the rest lost from the system.
Herbivores and carnivores are each subject to a linear natural mortality term.

SH81/SH81b and HP91 represent different interpretations of the planktonic
ecosystem: SH81 and SH81b are built on the assumption of bottom-up control;
HP91 is built on the assumption of top-down control.

Historically, plankton modellers have settled upon a variety of functional forms
to describe the interactions between the components of the ecosystem, and the above
models are no exception. In order to make the models as directly comparable as
possible, we can relate the parameters from the different functional forms in such a
way that a similar range of values for that process can be used:

The model HP91 contains functions for growth, grazing and mortality, of which
only the latter is of an equivalent form in SH81. In SH81, autotrophic growth is taken
to be co-limited by nutrients, in the Michaelis-Menten form, and light availability.
Growth takes maximum value ¢ at P = 0 in the limit as IV tends to infinity. HP91
assumes logistic growth, limited by a carrying capacity. This has maximum value
R, again at P = 0. Taking R = § we therefore set the models to have the same
intrinsic maximum growth rate.

Taking nutrients to be non-limiting in the growth rate term of HP91, so that
growth is limited by self-shading by the phytoplankton themselves, then the term
R (1 — %) may be equated with the self-shading component of the SH81 growth
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rate term. Since we have R = ¢, this leads us to compare 1 — % and H%' We may

then equate half-saturation constants of these two forms: max(1 — £) = 1, half of

which is attained at P = % Similarly, max (H%) = 1, half of which is attained at

_ 2
=2

P = g Equating these two, we get K

Grazing terms, although different, are formulated in both models in terms of the
half-saturation constant (x4 and b;), the maximum grazing rate (u and b;¢ and a;)
and the assimilation coefficient (« and ¢;), making each of these parameters directly
relatable.

Table 2.1 summarises the above discussion. Reported parameter ranges are as
collated by Edwards and Brindley (1996) in their study of SHS8I.

Temporal dynamics for each model are obtained by integrating the above equa-
tions forward in time using a forth-order Runge-Kutta scheme implemented by code
written in the C programming language. The working of the code was verified by
comparing with (i) integrations carried out using the ODE solvers available in the
programming package MATLAB, (ii) results obtained by previous studies on the
ecosystem models (see above references) and (iii) integrations carried out using the

ODE package DsTool (see http//:www.mathlab.cornell.edu/dyn_sys/dstool/dstool.html).

2.2.2 Single grid-cell dynamics

Both models, under variation of parameter values within the reported ranges (see
Table 2.1), are known to exhibit steady state, limit cycle and chaotic dynamics. It is
necessary to quantify this behaviour because, as explained below, the behaviour of
the individual grid-cell, as described by the biological model, impacts upon the full
coupled system. An indication of the behaviour may be obtained by calculating the
Lyapunov characteristic exponent, which measures the exponential rate of separation
of nearby trajectories of the system in phase space. An m-dimensional dynamical
system will have m Lyapunov exponents, quantifying the separation rate in all m
directions of movement, but it is the largest Lyapunov exponent that indicates the
kind of dynamics to be expected. A positive largest Lyapunov exponent indicates
that there is at least one direction in which exponential separation rather than

convergence of nearby trajectories in phase space can occur, leading to chaos in
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a dynamical system (Strogatz, 1994). If the largest Lyapunov exponent is zero
or negative then the system will exhibit limit cycles or steady states, respectively.
We calculate a finite-time approximation of the largest Lyapunov exponent A of a
dynamical system using the following method.

The system of differential equations representing a single plankton population is
integrated until transients have died and we are ‘on’ the attractor. The trajectory
(u) on the attractor will be a ‘reference’ trajectory. We then use a ‘test’ trajectory
(w), which at time ¢, is set a small distance dy from u, to examine the rate at which
nearby trajectories diverge.

If S;_1 denotes the amount by which the original perturbation has been ‘stretched’

at iteration step ¢ — 1, then the exponential rate of divergence \; is given by
S, 1= eli-1ti-1

Let dS denote the stretch experienced over the next time step of integration of the
ecosystem model. Then

S, = eliti — 6)\i71ti71d5’7

and, taking logs of both sides and dividing by ¢;, we obtain

)\i—lti—l + IOg dS

)\7; —
t;

as a finite-time estimate of the Lyapunov exponent A, so that A can be calculated
iteratively.

In the case of chaotic behaviour, the distance between the two trajectories quickly
becomes too large for the definition of A (as the growth of the distance between
two initially close trajectories) to be valid. To avoid this problem, we rescale the
distance to u at each time-step, preserving the direction of the vector but restoring

the distance between u and w to d,

w—u
as

The process of iteration and rescaling is repeated until A has converged. A\ may be

Wnhnew — U +

calculated for a range for values of a specified biological model parameter, allowing
the occurrence of chaos or limit cycles to be tracked within a biologically acceptable

range of values.
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The above Lyapunov exponent calculations are carried out using code written in
C. The method and its implementation were checked by comparing with known sys-
tems in the literature, in particular the Lorenz attractor, the Lyapunov exponents
of which are given in Strogatz (1994) and also the previous work on SH81 by Hillary
and Bees (2004a). The Lyapunov exponents calculations reported by Hillary and
Bees (2004a) were found to contain some errors, which were subsequently shown to
result from a minor typing error in the computer code used to make these calcu-
lations. Unfortunately, attempts to reconcile their calculations with the Lyapunov
exponent calculations made for the current project, before the error and its source
were identified, set this project behind by about six months.

The dynamics of the full coupled system of a chain of n plankton populations

are obtained by integrating in time using a forth-order Runge-Kutta scheme.

2.2.3 Ensemble dynamics

The coupled system is synchronised if the dynamics resides on the region of phase

space contained within the synchronisation manifold

Mg =A{v, v, ..., vp|01(t) = va(t) = ... = v,(8) }.

On perturbation from synchrony, the evolution of the coupled ensemble of grid-cells
may return to synchrony (become spatially homogeneous) or remain unsynchronised
(spatially patchy), depending on the dynamics of the individual grid-cells and the
strength of coupling between them.

By analogy to the real world, where a plankton “patch” is a region of sea of
homogeneous plankton biomass, we may consider a model plankton “patch” to be
a synchronised subset of grid-cells Cy with 1 < k < n. The system considered here
- that of an ensemble of identically represented oscillators - is capable of exhibiting
only two system-level stable states as the coupling strength is increased: complete
asynchrony (k = 1) or complete synchrony (k = n). If the coupling strength is
sufficient for synchrony then as soon as two adjacent oscillators become synchronised
they are, since they are identically represented, locked into that state and thereafter
act as one oscillator, leading eventually to synchrony of all oscillators. Alternative
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set-ups, such as ensembles of non-identical oscillators (as explored in Chapter 3),
allow stable dynamics with 1 < k£ < n, a phenomenon referred to as clustering
(Belykh et al., 2003), but for the system considered in this chapter we are only
concerned with the fully synchronised state.

The stability of this fully synchronised state is established by calculating the
largest normal (or transverse) Lyapunov exponent A; that is, the rate of growth of
perturbations away from synchrony in the direction transverse to the synchronisation
manifold.

We have a chain of n coupled plankton grid-cells vi,va,..., v, and wish to

determine the rate of expansion of a perturbation away from the synchronous state

Vi1 = Vg = -+ - = vy, which resides on M. To enable the separation of dynamics on
and normal to M, a change of variables from the set vy, va, ..., vy of grid-cells to an
orthogonal set 7y, 7o, ..., m, is applied such that 7o = 73 = --- = 7, = 0 when the

populations are synchronised, and m; represents the dynamics on the synchronous

attractor; for example, as follows,

™ 1 eee onn 1 Vi
o 1 eer enn 1 —(n—1) Vo
1
= 1 1 —(n—2) 0
T 1 -1 --- 0 Vi

As with the calculation of Lyapunov exponents described above, a single uncou-
pled oscillator is initially integrated until transient behaviour dies and dynamics lie
on the synchronisation manifold, with values mg. For a reference trajectory ueM,,
we set

u = (m,0,--,0).

Since M is invariant, the reference trajectory u remains within Mg for all time.
A test trajectory w is initiated by adding a small initial perturbation away from

synchrony of magnitude dy (O(107°)) to trajectory u so that
d d

w =u+ (0, 0 s 0
( n—1 n—1

),

i.e. a perturbation normal to M,.
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Both trajectories are integrated forward for a few time-steps and the extension
dS, from synchrony normal to the synchronisation manifold relative to the original

perturbation dj is given by

ss, V0w
do

where u; and v;j are the jth components of the reference and test trajectories at

time t, respectively. The finite-time transverse Lyapunov exponent at iteration step

1 is then
Aij_1ti1 +log(dSL)

Ai = 5
t;

measuring the stretch in the direction transverse to synchrony of the initial pertur-
bation with time.

The process is repeated until convergence of A is achieved. However, as with the
calculation of A\ described above, in the case of chaotic orbits the separation quickly
becomes too large for us to be considering nearby trajectories. Again, a rescaling
must be applied to avoid this problem.

If A < 0 then the synchronous state is stable since perturbations from synchrony
will decay. This is a threshold phenomenon; it depends upon the magnitude of
coupling and there exists a critical strength of coupling above which synchrony will
re-establish itself after perturbation. In other words, there exists critical coupling

e = ¢. such that A(e.) = 0.

2.2.4 Bounding the critical coupling in parameter space

The critical coupling strength e, required for stable synchrony of a system of generic
nearest-neighbour coupled identical oscillators was shown by Fujisaka and Yamada
(1983) to be directly proportional to the largest Lyapunov exponent A of the dy-
namics of an individual isolated oscillator. Applying this to the plankton ecosystem
models considered here, therefore, in order to place an upper bound on ¢, for each
model, it is required to find where A\ attains its maximum within the reported
range of biological parameters. Since A = 0 in non-chaotic regions of parameter
space, ¢, = 0, and therefore a coupled system of non-chaotic identical oscillators

will always stably synchronise. We therefore only need consider chaotic regions of
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parameter space, identified by A > 0, and look for the “most chaotic” point, i.e.
where \ attains its maximum.

An iterative method is used to approximate of the maximum value of A\ as
a function of the biological model parameters. Each biological model has a set
Q = {ay,a9,...,a;} of | parameters. Since A = 0 for steady-state and limit cycle
dynamics, we need only consider chaotic regions. We initiate the algorithm at a
point a(0) = (a1(0), az(0),...,a;(0)) € 2 for which the model exhibits chaos. Such
a point is known to exist for SH81 from the work of Edwards and Brindley (1999).
For HP91 chaotic regions are clearly demonstrated in the original paper.

For each parameter a;, we have a biologically-plausible range [a;, . ,a;...] (see
Table 1), giving an [-dimensional hypercube bounded by the a;, . and a;, .., for
Jj =1,...,1, containing the initial point a(0). For each step i of the iteration, and
for each parameter a; of the set in turn, A is calculated with parameters a (i), k < j,
and ax(i — 1), k > j, fixed and parameter a; varied across the range [a; . ,a;.. ].
The value of a;(i) is then set as the value within [a;_, ,a;...] giving maximum .
This is repeated for all parameters a;, giving a new parameter set a(i). If inspection

of these “slices” across parameter space indicates that

max
a

] A(ay,as(i), az(i), ..., a(i))
A(ay(7), ag, az(i), ..., a(i))

1€ [almin »@lmax

~ maXx
azelaz, . a2,

A(ay (i), aq(i), ag(i),. .., a)

X~ Imax
a€|ay, ;o 0lmax

to within a specified level of accuracy then the parameter values giving the approx-
imate maximum A are judged to have been found (see Figure 2.3 and Table 1).
Otherwise, the process is repeated for step 7 + 1.

It is possible that the approximate method detailed here may miss the chaotic
apex of a model. For example, a disconnected region of chaotic parameter space
may exist that does not intersect with the parameter “slices” through the initial
chaotic point. No such isolated chaotic regions were found during investigation of
the models using the dynamical systems package AUTO. An exhaustive search of
the [-dimensional parameter space of the models considered here would be extremely

computationally expensive. The method is therefore considered a good necessary
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approximation for the most chaotic point within biologically acceptable bounds. Of

course, the global apex for the model may lie outside these bounds.

2.3 Results

2.3.1 Single grid-cell

The iterative method described above was used to find the region of parameter space
giving the maximum largest Lyapunov exponent A for each model. As an example,
Figure 2.3 shows how A varies as a function of herbivorous zooplankton growth
efficiency across ‘slices’ of parameter space for all three models; all other parameters
are kept constant at the established A apex. Because A > 0 only where dynamics are
chaotic, Figure 2.3 shows calculations only across the chaotic regions of parameter
space. However, since this a necessarily finite-time calculated approximation of an
quantity defined for infinite-time, the exponent does not quite go to 0 in the limit-
cycle and steady-state regions. Chaotic ranges established in this way for all other
model parameters are included in Table 2.1. The global chaotic apex for the model
HPI1 lies outside but close to the suggested parameter ranges. For this reason, we
consider two apices for this model: the points in parameter space giving maximum
A inside and outside suggested ranges respectively.

Amax (denoted by dotted lines in Figure 2.3) is approximately 0.0063 d~! and 0.01
d~! for models SH81 and SH81b respectively. Constrained to suggested parameter
ranges, HP91 has apex 0.011 d!; \.x reaches 0.013 d~! if parameters are allowed to
vary beyond these ranges. Model dynamics at these points in parameter space, both
as a time series and in phase space, are shown in Figure 2.4 and the corresponding
parameter values are given in Table 2.2. Figure 2.4 shows the ecosystem components
to oscillate with a roughly 50 day period The particular period of oscillation is not
important in the context of this investigation, for which we have not attempted to
model the seasonal cycle or tune the model to a particular ocean region. Although
it may impact quantitatively upon the results, the qualitative results relating to the

ability of a system of plankton populations to stably synchronise are unchanged.
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2.3.2 Two-patch stability

Figure 2.5 shows the calculated transverse Lyapunov exponent, A, for a two grid-cell
coupled system as a function of varying strength of coupling € for each model. The
coupling strength at which A(e€) changes from positive (perturbations from synchrony
grow) to negative (such perturbations decay) is the critical coupling strength e,
required for stable synchrony. &, is seen to equal 0.0031 d=!, 0.0051 d=!, 0.0061
d=! and 0.0056 d~! for models SH81, SH81b, HP91 (outside) and HP91 (inside),
respectively. Since theory (Fujisaka and Yamada, 1983) shows that ¢, is directly
proportional to A for this type of coupling, and we have established A.. within
biologically-acceptable parameter space, €.(Amax) gives an upper bound on e, for
each model: a coupling strength of € > e.(Amax) is sufficient to stably synchronise
the two-grid-cell coupled system for any set of biological parameter values.

As an example, using the model SH81, Figure 2.6 shows how system dynamics
differ below and above this ‘blowout bifurcation’ (as the parameter € moves below
the critical point, the stability of the synchronous state is ‘blown out’). We initiate
the integration with the two coupled patches out of synchrony with one another, so
that |vqy — va| = 0 > 0 where § is a small perturbation from synchrony. In Figure
2.6, the evolution of this perturbation, for the phytoplankton components P; and P,
of the two patches, is plotted with time for a coupling strength of ¢ < &, (top) and
e > ¢, (bottom). It is seen that a coupling strength of 0.0025 d~!, which is below &,
is insufficient to restore synchrony, so that the system starts to display heterogeneous
dynamics. A coupling of 0.0035 d~! is strong enough to draw the oscillators back
into synchrony. These two illustrative values of ¢ = 0.0025 and ¢ = 0.0035 have
been chosen sufficiently distant from the critical coupling of . = 0.0031 to give
clear examples; for ¢ just less than ., dynamics may remain near to synchrony for
long periods of time although the state is unstable and, conversely, dynamics may
take a very long time to reach synchrony or may intermittently burst away for € just
greater than e..

The results in Figure 2.5 fit well with the predictions of Fujisaka and Yamada
(1983). For a two-grid-cell system, the theory states that . = 5. Using calculated A,
this gives predicted critical coupling strengths of 0.0032 d—t, 0.0048 d=1, 0.0065 d~!
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and 0.0055 d™! for models SH81, SH81b, HP91 (outside) and HP91 (inside) respec-
tively. For comparison, the directly calculated results are 0.0031 d=*, 0.0051 d—!,
0.0061 d=! and 0.0056 d~!, respectively. Figure 2.7 gives an example of how well the
empirical and theoretical results match for a cross section through parameter space;
for model SH81, model-calculated e, is plotted along with % for the phytoplankton
growth rate parameter a varied across the chaotic window of parameter space, keep-
ing all other parameters at A apex values. This clearly illustrates the dependence of
the critical coupling strength upon the parameter values, and therefore dynamics,

of the isolated model in an individual grid-cell.

2.3.3 n-patch stability

Next considered was a chain of n coupled grid-cells, for n = 2,...,10, with nearest-
neighbour coupling and the biology in each patch represented by the SH81 model. &,
was established as a function of n: first, by direct computation of A(e) and, second,
by using the calculated values of A\, to apply the theory of Fujisaka and Yamada
(1983).

Figure 2.9 shows the results of directly computing A as a function of £ for example
cases of n = 5 and n = 10. The results of computed and theoretically estimated
ec(n) are plotted in Figure 2.8. Tt is seen that the critical coupling strength increases
with the length of the chain, so that a greater strength of mixing between patches
is needed to synchronise a chain with more patches. Additionally, we see that
the theory of Fujisaka and Yamada (1983), which states that the critical coupling
strength is related to chain length and largest Lyapunov exponent A\ of the single-

patch biological model as

A

: 2 (km
ming—q, . n,—1 (4sm (2n))

(2.7)

Ee =

agrees well with the computed values. The slight discrepancies between the two
sets of results result from the numerical error involved in calculating a finite-time
approximation of both Lyapunov exponents and normal Lyapunov exponents.

It is evident that a prediction of €. for a system of this type with any number of

grid-cells may be inferred from knowledge of the Lyapunov exponent of the isolated
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biological model in any one grid-cell.
Although n-patch results have been presented here for a chain of patches each
represented by the SH81 model, similar results are obtained with the other biological

models considered.

2.4 Discussion

To address the question of how grid-cell biology and the number of grid-cells impact
upon the behaviour of coupled biophysical simulations, we applied the methods of
synchronisation theory to an ensemble of identically-represented interacting plank-
ton populations. Using several different typical plankton ecosystem models to rep-
resent the evolution of each patch, and varying the number of patches comprising
the ensemble, we calculated the critical strength of patch-to-patch coupling required
for stably synchronous dynamics to occur. The study focused on chaotic regions of
parameter space since identical steady-state and limit cycle oscillators always stably

synchronise.

2.4.1 Ciritical coupling strength for synchrony

For a chain of n coupled plankton grid-cells, each represented by the same biological
model, the strength of coupling €. required for stably homogeneous (synchronised)
dynamics to occur is found to vary as a function of biological model, model param-
eters and n, the latter bearing out the theory of Fujisaka and Yamada (1983) as
expressed in Equation 2.7.

We see that the critical coupling strength varies linearly with A, implying that
the use of “more chaotic” biological dynamics at grid-cell level reduces the ability
of the chain to exhibit homogeneous dynamics. More significantly, €. increases with
n. In other words, a stronger mixing between grid-cells is required to synchronise a
longer chain.

The relationship between e. and n can be simplified as follows. As n becomes

T

, 5 becomes small and, therefore,

large

Ee R — (2.8)



(because sin(z) & x for small z) so that the critical coupling increases as n?.

This has implications for modelling studies. Suppose we wish to model the
dynamics of a particular transect of ocean of length L, perhaps to compare the
results with observed data. For the purposes of simulation, the transect is divided
into a number of grid-cells, depending on various factors such as available computing
power and the spatial resolution of the observed data. A plankton ecosystem model
is chosen to describe the biology in each grid-cell. To simulate the physical flow,
we impose a fixed, effectively diffusive, coupling of strength ¢ between grid-cells.
Since &, ’\ﬂ—’f, we know that, for a fixed ¢ and fixed biological model, there exists
a corresponding critical number of grid-cells n. such that the use of a number of
grid-cells n > n, to divide up the transect L will lead to unsynchronised dynamics.
Therefore, the spatial resolution chosen for the simulation of a particular region of
ocean could drastically alter the results in a discontinuous manner, as it sets the
number of grid-cells used.

As explained, this threshold phenomenon occurs only when the individual grid-
cell dynamics are chaotic. That an ensemble of identical chaotic oscillators may
have emergent characteristics that bifurcate in this manner is a case against using
chaotic plankton ecosystem models in a system like this to study plankton patch-
iness. Chaotic ecosystem models should be used with caution to guard against
spurious or misleading emergent features. Since the extent of chaotic regions of
parameter space has not been determined for plankton models, this is an impor-
tant result which is worrying in the light of recent findings by Gross et al. (2006)
that chaotic parameter ranges exist generically in food chain models of greater than
three components. For SH81, the parameter space appears to contain only relatively
small chaotic regions, so that that the effect may be of minor concern, whereas HP91
is an example of a model containing interspersed windows of chaotic and periodic
behaviour throughout its parameter space (as illustrated by Caswell and Neubert
(1998) and see also Figure 2.3), which in the context of the results of this study
might make it unsuitable for use in a coupled biophysical model.

More generally, the results illustrate that the choice of biological model at grid-

cell level can have a significant impact at system level. It is noteworthy that SH81b,
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although differing from SHS81 only by a small change of functional form and having
similar parameter values and almost identical structure, exhibits chaos over smaller
sized regions of parameter space yet attains a larger “degree of chaos”, as measured
by a greater Apax (Figure 2.3), which in turn reduces the ability of coupled SH81b
oscillators to synchronise (Figure 2.5). Why the small change in functional form
should make a large difference and whether this is of biological significance is not
known and would, since the models represent distinct biological scenarios, be a
valid line of future enquiry. HP91, despite differing greatly in structure from SHS81,
has a similar \,., and therefore synchronising ability. For all three models, A, and
therefore ., varies greatly across parameter space. We conclude from this that choice

of biological model and parameter set strongly affects the system-level dynamics.

2.4.2 Critical spatial scale for plankton patchiness

In their study of synchronisation in ensembles of plankton populations, Hillary and
Bees (2004a) used the empirical relationship between spatial scale | and effective
diffusivity D(l) (Okubo, 1971) to relate the critical coupling strength €. to an emer-
gent critical length-scale for patchiness in plankton. The observations of Okubo

show that for D(l) in cm? s7! and [ in em
D(1) =~ 0.011*.

Hillary and Bees (2004a) consider a chain of length L consisting of n coupled grid-
cells, giving a grid-cell length-scale A = £. They then equate the diffusive coupling e

with diffusive processes between grid-cells, so that (1) ~ D) where ﬁ approximates
the second order spatial derivative. Using the relationship of Okubo, and taking [

as the patch length-scale this gives

A

—0.85
—_— 24
100 x 1000) X 24 60> 60

£~ 0.01(

for e in d~!.
For their eight-grid-cell system, Hillary and Bees (2004a) found a critical coupling
strength of 0.0075 d~!. Using the relationship above, they equated this with a grid-

cell length-scale of order 10 km, resulting in a critical domain length-scale L. of
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around 100 km at which synchronisation persists. Since with increasing length-scale
the diffusivity according to the Okubo relationship increases and the appropriate
coupling strength decreases, an eight-grid-cell system of length L > L. will have
a diffusivity-related coupling strength ¢ < e, and unsynchronised dynamics will
result. L. therefore represents a upper bound on the scale at which we expect to
see synchronised patches for a fixed number of grid-cells.

However, we have seen in this study that . oc n? and from the above we know
e o< L708n085 5o we have a relationship between the number of grid-cells and the
critical length-scale:

Lc—0.85 o n1.15‘

Hence, as Hillary and Bees (2004a) in fact predict, the critical length-scale found
using this method is a function of the number of grid-cells, and therefore resolution,
of the simulation. As discussed above, the model resolution may be dependent upon
such arbitrary factors as available computing power. Although we can establish a
critical length-scale for a given number of grid-cells to stably synchronise, in many
cases this relationship can therefore tell us little about the scale at which plank-
ton patches should synchronise, because only the number of grid-cells into which a
study region is partitioned, and not the true length-scale, has an effect on whether
synchronisation will occur.

The above discussion depends upon assumptions about the length-scale taken in
the approximation of the effective diffusivity. Since, in the work by Okubo (1971),
the length-scale is arbitrarily set to a value such that a circle of that radius would
contain 95% of the dye material, our patch length-scale A as used here is a natural
choice. However, we expect in the case of synchronisation for information to diffuse
over the full system, so that some may argue for the system length-scale to be L or

an intermediate value. If we set [ = L, we obtain
e~ 0.01n*L70%

so that, upon application of Equation 2.8, the n? terms cancel to give a constant L.
Additionally, care must be taken with our treatment of Equation 2.7, where we

have taken n to be large. For a fixed system length-scale L, increasing n leads to
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decreasing A. The Okubo (1971) paper deals with a closed range of spatial scales
from 30 m to 100 km of spatial scales, so that we may reach a value of A for which

this relationship is not valid.

2.4.3 Impact on biophysical modelling

To illustrate the impact of these results on physical quantities that may be derived
from biophysical models, we examined the effect of synchrony on total primary pro-
duction (TPP), a quantity frequently estimated from such models. For the example
case of a ten-grid-cell chain of SH81 oscillators with parameter values set at the
chaotic apex, we calculated TPP(¢) as the sum of the phytoplankton growth rates
for (i) a coupling strength of ¢ = 0 (representing, for non-identical initial conditions,
the “most asynchronous” state achievable) and (ii) € > e..

TPP(¢) for (i) and (ii) is shown in Figure 2.10. As a function of time, it was
found that synchrony increased and decreased the values of TPP attained at maxima
and minima, respectively - an effect caused by the additive effect of the concurrent
nature of these events in the synchronous case: maximum and minimum TPP were
for (i) 0.84 gC m™3 d~" and 1.03 gC m~3 d~" and for (ii) 0.67 gC m~3 d~' and 1.29
gCm™ d™! (to 2 d.p.). The mean TPP, however, was equal to 0.92 gC m= d™! for
both (i) and (ii).

The results, whilst only qualitative in nature as we are not modelling the sea-
sonal cycle, indicate the need for directing major effort into the understanding of
biophysical models. Otherwise, our confidence in the bulk properties derived from

them will be diminished.
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Figure 2.1: Schematic of the Nutrient-Phytoplankton-Zooplankton model of Steele
and Henderson (1981) with arrows indicating flow of material between ecosystem

components.

Figure 2.2: Schematic of the Phytoplankton-Herbivore-Carnivore model of Hast-
ings and Powell (1991) with arrows indicating flow of material between ecosystem

components.
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Figure 2.3: Parameter space. Largest Lyapunov exponent \ in d~! calculated
across the chaotic windows for herbivorous zooplankton growth efficiency parameters
a (SH81 in black; SH81b in red) and ¢; (HP91). All other parameters are held at
those giving maximum largest Lyapunov exponent A. Dotted lines indicate the
parameter values giving A,.x. The calculations are shown only across the chaotic

regions of parameter space, since A = 0 for equilibrium and limit cycle regions.
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Figure 2.4: Model dynamics. Phase space attractors and temporal evolution in
days of state variables in units of gC m™2 d~! for SH81 (left), SH81b (middle) and
HPI1 (right). Parameter values are set to those giving maximum largest Lyapunov
exponent A in d~!. Transient dynamics not shown. Key: blue - nutrients, green -

phytoplankton, black - herbivorous zooplankton, red - carnivorous zooplankton.
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Figure 2.5: Critical coupling strength. Calculated largest normal Lyapunov
exponent A in d=! as a function of coupling strength ¢ in d=! for models SH81
(black), SH81b (red), HPI1 restricted to suggested parameter ranges (blue) and
HPI1 not restricted to suggested parameter ranges (green). Model parameters are
set at values giving maximum largest Lyapunov exponent A in d=!. The critical

coupling strength . is indicated by the value of € giving A(e) = 0.
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Figure 2.6: Two-patch dynamics. Time evolution in days of the difference be-
tween phytoplankton components P, and P, in gC m ™2 plotted for coupling strength
e =0.0025d7! (< &) and € = 0.0035 d~* (> &.) in the top and bottom panels re-
spectively. Model used is SH81 and parameters are set at values giving maximum

largest Lyapunov exponent .
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Figure 2.7: Comparison with theory of Fujisaka and Yamada (1983). Critical
coupling strength e, in d™! plotted across chaotic window for model SH81 phyto-
plankton growth parameter a in m™' d=!. Solid line shows directly calculated &,
values and dotted line shows predicted €. according to the theory of Fujisaka and

Yamada (1983), i.e. half largest Lypaunov exponent .
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Figure 2.8: n-patch chain. Critical coupling strength ¢, in d™! as a function
of number of grid-cells n. Plankton dynamics in each grid-cell are represented by
SH81 model and the chain has fixed-ends. Crosses indicate A in d=! as predicted by
Fujisaka and Yamada (1983). Circles indicate experimental results for 2 to 10-patch
chains.
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Figure 2.9: Critical coupling strength. Calculated largest normal Lyapunov ex-
ponent A in d! as a function of coupling strength & in d~* for a 5-patch (dotted) and
10-patch chain (solid) of NPZ oscillators represented by SH81 (see text). Biological
model parameters are set at values giving maximum largest Lyapunov exponent .

The critical coupling strength for stable synchrony is indicated by A(e) = 0.
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Figure 2.10: Bulk properties. Time evolution in days of total primary production
(TPP) in gC m™ d~! for a ten grid-cell chain of SH81 oscillators for coupling
strength ¢ = 0 d™! (red) and € > &, (blue).
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Parameter Symbol Reported range Chaotic window Units
SHS81 HP91 SHS81 SHS81b HP9I1

P growth parameter a 0.1-0.6 0.198-0.201 0.199-0.201 m-d!
P growth rate R=7 0.1-06 0.7-3.75 d—1
Light attenuation by water b 0.04-0.2 0.199-0.203 0.1995-0.2005 m~!
Self-shading by P c 0.3-1.2 0.37-0.43 m? gC~!
P carrying capacity K= %b 0.04-0.2 0.28-0.32 gCm™!
Herbivorous Z mortality d 0.015-0.15 0.1418-0.1421 0.1401-0.1402 d—!

dy 0.015-0.15 0.09-0.125 d~!
Carnivorous Z mortality da 0.015-0.15 0-0.05 d—t
N half-saturation constant e 0.02-0.15 0.027-0.04 0.0295-0.0305 gC m™3
Exchange rate with lower layer k 0.0008-0.13 0.0499-0.0506 0.0498-0.0502 d—!
P respiration r 0.05-0.15 0.143-0.157 0.148-0.153 d—1
P sinking S 0.032-0.08 0.038-0.043 0.039-0.041 d—t
Lower layer N concentration Ny 0.1-2.0 0.998-1.01 0.998-1.002 gCm™3
Herbivorous Z assimilation efficiency  « 0.2-0.75 0.2498-0.2502 0.2499-0.2501 0.39.051

c .39-0.
Carnivorous Z growth efficiency c; 0.2-0.75 0.4-0.65
7 excretion fraction I} 0.25-0.8 0.325-0.335 0.328-0.332
Remineralisation of Z excretion y 0.5-0.9 0.49-0.54 0.495-0.507
Herbivorous Z grazing rate ¢ 0.6-1.4 0.5995-0.6003 0.5998-0.6002 d—1

a1 0.6-1.4 0.48-0.72 d*
Carnivorous 7Z grazing rate as 0.6-1.4 0.3-0.75 d—1
Herbivorous Z grazing half-sat. const. p 0.02-0.1 0.0347-0.0351 0.0349-0.0351 gCm™3

by 0.02-0.1 0.08-0.11 gCm™3
Carnivorous Z grazing half-sat. const. bo 0.02-0.1 0.01-0.16 gC m™

Table 2.1: Biological Model Parameters. Ranges are taken from Edwards and Brindley (1996), wherein values from various studies
are collated.
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SHS1 SH81b HPI1 (inside) HP91 (outside)
a = 0.19994 a=0.2 k = 0.3058 k=0.31
b=0.200267 b=0.2 r=0.748 r = 0.908
c=0.394733 a; = 0.672 a; = 0.712
d=0.142012 d=0.140136 ay =0.6 as = 0.3

e = 0.03137 e=10.03004 b; =0.1 b, = 0.0881
k=0.050132 &k =0.05 by = 0.1 by = 0.1528
r =0.1483 r=20.15 cp=0.5 c1 = 0.488
s = 0.04072 s =0.03997 ¢y =0.225 co =0.424
N0 =1.00236 NO=1.0 d; =0.104 d; = 0.096
a=0.249956 o =0.25 ds = 0.055 ds = 0.049
8=032804 (3=0.33

v = 0.50675 v=0.5

¢=059982 (=06

w=0.0349475 p = 0.035

Table 2.2: Chaotic apex. Parameter values giving maximum largest Lyapunov

exponent Amax for each biological model. Parameter units are as in Table 2.1.
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Chapter 3

Non-identical oscillators.

3.1 Introduction

In the previous section, a plankton distribution was modelled as an interacting
ensemble of identically-represented plankton populations. That is, the biological
model equations and parameter values were the same for each population. This
makes the assumption that the dynamics are spatially uniform, so that the same
set of parameter values represents the plankton population dynamics equally well
across the whole of the area of interest. In reality, spatial variation is inherent in
nature, so that the most appropriate set of biological model parameters to use in the
representation of each population may vary in space. For example, if temperature or
mixed layer depth are likely to vary across the modelling domain, then any biological
parameter which is related to these physical parameters is likely also to vary (see
Section 1.2).

Consequently, although a useful mathematical simplification, it is not entirely
realistic to model a metapopulation using an identical representation for each indi-
vidual population. By introducing some mismatch into the dynamical representation
of each population, it is possible to model a spatially varying distribution more rep-
resentative of the real world. This mismatch may be introduced by using the same
biological model for each population but allowing variation in the biological model
parameter set. As a result of parameter mismatch, each oscillator is slightly different

in terms of its natural frequency and amplitude of oscillation so that it is now im-
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possible to achieve a stable fully synchronised state. The synchronisation manifold,
as defined in the previous chapter, is no longer invariant. However, a much richer ar-
ray of approximate or generalised synchronous behaviour (see Pikovsky et al., 2001)
is now possible where population dynamics are related by a one-to-one mapping.
Generalised synchronisation encompasses a variety of behaviour observed in theo-
retical and real-world systems. Here we briefly describe some relevant synchronous
behaviour possible in systems of non-identical oscillators.

Whereas in Chapter 2 the ensemble of plankton populations was observed to
fully synchronise for a sufficient strength of interaction, systems of non-identical os-
cillators have been shown to exhibit an intermediate state of cluster synchronisation
(Belykh et al., 2003) - the system breaks up into synchronised subsets of popula-
tions with no synchrony between clusters. The type of clustering, e.g. size, number,
shape and positioning of synchronised subsets, has been seen to vary with a number
of factors, including the size of the parameter mismatch (Belykh et al., 2003), the
type (Belykh et al., 2003) and strength (Osipov and Sushchik, 1997) of coupling
and the spatial arrangement of the natural (independent) frequencies (Osipov and
Sushchik, 1997). Clustering states may emerge as an intermediate state between
asynchrony and (almost) full synchrony. Osipov and Sushchik (1997) found that
transitions between clustering states as the strength of interaction is varied may be
“soft” - a gradual continuous enlargening and merging of clustering with increasing
coupling strength - or “hard” - an arrangement of clusters persists with increasing
coupling until altering suddenly at a sharp transition value of coupling strength.

For particular conditions, the strength of coupling may be sufficient to approxi-
mately synchronise the full system. This synchrony may take the form of frequency
locking, where the natural frequency disorder is overcome to pull the populations
towards a common frequency of oscillation (e.g. Rosenblum et al., 1997). There
may still exist a constant phase difference between frequency-locked populations,
a phenomenon referred to as lag synchrony (Rosenblum et al., 1997; Taherion and
Lai, 1999).

Counter-intuitively, an increase in the strength of coupling may not lead to a

monotonic increase in the synchrony between populations. For a system of non-
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identical food-web oscillators, Blasius and Montbrié (2003) found that in some cases
increased coupling was first able to increase the amount of frequency disorder before
larger coupling was able to draw the system into synchrony. This coupling-induced
desynchronisation or anomalous synchronisation (referring to the eventual synchro-
nisation of the system) was shown to be caused by non-isochronicity or shear of
phase flow around the oscillator attractors; the interaction has the effect of con-
stantly pulling the populations away from their natural attractors, and if the rate of
shear is affected by both the natural frequency of the oscillator and the strength of
the coupling then the ability of the system to synchronise is enhanced or disrupted,
depending on the nature of the relationship between the non-isochrony and coupling.

The ability to synchronise, and the kind of synchronous behaviour observed, are
influenced by a number of factors. We have already seen in Chapter 2 that the
ability to synchronise is dependent on the number of populations, their dynamic
properties and the strength of interaction between them. With the introduction
of spatial variation come the additional variables of the amplitude and probability
distribution of the parameter variation and to which biological model parameter(s)
the variation is applied. In this chapter, we focus on these new influences and do
not attempt to describe the behaviour for the whole of biological model parameter
space, for different plankton population models or for the full range of dynamical
behaviour possible for a single population (steady-state, limit cycle and chaotic
dynamics). Instead, we select a set of default biological model parameter values
that, for an individual independent oscillator, lead to the simplest case of time-
varying dynamics - that of regularly periodic dynamics - and describe in detail the
emergent behaviour for this case.

Hence, to summarise, this chapter models a spatially varying plankton distribu-
tion by considering an interacting ensemble of non-identical plankton populations,
each of which is oscillatory in nature. We use this set-up to explore how a spatially-

varying plankton distribution might behave.
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3.2 Method

As in the previous section, we model a spatial distribution of plankton as a lattice
of interacting plankton populations with the evolution of each population repre-
sented by the same set of ordinary differential equations. We continue to use the
Nutrient-Phytoplankton-Zooplankton model formulated by Steele and Henderson
(1981). Additionally, we now introduce spatial variation by applying a small ran-
dom perturbation to a particular biological parameter. This results in a small spread
in the natural frequencies of the oscillating populations, where the natural frequency
of an oscillator is the frequency at which it would oscillate in isolation of the influence
of the other plankton populations.

Again, as in the previous section, the plankton populations interact via a nearest
neighbour coupling term representing effective diffusivity. We consider a square
region of ocean of size L km x L km, modelled as a 2D lattice of nxn interacting

plankton populations

(NZ]’PJ’Z )

where v; ; occupies the grid-cell in row 7 and column j of the lattice. Each plankton

population interacts with neighbouring populations so that

vij = Fi;j (Vi,j) +eg-q

where
g = (Vz'—l,j,Vz‘,j—l, Vi, Vij+1, Vz’—i—l,j) )
— s P+ P+ 55 7+ dZ + k(N — N)
Fij(vig) = Fij(Nij, Pij. Zij) = | opsiram P — 7P — e 2 — sP — kP
Lol Z —dZ
The vector

qi,j = (Qh 42,43, 44, q5)

determines which grid-cells interact with grid-cell (i, j), where ¢, g2, ¢4 and g5 rep-
resent material entering from the grid-cells directly adjoining grid-cell ¢ from above,
to the left, to the right and from below, respectively, and take a value of 1 if such
a grid-cell exists and 0 otherwise, i.e. for grid-cells on the edges of the lattice.
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3 = —(q1 + g2 + @4 + ¢5) determines the amount of material leaving grid-cell (3, j)

under the assumption of mass conservation, e.g.
qi;=(1,1,-4,1,1)
for an interior population and
a1 =(0,0,-2,1,1)

for the top left-hand grid-cell. Hence the model describes a lattice with nearest-
neighbour effectively-diffusive coupling and no-flux boundary conditions on all edges.

The default biological parameter set, for which the model exhibits limit cycle be-
haviour, is given in Table 3.1. Note that although we model the nutrient component
by its nitrate content, the model has currency of gC m~3.

We introduce a spread in the natural frequencies of the populations by adding
a small mismatch A;; to the default phytoplankton growth parameter ay so that
a;j = agp + A; ;. The random mismatch values A;; are chosen from a uniform
distribution on an interval of width A centred on aq so that phytoplankton growth
rates a;; € [ap — %, ao + %] The application of mismatch to a implies mesoscale
variation in the phytoplankton growth rate. This assumption is justified on the basis
that phytoplankton growth has been shown to vary with such factors as temperature
(Eppley, 1972) and mixed layer depth (Alpine and Cloern, 1988), all of which vary

on the mesoscale (see Chapter 1.2).!

3.2.1 Model

The main tool for the investigation of this ensemble of non-identical oscillators is
computer code written in the C programming language to initialise and integrate
the lattice in time and to write to file the dynamics of each plankton population

and other data. The number of oscillators can be altered within the code.

I'Note that the mismatch values could have been chosen from a different distribution, such as
Gaussian; since we do not specify the underlying cause of the spatial variability in this case, our
choice of distribution is not constrained by any factors and so we arbitrarily choose a uniform

distribution.
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Parameter Symbol Value Units

P growth parameter ag 0.2 m*d!
Light attenuation by water b 0.2 m~!
Self-shading by P c 0.4 m? gC~!
Herbivorous Z mortality d 014 47!

N half-saturation constant e 0.03 gCm™3
Exchange rate with lower layer k 005 d*

P respiration r 015 d7*

P sinking s 004 d°*
Lower layer N concentration No 1.0 gCm™
Herbivorous Z assimilation efficiency — « 0.25

7, excretion fraction 16} 0.33
Remineralisation of Z excretion v 0.5

Herbivorous Z grazing rate ¢ 0.6 d?
Herbivorous Z grazing half-sat. const. p 0.035 gCm™

Table 3.1: Biological model parameters. Note that the model has currency gC m 3.

The phytoplankton growth parameter mismatch values are chosen using a ran-
dom number generator seeded with an integer value; a different choice of seed value
leads to a different set of mismatch values with the same probability distribution.
The width A of the mismatch spread can be altered to be equal to any percentage
of the default growth parameter value ay and the mismatch values are chosen with
a uniform distribution.

Each population v; ; of the ensemble is given the same set of initial conditions for
N, j, P, j and Z, ;, chosen by integrating a single population with parameter values as
in Table 3.1 and phytoplankton growth rate ag, i.e. A = 0. Hence the distribution
is initially in synchrony. As we know, for non-identical oscillators this synchronous
state is not invariant, so the distribution will not remain in synchrony, although it
may return to synchrony if the coupling between the populations has the result of
counteracting the natural difference in frequencies.

The coupled system is first integrated for a time length T} sufficient for transient
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behaviour to die away, after which the system is said to be on its attractor. The
integration time required for the system to reach its attractor varies depending on
the particular set-up, as will be indicated in later sections, e.g. a larger T is required
for a larger number of grid-cells comprising the lattice. The necessary 77 is found by
using the technical computing package MATLAB to compare the system dynamics
and diagnostic statistics (see Section 3.2.2) output from the main C code for different
integration lengths. The system was judged to be on its attractor once the oscillator
frequencies had come sufficiently close to steady state (judged visually), after which
the system was integrated forward for a further 5,000 time-steps of length dt = 0.1
days to generate a time series of 500 days for calculating the measures used to

diagnose different synchronous behaviour.

3.2.2 Diagnostic tools

A first indication of the effect of population interaction on the ensemble dynamics
is obtained by plotting the dynamics output from the main C code. In particular,
the time evolution of the spatial structure is visualised by using MATLAB to make
two-dimensional colour plots of the biological distributions for each time-step. In
addition, various diagnostic tools are used to check for different synchronous effects.

The average angular frequency w; ; of each oscillator is calculated in order to
check for frequency locking of the ensemble. During integration of the system, a
note is made of times when each oscillator reaches a peak in its phytoplankton
concentration. This gives a series {7} ;} of peak times for each oscillator which is

used to calculate the average frequency

Wi = < N-1 ) X 21
T;(N) = T;,;(1)

where there are N peaks in the series.

The average rather than instantaneous frequency is calculated in case any of
the oscillators are chaotic or have a variable period as a result of interaction with
the other oscillators, the interaction having the effect of constantly pulling the pop-
ulations away from their natural attractors. Once the frequency calculations had
converged and were therefore stable with respect to the length of integration, the

system was judged to be in statistical steady-state.
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From the set of frequencies we calculate the relative standard deviation

> standard deviation(w; ;) 100,

mean(w; ;)

The spread of frequencies indicates how the interaction between plankton popula-
tions is influencing their behaviour. The ensemble is said to be frequency locked
when o is close to 0.

The frequency calculations made in the main C code were checked in two ways.
Firstly, the same calculations were carried out in MATLAB using the output v, ;
dynamics from the main C code and the results of these calculations were found
to be identical. This indicated that no coding or typing errors were present in the
main code. To check the validity of the method for calculating the frequencies, the
main code was altered slightly in order to reproduce the results of Fairen (2004),
who coupled together 500 non-identical Rossler oscillators in a chain and calculated
the frequencies as a function of coupling strength. Both checks indicated that the
frequency calculations made by the main code were correct.

The peak times data were also used to calculate phase information for each

population. We linearly interpolate between peaks so that the phase at time t is

t—"1T,,
ei,j(t) == (ﬁ) 2

where T), is the peak in P; ; that occurred most recently.

Given the phase 6;; of each oscillator, we then calculate the centroid of the
oscillators positions on the circle

N =1 =1

so that v gives the average phase and the order parameter R is a measure of the
phase coherence of the ensemble. For uncorrelated populations, the phases are
uniformly distributed on [0,27] and so R is around zero. For phase synchronised
oscillators at a common phase 6, calculation of the centroid gives 1) =6 and R = 1.
Intermediate values of R indicate that the phases of the populations are neither
equal nor uniformly spread, e.g. local synchrony or clustering of phases.

R is calculated in MATLAB using the series of peak times output by the main

C code. Again, to check the method the R calculations made by Fairen (2004) for a
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chain of 500 Rossler oscillators were compared with results from the modified main

C code and the two sets of results were found to be identical.

3.2.3 Spatial structure diagnostics

Whilst ¢ and R give an indication of the coherency in behaviour of the ensemble
as a whole, they can mask local synchronous effects such as the clustering of the
ensemble into sychronised subsets of populations. Hence we use a simple cluster
measure ¢ € [1,n] of grid-cells that gives an indication of the size of clusters in
one-dimension. A ¢ value of 1 would be expected for zero coupling, € = 0, since
populations then oscillate in isolation. If the whole ensemble is synchronised, we
expect a ¢ value of the length of the domain, i.e. ¢ =n. A value of ¢ between 1 and
n indicates a certain degree of local synchronisation.

For each time step, c is calculated by taking the nxn P, ; field

Pll P12 Pln
P Pi,
P(t)z 21 1
Pnl Pn2 Pnn

We look at the size of structure in the x and y directions separately to obtain
measures ¢, and ¢, but since the method is identical it is described here for c,:
We take a transect

PZ':(PZ'17PZ'27"'7-Pin>

across the lattice for each of the 1 = 1,...,n rows of grid-cells of the mean-removed
field. Clusters are defined as regions of adjacent grid-cells with continuously positive
or negative values and their boundaries are found by recording zero-crossings of P;.

Over all rows, this gives a set of clusters

clusters, = {c1,¢a,...,Cm},
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where ¢, for k = 1,...,m, are integer numbers of grid-cells and >}, (cx) = n?.
The median of this set of clusters is then calculated for each time-step to give a
measure of the local coherency c¢,(t), which can also be averaged over time. ¢, () is
calculated in exactly the same manner, but using columns rather than rows of P(t).

The cluster measure given here is only well-defined when clusters exist. That
is, it has meaning when there exist well-defined synchronised regions separated by
sharp transitions. In this case, ¢ is a good representation of the size, in grid-cells, of
these clusters. If such clusters do not exist, and we have instead a gradual shift in
phytoplankton biomass values from grid-cell to grid-cell, then the cluster measure as
defined here is not appropriate. Take the simple example of a frequency-locked but
not phase-locked ensemble with a linear increase in phytoplankton biomass from
the left-hand edge to the right-hand edge of the lattice; removing the mean and
calculating c in this example will give ¢ = 7, apparently indicating a representative
cluster size of half the lattice, whereas actually a cluster size of n is more meaningful
since no sharp transitions exist. Additionally, for large cluster sizes with respect
to the domain size, the ¢ measure will be inherently less reliable than for small
clustering: fewer larger clusters will fit into the domain, reducing the probability
when taking the median of obtaining an accurate estimate for c.

For this reason, in conjunction with the cluster measure we also consider a mea-
sure of the sharpness of transitions from grid-cell to grid-cell across the lattice to
show the sharp edges of clusters and to highlight where c is less appropriate. For
each time-step we normalise the P(¢) field to obtain

(Pl min(Py(0)
P(t) = (max(P(t) - min(H’,j(ﬂ)))

with 0 < E](t) <1 fori,j=1,...,n For each grid-cell, we define g; ;(t) as the
maximum value of the absolute difference between P, ;(t) and the phytoplankton
biomass in each of its up to eight (for interior populations) nearest neighbours, i.e.

for interior populations,
9:,j(t) = max{|P;; — Py j[}

fori=i—1,4,i+1and j'=35—1,5,7+ 1.
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Then,
9(t) = max(gi;(t)).
In the limit case of fully synchronised dynamics, we have g(t) = 0. As the sharpness
of the gradient between clusters increases, g(t) — 1. The maximum rather than
mean or median is appropriate here as we wish to identify the presence of extreme
gradients rather than get an impression of the average gradient for the lattice.

Calculations of the cluster measure ¢ and gradient measure g are made with
MATLAB using the dynamical output from the main C code.

Finally, we calculate the 2D power spectrum of the mean-removed P(t) for each
time-step. Here we give an outline of the method, but full details are available in
Press et al. (1992).

To prevent spectral leakage, inevitable when taking the Fourier transform of a
field with abrupt edges, the edge gradient is softened by multiplying P(¢) by an

n x n Hann window defined by
1 271 2mj
W(i,j) = 1 (1 — cos %Z) (1 — cos %])
to obtain
Py(t)=P(t) - W.
As required by the Fast Fourier Transform (FFT), the n x n field Py(¢) is padded

log(n)
log(2)

with zeros to make it of size 2% x 2V where N = ceiling ( ), i.e. the next power
of 2.

The MATLAB function ££t2 is used to calculate the Fourier components FT'(k,, ky)
in wavenumber space, where the wavenumbers indicate the number of full waves con-

tained in the region represented by P. To obtain the power spectrum, we sum the

energy in annuli of width one in wavenumber space about the centre as follows:

S (ke deyyet,i+1) 1ET (ke ky)[?
([ +12 D)

where d(k,, ky) = \/k2+k2and [ =0,...,5 — 1.

For a fully synchronised ensemble, we expect to see all energy focused at the

S(I) =

wavenumber k = 1 since no spatial structure exists below the level of the full domain.

How the peak of the power spectrum changes with, for example, time or coupling
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strength, gives an indication of the changing spatial organisation of the interacting
ensemble.

These diagnostic tools, summarised in Table 3.2, used together allow us to de-
scribe in detail the different synchronous behaviour displayed by the plankton dis-

tribution as variables of the model set-up are altered.

Measure Symbol Range Units
Phytoplankton biomass of population (,j) P; 0-0.5 gC m™3
Angular frequency of population (i, j) w; 0.05-0.15 27wd~!
Frequency spread o 0-25 %

Phase order R 0-1

Cluster measures Ca, Cy 1-n grid-cells
Gradient measure g 0-1

Table 3.2: Summary of diagnostic statistics.

3.3 Dependence on strength of interaction

We first explore how the emergent features of this lattice of coupled plankton popu-
lations depend upon the strength of interaction between the populations. How does
the interaction alter the oscillations of the individual populations to determine the
temporal and spatial structures of the plankton distribution? We will explore this
by varying the strength of effective diffusivity in the model as described below.

For a lattice of coupled plankton populations set up as previously described,
the coupling term, which is essentially the coupling strength ¢ multiplied by the
difference in concentration 6C between neighbouring grid-cells of size [, where C' may
represent nutrient, phytoplankton or zooplankton concentration, represents mixing

processes between adjacent grid-cells so that

0*C

where D is effective diffusivity. Hence we may equate € with the effective diffusivity

so that



where [ is the grid-cell length-scale and l% approximates the second order spatial
derivative
The effective diffusivity has been shown by Okubo (1971) to scale with spatial

length-scale according to the empirical relationship
D(l,) =~ 0.011,""

with [, in cm and effective diffusivity D(l,) in cm? s™!. If we then take the grid-cell
length-scale [ km of the lattice as the spatial scale at which effective diffusivity acts
in the model, then

e~ 0.01179% % 60 x 60 x 24

for € in d~!. For mesoscale processes on the order of 1 km to 100 km, this gives a

range of coupling

e €[0.001,0.05] d~*

between adjacent grid-cells with coupling strength increasing with decreasing length-
scale (see Figure 3.1). Varying e in this range is equivalent to varying the spatial
resolution of the model from 100 km to 1 km, i.e. [ € [1,100] km. However, since
an understanding of the uncoupled system (¢ = 0) is essential to an understanding

of the coupled system (¢ > 0), in this work we consider the range
£€10,0.05] d".

For this investigation into how the strength of effective diffusivity determines the
emergent properties of the ensemble, we have the following specific set-up.

We set n = 100 to give a lattice of 100 x 100 populations. This number of grid-
cells is chosen so that the ensemble remains small enough to be computationally
inexpensive but large enough to give an unbiased sample of the uniform distribution
for the random mismatch values {A;;}, for 4,5 = 1,...,n? to be applied to the
phytoplankton growth parameter ag. We set A = 5% of ag so that the mismatch

values are uniformly distributed on an interval ag £ 2.5%, giving
a;; € [0.195,0.205]

as shown in Figure 3.2 (top panel). For these parameter values, the biological

model displays oscillatory dynamics, with the parameter mismatch resulting in a
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Figure 3.1: Coupling strength e according to Okubo (1971) empirical relationship

between grid-cell spatial scale [ in km and effective diffusivity in d—!.
0.05 T T

0.045

0 10 20 30 40 50 60 70 80 90 100
I km

slight difference in amplitude and period of oscillation for each population: the
resulting spread in natural frequencies of the plankton populations is approximately
2.5% as shown in Figure 3.2 (bottom panel), with mean frequency © = 0.052. The
resulting natural frequencies are not uniformly distributed; evidently the impact of
the parameter mismatch on the frequency of the plankton population is non-linear.

Using exactly the same set and spatial arrangement of mismatch values A; ; for
each simulation, the coupling strength ¢ is varied in the range given above. Varying
€ in this range is equivalent to varying the grid-cell length-scale from 100 km to
1 km, which, since n = 100 for each run, is equivalent to varying the domain size

L x L from 10,000 km x 10,000 km to 100 km x 100 km.

3.3.1 Temporal evolution

The system is integrated from initially synchronised dynamics for 7' time-steps of
length dt = 0.1 days sufficient for statistically steady-state dynamics to be reached.
In general, 77 = 50,000 iterations = 5,000 days is found to be sufficient, with
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Figure 3.2: Histogram of phytoplankton growth parameters a; ; and resultant natural

frequencies w; ;(¢ = 0) for ¢,5 = 1,...,100.
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Natural frequencies, u)ij(s=0)

spatial statistics remaining stable for 7" > T). However, as will be discussed later,
the steady-state dynamics take longer to emerge for coupling strengths near to
transitions in system behaviour.

Figure 3.3 gives an example of how spatial structure emerges from the initially
homogeneous state; the phytoplankton field is shown at 100 day intervals for a
coupling strength of e = 0.01 d=!. We see how the initial domain-sized structure
breaks down into well-defined clusters. Circular regions appear, containing small
scale-clusters, which are themselves not circular but appear as elongated shapes.
These circular regions grow, increase in number and merge until the domain is filled
with clusters which change in size with time until appearing to reach a statistical
steady state at around ¢ = 2,500 days. The calculated cluster measures ¢, (t) and
¢y (t) plotted in Figure 3.4 confirm what can be seen visually: the structure in
both directions reaches a steady state length-scale of 4 to 5 grid-cells. Relating
the coupling strength ¢ = 0.01 to a grid-cell length-scale of around 6.4 km using

the Okubo relationship, this gives a steady-state cluster size of approximately 25 to
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32 km. The clusters are well-defined synchronised regions, with sharp transitions
at their boundaries, as indicated by a steady state value of g(¢) ~ 0.85 in Figure
3.4. Importantly, although the cluster size converges, the position of these clusters
is non-stationary, indicating that the spatial arrangement of the structure is not a
simple reflection of the spatial arrangment of the underlying natural frequencies; the
clustering structure continues to evolve in time after the spatial structure mean size
has reached a steady-state, hence we speak of a statistical steady-state.

The time-evolution plots clearly show that ¢ = 0.01 d~! is not a strong enough
coupling to counteract the natural frequency disorder and keep the system in full
synchronisation, but a certain amount of local synchronisation does exist.

A clear, approximately 120 day oscillation, can be seen in c¢,(t), ¢,(t)and g(¢)
and, initially, in the phytoplankton dynamics plotted in Figure 3.4. This may ex-
plain why the system takes such a long time - approximately 7 years - to shed its
transient behaviour. From the initially synchronised state, the amount of disparity
in phytoplankton biomass increases with each period of oscillation. Since the period
of oscillation is long - approximately 120 days - the synchronous state persists for
some time before the system reaches its attractor. Since the model is not subject to
any seasonal forcing and also has not been tuned to any particular period, this 120
day period is not intended or considered as a realistic period of oscillation. It is hy-
pothesised, although not explored directly here, that a shorter period of oscillation
would shorten the time of transient dynamics.

For the same system (¢ = 0.01 d~!; n=100), Figure 3.5 shows the biomass
fields for nutrient, phytoplankton and zooplankton at time ¢t = 5000 days. Figure
3.5 also shows the time evolution of all three model components for the last 500
days at the centre grid-cell vso 50 of the lattice and a snapshot transect across the
centre of the lattice (i = 50) at time ¢ = 5000 days. The same spatial structure is
seen for all three components, with synchronised regions of phytoplankton biomass
roughly corresponding to synchronised regions of zooplankton biomass and nutrients.
However, clusters of high phytoplankton biomass may correspond to areas of high or
low nutrient levels and zooplankton biomass, as expected from the nature of species

interaction and illustrated by the time-series and transect. The transect clearly
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shows the sharp gradients in biomass at cluster edges. Since the same synchronous
properties are observed for all three model components, further results are illustrated

only in terms of the phytoplankton components for brevity and clarity.
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Figure 3.3: Temporal dynamics. Evolution of phytoplankton biomass field for 5,000 days from initially synchronised conditions for

lattice of 100 x 100 plankton populations interacting with effective diffusivity ¢ = 0.01 d~!. Figure labels indicate time in days.




3.3.2 Steady-state dynamics

An integration of a further 7, = 500 days was used to calculate the diagnostics.
Figure 3.6 shows how the frequency spread o, phase order parameter R and the
frequencies of the oscillators vary as a function of coupling strength for £ € [0, 0.05]
d=!. It is immediately seen that increasing the coupling strength does not have
the intuitive effect of monotonically increasing the degree of synchrony exhibited by
the ensemble: we do not have a monotonic decrease in ¢ and increase in R as € is
increased. The final phytoplankton field at time ¢ = (77 + T3) for each value of €
is shown in Figures 3.7 to 3.12. Figure 3.13 shows the spatial measures c,, ¢, and
g as a function of . In Figure 3.14, the cluster measures c, and ¢, in grid-cells
are scaled by the length-scale I(¢) km according to the Okubo relationship to give
cluster length-scales in km.

As € is increased from zero, the diagnostic tools and spatial phytoplankton
biomass plots indicate that the dynamics of the ensemble exhibits four qualitatively

different states.

e ¢ =0 d': independent populations.

For zero coupling the plankton populations oscillate independently, so that the
phytoplankton field shown in the first subplot of Figure 3.7 is random with no
spatial structure larger than the grid-cell, as confirmed by ¢, and ¢, values of
1 in Figure 3.13 and a wide frequency spectrum in Figure 3.7. As expected,
o ~ 2.5 % (see Figure 3.6). Since there is no interaction between neighbouring
populations, there can be a sharp transition in phytoplankton biomass from
grid-cell to grid-cell, indicated by gradient measure value of g = 1 (Figure

3.13).

e 0<e<0.001 d': small increase in frequency spread; small-scale

clustering.

For 0 < € < 0.001 the spread in frequencies increases with increased coupling
strength (Figure 3.6). The frequencies are seen in general to increase but, since
the oscillators do not all increase in frequency at the same rate as a function of

g, o increases to more than 5%. Despite the increase in o, the clustering in the
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Figure 3.4: Temporal dynamics. Evolution of spatial structure for 5,000 days
from initially synchronised conditions for lattice of 100 x 100 plankton populations
interacting with effective diffusivity e = 0.01 d—!, showing phytoplankton dynamics
for each P, ;(t) for i,7 = 1,...,100, cluster measures c,(t) (black) and c,(t) (red)

and gradient measure g(t).
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Figure 3.5: NPZ dynamics. Nutrient (N), phytoplankton (P) and zooplankton

(Z) biomass fields in gC m™

nous initial conditions; evolution of N (black), P

at time ¢ = 5000 days after integration from homoge-

(green) and Z (red) for final 500

days of integration for the population in the centre of the lattice (i = j = 50); and

N(z), P(z) and Z(z) at time ¢ = 5000 for a transect across the centre of the lattice
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biomass plots and the narrowing of the associated spatial frequency spectra in
Figure 3.7 indicate that the size of spatial structure in the phytoplankton field
has increased between € = 0.0005 and € = 0.001. It is evident that the increase
in coupling has caused an increase in local synchronisation although the size
of the clusters remain small with only a small increase in ¢ to 2-3 grid-cells.
These clusters are well-defined, as indicated by g = 1 in this region (Figure

3.13).

0.001 < £ < 0.0025 d': frequency-locking; large-scale clustering.

For coupling around € = 0.002 d~! there is a small region of near frequency
locking, seen by a rapid decrease in ¢ to < 1% (Figure 3.7). The scale of
spatial structure increases; the phytoplankton biomass field shows much larger
clusters, the spectrum narrows and the cluster measure increases to ¢, = ¢, =
10 grid-cells (Figure 3.13). However, the system is clearly not phase locked
since neighbouring clusters coexist with some at their peak in phytoplankton
biomass and some at their trough, confirmed by an order parameter value of
R =~ 0.6 (Figure 3.6), with sharp transitions at cluster boundaries indicated

by g = 0.9 (Figure 3.13).

0.0025 < ¢ < 0.02 d': large frequency spread; small-scale clustering.

For ¢ = 0.0025 d™!, two discrete sizes of spatial structure appear to coexist.
However, this system is not in steady state even after 5000 days. When the
system is integrated for a further 5000 days, the large-scale structure disap-
pears and the entire domain is filled with the small-scale spatial structure.
The transient behaviour takes longer to disappear when the system is near a

change in behaviour, which is what ocurs at this point.

As ¢ is increased above 0.0025 d~!, the ensemble bursts out of frequency lock-
ing and enters a desynchronised region for e € (0.0025,0.02) d~!, shown in
Figures 3.7 to 3.9. The spread in frequencies reaches an order of magnitude
higher than the spread in natural frequencies and increasing € within this re-
gion apparently has no effect on the amount of disorder in the frequencies

(Figure 3.6). However, clustering is clearly visible in the phytoplankton distri-
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bution snap-shots for coupling in this region (Figures 3.7 to 3.9). Additionally,
although o gives no evidence of an increase in the amount of synchrony for
increased coupling, the phytoplankton fields clearly show an increase in the
size of clusters as € is increased; the amount of local synchrony in both the
x and y directions increases and ¢, and ¢, increase slowly and monotonically
from 2 to 7 grid-cells (see Figure 3.13). However, Figure 3.14 indicates that
the actual cluster size monotonically decreases from around 50 km to 20 km.
The gradient measure remains high (g > 0.7) in this region as clusters are still

well-defined (Figure 3.13).

Note that the statistical steady-state for the temporal dynamics shown in

Figure 3.3 occupies this small-scale clustering region.

0.02 < £ < 0.05 d*: frequency-locking; near domain-sized spatial dy-

namics; near phase-locking.

Above € = 0.02 there is a rapid, threshold-like transition to a frequency-
locked state, with a decrease in ¢ to near zero. This transition is seen in the

phytoplankton fields in Figure 3.10.

The dynamics are largely synchronised, with structure almost at the size of the
domain and no sharp transitions between neighbouring grid-cells, unlike in the
clustering state. We see a rapid decrease in ¢ at this threshold to values around
0.3 (Figure 3.13), showing that clusters are no longer well-defined and that
changes in phytoplankton biomass across the lattice occur instead on a gentle
gradient. As explained above, the cluster measure is no longer appropriate
for a low value of g, although we note that ¢, and ¢, increases rapidly to
approximately half the domain size at this threshold (Figure 3.14), indicating

a rapid increase in dominant spatial structure.

The system remains frequency-locked for increased coupling after this tran-
sition and the resultant frequency of the synchronised system tends towards
the mean of the natural frequencies, 2 = 0.052. Figure 3.15 shows how the
distribution of the population frequencies develops as the effective diffusivity

is increased. For 0 < € < 0.003 the original distribution of natural frequencies
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narrows as the system becomes nearly frequency locked. For ¢ > 0.003 the
distribution widens, showing a tendency for populations to oscillate faster as
a result of interaction. From e = 0.015 d~!, a bimodal distribution develops,
with a wide residual group of faster oscillators and a distinct “break-away”
narrow band of populations with frequencies around €2 &~ 0.05. An increasing
number of populations is recruited into this second group, seen in Figure 3.15
as a diminishing of the wide group of faster oscillators, until at the critical
coupling for frequency locking, erp =~ 0.02, the faster group disappears, the
distribution in frequencies appears as a single spike at {2 &~ 0.05 and the en-
semble is frequency-locked. Since this state remains for € > 0.02, histograms

are not shown for the full range of ¢.

In contrast to the threshold-like change to frequency-locking, the transition to
phase-locking after e = 0.02 is gradual, as seen by a slow monotonic increase
in R towards 1 (Figure 3.6). For coupling in the range considered here of
€ < 0.05, we see that the ensemble never achieves fully phase-locked dynamics,
as R < 1 (Figure 3.6) and the variation in colour in the biomass plots in Figures
3.10 to 3.12 always indicates some variation in the phase of oscillation of the
populations across the domain. However, the dynamics gradually become more
homogeneous and the spatial frequency spectra in these regions are narrow
with peaks at a wavenumber of 1, indicating dominant structure at the domain

size.

From the incomplete invasion of small-scale spatial structure apparent in Figure

3.10 for e = 0.02, we see again that transients persist for longer near to threshold-like

changes in system behaviour. Comparing this plot with the temporal evolution plots

shown in Figure 3.3, we might ask whether there is really a transition in behaviour at

€ > 0.02 or whether the dynamics above this coupling strength have simply not been

integrated for long enough to come to steady state. Would small-scale structure, like

that seen for € < 0.02, develop if the system were integrated for longer for € > 0.027

To check this, a further integration with 77 = 20,000 iterations (four times longer)

was carried out for e € (0.0175,0.0225), the area around the apparent transition.

The resultant spread in frequencies is shown in Figure 3.16. Although the longer
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integration time alters o values around the threshold, as dynamics have longer to
reach steady-state, the value of € at which the transition occurs is the same. By
simulation alone, it cannot be shown conclusively that a longer integration would
not allow smaller-scale structure to develop for ¢ > 0.02, pushing the transition
further to the right on Figure 3.16. However, if that were the case then it would be
expected that the threshold would have moved at least some distance further to the
right after the longer integration shown by the solid line in Figure 3.16. Hence we
are confident that the apparent threshold is a real transition to a different type of

dynamics.

3.3.3 Boundary conditions and initial conditions

We are interested in the ensemble statistics and spatial structure that result from
the interaction between the individual populations. Hence, it is necessary to be sure
that these emergent properties are not imposed upon the system by the choice of
initial and boundary conditions.

No-flux boundary conditions are used as default in this investigation. An ad-
ditional simulation was carried out with all parameters as in the previous section
(n =100, € € [0,0.05], A = 5% and the same set of a; ;) but with doubly-periodic
rather than no-flux boundary conditions. Figure 3.17 shows the resultant spread
in population frequencies as a function of coupling strength, with results for the
no-flux case shown as a dotted curve for comparison. The shapes of the two curves
are seen to be almost identical, with transitions between types of ensemble dynam-
ics occurring at the same values of €. Equally, the emergent spatial structure in
phytoplankton biomass shown in 3.17 is close to that seen in the case of no-flux
boundary conditions. This indicates that the ensemble dynamics are not sensitive
to the choice of boundary conditions.

The influence of the initial conditions was also investigated. The system is
usually integrated from homogeneity and this state is observed to persist or break
down into asynchrony or clustering, depending upon the parameters of the system.
An additional simulation was carried out for n = 100, ¢ € [0,0.05] and A = 5%

with asynchronous initial conditions, obtained by integrating the uncoupled system
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(e = 0) for 5000 days and using the final N;, P; and Z; values as initial conditions in
the coupled case (¢ > 0), so that in this case the clustering or fully synchronous state
was seen to emerge from asynchrony. The results of o(e) and the emergent spatial
dynamics in the cases of (i) synchronised and (ii) desynchronised initial conditions
were found to closely match and are as in Figures 3.6 and 3.7 to 3.12 (and so are
not reproduced here). Hence the system is not sensitive to the choice of initial
conditions. Additionally, this confirms € ~ 0.02 d=! as a bifurcation point to stable

synchrony.
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Figure 3.6: Diagnostics for n =100 as a function of coupling strength.
Frequencies w; j(¢) for i, 7 = 1,...,100 (top panel), standard deviation of frequencies
o (dotted line) and order parameter R (solid line) for e € [0,0.05] d=! (middle panel)

and a zoomed-in section of o for £ € [0,0.0025] d=! (bottom panel).
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Figure 3.7: Spatial dynamics for varying effective diffusivity. Phytoplankton
biomass field (columns 1 and 3) and wavenumber spectra (columns 2 and 4) for
n = 100 at time t = T} + T5, after initial integration of length 77 = 5,000 days to
remove transients and additional integration of length 75 = 500 for calculation of

diagnostics for € € [0,0.0045] d~!. Figure title numbers indicate value of ¢.
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Figure 3.8: Spatial dynamics for varying effective diffusivity. Phytoplankton
biomass field (columns 1 and 3) and wavenumber spectra (columns 2 and 4) for
n = 100 at time t = T} + T5, after initial integration of length 77 = 5,000 days to
remove transients and additional integration of length 75 = 500 for calculation of

diagnostics for € € [0.005,0.0095] d~!. Figure title numbers indicate value of e.
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Figure 3.9: Spatial dynamics for varying effective diffusivity. Phytoplankton
biomass field (columns 1 and 3) and wavenumber spectra (columns 2 and 4) for
n = 100 at time t = T} + T5, after initial integration of length 77 = 5,000 days to
remove transients and additional integration of length 75 = 500 for calculation of

diagnostics for € € [0.01,0.019] d~!. Figure title numbers indicate value of .
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Figure 3.10: Spatial dynamics for varying effective diffusivity. Phytoplankton
biomass field (columns 1 and 3) and wavenumber spectra (columns 2 and 4) for
n = 100 at time t = T} + T, after initial integration of length 77 = 5,000 days to
remove transients and additional integration of length 7% = 500 for calculation of

diagnostics for € € [0.02,0.029] d~*. Figure title numbers indicate value of .
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Figure 3.11: Spatial dynamics for varying effective diffusivity. Phytoplankton
biomass field for (columns 1 and 3) and wavenumber spectra (columns 2 and 4)
n = 100 at time t = T} + T5, after initial integration of length 77 = 5,000 days to
remove transients and additional integration of length 7% = 500 for calculation of

diagnostics for € € [0.03,0.039] d~*. Figure title numbers indicate value of .
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Figure 3.12: Spatial dynamics for varying effective diffusivity. Phytoplankton
biomass field for (columns 1 and 3) and wavenumber spectra (columns 2 and 4)
n = 100 at time t = T} + T5, after initial integration of length 77 = 5,000 days to
remove transients and additional integration of length 7% = 500 for calculation of

diagnostics for € € [0.04,0.049] d~*. Figure title numbers indicate value of .
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Figure 3.13: Spatial structure diagnostics as a function of effective diffusiv-
ity. Cluster size measures c,(¢) (black) and ¢, (¢) (red) and gradient measure g(¢)
for n = 100 at time t = T} + 15, after initial integration of length 77 = 5000 days
to remove transients and additional integration of length 75 = 500 for ¢ € [0, 0.05]

d~!. Frequency spread o(e) is shown for reference (dotted).
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Figure 3.14: Spatial structure as a function of effective diffusivity. Cluster
measures ¢, (¢) (black) and ¢, (e) (red) scaled by grid-cell length-scale [(g) for n = 100
and ¢ € [0,0.05] d~ .
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Figure 3.15: Distribution of frequencies w; ; as a function of coupling strength ¢ for

n = 100. Figure title numbers indicate value of ¢.
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Figure 3.16: Checking transition to frequency-locking. Calculation of fre-
quency disorder o for € € (0.0175,0.0225) d~! for length of integration Ty = 5000
days (dotted line) and 7} = 20000 days (solid line) for n = 100.
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Figure 3.17: Impact of boundary conditions. Phytoplankton biomass and stan-
dard deviation o of population frequencies as a function of coupling strength ¢ at
time ¢ = 5000 days after integration from homogenous initial conditions for n = 100
with doubly-periodic boundary conditions. o(g) for the same system with no-flux
boundary conditions is shown for comparison. Figure title numbers indicate value

of . Colour scale is as in Figures 3.7 to 3.12.
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3.4 Dependence on model resolution

Following on from the previous section, we now consider the system from a different
angle. Suppose we have a particular ocean region for which we wish to simulate
plankton dynamics. In modelling this region, the spatial resolution chosen for the
simulation may be decided by a number of different factors such as available com-
puting power or the spatial resolution of observed data which we hope to reproduce.
By fixing the domain size L of the lattice of interacting plankton populations and
varying the number nxn of grid-cells, we can investigate how the behaviour of the
system changes as the spatial resolution is increased.

Instead of fixing n and varying the effective diffusivity € so that the grid-cell
spatial scale and hence total domain length effectively varies, we now fix the domain
size and consider varying the grid-cell length-scale [. As before, we consider the
spatial mesoscale so that [ varies from 1 km to 100 km. With this in mind, and in
order to prevent the simulations becoming too computationally expensive, a domain
size of 512 km is chosen. The number of grid-cells nxn is then given by nxn = % X %,
covering a range of whole? grid-cells [5x5,500x500] grid-cells.

The domain size of 512 km was chosen for computational reasons. A domain size
larger than 512 km leads to a larger number of grid-cells when considering a spatial
resolution of 1 km than can be integrated in a reasonable length of time. Equally,
a smaller domain size leads to too small a number of grid-cells when considering a
spatial resolution of 100 km.

For each simulation with a particular number of grid-cells nxn, we use the
empirial Okubo relationship to set the coupling strength e (%) so that again ¢ €
(0,0.05] d~! and the uncoupled case € = 0 d™! is included for completeness. As in
the previous experiment, a mismatch spread A = 5% is applied to the phytoplankton

growth rate. Each simulation requires n x n phytoplankton growth parameter values

2Note that the domain length 512 km was also originally chosen to be consistent with some
modelling work by A. P. Martin (personal communication); it was hoped to make some comparisons
between that work and the present results. Although this line of research was not pursued, the
domain length of 512 km rather than 500 km was retained and is accurately reported. This makes

no difference to the results and merely leads to non-integer grid-cell length-scales.
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a; ;. The random mismatch values are not the same for all simulations, however,
since a larger value of n x n calls for a larger number of mismatch values. These are
generated for each simulation using the same integer seed for the random number
generator and consequently, for each ny > ny, the first n; x n; values of {a;;} for
n = ny will be composed of the full set of {a;;} of n = nl; the remaining n3 — n?
will be “new”. Hence each simulation differs from the last not only in the number
of grid-cells and resultant spatial resolution but also in the underlying set of natural
frequencies (which are always uniformly distributed). The consequences of this will
be discussed in Section 3.5.

As before, we have a number of diagnostic tools to give a clear picture of how
changing the spatial resolution of the 512 km x 512 km model changes the kind of
structure and synchronous effects exhibited.

Figure 3.18 shows how the spread of population frequencies and phase order
parameter vary with n. For reference, the accompanying subplots indicate how the
grid-cell length-scale [ = % and corresponding coupling strength e, set as a function
of [ according to Okubo (1971), vary with n.

The cluster measures c,(n) and ¢,(n) in numbers of grid-cells, the cluster mea-
sures ¢;(n) - | and ¢, (n) - | scaled by the grid-cell length-scale | = 5% km and the
gradient measure g(n) are plotted with varying n in Figure 3.19, with frequency
spread o shown as a dotted line for reference.

Figures 3.20 to 3.24 show final time-step spatial phytoplankton biomass and
corresponding power spectra for each value of n, where the length of integration is
5,000 days to remove transients and a further 500 days for calculation of diagostics,
as in the previous section. In the previous section the length of the domain was

L according

equal to the length-scale corresponding to each value of € € [0,0.05] d~
to Okubo (1971) relationship, multiplied by the 100 grid-cells; that is, I € [1, 100]
km multiplied by 100. Here, the domain is of a fixed length, so that each of the
lattice plots shown in these figures is of equal area.

Finally, to explain the patterns seen in Figures 3.20 to 3.24, Figure 3.25 shows

how the frequency spread varies across the full range of ¢ € [0,0.05] d~* for n = 20,

n = 50, n = 80 and n = 140. The values of ¢ (5%) set according to Okubo (1971), as
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used in the calculations shown in Figure 3.18, are indicated by dashed lines. These
plots are analogous to Figure 3.6 from the previous section, where we had n = 100.
We see the same general shape of profile for each value of n for which the whole
range of € has been considered, as described in detail in the previous section. It is
clear that the value of € given by the Okubo relationship dictates which region of
this profile is occupied by the dynamics for a given n when the domain length is
fixed.

Using all this information together to understand how changing the spatial reso-
lution affects the synchronous properties of the simulation of this fixed area, we see

that there are essentially three regions of system-level dynamics.

e n < 20: near frequency-locking; domain-scale structure; no phase-
locking. For very low n (n < 20), the low values of ¢ in Figure 3.19 indicate
near frequency locking of the ensemble but the spatial plots in 3.20 clearly show
that it is not fully phase-locked since there is a wide variation is phytoplankton
biomass values. Spatial structure is large, with a peak in the power spectra
at the domain-scale frequency. There is no distinct clustering: the cluster
measure is equal to approximately 3 in this region and the gradient measure
is low, apart from at n = 5 where the very small number of grid-cells may
have led to a misleading result.

The (e,0) curve given in Figure 3.25 for n = 20 shows why this is so: the

512

55 km puts the

coupling strength fixed according to grid-cell length-scale | =

dynamics into a frequency-locked region.

e 20 < n < 290: either frequency-locking or disorder possible; domain-
scale structure or clustering. For middle values of n (20 < n < 290), the
system alternates between two distinct states, always with a sharp transition

between the two.

For most n in this range, the length-scale dependent coupling strength has
pushed the dynamics into a desynchronised region, with frequency disorder
o =~ 20% and no phase synchrony. An example of this is given in Figure 3.25
for n = 50. Note also that the dynamics for n = 100, as described in detail in
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the previous section, occupy this region when L = 512 km, since ¢ (%) ~ 0.01

(see Figure 3.6).

Within these non-frequency-locked parameter regions, there is a consistent
increase in the cluster measures ¢, (n) and ¢,(n) grid-cells with n, indicating
an increase in the number of grid-cells occupying a typical cluster, although
the corresponding cluster size c-l decreases (see Figure 3.19). Spatial structure
in these regions is small-scale, with clusters of size 3 to 10 grid-cells (40 km
to 20 km) and sharp transitions between them, as shown by the high gradient
measure values; g(n) ~ 0.7 — 1.0 (Figure 3.19).

These desynchronised parameter regions are interspersed with regions of frequency-
locking, with o ~ 0. Figure 3.18 shows n = 140 to occupy one of these fre-
quency locked intervals, and the full (¢,0) curve shown in Figure 3.25 explains
why this is the case, since the value of coupling &(I) set according to grid-cell

512

length-scale [ = 35 km is in the frequency-locked region.

The size of spatial structure seen in these frequency locked regions is much
larger than in the desynchronised regions, with high values of ¢, (n) and ¢,(n)
around 20 grid-cells or 70 km and low values of g around 0.5 (Figure 3.19).
The spectra for these regions have peaks at the domain wavenumber (Figures

3.20 to 3.22).

Near transitions where increasing n moves the dynamics between the two states
of (i) small-scale structure and frequency disorder and (ii) the large-scale struc-
ture and frequency-locking, we can see coexisting distinct areas of each scale
of structure. For example, in Figure 3.21 we have large-scale structure for
n = 150 and a combination of small and large for n = 160. As seen in the
previous section, this is due to the need for longer integration times for tran-
sients to disappear near to unstable regions where we move from one type of

dynamics to another.

The jumps in type of behaviour as n is varied between n = 20 and n = 220
region are caused by the interaction of three different factors. In general,

an increase in n leads to an increase in the strength of coupling required for
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frequency locking. We saw this for identical oscillators in Chapter 2 and it is
hinted at again in the (g, o) curves for various n shown in Figure 3.25, although
not conclusively (because there are other factors at work here too, which have
not yet been discussed - see Section 3.5). However, the value of ¢ used in the
simulation is set according the grid-cell length scale [ = % and it is seen in
Figure 3.18 that this coupling strength increases with n. Hence the increase
in number of grid-cells, which in general makes it harder for the system to

synchronise, is in competition with the increase in coupling strength.

If these were the only two factors involved, we hypothesis that a critical number
of grid-cells n, would exist such that ¢ (ni) = epr(ne) so that for n < n. we
would see one type of ensemble behaviour (small-scale clustering) for n >
n. we would see another type of behaviour (frequency-locking; domain-sized
structure). In other words, for n. the two influences would be in balance. This
assumes that only one point of intersection between the curves e ( L) (as set

by Okubo (1971)) and epr(n) exists.

The confounding third factor, which prevents us from determining the shape of
the curve epr(n) is the variability in the natural frequencies of the individual
grid-cells, as given by the mismatch values selected at random from a uniform
distribution. It has been seen (Osipov and Sushchik, 1997) that changing the
particular arrangement of natural frequencies which have the same probability
distribution can alter the synchrony thresholds and hence emergent structure
of a simulation. Osipov and Sushchik (1997) found that a larger strength
of coupling was required to fully synchronise a chain of N oscillators with
natural frequencies monotonically increasing along the chain than a chain with
randomly distributed natural frequencies. They argue that in the case of
ordered frequency mismatch the “pull” exerted on every oscillator by its two
nearest neighbours is in opposition; it is sped up by the oscillator to the right
and slowed down by the oscillator to the left, increasing the coupling required

to overcome the natural frequency disorder.

n > 290: frequency-locking; increasing phase-locking; domain-scale

structure. Forn > 290 grid-cells, the ensemble finally remains in the frequency-
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locked region, with ¢ ~ 0 (Figure 3.18), large-scale structure and no well-
defined clusters (Figure 3.19). High values of R, near 1, indicate an increase
in the degree of phase-locking (Figure 3.18). This tells us that, of the compet-
ing influences of increasing number of grid-cells and increasing corresponding

coupling strength, the increase in ¢ ultimately has the stronger influence.

There is a rapid decrease in ¢, and ¢, as n increases past 290, after which they
stay at a value of 3 grid-cells (around 10 km) for increasing n. This indicates
small-scale variability, but the low and decreasing values of ¢ < 0.5 imply
a gentle gradient across locally-synchronised regions rather than well-defined
clusters, so that the ¢ measure is unreliable (Figure 3.19). The wavenumber

spectra for n > 290 indicate domain-scale dominant structure.

The amount of phase order increases with increasing number of grid-cells. This
is seen in the phytoplankton biomass snap-shots of Figures 3.23 and 3.24 as
an increasingly monotonous lattice plot and narrow spectrum, although some
small-scale variability is still observed, accounting for the ¢, = ¢, = 3 grid-cells
value. Evidently, for our domain of L = 512 km the largest coupling strength,
which, set according to Okubo (1971), corresponds to the smallest grid-cell
length-scale and therefore largest number of grid-cells into which the domain

may be divided, is insufficient to pull the ensemble into full phase-locking.

We see that, as the number of grid-cells and resultant spatial resolution is in-
creased, the final transition to frequency-locking occurs at higher values of €. In
other words, if this final transition occurs at € = epy, then, in general, epy, increases
as n increases. This increase in the the difficulty of achieving full synchrony as n is
increased is offset by the concurrent increase in effectively diffusive coupling strength
(1) as the resultant grid-cell length-scale [ km decreases. In general, we have seen
from the eventual permanent frequency-locking seen for large values of n in Figure
3.18 that the latter effect has the stronger influence on the ability of the system to
synchronise.

For the domain considered here of L = 512 km, the system is not able to fully
phase-lock. Bearing in mind our conclusions above, we hypothesize that it may be

possible for a simulation with a smaller domain size to fully phase lock within the
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range of grid-cell length-scales considered here. This is because the largest value of
(1) corresponds to the smallest grid-cell length-scale, which here is fixed as 1 km.
On the other hand, the corresponding number of grid-cells n x n = % X % decreases
with the size of domain L and we have seen that a smaller number of grid-cells
is able to synchronise more readily. We therefore suggest that for a small enough
domain size and correspondingly small number of grid-cells, the value of coupling
(1) for I = 1 km would be sufficient to phase lock the ensemble.

The factor not yet fully explored is the impact of the underlying disorder in
parameter values. We will see that the particular values of € at which the transitions
between the different types of system behaviour occur vary widely with the particular
choice and arrangement of the natural frequencies of the populations. It is the
resultant variability in the critical values of € that causes the system with fixed
domain size and varying spatial resolution to “jump” back and forth between the

two discrete system states (as seen in Figure 3.18) as n is increased.
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Figure 3.18: Diagnostics for L=512 km as a function of number of grid-
cells. Spread in frequencies o (solid line) and order parameter R (dashed line) as

a function of number of grid-cells, n x n, for L = 512 km. Showing also coupling

strength ¢ (L) and grid-cell length-scale | = L.
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Figure 3.19: Spatial structure diagnostics as a function of number of grid-
cells. Cluster measures c,(n) (black) and c,(n) (red) (top panel), cluster measures
scaled by grid-cell length-scale (middle panel) and gradient measure g(n) (bottom
panel) for L = 512 km and n € [5,500]. Dotted line shows spread in frequencies

o(n) for reference.
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Figure 3.20: Spatial structure for varying spatial resolution. Phytoplankton
biomass in gC m™2 (columns 1 and 3) and wavenumber spectra (columns 2 and /)
after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n € [0, 70].
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Figure 3.21: Spatial structure for varying spatial resolution. Phytoplankton
biomass in gC m™2 (columns 1 and 3) and wavenumber spectra (columns 2 and /)
after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n € [80, 170].
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Figure 3.22: Spatial structure for varying spatial resolution. Phytoplankton
biomass in gC m™ (columns 1 and 8) and wavenumber spectra (columns 2 and 4 )
after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n € [180, 270].
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Figure 3.23: Spatial structure for varying spatial resolution. Phytoplankton
biomass in gC m™2 (columns 1 and 3) and wavenumber spectra (columns 2 and /)
after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n € [280, 370].
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Figure 3.24: Spatial structure for varying spatial resolution. Phytoplankton
biomass in gC m™ (columns 1 and 8) and wavenumber spectra (columns 2 and 4 )

after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n € [380, 500].
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Figure 3.25: Examples of spread in frequencies as a function of effective

diffusivity for different numbers of grid-cells. o(¢) for n=20, 50, 80 and 140.
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3.5 Investigation of variability

Motivated by the findings of the previous section, we examine the influence of the
particular choice and spatial arrangement of natural frequencies from the same uni-
form distribution on the ability of the ensemble to synchronise.

In order to isolate the influence of the arrangement of the frequency disorder from
the two influences of the changing number of grid-cells and concurrently changing
the effective diffusivity, we fix the number of grid-cells and look at the full range

of mesoscale diffusivity e € [0,0.05] d~*

as in Section 3.3. The spread in natural
frequencies is fixed at A = 5% and the n x n phytoplankton growth rate values
{a;;} are selected at random with a uniform distribution, as before. The random
number generator requires an integer seed J, so that the same J gives the same set
of mismatch values for a fixed n. Here, we vary J from J = 1 to J = 100 to give 100
sets of mismatch values, all with the same probability distribution. Each of these
sets is then used in the integration of the phytoplankton dynamics and the resultant
o(e) is calculated for € € [0,0.05]. Hence we have an ensemble of 100 simulations
differing only in the particular choice and arrangement of natural frequencies.

For computational speed, it has been necessary to restrict this investigation to
n = 10 since carrying out 100 different simulations for a lattice of greater than
10 x 10 populations is very time-consuming.

Figure 3.26 shows the calculations of the spread in frequencies ¢ as a function
of coupling strength between grid-cells e for each of the 100 simulations. Although
this figure indicates the large amount of variability in the profiles, there are some
noteworthy common features. For each simulation, the initial part of the profile,
for low € in the range approximately 0 to 0.001 d=!, shows an increase in frequency
spread to about double the natural frequency disorder o(e = 0) and a subsequent
sharp decrease in frequency spread at € ~ 0.002 d!, i.e. at the same value of ¢
for each profile. Qualitatively, with some variation in the actual values of o(g),
this part of the profile, which was also seen for n = 100 in Section 3.3 (Figure
3.6) and in Section 3.4 for n =20, 50, 80 and 140 (Figure 3.25), is the same for
all simulations. For ¢ > 0.002 the results diverge into two distinct types of profile:

(1) as seen in the previous sections, there is a bursting out of frequency-locking at
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some value of € into a desynchronised region with values of o around 20% and an
eventual rapid return to frequency-locking at some coupling strength epy, or, (2)
the system remains frequency locked. Some illustrative examples of this are given in
Figure 3.27. All simulations become permanently frequency-locked for sufficiently
high effective diffusivity, i.e. epr < 0.05 d"1V J.

Clearly, whether or not a region of desychronisation occurs, and for what range of
€ it persists, depends on the particular mismatch values used in the simulation. The
coupling strength ery at which there is a transition to permanent frequency-locking
ranges from 0.002 to 0.023 d=!. Why is there such a spread in r; when we have
a spread in phytoplankton growth rates of A = 5% and with the same probability
distribution for each simulation? Firstly, we note that although A = 5% for each
simulation, the resultant spread in natural frequencies, as given by o(e = 0) varies
from 2.3% to 2.9% with J (see Figure 3.28). We might hypothesise that a spread in
natural frequencies at the lower end of this range would lead to a profile without a
desynchronised region, since presumably populations with smaller natural frequency
discrepancy would synchronise more readily. However, the scatter plot of natural
frequency disorder against maximum frequency disorder obtained for £ € [0, 0.05]
(see Figure 3.29) shows this hypothesis to be false. Here we clearly see the two
distinct profiles as two discrete clusters, one at a maximum o value around 20% and
one at around 5%, but there is no obvious correlation between natural frequency
disorder and whether the system exhibits the desynchronised region or not. Hence,
it is the actual arrangement of natural frequencies of plankton populations in the
lattice that determines the synchronous properties. This could be investigated fur-
ther by applying a specified spatial arrangement of frequencies, e.g. monotonically
increasing across the domain, a line of research not explored further in the present
study.

We see that the system may exhibit a range of behaviour for a fixed value of the
coupling strength ¢ depending on the set of growth rate parameters {a;;}. For the
system of 10 x 10 populations, if we fix the domain size L then we fix the effective
diffusivity according to the grid-cell length-scale [ given by %. Consider the four
cases of L = 512 km, L = 150 km, L = 100 km and L = 50 km, giving grid-cell
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length-scale [ = 51.2 km, [ = 15 km, [ = 10 km and [ = 5 km, respectively, and,
by the empirical Okubo relationship between length-scale and effective diffusivity,
e = 0.0017 d71, e = 0.0049 d7!, ¢ = 0.007 d7! and € = 0.012 d~!, respectively.
The values of € are indicated by red lines in Figure 3.26. Histograms of the values
of o calculated at these values of ¢ for each of the 100 simulations of 10 x 10
populations are shown in Figure 3.30. These results show that the kind of spatial
dynamics observed in the simulation will depend upon the particular values and
arrangement of natural frequencies. In particular, for a domain size of L = 150 km,
L =100 km or L = 50 km, sometimes frequency-locked dynamics with large-scale
structure (see previous section) and sometimes desynchronised dynamics with small-
scale clustering will result (Figure 3.30), even though the domain size L, number of
populations n x n, parameter mismatch A, the choice of biological model F' used to
represent plankton dynamics and the strength e of interaction between populations
are all fixed. As the domain size is decreased, the corresponding ¢ increases and

hence the dynamics are more likely to inhabit a frequency-locked region.
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Figure 3.26: Ensemble runs. Frequency disorder o as a function of coupling
strength ¢ in d=! for n = 10 for 100 different sets of phytoplankton growth parameter
values a;; for i,7 = 1,..., 10, uniformly distributed on an interval of width A = 5%
centred on ag. Each set seeded by a different integer J. Red lines indicate the value
of effective diffusivity for grid-cell length-scale [ = 1—L0 for four different domain sizes:

L =512 km, L =150 km, L = 100 km and L = 50 km (see Figure 3.30).
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Figure 3.27: Typical profiles. Frequency disorder o as a function of coupling

strength ¢ for n = 10 for four different seeds.
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Figure 3.28: Natural frequency disorder. Histogram of the spread in natural
frequencies (¢ = 0) for 100 simulations with n = 10. For each simulation, a
different integer seed is used in the random number generator to obtain the set of

phytoplankton growth parameters a; ;.
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Figure 3.29: Relating maximum to natural frequency spread. Relationship
between maximum frequency spread o for € € [0,0.05] and natural frequency spread
o(e = 0) for an ensemble of 100 simulations with n = 100 and a different integer seed
used in the random number generator to obtain the set of phytoplankton growth

parameters a; ; for each simulation.
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Figure 3.30: Histogram of frequency disorder o calculated at ¢ = ¢(L/10) for a
domain size L = 512 km, L = 150 km, L = 100 km and L = 50 km (see Figure

3.26) for 100 differently-seeded simulations with n = 10.
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3.6 Discussion

A basic model of a lattice of n x n interacting non-identical plankton populations,
each represented by the same NPZ model but with random mismatch in the phy-
toplankton growth rate parameters used in the biological model, has been used to
investigate several aspects of the dynamics of a spatially-varying plankton distribu-
tion. To summarise these experiments: the effect of varying effective diffusivity has
been considered by fixing the number of grid-cells and varying the coupling strength
between grid-cells; the effect of model resolution has been considered by fixing the
domain size L km x L km and varying the number of grid-cells and therefore grid-
cell spatial scale; and the effect of variation in the parameter disorder values has been
explored by carrying out a number of simulations with differently-seeded random
mismatch values. The experiments have shown that altering the strength of interac-
tion, number of grid-cells, domain size or underlying parameter disorder alters the
emergent structures of the plankton simulation.

An increase in the strength € of grid-cell interaction does not automatically lead
to an increase in the observed synchrony, even when all other factors mentioned
are kept fixed. Remarkably, interaction between the populations has been shown
for intermediate coupling strengths to increase the frequency disorder by an order
of magnitude compared with the natural frequency disorder. This system state
manifests as small-scale local synchrony (clustering).

Eventually, as the coupling strength e is increased, intuitive behaviour returns
and the system locks into frequency synchronisation at a critical value of coupling
€ = epr. Importantly, although there is a gradual increase in cluster size within
the intermediate coupling regime, the transition to domain-sized structure is not
continuous, but alters abruptly at the threshold coupling strength. This system
state is characterised by a frequency disorder close to zero, domain-scale structure
and gentle gradients in plankton biomass between grid-cells.

As various factors such as number of grid-cells or choice of parameter mismatch
values are varied, the phytoplankton distribution flips discontinuously between these
two qualitatively different states.

On the other hand, once frequency locking is achieved and persists, the transition
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to full phase-locking is in general slow and steady, with increasingly homogeneous
spatial dynamics as € is increased or number of grid-cells decreased.

There are consequences of these results for ocean modelling studies. Once again
we encounter the problem of model resolution: this section has shown that the
emergent features of a modelled plankton distribution can alter discontinuously at
a threshold number of grid-cells.

Where this threshold occurs has been shown to vary with the competing in-
fluences of increasing n and the corresponding increase in e set according to the
empirical relationship between length-scale and effective diffusivity (Okubo, 1971),
plus the variability caused by the mismatch in underlying population dynamics,
causing intermittency in which kind of emergent structure is observed. Altering the
spatial resolution of a spatially varying model of plankton distribution could there-
fore have unpredictable consequences for the model results and, importantly, for the
conclusions and predictions drawn from them.

It has been seen that even when domain size, number of grid-cells, biological
model, and size and probability distribution of parameter mismatch spread are all
fixed, a huge amount of variability in the synchronisation thresholds can still be
caused by changing the particular arrangement of natural frequencies. Clearly this
is problematic for biological modelling of spatially varying distributions, but what
might this study tell us about the impact of natural variability on plankton distribu-
tions in the ocean? We can deduce that for the same amount of observed variability
in a particular biological parameter, the cause and therefore spatial arrangement of
this variability might differ, in which case the synchronous effects observed might
also differ. Taking the case of spatial variability in the phytoplankton growth rate,
such variability might be caused by, for example, varying water temperatures or
underlying differences in species composition. If the former were true then we could
imagine a monotonic horizontal temperature gradient across the area of ocean, lead-
ing to an ordering in the resultant natural frequencies across the gradient. The latter
case might lead to a more disordered arrangement of frequency mismatch. The re-
sults of this section would lead us to expect the observed synchronous effects to

differ between these two cases. Further work could look at arranging the frequency
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disorder across the lattice to investigate these two cases.

Near to the observed sharp transitions in system behaviour, we have seen that
very long transients are required for steady-state dynamics to become established.
Even away from the transition points, the transient integration times are long; here
we have used 5000 days. The necessity of these long transient times brings into
question the relevance of the steady-state dynamics observed here to real-world
ocean observations. In reality, the structure caused by these synchrony effects would
be constantly disturbed by advection so that steady-state dynamics may be unable
to establish themselves. The transient behaviour observed in, for example, Figure
3.3, where in some cases we have an interesting coexistence of the two different
scales of dynamics, might be more relevant to real-world plankton dynamics in an
ever-shifting ocean. Note, however, that much of the steady-state spatial structure
emerges early on in the integration, e.g. emergence of coherent clusters by ¢ = 1000
days (Figure 3.3). Additionally, although the biological model parameters have
been selected from a region of parameter space leading to oscillatory dynamics, they
have not been “tuned” to give a particular period of oscillation, and so the long

integration time is not a reason to discount the results.
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Chapter 4

Influence of advection

4.1 Introduction

In this chapter, we investigate the robustness of our previous results to the inclu-
sion of stirring of populations at spatial scales larger than the grid-cell. A simple
representation of advection allows us to gain insight into the relevance of our results
to real-world plankton distributions. To this end, a linear shear is applied to the
lattice of populations, causing advection of rows of populations with respect to one
another. In all other aspects, the distribution is modelled as in Chapter 3, with nxn
non-identical populations each represented by the NPZ model of Steele and Hender-
son (1981) and interacting via a nearest-neighbour coupling of strength . Since the
advection causes the rows to become misaligned, however, the nearest-neighbours
of each plankton population alter with time. This will be fully described in Section
4.2.

This set up will be used to investigate how the results of the previous chapter
ae modified by shear of increasing strength. These results will be more relevant to
regions of high shear in the ocean, whereas the previous chpater was representative
of regions of negligible shear.

Specifically, we determine the influence of advection on the ability of the lattice of
populations to stably sychronise and upon the emergent spatial structure observed.
By varying the rate of shear in the simulation, we can explore the importance of

advection, with respect to the other biological and physical processes governing
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evolution of the populations, in setting this structure.

4.2 Methods

As in previous chapters, we consider a lattice of n x n non-identical plankton pop-
ulations, each represented by the NPZ model SH81 (Steele and Henderson, 1981).
Biological model parameters are as in Chapter 3 with a random mismatch of spread
A = 5% applied to the default phytoplankton growth rate ag to obtain phyto-
plankton growth rates making a uniform distribution centred on aqg. Previously,
interaction between populations was provided by a nearest neighbour effective dif-
fusivity term. In this chapter, we retain the effective diffusivity and introduce an
explicit advection, resulting from a constant shear

u
o = —K
(where the positive y-axis is defined as distance from the top edge of the lattice)
with & in units of d=! so that the velocity « in the z-direction varies linearly with
Y.

In our spatially discrete model, this means that row ¢ moves at a velocity
K x [ km d™!

with respect to row 7+ 1, where [ is the grid-cell lengthscale, so that in implementa-
tion the velocity profile is a step function. This is shown schematically in Figure 4.1.
Arbitrarily, we set u = 0 for the top row; the choice of stationary row may be varied
by adding a suitable constant velocity to each row. Boundary conditions are singly
periodic to allow leaving advected material to re-enter the area at the opposite edge;

no-flux boundary conditions are imposed at the top and bottom edges.

4.2.1 Implementation

The code used for the integration of the mixing-only system considered in Chapter
3 was adapted for the addition of shear. The implementation of the described shear
requires that the rows of the lattice travel at different speeds and therefore become
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misaligned. At each time-step of length dt days, each row ¢ is shifted with respect
to row ¢ + 1 by a distance p x [ where 0 < p < 1. This is shown schematically in
Figure 4.2. The fraction of a grid-cell moved at each time-step is set according to

the required rate of shear:

~Ou pl/dt p

"Toy T 1 Tt
= p =K xdt.

The misalignment between rows causes the population v; ; in row ¢ and column
j to interact with a varying set of at most six nearest neighbours rather than the
usual fixed four neighbours (see Figure 4.2b). This is accounted for in the model
by varying the proportion of coupling with neighbouring populations as described
below.

In the case of no shear, we have (for non-boundary populations) the coupling
term

€ (Vi1 + vijo1 — Wi + Visa + Vi)

representing material exchanging between population v; ; and each of four nearest
neighbours. Since the inclusion of shearing causes rows to become misaligned, for
x > 0 there is now an additional interaction with populations v;—; ;1 and v; 41 ;41

and the coupling term becomes a time varying function

ef(A) vicr i+ (A®) =Dy + i —4vij+vij+ (AL — 1) vigr; + A () vigr 1]

for rows ¢ =1,...,n and columns j =1, ... n, with
t 1
At) = — d| -
0 =| () )
so that
0<A(t) < 1.

Every % time-steps, that is at a time ¢ such that é mod (%) = 0, the rows

are misaligned with respect to the original lattice by a whole grid-cell, e.g. grid-
cell (i,j) is now “under” grid-cell (i-1,j-1) rather than grid-cell (i-1,j) (see Figure
4.2¢). When this occurs a re-indexing step is applied to reflect the new position

that each population occupies in the lattice, e.g. population (i,j) is re-labelled (i,j-1)
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(see Figure 4.2¢). Populations v ;, for columns j = 1,...,n, are considered to be
stationary and other rows are advected to the left proportionally according to the
rate of shear. Any parcels of water leaving the lattice at the left hand edge re-enter
at the right-hand edge and the populations are re-labelled according to their new
position. The dynamics v; ;(t) therefore represents an Eulerian time-series describing
the biological evolution of the area of ocean bounded by the original lattice. Figure
4.2 shows this schematically.

The populations are taken to advect with the parcels of water, so that a re-
indexing of the phytoplankton growth rate a; ; associated with each population v; ;
is also applied, resulting in a time-dependent arrangement of growth rates and hence
natural frequencies.

Additionally, a Lagrangian time-series is recorded describing the evolution of
the biology in the parcel of water orginally labelled v; ; and now occupying a time-
dependent position on the lattice. Accordingly, population frequencies, calculated
as described in Chapter 3, are calculated using the Lagrangian time-series. This
assumes that the spatial variability is related to local properties of the water. This
may be true, for example, if the difference in phytoplankton growth rates relected
small differences in species composition between populations advected with the wa-
ter. In some cases, it might be more appropriate to consider the variability as fixed
in space, for example if the variability were generated by varying bathymetry of a
latitudinal temperate gradient.

Spatial dynamics are plotted using the Eulerian time-series.

4.2.2 Verification

To check for errors in the modified code, a number of tests were carried out.

Firstly, the advection scheme was checked by setting
e =0,
i.e. no mixing between grid-cells, and,
F;j(Nij, Pyj, Zij) = 0V i, j,

122



i.e. no evolution of the biology (see Section 3.2). For ease of visualisation, the
initial conditions are set to be uniform in the y-direction and linearly varying in the
a-direction so that at time ¢ = 0 a 2D plot of the lattice exhibits vertical stripes (see
Figure 4.3). The system is integrated forward in time. As expected, the Lagrangian

time-series for each population is unvarying:
Vi (t) = Vi,j(()) Vi

so that lattice plots with the value in grid-cell (i,j) representing the phytoplankton
biomass of the parcel of water originally occupying position (i,j) are seen to preserve
the initial conditions (see Figure 4.3 columns 1 and 3). Lattice plots of the Eulerian
phytoplankton biomass time-series are seen to shift by one grid-cell with respect to
one another after each % time-steps (see Figure 4.3 columns 2 and 4), indicating a
correct implementation of the required shear.

Secondly, the frequency calculations, made by recording peaks in the Lagrangian
phytoplankton biomass time-series, were checked by again setting ¢ = 0 but now
allowing the biology to evolve. As expected, it was found that the standard deviation
of frequencies o(t) = o(t = 0) = o(e = 0) V ¢, i.e. the population frequencies, in
the absence of any modifying interaction, remained at the natural frequencies for all
time.

All other aspects of the code are unchanged and were checked prior to use in the

simulations in Chapter 3 (see Section 3.2).

4.3 Results

For all simulations we set n = 100 to give a grid of 100 x 100 non-identical popula-
tions. Each population v; ; evolves according to (i) the internal dynamics represented
by the NPZ system of Steele and Henderson (1981) with a 5% spread in the phy-
toplankton growth rates, (ii) interaction provided by effective diffusivity e and (iii)
advection of the water parcel as a result of shear of rate k. Simulations are carried
out for five different rates of shear, with the rate of shear remaining fixed through-
out each simulation. For each value of shear, the effective diffusivity is varied in the

range € € [0,0.05] d™! as in Chapter 3. The system is integrated forward in time for
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5000 days from synchronised initial conditions to allow transient behaviour to decay
and for an additional 500 days to calculate the frequency and phase disorder and
spatial statistics, as described in Section 3.2. As in Chapter 3, we present results

for the phytoplankton components only (see Section 3.3.1).

4.3.1 No shear

For comparison, we first carried out a simulation with zero shear and varying effec-
tive diffusivity, i.e. Kk =0 d~! and € € [0,0.05] d~! with singly-periodic boundary
conditions. Figure 4.4 shows final phytoplankton biomass for the lattice and Figure
4.5 shows the calculated frequency disorder o as a function of effective diffusivity
€. As expected from the tests carried out in Section 3.3.3 on sensitivity to different
boundary conditions, the results are as in Section 3.3 where the simulation differs
only in having no-flux boundary conditions at all edges, but the results are nev-
ertheless presented here for ease of comparision with the case of non-zero shear.
To briefly recap, as ¢ is increased from 0 d=!, for which the populations oscillate
independently and asynchronously, the system level dynamics enter several distinct
states. For e € (0,0.001], there is a small increase in the frequency disorder and
small-scale local clustering; for e € (0.001,0.002], the system is nearly frequency-
locked with large clusters; for e € (0.002,0.02] there us a large region of frequency
disorder a magnitude larger than the natural frequency disorder and persistent small-
scale clustering; for ¢ > ep;, = 0.02, the system is frequency locked and approaches,

although never fully achieves, phase locking as ¢ is increased.

4.3.2 Shear Kk >0

Simulations were carried out for five different rates of shear: x = 0.001 d7!, k =
0.005 d', Kk = 0.01 d7 !, kK = 0.05 d"! and kK = 0.1 d™!, representing a change of
three orders of magnitude from smallest to largest shear rate. These values cover a
range typical of surface ocean shear (Sundermeyer and Price, 1998; Abraham et al.,
2000). As described above, the emergent dynamics of the lattice are determined by
the influences of the biological dynamics, the effective diffusivity and the advection

caused by shear, each of which has an associated time-scale: Txnpz, T. and Ty,
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respectively. Typz ~ 100 days is the period of oscillation of the biological dynamics.
T. = é ranges from infinitely slow up to 20 days since ¢ € [0,0.05] d~!. Since this
chapter is concerned with an investigation of the relative influence of advection,
values of k have been chosen to give advection time-scales values T} slower than,
equal to and faster than Typz and 7.

The phytoplankton biomass fields in gC m~3 at time ¢ = 5000 days are shown in
Figures 4.6 to 4.10 for k = 0.001d™!, k = 0.005 d™ %, k = 0.01 d™ %, Kk = 0.05 d~! and
k= 0.1 d7!, respectively, for ¢ € (0,0.05]. The biomass plots for e = 0 are omitted
because in the absence of effective diffusivity the plankton populations do not in-
teract and therefore do not alter their natural oscillations and are merely advected
as a result of the shearing, resulting in the same grainy-structure of independently
oscillating populations for any rate of shear.

Figures 4.6 to 4.10 indicate that under the influence of shear the system can
retain the coherent structure (local synchrony, or clustering) caused by the effective
diffusivity for all rates of shear considered. As in the no-shear case, small-scale
clustering persists for increasing e until a critical value ep; at which the whole
ensemble frequency-locks and the spatial pattern is domain-sized.

This is seen more clearly in Figure 4.11, which shows the frequency disorder o
and phase coherency parameter R as a function of effective diffusivity for the five
different rates of shear. The general pattern is as described fully in Section 3.3.2,
with a region of frequency disorder indicated by high values of ¢ that increase from
o(e = 0) = 2.5% to as much as 20%, followed by an abrupt shift to frequency locking
signalled by o ~ 0%, although the small region of near frequency-locking observed in
the case of zero shear for small € no longer occurs. For shear rates of k =0.001, 0.005,
0.01, 0.05 and 0.1 d=t, epz, = 0.035, 0.041, 0.044, 0.027 and 0.019 d—!, respectively.
However, unlike in the zero shear case, for 0 < k < 0.1 d~! the system “jumps” in
and out of frequency-locking for values of effective diffusivity lower than the final
critical gy, in a similar fashion as seen in Figure 3.4 for the case of zero-shear with
a fixed domain length and varying spatial resolutions. This is seen in Figure 4.11
as a series of changes in system state from o ~ 0% to o ~ 20% and in the biomass

plots in Figures 4.6 to 4.10 as a succession of transitions from small-scale clustering
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to domain-scale synchronisation and back again as ¢ is increased. For example, for
x = 0.001 d=!, biomass plots for ¢ = 0.03 d~! and € = 0.034 d~! show clustering
but for e = 0.032 d™! the system is frequency-locked (Figure 4.6).

In all cases, for € > epp the order parameter R tends rapidly to 1 (see Figure
4.11) and the corresponding biomass plots become increasingly homogeneous as the
ensemble phase locks. Although the populations are phase-locked, the variation
in colour seen in, for example, the phytoplankton biomass field for ¢ = 0.05 d~!
for k = 0.05 d~! (Figure 4.9), indicates that the amplitudes of oscillation across
the domain remain unsynchronised. The result is that the plots vary in uniformity
depending upon the phase of oscillation at the time ¢ = 5000 days when we record the
values of phytoplankton biomass; when recorded during the trough the plots appear
monochrome and when during a peak the difference in amplitude is manifested as
increased variation. This is why the biomass plot for ¢ = 0.05 d~! for x = 0.05d! in
Figure 4.9 shows bands of high and medium high phytoplankton biomass whereas the
plots for lower values of effective diffusivity are uniform in colour. This phenomenon
has been seen in nature, e.g. the hare-lynx dynamics studied by Moran (1953), and
in modelling studies of population dynamics, e.g. Blasius and Stone (2000).

Figures 4.6 to 4.10 show clearly that, in comparison with the zero shear case,
the inclusion of shear alters the spatial characteristics of the clustering seen in the
ranges 0 < € < epr. The advection does not, as might be expected, break up regions
of local synchrony; there is still clear evidence of persistent coherent structure. Even
for the largest shear (Figure 4.10; k = 0.1 d™!), the clusters are not simply stripes
of uniform phytoplankton biomass aligned with the x-direction. This indicates that
the spatial positioning of the clusters is non-stationary (as observed also in Section
3.3.1), since otherwise the effect of shear would be to narrow and stretch the clusters
until they reached a steady-state as a horizontal stripe.

In fact, for the lowest values of shear, x = 0.001 d=! and x = 0.005 d!, the
clustering observed in Figures 4.6 and 4.7 is indistinguishable by eye from the kind
of structure seen in the zero shear case in Figure 4.4. The shear rate is too slow
to impose directionality upon the clustering generated by the effectively diffusive

coupling. For higher values of shear, K = 0.01 d™%, k = 0.05 d™! and x = 0.1 d™!
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(Figures 4.8 to 4.10), there is a definite directionality to the spatial structure. With
respect to the no-shear simulation, the clusters are narrowed and stretched by the
shearing and are increasingly aligned with the x-axis, but are still non-stationary.

The change in structure that can be seen by eye is well supported by the cluster
measures ¢, (¢) and ¢,(e) (as defined in Section 3.2.3) shown in Figure 4.12, with o
given as a dotted line for reference. The gradient measure g(¢) is shown in Figure
4.13, again with o for reference. As explained in Section 3.2, the cluster measure
only has clear meaning for a high value of the gradient measure ¢, indictating well-
defined clusters separated by sharp gradients in plankton biomass values. For all
values of shear considered here, Figure 4.13 shows that g > 0.7 for ¢ < epy and
drops sharply to g < 0.4 at the transition to frequency-locking.! Hence we only
discuss the behaviour of the cluster measures in the desynchronised region defined by
€ < €, i.e. where small-scale clustering dominates. The succession of transitions
in behaviour observed close to ep;, will be discussed in Section 4.3.3.

For £ = 0.001 d™! and £ = 0.005 d7!, ¢,(¢) = ¢,(¢) for all € < epp, confirm-
ing that the clusters are not skewed in a particular direction. There is a steady
increase in ¢, and ¢, from 1 to 8 grid-cells with increasing e, interrupted by the
aforementioned “jumps” to the frequency-locked state.

For k = 0.01 d7%, ¢,(¢) > ¢,(¢) V € < epr, with ¢, increasing from 1 to 10
grid-cells and ¢, increasing from 1 to 8 grid-cells with increasing €. The difference
|c; — ¢y| between the cluster size in each direction increases with increasing . The
same trend is seen more markedly for increasing shear. For x = 0.05 d ™!, ¢, increases
from 1 to 14 grid-cells, whilst ¢, increases from 1 to only 5 grid-cells, and for k = 0.1
d™!, ¢, increases from 1 to 15 grid-cells, whilst ¢, increases from 1 to only 4 grid-cells
with increasing €. These numbers show a trend of increasing stretching of clusters
in the x-direction and narrowing in the y-direction, as expected from the shearing
applied to the ensemble.

From the results seen here, it is impossible to say conclusively whether the addi-

tion of shearing aids or hinders synchronisation of the ensemble as there is no clear

!There is some deviation from this pattern for x = 0.1 d~!, for which Figure 4.13 shows values
of g = 0.8 for ¢ = 0.024 > epy. Since the corresponding plankton biomass plot in Figure 4.10

shows almost fully homogeneous dynamics, it is not clear why the gradient measure is so high.
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pattern in the value of ep; with increasing k. We can, however, say conclusively
that the inclusion of realistic levels of shear alters the spatial characteristics of the

ensemble whilst allowing coherent clusters to persist.

4.3.3 Variability

The rapid transitions between the states of frequency disorder and frequency-locking
as € approaches epy, from below, as seen in Figure 4.11 and in the biomass plots
in Figures 4.7 to 4.10 and described above, can be understood in the context of
the findings of Chapter 3. In Section 3.3, we found that for a fixed number of
populations with a particular set and spatial arrangement of phytoplankton growth
rates {a;;} and resultant natural frequencies {w;;} there exists a single point of
transition to frequency locking at a value of effective diffusivity eg, (see Figure 3.6).
In Section 3.5, it was found that ep;, varies widely depending on the particular set
and arrangement of natural frequencies, even when the growth rate parameter values
are selected from the same uniform distribution (see Figure 3.26).

In the experiment carried out here, we have a fixed set {a;;} of growth rates.
However, the imposed shear causes advection of the plankton populations and ac-
companying growth rates, leading to a rearrangement of the growth rates on the
lattice, i.e. the particular spatial arrangement of the natural frequencies varies with
time. For each of the n spatial arrangements possible for a lattice of n x n popula-
tions, we know from Chapter 3 that there exists a particular, most likely different,
epr, in the case of no shear. It is the variation in this ep; with time, caused by
the variation in spatial arrangement of natural frequencies, that causes the irregular
transitions approaching €py, observed in Figure 4.11.

We illustrate this by carrying out some simple experiments. These are set up
exactly as above but, for speed of performing ensemble runs, we set n = 10 to
give a lattice of 10 x 10 populations. For a fixed set of phytoplankton growth rate
parameters {a; ;}, for shear rates of Kk = 0 d7!, k = 0.001 d™! and £ = 0.1 d7,
calculations of the frequency spread o as a function of effective diffusivity ¢ were
made for each of the ten possible advection-induced initial spatial arrangements of

natural frequencies.
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Figure 4.14 shows the calculations of ¢ as a function of ¢ for each of the ten
spatial configurations of the set {a;;} for zero shear, so that in this case the im-
posed arrangement of natural frequencies is constant in time. The resultant gy, is
seen to range from min(err) = 0.002 d™! to max(epz) = 0.016 d~', each spatial
arrangement leading to a specific epy,.

Figures 4.15 and 4.16 shows the same calculations for £ = 0.001 d~! and x = 0.1
d™1, respectively. For non-zero shear, the initially-imposed spatial arrangement of
natural frequencies varies with time, at a rate dependent upon the value of k.

For ease of comparison, Figure 4.17 shows the calculations of ¢ as a function
of & for each different spatial arrangement on the same plot for k = 0 d~! (top),
k= 0.001 d~! (middle) and k = 0.1 d~' (bottom).

With a shear of rate k = 0.001 d~!, for each initial configuration of populations,
there is a range of € (roughly coincident with the range ey, € [0.002,0.016] d~! found
above for £ = 0 d™1), for which the ensemble dynamics move in and out of frequency
locking with increasing ¢ before eventually permanently frequency locking. This is
the same behaviour as described in Section 4.3.2 for n = 100; the rearrangement
of populations, and corresponding natural frequencies, with time alters the value
of effective diffusivity € at which frequency-locking would occur in the absence of
advection and causes a succession of transitions within this range.

However, this effect is dependent on the rate of shear. In this case, the time scale
of advection T, = % = 1000 days, which, within the range of effective diffusivities
e € [0.002,0.016], gives T,, > T. and T,, > Tvpz. Hence, the dominant effect on the
ensemble dynamics is the effective diffusivity, with the system being pulled towards
frequency locking at a value of € varying with the time-dependent configuration of
populations.

For k = 0.1 d!, we have T,, = 10 days, so that T,, < T. for the full range of
effective diffusivity and T,, < Tvpz. In this case, Figures 4.16 and 4.17 indicate that
the ensemble is frequency locked for e > 0.002 d~! for all initial spatial configura-
tions of the populations; the faster shear actually alters the ability of the ensemble
to synchronise, possibly by increasing the network of influence of each population.

In other words, advection at this rate allows each population to be coupled with a
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greater number of populations on the relevant time-scale and therefore effectively al-
ters the coupling geometry of the system and enhances the mixing. Hence, advection
increases the ability of the lattice of populations to synchronise their dynamics.
Significantly, these results also show that advection of populations has the po-
tential to reduce the simulation-to-simulation variability, described in Section 3.5,
caused by variability in the particular values and spatial arrangements of natural

frequencies for different random selections of the parameter mismatch values.

4.4 Discussion

In this chapter we have investigated the impact of advection, at scales larger than the
model grid-cell, on the system of locally-coupled non-identical plankton populations
studied in Chapter 3. The evolution of the populations is determined by the internal
biological dynamics, the interaction caused by the nearest-neighbour coupling and
advection caused by the shear.

It has been found that many of the features seen for the mixing-only system, as
described in Chapter 3, are retained under the influence of shear. The properties
of synchrony exhibited by the system as the effective diffusivity is increased from
0 to 0.05 d=! are broadly similar, with the nonintuitive increase in the spread in
population frequencies as the coupling strength is increased from zero, leading to
a region of small-scale clustering and frequency disorder, followed by a shift to
frequency-locking at a value of effective diffusivity epy.

Unlike in the case of zero-shear, however, there is not one single value of ¢ at
which the transition to frequency-locking occurs; rather, the system “jumps” rapidly
between the two states before eventually frequency-locking permanently at € = epp.
This “jumping” results from the rearrangement of the populations caused by the
shear; since the populations are assumed to advect with the parcels of water, the
spatial arrangement of natural frequencies varies with time. epy has been shown
to vary with the arrangement of natural frequencies, resulting here in a number of
transitions in and out of frequency-locking before permanent frequency-locking at

E =¢FL-
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We have also seen that this “jumping” does not occur for the fastest shear
considered here, k = 0.1 d7!, for which only one transition to frequency-locking
occurs, as in the mixing-only case. We have shown that this is caused by the
rapid rearrangement of the populations, allowing previously separated populations
to interact on time-scales faster than those of either the biology (of period 120
days) or the effective diffusivity (time-scale > 50 days). The net effect of this fast
shear is to alter the coupling geometry, increasing the range of influence of each
population and “ironing out” the variability in £z usually caused by altering the
spatial arrangement of the natural frequencies. This effect is not seen for slower rates
of shear as the time-scale of interaction of separated populations is slower than the
effective diffusivity.

Here, advection of the populations is caused by a simple shear in one direction.
The resulting time-varying coupling geometry allows each population to interact
with the oscillators occupying rows above and below the population on a time-scale
governed by the rate of shear. A more realistic representation of the stirring of the
upper ocean flow would allow each population to come into contact not only with
populations in rows above and below, but potentially with all other populations in
the region, again on a time-scale governed by the rate of stirring. In the limit of
fast stirring with respect to the mixing time-scale, the system could act as though
globally coupled, as found by Neufeld et al. (2003). Clearly, the particular spatial
arrangement of the natural frequencies would then become irrelevant, removing
the variability in the behaviour of the system caused by the underlying frequency
disorder seen in Section 3.5. The mitigation of this problematic aspect of the zero-
shear system by the inclusion of shear is encouraging for biophysical modelling of
the upper ocean. However, the abrupt transition from small-scale clustering to
domain-scale synchronisation still occurs when shear is included.

For € > epy, the ensemble approaches phase-locking far more rapidly than was
seen in the zero-shear case. Additionally, the maximum value of frequency spread
o attained in the frequency disorder regime for each value of the shear is smaller
than that attained in the no-shear case. These two facts suggest that the shear does

increase the ability of the system to synchronise but no clear relationship between
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err, and the rate of shear x has been found because of the “jumping” phenomena
discussed above.

Although the system still exhibits well-defined clustering within the region of
frequency disorder defined by ¢ < epp, the shear has the potential to alter the
spatial characteristics of this clustering. For a rate of shear x slow with respect to
the timescale of effective diffusivity e, the structure remains isotropic; sub-grid-cell
level mixing is the dominant process. For k fast with respect to ¢, the shearing
draws the clusters out in the direction of flow, causing stretching in the x-direction
and narrowing in the y-direction, as indicated by the cluster measure results in
Figure 4.12. The resulting clusters are elongated and increasingly aligned with the
horizontal as the rate of shear is increased.

We conclude that shear appears to aid synchronisation by extending the network
of influence of each population in the lattice, but that the strength of this effect
depends crucially upon the rate of shear, with respect to the other processes affecting
the evolution of each population.

It would be interesting to explore the impact of a more realistic representation
of upper ocean physical flow. Given the range of complex phenomena possible in
fully turbulent models, this is beyond the scope of this project. Nevertheless, it is
in keeping with the philosophy of the whole investigation, which has attempted to
build “step-by-step” from an idealistic to a more realistic biophysical representation,
to begin with this simple representation of advection caused by shear; the work
described here covers all the basic components of more realistic flows and therefore

provides a good foundation upon which to build.
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Figure 4.1: Schematic showing velocity u(y). Length of arrows indicates the rate of

flow relative to neighbouring rows.
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Figure 4.2: Schematic of model implementation of advection caused by shear of rate

k > 0, causing shifting of each row ¢ with respect to row i+ 1 by a fraction p € (0, 1)

at each time-step.
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Figure 4.3: Testing the model. Eulerian (columns 1 and 3) and Lagrangian
(columns 2 and 4) time-series for n = 100 for no mixing (¢ = 0) and no evolution of
biology (F(N;;, P, Z; ;) = 0 Vi, j for i,j = 1,...,100) for shear rate x = 0.1 d~*.
Titles indicate time in days. Initial conditions of N;;, P;; and Z; ; are constant in

the y-direction and linearly varying in the x-direction, for ease of visualisation.
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Figure 4.4: No shear. Phytoplankton biomass for n = 100 at time ¢ = 5000
days after integration from homogeneous initial conditions. Boundary conditions
are periodic at the left and right edges; no-flux at the top and bottom. Shear rate

k =0 d~!. Figure titles indicate value of € in d .
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Figure 4.5: No shear. Frequency disorder o as a function of effective diffusivity e
for n = 100 at time ¢t = 5000 after integration from homogeneous initial conditions.
Boundary conditions are periodic at the left and right edges; no-flux at the top and

bottom. Shear rate kK = 0 d—!.
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Figure 4.6: Shear 0.001 d~!. Phytoplankton biomass for n = 100 at time ¢ = 5000
days after integration from homogeneous initial conditions. Boundary conditions
are periodic at the left and right edges; no-flux at the top and bottom. Shear rate

k= 0.001 d~!. Figure titles indicate value of € in d=*.
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Figure 4.7: Shear 0.005 d~!. Phytoplankton biomass for n = 100 at time ¢t = 5000
after integration from homogeneous initial conditions. Boundary conditions are
periodic at the left and right edges; no-flux at the top and bottom. Shear rate

k = 0.005 d~!. Figure titles indicate value of € in d=*.
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Figure 4.8: Shear 0.01 d!. Phytoplankton biomass for n = 100 at time ¢t = 5000
after integration from homogeneous initial conditions. Boundary conditions are
periodic at the left and right edges; no-flux at the top and bottom. Shear rate

x = 0.01 d=!. Figure titles indicate value of ¢ in d~.
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Figure 4.9: Shear 0.05 d!. Phytoplankton biomass for n = 100 at time ¢ = 5000
after integration from homogeneous initial conditions. Boundary conditions are
periodic at the left and right edges; no-flux at the top and bottom. Shear rate

x = 0.05 d~!. Figure titles indicate value of ¢ in d~.
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Figure 4.10: Shear 0.1 d~!. Phytoplankton biomass for n = 100 at time ¢ = 5000
after integration from homogeneous initial conditions. Boundary conditions are
periodic at the left and right edges; no-flux at the top and bottom. Shear rate

k = 0.1 d=!. Figure titles indicate value of ¢ in d~.
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Figure 4.11: Frequency and phase disorder. Frequency disorder o (solid) and
order parameter R (dashed) as a function of effective diffusivity ¢ in d=! for different

rates of shear k for n = 100.
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Figure 4.12: Spatial diagnostics. Clustering measures ¢, (black) and ¢, (red) in
numbers of grid-cells as a function of effective diffusivity e for different rates of shear

k. n = 100. o(e) shown by dotted line for reference.
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Figure 4.13: Spatial diagnostics. Gradient measure g as a function of effective
diffusivity € in d™! for different rates of shear k. n = 100. o(e) shown by dotted

line for reference.
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Figure 4.14: Zero shear: x = 0 d~!. Frequency spread o as a function of effective
diffusivity € in d=! for a lattice of 10 x 10 plankton populations in each of the

10 possible initial spatial arrangements (under advection) of phytoplankton growth

rates {a;;}.
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Figure 4.15: Small shear: x = 0.001 d~!. Frequency spread o as a function of
effective diffusivity € in d=! for a lattice of 10 x 10 plankton populations in each
of the 10 possible initial spatial arrangements (under advection) of phytoplankton

growth rates {a;;}.
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Figure 4.16: Large shear shear: x = 0.1 d~!. Frequency spread o as a function
of effective diffusivity e in d~! for a lattice of 10 x 10 plankton populations in each
of the 10 possible initial spatial arrangements (under advection) of phytoplankton

growth rates {a;;}.
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Figure 4.17: Comparison between rates of shear. Frequency spread o as a
function of effective diffusivity € in d=! for a lattice of 10 x 10 plankton populations
for all of the 10 possible initial spatial arrangements (under advection) of phyto-
plankton growth rates {a;;} for x = 0.0 d™' (top), x = 0.001 d~* (middle) and
k=0.1d"" (bottom).
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Chapter 5

Conclusions

The overall aim of the study has been to explore the factors determining the ability
of a modelled distribution of plankton to exhibit synchronised dynamics, and the
kind of emergent spatial structure resulting from such synchronisation. The study
has used a metapopulation dynamics approach to modelling a distribution of oceanic
plankton; a region of ocean has been taken to comprise a number of plankton popu-
lations, interacting through the stirring and mixing action of the flow. The methods
of synchronisation theory have been applied to various configurations of this frame-
work to gain insight into how spatial structure emerges in biophysical simulations
of the surface ocean. Throughout the study, we have progressively increased the
complexity and realism of the simulations, in order to isolate the effects of each
factor considered.

Chapter 2 took the simplest possible case - an interacting ensemble of identically-
represented plankton populations. The populations were coupled by a nearest-
neighbour flux (representing stirring and mixing at scales smaller than the grid-cell)
of varying strength . Our primary concern was to determine the influence of the
specific biological representation in each grid-cell and the number of populations on
the strength of coupling e, required for persistent synchronisation to occur. We did
this by calculating the rate of expansion of perturbations away from synchrony for
a number of simulations using different plankton models and varying the number of
populations and the coupling strength.

It was found that two kinds of steady-state system-level dynamics are possible
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as ¢ is varied: dynamics alter from fully asynchronous (spatially patchy) for ¢ < e,
to fully synchronised (spatially homogeneous) for ¢ > ¢.. It was found that ¢, can
be predicted from the number of grid-cells and from knowledge of the dynamical
properties of an isolated individual population, as characterised by the largest Lya-
punov exponent of the isolated plankton population model. e, increased with the
number of populations and also with the largest Lyapunov exponent of the plankton
population model.

Hence, the emergent spatial dynamics of the simulation were shown to depend
on the biological representation at grid-cell level, the biological model parameters
(which together determine the largest Lyapunov exponent of the individual popu-
lation) and the number of grid-cells comprising the ensemble. Consequently, it is
possible for system-level spatial dynamics of biological-physical models to change
discontinuously as one of these model parameters is altered.

We have therefore shown the sensitivity of emergent spatial dynamics to the
details of the biological representation at grid-cell level in the case of identical os-
cillators. In reality, spatial variation is likely to occur in biological and physical
properties such as mixed-layer depth, temperature and species composition of the
modelled area of ocean. Therefore, in Chapter 3 we improved the realism of the
simulation by incorporating spatial variation in the biological dynamics. The same
underlying plankton ecosystem model was used for the representation of each pop-
ulation but now with spatial variation in a phytoplankton growth parameter. This
spatial variation in model parameter values leads to a spread in the natural frequen-
cies of oscillation of the populations.

We used this set-up to explore the ability of a 2D lattice of populations to exhibit
sychronised dynamics as a function of the strength of mixing between populations
and the number of populations (and hence spatial resolution) of the simulation.
We also investigated the kind of resulting spatial struture. We related the strength
of mixing € to the grid-cell length-scale according to the empirical Okubo 1971
relationship between length-scale and diffusivity.

For a lattice of a fixed number of these non-identical populations, it was found

that increasing the strength of mixing from zero (uncoupled populations) leads to
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some surprising and unintuitive results. Instead of gradually drawing the whole
ensemble into synchrony, a range of coupling strength was found for which the spread
in population frequencies increased ten-fold in comparison with the natural spread
in frequencies. Within this regime, clustering of populations into persistent pockets
of local synchrony was found to occur. These clusters are not fixed in space or time,
but constantly shift and merge whilst maintaining their statistical properties. With
large enough mixing, the ensemble was eventually found to fully frequency-lock,
but, within the obervationally-constrained range of coupling considered, never fully
phase-lock.

Next a fixed size of spatial domain was divided into a variable number of grid-
cells n, so that the spatial resolution and corresponding length-scale dependent
mixing strength of the simulation varied accordingly. The same states of asynchrony,
clustering and frequency-locking were found to emerge, dependent once more upon
the number of grid-cells. With increasing number of populations, and therefore
spatial resolution, the ensemble dynamics were found to first enter the region of
increased frequency disorder and local clustering of populations. With increasing
number of grid-cells, the ensemble dynamics were frequency-locked. Again, full
phase-locking was not achieved for any value of n.

A succession of transitions between the clustering and frequency-locking states
for intermediate values of n revealed a startling dependency of the ensemble dy-
namics on the particular values and spatial arrangement of population natural fre-
quencies, even for a fixed range of variability. Further investigations showed that
the critical coupling strength for frequency-locking of the lattice varied widely with
the particular selection of parameter mismatch values, even if drawn from the same
distribution, and also that the required coupling was not predictable from the spread
in natural frequencies resulting from the parameter mismatch.

Up to this point, we had only considered the effects of stirring and mixing at sub-
grid-cell scale. In reality, the flow is likely to affect the distribution at all scales, so
in Chapter 4, the robustness of the previous results to the influence of an advecting
flow was investigated by applying a linear shear to the simulation. The rate of shear

was varied within an oceanographically realistic range and the mixing strength ¢ was
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again varied to determine the coupling required for stably synchronised dynamics.

The unintuitive coupling-induced frequency disorder for intermediate values of €
was again found to occur, with system level dynamics being asynchronous, cluster
synchronised or frequency-locked as a function of the level of mixing. The well-
defined clusters observed for simulations without advection persisted under the in-
fluence of shear but were found to be increasingly narrowed and stretched in the
direction of advection with increasing rate of shear. As described above, these clus-
ters are not stationary in time or space, but shift and evolve under the influence of
the biology and mixing, retaining their statistical characteristics.

The rearrangement of populations caused by the advection of rows of populations
leads to a time-dependent arrangement of population natural frequencies. As sug-
gested by the results on variability from Chapter 3, this leads to a time-dependency
of the level of mixing required to frequency-lock the ensemble. The consequences
of this were found to depend on the rate of shear. For small shear with respect to
the time-scales of the evolution of the biology and the rate of mixing, the result
was a succession of transitions between clustering and frequency locking within the
intermediate range of mixing. For large shear with respect to the time-scales of the
other governing processes, the advection enhanced the mixing between populations
by increasing the network of influence of each population and effectively altering the
coupling geometry of the lattice, thus enabling the ensemble to synchronise at much
lower values of €.

To summarise, we have shown that the manifestation of synchronisation effects

in a simulated distribution of plankton depends upon the following.

e The strength of coupling between populations. In general, we have seen
that there exists a critical level of coupling above which the system is stably
synchronised. That many of the simulations were only able to frequency-lock
and not fully phase-lock within the range of coupling considered shows that
this level of synchrony may not be achievable within an oceanographically real-
istic range, however. Additionally, we have shown that the effect of increased
coupling is by no means monotonic; intermediate strengths of coupling can

increase the mismatch between populations.
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In this study, the coupling has been taken to represent stirring and mixing be-
tween populations at spatial scales smaller than the grid-cell, but further work
could explore additional or alternative coupling mechanisms such as migra-
tion between populations, for example by a more motile zooplankton species
or a nomadic higher predator, taking inspiration from studies of terrestrial
population dynamics. The results from the present study would be directly

applicable to and would provide a firm basis for such further work.

The number of populations or grid-cells, or, equivalently, the spa-
tial resolution of a modelled domain of fixed area. A stronger degree of
coupling is required to synchronise a larger ensemble of populations. Equiv-
alently, increasing the spatial resolution of a model increases the strength of
coupling at which synchronised dynamics will occur. We have shown this for
both a chain and lattice of populations so it is a reasonable assumption that
the results will generalise to any shape of domain being modelled, although,
in a further departure from terrestrial metapopulation studies, it would be
interesting to verify the occurrence of synchronisation phenomena in three-

dimensional, depth-resolved simulations.

The grid-cell biological representation. We have shown clearly that the
emergent spatial properties of the simulation depend upon, and are in some
cases predictable from, the dynamical properties of the individual plankton

populations as determined by the choice of biological model and parameters.

Disparities between populations. The ability to synchronise depends upon
whether the interaction between populations can counteract the inherent “dif-
ference” between populations, whether provided by the internally generated
desynchronising influence of chaotic dynamics or, in the case of oscillatory dy-
namics, by differences in their natural frequencies. We have shown that, for
the case of identically-represented populations, “more chaotic” populations re-
quire stronger coupling for stable synchrony. Note, however, that there is some
indication that chaos can aid synchronisation in an ensemble of non-identical

populations (Hillary and Bees, 2004a), a case not directly investigated here.
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We have also seen that the critical coupling for synchrony is particularly sen-
sitive to how the spatial variation in frequencies is arranged in the modelled
domain. Here, we have considered a fixed value for the range in natural fre-
quencies. Further studies should look at how large an inherent spatial dispar-
ity can still be overcome by realistic levels of coupling between populations to
lead to homogeneous dynamics; a comparison with the level of natural varia-
tion expected in key plankton properties in the ocean would indicate the scale

at which such synchronisation effects could be expected in nature.

Stirring of populations. This influences the geometry and strength of cou-
pling between populations. The details of the flow can therefore affect the
spatial disorder of populations, leading to a time-dependency in the emergence
of synchronised dynamics. Potentially, the network of interaction of each pop-
ulation is increased by the stirring, enhancing the mixing in the system and

allowing synchronisation at lower coupling strengths.

Importantly, synchronisation phenomena such as clustering and frequency-
locking have been shown to persist under the disturbing influence of advection,
although their manifestation may be altered, e.g. clusters become stretched
and narrowed along the direction of flow. A natural extension of this work
would be to more closely approximate a time-varying surface ocean flow by
examining the emergence of synchronisation in a more complex flow such a

field of interacting eddies.

The results of this study have a number of consquences for the coupled biological-

physical modelling of plankton dynamics, which we summarise here.

Altering model parameters, such as the strength of coupling or number of grid-

cells, can discontinuously alter the spatial properties of a model. For example,

increasing the spatial resolution, and therefore number of grid-cells, of a simulation

can alter system level dynamics from non-synchronised to synchronised, or from

clustering of populations to full synchrony. The presence of this discontinuity is

of concern if such a model is to be used to study length-scales of plankton patchi-

ness since increasing the model resolution could obliterate the patches. Researchers
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should therefore check the sensitivity of their results to changes in spatial resolution
and the other influences on synchronisation that have been listed above.

This may be particularly important if models are being used to estimate or make
predications of biogeochemical properties such as primary production. In Chapter 2,
we made some simple calculations of how total primary production differed between
synchronised and non-synchronised simulations, but more work should focus on
examining this impact if we are to have faith in predictions from coupled biological-
physical models.

Modellers should also be aware of the dependence of model results on the specific
grid-cell parameterisation of biology. In many cases, plankton ecosystem models may
be selected for use in biological-physical models without a clear idea of their math-
ematical properties. More care should be taken since this has been shown here to
determine model behaviour. From a more positive point of view, this study has con-
firmed the possibility of predicting system-level behaviour from the grid-cell biology
and the model physics. With further work, it is possible that an understanding of
the mathematical properties of the biological model dynamics, including the amount
of spatial variation, taken together with the physical flow, perhaps characterised in
terms of its effect on the network of interaction between populations and the strength
of mixing in time and space, could be used to predict system level spatial dynamics.
This knowledge of model behaviour built up from the model components may aid
in understanding the behaviour of complex biological-physical models.

We showed in this study that model results can display an alarming sensitiv-
ity to apparently small changes in model parameters. This was illustrated by the
large range of possible critical coupling strengths for frequency locking of a lattice
of non-identical populations, even when the biological model, the number of popu-
lations, the spread in parameter mismatch, the initial conditions and the boundary
conditions are all fixed and the simulations differ only in the particular selection of
parameter values from a fixed distribution, or even just in the spatial arrangement
of the same set of parameter values. These results should urge modellers to perform
careful sensitivity analysis of results to the choice of parameterisation of spatial vari-

ariability in models. However, later results showed the mitigation of some of this
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variability by strong stirring with respect to the time-scales of mixing and evolution
of the biology.

That we have shown synchronisation effects to persist under a range of increas-
ingly realistic simulations provides confidence that synchronisation theory can ex-
plain some of the patchiness structure seen in plankton in the ocean. One possible
line of future work would be to increase the realism of the simulation by studying the
synchronisation of populations under the influence of a more realistic fully turbu-
lent flow. Alternatively, for a particular region, a map of satellite altimeter-derived
horizontal current velocities could be used to characterise the region in terms of the
coupling strengths between populations at different points in space and time. With a
suitable representation of the biological dynamics of the region, making comparisons
with satellite ocean colour chlorophyll data, such a set up could be used to further
explore how emergent structure in real plankton populations can be characterised
in terms of synchronisation phenomena.

Most importantly, this study has shown that persistent spatial heterogeneity,
characterised by local clustering of populations and an increase in frequency disor-
der, results from what intuitively should be an homogenising influence; mixing of
the plankton populations actually increases the difference between populations and
creates statistically stable patchiness. Further work should look further at how the
length-scales of these clusters relates to scales of patchiness seen in empirical data.
These unexpected synchronisation effects have provided one possible answer as to
how tiny planktonic organisms are able to manifest large coherent strutures under

the homogenising influence of mixing and stirring by the flow.
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