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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS, SCHOOL OF

OCEAN AND EARTH SCIENCES

Doctor of Philosophy

APPLICATION OF SYNCHRONISATION THEORY TO PLANKTON

PATCHINESS

by Emma Jane Guirey

This study applies a metapopulation dynamics approach to modelling a distri-

bution of plankton by representing a region of ocean as an ensemble of plankton

populations interacting through the stirring and mixing effects of the flow. The

methods of synchronisation theory are applied within this framework to gain insight

into emergent spatial structure in biophysical simulations.

The manifestation of synchronisation, including statistically stable local cluster-

ing of populations, frequency-locking or phase-locking of the entire ensemble and

fully synchronised dynamics, is found to depend upon: the biological model used;

the strength of mixing between populations; the number of populations or, equiva-

lently, spatial resolution of the modelled region; the level of mismatch between and

spatial arrangement of population natural frequencies; the strength of stirring of the

ensemble at spatial scales larger than the grid-cell. The study therefore highlights a

number of biophysical modelling parameters determining the properties of emergent

spatial structure in simulations of surface ocean biological dynamics.

This study shows that persistent spatial heterogeneity (patchiness) can result

from what intuitively should be a homogenising influence: mixing can increase the

level of disorder between the plankton populations. Furthermore, the work shows

that synchronisation effects occur generically under a range of simulation scenarios,

giving confidence that synchronisation theory can explain some of the spatial struc-

ture, or ‘patchiness’, observed in plankton distributions, and providing one possible

answer as to how populations of planktonic organisms maintain coherent spatial

structures under the mixing and stirring action of the oceanic flow.

i



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Plankton patchiness . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Significance of plankton patchiness . . . . . . . . . . . . . . . 9

1.2.3 Modelling plankton distributions . . . . . . . . . . . . . . . . 10

1.2.4 Synchronisation theory . . . . . . . . . . . . . . . . . . . . . . 12

1.2.5 Application of synchronisation theory to population dynamics 13

1.2.6 Application of synchronisation theory to plankton patchiness . 17

1.3 Aims and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Identical Oscillators 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 The biological models . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Single grid-cell dynamics . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Ensemble dynamics . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.4 Bounding the critical coupling in parameter space . . . . . . . 33

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Single grid-cell . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Two-patch stability . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 n-patch stability . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Critical coupling strength for synchrony . . . . . . . . . . . . 38

ii



2.4.2 Critical spatial scale for plankton patchiness . . . . . . . . . . 40

2.4.3 Impact on biophysical modelling . . . . . . . . . . . . . . . . . 42

3 Non-identical oscillators. 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 Diagnostic tools . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Spatial structure diagnostics . . . . . . . . . . . . . . . . . . . 63

3.3 Dependence on strength of interaction . . . . . . . . . . . . . . . . . 66

3.3.1 Temporal evolution . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.2 Steady-state dynamics . . . . . . . . . . . . . . . . . . . . . . 73

3.3.3 Boundary conditions and initial conditions . . . . . . . . . . . 79

3.4 Dependence on model resolution . . . . . . . . . . . . . . . . . . . . . 93

3.5 Investigation of variability . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 Influence of advection 119

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.1 No shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.2 Shear κ > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.3 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 Conclusions 150

iii



List of Tables

2.1 Biological Model Parameters. Ranges are taken from Edwards

and Brindley (1996), wherein values from various studies are collated. 52

2.2 Chaotic apex. Parameter values giving maximum largest Lyapunov

exponent λmax for each biological model. Parameter units are as in

Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Biological model parameters. Note that the model has currency gC

m−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Summary of diagnostic statistics. . . . . . . . . . . . . . . . . . . . . 66

iv



List of Figures

2.1 Schematic of the Nutrient-Phytoplankton-Zooplankton model of Steele

and Henderson (1981) with arrows indicating flow of material between

ecosystem components. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Schematic of the Phytoplankton-Herbivore-Carnivore model of Hast-

ings and Powell (1991) with arrows indicating flow of material be-

tween ecosystem components. . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Parameter space. Largest Lyapunov exponent λ in d−1 calculated

across the chaotic windows for herbivorous zooplankton growth effi-

ciency parameters α (SH81 in black; SH81b in red) and c1 (HP91).

All other parameters are held at those giving maximum largest Lya-

punov exponent λ. Dotted lines indicate the parameter values giving

λmax. The calculations are shown only across the chaotic regions of

parameter space, since λ = 0 for equilibrium and limit cycle regions. . 44

2.4 Model dynamics. Phase space attractors and temporal evolution in

days of state variables in units of gC m−3 d−1 for SH81 (left), SH81b

(middle) and HP91 (right). Parameter values are set to those giving

maximum largest Lyapunov exponent λ in d−1. Transient dynamics

not shown. Key: blue - nutrients, green - phytoplankton, black -

herbivorous zooplankton, red - carnivorous zooplankton. . . . . . . . . 45

v



2.5 Critical coupling strength. Calculated largest normal Lyapunov

exponent Λ in d−1 as a function of coupling strength ε in d−1 for

models SH81 (black), SH81b (red), HP91 restricted to suggested pa-

rameter ranges (blue) and HP91 not restricted to suggested parameter

ranges (green). Model parameters are set at values giving maximum

largest Lyapunov exponent λ in d−1. The critical coupling strength

εc is indicated by the value of ε giving Λ(ε) = 0. . . . . . . . . . . . . 46

2.6 Two-patch dynamics. Time evolution in days of the difference

between phytoplankton components P1 and P2 in gC m−3 plotted

for coupling strength ε = 0.0025 d−1 (< εc) and ε = 0.0035 d−1

(> εc) in the top and bottom panels respectively. Model used is SH81

and parameters are set at values giving maximum largest Lyapunov

exponent λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Comparison with theory of Fujisaka and Yamada (1983).

Critical coupling strength εc in d−1 plotted across chaotic window for

model SH81 phytoplankton growth parameter a in m−1 d−1. Solid

line shows directly calculated εc values and dotted line shows pre-

dicted εc according to the theory of Fujisaka and Yamada (1983), i.e.

half largest Lypaunov exponent λ. . . . . . . . . . . . . . . . . . . . . 48

2.8 n-patch chain. Critical coupling strength εc in d−1 as a function

of number of grid-cells n. Plankton dynamics in each grid-cell are

represented by SH81 model and the chain has fixed-ends. Crosses

indicate Λ in d−1 as predicted by Fujisaka and Yamada (1983). Circles

indicate experimental results for 2 to 10-patch chains. . . . . . . . . . 49

2.9 Critical coupling strength. Calculated largest normal Lyapunov

exponent Λ in d−1 as a function of coupling strength ε in d−1 for a

5-patch (dotted) and 10-patch chain (solid) of NPZ oscillators rep-

resented by SH81 (see text). Biological model parameters are set at

values giving maximum largest Lyapunov exponent λ. The critical

coupling strength for stable synchrony is indicated by Λ(ε) = 0. . . . 50

vi



2.10 Bulk properties. Time evolution in days of total primary produc-

tion (TPP) in gC m−3 d−1 for a ten grid-cell chain of SH81 oscillators

for coupling strength ε = 0 d−1 (red) and ε > εc (blue). . . . . . . . . 51

3.1 Coupling strength ε according to Okubo (1971) empirical relationship

between grid-cell spatial scale l in km and effective diffusivity in d−1. 68

3.2 Histogram of phytoplankton growth parameters ai,j and resultant nat-

ural frequencies ωi,j(ε = 0) for i, j = 1, . . . , 100. . . . . . . . . . . . . 69

3.3 Temporal dynamics. Evolution of phytoplankton biomass field

for 5,000 days from initially synchronised conditions for lattice of

100 × 100 plankton populations interacting with effective diffusivity

ε = 0.01 d−1. Figure labels indicate time in days. . . . . . . . . . . . 72

3.4 Temporal dynamics. Evolution of spatial structure for 5,000 days

from initially synchronised conditions for lattice of 100 × 100 plank-

ton populations interacting with effective diffusivity ε = 0.01 d−1,

showing phytoplankton dynamics for each Pi,j(t) for i, j = 1, . . . , 100,

cluster measures cx(t) (black) and cy(t) (red) and gradient measure

g(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 NPZ dynamics. Nutrient (N), phytoplankton (P ) and zooplankton

(Z) biomass fields in gC m−3 at time t = 5000 days after integration

from homogenous initial conditions; evolution of N (black), P (green)

and Z (red) for final 500 days of integration for the population in the

centre of the lattice (i = j = 50); and N(x), P (x) and Z(x) at

time t = 5000 for a transect across the centre of the lattice (i = 50,

j = 1, . . . , 100). Coupling strength ε = 0.01 d−1, n = 100. . . . . . . 75

3.6 Diagnostics for n = 100 as a function of coupling strength.

Frequencies ωi,j(ε) for i, j = 1, . . . , 100 (top panel), standard devia-

tion of frequencies σ (dotted line) and order parameter R (solid line)

for ε ∈ [0, 0.05] d−1 (middle panel) and a zoomed-in section of σ for

ε ∈ [0, 0.0025] d−1 (bottom panel). . . . . . . . . . . . . . . . . . . . 81

vii



3.7 Spatial dynamics for varying effective diffusivity. Phytoplank-

ton biomass field (columns 1 and 3 ) and wavenumber spectra (columns

2 and 4 ) for n = 100 at time t = T1 + T2, after initial integration of

length T1 = 5, 000 days to remove transients and additional integra-

tion of length T2 = 500 for calculation of diagnostics for ε ∈ [0, 0.0045]

d−1. Figure title numbers indicate value of ε. . . . . . . . . . . . . . 82

3.8 Spatial dynamics for varying effective diffusivity. Phytoplank-

ton biomass field (columns 1 and 3 ) and wavenumber spectra (columns

2 and 4 ) for n = 100 at time t = T1 + T2, after initial integration

of length T1 = 5, 000 days to remove transients and additional in-

tegration of length T2 = 500 for calculation of diagnostics for ε ∈
[0.005, 0.0095] d−1. Figure title numbers indicate value of ε. . . . . . 83

3.9 Spatial dynamics for varying effective diffusivity. Phytoplank-

ton biomass field (columns 1 and 3 ) and wavenumber spectra (columns

2 and 4 ) for n = 100 at time t = T1 + T2, after initial integration

of length T1 = 5, 000 days to remove transients and additional in-

tegration of length T2 = 500 for calculation of diagnostics for ε ∈
[0.01, 0.019] d−1. Figure title numbers indicate value of ε. . . . . . . 84

3.10 Spatial dynamics for varying effective diffusivity. Phytoplank-

ton biomass field (columns 1 and 3 ) and wavenumber spectra (columns

2 and 4 ) for n = 100 at time t = T1 + T2, after initial integration

of length T1 = 5, 000 days to remove transients and additional in-

tegration of length T2 = 500 for calculation of diagnostics for ε ∈
[0.02, 0.029] d−1. Figure title numbers indicate value of ε. . . . . . . 85

3.11 Spatial dynamics for varying effective diffusivity. Phytoplank-

ton biomass field for (columns 1 and 3 ) and wavenumber spectra

(columns 2 and 4 ) n = 100 at time t = T1 + T2, after initial inte-

gration of length T1 = 5, 000 days to remove transients and addi-

tional integration of length T2 = 500 for calculation of diagnostics for

ε ∈ [0.03, 0.039] d−1. Figure title numbers indicate value of ε. . . . . 86

viii



3.12 Spatial dynamics for varying effective diffusivity. Phytoplank-

ton biomass field for (columns 1 and 3 ) and wavenumber spectra

(columns 2 and 4 ) n = 100 at time t = T1 + T2, after initial inte-

gration of length T1 = 5, 000 days to remove transients and addi-

tional integration of length T2 = 500 for calculation of diagnostics for

ε ∈ [0.04, 0.049] d−1. Figure title numbers indicate value of ε. . . . . 87

3.13 Spatial structure diagnostics as a function of effective dif-

fusivity. Cluster size measures cx(ε) (black) and cy(ε) (red) and

gradient measure g(ε) for n = 100 at time t = T1 + T2, after initial

integration of length T1 = 5000 days to remove transients and addi-

tional integration of length T2 = 500 for ε ∈ [0, 0.05] d−1. Frequency

spread σ(ε) is shown for reference (dotted). . . . . . . . . . . . . . . 88

3.14 Spatial structure as a function of effective diffusivity. Cluster

measures cx(ε) (black) and cy(ε) (red) scaled by grid-cell length-scale

l(ε) for n = 100 and ε ∈ [0, 0.05] d−1. . . . . . . . . . . . . . . . . . 89

3.15 Distribution of frequencies ωi,j as a function of coupling strength ε

for n = 100. Figure title numbers indicate value of ε. . . . . . . . . . 90

3.16 Checking transition to frequency-locking. Calculation of fre-

quency disorder σ for ε ∈ (0.0175, 0.0225) d−1 for length of integra-

tion T1 = 5000 days (dotted line) and T1 = 20000 days (solid line)

for n = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.17 Impact of boundary conditions. Phytoplankton biomass and

standard deviation σ of population frequencies as a function of cou-

pling strength ε at time t = 5000 days after integration from homoge-

nous initial conditions for n = 100 with doubly-periodic boundary

conditions. σ(ε) for the same system with no-flux boundary condi-

tions is shown for comparison. Figure title numbers indicate value of

ε. Colour scale is as in Figures 3.7 to 3.12. . . . . . . . . . . . . . . 92

ix



3.18 Diagnostics for L=512 km as a function of number of grid-

cells. Spread in frequencies σ (solid line) and order parameter R

(dashed line) as a function of number of grid-cells, n×n, for L = 512

km. Showing also coupling strength ε
(

L
n

)

and grid-cell length-scale

l = L
n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.19 Spatial structure diagnostics as a function of number of grid-

cells. Cluster measures cx(n) (black) and cy(n) (red) (top panel),

cluster measures scaled by grid-cell length-scale (middle panel) and

gradient measure g(n) (bottom panel) for L = 512 km and n ∈ [5, 500].

Dotted line shows spread in frequencies σ(n) for reference. . . . . . . 101

3.20 Spatial structure for varying spatial resolution. Phytoplank-

ton biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra

(columns 2 and 4 ) after integration length 5,500 days from homoge-

neous initial conditions for domain length L = 512 km and number

of grid-cells n ∈ [0, 70]. . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.21 Spatial structure for varying spatial resolution. Phytoplank-

ton biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra

(columns 2 and 4 ) after integration length 5,500 days from homoge-

neous initial conditions for domain length L = 512 km and number

of grid-cells n ∈ [80, 170]. . . . . . . . . . . . . . . . . . . . . . . . . 103

3.22 Spatial structure for varying spatial resolution. Phytoplank-

ton biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra

(columns 2 and 4 ) after integration length 5,500 days from homoge-

neous initial conditions for domain length L = 512 km and number

of grid-cells n ∈ [180, 270]. . . . . . . . . . . . . . . . . . . . . . . . . 104

3.23 Spatial structure for varying spatial resolution. Phytoplank-

ton biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra

(columns 2 and 4 ) after integration length 5,500 days from homoge-

neous initial conditions for domain length L = 512 km and number

of grid-cells n ∈ [280, 370]. . . . . . . . . . . . . . . . . . . . . . . . . 105

x



3.24 Spatial structure for varying spatial resolution. Phytoplank-

ton biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra

(columns 2 and 4 ) after integration length 5,500 days from homoge-

neous initial conditions for domain length L = 512 km and number

of grid-cells n ∈ [380, 500]. . . . . . . . . . . . . . . . . . . . . . . . . 106

3.25 Examples of spread in frequencies as a function of effective

diffusivity for different numbers of grid-cells. σ(ε) for n=20,

50, 80 and 140. The values of effective diffusivity ε
(

L
n

)

for L = 512

km set according to the spatial resolution are indicated by dashed

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.26 Ensemble runs. Frequency disorder σ as a function of coupling

strength ε in d−1 for n = 10 for 100 different sets of phytoplankton

growth parameter values ai,j for i, j = 1, . . . , 10, uniformly distributed

on an interval of width ∆ = 5% centred on a0. Each set seeded

by a different integer J . Red lines indicate the value of effective

diffusivity for grid-cell length-scale l = L
10

for four different domain

sizes: L = 512 km, L = 150 km, L = 100 km and L = 50 km (see

Figure 3.30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.27 Typical profiles. Frequency disorder σ as a function of coupling

strength ε for n = 10 for four different seeds. . . . . . . . . . . . . . 112

3.28 Natural frequency disorder. Histogram of the spread in natural

frequencies σ(ε = 0) for 100 simulations with n = 10. For each

simulation, a different integer seed is used in the random number

generator to obtain the set of phytoplankton growth parameters ai,j. 113

3.29 Relating maximum to natural frequency spread. Relationship

between maximum frequency spread σ for ε ∈ [0, 0.05] and natural

frequency spread σ(ε = 0) for an ensemble of 100 simulations with

n = 100 and a different integer seed used in the random number

generator to obtain the set of phytoplankton growth parameters ai,j

for each simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



3.30 Histogram of frequency disorder σ calculated at ε = ε(L/10) for a

domain size L = 512 km, L = 150 km, L = 100 km and L = 50 km

(see Figure 3.26) for 100 differently-seeded simulations with n = 10. . 115

4.1 Schematic showing velocity u(y). Length of arrows indicates the rate

of flow relative to neighbouring rows. . . . . . . . . . . . . . . . . . . 133

4.2 Schematic of model implementation of advection caused by shear of

rate κ > 0, causing shifting of each row i with respect to row i+1 by

a fraction ρ ∈ (0, 1) at each time-step. . . . . . . . . . . . . . . . . . . 134

4.3 Testing the model. Eulerian (columns 1 and 3 ) and Lagrangian

(columns 2 and 4 ) time-series for n = 100 for no mixing (ε = 0)

and no evolution of biology (F (Ni,j, Pi,j, Zi,j) = 0 ∀i, j for i, j =

1, . . . , 100) for shear rate κ = 0.1 d−1. Titles indicate time in days.

Initial conditions of Ni,j, Pi,j and Zi,j are constant in the y-direction

and linearly varying in the x-direction, for ease of visualisation. . . . 135

4.4 No shear. Phytoplankton biomass for n = 100 at time t = 5000

days after integration from homogeneous initial conditions. Boundary

conditions are periodic at the left and right edges; no-flux at the top

and bottom. Shear rate κ = 0 d−1. Figure titles indicate value of ε

in d−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.5 No shear. Frequency disorder σ as a function of effective diffusivity

ε for n = 100 at time t = 5000 after integration from homogeneous

initial conditions. Boundary conditions are periodic at the left and

right edges; no-flux at the top and bottom. Shear rate κ = 0 d−1. . . 137

4.6 Shear 0.001 d−1. Phytoplankton biomass for n = 100 at time

t = 5000 days after integration from homogeneous initial conditions.

Boundary conditions are periodic at the left and right edges; no-flux

at the top and bottom. Shear rate κ = 0.001 d−1. Figure titles

indicate value of ε in d−1. . . . . . . . . . . . . . . . . . . . . . . . . 138

xii



4.7 Shear 0.005 d−1. Phytoplankton biomass for n = 100 at time t =

5000 after integration from homogeneous initial conditions. Boundary

conditions are periodic at the left and right edges; no-flux at the top

and bottom. Shear rate κ = 0.005 d−1. Figure titles indicate value

of ε in d−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.8 Shear 0.01 d−1. Phytoplankton biomass for n = 100 at time t =

5000 after integration from homogeneous initial conditions. Boundary

conditions are periodic at the left and right edges; no-flux at the top

and bottom. Shear rate κ = 0.01 d−1. Figure titles indicate value of

ε in d−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.9 Shear 0.05 d−1. Phytoplankton biomass for n = 100 at time t =

5000 after integration from homogeneous initial conditions. Boundary

conditions are periodic at the left and right edges; no-flux at the top

and bottom. Shear rate κ = 0.05 d−1. Figure titles indicate value of

ε in d−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.10 Shear 0.1 d−1. Phytoplankton biomass for n = 100 at time t =

5000 after integration from homogeneous initial conditions. Boundary

conditions are periodic at the left and right edges; no-flux at the top

and bottom. Shear rate κ = 0.1 d−1. Figure titles indicate value of ε

in d−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.11 Frequency and phase disorder. Frequency disorder σ (solid) and

order parameter R (dashed) as a function of effective diffusivity ε in

d−1 for different rates of shear κ for n = 100. . . . . . . . . . . . . . . 143

4.12 Spatial diagnostics. Clustering measures cx (black) and cy (red) in

numbers of grid-cells as a function of effective diffusivity ε for different

rates of shear κ. n = 100. σ(ε) shown by dotted line for reference. . . 144

4.13 Spatial diagnostics. Gradient measure g as a function of effective

diffusivity ε in d−1 for different rates of shear κ. n = 100. σ(ε) shown

by dotted line for reference. . . . . . . . . . . . . . . . . . . . . . . . 145

xiii



4.14 Zero shear: κ = 0 d−1. Frequency spread σ as a function of effective

diffusivity ε in d−1 for a lattice of 10 × 10 plankton populations in

each of the 10 possible initial spatial arrangements (under advection)

of phytoplankton growth rates {ai,j}. . . . . . . . . . . . . . . . . . . 146

4.15 Small shear: κ = 0.001 d−1. Frequency spread σ as a function of

effective diffusivity ε in d−1 for a lattice of 10 × 10 plankton popu-

lations in each of the 10 possible initial spatial arrangements (under

advection) of phytoplankton growth rates {ai,j}. . . . . . . . . . . . . 147

4.16 Large shear shear: κ = 0.1 d−1. Frequency spread σ as a function

of effective diffusivity ε in d−1 for a lattice of 10× 10 plankton popu-

lations in each of the 10 possible initial spatial arrangements (under

advection) of phytoplankton growth rates {ai,j}. . . . . . . . . . . . 148

4.17 Comparison between rates of shear. Frequency spread σ as a

function of effective diffusivity ε in d−1 for a lattice of 10× 10 plank-

ton populations for all of the 10 possible initial spatial arrangements

(under advection) of phytoplankton growth rates {ai,j} for κ = 0.0

d−1 (top), κ = 0.001 d−1 (middle) and κ = 0.1 d−1 (bottom). . . . . . 149

xiv



Acknowledgements

I am grateful for an Environmental Mathematics and Statistics (EMS) programme

studentship jointly funded by NERC and EPSRC.

In addition, I am grateful to the following people, without whom I can confidently

say this thesis would never have been cajoled into being.

• Thanks to my supervisors Adrian Martin, Meric Srokosz and Martin Bees for

their encouragement, optimism, guidance and seemingly endless patience. I

really appreciate your help with everything over the last few years and have

enjoyed working with you. Adrian, the ease with which you are distracted by

mention of any kind of wildlife has been especially helpful during less produc-

tive weeks. Meric, thanks for the regular does of caffeine and counselling.

• Thanks to programming genuises Luke West, Jeff Blundall and Steven Alder-

son for sharing their computing expertise with me. Without you, the code

would still be running, and either I or the processor would have given up and

gone home by now.

• Thanks to the following lovely people for their continuing support and friend-

ship, occasional provision of food, wine and sofa space, and for generally

putting up with me: Doug McNeall, Rachel Hadfield, Squirrel Maxey, Lizzie

Jolley, Zoe Roberts, Pete Martin, Ian Bailey, Chris Rowan, Donna Shillington,

John Allen, Claire Holeton, Lisa Weber (for your information, it finally sounds

like “kerr-THUD”), Ralf Schiebel and Andrew Erskine.

• Love and thanks to my family Alison Guirey, Chas Guirey, Ben Guirey and

Betty Dolan, and also to my Grandad, Peter Dolan, who died last year, for

xv



having faith in me and providing all the kinds of support I could possibly ask

for.

• Thanks to Stewart Cross and the rest of the genuinely welcoming Platform

Tavern inhabitants for gently hindering my progress over the last few years.

• Thanks to Simon Greenstreet, Helen Drewery and the Bear Pit occupants at

FRS for being patient with my attempts over the last few months at living a

dual work/PhD personality.

• Finally, thanks to Phil Wallhead for everything.

xvi



DECLARATION OF AUTHORSHIP

I, Emma Jane Guirey, declare that the thesis entitled Application of Synchroni-

sation Theory to Plankton Patchiness and the work presented in the thesis are both

my own, and have been generated by me as the result of my own original research.

I confirm that:

• this work was done wholly or mainly while in candidature for a research degree

at this University;

• where any part of this thesis have been previously submitted for a degree of

any other qualification at this University or any other institution, this has

been clearly stated;

• where I have consulted the published work of others, this is always clearly

attributed;

• where I have quoted from the work of others, the souce is always given. With

the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself;

• parts of this work have been published as:

E. J. Guirey, M. A. Bees, A. P. Martin, M. A. Srokosz and M. J. R. Fasham.

Emergent features due to grid-cell biology: synchronisation in biophysical

models. Bulletin of Mathematical Biology, 69(4):1401-1422, 2007

Signed:

Date:

xvii



Chapter 1

Introduction

1.1 Overview

This study applies the methods and results of synchronisation theory (Pikovsky

et al., 2001) to the long-standing oceanographic puzzle of plankton patchiness (Bain-

bridge, 1956; Steele, 1978). We aim to use synchronisation theory to explore the

spatiotemporal patterns observed both in real-world plankton distributions and bio-

physical simulations by viewing a distribution of plankton as an interacting ensemble

of individual plankton sub-populations. A similar approach has been successfully

employed by terrestrial ecologists in the study of the ubiquitous phenomenon of

synchronised population dynamics in a variety of species (e.g. Moran, 1953; Ranta

et al., 1995) and has been shown by Hillary and Bees (2004a) to be applicable to the

study of oceanic plankton, raising a number of questions about how synchronous

effects arise in spatially-extended ecosystem models (as discussed in Section 1.2.6).

This study aims to address some of these questions, yielding results about spatial

synchrony in marine biophysical models and what synchronisation theory can tell

us about the way in which plankton are distributed in the ocean.

This brief overview will be expanded in Section 1.2 before giving the specific

aims of the study and an outline of the thesis in Section 1.3.
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1.2 Background

Plankton are free-floating aquatic microscopic plants and animals that largely drift

with any current (Lalli and Parsons, 1997). They are heterogeneously, or patchily,

distributed in the ocean over a wide range of scales. This section aims to show how

synchronisation theory, which is concerned with systems of interacting oscillators,

is directly applicable to the investigation of plankton patchiness. Sections 1.2.1

and 1.2.2 will describe the patchiness phenomenon, its significance, and some of

the factors involved in its initiation and maintainence. The typical approach to

biophysical modelling of a plankton distribution will be described in Section 1.2.3.

It will be shown that a distribution of plankton may be represented as an ensemble

of interacting plankton populations, each represented by an independent plankton

ecosystem model, making the methods of synchronisation theory directly relevant.

Synchronisation theory and its use in population dynamics in general and plankton

dynamics in particular will be discussed in Sections 1.2.4 to 1.2.6.

1.2.1 Plankton patchiness

That the distribution of plankton in the ocean is spatially and temporally hetero-

geneous on scales of centimetres to several hundred kilometres is a well known phe-

nomenon. It has been observed visually for many years from ships (see Bainbridge

(1956) for collated examples from as far back as 1773) as discoloured patches of wa-

ter and also by microscope in collected biological samples (e.g. Popova et al., 2002).

More recently, patchiness in oceanic phytoplankton has been strikingly observed by

satellite, even being reported by national newspapers (Connor, 2004).

Patchiness and its consequences are not fully described or understood (Mar-

tin, 2003). The main debates include: What generates and maintains patchiness?

What are the respective roles of physical and biological drivers of patchiness (e.g.

Srokosz et al., 2003; Folt and Burns, 1999)? What sets the observed spatial scales

and structure (e.g. Skellam, 1951; Petrovskii, 1999; McLeod et al., 2002)? How is

patchiness best described and characterised (e.g. Platt and Denman, 1975; Lovejoy

et al., 2001)?
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Whilst it is very unlikely that patchiness is caused and maintained by solely

biological factors or solely physical ones, and that in reality the situation is probably

far more complicated than that with multiple drivers being the norm (Folt and

Burns, 1999), it is still useful to try to examine the processes separately and also

to examine the extent to which physical structure determines the spatial structure

of biological variables. Indeed, studies (Srokosz et al., 2003; Martin, 2000; Popova

et al., 2002) suggest that the effects of the physical flow and the biological dynamics

can in some cases be separable, with the flow setting the size and shape of patches,

and the biology governing the amplitude of biomass within the patches. Other

studies show the biology and physical flow to act together to determine patch sizes

(e.g. McLeod et al., 2002). It may be difficult to distinguish between direct physical

effects on patchiness (e.g. stirring), indirect physical mechanisms which trigger

biological effects on patchiness (e.g. upwelling of nutrients), and direct biological

effects (e.g. swarming of zooplankton), especially when more than one factor acts

at once.

Patchiness occurs on a wide range of scales, and the influence of biological over

physical factors varies with the scale of patchiness in question. For example, at

scales of 10-100 km patchiness may result from the upwelling and trapping effects of

eddies and currents, whilst at scales of 100m to 1 km patchiness may be the result

of aggregation for mating by zooplankton (Folt and Burns, 1999). If physical and

biological processes are acting at the same scale, such as in the case of mesoscale

physical processes and some zooplankton behaviour, then the effects of the two may

be difficult to differentiate (Fielding et al., 2001).

1.2.1.1 Biological drivers of patchiness

The patchiness structure is strongly influenced by the physical flow. If plankton were

distributed uniformly in the ocean, however, no amount of horizontal movement by

the physical flow could create patchiness from this homogeneity. The heterogeneity

must be generated by some inbalance in the conditions required for phytoplank-

ton growth and survival. Anything that generates patchiness in the availability of

nutrients, other essential vitamins or light has the potential to generate plankton
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patchiness, as has patchiness in the distribution of those organisms that graze upon

phytoplankton (Barnes and Hughes, 1982).

Phytoplankton patchiness, once established, can be self-sustaining (Smith et al.,

1996; Young et al., 2001). For example, division products of a single plankter tend

to stay together in the water, so that initial heterogeneities are amplified (Barnes

and Hughes, 1982; Young et al., 2001). Nutrient recycling may be another positive

feedback; once clusters of organisms form, material is exuded into the water and

made available for uptake by other organisms, perhaps of another species. Vertical

self-sustained patchiness may be caused by shading of lower layers by dense aggre-

gates of organisms at the surface, preventing sufficient light for growth from reaching

phytoplankton at depth (Huppert et al., 2004).

Zooplankton behaviour is more complicated because they are capable of greater

movement independently of the flow. Zooplankton prey upon phytoplankton; wher-

ever there is aggregation of the prey, we would expect aggregation of the foraging

predator, since some zooplankton are capable of remote food location. Hence phyto-

plankton patchiness may generate zooplankton patchiness. Conversely, patchy zoo-

plankton grazing upon areas of high phytoplankton biomass may cause patchiness

in the latter (Folt and Burns, 1999), i.e. top-down rather than bottom-up control.

Equally, higher predators that depend upon zooplankton for food are patchily dis-

tributed in the ocean so that zooplankton distribution may become patchy through

grazing or predator avoidance. Some higher predators may even force schooling

of zooplankton. Examples of this, given by Barnes and Hughes (1982), are forced

schooling of euphasiids by some sharks in temperate zones, and encircling of prey

in a net of bubbles by whales.

Regions of high or low phytoplankton biomass may be positively or negatively

correlated with regions of high or low zooplankton biomass as a result of predator-

prey interactions (e.g. Steele and Henderson, 1992; Srokosz et al., 2003; Popova et al.,

2002) and the behaviour and physiology of the different organisms (e.g. different

buoyancy properties of phytoplankton and zooplankton; Reigada et al., 1998).

Aside from food location, zooplankton may aggregate for other reasons. Zoo-

plankton are usually sparse in open ocean waters, with a few patches a thousand
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times more dense than the median; consequently, aggregation into patchiness to

mate is a survival mechanism (Folt and Burns, 1999). This swarming behaviour,

the mechanisms of which are not understood, is an example of biologically driven

and maintained patchiness. After reproduction, the progeny may remain together in

the water for some time before dispersal, since they will be less motile than the adult

organisms and so have different response times, prolonging the patchiness (Lalli and

Parsons, 1997).

Many zooplankton undertake coordinated diurnal vertical migration (DVM):

they vary their vertical position in the water column by as much as 1000 m during

the diurnal cycle, according to a regular pattern. This is a strong mechanism for

generating vertical spatial patchiness, which is probably a result of optimal foraging

and predator avoidance (Lalli and Parsons, 1997).

The processes mentioned above are mostly small-scale mechanisms, operating at

timescales of a few hours or a day, and at lengthscales of a few hundred metres (see

Barnes and Hughes (1982) for a table summarising temporal and spatial scales of

patchiness processes). Indeed, it has been suggested that biological processes are

generally responsible for the small-scale patchiness observed in the ocean (Popova

et al., 2002). Physical mechanisms may also be responsible for small-scale patchiness

(e.g. wave action; Langmuir circulation - see below), but in general the physical flow

sets the large-scale structures.

1.2.1.2 Physical drivers of patchiness

Any physical mechanism generating patchiness in nutrient and light supply has the

potential to generate patchiness in plankton distributions.

High productivity is often associated with frontal regions, where two distinct wa-

ter masses meet. This high productivity may be due to associated upwelling, which

brings fresh nutrients to the surface from depth, or because the nutrient content

of the mixed water is more suitable for phytoplankton growth than that of either

discrete water mass (Slobodkin, 1999) (for example, if the different water masses

contain a different amount of the nutrients required for phytoplankton growth).

Additionally, studies have shown that aggregation of certain phytoplankton species
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may result from the interaction of their inherent buoyancy properties with the sub-

duction of water masses at fronts (Kemp et al., 2006). Zooplankton may then also

respond to the elevated phytoplankton concentration, aggregating along the front

(Fielding et al., 2001). Light availability can also vary at fronts if, for example, the

water mass containing a particular population of plankton is subducted at the front,

generating vertical patchiness.

Upwelling regions are also associated with mesoscale eddies, again bringing nu-

trients to the surface, stimulating phytoplankton growth. Additionally, since eddies

can act as trapping regions, preventing cross-flow between the ambient water and

material within the eddy, patchiness at the mesoscale can result or be sustained

(Garçon et al., 2001). This patchiness may last for months as the eddies travel

across the ocean. This has been seen in rings spun off, for example, from the Gulf

Stream (Barnes and Hughes, 1982).

Recently, a hurricane passing across the North Atlantic was observed by satellite

to leave high productivity regions in its wake, due to stirring up by the hurricane of

the lower, nutrient-rich layers (Connor, 2004). Another “seed heterogeneity” (Mar-

tin, 2003) that can generate patchiness in phytoplankton distribution is fertilisation

by iron, another requirement for plankton growth, in areas of iron depletion. In

the case of Abraham et al. (2000), the iron fertilisation in a patch of water in the

Southern Ocean was deliberate for experimental purposes; satellite imagery showed

evidence of an area of high productivity caused by the iron fertilisation. Similar ef-

fects may arise from dust storms or volcanic eruptions sporadically depositing large

amounts of iron into the ocean (Duce and Tindale, 1991).

We can think of the above mechanisms as creating an initial patchy stucture

of water with high biomass levels, surrounded by less densely populated waters.

An interesting question is how this stucture is modified by, and interacts with, the

physical flow. For a thorough review of this matter, focusing on the effects of lateral

stirring and mixing, see Martin (2003). What follows is a brief discussion of the

main issues.

Some studies suggest thinking of any spatial stucture as comprising many indi-

vidual patches of varying size, so that we should in theory be able to examine the

6



dynamics of a single “patch” in isolation (Kierstead and Slobodkin, 1953; Petrovskii,

1999). This approach allows simplification of what is obviously a complex structure.

Initial studies in this area looked at the interaction of the effects of phytoplankton

growth and diffusion. Assuming an exponential growth of phytoplankton, Kierstead

and Slobodkin (1953); Skellam (1951) found there to be a critical length scale of

patch, proportional to
√

D
k

(where D is the diffusive rate and k the growth rate),

at which growth just balances diffusion. Below this lengthscale, growth is too slow

and the patch is dispersed. Above the critical length, the patch persists. This

kind of model came to be known as KiSS, after the authors Kierstead, Slobodkin

and Skellam who first used it (Kierstead and Slobodkin, 1953; Slobodkin, 1999;

Skellam, 1951). Later studies sought to improve the representation of the biology,

by including grazing by zooplankton, and the physics, by considering the scale-

dependence of diffusivity (Petrovskii, 1999). These studies confirmed the idea of

a critical lengthscale for patch persistence. However, as Martin (2003) points out,

the value of that critical lengthscale depends on the biological and physical models

used, something demonstrated in a broader context in this thesis.

Diffusion, in the models above, is a dissipative influence: the biology has to fight

to retain structure in the face of the smoothing effect of diffusion, which drives the

system towards homogeneity. This need not be the case. Turing (1952) proposed a

model, now known as the Turing mechanism, whereby steady state spatial hetero-

geneity may result from the interaction of two chemical (or biological) species with

different diffusivities. Suppose one species (say, zooplankton) exerts a control (in

this case, grazing pressure) over the other (in this case, phytoplankton), and that

the first species diffuses more quickly than the second. If the two are perturbed from

equilibrium locally, then the smoothing effect of diffusion will work more quickly on

the first species (zooplankton) than the second, relaxing the control and allowing the

second species to flourish (a phytoplankton bloom). However, since the first species

has already spread out beyond the range of the second, a barrier is formed which

restricts the spread of the bloom. In this way, permanent spatial heterogeneities

may result. For more detail, see Turing (1952) and Murray (1989).

Whilst diffusive processes have historically been seen as the fundamental pro-
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cesses behind plankton patchiness structure, Abraham (1998) argued that patchi-

ness can also be affected by non-diffusive advection, or stirring. The bias towards

diffusion-based theories has been partly because, unlike diffusion, it was difficult to

adequately incorporate a turbulent flow into a plankton population model (Abra-

ham, 1998).

We see evidence from satellite images of horizontal stirring by the flow as it

draws plankton patches out into long tendrils and filaments (e.g. Robinson, 1997;

Abraham et al., 2000). As well as influencing the spatial structure, stirring may

affect the persistence of a particular patch in time, by increasing the entrainment of

nutrients along the patch boundary (Abraham et al., 2000).

Such filaments were shown by Martin (2000), who looked at the combined ef-

fects of diffusion, population growth and straining by the flow, to have a minimum

width. This minimum width was found to be affected by the parameters of the flow

only: effective diffusivity and rate of strain. Diffusion has a widening effect; strain a

lengthening and narrowing effect. The biological parameter, the growth rate, deter-

mined the amplitude of the population within the filament. Martin (2000), however,

assumed unlimited exponential growth of the population; McLeod et al. (2002) used

a more realistic growth term that accounted for growth limitation inflicted by zoo-

plankton grazing and nutrient depletion. There, the biological parameters were

found to influence the minimum filament width, showing that such studies are sen-

sitive to the biological dynamics at work and the choice of how to model them. This

issue will be addressed further in this thesis.

Neufeld and Lopez (1999) and Neufeld et al. (2002) focused on turbulent effects,

studying the evolution of an active tracer stirred by chaotic advection. The tracer

model used was intended to represent a chemical species, but could equally be taken

to represent phytoplankton. Once again, the final structure observed depended

upon the balance between the population propagation, in the form of a reaction-

diffusion front, and stretching by the chaotic advection. In the case of relatively

slow stirring compared with phytoplankton growth, a steady filamental structure

was found to persist. When the stirring rate was fast, patchiness was smoothed out

into a homogeneous steady state.
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An interesting special case is that of Langmuir circulations. These arise when

moderate winds blow persistently in one direction across the sea surface. The re-

sult is a series of parallel vortices, rotating along horizontal axes aligned with the

wind, with adjacent rolls turning in opposite directions. This creates a series of

convergent and divergent bands (Barnes and Hughes, 1982). This physical regime

interacts with the buoyancy properties and swimming tendencies of phytoplankton

and zooplankton. Any downward-swimming or sinking organism will tend to ag-

gregate in upwelling areas; upward-swimming or floating organisms, in downwelling

areas. Neutrally buoyant organisms, or those without swimming abilities, become

randomly distributed. The net result is a spatially and taxonomically patchy distri-

bution (Lalli and Parsons, 1997; Bees et al., 1998).

The general conclusion to be reached is that whether coherent features in plank-

ton distributions persist is dependent upon the balance between dissipative forces

and plankton population propagation. The distribution of an inert tracer under the

influence of a physical flow will inevitably be determined by that flow. Active trac-

ers, such as phytoplankton, are capable of retaining independent structure under

this influence.

1.2.2 Significance of plankton patchiness

The study of plankton and their spatial and temporal distributions is important for

two primary reasons.

First, plankton play a major role in the carbon cycle. The growing awareness of

possible anthropogenic forcing of the global carbon cycle has increased interest in

its study; this is impossible without a model of the upper ocean ecosystem (Popova,

1995) and an understanding of the biological pump, to which plankton are key

(Sarmiento and Gruber, 2006).

Second, phytoplankton are the main primary producers of the marine ecosystem

(Lalli and Parsons, 1997) and plankton in general are a vital component of all marine

food webs. Hence understanding how plankton are distributed is useful in the study

of all other marine life. Of particular interest are those food webs of which humans

are a part, i.e. those containing commercial fisheries species.
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Patchiness in plankton distributions has been shown to be linked with levels of

primary production (e.g. Smith et al., 1996; Martin and Richards, 2002). Addition-

ally, heterogeneity can affect the ecosystem dynamics themselves by impacting upon

the stability and persistence of a population (Steele, 1974). For example, in their

study of freshwater protists, Holyoak and Lawler (1996) found that a patchy popu-

lation has a reduced risk of extinction, since migration between interacting patches

allows recolonisation of depleted patches.

Since current Global Carbon Cycle Models (GCCM’s) are incapable of resolving

features of the mesoscale and smaller (Fasham, 2003), which is the scale at which

much of the variability in plankton distribution is seen (Steele, 1978), they may be

incurring large errors. A better understanding of heterogeneity in real-world and

modelled plankton dynamics may therefore improve our ability to model, understand

and predict carbon cycle dynamics.

1.2.3 Modelling plankton distributions

In general, the time evolution of an ocean biogeochemical tracer C, such as phy-

toplankton or nitrogen concentration, may be expressed by continuous reaction-

diffusion-advection equations

∂C

∂t
+ u · ∇C −K∇2C = f(C) (1.1)

advection − diffusion = sources − sinks (1.2)

where u = (u, v, w) represents the flow and K is the diffusivity such that each each

variable evolves according to the physical advection and diffusion terms on the left

and chemical and biological reaction terms, represented by the function f , on the

right. A typical approach for biogeochemical modelling is to take a simplified version

of the equations, discretised in space and time, and integrate each of the equations

forward in time (Fasham, 2003).

The biological dynamics in each spatial “grid-cell” is represented by a plank-

ton ecosystem model which attempts to break down the complicated structure of

a marine ecosystem into a number of components (the set of tracers) and the in-

teractions between them. Components are assumed to be well-mixed within each
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grid-cell so that grid-cell populations are considered rather than individual organ-

isms. The choice and number of components varies between models, reflecting the

modelling aims and assumptions of different studies: degree of realism must be bal-

anced against computational and analytical tractability. The model components

become the variables of the dynamical system. For example, many studies consider

only nutrient, phytoplankton and zooplankton (e.g. Steele and Henderson, 1981),

whilst the Fasham et al. (1990) model contains seven components and the ERSEM

(European Regional Seas Ecosystem Model Baretta et al., 1995) has a substantially

larger number of interacting components.

The flow of matter as a result of interactions between and processes affecting the

ecosystem components is parameterised in the model as a function of the biological

variables. The usual functional forms and accompanying parameters are based on a

combination of mechanistic understanding, field work and laboratory-based studies

(see e.g. Sarmiento and Gruber, 2006) and are all subject to a lesser or greater degree

of contention and uncertainty. In many cases, modellers may select a biological

model “off the shelf” through subjective choice or simply because a model is well-

studied; a particular set of biological model parameters will be chosen and the model

and parameters applied uniformly across the entire area of study (Fasham, 2003).

The spatial resolution of the simulation is dictated by a variety of factors such as

available computing power, the sampling resolution of observations that the study

aims to reproduce or, again, subjective choice. Most current GCCM’s have a spatial

resolution of no better than 1 degree (about 100 km). Any unresolved biological or

physical processes must be parameterised in the model.

The coupled biophysical model can then be used to investigate and predict ob-

served features of plankton distribution and production for the global ocean or

a particular region (e.g. Levy and Klein, 2004; Abraham, 1998). Although much

progress has been made, and studies are aided by the wealth of high resolution data

that came with the advances in ocean remote sensing, error still arises from problems

such as a lack of a mechanistic basis for many of the equations describing evolution

of biological variables, insufficient data to constrain model parameters, variation and

inadequecy in the way in which the physical flow is represented, and coarse spatial

11



resolution due to computational expense.

1.2.4 Synchronisation theory

The earliest recorded interest in the synchronisation phenomenon was by Christiaan

Huygens, the Dutch astronomer, mathematician and physicist, who observed in 1673

how two swinging pendulum clocks hanging from a wooden beam may become either

frequency-locked with a constant phase-lag of π or fully synchronised as a result of

vibrations, caused by the motion, travelling along the beam (Pikovsky et al., 2001).

More recently, examples of synchronisation in systems of interacting oscillators have

been found in all areas of science including electronics (e.g. Taherion and Lai, 1999;

Neff and Carroll, 1993), biology (e.g. Strogatz and Stewart, 1993), epidemiology

(e.g. Boccaletti, 2002), lasers (e.g. Barbay et al., 2000) and human behaviour (e.g.

Néda et al., 2000).

In essence, the standard type of biophysical model described above consists of an

ensemble of interacting grid-cells, in each of which the biology evolves according to

the chosen ecosystem model, with the interaction provided by the prescribed physical

circulation model. Such a system becomes the concern of the area of mathematics

known as synchronisation theory, which studies how the natural rhythms of indi-

vidually oscillating objects adjust as a result of couplings between them (Pikovsky

et al., 2001). This coupling may take the form of direct interaction, where coupled

oscillators directly influence one anothers behaviour through explicit coupling, or in-

direct influence, where coupling is due to an external force, or a combination of the

two. The geometry of the coupling, such as interaction between nearest-neighbour

(local coupling) or all oscillators (global coupling) will depend upon the particular

system under study.

Suppose we have an ensemble of n interacting oscillators si. By the term “os-

cillator” we mean behaviour which is time-varying, including for example periodic,

chaotic or noisy oscillation. If the interaction between the oscillators causes their

states to become uniform in time, i.e. s1(t) = s2(t) = . . . = sn(t), then the system

is said to be fully synchronised. In this case, the coupling is sufficient to unify the

system and lock the frequencies, phases and amplitudes.
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Full synchronisation is not the only kind of synchronous behaviour observable in

theoretical and real-world systems of coupled oscillators. If the coupling overcomes a

natural disorder in frequencies, where the natural frequency of each oscillator is the

frequency at which it would oscillate in isolation of interaction, causing all oscillators

to evolve at a common frequency, then the system is described as frequency-locked

(e.g. Sherratt et al., 2000). In this case, if there exists a constant phase lag between

frequency-locked oscillators then the system is said to be in a state of lag synchrony

(Taherion and Lai, 1999; Rosenblum et al., 1997). For a zero phase lag, we call

the system phase synchronised (Blasius and Stone, 2000). In this state of phase-

locking, oscillator amplitudes may still differ. Only when frequencies, phases and

amplitudes are all locked do we call the system fully synchronised. In addition,

instead of synchrony occurring across the whole ensemble, the system may break

up into subgroups of (fully/phase/frequency, etc) synchronised oscillators, with no

synchrony between subgroups. This is referred to as cluster synchronisation (Osipov

and Sushchik, 1997; Belykh et al., 2003; Pascual et al., 2002). As the strength of

interaction between oscillators is increased from zero, the usual transition is from

asynchronous oscillations to clustering to frequency locking to lag synchrony to phase

locking to full synchrony. However, Blasius and Montbrió (2003) have shown that

the increase in synchrony with increasing coupling may not always be monotonic and

that in some cases the onset of coupling can lead to an initial increase in disorder in

the system. This phenomenon will be seen for a lattice of interacting non-identical

plankton populations in Chapter 3 of this thesis.

Many interesting examples of synchrony in coupled oscillators and the manner

in which they are coupled may be found in Strogatz (2003). Examples with greater

mathematical detail may be found in Pikovsky et al. (2001). For the purposes of

the present study, we focus on examples of synchronisation in population dynamics.

1.2.5 Application of synchronisation theory to population

dynamics

Synchronised fluctuations across large distances have been documented in the popu-

lation numbers of a wide variety of species. Examples include spatial synchrony in ro-
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dent (Sherratt et al., 2000; Ydenberg, 1987; Haydon et al., 2001), bird (Ranta et al.,

1995), fish (Ranta et al., 1995), mammal (Haydon et al., 2001; Grenfall et al., 1998),

insect (Benton et al., 2001) and plankton (Strogatz and Stewart, 1993) species.

A well-studied example which serves to illustrate some of the processes at work

is the cycle of Canadian hare and lynx numbers (Elton and Nicholson, 1942), which

oscillate on a roughly ten-year cycle. Remarkably, the abundances in regions thou-

sands of miles apart are in phase, although amplitudes differ. It has been hypoth-

esised that the main synchronising agents at work on the population numbers are,

(i) migration between adjacent populations (Blasius and Stone, 2000) and, (ii) the

influence of a common environmental forcing - both continuous seasonal forcing and

sporadic stronger forcing events such as storms (Moran, 1953). The direct coupling

of the dispersal between populations and the indirect coupling of a common envi-

ronment both cause the individually oscillating hare-lynx prey-predator populations

to adjust their oscillations to a common frequency.

The ubiquitousness of synchronisation phenomena in population dynamics has

led Ranta et al. (1995) to claim that studying spatial synchrony, where previously the

focus has been on the temporal fluctuations of individual populations, should help

ecologists to get to the core of the workings of population dynamics. To this end,

studies have been carried out using a combination of empirical data and ecosystem

modelling to try to identify synchronised dynamics in spatially extended populations

to elucidate the main synchronising influences, or forms of coupling, at work. There

has been a certain amount of debate over whether direct or indirect influences are

of most importance in maintaining synchrony (Blasius and Stone, 2000).

Modelling approaches to synchrony in natural populations generally consider a

spatial distribution as a metapopulation: the internal dynamics of each population

is modelled as an independently oscillating ecosystem and the lattice or chain of

populations interacts according to the prescribed coupling (Hanski, 1998). This

approach, combined with results on synchronisation theory from the mathematical

and physical literature has led to some interesting results on how spatial synchrony

might emerge in spatially-extended ecosystems.

Some studies have focused on the indirect coupling effect of a common or corre-
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lated environmental forcing, such as correlation between the climates affecting each

population. Moran (1953) studied the previously-mentioned synchrony observed be-

tween hare-lynx populations in Canada and suggested that, for a population with

linear internal dynamics, the correlation between populations should be equal to

the environmental correlation. This has latterly been referred to as the Moran effect

but there is uncertainty over how well the theory extends to nonlinear population

dynamics and how to separate the effect from synchronisation caused by dispersal

(e.g. Ranta et al., 1995).

One study, by Grenfall et al. (1998), looked at the synchronised fluctuations in

the density of feral sheep populations on separate islands of the St Kilda archipelago.

In this case, there is no inter-population dispersal, so that observed synchrony arises

from a correlated environment. Grenfall et al. (1998) hypothesised that environ-

mental shocks such as March gales or increased temperatures in April are able to

influence the phase of oscillation of the sheep populations, either negatively in the

case of adverse or positively in the case of favourable weather conditions, to bring

the separated populations into synchrony.

Ranta et al. (1995) collated examples of spatial synchrony in different species

from all over Finland. They noted the common pattern of decreasing levels of syn-

chrony with increasing distance between populations. They used a metapopulation

model to investigate the relative influences of internal dynamics, dispersal and the

Moran effect on setting this observed pattern by selecting three different population

models and coupling the metapopulation by either dispersal, environmental forcing

or both. As expected, Ranta et al. (1995) found that the Moran effect was capable of

establishing synchrony but that there was no trend with increasing distance between

populations. This effect was seen when coupling the populations by dispersal alone

and the level of synchrony was not enhanced by including environmental forcing.

Similarly, the study by Sherratt et al. (2000) on field voles in northern Eng-

land found that small levels of migration were sufficient to reproduce the observed

spatial patterns of synchrony and travelling waves without the need to include en-

vironmental forcing. The presence of a travelling wave indicates that as a result of

small-scale migration (voles typically migrate over small distances of order 100 m)
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between neighbouring populations the metapopulation is able to lock in frequency

but not in phase. Sherratt et al. (2000) used several forms of coupling in their mod-

elling study, with voles all either migrating over short distance or with some able

to travel further. Their results showed that the form of coupling is important in

establishing the precise patterns observed, e.g. the speed of the resulting travelling

wave. The vole data and the modelling results of Sherratt et al. (2000) are good

examples of frequency synchronisation and clustering in coupled populations.

Haydon et al. (2001) also illustrate the importance of the strength and extent of

coupling in establishing synchrony. They looked at fluctuations in mink and muskrat

populations across the whole of Canada, which, when converted into a time-series of

phases, show patterns of synchrony. They used the phase data to identify whether

the phase of oscillation of each population generally draws closer to that of its

neighbours with each year, indicating a constant level of direct coupling, or whether

the phases drift apart and are sporadically brought sharply together, indicating

environmental shocks. They found that the level of coupling varied across the region,

resulting in varying level of synchrony. The variation in coupling strength was

hypothesised to be related to varying topography from west to east across Canada,

e.g. a smaller amount of migration may be possible in the more difficult mountainous

terrain of the western part of Canada, disrupting the synchronising influence.

Another important observation by Haydon et al. (2001) was that the two species

under consideration, mink and muskrat, although exhibiting similar spatial patterns

of synchrony, are time-lagged with respect to one another; mink lag 1 to 2 years

behind the muskrat, although both cycle with an 8 to 10 year cycle. Haydon et al.

(2001) believe that this reflects the different density-dependent internal dynamics of

the two species. This indicates the importance of recognising the two influences of

the internal dynamics of each population comprising the metapopulation and the

way in which these populations are coupled in setting the type of emergent spatial

structure observed.

Finally, Ydenberg (1987) proposed that some species may become synchronised

not by the Moran effect or disperal but because of a nomadic predator. If the

predator is able to distribute itself among the prey depending on the prey density,
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and if this is able to influence the phase of oscillation of the prey species, then

synchrony might result. For example, if the fluctuations in prey populations com-

prising the metapopulation are all in phase then the predator would distribute itself

evenly throughout the region and synchrony would be maintained. If certain pop-

ulations were in a low or high phase, the predator would move away from or into

those areas, respectively, and, if the prey species could somehow alter its phase,

then synchrony may be restored. Ydenberg (1987) hypothesised that the change

in phase of oscillation of the prey species may result from direct predation or from

survival mechanisms in the prey such as changes in foraging or breeding patterns

as a result of intense predation. Ydenberg (1987) suggested that this synchronising

mechanism might be more applicable than the Moran effect for species where syn-

chronised dynamics have been observed over distances large enough (of order 1000

km) for significant climatic variation.

We see that ecologists have applied synchronisation theory to a variety of terres-

trial ecosystems by modelling an area of interest as a spatially-extended metapop-

ulation of discrete populations, interacting directly or indirectly via, for example,

migration or a common environmental forcing. Such studies have been successful in

yielding results on the causes of the common phenomenon of synchrony in terrestrial

population dynamics. To summarise, the occurence and nature of synchrony have

been shown to depend upon the internal dynamics of the individual populations, the

form (e.g. direct or indirect interaction), strength (e.g. rate and extent of dispersal)

and time dependence (e.g. constant or peaking sporadically) of the coupling between

populations, and the geometry and extent of the metapopulation (e.g. number of

and distance between populations).

1.2.6 Application of synchronisation theory to plankton patch-

iness

The approach described above may be applied to the study of plankton distribu-

tions: by viewing the distribution of plankton in an area of ocean as an interacting

ensemble of individual plankton populations, it is apparent that synchronisation

theory is directly applicable to plankton patchiness and should have much to tell us
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about emergent structure in modelled and real-world plankton distributions. Since

synchronisation theory is concerned with oscillators, this assumes that plankton dy-

namics are oscillatory (which we take here to mean time-varying and not necessarily

oscillatory with a regular period) at least some of the time and may be realistically

represented as such. We justify this assumption on the basis of modelling work (e.g.

Ryabchenko et al., 1997), empirical work (Fussman et al., 2000).

A distribution may be thought of as a metapopulation of plankton populations,

interacting via, for example, the physical flow, external forcing and/or dispersal

of individuals between populations. This is analogous to the standard biophysical

modelling approach outlined in Section 1.2.3. The application of synchronisation

theory to plankton population modelling is discussed below.

• Direct coupling

Since plankton are largely incapable of movement independent of ocean cur-

rents, the most obvious example of direct coupling between plankton popu-

lations might be dispersal caused by mixing and stirring. Another example

would be migration by those zooplankton that are more capable of independent

movement, perhaps for the purposes of foraging and mating.

Hillary and Bees (2004a,b) carried out the first studies in this area by consider-

ing a lattice of plankton populations, represented by the Nutrient-Phytoplankton-

Zooplankton (NPZ) model of Steele and Henderson (1981) with a fixed set of

spatially uniform parameter values, coupled via a simple nearest-neighbour

flux between patches. By varying the strength of coupling between popula-

tions and looking at the stability of the fully synchronised state, they were able

to establish a critical strength of coupling required for homogeneous dynamics

to persist. Using this general set-up, Hillary and Bees (2004a) were able to

explore a number of different factors affecting the ability of the system to syn-

chronise. Their results suggested some dependence of the critical coupling on

the number of populations comprising the lattice, a result seen in terrestrial

studies (e.g. Ripa, 2000; Ylikarjula et al., 2000).

As well as considering a lattice of identically-represented plankton populations

Hillary and Bees (2004a) also looked at the more realistic case of spatially
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varying dynamics by applying a small mismatch to the zooplankton mortality

parameter of each population. For certain values of coupling, phase synchrony

was found to result, with populations frequency locked and in-phase but with

differing amplitudes. As described in Section 1.2.5, this is a phenomenon

commonly observed in non-plankton ecological data (Elton and Nicholson,

1942).

For the same system, Hillary and Bees (2004a) also found that for biological

parameters normally resulting in chaos in the uncoupled NPZ dynamics, a

smaller critical coupling was required for a smooth relationship, such as that

of phase synchrony, to exist between patches. This suggests that chaos aids

the formation of stable synchrony in a metapopulation, agreeing with the

conclusion of Ripa (2000) that unstable local dynamics are an aid to dispersal

as a synchronising mechanism.

The set-up used by Hillary and Bees (2004a) is a simple example of a coupled

biophysical model: biological dynamics are represented by an ecosystem model

common to all grid-cells and the nearest-neighbour coupling approximates the

advective and diffusive processes of the physical flow. The studies of Hillary

and Bees (2004a,b) have highlighted a number of the factors affecting the

emergent structure in such a model; the number of populations (or grid-cells)

in the lattice, the type of coupling, the choice of biological model and the

corresponding parameters and whether or not spatial variation in underlying

dynamics is considered. All of these effects require further study to establish

their relative importance.

• Indirect coupling

Since fluctuations in plankton abundances are driven by such influences as

variations in sunlight and wind-induced sea-surface mixing, it is equally con-

ceivable that plankton populations could become spatially synchronised by

common environmental influences. As a simple example, Strogatz and Stewart

(1993) describe how the glow rhythm of the bioluminescent algae Gonyaulax

is, under usual conditions, synchronised between individuals, each having a
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nearly 24 hour period. If kept in a dim tank in a laboratory, the individuals

quickly become desynchronised with a wider range of frequencies of oscillation,

indicating that it is not direct coupling between individuals but the indirect

coupling of the day-night light cycle that causes the synchrony.

Hillary and Bees (2004a) considered the effect of indirect coupling on the

plankton lattice by formulating the dynamics in terms of a drive-response

system, where the usual NPZ system is driven by either a Rössler oscillator or a

slightly different NPZ system. These two different forcings represent the cases

of driving by an abstract external force unrelated to the NPZ dynamics, such as

weather, or driving by an independent influence acting on similar time scales,

respectively. Again, the strength of the driving force was varied and the critical

coupling required for synchrony calculated. Their results indicated that the

different time-scales on which the driving force acted influenced the strength of

coupling required for homogeneous dynamics, with a driving force with higher

frequency able to synchronise the populations for a smaller coupling strength.

Finally, the emergent structure in a plankton metapopulation could be in-

fluenced by a nomadic higher predator, as suggested by Ydenberg (1987) for

terrestrial species. Malchow et al. (2000) explored this possibility by coupling

a plankton biomass model to a rule-based fish dynamics model. Schools of fish

were able to alter their position in the simulation based on feeding preferences

and rules of movement. Spatially patchy dynamics were found to result with

some evidence of clustering.

The work described here has demonstrated the applicability of synchronisation

theory to the study of spatial patterns in plankton distributions by viewing a region

of ocean in an Eulerian sense as an ensemble of interacting plankton populations.

This approach is analogous to the way in which modellers simulate ocean biogeo-

chemistry, so that synchronisation theory has the potential to yield results on the

emergent spatial organisation of plankton seen in these simulations and in the ocean.

So far, there is some indication of the influence of a number of factors, including

the strength and geometry of interaction, the number of populations comprising the

ensemble and the dynamic properties of the individual populations, on the ability
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of such a simulation to manifest synchronised dynamics. There is also some sug-

gestion that the synchronisation phenomena seen in terrestrial population dynamics

(as described in Section 1.2.5), such as phase-synchrony and the breaking down of

the ensemble into synchronised clusters, may carry over to oceanic studies, where

the complicated interaction between populations caused by the diffusive and advec-

tive properties of the physical flow provide a new challenge for the application of

synchronisation theory to spatiotemporal population dynamics. Further work is re-

quired to determine the relative importance of these factors and their consequences

for patterns of patchiness in plankton in the ocean.

1.3 Aims and outline

By applying the methods of synchronisation theory to a region of ocean modelled

as an interacting lattice of plankton populations, this study aims to address the

following principal questions.

• What determines the ability of a matrix of interacting oscillatory plankton

populations to exhibit synchronised population dynamics?

• What are the consequences for biophysical modelling studies of plankton patch-

iness?

• Ultimately, how useful can the methods of metapopulation dynamics and syn-

chronisation theory be in the study of spatial patterns of plankton patchiness

in the ocean?

Chapter 2 begins, for mathematical simplicity, with the case of identically rep-

resented populations. We carry out a thorough investigation of a number of factors

suggested by the work of Hillary and Bees (2004a,b) to impact upon the ability

of the plankton population ensemble to exhibit synchronised dynamics. We deter-

mine the influence of (i) the number of populations comprising the ensemble, (ii)

the biological model used to represent the dynamics of the individual plankton pop-

ulations and (iii) the biological model parameters. Population are coupled by a
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simple nearest-neighbour coupling term representing mixing and stirring between

populations at sub-grid-cell scales.

In Chaper 3 we improve the realism of the simulation, allowing spatial variation

in the population dynamics by considering a lattice of non-identical populations.

At the same time, we extend the approach from the 1-dimensional chain considered

in Hillary and Bees (2004a,b) to the oceanographically more relevant case of a 2-

dimensional lattice of populations. The biological model used for each population

is the same but spatial variation is introduced by applying a small mismatch to

the accompanying biological parameters. It will be seen that this introduces a rich

array of synchronisation effects such as clustering and frequency locking. We inves-

tigate the impact of the strength of interaction between populations, the number of

populations comprising the ensemble and the spatial resolution of the simulation.

Continuing with non-identical oscillators, Chapter 4 will consider the impact

of advection of populations on the emergent spatial properties seen in previous

studies, investigating in particular the robustness of the results of Chapter 3 to

the more realistic representation of the effects of physical flow on the populations.

This moves the study firmly away from analogies with terrestrial metapopulation

studies, providing an initial look at how the synchronous properties of the plankton

metapopulation might be modified by the stirring action of the flow acting at scales

larger than the individual populations.

In Chapter 5 we summarise the results on synchronisation in a lattice of plank-

ton populations and discuss the impact of these results on biophysical modelling

studies. We draw conclusions about what synchronisation theory can tell us about

emergent spatial structure both in simulations and in oceanic plankton distributions

and attempt to answer the question of how useful synchronisation theory can be in

the study of plankton patchiness, as well as discussing future directions for research

motivated by the findings and limitations of this study.
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Chapter 2

Identical Oscillators

2.1 Introduction

In this chapter, we carry out an initial investigation into the synchronous properties

that may emerge in biophysical modelling of the ocean, and the role of some of the

modelling parameters involved. 1

As described in the previous chapter, a typical biophysical model may be thought

of as an ensemble of interacting plankton populations, so that the methods and

results of synchronisation theory are directly applicable. The biological dynamics

are typically represented by a plankton ecosystem model common to all grid-cells

of a spatial simulation. A wide range of models exists, reflecting the variety of

ocean regions and modelling aims that have been the concerns of different studies

(Totterdell, 1993). It has not generally been considered what impact the choice of

grid-cell ecosystem model, from the many developed in the literature, might have

upon the results of biophysical modelling. This chapter therefore aims to address

the following question: for oceanographic modelling, what impact does the choice of

biological representation at grid-cell level, and the number of grid-cells used, have

upon the dynamic features of the full coupled biophysical system?

Specifically, we will consider a chain of n grid-cells with a nearest-neighbour cou-

pling (with no-flux boundary conditions) designed to approximate mixing processes

between adjacent grid-cells. This mixing is a proxy for the effectively diffusive effects

1The results presented in this chapter have been published in Guirey et al. (2007).
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of flow at scales smaller than the grid-cell.

The biology within each grid-cell is identically represented by a plankton ecosys-

tem model. We consider three different plankton models, all of which are typical

of those used in the literature to represent upper-ocean biological processes. The

models, which will be introduced in Section 2.2.1, all represent plankton population

dynamics but differ in terms of state variables and functional forms. Within this

framework, by varying the strength of the flux between grid-cells we will establish

the strength of coupling required for the system to exhibit synchronised (spatially

homogeneous) dynamics as a function of the choice of (i) biological model, (ii) biolog-

ical model parameter values, and (iii) the number of grid-cells forming the ensemble.

As the coupling is increased from zero, the strength of interaction at which emergent

structure becomes stably synchronised is referred to as the critical coupling.

It is necessary in this initial chapter to consider the simplest possible case; later

chapters will build upon its results. Namely, we consider the case of identical oscil-

lators: the biology within each grid-cell of the ensemble is represented by the same

system of ordinary differential equations and accompanying set of parameter values.

Realistically, we would expect spatial and temporal variation in plankton dynamics;

for example, phytoplankton growth rates may vary spatially as a result of differences

in temperature or species composition. We incorporate such variation in Chapter 3.

Ecosystem models may exhibit different types of dynamical behaviour, from

steady state to limit cycles to chaos, depending upon the functional forms used to

represent biological processes and the choice of parameter values (e.g. Edwards and

Brindley, 1999). This change in dynamical behaviour is also observed in empirical

plankton studies (Fussman et al., 2000). Work has shown that a coupled system

of identical oscillators, such as that being considered here, will always synchronise

stably regardless of coupling strength if the individual oscillators exhibit steady

state or limit cycle solutions (Pikovsky et al., 2001); this is a property that vanishes

immediately if we consider nonidentical oscillators (representing spatial variation),

because the mismatch in representation of each oscillator introduces a desynchronis-

ing influence that is lacking in the system of identical oscillators. On the other hand,

a system of coupled chaotic oscillators has an inherent desynchronising mechanism
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provided by the exponential divergence of nearby trajectories that is characteristic

of a chaotic system (Strogatz, 1994), even when each oscillator is represented iden-

tically mathematically. Hence, since identical coupled limit-cycle or steady-state

oscillators will always stably synchronise, we only need in this chapter to focus on

regions of model parameter space for which the models exhibit chaotic dynamics.

In particular, we determine the ability of the coupled system to synchronise for the

“most chaotic” (i.e. nearby trajectories separate most rapidly) region of parameter

space. Behaviour at this most extreme point will then bound the behaviour for

the whole of parameter space, as will be explained in Section 2.2.4. The effects of

the noise and spatial variation in parameters that would, in the real-world case, be

inherent in the system, are not directly studied in this chapter. However, Chapter

3 will build on these results by considering the more biologically realistic scenario

of non-identically represented patches.

2.2 Methods

2.2.1 The biological models

To reduce typical models of the global ocean carbon cycle to the simplest possi-

ble case, we consider an ensemble of effectively diffusively-coupled grid-cells. The

plankton population dynamics within each grid-cell, which may be thought of as

a region of ocean of, as yet, unspecified length-scale, is represented by a plankton

ecosystem model typical of those used in the literature. In particular, we have a

chain of n coupled grid-cells, with the plankton population within each grid-cell

evolving according to

v̇i = F (vi) + εv · q

where v = (vi−1,vi,vi+1) and each population vi = (s1, s2, . . . , sm) consists of m

species sj at position i along the chain. The scalar ε in units of d−1 determines the

strength of coupling between grid-cells, and the vector

q =



























(1,−2, 1) i ∈ [2, n− 1]

(0,−1, 1) i = 1

(1,−1, 0) i = n
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specifies the coupling configuration, i.e. nearest-neighbour coupling with no-flux

boundary conditions.

The function F is the system of differential equations representing the biological

evolution of each patch in isolation. The basic biological models selected for this

study were first formulated by Steele and Henderson (1981) and Hastings and Pow-

ell (1991) (hereafter referred to as SH81 and HP91, respectively), and are typical of

those used in biophysical modelling studies of the pelagic ocean (Totterdell, 1993).

The models were selected as examples that use different sets of state variables (i.e.

differing in their choice of which components of the ecosystem to explicitly repre-

sent) and different functional forms for the trophic interactions, relecting different

assumptions made about the modelled environment. A brief description of the mod-

els will be given here, but fuller details may be found in the above references and

in Edwards and Brindley (1996) and Edwards (2001) for SH81 and Caswell and

Neubert (1998) for HP91.

Both SH81 and HP91 are zero-dimensional models representing, by a system of

autonomous ordinary differential equations, the processes occurring in a physically

homogeneous upper ocean layer. SH81 (equations 2.1-2.3, with parameters given in

Table 1), however, contains an implicit, biologically-inactive (P = 0) deeper layer

with a fixed nutrient content, which acts by way of vertical mixing as a nutrient

source for the upper layer biology.

SH81 models nutrient (N), phytoplankton (P ) and zooplankton (Z) concentra-

tions as follows:

dN

dt
= − aN

(e +N)(b + cP )
P + rP +

ζβP 2

µ2 + P 2
Z + γdZ + k(N0 −N) (2.1)

= −uptake + respiration + Z excretion + Z predators excretion + mixing,

dP

dt
=

aN

(e+N)(b + cP )
P − rP − ζP 2

µ2 + P 2
Z − sP − kP (2.2)

= uptake − respiration − grazing by Z − sinking − mixing,

dZ

dt
=

ζαP 2

µ2 + P 2
Z − dZ (2.3)
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= growth due to grazing on P − higher predation.

Figure 2.1 shows a schematic of the model, indicating the flow of matter between

components of the ecosystem.

The change in the autotrophic phytoplankton concentration is modelled as the

sum of their growth, co-limited by nutrients and light (represented as a self-shading

term), and losses due to respiration, mixing and sinking out of the upper layer, and

grazing by zooplankton. Of the material grazed by zooplankton, a fixed fraction α is

assimilated, contributing to zooplankton growth. A parameterisation of predation

by higher predators closes the food chain from above. A fixed proportion of the

material grazed by zooplankton and higher predators is excreted back to the nutrient

pool. The zooplankton are assumed to possess enough mobility to remain within

the mixed layer.

To investigate the effect of a simple change of functional form, leaving choice of

state variables and general structure intact, a variation on the above model with

alternative nutrient uptake term a
b(e+N)

P will also be considered and is hereafter

referred to as SH81b. Here, we have a scenario where self-shading by the phyto-

plankton is assumed to be a negligible component of the light limitation.

The model HP91 was not specifically formulated to represent a plankton ecosys-

tem, rather as a generic three-species food chain, but Caswell and Neubert (1998)

and Srokosz et al. (2003) applied the model to a plankton ecosystem by taking the

three trophic levels to represent phytoplankton, herbivorous zooplankton (H) and

carnivorous zooplankton (C) components:

dP

dt
= RP

(

1 − P

K

)

− a1PH

b1 + P
(2.4)

= logistic growth − grazing by H,

dH

dt
=

c1a1PH

b1 + P
− a2HC

b2 +H
− d1H (2.5)

= growth due to grazing on P − grazing by C − natural mortality,

dC

dt
=

c2a2HC

b2 +H
− d2C (2.6)
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= growth due to grazing on H − higher predation,

with parameter values given in Table 1. The model schematic is shown in Figure

2.2.

In HP91, carnivores are explicitly modelled and nutrient concentrations are not;

that is, nutrients are taken to be non-limiting to phytoplankton growth. The model

is somewhat simpler than SH81 in that recycling processes are not considered, so

that the fundamental flow structure differs. This chain-like structure is crudely rep-

resentative of a more productive region, so that the absence of a nutrient compart-

ment and the simple structure are consistent. Phytoplankton population increases

according to logistic growth, limited by a carrying capacity, and decreases due to

grazing by herbivores, which are in turn grazed by carnivores. At each trophic level,

a fixed proportion of grazed material is assimilated and the rest lost from the system.

Herbivores and carnivores are each subject to a linear natural mortality term.

SH81/SH81b and HP91 represent different interpretations of the planktonic

ecosystem: SH81 and SH81b are built on the assumption of bottom-up control;

HP91 is built on the assumption of top-down control.

Historically, plankton modellers have settled upon a variety of functional forms

to describe the interactions between the components of the ecosystem, and the above

models are no exception. In order to make the models as directly comparable as

possible, we can relate the parameters from the different functional forms in such a

way that a similar range of values for that process can be used:

The model HP91 contains functions for growth, grazing and mortality, of which

only the latter is of an equivalent form in SH81. In SH81, autotrophic growth is taken

to be co-limited by nutrients, in the Michaelis-Menten form, and light availability.

Growth takes maximum value a
b

at P = 0 in the limit as N tends to infinity. HP91

assumes logistic growth, limited by a carrying capacity. This has maximum value

R, again at P = 0. Taking R ≡ a
b

we therefore set the models to have the same

intrinsic maximum growth rate.

Taking nutrients to be non-limiting in the growth rate term of HP91, so that

growth is limited by self-shading by the phytoplankton themselves, then the term

R
(

1 − P
K

)

may be equated with the self-shading component of the SH81 growth
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rate term. Since we have R ≡ a
b
, this leads us to compare 1− P

K
and b

b+cP
. We may

then equate half-saturation constants of these two forms: max(1 − P
K

) = 1, half of

which is attained at P = K
2
. Similarly, max

(

b
b+cP

)

= 1, half of which is attained at

P = b
c
. Equating these two, we get K ≡ 2b

c
.

Grazing terms, although different, are formulated in both models in terms of the

half-saturation constant (µ and bi), the maximum grazing rate (µ and biζ and ai)

and the assimilation coefficient (α and ci), making each of these parameters directly

relatable.

Table 2.1 summarises the above discussion. Reported parameter ranges are as

collated by Edwards and Brindley (1996) in their study of SH81.

Temporal dynamics for each model are obtained by integrating the above equa-

tions forward in time using a forth-order Runge-Kutta scheme implemented by code

written in the C programming language. The working of the code was verified by

comparing with (i) integrations carried out using the ODE solvers available in the

programming package MATLAB, (ii) results obtained by previous studies on the

ecosystem models (see above references) and (iii) integrations carried out using the

ODE package DsTool (see http//:www.mathlab.cornell.edu/dyn sys/dstool/dstool.html).

2.2.2 Single grid-cell dynamics

Both models, under variation of parameter values within the reported ranges (see

Table 2.1), are known to exhibit steady state, limit cycle and chaotic dynamics. It is

necessary to quantify this behaviour because, as explained below, the behaviour of

the individual grid-cell, as described by the biological model, impacts upon the full

coupled system. An indication of the behaviour may be obtained by calculating the

Lyapunov characteristic exponent, which measures the exponential rate of separation

of nearby trajectories of the system in phase space. An m-dimensional dynamical

system will have m Lyapunov exponents, quantifying the separation rate in all m

directions of movement, but it is the largest Lyapunov exponent that indicates the

kind of dynamics to be expected. A positive largest Lyapunov exponent indicates

that there is at least one direction in which exponential separation rather than

convergence of nearby trajectories in phase space can occur, leading to chaos in
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a dynamical system (Strogatz, 1994). If the largest Lyapunov exponent is zero

or negative then the system will exhibit limit cycles or steady states, respectively.

We calculate a finite-time approximation of the largest Lyapunov exponent λ of a

dynamical system using the following method.

The system of differential equations representing a single plankton population is

integrated until transients have died and we are ‘on’ the attractor. The trajectory

(u) on the attractor will be a ‘reference’ trajectory. We then use a ‘test’ trajectory

(w), which at time t0 is set a small distance d0 from u, to examine the rate at which

nearby trajectories diverge.

If Si−1 denotes the amount by which the original perturbation has been ‘stretched’

at iteration step i− 1, then the exponential rate of divergence λi is given by

Si−1 = eλi−1ti−1 .

Let dS denote the stretch experienced over the next time step of integration of the

ecosystem model. Then

Si = eλiti = eλi−1ti−1dS,

and, taking logs of both sides and dividing by ti, we obtain

λi =
λi−1ti−1 + log dS

ti

as a finite-time estimate of the Lyapunov exponent λ, so that λ can be calculated

iteratively.

In the case of chaotic behaviour, the distance between the two trajectories quickly

becomes too large for the definition of λ (as the growth of the distance between

two initially close trajectories) to be valid. To avoid this problem, we rescale the

distance to u at each time-step, preserving the direction of the vector but restoring

the distance between u and w to d0,

wnew = u +
w − u

dS
.

The process of iteration and rescaling is repeated until λ has converged. λmay be

calculated for a range for values of a specified biological model parameter, allowing

the occurrence of chaos or limit cycles to be tracked within a biologically acceptable

range of values.
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The above Lyapunov exponent calculations are carried out using code written in

C. The method and its implementation were checked by comparing with known sys-

tems in the literature, in particular the Lorenz attractor, the Lyapunov exponents

of which are given in Strogatz (1994) and also the previous work on SH81 by Hillary

and Bees (2004a). The Lyapunov exponents calculations reported by Hillary and

Bees (2004a) were found to contain some errors, which were subsequently shown to

result from a minor typing error in the computer code used to make these calcu-

lations. Unfortunately, attempts to reconcile their calculations with the Lyapunov

exponent calculations made for the current project, before the error and its source

were identified, set this project behind by about six months.

The dynamics of the full coupled system of a chain of n plankton populations

are obtained by integrating in time using a forth-order Runge-Kutta scheme.

2.2.3 Ensemble dynamics

The coupled system is synchronised if the dynamics resides on the region of phase

space contained within the synchronisation manifold

Ms = {v1, v2, . . . , vn|v1(t) = v2(t) = . . . = vn(t)}.

On perturbation from synchrony, the evolution of the coupled ensemble of grid-cells

may return to synchrony (become spatially homogeneous) or remain unsynchronised

(spatially patchy), depending on the dynamics of the individual grid-cells and the

strength of coupling between them.

By analogy to the real world, where a plankton “patch” is a region of sea of

homogeneous plankton biomass, we may consider a model plankton “patch” to be

a synchronised subset of grid-cells Ck with 1 ≤ k ≤ n. The system considered here

- that of an ensemble of identically represented oscillators - is capable of exhibiting

only two system-level stable states as the coupling strength is increased: complete

asynchrony (k = 1) or complete synchrony (k = n). If the coupling strength is

sufficient for synchrony then as soon as two adjacent oscillators become synchronised

they are, since they are identically represented, locked into that state and thereafter

act as one oscillator, leading eventually to synchrony of all oscillators. Alternative
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set-ups, such as ensembles of non-identical oscillators (as explored in Chapter 3),

allow stable dynamics with 1 < k < n, a phenomenon referred to as clustering

(Belykh et al., 2003), but for the system considered in this chapter we are only

concerned with the fully synchronised state.

The stability of this fully synchronised state is established by calculating the

largest normal (or transverse) Lyapunov exponent Λ; that is, the rate of growth of

perturbations away from synchrony in the direction transverse to the synchronisation

manifold.

We have a chain of n coupled plankton grid-cells v1,v2, . . . ,vn and wish to

determine the rate of expansion of a perturbation away from the synchronous state

v1 = v2 = · · · = vn, which resides on Ms. To enable the separation of dynamics on

and normal to Ms, a change of variables from the set v1,v2, . . . ,vn of grid-cells to an

orthogonal set π1, π2, . . . , πn is applied such that π2 = π3 = · · · = πn = 0 when the

populations are synchronised, and π1 represents the dynamics on the synchronous

attractor; for example, as follows,




























π1

π2

...

...

πn





























=
1

n





























1 · · · · · · · · · 1

1 · · · · · · 1 −(n− 1)

1 · · · 1 −(n− 2) 0
...

...

1 −1 · · · · · · 0

























































v1

v2

...

...

vn





























.

As with the calculation of Lyapunov exponents described above, a single uncou-

pled oscillator is initially integrated until transient behaviour dies and dynamics lie

on the synchronisation manifold, with values π0. For a reference trajectory uεMs,

we set

u = (π0, 0, · · · , 0).

Since Ms is invariant, the reference trajectory u remains within Ms for all time.

A test trajectory w is initiated by adding a small initial perturbation away from

synchrony of magnitude d0 (O(10−5)) to trajectory u so that

w = u + (0,
d0√
n− 1

, . . . ,
d0√
n− 1

),

i.e. a perturbation normal to Ms.
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Both trajectories are integrated forward for a few time-steps and the extension

dS⊥ from synchrony normal to the synchronisation manifold relative to the original

perturbation d0 is given by

dS⊥ =

√

∑n
j=2(wj − uj)2

d0
,

where uj and vj are the jth components of the reference and test trajectories at

time t, respectively. The finite-time transverse Lyapunov exponent at iteration step

i is then

Λi =
Λi−1ti−1 + log(dS⊥)

ti
,

measuring the stretch in the direction transverse to synchrony of the initial pertur-

bation with time.

The process is repeated until convergence of Λ is achieved. However, as with the

calculation of λ described above, in the case of chaotic orbits the separation quickly

becomes too large for us to be considering nearby trajectories. Again, a rescaling

must be applied to avoid this problem.

If Λ < 0 then the synchronous state is stable since perturbations from synchrony

will decay. This is a threshold phenomenon; it depends upon the magnitude of

coupling and there exists a critical strength of coupling above which synchrony will

re-establish itself after perturbation. In other words, there exists critical coupling

ε = εc such that Λ(εc) = 0.

2.2.4 Bounding the critical coupling in parameter space

The critical coupling strength εc required for stable synchrony of a system of generic

nearest-neighbour coupled identical oscillators was shown by Fujisaka and Yamada

(1983) to be directly proportional to the largest Lyapunov exponent λ of the dy-

namics of an individual isolated oscillator. Applying this to the plankton ecosystem

models considered here, therefore, in order to place an upper bound on εc for each

model, it is required to find where λ attains its maximum within the reported

range of biological parameters. Since λ = 0 in non-chaotic regions of parameter

space, εc = 0, and therefore a coupled system of non-chaotic identical oscillators

will always stably synchronise. We therefore only need consider chaotic regions of
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parameter space, identified by λ > 0, and look for the “most chaotic” point, i.e.

where λ attains its maximum.

An iterative method is used to approximate of the maximum value of λ as

a function of the biological model parameters. Each biological model has a set

Ω = {a1, a2, . . . , al} of l parameters. Since λ = 0 for steady-state and limit cycle

dynamics, we need only consider chaotic regions. We initiate the algorithm at a

point a(0) = (a1(0), a2(0), . . . , al(0)) ∈ Ω for which the model exhibits chaos. Such

a point is known to exist for SH81 from the work of Edwards and Brindley (1999).

For HP91 chaotic regions are clearly demonstrated in the original paper.

For each parameter aj, we have a biologically-plausible range [ajmin
, ajmax

] (see

Table 1), giving an l-dimensional hypercube bounded by the ajmin
and ajmax

, for

j = 1, . . . , l, containing the initial point a(0). For each step i of the iteration, and

for each parameter aj of the set in turn, λ is calculated with parameters ak(i), k < j,

and ak(i − 1), k > j, fixed and parameter aj varied across the range [ajmin
, ajmax

].

The value of aj(i) is then set as the value within [ajmin
, ajmax

] giving maximum λ.

This is repeated for all parameters aj, giving a new parameter set a(i). If inspection

of these “slices” across parameter space indicates that

max
a1ε[a1min

,a1max ]
λ (a1, a2(i), a3(i), . . . , al(i))

≈ max
a2ε[a2min

,a2max ] λ (a1(i), a2, a3(i), . . . , al(i))

...

≈ max
alε[almin

,almax ]
λ (a1(i), a2(i), a3(i), . . . , al)

,

to within a specified level of accuracy then the parameter values giving the approx-

imate maximum λ are judged to have been found (see Figure 2.3 and Table 1).

Otherwise, the process is repeated for step i + 1.

It is possible that the approximate method detailed here may miss the chaotic

apex of a model. For example, a disconnected region of chaotic parameter space

may exist that does not intersect with the parameter “slices” through the initial

chaotic point. No such isolated chaotic regions were found during investigation of

the models using the dynamical systems package AUTO. An exhaustive search of

the l-dimensional parameter space of the models considered here would be extremely

computationally expensive. The method is therefore considered a good necessary
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approximation for the most chaotic point within biologically acceptable bounds. Of

course, the global apex for the model may lie outside these bounds.

2.3 Results

2.3.1 Single grid-cell

The iterative method described above was used to find the region of parameter space

giving the maximum largest Lyapunov exponent λ for each model. As an example,

Figure 2.3 shows how λ varies as a function of herbivorous zooplankton growth

efficiency across ‘slices’ of parameter space for all three models; all other parameters

are kept constant at the established λ apex. Because λ > 0 only where dynamics are

chaotic, Figure 2.3 shows calculations only across the chaotic regions of parameter

space. However, since this a necessarily finite-time calculated approximation of an

quantity defined for infinite-time, the exponent does not quite go to 0 in the limit-

cycle and steady-state regions. Chaotic ranges established in this way for all other

model parameters are included in Table 2.1. The global chaotic apex for the model

HP91 lies outside but close to the suggested parameter ranges. For this reason, we

consider two apices for this model: the points in parameter space giving maximum

λ inside and outside suggested ranges respectively.

λmax (denoted by dotted lines in Figure 2.3) is approximately 0.0063 d−1 and 0.01

d−1 for models SH81 and SH81b respectively. Constrained to suggested parameter

ranges, HP91 has apex 0.011 d−1; λmax reaches 0.013 d−1 if parameters are allowed to

vary beyond these ranges. Model dynamics at these points in parameter space, both

as a time series and in phase space, are shown in Figure 2.4 and the corresponding

parameter values are given in Table 2.2. Figure 2.4 shows the ecosystem components

to oscillate with a roughly 50 day period The particular period of oscillation is not

important in the context of this investigation, for which we have not attempted to

model the seasonal cycle or tune the model to a particular ocean region. Although

it may impact quantitatively upon the results, the qualitative results relating to the

ability of a system of plankton populations to stably synchronise are unchanged.
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2.3.2 Two-patch stability

Figure 2.5 shows the calculated transverse Lyapunov exponent, Λ, for a two grid-cell

coupled system as a function of varying strength of coupling ε for each model. The

coupling strength at which Λ(ε) changes from positive (perturbations from synchrony

grow) to negative (such perturbations decay) is the critical coupling strength εc

required for stable synchrony. εc is seen to equal 0.0031 d−1, 0.0051 d−1, 0.0061

d−1 and 0.0056 d−1 for models SH81, SH81b, HP91 (outside) and HP91 (inside),

respectively. Since theory (Fujisaka and Yamada, 1983) shows that εc is directly

proportional to λ for this type of coupling, and we have established λmax within

biologically-acceptable parameter space, εc(λmax) gives an upper bound on εc for

each model: a coupling strength of ε > εc(λmax) is sufficient to stably synchronise

the two-grid-cell coupled system for any set of biological parameter values.

As an example, using the model SH81, Figure 2.6 shows how system dynamics

differ below and above this ‘blowout bifurcation’ (as the parameter ε moves below

the critical point, the stability of the synchronous state is ‘blown out’). We initiate

the integration with the two coupled patches out of synchrony with one another, so

that |v1 − v2| = δ > 0 where δ is a small perturbation from synchrony. In Figure

2.6, the evolution of this perturbation, for the phytoplankton components P1 and P2

of the two patches, is plotted with time for a coupling strength of ε < εc (top) and

ε > εc (bottom). It is seen that a coupling strength of 0.0025 d−1, which is below εc,

is insufficient to restore synchrony, so that the system starts to display heterogeneous

dynamics. A coupling of 0.0035 d−1 is strong enough to draw the oscillators back

into synchrony. These two illustrative values of ε = 0.0025 and ε = 0.0035 have

been chosen sufficiently distant from the critical coupling of εc = 0.0031 to give

clear examples; for ε just less than εc, dynamics may remain near to synchrony for

long periods of time although the state is unstable and, conversely, dynamics may

take a very long time to reach synchrony or may intermittently burst away for ε just

greater than εc.

The results in Figure 2.5 fit well with the predictions of Fujisaka and Yamada

(1983). For a two-grid-cell system, the theory states that εc = λ
2
. Using calculated λ,

this gives predicted critical coupling strengths of 0.0032 d−1, 0.0048 d−1, 0.0065 d−1
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and 0.0055 d−1 for models SH81, SH81b, HP91 (outside) and HP91 (inside) respec-

tively. For comparison, the directly calculated results are 0.0031 d−1, 0.0051 d−1,

0.0061 d−1 and 0.0056 d−1, respectively. Figure 2.7 gives an example of how well the

empirical and theoretical results match for a cross section through parameter space;

for model SH81, model-calculated εc is plotted along with λ
2

for the phytoplankton

growth rate parameter a varied across the chaotic window of parameter space, keep-

ing all other parameters at λ apex values. This clearly illustrates the dependence of

the critical coupling strength upon the parameter values, and therefore dynamics,

of the isolated model in an individual grid-cell.

2.3.3 n-patch stability

Next considered was a chain of n coupled grid-cells, for n = 2, . . . , 10, with nearest-

neighbour coupling and the biology in each patch represented by the SH81 model. εc

was established as a function of n: first, by direct computation of Λ(ε) and, second,

by using the calculated values of λmax to apply the theory of Fujisaka and Yamada

(1983).

Figure 2.9 shows the results of directly computing Λ as a function of ε for example

cases of n = 5 and n = 10. The results of computed and theoretically estimated

εc(n) are plotted in Figure 2.8. It is seen that the critical coupling strength increases

with the length of the chain, so that a greater strength of mixing between patches

is needed to synchronise a chain with more patches. Additionally, we see that

the theory of Fujisaka and Yamada (1983), which states that the critical coupling

strength is related to chain length and largest Lyapunov exponent λ of the single-

patch biological model as

εc =
λ

mink=1,...,n−1

(

4 sin2
(

kπ
2n

)) (2.7)

agrees well with the computed values. The slight discrepancies between the two

sets of results result from the numerical error involved in calculating a finite-time

approximation of both Lyapunov exponents and normal Lyapunov exponents.

It is evident that a prediction of εc for a system of this type with any number of

grid-cells may be inferred from knowledge of the Lyapunov exponent of the isolated
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biological model in any one grid-cell.

Although n-patch results have been presented here for a chain of patches each

represented by the SH81 model, similar results are obtained with the other biological

models considered.

2.4 Discussion

To address the question of how grid-cell biology and the number of grid-cells impact

upon the behaviour of coupled biophysical simulations, we applied the methods of

synchronisation theory to an ensemble of identically-represented interacting plank-

ton populations. Using several different typical plankton ecosystem models to rep-

resent the evolution of each patch, and varying the number of patches comprising

the ensemble, we calculated the critical strength of patch-to-patch coupling required

for stably synchronous dynamics to occur. The study focused on chaotic regions of

parameter space since identical steady-state and limit cycle oscillators always stably

synchronise.

2.4.1 Critical coupling strength for synchrony

For a chain of n coupled plankton grid-cells, each represented by the same biological

model, the strength of coupling εc required for stably homogeneous (synchronised)

dynamics to occur is found to vary as a function of biological model, model param-

eters and n, the latter bearing out the theory of Fujisaka and Yamada (1983) as

expressed in Equation 2.7.

We see that the critical coupling strength varies linearly with λ, implying that

the use of “more chaotic” biological dynamics at grid-cell level reduces the ability

of the chain to exhibit homogeneous dynamics. More significantly, εc increases with

n. In other words, a stronger mixing between grid-cells is required to synchronise a

longer chain.

The relationship between εc and n can be simplified as follows. As n becomes

large, π
2n

becomes small and, therefore,

εc ≈
λn2

π2
(2.8)
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(because sin(x) ≈ x for small x) so that the critical coupling increases as n2.

This has implications for modelling studies. Suppose we wish to model the

dynamics of a particular transect of ocean of length L, perhaps to compare the

results with observed data. For the purposes of simulation, the transect is divided

into a number of grid-cells, depending on various factors such as available computing

power and the spatial resolution of the observed data. A plankton ecosystem model

is chosen to describe the biology in each grid-cell. To simulate the physical flow,

we impose a fixed, effectively diffusive, coupling of strength ε between grid-cells.

Since εc ∝ λn2

π2 , we know that, for a fixed ε and fixed biological model, there exists

a corresponding critical number of grid-cells nc such that the use of a number of

grid-cells n > nc to divide up the transect L will lead to unsynchronised dynamics.

Therefore, the spatial resolution chosen for the simulation of a particular region of

ocean could drastically alter the results in a discontinuous manner, as it sets the

number of grid-cells used.

As explained, this threshold phenomenon occurs only when the individual grid-

cell dynamics are chaotic. That an ensemble of identical chaotic oscillators may

have emergent characteristics that bifurcate in this manner is a case against using

chaotic plankton ecosystem models in a system like this to study plankton patch-

iness. Chaotic ecosystem models should be used with caution to guard against

spurious or misleading emergent features. Since the extent of chaotic regions of

parameter space has not been determined for plankton models, this is an impor-

tant result which is worrying in the light of recent findings by Gross et al. (2006)

that chaotic parameter ranges exist generically in food chain models of greater than

three components. For SH81, the parameter space appears to contain only relatively

small chaotic regions, so that that the effect may be of minor concern, whereas HP91

is an example of a model containing interspersed windows of chaotic and periodic

behaviour throughout its parameter space (as illustrated by Caswell and Neubert

(1998) and see also Figure 2.3), which in the context of the results of this study

might make it unsuitable for use in a coupled biophysical model.

More generally, the results illustrate that the choice of biological model at grid-

cell level can have a significant impact at system level. It is noteworthy that SH81b,
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although differing from SH81 only by a small change of functional form and having

similar parameter values and almost identical structure, exhibits chaos over smaller

sized regions of parameter space yet attains a larger “degree of chaos”, as measured

by a greater λmax (Figure 2.3), which in turn reduces the ability of coupled SH81b

oscillators to synchronise (Figure 2.5). Why the small change in functional form

should make a large difference and whether this is of biological significance is not

known and would, since the models represent distinct biological scenarios, be a

valid line of future enquiry. HP91, despite differing greatly in structure from SH81,

has a similar λmax and therefore synchronising ability. For all three models, λ, and

therefore εc, varies greatly across parameter space. We conclude from this that choice

of biological model and parameter set strongly affects the system-level dynamics.

2.4.2 Critical spatial scale for plankton patchiness

In their study of synchronisation in ensembles of plankton populations, Hillary and

Bees (2004a) used the empirical relationship between spatial scale l and effective

diffusivity D(l) (Okubo, 1971) to relate the critical coupling strength εc to an emer-

gent critical length-scale for patchiness in plankton. The observations of Okubo

show that for D(l) in cm2 s−1 and l in cm

D(l) ≈ 0.01l1.15.

Hillary and Bees (2004a) consider a chain of length L consisting of n coupled grid-

cells, giving a grid-cell length-scale ∆ = L
n
. They then equate the diffusive coupling ε

with diffusive processes between grid-cells, so that ε(l) ≈ D(l)
∆2 where 1

∆2 approximates

the second order spatial derivative. Using the relationship of Okubo, and taking l

as the patch length-scale this gives

ε ≈ 0.01
(

∆

100 × 1000

)−0.85

× 24 × 60 × 60

for ε in d−1.

For their eight-grid-cell system, Hillary and Bees (2004a) found a critical coupling

strength of 0.0075 d−1. Using the relationship above, they equated this with a grid-

cell length-scale of order 10 km, resulting in a critical domain length-scale Lc of
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around 100 km at which synchronisation persists. Since with increasing length-scale

the diffusivity according to the Okubo relationship increases and the appropriate

coupling strength decreases, an eight-grid-cell system of length L > Lc will have

a diffusivity-related coupling strength ε < εc and unsynchronised dynamics will

result. Lc therefore represents a upper bound on the scale at which we expect to

see synchronised patches for a fixed number of grid-cells.

However, we have seen in this study that εc ∝ n2 and from the above we know

ε ∝ L−0.85n0.85, so we have a relationship between the number of grid-cells and the

critical length-scale:

Lc
−0.85 ∝ n1.15.

Hence, as Hillary and Bees (2004a) in fact predict, the critical length-scale found

using this method is a function of the number of grid-cells, and therefore resolution,

of the simulation. As discussed above, the model resolution may be dependent upon

such arbitrary factors as available computing power. Although we can establish a

critical length-scale for a given number of grid-cells to stably synchronise, in many

cases this relationship can therefore tell us little about the scale at which plank-

ton patches should synchronise, because only the number of grid-cells into which a

study region is partitioned, and not the true length-scale, has an effect on whether

synchronisation will occur.

The above discussion depends upon assumptions about the length-scale taken in

the approximation of the effective diffusivity. Since, in the work by Okubo (1971),

the length-scale is arbitrarily set to a value such that a circle of that radius would

contain 95% of the dye material, our patch length-scale ∆ as used here is a natural

choice. However, we expect in the case of synchronisation for information to diffuse

over the full system, so that some may argue for the system length-scale to be L or

an intermediate value. If we set l = L, we obtain

ε ≈ 0.01n2L−0.85

so that, upon application of Equation 2.8, the n2 terms cancel to give a constant Lc.

Additionally, care must be taken with our treatment of Equation 2.7, where we

have taken n to be large. For a fixed system length-scale L, increasing n leads to
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decreasing ∆. The Okubo (1971) paper deals with a closed range of spatial scales

from 30 m to 100 km of spatial scales, so that we may reach a value of ∆ for which

this relationship is not valid.

2.4.3 Impact on biophysical modelling

To illustrate the impact of these results on physical quantities that may be derived

from biophysical models, we examined the effect of synchrony on total primary pro-

duction (TPP), a quantity frequently estimated from such models. For the example

case of a ten-grid-cell chain of SH81 oscillators with parameter values set at the

chaotic apex, we calculated TPP(t) as the sum of the phytoplankton growth rates

for (i) a coupling strength of ε = 0 (representing, for non-identical initial conditions,

the “most asynchronous” state achievable) and (ii) ε > εc.

TPP(t) for (i) and (ii) is shown in Figure 2.10. As a function of time, it was

found that synchrony increased and decreased the values of TPP attained at maxima

and minima, respectively - an effect caused by the additive effect of the concurrent

nature of these events in the synchronous case: maximum and minimum TPP were

for (i) 0.84 gC m−3 d−1 and 1.03 gC m−3 d−1 and for (ii) 0.67 gC m−3 d−1 and 1.29

gC m−3 d−1 (to 2 d.p.). The mean TPP, however, was equal to 0.92 gC m−3 d−1 for

both (i) and (ii).

The results, whilst only qualitative in nature as we are not modelling the sea-

sonal cycle, indicate the need for directing major effort into the understanding of

biophysical models. Otherwise, our confidence in the bulk properties derived from

them will be diminished.
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Figure 2.1: Schematic of the Nutrient-Phytoplankton-Zooplankton model of Steele

and Henderson (1981) with arrows indicating flow of material between ecosystem

components.
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Figure 2.2: Schematic of the Phytoplankton-Herbivore-Carnivore model of Hast-

ings and Powell (1991) with arrows indicating flow of material between ecosystem

components.
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Figure 2.3: Parameter space. Largest Lyapunov exponent λ in d−1 calculated

across the chaotic windows for herbivorous zooplankton growth efficiency parameters

α (SH81 in black; SH81b in red) and c1 (HP91). All other parameters are held at

those giving maximum largest Lyapunov exponent λ. Dotted lines indicate the

parameter values giving λmax. The calculations are shown only across the chaotic

regions of parameter space, since λ = 0 for equilibrium and limit cycle regions.
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Figure 2.4: Model dynamics. Phase space attractors and temporal evolution in

days of state variables in units of gC m−3 d−1 for SH81 (left), SH81b (middle) and

HP91 (right). Parameter values are set to those giving maximum largest Lyapunov

exponent λ in d−1. Transient dynamics not shown. Key: blue - nutrients, green -

phytoplankton, black - herbivorous zooplankton, red - carnivorous zooplankton.
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Figure 2.5: Critical coupling strength. Calculated largest normal Lyapunov

exponent Λ in d−1 as a function of coupling strength ε in d−1 for models SH81

(black), SH81b (red), HP91 restricted to suggested parameter ranges (blue) and

HP91 not restricted to suggested parameter ranges (green). Model parameters are

set at values giving maximum largest Lyapunov exponent λ in d−1. The critical

coupling strength εc is indicated by the value of ε giving Λ(ε) = 0.
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Figure 2.6: Two-patch dynamics. Time evolution in days of the difference be-

tween phytoplankton components P1 and P2 in gC m−3 plotted for coupling strength

ε = 0.0025 d−1 (< εc) and ε = 0.0035 d−1 (> εc) in the top and bottom panels re-

spectively. Model used is SH81 and parameters are set at values giving maximum

largest Lyapunov exponent λ.
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Figure 2.7: Comparison with theory of Fujisaka and Yamada (1983). Critical

coupling strength εc in d−1 plotted across chaotic window for model SH81 phyto-

plankton growth parameter a in m−1 d−1. Solid line shows directly calculated εc

values and dotted line shows predicted εc according to the theory of Fujisaka and

Yamada (1983), i.e. half largest Lypaunov exponent λ.
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Figure 2.8: n-patch chain. Critical coupling strength εc in d−1 as a function

of number of grid-cells n. Plankton dynamics in each grid-cell are represented by

SH81 model and the chain has fixed-ends. Crosses indicate Λ in d−1 as predicted by

Fujisaka and Yamada (1983). Circles indicate experimental results for 2 to 10-patch

chains.
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Figure 2.9: Critical coupling strength. Calculated largest normal Lyapunov ex-

ponent Λ in d−1 as a function of coupling strength ε in d−1 for a 5-patch (dotted) and

10-patch chain (solid) of NPZ oscillators represented by SH81 (see text). Biological

model parameters are set at values giving maximum largest Lyapunov exponent λ.

The critical coupling strength for stable synchrony is indicated by Λ(ε) = 0.
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Figure 2.10: Bulk properties. Time evolution in days of total primary production

(TPP) in gC m−3 d−1 for a ten grid-cell chain of SH81 oscillators for coupling

strength ε = 0 d−1 (red) and ε > εc (blue).
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Parameter Symbol Reported range Chaotic window Units
SH81 HP91 SH81 SH81b HP91

P growth parameter a 0.1-0.6 0.198-0.201 0.199-0.201 m−1 d−1

P growth rate R ≡ a
b

0.1-0.6 0.7-3.75 d−1

Light attenuation by water b 0.04-0.2 0.199-0.203 0.1995-0.2005 m−1

Self-shading by P c 0.3-1.2 0.37-0.43 m2 gC−1

P carrying capacity K ≡ 2b
c

0.04-0.2 0.28-0.32 gC m−1

Herbivorous Z mortality d 0.015-0.15 0.1418-0.1421 0.1401-0.1402 d−1

d1 0.015-0.15 0.09-0.125 d−1

Carnivorous Z mortality d2 0.015-0.15 0-0.05 d−1

N half-saturation constant e 0.02-0.15 0.027-0.04 0.0295-0.0305 gC m−3

Exchange rate with lower layer k 0.0008-0.13 0.0499-0.0506 0.0498-0.0502 d−1

P respiration r 0.05-0.15 0.143-0.157 0.148-0.153 d−1

P sinking s 0.032-0.08 0.038-0.043 0.039-0.041 d−1

Lower layer N concentration N0 0.1-2.0 0.998-1.01 0.998-1.002 gC m−3

Herbivorous Z assimilation efficiency α 0.2-0.75 0.2498-0.2502 0.2499-0.2501
c1 0.39-0.51

Carnivorous Z growth efficiency c2 0.2-0.75 0.4-0.65
Z excretion fraction β 0.25-0.8 0.325-0.335 0.328-0.332
Remineralisation of Z excretion γ 0.5-0.9 0.49-0.54 0.495-0.507
Herbivorous Z grazing rate ζ 0.6-1.4 0.5995-0.6003 0.5998-0.6002 d−1

a1 0.6-1.4 0.48-0.72 d−1

Carnivorous Z grazing rate a2 0.6-1.4 0.3-0.75 d−1

Herbivorous Z grazing half-sat. const. µ 0.02-0.1 0.0347-0.0351 0.0349-0.0351 gC m−3

b1 0.02-0.1 0.08-0.11 gC m−3

Carnivorous Z grazing half-sat. const. b2 0.02-0.1 0.01-0.16 gC m−3

Table 2.1: Biological Model Parameters. Ranges are taken from Edwards and Brindley (1996), wherein values from various studies
are collated.
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SH81 SH81b HP91 (inside) HP91 (outside)

a = 0.19994 a = 0.2 k = 0.3058 k = 0.31

b = 0.200267 b = 0.2 r = 0.748 r = 0.908

c = 0.394733 a1 = 0.672 a1 = 0.712

d = 0.142012 d = 0.140136 a2 = 0.6 a2 = 0.3

e = 0.03137 e = 0.03004 b1 = 0.1 b1 = 0.0881

k = 0.050132 k = 0.05 b2 = 0.1 b2 = 0.1528

r = 0.1483 r = 0.15 c1 = 0.5 c1 = 0.488

s = 0.04072 s = 0.03997 c2 = 0.225 c2 = 0.424

N0 = 1.00236 N0 = 1.0 d1 = 0.104 d1 = 0.096

α = 0.249956 α = 0.25 d2 = 0.055 d2 = 0.049

β = 0.32894 β = 0.33

γ = 0.50675 γ = 0.5

ζ = 0.59982 ζ = 0.6

µ = 0.0349475 µ = 0.035

Table 2.2: Chaotic apex. Parameter values giving maximum largest Lyapunov

exponent λmax for each biological model. Parameter units are as in Table 2.1.
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Chapter 3

Non-identical oscillators.

3.1 Introduction

In the previous section, a plankton distribution was modelled as an interacting

ensemble of identically-represented plankton populations. That is, the biological

model equations and parameter values were the same for each population. This

makes the assumption that the dynamics are spatially uniform, so that the same

set of parameter values represents the plankton population dynamics equally well

across the whole of the area of interest. In reality, spatial variation is inherent in

nature, so that the most appropriate set of biological model parameters to use in the

representation of each population may vary in space. For example, if temperature or

mixed layer depth are likely to vary across the modelling domain, then any biological

parameter which is related to these physical parameters is likely also to vary (see

Section 1.2).

Consequently, although a useful mathematical simplification, it is not entirely

realistic to model a metapopulation using an identical representation for each indi-

vidual population. By introducing some mismatch into the dynamical representation

of each population, it is possible to model a spatially varying distribution more rep-

resentative of the real world. This mismatch may be introduced by using the same

biological model for each population but allowing variation in the biological model

parameter set. As a result of parameter mismatch, each oscillator is slightly different

in terms of its natural frequency and amplitude of oscillation so that it is now im-
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possible to achieve a stable fully synchronised state. The synchronisation manifold,

as defined in the previous chapter, is no longer invariant. However, a much richer ar-

ray of approximate or generalised synchronous behaviour (see Pikovsky et al., 2001)

is now possible where population dynamics are related by a one-to-one mapping.

Generalised synchronisation encompasses a variety of behaviour observed in theo-

retical and real-world systems. Here we briefly describe some relevant synchronous

behaviour possible in systems of non-identical oscillators.

Whereas in Chapter 2 the ensemble of plankton populations was observed to

fully synchronise for a sufficient strength of interaction, systems of non-identical os-

cillators have been shown to exhibit an intermediate state of cluster synchronisation

(Belykh et al., 2003) - the system breaks up into synchronised subsets of popula-

tions with no synchrony between clusters. The type of clustering, e.g. size, number,

shape and positioning of synchronised subsets, has been seen to vary with a number

of factors, including the size of the parameter mismatch (Belykh et al., 2003), the

type (Belykh et al., 2003) and strength (Osipov and Sushchik, 1997) of coupling

and the spatial arrangement of the natural (independent) frequencies (Osipov and

Sushchik, 1997). Clustering states may emerge as an intermediate state between

asynchrony and (almost) full synchrony. Osipov and Sushchik (1997) found that

transitions between clustering states as the strength of interaction is varied may be

“soft” - a gradual continuous enlargening and merging of clustering with increasing

coupling strength - or “hard” - an arrangement of clusters persists with increasing

coupling until altering suddenly at a sharp transition value of coupling strength.

For particular conditions, the strength of coupling may be sufficient to approxi-

mately synchronise the full system. This synchrony may take the form of frequency

locking, where the natural frequency disorder is overcome to pull the populations

towards a common frequency of oscillation (e.g. Rosenblum et al., 1997). There

may still exist a constant phase difference between frequency-locked populations,

a phenomenon referred to as lag synchrony (Rosenblum et al., 1997; Taherion and

Lai, 1999).

Counter-intuitively, an increase in the strength of coupling may not lead to a

monotonic increase in the synchrony between populations. For a system of non-
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identical food-web oscillators, Blasius and Montbrió (2003) found that in some cases

increased coupling was first able to increase the amount of frequency disorder before

larger coupling was able to draw the system into synchrony. This coupling-induced

desynchronisation or anomalous synchronisation (referring to the eventual synchro-

nisation of the system) was shown to be caused by non-isochronicity or shear of

phase flow around the oscillator attractors; the interaction has the effect of con-

stantly pulling the populations away from their natural attractors, and if the rate of

shear is affected by both the natural frequency of the oscillator and the strength of

the coupling then the ability of the system to synchronise is enhanced or disrupted,

depending on the nature of the relationship between the non-isochrony and coupling.

The ability to synchronise, and the kind of synchronous behaviour observed, are

influenced by a number of factors. We have already seen in Chapter 2 that the

ability to synchronise is dependent on the number of populations, their dynamic

properties and the strength of interaction between them. With the introduction

of spatial variation come the additional variables of the amplitude and probability

distribution of the parameter variation and to which biological model parameter(s)

the variation is applied. In this chapter, we focus on these new influences and do

not attempt to describe the behaviour for the whole of biological model parameter

space, for different plankton population models or for the full range of dynamical

behaviour possible for a single population (steady-state, limit cycle and chaotic

dynamics). Instead, we select a set of default biological model parameter values

that, for an individual independent oscillator, lead to the simplest case of time-

varying dynamics - that of regularly periodic dynamics - and describe in detail the

emergent behaviour for this case.

Hence, to summarise, this chapter models a spatially varying plankton distribu-

tion by considering an interacting ensemble of non-identical plankton populations,

each of which is oscillatory in nature. We use this set-up to explore how a spatially-

varying plankton distribution might behave.
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3.2 Method

As in the previous section, we model a spatial distribution of plankton as a lattice

of interacting plankton populations with the evolution of each population repre-

sented by the same set of ordinary differential equations. We continue to use the

Nutrient-Phytoplankton-Zooplankton model formulated by Steele and Henderson

(1981). Additionally, we now introduce spatial variation by applying a small ran-

dom perturbation to a particular biological parameter. This results in a small spread

in the natural frequencies of the oscillating populations, where the natural frequency

of an oscillator is the frequency at which it would oscillate in isolation of the influence

of the other plankton populations.

Again, as in the previous section, the plankton populations interact via a nearest

neighbour coupling term representing effective diffusivity. We consider a square

region of ocean of size L km × L km, modelled as a 2D lattice of n×n interacting

plankton populations

vi,j = (Ni,j, Pi,j, Zi,j)

where vi,j occupies the grid-cell in row i and column j of the lattice. Each plankton

population interacts with neighbouring populations so that

v̇i,j = Fi,j(vi,j) + εg · q

where

g = (vi−1,j,vi,j−1,vi,vi,j+1,vi+1,j) ,

Fi,j(vi,j) = Fi,j(Ni,j, Pi,j, Zi,j) =















− ai,jN

(e+N)(b+cP )
P + rP + ζβP 2

µ2+P 2Z + γdZ + k(N0 −N)

ai,jN

(e+N)(b+cP )
P − rP − ζP 2

µ2+P 2Z − sP − kP

ζαP 2

µ2+P 2Z − dZ















The vector

qi,j = (q1, q2, q3, q4, q5)

determines which grid-cells interact with grid-cell (i, j), where q1, q2, q4 and q5 rep-

resent material entering from the grid-cells directly adjoining grid-cell i from above,

to the left, to the right and from below, respectively, and take a value of 1 if such

a grid-cell exists and 0 otherwise, i.e. for grid-cells on the edges of the lattice.
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q3 = −(q1 + q2 + q4 + q5) determines the amount of material leaving grid-cell (i, j)

under the assumption of mass conservation, e.g.

qi,j = (1, 1,−4, 1, 1)

for an interior population and

q1,1 = (0, 0,−2, 1, 1)

for the top left-hand grid-cell. Hence the model describes a lattice with nearest-

neighbour effectively-diffusive coupling and no-flux boundary conditions on all edges.

The default biological parameter set, for which the model exhibits limit cycle be-

haviour, is given in Table 3.1. Note that although we model the nutrient component

by its nitrate content, the model has currency of gC m−3.

We introduce a spread in the natural frequencies of the populations by adding

a small mismatch ∆i,j to the default phytoplankton growth parameter a0 so that

ai,j = a0 + ∆i,j. The random mismatch values ∆i,j are chosen from a uniform

distribution on an interval of width ∆ centred on a0 so that phytoplankton growth

rates ai,j ∈ [a0 − ∆
2
, a0 + ∆

2
]. The application of mismatch to a implies mesoscale

variation in the phytoplankton growth rate. This assumption is justified on the basis

that phytoplankton growth has been shown to vary with such factors as temperature

(Eppley, 1972) and mixed layer depth (Alpine and Cloern, 1988), all of which vary

on the mesoscale (see Chapter 1.2).1

3.2.1 Model

The main tool for the investigation of this ensemble of non-identical oscillators is

computer code written in the C programming language to initialise and integrate

the lattice in time and to write to file the dynamics of each plankton population

and other data. The number of oscillators can be altered within the code.

1Note that the mismatch values could have been chosen from a different distribution, such as

Gaussian; since we do not specify the underlying cause of the spatial variability in this case, our

choice of distribution is not constrained by any factors and so we arbitrarily choose a uniform

distribution.
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Parameter Symbol Value Units

P growth parameter a0 0.2 m−1 d−1

Light attenuation by water b 0.2 m−1

Self-shading by P c 0.4 m2 gC−1

Herbivorous Z mortality d 0.14 d−1

N half-saturation constant e 0.03 gC m−3

Exchange rate with lower layer k 0.05 d−1

P respiration r 0.15 d−1

P sinking s 0.04 d−1

Lower layer N concentration N0 1.0 gC m−3

Herbivorous Z assimilation efficiency α 0.25

Z excretion fraction β 0.33

Remineralisation of Z excretion γ 0.5

Herbivorous Z grazing rate ζ 0.6 d−1

Herbivorous Z grazing half-sat. const. µ 0.035 gC m−3

Table 3.1: Biological model parameters. Note that the model has currency gC m−3.

The phytoplankton growth parameter mismatch values are chosen using a ran-

dom number generator seeded with an integer value; a different choice of seed value

leads to a different set of mismatch values with the same probability distribution.

The width ∆ of the mismatch spread can be altered to be equal to any percentage

of the default growth parameter value a0 and the mismatch values are chosen with

a uniform distribution.

Each population vi,j of the ensemble is given the same set of initial conditions for

Ni,j, Pi,j and Zi,j, chosen by integrating a single population with parameter values as

in Table 3.1 and phytoplankton growth rate a0, i.e. ∆ = 0. Hence the distribution

is initially in synchrony. As we know, for non-identical oscillators this synchronous

state is not invariant, so the distribution will not remain in synchrony, although it

may return to synchrony if the coupling between the populations has the result of

counteracting the natural difference in frequencies.

The coupled system is first integrated for a time length T1 sufficient for transient
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behaviour to die away, after which the system is said to be on its attractor. The

integration time required for the system to reach its attractor varies depending on

the particular set-up, as will be indicated in later sections, e.g. a larger T1 is required

for a larger number of grid-cells comprising the lattice. The necessary T1 is found by

using the technical computing package MATLAB to compare the system dynamics

and diagnostic statistics (see Section 3.2.2) output from the main C code for different

integration lengths. The system was judged to be on its attractor once the oscillator

frequencies had come sufficiently close to steady state (judged visually), after which

the system was integrated forward for a further 5,000 time-steps of length dt = 0.1

days to generate a time series of 500 days for calculating the measures used to

diagnose different synchronous behaviour.

3.2.2 Diagnostic tools

A first indication of the effect of population interaction on the ensemble dynamics

is obtained by plotting the dynamics output from the main C code. In particular,

the time evolution of the spatial structure is visualised by using MATLAB to make

two-dimensional colour plots of the biological distributions for each time-step. In

addition, various diagnostic tools are used to check for different synchronous effects.

The average angular frequency ωi,j of each oscillator is calculated in order to

check for frequency locking of the ensemble. During integration of the system, a

note is made of times when each oscillator reaches a peak in its phytoplankton

concentration. This gives a series {Ti,j} of peak times for each oscillator which is

used to calculate the average frequency

ωi,j =

(

N − 1

Ti,j(N) − Ti,j(1)

)

× 2π

where there are N peaks in the series.

The average rather than instantaneous frequency is calculated in case any of

the oscillators are chaotic or have a variable period as a result of interaction with

the other oscillators, the interaction having the effect of constantly pulling the pop-

ulations away from their natural attractors. Once the frequency calculations had

converged and were therefore stable with respect to the length of integration, the

system was judged to be in statistical steady-state.
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From the set of frequencies we calculate the relative standard deviation

σ =
standard deviation(ωi,j)

mean(ωi,j)
× 100.

The spread of frequencies indicates how the interaction between plankton popula-

tions is influencing their behaviour. The ensemble is said to be frequency locked

when σ is close to 0.

The frequency calculations made in the main C code were checked in two ways.

Firstly, the same calculations were carried out in MATLAB using the output vi,j

dynamics from the main C code and the results of these calculations were found

to be identical. This indicated that no coding or typing errors were present in the

main code. To check the validity of the method for calculating the frequencies, the

main code was altered slightly in order to reproduce the results of Fairen (2004),

who coupled together 500 non-identical Rössler oscillators in a chain and calculated

the frequencies as a function of coupling strength. Both checks indicated that the

frequency calculations made by the main code were correct.

The peak times data were also used to calculate phase information for each

population. We linearly interpolate between peaks so that the phase at time t is

θi,j(t) =

(

t− Tm
Tm+1 − Tm

)

2π

where Tm is the peak in Pi,j that occurred most recently.

Given the phase θi,j of each oscillator, we then calculate the centroid of the

oscillators positions on the circle

Z = Reıψ =
1

n2

n
∑

i=1

n
∑

j=1

eıθi,j

so that ψ gives the average phase and the order parameter R is a measure of the

phase coherence of the ensemble. For uncorrelated populations, the phases are

uniformly distributed on [0, 2π] and so R is around zero. For phase synchronised

oscillators at a common phase θ, calculation of the centroid gives ψ = θ and R = 1.

Intermediate values of R indicate that the phases of the populations are neither

equal nor uniformly spread, e.g. local synchrony or clustering of phases.

R is calculated in MATLAB using the series of peak times output by the main

C code. Again, to check the method the R calculations made by Fairen (2004) for a
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chain of 500 Rössler oscillators were compared with results from the modified main

C code and the two sets of results were found to be identical.

3.2.3 Spatial structure diagnostics

Whilst σ and R give an indication of the coherency in behaviour of the ensemble

as a whole, they can mask local synchronous effects such as the clustering of the

ensemble into sychronised subsets of populations. Hence we use a simple cluster

measure c ∈ [1, n] of grid-cells that gives an indication of the size of clusters in

one-dimension. A c value of 1 would be expected for zero coupling, ε = 0, since

populations then oscillate in isolation. If the whole ensemble is synchronised, we

expect a c value of the length of the domain, i.e. c = n. A value of c between 1 and

n indicates a certain degree of local synchronisation.

For each time step, c is calculated by taking the n×n Pi,j field

P(t) =





















P11 P12 · · · P1n

P21 · · · · · · P1n

...

Pn1 Pn2 · · · Pnn





















and removing its mean to obtain

P̄(t) = P(t) − mean(P(t)).

We look at the size of structure in the x and y directions separately to obtain

measures cx and cy but since the method is identical it is described here for cx:

We take a transect

Pi = (Pi1, Pi2, . . . , Pin)

across the lattice for each of the i = 1, . . . , n rows of grid-cells of the mean-removed

field. Clusters are defined as regions of adjacent grid-cells with continuously positive

or negative values and their boundaries are found by recording zero-crossings of Pi.

Over all rows, this gives a set of clusters

clustersx = {c1, c2, . . . , cm},
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where ck, for k = 1, . . . , m, are integer numbers of grid-cells and
∑m
k=1(ck) = n2.

The median of this set of clusters is then calculated for each time-step to give a

measure of the local coherency cx(t), which can also be averaged over time. cy(t) is

calculated in exactly the same manner, but using columns rather than rows of P̄(t).

The cluster measure given here is only well-defined when clusters exist. That

is, it has meaning when there exist well-defined synchronised regions separated by

sharp transitions. In this case, c is a good representation of the size, in grid-cells, of

these clusters. If such clusters do not exist, and we have instead a gradual shift in

phytoplankton biomass values from grid-cell to grid-cell, then the cluster measure as

defined here is not appropriate. Take the simple example of a frequency-locked but

not phase-locked ensemble with a linear increase in phytoplankton biomass from

the left-hand edge to the right-hand edge of the lattice; removing the mean and

calculating c in this example will give c = n
2
, apparently indicating a representative

cluster size of half the lattice, whereas actually a cluster size of n is more meaningful

since no sharp transitions exist. Additionally, for large cluster sizes with respect

to the domain size, the c measure will be inherently less reliable than for small

clustering: fewer larger clusters will fit into the domain, reducing the probability

when taking the median of obtaining an accurate estimate for c.

For this reason, in conjunction with the cluster measure we also consider a mea-

sure of the sharpness of transitions from grid-cell to grid-cell across the lattice to

show the sharp edges of clusters and to highlight where c is less appropriate. For

each time-step we normalise the P(t) field to obtain

P̂(t) =

(

P(t) − min(Pi,j(t))

max(P(t) − min(Pi,j(t)))

)

with 0 ≤ P̂i,j(t) ≤ 1 for i, j = 1, . . . , n. For each grid-cell, we define gi,j(t) as the

maximum value of the absolute difference between P̂i,j(t) and the phytoplankton

biomass in each of its up to eight (for interior populations) nearest neighbours, i.e.

for interior populations,

gi,j(t) = max{|P̂i,j − P̂i′,j′|}

for i′ = i− 1, i, i+ 1 and j ′ = j − 1, j, j + 1.
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Then,

g(t) = max
i,j

(gi,j(t)).

In the limit case of fully synchronised dynamics, we have g(t) = 0. As the sharpness

of the gradient between clusters increases, g(t) → 1. The maximum rather than

mean or median is appropriate here as we wish to identify the presence of extreme

gradients rather than get an impression of the average gradient for the lattice.

Calculations of the cluster measure c and gradient measure g are made with

MATLAB using the dynamical output from the main C code.

Finally, we calculate the 2D power spectrum of the mean-removed P(t) for each

time-step. Here we give an outline of the method, but full details are available in

Press et al. (1992).

To prevent spectral leakage, inevitable when taking the Fourier transform of a

field with abrupt edges, the edge gradient is softened by multiplying P(t) by an

n× n Hann window defined by

W (i, j) =
1

4

(

1 − cos
2πi

n

)(

1 − cos
2πj

n

)

to obtain

Pw(t) = P(t) ·W.

As required by the Fast Fourier Transform (FFT), the n× n field Pw(t) is padded

with zeros to make it of size 2N × 2N where N = ceiling
(

log(n)
log(2)

)

, i.e. the next power

of 2.

The MATLAB function fft2 is used to calculate the Fourier components FT (kx, ky)

in wavenumber space, where the wavenumbers indicate the number of full waves con-

tained in the region represented by P. To obtain the power spectrum, we sum the

energy in annuli of width one in wavenumber space about the centre as follows:

S(I) =

∑

d(kx,ky)∈(I,I+1) |FT (kx, ky)|2
π((I + 1)2 − I2)

where d(kx, ky) =
√

k2
x + k2

y and I = 0, . . . , n
2
− 1.

For a fully synchronised ensemble, we expect to see all energy focused at the

wavenumber k = 1 since no spatial structure exists below the level of the full domain.

How the peak of the power spectrum changes with, for example, time or coupling
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strength, gives an indication of the changing spatial organisation of the interacting

ensemble.

These diagnostic tools, summarised in Table 3.2, used together allow us to de-

scribe in detail the different synchronous behaviour displayed by the plankton dis-

tribution as variables of the model set-up are altered.

Measure Symbol Range Units

Phytoplankton biomass of population (i, j) Pi 0-0.5 gC m−3

Angular frequency of population (i, j) ωi 0.05-0.15 2πd−1

Frequency spread σ 0-25 %

Phase order R 0-1

Cluster measures cx, cy 1-n grid-cells

Gradient measure g 0-1

Table 3.2: Summary of diagnostic statistics.

3.3 Dependence on strength of interaction

We first explore how the emergent features of this lattice of coupled plankton popu-

lations depend upon the strength of interaction between the populations. How does

the interaction alter the oscillations of the individual populations to determine the

temporal and spatial structures of the plankton distribution? We will explore this

by varying the strength of effective diffusivity in the model as described below.

For a lattice of coupled plankton populations set up as previously described,

the coupling term, which is essentially the coupling strength ε multiplied by the

difference in concentration δC between neighbouring grid-cells of size l, where C may

represent nutrient, phytoplankton or zooplankton concentration, represents mixing

processes between adjacent grid-cells so that

εδC ≈ D
∂2C

∂x2

where D is effective diffusivity. Hence we may equate ε with the effective diffusivity

so that

ε ≈ D

l2
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where l is the grid-cell length-scale and 1
l2

approximates the second order spatial

derivative

The effective diffusivity has been shown by Okubo (1971) to scale with spatial

length-scale according to the empirical relationship

D(ls) ≈ 0.01ls
1.15

with ls in cm and effective diffusivity D(ls) in cm2 s−1. If we then take the grid-cell

length-scale l km of the lattice as the spatial scale at which effective diffusivity acts

in the model, then

ε ≈ 0.01l−0.85 × 60 × 60 × 24

for ε in d−1. For mesoscale processes on the order of 1 km to 100 km, this gives a

range of coupling

ε ∈ [0.001, 0.05] d−1

between adjacent grid-cells with coupling strength increasing with decreasing length-

scale (see Figure 3.1). Varying ε in this range is equivalent to varying the spatial

resolution of the model from 100 km to 1 km, i.e. l ∈ [1, 100] km. However, since

an understanding of the uncoupled system (ε = 0) is essential to an understanding

of the coupled system (ε > 0), in this work we consider the range

ε ∈ [0, 0.05] d−1.

For this investigation into how the strength of effective diffusivity determines the

emergent properties of the ensemble, we have the following specific set-up.

We set n = 100 to give a lattice of 100 × 100 populations. This number of grid-

cells is chosen so that the ensemble remains small enough to be computationally

inexpensive but large enough to give an unbiased sample of the uniform distribution

for the random mismatch values {∆i,j}, for i, j = 1, . . . , n2, to be applied to the

phytoplankton growth parameter a0. We set ∆ = 5% of a0 so that the mismatch

values are uniformly distributed on an interval a0 ± 2.5%, giving

ai,j ∈ [0.195, 0.205]

as shown in Figure 3.2 (top panel). For these parameter values, the biological

model displays oscillatory dynamics, with the parameter mismatch resulting in a
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Figure 3.1: Coupling strength ε according to Okubo (1971) empirical relationship

between grid-cell spatial scale l in km and effective diffusivity in d−1.
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slight difference in amplitude and period of oscillation for each population: the

resulting spread in natural frequencies of the plankton populations is approximately

2.5% as shown in Figure 3.2 (bottom panel), with mean frequency Ω = 0.052. The

resulting natural frequencies are not uniformly distributed; evidently the impact of

the parameter mismatch on the frequency of the plankton population is non-linear.

Using exactly the same set and spatial arrangement of mismatch values ∆i,j for

each simulation, the coupling strength ε is varied in the range given above. Varying

ε in this range is equivalent to varying the grid-cell length-scale from 100 km to

1 km, which, since n = 100 for each run, is equivalent to varying the domain size

L× L from 10,000 km × 10,000 km to 100 km × 100 km.

3.3.1 Temporal evolution

The system is integrated from initially synchronised dynamics for T1 time-steps of

length dt = 0.1 days sufficient for statistically steady-state dynamics to be reached.

In general, T1 = 50, 000 iterations = 5, 000 days is found to be sufficient, with
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Figure 3.2: Histogram of phytoplankton growth parameters ai,j and resultant natural

frequencies ωi,j(ε = 0) for i, j = 1, . . . , 100.
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spatial statistics remaining stable for T > T1. However, as will be discussed later,

the steady-state dynamics take longer to emerge for coupling strengths near to

transitions in system behaviour.

Figure 3.3 gives an example of how spatial structure emerges from the initially

homogeneous state; the phytoplankton field is shown at 100 day intervals for a

coupling strength of ε = 0.01 d−1. We see how the initial domain-sized structure

breaks down into well-defined clusters. Circular regions appear, containing small

scale-clusters, which are themselves not circular but appear as elongated shapes.

These circular regions grow, increase in number and merge until the domain is filled

with clusters which change in size with time until appearing to reach a statistical

steady state at around t = 2, 500 days. The calculated cluster measures cx(t) and

cy(t) plotted in Figure 3.4 confirm what can be seen visually: the structure in

both directions reaches a steady state length-scale of 4 to 5 grid-cells. Relating

the coupling strength ε = 0.01 to a grid-cell length-scale of around 6.4 km using

the Okubo relationship, this gives a steady-state cluster size of approximately 25 to
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32 km. The clusters are well-defined synchronised regions, with sharp transitions

at their boundaries, as indicated by a steady state value of g(t) ≈ 0.85 in Figure

3.4. Importantly, although the cluster size converges, the position of these clusters

is non-stationary, indicating that the spatial arrangement of the structure is not a

simple reflection of the spatial arrangment of the underlying natural frequencies; the

clustering structure continues to evolve in time after the spatial structure mean size

has reached a steady-state, hence we speak of a statistical steady-state.

The time-evolution plots clearly show that ε = 0.01 d−1 is not a strong enough

coupling to counteract the natural frequency disorder and keep the system in full

synchronisation, but a certain amount of local synchronisation does exist.

A clear, approximately 120 day oscillation, can be seen in cx(t), cy(t)and g(t)

and, initially, in the phytoplankton dynamics plotted in Figure 3.4. This may ex-

plain why the system takes such a long time - approximately 7 years - to shed its

transient behaviour. From the initially synchronised state, the amount of disparity

in phytoplankton biomass increases with each period of oscillation. Since the period

of oscillation is long - approximately 120 days - the synchronous state persists for

some time before the system reaches its attractor. Since the model is not subject to

any seasonal forcing and also has not been tuned to any particular period, this 120

day period is not intended or considered as a realistic period of oscillation. It is hy-

pothesised, although not explored directly here, that a shorter period of oscillation

would shorten the time of transient dynamics.

For the same system (ε = 0.01 d−1; n=100), Figure 3.5 shows the biomass

fields for nutrient, phytoplankton and zooplankton at time t = 5000 days. Figure

3.5 also shows the time evolution of all three model components for the last 500

days at the centre grid-cell v50,50 of the lattice and a snapshot transect across the

centre of the lattice (i = 50) at time t = 5000 days. The same spatial structure is

seen for all three components, with synchronised regions of phytoplankton biomass

roughly corresponding to synchronised regions of zooplankton biomass and nutrients.

However, clusters of high phytoplankton biomass may correspond to areas of high or

low nutrient levels and zooplankton biomass, as expected from the nature of species

interaction and illustrated by the time-series and transect. The transect clearly
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shows the sharp gradients in biomass at cluster edges. Since the same synchronous

properties are observed for all three model components, further results are illustrated

only in terms of the phytoplankton components for brevity and clarity.
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Figure 3.3: Temporal dynamics. Evolution of phytoplankton biomass field for 5,000 days from initially synchronised conditions for

lattice of 100 × 100 plankton populations interacting with effective diffusivity ε = 0.01 d−1. Figure labels indicate time in days.
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3.3.2 Steady-state dynamics

An integration of a further T2 = 500 days was used to calculate the diagnostics.

Figure 3.6 shows how the frequency spread σ, phase order parameter R and the

frequencies of the oscillators vary as a function of coupling strength for ε ∈ [0, 0.05]

d−1. It is immediately seen that increasing the coupling strength does not have

the intuitive effect of monotonically increasing the degree of synchrony exhibited by

the ensemble: we do not have a monotonic decrease in σ and increase in R as ε is

increased. The final phytoplankton field at time t = (T1 + T2) for each value of ε

is shown in Figures 3.7 to 3.12. Figure 3.13 shows the spatial measures cx, cy and

g as a function of ε. In Figure 3.14, the cluster measures cx and cy in grid-cells

are scaled by the length-scale l(ε) km according to the Okubo relationship to give

cluster length-scales in km.

As ε is increased from zero, the diagnostic tools and spatial phytoplankton

biomass plots indicate that the dynamics of the ensemble exhibits four qualitatively

different states.

• ε = 0 d−1: independent populations.

For zero coupling the plankton populations oscillate independently, so that the

phytoplankton field shown in the first subplot of Figure 3.7 is random with no

spatial structure larger than the grid-cell, as confirmed by cx and cy values of

1 in Figure 3.13 and a wide frequency spectrum in Figure 3.7. As expected,

σ ≈ 2.5 % (see Figure 3.6). Since there is no interaction between neighbouring

populations, there can be a sharp transition in phytoplankton biomass from

grid-cell to grid-cell, indicated by gradient measure value of g = 1 (Figure

3.13).

• 0 < ε ≤ 0.001 d−1: small increase in frequency spread; small-scale

clustering.

For 0 < ε < 0.001 the spread in frequencies increases with increased coupling

strength (Figure 3.6). The frequencies are seen in general to increase but, since

the oscillators do not all increase in frequency at the same rate as a function of

ε, σ increases to more than 5%. Despite the increase in σ, the clustering in the
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Figure 3.4: Temporal dynamics. Evolution of spatial structure for 5,000 days

from initially synchronised conditions for lattice of 100 × 100 plankton populations

interacting with effective diffusivity ε = 0.01 d−1, showing phytoplankton dynamics

for each Pi,j(t) for i, j = 1, . . . , 100, cluster measures cx(t) (black) and cy(t) (red)

and gradient measure g(t).
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Figure 3.5: NPZ dynamics. Nutrient (N), phytoplankton (P ) and zooplankton

(Z) biomass fields in gC m−3 at time t = 5000 days after integration from homoge-

nous initial conditions; evolution of N (black), P (green) and Z (red) for final 500

days of integration for the population in the centre of the lattice (i = j = 50); and

N(x), P (x) and Z(x) at time t = 5000 for a transect across the centre of the lattice

(i = 50, j = 1, . . . , 100). Coupling strength ε = 0.01 d−1, n = 100.
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biomass plots and the narrowing of the associated spatial frequency spectra in

Figure 3.7 indicate that the size of spatial structure in the phytoplankton field

has increased between ε = 0.0005 and ε = 0.001. It is evident that the increase

in coupling has caused an increase in local synchronisation although the size

of the clusters remain small with only a small increase in c to 2-3 grid-cells.

These clusters are well-defined, as indicated by g = 1 in this region (Figure

3.13).

• 0.001 < ε ≤ 0.0025 d−1: frequency-locking; large-scale clustering.

For coupling around ε = 0.002 d−1 there is a small region of near frequency

locking, seen by a rapid decrease in σ to < 1% (Figure 3.7). The scale of

spatial structure increases; the phytoplankton biomass field shows much larger

clusters, the spectrum narrows and the cluster measure increases to cx = cy =

10 grid-cells (Figure 3.13). However, the system is clearly not phase locked

since neighbouring clusters coexist with some at their peak in phytoplankton

biomass and some at their trough, confirmed by an order parameter value of

R ≈ 0.6 (Figure 3.6), with sharp transitions at cluster boundaries indicated

by g = 0.9 (Figure 3.13).

• 0.0025 ≤ ε ≤ 0.02 d−1: large frequency spread; small-scale clustering.

For ε = 0.0025 d−1, two discrete sizes of spatial structure appear to coexist.

However, this system is not in steady state even after 5000 days. When the

system is integrated for a further 5000 days, the large-scale structure disap-

pears and the entire domain is filled with the small-scale spatial structure.

The transient behaviour takes longer to disappear when the system is near a

change in behaviour, which is what ocurs at this point.

As ε is increased above 0.0025 d−1, the ensemble bursts out of frequency lock-

ing and enters a desynchronised region for ε ∈ (0.0025, 0.02) d−1, shown in

Figures 3.7 to 3.9. The spread in frequencies reaches an order of magnitude

higher than the spread in natural frequencies and increasing ε within this re-

gion apparently has no effect on the amount of disorder in the frequencies

(Figure 3.6). However, clustering is clearly visible in the phytoplankton distri-

76



bution snap-shots for coupling in this region (Figures 3.7 to 3.9). Additionally,

although σ gives no evidence of an increase in the amount of synchrony for

increased coupling, the phytoplankton fields clearly show an increase in the

size of clusters as ε is increased; the amount of local synchrony in both the

x and y directions increases and cx and cy increase slowly and monotonically

from 2 to 7 grid-cells (see Figure 3.13). However, Figure 3.14 indicates that

the actual cluster size monotonically decreases from around 50 km to 20 km.

The gradient measure remains high (g > 0.7) in this region as clusters are still

well-defined (Figure 3.13).

Note that the statistical steady-state for the temporal dynamics shown in

Figure 3.3 occupies this small-scale clustering region.

• 0.02 < ε ≤ 0.05 d−1: frequency-locking; near domain-sized spatial dy-

namics; near phase-locking.

Above ε = 0.02 there is a rapid, threshold-like transition to a frequency-

locked state, with a decrease in σ to near zero. This transition is seen in the

phytoplankton fields in Figure 3.10.

The dynamics are largely synchronised, with structure almost at the size of the

domain and no sharp transitions between neighbouring grid-cells, unlike in the

clustering state. We see a rapid decrease in g at this threshold to values around

0.3 (Figure 3.13), showing that clusters are no longer well-defined and that

changes in phytoplankton biomass across the lattice occur instead on a gentle

gradient. As explained above, the cluster measure is no longer appropriate

for a low value of g, although we note that cx and cy increases rapidly to

approximately half the domain size at this threshold (Figure 3.14), indicating

a rapid increase in dominant spatial structure.

The system remains frequency-locked for increased coupling after this tran-

sition and the resultant frequency of the synchronised system tends towards

the mean of the natural frequencies, Ω = 0.052. Figure 3.15 shows how the

distribution of the population frequencies develops as the effective diffusivity

is increased. For 0 < ε < 0.003 the original distribution of natural frequencies
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narrows as the system becomes nearly frequency locked. For ε ≥ 0.003 the

distribution widens, showing a tendency for populations to oscillate faster as

a result of interaction. From ε = 0.015 d−1, a bimodal distribution develops,

with a wide residual group of faster oscillators and a distinct “break-away”

narrow band of populations with frequencies around Ω ≈ 0.05. An increasing

number of populations is recruited into this second group, seen in Figure 3.15

as a diminishing of the wide group of faster oscillators, until at the critical

coupling for frequency locking, εFL ≈ 0.02, the faster group disappears, the

distribution in frequencies appears as a single spike at Ω ≈ 0.05 and the en-

semble is frequency-locked. Since this state remains for ε > 0.02, histograms

are not shown for the full range of ε.

In contrast to the threshold-like change to frequency-locking, the transition to

phase-locking after ε = 0.02 is gradual, as seen by a slow monotonic increase

in R towards 1 (Figure 3.6). For coupling in the range considered here of

ε < 0.05, we see that the ensemble never achieves fully phase-locked dynamics,

as R < 1 (Figure 3.6) and the variation in colour in the biomass plots in Figures

3.10 to 3.12 always indicates some variation in the phase of oscillation of the

populations across the domain. However, the dynamics gradually become more

homogeneous and the spatial frequency spectra in these regions are narrow

with peaks at a wavenumber of 1, indicating dominant structure at the domain

size.

From the incomplete invasion of small-scale spatial structure apparent in Figure

3.10 for ε = 0.02, we see again that transients persist for longer near to threshold-like

changes in system behaviour. Comparing this plot with the temporal evolution plots

shown in Figure 3.3, we might ask whether there is really a transition in behaviour at

ε > 0.02 or whether the dynamics above this coupling strength have simply not been

integrated for long enough to come to steady state. Would small-scale structure, like

that seen for ε < 0.02, develop if the system were integrated for longer for ε > 0.02?

To check this, a further integration with T1 = 20, 000 iterations (four times longer)

was carried out for ε ∈ (0.0175, 0.0225), the area around the apparent transition.

The resultant spread in frequencies is shown in Figure 3.16. Although the longer
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integration time alters σ values around the threshold, as dynamics have longer to

reach steady-state, the value of ε at which the transition occurs is the same. By

simulation alone, it cannot be shown conclusively that a longer integration would

not allow smaller-scale structure to develop for ε > 0.02, pushing the transition

further to the right on Figure 3.16. However, if that were the case then it would be

expected that the threshold would have moved at least some distance further to the

right after the longer integration shown by the solid line in Figure 3.16. Hence we

are confident that the apparent threshold is a real transition to a different type of

dynamics.

3.3.3 Boundary conditions and initial conditions

We are interested in the ensemble statistics and spatial structure that result from

the interaction between the individual populations. Hence, it is necessary to be sure

that these emergent properties are not imposed upon the system by the choice of

initial and boundary conditions.

No-flux boundary conditions are used as default in this investigation. An ad-

ditional simulation was carried out with all parameters as in the previous section

(n = 100, ε ∈ [0, 0.05], ∆ = 5% and the same set of ai,j) but with doubly-periodic

rather than no-flux boundary conditions. Figure 3.17 shows the resultant spread

in population frequencies as a function of coupling strength, with results for the

no-flux case shown as a dotted curve for comparison. The shapes of the two curves

are seen to be almost identical, with transitions between types of ensemble dynam-

ics occurring at the same values of ε. Equally, the emergent spatial structure in

phytoplankton biomass shown in 3.17 is close to that seen in the case of no-flux

boundary conditions. This indicates that the ensemble dynamics are not sensitive

to the choice of boundary conditions.

The influence of the initial conditions was also investigated. The system is

usually integrated from homogeneity and this state is observed to persist or break

down into asynchrony or clustering, depending upon the parameters of the system.

An additional simulation was carried out for n = 100, ε ∈ [0, 0.05] and ∆ = 5%

with asynchronous initial conditions, obtained by integrating the uncoupled system
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(ε = 0) for 5000 days and using the final Ni, Pi and Zi values as initial conditions in

the coupled case (ε > 0), so that in this case the clustering or fully synchronous state

was seen to emerge from asynchrony. The results of σ(ε) and the emergent spatial

dynamics in the cases of (i) synchronised and (ii) desynchronised initial conditions

were found to closely match and are as in Figures 3.6 and 3.7 to 3.12 (and so are

not reproduced here). Hence the system is not sensitive to the choice of initial

conditions. Additionally, this confirms ε ≈ 0.02 d−1 as a bifurcation point to stable

synchrony.
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Figure 3.6: Diagnostics for n = 100 as a function of coupling strength.

Frequencies ωi,j(ε) for i, j = 1, . . . , 100 (top panel), standard deviation of frequencies

σ (dotted line) and order parameter R (solid line) for ε ∈ [0, 0.05] d−1 (middle panel)

and a zoomed-in section of σ for ε ∈ [0, 0.0025] d−1 (bottom panel).
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Figure 3.7: Spatial dynamics for varying effective diffusivity. Phytoplankton

biomass field (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 ) for

n = 100 at time t = T1 + T2, after initial integration of length T1 = 5, 000 days to

remove transients and additional integration of length T2 = 500 for calculation of

diagnostics for ε ∈ [0, 0.0045] d−1. Figure title numbers indicate value of ε.
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Figure 3.8: Spatial dynamics for varying effective diffusivity. Phytoplankton

biomass field (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 ) for

n = 100 at time t = T1 + T2, after initial integration of length T1 = 5, 000 days to

remove transients and additional integration of length T2 = 500 for calculation of

diagnostics for ε ∈ [0.005, 0.0095] d−1. Figure title numbers indicate value of ε.
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Figure 3.9: Spatial dynamics for varying effective diffusivity. Phytoplankton

biomass field (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 ) for

n = 100 at time t = T1 + T2, after initial integration of length T1 = 5, 000 days to

remove transients and additional integration of length T2 = 500 for calculation of

diagnostics for ε ∈ [0.01, 0.019] d−1. Figure title numbers indicate value of ε.
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Figure 3.10: Spatial dynamics for varying effective diffusivity. Phytoplankton

biomass field (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 ) for

n = 100 at time t = T1 + T2, after initial integration of length T1 = 5, 000 days to

remove transients and additional integration of length T2 = 500 for calculation of

diagnostics for ε ∈ [0.02, 0.029] d−1. Figure title numbers indicate value of ε.
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Figure 3.11: Spatial dynamics for varying effective diffusivity. Phytoplankton

biomass field for (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 )

n = 100 at time t = T1 + T2, after initial integration of length T1 = 5, 000 days to

remove transients and additional integration of length T2 = 500 for calculation of

diagnostics for ε ∈ [0.03, 0.039] d−1. Figure title numbers indicate value of ε.
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Figure 3.12: Spatial dynamics for varying effective diffusivity. Phytoplankton

biomass field for (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 )

n = 100 at time t = T1 + T2, after initial integration of length T1 = 5, 000 days to

remove transients and additional integration of length T2 = 500 for calculation of

diagnostics for ε ∈ [0.04, 0.049] d−1. Figure title numbers indicate value of ε.
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Figure 3.13: Spatial structure diagnostics as a function of effective diffusiv-

ity. Cluster size measures cx(ε) (black) and cy(ε) (red) and gradient measure g(ε)

for n = 100 at time t = T1 + T2, after initial integration of length T1 = 5000 days

to remove transients and additional integration of length T2 = 500 for ε ∈ [0, 0.05]

d−1. Frequency spread σ(ε) is shown for reference (dotted).
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Figure 3.14: Spatial structure as a function of effective diffusivity. Cluster

measures cx(ε) (black) and cy(ε) (red) scaled by grid-cell length-scale l(ε) for n = 100

and ε ∈ [0, 0.05] d−1.
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Figure 3.15: Distribution of frequencies ωi,j as a function of coupling strength ε for

n = 100. Figure title numbers indicate value of ε.
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Figure 3.16: Checking transition to frequency-locking. Calculation of fre-

quency disorder σ for ε ∈ (0.0175, 0.0225) d−1 for length of integration T1 = 5000

days (dotted line) and T1 = 20000 days (solid line) for n = 100.
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Figure 3.17: Impact of boundary conditions. Phytoplankton biomass and stan-

dard deviation σ of population frequencies as a function of coupling strength ε at

time t = 5000 days after integration from homogenous initial conditions for n = 100

with doubly-periodic boundary conditions. σ(ε) for the same system with no-flux

boundary conditions is shown for comparison. Figure title numbers indicate value

of ε. Colour scale is as in Figures 3.7 to 3.12.
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3.4 Dependence on model resolution

Following on from the previous section, we now consider the system from a different

angle. Suppose we have a particular ocean region for which we wish to simulate

plankton dynamics. In modelling this region, the spatial resolution chosen for the

simulation may be decided by a number of different factors such as available com-

puting power or the spatial resolution of observed data which we hope to reproduce.

By fixing the domain size L of the lattice of interacting plankton populations and

varying the number n×n of grid-cells, we can investigate how the behaviour of the

system changes as the spatial resolution is increased.

Instead of fixing n and varying the effective diffusivity ε so that the grid-cell

spatial scale and hence total domain length effectively varies, we now fix the domain

size and consider varying the grid-cell length-scale l. As before, we consider the

spatial mesoscale so that l varies from 1 km to 100 km. With this in mind, and in

order to prevent the simulations becoming too computationally expensive, a domain

size of 512 km is chosen. The number of grid-cells n×n is then given by n×n = L
l
×L

l
,

covering a range of whole2 grid-cells [5×5, 500×500] grid-cells.

The domain size of 512 km was chosen for computational reasons. A domain size

larger than 512 km leads to a larger number of grid-cells when considering a spatial

resolution of 1 km than can be integrated in a reasonable length of time. Equally,

a smaller domain size leads to too small a number of grid-cells when considering a

spatial resolution of 100 km.

For each simulation with a particular number of grid-cells n×n, we use the

empirial Okubo relationship to set the coupling strength ε
(

L
n

)

so that again ε ∈
(0, 0.05] d−1 and the uncoupled case ε = 0 d−1 is included for completeness. As in

the previous experiment, a mismatch spread ∆ = 5% is applied to the phytoplankton

growth rate. Each simulation requires n×n phytoplankton growth parameter values

2Note that the domain length 512 km was also originally chosen to be consistent with some

modelling work by A. P. Martin (personal communication); it was hoped to make some comparisons

between that work and the present results. Although this line of research was not pursued, the

domain length of 512 km rather than 500 km was retained and is accurately reported. This makes

no difference to the results and merely leads to non-integer grid-cell length-scales.
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ai,j. The random mismatch values are not the same for all simulations, however,

since a larger value of n×n calls for a larger number of mismatch values. These are

generated for each simulation using the same integer seed for the random number

generator and consequently, for each n2 > n1, the first n1 × n1 values of {ai,j} for

n = n2 will be composed of the full set of {ai,j} of n = n1; the remaining n2
2 − n2

1

will be “new”. Hence each simulation differs from the last not only in the number

of grid-cells and resultant spatial resolution but also in the underlying set of natural

frequencies (which are always uniformly distributed). The consequences of this will

be discussed in Section 3.5.

As before, we have a number of diagnostic tools to give a clear picture of how

changing the spatial resolution of the 512 km × 512 km model changes the kind of

structure and synchronous effects exhibited.

Figure 3.18 shows how the spread of population frequencies and phase order

parameter vary with n. For reference, the accompanying subplots indicate how the

grid-cell length-scale l = L
n

and corresponding coupling strength ε, set as a function

of l according to Okubo (1971), vary with n.

The cluster measures cx(n) and cy(n) in numbers of grid-cells, the cluster mea-

sures cx(n) · l and cy(n) · l scaled by the grid-cell length-scale l = 512
n

km and the

gradient measure g(n) are plotted with varying n in Figure 3.19, with frequency

spread σ shown as a dotted line for reference.

Figures 3.20 to 3.24 show final time-step spatial phytoplankton biomass and

corresponding power spectra for each value of n, where the length of integration is

5,000 days to remove transients and a further 500 days for calculation of diagostics,

as in the previous section. In the previous section the length of the domain was

equal to the length-scale corresponding to each value of ε ∈ [0, 0.05] d−1 according

to Okubo (1971) relationship, multiplied by the 100 grid-cells; that is, l ∈ [1, 100]

km multiplied by 100. Here, the domain is of a fixed length, so that each of the

lattice plots shown in these figures is of equal area.

Finally, to explain the patterns seen in Figures 3.20 to 3.24, Figure 3.25 shows

how the frequency spread varies across the full range of ε ∈ [0, 0.05] d−1 for n = 20,

n = 50, n = 80 and n = 140. The values of ε
(

512
n

)

set according to Okubo (1971), as
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used in the calculations shown in Figure 3.18, are indicated by dashed lines. These

plots are analogous to Figure 3.6 from the previous section, where we had n = 100.

We see the same general shape of profile for each value of n for which the whole

range of ε has been considered, as described in detail in the previous section. It is

clear that the value of ε given by the Okubo relationship dictates which region of

this profile is occupied by the dynamics for a given n when the domain length is

fixed.

Using all this information together to understand how changing the spatial reso-

lution affects the synchronous properties of the simulation of this fixed area, we see

that there are essentially three regions of system-level dynamics.

• n < 20: near frequency-locking; domain-scale structure; no phase-

locking. For very low n (n < 20), the low values of σ in Figure 3.19 indicate

near frequency locking of the ensemble but the spatial plots in 3.20 clearly show

that it is not fully phase-locked since there is a wide variation is phytoplankton

biomass values. Spatial structure is large, with a peak in the power spectra

at the domain-scale frequency. There is no distinct clustering: the cluster

measure is equal to approximately n
2

in this region and the gradient measure

is low, apart from at n = 5 where the very small number of grid-cells may

have led to a misleading result.

The (ε,σ) curve given in Figure 3.25 for n = 20 shows why this is so: the

coupling strength fixed according to grid-cell length-scale l = 512
20

km puts the

dynamics into a frequency-locked region.

• 20 ≤ n < 290: either frequency-locking or disorder possible; domain-

scale structure or clustering. For middle values of n (20 < n < 290), the

system alternates between two distinct states, always with a sharp transition

between the two.

For most n in this range, the length-scale dependent coupling strength has

pushed the dynamics into a desynchronised region, with frequency disorder

σ ≈ 20% and no phase synchrony. An example of this is given in Figure 3.25

for n = 50. Note also that the dynamics for n = 100, as described in detail in
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the previous section, occupy this region when L = 512 km, since ε
(

512
100

)

≈ 0.01

(see Figure 3.6).

Within these non-frequency-locked parameter regions, there is a consistent

increase in the cluster measures cx(n) and cy(n) grid-cells with n, indicating

an increase in the number of grid-cells occupying a typical cluster, although

the corresponding cluster size c·l decreases (see Figure 3.19). Spatial structure

in these regions is small-scale, with clusters of size 3 to 10 grid-cells (40 km

to 20 km) and sharp transitions between them, as shown by the high gradient

measure values; g(n) ≈ 0.7 − 1.0 (Figure 3.19).

These desynchronised parameter regions are interspersed with regions of frequency-

locking, with σ ≈ 0. Figure 3.18 shows n = 140 to occupy one of these fre-

quency locked intervals, and the full (ε,σ) curve shown in Figure 3.25 explains

why this is the case, since the value of coupling ε(l) set according to grid-cell

length-scale l = 512
140

km is in the frequency-locked region.

The size of spatial structure seen in these frequency locked regions is much

larger than in the desynchronised regions, with high values of cx(n) and cy(n)

around 20 grid-cells or 70 km and low values of g around 0.5 (Figure 3.19).

The spectra for these regions have peaks at the domain wavenumber (Figures

3.20 to 3.22).

Near transitions where increasing nmoves the dynamics between the two states

of (i) small-scale structure and frequency disorder and (ii) the large-scale struc-

ture and frequency-locking, we can see coexisting distinct areas of each scale

of structure. For example, in Figure 3.21 we have large-scale structure for

n = 150 and a combination of small and large for n = 160. As seen in the

previous section, this is due to the need for longer integration times for tran-

sients to disappear near to unstable regions where we move from one type of

dynamics to another.

The jumps in type of behaviour as n is varied between n = 20 and n = 220

region are caused by the interaction of three different factors. In general,

an increase in n leads to an increase in the strength of coupling required for
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frequency locking. We saw this for identical oscillators in Chapter 2 and it is

hinted at again in the (ε, σ) curves for various n shown in Figure 3.25, although

not conclusively (because there are other factors at work here too, which have

not yet been discussed - see Section 3.5). However, the value of ε used in the

simulation is set according the grid-cell length scale l = L
n

and it is seen in

Figure 3.18 that this coupling strength increases with n. Hence the increase

in number of grid-cells, which in general makes it harder for the system to

synchronise, is in competition with the increase in coupling strength.

If these were the only two factors involved, we hypothesis that a critical number

of grid-cells nc would exist such that ε
(

L
nc

)

= εFL(nc) so that for n < nc we

would see one type of ensemble behaviour (small-scale clustering) for n >

nc we would see another type of behaviour (frequency-locking; domain-sized

structure). In other words, for nc the two influences would be in balance. This

assumes that only one point of intersection between the curves ε
(

L
n

)

(as set

by Okubo (1971)) and εFL(n) exists.

The confounding third factor, which prevents us from determining the shape of

the curve εFL(n) is the variability in the natural frequencies of the individual

grid-cells, as given by the mismatch values selected at random from a uniform

distribution. It has been seen (Osipov and Sushchik, 1997) that changing the

particular arrangement of natural frequencies which have the same probability

distribution can alter the synchrony thresholds and hence emergent structure

of a simulation. Osipov and Sushchik (1997) found that a larger strength

of coupling was required to fully synchronise a chain of N oscillators with

natural frequencies monotonically increasing along the chain than a chain with

randomly distributed natural frequencies. They argue that in the case of

ordered frequency mismatch the “pull” exerted on every oscillator by its two

nearest neighbours is in opposition; it is sped up by the oscillator to the right

and slowed down by the oscillator to the left, increasing the coupling required

to overcome the natural frequency disorder.

• n > 290: frequency-locking; increasing phase-locking; domain-scale

structure. For n > 290 grid-cells, the ensemble finally remains in the frequency-
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locked region, with σ ≈ 0 (Figure 3.18), large-scale structure and no well-

defined clusters (Figure 3.19). High values of R, near 1, indicate an increase

in the degree of phase-locking (Figure 3.18). This tells us that, of the compet-

ing influences of increasing number of grid-cells and increasing corresponding

coupling strength, the increase in ε ultimately has the stronger influence.

There is a rapid decrease in cx and cy as n increases past 290, after which they

stay at a value of 3 grid-cells (around 10 km) for increasing n. This indicates

small-scale variability, but the low and decreasing values of g < 0.5 imply

a gentle gradient across locally-synchronised regions rather than well-defined

clusters, so that the c measure is unreliable (Figure 3.19). The wavenumber

spectra for n > 290 indicate domain-scale dominant structure.

The amount of phase order increases with increasing number of grid-cells. This

is seen in the phytoplankton biomass snap-shots of Figures 3.23 and 3.24 as

an increasingly monotonous lattice plot and narrow spectrum, although some

small-scale variability is still observed, accounting for the cx = cy = 3 grid-cells

value. Evidently, for our domain of L = 512 km the largest coupling strength,

which, set according to Okubo (1971), corresponds to the smallest grid-cell

length-scale and therefore largest number of grid-cells into which the domain

may be divided, is insufficient to pull the ensemble into full phase-locking.

We see that, as the number of grid-cells and resultant spatial resolution is in-

creased, the final transition to frequency-locking occurs at higher values of ε. In

other words, if this final transition occurs at ε = εFL then, in general, εFL increases

as n increases. This increase in the the difficulty of achieving full synchrony as n is

increased is offset by the concurrent increase in effectively diffusive coupling strength

ε(l) as the resultant grid-cell length-scale l km decreases. In general, we have seen

from the eventual permanent frequency-locking seen for large values of n in Figure

3.18 that the latter effect has the stronger influence on the ability of the system to

synchronise.

For the domain considered here of L = 512 km, the system is not able to fully

phase-lock. Bearing in mind our conclusions above, we hypothesize that it may be

possible for a simulation with a smaller domain size to fully phase lock within the
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range of grid-cell length-scales considered here. This is because the largest value of

ε(l) corresponds to the smallest grid-cell length-scale, which here is fixed as 1 km.

On the other hand, the corresponding number of grid-cells n× n = L
1
× L

1
decreases

with the size of domain L and we have seen that a smaller number of grid-cells

is able to synchronise more readily. We therefore suggest that for a small enough

domain size and correspondingly small number of grid-cells, the value of coupling

ε(l) for l = 1 km would be sufficient to phase lock the ensemble.

The factor not yet fully explored is the impact of the underlying disorder in

parameter values. We will see that the particular values of ε at which the transitions

between the different types of system behaviour occur vary widely with the particular

choice and arrangement of the natural frequencies of the populations. It is the

resultant variability in the critical values of ε that causes the system with fixed

domain size and varying spatial resolution to “jump” back and forth between the

two discrete system states (as seen in Figure 3.18) as n is increased.
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Figure 3.18: Diagnostics for L=512 km as a function of number of grid-

cells. Spread in frequencies σ (solid line) and order parameter R (dashed line) as

a function of number of grid-cells, n × n, for L = 512 km. Showing also coupling

strength ε
(

L
n

)

and grid-cell length-scale l = L
n
.
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Figure 3.19: Spatial structure diagnostics as a function of number of grid-

cells. Cluster measures cx(n) (black) and cy(n) (red) (top panel), cluster measures

scaled by grid-cell length-scale (middle panel) and gradient measure g(n) (bottom

panel) for L = 512 km and n ∈ [5, 500]. Dotted line shows spread in frequencies

σ(n) for reference.
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Figure 3.20: Spatial structure for varying spatial resolution. Phytoplankton

biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 )

after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n ∈ [0, 70].
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Figure 3.21: Spatial structure for varying spatial resolution. Phytoplankton

biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 )

after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n ∈ [80, 170].
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Figure 3.22: Spatial structure for varying spatial resolution. Phytoplankton

biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 )

after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n ∈ [180, 270].

104



Figure 3.23: Spatial structure for varying spatial resolution. Phytoplankton

biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 )

after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n ∈ [280, 370].
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Figure 3.24: Spatial structure for varying spatial resolution. Phytoplankton

biomass in gC m−3 (columns 1 and 3 ) and wavenumber spectra (columns 2 and 4 )

after integration length 5,500 days from homogeneous initial conditions for domain

length L = 512 km and number of grid-cells n ∈ [380, 500].
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Figure 3.25: Examples of spread in frequencies as a function of effective

diffusivity for different numbers of grid-cells. σ(ε) for n=20, 50, 80 and 140.

The values of effective diffusivity ε
(

L
n

)

for L = 512 km set according to the spatial

resolution are indicated by dashed lines.
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3.5 Investigation of variability

Motivated by the findings of the previous section, we examine the influence of the

particular choice and spatial arrangement of natural frequencies from the same uni-

form distribution on the ability of the ensemble to synchronise.

In order to isolate the influence of the arrangement of the frequency disorder from

the two influences of the changing number of grid-cells and concurrently changing

the effective diffusivity, we fix the number of grid-cells and look at the full range

of mesoscale diffusivity ε ∈ [0, 0.05] d−1 as in Section 3.3. The spread in natural

frequencies is fixed at ∆ = 5% and the n × n phytoplankton growth rate values

{ai,j} are selected at random with a uniform distribution, as before. The random

number generator requires an integer seed J , so that the same J gives the same set

of mismatch values for a fixed n. Here, we vary J from J = 1 to J = 100 to give 100

sets of mismatch values, all with the same probability distribution. Each of these

sets is then used in the integration of the phytoplankton dynamics and the resultant

σ(ε) is calculated for ε ∈ [0, 0.05]. Hence we have an ensemble of 100 simulations

differing only in the particular choice and arrangement of natural frequencies.

For computational speed, it has been necessary to restrict this investigation to

n = 10 since carrying out 100 different simulations for a lattice of greater than

10 × 10 populations is very time-consuming.

Figure 3.26 shows the calculations of the spread in frequencies σ as a function

of coupling strength between grid-cells ε for each of the 100 simulations. Although

this figure indicates the large amount of variability in the profiles, there are some

noteworthy common features. For each simulation, the initial part of the profile,

for low ε in the range approximately 0 to 0.001 d−1, shows an increase in frequency

spread to about double the natural frequency disorder σ(ε = 0) and a subsequent

sharp decrease in frequency spread at ε ≈ 0.002 d−1, i.e. at the same value of ε

for each profile. Qualitatively, with some variation in the actual values of σ(ε),

this part of the profile, which was also seen for n = 100 in Section 3.3 (Figure

3.6) and in Section 3.4 for n =20, 50, 80 and 140 (Figure 3.25), is the same for

all simulations. For ε > 0.002 the results diverge into two distinct types of profile:

(1) as seen in the previous sections, there is a bursting out of frequency-locking at
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some value of ε into a desynchronised region with values of σ around 20% and an

eventual rapid return to frequency-locking at some coupling strength εFL, or, (2)

the system remains frequency locked. Some illustrative examples of this are given in

Figure 3.27. All simulations become permanently frequency-locked for sufficiently

high effective diffusivity, i.e. εFL < 0.05 d−1 ∀ J .

Clearly, whether or not a region of desychronisation occurs, and for what range of

ε it persists, depends on the particular mismatch values used in the simulation. The

coupling strength εFL at which there is a transition to permanent frequency-locking

ranges from 0.002 to 0.023 d−1. Why is there such a spread in εFL when we have

a spread in phytoplankton growth rates of ∆ = 5% and with the same probability

distribution for each simulation? Firstly, we note that although ∆ = 5% for each

simulation, the resultant spread in natural frequencies, as given by σ(ε = 0) varies

from 2.3% to 2.9% with J (see Figure 3.28). We might hypothesise that a spread in

natural frequencies at the lower end of this range would lead to a profile without a

desynchronised region, since presumably populations with smaller natural frequency

discrepancy would synchronise more readily. However, the scatter plot of natural

frequency disorder against maximum frequency disorder obtained for ε ∈ [0, 0.05]

(see Figure 3.29) shows this hypothesis to be false. Here we clearly see the two

distinct profiles as two discrete clusters, one at a maximum σ value around 20% and

one at around 5%, but there is no obvious correlation between natural frequency

disorder and whether the system exhibits the desynchronised region or not. Hence,

it is the actual arrangement of natural frequencies of plankton populations in the

lattice that determines the synchronous properties. This could be investigated fur-

ther by applying a specified spatial arrangement of frequencies, e.g. monotonically

increasing across the domain, a line of research not explored further in the present

study.

We see that the system may exhibit a range of behaviour for a fixed value of the

coupling strength ε depending on the set of growth rate parameters {ai,j}. For the

system of 10 × 10 populations, if we fix the domain size L then we fix the effective

diffusivity according to the grid-cell length-scale l given by L
10

. Consider the four

cases of L = 512 km, L = 150 km, L = 100 km and L = 50 km, giving grid-cell
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length-scale l = 51.2 km, l = 15 km, l = 10 km and l = 5 km, respectively, and,

by the empirical Okubo relationship between length-scale and effective diffusivity,

ε = 0.0017 d−1, ε = 0.0049 d−1, ε = 0.007 d−1 and ε = 0.012 d−1, respectively.

The values of ε are indicated by red lines in Figure 3.26. Histograms of the values

of σ calculated at these values of ε for each of the 100 simulations of 10 × 10

populations are shown in Figure 3.30. These results show that the kind of spatial

dynamics observed in the simulation will depend upon the particular values and

arrangement of natural frequencies. In particular, for a domain size of L = 150 km,

L = 100 km or L = 50 km, sometimes frequency-locked dynamics with large-scale

structure (see previous section) and sometimes desynchronised dynamics with small-

scale clustering will result (Figure 3.30), even though the domain size L, number of

populations n×n, parameter mismatch ∆, the choice of biological model F used to

represent plankton dynamics and the strength ε of interaction between populations

are all fixed. As the domain size is decreased, the corresponding ε increases and

hence the dynamics are more likely to inhabit a frequency-locked region.
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Figure 3.26: Ensemble runs. Frequency disorder σ as a function of coupling

strength ε in d−1 for n = 10 for 100 different sets of phytoplankton growth parameter

values ai,j for i, j = 1, . . . , 10, uniformly distributed on an interval of width ∆ = 5%

centred on a0. Each set seeded by a different integer J . Red lines indicate the value

of effective diffusivity for grid-cell length-scale l = L
10

for four different domain sizes:

L = 512 km, L = 150 km, L = 100 km and L = 50 km (see Figure 3.30).
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Figure 3.27: Typical profiles. Frequency disorder σ as a function of coupling

strength ε for n = 10 for four different seeds.
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Figure 3.28: Natural frequency disorder. Histogram of the spread in natural

frequencies σ(ε = 0) for 100 simulations with n = 10. For each simulation, a

different integer seed is used in the random number generator to obtain the set of

phytoplankton growth parameters ai,j.
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Figure 3.29: Relating maximum to natural frequency spread. Relationship

between maximum frequency spread σ for ε ∈ [0, 0.05] and natural frequency spread

σ(ε = 0) for an ensemble of 100 simulations with n = 100 and a different integer seed

used in the random number generator to obtain the set of phytoplankton growth

parameters ai,j for each simulation.
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Figure 3.30: Histogram of frequency disorder σ calculated at ε = ε(L/10) for a

domain size L = 512 km, L = 150 km, L = 100 km and L = 50 km (see Figure

3.26) for 100 differently-seeded simulations with n = 10.
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3.6 Discussion

A basic model of a lattice of n × n interacting non-identical plankton populations,

each represented by the same NPZ model but with random mismatch in the phy-

toplankton growth rate parameters used in the biological model, has been used to

investigate several aspects of the dynamics of a spatially-varying plankton distribu-

tion. To summarise these experiments: the effect of varying effective diffusivity has

been considered by fixing the number of grid-cells and varying the coupling strength

between grid-cells; the effect of model resolution has been considered by fixing the

domain size L km × L km and varying the number of grid-cells and therefore grid-

cell spatial scale; and the effect of variation in the parameter disorder values has been

explored by carrying out a number of simulations with differently-seeded random

mismatch values. The experiments have shown that altering the strength of interac-

tion, number of grid-cells, domain size or underlying parameter disorder alters the

emergent structures of the plankton simulation.

An increase in the strength ε of grid-cell interaction does not automatically lead

to an increase in the observed synchrony, even when all other factors mentioned

are kept fixed. Remarkably, interaction between the populations has been shown

for intermediate coupling strengths to increase the frequency disorder by an order

of magnitude compared with the natural frequency disorder. This system state

manifests as small-scale local synchrony (clustering).

Eventually, as the coupling strength ε is increased, intuitive behaviour returns

and the system locks into frequency synchronisation at a critical value of coupling

ε = εFL. Importantly, although there is a gradual increase in cluster size within

the intermediate coupling regime, the transition to domain-sized structure is not

continuous, but alters abruptly at the threshold coupling strength. This system

state is characterised by a frequency disorder close to zero, domain-scale structure

and gentle gradients in plankton biomass between grid-cells.

As various factors such as number of grid-cells or choice of parameter mismatch

values are varied, the phytoplankton distribution flips discontinuously between these

two qualitatively different states.

On the other hand, once frequency locking is achieved and persists, the transition
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to full phase-locking is in general slow and steady, with increasingly homogeneous

spatial dynamics as ε is increased or number of grid-cells decreased.

There are consequences of these results for ocean modelling studies. Once again

we encounter the problem of model resolution: this section has shown that the

emergent features of a modelled plankton distribution can alter discontinuously at

a threshold number of grid-cells.

Where this threshold occurs has been shown to vary with the competing in-

fluences of increasing n and the corresponding increase in ε set according to the

empirical relationship between length-scale and effective diffusivity (Okubo, 1971),

plus the variability caused by the mismatch in underlying population dynamics,

causing intermittency in which kind of emergent structure is observed. Altering the

spatial resolution of a spatially varying model of plankton distribution could there-

fore have unpredictable consequences for the model results and, importantly, for the

conclusions and predictions drawn from them.

It has been seen that even when domain size, number of grid-cells, biological

model, and size and probability distribution of parameter mismatch spread are all

fixed, a huge amount of variability in the synchronisation thresholds can still be

caused by changing the particular arrangement of natural frequencies. Clearly this

is problematic for biological modelling of spatially varying distributions, but what

might this study tell us about the impact of natural variability on plankton distribu-

tions in the ocean? We can deduce that for the same amount of observed variability

in a particular biological parameter, the cause and therefore spatial arrangement of

this variability might differ, in which case the synchronous effects observed might

also differ. Taking the case of spatial variability in the phytoplankton growth rate,

such variability might be caused by, for example, varying water temperatures or

underlying differences in species composition. If the former were true then we could

imagine a monotonic horizontal temperature gradient across the area of ocean, lead-

ing to an ordering in the resultant natural frequencies across the gradient. The latter

case might lead to a more disordered arrangement of frequency mismatch. The re-

sults of this section would lead us to expect the observed synchronous effects to

differ between these two cases. Further work could look at arranging the frequency

117



disorder across the lattice to investigate these two cases.

Near to the observed sharp transitions in system behaviour, we have seen that

very long transients are required for steady-state dynamics to become established.

Even away from the transition points, the transient integration times are long; here

we have used 5000 days. The necessity of these long transient times brings into

question the relevance of the steady-state dynamics observed here to real-world

ocean observations. In reality, the structure caused by these synchrony effects would

be constantly disturbed by advection so that steady-state dynamics may be unable

to establish themselves. The transient behaviour observed in, for example, Figure

3.3, where in some cases we have an interesting coexistence of the two different

scales of dynamics, might be more relevant to real-world plankton dynamics in an

ever-shifting ocean. Note, however, that much of the steady-state spatial structure

emerges early on in the integration, e.g. emergence of coherent clusters by t = 1000

days (Figure 3.3). Additionally, although the biological model parameters have

been selected from a region of parameter space leading to oscillatory dynamics, they

have not been “tuned” to give a particular period of oscillation, and so the long

integration time is not a reason to discount the results.
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Chapter 4

Influence of advection

4.1 Introduction

In this chapter, we investigate the robustness of our previous results to the inclu-

sion of stirring of populations at spatial scales larger than the grid-cell. A simple

representation of advection allows us to gain insight into the relevance of our results

to real-world plankton distributions. To this end, a linear shear is applied to the

lattice of populations, causing advection of rows of populations with respect to one

another. In all other aspects, the distribution is modelled as in Chapter 3, with n×n
non-identical populations each represented by the NPZ model of Steele and Hender-

son (1981) and interacting via a nearest-neighbour coupling of strength ε. Since the

advection causes the rows to become misaligned, however, the nearest-neighbours

of each plankton population alter with time. This will be fully described in Section

4.2.

This set up will be used to investigate how the results of the previous chapter

ae modified by shear of increasing strength. These results will be more relevant to

regions of high shear in the ocean, whereas the previous chpater was representative

of regions of negligible shear.

Specifically, we determine the influence of advection on the ability of the lattice of

populations to stably sychronise and upon the emergent spatial structure observed.

By varying the rate of shear in the simulation, we can explore the importance of

advection, with respect to the other biological and physical processes governing
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evolution of the populations, in setting this structure.

4.2 Methods

As in previous chapters, we consider a lattice of n × n non-identical plankton pop-

ulations, each represented by the NPZ model SH81 (Steele and Henderson, 1981).

Biological model parameters are as in Chapter 3 with a random mismatch of spread

∆ = 5% applied to the default phytoplankton growth rate a0 to obtain phyto-

plankton growth rates making a uniform distribution centred on a0. Previously,

interaction between populations was provided by a nearest neighbour effective dif-

fusivity term. In this chapter, we retain the effective diffusivity and introduce an

explicit advection, resulting from a constant shear

∂u

∂y
= −κ

(where the positive y-axis is defined as distance from the top edge of the lattice)

with κ in units of d−1 so that the velocity u in the x-direction varies linearly with

y.

In our spatially discrete model, this means that row i moves at a velocity

κ× l km d−1

with respect to row i+1, where l is the grid-cell lengthscale, so that in implementa-

tion the velocity profile is a step function. This is shown schematically in Figure 4.1.

Arbitrarily, we set u = 0 for the top row; the choice of stationary row may be varied

by adding a suitable constant velocity to each row. Boundary conditions are singly

periodic to allow leaving advected material to re-enter the area at the opposite edge;

no-flux boundary conditions are imposed at the top and bottom edges.

4.2.1 Implementation

The code used for the integration of the mixing-only system considered in Chapter

3 was adapted for the addition of shear. The implementation of the described shear

requires that the rows of the lattice travel at different speeds and therefore become
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misaligned. At each time-step of length dt days, each row i is shifted with respect

to row i + 1 by a distance ρ × l where 0 < ρ < 1. This is shown schematically in

Figure 4.2. The fraction of a grid-cell moved at each time-step is set according to

the required rate of shear:

κ =
∂u

∂y
=
ρl/dt

l
=

ρ

dt

⇒ ρ = κ× dt.

The misalignment between rows causes the population vi,j in row i and column

j to interact with a varying set of at most six nearest neighbours rather than the

usual fixed four neighbours (see Figure 4.2b). This is accounted for in the model

by varying the proportion of coupling with neighbouring populations as described

below.

In the case of no shear, we have (for non-boundary populations) the coupling

term

ε (vi−1,j + vi,j−1 − 4vi,j + vi+1,j + vi,j+1)

representing material exchanging between population vi,j and each of four nearest

neighbours. Since the inclusion of shearing causes rows to become misaligned, for

κ > 0 there is now an additional interaction with populations vi−1,j−1 and vi+1,j+1

and the coupling term becomes a time varying function

ε [(A (t) vi−1,j−1 + (A (t) − 1) vi−1,j + vi,j−1 − 4vi,j + vi,j+1 + (A (t) − 1) vi+1,j + A (t) vi+1,j+1]

for rows i = 1, . . . , n and columns j = 1, . . . , n, with

A(t) = ρ

[

(

t

dt

)

mod

(

1

ρ

)]

so that

0 ≤ A(t) < 1.

Every 1
ρ

time-steps, that is at a time t such that t
dt

mod
(

1
ρ

)

= 0, the rows

are misaligned with respect to the original lattice by a whole grid-cell, e.g. grid-

cell (i,j) is now “under” grid-cell (i-1,j-1) rather than grid-cell (i-1,j) (see Figure

4.2c). When this occurs a re-indexing step is applied to reflect the new position

that each population occupies in the lattice, e.g. population (i,j) is re-labelled (i,j-1)
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(see Figure 4.2c). Populations v1,j, for columns j = 1, . . . , n, are considered to be

stationary and other rows are advected to the left proportionally according to the

rate of shear. Any parcels of water leaving the lattice at the left hand edge re-enter

at the right-hand edge and the populations are re-labelled according to their new

position. The dynamics vi,j(t) therefore represents an Eulerian time-series describing

the biological evolution of the area of ocean bounded by the original lattice. Figure

4.2 shows this schematically.

The populations are taken to advect with the parcels of water, so that a re-

indexing of the phytoplankton growth rate ai,j associated with each population vi,j

is also applied, resulting in a time-dependent arrangement of growth rates and hence

natural frequencies.

Additionally, a Lagrangian time-series is recorded describing the evolution of

the biology in the parcel of water orginally labelled vi,j and now occupying a time-

dependent position on the lattice. Accordingly, population frequencies, calculated

as described in Chapter 3, are calculated using the Lagrangian time-series. This

assumes that the spatial variability is related to local properties of the water. This

may be true, for example, if the difference in phytoplankton growth rates relected

small differences in species composition between populations advected with the wa-

ter. In some cases, it might be more appropriate to consider the variability as fixed

in space, for example if the variability were generated by varying bathymetry of a

latitudinal temperate gradient.

Spatial dynamics are plotted using the Eulerian time-series.

4.2.2 Verification

To check for errors in the modified code, a number of tests were carried out.

Firstly, the advection scheme was checked by setting

ε = 0,

i.e. no mixing between grid-cells, and,

Fi,j(Ni,j, Pi,j, Zi,j) = 0 ∀ i, j,
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i.e. no evolution of the biology (see Section 3.2). For ease of visualisation, the

initial conditions are set to be uniform in the y-direction and linearly varying in the

x-direction so that at time t = 0 a 2D plot of the lattice exhibits vertical stripes (see

Figure 4.3). The system is integrated forward in time. As expected, the Lagrangian

time-series for each population is unvarying:

vi,j(t) = vi,j(0) ∀ t

so that lattice plots with the value in grid-cell (i,j) representing the phytoplankton

biomass of the parcel of water originally occupying position (i,j) are seen to preserve

the initial conditions (see Figure 4.3 columns 1 and 3). Lattice plots of the Eulerian

phytoplankton biomass time-series are seen to shift by one grid-cell with respect to

one another after each 1
ρ

time-steps (see Figure 4.3 columns 2 and 4), indicating a

correct implementation of the required shear.

Secondly, the frequency calculations, made by recording peaks in the Lagrangian

phytoplankton biomass time-series, were checked by again setting ε = 0 but now

allowing the biology to evolve. As expected, it was found that the standard deviation

of frequencies σ(t) = σ(t = 0) = σ(ε = 0) ∀ t, i.e. the population frequencies, in

the absence of any modifying interaction, remained at the natural frequencies for all

time.

All other aspects of the code are unchanged and were checked prior to use in the

simulations in Chapter 3 (see Section 3.2).

4.3 Results

For all simulations we set n = 100 to give a grid of 100× 100 non-identical popula-

tions. Each population vi,j evolves according to (i) the internal dynamics represented

by the NPZ system of Steele and Henderson (1981) with a 5% spread in the phy-

toplankton growth rates, (ii) interaction provided by effective diffusivity ε and (iii)

advection of the water parcel as a result of shear of rate κ. Simulations are carried

out for five different rates of shear, with the rate of shear remaining fixed through-

out each simulation. For each value of shear, the effective diffusivity is varied in the

range ε ∈ [0, 0.05] d−1 as in Chapter 3. The system is integrated forward in time for
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5000 days from synchronised initial conditions to allow transient behaviour to decay

and for an additional 500 days to calculate the frequency and phase disorder and

spatial statistics, as described in Section 3.2. As in Chapter 3, we present results

for the phytoplankton components only (see Section 3.3.1).

4.3.1 No shear

For comparison, we first carried out a simulation with zero shear and varying effec-

tive diffusivity, i.e. κ = 0 d−1 and ε ∈ [0, 0.05] d−1 with singly-periodic boundary

conditions. Figure 4.4 shows final phytoplankton biomass for the lattice and Figure

4.5 shows the calculated frequency disorder σ as a function of effective diffusivity

ε. As expected from the tests carried out in Section 3.3.3 on sensitivity to different

boundary conditions, the results are as in Section 3.3 where the simulation differs

only in having no-flux boundary conditions at all edges, but the results are nev-

ertheless presented here for ease of comparision with the case of non-zero shear.

To briefly recap, as ε is increased from 0 d−1, for which the populations oscillate

independently and asynchronously, the system level dynamics enter several distinct

states. For ε ∈ (0, 0.001], there is a small increase in the frequency disorder and

small-scale local clustering; for ε ∈ (0.001, 0.002], the system is nearly frequency-

locked with large clusters; for ε ∈ (0.002, 0.02] there us a large region of frequency

disorder a magnitude larger than the natural frequency disorder and persistent small-

scale clustering; for ε > εFL = 0.02, the system is frequency locked and approaches,

although never fully achieves, phase locking as ε is increased.

4.3.2 Shear κ > 0

Simulations were carried out for five different rates of shear: κ = 0.001 d−1, κ =

0.005 d−1, κ = 0.01 d−1, κ = 0.05 d−1 and κ = 0.1 d−1, representing a change of

three orders of magnitude from smallest to largest shear rate. These values cover a

range typical of surface ocean shear (Sundermeyer and Price, 1998; Abraham et al.,

2000). As described above, the emergent dynamics of the lattice are determined by

the influences of the biological dynamics, the effective diffusivity and the advection

caused by shear, each of which has an associated time-scale: TNPZ , Tε and Tκ,
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respectively. TNPZ ≈ 100 days is the period of oscillation of the biological dynamics.

Tε = 1
ε

ranges from infinitely slow up to 20 days since ε ∈ [0, 0.05] d−1. Since this

chapter is concerned with an investigation of the relative influence of advection,

values of κ have been chosen to give advection time-scales values Tκ slower than,

equal to and faster than TNPZ and Tε.

The phytoplankton biomass fields in gC m−3 at time t = 5000 days are shown in

Figures 4.6 to 4.10 for κ = 0.001 d−1, κ = 0.005 d−1, κ = 0.01 d−1, κ = 0.05 d−1 and

κ = 0.1 d−1, respectively, for ε ∈ (0, 0.05]. The biomass plots for ε = 0 are omitted

because in the absence of effective diffusivity the plankton populations do not in-

teract and therefore do not alter their natural oscillations and are merely advected

as a result of the shearing, resulting in the same grainy-structure of independently

oscillating populations for any rate of shear.

Figures 4.6 to 4.10 indicate that under the influence of shear the system can

retain the coherent structure (local synchrony, or clustering) caused by the effective

diffusivity for all rates of shear considered. As in the no-shear case, small-scale

clustering persists for increasing ε until a critical value εFL at which the whole

ensemble frequency-locks and the spatial pattern is domain-sized.

This is seen more clearly in Figure 4.11, which shows the frequency disorder σ

and phase coherency parameter R as a function of effective diffusivity for the five

different rates of shear. The general pattern is as described fully in Section 3.3.2,

with a region of frequency disorder indicated by high values of σ that increase from

σ(ε = 0) ≈ 2.5% to as much as 20%, followed by an abrupt shift to frequency locking

signalled by σ ≈ 0%, although the small region of near frequency-locking observed in

the case of zero shear for small ε no longer occurs. For shear rates of κ =0.001, 0.005,

0.01, 0.05 and 0.1 d−1, εFL = 0.035, 0.041, 0.044, 0.027 and 0.019 d−1, respectively.

However, unlike in the zero shear case, for 0 < κ < 0.1 d−1 the system “jumps” in

and out of frequency-locking for values of effective diffusivity lower than the final

critical εFL, in a similar fashion as seen in Figure 3.4 for the case of zero-shear with

a fixed domain length and varying spatial resolutions. This is seen in Figure 4.11

as a series of changes in system state from σ ≈ 0% to σ ≈ 20% and in the biomass

plots in Figures 4.6 to 4.10 as a succession of transitions from small-scale clustering
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to domain-scale synchronisation and back again as ε is increased. For example, for

κ = 0.001 d−1, biomass plots for ε = 0.03 d−1 and ε = 0.034 d−1 show clustering

but for ε = 0.032 d−1 the system is frequency-locked (Figure 4.6).

In all cases, for ε > εFL the order parameter R tends rapidly to 1 (see Figure

4.11) and the corresponding biomass plots become increasingly homogeneous as the

ensemble phase locks. Although the populations are phase-locked, the variation

in colour seen in, for example, the phytoplankton biomass field for ε = 0.05 d−1

for κ = 0.05 d−1 (Figure 4.9), indicates that the amplitudes of oscillation across

the domain remain unsynchronised. The result is that the plots vary in uniformity

depending upon the phase of oscillation at the time t = 5000 days when we record the

values of phytoplankton biomass; when recorded during the trough the plots appear

monochrome and when during a peak the difference in amplitude is manifested as

increased variation. This is why the biomass plot for ε = 0.05 d−1 for κ = 0.05 d−1 in

Figure 4.9 shows bands of high and medium high phytoplankton biomass whereas the

plots for lower values of effective diffusivity are uniform in colour. This phenomenon

has been seen in nature, e.g. the hare-lynx dynamics studied by Moran (1953), and

in modelling studies of population dynamics, e.g. Blasius and Stone (2000).

Figures 4.6 to 4.10 show clearly that, in comparison with the zero shear case,

the inclusion of shear alters the spatial characteristics of the clustering seen in the

ranges 0 < ε < εFL. The advection does not, as might be expected, break up regions

of local synchrony; there is still clear evidence of persistent coherent structure. Even

for the largest shear (Figure 4.10; κ = 0.1 d−1), the clusters are not simply stripes

of uniform phytoplankton biomass aligned with the x-direction. This indicates that

the spatial positioning of the clusters is non-stationary (as observed also in Section

3.3.1), since otherwise the effect of shear would be to narrow and stretch the clusters

until they reached a steady-state as a horizontal stripe.

In fact, for the lowest values of shear, κ = 0.001 d−1 and κ = 0.005 d−1, the

clustering observed in Figures 4.6 and 4.7 is indistinguishable by eye from the kind

of structure seen in the zero shear case in Figure 4.4. The shear rate is too slow

to impose directionality upon the clustering generated by the effectively diffusive

coupling. For higher values of shear, κ = 0.01 d−1, κ = 0.05 d−1 and κ = 0.1 d−1
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(Figures 4.8 to 4.10), there is a definite directionality to the spatial structure. With

respect to the no-shear simulation, the clusters are narrowed and stretched by the

shearing and are increasingly aligned with the x-axis, but are still non-stationary.

The change in structure that can be seen by eye is well supported by the cluster

measures cx(ε) and cy(ε) (as defined in Section 3.2.3) shown in Figure 4.12, with σ

given as a dotted line for reference. The gradient measure g(ε) is shown in Figure

4.13, again with σ for reference. As explained in Section 3.2, the cluster measure

only has clear meaning for a high value of the gradient measure g, indictating well-

defined clusters separated by sharp gradients in plankton biomass values. For all

values of shear considered here, Figure 4.13 shows that g > 0.7 for ε < εFL and

drops sharply to g < 0.4 at the transition to frequency-locking.1 Hence we only

discuss the behaviour of the cluster measures in the desynchronised region defined by

ε < εFL, i.e. where small-scale clustering dominates. The succession of transitions

in behaviour observed close to εFL will be discussed in Section 4.3.3.

For κ = 0.001 d−1 and κ = 0.005 d−1, cx(ε) ≈ cy(ε) for all ε < εFL, confirm-

ing that the clusters are not skewed in a particular direction. There is a steady

increase in cx and cy from 1 to 8 grid-cells with increasing ε, interrupted by the

aforementioned “jumps” to the frequency-locked state.

For κ = 0.01 d−1, cx(ε) > cy(ε) ∀ ε < εFL, with cx increasing from 1 to 10

grid-cells and cy increasing from 1 to 8 grid-cells with increasing ε. The difference

|cx − cy| between the cluster size in each direction increases with increasing ε. The

same trend is seen more markedly for increasing shear. For κ = 0.05 d−1, cx increases

from 1 to 14 grid-cells, whilst cy increases from 1 to only 5 grid-cells, and for κ = 0.1

d−1, cx increases from 1 to 15 grid-cells, whilst cy increases from 1 to only 4 grid-cells

with increasing ε. These numbers show a trend of increasing stretching of clusters

in the x-direction and narrowing in the y-direction, as expected from the shearing

applied to the ensemble.

From the results seen here, it is impossible to say conclusively whether the addi-

tion of shearing aids or hinders synchronisation of the ensemble as there is no clear

1There is some deviation from this pattern for κ = 0.1 d−1, for which Figure 4.13 shows values

of g ≈ 0.8 for ε = 0.024 > εFL. Since the corresponding plankton biomass plot in Figure 4.10

shows almost fully homogeneous dynamics, it is not clear why the gradient measure is so high.
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pattern in the value of εFL with increasing κ. We can, however, say conclusively

that the inclusion of realistic levels of shear alters the spatial characteristics of the

ensemble whilst allowing coherent clusters to persist.

4.3.3 Variability

The rapid transitions between the states of frequency disorder and frequency-locking

as ε approaches εFL from below, as seen in Figure 4.11 and in the biomass plots

in Figures 4.7 to 4.10 and described above, can be understood in the context of

the findings of Chapter 3. In Section 3.3, we found that for a fixed number of

populations with a particular set and spatial arrangement of phytoplankton growth

rates {ai,j} and resultant natural frequencies {ωi,j} there exists a single point of

transition to frequency locking at a value of effective diffusivity εFL (see Figure 3.6).

In Section 3.5, it was found that εFL varies widely depending on the particular set

and arrangement of natural frequencies, even when the growth rate parameter values

are selected from the same uniform distribution (see Figure 3.26).

In the experiment carried out here, we have a fixed set {ai,j} of growth rates.

However, the imposed shear causes advection of the plankton populations and ac-

companying growth rates, leading to a rearrangement of the growth rates on the

lattice, i.e. the particular spatial arrangement of the natural frequencies varies with

time. For each of the n spatial arrangements possible for a lattice of n× n popula-

tions, we know from Chapter 3 that there exists a particular, most likely different,

εFL in the case of no shear. It is the variation in this εFL with time, caused by

the variation in spatial arrangement of natural frequencies, that causes the irregular

transitions approaching εFL observed in Figure 4.11.

We illustrate this by carrying out some simple experiments. These are set up

exactly as above but, for speed of performing ensemble runs, we set n = 10 to

give a lattice of 10 × 10 populations. For a fixed set of phytoplankton growth rate

parameters {ai,j}, for shear rates of κ = 0 d−1, κ = 0.001 d−1 and κ = 0.1 d−1,

calculations of the frequency spread σ as a function of effective diffusivity ε were

made for each of the ten possible advection-induced initial spatial arrangements of

natural frequencies.
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Figure 4.14 shows the calculations of σ as a function of ε for each of the ten

spatial configurations of the set {ai,j} for zero shear, so that in this case the im-

posed arrangement of natural frequencies is constant in time. The resultant εFL is

seen to range from min(εFL) = 0.002 d−1 to max(εFL) = 0.016 d−1, each spatial

arrangement leading to a specific εFL.

Figures 4.15 and 4.16 shows the same calculations for κ = 0.001 d−1 and κ = 0.1

d−1, respectively. For non-zero shear, the initially-imposed spatial arrangement of

natural frequencies varies with time, at a rate dependent upon the value of κ.

For ease of comparison, Figure 4.17 shows the calculations of σ as a function

of ε for each different spatial arrangement on the same plot for κ = 0 d−1 (top),

κ = 0.001 d−1 (middle) and κ = 0.1 d−1 (bottom).

With a shear of rate κ = 0.001 d−1, for each initial configuration of populations,

there is a range of ε (roughly coincident with the range εFL ∈ [0.002, 0.016] d−1 found

above for κ = 0 d−1), for which the ensemble dynamics move in and out of frequency

locking with increasing ε before eventually permanently frequency locking. This is

the same behaviour as described in Section 4.3.2 for n = 100; the rearrangement

of populations, and corresponding natural frequencies, with time alters the value

of effective diffusivity ε at which frequency-locking would occur in the absence of

advection and causes a succession of transitions within this range.

However, this effect is dependent on the rate of shear. In this case, the time scale

of advection Tκ = 1
κ

= 1000 days, which, within the range of effective diffusivities

ε ∈ [0.002, 0.016], gives Tκ > Tε and Tκ > TNPZ. Hence, the dominant effect on the

ensemble dynamics is the effective diffusivity, with the system being pulled towards

frequency locking at a value of ε varying with the time-dependent configuration of

populations.

For κ = 0.1 d−1, we have Tκ = 10 days, so that Tκ < Tε for the full range of

effective diffusivity and Tκ < TNPZ. In this case, Figures 4.16 and 4.17 indicate that

the ensemble is frequency locked for ε > 0.002 d−1 for all initial spatial configura-

tions of the populations; the faster shear actually alters the ability of the ensemble

to synchronise, possibly by increasing the network of influence of each population.

In other words, advection at this rate allows each population to be coupled with a
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greater number of populations on the relevant time-scale and therefore effectively al-

ters the coupling geometry of the system and enhances the mixing. Hence, advection

increases the ability of the lattice of populations to synchronise their dynamics.

Significantly, these results also show that advection of populations has the po-

tential to reduce the simulation-to-simulation variability, described in Section 3.5,

caused by variability in the particular values and spatial arrangements of natural

frequencies for different random selections of the parameter mismatch values.

4.4 Discussion

In this chapter we have investigated the impact of advection, at scales larger than the

model grid-cell, on the system of locally-coupled non-identical plankton populations

studied in Chapter 3. The evolution of the populations is determined by the internal

biological dynamics, the interaction caused by the nearest-neighbour coupling and

advection caused by the shear.

It has been found that many of the features seen for the mixing-only system, as

described in Chapter 3, are retained under the influence of shear. The properties

of synchrony exhibited by the system as the effective diffusivity is increased from

0 to 0.05 d−1 are broadly similar, with the nonintuitive increase in the spread in

population frequencies as the coupling strength is increased from zero, leading to

a region of small-scale clustering and frequency disorder, followed by a shift to

frequency-locking at a value of effective diffusivity εFL.

Unlike in the case of zero-shear, however, there is not one single value of ε at

which the transition to frequency-locking occurs; rather, the system “jumps” rapidly

between the two states before eventually frequency-locking permanently at ε = εFL.

This “jumping” results from the rearrangement of the populations caused by the

shear; since the populations are assumed to advect with the parcels of water, the

spatial arrangement of natural frequencies varies with time. εFL has been shown

to vary with the arrangement of natural frequencies, resulting here in a number of

transitions in and out of frequency-locking before permanent frequency-locking at

ε = εFL.
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We have also seen that this “jumping” does not occur for the fastest shear

considered here, κ = 0.1 d−1, for which only one transition to frequency-locking

occurs, as in the mixing-only case. We have shown that this is caused by the

rapid rearrangement of the populations, allowing previously separated populations

to interact on time-scales faster than those of either the biology (of period 120

days) or the effective diffusivity (time-scale > 50 days). The net effect of this fast

shear is to alter the coupling geometry, increasing the range of influence of each

population and “ironing out” the variability in εFL usually caused by altering the

spatial arrangement of the natural frequencies. This effect is not seen for slower rates

of shear as the time-scale of interaction of separated populations is slower than the

effective diffusivity.

Here, advection of the populations is caused by a simple shear in one direction.

The resulting time-varying coupling geometry allows each population to interact

with the oscillators occupying rows above and below the population on a time-scale

governed by the rate of shear. A more realistic representation of the stirring of the

upper ocean flow would allow each population to come into contact not only with

populations in rows above and below, but potentially with all other populations in

the region, again on a time-scale governed by the rate of stirring. In the limit of

fast stirring with respect to the mixing time-scale, the system could act as though

globally coupled, as found by Neufeld et al. (2003). Clearly, the particular spatial

arrangement of the natural frequencies would then become irrelevant, removing

the variability in the behaviour of the system caused by the underlying frequency

disorder seen in Section 3.5. The mitigation of this problematic aspect of the zero-

shear system by the inclusion of shear is encouraging for biophysical modelling of

the upper ocean. However, the abrupt transition from small-scale clustering to

domain-scale synchronisation still occurs when shear is included.

For ε > εFL, the ensemble approaches phase-locking far more rapidly than was

seen in the zero-shear case. Additionally, the maximum value of frequency spread

σ attained in the frequency disorder regime for each value of the shear is smaller

than that attained in the no-shear case. These two facts suggest that the shear does

increase the ability of the system to synchronise but no clear relationship between
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εFL and the rate of shear κ has been found because of the “jumping” phenomena

discussed above.

Although the system still exhibits well-defined clustering within the region of

frequency disorder defined by ε < εFL, the shear has the potential to alter the

spatial characteristics of this clustering. For a rate of shear κ slow with respect to

the timescale of effective diffusivity ε, the structure remains isotropic; sub-grid-cell

level mixing is the dominant process. For κ fast with respect to ε, the shearing

draws the clusters out in the direction of flow, causing stretching in the x-direction

and narrowing in the y-direction, as indicated by the cluster measure results in

Figure 4.12. The resulting clusters are elongated and increasingly aligned with the

horizontal as the rate of shear is increased.

We conclude that shear appears to aid synchronisation by extending the network

of influence of each population in the lattice, but that the strength of this effect

depends crucially upon the rate of shear, with respect to the other processes affecting

the evolution of each population.

It would be interesting to explore the impact of a more realistic representation

of upper ocean physical flow. Given the range of complex phenomena possible in

fully turbulent models, this is beyond the scope of this project. Nevertheless, it is

in keeping with the philosophy of the whole investigation, which has attempted to

build “step-by-step” from an idealistic to a more realistic biophysical representation,

to begin with this simple representation of advection caused by shear; the work

described here covers all the basic components of more realistic flows and therefore

provides a good foundation upon which to build.
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Figure 4.1: Schematic showing velocity u(y). Length of arrows indicates the rate of

flow relative to neighbouring rows.
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Figure 4.2: Schematic of model implementation of advection caused by shear of rate

κ > 0, causing shifting of each row i with respect to row i+1 by a fraction ρ ∈ (0, 1)

at each time-step.
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hand side re-enter at the right and are re-labelled accordingly.
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Figure 4.3: Testing the model. Eulerian (columns 1 and 3 ) and Lagrangian

(columns 2 and 4 ) time-series for n = 100 for no mixing (ε = 0) and no evolution of

biology (F (Ni,j, Pi,j, Zi,j) = 0 ∀i, j for i, j = 1, . . . , 100) for shear rate κ = 0.1 d−1.

Titles indicate time in days. Initial conditions of Ni,j, Pi,j and Zi,j are constant in

the y-direction and linearly varying in the x-direction, for ease of visualisation.
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Figure 4.4: No shear. Phytoplankton biomass for n = 100 at time t = 5000

days after integration from homogeneous initial conditions. Boundary conditions

are periodic at the left and right edges; no-flux at the top and bottom. Shear rate

κ = 0 d−1. Figure titles indicate value of ε in d−1.
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Figure 4.5: No shear. Frequency disorder σ as a function of effective diffusivity ε

for n = 100 at time t = 5000 after integration from homogeneous initial conditions.

Boundary conditions are periodic at the left and right edges; no-flux at the top and

bottom. Shear rate κ = 0 d−1.
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Figure 4.6: Shear 0.001 d−1. Phytoplankton biomass for n = 100 at time t = 5000

days after integration from homogeneous initial conditions. Boundary conditions

are periodic at the left and right edges; no-flux at the top and bottom. Shear rate

κ = 0.001 d−1. Figure titles indicate value of ε in d−1.
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Figure 4.7: Shear 0.005 d−1. Phytoplankton biomass for n = 100 at time t = 5000

after integration from homogeneous initial conditions. Boundary conditions are

periodic at the left and right edges; no-flux at the top and bottom. Shear rate

κ = 0.005 d−1. Figure titles indicate value of ε in d−1.
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Figure 4.8: Shear 0.01 d−1. Phytoplankton biomass for n = 100 at time t = 5000

after integration from homogeneous initial conditions. Boundary conditions are

periodic at the left and right edges; no-flux at the top and bottom. Shear rate

κ = 0.01 d−1. Figure titles indicate value of ε in d−1.
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Figure 4.9: Shear 0.05 d−1. Phytoplankton biomass for n = 100 at time t = 5000

after integration from homogeneous initial conditions. Boundary conditions are

periodic at the left and right edges; no-flux at the top and bottom. Shear rate

κ = 0.05 d−1. Figure titles indicate value of ε in d−1.
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Figure 4.10: Shear 0.1 d−1. Phytoplankton biomass for n = 100 at time t = 5000

after integration from homogeneous initial conditions. Boundary conditions are

periodic at the left and right edges; no-flux at the top and bottom. Shear rate

κ = 0.1 d−1. Figure titles indicate value of ε in d−1.
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Figure 4.11: Frequency and phase disorder. Frequency disorder σ (solid) and

order parameter R (dashed) as a function of effective diffusivity ε in d−1 for different

rates of shear κ for n = 100.
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Figure 4.12: Spatial diagnostics. Clustering measures cx (black) and cy (red) in

numbers of grid-cells as a function of effective diffusivity ε for different rates of shear

κ. n = 100. σ(ε) shown by dotted line for reference.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

c x &
 c

y, g
rid

−
ce

lls

shear 0.1 d−1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

σ 
(d

ot
te

d)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

c x &
 c

y, g
rid

−
ce

lls

shear 0.05 d−1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

σ 
(d

ot
te

d)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

c x &
 c

y, g
rid

−
ce

lls

shear 0.01 d−1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

σ 
(d

ot
te

d)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

50

100

c x &
 c

y, g
rid

−
ce

lls

shear 0.005 d−1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

20

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

20

σ 
(d

ot
te

d)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

c x &
 c

y, g
rid

−
ce

lls

shear 0.001 d−1

ε, d−1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0

10

20

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

σ 
(d

ot
te

d)

144



Figure 4.13: Spatial diagnostics. Gradient measure g as a function of effective

diffusivity ε in d−1 for different rates of shear κ. n = 100. σ(ε) shown by dotted

line for reference.
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Figure 4.14: Zero shear: κ = 0 d−1. Frequency spread σ as a function of effective

diffusivity ε in d−1 for a lattice of 10 × 10 plankton populations in each of the

10 possible initial spatial arrangements (under advection) of phytoplankton growth

rates {ai,j}.
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Figure 4.15: Small shear: κ = 0.001 d−1. Frequency spread σ as a function of

effective diffusivity ε in d−1 for a lattice of 10 × 10 plankton populations in each

of the 10 possible initial spatial arrangements (under advection) of phytoplankton

growth rates {ai,j}.
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Figure 4.16: Large shear shear: κ = 0.1 d−1. Frequency spread σ as a function

of effective diffusivity ε in d−1 for a lattice of 10 × 10 plankton populations in each

of the 10 possible initial spatial arrangements (under advection) of phytoplankton

growth rates {ai,j}.
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Figure 4.17: Comparison between rates of shear. Frequency spread σ as a

function of effective diffusivity ε in d−1 for a lattice of 10× 10 plankton populations

for all of the 10 possible initial spatial arrangements (under advection) of phyto-

plankton growth rates {ai,j} for κ = 0.0 d−1 (top), κ = 0.001 d−1 (middle) and

κ = 0.1 d−1 (bottom).
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Chapter 5

Conclusions

The overall aim of the study has been to explore the factors determining the ability

of a modelled distribution of plankton to exhibit synchronised dynamics, and the

kind of emergent spatial structure resulting from such synchronisation. The study

has used a metapopulation dynamics approach to modelling a distribution of oceanic

plankton; a region of ocean has been taken to comprise a number of plankton popu-

lations, interacting through the stirring and mixing action of the flow. The methods

of synchronisation theory have been applied to various configurations of this frame-

work to gain insight into how spatial structure emerges in biophysical simulations

of the surface ocean. Throughout the study, we have progressively increased the

complexity and realism of the simulations, in order to isolate the effects of each

factor considered.

Chapter 2 took the simplest possible case - an interacting ensemble of identically-

represented plankton populations. The populations were coupled by a nearest-

neighbour flux (representing stirring and mixing at scales smaller than the grid-cell)

of varying strength ε. Our primary concern was to determine the influence of the

specific biological representation in each grid-cell and the number of populations on

the strength of coupling εc required for persistent synchronisation to occur. We did

this by calculating the rate of expansion of perturbations away from synchrony for

a number of simulations using different plankton models and varying the number of

populations and the coupling strength.

It was found that two kinds of steady-state system-level dynamics are possible
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as ε is varied: dynamics alter from fully asynchronous (spatially patchy) for ε < εc

to fully synchronised (spatially homogeneous) for ε > εc. It was found that εc can

be predicted from the number of grid-cells and from knowledge of the dynamical

properties of an isolated individual population, as characterised by the largest Lya-

punov exponent of the isolated plankton population model. εc increased with the

number of populations and also with the largest Lyapunov exponent of the plankton

population model.

Hence, the emergent spatial dynamics of the simulation were shown to depend

on the biological representation at grid-cell level, the biological model parameters

(which together determine the largest Lyapunov exponent of the individual popu-

lation) and the number of grid-cells comprising the ensemble. Consequently, it is

possible for system-level spatial dynamics of biological-physical models to change

discontinuously as one of these model parameters is altered.

We have therefore shown the sensitivity of emergent spatial dynamics to the

details of the biological representation at grid-cell level in the case of identical os-

cillators. In reality, spatial variation is likely to occur in biological and physical

properties such as mixed-layer depth, temperature and species composition of the

modelled area of ocean. Therefore, in Chapter 3 we improved the realism of the

simulation by incorporating spatial variation in the biological dynamics. The same

underlying plankton ecosystem model was used for the representation of each pop-

ulation but now with spatial variation in a phytoplankton growth parameter. This

spatial variation in model parameter values leads to a spread in the natural frequen-

cies of oscillation of the populations.

We used this set-up to explore the ability of a 2D lattice of populations to exhibit

sychronised dynamics as a function of the strength of mixing between populations

and the number of populations (and hence spatial resolution) of the simulation.

We also investigated the kind of resulting spatial struture. We related the strength

of mixing ε to the grid-cell length-scale according to the empirical Okubo 1971

relationship between length-scale and diffusivity.

For a lattice of a fixed number of these non-identical populations, it was found

that increasing the strength of mixing from zero (uncoupled populations) leads to
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some surprising and unintuitive results. Instead of gradually drawing the whole

ensemble into synchrony, a range of coupling strength was found for which the spread

in population frequencies increased ten-fold in comparison with the natural spread

in frequencies. Within this regime, clustering of populations into persistent pockets

of local synchrony was found to occur. These clusters are not fixed in space or time,

but constantly shift and merge whilst maintaining their statistical properties. With

large enough mixing, the ensemble was eventually found to fully frequency-lock,

but, within the obervationally-constrained range of coupling considered, never fully

phase-lock.

Next a fixed size of spatial domain was divided into a variable number of grid-

cells n, so that the spatial resolution and corresponding length-scale dependent

mixing strength of the simulation varied accordingly. The same states of asynchrony,

clustering and frequency-locking were found to emerge, dependent once more upon

the number of grid-cells. With increasing number of populations, and therefore

spatial resolution, the ensemble dynamics were found to first enter the region of

increased frequency disorder and local clustering of populations. With increasing

number of grid-cells, the ensemble dynamics were frequency-locked. Again, full

phase-locking was not achieved for any value of n.

A succession of transitions between the clustering and frequency-locking states

for intermediate values of n revealed a startling dependency of the ensemble dy-

namics on the particular values and spatial arrangement of population natural fre-

quencies, even for a fixed range of variability. Further investigations showed that

the critical coupling strength for frequency-locking of the lattice varied widely with

the particular selection of parameter mismatch values, even if drawn from the same

distribution, and also that the required coupling was not predictable from the spread

in natural frequencies resulting from the parameter mismatch.

Up to this point, we had only considered the effects of stirring and mixing at sub-

grid-cell scale. In reality, the flow is likely to affect the distribution at all scales, so

in Chapter 4, the robustness of the previous results to the influence of an advecting

flow was investigated by applying a linear shear to the simulation. The rate of shear

was varied within an oceanographically realistic range and the mixing strength ε was
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again varied to determine the coupling required for stably synchronised dynamics.

The unintuitive coupling-induced frequency disorder for intermediate values of ε

was again found to occur, with system level dynamics being asynchronous, cluster

synchronised or frequency-locked as a function of the level of mixing. The well-

defined clusters observed for simulations without advection persisted under the in-

fluence of shear but were found to be increasingly narrowed and stretched in the

direction of advection with increasing rate of shear. As described above, these clus-

ters are not stationary in time or space, but shift and evolve under the influence of

the biology and mixing, retaining their statistical characteristics.

The rearrangement of populations caused by the advection of rows of populations

leads to a time-dependent arrangement of population natural frequencies. As sug-

gested by the results on variability from Chapter 3, this leads to a time-dependency

of the level of mixing required to frequency-lock the ensemble. The consequences

of this were found to depend on the rate of shear. For small shear with respect to

the time-scales of the evolution of the biology and the rate of mixing, the result

was a succession of transitions between clustering and frequency locking within the

intermediate range of mixing. For large shear with respect to the time-scales of the

other governing processes, the advection enhanced the mixing between populations

by increasing the network of influence of each population and effectively altering the

coupling geometry of the lattice, thus enabling the ensemble to synchronise at much

lower values of ε.

To summarise, we have shown that the manifestation of synchronisation effects

in a simulated distribution of plankton depends upon the following.

• The strength of coupling between populations. In general, we have seen

that there exists a critical level of coupling above which the system is stably

synchronised. That many of the simulations were only able to frequency-lock

and not fully phase-lock within the range of coupling considered shows that

this level of synchrony may not be achievable within an oceanographically real-

istic range, however. Additionally, we have shown that the effect of increased

coupling is by no means monotonic; intermediate strengths of coupling can

increase the mismatch between populations.
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In this study, the coupling has been taken to represent stirring and mixing be-

tween populations at spatial scales smaller than the grid-cell, but further work

could explore additional or alternative coupling mechanisms such as migra-

tion between populations, for example by a more motile zooplankton species

or a nomadic higher predator, taking inspiration from studies of terrestrial

population dynamics. The results from the present study would be directly

applicable to and would provide a firm basis for such further work.

• The number of populations or grid-cells, or, equivalently, the spa-

tial resolution of a modelled domain of fixed area. A stronger degree of

coupling is required to synchronise a larger ensemble of populations. Equiv-

alently, increasing the spatial resolution of a model increases the strength of

coupling at which synchronised dynamics will occur. We have shown this for

both a chain and lattice of populations so it is a reasonable assumption that

the results will generalise to any shape of domain being modelled, although,

in a further departure from terrestrial metapopulation studies, it would be

interesting to verify the occurrence of synchronisation phenomena in three-

dimensional, depth-resolved simulations.

• The grid-cell biological representation. We have shown clearly that the

emergent spatial properties of the simulation depend upon, and are in some

cases predictable from, the dynamical properties of the individual plankton

populations as determined by the choice of biological model and parameters.

• Disparities between populations. The ability to synchronise depends upon

whether the interaction between populations can counteract the inherent “dif-

ference” between populations, whether provided by the internally generated

desynchronising influence of chaotic dynamics or, in the case of oscillatory dy-

namics, by differences in their natural frequencies. We have shown that, for

the case of identically-represented populations, “more chaotic” populations re-

quire stronger coupling for stable synchrony. Note, however, that there is some

indication that chaos can aid synchronisation in an ensemble of non-identical

populations (Hillary and Bees, 2004a), a case not directly investigated here.
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We have also seen that the critical coupling for synchrony is particularly sen-

sitive to how the spatial variation in frequencies is arranged in the modelled

domain. Here, we have considered a fixed value for the range in natural fre-

quencies. Further studies should look at how large an inherent spatial dispar-

ity can still be overcome by realistic levels of coupling between populations to

lead to homogeneous dynamics; a comparison with the level of natural varia-

tion expected in key plankton properties in the ocean would indicate the scale

at which such synchronisation effects could be expected in nature.

• Stirring of populations. This influences the geometry and strength of cou-

pling between populations. The details of the flow can therefore affect the

spatial disorder of populations, leading to a time-dependency in the emergence

of synchronised dynamics. Potentially, the network of interaction of each pop-

ulation is increased by the stirring, enhancing the mixing in the system and

allowing synchronisation at lower coupling strengths.

Importantly, synchronisation phenomena such as clustering and frequency-

locking have been shown to persist under the disturbing influence of advection,

although their manifestation may be altered, e.g. clusters become stretched

and narrowed along the direction of flow. A natural extension of this work

would be to more closely approximate a time-varying surface ocean flow by

examining the emergence of synchronisation in a more complex flow such a

field of interacting eddies.

The results of this study have a number of consquences for the coupled biological-

physical modelling of plankton dynamics, which we summarise here.

Altering model parameters, such as the strength of coupling or number of grid-

cells, can discontinuously alter the spatial properties of a model. For example,

increasing the spatial resolution, and therefore number of grid-cells, of a simulation

can alter system level dynamics from non-synchronised to synchronised, or from

clustering of populations to full synchrony. The presence of this discontinuity is

of concern if such a model is to be used to study length-scales of plankton patchi-

ness since increasing the model resolution could obliterate the patches. Researchers
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should therefore check the sensitivity of their results to changes in spatial resolution

and the other influences on synchronisation that have been listed above.

This may be particularly important if models are being used to estimate or make

predications of biogeochemical properties such as primary production. In Chapter 2,

we made some simple calculations of how total primary production differed between

synchronised and non-synchronised simulations, but more work should focus on

examining this impact if we are to have faith in predictions from coupled biological-

physical models.

Modellers should also be aware of the dependence of model results on the specific

grid-cell parameterisation of biology. In many cases, plankton ecosystem models may

be selected for use in biological-physical models without a clear idea of their math-

ematical properties. More care should be taken since this has been shown here to

determine model behaviour. From a more positive point of view, this study has con-

firmed the possibility of predicting system-level behaviour from the grid-cell biology

and the model physics. With further work, it is possible that an understanding of

the mathematical properties of the biological model dynamics, including the amount

of spatial variation, taken together with the physical flow, perhaps characterised in

terms of its effect on the network of interaction between populations and the strength

of mixing in time and space, could be used to predict system level spatial dynamics.

This knowledge of model behaviour built up from the model components may aid

in understanding the behaviour of complex biological-physical models.

We showed in this study that model results can display an alarming sensitiv-

ity to apparently small changes in model parameters. This was illustrated by the

large range of possible critical coupling strengths for frequency locking of a lattice

of non-identical populations, even when the biological model, the number of popu-

lations, the spread in parameter mismatch, the initial conditions and the boundary

conditions are all fixed and the simulations differ only in the particular selection of

parameter values from a fixed distribution, or even just in the spatial arrangement

of the same set of parameter values. These results should urge modellers to perform

careful sensitivity analysis of results to the choice of parameterisation of spatial vari-

ariability in models. However, later results showed the mitigation of some of this
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variability by strong stirring with respect to the time-scales of mixing and evolution

of the biology.

That we have shown synchronisation effects to persist under a range of increas-

ingly realistic simulations provides confidence that synchronisation theory can ex-

plain some of the patchiness structure seen in plankton in the ocean. One possible

line of future work would be to increase the realism of the simulation by studying the

synchronisation of populations under the influence of a more realistic fully turbu-

lent flow. Alternatively, for a particular region, a map of satellite altimeter-derived

horizontal current velocities could be used to characterise the region in terms of the

coupling strengths between populations at different points in space and time. With a

suitable representation of the biological dynamics of the region, making comparisons

with satellite ocean colour chlorophyll data, such a set up could be used to further

explore how emergent structure in real plankton populations can be characterised

in terms of synchronisation phenomena.

Most importantly, this study has shown that persistent spatial heterogeneity,

characterised by local clustering of populations and an increase in frequency disor-

der, results from what intuitively should be an homogenising influence; mixing of

the plankton populations actually increases the difference between populations and

creates statistically stable patchiness. Further work should look further at how the

length-scales of these clusters relates to scales of patchiness seen in empirical data.

These unexpected synchronisation effects have provided one possible answer as to

how tiny planktonic organisms are able to manifest large coherent strutures under

the homogenising influence of mixing and stirring by the flow.
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