HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

The Automated Translation of
Integrated Formal Specifications into

Concurrent Programs

by
Letu Yang

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

September 2008

http://www.soton.ac.uk
mailto:ly03r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Letu Yang

The PROB model checker [LB03] provides tool support for an integrated formal specifi-
cation approach, which combines the state-based B specification language [Abr96] with
the event-based process algebra CSP [Hoa78]. The JCSP package [WMOOb] presents a

concurrent Java implementation for CSP/occam.

In this thesis, we present a developing strategy for implementing such a combined spec-
ification as a concurrent Java program. The combined semantics in PROB is flexible
and ideal for model checking, but is too abstract to be implemented in programming
languages. Also, although the JCSP package gave us significant inspiration for im-
plementing formal specifications in Java, we argue that it is not suitable for directly
implementing the combined semantics in PROB. Therefore, we started with defining a
restricted semantics from the original one in PROB. Then we developed a new Java pack-
age, JOSProB, for implementing the restricted semantics in Java. The JCSProB package
implements multi-way synchronization with choice for the combined B and CSP event,
as well as a new multi-threading mechanism at process level. Also, a GUI sub-package is
designed for constructing GUI programs for JCSProB to allow user interaction and run-
time assertion checking. A set of translation rules relates the integrated formal models
to Java and JCSProB, and we also implement these rules in an automated translation

tool for automatically generating Java programs from these models.

To demonstrate and exercise the tool, several B/CSP models, varying both in syntactic
structure and behavioural properties, are translated by the tool. The models manifest
the presence and absence of various safety, deadlock, and fairness properties; the gen-
erated Java code is shown to faithfully reproduce them. Run-time safety and fairness
assertion checking is also demonstrated. We also experimented with composition and
decomposition on several combined models, as well as the Java programs generated from
them. Composition techniques can help the user to develop large distributed systems,
and can significantly improve the scalability of the development of the combined models
of PROB.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ly03r@ecs.soton.ac.uk

Contents

Acknowledgements
1 Introduction
1.1 Formal Methods, State- and Event- based, and Their Integration
1.2 Formalizing Concurrent Java Programming
1.3 Rationale for the PhD oo oo
1.4 Contributions
1.5 Outline
2 Integrated Formal Methods
2.1 The B Method
21,1 AMNand wp e
2.1.2 The Development of the B Method
2.1.3 The BO Language
2.1.4 Model Checkingand PROB
2.2 Communicating Sequential Processes
2.2.1 A Simple Introduction to CSP Grammar
2.2.2 Denotational Semantics of CSP
2.3 Integrated Formal Methods
2.3.1 Some IFM Approaches
2.3.1.1 CSP-Z e
23.1.2 CSP/OZ
2313 CSP B ...
2.3.1.4 csp2B ..
2.3. 1.5 Circus
232 B+CSPinPROB
3 Formalized Java Concurrency Development
3.1 Concurrent Java programming oL
3.1.1 Concurrency in Java L 000
3.1.2 J2SE5.0. . . .o
3.2 Formal Approaches to Java Concurrency
3.2.1 Runtime Verification: JML, Jass and Jassda.
3.2.2 Model Checking Java Programs: Java Path Finder
3.2.3 Semi-Formal Approach: The Magee approach
3.24 Jeeg
3.3 JCSP . .

ii

viii

10
10
11
12
13
13
14
14
15
17
17
17
18
18
20
20
21

CONTENTS

iii

3.3.1
3.3.2
3.3.3
3.3.4

The Limitation of JCSP 1.0rc5 and before

New JCSP versions
A Translation Tool for JCSP
From Circus to JCSP

4 The Combined B4+ CSP Specification

4.1 The Specification language
The Operational Semantics of B+CSP
The Restricted Semantics for Implementation
How to Compute the Restricted Semantics . .

4.2
4.3
4.4
4.5

5 JCSProB: A Java Implementation of B4+CSP

The Concurrency Model

5.1 Why We Need JCSProB

5.2
5.3
5.4

5.5

5.6
0.7

5.1.1

JCSP Channels and B+CSP Events .

5.1.2 CSP Process Call, Recursion and occam-pi Loop
An Overview of the JCSProB Package
B+CSP Event Classes

Implementing Multi-way Synchronization with Choice

5.4.1
5.4.2
5.4.3
5.4.4

The Difficulty in Implementation . . .

Existing Solutions on Implementing External Choice

A Solution of Multi-way Synchronization

An Example: Dining Philosophers . .

Process Classes: Thread, Process Calls and Recursion

5.5.1
5.5.2
5.5.3
5.5.4

GUI
5.7.1
5.7.2
5.7.3
5.7.4

Calling a Process in JCSP
Multi-threading in JCSP

Implementations of the CSP Process in JCSProB
Sequential and Parallel Composition in JCSProB
The State Variable Class

Overview of a GUI Program

The Development of Communication in GUI

Runtime Assertion Checking
A Example of the Standard GUI View

6 Translation from B+CSP to Java

6.1

6.2
6.3

Translation Rules

6.1.1
6.1.2
6.1.3

Translation Rules for Processes
Translation Rules for Events
Translation Rules for Integration . . .

Translation Tool

Translation of External Choice

7 Experimentations

7.1 Invariant Check: Simple Lift Example

7.2 Wot-no-chickens: Fairness Assertions

7.2.1

The Two Models
7.2.1.1 Assertion Check and Results

35
35
36
36

38
39
39
44
45
47

50
o1
51
52
53
95
o6
56
99
60
64
67
68
69
72
73
75
75
76
78
83
86

90
90
93
97
100
101
104

CONTENTS iv
7.3 Composition of JCSProB Programs 113
7.3.1 Composition: Odd-Even example 113

7.3.2 Decomposition: Wot-no-chicken 116

8 Discussion 120
8.1 Conclusions 120
8.2 Related Works and Discussions 121
8.2.1 The Clircus Translation 121

8.2.2 Event-Band RODIN 122

8.2.3 Composition and Decomposition of B+CSP models 123

8.2.4 Refinement Rules for B+CSP 125

8.2.5 Compatibility with JCSP o000 125

8.2.6 Formal Correctness Verification for the JCSProB 126

A Translation Rules 128
B Java Classes 151
B.1 Runtime Assertion Checking 0oL 151
B.2 Dining Philosophers o 151
B.2.1 PHIL procclass.java oo 151

B.2.2 FORK_procclassjavao 153

B.2.3 picks_chclassjavao 154

B.2.4 eats_chclassjavao oo 155

B.3 Wot, no chicken? 156
B.3.1 chicken_run.java Lo 156

B.3.2 chicken_procclass.java Lo oo 0oL 157

B.3.3 Philprocclass.java oo oo 158

B.3.4 getchicken_chclass.javao 159

B.4 The Odd-Even Example 160
B.4.1 Evenrun.java 160

B.42 Oddeven_run.java 161

C Specifications 163
C.1 The Decomposed Wot-no-chicken model: Step 2. 163
C.1.1 The CSP Specification 163

C.1.2 B Machine: Chef 163

C.1.3 B Machine: Canteen 164

C.1.4 B Machine: Phils 164

C.2 The Decomposed Wot-no-chicken model: Step 3. 165
C.2.1 The CSP Specification, 165

C.2.2 B Machine: Phil 165

C.2.3 B Machine: XPhil 0 o 165
Bibliography 167

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

An example of B machines: lift 12
The specification of the Odd-Even example 19
Synchronization of Java Threads 25
Consumer-Producer Example: Java Monitor Solution 27
Consumer-Producer Example: BlockingQueue Solution 27
Channel and process of JCSP oL 33
The JCSP process class implements process P 33
JCSP Parallel Processes 34
Consumer-Producer Example: The JCOSP Solution 35
The synchronization between B and CSP specification 41
A simple B machine: Simple oo oL 43
How to compute the restricted semantics 46
Combined Specification of powered lift 47
The synchronization of B4+CSP channels 48
The Dining Philosophers Example o7
The External Choice involving processes PHIL(1) and FORK(1) 58
PHIL(1) commits to an unready event picksup.1.1 59
The state machine of a client P, 60
The state machine a process p; with three choice paths 61
The state machine of a client F; 63
The state machine of an event E processing commitments 64
The dining philosophers: ready calls 65
The dining philosophers: compete for the lock 65
The dining philosophers: picksup.1.1 is selected and progress 66
The dining philosophers: withdraw and unlock 66
The dining philosophers: interrupt in FORK(1) 67
The dining philosophers: final state 67
Calling a new process object in JCSP 69
Parallel composition in JCSPo 0oL 71
Sequential composition in JCSP L. 72
The state of the RecurThread class 73
Parallel composition in JCSProB 0oL 74
Sequential composition in JCSProB 74
The structure of a GUI program 76
The GUI communication of event call: level 0 79

LIST OF FIGURES vi

5.22
5.23
5.24
5.25
5.26

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

The GUI communication of event call: level 1 80
The standard GUI view of an event call 82
The GUI communication of event call: level 2 83
The interface of translation tool in PROB 87
The interface of translation tool in PROB 88
The parsing and interpretation in PROB 102
Combined Specification of lift 109
An example of B machines: lift 109
The B machine of the Wot-no-chicken example 111
The CSP spec of the Wot-no-chicken example: Model 1 111
Formal specification of Wot-no-chicken example, Model 2 112
The specification of the Odd-Even example 114
The communication in the Odd-Even example 115
Data input for communication channel 115
The GUI program of the combined Odd-Even model 117
The Wot-no-chicken example: introducing the Canteen process 118

The decomposed wot-no-chicken model: Step2 118

List of Tables

2.1

4.1
4.2
4.3

5.1
5.2
5.3

7.1
7.2

The comparison of four IFMs 22
The main B and CSP specification syntax supported in JCSProB 40
The allowed arguments combination for B+CSP events 45
The allowed arguments combination for pure CSP event 45
JCSP (1.0rc5) channel, barrier, and B+CSP event 52
The Java Implementation of B+CSP model 54
Basic event classes and their input/output types 56
The experimental result: Safety and Deadlock-freeness 112
The experimental result: Bounded Fairness Properties 113

vii

Acknowledgements

First of all, T would like to thank my supervisor, Dr. Michael R. Poppleton, for his
supervision and academic advice during my PhD study. Without his kind encouragement
and constant support, I would never have finished. I am also thankful to Dr. Denis A.
Nicole, my second-supervisor, who was always there to provide valuable advice. I thank
Prof. Michael Leuschel for his supervision on the first year, and Prof. Michael J. Butler

for his advice on my research topic.

I am grateful to all the rest of the academic and support staff of the Dependable Systems
& Software Engineering group at the University of Southampton. Much respect to my
officemates, and hopefully still friends, Andrew Edmunds, Divakar Yadav, Elisabeth
Ball, Tossaporn Joochim, Nishadi De Silva, and Edwards Turner for putting up with me
for almost four years. Also thanks to Prof. Peter Welch and Dr. Neil Evans for their

advice on my research.

Lots of thanks goes to my friends Kan Huang, Ziheng Zhou and Xiaoli Li. They may
have no idea about what formal methods are, but they still contributed to this thesis

from talking jokes, cooking delicious food, and playing football with me.

Finally, I have to say 'thank you’ to all my and family, particularly my Mum and Dad;
and most importantly of all, my dear girlfriend Melody, who proclaimed herself as my

third-supervisor, for everything.

viii

To my dear mum, Yuan Ren ...

ix

Chapter 1

Introduction

”Program testing can be used to show the presence of bugs, but never to
show their absence. The only effective way to raise the confidence level of a

program significantly is to give a convincing proof of its correctness.”

— Edsger W. Dijkstra

Although there are countless computer systems running all around the world, the most
serious issue in computer programming is the correctness of these systems. As both
hardware and software systems have been rapidly growing in scale and functionality, it
is harder and harder to identify or avoid errors in the development of computer systems.
One significant aim of software engineering approaches is reducing errors and improving
the reliability of systems. Techniques such as code modularization and code reuse, can
help the developers to reduce the possibility of introducing errors in some sense. Familiar
testing approaches can improve programs by detecting errors in the programs, however
it is unlikely for testing approaches to cover all the examples in a large scale system to

prove the correctness.

In [Dij65], Dijkstra suggests a definition of the correctness for programs, and an al-
ternative approach for providing correctness to programs by establishing mathematical
proofs. In [Flo67], Floyd provides formal definitions of the meanings of programming
languages by defining them in flowcharts, and modes for verifying the flowcharts. Hoare
[Hoa69] extends Floyd’s work and establishes the famous Hoare Logic, which is a set
of logical rules in order to reason about the correctness of computer programs with the

rigour of mathematical logic.

However, directly applying mathematical proof rules to existing programs is apparently
difficult and time-consuming. In [Dij68|, Dijkstra introduces a constructive approach
for developing programs. Rather than proving an existing program, it aims to develop a
program in a sequence of steps. At each of these steps, proof is produced for the program

at that stage. In [Wir71], Niklaus Wirth introduces stepwise refinement as a methodical

1

Chapter 1 Introduction 2

approach to computer programming. In an iterative step-by-step development process,
a initial abstract and correct program can be developed into a more concrete version,
and refinement rules can prove the later version is a correct refinement of the initial
program. If this is done, finally, programmers end up with a proved program which is
also concrete enough for execution. The stepwise refinement provides a realisation of

mathematically proof of programs suggested by Dijkstra.

Concurrency is an important property of computer systems, in which multiple processes
are running simultaneously and interacting with each other. A number of mathemat-
ically based concurrency models, such as Petri nets [Pet81] and actor model [HBS73],
have been established for modeling and reasoning about concurrent systems. Process
algebras, such as CSP [Hoa78], CCS [Mil80] and m-calculus [Mil99], also provide high-
level specification methods for modelling concurrent systems, as well as algebraic rules

for analyzing and reasoning concurrency properties in their specifications.

However, although formal concurrency models have existed for more than forty years,
many conventional programming languages, e.g. Java, do not benefit from them. Con-
currency in multi-threaded Java programming has always been seen as a problematic
area [Pug00], to the extent that expert practitioner advice has been to avoid it where
possible [MWO00]. Safety properties have been made more tractable by the provision of
a common cross-platform Java Memory Model [MPAQ5]. However, as the concurrency
model of Java programs is described in natural language, it is still difficult to detect
and avoid liveness problems in concurrent programs. The difficulty of concurrency in
programming languages motivated the development of applying existing formal concur-
rency model to programming. One of the difficulties is that the formal concurrency
models we mentioned above are based on the message passing mechanism, while the
concurrency models of most computer systems and programming languages are based
on shared memory. How to connect the two concurrency mechanisms is the key issue

here.

1.1 Formal Methods, State- and Event- based, and Their

Integration

Formal methods, which provide mathematically based techniques for software and hard-
ware development, can be used to design, develop and prove the correctness of com-
puter programs in a systematic manner. A typical formal methods approach introduces
a formal specification language. Using the formal language, developers can produce
mathematically-based formal models for computer systems. A formal method should
also include formal development techniques for models described in the formal specifica-
tion language. The development techniques of a formal method approach should include

proof theories or verification techniques for mathematically proving the correctness of

Chapter 1 Introduction 3

these formal models. A good formal method should also come with a development strat-
egy from abstract models towards implementations. Automated tools support for the
development technique is also essential for formal method approaches, as many previous

criticisms on formal methods concerned the lack of tool support.

In the past thirty years, many formal techniques have been developed for specifying
system models and verifying their correctness. Generally, there are two kinds of formal

techniques for specifying system model, which focus on different aspects of systems.

The state-based approaches, such as VDM [Jon90], Z [PST96] and B [Abr96, Sch01],
focus on the data aspect of systems, such as data definitions and data transitions. Such a
model can be viewed as a labelled transition system(LTS) [Mil89]. A Labelled Transition
System (LTS) is a structure (S, A, —) with a set of states S, a set of actions A, and the
transition relation —C S x A x S. A state-based formal model is defined on the system
states, where a state is an assignment of values to some set of state variables. It also
needs to provide definitions of state actions, which changes the values of state variables
with data substitutions and moves the system into a new state. At the same time,
whether such an action is enabled or not depends on its guard, which is a conditional

predicate on the state variables.

A state-based approach usually employs some form of stepwise refinement technique.
Models at various abstract levels of a system are related by some formal refinement
rules. Various tool sets have also been developed for these methods, e.g. I[FAD VDM-
SL toolbox [ELL94| for VDM, the Community Z tools (CZT) [MUO05] for Z, and Atelier
B [Ate01], PROB [LB03] for B.

Although state-based approaches are ideal for modelling the data aspect of systems,
only a single-step atomic behaviour can be specified. It lacks expression for modelling
behaviors of the whole system. For all the actions in a state-based model, the occur-
rence of actions is only restricted by precondition guards on these actions. The request
for divergence freedom makes it hard to express a behaviour comprising a sequence of
actions. Especially, in cases when the behaviour of a system turns complex, 'program
counters’, which are special state variables, need to be introduced to the model. Ad-
ditional preconditions on these variables need to be added to actions for preserving a
specific execution order of a number of actions. However, although additional variables
and precondition guards can restrict the execution of actions, this approach still lacks
an explicit system level view on system behaviours. This is apparently less expressive,
not very easy for modelling. Also, it is usually not very easy to express or reason about

behaviour properties using state-based approaches.

Event-based approaches, such as CSP [Hoa85, Ros98, Sch00] and CCS [Mil80, Mil89],
focus on the behaviors of systems. There is also tool support for these approaches,
for example, the FDR tool [For03] supports model checking for CSP specifications.

Event-based approaches represent coarse-grained concurrency of programs. They focus

Chapter 1 Introduction 4

on behaviours of processes and interaction between processes, instead of the state of
programs or data transitions on the state. An event-based model views a system as
sequences of stateless actions the system may engage in. A sequence of events is modelled
as a process, which can be defined using process operators, e.g. parallel composition,
external choice. Shared events can be used among different processes for interaction and
communication. Additionally, one event-based approach normally provides well defined
formal semantics on behaviour properties, for example, the trace and failure-divergence

semantics of CSP.

With these facilities mentioned above, event-based approaches are very good at specify-
ing a high-level abstract model of system behaviours. However, it is usually not conve-
nient to model the data aspect of systems using these approaches. A process maintains
its own state and state variables, although the supported data types are usually very
limited. In many event-base approaches, the data definition of these variables are not
explicitly declared. It is very common for a process to use communicated data without

knowing its data types.

For the whole system model, there is no global state. Also, as the events in an event-
based model are regarded as stateless, it is not easy to specify complex state changes for
the process variables. For high-level design of system behaviours and strategies, it may
be possible to ignore the detailed data of systems. But when going to detailed design,
especially for some data-intense systems, the expressivity for modelling data definition
and transition is important. Furthermore, system properties concerning data safety
can be very significant for many systems, and should be addressed in system models

explicitly.

Either state- or event- based specification is a mathematical abstraction based on one
perspective of the system properties. Although more detail of systems can be added
in through a stepwise developing process, using a partial abstraction of a system to
construct a system model still leaves out some properties of the system, or being less
expressive on these properties. Directly modelling and reasoning temporal properties in
a state-based model is difficult, also, defining and analysing the state of a globally shared
or complex data in an event-based model can be difficult as well. However, developing
some large-scale systems usually demands the expressivity of modelling both data and

event features of systems.

In recent years, many efforts have been made to integrate the two kinds of formal
specifications. These efforts include the integrations of CCS and Z [Gal96], CSP and Z
[MSO01], CSP and OZ [Fis97a, Fis00], CSP and B [ST03, But99, BL05]. In [BLO05], an
approach to combine B and CSP specification ! is presented. The combined approach

is also implemented in the PROB model checker [LB03] for automatic verification. The

"We will call this notation B+CSP for shorthand

Chapter 1 Introduction 5

CSP part of the combined specification describes the sequence of the system behaviors,

while the B part specifies the data transitions inside these behaviours.

1.2 Formalizing Concurrent Java Programming

Formal approaches for modeling and developing concurrent computer systems, such as
CSP [Hoa85], CCS [Mil80, Mil89], and occam [RH88, RGS94a, RGS94b], have been in
existence for more than thirty years. Many research projects [WB04, CKK™00, BS05]
and a number of real world systems [MST92, Law04, Pel04]have been developed from
them. However, most programming languages in industry, which support concurrency,
still lack formally defined concurrency models to make the development of such systems

more reliable and tractable.

The concurrency model of Java is a multi-threading shared-memory model. Inside a
concurrent Java program, multiple threads are running within a single process, and
share the process’s resource. When different threads try to access a shared data, Java
offers the monitor mechanism to make sure when one thread holding the monitor, no

other threads can execute any region of code protected by the same monitor lock.

The Java language has a painful history as it lacks explicit and formal definitions of its
concurrency model. Before Java 5.0, the JMM (Java Memory Model) didn’t explicitly
define the read/write order that needs to be preserved in the memory model. This
confused the developers of JVMs (Java Virtual Machines). The different JVMs developed
under the old JMM could represent different behaviours, and lead to different results
from running the same piece of Java code. To address this issue, Java 5.0 and the third

version of the Java language specification had to redefine a new JMM.

Although the newly defined JMM clarified the safety of read/write orders at memory
level, the Java concurrency model is still expressed in a natural language. It does not
provide any method for evaluating general concurrency properties, such as safety, liveness
and fairness. Developing a concurrent system under the Java concurrency model cannot
guarantee the correctness of such programs. It still totally depends on developers’ skills

and experience to avoid concurrency problems.

Therefore, many approaches have been attempted to formalize the development of con-
current Java systems. Formal analysis techniques have been applied to concurrent Java
programs. JML [LPC*05] and Jassda [BM02] provide strategies to add assertions to Java
programs, and employ runtime verification techniques to check the assertions (There are
also static analysis and verification tools for JML). Magee and Kramer [MK99] intro-
duce a process algebra language, FSP (Finite State Processes), and provide a formal
concurrency model for developing concurrent Java programs. JCSP [WBMT07] is a

Java library offering the occam concurrency model, which is a low-level implementation

Chapter 1 Introduction 6

language of CSP. JCSP implements the main occam structures, such as process and
channel, as well as key occam concurrency features, such as parallel, external choice
and sequential composition, in various Java interfaces and classes. It bridges the gap
between specification and implementation. With all the Java facility components in the
JCSP package, developers can easily construct a concurrent Java program from its occam
specification. All these approaches try to bring a formally defined concurrency model to
concurrent Java programming. Such kind of models should provide a formal modelling
language for constructing concurrency model, as well as development and verification

techniques for building and reasoning Java programs.

1.3 Rationale for the PhD

A major criticism of formal methods is that many formal approaches lack industrial
applications. The development of many formal approaches still largely rely on manual
proof, and most lack substantial proof tool support, making system development with

formal methods very hard for most developers.

The B method employs a stepwise refinement development technique. Both the B prover,
B-Toolkit [BCo01], and the model checking tool, PROB [LB03], support this refinement
development process for B method. The final refinement model would be a very concrete
model, which is specified using a concrete B0 subset [Cle01] of the language. As the
semantics of the B0 language is very similar to that of many conventional programming
languages, it would not be very difficult to implement a final refinement of B method
in a programming language. However composition and decomposition of B machines
are still open research area, and it is not very easy to model or implement interactions
and communications between distributed systems using B method. Most research on
applying the B method in real world examples are either focusing well-defined small
subsystems, or only developing models at abstract level. Therefore, the applications to
which B development can be applied are still restricted. How to use the B method for
developing a large, distributed system from design to implementation is still an ongoing

research.

On the other hand, JCSP provides a Java implementation for the CSP specification.
Although a manually constructed JCSP program can have a formal CSP model as its
guidance, it cannot be systematically proved that the program correctly implements the
formal model. Manual efforts involved here can be problematic. Also, the data manually
introduced into the program usually cannot be easily specified in the CSP model. In
some cases, such data can affect the behaviours of systems. An automated translation
would represent a very useful contribution for JCSP. However, some reported experience

[RRS03] has shown that, for automated translation, due to the lack of data expressivity

Chapter 1 Introduction 7

in CSP, it is sometimes not easy to directly use the Java programs translated from CSP.

Usually, more data information still needs to be manually added.

Therefore, it would be an interesting contribution to implement integrated specifica-
tions. And with the help of existing techniques, e.g. B0 and JCSP, it could be very
possible to develop an implementation strategy, as well as automated tool support, for
the B4+CSP model [BLO5]. The implementation strategy, including the Java implemen-
tation of B+CSP semantics and the translation tool, should be carefully developed as
their correctness is vital for this work. Tests would be applied to practically validate cor-
rectness of this work. Further work will target the formal verifications of the correctness

of the Java implementation package and the translation.

Currently, the refinement rules for the integrated B and CSP specification are still not
available. Although PROB can practically check the trace refinement between integrated
models, a formal refinement proof method is not available. This means there is no de-
velopment technique for building refinement models from the abstract one. Therefore,
although this work mainly focuses on implementing concrete models, it would also sup-
port abstract semantics of the integrated specification languages. For an abstract model,
the generated programs from the translation tool can either be used as a quick imple-
mentation, or be regarded as an animation mechanism for the model. For a concrete

model, this implementation strategy would provide a prototype of the system.

Through this work, we try to develop an implementation strategy, as well as tool support,
for integrated B and CSP specifications. Also, finding out an appropriate combination

of B and CSP for developing large distributed systems is another important target.

1.4 Contributions

The first contribution of this work is a definition of the restricted semantics, based
upon the existing semantics in PROB. The combined B+CSP specification language
includes almost all the notations from both B and CSP specification languages. It is a
large specification language with corresponding abstract semantics, which provide a very
flexible way for specifying systems. However, some of the abstract semantics are very
difficult to directly implement. Therefore, we develop a restricted semantics, which is
concrete enough to be implemented into Java programs, and abstract enough to support

modelling most general systems.

The second contribution of this work is implementing the restricted semantics in Java.
Although JCSP has implemented occam-m, the semantics and concurrency model of
B+CSP are different from those of occam-w. This means that we need to implement
B-+CSP semantics in a new Java package, JCSProB. In the development, we regard the
structure of the JCSP package as a significant inspiration, and implement the B4+CSP

Chapter 1 Introduction 8

concurrency model with similar process-channel structure to JCSP. A big difference
between JCSProB and JCSP is that the new package supports combined B4+CSP events,
which include data changes, whereas JOSP communication channels are stateless 2. The
JCOSProB package consists of new integrated event classes, new process classes, and a
GUI sub-package. The GUI package allows users to interact with the generated Java

programs, and it also provides interfaces for runtime assertion checking.

The development of translation rules and a translation tool is the third contribution of
this work. Based on the implementation package, we formally define a set of translation
rules to convert an useful and deterministic subset of the B4+CSP specification to Java
code. To make the translation more effective and stable, an automated translation tool is
constructed as a functional component of the PROB tool. As the integrated specification
includes both state- and event based views of the system, the generated Java code from
the translation normally does not require manual modification (as other translation tools
do, e.g. [RRS03]), and can be executed directly.

The above three contributions provide a development strategy with tooling support for
the combined B+CSP models. Finally, the fourth contribution is to apply the strategy
to some example models to evaluate the development of this work, and practically test
and validate the Java implementation package and the translation. We also use the
examples for evaluating and improving scalability of this work. This experimentation
work includes modelling the example with the B+CSP specification, model checking
the model in PROB, automatically translating the model to a Java application, testing
and experimentally evaluating the generated Java programs. During the evaluation, we
found the restricted B+CSP semantics used in this work is very close to the semantics
of CSP||B approach [ST03]. The composition strategy used in CSP|B [STE05] can be
used to compose B+CSP models. It is also possible for users of CSP||B to make use of
the JCSProB package and the translation tool.

1.5 Outline

This thesis starts with an introduction in Chapter 2 to state- and event- based formal
methods, and the existing approaches for integrating them. The B method and CSP
approach are introduced in Section 2.1 and Section 2.2. In Section 2.3, several integrated

formal approaches are discussed and compared.

2JCSP provides Call channels. These are events from the caller’s point of view whose acceptance is
an "extended rendezvous” in which any state change, in the acceptor process, can be programmed. This
is still different from the combined B4+CSP event, in which any state change happens on the B machine

Chapter 1 Introduction 9

In Chapter 3, we discuss the problems of developing concurrent programs, especially in
Java. In Section 3.2, various approaches to formalizing the development of Java concur-
rency are discussed. In Section 3.3, the JCSP package, which is important inspiration

of this work, is introduced.

In Chapter 4, we present the restricted B4+CSP semantics used in this work, which is the
first objective of the development. In the discussion, we will first introduce the B+CSP
specification language in Section 4.1, and operational semantics of PROB in Section 4.2.
Then in Section 4.3, 4.4, and 4.5, the restricted semantics and its concurrency model

are discussed.

In Chapter 5, the Java implementation of the restricted semantics is presented. As the
new JCSProB package is inspired by and developed from JCSP, in Section 5.1, the reason
for developing the new package instead of using the existing JCSP package is discussed.
The JCSProB package includes implementation of guarded multi-way synchronization
(in Section 5.4), and new implementation of multi-threading mechanism and recursions
(in Section 5.5). To interact and control the Java programs constructed using JCSProB,
we also provide a GUI package for building an user interface for users. This feature is

presented in Section 5.7.

Chapter 6 describes the automatic translation from combined B+CSP specification to
Java programs. In Section 6.1 some translation rules are presented and discussed. More
translation rules can be found in Appendix A. In Section 6.2 the translation tool is

presented.

In Chapter 7, the experimentation in this work is presented. Several example systems
are modeled and implemented using this developing process, and the generated Java

programs are tested and evaluated.

Finally in Chapter 8, we give the conclusion of this work, and propose some possible

future directions based on this work.

Chapter 2

Integrated Formal Methods

Starting with the pioneering works from Dijkstra, Floyd, Hoare, and other computer
scientists in 1960s, Formal Methods have been in existence for more than forty years,
and many formal specification languages and development methodologies have been
developed. However, formal approaches still have not been widely accepted or applied. A
real system normally consists of many aspects of features, such as data, state, behaviour,
and communication. One criticism on formal methods is that many formal approaches
only focus on one aspect of views on systems, which limits their expressivity for large,
complex systems. A restricted view of systems makes some formal methods lacking the
expressivity to add enough details for constructing systems. Therefore, some formal
method approaches may have sound and well-defined logic and specification languages,

but using them to construct and implement complex systems can be very hard.

In this chapter, we introduce the state- and event based formal approaches, on which
this work is based: the B method [Abr96] (Section 2.1), and CSP [Hoa85, Sch00, Ros98]
(Section 2.2). In Section 2.3, we review several existing integrated formal methods ap-
proaches , which provide solutions for resolving the problem of restricted views on sys-
tems by combining different perspectives. Several integration approaches are discussed
and compared. Finally, in Section 2.3.2, we focus on the combined B and CSP specifi-
cation in PROB [BLO05], which is selected for this work.

2.1 The B Method

The B method, developed by Jean-Raymond Abrial [Abr96], is a state-based formal
approach for constructing computer systems. Jean-Raymond Abrial, who is also the
inventer of the Z method [PST96], developed the B method based on successful projects
[HK91] with the Z method.

10

Chapter 2 Integrated Formal Methods 11

It aims to cover the project life cycle from design to code generation. The B method
is based on a version of first-order logic and set theory specifically tailored for it. The
specification language of B method is defined in a form of Abstract Machine Notation
(AMN), which is based ultimately on Dijkstras guarded command language [Dij97], and
is very much influenced by Back’s action systems [BKS83a]. The data and invariant of
a machine is specified using predicate logic and set theory. In specification, the AMN
and Generalised Substitutions are connected by the standard language of first-order logic
and a restricted kind of set theory. Logically, a B machine can be understood as being

a composition on four layers:

e Level 0, first order logic with equality
e Level 1, a typed set theory
e Level 2, the Generalised Substitutions Language

e Level 3, the AMN

2.1.1 AMN and wp

In the B method, an abstract machine is a specification of a system. The system specified
by a B machine can be a part of a bigger software system. An abstract machine defines
the state of a system based on a number of state variables, and invariants on these

variables, which may type the variables and further constrain the values.

Operations modify the state under the constraints of the invariant. They can take zero or
more parameters and return values. These are identifiers distinct from the state variables
of the machine. Operations of a machine are specified as AMN substitutions. The
semantics of AMN substitutions is given by Generalised Substitutions, modelled after
Dijkstra’s weakest precondition calculus [Dij97] and its later generalizations by Nelson
[Nel89]. The weakest precondition is defined in the wp-calculus as [S]P. S is a statement
of AMN, which may manipulate system states of the machine. The postcondition P of S
is a predicate, which defines the set of states required to be true after executing S. Then,
the notation [S]P represents a precondition, which defines a maximal set of initial states
from which after executing S, the postcondition P is guaranteed to be true. As [S]P
includes all the possible states that can achieve P after executing S, it is the weakest
precondition. An operation of a machine can be regarded as a guarded and atomic
command of Dijkstras guarded command language. The execution of a statement S is

constrained by its precondition [S]P, and calling outside [S]P is allowed but undefined.

Figure 2.1 demonstrates a very simple lift machine. An abstract B machine is defined
under the header name MACHINE, which defines the identifier for the machine. Under
the keyword VARIABLES, the machine variables are declared. The INVARIANT

Chapter 2 Integrated Formal Methods 12

clause provides all the information about the state variables, including their types and
the values they could reach in this system. The initial state of the system is defined
in the INITTALISATION clause. The operations of a machine is defined in the
OPERATIONS clauses. All the B operations of a B machine do not happen in parallel,
which means at a time, only one B operation can progress. The data substitutions inside
an operation may change the state of the machine. The right-side references of B state
variables refer to their pre-operation state, while the left-side references refer to the
new state. In this case, the operation inc has a precondition level < 10 on its data
assignment substitutions. When the precondition is not satisfied here, processing the
data transitions would not reach any meaningful state in this machine.
MACHINE lift
VARIABLES level
INVARIANT level : NAT & level > 0 & level < 10
INITIALISATION level := 1
OPERATIONS

inc = PRE level < 10 THEN level := level + 1 END;

dec = PRE level > 0 THEN level := level - 1 END
END

FIGURE 2.1: An example of B machines: lift

As well as clauses defined above, abstract machines can also define given set types under
the SETS clause. They are nonempty finite sets including a number of unique elements,
and their elements can be enumerated. Constants can also be declared under the CON-
STANTS clause. The types of the constants must be given in the PROPERTIES
clause. Books from Abrial [Abr96] and Schneider [Sch01] are excellent text book on the
B method for further reading.

2.1.2 The Development of the B Method

As a formal development methodology, the B method also provides an incremental de-
velopment process, which is based on the refinement calculus [Bac80, HHS86, Mor88].
The refinement calculus provides a stepwise refinement method of program construction.
A system specified in AMN is at a single level of abstraction of the system, which can be
developed by adding details. The idea of stepwise refinement method starts with a very
abstract model of a system. Details are gradually added to this first model by building
a sequence of more concrete ones. The final production of this refinement procedure is

a concrete implementation model.

Two successive models must preserve the relationship defined by the refinement calculus
C. A substitution S; is refined by a substitution Sy (S7 T S3), if any specification
satisfied by S; is also satisfied by Sy. If P is the postcondition of S; and [S;]P holds,
the predicate [S2|P for the refinement substitution S should also hold. The refinement

Sy is either more deterministic than S, or has a weaker precondition than Sj.

Chapter 2 Integrated Formal Methods 13

The consistency of an abstract machine can be verified by proving proof obligations
about it. The proving of proof obligations is traditionally called discharging them. A
B machine, refinement, and composed machines(INCLUDE and SEE etc.) all have
their own proof obligations. For operations, giving the invariants of two models as I
and J, the proof obligation requires that the execution of S must be matched by some
execution of Sy, which means [S2|—[S1]—J must be true at these states. The proof

obligation is normally written as:

INJANP = [SQ]—'[Sl]—\J

—[S1]—J means that not all transitions of S; make J false, which implies that there are
some transitions of S guarantee J to be true. So the left part of the formula means for

any So, there are some transitions of S; to guarantee J.

To prove the refinement obligation for operations, gluing invariant J(z,y) sometimes
need to be introduced to link the state variable z of the abstract machine, and the state

variable y of the concrete machine.

The interactive proving tools for the B method, such as Atelier B [Ate01] and B-Toolkit
[BCo01], can be used to help developers to developing systems with the B method.

2.1.3 The B0 Language

Abrial’s book [Abr96] only gives an abstract syntax for his notation, and only gives
faint hints on the concrete syntax. The concrete syntax used by the B-Toolkit or Atelier
B is not described at all by Abrial. A definition of the B0 language can be find in
[Cle01]. BO is a concrete subset of the B specification language, describing operations
and data of implementations. It only presents concrete data using concrete constants,
concrete variables, operation input and output parameters, machine parameters, local
variables, and enumerated sets. Conditions and terms are only defined on concrete data.
Only concrete substitutions without non-determinism, which are called instructions, are

allowed in BO0. Instructions are used both in the initialization and the operations.

2.1.4 Model Checking and PROB

Formally proving a B model can be difficult and time-consuming. Model checking
[EMCP99] provides an alternative technique to verify developed formal models. It tests
whether a given formula in the propositional logic is satisfied by a given model by ex-
ploring the state space of the model. Model checking tools all face a scaling problem,

commonly known as the state explosion problem [CGJ101].

Chapter 2 Integrated Formal Methods 14

PROB [LBO03] is an animation and model checking tool for the B method. The tool covers
a large part of the B syntax and semantics. As an animation tool, PROB allows user to
manually drive B models. As a finite state model checker, PROB supports automated

consistency checking of B machines, and refinement checking between B machines:

e In consistency checking, PROB can check safety properties, such as violations of
invariant and deadlock of the system. It can identify counter examples of required
properties and provide traces leading to them. This information can help the

developer to improve system specifications.

e In refinement checking, PROB automatically explores and compares the state

spaces of two B models, and can find the exceptions of refinement.

The symmetry reduction technique [TB06] used in PROB can reduce the size state space

and improve its model checking performance.

Furthermore, PROB also supports model checking for CSP specifications [Hoa85] or
event combined B+CSP specifications [BL05]. We discuss this later in this chapter.

2.2 Communicating Sequential Processes

CSP (Communicating Sequential Processes) is a process algebra proposed by Hoare
in [Hoa85]. It is a well-known event-based formal language for modelling concurrent
systems. A concurrent system is viewed as a set of independent processes. Processes

communicate with the environment and processes via atomic and stateless events.

2.2.1 A Simple Introduction to CSP Grammar

The set of all events that a process can engage in is called its Alphabet, usually named as
aP. The behaviour of the process is defined in sequences of the events as combination

with basic processes and process operators.

Basic processes in CSP includes STOP and SKIP. STOP means the process is in a
state where no events can be engaged, and the process would stay at this state for ever.
SKIP denotes a successful termination of a process. The process operator — used above
describes the sequencing of events. An expression a — P means the process first engages

in the event a, and then performs as process P.

The parallel composition of process is specified using process operator |. A parallel
composition of two processes P; and P; is written as P; || P,. The two processes can
synchronize on events in the intersection of the alphabets of them. However, in many

cases, a process in a parallel composition may not want to communicate with other

Chapter 2 Integrated Formal Methods 15

processes on all the events in its alphabet. The alphabetized parallel operator defines
the parallel composition of processes with explicit declaration of the events that may be
involved in the composition. The event sets of two processes P; and P, involved in the
parallel composition are A; and Ao, where A; C aP; and Ay C aP,. The alphabetized
parallel is written P 4 ||, P2. In this definition, Py can only engage events in A, and
P; can only engage events in Ao, and the two processes need to synchronize on events in

A1NA,. A generalized version of parallel is defined as P, || P2, where X C AjNAs. When
X
X = (), which means the two parallel processes have no event to synchronize, the two

processes are said to interleave with each other. The parallel composition here is written
using interleaving operator ||| as P; ||| P». Semantically, the termination event / always
needs to synchronize in parallel processes, even in the interleaving processes, although
it does not explicitly appear in the definition. This means the parallel composition

terminates only when all participating processes successfully terminate.

Sequential composition of processes runs the participating processes one after the other.
Only after a process has successfully terminated, can the successor process start per-
forming. Using the sequential composition operator ;, a sequential composition of two

processes P; and Ps is written Pi; Ps.

The choice operator introduces a number of possible action paths for a process. In
external choice, the control over the choice is external to the process, while internal
choice is resolved inside the process. An external choice in process P between two
process paths P, and P is written P;[JP;. If, and only if the first event of a process
path is ready to progress, the process path can be considered as a candidate for selection.
This kind of external choice is also called guarded external choice. Internal choice is also
known as non-deterministic choice. The decision of an internal choice P; N P, is made
internally in process P, which leaves the outside environment with no control over the

choice.

Other CSP operators, including renaming, hiding and interrupting, can be found in
[Hoa85] or [Ros98].

2.2.2 Denotational Semantics of CSP

In the original CSP [Hoa78], the semantics of CSP were not clearly described. The traces
[Hoa80], failures [BHR84] and divergences [BR85] semantics were later given for reason-
ing about properties of concurrent systems. In Roscoe’s book [Ros98], the denotational

semantics of CSP are summarized and discussed.

The traces model T' captures the behaviours of a process in a set of non-empty prefix-
closed event traces. The all set of finite traces of a process P is written traces(P). For
example, when P = a — b — STOP, traces(P) = {<>,< a >,< a,b >}. A set of

Chapter 2 Integrated Formal Methods 16

algebraic rules are defined for computing trace sets over all the process operators under

traces model. For example, the rule for prefixing is defined as:

traces(a — P) ={<>}U{<a >"tr|tr € traces(P)}

However, although the traces model can capture a range of system behaviours of con-
current system, it still not expressive enough to cover all the semantics of CSP. For

example, the traces model does not distinguish between internal and external choice:

traces(PiOPy) = traces(Py) U traces(Ps)
traces(Py N Py) = traces(Pa) U traces(Py)

That means the non-determinism in internal choice cannot be expressed in traces model.
Furthermore, some safety liveness properties, e.g. deadlock, cannot be expressed with
trace semantics. Therefore, failures and divergences models introduced in [BHR84] and

[BR85] to express these properties.

The failures model D is defined to express the deadlock state of a process. A process P
which can make no internal progress is said to be stable, written P |. If after executing
a sequence of events defined in trace tr a stable process P refuses to engage a set of

events X, the observation of (tr, X) is called a stable failure of P.

The set failures(P) includes all the failures of the process P. When it is possible for
a process P to perform an infinite sequence of internal events and never reach a stable
state, it is said to be divergent, written P 7. The divergences model D of a process P
is defined as divergences(P), which includes all the traces that can lead the process P

into divergence.
The full semantic model of a process is thus defined as a triple (T, F, D). The refinement
of CSP specifications is also defined upon this semantics:
e A process P, trace refines a process P if all the traces of P, are also traces of P;
Py, Cp Py = traces(Py) C traces(Py)

e A process P, failure refines a process P; if P, traces refines P, and all the failures

of Py are also failures of P;
Py Cp Py = traces(Py) C traces(Py) A failures(Ps) C failures(Py)

e A process P, failure/divergences refines a process P; if P» failures refines Pj, and

all the divergences of P, are also divergences of P;.

Py Cp Py = traces(Py) C traces(Py) A failures(Py) C failures(Py)
Ndivergences(Pa) C divergences(Py)

Chapter 2 Integrated Formal Methods 17

2.3 Integrated Formal Methods

2.3.1 Some IFM Approaches

The integrated formal methods discussed here are formal specifications which try to
integrate state-based methods with event-based methods. Some other approaches, such
as UMLB [SB06], Real-Time Object-Z [SH00], B/VDM [BMRA98], will not be discussed
here. Also, several previous works on combining event- and state- based methods have
been widely mentioned, for example ZCCS [Gal96] and TCOZ [MD99], but in this

chapter, we only discuss a selection of more recent work.

2.3.1.1 CSP-Z

In [Fis97b, Fis98], an integrated formal specification language C'SP-Z is introduced. It
combines the syntax and semantics of C'SP and Z [PST96]. The syntax of the CSP
part is fully preserved, while the Z syntax subset used in CSP-Z is different from the
original Z syntax. It defines the C'SP-Z language with semantics subsets of C'SP and
Z languages. A CSP-Z specification starts with the declaration of channels(external

and internal).

A CSP-Z channel can be associated with a Z schema type. The system behaviours
are defined in a group of C'SP processes. The Z operations, which correspond to the
channels described above, are defined with the data transitions in the operations. As
explained above, a C'SP-Z specification is a parallel combination of the C'SP and the
Z parts via the channel names, such that on the occurrence of a C'SP channel the
corresponding Z schema operation is activated. Since the C'SP-Z specification language
is a semantic integration of C'SP and Z, the failure-divergence semantics of C'SP is also
inherited into C'SP-Z.

In [MS98, MSO01], a strategy for model checking a C'SP-Z specification in the FDR
model checker is proposed. As FDR only works on the machine readable C'SP specifi-
cations, [MS98] gives a solution which converts the Z part of the C'SP — Z specification
into the C'S P part of the specification. A C'SP-Z specification is divided into the C'SP
part, and a C'SP process which performs the Z part operations. As the result, a C'SP-
Z specification is translated into a machine readable C'SP specification, which can be
automatically checked in FDR.

The limitation of [MS98, MS01] is that the final model used for model checking is purely
in CSP. Since the CSP specification lacks a convenient method to express complex
data and data transitions, the Z part of the C'SP-Z specification is restricted to very
simple data types and data transitions. The final model of the strategy, which is purely
in C'SP, can also be specified directly with C'SP. In [MS02b], the continuing research

Chapter 2 Integrated Formal Methods 18

employs data independence and abstract interpretation techniques to modify the CSP-Z

model, and makes it possible to use more general C'SP-Z model for model checking.

2.3.1.2 CSP/OZ

CSP-OZ [Fis97a] continues the work of CSP-Z . It aims at integrating C'SP, and
Object-Z, which is an object-oriented extension of Z [DRS95]. In a C'SP-OZ specifica-

tion, the C'SP failure-divergence semantics is used to guide Object-Z classes.

In a CSP-0OZ specification, firstly, the C'SP style channels are defined in a CSP-OZ
specification. The C'SP part of the specification defines a process with the keyword main
to present the behavior of the CSP-0OZ class. It makes use of the channels defined above,
and can include some C'SP operators, such as parallel, hiding, interleaving and choice.
The Object-Z part starts with the definition of types and constants. Then the definition
of the state and initial state schemas are given. The data transition is defined in Object-
Z operations. Like C'SP-Z, each Object-Z schema operation corresponds to a channel
defined in the C'SP part.

In order to perform model checking on the C'SP-OZ specification, as there was no
existing C'SP-OZ model checker, [FW99] presents a strategy to translate the CSP-OZ
specification into machine readable C'SP and check it with FFDR. The Object-Z part
and the C'SP part of the specification are translated into different C'S P processes. While
the CSP part of C'SP-OZ is directly converted to the C'SP processes, the Object-Z
part, especially the operations, need to be expressed in the C'SP syntax. One of the
most serious issues of this strategy is that the data domain of the Object-Z part can be
too large to check in FDR. In [Weh99], data abstraction techniques are used to reduce
the complexity of property checking on C'SP-OZ specification.

To associate the abstract C'SP-OZ specification with programming languages, in [Fis99,
BFMWO0L1], Jass (Java with Assertions) is introduced as an intermediate language. Jass
is an assertion language which is written in a Java source code file as comments. It is
motivated by Design by Contract [Mey92], which is a lightweight formal technique that
allows for dynamic run-time checks of specification violation. The assertions can be

tested when the program is executed.

2.3.1.3 CSP || B

CSP || B [TS99b, TS00, ST02, ST03] is integration of the B method and CSP. A
CSP || B specification includes B machines, and the C'SP controllers(or processes) for
them, which are expressed with a subset of the C'SP syntax. Each B machine M; of
the system corresponds to a C'SP controller P;. The B machines do not communicate

with each other directly. They may only allow communicate through their respective

Chapter 2 Integrated Formal Methods 19

CSP controllers, and then their controllers can communicate with each other. For each
B operation w «— e(v), there is a corresponding C'SP control channel e.v.w defined in

its controller. The execution of a B operation is strictly guarded by its C.SP controller.

Figure 2.2 shows a B||CSP example provided in [ST05].

MACHINE Even i MACHINE Odd
VARIABLES even ! | VARIABLES odd
INVARIANT even : NAT & even mod 2 = 0 INVARIANT odd : NAT & odd mod 2 =1
INITIALISATION even := 0 ! INITIALISATION odd := 1
OPERATIONS OPERATIONS
! evenput(nn) = PRE nn:NAT &nnmod2=0 oddput(nn) = PRE nn : NAT & nn mod 2 = 1
THEN even := nn THEN odd := nn
END; o END;
nn <-- evenget = BEGIN nn := even END : nn <-- oddget = BEGIN nn := odd END
END || END
EvenCtrl = oddpass?Z -> evenput!(Z+1) -> | OddCtrl = oddget?X -> oddpass!X ->
| evenget?W -> evenpass!W -> EvenCtrl ;; evenpass?Y -> oddput!(Y+1) -> OddCtrl ;;

FIGURE 2.2: The specification of the Odd-Even example

The CSP processes OddCtrl and FvenCtrl define a system which recursively increases
numbers through the system. The B machines, on the other hand, define the states
of the system with variables odd and even. The machine Odd accepts and maintains
only odd numbers, while machine Even accepts and maintains only even numbers. The
CSP processes work as controllers of the B machines. The execution of B operations are
driven by their C'SP controllers.

In [STO03], an approach is proposed which verifies each structure(a B machine M; and
C'SP controller P; pair) separately, and then obtains the correctness of the whole system
by composition. In [ST02], a strategy for model checking C'SP controllers via the FDR
tool is discussed. Firstly, a B machine and its controller are checked together in the
B-Toolkit to prove they are divergence-free. Then all the C'SP controllers are checked
in the FFDR tool to prove they are deadlock-free.

One of the problems of the C'SP || B approach is that there are no refinement rules
or proof for the integrated approach. The case study in [TSB03| tried to establish a
development strategy for C'SP || B models. However, the verification step for refinement
consistency between an abstract model and its refinement only focus on using FDR to
model check refinement between two CSP controllers. It still cannot formally prove
or model check refinement between whole integrated models. Another problem is the
verification step involves different tools and several separate verification steps, which

can be hard for users to apply the development.

Chapter 2 Integrated Formal Methods 20

2.3.1.4 csp2B

In [But99], c¢sp2B, an alternative approach to integrate B and C'SP specifications, is
presented. It defines a set of csp2B notations. A csp2B specification is encapsulated
into a B machine like structure, but the main component of the machine is a kind of
CSP description. In the machine, a group of C'SP channels each of which correspond to
target B operations are defined under the keyword ALPHABET. Under the keyword
PROCESS, CSP processes are defined to specify behaviours of the system.

The csp2B translation tool converts a csp2B model into a B machine. In the target B
machine, state variables are introduced as program counters to explicitly express state
of C'SP processes from the csp2B machine. A B operation in the B machine includes
guards, which are defined upon these program counters, and substitutions, which update
program counters. In this way, system behaviours specified in the csp2B model are
retained in the generated B machine. Furthermore, using the CONJOINS statement,
a csp2B model can be used to constrains the behaviour of a existing B machine. The

csp2B tool can also add behaviour constraints from the csp2B model to the B machine.

As the target of this translation is a solely B machine, it has existing refinement rules
and development strategy for development. The generated B machine can be analysed

and verified within the B model checkers, e.g. PROB, or interactive B provers.

One restriction for the csp2B approach is that it is restricted on a single CSP and B

pair. There is still no compositional development or verification techniques for it.

2.3.1.5 Circus

Circus [WCO01] is an integrated formal specification language, which is based on Z and
CSP. It supports stepwise refinement [CSWO03]. That means its final refinement of the

system model is close to a general programming language.

A Circus program consists of many Circus Paragraphs, each of which can be a Z para-
graph, a CSP-like channel(or channel set) definition paragraph, or a process definition.
A Z paragraph uses purely Z notations, while a channel or channel set definition is
written in C'SP style. The two specification languages are associated with each other
in the definition of Circus processes. A Clircus process is defined with a process name
and a process specification. In a process specification, Z paragraph and C'SP like action
paragraph can be used cooperatively. The Z schema defines the states of the process,
which include the data and data operations. The C'S' P part in the Clircus process defines
how the process act the Z schema inside. So far as we know, Circus is probably the
only combined state- and event-based formal method, which provides refinement rules
[WCO02] for the combined specification.

Chapter 2 Integrated Formal Methods 21

In [OC04], a set of translation rules, which translate Circus models into JCSP [WMO0O0b]
programs, is presented. Based on this rule set, an automated translator [FCO06] is devel-

oped.

2.3.2 B+4CSP in PROB

[BLO5] presents a new integration approach to combine B and C'SP, B+CSP. A B+CSP
model explicitly provides the state-based view of a system in the B specification, and

the event-base view in the CSP processes.

The B part of the combined model is used to specify the data used in the system, and
the manipulations on the data. It uses the full set of B method notations. The C'SP
part provides the execution flow of the B operations. Each B operation of a B machine
has a corresponding C'SP channel defined in the CSP part. The parameters of the B
operations are also mapped to the input and output parameters of the C'SP channel.
The MAIN CSP process uses the channel definitions, and defines the behaviors of the
system. The execution of the B operations is not only guarded by the precondition of

the operation, but also strictly guarded by the MAIN process.

The C'SP part can also define the desirable and undesirable behaviors of the system.
The desirable behaviour is defined in the GOAL process, while the undesirable behavior
is defined in the ERROR . process. Both of them are checked as trace properties of the
combined system model. When the operation sequence of the GOAL process is found
in the system model, the property is satisfied and the trace is returned. The property
of the ERROR process is satisfied when there is no trace of it.

The combination of the B + C'SP model is supported by the PROB tool. The B part of
the model is parsed and interpreted into Prolog rules via jbTool [Bru0O1] and the Pillow
package [CHO1]. The C'SP processes of the model are translated into Prolog rules via the
CIA (CSP Interpreter and Animator) tool. When doing model checking and animation
on the combined model, PROB interpreter combines the two sets of Prolog rules together
based on the operational semantics of B+CSP, which is discussed in Section 4.2. An
important feature for PROB is that it can perform not only consistency checking for a
B-+CSP model, but also trace refinement checking between combined B4+CSP models.

Table 2.1 compares B+CSP with three other integrated formal methods mentioned above

regarding their development techniques.

The B+CSP can be regarded as a practical extension of the csp2B approach. The
integration of B and CSP models in PROB is very similar to the conjunction of csp2B and
B models in csp2B. Both approaches use CSP specification to constrain the behaviour
of the B machine. In csp2B, the combination of B and CSP ¢sp2B approach explicitly

translates the CSP specification into B state expressions, while in PROB, the combination

Chapter 2 Integrated Formal Methods 22

CSP+B csp2B CSP || B Clircus
Spec languages B, CSP B, csp2B B, CSP Z, CSP
Refinement rule no yes, B no yes, Circus
Model checking PROB PROB PROB, no

FDR

Animation PROB no no no
Composition no no yes yes
Implementation JCSProB no no JCSP

TABLE 2.1: The comparison of four IFMs

is presented in model checking. The final B machine generated by the csp2B tool can
either be formally proved using theorem provers, but also can be model checked by
PROB. On the contrary, currently there are no refinement rules for B+CSP, it can
only be verified via model checking. Additionally, both of the approaches are restricted
on one B and CSP specification pair. Composition rules or proofs are still missing.
An advantage for csp2B is the final B machine generated by csp2B tool is solely a B
machine, which means the stepwise development and proving techniques of B method

can be applied to it.

Comparing to CSP || B, B+CSP is a more practical approach. CSP || B provides a
more theoretical basis and systematical strategies for development and composition,
while B4CSP has a better tool support from the PROB tool for animation and model
checking. However, the semantics of the two approaches can be very close, and many

research [STEO05] think it is even possible to connect the two approaches together.

Clircus is also a more theoretical approach than B+CSP. A significant advantage for
Circus is that it has a set refinement rules [WCO02] for the combined specification, while
other approaches mentioned above do not have this support. By applying these rules, a
new refined model can be constructed from the abstract one. Although a model checking

tool is reported under construction, currently it is still unavailable.

Chapter 3

Formalized Java Concurrency

Development

”Java built-in support for threads is a double-edged sword.”

— Java Concurrency in Practice [PGB105]

The Java programming language supports a multi-threading concurrency mechanism in
the core of the language. It also provides a series of classes to support Java concurrent
programming. This feature helps Java developers to solve many problems, and many
packages in JDK are developed using concurrency, e.g. AWT and Swing. However,
at the same time, it is even more difficult to make concurrent programs correct than
sequential programs. Concurrency issues, such as safety and deadlock, have existed
since the idea of the concept of concurrency come into being. Concurrency in Java is

also problematic.

Section 3.1 starts with an introduction to concurrent Java programming, and issues in
Java concurrency. After that, we discuss several approaches on formalizing concurrent
Java development in Section 3.2. Finally, in Section 3.3 we discuss the JCSP package,

which is one of the main inspirations of our work.

3.1 Concurrent Java programming

Generally, there are two kinds of issues in concurrent Java programming.

Safety in Java programs consists of type safety and memory safety. Here we concern
the safety which provides a consistent view of data. When multiple Java threads try to
access the same data item, the developer has to make sure that these threads coordinate

their access to the data so that all have a consistent view of the data without interfering

23

Chapter 3 Formalized Java Concurrency Development 24

the others’ changes. However, the previous version of the Java Memory Model (JMM),
specified in Chapter 17 of [GJSBO00], raised some concerns on the safety guarantee at

memory level.

A memory model describes the relationship between data in a program and the low-level
details of storing them to and retrieving them from memory in a real computer system.
Consider a Java program fragment with two memory actions a and b, which change the

state of data variables in the main memory.

.a; by ...

Generally, action a should be processed before b in the program. However, the hardware
system may permute the execution order for efficiency reasons. The actual execution
order at hardware level or memory level can be b ; a. In certain circumstances, changing
the processing order of the two operations will not effect the result of Java program.
In those circumstances, the JVM may allow some of these reordering techniques in
order to execute Java programs more efficiently. The JMM must explicitly specify in
which occasions the execution order must be preserved as a ; b for all viewers of the
memory, and in which occasions optimization techniques can be employed. Moreover,
the JMM definition must be clear enough to be implemented on all platform without
misunderstanding. If not, the different execution orders on different JVMs may lead to

different results.

The previous version of JMM failed to deliver this clearly. In [Pug00], the problems
caused by the implicit definition of JMM is discussed. In the new version of Java
specification of JDK 1.5 [GJSB05], the Java Memory Model is revised. It redefines the
semantics of synchronization, volatile variables, and final fields. Therefore, the memory

level safety issues caused by JMM has been clarified.

The safety we are concerned with in this work is the concurrency safety in programs,
not in the memory model. Inappropriate uses of Java concurrency primitives can cause

safety problems, such as data races and deadlock, which can lead to unexpected results.

The other major issue in Java concurrency is liveness. Liveness problems can be caused
by the Java concurrency primitives. The recommended synchronization pattern for a

conditional wait [Jav]| inside a Java monitor is shown in Figure 3.1.

Using the while loop with activation condition for synchronization may unnecessarily
consume a lot of resource of computer systems. Furthermore, it can easily bring heavy
overtaking or even starvation issues to the Java threads. The original wow-no-chicken
example [Wel98] addressed the starvation issue of this strategy. The notifyAll method,
widely used by many Java programmers, is very inefficient. It notifies all the waiting
threads and lets them compete with each other for the shared resource. Only one thread

can occupy the resource and progress. Apart from these problem in Java concurrency

Chapter 3 Formalized Java Concurrency Development 25

synchronized(this){
while(!<condition>) *«— overtaking*\
wait();
<assignment of shared data>
notifyAll(); *« inefficiencyx*\

}

FIGURE 3.1: Synchronization of Java Threads

primitives, liveness problems can also be easily introduced into concurrent Java programs

by improper design from users.

For all the concurrency problems introduced by user design, Java provides no facility
to address or avoid them. Developing correct concurrent Java programs mainly relies
on manual skill and experience in development. [Goe03], [Goe04] and [Lea99] discuss
concurrency issues in Java programming in detail. These disadvantages discourage some
developers from using Java concurrency programming, especially for some large-scale
systems where the concurrency model can be very complex. In [MWO00], the developers

of the Swing package even claimed: If you can get away with it, avoid using threads.

3.1.1 Concurrency in Java

The Java programming language supports shared-memory concurrency by the thread-
monitor concept. A Java thread interface performs the basic process which represents

independent control flow. The behavior of a Java thread is described in its run method.

The execution of a Java thread can be controlled or interfered by other threads using
some methods provided by Java thread: stop, suspend, and resume. However, calling
such methods to control the execution of a concurrent system is unsafe and deprecated.
It is extremely difficult to control all the threads when there are a large number of them
in a concurrent system. Therefore, Java provides a concurrency model based on the
monitor concept to resolve the synchronization between threads. When more than one
thread tries to access shared data in a critical section, which is marked with keyword
synchronized, the lock of the critical section only allow one of these threads to access
the protected section at a time. A thread uses the wait method to wait when it cannot
exploit the critical section which it is already occupying. So it releases the monitor lock
and hopes some other thread will acquire the monitor, fix things up for it and then wake
the waiting thread. The user can either notify all the waiting threads using the notifyAll
method, or notify only one of them using the notify method. In the notifyAll case, all

the notified threads compete with each others to acquire the object lock.

The low-level monitor strategy of Java concurrent programming is not free from concurrency-

related problems like data racing and deadlock. In Figure 3.1, some safety issues are

Chapter 3 Formalized Java Concurrency Development 26

addressed using the recommended synchronisation pattern. Even then, the system re-
mains exposed to liveness problems. The main concern is that the system developers
have to identify all these concurrency problems by themselves. They need to use the
Java synchronization primitives to construct a synchronization unit by themselves with
concerns on the possible concurrency issues. As the concurrency strategy of a large-scale
system can be very complicated, it is extremely difficult to build the system free from
these issues. Furthermore, the efficiency of the concurrent system mostly depends on the
design of synchronization. Even a building a simple semaphore unit can be inefficient
or even cause deadlock. Therefore, building Java concurrent systems with the basic

monitor primitives demands experienced skill from the developers.

3.1.2 J2SE 5.0

To avoid these problems, the new version of Java, JDK 5.0 introduced a new Java package

java.util.concurrency [Goe04] to support higher level Java concurrent programming,.

The new util.concurrency package also introduced some high-level thread-safe synchro-
nization facilities to help in developing concurrent programs in Java. For example, the
Semaphore class implements a classic Dijkstra counting semaphore. It has a certain
number of permits, which can be obtained and released by threads. The Java threads
with permits can access a shared resource and change the state of the shared resource. It
changes the previous fashion of shared resource control which is described in Figure 3.1

with more efficient and safe class. Other new synchronization facilities include:

e AbstractQueuedSynchronizer class maintains synchronization state of Java threads.
It replaces the synchronizsed block previously used in concurrent Java program-

ming. It also maintains a FIFO queue for the blocked threads.

e LockSupport class blocks and unblocks threads. It replaces the suspend() and

resume() method of Java Thread interface.

e ConditionObject class provides an alternative for the classic Java monitor-style

synchronization by using the Lock interface of the new concurrency package.

Using the new concurrency primitives listed above, some new high-level facility classes
are constructed. As these facility classes are carefully constructed and tested, using
them to construct a concurrent system can prevent some fairness and efficiency issues.
For example, the classical consumer-producer problem can be solved by Java monitor in

Figure 3.2.

The consumer waits if the buffer is empty. After the producer added an object to the

buffer, it notifies the consumer. Similarly, when a producer find the buffer is full, it

Chapter 3 Formalized Java Concurrency Development 27

//Consumer thread
synchronized(buffer){
while (buffer.size() == 0) {
buffer.wait();

}

// -- Consume object from the buffer

notifyAllQ);

}

//Producer thread
synchronized (buffer){
while (buffer.size() == MAX) {
buffer.wait();

}
// -- Produce object to buffer --
notifyAllQ);

}

FIGURE 3.2: Consumer-Producer Example: Java Monitor Solution

waits for the consumer to collect objects from the buffer, and send the notification. In

Figure 3.1, the possible concurrency problems for the wait-notify approach are discussed.

The thread safe collection classes in J2SE 5.0 provides some straightforward implemen-
tations for thread-safe collections [Goe04]. The java.util.concurrency package provides
a BlockingQueue interface and implementation classes, which is designed to be used pri-
marily for producer-consumer queues. With this synchronization class, the consumer-

producer problem can be easily and safely implemented in Figure 3.3.

BlockingQueue q = new SomeQueueImplementation(size);

//Consumer thread

try {
while(true) { consume(q.take()); }

} catch (InterruptedException ex) { ... handle

!

//Producer thread

try {
while(true) { q.put(produce()); }
} catch (InterruptedException ex) { ... handle

!

Ficure 3.3: Consumer-Producer Example: BlockingQueue Solution

The synchronization between the two threads are much easier and clearer in Figure 3.3.

As the implementation classes of BlockingQueue are elaborately designed, it makes it

Chapter 3 Formalized Java Concurrency Development 28

easier to write correct and thread-safe concurrent Java implementation. Carefully imple-
menting these synchronizer classes improved the programming simplicity and scalability
of concurrent Java program, and prevents a number of concurrency issues. Also, the
Java built-in locks accessed with synchronization are not fair locks at all (See the wot-
no-chicken example in Section 7.2). Instead, they provide weaker liveness guarantees
that require that all threads will eventually acquire the lock. The low-level lock facilities
in JDK 5.0, such as ReentrantLock, Semaphore, and ReentrantRead WriteLock, provide

options to guarantee fairness to the lock [Goe04].

3.2 Formal Approaches to Java Concurrency

Even J2SE 5.0 with new Java higher level concurrency primitives is not free of con-
currency problems. It also provides no checking or verification facilities to detect these
problems. Moreover, the concurrency model is still defined only in natural language, and
thus cannot be formally analyzed. The lack of a formal foundation for the Java concur-
rency model makes it difficult to analyze and resolve concurrency issues in constructing

large-scale concurrent Java applications.

Many approaches have been proposed for providing formal foundations to Java concur-
rency. One important trend is using formal techniques to analyze and verify existing
concurrent Java programs. The approaches for formal analyzing Java concurrency can

be roughly divided into three kinds of techniques.

e Static Analysis. The static analysis approaches employ formal specification lan-
guages, such as Petri Net [LS03], CCS [Che00], CSP/FDR [Hoa78], occam/JCSP
[WMO00b, WMO00a|, Promela [DS98], JML [FLL*02], and CTL (computation tree
logic) formulas [RS05], to model concurrent Java programs. The formal speci-
fications derived from Java programs can be analyzed and verified by deductive
analysis tools or model checking tools. The problem of this approach is that the
abstraction from Java programs to formal specifications usually lacks of formal
mapping rules and automated tool support. It is difficult here to fill the gap
between Java programs to formal specifications with reliable formal connection.
JPF1 (Java Path Finder) [HS00] is one of the exceptions. It provides automatical
translation tools to translate a subset of Java language into Promela. The Promela

programs can be automatical verified in SPIN model checker [Hol03].

e Runtime Verification. Runtime verification approaches are based on Meyer’s
Design by Contract concept [Mey92]. Assertion languages are introduced as pre-,
postcondition, and invariants, which are used to specify the obligations that need
to be satisfied during the execution of the Java programs. These assertions are

inserted into the Java source code as comments, and can be evaluated and verified

Chapter 3 Formalized Java Concurrency Development 29

when the programs are executed in the run-time verification tools. These runtime
verification approaches are lightweight formal techniques which are easy to apply.
JPF1, Jass/Jassda [BM02], and JML [LCO03] are some featured approaches for Java
runtime verification. It should be noted that the runtime verification approaches
only prove that some certain assertions are preserved on the data operations dur-
ing an execution of a concurrent Java program. This cannot guarantee that the

program is free of concurrency issues.

Model Checking Programs The JPF2 tool [VHBP99] is a very different tool
from JPF1. It generates a state model of the Java program of reachable size
using its own Java Virtual Machine JV MJPF. Model checking concrete programs
used to be impossible due to state explosion problem. JPF2 utilizes deduction
techniques to reduce the size of the state space. The Java language features and

the size of the Java applications that JPF2 can handle are of course limited.

The analysis and verification on existing concurrent Java programs can help the devel-

opers to find out the quality of their concurrent products, while a formal concurrency

model may provide more support throughout the development process. As a typical

formal methods strategy starts from specifying a system with an abstract specification

and gradually makes it more concrete through refinement, applying formal techniques

to build concurrent Java systems from formal models should also be a feasible solution.

There are also different techniques established to build formal concurrency models for

Java. The difference between these techniques is mainly on the different status of the

concurrent models in developing.

e The traditional strategy starts from specifying the system with formal specifica-

tion languages. Then the abstract model of the system is refined by refinement
techniques to finally reach the concrete Java programs. These approaches include
CSP-0OZ to Java [CS02], FSP to Java [MK99], and Circus to Java [OC04].

[MS02a] and [HLO6] provide alternative approaches for using formal concurrency
model to develop concurrent Java programs. For these kind of approaches, the
concurrency model and primitives are all dropped. The developers build the system
in Java without considering concurrency, and the concurrency of the system is
expressed separately in formulae which control the execution of Java application.
Automatic pre-processor tools are designed to translate the Java programs with

formulae into normal concurrent Java applications.

Some formal approaches mentioned above are discussed in the following sections.

Chapter 3 Formalized Java Concurrency Development 30

3.2.1 Runtime Verification: JML, Jass and Jassda

Run-time verification is a lightweight formal method approach. It is motivated by the
Design by Contract technique [Mey92]. It employs assertion languages to specify system
behaviour. Assertions can be checked automatically when the programs are executed
in the run-time verification tools. These approaches include JM L(Java Modelling Lan-
guage) [LPCT05] and Jass(Java with assertions).

For each module of Java source code, a number of assertions are specified to define
the allowed state of variables in the module. These assertions are usually written as a
special format of comment in the source code, and can be understood by the run-time
verification tool. Failure to satisfy these assertions can be detected by the verification
tool at run-time. This kind of approach is good for specifying how to use the modules
of a Java program, but lacks the abilities to specify and prove the correctness of the
whole system. This disadvantage makes them difficult to specify and verify temporal
properties of the whole system. For example, JM L only supports sequential behaviour of
Java code, and concurrent properties cannot be expressed using the assertion language.
Although in [RDFT05], an extension for supporting multi-threaded programs verification

in JML is proposed, it has not been implemented in major JML tools.

Like the other efforts which support Design by Contract in Java, Jass supports the
verification of pre-conditions, post-conditions and invariants. Furthermore, it supports
a kind of refinement checks and trace assertions. The refinement checks in Jass check if
the trace of a subclass is in the trace of its superclass. For trace assertions, a Java object
can be checked to discover if the sequence of its behaviors is in its Jass trace assertions.
The Jass tool can translate the Jass assertions, which are written as comments in Java

source code file, into a Java byte-code program.

[M6102, BMO02] introduce the new Jass Debug Architecture (Jassda). In Jassda, the
assertions are written in C.S P-like processes and checked at runtime via the Java Debug
Interface(JDI), while the Jass assertions are written in Java comments and need to be
translated into Java source code before verifying. This technique gives a more flexible

way to verify the trace properties of a Java class.

3.2.2 Model Checking Java Programs: Java Path Finder

The input languages used by model checking tools are usually simple and abstract to
allow the state spaces of models to be restricted in scale. Programming languages, with
rich data types, will in general cause the state space explosion in the model checker.
Thus, it was generally believed in the past that model checking on concrete programming
languages was very difficult to carry out due to the computational ability of existing

computer systems.

Chapter 3 Formalized Java Concurrency Development 31

[HS00] presents an automatic tool Java Path Finder (JPF2), which integrates model
checking, program analysis and testing for Java programs. The JPF2 tool can generate
a state model from a subset of the Java language via the support of its own Java Virtual
Machine(JV M7FPF). Some reduction techniques, such as symmetry reduction, and ab-
stract interpretation are applied to reduce the size of the state model in JPF2. Formal
properties and assertions can be verified in the state model. Concurrency properties,
such as data race and deadlock can be detected by JVM/PF,

The Java programs checkable in JPF2 are in the 1000 to 5000 line range, and the Java
language used in it is limited to a subset. The new 4.0 version of JPF claimed being
able to check programs up to 10kloc, depending on their internal structure. Applying

JPF model checking on a large scale concurrent system currently is still unpractical.

3.2.3 Semi-Formal Approach: The Magee approach

[MK99] presents a semi-formal strategy for build concurrent Java programs. A process
algebra language, F'SP (Finite State Processes) is used to specify the system. After
that, the LT'SA (Labelled Transition System Analyser) tool is employed to translate the
F'SP specifications to an equivalent graphical description. The tool can check desirable
and undesirable properties of the F'SP model. To construct the Java application, the

graphical version of the F'SP specification is used as a guide for manual development.

This approach provide no formal translation from the FISP syntax to Java. The users
must implement the model in Java through their own experience and skill. Although
the concurrent model can be verified, there is no formal proof that the Java application
is a correct implementation of the formal model. Therefore, the correctness of formal

model cannot guarantee the correctness of the target concurrent Java programs.

3.2.4 Jeeg

Jeeg [MS02a] is a Java dialect which uses declarative Linear Temporal Logic (LTL) to
replace the default synchronization mechanisms of Java. It tries to use aspect-oriented
programming to fix the concurrency anomaly. Jeeg provides its own concurrency primi-
tives to specify synchronization outside the methods of a Java class. This separates the
methods, which express the actual job of the class, from its synchronization logic. This
effectively limit the occurrence of the inheritance anomaly that commonly affects con-
current object-oriented languages. Also, synchronization constraints expressed in LTL

make it possible to formally reason about concurrency properties.

The formulae which express the synchronization are placed in a sync section which is
added to the class definition. The following code shows the basic structure of a Jeeg

class.

Chapter 3 Formalized Java Concurrency Development 32

public class MyClass{
sync {

}

// Standard Java class definition

The sync section includes the LTL formulae in a form of:

m:¢

where m is an identifier of Java method, and ¢ is a formula expressed in a constraint
language based on linear temporal logic. A pre-processor tool can automatically generate
Java source files from Jeeg source files. The formula ¢ can be evaluated at run-time.
When the Java programs runs in JVM, the execution of a guarded method m depends

on the value of the LTL formula ¢ which gives the execution condition of the method.

3.3 JCSP

JCSP [WBM'07, WMO00a] is a Java implementation of the occam/occam-m language.
The occam language [Lim95] is an implementation language of CSP. It expresses a subset
of CSP semantics. In occam, processes communicate with each other using communica-
tion channels. The occam-m language [WB04] extends the original occam language with
m-calculus [Mil99]. It also support output guards and multi-way synchronization, which

are not in the original occam.

JCSP inherits the same message-passing concurrency structure from CSP and occam. It
provides various Java interfaces and classes for implementing occam /occam-m processes
and channels, as well as basic processes, e.g. SKIP and STOP, parallel and sequen-
tial compositions, and external choice. Using JCSP, developers can easily construct a

concurrent Java program from its CSP or occam specification.

The JCSP package implements the synchronization between the communicating pro-
cesses inside channel classes. A Java application developed with JCSP consists of a
number of objects from process classes. All the JCSP process classes implement a JCSP
interface named CSProcess. Process objects communicate with each other through in-

stances of JCSP channel classes.

The classical interaction between JCSP processes is a point-to-point communication

channel. Figure 3.4 demonstrates a point-to-point communication.

Chapter 3 Formalized Java Concurrency Development 33

Process P and () synchronize on channel ¢, and communicate a data item X through

the channel. The CSP specification of this communication is:

MAIN=P || Q
{c}
P = ¢IX — SKIP

Q = c?Y — SKIP

and the occam language program of this is:

PAR
c!X
c?Y

In the JCSP implementation, for a communication channel ¢, there are two basic ab-
stract JCSP channel interfaces: Channellnput and ChannelOutput. The Channellnput
interface defines a read method to read an object from the channel, while the Chan-
nelOutput interface defines a write method to write an object to the channel. Figure 3.5

shows the process class which implements process P.

It gets the output end out of a channel in its constructor, and in the run method it

sends out the data X through the output end. The communication channel is defined

Process P Channel ¢ Process Q
X 7Y

FiGURE 3.4: Channel and process of JCSP

class P implements CSProcess{
private final ChannelOutput out;

public P(ChannelQutput out){
this.out = out;

}

public void run(){

out.write(X);

}

F1GURE 3.5: The JCSP process class implements process P

Chapter 3 Formalized Java Concurrency Development 34

Class Main implements CSProcess{
final private One20neChannel c = Channel.one2one();

public void run(){
new Parallel(
new CSProcess[]{
new P(c.out()),
new Q(c.in())

}

).run();

FIGURE 3.6: JCSP Parallel Processes

outside of the process. In Figure 3.6, the JCSP process objects P and () are grouped

in an array, and executed in parallel under the Parallel process.

In this case, the communication channel is declared as an one-to-one communication
channel. In a parallel composition structure of the Main process, the output end of

channel ¢ is passed to process P and the input end is passed to process Q.

The communication only involves synchronization between one reader and one writer,
which also means that there must be at least one reader and one writer. The reader
and the writer processes synchronize with each other, and the writer process sends data
to the reader. JCSP/occam also supports multiple writers and/or readers interleaving
with each other to use a shared any-to-any channel. Note that the writers (respectively
readers) do not synchronise with each other — only one reader with one writer. Therefore,
the one-to-one, one-to-any, any-to-one, and any-to-any channel classes in JCSP are still

point-to-point communication channels.

JCSP has implemented the barrier synchronization, which is a stateless multi-way syn-
chronization, with the Barrier (and AltingBarrier) class. A barrier has an internal
counter for all the synchronizing processes. When a process call the barrier, the process
blocks and the barrier reduces the counter. Only when the counter is reduced to 0, which
means all the synchronizing processes are ready, the blocked processes are released and
can progress. The Barrier class in JCSP implements a multi-way synchronizing barrier.
However, until version 1.0rc5, the Barrier class is not a guard, and cannot be used in

external choice. We discuss this issue in Section 3.3.1.

To build a concurrent Java application, the developer can specify the system using
CSP, verify the model using FDR [For03], and then develop a JCSP program from
the CSP model. The benefit of JCSP is that the developer is protected from low-level
synchronization issues during implementation. As the compositional semantics of CSP
is carried over by JCSP, more often, people just develop the Java program directly with
the JCSP library.

Chapter 3 Formalized Java Concurrency Development 35

The producer-consumer solution given in Figure 3.2 and Figure 3.3 work for any number
of producers and consumers. A JCSP version, almost identical that from Figure 3.3, is

given in Figure 3.7.

Any2AnyChannel c = Channel.any2any(new Buffer(size));

//Consumer thread
while(true) { consume(c.read()); }

//Producer thread
while(true) { c.write(produce()); }

FicURE 3.7: Consumer-Producer Example: The JCSP Solution

The correctness of the JCSP implementation of the occam communication channel to a
JCSP channel has been formally proved [WMO00a]: the CSP model of the JCSP channel

communication is shown to be failures-divergences equivalent to the CSP channel.

3.3.1 The Limitation of JCSP 1.0rc5 and before

The JCSP packages of 1.0rc5 version and before mainly focus on implementing the
point-to-point communication as their concurrency model. At a time, only one reader
process and one writer process can synchronize and communicate data through the

communication channel.

Although these packages have a multi-way synchronizing Barrier class implemented, the
Barrier class is more like a separate synchronization facility as it cannot be used for
guarded external choice. In JCSP, the Alternative class implement the alternative pro-
cesses structure (ALT) of occam-m. In the 1.0rc5 version, the implementation of external
choice has the same constraints as required by classical occam. Even for point-to-point
communication channels, only the channel input (ch?z) can be used for guarded exter-
nal choice. The output-end process must commit to a channel communication, which
means it cannot use a channel output (ch/z) in external choice. Solving guarded external
choice for both ends of the communication channel and multi-way synchronizing channel

is complex and can be costly [McEO06].

3.3.2 New JCSP versions

Recently, as new versions of JCSP have moved on to support the occam-pi language. In
[WBMT07], new features in the new 1.0rc7 and 1.1 versions of JCSP are introduced.

A new and stable AltingBarrier class has been implemented in 1.0-rc7. The AltingBar-

rier class implements multi-way synchronization with guards. Therefore, it can be used

Chapter 3 Formalized Java Concurrency Development 36

in external choice. In Section 5.4, we have a more detailed discussion on the implemen-

tation of multi-way synchronization.

In JCSP programs before version 1.1, Processes take channel-end types, such as Chan-
nelOutput or Channellnput, as arguments to process constructors. Instances of channels
are passed directly to these processes. This allowed users to cast a Channllnput as a
ChannelOutput, this is now prevented by passing instances of channel ends. The input-
and output-end can be extracted from a channel instance using in and out methods of

the channel.

The 1.1 version also introduces extended rendezvous. A rendezvous allows the input-end
process to execute extra code without scheduling the output-end process. The input-
end process starts a rendezvous by calling the startRead method of a Channellnput
instance, and ends the rendezvous by calling the endRead method. During this period,

the output-end process remains blocked.

Other useful features of the 1.1 version includes poison and graceful termination. These
new features in 1.0rc7 and 1.1 versions provide better support of occam-pi, and improve

the scalability of JCSP on various concurrency systems.

3.3.3 A Translation Tool for JCSP

Since the JC'S'P package implements a subset of C'S' P syntax, it is possible to automat-
ically translate a formal concurrency model specified with the subset of C'S P syntax to
a Java application. In [RRS03|, a translation tool, which can automatically generate

JCSP-based Java programs from C'SP processes, is presented.

To develop a Java concurrent application with the tool, a concurrency model is specified
with a subset of C'SP notations. Then the specified model is checked in FFDR to prove

its correctness. After that, the concurrency model is translated to a Java program.

The formal model supported by this tool is a pure restricted C'SP model. Therefore, the
users have to add the extra data definition and operation, which cannot be supported
by the tool, in the target Java program manually. However, the manually introduced
data may affect behaviours of the system. Therefore, even if the translation is correct,

the manual changes may make the final code inconsistent with its CSP model.

The CSP notations supported by Raju’s tool are very limited. Furthermore, the tool

has been found experimentally not to be robust enough to handle non-trivial examples.

3.3.4 From Circus to JCSP

In [OCO04], the translation rules for translating Circus program to Java programs via the

JCSP package are presented. In [FCO06], a translation tool is introduced. The Circus

Chapter 3 Formalized Java Concurrency Development 37

programs used for translation are refined to be more concrete. They are written in the

executable subset of Circus.

As Clircus is a combined specification from Z and a subset of CSP, the CSP part, which
controls the execution flow of the specification, can be translated into JCSP as normal
CSP specification. Each Circus process declared in the ProcDecl section is translated
into a JCSP process class CSProcess. The main Action section of a Circus process,
which determines how the process performs, generates the Java statements inside the
run() method of the CSProcess class. Each CSP-like action of Circus corresponds to a
JCSP channel.

In Chapter 8, we discuss and compare our approach and the Circus translation.

Chapter 4

The Combined B+CSP

Specification

In PROB, the B part of the combined specification is essentially an action system
[BKS83a]. It specifies the abstract state of the system based on a number of constants
and variables. The system state is shared by a number of guarded B operations in the
system model. The operations can change the state of the system by updating the values
of system variables. In abstract models, the enablement of an operation is guarded by
predicates on the state of the system. The CSP part, on the other hand, defines the
behaviours of the system by specifying the possible operation sequences/traces. In CSP,
the actions in the system are regarded as stateless channels. A process, a key concept,
is defined in terms of possible behaviour sequences of those channels. Each process may

also maintain variables which are only locally visible to the process itself.

Semantically, the B machine can be regarded as a special process, which is running in
parallel with the CSP processes. The B operations are also in a parallel composition
and synchronize with the corresponding CSP channels. The B and the CSP combine
with each other through shared operational event names. A combined B+CSP event
comprises a B operation and a CSP channel sharing name. It is only allowed to proceed
when it is allowed both by the B and the CSP. The B specification can guard a combined
event with precondition predicate. The combined event also needs all the CSP processes

who synchronize on it to be ready.

PROB interprets the B and the CSP specifications into Prolog, and builds a state model
from the Prolog representation. It also supports animation and model checking of the
combined specification. The operational semantics of the B4CSP specification is intro-

duced in [BLO5] and provides a formal basis for combining the B and CSP specification.

In this chapter, we introduce the B4-CSP specification, and how we make use of it in this

work. This chapter starts with an introduction of the notations of the combined B+CSP

38

Chapter 4 The Combined B+CSP Specification 39

specification language in Section 4.1. In Section 4.2, the operational semantics of B+CSP
and the combination strategy are discussed. As the semantics is developed for supporting
abstract specification, it is too flexible for the implementation in programming languages.
Therefore, in Section 4.3, the reasons for restricting the original semantics are discussed,
and a restricted semantics of B4+CSP combination is presented. In Section 4.4, we
describe how to compute the restricted semantics in the implementation. Based on the
new restricted semantics, the synchronization model is explained in Section 4.5. At the
time of writing, the B4 CSP approach is not methodologically complete and has its own

limitations in the refinement and composition rules.

4.1 The Specification language

Table 4.1 gives a partial B and CSP syntax used in the thesis. We use quote marks as
well as boldface to denote BNF terminal strings. A statement ST means an symbol
S can appears one or more times, and elements of S are separated by the terminal *;”.

A statement S* means S can appears zero or multiple times.

In the work, the target B specification is mainly the B0 subset. As introduced in Sec-
tion 2.1.3, the B0 subset only supports concrete data and concrete data transitions. That
makes it very close to programming languages and is easier to implement than many
other abstract B features. We do support some abstract B language features beyond BO.
One notable feature is the precondition substitution. Possibly subject to a precondition
PRE - all of whose clauses must be satisfied to enable the operation - an operation
updates system state using various forms of data substitution. These features are im-
plemented to provide extra functions for rapidly implementing and testing an abstract
specification in Java programs. In the implementation, preconditions are interpreted as
guards, which will block the process if the precondition is not satisfied. The other one is
parallel composition, which is normally resolved through nondeterminism in the abstract
model. With the decomposition approach explained in Section 7.3, parallel composed B
substitutions in a B operation can be decomposed into separate B operations of different

parallel B machines.

4.2 The Operational Semantics of B+CSP

The operational semantics of B4CSP is introduced in [BL05]. It provides a formal basis
for combining the B and CSP specification. The B and CSP specification are composed
as parallel processes. A B machine is viewed as a special process in the system, which

maintains and updates the system state through the data transitions in its operations.

Chapter 4 The Combined B+CSP Specification 40

B Machine

Machine

Clause_machine

MACHINE Header
Clause-machine* END

| Clause_variables | Clause_invariant
| Clause_assertions | Clause_initialization |
Clause_operations | ...

B Operation

Clause_operations

OPERATIONS Operation™+

Operation Header_operation “=" Substitution
Header_operation [IDT""] ID [“(" IDT"")]
Precondition PRE Condition THEN Substitution END
B Block BEGIN Substitution END
Substitution If-Then-Else IF Condition THEN Substitution
[ELSIF Condition THEN Substitution |*
[ELSE Substitution)
END
Var VAR ID*"" IN Substitution END
Sequence Substitution “;" Substitution
Parallel Substitution || Substitution
Assignment ID|[(Expression)] “:=" Expression
Prefix ChannelExp — Process
CSP Sequential Composition Process 57 Process
Process External Choice Process “[|” Process
Alphabetical Parallel Process “[|” Ch_List“|]” Process
Interleaving Process “|||” Process

Process call
If-Then-Else

Proc_Header
if CSP_Condition then Process [else Process|

CSP Channels

Skip SKIP
Stop STOP
ChannelExp ID [Output_Parameter™| [Input_Parameter*]

Output_Parameter
Input_Parameter

“” CSPExp | . CSPExp
“ CSPEzxp

TABLE 4.1: The main B and CSP specification syntax supported in JCSProB

Without CSP processes, a B machine process can fire all its operations freely. The data
transitions can only be blocked by preconditions on the operation. However, in some
cases, it may not be very convenient to define system level behaviours only with precon-
dition guards. Normally, a B machine needs to define an abstract 'program counter’ and
use it in preconditions to control the execution of an operation [AM98]. However, this
form of specification of behaviour is opaque, compared to process algebra approaches
such as CSP.

To work with CSP processes, a B machine process needs to synchronize and commu-
nicate. The synchronization and integration of B and CSP processes are on the B

operations and CSP channels.

e A B operation must have a corresponding CSP channel with the identical name.
Together, they build up a combined B4+CSP channel. The B operation is only

ready to progress when the corresponding CSP channel is also ready.

Chapter 4 The Combined B+CSP Specification 41

e A CSP channel is combined with a B operation, or it can be a pure CSP channel
which has no B counterpart. A pure CSP channel is only used in the CSP part for

communication.

Figure 4.1 illustrates how the synchronization works. Operations A, B, and C' all have
corresponding CSP channels in the CSP part. Only when channel A is ready, operation
A is able to progress the data transitions inside the operation. CSP channel D is only
used by CSP processes, and has no counterpart in the B machine. In this way, the system
behaviour specified in CSP can be used to control the execution of data transitions in

the B machine.

B Machine

Operation A
Operation B
Operation C

CSP spec

Process 1

\
/

Channel B

Channel C

1L

Process 2

=]

FIGURE 4.1: The synchronization between B and CSP specification

The combined B4+CSP event is defined by the operational semantics. A state of a
combined B4+CSP specification is defined as a pair, which includes a B state and a CSP

state.

In [BLO5], states o and o’ are the before and after B states for executing a B operation.
The operation is defined with operation identifier op, return variable rq, ... , 7, and
input variables aq, ... , an, as i, ... , ry < op(aq, ... , a,). The B operational semantics
can thus be defined with a ternary relation — as 0 —,, o’. That means in state o, the
operation op progresses with input variable aq, ... , a,, then returns output variables
T1, ... , Tm, and reaches a new state ¢’. In the CSP part, P is a CSP process, and P’
is the process after P processing CSP channel ch, which has the same identical name as

the B operation op. Channel ch can be defined with a number of variables by, ... ,b; as

Chapter 4 The Combined B+CSP Specification 42

ch.by.b;. The CSP operational semantics is give by a similar relation — as P —.,
P

Therefore, the before and after state of B+CSP specification can be defined as (o,P)
and (o’,P’). We can now define the operational semantics of B+CSP specification by
combining the two ternary relations into one form (o,P) —., (¢/,P’), where the combined

event ev is an synchronization of B operation op and CSP channel ch.

The essential issue of this synchronization is how to define the data flows of B operations
and CSP channels. A B operation can have input variables a1, ... ,a, and return output
variables r1, ... , r,, as result, while variables by, ... ,b; of a CSP channel can have

input(?), output(!) and dot(.) decorations to imply the data flow of the variables.

PROB supports a very flexible way to combine the data flows of B operations and CSP
channels. In PROB, the synchronization is achieved by Prolog unification, which means

data information can flow in from both B and CSP:

e CSP channels can provide concrete data values , which means the CSP part is

used to drive the B part.

e B operations can provide data values, which means the B part is used to drive the
CSP part.

e B and CSP can both provide concrete data values to each other. The mixed data

flow allows B and CSP can drive each other at the same time.

e In the worst case, when both B and CSP do not provide concrete data values,

PROB can enumerate the B datatypes of variables and drive the interpreter.

As an abstract model checking tool, PROB tries to explore all the possible states of
a system. The power of enumerating data values from datatype definitions makes it
capable of using the combined channels without caring about the input/output data
flow on the channels. Therefore, it does not clearly distinguish the input and output
variables of both B and CSP. For example, in PROB, ch/aa and ch?aa are all valid CSP
channels for combining with B operation op(aa). Moreover, it even does not force the
numbers of variables on a B operation and its corresponding CSP channel to be same.
For example, a CSP channel ch.aa.bb can have fewer variables than its corresponding
B operation op(aa,bb,cc). It ignores the missing variable cc, and either B part or the

PROB interpreter can provide the concrete data value for it.

For a very simple B machine in Figure 4.2, we combine it with the following CSP process:

Proc = Set?Val — Get!Val — Proc

Chapter 4 The Combined B+CSP Specification 43

MACHINE Simple
SETS AA = aa,bb,cc
VARIABLES xx
INVARIANT xx € AA
INITIALISATION xx := aa
OPERATIONS

Set(newval) =

PRE newval € AA THEN

xx := newval END;

res «— Get = BEGIN res := xx END

END

FIGURE 4.2: A simple B machine: Simple

As both B and CSP require the data value of Val on combined event Set, neither of them
can provide concrete data to drive the combined machine. In this case, PROB interpreter
would provide the concrete data using its enumeration mechanism, and actually drive
the combined model. The enumeration mechanism provides data values based on the
data type of a variable. It also looks into the enumeration configuration in PROB for
the size of the enumeration values it can provide. For example, if Val is a natural
number, and the enumeration size setting in PROB is 3, the enumeration mechanism
would provide three natural numbers 1, 2, and 3 as the result. The Get event here is
more complex, as both the B operation and the CSP channel try to output data. The
PROB interpreter would only combine them together when the output data values from
B and CSP are equal.

We can also combine the B machine showed in Figure 4.2 with a different CSP process:

Proc = Get?Val — Set!Val — Proc

In the new combined model, the combined event Get has a B operation which outputs
data, and a CSP channel which requires an input data. So, the B part is driving the
combined event here by providing the data. On the other hand, the Set event is a
combination with a CSP channel which outputs the value of Val, and a B operation
which needs an input parameter. The data outputted from the CSP part would drive

the combined event here.

The above two examples demonstrate how flexible the combination could be in the PROB
tool. Actually, even when part of the parameter definitions are missing, PROB can still
successfully perform the combination. For example, if the same B machine in Figure 4.2
is combined with a CSP:

Proc = Get — Set!Val — Proc

Chapter 4 The Combined B+CSP Specification 44

although the corresponding parameter on CSP channel Get is missing, PROB can still
combine the B operation with it. In this case, there would not be any data commu-
nication between the CSP and the B parts in the combination. The two parts just

synchronize with each other on the occurrence of the event.

4.3 The Restricted Semantics for Implementation

As a model checking tool, PROB aims to exhaustively explore all the states of an abstract
finite state system, on the way enumerating all possible value combinations of operation
arguments. The flexibility in combining the two formal models provides more power to
the PROB tool to model check the state space of a model. The implementation of the
semantics using Prolog unification is simple and efficient. Especially, in some cases, it
allows the PROB interpreter, instead the B or the CSP, to drive the combined model.
However, as our target is implementing the combined B-+CSP specification in a concrete
programming language, we cannot implement the involvement of the PROB interpreter
or support the same flexible and abstract semantics as model checkers. Therefore, we
have to restrict the original semantics in PROB to make it suitable and meaningful for

a concrete programming language.

The PROB interpreter is used when neither the B nor the CSP provides full data infor-

mation to drive the model. There are three kinds of cases, where this can happen:

e Both the B operation op(aa) and the CSP channel ch?aa request the data value

of variable aa.

e The B operation op(aa) requests the data value of variable aa, while CSP channel

ch does not provide the value.

e The CSP channel ch?aa requests the data value of variable aa, while B operation

op does not provide the value.

In our restricted semantics, we prohibit all the three combinations. Furthermore, there

is another combination of the B and CSP variables dropped from the semantics.
e Both the B operation aa <« op and the CSP channel ch/aa output data values.

PROB can handle this with its Prolog unification. Only when the two output values from
the B and the CSP are same, can the B operation and the CSP channel be combined.
However, this violates the concurrency model of our approach. Section 4.5 will give a
discussion of this in detail. The allowed argument combinations in this work are showed
in Table 4.2.

Chapter 4 The Combined B+CSP Specification 45

JCSProB B: input arguments | B: return argu- | B: no argument
(ce(z)) ments (¢)
(y < ¢
CSP output (clz, c.x) vV X X
CSP input (c¢?y) X Vv X
CSP none (¢) X X Vi

TABLE 4.2: The allowed arguments combination for B4CSP events

We thus define a restricted B+CSP operational semantics as follows. For a B oper-
ation 01,...,0;, < 0p(i1,...,in), its corresponding CSP channel must be in the form of
chliy...lin?01...70,. At CSP state P, a CSP process sends channel arguments i1,...,i,
through the channel to a B operation as input arguments. After the data transitions of
the channel complete - taking B state from o to ¢’ - the CSP state changes to P’. The
arguments o1,...,0,, represent the data returned from B to CSP. The input arguments
i1,...,in only exist in state (o,P), while the output arguments o1,...,0,,, are only available
in state (¢/,P’). The new restricted semantics of a combined event ev can be expressed

as ((o,P),in) —ey ((o,P"),0ut), where in = iy,...,in, and out = 01,...,0p.

PROB also supports classical CSP communication channels. These channels exist only
in the CSP part of the combined specification and have no B counterparts, which means
that they cannot directly affect the system states in the B part. A channel output (c/y)
synchronizes with one channel input (c?z) from a different process, and transfer a data.
This synchronization is a point-to-point(p2p) communication pattern. It also supports
multi-way synchronization, multiple processes can synchronize on one barrier channel c.

Table 4.3 demonstrates CSP communication channels supported in this work.

JCSP CSP input CSP output CSP none
(c7) (cls) ()

CSP output (clr) v/ (p2p sync) X X

CSP input (c%) X v/ (p2p sync) X

CSP none (¢) X X v/ (Barrier)

TABLE 4.3: The allowed arguments combination for pure CSP event

4.4 How to Compute the Restricted Semantics

The restricted semantics described in Section 4.3 provides the formal basis of combining
the B and the CSP models. The restricted semantics supports a two-way communication
between a B operation and a CSP event, which means that the CSP can provide the
data information to drive the B machine and/or vice-versa. Figure 4.3 shows how the

semantics actually perform.

Chapter 4 The Combined B+CSP Specification 46

In step (1), the system is in state (0,P). The CSP event ev can provide variables i1,...,i,
to the B operation op as input arguments for the B operation. From the view of the
CSP event, it outputs (!) this data to the B part, while the B operation sees this as a
data input from the CSP event. Thus the CSP part uses the input arguments to drive
the B machine and its actions on the system state. Even if there is no input data from
the CSP, the CSP event still drives the B machine by invoking the execution of the B

operation.

In step (2), the B operation op uses the input variables iy,...,i, (or without any input
data), and processes some data transitions to move the state of the system from (o,P)

to (¢/,P’). At the same time, it can produce some output data o1,...,0p,.

In step (3), the B operation op send the output variables o01,...,0,, back to the CSP event
ev. The CSP event receives the variables as input (7). These variables can be further
used by the CSP process to control the behaviour of the system. In this way, B machine

can use the output variables o1,...,0,, to drive the CSP part.

Accordingly, this semantics allows the system behaviour to drive and change the data
aspect of the system, while the data aspect can also use the return variables to affect the
behaviour of the system. As an example of the restricted semantics, Figure 4.4 shows
a combined specification of a powered lift. The B machine has two variables to specify
the system state: level indicates the floor of the lift, and electr marks the electric power
left in the battery. The lift goes up and down through inc and dec operations. Each of
these operation costs energy from the battery. When the power in the battery is below
40, the lift enters emergency mode. It uses the CSP channel alarm to call the supplier,
and retraces to level 0 for resetting and charging. After the supplier is notified by the
alarm, he recharges the battery. After the battery is recharged, the lift can return to

normal functioning.

B Machine

-
@ B Operation
>
)

01,...,0m <- 0p(i1,...,in 01,...,0m evli1l...lin?01?...70m

3

FIGURE 4.3: How to compute the restricted semantics

Chapter 4 The Combined B+CSP Specification 47

MACHINE powered_lift
VARIABLES level, electr
INVARIANT level € IN A level > 0 A level < 10 N
electr € N A electr > 0
INITIALISATION level := 1 || electr := 100
OPERATIONS
T — Inc =
PRE level < 10 N\ 2 < electr
THEN level := level + 1 || electr := electr - 2| rr := electr - 2
END;
rr«— dec =
PRE level > 0 N\ 2 < electr
THEN level := level - 1 || electr := electr - 2 || rr := electr - 2

END;
recharge =

PRE level == 0 THEN electr := electr + 150 END;
reset =

BEGIN electr := electr - level x 2 || level := 0 END;
T < test =

BEGIN rr:= electr END
END

MAIN = Lift [|[{alarm}|] Supplier

Lift = inc?Y — LiftTest(Y) [] dec?Y — LiftTest(Y)

LiftTest(X) = if X</0 then alarm — reset — Emergency else Lift
Emergency = test?Y — if Y > /0 then Lift else Emergency
Supplier = alarm — recharge — Supplier

FIGURE 4.4: Combined Specification of powered lift

In this model, the CSP part calls inc, dec and recharge channels to invoke the corre-
sponding B operations for changing the system state. On the other hand, the return
variables in channels inc, dec and test are further used in CSP processes as condition
variables in the if-else-then structures. The behaviours of these CSP processes depend

on the value of these variables.

4.5 The Concurrency Model

The behaviour of the system is specified in the CSP part of the combined specifica-
tion. Processes in the CSP part can be in several kinds of processes compositions,
e.g. interleave, parallel, sequential and choice. In particular, parallel CSP processes
can synchronize with each other on certain CSP channels. In the restricted B4+CSP
semantics, B+CSP channels and pure CSP events have different concurrency models for

synchronization.

A combined B4+CSP channel has two levels of synchronization.

Chapter 4 The Combined B+CSP Specification 48

e The CSP level. In this level, All the CSP processes which call this channel need
to synchronize on the channel. When a process calls a synchronizing channel, it
blocks until all the other processes which synchronize on this channel are ready.
The synchronization here is determined by the name of the channel, as well as the

values of the variables on it.

e The combination level. The synchronization is between the CSP part (including
all the CSP processes) and the B part. The call from the CSP part depends
on the CSP level of synchronization, while the corresponding B operation can be
guarded by preconditions. Only when both the B and the CSP are ready, the data

transitions inside the channel can progress.

Figure 4.5 shows how four processes p1, p2, p3 and p4 synchronize on a combined event
ch.

Process p1
CSP level sync Process p2
Process p3
combination level sync
Process p4

FIGURE 4.5: The synchronization of B+CSP channels

In the CSP level, the value of the variables on the channel is also an important factor
in the synchronization, as well as the channel name. Only when parallel processes call
the same channel with exactly the same values, do they synchronize with each other on
that channel. For example, if process P and () synchronize on channel ch/z, only when
variable x1 of the call ch/xq from process P equals variable xo of the call chlry from

process), can the two processes synchronize.

Furthermore, the synchronization is only concerned with input data i1,...,i,,. An input
value must have a defined value at the time of synchronization because the value needs
to be passed to the B operation. A B operation reads a defined value for its input data

in order to trigger.

In PROB, the output variables o1,...,0,,, can also be used for synchronization, while

in the restricted semantics, this is not allowed. The synchronization between the CSP

Chapter 4 The Combined B+CSP Specification 49

processes and B machine determines whether a B4+CSP channel can progress. Therefore,
the decision should be made in the state (o,P), before the data transitions are actually
processed. The output data o1,...,0,, are only available in state (o/,P’), after the data
transition progresses. However, when the values of input data of the combined event
and the system state are fixed, a B operation would always move the system to a specific

state, and produce a certain output data.

The synchronization between CSP processes on a channel can be viewed as a barrier
synchronization with data. To simplify the concurrency model, it is suffice to say that
processes calling the same channel with exactly the same data values perform a single
barrier synchronization, which means it is possible to use a classical barrier synchroniza-
tion to implement the CSP level of synchronization for B+CSP channel. The synchro-
nization between a CSP channel and its corresponding B operation can be regarded as
a two-way point-to-point communication: the CSP channel first sends the input data
i1,...,in, to the B operation, and after the data transition is performed, the B operation
sends output data o1,...,0,, back to the CSP event. This gives the possibility of imple-
menting the B4CSP synchronization using JCSP/occam-m. We will discuss this later in
Section 8.2.5.

In PROB, pure CSP channels preserve the semantics of classical CSP. In this work, we use
JCSP communication channels to implement pure CSP channels, which means the CSP
channels here need to express the same semantics as JCSP/occam-pi does. The standard
channel model of JCSP/occam provides point-to-point communication channel classes,
which is introduced in Section 3.3. These channel classes are employed to implement
the point-to-point communication channels in Table 4.3. As JCSP has implemented the
barrier synchronization with the Barrier and AltingBarrier classes, we uses these classes
to implement the barrier synchronization of pure CSP channels, which is also allowed in

this work.

Chapter 5

JCSProB: A Java
Implementation of B4CSP

Implementation is the final target for the development of all software systems. A typical
formal development employs a formalized stepwise refinement techniques. The develop-
ment starts with a very abstract non-deterministic system model, which is developed
with high-level observation of the system behaviours. As the high-level abstract model
lacks concrete details of the system, it is very hard to be implemented. In a series of
refinement steps, low-level details of the system are added in the system model. Even-
tually, we can get a final refinement of the system model, which is concrete enough to

be input to the compiler to generate an executable program.

In B development, the final refinement is defined in a deterministic subset of the B
language, BO. Although B0 only includes concrete data and concrete data manipulations,
it still lacks some implementation details and there is no compiler support for this
language. Alternatively, as B0 is very close to conventional programming languages,
it is possible to translate B0 into other well supported programming languages. The
Atelier-B [Ate01] tool provides translation tools [Cle02] from B0 to Ada and C. In this

work, we translate combined B4+CSP specifications into Java programs.

The definition of the B+CSP semantics in Section 4.2 shows that the behaviours of
a system are specified in the CSP part of the combined model. In B+CSP, the CSP
part of a system is the driving force of system behaviour, while the B part specifies
a reactive system with data and data manipulations. Although the data aspect can
affect the system behaviours via the return variables of combined events, the invocation
of events is controlled by the CSP processes. As the semantics of the B0 language is
very close to conventional programming languages, it is not very difficult to translate
the BO specification into programming language. However, it is not common for a

programming language to directly provide a mechanism to implement the semantics of

50

Chapter 5 JCSProB: A Java Implementation of B+CSP 51

a process algebra. Therefore, how to implement the system behaviours specified by the

CSP part of the combined specification is a key question of the work.

This chapter starts with a discussion on the reasons for developing the JCSProB pack-
age in Section 5.1. Then it gives an overview of the package structure in Section 5.2.
In Section 5.3, we introduce our implementation of the combined B+CSP event. The
implementation of multi-way synchronization of this event implementation is a very im-
portant feature for JCSProB, and in Section 5.4 we give a full discussion of our solution.
Another important re-implementation is of the process mechanism. New thread, pro-
cess and process composition classes are introduced in Section 5.5. A big difference
between JCSP and JCSProB is that JCSProB has a state model defined in B specifica-
tion. The implementation of the state model is in a variable class, which is presented
in Section 5.6. In Section 5.7, a GUI package, which is used to interact with JCSProB

programs, is introduced.

5.1 Why We Need JCSProB

The JCSP package [WMOOb] provides a Java implementation of the oocam-m language,
which expresses a subset of CSP semantics (see the discussion in Section 3.3). Be-
cause JCSP is a well constructed package and had the channel classes formally verified
[WMO00a], if we can implement the B+CSP event based on the JCSP package, correct-
ness of the implementation should be easier to prove. Therefore, our first priority is
using it to implement the CSP part of the system. However, some limitations of JCSP

make it not very suitable for implementing the B4+CSP event.

5.1.1 JCSP Channels and B+CSP Events

Both in JCSP and B+CSP, the synchronization between processes is through the chan-
nels/events. The difference between B+CSP and JCSP concurrency models is an im-

portant question in implementing B4+CSP semantics using JCSP.

In Section 3.3.1, we discussed that the limitation of JCSP 1.0rc5 on multi-way synchro-
nization and external choice, which was the available version of the JCSP package when
we started this work. However, if we want to implement the multi-way synchronizing
B+CSP events, external choice is an important feature which must be implemented.
Therefore, we had to implement multi-way synchronizing events by ourselves. We will

have a detailed discussion of this in Section 5.4.

Another big difference is the implementation of system state and the data transitions
which change the system state. In JCSP/occam-m, each process maintains its own

states, and the channels are regarded as stateless communication channels which have no

Chapter 5 JCSProB: A Java Implementation of B+CSP 52

internal data transitions. The state changes of JCSP/occam-m happen in the processes,
not in the channels. However, the B part of combined B4CSP events has data transitions
inside to change the state of the B machine. This means we cannot directly use the JCSP

channel classes to implement the B4+CSP event.

Table 5.1 summarizes the differences discussed above.

Channels JCSP channel | JCSP call channel JCSP barrier | B+CSP event
Multi-way Sync | No No Yes Need
External Choice | Yes Yes (acceptor side only) | No Need
Data on Channel | Yes Yes (bi-direction) No Need
Data Transition | No Yes (acceptor side only) | No Need

TABLE 5.1: JCSP (1.0rc5) channel, barrier, and B+CSP event

Accordingly, the implementation of the B+CSP event needs to support multi-way syn-
chronization, external choice, data on the event, and atomic data transitions inside the
event. As the JCSP package before 1.0rc6 does not provide enough support for imple-

menting the B4CSP event, we have to implement it in a new Java program.

5.1.2 CSP Process Call, Recursion and occam-pt: Loop

A pragmatic difference between B+CSP and JCSP/occam-m is how recursion is man-
aged. Although both occam-m and JCSP (through Java) allow recursion in processes,
unbounded use (e.g. to express non-terminating cyclic behaviour) would lead to memory
allocation failure. Many simple recursions in B4+CSP are actually tail recursions and
these are easily expressed with conventional WHILE loops in occam-m and Java (for JCSP).
More complex B4+CSP recursions, if they are unbounded, have to be transformed for
memory safe implementation in JCSP/occam-m. In Section 5.5, this is addressed with
a new mechanism within JCSProB, so that complex recursions may be implemented

directly without memory problems.

The loop statements in both JCSP and occam-m represent a tail recursion inside a
process, while the CSP part of the B+CSP specification supports more flexible, natural
forms of recursions. A CSP process can call itself at the end of the process to do tail

recursion. For example, a process P is defined as:

P=a— P

After process P performs an event a, it enters a state P’. In state P’, it calls process
P. Then the process would perform as P again. In this way, event a is repeatedly
called. Although the tail recursion described here can be easily implemented by the
loop structures in JCSP and occam-m, they are still a bit different. In JCSP/occam-m,

Chapter 5 JCSProB: A Java Implementation of B+CSP 53

the loop is inside a process, which means the loop structure maintains the state of the
process. However, in general CSP tail recursion, when a CSP process P calls a new
process P’ at the end of the process P, the state within the process P is not directly
accessible from the new process P’. In CSP, if we do want to maintain the data state
within the recursion, one solution here is passing data between new process instance and

its ancestor. For example:
P(z) = alx — b%y — P(y)

Moreover, using branching structures, such as condition and choice, CSP can produce
more complex recursion patterns than can be neatly modelled by while loops. In CSP,
one process also can call other named processes. When process P calls process @,
the process would perform the behaviours defined in process Q. If we add branching
structures into processes, one process can have different descendant processes depending
on condition and choice. For example, the Lift process shown in the CSP specification
of Figure 4.4 can further perform as process Lift or process Emergency. The decision
is made by an external choice and the conditions of the if-else-then structures. As it
involves a new process Emergency, the recursion here is complex enough to disable us
from using a loop inside the Lift process to resolve it. It can be programmed just using
loop or tail recursion, but that requires putting the LiftTest and Emergency processes
inside the Lift process as a nested loop. For examples with more complex branching

structures, the loop expression can be very hard to build, and harder to understand.

Therefore, it would be more reasonable to fully implement recursion in Java for CSP
processes, than using the while loop. In Section 5.5, we give a in-depth discussion of

this problem, as well as the solution.

The discussion in Section 5.1.1 and Section 5.1.2 shows that the channel classes in the
old JCSP package (before 1.0rc6) are not capable to smoothly implement the B+CSP
event. To deal with these limitations, we construct a new Java package, JCSProB, to

implement the B+CSP semantics and concurrency.

5.2 An Overview of the JCSProB Package

The JCSProB package implements the B+CSP semantics in Java. It includes three

sub-packages:

e The jesprob.lang package includes the implementation of B4CSP specification.

e The jesprob.gui package includes the Java interfaces and classes for constructing

the GUI program.

Chapter 5 JCSProB: A Java Implementation of B+CSP 54

e The jesprob.msg package includes the implementation of the communication be-

tween the JCSProB process objects and the GUI program.

Some of the JCSProB classes inherit JCSP interfaces or classes, e.g. the process class
BCSProcess implements the CSProcess, and many JCSP interfaces and classes can be
directly used in a Java program together with JCSProB. Apart from that, a number
of new event interfaces and classes are developed to implement the semantics of the
B+CSP event. Table 5.2 shows the correspondence between the B+CSP model and its
Java implementation in JCSP and JCSProB.

B+CSP JCSP/JCSProB

Combined B+CSP event: including | JCSProB event interfaces and classes
functions of synchronization, data tran-
sitions, and data input/output
Point-to-point communication channels | JCSP communication channel classes
Guarded external choice with multi- | Alter class

way synchronization for B4+CSP events

Guarded external choice of | Alternative class of JCSP
CSP/occam-pi communication chan-

nels

B+CSP process, and the recursion JCSProB thread and process classes

Process compositions of B+CSP, e.g. | JCSProB process composition classes
parallel and sequential composition

TABLE 5.2: The Java Implementation of B+CSP model

There implementations of B+CSP event in JCSProB is a pure Java approach. This
implementation was designed and developed before the recently published JCSP pack-
age with AltingBarrier and rendezvous. It includes a number of event interfaces and
classes which are constructed without using any JCSP. All the semantics on the B+CSP
event, such multi-way synchronization, are directly implemented in Java language. In
Section 5.3, we demonstrates the structure of the event interfaces and classes. Then we

continue with a solution for multi-way synchronization in Section 5.4.

As the process class BOSProcess is an abstract class which implements the CSProcess
interface of JCSP, JCSP channel objects can also be used in an BCSProcess object.
That means the BCSProcess can use JCSP channels and JCSProB events at the same
time. The only problem is that external choice function for the B4CSP event classes is
implemented in a new class Alter, which is different from the Alternative class of JCSP.
Therefore, we cannot support a model which has JCSP channel classes and JCSProB
event classes of the pure Java implementation as the first events of external choice paths
at the same time. For example, if ev is a combined B+CSP event and ch is a pure
CSP communication channel, the following CSP process P cannot be implemented with

JCSProB event classes:

P=ch—POev— P

Chapter 5 JCSProB: A Java Implementation of B+CSP 55

In the B4CSP semantics, a B machine is regarded as a special process which maintains
the system state. The combined B+CSP events update the state variables and change
the system state. The data transitions inside a B+CSP event need to be atomic, which
means they cannot be interrupted by data transitions from other events. Therefore,
although all the events are on offer in parallel, only one of them at a time can progress
and its execution cannot be interrupted. Also, a B machine defines a number of invariants
on the state variables. Any violation of these invariants brings the system into an unsafe
state. Although on most occasions, the invariants are used for proving abstract models,
it would be very useful if the Java implementation can check them at runtime. In
Section 5.6, the implementations of the functions concerning system state, e.g. atomic

access and the invariant check, are presented.

With the classes mentioned above, a B+CSP model can be translated into a Java pro-
gram. However, the generated program just runs alone by itself and cannot be controlled.
One important target for this work is using the generated Java programs to produce var-
ious traces, and comparing the traces with the traces in the B+CSP model. To control
the execution of generated Java programs, a GUI interface is developed for the target
Java program. Users can setup a configuration file to provide additional information for
the Java program, and can use the GUI interface to control the execution of underly-
ing JCSProB processes. Finally, in section 5.7, we demonstrate how the GUI program
is constructed, and the communication protocol between GUI program and underlying

Java programs.

5.3 B+CSP Event Classes

The implementation of semantics of the combined B4+CSP event includes a series of Java

interfaces and classes.

One basic Java interface is BOSPGuard, which declares several methods used for imple-
menting guarded external choice. All event classes need to implement this interface and

its methods. In Section 5.4.3, implementations of this interface is discussed in detail.

An abstract PCChannel class provides a method for setting the number of synchronizing
processes on the event (similar to the way to set enrolled process number of JCSP barrier),
and some other methods for basic event functions. This class is inherited by all event
classes, including two direct subclasses: CCChannel and ICChannel. Both of them
implement external choice, precondition check and synchronization for the combined
event. The difference is that the CCChannel class is designed for implementing events

without input data, while the ICChannel implements events with input data.

The CCChannel class has two subclasses CChannel and OutCChannel, and the IC'Cha-

nnel class has two subclasses InCChannel and OutInCChannel. The four new classes

Chapter 5 JCSProB: A Java Implementation of B+CSP 56

implement ready calls for different input/output combinations. The OutCChannel and
OutInCChannel classes also provide methods for producing output data for events. With

the four basic event classes, users can construct implementations for combined B+CSP

events.
| Classes | Input Data | Output Data |
CChannel no no
InCChannel yes no
OutCChannel no yes
OutInCChannel yes yes

TABLE 5.3: Basic event classes and their input/output types

To construct an event class for a combined B4+CSP event, the first thing is to choose
a basic event class from the four according to the input/output type of the event. The
implementation class would inherit the chosen basic event class, and implement or extend
some methods of it. The run method must be implemented by the implementation class
with the data transitions of the B part of the combined event. If the combined event
has input data, the implementation class needs to implements the assign_input method
for assigning input data with input variables of the event. If the event has output data,
the implementation class needs to implements the make_output method for make a Java
vector, which contains all the output data. Furthermore, if the event has a precondition
on it, the precondition needs to be implemented using Java conditional statements, and

put in the preConditionCheck method.

5.4 Implementing Multi-way Synchronization with Choice

In Section 3.3.1 and Section 5.1.1, we addressed the problem of multi-way synchro-
nization in JCSP. In this section, we discuss the difficulties in implementing multi-way

synchronization, and give our solution for this.

5.4.1 The Difficulty in Implementation

Normally, without considering external choice, when a process calls an event, no matter
whether the event is ready, it commits to the progress of this event, and cannot withdraw
its call. For an event with more than one process synchronizing on it, a calling process
would block when the whole set of processes is not ready. For example, a philosophy

process PHIL synchronizes with a fork process FORK on events picksup and putsdown.

MAIN = PHIL [|{picksup,putsdown}||FORK
PHIL = picksup — eats — putsdown — thinks — PHIL

FORK = picksup — putsdown — FORK

Chapter 5 JCSProB: A Java Implementation of B+CSP 57

When process PHIL calls the event picksup, it commits to the progress of this event and
cannot withdraw its call. When both PHIL and FORK processes are ready, the event

caln progress.

For guarded external choice, only one process path is selected from all the paths. The
external choice structure makes non-commit calls to first events of all the process paths,
and the decision is only made among the paths whose first events are ready to progress.
When evaluating the first event of a choice path, although the current process is ready
to progress the event, it does not commit to it. A process can withdraw its ready call
on an event even after it previously became ready for the event. After the decision is
made, the process would commit to progress the selected event, and would not go for

first events of all the unselected paths.

Furthermore, when an event has more than one process synchronizing on it, and it is
used in external choice, the situation is more complex. The choice decision on one event

in a process would affect the decisions on that event in other processes.

e If an event is selected by one process, it must make sure that all the other processes

which synchronize on this event also know the decision and select the event.

e If a process withdraws from an event, it must make sure that the other processes
which synchronize on this event are aware of the change and cannot select this

event after it withdrew.

Figure 5.1 shows a version of the classical dining philosophers model that demonstrates

this situation.

MAIN = PHILS[|{picksup,putsdown}||FORKS
PHILS = |||:0..4@PHIL(z)
FORKS = |||2:0..4@FORK ()
PHIL(x) = picksup.xz.x — picksup.z.((x+4)%5) — eats —
putsdown.z.((x+4)%5) — putsdown.z.x — thinks — PHIL(x)
O
picksup.x. ((z+4)%5) — picksup.z.x — eats —
putsdown.z.x — putsdown.z.((x+4)%5) — thinks — PHIL(z)
FORK(z) = picksup.z.x — putsdown.z.x — FORK(x)
O
picksup.((z+1)%5).x — putsdown. ((x+1)%5).x — FORK(x)

FI1GURE 5.1: The Dining Philosophers Example

There are five philosophers in this story. They are sitting around a table, and there are
five forks, each placed between two neighbouring philosophers. A philosopher may only
eat when he holds two forks from both left and right sides. When a philosopher is ready
to pick up a fork, he has to make a decision on which fork he would pick if the forks

from both sides are ready. A fork can also be picked up by either its left or its right

Chapter 5 JCSProB: A Java Implementation of B+CSP 58

side philosopher. A picksup.i.j event is synchronized by a PHIL process ¢ and a FORK
process j. When process PHIL(1) is ready to pick up a fork, and both FORK(1) and
FORK(0) are ready to be picked, that makes both of the two events picksup.1.1 and
picksup.1.0 ready to progress. However, event picksup.1.1 is not only in the external
choice of process PHIL(1), but also in the process FORK(1). If one of the two processes,
PHIL(1) or FORK(1), makes its decision, it must let the other process know the result.

That means:

o If picksup.1.1 is selected, we must make sure both of the two processes, PHIL(1)
and FORK (1), select picksup.1.1.

e If the process PHIL(1) selected picksup.1.0, not picksup.1.1, it must let process
FORK(1) know that the process PHIL(1) has withdrawn from the event pick-

sup.1.1, and the event is not ready anymore.

@@
o

FIGURE 5.2: The External Choice involving processes PHIL(1) and FORK(1)

Since the choice decisions in processes PHIL(1) and FORK(1) are produced separately
in two parallel processes, it is not very easy to make the algorithm correct. If the
decisions in the two processes are made independently, the two processes cannot know
each others’ decision. If PHIL(1) selects the event picksupl.1, it cannot make sure that
FORK(1) also selects the event, which does not make sense as the progressing of an
event means that all the synchronizing processes should commit to it. To avoid this
problem, when making choice decision, a process must consider the decisions on other
processes which synchronize on the event selected by the current process. And when
the decision on this process is made, it should also let all the related processes know the

result. However, the order of the decisions is important as well. As the processes are

Chapter 5 JCSProB: A Java Implementation of B+CSP 59

running in parallel, it is still possible that PHIL(1) chooses the event picksup.1.1, while
at the same time FORK (1) decides to go picksup.2.1, which leaves the event picksup.1.1

not ready. Figure 5.3 shows such a kind of situation.

FORK(1) PHIL(2)

FIGURE 5.3: PHIL(1) commits to an unready event picksup.1.1

5.4.2 Existing Solutions on Implementing External Choice

In classical occam and JCSP (1.0rch), only the channel input can be used for external
choice. The point-to-point communication channel only involves two parties (readers and
writers), which means the channel output is not considered when making the choice. A
process first informs the input channels of all the choice paths that it is ready for the
synchronization. When the input guard of a channel is ready, the channel is regarded
as a ready channel for selection, no matter whether the process on the output end of
the channel is ready or not. Also, only the input end of the channel can withdraw
the previous offer to the channel. As the implementation of external choice here only
considers one end of the channel, a choice decision in one process would not affect the
decisions in other processes. This constraint makes the implementation of external choice
easy and fast, but as output guard and multi-way synchronization channel cannot be

used for external choice, this restricts the concurrency models that can be expressed.

In [McE06], a two-phase commit protocol is introduced. The protocol only uses the
point-to-point communication channels to construct a multi-way synchronizing channel,
and only uses input guards of the channels in external choice. Figure 5.4 demonstrates
the state machine of resolving external choice with multi-way synchronization. An exter-
nal choice has m paths, and a client P; represents a process, which makes withdrawable
call on the multi-way synchronizing event e; of a path i (i € 1 .. m). At the initial
state S1, the client uses the offer message to indicate that it is ready for the execution
of event e. Once the offer has been made, in state Sa, P; can either be interrupted by an
event interrupt (by the selection of other paths), or commit to the synchronization. If
the event interrupt occurs, which means the process will not select this path any more,
the withdraw event withdraws its previous offer. Otherwise, when the client commit to
the synchronization, it can either do the synchronization if the synchronization check of

event e is ready, or release from its commitment.

Chapter 5 JCSProB: A Java Implementation of B+CSP 60

In the implementation, two one-to-one communication channels are employed between
a client and the event e to implement this protocol, and only the channel input ends of
the two channels are used in external choice. Although the two-phase commit protocol
is a correct implementation of the external choice with multi-way synchronization, the
cost of this solution can be heavy and unpredictable. As all the participating clients P;
of the event e are running in parallel, it is possible that each client keeps choosing to
commit to an event, while the other participating clients have withdrawn. Even if this

worst case does not happen, the cost for computing this algorithm may be significant.

In [WBPO06], a new algorithm is developed to resolve external choice with multi-way
synchronization. It is a fast implementation which is not a two-phase commit. Cur-
rently, this solution needs shared memory, and is supported only for a single JVM. This

algorithm is used to implemented external choice for AltingBarrier [WBM™'07].

5.4.3 A Solution of Multi-way Synchronization

We argue that the parallel order of making the choice decisions on multiple parallel
processes is the main problem to bring the overload. When a process is making a choice
decision on an event, a choice decision on another process may change the synchro-
nization state of this event. Although the two-phase commit protocol can prevent the
parallel choice decisions from going wrong, the parallel recursive commit/release (or
offer /withdraw) actions are not the fast and simplest way to do it. If we can keep a
section of code which makes the choice decision atomic, and do not allow decisions on
other processes to interrupt it, we can easily prevent a lot of extra overload discussed
above. That also implies that the choice decisions in this code section are in a sequential
order, instead of a parallel order. In [Bag87, Bag89], such a kind of algorithm has been

developed. Our implementation uses a very similar algorithm to [Bag89].

The implementation of multi-way synchronization guards in JCSProB has an exclusive
lock for every B machine. All the processes in a B+CSP model need to compete with

each other to get the lock, before they can start evaluating synchronization guards

@ withdraw
—

T interrupt

: joffer @
commit ¢ T release
@ sync .

FIGURE 5.4: The state machine of a client P;

Chapter 5 JCSProB: A Java Implementation of B+CSP 61

and making choice decision. This lock mechanism forces the choice decisions on a single
machine to be atomic and in sequential order. Therefore, it can avoid the cost of parallel

commit-release actions in the two-phase commit protocol.

The algorithm consists two parties: a set of processes P and a set of event E. The

process set P consists a number of parallel processes, which are marked from p; to py.

P=pilpz2| .| pn

Such a process p; (i € 1..N) may have a M-paths external choice structure. The first
events of all these M paths in this external choice are grouped into an event set F, and
these events are marked from e; to eps. For a path j (j € 1..M), the choice is resolved
on the first event e;. After the process performed event e;, it would further progress as

the process res;.
p; = e —resy ey —reso U ... Oey — resy

Figure 5.5, from the view of a process p;, briefly illustrates the work flow on dealing with
an external choice consisting three paths(M = 3). From the initial state S;, the process
first uses the ready message to make the first-phase commit calls on all the events in
E. The first commitment just increases the event counter, which indicate if the event is
ready to progress. Then it cyclically tests these events and looks for a choice decision.
The cycle would eventually terminate after all the involved processes start to commit
to the events. This will be discussed later in this section. At each state S; (j € 1..M),
a series of checking steps are applied to test if the event e; is ready. These checking
steps are discussed later with Figure 5.6. If the event e; is ready, it is selected with
message select(e;). Then the p; system reaches its end state Se, and the external choice

is resolved. Otherwise, the next event ejo)41 Will be tested.

ready(E)
s

> select(ej)

notSeIect(S‘
select(ej) @
notSeIect(ez\ /
select(ej)

notSelect(es)

FI1GURE 5.5: The state machine a process p; with three choice paths

Chapter 5 JCSProB: A Java Implementation of B+CSP 62

The checking steps mentioned in the last paragraph checks the synchronization status of
an event e;. Figure 5.6 shows how such a checking works on an event e;. From the view
of an event e;, the process p; represents one of those client processes which synchronize
on it. The states C; to Cg here represent the internal states of a state S; (j € 1..M)
in Figure 5.5. States C; and Cs and both represent the terminal state S, in Figure 5.5,
where a resolution has been reached. At the state Cj, the external choice is resolved
by selecting the event e;, whereas at Cj, a different event ey, other than e; is selected
as the result. The state C, represents the state where no resolution has been reached

during the checking.

Previously, the ready message informs the event e; that the process is ready for the
synchronization. The global lock is a key unit for this algorithm. The first commitment
ready message does not need to obtain the lock before it can make the commitment.
But for the second commitment, before actually calling the event e;, the client needs to
obtain the exclusive lock first using the getLock message. After the call is finished, no
matter whether the event progresses or not, the client needs to unlock the lock. This
means the shadow region in Figure 5.6 is an exclusive section, and at a time, only one

such section can progress.

At state Cso, the client can either be informed for the choice decision and directly go to
terminal states (Cs or Cy), or try to make the second-phase commitment to the event

6]'2

e The event interruptl informs the client that the synchronization of the event e;
was satisfied, and selected by one of the other involved processes. The event e;
has progressed, and this client p; has been withdrawn from all the events in the

external choice. So the current process would go to state C, and performs as res;.

e The event interrupt?2 informs the client that a different event ey (k € 1..M, k! = j)
in this M-paths external choice, was selected by another process. The event e, has
progressed, and this client has been withdrawn from all the events in the external

choice. So the current process would go to state Cy, and performs as resy.

e When no interruption messages has been received, the client tries to make the

second-phase commitment call to e;.

Before make the second-phase commitment, the client first needs to check if the syn-
chronization status of e; is ready at state C3. This check performs as a method call
on the event. The event would check if the synchronization counter has reached its
capacity and if the precondition on the event is satisfied. Only when both conditions
are satisfied, the event would return a true value to the client. If yes, the client would
finally select the event as the result of the external choice. Otherwise, the client releases

the lock, and reaches the state C,, where no resolution has yet been reached. The exit

Chapter 5 JCSProB: A Java Implementation of B+CSP 63

from C, represents state transitions in from one checking state S; to a new checking
state Sjopr41 in Figure 5.5. It lets the alternative paths in the external choice structure

to progress.

After the event e; is selected, as all the other candidate events in F cannot be selected
in this choice, the process p; should withdraw itself from these events. The ack message
is received from the event, which is discussed in next paragraph. Between the select and
ack messages, the event also informs other clients, which synchronize on event e;, about

the choice decision.

@ interrupt2(ex)

getLock(e})\ withdraw(pi, E-ex)

@ unlock(ej) | @

check(e)) interrupt1(ej)
@ withdraw(pi,E-ej)
- _
unlock(ej) A
select(e))

cq — -+

withdraw(pi,E—ej)i /
ack(e;p) unlock(ej)

Cs—~co

FIGURE 5.6: The state machine of a client FE;

A multi-way synchronizing event is an important unit in this algorithm. In JCSProB,
the combined B4+CSP event is implemented more like a special process, than a com-
munication channel. It maintains the commitment records of all involved processes by

receiving commitment messages from them.

The process set on an event e is ().. The event reacts to the commitment calls from
external choice clients. Figure 5.7 shows how an event e reacts to commitment messages.
After the event receives the first-phase commit call (ready message) from a client ¢
(¢ € Q¢), it increase the synchronization barrier by 1. After that, it checks the barrier
to see if all the synchronizing processes in (). are ready. If the result is yes, the event is
selected and finally committed. Then the decision on the event e needs to be broadcast
to all the other processes (Q. — ¢). The broadcast will not race with broadcasts from
other events as at the time of broadcasting, the exclusive lock is hold by the client who
interacts with the current event. The inform message sent to those processes would

cause interruptl or interrupt2 actions in them. After broadcasting the selection, the

Chapter 5 JCSProB: A Java Implementation of B+CSP 64

event moves on to processing the communication or data transitions inside the event e,
and then resets the synchronization barrier. Finally, it sends an acknowledgement back

to the calling client and waits for new commit calls.

@

i ready(e,q)

&

i check(e)
@Eselect - @
i progress(e) T ack(e.q)

& -6 -6 -&

inform(Qe - q) withdraw(Qe,e)

FIGURE 5.7: The state machine of an event E processing commitments

5.4.4 An Example: Dining Philosophers

In Section 5.4.1, we discussed guarded external choice and multi-way synchronization
in the dining philosophers example of Figure 5.1, and the difficulties in resolving them
together. Here we demonstrate how to employ our solution to resolve the external choice

in dining philosophers, and how it can avoid the erroneous situation showed in Figure 5.3.

The process FORK(1) consists of two possible paths. The events picksup.1.1 and pick-
sup.2.1 are the first events on the two paths. FORK(1) needs to synchronize with
PHIL(1) on picksup.1.1, or synchronized with process PHIL(2) on picksup.2.1. The
process FORK (1) first makes the first commitment calls, the ready messages, to both of
the two events. If the two PHIL processes, PHIL(1) and PHIL(2), also made the ready
calls on the two events, that makes the synchronization status of the two events both

ready. Figure 5.8 shows the ready calls on the two events.

After that, as we showed in Figure 5.5, a process would try to recursively check the
synchronization states of all the candidate events. Before it can start the checking, it
needs to obtain the exclusive lock first. Figure 5.9 demonstrates that PHIL(1) starts
with requiring the lock for checking picksup.1.1, while at the same time, FORK (1) tries
to get the lock for checking picksup.2.1. The two getLock actions compete with each
other, and in this occasion, the PHIL(1) gets the lock.

Chapter 5 JCSProB: A Java Implementation of B+CSP 65

From Figure 5.6, we know that after getting the lock, a process would start to check
the synchronization status of the event. In this example, as the picksup.1.1 is ready
for synchronization, the checking succeed, and picksup.1.1 is selected as the solution for

this external choice. The first two steps in Figure 5.10 illustrate this action.

Also in Figure 5.6, after the choice decision has been made, the process client withdraws
its first commitment on other candidate events. Therefore, the PHIL(1) process here
withdraw itself from picksup.1.0. At the same time, the event unit informs other client
processes about the choice decision. Such an action would later cause an interrupt mes-
sage in these processes. After the third step in Figure 5.10 finished, both PHIL(1) and
FORK(1) are aware of the choice decision. Then finally, the selected event picksup.1.1
can progress, and for a combined B+CSP event, this means the data changes inside the

event can be processed now.

When the execution of the event is accomplished, the event withdraws all the client
processes on it through the withdraw(Q.,e) messages. In Figure 5.11, the picksup.1.1
event withdraws commitments from the FORK(1) and PHIL(1) processes. Then there
is an internal synchronizing step, in which the event sends an acknowledgement back to

the calling process. After received the acknowledgement, the process PHIL(1) releases

PHIL(1 FORK(1) PHIL(2
ready ready ready ready

the exclusive lock.

FiGURE 5.8: The dining philosophers: ready calls

getlLock getLock

CUDEEN N T

FI1GURE 5.9: The dining philosophers: compete for the lock

Chapter 5 JCSProB: A Java Implementation of B+CSP 66

When the FORK(1) process obtains the lock later, the interrupt message informs the
process about the choice decision, and that leads the process to withdraw its commitment
to other events. In Figure 5.12, FORK(1) withdraws its first commitment to event
picksup.2.1, and continues to perform as alone the choice path led by picksup.1.1.

Finally, the system enters a state showed in Figure 5.13. Both FORK(1) and PHIL(1)
agree to select the path led by picksup.1.1, and both of them withdrew their first com-

mitment calls on other candidate events.

The lock mechanism prevents the situation showed in Figure 5.3 to happen. It puts
the FORK (1) process waiting while PHIL(1) are checking on event picksup.1.1. When
the choice decision comes out, PHIL(1) is also aware of that. Therefore, it cannot
select picksup.2.1, as PHIL(1) decided to take picksup.1.1. Also, comparing with the
two-phase commit protocol, there could only be one commit-withdraw action in this
algorithm, and at a time, there is only one second-commit action can progress. There
cannot be a situation that multiple processes keep on committing and releasing, but

never get a result.

interrupt2(picksup.1.1)

i (#) progress

F1GURE 5.10: The dining philosophers: picksup.1.1 is selected and progress

result = picksup.1.1 result = picksup.1.1

(Dwithdraw

g‘unLock

FI1GURE 5.11: The dining philosophers: withdraw and unlock

Chapter 5 JCSProB: A Java Implementation of B+CSP 67

However, a limitation for this algorithm is that it can only be applied on a single memory;,
and cannot be directly applied on distributed systems. In [WBM™07], similar restriction
is placed on the AltingBarrier of JCSP. Both algorithms try to make sure there is no re-
dundant commit-withdraw action, which means all the decisions of the final commitment
must be made in a sequential order. To ensure this, there has to be a global facility, such
as a lock, which can be accessed by all the clients. The implementation on a distributed
environment needs an exclusive token to be passed through all the subsystems to make

sure all the decisions lie in a sequential order.

A part of Java code, which includes several major classes in this example, is presented

in Section B.2.

5.5 Process Classes: Thread, Process Calls and Recursion

In Section 5.1.2, we briefly discussed the differences between the management of recur-
sion in JCSP/occam-m and CSP. CSP (through Java) and occam-m allow recursion in
their processes, so any CSP recursive expressions could be directly implemented. How-

ever, unbounded recursion will lead to memory overflow. Hence, tail recursion in CSP

result = picksup.1.1 result = picksup.1.1

@ interrupt2(picksup.1.1)

withdraw(@

®

FIGURE 5.12: The dining philosophers: interrupt in FORK(1)

result = picksup.1.1 result = picksup.1.1

FI1GURE 5.13: The dining philosophers: final state

Chapter 5 JCSProB: A Java Implementation of B+CSP 68

(which is very common) is always expressed through (WHILE) loops, which cause no
memory problems. More complex recursions require more complex transformation if

they are to be made memory safe.

5.5.1 Calling a Process in JCSP

In occam and occam-mw, it is not possible for a named process to call a new named
process or even a new instance of itself in the way that CSP can. Conventionally, JCSP
translates the WHILE statement of occam-m into a Java while statement. The loop
steps in a recursion take place in a single JCSP process object, without introducing any

new process objects. For example, a CSP process
P =a% — blx — P
would be translated into a JCSP process class as:

class P implements CSProcess{
void run(){
while(true){
x = a.read();

b.write(x);

To support more general CSP recursions and process calls, an existing JCSP process
should be able to call a new process object. This requires the existing process object to

declare a new process object and call the run method of it.

class P implements CSProcess{
void run(){
x = a.read();
b.write(x);

new P(a,b).run();

Chapter 5 JCSProB: A Java Implementation of B+CSP 69

However, it is very dangerous to do this in JCSP, because the old process object cannot
be released while the new process object is running. Figure 5.14 demonstrates the call
on a new process object P’ from the existing JCSP process object P. The new process
object P’ runs in the same Java thread thr as the existing process object P, which

would not release until the new process object complete. Recursively doing that may

‘// |::> thread
! 3 |:| process |
> § 3 <> run method !

=l progress

Process P’ 3
\ H barrier

’ P

Process P’

Thread thr

FIGURE 5.14: Calling a new process object in JCSP

cause a Java error, as JDK has a limitation on the number of objects. If new process
objects are recursively produced in this way, it would generate too many process objects
without releasing them. Eventually, this would arose the Java error StackQuerflowError!
Therefore, we cannot directly use the current JCSP process mechanism to implement
the recursion and process calls in CSP. In CSP, when the process P called a new process
P’, the process should continue to perform as the process P’, and the system would have
no further concern with the existing process instance P. In the Java implementation, it
means that after calling the new process object, the existing process object should be
able to release itself to Java garbage collection, and the Java thread would perform as
the new process object. At a time, there should be only one process object running. As
the CSProcess interface does not provide this function, we need to implement it in the
JCSProB package.

5.5.2 Multi-threading in JCSP

Direct tail recursion in CSP is handled in JCSP through WHILE loops. If the process
being invoked at the tail of an equation branch is not the process being defined, indirect
mutual tail recursion may be happening — for example, the Lift system in Figure 4.4.
Implementing such equations directly using Java recursion and JCSP will lead to stack
overflow. Transforming out the mutual recursion to leave a direct tail recursion (im-

plementable through a loop) will distort the expression of the process and may lead to

Chapter 5 JCSProB: A Java Implementation of B+CSP 70

errors and maintenance problems. Here, we consider two ways to implement mutual tail

recursion directly and with no memory problems.

e The first way is to allow replacing the caller process object P with the callee
process object P’ in the same Java thread container. There is a synchronization
barrier in a thread which is used for inform the environment about the termination
of this thread.

e The second way is to create a new thread container 7" for the new callee process
object P’. The caller process object P and its container thread T' terminate after
the new thread starts. There is also a synchronization barrier in every thread
container. If the current process creates no new process, the thread container calls
the barrier when it terminates. Otherwise, to keep the new thread T’ reachable

for the environment, the synchronization barrier in 7" should be passed to T".

In JCSP, the ProcessManager class, which provides a new thread container, implements
this second solution already. The ProcessManager creates a new thread container to run

a new process. The user needs to call the start method to run a ProcessManager.

In our implementation, we employ the first solution because it creates fewer objects
and is less complex in implementation. To implement each of the two solutions, we
need to have the access of the multi-threading mechanism in JCSP to make the change.

However, this is not so easy to achieve.

As JCSP targets producing concurrent Java programs, it makes use of the Java multi-
threading architecture. JCSP package has a thread class ParThread for running JCSP
process objects. The ParThread class only appears in the Parallel class, which im-
plements the parallel composition of processes. Process classes, and other processes
composition classes, cannot affect the behaviour of their container threads, which means
the idea of replacing the caller process object with the callee process object in a thread
cannot be supported under the current multi-threading architecture of JCSP. Further-
more, not all processes are running in instances of the ParThread class. The core process
of a JCSP program runs in the main Java thread of this program. A direct and easy
solution for implementing the switch between the caller and callee processes is to extend
the ParThread class and implement the existing CSProcess interface with the function
of processes switching inside a thread. This solution would allow us to continue using

the process composition classes provided by JCSP.

However, as the multi-threading of JCSP is not designed to implement the CSP process,
it is not possible to reuse this threading facility to implement the CSP process. The
ParThread class is a package-private class of the JCSP package. It is not allowed to be
accessed from the outside of this package. Although JCSP is an open source package,

it is not feasible to change the existing access control of it. Furthermore, the idea of

Chapter 5 JCSProB: A Java Implementation of B+CSP 71

replacing the caller process object with the callee process object in a thread also cannot
be support by processes composition classes in JCSP, e.g. Parallel and Sequence. The
Parallel class is the only class in JCSP which explicitly use the ParThread class. For
a parallel composition in a process P which includes N processes, the Parallel class
generates N-1 new ParThread threads. It runs the first N-1 processes in the N-1 new
threads, and uses the container thread of the current process to run the last process
Py . All the threads in a Parallel composition share a common barrier. When a thread
finishes the run of the process object it contains, it calls the barrier for synchronization.
After all the threads and the process in the container thread synchronized on the barrier,
the parallel composition finishes. Figure 5.15 shows a parallel composition with three

participating JCSP processes.

—1

<—>e

: %+>

FiGUrE 5.15: Parallel composition in JCSP

If the last process object Py in the parallel composition calls a new process object Py, it
is not correct to use Px to replace the current process in the thread, because the actual
process running in the thread is P, not Py. If Px replaced P in the thread, we would
lose all the information about P, which hasn’t finished yet. Especially, as the barrier
and the parallel composition are defined in process P, the barrier synchronization of
between the parallel processes would also gone, which would leave the runs of the parallel

threads/processes uncontrollable.

Similar problem also can be found in the sequential composition class Sequence. The
Sequence class does not directly access the ParThread class. A sequential composition
in a process P runs the participating composition processes one by one inside itself.
Figure 5.16 shows a sequential composition including three participating processes. If
one of these processes calls a new process object Py, it is also dangerous to use Px to

replace the existing process P in the thread.

Accordingly, the multi-threading architecture in JCSP does not support the idea of
process switching, and the processes composition implementations in JCSP, e.g. Parallel
and Sequence, cannot adopt to the idea either. Therefore, in order to implement the

CSP process with processes switching in Java threads, we need to build new thread and

Chapter 5 JCSProB: A Java Implementation of B+CSP 72

process classes, as well as the processes composition facilities. In Section 5.5.3, new
implementations of the thread and process classes are proposed, and in Section 5.5.4,
the parallel and sequential composition classes using the new thread and process classes

are discussed.

5.5.3 Implementations of the CSP Process in JCSProB

The implementation of the CSP process in JCSProB consists of two parts: an abstract
process class BCSProcess which implements the CSProcess interface of JCSP, and a

thread class RecurThread which is the thread container for the new process class.

In the JCSProB implementation of the CSP process, every process object needs to run
in its own thread container, which is an instance of the RecurThread class. Even for
the core process, the Java program needs to produce an extra thread to run it. The
RecurThread class consists of two fields: one is the BCSProcess process object which
runs in it, and the other is a JCSP Barrier object which needs to synchronize before
the thread terminates. Figure 5.17 demonstrates the state machine of a RecurThread
instance. The constructor of the class passes a barrier object and a process object to
initialize a thread object. When the thread starts running, it calls the run method of
the process object. The run of the process object may produce a new process object. If
there is a new process object, the thread gets the new process and runs it. At the same
time, the previous process object is released to Java garbage collection. If there is no
new process object, the process terminates, and the thread object synchronizes on the

barrier before it finally finishes its run.

The abstract process class BCSProcess has the function of communicating with its thread
container on the new process it has created. When a process object calls a new process
object, it does not directly run the new process. Instead, it passes the new process
object to the thread container. When the run of the current process is finished, the

thread container would checks whether it has produced a new process object.

—TE R = = =

FIGURE 5.16: Sequential composition in JCSP

Chapter 5 JCSProB: A Java Implementation of B+CSP 73

This new implementation of processes allows a process to call a new process, and safely
release itself after the call. Also, as the new process class is an extension of the JCSP
process interface, it can continue working with many JCSP classes, e.g. channel classes,
except the processes composition facilities. In implementation, the BCSProcess class
provides a new callNextProc method for its implementation classes. What the user need
to do is creating a new process object and using it as a parameter to call the callNextProc
method. When the current process terminates, the thread container can get the new
process object and run it. Therefore, the example in Section 5.5.1 is implemented in
JCSProB as:

class P implements BCSProcess{

void run(){
x = a.read();
b.write(x);

callNextProc(new P(a,b));

5.5.4 Sequential and Parallel Composition in JCSProB

The new thread class RecurThread provides a fundamental thread implementation for
the B+CSP process. As the multi-threading mechanism in JCSP does not support this
new implemented thread, we need to build a new one for JCSProB. Process composition
functions, such as parallel composition and sequential composition, are re-implemented

for JCSProB processes and threads.

The parallel processes composition of B4CSP is implemented in the CSParallel class.
For a parallel composition consisting N processes, the CSParallel object generates N
new thread objects of the RecurThread class to run all the N processes. All the new N
threads, and the current thread running the parallel composition, share a barrier whose
counter is set to N + 1. When all the threads terminate, the parallel composition struc-

ture completes its run. Figure 5.18 illustrates a parallel composition of three processes.

getNextProc

T

construct runProc sync

FIGURE 5.17: The state of the RecurThread class

Chapter 5 JCSProB: A Java Implementation of B+CSP 74

This new implementation of parallel composition allows the process objects in all the
parallel threads to be replaced by new process objects, this bypassing the problems of
the Parallel class of JCSP.

FIGURE 5.18: Parallel composition in JCSProB

The new implementation of sequential composition introduces threads, while the JCSP
implementation of it does not create new threads. For every participating process object
in a sequential composition, a new thread container is produced. Every thread container
shares an unique barrier with the core process. Only after a thread terminates and is
synchronized on its barrier, is a new thread started by the composition object. In this
way, the participating processes progress one by one, and the process replacing mecha-
nism in the thread class can be used without collision. Figure 5.19 shows a sequential

composition object of JCSP with three participating processes.

_E —

FIGURE 5.19: Sequential composition in JCSProB

The new thread class RecurThread and abstract process class BCSProcess provide an
implementation of the CSP process, while the original JCSP process implementation
is more close to the semantics of occam-m processes. The new process implementation
BCSProcess provides a method for calling a new process in an existing process, and
supports more flexible recursion structures. Together, the two classes implement the
CSP process and its recursion semantics. The process composition classes implements

the multi-threading mechanism for the implementation of the CSP process.

Chapter 5 JCSProB: A Java Implementation of B+CSP 75

Comparing the cost of this solution with the ProcessManager class of JCSP, the two
solutions produce extra cost on different situations. The JCSProB solution produces one
extra thread container and one extra barrier object for each sequential composition. If
the child process does not have recursion, the extra thread container is actually unneces-
sary. In JCSP, all child processes of a sequential composition just run in the same thread
container. The JCSP solution (ProcessManager) produces one extra thread container
and one extra barrier object at every step of a recursion. If there are more sequen-
tial composition in the system, using ProcessManager would be more efficient; while
if process calls and recursions are more frequently used, the JCSProB solution would
produce less cost. In Section 8.2.5, we will discuss a possible solution to reduce the cost
of JCSProB.

5.6 The State Variable Class

In the B-method, the data transitions of a B operation must be kept atomic in order
to preserve the consistency of the state model. The combined B4CSP model also has
this requirement. The JCSProB packages provides a JespVar class for implementing
this feature in the Java implementation. It explicitly implements an exclusive lock to
control the access to the B variables. Only one event object can have the lock at a time.
This lock is also used for the implementation of multi-way synchronization and guarded

external choice, which is discussed in Section 5.4.

In the implementation of combined B+CSP events, the call on the run method of an
event object is guarded by the lock. An event object needs to obtain the lock before it
can call the run method, and it is also required to release the lock after the run method

finishes.

When constructing a Java implementation from its formal specification, the Jesp Var
class needs to be extended, and all the global B variables should be implemented in the

new constructed class.

5.7 GUI

A Graphical User Interface package (org.dsse.jcsprob.gui) is designed for concurrent Java
programs constructed using the JCSProB package. It is a sub-package of JCSProB, and
consists of a number of Java graphical components corresponding to JCSProB events
and processes. When developing a concurrent Java program using JCSProB, users can
build a graphical interface for the underlying Java program, and use the constructed

GUI to control the execution of the Java program. It also provides runtime checking

Chapter 5 JCSProB: A Java Implementation of B+CSP 76

for invariants of B machines, as well as external programming interfaces for runtime

assertion checking.

In [MK99], most Java examples are presented with GUI. However, those GUI programs
are manually constructed. Although they are used to demonstrate the state models,
there is no formal association between them. In [FCO06], the automated translator for
Circus generates Java programs with GUIL. The GUI program simply presents all Circus

channels as buttons. The system information presented for interaction is very limited.

5.7.1 Overview of a GUI Program

Figure 5.20 demonstrates the structure of a GUI program, which includes four major

parts:
Standard GUI
View
Process
ends of GUI ii
\|JDCSPFOB R GUI Controller
rogram e ———.
o Runtime
ﬁ,esg checking
GUI Program

F1GURE 5.20: The structure of a GUI program

The process end of the GUI programs.
e A GUI controller unit.
e Communication between the the processes end and the GUI controller.

A standard GUI view of the B and CSP model.

Configuration files.

Runtime assertion checking interface.

The modules represented as blues squares are components from the GUI package. The
items in light gray color, including the JCSProB program and the configuration files,
can be derived from combined B+CSP models. The automated translation discussed in

Section 6 provides the mechanism for generating JCSProB programs with the process

Chapter 5 JCSProB: A Java Implementation of B+CSP 7

end of GUI, and the configuration files, which carry further information from the formal

models.

The configuration files, composed in XML, contain various kinds of information, such
as, a succinct version of the CSP specification, runtime assertions, and settings of visual
components. Users are allowed to change some settings in the configuration file to con-
trol the GUI, while many other settings, which concern the expression of B and CSP
models, are not allowed to be changed. The configuration.zml contains the informa-
tion for communication messages between the GUI controller and the process end, and
runtime checking assertions. Generally, communication messages in the configuration
file are not allowed to be changed, unless the user wants to display his own message in
the on-screen log module. For a combined model with the B machine name machine, a
configuration file machine.xml is generated by the translator. It contains the CSP spec-
ification and default GUI settings on the CSP specification. Another configuration file

is machineGUIL xml, which contains the setting for painting the GUI frame and panels.

To construct a GUI program from Java program using JCSProB, the JCSProB processes
are encapsulated in the process end of GUI package. When a JCSProB process tries to
perform certain activities, such as enabling a B+CSP event, making an external choice,
or starting a number of parallel processes, it uses the process end of GUI to communicate
with the GUI controller.

Communication protocols are two-way message passing communications between process
end and the GUI controller. They are also implemented as a part of the GUI package
(org.dsse.jesprob.gui.msg). Each scenario of CSP process or event activities, for example
calling an event, is associated with a certain communicating pattern, implemented both
in the process end and the GUI controller. We use JCSP communication channels to
implement the communication protocols. The detail of these communication protocols

is discussed later in Section 5.7.2.

The GUI controller is the centeral unit of the GUI program as it communicates with all

the other four components of the GUI program.

e The controller reads the configuration file, which contains the specification of CSP
processes, and uses it as guidance for communicating with the process end. As
the CSP specification used by the underlying JCSProB program and the GUI
controller unit are from the same B4+CSP model, it makes sure that the control

unit uses the same communication pattern as the JCSProB program.

e The GUI controller communicates with the GUI view to allow the interaction with
users. It sends information to the GUI view, and receives users commands and

inputs data from it.

e The GUI controller also send out runtime record information to the runtime as-

sertions checking module.

Chapter 5 JCSProB: A Java Implementation of B+CSP 78

The GUI controller provides a number of interfaces for building GUI views. In the GUI
package, we implemented a standard GUI view for all the processes and process opera-
tors. However, using the interface provided by the GUI controller, users can construct

their own GUI views of processes and events.

The runtime assertion checking module can record runtime data about the Java program
through GUI controller. Users can use the configuration file to indicate specific points
where the records are needed, and what kind of information are needed in the records.
With the runtime record information, the checking module can verify assertions upon the
information. In the package, we provide checking for several kinds of assertions. Users
can also add their own assertions and runtime checking programs using the provided

checking interface. In Section 5.7.3, we discuss this function in detail.

With the support of GUI package, the JCSProB program can be regarded as an alter-
native animation tool for B4+CSP models. As the users are allowed to develop their
own GUI view, it is also possible to be used for implementation. Moreover, the runtime
assertion checking module allow users to evaluate some properties of system models,

especially the properties are not easy to specify using B or CSP, e.g. fairness.

5.7.2 The Development of Communication in GUI

The communication between the process end and the controller of GUI is implemented
using JOSP communication channels. The two sides use communication channels to
send and receive messages from each other. The messages sent between them are im-
plemented in a sub-package (org.dsse.jcsprob.gui.msg) of the GUI package. Finally, we
define the communication protocols upon the orders of communicating messages through
communication channels. We developed different protocols for all the CSP semantics
elements that we supported for the translation. In this section, we will demonstrate the

protocol for an event call.

In a JCSProB program, when a process object tries to call a combined B and CSP event,
it calls the ready method of the event object. The ready method may need some input
data, and may produce some output data. To construct a GUI object to control the call,
we need the GUI object to give permission for calling the ready method. That decision
can either be made by GUI itself, or an user action on the GUI. Also, to help the user to
make decision, the user should be informed about the input data before the call, and the
output data afterwards. In the implementation, we use two one-to-one JCSP channels
for communicating between the process end and the GUI: the configure channel is used
to send messages from the process end to the GUI, while the control channel is used for

the opposite direction.

Figure 5.21 shows a very abstract sequence diagram of the calling.

Chapter 5 JCSProB: A Java Implementation of B+CSP 79

The process first sends a message including the input data IN to the GUI through
the configure channel. After that, an action X, which can be an user action or an
internal GUI action, enable the call of the event, and the GUI uses the control channel
to send the action message X back to the process end. Having received the message,
the process would perform the call on the the event using the ready method. When the
synchronization on the event is satisfied, the run method would be processed. So the
event call requires the inpu data IN, and produces output data OUT. After the call
finishes, it encapsulates the output data into a message OUT, and send it back to the
GUI through the configure channel. The CSP specification of this communication model

1S:

System = Actor I GUI I Process(State)

{interaction} {con figure,control}
Actor = interaction!X — Actor

GUI = configure?IN — interaction?X — control!X — configure?OUT — GUI
Process(IN) = configure!IN — control?X — ready.IN.X!OUT — configure!OUT —
Process(OUT)

In the implementation of the process end of GUI, we provide an abstract BGProcess
class. It extends the BCSProcess class, and provides a number of methods for im-
plementing the communication to the GUI controller. For the event call, it provides
channelCall and channelRtn methods for calling an event (channelRtn for calls with
output data). A call ev.zz on an event ev with input data zz, which was translated into
JCSProB without GUI support as:

ev_ch.ready(new Vector (Arrays.asList(xx)));

[] GuUI BGProcess:
x Channel Call
Actor [configure]

ChMessage
<
¢
User Interaction
> [control]
ChMessage
»
[configure] ready()

ChMessage

A

FIGURE 5.21: The GUI communication of event call: level 0

Chapter 5 JCSProB: A Java Implementation of B+CSP 80

would be translated into a call with GUI control as:

channelCall(ev_ch,new Vector (Arrays.asList(xx)));

The communication with GUI is implemented and encapsulated inside the channelCall
method. Therefore, when we try to build a JOSProB program with GUI support,
instead of extending the BCSProcess class, all the process classes should extend the
BGProcess class. Also, when a process class performs process activities, such as calling
events, parallel or sequence compositions, it should make use of corresponding methods
provided by the BGProcess class. As communications with GUI are well encapsulated
inside these methods, a process class with GUI support, which is constructed using the
BGProcess class and its methods, can be built in a similar structure as the process
classes without GUI support, and the Java code is as clean and straightforward as the

latter one. The differences are only on syntax level.

However, apart from the process end, a GUI program is more complex than we illustrated
in Figure 5.21. Two main parts of a GUI program is the GUI controller and the GUI
view. As we aim to separate the implementation of communication protocol from the
implementation of GUI views, giving freedom to the user to implement his own GUI
component, we clearly separate the two parts. The GUI controller provides certain
interfaces and implementation policies for constructing a GUI view module. Figure 5.22
demonstrates an updated version of event calling in the GUI, where the controller and

the view of GUI are separated.

[] GUI GuUI BGProcess:
x Representation Controller Channel Call

[configure]
ChMessage

createChRepr()

User Interaction

[tmpCitrl]

data [control]

ChMessage

[configure]
ChMessage

ready()

[tmpConf]
data

FIGURE 5.22: The GUI communication of event call: level 1

In the Java implementation of GUI, the GUI controller is implemented in an abstract

Java class CtriProc. The CtriProc class provides a number of methods which implement

Chapter 5 JCSProB: A Java Implementation of B+CSP 81

the communication protocol at the controller end. They communicate with correspond-
ing methods in the BGProcess class. For example, for the event call method channel-
Call in BGProcess, which implements the process end of the communication protocol,
the CtrlProc also provides a channelCall method, which implements the controller end.
While the process end is driven by the method calling order in the run method of the
process class, the controller end uses the CSP specification in configuration files to drive
its progress. A call on an combined event ev is recorded in the automatically generated

configuration file as:

<Channel>
<ChName>ev_chclass</ChName>
<I0Type>InCChannel</I0Type>
<ChType>ChannelCall</ChType>
<UserControl>false</UserControl>
<Wait>200</Wait>
<Record>false</Record>
<LogInArgs>true</LogInArgs>
<LogInArgsText>Args In</LogInArgsText>
<LogOutArgs>true</LogOutArgs>

<LogOutArgsText>Args Out</LogOutArgsText>

</Channel>

The XML file not only includes specifications of CSP processes, but also the configuration
for driving the GUI. The <IOType/> element carries the information of input/output
type of the event. InCChannel here means the ev_chclass event only has input data, and
its Java class extends the InCChannel class. The < UserControl/> element contains the
setting for user interaction on the event call. If it is true, user interaction is required
for calling the event, otherwise the event is directly called by the GUI. In some cases,
we may want the GUI to wait a while before it automatically calls an event. So the
< Wait/> element contains the timing for calling the event. The channelCall method of
the CtrlProc class receives the whole < Channel/> element as an parameter, and uses it
to instruct the GUI controller and the GUI view.

The GUI view module of a process should be implemented as a subclass of CtriProc. In
the CtrlProc class, the channelCall method starts the GUI view of event calls by calling
an abstract method createChRepr, which is regarded as an interface for the GUI view
module. The GUI process class should implement this method in order to build GUI view
of event calls. According to the sequential model, which can be used as an instruction

for constructing the create ChRepr method, the implementation of the method should:

1. Display the data of input variables, as well as a GUI component for user interaction

Chapter 5 JCSProB: A Java Implementation of B+CSP 82

2. Capture the user interaction
3. Send the data input by the user interaction to the channel tmpCtrl

4. Receive and display the data of output variables from the tmpConf channel, and
display it.

In our standard GUI view implementation, two labels are used to display the data of
input and output variables, and a button is used for user interaction with the event
name displaying on the button. To activate the call of an event, the user simply clicks
the button. Figure 5.23 illustrates a standard GUI view for calling an event thinking!0.
The Input label here shows the value, 0, of the input argument. The GUI can display
any kind of data through the default toString method supported by all Java objects.

thinking_chclass
hnput:h-nrg 0:0;

butput: No arguments

FIGURE 5.23: The standard GUI view of an event call

Also, the GUI controller is in charge of sending the runtime log to the log module, which
is a component in the GUI frame to display runtime logs, and the runtime record to the
assertion checking module. Therefore, we need to introduce the log module and record
module in this model of event calls. Also, in the XML expression of the event call we
used above, there are several settings, e.g. <Record/> and LogInArgs, for sending out
log and record information. Figure 5.24 demonstrates the new sequence model of event

calls with log and record.

The CSP specification for the final model of this GUI function for event calls would be:

System = Actor I GUI I Process

{interact} {con figure,control}

I Record || Log
{recordOut} {logOut}

Actor = interact!X — Actor

Process(In) = createMsg!In?InMsg — configure/InMsg — control?X — ready.In.X?0ut
— createMsg!Out?OutMsg configure! OutMsg — Process(Out)

GUI = configure?InMsg — logOut!InMsg — getMsg!InMsg?In
— (GUICtrler I GUIRepr(In))

{tmpCtri,tmpConf}

Chapter 5 JCSProB: A Java Implementation of B+CSP 83

GUICtrler = tmpCtri?X_DATA — control!X_MSG — configure? OQutMsg — getMsg?OutMsg!Out
— tmpConf!Out — logOut!OutMsg — recordOut!RcdMsg — SKIP
GUIRepr(In) = display!In — interact?X — GUICtrl!X — SKIP

I GUICHI?Y — tmpCtrl!Y — tmpConf?Z — display!Z — SKIP
{guiCtrl}

Log = logOut?LogMsg — displayLog.LogMsg — Log
Record = record?RedMsg — putRecord. RedMsg — check — Record

If users want to implement their own GUI view for event calls, they should follow the CSP
specification of the GUIRepr(In) process to implement the create ChRepr method. One
notable point in the GUIRepr(In) process is that we actually use two parallel processes
to specify the GUI view: one to create and display the GUI component, and the other
one to handle the interaction. We use a specific process to display the GUI component
because a Java Swing component cannot be displayed properly if its thread blocks. In
this case, if we only use a single process here, it would block on reading from the channel
tmpConyf.

Other process activities, such as parallel composition, external choice, and process calls,
are implemented in the GUI package in very similar ways, but using different GUI

components for interaction.

5.7.3 Runtime Assertion Checking

Generally, there are two kinds of properties for B+CSP models:

[] GUI e On Screen GUI BGProcess:
x Representation Log Controller Channel Call

Actor [configure]
i | | ChMessage

createChRepr()

User Interaction (logOut]
data
[tmpCtrl]
data

[control]
ChM:s g

[configure]
ChMessage

ready()
[tmpConf]
data

[logOut]
data

[recordOut]
data

)

FIGURE 5.24: The GUI communication of event call: level 2

Chapter 5 JCSProB: A Java Implementation of B+CSP 84

e Known properties. These properties, e.g. safety and deadlock, can be checked
in the PROB tool for the B4CSP model. The test on the generated Java pro-
grams checks whether the verified properties are also preserved in the Java im-
plementation. This provides a partial evidence for the correctness of the Java

implementation strategy.

e Unknown properties. For other properties, e.g. fairness, which cannot be spec-
ified or verified in PROB, we provide alternative experimental methods to evaluate
them in the Java programs at runtime. In these circumstances, the generated Java
program runs as simulators for B+CSP models. It produces runtime traces, and

experimentally verifies the properties on these traces.

PROB provides a mechanism for detecting deadlock in the state space. When the system
reaches a state where no further operation can progress, it deadlocks. Stronger liveness
properties, such as livelock-freeness and reachability, are difficult to detect in model
checking, and are not supported by PROB. Fairness, which involves temporal logic, is an
even more complex property for model checking. Many approaches [HOS193, LMCO01,
TS99a] have been attempted for extending model checking of B or CSP specifications

to temporal logics.

The runtime assertion checking module (RACM) in JCSProB is designed to check user-
defined assertions on the JCSProB GUI programs. It receives runtime information
from the GUI controller, and keeps a record of the information. Based on the record

information, the user can define runtime checks user customized assertions.

All runtime records received by the RACM are stored in a sequential-order record log.
Also, each of these records contains runtime information, such as process name, channel
name, and variable values. The RACM dynamically loads several assertion objects at
runtime. The configuration file tells the RACM which assertion objects to load. For each
assertion, users pick up some fields of these information, and compare two records upon
the values of these fields. If two records are equal on all these user-defined information
fields, they are identical. For each assertion, all the unique records defined on these
information fields are the target situations to be discussed. For example, if a unique
record has three instance in the record log, that means the situation happened three

time in the record log. Assertions can be defined on the occurrence of these situations.

The assertions are defined under the Assertions element of the configuration file config-

uration.xzml. Here is an example of a frequency assertion:

<Assertions>
<Assertion>
<AssertionName>Frequency</AssertionName>
<CheckingClass>Frequency</CheckingClass>
<RecordType>

Chapter 5 JCSProB: A Java Implementation of B+CSP 85

<ProcName>true</ProcName>
<ChName>false</ChName>
<ChInArgs>none</ChInArgs>
<ChOutArgs>none</ChOutArgs>
<ProcArgs>1</ProcArgs>

</RecordType>

<AssertionBody>
<Duration>15</Duration>
<Occurrence>3</0ccurrence>

</AssertionBody>

</Assertion>

</Assertions>

For an Assertion element, the structures of the first three sub-elements, AssertionName,
CheckingClass and RecordType are fixed, and the user is only allowed to change the
values of all the fields, whereas the last one, AssertionBody, can be customized by the

user for defining different assertions.

e The AssertionName element provides the name of the assertion.

e The CheckingClass element gives the name of the Java class, which implements
the assertion checking. The implementation class needs to be a subclass of the
JCSProB class Checking. The runtime checking module loads an object of this
class at runtime. In this case, an implementation class, Frequency, implements the

checking algorithm for this assertion.

e The RecordType element defines how the record information be used by this as-
sertion. As most assertions we defined concern fairness properties of the program,
a very common work is comparing two records. In RecordType, the data used for
comparing records are defined. In this example, two records are thought to be
identical when their ProcName are same, and the first of process variables are

equal.

e The AssertionBody element is an user defined element. The user can customize
the data structure of this element for a certain assertion checking class. Also,
the data setting in the assertion data structure can be changed. How to use the
assertion information defined here should be defined in the implementation class

of this assertion, which is discussed later in this section.

The JCSProB package provides an abstract class Checking, which is used to define
assertions. When defining a new assertion, the user needs to implement two abstract
methods, initAssertion and check, from the Checking class. The initAssertion method
takes the XML element AssertionBody from the configuration file, which defines the

Chapter 5 JCSProB: A Java Implementation of B+CSP 86

assertion, as its argument. Inside the method, the user need to assign the structured
data in the element into the form which can be used by the assertion checking. In the

check method, the user needs to implement the assertion checking algorithm.

In the above frequency example specified in XML, the fairness property it tries to tested

1S:

!(i). (i€ ProcID & card(record)>15 =
card(card(record)-15..card(record)<record>{i})>3)

The symbol (i) here means “for all i”, card() is a cardinality operator, and ran() returns
the range of a function. The symbol < represents domain restriction, while the symbol
> represents range restriction. The assertion means that for the last 15 records the
checking module received, all the involved processes should at least progress three times.
In Appendix B.1, the Frequency class is presented. The check method of it implements

the checking algorithm in Java.

The implementation class of runtime checking has a vector of such Checking objects.
After received a new record from the GUI program, it calls the check method of all
these Checking objects. The module also maintains a history of all the checking failures.
When the program exits, all the records and failures information are saved into a log
file.

5.7.4 A Example of the Standard GUI View

The automated translation tool, which is introduced in Section 6.2, can generate neces-
sary files from combined B and CSP models for GUI. The GUI program uses the standard
GUI view as default. Figure 5.25 shows the interface of the translator in PROB. If the
option 'Generating GUI programs’ is selected, the translator would generate JCSProB
programs with GUI support, as well as the three configuration files for guiding the GUI.
Figure 5.26 shows a GUI program directly generated for the wot-no-chicken example
[Wel98].

e The dark gray panel, marked with number 1, is a thread container which represents
a Java thread of the JCSProB program. The blue panel in it is an object of the
GUIProc class, which represents a JCSProB process. This structure simulates the
thread/process structure of JCSProB we introduced in Section 5.5, which means
recursive processes run in the same thread container. A process container contains
a number of light grey internal panels to represents the elements in the expression
of the process. A GUIProc object starts with a button marked with the process
name for starting the process. In this example, it is the button with the text

XPhil_procclass.

Chapter 5 JCSProB: A Java Implementation of B+CSP 87

e The process Phils_procclass, marked with number 2, contains a parallel composition
of several processes. A yellow panel (not very visible in this figure) contains a

number of thread containers for running the process components.

e The buttons with number 3, 4, and 5, demonstrates three states of event repre-
sentation. The light grey button (3) means the corresponding event has not been
called by the GUI, while the dark grey button (5) represents the event which has
been called by the GUI, but still has not responded to the GUI. After the event
completes, the process end sends a message to the GUI, then the button would

turn into orange color (4).

e The text panel marked with number 6 on the figure is the on-screen log module.
It displays all the log information sent by the GUI controller. Users can use the

configuration files to modify the log information displayed here.

e The table component marked with number 7 display the values of B variables.

The values are updated at runtime.

e The table component, which is in a separate frame and marked with number 8,
shows the information of runtime records. The process column display the records
received, which including the process name, the process position from where the
record was sent, and the value of process parameters. The occurrence column
contains two numbers which are separated by a semicolon: the first number is the
occurrence of the record, and the second number counts the violation of runtime

assertions.

e The button marked with number 9 is a two-state button used for user control. The

button is in automatic state as default, which means the GUI can run automatically

een, chef, state

m

T NAT & This function will generate Java programs for combined B and C5P
specifications

wnck]

oON Generate

e := (0..4 Fiun EkistingJaval

™ Mew JCSPraf channels{with JCSF 1.07)

[¥ Generating GLI programs

king(ppl =
SELECT [™ Run the genersted pragiam afterwards
Configure the =L file for GUI displayl
END; Configure the #ML file for process controlin GUI |
thicken (pp) Canfigure the main XML file
ERE pp Display record file
END;

FIGURE 5.25: The interface of translation tool in PROB

88

f B+CSP

101 O.

: A Java Implementat

Chapter 5 JCSProB

D

el doDssepya uayaynab-sseaa0d)y

Log| (zlsseya uayaynai-sse00d ud

0] Qihssepya uayaynab-sseaa0d)y

ziel (elisseaya uayayaeb-sseaoid T ud

0F (lrsselaya uanayaan-gse a0 1y

BiUalnI0 s5a004d

D

<]

<
=
=i

SUBWNALY JNHU| [BULELD 107 4) SSEILTBUMUILE SSERI0IE T IUL AP LSRRG |
SJUaLNiy Indul BUUELD (07 41 SSeayaT AUl sseRaod UG AR LSRRG L
SJUaLNiy Indul BUUELD (07 41 SSeayaT AUyl sseRaod UG DLE LSRRG L
< [suaLnfry ndu| [auueyD (o7) sseyaT Buuylsseand T Iud SLLES RS L

o shey (bsponuoays afessay 'S5 TR |aUUBYD 'SeRad0dd T 1Y dX (558000 T FRI LSRRG
=:{suawnfsy indu) puuey s oz d) ssejauaTiessse000d T K O F RS LSRRG |
0 sy (Fifsmoquagyo shessap 'sseaun Usyaynel jauueys 'seea0dd T Iy dx (558000 PRSI LSRRG
g sy (FiEsmoauooys Biessap 'sselayaTind auueys 'ssepaod T BYD 15580004 PG LGRS L

U =iy (Eifswaquogys efessap 'seeayaTind [auueyD seeaa0d 1By (558000 LTS IFES

Ny SA [

ASW0AUDIYD [BRESSa S50 THO0D BUUEY S 'S5E12000dTJAYD (558001 (06T LG FRIG |

il
Ul sy () Aspoauoys alessa 'Sseya {00 (auuey D 'sseand 18y 0 (5580044 T LEDS FRS L

=:fgjuanily indu| jauuey D oz di sseayaTusy e esea00d T IU K L ag0s RS |

uaaues

laya

R

BERE

MR

[1aels

P = =T e o =1

WERE

EIEEIE

-

*

il 1 I
710 Bay<nds
E TE

I
+ 120 By ssef
I oul uaya|o
“ndyy
t0:0B1y<and ssRpIa0Ud -

M SSE[oya GumuLy

»
andmo suawnfiie oy ndmng
: 0 fg<indug L 2o Bag<ndug 133010 IdX
_ SSEOY0T 2R SERfIT Hayoyael
I»]
ndin

swawniie on andin

aUjH R UBYAIY 3 10 [N9D 5 [ND mo_n_mu_.ﬁ

in PROB

ion tool

interface of translat

26: The

FIGURE 5

Chapter 5 JCSProB: A Java Implementation of B+CSP 89

without user interaction. When the button is pressed, it changes to manual state,

in which the user has to manually drive the GUI.

Chapter 6

Translation from B+CSP to Java

The JCSProB package provides basic facilities for constructing concurrent Java appli-
cations from B4+CSP models. However, there is still a big gap between the combined
specification and its Java implementation. Manually constructing the Java implemen-
tation is still very complex, and cannot guarantee the Java application correctly imple-
ments its formal model. To close the gap, a set of translation rules are developed to
provide an explicit connection between formal models and the target Java code. The
translation rules can be recursively used to generate a concurrent Java application from
a B4+CSP model. In Section 6.1, we discuss a number of translation rules concerning
the translation of CSP processes. An automated translation tool, which implements the
translation rules, is also developed as an extension of the PROB tool. It can save effort
and avoid careless errors that are very common in writing code. In Section 6.2, the tool

is discussed in detail.

In Appendix A, more translation rules are presented.

6.1 Translation Rules

To define the translation rules T, we first use the BNF (Backus Naur Form) notation
to define a subset of the B4+CSP specification language that can be implemented in
the Java/JCSProB programs. The translation uses language elements in the definition
of the two specification languages, and specifies their translation to Java code. In the

translation rules:

e The items with fat font in translation rules, e.g. GuardsList, are names of

translation rules.

e The items with italic font, e.g. Chs, are language elements from B+CSP specifi-

cations.

90

Chapter 6 Translation from B+CSP to Java 91

e The items with type writer font are terminals, which are Java code. The symbols
from Java code are marked with single quotation marks, e.g. ¢;’, in order to avoid

confusion with BNF symbols.

To understand a translation rule, users need to refer the B+CSP language elements
involved, as well as the rule itself. For example, the following translation rule generates

a Java class for a B set definition:

Rule 2.1. BSetClass|BSet| =
PackageDef
ClassHeader
public enum Print[BSetName| ‘{’
Print[Iden)t"
‘)

B+CSP: BSet - BSetName' = {' Iden™"" 'Y

O

The name of the rule, BSetClass| BSet] is defined first, between the rule number Rule
2.1, and the symbol =. After =, the rule body, which defines how to translate the rule,

is given. The rule body can include:

e Names of other rules, such as ClassHeader, which can be further translated

using their rule definitions.
e Terminals, such as public, ‘{’.

e Extended BNF notations, such as +. Print|[Iden | +" here means that the rule
can be applied more than once, but each of them needs to be separated by a ’,".

The additional B+CSP language definition after the main rule body, labelled as B+CSP,
provides information of formal models involved in this translation rule. However, in some
cases, the language definition of B4CSP cannot clearly provide enough information for
the translation. To make the translation rules more explicit, supplements are introduced
to express the information which cannot be easily specified in the BNF definition of
B+CSP. For example, in the Java implementation of external choice, a Java switch

statement is used to express all the choice pathes:

Rule 3.6.10.3. Choice|ProcBPrefiz*| =
case Integer ‘:°

ChoiceRtnEv|ProcBPrefiz]

Chapter 6 Translation from B+CSP to Java 92

| ChoiceRtnEvValue| ProcBPrefiz|
| ProcE[ProcBPrefiz]

break®;’
(};

CSP: ProcBPrefir - ChCall — ProcB

Supplement: When C'hCall is a B+CSP event without output data, choose ChoiceRtnlEwv
Supplement: When ChCall is a B+CSP event with output data, choose ChoiceRtnEvValue

Supplement: When C'hCall is a CSP communication channel, choose ProclE

Supplement: The rule Integer provides various values for all different repeatable in-

stances of ProcBPrefiz. It starts with 0, increasing by 1 each time.

O

The integer numbers next to each case statement should increase each time when the
rule is applied, but it is fairly hard to express this in the BNF definition of B+CSP. With
the supplement in this rule, we can explicitly instruct users on how to correctly make
use of the translation. Accordingly, the translation rules Tr are defined as a conversion

from B+CSP specification languages and additional supplements S to Java programs:

B+ CSP :gTr Java/JCSProB

The translation rules have two translation modes: without-GUI and with-GUI. In the
translation rule definitions, the elements marked with [NoGU I| are used only in without-
GUI mode, while those elements marked with [GUI] are used only in with-GUI mode.
For example, Rule 3.6.9.6 is designed for translating the channel input of a communica-

tion channel:

Rule 3.6.9.5.1. CommChannelRead[InputCh| =

{ ProcVarName[Var| ‘= ChObjName[ChName| ¢.’read);’ }noqun

| { ProcVarName[Var| >=’ channelRead‘(’
ChObjName[ChName] < ,"’ ChObjName[ChName]

)57 Yeun

CSP: InputCh = ChName ?’Var

O

In the without-GUI mode, the first line of this rule marked with /[NoGUIJ is applied.
The rest part of this rule, marked with [GUI], is applied in the with-GUI mode. The
mode options serves as a static environment setting for the translation. When users start
to employ the translation rules for generating Java programs, they must first define the

translation mode they want, and then apply it all through a translation run.

Chapter 6 Translation from B+CSP to Java 93

The translation rules of without-GUI mode mainly consists three rule sets:

e Rules for generating process classes
e Rules for generating channel classes

e Rules for generating B variable classes, invariants and assertions

The translation rules set with GUI have a set of translation rules for generating config-

uration files for GUI, as well as three corresponding rules sets of the three ones above.

6.1.1 Translation Rules for Processes

Processes are elementary structures for both CSP models and JCSProB programs. The
translation rules for processes provide the regulations for constructing and composing
JCOSProB processes classes from CSP process specifications. In this section, we go over

some essential rules for translating process classes.

Rule 3.1 shows the translation rule for producing a process class from a CSP process. A
named CSP process specification Process is implemented to a Java class which extends
the BCSProcess or BGProcess class of JOSProB.

Rule3.1. ProcessClass| Proc| =

PackageDef
ClassHeader
public class ProcClassName|ProcName| extends
{BCSProcess}noquy | {BGProcess}iquy ‘{’
ProcChsDecl| Chs|
ProcVarsDecl| Vars]
ProcConstructor
ProcRun| ProcBody|
e
B+CSP: Proc - ProcHeader ‘=" ProcBody
B+CSP: ProcHeader = ProcName {‘(’VarsList’)’}
Supplement: Chs consists of all the channels/events called by the process, or its sub-

process

Supplement: Vars consists of all the variables used in the process

O

A CSP process may include a number of variables. In its Java implementation, these pro-

cess variables are translated into variables of the process class. Rule 3.3 ProcVarsDecl

Chapter 6 Translation from B+CSP to Java 94

is designed for generating declarations for these variables. Also, a process and its sub-
processes may call both combined B+CSP events and CSP communication channels.
Rule 3.2 ProcChsDecl (Section 6.1) and Rule 3.2.1 ProcChDecl is for generating

the declaration of channels/evnets.

Rule 3.2. ProcChsDecl| Chs| = ProcChDecl| Ch|*

B+CSP: Chst Ch*

Rule 3.2.1. ProcChDecl|[Ch| =

ChannelType[Ch| ChObjName[Ch| ¢;° O

The rule Channel Type called in Rule 3.2.1 returns the type information of a channel.
The typing here need not to be an implementation channel class. For combined B4+CSP
event, it returns the abstract class which provides ready methods, while for JCSP com-
munication channels, it returns the interfaces of channel input and output. The rule

ChannelType is presented in Section 6.1.3.

A JCSProB process class gets references of channel/event objects and input variables
from the environment. Therefore, when a process object is constructed, this information
needs to be assigned to it. Rule 3.4 generates the constructor method of a process
class. The required information from the environment are assigned to the process in the

constructor.

Rule 3.4. ProcConstructor =

Print| ProcName] ¢_’procclass‘(’
ProcChsTypelList| Chs| ¢,
{ChannelOutput conf ‘,’}quy
ProcVarsTypelList| Vars|){’
{super O “;’ }nogur) | { super(conf) ;> }iquy
ProcChsAssign| Chs|
ProcVarsAssign| ExtVars|
4 })
B+CSP: ProcHeader - ProcName {‘(’VarsList‘)’}
Supplement: Chs is all the channels/evnets involved in this process or its sub-processes.
Supplement: Vars is all the variables involved in this process.
Supplement: FExtVars is all the external variables in VarsList of the ProcHeader defini-

tion.

O

Chapter 6 Translation from B+CSP to Java 95

The constructor method obtains the references of channel/event objects, and values of
variables from parameters of the method. Rule 3.4.1 ProcChsTypelList prints out the
list of channel/event objects, and Rule 3.4.2 ProcVarsTypelList provides the list for
input variables ExtVars. Inside the method body, the external object references or values
are assigned to their internal counterparts. Here, the rule for translating assignments of

channels/events is presented:

Rule 3.4.3. ProcChsAssign| Chs| = ProcChAssign| Ch|*

Supplement: Chs is all the channels/evnets involved in this process or its sub-processes.
Supplement: Chs - Ch*

O

Rule 3.4.3.1. ProcChAssign|Ch| =

this‘.> ChObjName[Ch| = ChObjName[Ch| *;° O

Above rules, from Rule 3.2 to Rule 3.4, focus on making all the data and channel /event
references ready. The execution sequences of a process, which is expressed in ProcBody
(refer to Rule 3.1 for the definition), is translated into the run method of the process

class. Rule 3.5 ProcRun is designed for generating the run method.

Rule 3.5. ProcRun|ProcBody| =

public void run‘(){’
{this‘.’creatGUIProc‘();’ }icuy
{start‘ O;’ }qur
ProcE| ProcBody|
{end‘ O ; ’}[GUI}
¢ }) D

Rule 3.6 ProclE appeared in the above rule is an important rule for process expressions.

It generates all the CSP process expressions supported by the B4CSP specification.

Rule 3.6. ProcE|ProcB| =
ProcEParallel] ProcBParallel |
| ProcEReplParallel] ProcBReplParallel |
| ProcElInterleave| ProcBInterleave]
| ProcEReplInterleave| ProcBReplInterleave]
| ProcESequence| ProcBSequence |
| ProcEIfThen|ProcBI fThen|

Chapter 6 Translation from B+CSP to Java 96

| ProcEPrefix|[ProcBPrefix]

| ProcEChoice| ProcBChoice]

| ProcEReplChoice| ProcBReplChoice]
| ProcECall] ProcBCall |

B+CSP: ProcBody v ProcBParallel
| ProcBReplParallel
| ProcBlInterleave
| ProcBReplInterleave
| ProcBSequence
| ProcBIfThen
| ProcBPrefix
| ProcBChoice
| ProcBReplChoice
| ProcBCall

O

When using this rule, we first need to check the BNF definition of ProcB to find the pat-
tern of the current CSP process expression. For example, if the current CSP expression
matches ProcBParallel in the definition of B4+CSP, the translation rule ProcEParallel
[ProcBParallel| would be applied here. Many process expression rules are appeared in
Rule 3.6, but we only continue the discussion of these rules with one particular rule for

parallel composition. Other rules can be found in Appendix A.

Rule 3.6.1. ProcEParallel| ProcBParallel | =
ParaChsNums|Chs]|
{ new CSParallel’ (’ }noquy | { parallelCtrl’(" }igup
{ new BCSProcess’ [1{’ }yoquy | { new BGProcess’ [1{’ }iqup
CallProc[Proc|*"”
3%
{).run’ O Yvocun [{757 Heun

B+CSP: ProcBParallel - Proct'I
Supplement: Chs includes all the B+CSP events that have multi-way synchronizing

Supplement: Procs includes all the process in the parallel composition

O

The translation of parallel composition starts with defining numbers of processes syn-
chronizing on shared events. A shared event needs this number for counting down the
synchronization barrier. Rule 3.6.2 is designed for calling a special method inc_syn_procs_no

to increase the barrier number.

Chapter 6 Translation from B+CSP to Java 97

Rule 3.6.2. ParChsNums| Chs| = ParChNums| Ch|*

Supplement: Chst Ch*

Rule 3.6.2.1. ParChNums|Ch| =
ChObjName[Ch| . inc‘ ’syn‘_’proces‘_’no‘ (’ Integer ’);’

Supplement: Rule Integer here should be the number of processes which synchronize
on the event Ch.

O

The other translation rule referred in Rule 3.6.1 is CalllProc, which translates the call
on a new process object. As this rule involves many other rules, we do not discuss it

here in detail. If interested, please refer to Rule3.6.4.1 in Appendix A.

Also in Rule 3.6.1, the without-GUI and with-GUI modes generate quite different Java
code. In the without-GUI mode, a new CSProcess object is built upon an array of
BCSProcess objects, while in the with-GUI mode, the parallelCtrl method provided
by the BGProcess class is called, and an array of BGProcess objects is passed to the
method as a parameter. However, although the target Java codes are different, the ways
in which they apply translation are similar, which means they call same translation
rules and use these rules in a similar structure. In this case, the two modes both use
rules ParChNums and CallProc, and the ways they apply these rules are identical.
Therefore, the differences of the two modes in the translation are just on the syntax

level.

6.1.2 Translation Rules for Events

The translation rules for generating event classes obtain most information from the B
part of the combined specification. Rule 4.1 is designed for generating the main structure

of an event class.

Rule 4.1. EventClass|Ev| =
PackageDef
ClassHeader
public class EventClassName[Ev| extends EventType|[Ev]| ‘{’
MachName*_’machine var‘;’
EventVarsDecl| BOpVars]|
EventConstructor|Ev |

Chapter 6 Translation from B+CSP to Java 98

{EventInputMethod|BInVars|}

{EventOutput Method[BOutVars|}

EventRun|[BOpBody |

{EventPrecondition| BOpBody |}

« })
B: EvF BOutVars «— EvName'('BInVars') BOpBody
Supplement: BOpVars = BOpInV arsBOpOutV arsy
O

In Rule 4.1, the rule EventVarsDecl[BOpVars| produces the Java code for declaring
event variables. The type information of all the B variables is defined as type invariants
inside the INVARIANTS clause of a B machine. In Rule 4.2, the type of a B variable
is obtained from the rule BVarType[BOpVar|.

Rule 4.2. EventVarsDecl|BOpVars| =
{BVarType[BOpV ar|Print[BOpVar|} "

B: BOpVars - BOpVart"'

O

Also in Rule 4.1, the rule EventInputMethod| BInVars| prints out the Java method
assign_input, which is used to assign input data to the event variables, and the rule
EventOutputMethod| BOutVars| generates the method make_output for outputing
data from event variables. The constructor method of an event class is generated by

Rule 4.3 EventConstructor|Ev]|. All the three rules are presented in Appendix A.

The run method of an event class implements the data substitutions inside the B op-
eration of the combined event. Rule 4.6 EventRun|[BOpBody]| is defined to generate

the run method.

Rule 4.6. EventRun|BOpBody| =

protected synchronized void run‘(){’
BeforeStateVars| StateV ars |
BSubstitution|BSub|
var‘.’check‘();’
{ varsPanelsStore‘.’getInstance‘ (). ’getPanelInstance‘ (’

‘> MachName ‘") . refresh‘();’ }qup
¢ } ’

B: BOpBody - BSub

Chapter 6 Translation from B+CSP to Java 99

Supplement: Vars consists of all the state variables

O

The rule Before$tateVars[StateVars| declares copies of all the state variables of
the B machine. These copies represent the system state before performing the data
substitutions. In the implementation of the data substitutions, the real state variables
can only appear on the left side of the data transitions, whereas the state copies can only
appear on the right side. Rule 4.6.2 BeforeStateVar[StateVar| provides different
options for different types of state variables, as the Java code for making a copy of an

existing object can be different.

Rule 4.6.1. BeforeStateVars[Vars| =
BeforeStateVar|[Var |*

Supplement: Vars includes all the state variables: Vars - Var*

Rule 4.6.2. BeforeStateVar[Var| =
BType|Var|Print[Var| ‘=’
BeforeStateVarPSet[Var |
| BeforeStateVarArray|[Var |
| BeforeStateVarRelation|Var |
| BeforeStateVarAssignObj[Var|

€.
’

Supplement: If Var is a B set, BeforeStateVarP$et
Supplement: If Var is an array, BeforeStateVarArray
Supplement: If Var is a relation, Before$tateVarRelation

Supplement: Otherwise, BeforeStateVarObj
O

The rule BSubstitution|BSub| used in Rule 4.6 generates the Java code for imple-
menting B substitutions. All the supported B substitutions in the translation can be
found in this rule. The unsupported substitutions are not included in the translation for
different reasons. For example, the WHILE loop is not here because it is not supported
by PROB, and the SELECT is too abstract and non-deterministic to be implemented
in concrete programs(Use IF or PRE instead!).

Rule 5.1. BSubstitution|BSub| =
BSubstitutionPrecondition| BSubPrecdtn |
| BSubstitutionBegin|BSubBegin |
| BSubstitutionVar|BSubV ar|

Chapter 6 Translation from B+CSP to Java 100

| BSubstitutionParallel] BSubPar |

| BSubstitutionBeEqual[BSubBeq|

| BSubstitutionlf] BSubl f |

| BSubstitutionBeEqualFunc| BSubBeqFunc|
| BSubstitutionAny|BSubAny |

B: BSubF
BSubPrecdtn
| BSubBegin
| BSubVar
| BSubPar
| BSubBeq
| BSubI f
| BSubBeqFunc

6.1.3 Translation Rules for Integration

The B and the CSP are connected on combined B4+CSP events. The translation rules
concerning the combined event usually obtain information from both sides. In Rule 7.2.1
and Rule 7.2.2, the main rule bodies provide all the possible outputs from applying the
rules. It is the supplements in these rules that actually instruct users on how to determine

the outputs from applying these rules.

Rule 7.2. ChannelType[Ch]| =
EventType[Ev| | CChType| CCh]

B+CSP: Ch - Ev | CCh

Rule 7.2.1. EventType|Ev| =
CChannel | InCChannel | OutCChannel | OutInCChannel

Supplement: If the combined event Ev has no data flow between B and CSP, returns
CChannel. (CSP: ch B: op)

Supplement: If the combined event Ev only has input data, from the CSP channel to the
B operation, returns InCChannel. (CSP: ch'VInVars B: op*('InVars))
Supplement: If the combined event FEv only has output data, from the B operation to the
CSP channel, returns OutCChannel. (CSP: ch‘?”OutVars B: OutVars < op)

Chapter 6 Translation from B+CSP to Java 101

Supplement: If combined event Ev has both input data, from CSP to B, and output data,
from B to CSP, returns OutInCChannel. (CSP: ch'!InVars?OutVars' B: OQutVars «—
op‘('InVars))

O

Rule 7.2.2. CChType|[CCh| =
ChannellInput | ChannelOutput | ChClassName[CCh|

Supplement: If the process only read from channel CCh, returns ChannelInput.
Supplement: If the process only output to channel CCh, returns ChannelOutput.
Supplement: If the process and its sub-processes both read and write to channel CCh,
returns the channel class name using rule CChClassName[CCh|.

O

Rule 7.2.2 returns the implementation class for the CSP communication channels; thus
it only concern the CSP part. Rule 7.2.1 is one of the rules which concern both the B
and the CSP parts. Choosing an implementation class for the combined B4CSP event is
based on the data flow between the B operation and the CSP channel, which is defined
in the restricted semantics of B+CSP. The supplements of Rule 7.2.1 use both the B
and the CSP syntax, and combine them together for the translation. They implement

a part of the B+CSP semantics in the translation.

6.2 Translation Tool

The automatic translation tool is constructed as an extension of the PROB tool. It is
also developed using SICStus Prolog, which is the implementation language of PROB.

The translation tool has two main functions:

e Preprocessing. The translation tool first gets information of a combined B+CSP
model, and transforms it into an information structure which is more accessible in

the translation.

e Translation. The translation tool implements the translation rules, and translates

the model information into Java programs.

In PROB, a B4+CSP specification is parsed and interpreted into Prolog clauses, which
express the combined specification. As the translation tool works in the same environ-
ment as PROB, it acquires information on the combined specification from these Prolog

clauses, and translates the information into Java programs.

Figure 6.1 illustrates how PROB parses and interprets B and CSP specifications, and
where the translator lies in PROB. The B part and the C'SP part of the combined

Chapter 6 Translation from B+4-CSP to Java 102

specification are stored in separate files. The PROB tool first carries out syntax analysis
on the two specifications. A CSP parser parses the CSP specification into a parsed tree
structure, while the JBTools package [Bru01] is employed to translate B notations into
XML format. After that, the CSP interpreter, CIA (CSP Interpreter and Animator)
[Leu01], converts the parsed trees of CSP processes into a Prolog fact agent/2. The first
parameter of agent/2 provides information of the process name. The second parameter
represents the process definition. On the other hand, the Pillow package [CHO1] is used
to convert the XML representation of B specifications into a series of Prolog clauses.
Pillow is an external Prolog program, which provides certain methods to access XML
files by translating XML into Prolog clauses. Finally, the PROB interpreter takes Prolog
clauses of the two specifications and produces new Prolog clauses which expresses the
semantics of the combined B+CSP model.

The translation tool obtains semantic information from Prolog clauses of the combined
model. It also builds some new Prolog facts, which are transformed from clauses of the
B+C'S P specification. For example, in PROB, the Prolog rule b_get_machine_variables/1
in the bmachine module of PROB can return names of all the B variables. However, the
data type information of these variables are mixed in the invariant, which can be ob-
tained from calling the b_get_invariant_from_machine/1 rule from the bmachine module.
Also, the initialization of these variables is in the INITIALISATION statement of a

CsP

spec B spec

v

CSP Parser

jbTools, the B
Parser

CspP B Parse
Parse Tree in
Tree XML

Java
Programs CIA, the CSP Pillow, the B

Interpreter Interpreter

CsP
spec in
Prolog

B spec
in
Prolog

clauses

clauses

The JCSP
Translation
Tool

ProB Interpreter

Information of
the combined B
and CSP
models

The state model
of the combined B
and CSP spec

FIGURE 6.1: The parsing and interpretation in PROB

Chapter 6 Translation from B+CSP to Java 103

B machine, which can be obtained from calling the b_get_initialisation_from_machine/1
rule. However, the invariant and initialization information obtained from calling these
rules are in complex tree structures which are not very straightforward for the transla-

tion. Therefore, we build two new Prolog facts from these rules.

e jcsp_b_vars_types/2. This fact contains two arguments: the variable name, and

its typing.

e jcsp_b_vars_inits/2. This fact contains two arguments: the variable name, and

its initialization values.

The preprocessed information are more accessible and easier to use in the translation.
In some cases, the preprocessing step even implements some fundamental translation
rules. In the above example, the data type information stored in jesp_b_vars_types/2 is
actually the corresponding Java typing of variables, which means the translation rule

Type is partially implemented in the preprocessing step.

When the information of combined models is ready, the translation tool starts to generate
Java programs according to the translation rules. As we discussed in Section 6.1, the
translation rules are expressed in BNF-like production rules. The Prolog language,
which is a declarative logic language and is based on mathematic logic and inference, is
very appropriate for expressing such a kind of logic rule. Especially, the Prolog rules,
which are also inference rules, can implement the translation rules in a straightforward
way. In the development of the translation tool, there are correlations defined between
translation rules and Prolog rules. For example, in Section 6.1.1, we gave the (Rule 3.5)

ProcRun for translating the run method of process classes.

Rule 3.5. ProcRun|ProcBody| =

public void run‘(){’
{this‘.’creatGUIProc‘ O);’ }iqun
{start‘ O;’ }qur
ProcE[ProcBody |
{end“ O }ieur
) }) D

In the translation tool, there is a corresponding Prolog rule for implementing this rule:

print_jcsp_process_class_run(Proc,ProcBody) :-
jespprint(1,’public void run(){’),nl,
(withGUI ->
(

Chapter 6 Translation from B+4-CSP to Java 104

jesp-print (2, ’this.createGUIProc();’) ,nl,
jesp-print(2,’start();’),nl,
print_jcsp_process_run_proce(Proc,ProcBody,2),
jcspprint(2,’end();’),nl

)3

print_jcsp_process_run_proce(Proc,ProcBody,2)

),
jespprint(1,’}’),nl.

The correlation of the two rules are quite obvious. The Prolog rule jcsp_print/2 is

used for printing out a string with certain indention. For example, a query of the rule
jcspprint(2,’start();’)

would print out the string >start () ;’ with the indention of two tabs. The special fact
withGUI contains the information of whether the translation is in the with-gui mode.
Also, readers may quickly start to presume that the Prolog rule print_jcsp_process_run_proce/2
is the implementation of Rule 3.6 ProclE. For most translation rules, such correspond-
ing Prolog rules can be directly recognized. However, for some rules which are partially
implemented in the preprocessing step of the translation tool, the correlation may be

not so easy to identify.

Accordingly, as there is tight correspondence between the translation rules and the
Prolog rules of the translator program, the correctness of the translation tool heavily
depends on the correctness of the translation rules. For each translation rule, if we can
make sure the corresponding Prolog rules produce the same output as the translation

rule, then we can say the translation rules correctly implements the translation rule.

6.3 Translation of External Choice

In this section, we use the translation of external choice to demonstrate the translation
procedure. The translation rule of external choice, as well as the Prolog rules, are
discussed. We also use a toy example of external choice to test the translation, and the

generated Java code is presented.

A simple process Breakfast has a data Egg as its process parameters. The process needs

to make choice on two events fry and boil. The C'SP specification of this toy example is:
Breakfast(Eqg) = fry.Egg — Breakfast(Egg) O boil. Egg — Breakfast(Eqg)

In Section 5.4, we discussed the implementation of external choice for the B4-CSP event.

The ready state of a combined event is resolved not only based on the processes that

Chapter 6 Translation from B+CSP to Java 105

synchronize on the event, but also depends on the precondition of the event. Therefore,
the value of input parameters are also required for resolving the choice. Rule 3.6.10

represents the main translation rule for external choice.

Rule 3.6.10. ProcEChoice|ProcBChoice| =

BCSPGuard’[]1’ in ’={’ GuardsList[ProcBPrefiz*| ’};’
Vector’<’Vector’<’0Object’>>’ choiceVec
= new Vector’<’Vector’<’0Object’>>();’
ChoiceValueAssign| ProcBPrefiz*]|
{ Alter alt ’=’ new Alter’(’in’,’ choiceVec’);’
switch’ (*alt.select’ (){’
Choices| ProcBPrefiz*]

'} Hvecu

| { switch’ (’choiceCtrl’(’in’,’ choiceVec’)){’
Choices|ProcBPrefiz*]

'} heun

B+CSP: ProcBChoice & ProcBPrefix {’[| ProcBPrefix}*

O

The translation rule first uses the rule GuardsList to construct an array of guards in,
which includes the first events of all the possible choice pathes. After that, it introduced
a Java Vector object choiceVec for keeping the values of all the input arguments of
these events. In the without-GUI mode, the two objects are used to construct an Alter
object, whose select method actually returns decision of the external choice. In the
with-GUI mode, the two objects are passed to the choiceCtrl method of the BGProcess
class for choice decision making. The definitions of the sub-rules, e.g. Choices, can be

found in Appendix A.

Based on the translation rules of external choice, a number of Prolog rules are imple-

mented:

print_jcsp_process_run_proce(Proc,choice(TransA,TransB) ,N) :-
jespoprint (N, >’BCSPGuard[] in =),
retractall (jcspcommasymbol),
print_jcsp_process_run_proce_choice_guard list(TransA,TransB),
jcsp-print (N, ’Vector<Vector<Object>> choiceVec

= new Vector<Vector<Object>>();’),nl,

print_choice_value_assign_trans(TransA,N),
print_choice_value_assign trans(TransB,N),

print(’;°),nl,

Chapter 6 Translation from B+4-CSP to Java 106

(withGUI ->
print_jcsp_process_run_proce_choice_with_gui(TransA,TransB,Proc,N);
print_jcsp_process_run_proce_choice(TransA,TransB,Proc,N)

).

print_jcsp_process_run_proce_choice with gui(TransA,TransB,Proc,N) :-
jespprint (N, ’switch(choiceCtrl(in, choiceVec)){’),nl,
print_jcsp_process_run_proce_choicewith_gui_trans(TransA,Proc,N+1,0),
print_jcsp_process_run_proce_choice with gui_trans(TransB,Proc,N+1,1),
jespprint(N,’}’),nl.

print_jcsp_process_run_proce_choice(TransA,TransB,Proc,N) :-

jcsp-print (N, ’Alter alt = new Alter(in,choiceVec);’),nl,

jesp-print (N, ’switch(alt.select()){’),nl,

print_jcsp_process_run_proce_choice_trans(TransA,Proc,N+1,0),

print_jcsp_process_run_proce_choice_trans(TransB,Proc,N+1,1),

jespprint(N,’}?),nl.

In PROB, the choice pathes are parsed and stored in a tree structure. For example, a

external choice on three choice pathes

ProcA O ProcB O ProC

would be expressed as:

choice(ProcA,choice(ProcB,ProcC))

Therefore, the Breakfast process we specified above would be transformed by the CSP

interpreter into the following form:

choice(
prefix([out(term(Egg))],fry,agent_call(a Breakfast(Egg))),

prefix([out(term(Egg))],boil,agent call (a_Breakfast(Egg)))

The rule head of print_jcsp_process_run proce can capture this tree structure with
its second argument choice(TransA,TransB). Also, the following rules, which make
use of TransA and TransB, recursively explore the tree structure to access all the chioce

pathes.

e The Prolog rule print_jcsp_process_run proce_choice _guard_list implements
the translation rule GuardlList. It explores all the choice paths, and prints out

an event list including the first event of all the choice paths.

Chapter 6 Translation from B+4-CSP to Java 107

e The rule print_choice_value_assign_trans, which implements the translation
rules ChoiceValueAssign, explores the tree structure of all the choices, and
prints out the Java code for add the values of the first events of all the choice

pathes.

e Similarly, the rule print_jcsp_process_run_proce_choice with_gui_trans and
print_jcsp-process_run_proce_choice_trans also explore the choices tree, and
generate all choice pathes in a Java switch statement. These two Prolog rules

implement Rule 3.6.10.3 Choices, which is presented in Section 6.1

Giving the parsed tree of the Breakfast process in without-GUI mode, the above Prolog

rules would generate the following Jave code:

PCChannel[] in = {fry._ch,boil _ch};

Vector<Vector<Object>> choiceVec = new Vector<Vector<Object>>();
choiceVec.addElement (inputVec(new Object [1{proc_index_a}));
choiceVec.addElement (inputVec(new Object [1{proc_index_a}));

Alter alt = new Alter(in,choiceVec);

switch(alt.select()){

case 0 : callNextProc(new Breakfast_procclass(fry_ch,boil ch,proc_index_a));
break;

case 1 : callNextProc(new Breakfast_procclass(fry_ch,boil_ch,proc_index_a));
break;

In the GUI mode, the translator generates a slightly different Java code:

PCChannel[] in = {fry_ch,boil ch};
Vector<Vector<Object>> choiceVec = new Vector<Vector<Object>>();
choiceVec.addElement (inputVec(new Object []{proc_index._a}));
choiceVec.addElement (inputVec(new Object []{proc_index._a}));
switch(choiceCtrl(in,choiceVec)){
case 0 : choiceRtn(frych);
nextProcRtn(new Breakfast_procclass(fry_ch,boil_ch,proc_index.a));
break;
case 1 : choiceRtn(boil_ch)
nextProcRtn(new Breakfast procclass(fry_ch,boil_ch,proc_index.a));

break;

Chapter 7
Experimentations

In this section, experimental evaluation of the whole development strategy from B4+CSP
to Java is discussed. We first test the expressivity of the restricted B+CSP semantics,
and syntax coverage of the translation by applying different syntactic structures to
construct various formal models. The generated Java programs are tested, and compared

with their formal models.

An important experimentation is to evaluate different kind of properties on the Java
programs generated from B+CSP models. The known properties, which can be verified
in PROB, are also evaluated in the generated Java programs at runtime. Then the
runtime checking result is compared with that from the PROB model checking on the
B-+CSP model. For the properties which are not so easy to express in B+CSP or cannot
be verified in PROB, we specify them as runtime assertions, and design runtime assertion
checking for them. The example in Section 7.1 shows how the invariant check works for
the JCSProB package. In Section 7.2, we construct several models from Wot-no-chicken

example to demonstrate the user-defined assertion checking.

Another target for the experimentations is to evaluate the scalability issue of this work.
One import aspect for scalability here is on the composition/decomposition of the
B-+CSP model and its Java implementation. Currently, the composition rules for the
combined B4+CSP model has not been developed. The compositional examples in Sec-
tion 7.3 practically shows a possible composition style for B4CSP models. There are

no formal rules to back this composition attempt.

7.1 Invariant Check: Simple Lift Example

Figure 7.1 presents an abstract lift model. We use this simple example to demonstrate

the implementation of invariant check for JCSProB programs.

108

Chapter 7 Experimentations 109

MACHINE lift
VARIABLES level
INVARIANT level : NAT & level > 0 & level < 10
INITIALIZATION level := 1
OPERATIONS
inc = BEGIN level := level + 1 END;
dec = BEGIN level := level - 1 END
END

MAIN = inc — inv_check — MAIN [] dec — inv_check — MAIN ;;
FI1GURE 7.1: Combined Specification of lift

Invariants in a B machine demonstrate safety properties of the system model. In the
PROB model checking, B invariants are checked on all the states of the system. The
violation of the invariants indicates an unsafe state of the system model. The runtime
invariant check in the target Java programs can be used to demonstrate the generated
Java program preserves the safety properties, which are specified in the invariant of its

formal model, in the current trace.

The invariants supported by the translation are mainly from the B0 language condi-
tions. The B0 conditions can be easily translated into Java boolean conditions. The
abstract JespVar class, which maintains the system states of B machines, needs to be
implemented in a JCSProB program. The check method of Jesp Var need to be imple-
mented for the invariant checking. The Java boolean conditions generated from the B
invariants are tested in the check method. The check method is called each time when
an event object performed data changes on state variables. The success of this checking
demonstrates the invariants are also preserved in the Java program. When we test a
Java program generated from verified B+-CSP model, failures of this checking also means

the translation does not preserve the semantics of B+CSP.

The unguarded B operations inc and dec can freely increase or decrease the B variable
floor. That would easily break the invariant on floor (level > 0 & level < 10). In the
PROB model checking, the violated state can be quickly identified from the state model.

Runtime results of the target Java application demonstrate that the check mechanism
can find violation of invariant conditions, and terminate the system accordingly. There-

fore, we correct the model to that of Figure 7.2, by adding preconditions.

MACHINE lift
VARIABLES level
INVARIANT level : NAT & level > 0 & level < 10
INITIALISATION level := 1
OPERATIONS
inc = PRE level < 10 THEN level := level + 1 END;
dec = PRE level > 0 THEN level := level - 1 END
END

FIGURE 7.2: An example of B machines: lift

Chapter 7 Experimentations 110

The Java programs generated from the modified specification find no violation of invari-

ants.

7.2 Wot-no-chickens: Fairness Assertions

The Wot,no chickens? example [Wel98] was originally constructed for emphasizing
possible fairness issues in the wait-notify mechanism of Java concurrent programming.
There are five philosophers and one chef in this story. The chef repeatedly cooks four
chickens each time, puts the chicken in a canteen, and notifies the waiting philosophers.
On the other hand, philosophers, but not the greedy one, cyclically continue the following
behaviours: think, go to canteen for chickens, get a chicken, and go back to think again.
The greedy philosopher does not think, and goes to the canteen directly and finds it
devoid of chickens. The Java implementation in [Wel98] employs the Java wait-notify
mechanism (using the pattern advised by the Java API documentation) to block the
philosopher object when there are no chickens left in the canteen. The chef claims the
canteen monitor lock (on which the greedy philosopher is waiting), takes some time to
set out the freshly cooked chickens and, then, notifies all (any) who are waiting. During
this claim period, the diligent philosophers finish their thoughts, try to claim the monitor
lock and get in line. If that happens before the greedy philosopher is notified, he finds
himself behind all his colleagues again. By the time he claims the monitor (i.e. reaches
the canteen), the shelves are bare and back he goes to waiting! The greedy philosopher

never gets any chicken.

7.2.1 The Two Models

To test the syntax coverage of the JCSProB package and the translation, several formal
models of this example are specified. We use various synchronization strategies and
recursion patterns to explore the syntax coverage and the semantics expressivity of the
B+CSP specification in the JCSProB package, as well as in the translation. Furthermore,
we also want to compare fairness properties of different formal models, in order to

evaluate the behaviour of the generated Java programs in practice.

The first combined B+CSP model of this example is presented in Figure 7.3. The
CSP part of the specification in Figure 7.4 features some interleaving processes. The
atomic access control on the B global variables, and the precondition on the get_chicken
channel actually require synchronization mechanisms to preserve the consistency of the
concurrent Java programs. As all the features concerning the concurrency model are
implemented in the JCSProB package, users can work with the high-level concurrency

model without noticing the low-level implementation of synchronization.

Chapter 7 Experimentations 111

MACHINE chicken
VARIABLES
canteen,chef,state
INVARIANT
canteen € NAT & chef € NAT & state € (0..4)—NAT
INITIALISATION
canteen := 0 || chef := 0 || state := (0..4) * {1}
OPERATIONS
thinking(pp) =
SELECT pp:0..;, THEN
state(pp) := state(pp) - 1
END;
getchicken(pp) =
PRE pp:0..4 & canteen > 0 THEN
canteen := canteen - 1
END:
eat(pp) =
SELECT pp:0.., THEN
state(pp) := state(pp) + 1

END;
cook =
BEGIN
chef := chef + 4
END;
put =

BEGIN canteen := canteen + 4 || chef := chef - 4 END
END

FI1GURE 7.3: The B machine of the Wot-no-chicken example

The reader may find that the two machine variables state and chef are not interesting in
this specification. They seems just making some state changes without much meaning.
We keep them in the machine in order to use them in later Section 7.3 to demonstrate a
decomposition approach. In Appendix B.3, we presents a part of Java source codes for

this example.

MAIN = Chef ||| XPhil ||| PHILS ;;

PHILS = |||X:0,1,2,5@Phil(X);;

Phil(X) = thinking.X — getchicken.X — eat.X — Phil(X);;
XPhil = getchicken.4 — eat.4 — XPhil;

Chef = cook — put — Chef ;;

FIGURE 7.4: The CSP spec of the Wot-no-chicken example: Model 1

An alternative model is specified in Figure 7.5. As the B machine is the same as the
first one in Figure 7.3, only the CSP specification is given here. This model explicitly
uses a multi-way synchronization on the put channel to force all the philosophers and

the chef to synchronize.

Chapter 7 Experimentations 112

MAIN = Chef [|{put}|] PhilA(4) [{put}|] PHILS :;
PHILS = [|{put}||X:{0,1,2,3} @Phil(X) ;

Phil(X) = thinking. X — PhilA(X) ;;

PhilA(X) = put — PhilA(X) || getchicken.X — eat.X —

if(X ==4)
then PhilA(4)
else Phil(X)

b

Chef = cook — put — Chef ;;

Ficure 7.5: Formal specification of Wot-no-chicken example, Model 2

7.2.1.1 Assertion Check and Results

The experimental evaluation test is based on the two models specified above. In the first
part of the evaluation, we test the safety and deadlock-freeness properties on the two
channels. In Table 7.1, the test results on these properties are demonstrated. The Timing
column indicates how many different timing configurations are tested with the model,
and the Steps column shows the lengths of the runtime records we collected. As the
concurrent Java applications constructed with the JCSProB package need to preserve
the same safety and deadlock-freeness properties as their formal models, it partially

demonstrates the correctness of the JCSProB package, as well as the translation tool.

Model Property Processes Timing Steps | Result
Name

Model 1 Safety /Invariant | - 15 1000 | /
Model 1 Deadlock-freeness | - 15 1000 | /
Model 2 Safety /Invariant | - 15 1000 | /
Model 2 Deadlock-freeness | - 15 1000 | /

TABLE 7.1: The experimental result: Safety and Deadlock-freeness

To test the bounded fairness properties on the target Java programs at runtime, we first
need to generate various traces from the concurrent Java programs. In the configura-
tion file of the GUI program, we can define various timing configurations for generating
traces for the program. The GUI can force the process to sleep for a fixed time pe-
riod. In this way, we can explicitly animate formal models with specific timing settings
for experimental purposes. Then we employ the fairness assertions check on Java pro-
grams embedded with timing settings. The target of this experiment is to practically
animate the Java/JCSProB applications, and evaluate their runtime performances with

the bounded fairness properties.

In Table 7.2, we show the experimental results of the two models with bounded fairness
properties. Frequency 1, 2, and 3 are three different frequency assertion settings (du-

ration and occurrence, Section 5.7.3). For each property, we use five different timing

Chapter 7 Experimentations 113

settings; and for each timing setting, the Java program is tested in five runs. In the

result column of the table, 18P7F means in 25 runs, the check passes 18 times and fails

7 times.
Model Property Processes Timing Steps | Result
Name
Model 1 Frequency 1 All 5 150 4P21F
Model 1’ Frequency 2 Phils+XPhil) 150 1P24F
Model 17 Frequency 3 Phils 5 150 23P2F
Model 2 Frequency 1 All 5 150 5P20F
Model 2’ Frequency 2 Phils+XPhil 5 150 0P25F
Model 2” Frequency 3 Phils 5 150 24P1F

TABLE 7.2: The experimental result: Bounded Fairness Properties

The assertions check also concerns different process groups. In the tests on Model 1
and Model 2, both the philosophers and the chef processes are recorded for assertions
check. In model Model 1’ and Model 2°, only the philosopher processes are checked. In
Model 17 and Model 27, the greedy philosopher is removed and only normal philosopher
processes are tested. The testing shows that generated Java programs provide useful
simulations for their formal model. It is used to explore and discover the behaviour

properties which cannot be verified in PROB model checking.

7.3 Composition of JCSProB Programs

In section, we use two examples to demonstrate a practical composition attempt for the
combined B+CSP model, and the JCSProB programs generated from them. In [BLO05],
only one B and CSP specification pair is allowed, which also applies to the PROB model
checker, which means only one such specification pair can be model checked in PROB.
However, as the B+CSP semantics also allow CSP communication channels, it is possible
and reasonable to connect two specification pair through communication channels. Sim-
ilar technique [STEO05] has been applied in the CSP||B approach for composing different

specification pairs.

7.3.1 Composition: Odd-Even example

In [STEO05], an Odd-Even example is presented. In this example, two B and CSP spec-
ification pairs are connected through their CSP controllers. The Odd machine only
receives and keeps odd number, whereas the Fven machine only keeps even number.
The controllers of the two machines communicate with each other for the values. For

convenience, Figure 7.6 reproduces Figure 2.2 here to specify this example.

Chapter 7 Experimentations 114

The two B+CSP specification pairs are connected through two CSP communication
channels, oddpass and evenpass. The CSP part of the Fven model first receives a data
Z from the the Odd model through the oddpass channel. As the value of the data
from the Odd is an odd number, the CSP increases the number by 1 and uses the
increased number as an input data to call the combined event evenput. The B machine
Even has a state variable even for the even number. It provides a corresponding B
operation evenput which gets the data from its corresponding CSP channel, and also
has an evenget operation for outputing the data value of even to CSP. After the CSP
controller receives the data W from the combined evenget event, it sends the data out
through the evenpass channel. The function of the Odd model is very similar to Even,
except the B machine Odd keeps the state of odd numbers. Figure 7.7 graphically

illustrates the communication in this example.

In PROB, we managed to model check the two specification pairs separately. With
our JCSProB translator, we can generate two separate Java programs from the models.
However, one B+CSP pair in this example only contains one end of a communication
channel, while the other end of the channel is in the other specification pair. The model
would wait for the channel input or output from the other end. The PROB tool can use
its enumeration mechanism to produce the response for the channel call. In JCSProB,
we implement special channel-end classes to display channel output to the user, and
allow the user to provide data for channel input. Appendix B.4.1 presents the main
Java class of the Ewven model. In the class, the oddpass channel is declared as the
Ext20neGUIChannel class, which is one of the channel-end classes from JCSProB.

The CSP part of the Even model requires a channel input from the oddpass channel. As
the Java program is generated from the Even model, it does not have the output-end of
this channel which is in the Odd model. The translator can detect the absence of the

output-end, and employs a message box from the channel-end class to allow the user to

MACHINE Even } MACHINE Odd
VARIABLES even VARIABLES odd
INVARIANT even : NAT & even mod 2 =0 INVARIANT odd : NAT & odd mod 2 = 1
INITIALISATION even := 0 INITIALISATION odd := 1
| OPERATIONS OPERATIONS
: evenput(nn) = PREnn: NAT &nnmod2=0 oddput(nn) = PRE nn : NAT & nn mod 2 = 1
THEN even := nn o THEN odd :=nn
END; o END;
nn <-- evenget = BEGIN nn := even END nn <-- oddget = BEGIN nn := odd END
END END
i EvenCtrl = oddpass?Z -> evenput!(Z+1) -> OddCtrl = oddget?X -> oddpass!X ->
| evenget?W -> evenpass!W -> EvenCtrl ;; s evenpass?Y -> oddput!(Y+1) -> OddCtrl ;;

FIGURE 7.6: The specification of the Odd-Even example

Chapter 7 Experimentations 115

input data for the channel call. Figure 7.8 shows the screenshot of data input for the

oddpass channel in the Fven model.

The Java program generated from the Fven model lacks the output-end of oddpass, and
the input-end of evenpass, whereas the Odd model lacks the input-end of oddpass, and
the output-end of evenpass. If we can connect the two programs together using the
oddpass and evenpass channel, it would create a program which implements the whole
system model. It is actually very ease to do that. We just need to put the main classes of
the two programs together, and replace the four channel-end classes in the two programs
with two JCSP communication channels. Appendix B.4.2 shows the main Java class of

the combined JCSProB program. In the Oddeven_run class, the evenpass and oddpass

Even ‘

Controller ControIIer

evenput!(Z+1) evenget'?W ‘ oddget?X oddpuﬂ (Y+1)

evenput(nn) ._.nn <-- evengetf nn <-- oddget ._. oddput(nn)

‘ ‘ CSP channel
Even Odd < o munication
Machine § | Machine B+CSP channel
‘ ‘ synchronization
: | @ CSP channel
B+CSP pair M | - B+CSP pair N || @ Boperation

F1GURE 7.7: The communication in the Odd-Even example

(2] JCSProB GUI = GUI for Even machine

variable value
even 0 -
oddpass_ch Input
Even_proccla... nput:

Input (=]
E Channel oddpass_ch need input:

»
I\—l 5

F1cUrE 7.8: Data input for communication channel

Chapter 7 Experimentations 116

channels are declared as JCSP communication channels, which are passed to the Odd

and Even models as arguments.

Figure 7.9 shows a screenshot of the combined Java program. Each of the two models
runs in different GUI frames, and maintains its own states. They communicate with
each other through the two communication channels. Both automatic execution and
manual animation of this program practically demonstrated that the composed program

correctly implements the C'SP || B model specified in Figure 7.6.

7.3.2 Decomposition: Wot-no-chicken

Both wot-no-chicken models showed in Section 7.2 contain multiple processes in their
CSP specification. In this section, we practically decomposed the B4+CSP model in
Figure 7.3 and Figure 7.4 into several distributed modules. Each of this decomposed
module is a combined B and CSP specification pair. All these modules are connected
together through CSP communication channels. In Section 8.2.3, we give a discussion

on this decomposition effort.

The combined model defined in Figure 7.3 and Figure 7.4 contain multiple processes,
and just one B machine for maintaining the system state. Large scale complex systems
are usually distributed system which consists of multiple locations in a network environ-
ment. Each of these locations has its own physical memory and thus maintains its own
memory state. To model such a system, it is ideal if the system model can have multiple
modules. Each of these module should maintain its own state, and can be deployed on

an independent location in the distributed system.

It is also not safe to keep all the data variables in a single state machine or memory,
because it is not easy to restrict data access control from various processes. In this
example, the B variable state consists an array of the data for indicating a kind of
status of all the philosophers. However, because all the data variables are globally
visible to all the processes, it is possible for a process to directly access, or even update
the status variables of other processes. Considering both scalability and data safe issues,
it should be better to decompose such a model into a distributed model with multiple
modules, where each module maintains its own state or physical/virtual memory, and

communicates with each other through communication channels.

First Step: Refining the CSP

The CSP specification in Figure 7.4 does not explicitly express the canteen as an entity.
In the implementation, we expect a canteen module which maintains the B state variable

canteen and runs an independent module. Therefore, for the first step, we refines the

117

Chapter 7 Experimentations

i | 3|

[»

|

B

| 4 4 =(g)uawnfry induy jauuey D of) ssejaya indppossseomd pRO ES LSEEE L
e < (spuawnisg inding |puueyD o7 4) ssejauselpposssemd IR0 B8 F R L
U sy (e Espoauooy D alessa 'sse(ayaT180pp0 jAUUEY D 'SERpIIdT PR SsAI00d LGP EET L L
o shly (pBsponuogy o efessay 'ssejayaindppo jjauueyd 'ssepaoid ppo ssa0id LEE TR DL
=(suawnfey Indu) jauuey D a7) ssejayaTindppossseomd T RRO ZO00ERLE L

< (sUaNGR Inding |auueyD oF 4) sseagelppossseaod T RRG D30T L

U sfirgs (eifspyoquo0yo abessay 'ssejaya 18Appo jauuey D 'ssepiold ppo ssa100d GOFOFET L
o shiy (pBsponuooy o efiessay 'seepauaTindppo auuey s 'sseaod T ppo ssa000d LETEE T L I
< {EUBLINGR Induy [auUey D o7) sseayaTIndppossseRa0ld TR0 LR LS TT L

= (suawnfly nding jauueyD g 4 ssejaya lalppossseamd pRO FESAE T

U sy (eifsp0uoays alessaw 'sseayaT1eAppo jauuey D 'sse00dTPRO (55830Md i LAEET L

=

T

RF

<]

Il [)

4]

_ BV _mocesso_ gsaa0dd.

LGRZTILY
SRITIL
1 g By andin SR

<:nduy 19 By nduy G2 Gy ndyn sjuawnfile og<ndu ~p3301d PPO SSRLTL Y
T

PR SLRLTLY
algElEn OFETL Y
CAETTILY

UL IR PRQ 0} 19 ¢ [N J01dSIF [26204
: - - - ’ eyt 6L LY
I n_ﬁmEmE:Qf:Q:__mccm;o_omn:mmm_uEJ:%@S..mmm_uuaa|cm>m__mmm_mm_mm_:

ol O 1 (] b
Agl g mm_

SRl o @

77 UNTUIAg n_@ A

24E[38p Jodu) E,
lasg usAappo

4
[t

vy s

T

: z {9: 0 By andin sawnfize op ndy,
mﬁ ,w, E _d._ {9 g Gy andn, spBwnfie ozn"En.._n ig:p Eqaﬁn:n ig: g by anduj B0 1IT AN

S | o 1 sstetluaAs ssupyaalusne e it g ssuedppo

_ BAED nw_ 5 v q lana
ETED SHEER

BE™ aULY2RUI U3AT 104 09 N9 BOIdSIF F)

The GUI program of the combined Odd-Even model

FIGURE 7.9

Chapter 7 Experimentations 118

CSP specification by introducing the Canteen process. Figure 7.10 presents the new
CSP specification with the Canteen process.

MAIN = Chef || {put} || Canteen [| {getchicken} || XPHIL [| {getchicken} |]

PHILS ;;

PHILS = ||| X:0,1,2,3@QPhil(X);;

Phil(X) = thinking.X — getchicken.X — eat.X — Phil(X);;

XPhil = getchicken.4 — eat.4 — XPhil;;

Chef = cook — put — Chef ;;

Canteen = CProc ||| PProc ;;

CProc = put — CProc ;;

PProc = getchicken.X — PProc ;;

F1GURE 7.10: The Wot-no-chicken example: introducing the Canteen process

Second Step: Decomposing Chef and Canteen

To decompose the B machine specified in Figure 7.3, we need to justify which the relation
between the B state variables and the CSP processes regarding the events used in each
process. In this example, the model is decomposed into three modules: Chef, Canteen
and Phils. Figure 7.11 illustrates the connections between three decomposed modules.

The specification of this decomposed model can be find in Appendix C.1.

X Y .
Process Process Philosopher
Chef Canteen Processes
X X Y
cook put1 put2 getchicken eat think
Machine Machine Machine
Chef Canteen Phils

FIGURE 7.11: The decomposed wot-no-chicken model: Step 2

The variable chef, which shows the number of chicken in chef’s hand, is updated by
the put and cook operations in the B machine. The two corresponding CSP channels
only appear in the Chef process. So for this variable, we can easily divide it into a new
machine for the Chef process. The new machine contains the chef variable, and the two
operations, put and cook. The situation for the put operation is more complex than that
of cook, as it also updates another B variable canteen. That means the combine event
put also belongs to another decomposed module Canteen, which contains the B variable
canteen. We decomposed the put operation into two B operations which belong to two

different modules. The Chef module has an event put1, which updates the B variable chef

Chapter 7 Experimentations 119

in the Chef machine, whereas the Canteen module has an event put2, which updates
variable canteen in the Canteen machine. The two events are connected through a
communicate channel put_chicken between the two modules. The above decomposition
step transforms an atomic B operation with two parallel data transition into two B
operations on two separate B machines, and the two new B operations communicate
through a CSP channel.

The other decomposed B operation is getchicken. Although it only update the canteen
variable from the Canteen module, it is a synchronized event. The philosopher processes
synchronize with the Canteen process on this event. Although the event does not update
any state variable on the B machine of the Phils module, the philosopher processes
need the output data from this event as a data input. Therefore, the getchchicken
event is decomposed into a combined event getchicken in the Canteen module, and a

communication channel take between Canteen and Phils.

Final Step: Decomposing the Philosophers

In the previous step, all the philosopher processes still remain in the same module.
The state variable state consists of an array of natural numbers which indicate the
status of all the philosophers. The philosopher processes update the state variable using
the think and eat events. When decomposing the B machine, each array element of
state is treated as an individual state variable for its corresponding philosopher process.
As there is no direct communication or synchronization between these processes and
the state variables can be clearly decomposed, we do not need to decompose any B
operation. Each of the decomposed modules keeps a copy of the two B operations which
update its state variables. The Phils module is finally be decomposed into four normal
philosopher modules Phil, and a greedy philosopher module XPhil. In Appendix C.2,
the specification of the decomposed Phil and XPhil modules are presented.

In [But93, But96, But06], similar event-based decomposition technique has been applied

on classical B and Event-B. We give a discussion of this in Section 8.2.3.

In our experiments, each module of this decomposed model is model checked in the
PROB tool, and also translated into Java programs. Finally, we employs the composition
technique used in Section 7.3.1 to compose all the generated Java programs together.
Then we test the two Java programs, one generated from the abstract model and the
other from the decomposed model. The result does not show any difference in the
behaviours of the two programs, except the decomposed one maintains its state on

separate modules.

Chapter 8

Discussion

In this chapter, we draw some conclusions on the current development of this work,
and discuss related techniques. We also propose several possible future research and

development areas, which can improve the scalability and usability of this work.

8.1 Conclusions

This work was motivated by the recent trends on integrating state- and event- based
formal methods for achieving a more expressive specification language. Our work is
to implement such a combined B and CSP specification [BL0O5] in the Java language.
The JCSP package [WMO0O0b] gave us an important inspiration on constructing runnable

applications from formal specifications.

We first examined the B4+CSP semantics in PROB, and found it is too flexible and non-
deterministic for implementation purposes. Thus, we developed a restricted semantics
for combining B operations and CSP channels. The restriction is weak enough to allow
most B4+CSP models in PROB to be expressed, and is also strong enough to give clear
synchronization and dataflow patterns between B operations and CSP channels, mak-
ing it possible to be implemented in a conventional programming language, e.g. Java.
The synchronization pattern of the restricted semantics is a multi-way synchronizing
rendezvous: multiple CSP processes can synchronize on a combined event; the CSP
channel and the B operation of a combined event need to synchronize with each other

on the enablement of the event; there are state changes inside the combined event.

We also introduced the JCSProB package, which implements the restricted B+CSP
semantics in Java. Although the development of the package is inspired by the develop-
ment of JCSP and is partially based on JCSP, it is different from JCSP because of the
semantics of B4+CSP. The target of combined event implementations is to implement the

multi-way synchronizing rendezvous pattern. We argue that in order to provide a safe

120

Chapter 8 Discussion 121

and effective multi-way synchronization implementation, the guarded external choice
decisions of a system should be made in a sequential order. Thus we implemented a
multi-way synchronization for the JCSProB event classes using a similar algorithm to
[Bag89]. We also presented a new thread/process mechanism, which targets providing
a memory-efficient solution for implementing CSP recursion. In the implementation,
a process object can create and call a new process object without causing Java stack
overflow error. This allows complex mutual recursions to be used in the CSP part of
the combined specification. Additionally, we also developed a GUI package for the Java
programs constructed with JCSProB. The GUI package and the configuration file al-
low user interactions with the underlying JCSProB programs. The GUI package also

supports runtime checking on invariants, and user-defined assertions.

We constructed a set of translation rules, which formally define the correspondence
between the B4+CSP specification language and Java/JCSProB. We also developed an
automated translation tool for implementing the translation rules. The translation tool
is developed as an add-on to the PROB tool, which means users can automatically

generate runnable Java programs from developed B+CSP specifications in PROB.

We tested and evaluated this work through a number of experiments. We evaluated
the expressivity of the restricted B4+CSP semantics, explore the coverage of both the
semantics and the translation. The examples are also tested with fairness assertions to
evaluate their behavioural properties. The scalability of this development strategy was

also discussed with practical composition and decomposition efforts.

8.2 Related Works and Discussions

8.2.1 The Circus Translation

In Section 2.3.1.5, we introduced the Circus [WCO1] specification language, and in Sec-
tion 3.3.4 briefly discussed the automated translation [OC04, FCO06] from Circus to Java
programs using JCSP [WMO0O0b]. It probably is the most closely related work to ours as
it also translates integrated state- and event-based formal specifications into Java pro-
grams, and makes use of the JCSP package in its translation. Furthermore, it develops

a GUI for user interaction with the generated Java programs.

A significant advantage of Circus is that it has formally defined refinement and composi-
tion rules for the integrated models, whereas such rules are still unavailable for B4CSP.
With the refinement technique, an abstract Circus model can be developed into concrete
models with refinement proofs. Therefore, currently, the Circus translation is based on a
more mature integrated formal model, and provides a better scalability on development

than our approach. More discussion on this issue can be found in Section 8.2.4.

Chapter 8 Discussion 122

The Circus translation makes use of the JCSP package to implement the semantics of
the Circus specification language. However, as JCSP is mainly based on CSP/occam,
the translation has many limitations. For example, it only allows use of the JCSP
communication channels and barrier for communication. It does not support external
choice with multi-way synchronization. Therefore, the Circus semantics that can be
put into the translation are restricted. The restriction is mainly because of the incom-
patibility between the different CSP subsets [OC04] supported by Circus and JCSP.
In Section 5.1.2, we described pragmatic difficulties (memory problems) in the direct
implementation in JCSP of unbounded mutual tail recursion (a common idiom in CSP).
This was solved with a new thread/process mechanism that efficiently hands over the
executing thread of one process to another, allowing the memory resources of the first
process to be reclaimed. Surprisingly, the Circus translation allows an existing process
to directly create and call new process objects without modifying the thread/process
structure in JCSP.

The GUI programs generated by the Circus translator contain simple graphical inter-
faces, and allow limited interaction with the user. Neither the system behaviours nor
the system states are clearly displayed on the GUI. Our GUI package provides a bet-
ter interaction with the user, and the GUI are configurable and extendable. Also, our
GUI package supports runtime checking on invariants and user defined assertions, which
presents useful features for evaluating behaviour properties of the generated Java pro-

grams.

8.2.2 Event-B and RODIN

The Event-B language [MAV05b] has recently evolved from the classical B-Method
[Abr96] as a new generation of state-based formal modelling and development method-
ology. It has been developed as an essential part of the EU project RODIN. Unlike
classical B, Event-B does not have a fixed syntax definition, which provides better ex-
pandability to new language constructs. The RODIN tool platform [ABHVO06] is an
open development environment for Event-B. Basically, it provides modeling, refinement

and mathematical proof support for Event-B specifications.

Ongoing development in Event-B includes a RODIN plug-in development which maps an
intermediate language, Object- oriented Concurrent-B (OC-B), to both Event-B models
and Java programs. The new notation sits at the interface between Event-B and Java.
A model specified using OC-B can be used for building a formal Event-B model. It is
also can be translated into concurrent Java program. At the time of writing, this work

remains unpublished.

It would be very useful to evolve the integrated B4+CSP specifications from classical B to

Event-B, and move the development environment from PROB to the RODIN platform.

Chapter 8 Discussion 123

As the semantics of Event-B is based on that of classical B, it would be feasible to
develop an integrated Event-B and CSP model. Also, as Event-B and the RODIN
platform provide very good expandability, it should not be difficult to introduce CSP
to Event-B, or implement the translation in the RODIN platform. The definition of the
integrated Event-B and CSP semantics, as well as its refinement and composition rules,

would be the most important part of this future development.

8.2.3 Composition and Decomposition of B4+CSP models

Being an event-based formal approach, CSP has a convenient way to practise composi-
tion and decomposition. The sequential and parallel composition structures can easily
model the composition between different subsystems. Processes from different subsys-

tems can use shared events to interact and communicate with each others.

A system model in B is an action system [BKS83b], which consists a number of state
variables and uses some guarded atomic operations to change the system state. A B
model specifies an isolated reactive system. For large scale, distributed systems, the
system model should be able to be decomposed into parallel subsystems. Each of these
subsystems maintains its own state, and can be refined or further decomposed into more

concrete models.

In both the classical B method and the new Event-B, there are composition and de-
composition approaches for constructing large-scale distributed system. In [MAV05a],
a state-based composition and decomposition is proposed for the Event-B specification
language. This technique is based on shared variables between subsystems. The shared
variables are forced to be refined in the same functional manner on different subsystems.

This restriction creates dependency among compositional subsystems.

On the other hand, Butler developed an event-based composition and decomposition
technique [But93, But96, But97, But06] for both classical B and Event-B. The event-
based composition and decomposition approach models the interaction between subsys-
tems using message passing on shared actions. The idea this approach is based on the
CSP semantics, and the correspondence between action systems and CSP, which was
introduced in [Mor90].

In principle, an abstract B+CSP model should be able to be decomposed into a com-
positional model with multiple subsystems. To carry out such a system development,
it would be better to decompose the system specification in the early design stages of
the development process. Then each subsystem can be refined or further decomposed
independently. A subsystem maintains its own state variables in the B machine, and
the CSP specification defines the behaviour of the subsystem. It uses internal data
transitions from the B part to change the state of the system. The CSP part of the

combined specification specifies behaviours of the system, and the communication with

Chapter 8 Discussion 124

other subsystems. Composition and decomposition rules should define the allowed trans-
formation for decomposing an abstract model into parallel subsystems, and the formal
proofs for verifying their refinement. One important feature of the composition rule is
that a subsystem should be refined or further decomposed independently from the rest

the system.

Unfortunately, the composition and decomposition rules of B4+CSP have not been for-
mally defined, and PROB only supports model checking on one B and CSP specification
pair. The CSP||B approach developed a composition technique [ST05] for its combined
model through message passing. In CSP||B, a B machine communicates with its CSP
controller, and various CSP controllers can communicate with each other through shared
CSP channels. So far as we know, there is no direct tool support for the CSP||B models,
so it provides a compositional verification approach, which includes several steps using

various tools, to verify the consistency of the compositional models.

Arguably, the restricted semantics of B4CSP discussed in Section 4.3 is very close to
the semantics of CSP||B models. It should be possible to develop a similar composition
technique for B+CSP models. In Section 7.3, we tested a CSP||B example from [STEO05]
in the PROB environment. We model checked the two compositional components sep-
arately, and generated Java programs from the two models. Although we still cannot
combine the verification results from PROB into a compositional correctness proof, the
effort of model checking a CSP||B component using PROB can still help the CSP|B
development by simplifying the verification procedures. We believe it is also possible to
establish a connection between the CSP||B and B4CSP approaches.

The practical composition and decomposition efforts in Section 7.3 can also be compared
with the event-based composition and decomposition technique used in [But96] and
[But06]. Although that approach is based on pure state-based formal specifications, the
composition of multiple B/Event-B machines is defined based on the CSP semantics
and Morgan’s work in [Mor90]. The composition of B operations (or Event-B events)
from different machines are composed using parallel and hiding semantics from CSP. It
would be ideal if we can utilize the formal basis of this technique to develop a similar
composition for B+CSP.

Comparing the experimental attempts in Section 7.3 with existing composition /decom-
position approaches shows that it is possible to develop a similar compositional develop-
ment technique for B+CSP. Also, the JCSProB package and the translation showed good
support for this potential composition approach. Developing such formal composition

rules and technique would be a promising future work for the B4+CSP development.

Chapter 8 Discussion 125

8.2.4 Refinement Rules for B+CSP

Currently, refinement rules for B4CSP are also unavailable, which means the user does

not have systematic techniques for developing B4+CSP models.

Circus [WCO1], which also integrates state- and event- based formal methods, has de-
veloped refinement rules [CSWO03] for its combined specification. The refinement rules
of Circus inherit the correct-by-construction style refinement rules from the Z method,
and extend them with refinement rules for the CSP part. The correct-by-construction
style refinement defines a series of rules on the transformations from an abstract model
to a more concrete one. Each of these transformation steps guarantees refinement. As
the transformation targets, which the user can get, are strictly defined in the refinement

rules, it sometimes restricts the freedom of development.

The refinement development in the B method is slightly different. It employs a posit-
and-prove approach, in which the developer provides both the abstract and refinement
models. The refinement rules define what kinds of proof obligations need to be proved
to guarantee refinement, and usually this step is done by the proof obligation generation
tool. Many proof obligations can be proved automatically using theorem provers. In
some cases, gluing invariants need to be introduced to help proving some proof obliga-

tions, which cannot be automatically proved by the prover.

The user gets more freedom on building the refinement model from the posit-and-prove
approach. But it is not so easy to define the refinement rules for discovering proof
obligations. Especially, for the integrated formal specifications, it is more difficult to
define proof obligation rules across various specification languages. That is the main

reason why there are still no refinement rules for the B+-CSP model.

One possible solution is restricting the allowable refinement transformation for B4-CSP
using the correct-by-construction style refinement rules. There also should be posit-and-
prove rules which are used to generate proof obligations for handling the possible side
conditions brought by the correct-by-construction rules. This can reduce the complexity
of defining such refinement rules, although it would probably limit the development of the
refinement model at the same time. Certainly, more investigation work is still required
to justify a proper method for developing such a solution. It would be a very important

breakthrough for the B4CSP development to have the refinement rules developed.

8.2.5 Compatibility with JCSP

Although we developed a new JCSProB package, many JCSP classes are also used in
the development. The main compatibility issue between JCSP and JCSPorB is on our
implementation of external choice in JCSProB. In Section 5.2, we explained that a

combined JCSProB event object cannot be put into the same external choice with a

Chapter 8 Discussion 126

JCSP channel object, because we implement the external choice with a different class
Alter from the Alternative class used in JCSP.

That is because when we started to develop the JCSProB package, the AltingBarrier
class, which supports guarded external choice with multi-way synchronization, still had
not been introduced to the JCSP package. Now as the multi-way synchronization has
been fully implemented in JCSP, it is possible to re-implement the synchronization
guard of the combined B4+CSP event using the AltingBarrier class. That would make
the event classes using compatible synchronization guards as the JCSP channels, and

would remove the current restriction on external choice.

In Section 5.5.4, we discussed the extra cost introduced by the JCSProB thread container
in sequential composition. Each child process introduces a new thread container, which
can be unnecessary in many cases. A possible solution is proposed. Before running a
child process object in a sequential composition, we first test if the process introduce
recursion. If yes, the process object should be run inside a new thread container, oth-
erwise, it should be run just inside the thread container of the parent process to avoid
extra cost. To test the if a process has recursion, the process or its thread container
needs to keep a tree of its descendant process objects. And the tree needs to be built
when the process object is created, and before the process starts to run. We will compare
the cost introduced by the this solution with the current one to see if it is substantial

to implement such a feature.

8.2.6 Formal Correctness Verification for the JCSProB

A correctness verification for the translation is also a potential future development.
In [RRS03, OC04], the translations are discussed without considering the correctness
proofs. Formal verification which proves the correctness of the translation in terms of
semantic models of the specification and Java programs respectively would be the best

solution. We propose a more modest approach based on [WMO00a| for future work.

In [WMO00a/], the correctness of the JCSP communication channel classes is verified. Each
JCSP channel class (i.e. Java implementation) is formally specified as a CSP model. The
desired channel behaviour (which the JCSP class implements) is also specified using CSP.
The FDR tool [For03] is employed to verify equivalent between the two CSP models.
The proving strategy starts with the simple One20neChannel class without alternation,

and gradually builds formal models for more complex JCSP channel classes.

To verify the correctness of the event class in JCSProB, a similar strategy is proposed
to prove that the Java implementation refines the B+CSP semantics. First, a B+CSP
model for the event class is constructed. Then, the concerned behaviour of the combined
B-+CSP event is also specified using B+CSP. As the PROB tool supports refinement

Chapter 8 Discussion 127

checking between B4+CSP models, we can check if the event class correctly implements

the B+CSP semantics.

Constructing B+CSP models for the JCSProB implementations of the B4CSP events
with full functionality would be a difficult task. It would be better to starting with ab-
stract models of event classes with limited functionality, and gradually building concrete

models with more complex B+CSP semantics.

Appendix A

Translation Rules

Rule 0. Translator =

BStateClass
BSetClasses| BSets|
ProcessClasses| Procs |
EventClasses| EFvs]|
{XMLConfiguration} gy
MainClass

B+CSP: Clause_sets = ‘SETS’ BSets
Supplement: Procs include all the CSP processes in the B4+CSP model
Supplement: Fvs include all the B+CSP events in the B+CSP model

Rule 1. BStateClasgs =

PackageDef

ClassHeader

public class MachName*_’machine extends JcspVar{
VarsDecl| Vars|
ConstsDecl| Consts|
BStateConstructor
BStateCheck
{BVarsVec}gun

}

B+CSP: Clause_variables - "VARIABLES’ Vars
B+CSP: Clause_constants H "CONSTANTS’ Consts

128

Appendix A Translation Rules 129

Rule 1.1. VarsDecl| Vars| = VarDecl| Var|*

B+CSP: Vars - Var*

Rule 1.1.1. VarDecl| Var| = Type| Var] Var_Name|[Var| ¢;° O

Rule 1.2. ConstsDecl| Consts] = ConstDecl] Const|*

B+ CSP: Consts = Const*

Rule 1.2.1. ConstDecl| Const| = Type[Const] Var Name[Const| ©;’ O

Rule 1.3. BStateConstructor =
public MachName*_’machine‘ (’String MachName‘)’{
super ‘ ("’MachName ‘") ;’
VarsInit| Vars]
ConstsInit[Consts|
{ buildArgVec‘ O3’ }iqur

B+CSP: Clause_variables - "VARIABLES’ Vars
B+CSP: Clause_constants H "CONSTANTS’ Consts

Rule 1.3.1. Varslnit| Vars| = Varlnit| Var|*

B+CSP: Vars - Var*

Rule 1.3.2. Varlnit| Var| =
this‘.’ Var Name| Var| ‘=’ BExpr| Var_Init| ¢;’

Supplement: Var_Init is the initialization information for the variable Var from the
INITIALISATION clause of the B part.

Rule 1.3.3. Constslnit|Consts| = ConstInit| Const]*

B+CSP: Consts - Const*

Appendix A Translation Rules

Rule 1.3.4. Constlnit| Const| =

this‘.’ Var_Name| Const| ‘= BExpr[Const_Init] ;’

130

Supplement: Const_Init is the initialization information for the variable Const from the

PROPERTIES or VALUES clause of the B part.

Rule 1.4. BStateCheck =
public synchronized void check‘(){’
try{’
if (' BlInvs)){’

System‘.’out‘.’println

¢("’Invariant check failed‘!");’

{RecordsFrame‘.’getInstant ‘(). terminate‘();’ }iguy

this¢.’terminate‘();’
4 } b}
ExceptionHandler

(}7

Rule 2. BSetClasses|BSets| = BSetClass| BSet]*

B-+CSP: BSets - BSet™'

Rule 2.1. BSetClass|BSet| =
PackageDef
ClassHeader

public enum Print[BSetName| ‘{’
Print[Iden |t
[4 })

B+CSP: BSet - BSetName' = {! Iden™"" '}

Rule 3. ProcessClasses| Procs| = ProcessClass| Proc|*

B+CSP: Procs = Proc*

Appendix A Translation Rules 131

Rule 3.1. ProcessClass| Process| =

PackageDef

ClassHeader

public class ProcClassName|ProcName| extends

{BCSProcess}noqur | {BGProcess}iquy ‘{’
ProcChsDecl[Chs|
ProcVarsDecl|[Vars|
ProcConstrucor

ProcRun|ProcBody |
) })
B+CSP: Proc = ProcHeader ‘=" ProcBody
B+CSP: ProcHeader = ProcName {’(’VarsList’)’}

Supplement: Chs consists of all the channels/events called by the process, or its sub-

process

Supplement: Vars consists of all the variables used in the process

O
Rule 3.2. ProcChsDecl| Chs| = ProcChDecl| Ch|*
Supplement: Chs - Ch*
O
Rule 3.2.1. ProcChDecl|Ch| =
ChannelType[Ch| ChObjName[Ch| ¢;° O
Rule 3.3. ProcVarsDecl| ProcVars| = ProcVarDecl| ProcVar|*
Supplement: ProcVars - ProcVar*
O
Rule 3.3.1. ProcVarDecl| ProcVar| =
Type|ProcVar| ProcVarObj[ProcVar| ©;° O

Rule 3.4. ProcConstructor =
public ProcClassName|ProcName]| < (° <’
ProcChsTypelList| Chs| ¢,
{ChannelOutput conf ‘,’}quy

Appendix A Translation Rules 132

ProcVarsTypelList| Vars|){’
{super O 5’ }nocur) | { super(conf) ‘5’ }icur
ProcChsAssign| Chs|
ProcVarsAssign| ExtVars|
1
B+CSP: ProcHeader - ProcName {’("VarsList’)’}
Supplement: Chs is all the channels/evnets involved in this process or its sub-processes.

Supplement: Vars is all the variables involved in this process.

Supplement: FExtVars is all the external variables in VarsList of the ProcHeader defini-

tion.
]
Rule 3.4.1. ProcChsTypeList[Chs| = ProcChType[Ch|t"
Supplement: Chs - Ch*
]

Rule 3.4.1.1. ProcChType|Ch| = ChannelType[Ch| ChObjName| Ch| O

Rule 3.4.2. ProcVarsTypelList| ProcVars| =
ProcVarType[ProcVar| ™'

Supplement: ProcVars - ProcVar*

O

Rule 3.4.2.1. ProcVarType|ProcVar| = Type[ProcVar| ProcVarObj[ProcVar|
U

Rule 3.4.3. ProcChsAssign| Chs| = ProcChAssign| Ch|*

Supplement: Chs is all the channels/evnets involved in this process or its sub-processes.
Supplement: Chs - Ch*

O

Rule 3.4.3.1. ProcChAssign|Ch| =
this‘.’ChObjName|Ch| ‘=’ ChObjName[Ch| ¢;’ O

Rule 3.4.4. ProcVarsAssign| ProcVars| = ProcAssign| ProcVar|*

Supplement: ProcVars = ProcVar*

Appendix A Translation Rules 133

Rule 3.4.4.1. ProcVarAssign|ProcVar| =
this‘.’ProcVarObj[ProcVar| ‘=’ ProcVarObj| ProcVar|¢;’ O

Rule 3.5. ProcRun|ProcBody| =
public void run‘(){’
{this.’createGUIProc‘ () ;’ }iqur
{startO;’ }qur
ProcE[ProcBody |
{end O;’ v
)]

Rule 3.6. ProcE|ProcB| =
ProcEParallel] ProcBParallel |
| ProcEReplParallel| ProcBReplParallel |
| ProcElInterleave| ProcBInterleave]
| ProcEReplInterleave| ProcBReplInterleave]
| ProcESequence| ProcBSequence |
| ProcEIfThen|ProcBI fThen|
| ProcEPrefix[ProcBPrefix]
| ProcEChoice| ProcBChoice]
| ProcEReplChoice| ProcBReplChoice|
| ProcECall] ProcBCall |

B+CSP: ProcBody + ProcBParallel
| ProcBReplParallel
| ProcBlInterleave
| ProcBReplInterleave
| ProcBSequence
| ProcBI fThen
| ProcBPrefix
| ProcBChoice
| ProcBReplChoice
| ProcBCall

Rule 3.6.1. ProcEParallel| ProcBParallel | =
ParaChsNums|Chs]|
{ new CSParallel(’ }noquy | { parallelCtrl'(" }igu

Appendix A Translation Rules 134

{ new BCSProcess‘[1{’ }inoqur | { new BGProcess‘[1{’ }iqun
CallProc[Proc|*"”

4 })
{97xun“ O3 Hvogun [937 Heun
B-+CSP: ProcBParallel - Proct'Il

Supplement: Chs includes all the B4-CSP events that have multi-way synchronizing.

Supplement: Procs includes all the process in the parallel composition.

O

Rule 3.6.2. ParaChsNums[Chs| = ParaChNums[Ch |*

Supplement: Chs = Ch*

Rule 3.6.2.1. ParaChNums|[Ch| =
ChObjName[Ch]‘.’inc‘_’syn‘_’proces‘_’no‘ (’ Integer) ;’

Supplement: Rule Integer here should be the number of processes which synchronize
on the event Ch.

O
Rule 3.6.3. ProcEReplParallel| ProcBReplParallel | =
ParaChsNums|Chs]|
{ new CSParallel(’ }noqu | { parallelCtrl'(" }igu
{ new BCSProcess‘[1{’ }noqur | { new BGProcess‘[1{’ }iqup
CallProc[Proc|*"”
4 } B
{97xun“ O3 vogun [937 Heun
B+CSP: ProcBReplParallel & [| {Chs} ||Jx € NQProc
O

Rule 3.6.4. CallProc|Proc| = CallProcNew|Proc| | CallProcExisting| Proc|

Supplement: The rule CallProcExisting is applied when a named process is called.

0

Rule 3.6.4.1. CallProcNew|Proc| =

{new BCSProcess‘ O{’ }(noqun | { new BGProcess‘ O{’ }igur

Appendix A Translation Rules 135

public void run‘(){’
{this.’createGUIProc‘ () ;’ }iqur

{start“O;’ }jeun
ProcE[ProcBody |

{end O;’}eur
(};
(};

B+CSP: Proc - ProcName' =" ProcBody

Rule 3.6.4.2. CallProcExist|Proc| =
new ProcClassName| ProcName] ¢ (°
ProcChsList|[Chs]|

{ configure*,’ }iquy
ProcVarsList|Vars|

(4))
B+CSP: Proc - ProcName' =" ProcBody
Supplement: Chs includes all the channels/events called by the process

Supplement: ProcVars includes all the process variables in the process

Rule 3.6.4.3. ProcChsList[Chs| = ChObjName[Ch |

Supplement: Chs - Ch*

Rule 3.6.4.4. ProcVarsList[Vars| = ProcVarObj[Var|t"

Supplement: Vars - Var*

Rule 3.6.5. ProcElInterleave| ProcBInterleave| =
{ new CSParallel‘(’ }noquy | { parallelCtrl'(" }iqup

{ new BCSProcess‘ [1{’ }nocur | { new BGProcess‘ [1{’ }iqur
CallProc[Proc|*"”

(})

Appendix A Translation Rules 136

{9 .run O3 bvocun 1{ V37 houn

B+CSP: ProcBInterleave Proct' Il

Rule 3.6.6. ProcEReplInterleave[ProcBReplInterleave| =
{ new CSParallel‘(’ }noqup | { parallelCtrl'(" }iqun

{ new BCSProcess‘[1{’ }inocur | { new BGProcess‘[1{’ }iqun
CallProc[Proc|*"”

l};
{ O run O3 Yvocun {937 Heun

B+CSP: ProcBlInterleave & ||| € NQProc

Rule 3.6.7. ProcESequence|ProcBSequence] =
{ new CSPSequence‘(’ }inogur | { sequenceCtrl'(” }igup

{ new BCSProcess‘[1{’ }\noqu1 | { new BGProcess‘[1{’ }iqun
CallProc[Proc|*"”

l};
{9 run O3 Yvocun {937 Heun

B+CSP: ProcBSequence Proct’s’

Rule 3.6.8. ProcEIfThen|[ProcBI fThen| =
if ¢ (’ ProcCond[CSPCdtn] ¢ ({’
ProcE|ProcB]|
‘)
{ else‘{’
ProcE[ProcB|
B

B+CSP: ProcBIfThen & "if'CSPCdtn'then’ ProcE{ else’ ProcE}

Rule 3.6.9. ProcEPrefix|ProcBPrefiz| =
ChannelCalls[ChCall |
ProcE[ProcB|

Appendix A Translation Rules

137

B+CSP: ProcBPrefix = ChCall — ProcB

Rule 3.6.9.1. ChannelCalls[ChCall] =
CombinedEventCall[ChCall] | CommChannelCall[ChCall |

Rule 3.6.9.2. CombinedEventCall[ProcB| =
EventCall[ChCall] | EventReturn|ChCall]

Rule 3.6.9.3. EventCall[Ev]| =
{ChObjName[FEv]| ¢.’ready‘(’
{ inputVec‘ (’newObject ‘ [1{’
CSPExprList|CSPExpr*|
3}
)57 fvocur
| { channelCall‘(’
ChObjName[Ev| ¢.’ready‘ (’
{ ¢, ’inputVec‘ (’newObject‘ [1{’
CSPExpsList|CSPExpr*|
N

3 heun

CSP: Ev F EvName'’CSPExpr*
B: Ev b EvName'("Exprs’)’

Rule 3.6.9.4. EventReturn|[Ev| =

{ “{’ Vector‘<’Object‘>’ rtnVec ‘=’ ChObjName|Ev]| ¢.’ready‘(’

{ inputVec‘ (’newObject []{’
CSPExprlList|[InExpr*]
b}
Y
EventReturnValues|OutVars|
Hvocu)
| { “{° Vector‘<’Object‘>’ rtnVec ‘=’ channelCall‘(’
ChObjName[FEv| . ready‘ (’
{ ¢, ’inputVec‘ (’newObject‘ [1{’
CSPExprList [InExpr*|
b}

Appendix A Translation Rules 138

() ;)
EventReturnValues[OutVars|
Heu

CSP: Ev F EvName’'InExpr®’?’OutVars
B: Ev F OutVars «— EvName’('InVars’)’

O
Rule 3.6.9.4.1. EventReturnValues|Vars| = EventReturnValue|Var|*
Supplement: Vars - Var*
O
Rule 3.6.9.4.2. EventReturnValue[Var| =
ProcVarObj[Var| ‘=’ rtnVec.elementAt‘(’ Integer) ;’
Supplement: The Integer values are recursively generated from Rule 3.6.9.4.1
O
Rule 3.6.9.5. CommChannelCall]|Ch| =
CommChannelRead[InputCh| | CommChannelWrite|OutputCh |
CSP: Ch = InputCh | OutputCh
O

Rule 3.6.9.5.1. CommChannelRead[InputCh| =
{ ProcVarObj[Var| ‘=> ChObjName[ChName| ¢.’read‘ O;’ }noqur
| { ProcVarObj[Var| ‘=’ channelRead‘(’
ChObjName[ChName] ,"’> ChObjName[ChName]

)57 Yeun

CSP: InputCh = ChName ?’Var

Rule 3.6.9.5.2. CommChannelWrite[OQutputCh| =
{ ChObjName|[ChName] . write‘ (’ ProcVarObj[Var|);° }nvocun
| { { channelWrite‘(’
ChObjName[ChName] <,"’> ChObjName[ChName] ‘",
ProcVarObj[Var]

‘)57 Yeun

Appendix A Translation Rules 139

CSP: InputCh - ChName ?’Var

Rule 3.6.10. ProcEChoice|ProcBChoice| =
ProcEChoice JCSProB| ProcBChoice]
| ProcEChoiceJCSP[ProcBChoice | O

Rule 3.6.10.1. ProcEChoiceJC$ProB|ProcBChoice| =
BCSPGuard‘[]1’ in ‘=’ ‘{’ ProcChsList[ProcBPrefiz*| ‘};’
Vector ‘<’Vector‘<’0Object ‘>>’ choiceVec

‘=7 new Vector‘<’Vector‘<’0Object‘>>();’
ChoiceValueAssign|ProBPrefiz*|
{ Alter alt ‘= ’new Alter‘(’in‘,’ choiceVec ¢);’
switch‘(Palt.’select‘()){’
Choices| ProBPrefiz* |
‘b Yvocun
| { switch(’choiceCtrl‘(’in¢,’choiceVec)){’
Choice|ProcBPrefiz*]|
‘b heun

CSP: ProcBChoice + ProcBPrefix"’/D/

Rule 3.6.10.1.1. GuardsList[ProcBPrefiz*| = ChObjName[Ev|t"

CSP: ProcBPrefir - Ev — ProcB

Rule 3.6.10.1.2. ChoiceValueAssign|[ProcBPrefiz| =
{ choiceVec‘.’addElement ‘ (’inputVec‘(’new Object‘ [1{’
CSPExprList|CSPExpr*|
)
CSP: ProcBPrefir - Ev — ProcB
CSP: Ev - EvName'VCSPExpr* | EvName’'CSPExpr* 7 OutVars

Rule 3.6.10.2. ProcEChoiceJCSP[ProcBChoice| =
Guard‘[]’ in ‘=’ ‘{’ ProcChslList|ProcBPrefiz*] ‘};’

Appendix A Translation Rules 140

Alternative alt ‘= ’new Alternative‘(’in‘);’ {

switch¢(’alt‘.’select‘()){’

Choices| ProBPrefixz*|

‘b Yvocun

| { switch‘(’choiceCtrl‘(’in‘,’null)){’
Choice|ProcBPrefiz*]|

‘}> Yeun

CSP: ProcBChoice + ProcBPrefix"’/D/

Rule 3.6.10.3. Choice[ProcBPrefixz*| =
case Integer :’
ChoiceRtnEv[ProcBPrefiz]
| ChoiceRtnEvValue| ProcBPrefiz|
| ProcE[ProcBPrefix]
break®;’
¢ })
CSP: ProcBPrefixr - ChCall — ProcB
Supplement: When C'hCall is a B+CSP event without output data, choose ChoiceRtnEwv
Supplement: When ChCall is a B+CSP event with output data, choose ChoiceRtnEvValue
Supplement: When C'hCall is a CSP communication channel, choose ProclE

Supplement: The rule Integer provides various values for all different repeatable in-

stances of ProcBPrefiz. It starts with 0, increasing by 1 each time.

O

Rule 3.6.10.3.1. ChoiceRtnEv|[ProcBPrefir| = ProcE[ProcB]
CSP: ProcBPrefix - Ev — ProcB

Rule 3.6.10.3.2. ChoiceRtnEvValue|[ProcBPrefiz| =
{
Vector‘<’0Object ‘>’ rtnVec
‘=> ChObjName|ChName| ‘.’output‘_’return‘();’
EventReturnValuesOutVars|
‘b Hvoaur
e
Vector‘<’0Object ‘>’ rtnVec
‘=> choiceRtn‘ (> ChObjName[ChName] ‘) ;’

Appendix A Translation Rules 141

EventReturnValues[OutVars|

‘b YHeun
CSP: ProcBPrefixzt Ev'?7OutVars | Ev''CSPExpr*’ 7OutVars — ProcB O

Rule 3.6.11. ProcEReplChoice|ProcBReplChoice] =
ProcEChoice| ProcBChoice| O

Rule 3.6.12. ProcECall[ProcBCall| =
nextProcCtrl‘ (’ CallProcExist(ProBCall)) ;’ 0

Rule 4. EventClasses|Fvs| = EventClass|Ev]*
Supplement: Fvs - Ev*

Rule 4.1. EventClass|FEv| =

PackageDef

ClassHeader

public class EventClassName[Ev| extends EventType|[Ev]| ‘{’
MachName*_’machine var‘;’
EventVarsDecl| BOpVars]|
EventConstructor| Ev|
{EventInputMethod|[BInVars]|}
{EventOutput Method[BOutVars|}
EventRun|[BOpBody |
{EventPrecondition| BOpBody |}

)

B: Ev - BOutVars « EvName'('BInVars') BOpBody
Supplement: BOpVars - BOpInV arsBOpOutV arsy

Rule 4.2. EventVarsDecl|BOpVars| =
{BVarType[BOpVar|Print[BOpVar |}t

B: BOpVars - BOpVart"'

Rule 4.3. EventConstructor|FEv| =
public EventClassName|Ev] < (’

MachName ‘_’machine var‘,’Block block‘){’

Appendix A Translation Rules 142

this®.’var ‘=’ var‘;’

this‘.’block ‘=’ block‘;’

this‘.’setChName‘ (’this‘.’getClass‘().’getSimpleName‘());’
(}; |:|

Rule 4.4. EventInputMethod|BInVars| =
protected synchronized void assign‘_’input‘(’
Vector‘<’Object ‘>’ inputVec){’
AssignInVar[BInVar|*
« })

B: BInVars - BInVart"'

Rule 4.4.1. AssignInVar[Var| =
AssignInVarlnt[Var |
| AssignInVarSet[Var |
| AssignInVarPSet[Var |
| AssignInVarObj[Var|

Supplement: When Var is an Integer, choose AgsignInVarlnt
Supplement: When Var is an element of a B set, choose AssignInVar$et
Supplement: When Var is a set, choose AssignInVarlPSet
Supplement: Otherwise, choose AssignInObj

Rule 4.4.2. AssignInVarlnt[Var| =
Print|[Var|
‘=7 ¢(’Integer‘) (’inputVec‘.’elementAt‘(’ Integer ‘) ;’
Supplement: Var € Ingeter

Rule 4.4.3. AssignIlnVarSet|[Var| =
if‘(’inputVec‘.’elementAt‘ (’ Integer ‘)’ instanceof String‘){’
Print[Var| ‘=’ returnSet‘(’
BType[Var| ¢.’class*,’
“(’String‘) ’inputVec‘.’elementAt ‘ (’Integer)’
357
telse{
Print[Var| ‘=’ < BType[Var] <)

Appendix A Translation Rules 143

inputVec‘.’elementAt‘ (’ Integer ‘)’
l) ;)
¢ })

Supplement: Var € Set

Rule 4.4.4. AssignInVarPSet|Var| =
if‘ (’inputVec‘.’elementAt‘ (’ Integer ‘)’ instanceof String‘){’
Print[Var| ‘=’ returnSets‘(’
BType[Var| ¢.’class,’
“(’String‘) ’inputVec‘.’elementAt‘ (’Integer ‘)’
;o
telse{
Print|[Var| ‘=’ ¢(’EnumSet‘<’ BType[Var]| >)
inputVec‘.’elementAt‘ (’ Integer ‘)’
;o
« })

Supplement: Var € POW’'BSet

Rule 4.4.5. AssignIlnVarObj[Var| =
Print|[Var| ‘=’ inputVec‘.’elementAt‘(’ Integer ¢);’ O

Rule 4.5. EventOutputMethod| BOutVars| =
EventOutput MethodWithoutInput[BOutVars|
| EventOutputMethodWithInput| BOutVars|

B: BInVars - BInVart"'

Rule 4.5.1. EventOutputMethodWithoutInput| BOutVars| =
protected synchronized void make‘_’output‘(){’
MakeOutVar[BOutVar]*

(}7

B: BOutVars - BOutVart"'

Rule 4.5.2. EventOutputMethodWithInput]BOutVars| =

Appendix A Translation Rules 144

protected synchronized void make‘_’output‘(’int indexInt‘){’
MakeOutVarWithIn[BOutVar |*

c};

B: BOutVars - BOutVart"'

U
Rule 4.5.3. MakeOutVar[Var| =
out‘_’element‘ (’ Imteger ‘,’ Print[Var| ¢);”’ O
Rule 4.5.4. MakeOutVarWithlIn|[Var]| =
out‘_’element ‘ (’indexInt‘,’ Integer ,’ Print[Var| ¢);’ O
Rule 4.6. EventRun|BOpBody| =
protected synchronized void run‘(){’
BeforeStateVars| StateV ars |
BSubstitution|BSub|
var‘.’check‘();’
{ varsPanelsStore‘.’getInstance‘ (). ’getPanelInstance‘ (’
‘> MachName ‘") .’refresh‘(O);’ }qup
¢ })
B: BOpBody - BSub
Supplement: Vars consists of all the state variables
U
Rule 4.6.1. BeforeStateVars|Vars| =
BeforeStateVar|[Var |*
Supplement: Varst Var*
U

Rule 4.6.2. BeforeStateVar[Var| =
BType|Var|Print[Var]| ‘=’
BeforeStateVarPSet[Var |
| BeforeStateVarArray|[Var |
| BeforeStateVarRelation|Var |
| BeforeStateVarAssignObj[Var|

€.
’

Supplement: If Var is a B set, BeforeStateVarPSet

Appendix A Translation Rules

145

Supplement: If Var is an array, BeforeStateVarArray
Supplement: If Var is a relation, Before$tateVarRelation

Supplement: Otherwise, BeforeStateVarObj

Rule 4.6.2.1. BeforeStateVarPSet[Var| =
EnumSet‘.’copy0f‘ (*var‘.’ Print[Var| ¢)’

B: Var € P(Set)

Rule 4.6.2.2. BeforeStateVarArray|[Var| =
new Type|[Var|¢[’var¢.’Print[Var]|¢.’length‘];’
System®.’arraycopy‘ (’
var‘.’Print[Var|¢,’0¢,’Print[Var|*,’0¢,’var‘.’
Print[Var|¢.’length
;o

Supplement: Var is an array

Rule 4.6.2.3. BeforeStateVarRelation] | =

var‘.’ Print[Var| ¢.’clone‘();’

Supplement: Var is a relation type

Rule 4.6.2.4. BeforeStateVarAssignObj|| =

var‘.’ Print|[Var] ¢;’

Rule 4.7. EventPrecondition|BSubPreCdin| =
protected synchronized boolean conditionCheck®(){’

return BCondition[BCdin| ¢;°
¢ })
B: BSubPreCdin+" PRE'BCdtn'THEN'BSub'END’
Rule 5.1. BSubstitution|BSub| =

BSubstitutionPrecondition| BSubPrecdtn |
| BSubstitutionBegin| BSubBegin |

Appendix A Translation Rules 146

| BSubstitutionVar|BSubV ar|

| BSubstitutionParallel] BSubPar|

| BSubstitutionBeEqual[BSubBeq|

| BSubstitutionlf| BSubl f |

| BSubstitutionBeEqualFunc| BSubBeqFunc|
| BSubstitutionAny|BSubAny |

B: BSubF
BSubPrecdtn
| BSubBegin
| BSubVar
| BSubPar
| BSubBeq
| BSubI f
| BSubBeqFunc

Rule 5.1.1. BSubstitutionPrecondition| BSubPrecdtn| =
BSubstitution|BSub|

B: BSubPreCdtn ' PRE'BCdin’THEN'BSub'END’

Rule 5.1.2. BSubstitutionBegin[BSubBegin| = BSubstitution|BSub|

B: BSubPreCdtn - BEGIN'BSub'END’

Rule 5.1.3. BSubstitutionVar|BSubVar| =
EventVarsDecl[Vars]
BSubstitution|BSub|

B: BSubVar - VAR Vars'IN'BSub’EN D’

Rule 5.1.4. BSubstitutionParallell BSubPar| =
BSubstitution|BSub|
BSubstitution|BSub|

B: BSubPrePar - BSub || BSub

Appendix A Translation Rules 147

Rule 5.1.5. BSubstitutionBeEqual] BSubBeq| =
BBeEqualArray | BSubBeq|
BBeEqual$etUnion	BSubBeq
BBeEqual$et Minus	BSubBeq
BBeEqualOther	BSubBeq

B: BSubBeq - BVar' =" BExpression

Supplement: If BVar is an array, BeforeStateVarArray
Supplement: If BExpression is a B Set union, BBeEqual$etUnion
Supplement: If BExpression is a B Set minus, BBEqualSetMinus
Supplement: Otherwise, BBeEqualOther

Rule 5.1.6. BSubstitutionlf[BSubl f| =
if ¢ BCondition[BCdtn|) {’
BSubstitution|BSub|
‘)
BSubstitutionElself] BCdtn, BSub|*
BSubstitutionElse[BSub|

B: BSubl f
'TF” BCdtn "THEN’ BSub
{ "ELSIF’ BCdtn "THEN’ BSub }*
{ "ELSE’ BSub }
"END’

Rule 5.1.7. BSubstitutionBeEqualFunc|BSubBeqFunc| =
BSubstitutionBeEqualArray | BSubBeqFunc| | BSubstitutionBeEqualFunctio:

B: BSubBeq - BVar' =' BExpression
Supplement: If BVar is an array, BSubstitutionBeEqualArray
Supplement: If BVar is a function, BSubstitutionBeEqualFunction

Rule 5.1.8. BSubstitutionAny|BSubBeqAny| =
EventVarsDecl[Vars]
BSubstitution|BSub|

B: BSubVar H ANY'Vars'WHERE' Predicates’'IN' BSub' EN D’

Appendix A Translation Rules 148
U
Rule 5.2. BExpression|BEzpr | O
Rule 5.3. BCondition|BCdtn| = O
Rule 5.4. BVarType|[Var| =
BVarTypelnteger|Var|
| BVarTypeSet|Var|
| BVarTypePSet|Var|
U
Rule 5.4.1. BVarTypelnteger|Var| = Integer
B: Var € INT | NAT O
Rule 5.4.2. BVarTypeSet[Var| = Print[BSetName]
B: Var € BSet
U
Rule 5.4.3. BVarTypePSet|[Var| =
EnumSet ‘<’ Print|[BSetName| ‘>’
B: Var € POW’'BSet
U
Rule 5.4.4. BVarTypeRelation|Var| =
Relation‘<’ Print[BType| ¢,’ Print[BType| >’
B: Var € BType' + — >' BType
U
Rule 5.4.5. BVarTypeArray|[Var| =
Print|[BType| ‘[1°
B: Var e NAT' — — >' BType
U
Rule 5.5. BExprType|BExpr| O

Appendix A Translation Rules

149

Rule 6.1. C3PExpression[CSPFExpr]

Rule 6.2. C3PCondition|CSPCdtn]|

Rule 6.3. C3PExprList[CSPExpr*|

Rule 7.2. ChannelType[Ch| =
EventType[Ev| | CChType| CCh]

B+CSP: Ch - Ev | CCh

Rule 7.2.1. EventType|Ev| =

CChannel | InCChannel | OutCChannel | OutInCChannel

Supplement: If the combined event Ev has no data flow between B and CSP, returns

CChannel. (CSP: ch B: op)

Supplement: If the combined event Ev only has input data, from the CSP channel to the

B operation, returns InCChannel. (CSP: chVInVars B: op‘('InVars))

Supplement: If the combined event Fv only has output data, from the B operation to the

CSP channel, returns OutCChannel. (CSP: ch‘?”OutVars B: OutVars' < — —"op)

Supplement: If combined event Ev has both input data, from CSP to B, and output data,
from B to CSP, returns OutInCChannel. (CSP: ch/VInVars'?OutVars B: OutVars' <

—="op'("InVars")")

Rule 7.2.2. CChType|CCh| =
ChannellInput | ChannelOutput | ChClassName| CCh|

Supplement: If the process only read from channel CCh, returns ChannelInput.
Supplement: If the process only output to channel CCh, returns ChannelOutput.

O

Supplement: If the process and its sub-processes both read and write to channel CCh,

returns the channel class name using rule CChClassName[CCh].

Rule 7.3. ChClassName[Ch]| =
EventClassName[Ev |
| CChClassName[CCh|

B+CSP: Ch - Ev | CCh

O

Appendix A Translation Rules

150

Rule 7.3.1. EventClassName[Ev| = Print| EvName] ¢_chclass’

B: BEv | OutVars' < ——'EvName'('InVars')

Rule 7.3.2. CChClassName[CCh| =
One20neChannel | One2AnyChannel | Any20neChannel
| Any2AnyChannel | ChEndClassName[CCh|

Supplement: One output end, one input end: One20neChannel.
Supplement: One output end, multiple input ends: One2AnyChannel.
Supplement: Multiple output ends, one input end: Any20neChannel.

Supplement: Multiple output ends, multiple input ends: Any2AnyChannel.

Rule 7.3.3. ChEndClassName[CCh] =
{ Ext20neChannel | One2ExtChannel
| Any20neChannel | Any2ExtChannel }yocur
{ Ext20neGUIChannel | One2ExtGUIChannel
| Ext2AnyGUIChannel | Any2ExtGUIChannel }igy
Rule 7.4. ChObjName|Ch| =

EventObjName[Ev |
| CChObjName[CCh]|

B+CSP: Cht- Ev | CCh

Rule 7.4.1. EventObjName|Ev| = Print[EvName| ¢_ch’

B: BEv | OutVars' < ——'EvName'('InVars')

Rule 7.4.2. CChObjName|[CCh| = Print[CChName]|

CSP: BCCht CChName{"? InVars}{"!OutVars}

Appendix B

Java Classes

B.1 Runtime Assertion Checking

B.2 Dining Philosophers

B.2.1 PHIL _procclass.java
package dps;

import org.dsse.jcsprob.lang.*;
import org.dsse.jcsprob.gui.*;
import jcsp.lang.*;

import java.util.*;

public class PHIL_procclass extends BGProcess{
private InCChannel sits_ch;
private InCChannel picks_ch;
private InCChannel eats_ch;
private InCChannel putsdown_ch;

private InCChannel getsup_ch;
Integer proc_index_a;

public PHIL_procclass(InCChannel sits_ch,InCChannel picks_ch,
InCChannel eats_ch,InCChannel putsdown_ch,
InCChannel getsup_ch,Integer proc_index_a){
super() ;
this.sits_ch = sits_ch;
this.picks_ch = picks_ch;
this.eats_ch = eats_ch;

this.putsdown_ch = putsdown_ch;

151

Appendix B Java Classes 152

this.getsup_ch = getsup_ch;

this.proc_index_a = proc_index_a;

public void run(){
this.createGUIProc();
start();
channelCall(sits_ch,inputVector (new Object[]{proc_index_al}));
Vector<Vector<Object>> choiceVec = new Vector<Vector<Object>>();
choiceVec.addElement (inputVector(
new Object[]{proc_index_a,proc_index_al}));
choiceVec.addElement (inputVector(
new Object[]{proc_index_a, (proc_index_a + 1) % 53}));
BCSPGuard[] in = {picks_ch,picks_ch};
switch(choiceCtrl(in, choiceVec)){
case 0 :
choiceRtn(picks_ch);
channelCall (picks_ch,inputVector(
new Object[]{proc_index_a, (proc_index_a + 1) % 5}));
channelCall(eats_ch,inputVector (
new Object[]{proc_index_a}));
channelCall (putsdown_ch, inputVector(
new Object[]{proc_index_a, (proc_index_a + 1) % 5}));
channelCall (putsdown_ch, inputVector(
new Object[]{proc_index_a,proc_index_al}));
channelCall (getsup_ch,inputVector(
new Object[]{proc_index_a}));
nextProcCtrl(new PHIL_procclass(
sits_ch,picks_ch,eats_ch,putsdown_ch,getsup_ch,proc_index_a));
break;
case 1 :
choiceRtn(picks_ch);
channelCall (picks_ch,inputVector(
new Object[]{proc_index_a,proc_index_a}));
channelCall(eats_ch,inputVector(
new Object[]{proc_index_a}));
channelCall (putsdown_ch, inputVector(
new Object[]{proc_index_a,proc_index_a}));
channelCall (putsdown_ch, inputVector(
new Object[]{proc_index_a, (proc_index_a + 1) % 5}));
channelCall (getsup_ch,inputVector(
new Object[]{proc_index_a}));
nextProcCtrl(new PHIL_procclass(
sits_ch,picks_ch,eats_ch,putsdown_ch,getsup_ch,proc_index_a));

break;

Appendix B Java Classes 153

end();

B.2.2 FORK _procclass.java
package dps;

import org.dsse.jcsprob.lang.*;
import org.dsse.jcsprob.gui.*;
import jcsp.lang.*;

import java.util.x*;

public class FORK_procclass extends BGProcess{
private InCChannel picks_ch;

private InCChannel putsdown_ch;
Integer proc_index_a;

public FORK_procclass(InCChannel picks_ch,
InCChannel putsdown_ch,Integer proc_index_a){
super() ;
this.picks_ch = picks_ch;
this.putsdown_ch = putsdown_ch;

this.proc_index_a = proc_index_a;

public void run(Q){
this.createGUIProc();
start();
Vector<Vector<Object>> choiceVec = new Vector<Vector<Object>>();
choiceVec.addElement (inputVector(
new Object[]{proc_index_a,proc_index_al}));
choiceVec.addElement (inputVector(
new Object[]{(proc_index_a + 4) % 5,proc_index_a}));
BCSPGuard[] in = {picks_ch,picks_ch};
switch(choiceCtrl(in, choiceVec)){
case 0 :
choiceRtn(picks_ch);
channelCall (putsdown_ch,
inputVector (new Object[]{proc_index_a,proc_index_a}));
nextProcCtrl(
new FORK_procclass(picks_ch,putsdown_ch,proc_index_a));

break;

Appendix B Java Classes 154

case 1 :
choiceRtn(picks_ch);
channelCall (putsdown_ch,
inputVector (new Object[]{(proc_index_a + 4) % 5,proc_index_a}));

nextProcCtrl(
new FORK_procclass(picks_ch,putsdown_ch,proc_index_a));
break;
}
end();

B.2.3 picks_chclass.java
package dps;

import org.dsse.jcsprob.gui.*;
import org.dsse.jcsprob.lang.*;

import java.util.x*;

public class picks_chclass extends InCChannel{

diningphils_machine var;

Integer pp;

Integer ff;

public picks_chclass(diningphils_machine var, BLock block){
this.var = var;
this.block = block;
this.setChName (this.getClass() .getSimpleName());

}

protected synchronized void assign_input(Vector<Object> inputVec){

pp = (Integer) (inputVec.elementAt(0));
ff = (Integer) (inputVec.elementAt(1));
}
protected synchronized void run(){
try{

var.pstate[pp] = 2;
var.fstate[ff] 1;

varsPanelsStore.getInstance() .getPanelInstance("diningphils") .refresh();
}catch(Exception e){
System.out.println("Exception in
Channel picks_chclass :> "+e.getMessage());

System.exit (0);

Appendix B Java Classes 155

protected synchronized boolean conditionCheck(){
return pp>=0 && pp<=4 && ff>=0 && ff<=4;

B.2.4 eats_chclass.java
package dps;

import org.dsse.jcsprob.gui.*;
import org.dsse.jcsprob.lang.*;

import java.util.*;

public class eats_chclass extends InCChannel{

diningphils_machine var;

Integer pp;

public eats_chclass(diningphils_machine var, BLock block){
this.var = var;
this.block = block;
this.setChName (this.getClass() .getSimpleName());

}

protected synchronized void assign_input(Vector<Object> inputVec){

pp = (Integer) (inputVec.elementAt(0));

}
protected synchronized void run(){
try{
var.pstate[pp] = 3;
var.count [pp] = var.count[pp] + 1;
varsPanelsStore.getInstance() .getPanelInstance("diningphils") .refresh();
}catch(Exception e){
System.out.println("Exception in
Channel eats_chclass :> "+e.getMessage());
System.exit(0);
}
}

protected synchronized boolean conditionCheck(){

return pp>=0 && pp<=4;

Appendix B Java Classes

156

B.3 Wot, no chicken?

B.3.1 chicken_run.java

package wnckl;

import org.dsse.jcsprob.lang.*;
import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

public class chicken_run{
public static void main(String[] args){
try{

GUIModelConfigStore.getInstance() .addModelInstance("chicken");

chicken_machine var = new chicken_machine("chicken");
BLock block = new BLock();
varsPanelsStore tmp = varsPanelsStore.getInstance();

tmp.addPanelInstance(var) ;

thinking_chclass thinking_ch = new thinking_chclass(var,block);

getchicken_chclass getchicken_ch = new getchicken_chclass(var,block);

eat_chclass eat_ch = new eat_chclass(var,block);
cook_chclass cook_ch = new cook_chclass(var,block);
put_chclass put_ch = new put_chclass(var,block);

final One20neChannel configure = new One20neChannel();
final One20neChannel comm = new One20neChannel();

tmp . setCommCh (comm) ;

new CSParallel(
new BCSProcess[]{
new BCSProcess(){
public void run(){

GUIFrame frame = new GUIFrame(configure,"chicken");

frame.pack();
frame.setVisible(true);

frame.run() ;

1,
new BCSProcess(){
public void run(){

RecordsFrame rcdFrame = RecordsFrame.getInstance();

rcdFrame.init (comm) ;
rcdFrame.pack();
rcdFrame.setVisible(true);

rcdFrame.run() ;

Appendix B Java Classes 157

new chicken_procclass(
cook_ch,put_ch,getchicken_ch,eat_ch,thinking_ch,configure)
}
).run();
}catch(Exception e){
System.out.println("Error: chicken_run main() :> "+e.getMessage());

System.exit(0);

B.3.2 chicken_procclass.java
package wnckl;

import org.dsse.jcsprob.lang.*;
import org.dsse.jcsprob.gui.*;
import jcsp.lang.x*;

import java.util.*;

public class chicken_procclass extends BGProcess{
private CChannel cook_ch;
private CChannel put_ch;
private InCChannel getchicken_ch;
private InCChannel eat_ch;

private InCChannel thinking_ch;

public chicken_procclass(CChannel cook_ch,CChannel put_ch,

InCChannel getchicken_ch,InCChannel eat_ch,
InCChannel thinking_ ch,ChannelQutput conf){

super (conf) ;

this.cook_ch = cook_ch;

this.put_ch = put_ch;

this.getchicken_ch = getchicken_ch;

this.eat_ch = eat_ch;

this.thinking_ch = thinking_ch;

public void run(){
this.createGUIProc();
start();
parallelCtrl(
new BGProcess[]{

new Chef_procclass(cook_ch,put_ch),

Appendix B Java Classes 158

new XPhil_procclass(getchicken_ch,eat_ch),

new PHILS_procclass(thinking ch,getchicken_ch,eat_ch)

)
end () ;

B.3.3 Phil _procclass.java
package wnckl;

import org.dsse.jcsprob.lang.*;
import org.dsse.jcsprob.gui.*;
import jcsp.lang.x*;

import java.util.*;

public class Phil_procclass extends BGProcess{
private InCChannel thinking_ ch;
private InCChannel getchicken_ch;

private InCChannel eat_ch;
Object proc_index_a;

public Phil_procclass(InCChannel thinking_ch,InCChannel getchicken_ch,
InCChannel eat_ch,Object proc_index_a){
super() ;
this.thinking ch = thinking_ch;
this.getchicken_ch = getchicken_ch;
this.eat_ch = eat_ch;
this.proc_index_a = proc_index_a;

argsVec.add(proc_index_a);

public void run(){

this.createGUIProc();
start();
channelCall (thinking_ch,

inputVector (new Object[]{(Integer)proc_index_al}));
channelCall (getchicken_ch,

inputVector (new Object[]{(Integer)proc_index_al}));
channelCall(eat_ch,

inputVector (new Object[]{(Integer)proc_index_al}));
nextProcCtrl(new Phil_procclass(

thinking_ ch,getchicken_ch,eat_ch,proc_index_a));

Appendix B Java Classes 159

end();

B.3.4 getchicken_chclass.java

package wnckl;

import org.dsse.jcsprob.gui.*;
import org.dsse.jcsprob.btypes.*;
import org.dsse.jcsprob.lang.*;

import java.util.x*;

public class getchicken_chclass extends InCChannelf{
chicken_machine var;
Integer pp;
public getchicken_chclass(chicken_machine var, BLock block){
this.var = var;
this.block = block;
this.setChName (this.getClass() .getSimpleName());
}
protected synchronized void assign_input(Vector<Object> inputVec){
pp = (Integer) (inputVec.elementAt(0));
}
protected synchronized void run(){
try{
Integer[] state = new Integer[var.state.length];
System.arraycopy(var.state,0,state,0,var.state.length);
Integer chef = var.chef;
Integer canteen = var.canteen;

var.canteen = canteen - 1;

var.check();
varsPanelsStore.getInstance() .getPanelInstance("chicken") .refresh();
}catch(Exception e){
System.out.println("Exception in Channel
getchicken_chclass :> "+e.getMessage());
System.exit(0);

}
protected synchronized boolean conditionCheck(){

return pp>=0 && pp<=4 && var.canteen > O;

Appendix B Java Classes 160

B.4 The Odd-Even Example

B.4.1 Even_run.java
package oddeven.Even;

import org.dsse.jcsprob.lang.*;
import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

public class Even_runf{
public static void main(String[] args){
try{
GUIModelConfigStore.getInstance() .addModelInstance("Even") ;
Even_machine var = new Even_machine("Even");
BLock block = new BLock();
varsPanelsStore tmp = varsPanelsStore.getInstance();
tmp.addPanelInstance(var) ;
evenput_chclass evenput_ch = new evenput_chclass(var,block);
evenget_chclass evenget_ch = new evenget_chclass(var,block);
/* The following channel communicates with the environment */
final Ext20neGUIChannel oddpass_ch
= new Ext20neGUIChannel ("oddpass_ch");
/* The following channel communicates with the environment */
final One2ExtGUIChannel evenpass_ch
= new One2ExtGUIChannel ("evenpass_ch");
final One20neChannel configure = new One20neChannel();
final One20neChannel comm = new One20neChannel();

tmp . setCommCh (comm) ;

new CSParallel(
new BCSProcess[]{
new BCSProcess(){
public void run(){
GUIFrame frame = new GUIFrame(configure,"Even");
frame.pack();
frame.setVisible(true);

frame.run() ;

1,
new BCSProcess(){
public void run(){
RecordsFrame rcdFrame = RecordsFrame.getInstance();
rcdFrame.init (comm) ;
rcdFrame.pack();

rcdFrame.setVisible(true);

Appendix B Java Classes 161

B.4.2

rcdFrame.run() ;

3,
new Even_procclass(
oddpass_ch,evenput_ch,evenget_ch,evenpass_ch,configure)
}
).run();
}catch(Exception e){
System.out.println("Error: Even_run main() :> "+e.getMessage());

System.exit (0);

Oddeven_run.java

package oddeven;

import
import
import
import

import

public

org.dsse. jcsprob.lang. *;
org.dsse. jcsprob.gui.x*;
jcsp.lang.*;
oddeven.Even. *;
oddeven.0dd. *;

class Oddeven_run{

public static void main(String[] args){

try{
GUIModelConfigStore.getInstance() .addModelInstance("0dd");
GUIModelConfigStore.getInstance() .addModelInstance("Even") ;

Even_machine varl = new Even_machine("Even");
0Odd_machine var2 = new 0dd_machine("0dd");

BLock blockl = new BLock();

BLock block2 = new BLock();

varsPanelsStore tmp = varsPanelsStore.getInstance();
tmp.addPanelInstance(varl);
tmp.addPanelInstance (var2);

evenput_chclass evenput_ch = new evenput_chclass(varl,blockl);

evenget_chclass evenget_ch = new evenget_chclass(varl,blockl);
oddput_chclass oddput_ch = new oddput_chclass(var2,block?2);
oddget_chclass oddget_ch = new oddget_chclass(var2,block?2);
final One20neChannel oddpass_ch = new One20neChannel();

final One20neChannel evenpass_ch = new One20neChannel();

final One20neChannel configurel = new One20neChannel();

Appendix B Java Classes 162

final One20neChannel configure2 = new One20neChannel();
final Any20neChannel comm = new Any20neChannel();

tmp . setCommCh (comm) ;

new CSParallel(
new BCSProcess[]{
new BCSProcess(){
public void run(){
GUIFrame frame = new GUIFrame(configurel,"Even");
frame.pack();
frame.setVisible(true);

frame.run() ;

new Even_procclass(
oddpass_ch,evenput_ch,evenget_ch,evenpass_ch,configurel),
new BCSProcess(){
public void run(){
GUIFrame frame = new GUIFrame(configure2,"0dd");
frame.pack();
frame.setVisible(true);

frame.run() ;

new BCSProcess(){
public void run(){
RecordsFrame rcdFrame = RecordsFrame.getInstance();
rcdFrame.init (comm) ;
rcdFrame.pack();
rcdFrame.setVisible (true);

rcdFrame.run() ;

new 0dd_procclass(
oddget_ch,oddpass_ch,evenpass_ch,oddput_ch,configure2)
}
).run();
}catch(Exception e){
System.out.println("Error: Oddeven_run main() :> "+e.getMessage());

System.exit(0);

Appendix C

Specifications

C.1 The Decomposed Wot-no-chicken model: Step 2

C.1.1 The CSP Specification

MAIN = Chef || {put} |] Canteen [| {take} |] PHILS ;;
PHILS = GPhils ||| XPhil ;;

GPhils = ||| X:0,1,2,3@Phil(X);;

Phil(X) = thinking. X — take?Y — eat. X.Y — Phil(X);;
XPhil = take?Y — eat.4.Y — XPhil;

Chef = cook — put — Chef ;;

Canteen = CProc ||| PProc ;;

CProc = put — CProc ;;

PProc = getchicken.X — PProc ;;

C.1.2 B Machine: Chef

MACHINE Chef
VARIABLES
chef
INVARIANT
chef € NAT
INITIALISATION
chef := 0
OPERATIONS
cook =
BEGIN
chef := chef + 4
END;
nn «— putl =
BEGIN chef := chef - 4 || nn := 4 END

163

Appendix C Specifications

164

END

C.1.3 B Machine: Canteen

MACHINE Canteen
VARIABLES
canteen
INVARIANT
canteen € NAT
INITIALISATION
canteen := 0
OPERATIONS
nn « getchicken(pp) =
PRE canteen > 0 THEN
canteen := canteen - 1 || nn := 1
END;
put2(pp) =
PRE pp € NAT N pp > 0 THEN
canteen := canteen + pp END
END

C.1.4 B Machine: Phils

MACHINE Phils
VARIABLES

state
INVARIANT

state € (0..4)—NAT
INITIALISATION

state := (0..4) *{1}
OPERATIONS

thinking(pp) =
PRE ppe0..; THEN

state(pp) := state(pp) - 1
END;
eat(pp,nn) =
PRE ppe0..4 N nneNAT N nn>0 THEN
state(pp) := state(pp) + nn
END
END

Appendix C Specifications 165

C.2 The Decomposed Wot-no-chicken model: Step 3

C.2.1 The CSP Specification

MAIN = Chef || {put} |] Canteen [| {take} |] PHILS ;;
PHILS = GPhils ||| XPhil ;;
GPhils = ||| X:0,1,2,3@Phil(X);;
Phil(X) = thinking — take?Y — eat.Y — Phil(X);;
XPhil = take?Y — eat.Y — XPhil;
Chef = cook — put — Chef ;;

Canteen = CProc ||| PProc ;;

CProc = put — CProc ;;

PProc = getchicken.X — PProc ;;

C.2.2 B Machine: Phil

MACHINE Phil
VARIABLES
state
INVARIANT
state € NAT
INITIALISATION
state := 1
OPERATIONS
thinking =
BEGIN
state := state - 1
END:;
eat(nn) =
PRE nneNAT N nn>0 THEN
state := state + nn
END
END

C.2.3 B Machine: XPhil

MACHINE XPhil
VARIABLES
state
INVARIANT
state € NAT
INITIALISATION
state := 1
OPERATIONS
eat(nn) =

Appendix C Specifications

166

PRE nneNAT A nn>0 THEN
state := state + nn
END

END

Bibliography

[ABHV06] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An
open extensible tool environment for event-b. In ICFEM, pages 588-605, 2006.

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA, 1996.

[AMYIS8] Jean-Raymond Abrial and Louis Mussat. Introducing dynamic constraints in b. In
B’98, volume LNCS 1393, pages 83128, 1998.

[Ate01] Atelier b. http://www.atelierd.societe.com/index_uk.html, 2001.

[Bac80] Ralph-Johan Back. Correctness Preserving Program Refinements: Proof Theory
and Applications, volume 131 of Mathematical Center Tracts. Mathematical Centre,
Amsterdam, The Netherlands, 1980.

[Bag87] Rajive Bagrodia. A distributed algorithm to implement n-party rendezvous. In Proc.
of the seventh conference on Foundations of software technology and theoretical

computer science, pages 138-152, London, UK, 1987. Springer-Verlag.

[Bag89] Rajive Bagrodia. Process synchronization: Design and performance evaluation of
distributed algorithms. IEEE Trans. Software Eng., 15(9):1055-1065, 1989.

[BCo01] B-toolkit. http://www.b-core.com/ONLINEDOC/BToolkit.html, 2001.

[BFMWO01] Detlef Bartetzko, Clemens Fischer, Michael Mdller, and Heike Wehrheim. Jass -
java with assertions. Electr. Notes Theor. Comput. Sci., 55(2):15, 2001.

[BHRS84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31(3):560-599, 1984.

[BKS83a] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized
control. In PODC ’83: Proceedings of the second annual ACM symposium on
Principles of distributed computing, pages 131-142, New York, NY, USA, 1983.
ACM Press.

[BKS83b] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized
control. In PODC ’83: Proceedings of the second annual ACM symposium on
Principles of distributed computing, pages 131-142, New York, NY, USA, 1983.
ACM Press.

[BL05] Michael J. Butler and Michael Leuschel. Combining CSP and B for specification
and property verification. In FM ’05: Proceedings of the International Symposium
of Formal Methods Europe, volume LNCS 3582, pages 221-236, 2005.

167

BIBLIOGRAPHY 168

[BM02] Mark Brorken and Michael Méller. Jassda trance assertions: Runtime checking the
dynamic of java programs. In International Conference on Testing of Communicat-
ing Systems, 2002.

[BMRA98] Juan Bicarregui, Brian Matthews, Brian Ritchie, and Sten Agerholm. Investigating
the integration of two formal methods. Formal Asp. Comput., 10(5-6):532-549,
1998.

[BR85] S. D. Brookes and A. W. Roscoe. An improved failures model for csp. In the
Pittsburgh Seminar on Concurrency, volume LNCS 197. Springer, 1985.

[Bru01] Tatibouet Bruno. The JBTools Package, 2001. Awailable at hittp://lifc.univ-
feomte.fr/ tatibouet/JBTOOLS/index_en.html.

[BS05] Peter A. Beerel and Arash Saifhashemi. High Level Modeling of Channel-Based
Asynchronous Circuits Using Verilog. In Communicating Process Architectures
2005, sep 2005.

[But93] Michael J. Butler. Refinement and decomposition of value-passing action systems.
In CONCUR ’93: Proceedings of the 4th International Conference on Concurrency
Theory, pages 217-232, London, UK, 1993. Springer-Verlag.

[But96] Michael J. Butler. Stepwise refinement of communicating systems. Sci. Comput.
Program., 27(2):139-173, 1996.

[But97] Michael J. Butler. An approach to the design of distributed systems with b amn. In
ZUM ’97: Proceedings of the 10th International Conference of Z Users on The Z
Formal Specification Notation, pages 225-241, London, UK, 1997. Springer- Verlag.

[But99] Michael J. Butler. csp2B: A practical approach to combining CSP and B. In World
Congress on Formal Methods, pages 490-508, 1999.

[But06] Michael J. Butler. RODIN Deliverable D19: Intermediate report on methodology,
chapter 3.6, pages 47-56. RODIN project, 2006.

[CGJT01] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Progress on the state explosion problem in model checking. In Informatics - 10
Years Back. 10 Years Ahead., pages 176-194. Springer-Verlag, 2001.

[CHO1] D. Cabeza and M. Hermenegildo. The pillow web programming library. Techni-
cal report, The CLIP Group, School of Computer Science, Technical University of
Madrid, 2001. Available at http://www.clip.dia.fi.upm.es/.

[Che00] Jessica Chen. On verifying distributed multithreaded java programs. In HICSS ’00:
Proceedings of the 33rd Hawaii International Conference on System Sciences-Volume
8, page 8010, Washington, DC, USA, 2000. IEEE Computer Society.

[CKKT00] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alexzandre Yakovlev. Hardware and petri nets: Application to asynchronous circuit
design. In ICATPN, pages 1-15, 2000.

[Cle01] ClearSy. B Language Reference Manual, 1.8.5 edition, 2001.

BIBLIOGRAPHY 169

[Cle02] ClearSy. Atelier B Translator User Manual, 4.6 edition, 2002.

[CS02] Ana Cavalcanti and Augusto Sampaio. From csp-oz to java with processes. In TPDPS
'02: Proceedings of the 16th International Parallel and Distributed Processing Sym-
posium, page 161, Washington, DC, USA, 2002. IEEE Computer Society.

[CSW03] ALC Cavalcanti, A. Sampaio, and JCP Woodcock. A Refinement Strategy for Circus.
Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

[Dij65] Edsger W. Dijkstra. Programming considered as a human activity. In the 1965 IFIP
Congress, pages 213-217. North-Holland Publishing Co., 1965.

[Dij68] Edsger W. Dijkstra. A constructive approach to the problem of program correctness.
BIT, 8(3):17/-186, 1968.

[Dij97] Edsger Wybe Digkstra. A Discipline of Programming. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1997.

[DRS95] R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated for
the description of standards. Computer Standards & Interfaces, 17(5-6):511-533,
September 1995.

[DS98] C. Demartini and R. Sisto. Static analysis of java multithreaded and distributed
applications. In PDSE ’98: Proceedings of the International Symposium on Software
Engineering for Parallel and Distributed Systems, page 215, Washington, DC, USA,
1998. IEEE Computer Society.

[ELLY4] Ren&i#233; Elmstréi#248;m, Peter Gorm Larsen, and Poul Bøgh Lassen.
The ifad vdm-sl toolbox: a practical approach to formal specifications. SIGPLAN
Not., 29(9):77-80, 1994.

[EMCP99] Orna Grumberg Edmund M. Clarke and Doron A. Peled. Model Checking. The
MIT Press, 1999.

[FCO06] A. F. Freitas and A. L. C. Cavalcanti. Automatic Translation from Circus to Java.
In J. Misra, T. Nipkow, and E. Sekerinski, editors, FM 2006: Formal Methods,
volume 4085 of Lecture Notes in Computer Science, pages 115-130. Springer- Verlag,
2006.

[Fis97a] Clemens Fischer. CSP-OZ: A combination of Object-Z and CSP. Technical report,
Fachbereich Informatik, University of Oldenburg, 1997.

[Fis97b] Clemens Fischer. CSP-Z: A combination of Z and CSP. Technical report, University
of Oldenburg, 1997.

[Fis98] Clemens Fischer. How to combine Z with a process algebra. In J. Bowen, A. Fett,
and M. Hinchey, editors, ZUM’98: The Z Formal Specification Notation, volume
1493 of LNCS, pages 5-23. Springer, 1998.

[Fis99] Clemens Fischer. Software development with Object-Z, CSP, and Java: A pragmatic
link from formal specifications to programs. In Proceedings of the Workshop on
Object-Oriented Technology, pages 108109, London, UK, 1999. Springer-Verlag.

BIBLIOGRAPHY 170

[Fis00] Clemens Fischer. Combination and Implementation of Processes and Data: From
CSP-OZ to Java. PhD thesis, Fachbereich Informatik, Universitat Oldenburg, 2000.

[FLL*™02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saze, and Raymie Stata. Extended static checking for java. In PLDI ’02: Proceed-
ings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 234-245, New York, NY, USA, 2002. ACM.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, volume 19 of Proceedings of Symposia
in Applied Mathematics, pages 19-32, Providence, Rhode Island, 1967. American
Mathematical Society.

[For03] Formal System Ltd. Failures-Divergence Refinement - FDR2 User Manual, 2003.

[FW99] Clemens Fischer and Heike Wehrheim. Model-checking CSP-OZ specifications with
FDR. In 1st International Conference on Integrated Formal Methods, pages 315-34.
Springer-Verlag, 1999.

[Gal96] A. Galloway. Integrated Formal Methods. PhD thesis, University of Teesside, 1996.

[GISBO0] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci-
fication, Second Edition. Addison-Wesley, Boston, Mass., 2000.

[GJSBO05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci-
fication Third Edition. Addison-Wesley, Boston, Mass., 2005.

[Goe03] Brain Goetz. Introduction — to java threads. Sep 2003.
hitps:/ /wwwé.software.ibm.com/developerworks/education /j-threads /j-threads-
a4.pdf.

[Goe04] Brain Goetz. Concurrency in JDK 5.0. 2004.

http:/ /www.ibm.com/developerworks/edu/j-dw-java-concur-i. html.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formal-
ism for artificial intelligence. In IJCAIL, pages 235-245, 1973.

[HHSS86] Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In
ESOP ’86: Proceedings of the European Symposium on Programming, pages 187-
196, London, UK, 1986. Springer-Verlag.

[HK91] Iain Houston and Steve King. Clics project report experiences and results from the
use of z in ibm. In VDM’91 Formal Software Development Methods, volume Volume
551/1991, pages 588-596. Springer, 1991.

[HLO6] Max Haustein and Klaus-Peter Léhr. Jac: declarative java concurrency: Research
articles. Concurrency and Computation : Practice and Experience, 18(5):519-546,
2006.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576-580, 1969.

BIBLIOGRAPHY 171

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666-
677, 1978.

[Hoa80] C. A. R. Hoare. A model for communicating sequential processes. In On the Con-
struction of Programs, pages 229-254. Cambridge University Press, 1980.

[Hoa85] C.A.R Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.
Addison-Wesley Professional, September 2003.

[HOS* 93] M. R. Hansen, E.-R. Olderog, M. Schenke, M. Frinzle, B. von Karger, M. Miiller-
Olm, and H. Rischel. A Duration Calculus semantics for real-time reactive systems.
Technical Report [OLD MRH 1/1], Universitat Oldenburg, Germany, 1993.

[HS00] Klaus Havelund and Jens Skakkebaek. Practical application of model checking in
software verification. In the 6th Workshop on the SPIN Verification System, 2000.

[Jav] hitp://java.sun.com/j2se/1.5.0/docs/api/java/lang/object.html.

[Jon90] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall Inc.,
1990.

[Law04] Jonathan Lawrence. Practical application of csp and fdr to software design. In
Communicating Sequential Processes: The First 25 Years., volume 3525/2005 of
LNCS, pages 151-174. Springer, 2004.

[LB03] Michael Leuschel and Michael J. Butler. Prob: A model checker for B. In FME
2003: International Symposium of Formal Methods Europe, pages 855-874, 2003.

[LCO3] Gary T. Leavens and Yoonsik Cheon. Design by contract with JML, 20083.

[Lea99] Douglas Lea. Concurrent Programming in Java. Second Edition: Design Principles
and Patterns. Addison-Wesley Longman Publishing Co., Inc., 1999.

[Leu01] Michael Leuschel. Design and implementation of the high-level specification language
esp(lp) in prolog. In PADLO1, LNCS 1990, pages 14-28. Springer-Verlag, 2001.

[Lim95] SGS-Thomson Microelectronics Limited. occam 2.1 reference manual, 1995.

[LMCO01] Michael Leuschel, Thierry Massart, and Andrew Currie. How to make fdr spin It
model checking of csp by refinement. In FME ’01: Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods for Increasing Software
Productivity, pages 99-118, London, UK, 2001. Springer-Verlag.

[LPCT05] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok,
Peter Miller, and Joseph Kiniry. JML Reference Manual. Iowa State University,
Department of Computer Science, lowa State University, lowa, USA, 1.156 edition,
8 2005.

BIBLIOGRAPHY 172

[LS03]

[MAV05a]

[MAVO5b)

[McE06]

[MD99]

[Mey92]

[Mil80]

[Mil89]

[Mil99]

[MK99]

[M6102]

[Mor88]

[Mor90]

[MPA0S5]

[MS98]

[MS01]

Brad Long and Paul Strooper. A classification of concurrency failures in java compo-
nents. In IPDPS ’03: Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, page 287.1, Washington, DC, USA, 2003. IEEE Com-
puter Society.

C. Métayer, J-R. Abrial, and L. Voisin. RODIN Deliverable D7: Event-B language.
RODIN project, 2005.

C. Mtayer, J.-R. Abrial, and L. Voisin. Event-B Language. Rigorous Open De-
velopment Environment for Complex Systems, rodin deliverable 3.2 edition, May
2005.

Alasdair A. McFwan. Concurrent Program Development. PhD thesis, The Univer-
sity of Ozford, 2006.

Brendan P. Mahony and Jin Song Dong. Overview of the semantics of tcoz. In IFM
'99: Proceedings of the 1st International Conference on Integrated Formal Methods,
pages 66-85, London, UK, 1999. Springer-Verlag.

Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40-51, 1992.
Robin Milner. A Calculus of Communicating Systems. Springer-Verlag,, 1980.
Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

Robin Milner. Communicating and mobile systems: the pi-calculus. Cambridge
University Press, New York, NY, USA, 1999.

Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs. John
Wiley € Sons, 1999.

Michael Moéller. Specifying and checking java using CSP. Technical report, Com-
puting Science Department, University of Nijmegen, 2002.

Carroll Morgan. The specification statement. ACM Trans. Program. Lang. Syst.,
10(3):403-419, 1988.

Carroll Morgan. Of wp and CSP. In Beauty is our business: a birthday salute to
Edsger W. Dijkstra, pages 319-326. Springer-Verlag New York, Inc., 1990.

Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model.
In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 378-391, New York, NY, USA, 2005.
ACM Press.

Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z. In FASE’98: Funda-
mental Approaches to Software Engineering, volume 1382 of LNCS, pages 205-220,
1998.

Alezandre Mota and Augusto Sampaio. Model-checking CSP-Z: strategy, tool support
and industrial application. Sci. Comput. Program., 40(1):59-96, 2001.

BIBLIOGRAPHY 173

[MS02a] Giuseppe Milicia and Viadimiro Sassone. Jeeg: A programming language for con-
current objects synchronization. In JavaGrande/ISSCOPE 2002, Seattle, November
2002.

[MS02b] P. Mota, A.and Borba and A. Sampaio. Mechanical abstraction of CSP-Z processes.
In FME 2002: Formal Methods-Getting IT Right. International Symposium of For-
mal Methods Europe. Springer-Verlag, 2002.

[MST92] David May, Roger Shepherd, and Peter Thompson. The t9000 transputer. In ICCD,
pages 209-212, 1992.

[MUO05] Petra Malik and Mark Utting. CZT: A framework for Z tools. In ZB 2005: Formal
Specification and Development in Z and B, LNCS, pages 65-84. Springer, 2005.

[MW00] H. ~ Muller and K. Walrath. Threads and swing, 2000.
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html.

[Nel89] Greg Nelson. A generalization of dijkstra’s calculus. ACM Trans. Program. Lang.
Syst., 11(4):517-561, 1989.

[0C04] M.V.M. Oliveira and A.L.C. Cavalcanti. From Circus to JCSP. In J. Davies et al.,
editor, Sixth International Conference on Formal Engineering Methods, volume 3308

of Lecture Notes in Computer Science, pages 320 — 340. Springer-Verlag, November
2004.

[Pel04] Jan Peleska. Applied formal methods - from csp to executable hybrid specifications.
In Communicating Sequential Processes: The first 25 Years, volume 3525/2005 of
LNCS, pages 293-320. Springer, 2004.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1981.

[PGBT05] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David

Holmes. Java Concurrency in Practice. Addison-Wesley Professional, 2005.

[PST96] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification
and Z. Prentice Hall, 1996.

[Pug00] William Pugh. The Java memory model is fatally flawed. Concurrency: Practice
and Experience, 12(6):445-455, 2000.

[RDF*05] Edwin Rodriguez, Matthew B. Dwyer, Cormac Flanagan, John Hatcliff, Gary T.
Leavens, and Robby. FExtending jml for modular specification and verification of
multi-threaded programs. In ECOOP, pages 551-576, 2005.

[RGS94a] A. W. Roscoe, M.H. Goldsmith, and B.G.O. Scott. Denotational semantics for

occam?2, part 1. Transputer Communications, 1:65-91, 199/.

[RGS94b] A. W. Roscoe, M.H. Goldsmith, and B.G.O. Scott. Denotational semantics for
occam?2, part 2. Transputer Communications, 2:25-67, 199/.

[RHS88] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Theor. Comput.
Sci., 60:177-229, 1988.

BIBLIOGRAPHY 174

[Ros98] A W Roscoe. The Theory and Practice of Concurrency. Pearson Education, 1998.

[RRS03] V. Raju, L. Rong, and G. S. Stiles. Automatic Conversion of CSP to CTJ, JCSP,
and CCSP. In Jan F. Broenink and Gerald H. Hilderink, editors, Communicating
Process Architectures 2003, pages 653-81, 2003.

[RS05] Rafael Ramirez and Andrew E. Santosa. Formal verification of concurrent and
distributed constraint-based java programs. In ICECCS, pages 76-84, 2005.

[SB06] Colin Snook and Michael Butler. Uml-b: Formal modeling and design aided by uml.
ACM Trans. Softw. Eng. Methodol., 15(1):92-122, 2006.

[Sch00] Steven Schneider. Concurrent and Real-Time System: The CSP Approach. John
Wiley and Sons LTD, 2000.

[Sch01] Steven Schneider. The B-Method: An Introduction. Palgrave Macmillan, 2001.

[SHO0] Graeme Smith and Ian J. Hayes. Structuring real-time object-z specifications. In
IFM ’00: Proceedings of the Second International Conference on Integrated Formal
Methods, pages 97-115, London, UK, 2000. Springer-Verlag.

[ST02] Steve Schneider and Helen Treharne. Communicating B machines. In ZB ’02:
Proceedings of the 2nd International Conference of B and Z Users on Formal Speci-
fication and Development in Z and B, pages 416-435, London, UK, 2002. Springer-
Verlag.

[ST03] Steven Schneider and Helen Treharne. CSP theorems for communicating B ma-
chines. Technical report, Department of Computer Science, University of London -
Royal Holloway, 2003.

[ST05] Steve Schneider and Helen Treharne. Csp theorems for communicating b machines.
Formal Asp. Comput., 17(4):390—422, 2005.

[STE05] Steve A. Schneider, Helen Treharne, and Neil Evans. Chunks: Component verifica-
tion in csp——>b. In IFM, pages 89-108, 2005.

[TB06] Edd Turner and Michael Butler. Symmetry reduction in the prob model checker. In
FM 2006 Doctoral Symposium, McMaster University, Canada, 2006.

[TS99a] Helen Treharne and Steve Schneider. Capturing timing requirements formally in
AMN. Technical Report CSD-TR-99-06, University of Surrey, Egham, Surrey TW20
0EX, England, 1999.

[TS99b] Helen Treharne and Steve Schneider. Using a process algebra to control B operations.
In IFM ’99: Proceedings of the 1st International Conference on Integrated Formal
Methods, pages 437-456, London, UK, 1999. Springer-Verlag.

[TS00] Helen Treharne and Steve Schneider. How to drive a B machine. In ZB ’00: Pro-
ceedings of the First International Conference of B and Z Users on Formal Specifi-
cation and Development in Z and B, pages 188-208, London, UK, 2000. Springer-
Verlag.

BIBLIOGRAPHY 175

[TSB0S3]

[VHBP99]

[WB04]

[WBM* 07]

[WBP06]

[WC01]

[Weoz]

[Weh99]

[Wel98]

[Wir71]

[WMO00a]

[WMOO0b]

Helen Treharne, Steve Schneider, and Marchia Bramble. Composing specifications

using communication. In ZB, pages 5878, 2003.

Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model check-

ing programs. In Int. Conf. on Automated Software Engineering, 1999.

Peter H. Welch and Fred R. M. Barnes. Communicating mobile processes. In 25
Years Communicating Sequential Processes, pages 175-210, 200.

Peter Welch, Neil Brown, James Moores, Kevin Chalmers, and Bernhard Sputh.
Integrating and extending jcsp. In CPA ’07: Communicating Process Architectures
2007, 2007.

P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Communicating complex sys-
tems. In Michael G Hinchey, editor, the 11th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS-2006), pages 107-117, Stan-
ford, California, August 2006. IEEE.

JCP Woodcock and ALC Cavalcanti. A concurrent language for refinement. In
A. Butterfield and C. Pahl, editors, IWFM’01: The 5th Irish Workshop in Formal
Methods, BCS Electronic Workshops in Computing, Dublin, Ireland, July 2001.

J. C. P. Woodcock and A. L. C. Cavalcanti. The semantics of circus. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specifi-
cation and Development in Z and B, volume 2272 of Lecture Notes in Computer

Science, pages 184-203. Springer-Verlag, 2002.

Heike Wehrheim. Data abstraction for CSP-OZ. In J. Davies J. Wing, J. Woodcock,
editor, FM’99: World Congress on Formal Methods, volume 1709 of LNCS, pages
1028-1047. Springer-Verlag, 1999.

Peter H. Welch. Java Threads in the Light of occam/CSP. In P.H.Welch and
A.W.P.Bakkers, editors, Architectures, Languages and Patterns for Parallel and
Distributed Applications, volume 52 of Concurrent Systems Engineering Series,
pages 259284, Amsterdam, April 1998. WoTUG, 10S Press.

Niklaus Wirth. Program development by stepwise refinement. Commun. ACM,
14(4):221-227, 1971.

Peter H. Welch and Jeremy M.R. Martin. Formal analysis of concurrent java sys-
tem. In CPA ’00: Communicating Process Architectures 2000, volume 58 of Con-
current Systems Engineering, pages 275-301. I0S Press (Amsterdam), 2000.

Petre H. Welch and Jeremy M.R. Martin. A CSP Model for Java Multithreading.
In P.Nizon and I.Ritchie, editors, Software Engineering for Parallel and Distributed
Systems, pages 114-122. ICSE 2000, IEEE Computer Society Press, June 2000.

