
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

The Automated Translation of

Integrated Formal Specifications into

Concurrent Programs

by

Letu Yang

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

September 2008

http://www.soton.ac.uk
mailto:ly03r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Letu Yang

The PROB model checker [LB03] provides tool support for an integrated formal specifi-

cation approach, which combines the state-based B specification language [Abr96] with

the event-based process algebra CSP [Hoa78]. The JCSP package [WM00b] presents a

concurrent Java implementation for CSP/occam.

In this thesis, we present a developing strategy for implementing such a combined spec-

ification as a concurrent Java program. The combined semantics in PROB is flexible

and ideal for model checking, but is too abstract to be implemented in programming

languages. Also, although the JCSP package gave us significant inspiration for im-

plementing formal specifications in Java, we argue that it is not suitable for directly

implementing the combined semantics in PROB. Therefore, we started with defining a

restricted semantics from the original one in PROB. Then we developed a new Java pack-

age, JCSProB, for implementing the restricted semantics in Java. The JCSProB package

implements multi-way synchronization with choice for the combined B and CSP event,

as well as a new multi-threading mechanism at process level. Also, a GUI sub-package is

designed for constructing GUI programs for JCSProB to allow user interaction and run-

time assertion checking. A set of translation rules relates the integrated formal models

to Java and JCSProB, and we also implement these rules in an automated translation

tool for automatically generating Java programs from these models.

To demonstrate and exercise the tool, several B/CSP models, varying both in syntactic

structure and behavioural properties, are translated by the tool. The models manifest

the presence and absence of various safety, deadlock, and fairness properties; the gen-

erated Java code is shown to faithfully reproduce them. Run-time safety and fairness

assertion checking is also demonstrated. We also experimented with composition and

decomposition on several combined models, as well as the Java programs generated from

them. Composition techniques can help the user to develop large distributed systems,

and can significantly improve the scalability of the development of the combined models

of PROB.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ly03r@ecs.soton.ac.uk

Contents

Acknowledgements viii

1 Introduction 1

1.1 Formal Methods, State- and Event- based, and Their Integration 2

1.2 Formalizing Concurrent Java Programming 5

1.3 Rationale for the PhD . 6

1.4 Contributions . 7

1.5 Outline . 8

2 Integrated Formal Methods 10

2.1 The B Method . 10

2.1.1 AMN and wp . 11

2.1.2 The Development of the B Method 12

2.1.3 The B0 Language . 13

2.1.4 Model Checking and PROB . 13

2.2 Communicating Sequential Processes . 14

2.2.1 A Simple Introduction to CSP Grammar 14

2.2.2 Denotational Semantics of CSP . 15

2.3 Integrated Formal Methods . 17

2.3.1 Some IFM Approaches . 17

2.3.1.1 CSP-Z . 17

2.3.1.2 CSP/OZ . 18

2.3.1.3 CSP ‖ B . 18

2.3.1.4 csp2B . 20

2.3.1.5 Circus . 20

2.3.2 B+CSP in PROB . 21

3 Formalized Java Concurrency Development 23

3.1 Concurrent Java programming . 23

3.1.1 Concurrency in Java . 25

3.1.2 J2SE 5.0 . 26

3.2 Formal Approaches to Java Concurrency 28

3.2.1 Runtime Verification: JML, Jass and Jassda 30

3.2.2 Model Checking Java Programs: Java Path Finder 30

3.2.3 Semi-Formal Approach: The Magee approach 31

3.2.4 Jeeg . 31

3.3 JCSP . 32

ii

CONTENTS iii

3.3.1 The Limitation of JCSP 1.0rc5 and before 35

3.3.2 New JCSP versions . 35

3.3.3 A Translation Tool for JCSP . 36

3.3.4 From Circus to JCSP . 36

4 The Combined B+CSP Specification 38

4.1 The Specification language . 39

4.2 The Operational Semantics of B+CSP . 39

4.3 The Restricted Semantics for Implementation 44

4.4 How to Compute the Restricted Semantics 45

4.5 The Concurrency Model . 47

5 JCSProB: A Java Implementation of B+CSP 50

5.1 Why We Need JCSProB . 51

5.1.1 JCSP Channels and B+CSP Events 51

5.1.2 CSP Process Call, Recursion and occam-pi Loop 52

5.2 An Overview of the JCSProB Package . 53

5.3 B+CSP Event Classes . 55

5.4 Implementing Multi-way Synchronization with Choice 56

5.4.1 The Difficulty in Implementation 56

5.4.2 Existing Solutions on Implementing External Choice 59

5.4.3 A Solution of Multi-way Synchronization 60

5.4.4 An Example: Dining Philosophers 64

5.5 Process Classes: Thread, Process Calls and Recursion 67

5.5.1 Calling a Process in JCSP . 68

5.5.2 Multi-threading in JCSP . 69

5.5.3 Implementations of the CSP Process in JCSProB 72

5.5.4 Sequential and Parallel Composition in JCSProB 73

5.6 The State Variable Class . 75

5.7 GUI . 75

5.7.1 Overview of a GUI Program . 76

5.7.2 The Development of Communication in GUI 78

5.7.3 Runtime Assertion Checking . 83

5.7.4 A Example of the Standard GUI View 86

6 Translation from B+CSP to Java 90

6.1 Translation Rules . 90

6.1.1 Translation Rules for Processes . 93

6.1.2 Translation Rules for Events . 97

6.1.3 Translation Rules for Integration 100

6.2 Translation Tool . 101

6.3 Translation of External Choice . 104

7 Experimentations 108

7.1 Invariant Check: Simple Lift Example . 108

7.2 Wot-no-chickens: Fairness Assertions . 110

7.2.1 The Two Models . 110

7.2.1.1 Assertion Check and Results 112

CONTENTS iv

7.3 Composition of JCSProB Programs . 113

7.3.1 Composition: Odd-Even example 113

7.3.2 Decomposition: Wot-no-chicken . 116

8 Discussion 120

8.1 Conclusions . 120

8.2 Related Works and Discussions . 121

8.2.1 The Circus Translation . 121

8.2.2 Event-B and RODIN . 122

8.2.3 Composition and Decomposition of B+CSP models 123

8.2.4 Refinement Rules for B+CSP . 125

8.2.5 Compatibility with JCSP . 125

8.2.6 Formal Correctness Verification for the JCSProB 126

A Translation Rules 128

B Java Classes 151

B.1 Runtime Assertion Checking . 151

B.2 Dining Philosophers . 151

B.2.1 PHIL procclass.java . 151

B.2.2 FORK procclass.java . 153

B.2.3 picks chclass.java . 154

B.2.4 eats chclass.java . 155

B.3 Wot, no chicken? . 156

B.3.1 chicken run.java . 156

B.3.2 chicken procclass.java . 157

B.3.3 Phil procclass.java . 158

B.3.4 getchicken chclass.java . 159

B.4 The Odd-Even Example . 160

B.4.1 Even run.java . 160

B.4.2 Oddeven run.java . 161

C Specifications 163

C.1 The Decomposed Wot-no-chicken model: Step 2 163

C.1.1 The CSP Specification . 163

C.1.2 B Machine: Chef . 163

C.1.3 B Machine: Canteen . 164

C.1.4 B Machine: Phils . 164

C.2 The Decomposed Wot-no-chicken model: Step 3 165

C.2.1 The CSP Specification . 165

C.2.2 B Machine: Phil . 165

C.2.3 B Machine: XPhil . 165

Bibliography 167

List of Figures

2.1 An example of B machines: lift . 12

2.2 The specification of the Odd-Even example 19

3.1 Synchronization of Java Threads . 25

3.2 Consumer-Producer Example: Java Monitor Solution 27

3.3 Consumer-Producer Example: BlockingQueue Solution 27

3.4 Channel and process of JCSP . 33

3.5 The JCSP process class implements process P 33

3.6 JCSP Parallel Processes . 34

3.7 Consumer-Producer Example: The JCSP Solution 35

4.1 The synchronization between B and CSP specification 41

4.2 A simple B machine: Simple . 43

4.3 How to compute the restricted semantics 46

4.4 Combined Specification of powered lift 47

4.5 The synchronization of B+CSP channels 48

5.1 The Dining Philosophers Example . 57

5.2 The External Choice involving processes PHIL(1) and FORK(1) 58

5.3 PHIL(1) commits to an unready event picksup.1.1 59

5.4 The state machine of a client Pi . 60

5.5 The state machine a process pi with three choice paths 61

5.6 The state machine of a client Ei . 63

5.7 The state machine of an event E processing commitments 64

5.8 The dining philosophers: ready calls . 65

5.9 The dining philosophers: compete for the lock 65

5.10 The dining philosophers: picksup.1.1 is selected and progress 66

5.11 The dining philosophers: withdraw and unlock 66

5.12 The dining philosophers: interrupt in FORK(1) 67

5.13 The dining philosophers: final state . 67

5.14 Calling a new process object in JCSP . 69

5.15 Parallel composition in JCSP . 71

5.16 Sequential composition in JCSP . 72

5.17 The state of the RecurThread class . 73

5.18 Parallel composition in JCSProB . 74

5.19 Sequential composition in JCSProB . 74

5.20 The structure of a GUI program . 76

5.21 The GUI communication of event call: level 0 79

v

LIST OF FIGURES vi

5.22 The GUI communication of event call: level 1 80

5.23 The standard GUI view of an event call 82

5.24 The GUI communication of event call: level 2 83

5.25 The interface of translation tool in PROB 87

5.26 The interface of translation tool in PROB 88

6.1 The parsing and interpretation in PROB 102

7.1 Combined Specification of lift . 109

7.2 An example of B machines: lift . 109

7.3 The B machine of the Wot-no-chicken example 111

7.4 The CSP spec of the Wot-no-chicken example: Model 1 111

7.5 Formal specification of Wot-no-chicken example, Model 2 112

7.6 The specification of the Odd-Even example 114

7.7 The communication in the Odd-Even example 115

7.8 Data input for communication channel . 115

7.9 The GUI program of the combined Odd-Even model 117

7.10 The Wot-no-chicken example: introducing the Canteen process 118

7.11 The decomposed wot-no-chicken model: Step 2 118

List of Tables

2.1 The comparison of four IFMs . 22

4.1 The main B and CSP specification syntax supported in JCSProB 40

4.2 The allowed arguments combination for B+CSP events 45

4.3 The allowed arguments combination for pure CSP event 45

5.1 JCSP (1.0rc5) channel, barrier, and B+CSP event 52

5.2 The Java Implementation of B+CSP model 54

5.3 Basic event classes and their input/output types 56

7.1 The experimental result: Safety and Deadlock-freeness 112

7.2 The experimental result: Bounded Fairness Properties 113

vii

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Michael R. Poppleton, for his

supervision and academic advice during my PhD study. Without his kind encouragement

and constant support, I would never have finished. I am also thankful to Dr. Denis A.

Nicole, my second-supervisor, who was always there to provide valuable advice. I thank

Prof. Michael Leuschel for his supervision on the first year, and Prof. Michael J. Butler

for his advice on my research topic.

I am grateful to all the rest of the academic and support staff of the Dependable Systems

& Software Engineering group at the University of Southampton. Much respect to my

officemates, and hopefully still friends, Andrew Edmunds, Divakar Yadav, Elisabeth

Ball, Tossaporn Joochim, Nishadi De Silva, and Edwards Turner for putting up with me

for almost four years. Also thanks to Prof. Peter Welch and Dr. Neil Evans for their

advice on my research.

Lots of thanks goes to my friends Kan Huang, Ziheng Zhou and Xiaoli Li. They may

have no idea about what formal methods are, but they still contributed to this thesis

from talking jokes, cooking delicious food, and playing football with me.

Finally, I have to say ’thank you’ to all my and family, particularly my Mum and Dad;

and most importantly of all, my dear girlfriend Melody, who proclaimed herself as my

third-supervisor, for everything.

viii

To my dear mum, Yuan Ren . . .

ix

Chapter 1

Introduction

”Program testing can be used to show the presence of bugs, but never to

show their absence. The only effective way to raise the confidence level of a

program significantly is to give a convincing proof of its correctness.”

– Edsger W. Dijkstra

Although there are countless computer systems running all around the world, the most

serious issue in computer programming is the correctness of these systems. As both

hardware and software systems have been rapidly growing in scale and functionality, it

is harder and harder to identify or avoid errors in the development of computer systems.

One significant aim of software engineering approaches is reducing errors and improving

the reliability of systems. Techniques such as code modularization and code reuse, can

help the developers to reduce the possibility of introducing errors in some sense. Familiar

testing approaches can improve programs by detecting errors in the programs, however

it is unlikely for testing approaches to cover all the examples in a large scale system to

prove the correctness.

In [Dij65], Dijkstra suggests a definition of the correctness for programs, and an al-

ternative approach for providing correctness to programs by establishing mathematical

proofs. In [Flo67], Floyd provides formal definitions of the meanings of programming

languages by defining them in flowcharts, and modes for verifying the flowcharts. Hoare

[Hoa69] extends Floyd’s work and establishes the famous Hoare Logic, which is a set

of logical rules in order to reason about the correctness of computer programs with the

rigour of mathematical logic.

However, directly applying mathematical proof rules to existing programs is apparently

difficult and time-consuming. In [Dij68], Dijkstra introduces a constructive approach

for developing programs. Rather than proving an existing program, it aims to develop a

program in a sequence of steps. At each of these steps, proof is produced for the program

at that stage. In [Wir71], Niklaus Wirth introduces stepwise refinement as a methodical

1

Chapter 1 Introduction 2

approach to computer programming. In an iterative step-by-step development process,

a initial abstract and correct program can be developed into a more concrete version,

and refinement rules can prove the later version is a correct refinement of the initial

program. If this is done, finally, programmers end up with a proved program which is

also concrete enough for execution. The stepwise refinement provides a realisation of

mathematically proof of programs suggested by Dijkstra.

Concurrency is an important property of computer systems, in which multiple processes

are running simultaneously and interacting with each other. A number of mathemat-

ically based concurrency models, such as Petri nets [Pet81] and actor model [HBS73],

have been established for modeling and reasoning about concurrent systems. Process

algebras, such as CSP [Hoa78], CCS [Mil80] and π-calculus [Mil99], also provide high-

level specification methods for modelling concurrent systems, as well as algebraic rules

for analyzing and reasoning concurrency properties in their specifications.

However, although formal concurrency models have existed for more than forty years,

many conventional programming languages, e.g. Java, do not benefit from them. Con-

currency in multi-threaded Java programming has always been seen as a problematic

area [Pug00], to the extent that expert practitioner advice has been to avoid it where

possible [MW00]. Safety properties have been made more tractable by the provision of

a common cross-platform Java Memory Model [MPA05]. However, as the concurrency

model of Java programs is described in natural language, it is still difficult to detect

and avoid liveness problems in concurrent programs. The difficulty of concurrency in

programming languages motivated the development of applying existing formal concur-

rency model to programming. One of the difficulties is that the formal concurrency

models we mentioned above are based on the message passing mechanism, while the

concurrency models of most computer systems and programming languages are based

on shared memory. How to connect the two concurrency mechanisms is the key issue

here.

1.1 Formal Methods, State- and Event- based, and Their

Integration

Formal methods, which provide mathematically based techniques for software and hard-

ware development, can be used to design, develop and prove the correctness of com-

puter programs in a systematic manner. A typical formal methods approach introduces

a formal specification language. Using the formal language, developers can produce

mathematically-based formal models for computer systems. A formal method should

also include formal development techniques for models described in the formal specifica-

tion language. The development techniques of a formal method approach should include

proof theories or verification techniques for mathematically proving the correctness of

Chapter 1 Introduction 3

these formal models. A good formal method should also come with a development strat-

egy from abstract models towards implementations. Automated tools support for the

development technique is also essential for formal method approaches, as many previous

criticisms on formal methods concerned the lack of tool support.

In the past thirty years, many formal techniques have been developed for specifying

system models and verifying their correctness. Generally, there are two kinds of formal

techniques for specifying system model, which focus on different aspects of systems.

The state-based approaches, such as VDM [Jon90], Z [PST96] and B [Abr96, Sch01],

focus on the data aspect of systems, such as data definitions and data transitions. Such a

model can be viewed as a labelled transition system(LTS) [Mil89]. A Labelled Transition

System (LTS) is a structure (S,A,→) with a set of states S, a set of actions A, and the

transition relation →⊆ S ×A×S. A state-based formal model is defined on the system

states, where a state is an assignment of values to some set of state variables. It also

needs to provide definitions of state actions, which changes the values of state variables

with data substitutions and moves the system into a new state. At the same time,

whether such an action is enabled or not depends on its guard, which is a conditional

predicate on the state variables.

A state-based approach usually employs some form of stepwise refinement technique.

Models at various abstract levels of a system are related by some formal refinement

rules. Various tool sets have also been developed for these methods, e.g. IFAD VDM-

SL toolbox [ELL94] for VDM, the Community Z tools (CZT) [MU05] for Z, and Atelier

B [Ate01], PROB [LB03] for B.

Although state-based approaches are ideal for modelling the data aspect of systems,

only a single-step atomic behaviour can be specified. It lacks expression for modelling

behaviors of the whole system. For all the actions in a state-based model, the occur-

rence of actions is only restricted by precondition guards on these actions. The request

for divergence freedom makes it hard to express a behaviour comprising a sequence of

actions. Especially, in cases when the behaviour of a system turns complex, ’program

counters’, which are special state variables, need to be introduced to the model. Ad-

ditional preconditions on these variables need to be added to actions for preserving a

specific execution order of a number of actions. However, although additional variables

and precondition guards can restrict the execution of actions, this approach still lacks

an explicit system level view on system behaviours. This is apparently less expressive,

not very easy for modelling. Also, it is usually not very easy to express or reason about

behaviour properties using state-based approaches.

Event-based approaches, such as CSP [Hoa85, Ros98, Sch00] and CCS [Mil80, Mil89],

focus on the behaviors of systems. There is also tool support for these approaches,

for example, the FDR tool [For03] supports model checking for CSP specifications.

Event-based approaches represent coarse-grained concurrency of programs. They focus

Chapter 1 Introduction 4

on behaviours of processes and interaction between processes, instead of the state of

programs or data transitions on the state. An event-based model views a system as

sequences of stateless actions the system may engage in. A sequence of events is modelled

as a process, which can be defined using process operators, e.g. parallel composition,

external choice. Shared events can be used among different processes for interaction and

communication. Additionally, one event-based approach normally provides well defined

formal semantics on behaviour properties, for example, the trace and failure-divergence

semantics of CSP.

With these facilities mentioned above, event-based approaches are very good at specify-

ing a high-level abstract model of system behaviours. However, it is usually not conve-

nient to model the data aspect of systems using these approaches. A process maintains

its own state and state variables, although the supported data types are usually very

limited. In many event-base approaches, the data definition of these variables are not

explicitly declared. It is very common for a process to use communicated data without

knowing its data types.

For the whole system model, there is no global state. Also, as the events in an event-

based model are regarded as stateless, it is not easy to specify complex state changes for

the process variables. For high-level design of system behaviours and strategies, it may

be possible to ignore the detailed data of systems. But when going to detailed design,

especially for some data-intense systems, the expressivity for modelling data definition

and transition is important. Furthermore, system properties concerning data safety

can be very significant for many systems, and should be addressed in system models

explicitly.

Either state- or event- based specification is a mathematical abstraction based on one

perspective of the system properties. Although more detail of systems can be added

in through a stepwise developing process, using a partial abstraction of a system to

construct a system model still leaves out some properties of the system, or being less

expressive on these properties. Directly modelling and reasoning temporal properties in

a state-based model is difficult, also, defining and analysing the state of a globally shared

or complex data in an event-based model can be difficult as well. However, developing

some large-scale systems usually demands the expressivity of modelling both data and

event features of systems.

In recent years, many efforts have been made to integrate the two kinds of formal

specifications. These efforts include the integrations of CCS and Z [Gal96], CSP and Z

[MS01], CSP and OZ [Fis97a, Fis00], CSP and B [ST03, But99, BL05]. In [BL05], an

approach to combine B and CSP specification 1 is presented. The combined approach

is also implemented in the PROB model checker [LB03] for automatic verification. The

1We will call this notation B+CSP for shorthand

Chapter 1 Introduction 5

CSP part of the combined specification describes the sequence of the system behaviors,

while the B part specifies the data transitions inside these behaviours.

1.2 Formalizing Concurrent Java Programming

Formal approaches for modeling and developing concurrent computer systems, such as

CSP [Hoa85], CCS [Mil80, Mil89], and occam [RH88, RGS94a, RGS94b], have been in

existence for more than thirty years. Many research projects [WB04, CKK+00, BS05]

and a number of real world systems [MST92, Law04, Pel04]have been developed from

them. However, most programming languages in industry, which support concurrency,

still lack formally defined concurrency models to make the development of such systems

more reliable and tractable.

The concurrency model of Java is a multi-threading shared-memory model. Inside a

concurrent Java program, multiple threads are running within a single process, and

share the process’s resource. When different threads try to access a shared data, Java

offers the monitor mechanism to make sure when one thread holding the monitor, no

other threads can execute any region of code protected by the same monitor lock.

The Java language has a painful history as it lacks explicit and formal definitions of its

concurrency model. Before Java 5.0, the JMM (Java Memory Model) didn’t explicitly

define the read/write order that needs to be preserved in the memory model. This

confused the developers of JVMs (Java Virtual Machines). The different JVMs developed

under the old JMM could represent different behaviours, and lead to different results

from running the same piece of Java code. To address this issue, Java 5.0 and the third

version of the Java language specification had to redefine a new JMM.

Although the newly defined JMM clarified the safety of read/write orders at memory

level, the Java concurrency model is still expressed in a natural language. It does not

provide any method for evaluating general concurrency properties, such as safety, liveness

and fairness. Developing a concurrent system under the Java concurrency model cannot

guarantee the correctness of such programs. It still totally depends on developers’ skills

and experience to avoid concurrency problems.

Therefore, many approaches have been attempted to formalize the development of con-

current Java systems. Formal analysis techniques have been applied to concurrent Java

programs. JML [LPC+05] and Jassda [BM02] provide strategies to add assertions to Java

programs, and employ runtime verification techniques to check the assertions (There are

also static analysis and verification tools for JML). Magee and Kramer [MK99] intro-

duce a process algebra language, FSP (Finite State Processes), and provide a formal

concurrency model for developing concurrent Java programs. JCSP [WBM+07] is a

Java library offering the occam concurrency model, which is a low-level implementation

Chapter 1 Introduction 6

language of CSP. JCSP implements the main occam structures, such as process and

channel, as well as key occam concurrency features, such as parallel, external choice

and sequential composition, in various Java interfaces and classes. It bridges the gap

between specification and implementation. With all the Java facility components in the

JCSP package, developers can easily construct a concurrent Java program from its occam

specification. All these approaches try to bring a formally defined concurrency model to

concurrent Java programming. Such kind of models should provide a formal modelling

language for constructing concurrency model, as well as development and verification

techniques for building and reasoning Java programs.

1.3 Rationale for the PhD

A major criticism of formal methods is that many formal approaches lack industrial

applications. The development of many formal approaches still largely rely on manual

proof, and most lack substantial proof tool support, making system development with

formal methods very hard for most developers.

The B method employs a stepwise refinement development technique. Both the B prover,

B-Toolkit [BCo01], and the model checking tool, PROB [LB03], support this refinement

development process for B method. The final refinement model would be a very concrete

model, which is specified using a concrete B0 subset [Cle01] of the language. As the

semantics of the B0 language is very similar to that of many conventional programming

languages, it would not be very difficult to implement a final refinement of B method

in a programming language. However composition and decomposition of B machines

are still open research area, and it is not very easy to model or implement interactions

and communications between distributed systems using B method. Most research on

applying the B method in real world examples are either focusing well-defined small

subsystems, or only developing models at abstract level. Therefore, the applications to

which B development can be applied are still restricted. How to use the B method for

developing a large, distributed system from design to implementation is still an ongoing

research.

On the other hand, JCSP provides a Java implementation for the CSP specification.

Although a manually constructed JCSP program can have a formal CSP model as its

guidance, it cannot be systematically proved that the program correctly implements the

formal model. Manual efforts involved here can be problematic. Also, the data manually

introduced into the program usually cannot be easily specified in the CSP model. In

some cases, such data can affect the behaviours of systems. An automated translation

would represent a very useful contribution for JCSP. However, some reported experience

[RRS03] has shown that, for automated translation, due to the lack of data expressivity

Chapter 1 Introduction 7

in CSP, it is sometimes not easy to directly use the Java programs translated from CSP.

Usually, more data information still needs to be manually added.

Therefore, it would be an interesting contribution to implement integrated specifica-

tions. And with the help of existing techniques, e.g. B0 and JCSP, it could be very

possible to develop an implementation strategy, as well as automated tool support, for

the B+CSP model [BL05]. The implementation strategy, including the Java implemen-

tation of B+CSP semantics and the translation tool, should be carefully developed as

their correctness is vital for this work. Tests would be applied to practically validate cor-

rectness of this work. Further work will target the formal verifications of the correctness

of the Java implementation package and the translation.

Currently, the refinement rules for the integrated B and CSP specification are still not

available. Although PROB can practically check the trace refinement between integrated

models, a formal refinement proof method is not available. This means there is no de-

velopment technique for building refinement models from the abstract one. Therefore,

although this work mainly focuses on implementing concrete models, it would also sup-

port abstract semantics of the integrated specification languages. For an abstract model,

the generated programs from the translation tool can either be used as a quick imple-

mentation, or be regarded as an animation mechanism for the model. For a concrete

model, this implementation strategy would provide a prototype of the system.

Through this work, we try to develop an implementation strategy, as well as tool support,

for integrated B and CSP specifications. Also, finding out an appropriate combination

of B and CSP for developing large distributed systems is another important target.

1.4 Contributions

The first contribution of this work is a definition of the restricted semantics, based

upon the existing semantics in PROB. The combined B+CSP specification language

includes almost all the notations from both B and CSP specification languages. It is a

large specification language with corresponding abstract semantics, which provide a very

flexible way for specifying systems. However, some of the abstract semantics are very

difficult to directly implement. Therefore, we develop a restricted semantics, which is

concrete enough to be implemented into Java programs, and abstract enough to support

modelling most general systems.

The second contribution of this work is implementing the restricted semantics in Java.

Although JCSP has implemented occam-π, the semantics and concurrency model of

B+CSP are different from those of occam-π. This means that we need to implement

B+CSP semantics in a new Java package, JCSProB. In the development, we regard the

structure of the JCSP package as a significant inspiration, and implement the B+CSP

Chapter 1 Introduction 8

concurrency model with similar process-channel structure to JCSP. A big difference

between JCSProB and JCSP is that the new package supports combined B+CSP events,

which include data changes, whereas JCSP communication channels are stateless 2. The

JCSProB package consists of new integrated event classes, new process classes, and a

GUI sub-package. The GUI package allows users to interact with the generated Java

programs, and it also provides interfaces for runtime assertion checking.

The development of translation rules and a translation tool is the third contribution of

this work. Based on the implementation package, we formally define a set of translation

rules to convert an useful and deterministic subset of the B+CSP specification to Java

code. To make the translation more effective and stable, an automated translation tool is

constructed as a functional component of the PROB tool. As the integrated specification

includes both state- and event based views of the system, the generated Java code from

the translation normally does not require manual modification (as other translation tools

do, e.g. [RRS03]), and can be executed directly.

The above three contributions provide a development strategy with tooling support for

the combined B+CSP models. Finally, the fourth contribution is to apply the strategy

to some example models to evaluate the development of this work, and practically test

and validate the Java implementation package and the translation. We also use the

examples for evaluating and improving scalability of this work. This experimentation

work includes modelling the example with the B+CSP specification, model checking

the model in PROB, automatically translating the model to a Java application, testing

and experimentally evaluating the generated Java programs. During the evaluation, we

found the restricted B+CSP semantics used in this work is very close to the semantics

of CSP‖B approach [ST03]. The composition strategy used in CSP‖B [STE05] can be

used to compose B+CSP models. It is also possible for users of CSP‖B to make use of

the JCSProB package and the translation tool.

1.5 Outline

This thesis starts with an introduction in Chapter 2 to state- and event- based formal

methods, and the existing approaches for integrating them. The B method and CSP

approach are introduced in Section 2.1 and Section 2.2. In Section 2.3, several integrated

formal approaches are discussed and compared.

2JCSP provides Call channels. These are events from the caller’s point of view whose acceptance is

an ”extended rendezvous” in which any state change, in the acceptor process, can be programmed. This

is still different from the combined B+CSP event, in which any state change happens on the B machine

Chapter 1 Introduction 9

In Chapter 3, we discuss the problems of developing concurrent programs, especially in

Java. In Section 3.2, various approaches to formalizing the development of Java concur-

rency are discussed. In Section 3.3, the JCSP package, which is important inspiration

of this work, is introduced.

In Chapter 4, we present the restricted B+CSP semantics used in this work, which is the

first objective of the development. In the discussion, we will first introduce the B+CSP

specification language in Section 4.1, and operational semantics of PROB in Section 4.2.

Then in Section 4.3, 4.4, and 4.5, the restricted semantics and its concurrency model

are discussed.

In Chapter 5, the Java implementation of the restricted semantics is presented. As the

new JCSProB package is inspired by and developed from JCSP, in Section 5.1, the reason

for developing the new package instead of using the existing JCSP package is discussed.

The JCSProB package includes implementation of guarded multi-way synchronization

(in Section 5.4), and new implementation of multi-threading mechanism and recursions

(in Section 5.5). To interact and control the Java programs constructed using JCSProB,

we also provide a GUI package for building an user interface for users. This feature is

presented in Section 5.7.

Chapter 6 describes the automatic translation from combined B+CSP specification to

Java programs. In Section 6.1 some translation rules are presented and discussed. More

translation rules can be found in Appendix A. In Section 6.2 the translation tool is

presented.

In Chapter 7, the experimentation in this work is presented. Several example systems

are modeled and implemented using this developing process, and the generated Java

programs are tested and evaluated.

Finally in Chapter 8, we give the conclusion of this work, and propose some possible

future directions based on this work.

Chapter 2

Integrated Formal Methods

Starting with the pioneering works from Dijkstra, Floyd, Hoare, and other computer

scientists in 1960s, Formal Methods have been in existence for more than forty years,

and many formal specification languages and development methodologies have been

developed. However, formal approaches still have not been widely accepted or applied. A

real system normally consists of many aspects of features, such as data, state, behaviour,

and communication. One criticism on formal methods is that many formal approaches

only focus on one aspect of views on systems, which limits their expressivity for large,

complex systems. A restricted view of systems makes some formal methods lacking the

expressivity to add enough details for constructing systems. Therefore, some formal

method approaches may have sound and well-defined logic and specification languages,

but using them to construct and implement complex systems can be very hard.

In this chapter, we introduce the state- and event based formal approaches, on which

this work is based: the B method [Abr96] (Section 2.1), and CSP [Hoa85, Sch00, Ros98]

(Section 2.2). In Section 2.3, we review several existing integrated formal methods ap-

proaches , which provide solutions for resolving the problem of restricted views on sys-

tems by combining different perspectives. Several integration approaches are discussed

and compared. Finally, in Section 2.3.2, we focus on the combined B and CSP specifi-

cation in PROB [BL05], which is selected for this work.

2.1 The B Method

The B method, developed by Jean-Raymond Abrial [Abr96], is a state-based formal

approach for constructing computer systems. Jean-Raymond Abrial, who is also the

inventer of the Z method [PST96], developed the B method based on successful projects

[HK91] with the Z method.

10

Chapter 2 Integrated Formal Methods 11

It aims to cover the project life cycle from design to code generation. The B method

is based on a version of first-order logic and set theory specifically tailored for it. The

specification language of B method is defined in a form of Abstract Machine Notation

(AMN), which is based ultimately on Dijkstras guarded command language [Dij97], and

is very much influenced by Back’s action systems [BKS83a]. The data and invariant of

a machine is specified using predicate logic and set theory. In specification, the AMN

and Generalised Substitutions are connected by the standard language of first-order logic

and a restricted kind of set theory. Logically, a B machine can be understood as being

a composition on four layers:

• Level 0, first order logic with equality

• Level 1, a typed set theory

• Level 2, the Generalised Substitutions Language

• Level 3, the AMN

2.1.1 AMN and wp

In the B method, an abstract machine is a specification of a system. The system specified

by a B machine can be a part of a bigger software system. An abstract machine defines

the state of a system based on a number of state variables, and invariants on these

variables, which may type the variables and further constrain the values.

Operations modify the state under the constraints of the invariant. They can take zero or

more parameters and return values. These are identifiers distinct from the state variables

of the machine. Operations of a machine are specified as AMN substitutions. The

semantics of AMN substitutions is given by Generalised Substitutions, modelled after

Dijkstra’s weakest precondition calculus [Dij97] and its later generalizations by Nelson

[Nel89]. The weakest precondition is defined in the wp-calculus as [S]P . S is a statement

of AMN, which may manipulate system states of the machine. The postcondition P of S

is a predicate, which defines the set of states required to be true after executing S. Then,

the notation [S]P represents a precondition, which defines a maximal set of initial states

from which after executing S, the postcondition P is guaranteed to be true. As [S]P

includes all the possible states that can achieve P after executing S, it is the weakest

precondition. An operation of a machine can be regarded as a guarded and atomic

command of Dijkstras guarded command language. The execution of a statement S is

constrained by its precondition [S]P , and calling outside [S]P is allowed but undefined.

Figure 2.1 demonstrates a very simple lift machine. An abstract B machine is defined

under the header name MACHINE, which defines the identifier for the machine. Under

the keyword VARIABLES, the machine variables are declared. The INVARIANT

Chapter 2 Integrated Formal Methods 12

clause provides all the information about the state variables, including their types and

the values they could reach in this system. The initial state of the system is defined

in the INITIALISATION clause. The operations of a machine is defined in the

OPERATIONS clauses. All the B operations of a B machine do not happen in parallel,

which means at a time, only one B operation can progress. The data substitutions inside

an operation may change the state of the machine. The right-side references of B state

variables refer to their pre-operation state, while the left-side references refer to the

new state. In this case, the operation inc has a precondition level < 10 on its data

assignment substitutions. When the precondition is not satisfied here, processing the

data transitions would not reach any meaningful state in this machine.

MACHINE lift

VARIABLES level

INVARIANT level : NAT & level ≥ 0 & level ≤ 10

INITIALISATION level := 1

OPERATIONS

inc = PRE level < 10 THEN level := level + 1 END;

dec = PRE level > 0 THEN level := level - 1 END

END

Figure 2.1: An example of B machines: lift

As well as clauses defined above, abstract machines can also define given set types under

the SETS clause. They are nonempty finite sets including a number of unique elements,

and their elements can be enumerated. Constants can also be declared under the CON-

STANTS clause. The types of the constants must be given in the PROPERTIES

clause. Books from Abrial [Abr96] and Schneider [Sch01] are excellent text book on the

B method for further reading.

2.1.2 The Development of the B Method

As a formal development methodology, the B method also provides an incremental de-

velopment process, which is based on the refinement calculus [Bac80, HHS86, Mor88].

The refinement calculus provides a stepwise refinement method of program construction.

A system specified in AMN is at a single level of abstraction of the system, which can be

developed by adding details. The idea of stepwise refinement method starts with a very

abstract model of a system. Details are gradually added to this first model by building

a sequence of more concrete ones. The final production of this refinement procedure is

a concrete implementation model.

Two successive models must preserve the relationship defined by the refinement calculus

⊑. A substitution S1 is refined by a substitution S2 (S1 ⊑ S2), if any specification

satisfied by S1 is also satisfied by S2. If P is the postcondition of S1 and [S1]P holds,

the predicate [S2]P for the refinement substitution S2 should also hold. The refinement

S2 is either more deterministic than S1, or has a weaker precondition than S1.

Chapter 2 Integrated Formal Methods 13

The consistency of an abstract machine can be verified by proving proof obligations

about it. The proving of proof obligations is traditionally called discharging them. A

B machine, refinement, and composed machines(INCLUDE and SEE etc.) all have

their own proof obligations. For operations, giving the invariants of two models as I

and J , the proof obligation requires that the execution of S2 must be matched by some

execution of S1, which means [S2]¬[S1]¬J must be true at these states. The proof

obligation is normally written as:

I ∧ J ∧ P ⇒ [S2]¬[S1]¬J

¬[S1]¬J means that not all transitions of S1 make J false, which implies that there are

some transitions of S1 guarantee J to be true. So the left part of the formula means for

any S2, there are some transitions of S1 to guarantee J .

To prove the refinement obligation for operations, gluing invariant J(x,y) sometimes

need to be introduced to link the state variable x of the abstract machine, and the state

variable y of the concrete machine.

The interactive proving tools for the B method, such as Atelier B [Ate01] and B-Toolkit

[BCo01], can be used to help developers to developing systems with the B method.

2.1.3 The B0 Language

Abrial’s book [Abr96] only gives an abstract syntax for his notation, and only gives

faint hints on the concrete syntax. The concrete syntax used by the B-Toolkit or Atelier

B is not described at all by Abrial. A definition of the B0 language can be find in

[Cle01]. B0 is a concrete subset of the B specification language, describing operations

and data of implementations. It only presents concrete data using concrete constants,

concrete variables, operation input and output parameters, machine parameters, local

variables, and enumerated sets. Conditions and terms are only defined on concrete data.

Only concrete substitutions without non-determinism, which are called instructions, are

allowed in B0. Instructions are used both in the initialization and the operations.

2.1.4 Model Checking and PROB

Formally proving a B model can be difficult and time-consuming. Model checking

[EMCP99] provides an alternative technique to verify developed formal models. It tests

whether a given formula in the propositional logic is satisfied by a given model by ex-

ploring the state space of the model. Model checking tools all face a scaling problem,

commonly known as the state explosion problem [CGJ+01].

Chapter 2 Integrated Formal Methods 14

PROB [LB03] is an animation and model checking tool for the B method. The tool covers

a large part of the B syntax and semantics. As an animation tool, PROB allows user to

manually drive B models. As a finite state model checker, PROB supports automated

consistency checking of B machines, and refinement checking between B machines:

• In consistency checking, PROB can check safety properties, such as violations of

invariant and deadlock of the system. It can identify counter examples of required

properties and provide traces leading to them. This information can help the

developer to improve system specifications.

• In refinement checking, PROB automatically explores and compares the state

spaces of two B models, and can find the exceptions of refinement.

The symmetry reduction technique [TB06] used in PROB can reduce the size state space

and improve its model checking performance.

Furthermore, PROB also supports model checking for CSP specifications [Hoa85] or

event combined B+CSP specifications [BL05]. We discuss this later in this chapter.

2.2 Communicating Sequential Processes

CSP (Communicating Sequential Processes) is a process algebra proposed by Hoare

in [Hoa85]. It is a well-known event-based formal language for modelling concurrent

systems. A concurrent system is viewed as a set of independent processes. Processes

communicate with the environment and processes via atomic and stateless events.

2.2.1 A Simple Introduction to CSP Grammar

The set of all events that a process can engage in is called its Alphabet, usually named as

αP . The behaviour of the process is defined in sequences of the events as combination

with basic processes and process operators.

Basic processes in CSP includes STOP and SKIP. STOP means the process is in a

state where no events can be engaged, and the process would stay at this state for ever.

SKIP denotes a successful termination of a process. The process operator→ used above

describes the sequencing of events. An expression a→ P means the process first engages

in the event a, and then performs as process P .

The parallel composition of process is specified using process operator ‖. A parallel

composition of two processes P1 and P2 is written as P1 ‖ P2. The two processes can

synchronize on events in the intersection of the alphabets of them. However, in many

cases, a process in a parallel composition may not want to communicate with other

Chapter 2 Integrated Formal Methods 15

processes on all the events in its alphabet. The alphabetized parallel operator defines

the parallel composition of processes with explicit declaration of the events that may be

involved in the composition. The event sets of two processes P1 and P2 involved in the

parallel composition are A1 and A2, where A1 ⊆ αP1 and A2 ⊆ αP2. The alphabetized

parallel is written P1 A1
‖A2

P2. In this definition, P1 can only engage events in A1, and

P2 can only engage events in A2, and the two processes need to synchronize on events in

A1∩A2. A generalized version of parallel is defined as P1 ‖
X

P2, where X ⊆ A1∩A2. When

X = ∅, which means the two parallel processes have no event to synchronize, the two

processes are said to interleave with each other. The parallel composition here is written

using interleaving operator ||| as P1 ||| P2. Semantically, the termination event
√

always

needs to synchronize in parallel processes, even in the interleaving processes, although

it does not explicitly appear in the definition. This means the parallel composition

terminates only when all participating processes successfully terminate.

Sequential composition of processes runs the participating processes one after the other.

Only after a process has successfully terminated, can the successor process start per-

forming. Using the sequential composition operator ;, a sequential composition of two

processes P1 and P2 is written P1;P2.

The choice operator introduces a number of possible action paths for a process. In

external choice, the control over the choice is external to the process, while internal

choice is resolved inside the process. An external choice in process P between two

process paths P1 and P2 is written P1�P2. If, and only if the first event of a process

path is ready to progress, the process path can be considered as a candidate for selection.

This kind of external choice is also called guarded external choice. Internal choice is also

known as non-deterministic choice. The decision of an internal choice P1 ⊓ P2 is made

internally in process P , which leaves the outside environment with no control over the

choice.

Other CSP operators, including renaming, hiding and interrupting, can be found in

[Hoa85] or [Ros98].

2.2.2 Denotational Semantics of CSP

In the original CSP [Hoa78], the semantics of CSP were not clearly described. The traces

[Hoa80], failures [BHR84] and divergences [BR85] semantics were later given for reason-

ing about properties of concurrent systems. In Roscoe’s book [Ros98], the denotational

semantics of CSP are summarized and discussed.

The traces model T captures the behaviours of a process in a set of non-empty prefix-

closed event traces. The all set of finite traces of a process P is written traces(P). For

example, when P = a → b → STOP , traces(P) = {<>,< a >,< a, b >}. A set of

Chapter 2 Integrated Formal Methods 16

algebraic rules are defined for computing trace sets over all the process operators under

traces model. For example, the rule for prefixing is defined as:

traces(a→ P) = {<>} ∪ {< a >a tr | tr ∈ traces(P)}

However, although the traces model can capture a range of system behaviours of con-

current system, it still not expressive enough to cover all the semantics of CSP. For

example, the traces model does not distinguish between internal and external choice:

traces(P1�P2) = traces(P2) ∪ traces(P2)

traces(P1 ⊓ P2) = traces(P2) ∪ traces(P2)

That means the non-determinism in internal choice cannot be expressed in traces model.

Furthermore, some safety liveness properties, e.g. deadlock, cannot be expressed with

trace semantics. Therefore, failures and divergences models introduced in [BHR84] and

[BR85] to express these properties.

The failures model D is defined to express the deadlock state of a process. A process P

which can make no internal progress is said to be stable, written P ↓. If after executing

a sequence of events defined in trace tr a stable process P refuses to engage a set of

events X, the observation of (tr,X) is called a stable failure of P .

The set failures(P) includes all the failures of the process P . When it is possible for

a process P to perform an infinite sequence of internal events and never reach a stable

state, it is said to be divergent, written P ↑. The divergences model D of a process P

is defined as divergences(P), which includes all the traces that can lead the process P

into divergence.

The full semantic model of a process is thus defined as a triple (T, F,D). The refinement

of CSP specifications is also defined upon this semantics:

• A process P2 trace refines a process P1 if all the traces of P2 are also traces of P1

P1 ⊑T P2 ≡ traces(P2) ⊆ traces(P1)

• A process P2 failure refines a process P1 if P2 traces refines P1, and all the failures

of P2 are also failures of P1

P1 ⊑F P2 ≡ traces(P2) ⊆ traces(P1) ∧ failures(P2) ⊆ failures(P1)

• A process P2 failure/divergences refines a process P1 if P2 failures refines P1, and

all the divergences of P2 are also divergences of P1.

P1 ⊑F P2 ≡ traces(P2) ⊆ traces(P1) ∧ failures(P2) ⊆ failures(P1)

∧divergences(P2) ⊆ divergences(P1)

Chapter 2 Integrated Formal Methods 17

2.3 Integrated Formal Methods

2.3.1 Some IFM Approaches

The integrated formal methods discussed here are formal specifications which try to

integrate state-based methods with event-based methods. Some other approaches, such

as UMLB [SB06], Real-Time Object-Z [SH00], B/VDM [BMRA98], will not be discussed

here. Also, several previous works on combining event- and state- based methods have

been widely mentioned, for example ZCCS [Gal96] and TCOZ [MD99], but in this

chapter, we only discuss a selection of more recent work.

2.3.1.1 CSP-Z

In [Fis97b, Fis98], an integrated formal specification language CSP -Z is introduced. It

combines the syntax and semantics of CSP and Z [PST96]. The syntax of the CSP

part is fully preserved, while the Z syntax subset used in CSP -Z is different from the

original Z syntax. It defines the CSP -Z language with semantics subsets of CSP and

Z languages. A CSP -Z specification starts with the declaration of channels(external

and internal).

A CSP -Z channel can be associated with a Z schema type. The system behaviours

are defined in a group of CSP processes. The Z operations, which correspond to the

channels described above, are defined with the data transitions in the operations. As

explained above, a CSP -Z specification is a parallel combination of the CSP and the

Z parts via the channel names, such that on the occurrence of a CSP channel the

corresponding Z schema operation is activated. Since the CSP -Z specification language

is a semantic integration of CSP and Z, the failure-divergence semantics of CSP is also

inherited into CSP -Z.

In [MS98, MS01], a strategy for model checking a CSP -Z specification in the FDR

model checker is proposed. As FDR only works on the machine readable CSP specifi-

cations, [MS98] gives a solution which converts the Z part of the CSP −Z specification

into the CSP part of the specification. A CSP -Z specification is divided into the CSP

part, and a CSP process which performs the Z part operations. As the result, a CSP -

Z specification is translated into a machine readable CSP specification, which can be

automatically checked in FDR.

The limitation of [MS98, MS01] is that the final model used for model checking is purely

in CSP . Since the CSP specification lacks a convenient method to express complex

data and data transitions, the Z part of the CSP -Z specification is restricted to very

simple data types and data transitions. The final model of the strategy, which is purely

in CSP , can also be specified directly with CSP . In [MS02b], the continuing research

Chapter 2 Integrated Formal Methods 18

employs data independence and abstract interpretation techniques to modify the CSP -Z

model, and makes it possible to use more general CSP -Z model for model checking.

2.3.1.2 CSP/OZ

CSP -OZ [Fis97a] continues the work of CSP -Z . It aims at integrating CSP , and

Object-Z, which is an object-oriented extension of Z [DRS95]. In a CSP -OZ specifica-

tion, the CSP failure-divergence semantics is used to guide Object-Z classes.

In a CSP -OZ specification, firstly, the CSP style channels are defined in a CSP -OZ

specification. The CSP part of the specification defines a process with the keyword main

to present the behavior of the CSP -OZ class. It makes use of the channels defined above,

and can include some CSP operators, such as parallel, hiding, interleaving and choice.

The Object-Z part starts with the definition of types and constants. Then the definition

of the state and initial state schemas are given. The data transition is defined in Object-

Z operations. Like CSP -Z, each Object-Z schema operation corresponds to a channel

defined in the CSP part.

In order to perform model checking on the CSP -OZ specification, as there was no

existing CSP -OZ model checker, [FW99] presents a strategy to translate the CSP -OZ

specification into machine readable CSP and check it with FDR. The Object-Z part

and the CSP part of the specification are translated into different CSP processes. While

the CSP part of CSP -OZ is directly converted to the CSP processes, the Object-Z

part, especially the operations, need to be expressed in the CSP syntax. One of the

most serious issues of this strategy is that the data domain of the Object-Z part can be

too large to check in FDR. In [Weh99], data abstraction techniques are used to reduce

the complexity of property checking on CSP -OZ specification.

To associate the abstract CSP -OZ specification with programming languages, in [Fis99,

BFMW01], Jass (Java with Assertions) is introduced as an intermediate language. Jass

is an assertion language which is written in a Java source code file as comments. It is

motivated by Design by Contract [Mey92], which is a lightweight formal technique that

allows for dynamic run-time checks of specification violation. The assertions can be

tested when the program is executed.

2.3.1.3 CSP ‖ B

CSP ‖ B [TS99b, TS00, ST02, ST03] is integration of the B method and CSP . A

CSP ‖ B specification includes B machines, and the CSP controllers(or processes) for

them, which are expressed with a subset of the CSP syntax. Each B machine Mi of

the system corresponds to a CSP controller Pi. The B machines do not communicate

with each other directly. They may only allow communicate through their respective

Chapter 2 Integrated Formal Methods 19

CSP controllers, and then their controllers can communicate with each other. For each

B operation w ←− e(v), there is a corresponding CSP control channel e.v.w defined in

its controller. The execution of a B operation is strictly guarded by its CSP controller.

Figure 2.2 shows a B‖CSP example provided in [ST05].

Figure 2.2: The specification of the Odd-Even example

The CSP processes OddCtrl and EvenCtrl define a system which recursively increases

numbers through the system. The B machines, on the other hand, define the states

of the system with variables odd and even. The machine Odd accepts and maintains

only odd numbers, while machine Even accepts and maintains only even numbers. The

CSP processes work as controllers of the B machines. The execution of B operations are

driven by their CSP controllers.

In [ST03], an approach is proposed which verifies each structure(a B machine Mi and

CSP controller Pi pair) separately, and then obtains the correctness of the whole system

by composition. In [ST02], a strategy for model checking CSP controllers via the FDR

tool is discussed. Firstly, a B machine and its controller are checked together in the

B-Toolkit to prove they are divergence-free. Then all the CSP controllers are checked

in the FDR tool to prove they are deadlock-free.

One of the problems of the CSP ‖ B approach is that there are no refinement rules

or proof for the integrated approach. The case study in [TSB03] tried to establish a

development strategy for CSP ‖ B models. However, the verification step for refinement

consistency between an abstract model and its refinement only focus on using FDR to

model check refinement between two CSP controllers. It still cannot formally prove

or model check refinement between whole integrated models. Another problem is the

verification step involves different tools and several separate verification steps, which

can be hard for users to apply the development.

Chapter 2 Integrated Formal Methods 20

2.3.1.4 csp2B

In [But99], csp2B, an alternative approach to integrate B and CSP specifications, is

presented. It defines a set of csp2B notations. A csp2B specification is encapsulated

into a B machine like structure, but the main component of the machine is a kind of

CSP description. In the machine, a group of CSP channels each of which correspond to

target B operations are defined under the keyword ALPHABET. Under the keyword

PROCESS, CSP processes are defined to specify behaviours of the system.

The csp2B translation tool converts a csp2B model into a B machine. In the target B

machine, state variables are introduced as program counters to explicitly express state

of CSP processes from the csp2B machine. A B operation in the B machine includes

guards, which are defined upon these program counters, and substitutions, which update

program counters. In this way, system behaviours specified in the csp2B model are

retained in the generated B machine. Furthermore, using the CONJOINS statement,

a csp2B model can be used to constrains the behaviour of a existing B machine. The

csp2B tool can also add behaviour constraints from the csp2B model to the B machine.

As the target of this translation is a solely B machine, it has existing refinement rules

and development strategy for development. The generated B machine can be analysed

and verified within the B model checkers, e.g. PROB, or interactive B provers.

One restriction for the csp2B approach is that it is restricted on a single CSP and B

pair. There is still no compositional development or verification techniques for it.

2.3.1.5 Circus

Circus [WC01] is an integrated formal specification language, which is based on Z and

CSP . It supports stepwise refinement [CSW03]. That means its final refinement of the

system model is close to a general programming language.

A Circus program consists of many Circus Paragraphs, each of which can be a Z para-

graph, a CSP-like channel(or channel set) definition paragraph, or a process definition.

A Z paragraph uses purely Z notations, while a channel or channel set definition is

written in CSP style. The two specification languages are associated with each other

in the definition of Circus processes. A Circus process is defined with a process name

and a process specification. In a process specification, Z paragraph and CSP like action

paragraph can be used cooperatively. The Z schema defines the states of the process,

which include the data and data operations. The CSP part in the Circus process defines

how the process act the Z schema inside. So far as we know, Circus is probably the

only combined state- and event-based formal method, which provides refinement rules

[WC02] for the combined specification.

Chapter 2 Integrated Formal Methods 21

In [OC04], a set of translation rules, which translate Circus models into JCSP [WM00b]

programs, is presented. Based on this rule set, an automated translator [FC06] is devel-

oped.

2.3.2 B+CSP in PROB

[BL05] presents a new integration approach to combine B and CSP , B+CSP. A B+CSP

model explicitly provides the state-based view of a system in the B specification, and

the event-base view in the CSP processes.

The B part of the combined model is used to specify the data used in the system, and

the manipulations on the data. It uses the full set of B method notations. The CSP

part provides the execution flow of the B operations. Each B operation of a B machine

has a corresponding CSP channel defined in the CSP part. The parameters of the B

operations are also mapped to the input and output parameters of the CSP channel.

The MAIN CSP process uses the channel definitions, and defines the behaviors of the

system. The execution of the B operations is not only guarded by the precondition of

the operation, but also strictly guarded by the MAIN process.

The CSP part can also define the desirable and undesirable behaviors of the system.

The desirable behaviour is defined in the GOAL process, while the undesirable behavior

is defined in the ERROR process. Both of them are checked as trace properties of the

combined system model. When the operation sequence of the GOAL process is found

in the system model, the property is satisfied and the trace is returned. The property

of the ERROR process is satisfied when there is no trace of it.

The combination of the B + CSP model is supported by the PROB tool. The B part of

the model is parsed and interpreted into Prolog rules via jbTool [Bru01] and the Pillow

package [CH01]. The CSP processes of the model are translated into Prolog rules via the

CIA (CSP Interpreter and Animator) tool. When doing model checking and animation

on the combined model, PROB interpreter combines the two sets of Prolog rules together

based on the operational semantics of B+CSP, which is discussed in Section 4.2. An

important feature for PROB is that it can perform not only consistency checking for a

B+CSP model, but also trace refinement checking between combined B+CSP models.

Table 2.1 compares B+CSP with three other integrated formal methods mentioned above

regarding their development techniques.

The B+CSP can be regarded as a practical extension of the csp2B approach. The

integration of B and CSP models in PROB is very similar to the conjunction of csp2B and

B models in csp2B. Both approaches use CSP specification to constrain the behaviour

of the B machine. In csp2B, the combination of B and CSP csp2B approach explicitly

translates the CSP specification into B state expressions, while in PROB, the combination

Chapter 2 Integrated Formal Methods 22

CSP+B csp2B CSP ‖ B Circus

Spec languages B, CSP B, csp2B B, CSP Z, CSP

Refinement rule no yes, B no yes, Circus

Model checking PROB PROB PROB,
FDR

no

Animation PROB no no no

Composition no no yes yes

Implementation JCSProB no no JCSP

Table 2.1: The comparison of four IFMs

is presented in model checking. The final B machine generated by the csp2B tool can

either be formally proved using theorem provers, but also can be model checked by

PROB. On the contrary, currently there are no refinement rules for B+CSP, it can

only be verified via model checking. Additionally, both of the approaches are restricted

on one B and CSP specification pair. Composition rules or proofs are still missing.

An advantage for csp2B is the final B machine generated by csp2B tool is solely a B

machine, which means the stepwise development and proving techniques of B method

can be applied to it.

Comparing to CSP ‖ B, B+CSP is a more practical approach. CSP ‖ B provides a

more theoretical basis and systematical strategies for development and composition,

while B+CSP has a better tool support from the PROB tool for animation and model

checking. However, the semantics of the two approaches can be very close, and many

research [STE05] think it is even possible to connect the two approaches together.

Circus is also a more theoretical approach than B+CSP. A significant advantage for

Circus is that it has a set refinement rules [WC02] for the combined specification, while

other approaches mentioned above do not have this support. By applying these rules, a

new refined model can be constructed from the abstract one. Although a model checking

tool is reported under construction, currently it is still unavailable.

Chapter 3

Formalized Java Concurrency

Development

”Java built-in support for threads is a double-edged sword.”

– Java Concurrency in Practice [PGB+05]

The Java programming language supports a multi-threading concurrency mechanism in

the core of the language. It also provides a series of classes to support Java concurrent

programming. This feature helps Java developers to solve many problems, and many

packages in JDK are developed using concurrency, e.g. AWT and Swing. However,

at the same time, it is even more difficult to make concurrent programs correct than

sequential programs. Concurrency issues, such as safety and deadlock, have existed

since the idea of the concept of concurrency come into being. Concurrency in Java is

also problematic.

Section 3.1 starts with an introduction to concurrent Java programming, and issues in

Java concurrency. After that, we discuss several approaches on formalizing concurrent

Java development in Section 3.2. Finally, in Section 3.3 we discuss the JCSP package,

which is one of the main inspirations of our work.

3.1 Concurrent Java programming

Generally, there are two kinds of issues in concurrent Java programming.

Safety in Java programs consists of type safety and memory safety. Here we concern

the safety which provides a consistent view of data. When multiple Java threads try to

access the same data item, the developer has to make sure that these threads coordinate

their access to the data so that all have a consistent view of the data without interfering

23

Chapter 3 Formalized Java Concurrency Development 24

the others’ changes. However, the previous version of the Java Memory Model (JMM),

specified in Chapter 17 of [GJSB00], raised some concerns on the safety guarantee at

memory level.

A memory model describes the relationship between data in a program and the low-level

details of storing them to and retrieving them from memory in a real computer system.

Consider a Java program fragment with two memory actions a and b, which change the

state of data variables in the main memory.

... a; b; ...

Generally, action a should be processed before b in the program. However, the hardware

system may permute the execution order for efficiency reasons. The actual execution

order at hardware level or memory level can be b ; a. In certain circumstances, changing

the processing order of the two operations will not effect the result of Java program.

In those circumstances, the JVM may allow some of these reordering techniques in

order to execute Java programs more efficiently. The JMM must explicitly specify in

which occasions the execution order must be preserved as a ; b for all viewers of the

memory, and in which occasions optimization techniques can be employed. Moreover,

the JMM definition must be clear enough to be implemented on all platform without

misunderstanding. If not, the different execution orders on different JVMs may lead to

different results.

The previous version of JMM failed to deliver this clearly. In [Pug00], the problems

caused by the implicit definition of JMM is discussed. In the new version of Java

specification of JDK 1.5 [GJSB05], the Java Memory Model is revised. It redefines the

semantics of synchronization, volatile variables, and final fields. Therefore, the memory

level safety issues caused by JMM has been clarified.

The safety we are concerned with in this work is the concurrency safety in programs,

not in the memory model. Inappropriate uses of Java concurrency primitives can cause

safety problems, such as data races and deadlock, which can lead to unexpected results.

The other major issue in Java concurrency is liveness. Liveness problems can be caused

by the Java concurrency primitives. The recommended synchronization pattern for a

conditional wait [Jav] inside a Java monitor is shown in Figure 3.1.

Using the while loop with activation condition for synchronization may unnecessarily

consume a lot of resource of computer systems. Furthermore, it can easily bring heavy

overtaking or even starvation issues to the Java threads. The original wow-no-chicken

example [Wel98] addressed the starvation issue of this strategy. The notifyAll method,

widely used by many Java programmers, is very inefficient. It notifies all the waiting

threads and lets them compete with each other for the shared resource. Only one thread

can occupy the resource and progress. Apart from these problem in Java concurrency

Chapter 3 Formalized Java Concurrency Development 25

synchronized(this){
while(!<condition>) *← overtaking*\

wait();

<assignment of shared data>

notifyAll(); *← inefficiency*\
}

Figure 3.1: Synchronization of Java Threads

primitives, liveness problems can also be easily introduced into concurrent Java programs

by improper design from users.

For all the concurrency problems introduced by user design, Java provides no facility

to address or avoid them. Developing correct concurrent Java programs mainly relies

on manual skill and experience in development. [Goe03], [Goe04] and [Lea99] discuss

concurrency issues in Java programming in detail. These disadvantages discourage some

developers from using Java concurrency programming, especially for some large-scale

systems where the concurrency model can be very complex. In [MW00], the developers

of the Swing package even claimed: If you can get away with it, avoid using threads.

3.1.1 Concurrency in Java

The Java programming language supports shared-memory concurrency by the thread-

monitor concept. A Java thread interface performs the basic process which represents

independent control flow. The behavior of a Java thread is described in its run method.

The execution of a Java thread can be controlled or interfered by other threads using

some methods provided by Java thread : stop, suspend, and resume. However, calling

such methods to control the execution of a concurrent system is unsafe and deprecated.

It is extremely difficult to control all the threads when there are a large number of them

in a concurrent system. Therefore, Java provides a concurrency model based on the

monitor concept to resolve the synchronization between threads. When more than one

thread tries to access shared data in a critical section, which is marked with keyword

synchronized, the lock of the critical section only allow one of these threads to access

the protected section at a time. A thread uses the wait method to wait when it cannot

exploit the critical section which it is already occupying. So it releases the monitor lock

and hopes some other thread will acquire the monitor, fix things up for it and then wake

the waiting thread. The user can either notify all the waiting threads using the notifyAll

method, or notify only one of them using the notify method. In the notifyAll case, all

the notified threads compete with each others to acquire the object lock.

The low-level monitor strategy of Java concurrent programming is not free from concurrency-

related problems like data racing and deadlock. In Figure 3.1, some safety issues are

Chapter 3 Formalized Java Concurrency Development 26

addressed using the recommended synchronisation pattern. Even then, the system re-

mains exposed to liveness problems. The main concern is that the system developers

have to identify all these concurrency problems by themselves. They need to use the

Java synchronization primitives to construct a synchronization unit by themselves with

concerns on the possible concurrency issues. As the concurrency strategy of a large-scale

system can be very complicated, it is extremely difficult to build the system free from

these issues. Furthermore, the efficiency of the concurrent system mostly depends on the

design of synchronization. Even a building a simple semaphore unit can be inefficient

or even cause deadlock. Therefore, building Java concurrent systems with the basic

monitor primitives demands experienced skill from the developers.

3.1.2 J2SE 5.0

To avoid these problems, the new version of Java, JDK 5.0 introduced a new Java package

java.util.concurrency [Goe04] to support higher level Java concurrent programming.

The new util.concurrency package also introduced some high-level thread-safe synchro-

nization facilities to help in developing concurrent programs in Java. For example, the

Semaphore class implements a classic Dijkstra counting semaphore. It has a certain

number of permits, which can be obtained and released by threads. The Java threads

with permits can access a shared resource and change the state of the shared resource. It

changes the previous fashion of shared resource control which is described in Figure 3.1

with more efficient and safe class. Other new synchronization facilities include:

• AbstractQueuedSynchronizer class maintains synchronization state of Java threads.

It replaces the synchronizsed block previously used in concurrent Java program-

ming. It also maintains a FIFO queue for the blocked threads.

• LockSupport class blocks and unblocks threads. It replaces the suspend() and

resume() method of Java Thread interface.

• ConditionObject class provides an alternative for the classic Java monitor-style

synchronization by using the Lock interface of the new concurrency package.

Using the new concurrency primitives listed above, some new high-level facility classes

are constructed. As these facility classes are carefully constructed and tested, using

them to construct a concurrent system can prevent some fairness and efficiency issues.

For example, the classical consumer-producer problem can be solved by Java monitor in

Figure 3.2.

The consumer waits if the buffer is empty. After the producer added an object to the

buffer, it notifies the consumer. Similarly, when a producer find the buffer is full, it

Chapter 3 Formalized Java Concurrency Development 27

//Consumer thread

synchronized(buffer){
while (buffer.size() == 0) {

buffer.wait();

}
// -- Consume object from the buffer

--

notifyAll();

}
...

//Producer thread

synchronized(buffer){
while (buffer.size() == MAX) {

buffer.wait();

}
// -- Produce object to buffer --

notifyAll();

}

Figure 3.2: Consumer-Producer Example: Java Monitor Solution

waits for the consumer to collect objects from the buffer, and send the notification. In

Figure 3.1, the possible concurrency problems for the wait-notify approach are discussed.

The thread safe collection classes in J2SE 5.0 provides some straightforward implemen-

tations for thread-safe collections [Goe04]. The java.util.concurrency package provides

a BlockingQueue interface and implementation classes, which is designed to be used pri-

marily for producer-consumer queues. With this synchronization class, the consumer-

producer problem can be easily and safely implemented in Figure 3.3.

BlockingQueue q = new SomeQueueImplementation(size);

...

//Consumer thread

try {
while(true) { consume(q.take()); }

} catch (InterruptedException ex) { ... handle

...}
...

//Producer thread

try {
while(true) { q.put(produce()); }

} catch (InterruptedException ex) { ... handle

...}

Figure 3.3: Consumer-Producer Example: BlockingQueue Solution

The synchronization between the two threads are much easier and clearer in Figure 3.3.

As the implementation classes of BlockingQueue are elaborately designed, it makes it

Chapter 3 Formalized Java Concurrency Development 28

easier to write correct and thread-safe concurrent Java implementation. Carefully imple-

menting these synchronizer classes improved the programming simplicity and scalability

of concurrent Java program, and prevents a number of concurrency issues. Also, the

Java built-in locks accessed with synchronization are not fair locks at all (See the wot-

no-chicken example in Section 7.2). Instead, they provide weaker liveness guarantees

that require that all threads will eventually acquire the lock. The low-level lock facilities

in JDK 5.0, such as ReentrantLock, Semaphore, and ReentrantReadWriteLock, provide

options to guarantee fairness to the lock [Goe04].

3.2 Formal Approaches to Java Concurrency

Even J2SE 5.0 with new Java higher level concurrency primitives is not free of con-

currency problems. It also provides no checking or verification facilities to detect these

problems. Moreover, the concurrency model is still defined only in natural language, and

thus cannot be formally analyzed. The lack of a formal foundation for the Java concur-

rency model makes it difficult to analyze and resolve concurrency issues in constructing

large-scale concurrent Java applications.

Many approaches have been proposed for providing formal foundations to Java concur-

rency. One important trend is using formal techniques to analyze and verify existing

concurrent Java programs. The approaches for formal analyzing Java concurrency can

be roughly divided into three kinds of techniques.

• Static Analysis. The static analysis approaches employ formal specification lan-

guages, such as Petri Net [LS03], CCS [Che00], CSP/FDR [Hoa78], occam/JCSP

[WM00b, WM00a], Promela [DS98], JML [FLL+02], and CTL (computation tree

logic) formulas [RS05], to model concurrent Java programs. The formal speci-

fications derived from Java programs can be analyzed and verified by deductive

analysis tools or model checking tools. The problem of this approach is that the

abstraction from Java programs to formal specifications usually lacks of formal

mapping rules and automated tool support. It is difficult here to fill the gap

between Java programs to formal specifications with reliable formal connection.

JPF1 (Java Path Finder) [HS00] is one of the exceptions. It provides automatical

translation tools to translate a subset of Java language into Promela. The Promela

programs can be automatical verified in SPIN model checker [Hol03].

• Runtime Verification. Runtime verification approaches are based on Meyer’s

Design by Contract concept [Mey92]. Assertion languages are introduced as pre-,

postcondition, and invariants, which are used to specify the obligations that need

to be satisfied during the execution of the Java programs. These assertions are

inserted into the Java source code as comments, and can be evaluated and verified

Chapter 3 Formalized Java Concurrency Development 29

when the programs are executed in the run-time verification tools. These runtime

verification approaches are lightweight formal techniques which are easy to apply.

JPF1, Jass/Jassda [BM02], and JML [LC03] are some featured approaches for Java

runtime verification. It should be noted that the runtime verification approaches

only prove that some certain assertions are preserved on the data operations dur-

ing an execution of a concurrent Java program. This cannot guarantee that the

program is free of concurrency issues.

• Model Checking Programs The JPF2 tool [VHBP99] is a very different tool

from JPF1. It generates a state model of the Java program of reachable size

using its own Java Virtual Machine JV MJPF . Model checking concrete programs

used to be impossible due to state explosion problem. JPF2 utilizes deduction

techniques to reduce the size of the state space. The Java language features and

the size of the Java applications that JPF2 can handle are of course limited.

The analysis and verification on existing concurrent Java programs can help the devel-

opers to find out the quality of their concurrent products, while a formal concurrency

model may provide more support throughout the development process. As a typical

formal methods strategy starts from specifying a system with an abstract specification

and gradually makes it more concrete through refinement, applying formal techniques

to build concurrent Java systems from formal models should also be a feasible solution.

There are also different techniques established to build formal concurrency models for

Java. The difference between these techniques is mainly on the different status of the

concurrent models in developing.

• The traditional strategy starts from specifying the system with formal specifica-

tion languages. Then the abstract model of the system is refined by refinement

techniques to finally reach the concrete Java programs. These approaches include

CSP-OZ to Java [CS02], FSP to Java [MK99], and Circus to Java [OC04].

• [MS02a] and [HL06] provide alternative approaches for using formal concurrency

model to develop concurrent Java programs. For these kind of approaches, the

concurrency model and primitives are all dropped. The developers build the system

in Java without considering concurrency, and the concurrency of the system is

expressed separately in formulae which control the execution of Java application.

Automatic pre-processor tools are designed to translate the Java programs with

formulae into normal concurrent Java applications.

Some formal approaches mentioned above are discussed in the following sections.

Chapter 3 Formalized Java Concurrency Development 30

3.2.1 Runtime Verification: JML, Jass and Jassda

Run-time verification is a lightweight formal method approach. It is motivated by the

Design by Contract technique [Mey92]. It employs assertion languages to specify system

behaviour. Assertions can be checked automatically when the programs are executed

in the run-time verification tools. These approaches include JML(Java Modelling Lan-

guage) [LPC+05] and Jass(Java with assertions).

For each module of Java source code, a number of assertions are specified to define

the allowed state of variables in the module. These assertions are usually written as a

special format of comment in the source code, and can be understood by the run-time

verification tool. Failure to satisfy these assertions can be detected by the verification

tool at run-time. This kind of approach is good for specifying how to use the modules

of a Java program, but lacks the abilities to specify and prove the correctness of the

whole system. This disadvantage makes them difficult to specify and verify temporal

properties of the whole system. For example, JML only supports sequential behaviour of

Java code, and concurrent properties cannot be expressed using the assertion language.

Although in [RDF+05], an extension for supporting multi-threaded programs verification

in JML is proposed, it has not been implemented in major JML tools.

Like the other efforts which support Design by Contract in Java, Jass supports the

verification of pre-conditions, post-conditions and invariants. Furthermore, it supports

a kind of refinement checks and trace assertions. The refinement checks in Jass check if

the trace of a subclass is in the trace of its superclass. For trace assertions, a Java object

can be checked to discover if the sequence of its behaviors is in its Jass trace assertions.

The Jass tool can translate the Jass assertions, which are written as comments in Java

source code file, into a Java byte-code program.

[Möl02, BM02] introduce the new Jass Debug Architecture (Jassda). In Jassda, the

assertions are written in CSP -like processes and checked at runtime via the Java Debug

Interface(JDI), while the Jass assertions are written in Java comments and need to be

translated into Java source code before verifying. This technique gives a more flexible

way to verify the trace properties of a Java class.

3.2.2 Model Checking Java Programs: Java Path Finder

The input languages used by model checking tools are usually simple and abstract to

allow the state spaces of models to be restricted in scale. Programming languages, with

rich data types, will in general cause the state space explosion in the model checker.

Thus, it was generally believed in the past that model checking on concrete programming

languages was very difficult to carry out due to the computational ability of existing

computer systems.

Chapter 3 Formalized Java Concurrency Development 31

[HS00] presents an automatic tool Java Path Finder (JPF2), which integrates model

checking, program analysis and testing for Java programs. The JPF2 tool can generate

a state model from a subset of the Java language via the support of its own Java Virtual

Machine(JV MJPF). Some reduction techniques, such as symmetry reduction, and ab-

stract interpretation are applied to reduce the size of the state model in JPF2. Formal

properties and assertions can be verified in the state model. Concurrency properties,

such as data race and deadlock can be detected by JV MJPF .

The Java programs checkable in JPF2 are in the 1000 to 5000 line range, and the Java

language used in it is limited to a subset. The new 4.0 version of JPF claimed being

able to check programs up to 10kloc, depending on their internal structure. Applying

JPF model checking on a large scale concurrent system currently is still unpractical.

3.2.3 Semi-Formal Approach: The Magee approach

[MK99] presents a semi-formal strategy for build concurrent Java programs. A process

algebra language, FSP (Finite State Processes) is used to specify the system. After

that, the LTSA (Labelled Transition System Analyser) tool is employed to translate the

FSP specifications to an equivalent graphical description. The tool can check desirable

and undesirable properties of the FSP model. To construct the Java application, the

graphical version of the FSP specification is used as a guide for manual development.

This approach provide no formal translation from the FSP syntax to Java. The users

must implement the model in Java through their own experience and skill. Although

the concurrent model can be verified, there is no formal proof that the Java application

is a correct implementation of the formal model. Therefore, the correctness of formal

model cannot guarantee the correctness of the target concurrent Java programs.

3.2.4 Jeeg

Jeeg [MS02a] is a Java dialect which uses declarative Linear Temporal Logic (LTL) to

replace the default synchronization mechanisms of Java. It tries to use aspect-oriented

programming to fix the concurrency anomaly. Jeeg provides its own concurrency primi-

tives to specify synchronization outside the methods of a Java class. This separates the

methods, which express the actual job of the class, from its synchronization logic. This

effectively limit the occurrence of the inheritance anomaly that commonly affects con-

current object-oriented languages. Also, synchronization constraints expressed in LTL

make it possible to formally reason about concurrency properties.

The formulae which express the synchronization are placed in a sync section which is

added to the class definition. The following code shows the basic structure of a Jeeg

class.

Chapter 3 Formalized Java Concurrency Development 32

public class MyClass{
sync {

....

}
// Standard Java class definition

....

}

The sync section includes the LTL formulae in a form of:

m:φ

where m is an identifier of Java method, and φ is a formula expressed in a constraint

language based on linear temporal logic. A pre-processor tool can automatically generate

Java source files from Jeeg source files. The formula φ can be evaluated at run-time.

When the Java programs runs in JVM, the execution of a guarded method m depends

on the value of the LTL formula φ which gives the execution condition of the method.

3.3 JCSP

JCSP [WBM+07, WM00a] is a Java implementation of the occam/occam-π language.

The occam language [Lim95] is an implementation language of CSP. It expresses a subset

of CSP semantics. In occam, processes communicate with each other using communica-

tion channels. The occam-π language [WB04] extends the original occam language with

π-calculus [Mil99]. It also support output guards and multi-way synchronization, which

are not in the original occam.

JCSP inherits the same message-passing concurrency structure from CSP and occam. It

provides various Java interfaces and classes for implementing occam/occam-π processes

and channels, as well as basic processes, e.g. SKIP and STOP, parallel and sequen-

tial compositions, and external choice. Using JCSP, developers can easily construct a

concurrent Java program from its CSP or occam specification.

The JCSP package implements the synchronization between the communicating pro-

cesses inside channel classes. A Java application developed with JCSP consists of a

number of objects from process classes. All the JCSP process classes implement a JCSP

interface named CSProcess. Process objects communicate with each other through in-

stances of JCSP channel classes.

The classical interaction between JCSP processes is a point-to-point communication

channel. Figure 3.4 demonstrates a point-to-point communication.

Chapter 3 Formalized Java Concurrency Development 33

Process P and Q synchronize on channel c, and communicate a data item X through

the channel. The CSP specification of this communication is:

MAIN = P ‖
{c}

Q

P = c!X → SKIP

Q = c?Y → SKIP

and the occam language program of this is:

PAR

c!X

c?Y

In the JCSP implementation, for a communication channel c, there are two basic ab-

stract JCSP channel interfaces: ChannelInput and ChannelOutput. The ChannelInput

interface defines a read method to read an object from the channel, while the Chan-

nelOutput interface defines a write method to write an object to the channel. Figure 3.5

shows the process class which implements process P .

It gets the output end out of a channel in its constructor, and in the run method it

sends out the data X through the output end. The communication channel is defined

P rocess P P rocess QC hanne l c

!X ?Y

Figure 3.4: Channel and process of JCSP

class P implements CSProcess{
private final ChannelOutput out;

......

public P(ChannelOutput out){
this.out = out;

}
public void run(){

......

out.write(X);

}
}

Figure 3.5: The JCSP process class implements process P

Chapter 3 Formalized Java Concurrency Development 34

Class Main implements CSProcess{
final private One2OneChannel c = Channel.one2one();

......

public void run(){
new Parallel(

new CSProcess[]{
new P(c.out()),

new Q(c.in())

}
).run();

}
}

Figure 3.6: JCSP Parallel Processes

outside of the process. In Figure 3.6, the JCSP process objects P and Q are grouped

in an array, and executed in parallel under the Parallel process.

In this case, the communication channel is declared as an one-to-one communication

channel. In a parallel composition structure of the Main process, the output end of

channel c is passed to process P and the input end is passed to process Q.

The communication only involves synchronization between one reader and one writer,

which also means that there must be at least one reader and one writer. The reader

and the writer processes synchronize with each other, and the writer process sends data

to the reader. JCSP/occam also supports multiple writers and/or readers interleaving

with each other to use a shared any-to-any channel. Note that the writers (respectively

readers) do not synchronise with each other – only one reader with one writer. Therefore,

the one-to-one, one-to-any, any-to-one, and any-to-any channel classes in JCSP are still

point-to-point communication channels.

JCSP has implemented the barrier synchronization, which is a stateless multi-way syn-

chronization, with the Barrier (and AltingBarrier) class. A barrier has an internal

counter for all the synchronizing processes. When a process call the barrier, the process

blocks and the barrier reduces the counter. Only when the counter is reduced to 0, which

means all the synchronizing processes are ready, the blocked processes are released and

can progress. The Barrier class in JCSP implements a multi-way synchronizing barrier.

However, until version 1.0rc5, the Barrier class is not a guard, and cannot be used in

external choice. We discuss this issue in Section 3.3.1.

To build a concurrent Java application, the developer can specify the system using

CSP , verify the model using FDR [For03], and then develop a JCSP program from

the CSP model. The benefit of JCSP is that the developer is protected from low-level

synchronization issues during implementation. As the compositional semantics of CSP

is carried over by JCSP, more often, people just develop the Java program directly with

the JCSP library.

Chapter 3 Formalized Java Concurrency Development 35

The producer-consumer solution given in Figure 3.2 and Figure 3.3 work for any number

of producers and consumers. A JCSP version, almost identical that from Figure 3.3, is

given in Figure 3.7.

Any2AnyChannel c = Channel.any2any(new Buffer(size));

...

//Consumer thread

while(true) { consume(c.read()); }
...

//Producer thread

while(true) { c.write(produce()); }

Figure 3.7: Consumer-Producer Example: The JCSP Solution

The correctness of the JCSP implementation of the occam communication channel to a

JCSP channel has been formally proved [WM00a]: the CSP model of the JCSP channel

communication is shown to be failures-divergences equivalent to the CSP channel.

3.3.1 The Limitation of JCSP 1.0rc5 and before

The JCSP packages of 1.0rc5 version and before mainly focus on implementing the

point-to-point communication as their concurrency model. At a time, only one reader

process and one writer process can synchronize and communicate data through the

communication channel.

Although these packages have a multi-way synchronizing Barrier class implemented, the

Barrier class is more like a separate synchronization facility as it cannot be used for

guarded external choice. In JCSP, the Alternative class implement the alternative pro-

cesses structure (ALT) of occam-π. In the 1.0rc5 version, the implementation of external

choice has the same constraints as required by classical occam. Even for point-to-point

communication channels, only the channel input (ch?x) can be used for guarded exter-

nal choice. The output-end process must commit to a channel communication, which

means it cannot use a channel output (ch!x) in external choice. Solving guarded external

choice for both ends of the communication channel and multi-way synchronizing channel

is complex and can be costly [McE06].

3.3.2 New JCSP versions

Recently, as new versions of JCSP have moved on to support the occam-pi language. In

[WBM+07], new features in the new 1.0rc7 and 1.1 versions of JCSP are introduced.

A new and stable AltingBarrier class has been implemented in 1.0-rc7. The AltingBar-

rier class implements multi-way synchronization with guards. Therefore, it can be used

Chapter 3 Formalized Java Concurrency Development 36

in external choice. In Section 5.4, we have a more detailed discussion on the implemen-

tation of multi-way synchronization.

In JCSP programs before version 1.1, Processes take channel-end types, such as Chan-

nelOutput or ChannelInput, as arguments to process constructors. Instances of channels

are passed directly to these processes. This allowed users to cast a ChannlInput as a

ChannelOutput, this is now prevented by passing instances of channel ends. The input-

and output-end can be extracted from a channel instance using in and out methods of

the channel.

The 1.1 version also introduces extended rendezvous. A rendezvous allows the input-end

process to execute extra code without scheduling the output-end process. The input-

end process starts a rendezvous by calling the startRead method of a ChannelInput

instance, and ends the rendezvous by calling the endRead method. During this period,

the output-end process remains blocked.

Other useful features of the 1.1 version includes poison and graceful termination. These

new features in 1.0rc7 and 1.1 versions provide better support of occam-pi, and improve

the scalability of JCSP on various concurrency systems.

3.3.3 A Translation Tool for JCSP

Since the JCSP package implements a subset of CSP syntax, it is possible to automat-

ically translate a formal concurrency model specified with the subset of CSP syntax to

a Java application. In [RRS03], a translation tool, which can automatically generate

JCSP-based Java programs from CSP processes, is presented.

To develop a Java concurrent application with the tool, a concurrency model is specified

with a subset of CSP notations. Then the specified model is checked in FDR to prove

its correctness. After that, the concurrency model is translated to a Java program.

The formal model supported by this tool is a pure restricted CSP model. Therefore, the

users have to add the extra data definition and operation, which cannot be supported

by the tool, in the target Java program manually. However, the manually introduced

data may affect behaviours of the system. Therefore, even if the translation is correct,

the manual changes may make the final code inconsistent with its CSP model.

The CSP notations supported by Raju’s tool are very limited. Furthermore, the tool

has been found experimentally not to be robust enough to handle non-trivial examples.

3.3.4 From Circus to JCSP

In [OC04], the translation rules for translating Circus program to Java programs via the

JCSP package are presented. In [FC06], a translation tool is introduced. The Circus

Chapter 3 Formalized Java Concurrency Development 37

programs used for translation are refined to be more concrete. They are written in the

executable subset of Circus.

As Circus is a combined specification from Z and a subset of CSP, the CSP part, which

controls the execution flow of the specification, can be translated into JCSP as normal

CSP specification. Each Circus process declared in the ProcDecl section is translated

into a JCSP process class CSProcess. The main Action section of a Circus process,

which determines how the process performs, generates the Java statements inside the

run() method of the CSProcess class. Each CSP-like action of Circus corresponds to a

JCSP channel.

In Chapter 8, we discuss and compare our approach and the Circus translation.

Chapter 4

The Combined B+CSP

Specification

In PROB, the B part of the combined specification is essentially an action system

[BKS83a]. It specifies the abstract state of the system based on a number of constants

and variables. The system state is shared by a number of guarded B operations in the

system model. The operations can change the state of the system by updating the values

of system variables. In abstract models, the enablement of an operation is guarded by

predicates on the state of the system. The CSP part, on the other hand, defines the

behaviours of the system by specifying the possible operation sequences/traces. In CSP,

the actions in the system are regarded as stateless channels. A process, a key concept,

is defined in terms of possible behaviour sequences of those channels. Each process may

also maintain variables which are only locally visible to the process itself.

Semantically, the B machine can be regarded as a special process, which is running in

parallel with the CSP processes. The B operations are also in a parallel composition

and synchronize with the corresponding CSP channels. The B and the CSP combine

with each other through shared operational event names. A combined B+CSP event

comprises a B operation and a CSP channel sharing name. It is only allowed to proceed

when it is allowed both by the B and the CSP. The B specification can guard a combined

event with precondition predicate. The combined event also needs all the CSP processes

who synchronize on it to be ready.

PROB interprets the B and the CSP specifications into Prolog, and builds a state model

from the Prolog representation. It also supports animation and model checking of the

combined specification. The operational semantics of the B+CSP specification is intro-

duced in [BL05] and provides a formal basis for combining the B and CSP specification.

In this chapter, we introduce the B+CSP specification, and how we make use of it in this

work. This chapter starts with an introduction of the notations of the combined B+CSP

38

Chapter 4 The Combined B+CSP Specification 39

specification language in Section 4.1. In Section 4.2, the operational semantics of B+CSP

and the combination strategy are discussed. As the semantics is developed for supporting

abstract specification, it is too flexible for the implementation in programming languages.

Therefore, in Section 4.3, the reasons for restricting the original semantics are discussed,

and a restricted semantics of B+CSP combination is presented. In Section 4.4, we

describe how to compute the restricted semantics in the implementation. Based on the

new restricted semantics, the synchronization model is explained in Section 4.5. At the

time of writing, the B+CSP approach is not methodologically complete and has its own

limitations in the refinement and composition rules.

4.1 The Specification language

Table 4.1 gives a partial B and CSP syntax used in the thesis. We use quote marks as

well as boldface to denote BNF terminal strings. A statement S+“;” means an symbol

S can appears one or more times, and elements of S are separated by the terminal “; ”.

A statement S∗ means S can appears zero or multiple times.

In the work, the target B specification is mainly the B0 subset. As introduced in Sec-

tion 2.1.3, the B0 subset only supports concrete data and concrete data transitions. That

makes it very close to programming languages and is easier to implement than many

other abstract B features. We do support some abstract B language features beyond B0.

One notable feature is the precondition substitution. Possibly subject to a precondition

PRE - all of whose clauses must be satisfied to enable the operation - an operation

updates system state using various forms of data substitution. These features are im-

plemented to provide extra functions for rapidly implementing and testing an abstract

specification in Java programs. In the implementation, preconditions are interpreted as

guards, which will block the process if the precondition is not satisfied. The other one is

parallel composition, which is normally resolved through nondeterminism in the abstract

model. With the decomposition approach explained in Section 7.3, parallel composed B

substitutions in a B operation can be decomposed into separate B operations of different

parallel B machines.

4.2 The Operational Semantics of B+CSP

The operational semantics of B+CSP is introduced in [BL05]. It provides a formal basis

for combining the B and CSP specification. The B and CSP specification are composed

as parallel processes. A B machine is viewed as a special process in the system, which

maintains and updates the system state through the data transitions in its operations.

Chapter 4 The Combined B+CSP Specification 40

B Machine Machine MACHINE Header
Clause machine∗ END

Clause machine ... | Clause variables | Clause invariant
| Clause assertions | Clause initialization |
Clause operations | ...

B Operation Clause operations OPERATIONS Operation+“;”

Operation Header operation “=” Substitution
Header operation [ID+“,” ←] ID [“(” ID+“,” “)”]
Precondition PRE Condition THEN Substitution END

B Block BEGIN Substitution END
Substitution If-Then-Else IFCondition THENSubstitution

[ELSIF Condition THEN Substitution]∗

[ELSE Substitution]
END

Var VAR ID+“,” IN Substitution END
Sequence Substitution “;” Substitution
Parallel Substitution ‖ Substitution
Assignment ID [(Expression)] “:=” Expression

Prefix ChannelExp → Process
CSP Sequential Composition Process “;” Process
Process External Choice Process “[]” Process

Alphabetical Parallel Process “[|” Ch List“|]” Process
Interleaving Process “|||” Process
Process call Proc Header
If-Then-Else if CSP Condition then Process [else Process]
Skip SKIP
Stop STOP
ChannelExp ID [Output Parameter∗] [Input Parameter∗]

CSP Channels Output Parameter “!”CSPExp | “.”CSPExp
Input Parameter “?”CSPExp

Table 4.1: The main B and CSP specification syntax supported in JCSProB

Without CSP processes, a B machine process can fire all its operations freely. The data

transitions can only be blocked by preconditions on the operation. However, in some

cases, it may not be very convenient to define system level behaviours only with precon-

dition guards. Normally, a B machine needs to define an abstract ’program counter’ and

use it in preconditions to control the execution of an operation [AM98]. However, this

form of specification of behaviour is opaque, compared to process algebra approaches

such as CSP.

To work with CSP processes, a B machine process needs to synchronize and commu-

nicate. The synchronization and integration of B and CSP processes are on the B

operations and CSP channels.

• A B operation must have a corresponding CSP channel with the identical name.

Together, they build up a combined B+CSP channel. The B operation is only

ready to progress when the corresponding CSP channel is also ready.

Chapter 4 The Combined B+CSP Specification 41

• A CSP channel is combined with a B operation, or it can be a pure CSP channel

which has no B counterpart. A pure CSP channel is only used in the CSP part for

communication.

Figure 4.1 illustrates how the synchronization works. Operations A, B, and C all have

corresponding CSP channels in the CSP part. Only when channel A is ready, operation

A is able to progress the data transitions inside the operation. CSP channel D is only

used by CSP processes, and has no counterpart in the B machine. In this way, the system

behaviour specified in CSP can be used to control the execution of data transitions in

the B machine.

Figure 4.1: The synchronization between B and CSP specification

The combined B+CSP event is defined by the operational semantics. A state of a

combined B+CSP specification is defined as a pair, which includes a B state and a CSP

state.

In [BL05], states σ and σ′ are the before and after B states for executing a B operation.

The operation is defined with operation identifier op, return variable r1, ... , rm, and

input variables a1, ... , an, as r1, ... , rm ← op(a1, ... , an). The B operational semantics

can thus be defined with a ternary relation → as σ →op σ′. That means in state σ, the

operation op progresses with input variable a1, ... , an, then returns output variables

r1, ... , rm, and reaches a new state σ′. In the CSP part, P is a CSP process, and P ′

is the process after P processing CSP channel ch, which has the same identical name as

the B operation op. Channel ch can be defined with a number of variables b1, ... ,bi as

Chapter 4 The Combined B+CSP Specification 42

ch.b1.bi. The CSP operational semantics is give by a similar relation → as P →ch

P ′.

Therefore, the before and after state of B+CSP specification can be defined as (σ,P)

and (σ′,P ′). We can now define the operational semantics of B+CSP specification by

combining the two ternary relations into one form (σ,P)→ev (σ′,P ′), where the combined

event ev is an synchronization of B operation op and CSP channel ch.

The essential issue of this synchronization is how to define the data flows of B operations

and CSP channels. A B operation can have input variables a1, ... ,an and return output

variables r1, ... , rm as result, while variables b1, ... ,bi of a CSP channel can have

input(?), output(!) and dot(.) decorations to imply the data flow of the variables.

PROB supports a very flexible way to combine the data flows of B operations and CSP

channels. In PROB, the synchronization is achieved by Prolog unification, which means

data information can flow in from both B and CSP:

• CSP channels can provide concrete data values , which means the CSP part is

used to drive the B part.

• B operations can provide data values, which means the B part is used to drive the

CSP part.

• B and CSP can both provide concrete data values to each other. The mixed data

flow allows B and CSP can drive each other at the same time.

• In the worst case, when both B and CSP do not provide concrete data values,

PROB can enumerate the B datatypes of variables and drive the interpreter.

As an abstract model checking tool, PROB tries to explore all the possible states of

a system. The power of enumerating data values from datatype definitions makes it

capable of using the combined channels without caring about the input/output data

flow on the channels. Therefore, it does not clearly distinguish the input and output

variables of both B and CSP. For example, in PROB, ch!aa and ch?aa are all valid CSP

channels for combining with B operation op(aa). Moreover, it even does not force the

numbers of variables on a B operation and its corresponding CSP channel to be same.

For example, a CSP channel ch.aa.bb can have fewer variables than its corresponding

B operation op(aa,bb,cc). It ignores the missing variable cc, and either B part or the

PROB interpreter can provide the concrete data value for it.

For a very simple B machine in Figure 4.2, we combine it with the following CSP process:

Proc = Set?Val → Get!Val → Proc

Chapter 4 The Combined B+CSP Specification 43

MACHINE Simple

SETS AA = aa,bb,cc

VARIABLES xx

INVARIANT xx ∈ AA

INITIALISATION xx := aa

OPERATIONS

Set(newval) =

PRE newval ∈ AA THEN

xx := newval END;

res ← Get = BEGIN res := xx END

END

Figure 4.2: A simple B machine: Simple

As both B and CSP require the data value of Val on combined event Set, neither of them

can provide concrete data to drive the combined machine. In this case, PROB interpreter

would provide the concrete data using its enumeration mechanism, and actually drive

the combined model. The enumeration mechanism provides data values based on the

data type of a variable. It also looks into the enumeration configuration in PROB for

the size of the enumeration values it can provide. For example, if Val is a natural

number, and the enumeration size setting in PROB is 3, the enumeration mechanism

would provide three natural numbers 1, 2, and 3 as the result. The Get event here is

more complex, as both the B operation and the CSP channel try to output data. The

PROB interpreter would only combine them together when the output data values from

B and CSP are equal.

We can also combine the B machine showed in Figure 4.2 with a different CSP process:

Proc = Get?Val → Set!Val → Proc

In the new combined model, the combined event Get has a B operation which outputs

data, and a CSP channel which requires an input data. So, the B part is driving the

combined event here by providing the data. On the other hand, the Set event is a

combination with a CSP channel which outputs the value of Val, and a B operation

which needs an input parameter. The data outputted from the CSP part would drive

the combined event here.

The above two examples demonstrate how flexible the combination could be in the PROB

tool. Actually, even when part of the parameter definitions are missing, PROB can still

successfully perform the combination. For example, if the same B machine in Figure 4.2

is combined with a CSP:

Proc = Get → Set!Val → Proc

Chapter 4 The Combined B+CSP Specification 44

although the corresponding parameter on CSP channel Get is missing, PROB can still

combine the B operation with it. In this case, there would not be any data commu-

nication between the CSP and the B parts in the combination. The two parts just

synchronize with each other on the occurrence of the event.

4.3 The Restricted Semantics for Implementation

As a model checking tool, PROB aims to exhaustively explore all the states of an abstract

finite state system, on the way enumerating all possible value combinations of operation

arguments. The flexibility in combining the two formal models provides more power to

the PROB tool to model check the state space of a model. The implementation of the

semantics using Prolog unification is simple and efficient. Especially, in some cases, it

allows the PROB interpreter, instead the B or the CSP, to drive the combined model.

However, as our target is implementing the combined B+CSP specification in a concrete

programming language, we cannot implement the involvement of the PROB interpreter

or support the same flexible and abstract semantics as model checkers. Therefore, we

have to restrict the original semantics in PROB to make it suitable and meaningful for

a concrete programming language.

The PROB interpreter is used when neither the B nor the CSP provides full data infor-

mation to drive the model. There are three kinds of cases, where this can happen:

• Both the B operation op(aa) and the CSP channel ch?aa request the data value

of variable aa.

• The B operation op(aa) requests the data value of variable aa, while CSP channel

ch does not provide the value.

• The CSP channel ch?aa requests the data value of variable aa, while B operation

op does not provide the value.

In our restricted semantics, we prohibit all the three combinations. Furthermore, there

is another combination of the B and CSP variables dropped from the semantics.

• Both the B operation aa ← op and the CSP channel ch!aa output data values.

PROB can handle this with its Prolog unification. Only when the two output values from

the B and the CSP are same, can the B operation and the CSP channel be combined.

However, this violates the concurrency model of our approach. Section 4.5 will give a

discussion of this in detail. The allowed argument combinations in this work are showed

in Table 4.2.

Chapter 4 The Combined B+CSP Specification 45

JCSProB B: input arguments
(c(x))

B: return argu-
ments
(y ← c)

B: no argument
(c)

CSP output (c!x , c.x)
√ × ×

CSP input (c?y) × √ ×
CSP none (c) × × √

Table 4.2: The allowed arguments combination for B+CSP events

We thus define a restricted B+CSP operational semantics as follows. For a B oper-

ation o1,...,om ← op(i1,...,in), its corresponding CSP channel must be in the form of

ch!i1...!in?o1...?om. At CSP state P , a CSP process sends channel arguments i1,...,in

through the channel to a B operation as input arguments. After the data transitions of

the channel complete - taking B state from σ to σ′ - the CSP state changes to P ′. The

arguments o1,...,om represent the data returned from B to CSP. The input arguments

i1,...,in only exist in state (σ,P), while the output arguments o1,...,om are only available

in state (σ′,P ′). The new restricted semantics of a combined event ev can be expressed

as ((σ,P),in) →ev ((σ′,P ′),out), where in = i1,...,in, and out = o1,...,om.

PROB also supports classical CSP communication channels. These channels exist only

in the CSP part of the combined specification and have no B counterparts, which means

that they cannot directly affect the system states in the B part. A channel output (c!y)

synchronizes with one channel input (c?x) from a different process, and transfer a data.

This synchronization is a point-to-point(p2p) communication pattern. It also supports

multi-way synchronization, multiple processes can synchronize on one barrier channel c.

Table 4.3 demonstrates CSP communication channels supported in this work.

JCSP CSP input
(c?y)

CSP output
(c!x)

CSP none
(c)

CSP output (c!x)
√

(p2p sync) × ×
CSP input (c?y) × √

(p2p sync) ×
CSP none (c) × × √

(Barrier)

Table 4.3: The allowed arguments combination for pure CSP event

4.4 How to Compute the Restricted Semantics

The restricted semantics described in Section 4.3 provides the formal basis of combining

the B and the CSP models. The restricted semantics supports a two-way communication

between a B operation and a CSP event, which means that the CSP can provide the

data information to drive the B machine and/or vice-versa. Figure 4.3 shows how the

semantics actually perform.

Chapter 4 The Combined B+CSP Specification 46

In step (1), the system is in state (σ,P). The CSP event ev can provide variables i1,...,in

to the B operation op as input arguments for the B operation. From the view of the

CSP event, it outputs (!) this data to the B part, while the B operation sees this as a

data input from the CSP event. Thus the CSP part uses the input arguments to drive

the B machine and its actions on the system state. Even if there is no input data from

the CSP, the CSP event still drives the B machine by invoking the execution of the B

operation.

In step (2), the B operation op uses the input variables i1,...,in (or without any input

data), and processes some data transitions to move the state of the system from (σ,P)

to (σ′,P ′). At the same time, it can produce some output data o1,...,om.

In step (3), the B operation op send the output variables o1,...,om back to the CSP event

ev. The CSP event receives the variables as input (?). These variables can be further

used by the CSP process to control the behaviour of the system. In this way, B machine

can use the output variables o1,...,om to drive the CSP part.

Accordingly, this semantics allows the system behaviour to drive and change the data

aspect of the system, while the data aspect can also use the return variables to affect the

behaviour of the system. As an example of the restricted semantics, Figure 4.4 shows

a combined specification of a powered lift. The B machine has two variables to specify

the system state: level indicates the floor of the lift, and electr marks the electric power

left in the battery. The lift goes up and down through inc and dec operations. Each of

these operation costs energy from the battery. When the power in the battery is below

40, the lift enters emergency mode. It uses the CSP channel alarm to call the supplier,

and retraces to level 0 for resetting and charging. After the supplier is notified by the

alarm, he recharges the battery. After the battery is recharged, the lift can return to

normal functioning.

Figure 4.3: How to compute the restricted semantics

Chapter 4 The Combined B+CSP Specification 47

MACHINE powered lift

VARIABLES level, electr

INVARIANT level ∈ N ∧ level ≥ 0 ∧ level ≤ 10 ∧
electr ∈ N ∧ electr ≥ 0

INITIALISATION level := 1 ‖ electr := 100

OPERATIONS

rr ← inc =

PRE level < 10 ∧ 2 < electr

THEN level := level + 1 ‖ electr := electr - 2 ‖ rr := electr - 2

END;

rr ← dec =

PRE level > 0 ∧ 2 < electr

THEN level := level - 1 ‖ electr := electr - 2 ‖ rr := electr - 2

END;

recharge =

PRE level == 0 THEN electr := electr + 150 END;

reset =

BEGIN electr := electr - level × 2 ‖ level := 0 END;

rr ← test =

BEGIN rr:= electr END

END

———————————————

MAIN = Lift [|{alarm}|] Supplier

Lift = inc?Y → LiftTest(Y) [] dec?Y → LiftTest(Y)

LiftTest(X) = if X<40 then alarm → reset → Emergency else Lift

Emergency = test?Y → if Y ≥ 40 then Lift else Emergency

Supplier = alarm → recharge → Supplier

Figure 4.4: Combined Specification of powered lift

In this model, the CSP part calls inc, dec and recharge channels to invoke the corre-

sponding B operations for changing the system state. On the other hand, the return

variables in channels inc, dec and test are further used in CSP processes as condition

variables in the if-else-then structures. The behaviours of these CSP processes depend

on the value of these variables.

4.5 The Concurrency Model

The behaviour of the system is specified in the CSP part of the combined specifica-

tion. Processes in the CSP part can be in several kinds of processes compositions,

e.g. interleave, parallel, sequential and choice. In particular, parallel CSP processes

can synchronize with each other on certain CSP channels. In the restricted B+CSP

semantics, B+CSP channels and pure CSP events have different concurrency models for

synchronization.

A combined B+CSP channel has two levels of synchronization.

Chapter 4 The Combined B+CSP Specification 48

• The CSP level. In this level, All the CSP processes which call this channel need

to synchronize on the channel. When a process calls a synchronizing channel, it

blocks until all the other processes which synchronize on this channel are ready.

The synchronization here is determined by the name of the channel, as well as the

values of the variables on it.

• The combination level. The synchronization is between the CSP part (including

all the CSP processes) and the B part. The call from the CSP part depends

on the CSP level of synchronization, while the corresponding B operation can be

guarded by preconditions. Only when both the B and the CSP are ready, the data

transitions inside the channel can progress.

Figure 4.5 shows how four processes p1, p2, p3 and p4 synchronize on a combined event

ch.

Figure 4.5: The synchronization of B+CSP channels

In the CSP level, the value of the variables on the channel is also an important factor

in the synchronization, as well as the channel name. Only when parallel processes call

the same channel with exactly the same values, do they synchronize with each other on

that channel. For example, if process P and Q synchronize on channel ch!x, only when

variable x1 of the call ch!x1 from process P equals variable x2 of the call ch!x2 from

process Q, can the two processes synchronize.

Furthermore, the synchronization is only concerned with input data i1,...,in. An input

value must have a defined value at the time of synchronization because the value needs

to be passed to the B operation. A B operation reads a defined value for its input data

in order to trigger.

In PROB, the output variables o1,...,om can also be used for synchronization, while

in the restricted semantics, this is not allowed. The synchronization between the CSP

Chapter 4 The Combined B+CSP Specification 49

processes and B machine determines whether a B+CSP channel can progress. Therefore,

the decision should be made in the state (σ,P), before the data transitions are actually

processed. The output data o1,...,om are only available in state (σ′,P ′), after the data

transition progresses. However, when the values of input data of the combined event

and the system state are fixed, a B operation would always move the system to a specific

state, and produce a certain output data.

The synchronization between CSP processes on a channel can be viewed as a barrier

synchronization with data. To simplify the concurrency model, it is suffice to say that

processes calling the same channel with exactly the same data values perform a single

barrier synchronization, which means it is possible to use a classical barrier synchroniza-

tion to implement the CSP level of synchronization for B+CSP channel. The synchro-

nization between a CSP channel and its corresponding B operation can be regarded as

a two-way point-to-point communication: the CSP channel first sends the input data

i1,...,in to the B operation, and after the data transition is performed, the B operation

sends output data o1,...,om back to the CSP event. This gives the possibility of imple-

menting the B+CSP synchronization using JCSP/occam-π. We will discuss this later in

Section 8.2.5.

In PROB, pure CSP channels preserve the semantics of classical CSP. In this work, we use

JCSP communication channels to implement pure CSP channels, which means the CSP

channels here need to express the same semantics as JCSP/occam-pi does. The standard

channel model of JCSP/occam provides point-to-point communication channel classes,

which is introduced in Section 3.3. These channel classes are employed to implement

the point-to-point communication channels in Table 4.3. As JCSP has implemented the

barrier synchronization with the Barrier and AltingBarrier classes, we uses these classes

to implement the barrier synchronization of pure CSP channels, which is also allowed in

this work.

Chapter 5

JCSProB: A Java

Implementation of B+CSP

Implementation is the final target for the development of all software systems. A typical

formal development employs a formalized stepwise refinement techniques. The develop-

ment starts with a very abstract non-deterministic system model, which is developed

with high-level observation of the system behaviours. As the high-level abstract model

lacks concrete details of the system, it is very hard to be implemented. In a series of

refinement steps, low-level details of the system are added in the system model. Even-

tually, we can get a final refinement of the system model, which is concrete enough to

be input to the compiler to generate an executable program.

In B development, the final refinement is defined in a deterministic subset of the B

language, B0. Although B0 only includes concrete data and concrete data manipulations,

it still lacks some implementation details and there is no compiler support for this

language. Alternatively, as B0 is very close to conventional programming languages,

it is possible to translate B0 into other well supported programming languages. The

Atelier-B [Ate01] tool provides translation tools [Cle02] from B0 to Ada and C. In this

work, we translate combined B+CSP specifications into Java programs.

The definition of the B+CSP semantics in Section 4.2 shows that the behaviours of

a system are specified in the CSP part of the combined model. In B+CSP, the CSP

part of a system is the driving force of system behaviour, while the B part specifies

a reactive system with data and data manipulations. Although the data aspect can

affect the system behaviours via the return variables of combined events, the invocation

of events is controlled by the CSP processes. As the semantics of the B0 language is

very close to conventional programming languages, it is not very difficult to translate

the B0 specification into programming language. However, it is not common for a

programming language to directly provide a mechanism to implement the semantics of

50

Chapter 5 JCSProB: A Java Implementation of B+CSP 51

a process algebra. Therefore, how to implement the system behaviours specified by the

CSP part of the combined specification is a key question of the work.

This chapter starts with a discussion on the reasons for developing the JCSProB pack-

age in Section 5.1. Then it gives an overview of the package structure in Section 5.2.

In Section 5.3, we introduce our implementation of the combined B+CSP event. The

implementation of multi-way synchronization of this event implementation is a very im-

portant feature for JCSProB, and in Section 5.4 we give a full discussion of our solution.

Another important re-implementation is of the process mechanism. New thread, pro-

cess and process composition classes are introduced in Section 5.5. A big difference

between JCSP and JCSProB is that JCSProB has a state model defined in B specifica-

tion. The implementation of the state model is in a variable class, which is presented

in Section 5.6. In Section 5.7, a GUI package, which is used to interact with JCSProB

programs, is introduced.

5.1 Why We Need JCSProB

The JCSP package [WM00b] provides a Java implementation of the oocam-π language,

which expresses a subset of CSP semantics (see the discussion in Section 3.3). Be-

cause JCSP is a well constructed package and had the channel classes formally verified

[WM00a], if we can implement the B+CSP event based on the JCSP package, correct-

ness of the implementation should be easier to prove. Therefore, our first priority is

using it to implement the CSP part of the system. However, some limitations of JCSP

make it not very suitable for implementing the B+CSP event.

5.1.1 JCSP Channels and B+CSP Events

Both in JCSP and B+CSP, the synchronization between processes is through the chan-

nels/events. The difference between B+CSP and JCSP concurrency models is an im-

portant question in implementing B+CSP semantics using JCSP.

In Section 3.3.1, we discussed that the limitation of JCSP 1.0rc5 on multi-way synchro-

nization and external choice, which was the available version of the JCSP package when

we started this work. However, if we want to implement the multi-way synchronizing

B+CSP events, external choice is an important feature which must be implemented.

Therefore, we had to implement multi-way synchronizing events by ourselves. We will

have a detailed discussion of this in Section 5.4.

Another big difference is the implementation of system state and the data transitions

which change the system state. In JCSP/occam-π, each process maintains its own

states, and the channels are regarded as stateless communication channels which have no

Chapter 5 JCSProB: A Java Implementation of B+CSP 52

internal data transitions. The state changes of JCSP/occam-π happen in the processes,

not in the channels. However, the B part of combined B+CSP events has data transitions

inside to change the state of the B machine. This means we cannot directly use the JCSP

channel classes to implement the B+CSP event.

Table 5.1 summarizes the differences discussed above.

Channels JCSP channel JCSP call channel JCSP barrier B+CSP event
Multi-way Sync No No Yes Need
External Choice Yes Yes (acceptor side only) No Need
Data on Channel Yes Yes (bi-direction) No Need
Data Transition No Yes (acceptor side only) No Need

Table 5.1: JCSP (1.0rc5) channel, barrier, and B+CSP event

Accordingly, the implementation of the B+CSP event needs to support multi-way syn-

chronization, external choice, data on the event, and atomic data transitions inside the

event. As the JCSP package before 1.0rc6 does not provide enough support for imple-

menting the B+CSP event, we have to implement it in a new Java program.

5.1.2 CSP Process Call, Recursion and occam-pi Loop

A pragmatic difference between B+CSP and JCSP/occam-π is how recursion is man-

aged. Although both occam-π and JCSP (through Java) allow recursion in processes,

unbounded use (e.g. to express non-terminating cyclic behaviour) would lead to memory

allocation failure. Many simple recursions in B+CSP are actually tail recursions and

these are easily expressed with conventional WHILE loops in occam-π and Java (for JCSP).

More complex B+CSP recursions, if they are unbounded, have to be transformed for

memory safe implementation in JCSP/occam-π. In Section 5.5, this is addressed with

a new mechanism within JCSProB, so that complex recursions may be implemented

directly without memory problems.

The loop statements in both JCSP and occam-π represent a tail recursion inside a

process, while the CSP part of the B+CSP specification supports more flexible, natural

forms of recursions. A CSP process can call itself at the end of the process to do tail

recursion. For example, a process P is defined as:

P = a → P

After process P performs an event a, it enters a state P’. In state P’, it calls process

P. Then the process would perform as P again. In this way, event a is repeatedly

called. Although the tail recursion described here can be easily implemented by the

loop structures in JCSP and occam-π, they are still a bit different. In JCSP/occam-π,

Chapter 5 JCSProB: A Java Implementation of B+CSP 53

the loop is inside a process, which means the loop structure maintains the state of the

process. However, in general CSP tail recursion, when a CSP process P calls a new

process P’ at the end of the process P, the state within the process P is not directly

accessible from the new process P’. In CSP, if we do want to maintain the data state

within the recursion, one solution here is passing data between new process instance and

its ancestor. For example:

P(x) = a!x → b?y → P(y)

Moreover, using branching structures, such as condition and choice, CSP can produce

more complex recursion patterns than can be neatly modelled by while loops. In CSP,

one process also can call other named processes. When process P calls process Q,

the process would perform the behaviours defined in process Q. If we add branching

structures into processes, one process can have different descendant processes depending

on condition and choice. For example, the Lift process shown in the CSP specification

of Figure 4.4 can further perform as process Lift or process Emergency. The decision

is made by an external choice and the conditions of the if-else-then structures. As it

involves a new process Emergency, the recursion here is complex enough to disable us

from using a loop inside the Lift process to resolve it. It can be programmed just using

loop or tail recursion, but that requires putting the LiftTest and Emergency processes

inside the Lift process as a nested loop. For examples with more complex branching

structures, the loop expression can be very hard to build, and harder to understand.

Therefore, it would be more reasonable to fully implement recursion in Java for CSP

processes, than using the while loop. In Section 5.5, we give a in-depth discussion of

this problem, as well as the solution.

The discussion in Section 5.1.1 and Section 5.1.2 shows that the channel classes in the

old JCSP package (before 1.0rc6) are not capable to smoothly implement the B+CSP

event. To deal with these limitations, we construct a new Java package, JCSProB, to

implement the B+CSP semantics and concurrency.

5.2 An Overview of the JCSProB Package

The JCSProB package implements the B+CSP semantics in Java. It includes three

sub-packages:

• The jcsprob.lang package includes the implementation of B+CSP specification.

• The jcsprob.gui package includes the Java interfaces and classes for constructing

the GUI program.

Chapter 5 JCSProB: A Java Implementation of B+CSP 54

• The jcsprob.msg package includes the implementation of the communication be-

tween the JCSProB process objects and the GUI program.

Some of the JCSProB classes inherit JCSP interfaces or classes, e.g. the process class

BCSProcess implements the CSProcess, and many JCSP interfaces and classes can be

directly used in a Java program together with JCSProB. Apart from that, a number

of new event interfaces and classes are developed to implement the semantics of the

B+CSP event. Table 5.2 shows the correspondence between the B+CSP model and its

Java implementation in JCSP and JCSProB.

B+CSP JCSP/JCSProB
Combined B+CSP event: including
functions of synchronization, data tran-
sitions, and data input/output

JCSProB event interfaces and classes

Point-to-point communication channels JCSP communication channel classes
Guarded external choice with multi-
way synchronization for B+CSP events

Alter class

Guarded external choice of
CSP/occam-pi communication chan-
nels

Alternative class of JCSP

B+CSP process, and the recursion JCSProB thread and process classes
Process compositions of B+CSP, e.g.
parallel and sequential composition

JCSProB process composition classes

Table 5.2: The Java Implementation of B+CSP model

There implementations of B+CSP event in JCSProB is a pure Java approach. This

implementation was designed and developed before the recently published JCSP pack-

age with AltingBarrier and rendezvous. It includes a number of event interfaces and

classes which are constructed without using any JCSP. All the semantics on the B+CSP

event, such multi-way synchronization, are directly implemented in Java language. In

Section 5.3, we demonstrates the structure of the event interfaces and classes. Then we

continue with a solution for multi-way synchronization in Section 5.4.

As the process class BCSProcess is an abstract class which implements the CSProcess

interface of JCSP, JCSP channel objects can also be used in an BCSProcess object.

That means the BCSProcess can use JCSP channels and JCSProB events at the same

time. The only problem is that external choice function for the B+CSP event classes is

implemented in a new class Alter, which is different from the Alternative class of JCSP.

Therefore, we cannot support a model which has JCSP channel classes and JCSProB

event classes of the pure Java implementation as the first events of external choice paths

at the same time. For example, if ev is a combined B+CSP event and ch is a pure

CSP communication channel, the following CSP process P cannot be implemented with

JCSProB event classes:

P = ch → P � ev → P

Chapter 5 JCSProB: A Java Implementation of B+CSP 55

In the B+CSP semantics, a B machine is regarded as a special process which maintains

the system state. The combined B+CSP events update the state variables and change

the system state. The data transitions inside a B+CSP event need to be atomic, which

means they cannot be interrupted by data transitions from other events. Therefore,

although all the events are on offer in parallel, only one of them at a time can progress

and its execution cannot be interrupted. Also, a B machine defines a number of invariants

on the state variables. Any violation of these invariants brings the system into an unsafe

state. Although on most occasions, the invariants are used for proving abstract models,

it would be very useful if the Java implementation can check them at runtime. In

Section 5.6, the implementations of the functions concerning system state, e.g. atomic

access and the invariant check, are presented.

With the classes mentioned above, a B+CSP model can be translated into a Java pro-

gram. However, the generated program just runs alone by itself and cannot be controlled.

One important target for this work is using the generated Java programs to produce var-

ious traces, and comparing the traces with the traces in the B+CSP model. To control

the execution of generated Java programs, a GUI interface is developed for the target

Java program. Users can setup a configuration file to provide additional information for

the Java program, and can use the GUI interface to control the execution of underly-

ing JCSProB processes. Finally, in section 5.7, we demonstrate how the GUI program

is constructed, and the communication protocol between GUI program and underlying

Java programs.

5.3 B+CSP Event Classes

The implementation of semantics of the combined B+CSP event includes a series of Java

interfaces and classes.

One basic Java interface is BCSPGuard, which declares several methods used for imple-

menting guarded external choice. All event classes need to implement this interface and

its methods. In Section 5.4.3, implementations of this interface is discussed in detail.

An abstract PCChannel class provides a method for setting the number of synchronizing

processes on the event(similar to the way to set enrolled process number of JCSP barrier),

and some other methods for basic event functions. This class is inherited by all event

classes, including two direct subclasses: CCChannel and ICChannel. Both of them

implement external choice, precondition check and synchronization for the combined

event. The difference is that the CCChannel class is designed for implementing events

without input data, while the ICChannel implements events with input data.

The CCChannel class has two subclasses CChannel and OutCChannel, and the ICCha-

nnel class has two subclasses InCChannel and OutInCChannel. The four new classes

Chapter 5 JCSProB: A Java Implementation of B+CSP 56

implement ready calls for different input/output combinations. The OutCChannel and

OutInCChannel classes also provide methods for producing output data for events. With

the four basic event classes, users can construct implementations for combined B+CSP

events.

Classes Input Data Output Data

CChannel no no
InCChannel yes no
OutCChannel no yes
OutInCChannel yes yes

Table 5.3: Basic event classes and their input/output types

To construct an event class for a combined B+CSP event, the first thing is to choose

a basic event class from the four according to the input/output type of the event. The

implementation class would inherit the chosen basic event class, and implement or extend

some methods of it. The run method must be implemented by the implementation class

with the data transitions of the B part of the combined event. If the combined event

has input data, the implementation class needs to implements the assign input method

for assigning input data with input variables of the event. If the event has output data,

the implementation class needs to implements the make output method for make a Java

vector, which contains all the output data. Furthermore, if the event has a precondition

on it, the precondition needs to be implemented using Java conditional statements, and

put in the preConditionCheck method.

5.4 Implementing Multi-way Synchronization with Choice

In Section 3.3.1 and Section 5.1.1, we addressed the problem of multi-way synchro-

nization in JCSP. In this section, we discuss the difficulties in implementing multi-way

synchronization, and give our solution for this.

5.4.1 The Difficulty in Implementation

Normally, without considering external choice, when a process calls an event, no matter

whether the event is ready, it commits to the progress of this event, and cannot withdraw

its call. For an event with more than one process synchronizing on it, a calling process

would block when the whole set of processes is not ready. For example, a philosophy

process PHIL synchronizes with a fork process FORK on events picksup and putsdown.

MAIN = PHIL [|{picksup,putsdown}|]FORK

PHIL = picksup → eats → putsdown → thinks → PHIL

FORK = picksup → putsdown → FORK

Chapter 5 JCSProB: A Java Implementation of B+CSP 57

When process PHIL calls the event picksup, it commits to the progress of this event and

cannot withdraw its call. When both PHIL and FORK processes are ready, the event

can progress.

For guarded external choice, only one process path is selected from all the paths. The

external choice structure makes non-commit calls to first events of all the process paths,

and the decision is only made among the paths whose first events are ready to progress.

When evaluating the first event of a choice path, although the current process is ready

to progress the event, it does not commit to it. A process can withdraw its ready call

on an event even after it previously became ready for the event. After the decision is

made, the process would commit to progress the selected event, and would not go for

first events of all the unselected paths.

Furthermore, when an event has more than one process synchronizing on it, and it is

used in external choice, the situation is more complex. The choice decision on one event

in a process would affect the decisions on that event in other processes.

• If an event is selected by one process, it must make sure that all the other processes

which synchronize on this event also know the decision and select the event.

• If a process withdraws from an event, it must make sure that the other processes

which synchronize on this event are aware of the change and cannot select this

event after it withdrew.

Figure 5.1 shows a version of the classical dining philosophers model that demonstrates

this situation.

MAIN = PHILS[|{picksup,putsdown}|]FORKS

PHILS = |||x:0..4@PHIL(x)

FORKS = |||x:0..4@FORK(x)

PHIL(x) = picksup.x.x → picksup.x.((x+4)%5) → eats →
putsdown.x.((x+4)%5) → putsdown.x.x → thinks → PHIL(x)

�

picksup.x.((x+4)%5) → picksup.x.x → eats →
putsdown.x.x → putsdown.x.((x+4)%5) → thinks → PHIL(x)

FORK(x) = picksup.x.x → putsdown.x.x → FORK(x)

�

picksup.((x+1)%5).x → putsdown.((x+1)%5).x → FORK(x)

Figure 5.1: The Dining Philosophers Example

There are five philosophers in this story. They are sitting around a table, and there are

five forks, each placed between two neighbouring philosophers. A philosopher may only

eat when he holds two forks from both left and right sides. When a philosopher is ready

to pick up a fork, he has to make a decision on which fork he would pick if the forks

from both sides are ready. A fork can also be picked up by either its left or its right

Chapter 5 JCSProB: A Java Implementation of B+CSP 58

side philosopher. A picksup.i.j event is synchronized by a PHIL process i and a FORK

process j. When process PHIL(1) is ready to pick up a fork, and both FORK(1) and

FORK(0) are ready to be picked, that makes both of the two events picksup.1.1 and

picksup.1.0 ready to progress. However, event picksup.1.1 is not only in the external

choice of process PHIL(1), but also in the process FORK(1). If one of the two processes,

PHIL(1) or FORK(1), makes its decision, it must let the other process know the result.

That means:

• If picksup.1.1 is selected, we must make sure both of the two processes, PHIL(1)

and FORK(1), select picksup.1.1.

• If the process PHIL(1) selected picksup.1.0, not picksup.1.1, it must let process

FORK(1) know that the process PHIL(1) has withdrawn from the event pick-

sup.1.1, and the event is not ready anymore.

Figure 5.2: The External Choice involving processes PHIL(1) and FORK(1)

Since the choice decisions in processes PHIL(1) and FORK(1) are produced separately

in two parallel processes, it is not very easy to make the algorithm correct. If the

decisions in the two processes are made independently, the two processes cannot know

each others’ decision. If PHIL(1) selects the event picksup1.1, it cannot make sure that

FORK(1) also selects the event, which does not make sense as the progressing of an

event means that all the synchronizing processes should commit to it. To avoid this

problem, when making choice decision, a process must consider the decisions on other

processes which synchronize on the event selected by the current process. And when

the decision on this process is made, it should also let all the related processes know the

result. However, the order of the decisions is important as well. As the processes are

Chapter 5 JCSProB: A Java Implementation of B+CSP 59

running in parallel, it is still possible that PHIL(1) chooses the event picksup.1.1, while

at the same time FORK(1) decides to go picksup.2.1, which leaves the event picksup.1.1

not ready. Figure 5.3 shows such a kind of situation.

Figure 5.3: PHIL(1) commits to an unready event picksup.1.1

5.4.2 Existing Solutions on Implementing External Choice

In classical occam and JCSP (1.0rc5), only the channel input can be used for external

choice. The point-to-point communication channel only involves two parties (readers and

writers), which means the channel output is not considered when making the choice. A

process first informs the input channels of all the choice paths that it is ready for the

synchronization. When the input guard of a channel is ready, the channel is regarded

as a ready channel for selection, no matter whether the process on the output end of

the channel is ready or not. Also, only the input end of the channel can withdraw

the previous offer to the channel. As the implementation of external choice here only

considers one end of the channel, a choice decision in one process would not affect the

decisions in other processes. This constraint makes the implementation of external choice

easy and fast, but as output guard and multi-way synchronization channel cannot be

used for external choice, this restricts the concurrency models that can be expressed.

In [McE06], a two-phase commit protocol is introduced. The protocol only uses the

point-to-point communication channels to construct a multi-way synchronizing channel,

and only uses input guards of the channels in external choice. Figure 5.4 demonstrates

the state machine of resolving external choice with multi-way synchronization. An exter-

nal choice has m paths, and a client Pi represents a process, which makes withdrawable

call on the multi-way synchronizing event ei of a path i (i ∈ 1 .. m). At the initial

state S1, the client uses the offer message to indicate that it is ready for the execution

of event e. Once the offer has been made, in state S2, Pi can either be interrupted by an

event interrupt (by the selection of other paths), or commit to the synchronization. If

the event interrupt occurs, which means the process will not select this path any more,

the withdraw event withdraws its previous offer. Otherwise, when the client commit to

the synchronization, it can either do the synchronization if the synchronization check of

event e is ready, or release from its commitment.

Chapter 5 JCSProB: A Java Implementation of B+CSP 60

In the implementation, two one-to-one communication channels are employed between

a client and the event e to implement this protocol, and only the channel input ends of

the two channels are used in external choice. Although the two-phase commit protocol

is a correct implementation of the external choice with multi-way synchronization, the

cost of this solution can be heavy and unpredictable. As all the participating clients Pi

of the event e are running in parallel, it is possible that each client keeps choosing to

commit to an event, while the other participating clients have withdrawn. Even if this

worst case does not happen, the cost for computing this algorithm may be significant.

In [WBP06], a new algorithm is developed to resolve external choice with multi-way

synchronization. It is a fast implementation which is not a two-phase commit. Cur-

rently, this solution needs shared memory, and is supported only for a single JVM. This

algorithm is used to implemented external choice for AltingBarrier [WBM+07].

5.4.3 A Solution of Multi-way Synchronization

We argue that the parallel order of making the choice decisions on multiple parallel

processes is the main problem to bring the overload. When a process is making a choice

decision on an event, a choice decision on another process may change the synchro-

nization state of this event. Although the two-phase commit protocol can prevent the

parallel choice decisions from going wrong, the parallel recursive commit/release (or

offer/withdraw) actions are not the fast and simplest way to do it. If we can keep a

section of code which makes the choice decision atomic, and do not allow decisions on

other processes to interrupt it, we can easily prevent a lot of extra overload discussed

above. That also implies that the choice decisions in this code section are in a sequential

order, instead of a parallel order. In [Bag87, Bag89], such a kind of algorithm has been

developed. Our implementation uses a very similar algorithm to [Bag89].

The implementation of multi-way synchronization guards in JCSProB has an exclusive

lock for every B machine. All the processes in a B+CSP model need to compete with

each other to get the lock, before they can start evaluating synchronization guards

Figure 5.4: The state machine of a client Pi

Chapter 5 JCSProB: A Java Implementation of B+CSP 61

and making choice decision. This lock mechanism forces the choice decisions on a single

machine to be atomic and in sequential order. Therefore, it can avoid the cost of parallel

commit-release actions in the two-phase commit protocol.

The algorithm consists two parties: a set of processes P and a set of event E. The

process set P consists a number of parallel processes, which are marked from p1 to pN .

P = p1 ‖ p2 ‖ .. ‖ pN

Such a process pi (i ∈ 1..N) may have a M -paths external choice structure. The first

events of all these M paths in this external choice are grouped into an event set E, and

these events are marked from e1 to eM . For a path j (j ∈ 1..M), the choice is resolved

on the first event ej . After the process performed event ej , it would further progress as

the process resj.

pi = e1 → res1 � e2 → res2 � ... � eM → resM

Figure 5.5, from the view of a process pi, briefly illustrates the work flow on dealing with

an external choice consisting three paths(M = 3). From the initial state Si, the process

first uses the ready message to make the first-phase commit calls on all the events in

E. The first commitment just increases the event counter, which indicate if the event is

ready to progress. Then it cyclically tests these events and looks for a choice decision.

The cycle would eventually terminate after all the involved processes start to commit

to the events. This will be discussed later in this section. At each state Sj (j ∈ 1..M),

a series of checking steps are applied to test if the event ej is ready. These checking

steps are discussed later with Figure 5.6. If the event ej is ready, it is selected with

message select(ej). Then the pi system reaches its end state Se, and the external choice

is resolved. Otherwise, the next event ej%M+1 will be tested.

Figure 5.5: The state machine a process pi with three choice paths

Chapter 5 JCSProB: A Java Implementation of B+CSP 62

The checking steps mentioned in the last paragraph checks the synchronization status of

an event ej . Figure 5.6 shows how such a checking works on an event ej . From the view

of an event ej , the process pi represents one of those client processes which synchronize

on it. The states C1 to C6 here represent the internal states of a state Sj (j ∈ 1..M)

in Figure 5.5. States Ct and Cs and both represent the terminal state Se in Figure 5.5,

where a resolution has been reached. At the state Cs, the external choice is resolved

by selecting the event ej , whereas at Ct, a different event ek, other than ej is selected

as the result. The state Ca represents the state where no resolution has been reached

during the checking.

Previously, the ready message informs the event ej that the process is ready for the

synchronization. The global lock is a key unit for this algorithm. The first commitment

ready message does not need to obtain the lock before it can make the commitment.

But for the second commitment, before actually calling the event ej , the client needs to

obtain the exclusive lock first using the getLock message. After the call is finished, no

matter whether the event progresses or not, the client needs to unlock the lock. This

means the shadow region in Figure 5.6 is an exclusive section, and at a time, only one

such section can progress.

At state C2, the client can either be informed for the choice decision and directly go to

terminal states (Cs or Ct), or try to make the second-phase commitment to the event

ej :

• The event interrupt1 informs the client that the synchronization of the event ej

was satisfied, and selected by one of the other involved processes. The event ej

has progressed, and this client pi has been withdrawn from all the events in the

external choice. So the current process would go to state Cs, and performs as resj.

• The event interrupt2 informs the client that a different event ek (k ∈ 1..M, k! = j)

in this M-paths external choice, was selected by another process. The event ek has

progressed, and this client has been withdrawn from all the events in the external

choice. So the current process would go to state Ct, and performs as resk.

• When no interruption messages has been received, the client tries to make the

second-phase commitment call to ej .

Before make the second-phase commitment, the client first needs to check if the syn-

chronization status of ej is ready at state C3. This check performs as a method call

on the event. The event would check if the synchronization counter has reached its

capacity and if the precondition on the event is satisfied. Only when both conditions

are satisfied, the event would return a true value to the client. If yes, the client would

finally select the event as the result of the external choice. Otherwise, the client releases

the lock, and reaches the state Ca, where no resolution has yet been reached. The exit

Chapter 5 JCSProB: A Java Implementation of B+CSP 63

from Ca represents state transitions in from one checking state Sj to a new checking

state Sj%M+1 in Figure 5.5. It lets the alternative paths in the external choice structure

to progress.

After the event ej is selected, as all the other candidate events in E cannot be selected

in this choice, the process pi should withdraw itself from these events. The ack message

is received from the event, which is discussed in next paragraph. Between the select and

ack messages, the event also informs other clients, which synchronize on event ej, about

the choice decision.

Figure 5.6: The state machine of a client Ei

A multi-way synchronizing event is an important unit in this algorithm. In JCSProB,

the combined B+CSP event is implemented more like a special process, than a com-

munication channel. It maintains the commitment records of all involved processes by

receiving commitment messages from them.

The process set on an event e is Qe. The event reacts to the commitment calls from

external choice clients. Figure 5.7 shows how an event e reacts to commitment messages.

After the event receives the first-phase commit call (ready message) from a client q

(q ∈ Qe), it increase the synchronization barrier by 1. After that, it checks the barrier

to see if all the synchronizing processes in Qe are ready. If the result is yes, the event is

selected and finally committed. Then the decision on the event e needs to be broadcast

to all the other processes (Qe − q). The broadcast will not race with broadcasts from

other events as at the time of broadcasting, the exclusive lock is hold by the client who

interacts with the current event. The inform message sent to those processes would

cause interrupt1 or interrupt2 actions in them. After broadcasting the selection, the

Chapter 5 JCSProB: A Java Implementation of B+CSP 64

event moves on to processing the communication or data transitions inside the event e,

and then resets the synchronization barrier. Finally, it sends an acknowledgement back

to the calling client and waits for new commit calls.

Figure 5.7: The state machine of an event E processing commitments

5.4.4 An Example: Dining Philosophers

In Section 5.4.1, we discussed guarded external choice and multi-way synchronization

in the dining philosophers example of Figure 5.1, and the difficulties in resolving them

together. Here we demonstrate how to employ our solution to resolve the external choice

in dining philosophers, and how it can avoid the erroneous situation showed in Figure 5.3.

The process FORK(1) consists of two possible paths. The events picksup.1.1 and pick-

sup.2.1 are the first events on the two paths. FORK(1) needs to synchronize with

PHIL(1) on picksup.1.1, or synchronized with process PHIL(2) on picksup.2.1. The

process FORK(1) first makes the first commitment calls, the ready messages, to both of

the two events. If the two PHIL processes, PHIL(1) and PHIL(2), also made the ready

calls on the two events, that makes the synchronization status of the two events both

ready. Figure 5.8 shows the ready calls on the two events.

After that, as we showed in Figure 5.5, a process would try to recursively check the

synchronization states of all the candidate events. Before it can start the checking, it

needs to obtain the exclusive lock first. Figure 5.9 demonstrates that PHIL(1) starts

with requiring the lock for checking picksup.1.1, while at the same time, FORK(1) tries

to get the lock for checking picksup.2.1. The two getLock actions compete with each

other, and in this occasion, the PHIL(1) gets the lock.

Chapter 5 JCSProB: A Java Implementation of B+CSP 65

From Figure 5.6, we know that after getting the lock, a process would start to check

the synchronization status of the event. In this example, as the picksup.1.1 is ready

for synchronization, the checking succeed, and picksup.1.1 is selected as the solution for

this external choice. The first two steps in Figure 5.10 illustrate this action.

Also in Figure 5.6, after the choice decision has been made, the process client withdraws

its first commitment on other candidate events. Therefore, the PHIL(1) process here

withdraw itself from picksup.1.0. At the same time, the event unit informs other client

processes about the choice decision. Such an action would later cause an interrupt mes-

sage in these processes. After the third step in Figure 5.10 finished, both PHIL(1) and

FORK(1) are aware of the choice decision. Then finally, the selected event picksup.1.1

can progress, and for a combined B+CSP event, this means the data changes inside the

event can be processed now.

When the execution of the event is accomplished, the event withdraws all the client

processes on it through the withdraw(Qe, e) messages. In Figure 5.11, the picksup.1.1

event withdraws commitments from the FORK(1) and PHIL(1) processes. Then there

is an internal synchronizing step, in which the event sends an acknowledgement back to

the calling process. After received the acknowledgement, the process PHIL(1) releases

the exclusive lock.

Figure 5.8: The dining philosophers: ready calls

Figure 5.9: The dining philosophers: compete for the lock

Chapter 5 JCSProB: A Java Implementation of B+CSP 66

When the FORK(1) process obtains the lock later, the interrupt message informs the

process about the choice decision, and that leads the process to withdraw its commitment

to other events. In Figure 5.12, FORK(1) withdraws its first commitment to event

picksup.2.1, and continues to perform as alone the choice path led by picksup.1.1.

Finally, the system enters a state showed in Figure 5.13. Both FORK(1) and PHIL(1)

agree to select the path led by picksup.1.1, and both of them withdrew their first com-

mitment calls on other candidate events.

The lock mechanism prevents the situation showed in Figure 5.3 to happen. It puts

the FORK(1) process waiting while PHIL(1) are checking on event picksup.1.1. When

the choice decision comes out, PHIL(1) is also aware of that. Therefore, it cannot

select picksup.2.1, as PHIL(1) decided to take picksup.1.1. Also, comparing with the

two-phase commit protocol, there could only be one commit-withdraw action in this

algorithm, and at a time, there is only one second-commit action can progress. There

cannot be a situation that multiple processes keep on committing and releasing, but

never get a result.

Figure 5.10: The dining philosophers: picksup.1.1 is selected and progress

Figure 5.11: The dining philosophers: withdraw and unlock

Chapter 5 JCSProB: A Java Implementation of B+CSP 67

However, a limitation for this algorithm is that it can only be applied on a single memory,

and cannot be directly applied on distributed systems. In [WBM+07], similar restriction

is placed on the AltingBarrier of JCSP. Both algorithms try to make sure there is no re-

dundant commit-withdraw action, which means all the decisions of the final commitment

must be made in a sequential order. To ensure this, there has to be a global facility, such

as a lock, which can be accessed by all the clients. The implementation on a distributed

environment needs an exclusive token to be passed through all the subsystems to make

sure all the decisions lie in a sequential order.

A part of Java code, which includes several major classes in this example, is presented

in Section B.2.

5.5 Process Classes: Thread, Process Calls and Recursion

In Section 5.1.2, we briefly discussed the differences between the management of recur-

sion in JCSP/occam-π and CSP. CSP (through Java) and occam-π allow recursion in

their processes, so any CSP recursive expressions could be directly implemented. How-

ever, unbounded recursion will lead to memory overflow. Hence, tail recursion in CSP

Figure 5.12: The dining philosophers: interrupt in FORK(1)

Figure 5.13: The dining philosophers: final state

Chapter 5 JCSProB: A Java Implementation of B+CSP 68

(which is very common) is always expressed through (WHILE) loops, which cause no

memory problems. More complex recursions require more complex transformation if

they are to be made memory safe.

5.5.1 Calling a Process in JCSP

In occam and occam-π, it is not possible for a named process to call a new named

process or even a new instance of itself in the way that CSP can. Conventionally, JCSP

translates the WHILE statement of occam-π into a Java while statement. The loop

steps in a recursion take place in a single JCSP process object, without introducing any

new process objects. For example, a CSP process

P = a?x → b!x → P

would be translated into a JCSP process class as:

class P implements CSProcess{
......

void run(){
while(true){

x = a.read();

b.write(x);

}
}
......

}

To support more general CSP recursions and process calls, an existing JCSP process

should be able to call a new process object. This requires the existing process object to

declare a new process object and call the run method of it.

class P implements CSProcess{
......

void run(){
x = a.read();

b.write(x);

new P(a,b).run();

}
......

}

Chapter 5 JCSProB: A Java Implementation of B+CSP 69

However, it is very dangerous to do this in JCSP, because the old process object cannot

be released while the new process object is running. Figure 5.14 demonstrates the call

on a new process object P ′ from the existing JCSP process object P . The new process

object P ′ runs in the same Java thread thr as the existing process object P , which

would not release until the new process object complete. Recursively doing that may

Figure 5.14: Calling a new process object in JCSP

cause a Java error, as JDK has a limitation on the number of objects. If new process

objects are recursively produced in this way, it would generate too many process objects

without releasing them. Eventually, this would arose the Java error StackOverflowError !

Therefore, we cannot directly use the current JCSP process mechanism to implement

the recursion and process calls in CSP. In CSP, when the process P called a new process

P ′, the process should continue to perform as the process P ′, and the system would have

no further concern with the existing process instance P . In the Java implementation, it

means that after calling the new process object, the existing process object should be

able to release itself to Java garbage collection, and the Java thread would perform as

the new process object. At a time, there should be only one process object running. As

the CSProcess interface does not provide this function, we need to implement it in the

JCSProB package.

5.5.2 Multi-threading in JCSP

Direct tail recursion in CSP is handled in JCSP through WHILE loops. If the process

being invoked at the tail of an equation branch is not the process being defined, indirect

mutual tail recursion may be happening – for example, the Lift system in Figure 4.4.

Implementing such equations directly using Java recursion and JCSP will lead to stack

overflow. Transforming out the mutual recursion to leave a direct tail recursion (im-

plementable through a loop) will distort the expression of the process and may lead to

Chapter 5 JCSProB: A Java Implementation of B+CSP 70

errors and maintenance problems. Here, we consider two ways to implement mutual tail

recursion directly and with no memory problems.

• The first way is to allow replacing the caller process object P with the callee

process object P ′ in the same Java thread container. There is a synchronization

barrier in a thread which is used for inform the environment about the termination

of this thread.

• The second way is to create a new thread container T ′ for the new callee process

object P ′. The caller process object P and its container thread T terminate after

the new thread starts. There is also a synchronization barrier in every thread

container. If the current process creates no new process, the thread container calls

the barrier when it terminates. Otherwise, to keep the new thread T ′ reachable

for the environment, the synchronization barrier in T should be passed to T ′.

In JCSP, the ProcessManager class, which provides a new thread container, implements

this second solution already. The ProcessManager creates a new thread container to run

a new process. The user needs to call the start method to run a ProcessManager.

In our implementation, we employ the first solution because it creates fewer objects

and is less complex in implementation. To implement each of the two solutions, we

need to have the access of the multi-threading mechanism in JCSP to make the change.

However, this is not so easy to achieve.

As JCSP targets producing concurrent Java programs, it makes use of the Java multi-

threading architecture. JCSP package has a thread class ParThread for running JCSP

process objects. The ParThread class only appears in the Parallel class, which im-

plements the parallel composition of processes. Process classes, and other processes

composition classes, cannot affect the behaviour of their container threads, which means

the idea of replacing the caller process object with the callee process object in a thread

cannot be supported under the current multi-threading architecture of JCSP. Further-

more, not all processes are running in instances of the ParThread class. The core process

of a JCSP program runs in the main Java thread of this program. A direct and easy

solution for implementing the switch between the caller and callee processes is to extend

the ParThread class and implement the existing CSProcess interface with the function

of processes switching inside a thread. This solution would allow us to continue using

the process composition classes provided by JCSP.

However, as the multi-threading of JCSP is not designed to implement the CSP process,

it is not possible to reuse this threading facility to implement the CSP process. The

ParThread class is a package-private class of the JCSP package. It is not allowed to be

accessed from the outside of this package. Although JCSP is an open source package,

it is not feasible to change the existing access control of it. Furthermore, the idea of

Chapter 5 JCSProB: A Java Implementation of B+CSP 71

replacing the caller process object with the callee process object in a thread also cannot

be support by processes composition classes in JCSP, e.g. Parallel and Sequence. The

Parallel class is the only class in JCSP which explicitly use the ParThread class. For

a parallel composition in a process P which includes N processes, the Parallel class

generates N-1 new ParThread threads. It runs the first N-1 processes in the N-1 new

threads, and uses the container thread of the current process to run the last process

PN . All the threads in a Parallel composition share a common barrier. When a thread

finishes the run of the process object it contains, it calls the barrier for synchronization.

After all the threads and the process in the container thread synchronized on the barrier,

the parallel composition finishes. Figure 5.15 shows a parallel composition with three

participating JCSP processes.

Figure 5.15: Parallel composition in JCSP

If the last process object PN in the parallel composition calls a new process object PX , it

is not correct to use PX to replace the current process in the thread, because the actual

process running in the thread is P , not PN . If PX replaced P in the thread, we would

lose all the information about P , which hasn’t finished yet. Especially, as the barrier

and the parallel composition are defined in process P , the barrier synchronization of

between the parallel processes would also gone, which would leave the runs of the parallel

threads/processes uncontrollable.

Similar problem also can be found in the sequential composition class Sequence. The

Sequence class does not directly access the ParThread class. A sequential composition

in a process P runs the participating composition processes one by one inside itself.

Figure 5.16 shows a sequential composition including three participating processes. If

one of these processes calls a new process object PX , it is also dangerous to use PX to

replace the existing process P in the thread.

Accordingly, the multi-threading architecture in JCSP does not support the idea of

process switching, and the processes composition implementations in JCSP, e.g. Parallel

and Sequence, cannot adopt to the idea either. Therefore, in order to implement the

CSP process with processes switching in Java threads, we need to build new thread and

Chapter 5 JCSProB: A Java Implementation of B+CSP 72

process classes, as well as the processes composition facilities. In Section 5.5.3, new

implementations of the thread and process classes are proposed, and in Section 5.5.4,

the parallel and sequential composition classes using the new thread and process classes

are discussed.

5.5.3 Implementations of the CSP Process in JCSProB

The implementation of the CSP process in JCSProB consists of two parts: an abstract

process class BCSProcess which implements the CSProcess interface of JCSP, and a

thread class RecurThread which is the thread container for the new process class.

In the JCSProB implementation of the CSP process, every process object needs to run

in its own thread container, which is an instance of the RecurThread class. Even for

the core process, the Java program needs to produce an extra thread to run it. The

RecurThread class consists of two fields: one is the BCSProcess process object which

runs in it, and the other is a JCSP Barrier object which needs to synchronize before

the thread terminates. Figure 5.17 demonstrates the state machine of a RecurThread

instance. The constructor of the class passes a barrier object and a process object to

initialize a thread object. When the thread starts running, it calls the run method of

the process object. The run of the process object may produce a new process object. If

there is a new process object, the thread gets the new process and runs it. At the same

time, the previous process object is released to Java garbage collection. If there is no

new process object, the process terminates, and the thread object synchronizes on the

barrier before it finally finishes its run.

The abstract process class BCSProcess has the function of communicating with its thread

container on the new process it has created. When a process object calls a new process

object, it does not directly run the new process. Instead, it passes the new process

object to the thread container. When the run of the current process is finished, the

thread container would checks whether it has produced a new process object.

Figure 5.16: Sequential composition in JCSP

Chapter 5 JCSProB: A Java Implementation of B+CSP 73

This new implementation of processes allows a process to call a new process, and safely

release itself after the call. Also, as the new process class is an extension of the JCSP

process interface, it can continue working with many JCSP classes, e.g. channel classes,

except the processes composition facilities. In implementation, the BCSProcess class

provides a new callNextProc method for its implementation classes. What the user need

to do is creating a new process object and using it as a parameter to call the callNextProc

method. When the current process terminates, the thread container can get the new

process object and run it. Therefore, the example in Section 5.5.1 is implemented in

JCSProB as:

class P implements BCSProcess{
......

void run(){
x = a.read();

b.write(x);

callNextProc(new P(a,b));

}
......

}

5.5.4 Sequential and Parallel Composition in JCSProB

The new thread class RecurThread provides a fundamental thread implementation for

the B+CSP process. As the multi-threading mechanism in JCSP does not support this

new implemented thread, we need to build a new one for JCSProB. Process composition

functions, such as parallel composition and sequential composition, are re-implemented

for JCSProB processes and threads.

The parallel processes composition of B+CSP is implemented in the CSParallel class.

For a parallel composition consisting N processes, the CSParallel object generates N

new thread objects of the RecurThread class to run all the N processes. All the new N

threads, and the current thread running the parallel composition, share a barrier whose

counter is set to N + 1. When all the threads terminate, the parallel composition struc-

ture completes its run. Figure 5.18 illustrates a parallel composition of three processes.

Figure 5.17: The state of the RecurThread class

Chapter 5 JCSProB: A Java Implementation of B+CSP 74

This new implementation of parallel composition allows the process objects in all the

parallel threads to be replaced by new process objects, this bypassing the problems of

the Parallel class of JCSP.

Figure 5.18: Parallel composition in JCSProB

The new implementation of sequential composition introduces threads, while the JCSP

implementation of it does not create new threads. For every participating process object

in a sequential composition, a new thread container is produced. Every thread container

shares an unique barrier with the core process. Only after a thread terminates and is

synchronized on its barrier, is a new thread started by the composition object. In this

way, the participating processes progress one by one, and the process replacing mecha-

nism in the thread class can be used without collision. Figure 5.19 shows a sequential

composition object of JCSP with three participating processes.

Figure 5.19: Sequential composition in JCSProB

The new thread class RecurThread and abstract process class BCSProcess provide an

implementation of the CSP process, while the original JCSP process implementation

is more close to the semantics of occam-π processes. The new process implementation

BCSProcess provides a method for calling a new process in an existing process, and

supports more flexible recursion structures. Together, the two classes implement the

CSP process and its recursion semantics. The process composition classes implements

the multi-threading mechanism for the implementation of the CSP process.

Chapter 5 JCSProB: A Java Implementation of B+CSP 75

Comparing the cost of this solution with the ProcessManager class of JCSP, the two

solutions produce extra cost on different situations. The JCSProB solution produces one

extra thread container and one extra barrier object for each sequential composition. If

the child process does not have recursion, the extra thread container is actually unneces-

sary. In JCSP, all child processes of a sequential composition just run in the same thread

container. The JCSP solution (ProcessManager) produces one extra thread container

and one extra barrier object at every step of a recursion. If there are more sequen-

tial composition in the system, using ProcessManager would be more efficient; while

if process calls and recursions are more frequently used, the JCSProB solution would

produce less cost. In Section 8.2.5, we will discuss a possible solution to reduce the cost

of JCSProB.

5.6 The State Variable Class

In the B-method, the data transitions of a B operation must be kept atomic in order

to preserve the consistency of the state model. The combined B+CSP model also has

this requirement. The JCSProB packages provides a JcspVar class for implementing

this feature in the Java implementation. It explicitly implements an exclusive lock to

control the access to the B variables. Only one event object can have the lock at a time.

This lock is also used for the implementation of multi-way synchronization and guarded

external choice, which is discussed in Section 5.4.

In the implementation of combined B+CSP events, the call on the run method of an

event object is guarded by the lock. An event object needs to obtain the lock before it

can call the run method, and it is also required to release the lock after the run method

finishes.

When constructing a Java implementation from its formal specification, the JcspVar

class needs to be extended, and all the global B variables should be implemented in the

new constructed class.

5.7 GUI

A Graphical User Interface package (org.dsse.jcsprob.gui) is designed for concurrent Java

programs constructed using the JCSProB package. It is a sub-package of JCSProB, and

consists of a number of Java graphical components corresponding to JCSProB events

and processes. When developing a concurrent Java program using JCSProB, users can

build a graphical interface for the underlying Java program, and use the constructed

GUI to control the execution of the Java program. It also provides runtime checking

Chapter 5 JCSProB: A Java Implementation of B+CSP 76

for invariants of B machines, as well as external programming interfaces for runtime

assertion checking.

In [MK99], most Java examples are presented with GUI. However, those GUI programs

are manually constructed. Although they are used to demonstrate the state models,

there is no formal association between them. In [FC06], the automated translator for

Circus generates Java programs with GUI. The GUI program simply presents all Circus

channels as buttons. The system information presented for interaction is very limited.

5.7.1 Overview of a GUI Program

Figure 5.20 demonstrates the structure of a GUI program, which includes four major

parts:

Figure 5.20: The structure of a GUI program

• The process end of the GUI programs.

• A GUI controller unit.

• Communication between the the processes end and the GUI controller.

• A standard GUI view of the B and CSP model.

• Configuration files.

• Runtime assertion checking interface.

The modules represented as blues squares are components from the GUI package. The

items in light gray color, including the JCSProB program and the configuration files,

can be derived from combined B+CSP models. The automated translation discussed in

Section 6 provides the mechanism for generating JCSProB programs with the process

Chapter 5 JCSProB: A Java Implementation of B+CSP 77

end of GUI, and the configuration files, which carry further information from the formal

models.

The configuration files, composed in XML, contain various kinds of information, such

as, a succinct version of the CSP specification, runtime assertions, and settings of visual

components. Users are allowed to change some settings in the configuration file to con-

trol the GUI, while many other settings, which concern the expression of B and CSP

models, are not allowed to be changed. The configuration.xml contains the informa-

tion for communication messages between the GUI controller and the process end, and

runtime checking assertions. Generally, communication messages in the configuration

file are not allowed to be changed, unless the user wants to display his own message in

the on-screen log module. For a combined model with the B machine name machine, a

configuration file machine.xml is generated by the translator. It contains the CSP spec-

ification and default GUI settings on the CSP specification. Another configuration file

is machineGUI.xml, which contains the setting for painting the GUI frame and panels.

To construct a GUI program from Java program using JCSProB, the JCSProB processes

are encapsulated in the process end of GUI package. When a JCSProB process tries to

perform certain activities, such as enabling a B+CSP event, making an external choice,

or starting a number of parallel processes, it uses the process end of GUI to communicate

with the GUI controller.

Communication protocols are two-way message passing communications between process

end and the GUI controller. They are also implemented as a part of the GUI package

(org.dsse.jcsprob.gui.msg). Each scenario of CSP process or event activities, for example

calling an event, is associated with a certain communicating pattern, implemented both

in the process end and the GUI controller. We use JCSP communication channels to

implement the communication protocols. The detail of these communication protocols

is discussed later in Section 5.7.2.

The GUI controller is the centeral unit of the GUI program as it communicates with all

the other four components of the GUI program.

• The controller reads the configuration file, which contains the specification of CSP

processes, and uses it as guidance for communicating with the process end. As

the CSP specification used by the underlying JCSProB program and the GUI

controller unit are from the same B+CSP model, it makes sure that the control

unit uses the same communication pattern as the JCSProB program.

• The GUI controller communicates with the GUI view to allow the interaction with

users. It sends information to the GUI view, and receives users commands and

inputs data from it.

• The GUI controller also send out runtime record information to the runtime as-

sertions checking module.

Chapter 5 JCSProB: A Java Implementation of B+CSP 78

The GUI controller provides a number of interfaces for building GUI views. In the GUI

package, we implemented a standard GUI view for all the processes and process opera-

tors. However, using the interface provided by the GUI controller, users can construct

their own GUI views of processes and events.

The runtime assertion checking module can record runtime data about the Java program

through GUI controller. Users can use the configuration file to indicate specific points

where the records are needed, and what kind of information are needed in the records.

With the runtime record information, the checking module can verify assertions upon the

information. In the package, we provide checking for several kinds of assertions. Users

can also add their own assertions and runtime checking programs using the provided

checking interface. In Section 5.7.3, we discuss this function in detail.

With the support of GUI package, the JCSProB program can be regarded as an alter-

native animation tool for B+CSP models. As the users are allowed to develop their

own GUI view, it is also possible to be used for implementation. Moreover, the runtime

assertion checking module allow users to evaluate some properties of system models,

especially the properties are not easy to specify using B or CSP, e.g. fairness.

5.7.2 The Development of Communication in GUI

The communication between the process end and the controller of GUI is implemented

using JCSP communication channels. The two sides use communication channels to

send and receive messages from each other. The messages sent between them are im-

plemented in a sub-package (org.dsse.jcsprob.gui.msg) of the GUI package. Finally, we

define the communication protocols upon the orders of communicating messages through

communication channels. We developed different protocols for all the CSP semantics

elements that we supported for the translation. In this section, we will demonstrate the

protocol for an event call.

In a JCSProB program, when a process object tries to call a combined B and CSP event,

it calls the ready method of the event object. The ready method may need some input

data, and may produce some output data. To construct a GUI object to control the call,

we need the GUI object to give permission for calling the ready method. That decision

can either be made by GUI itself, or an user action on the GUI. Also, to help the user to

make decision, the user should be informed about the input data before the call, and the

output data afterwards. In the implementation, we use two one-to-one JCSP channels

for communicating between the process end and the GUI: the configure channel is used

to send messages from the process end to the GUI, while the control channel is used for

the opposite direction.

Figure 5.21 shows a very abstract sequence diagram of the calling.

Chapter 5 JCSProB: A Java Implementation of B+CSP 79

The process first sends a message including the input data IN to the GUI through

the configure channel. After that, an action X, which can be an user action or an

internal GUI action, enable the call of the event, and the GUI uses the control channel

to send the action message X back to the process end. Having received the message,

the process would perform the call on the the event using the ready method. When the

synchronization on the event is satisfied, the run method would be processed. So the

event call requires the inpu data IN , and produces output data OUT . After the call

finishes, it encapsulates the output data into a message OUT , and send it back to the

GUI through the configure channel. The CSP specification of this communication model

is:

System = Actor ‖
{interaction}

GUI ‖
{configure,control}

Process(State)

Actor = interaction!X → Actor

GUI = configure?IN → interaction?X → control!X → configure?OUT → GUI

Process(IN) = configure!IN → control?X → ready.IN.X!OUT → configure!OUT →
Process(OUT)

In the implementation of the process end of GUI, we provide an abstract BGProcess

class. It extends the BCSProcess class, and provides a number of methods for im-

plementing the communication to the GUI controller. For the event call, it provides

channelCall and channelRtn methods for calling an event (channelRtn for calls with

output data). A call ev.xx on an event ev with input data xx, which was translated into

JCSProB without GUI support as:

ev ch.ready(new Vector(Arrays.asList(xx)));

GUI

BGProcess:

Channel Call

Actor
 [configure]

ChMessage

User Interaction

[configure]

ChMessage

[control]

ChMessage

ready()

Figure 5.21: The GUI communication of event call: level 0

Chapter 5 JCSProB: A Java Implementation of B+CSP 80

would be translated into a call with GUI control as:

channelCall(ev ch,new Vector(Arrays.asList(xx)));

The communication with GUI is implemented and encapsulated inside the channelCall

method. Therefore, when we try to build a JCSProB program with GUI support,

instead of extending the BCSProcess class, all the process classes should extend the

BGProcess class. Also, when a process class performs process activities, such as calling

events, parallel or sequence compositions, it should make use of corresponding methods

provided by the BGProcess class. As communications with GUI are well encapsulated

inside these methods, a process class with GUI support, which is constructed using the

BGProcess class and its methods, can be built in a similar structure as the process

classes without GUI support, and the Java code is as clean and straightforward as the

latter one. The differences are only on syntax level.

However, apart from the process end, a GUI program is more complex than we illustrated

in Figure 5.21. Two main parts of a GUI program is the GUI controller and the GUI

view. As we aim to separate the implementation of communication protocol from the

implementation of GUI views, giving freedom to the user to implement his own GUI

component, we clearly separate the two parts. The GUI controller provides certain

interfaces and implementation policies for constructing a GUI view module. Figure 5.22

demonstrates an updated version of event calling in the GUI, where the controller and

the view of GUI are separated.

GUI

Representation

GUI

Controller

BGProcess:

Channel Call

Actor
 [configure]

ChMessage

createChRepr()

User Interaction
 [tmpCtrl]

data

[tmpConf]

data

[configure]

ChMessage

[control]

ChMessage

ready()

Figure 5.22: The GUI communication of event call: level 1

In the Java implementation of GUI, the GUI controller is implemented in an abstract

Java class CtrlProc. The CtrlProc class provides a number of methods which implement

Chapter 5 JCSProB: A Java Implementation of B+CSP 81

the communication protocol at the controller end. They communicate with correspond-

ing methods in the BGProcess class. For example, for the event call method channel-

Call in BGProcess, which implements the process end of the communication protocol,

the CtrlProc also provides a channelCall method, which implements the controller end.

While the process end is driven by the method calling order in the run method of the

process class, the controller end uses the CSP specification in configuration files to drive

its progress. A call on an combined event ev is recorded in the automatically generated

configuration file as:

<Channel>

<ChName>ev chclass</ChName>

<IOType>InCChannel</IOType>

<ChType>ChannelCall</ChType>

<UserControl>false</UserControl>

<Wait>200</Wait>

<Record>false</Record>

<LogInArgs>true</LogInArgs>

<LogInArgsText>Args In</LogInArgsText>

<LogOutArgs>true</LogOutArgs>

<LogOutArgsText>Args Out</LogOutArgsText>

</Channel>

The XML file not only includes specifications of CSP processes, but also the configuration

for driving the GUI. The <IOType/> element carries the information of input/output

type of the event. InCChannel here means the ev chclass event only has input data, and

its Java class extends the InCChannel class. The <UserControl/> element contains the

setting for user interaction on the event call. If it is true, user interaction is required

for calling the event, otherwise the event is directly called by the GUI. In some cases,

we may want the GUI to wait a while before it automatically calls an event. So the

<Wait/> element contains the timing for calling the event. The channelCall method of

the CtrlProc class receives the whole <Channel/> element as an parameter, and uses it

to instruct the GUI controller and the GUI view.

The GUI view module of a process should be implemented as a subclass of CtrlProc. In

the CtrlProc class, the channelCall method starts the GUI view of event calls by calling

an abstract method createChRepr, which is regarded as an interface for the GUI view

module. The GUI process class should implement this method in order to build GUI view

of event calls. According to the sequential model, which can be used as an instruction

for constructing the createChRepr method, the implementation of the method should:

1. Display the data of input variables, as well as a GUI component for user interaction

Chapter 5 JCSProB: A Java Implementation of B+CSP 82

2. Capture the user interaction

3. Send the data input by the user interaction to the channel tmpCtrl

4. Receive and display the data of output variables from the tmpConf channel, and

display it.

In our standard GUI view implementation, two labels are used to display the data of

input and output variables, and a button is used for user interaction with the event

name displaying on the button. To activate the call of an event, the user simply clicks

the button. Figure 5.23 illustrates a standard GUI view for calling an event thinking!0.

The Input label here shows the value, 0, of the input argument. The GUI can display

any kind of data through the default toString method supported by all Java objects.

Figure 5.23: The standard GUI view of an event call

Also, the GUI controller is in charge of sending the runtime log to the log module, which

is a component in the GUI frame to display runtime logs, and the runtime record to the

assertion checking module. Therefore, we need to introduce the log module and record

module in this model of event calls. Also, in the XML expression of the event call we

used above, there are several settings, e.g. <Record/> and LogInArgs, for sending out

log and record information. Figure 5.24 demonstrates the new sequence model of event

calls with log and record.

The CSP specification for the final model of this GUI function for event calls would be:

System = Actor ‖
{interact}

GUI ‖
{configure,control}

Process

‖
{recordOut}

Record ‖
{logOut}

Log

Actor = interact!X → Actor

Process(In) = createMsg!In?InMsg→ configure!InMsg→ control?X→ ready.In.X?Out

→ createMsg!Out?OutMsg configure!OutMsg → Process(Out)

GUI = configure?InMsg → logOut!InMsg → getMsg!InMsg?In

→ (GUICtrler ‖
{tmpCtrl,tmpConf}

GUIRepr(In))

Chapter 5 JCSProB: A Java Implementation of B+CSP 83

GUICtrler = tmpCtrl?X DATA→ control!X MSG→ configure?OutMsg→ getMsg?OutMsg!Out

→ tmpConf!Out → logOut!OutMsg → recordOut!RcdMsg → SKIP

GUIRepr(In) = display!In → interact?X → GUICtrl!X → SKIP

‖
{guiCtrl}

GUICtrl?Y → tmpCtrl!Y → tmpConf?Z → display!Z → SKIP

Log = logOut?LogMsg → displayLog.LogMsg → Log

Record = record?RcdMsg → putRecord.RcdMsg → check → Record

If users want to implement their own GUI view for event calls, they should follow the CSP

specification of the GUIRepr(In) process to implement the createChRepr method. One

notable point in the GUIRepr(In) process is that we actually use two parallel processes

to specify the GUI view: one to create and display the GUI component, and the other

one to handle the interaction. We use a specific process to display the GUI component

because a Java Swing component cannot be displayed properly if its thread blocks. In

this case, if we only use a single process here, it would block on reading from the channel

tmpConf.

Other process activities, such as parallel composition, external choice, and process calls,

are implemented in the GUI package in very similar ways, but using different GUI

components for interaction.

5.7.3 Runtime Assertion Checking

Generally, there are two kinds of properties for B+CSP models:

GUI

Representation

GUI

Controller

BGProcess:

Channel Call

Actor
 [configure]

ChMessage

createChRepr()

User Interaction

[tmpCtrl]

data

[tmpConf]

data

[configure]

ChMessage

[control]

ChMessage

ready()

On Screen

Log

Record

[logOut]

data

[logOut]

data

[recordOut]

data

Figure 5.24: The GUI communication of event call: level 2

Chapter 5 JCSProB: A Java Implementation of B+CSP 84

• Known properties. These properties, e.g. safety and deadlock, can be checked

in the PROB tool for the B+CSP model. The test on the generated Java pro-

grams checks whether the verified properties are also preserved in the Java im-

plementation. This provides a partial evidence for the correctness of the Java

implementation strategy.

• Unknown properties. For other properties, e.g. fairness, which cannot be spec-

ified or verified in PROB, we provide alternative experimental methods to evaluate

them in the Java programs at runtime. In these circumstances, the generated Java

program runs as simulators for B+CSP models. It produces runtime traces, and

experimentally verifies the properties on these traces.

PROB provides a mechanism for detecting deadlock in the state space. When the system

reaches a state where no further operation can progress, it deadlocks. Stronger liveness

properties, such as livelock-freeness and reachability, are difficult to detect in model

checking, and are not supported by PROB. Fairness, which involves temporal logic, is an

even more complex property for model checking. Many approaches [HOS+93, LMC01,

TS99a] have been attempted for extending model checking of B or CSP specifications

to temporal logics.

The runtime assertion checking module (RACM) in JCSProB is designed to check user-

defined assertions on the JCSProB GUI programs. It receives runtime information

from the GUI controller, and keeps a record of the information. Based on the record

information, the user can define runtime checks user customized assertions.

All runtime records received by the RACM are stored in a sequential-order record log.

Also, each of these records contains runtime information, such as process name, channel

name, and variable values. The RACM dynamically loads several assertion objects at

runtime. The configuration file tells the RACM which assertion objects to load. For each

assertion, users pick up some fields of these information, and compare two records upon

the values of these fields. If two records are equal on all these user-defined information

fields, they are identical. For each assertion, all the unique records defined on these

information fields are the target situations to be discussed. For example, if a unique

record has three instance in the record log, that means the situation happened three

time in the record log. Assertions can be defined on the occurrence of these situations.

The assertions are defined under the Assertions element of the configuration file config-

uration.xml. Here is an example of a frequency assertion:

<Assertions>

<Assertion>

<AssertionName>Frequency</AssertionName>

<CheckingClass>Frequency</CheckingClass>

<RecordType>

Chapter 5 JCSProB: A Java Implementation of B+CSP 85

<ProcName>true</ProcName>

<ChName>false</ChName>

<ChInArgs>none</ChInArgs>

<ChOutArgs>none</ChOutArgs>

<ProcArgs>1</ProcArgs>

</RecordType>

<AssertionBody>

<Duration>15</Duration>

<Occurrence>3</Occurrence>

</AssertionBody>

</Assertion>

</Assertions>

For an Assertion element, the structures of the first three sub-elements, AssertionName,

CheckingClass and RecordType are fixed, and the user is only allowed to change the

values of all the fields, whereas the last one, AssertionBody, can be customized by the

user for defining different assertions.

• The AssertionName element provides the name of the assertion.

• The CheckingClass element gives the name of the Java class, which implements

the assertion checking. The implementation class needs to be a subclass of the

JCSProB class Checking. The runtime checking module loads an object of this

class at runtime. In this case, an implementation class, Frequency, implements the

checking algorithm for this assertion.

• The RecordType element defines how the record information be used by this as-

sertion. As most assertions we defined concern fairness properties of the program,

a very common work is comparing two records. In RecordType, the data used for

comparing records are defined. In this example, two records are thought to be

identical when their ProcName are same, and the first of process variables are

equal.

• The AssertionBody element is an user defined element. The user can customize

the data structure of this element for a certain assertion checking class. Also,

the data setting in the assertion data structure can be changed. How to use the

assertion information defined here should be defined in the implementation class

of this assertion, which is discussed later in this section.

The JCSProB package provides an abstract class Checking, which is used to define

assertions. When defining a new assertion, the user needs to implement two abstract

methods, initAssertion and check, from the Checking class. The initAssertion method

takes the XML element AssertionBody from the configuration file, which defines the

Chapter 5 JCSProB: A Java Implementation of B+CSP 86

assertion, as its argument. Inside the method, the user need to assign the structured

data in the element into the form which can be used by the assertion checking. In the

check method, the user needs to implement the assertion checking algorithm.

In the above frequency example specified in XML, the fairness property it tries to tested

is:

!(i).(i∈ProcID & card(record)>15 ⇒
card(card(record)-15..card(record)⊳record⊲{i})>3)

The symbol !(i) here means “for all i”, card() is a cardinality operator, and ran() returns

the range of a function. The symbol ⊳ represents domain restriction, while the symbol

⊲ represents range restriction. The assertion means that for the last 15 records the

checking module received, all the involved processes should at least progress three times.

In Appendix B.1, the Frequency class is presented. The check method of it implements

the checking algorithm in Java.

The implementation class of runtime checking has a vector of such Checking objects.

After received a new record from the GUI program, it calls the check method of all

these Checking objects. The module also maintains a history of all the checking failures.

When the program exits, all the records and failures information are saved into a log

file.

5.7.4 A Example of the Standard GUI View

The automated translation tool, which is introduced in Section 6.2, can generate neces-

sary files from combined B and CSP models for GUI. The GUI program uses the standard

GUI view as default. Figure 5.25 shows the interface of the translator in PROB. If the

option ’Generating GUI programs’ is selected, the translator would generate JCSProB

programs with GUI support, as well as the three configuration files for guiding the GUI.

Figure 5.26 shows a GUI program directly generated for the wot-no-chicken example

[Wel98].

• The dark gray panel, marked with number 1, is a thread container which represents

a Java thread of the JCSProB program. The blue panel in it is an object of the

GUIProc class, which represents a JCSProB process. This structure simulates the

thread/process structure of JCSProB we introduced in Section 5.5, which means

recursive processes run in the same thread container. A process container contains

a number of light grey internal panels to represents the elements in the expression

of the process. A GUIProc object starts with a button marked with the process

name for starting the process. In this example, it is the button with the text

XPhil procclass.

Chapter 5 JCSProB: A Java Implementation of B+CSP 87

• The process Phils procclass, marked with number 2, contains a parallel composition

of several processes. A yellow panel (not very visible in this figure) contains a

number of thread containers for running the process components.

• The buttons with number 3, 4, and 5, demonstrates three states of event repre-

sentation. The light grey button (3) means the corresponding event has not been

called by the GUI, while the dark grey button (5) represents the event which has

been called by the GUI, but still has not responded to the GUI. After the event

completes, the process end sends a message to the GUI, then the button would

turn into orange color (4).

• The text panel marked with number 6 on the figure is the on-screen log module.

It displays all the log information sent by the GUI controller. Users can use the

configuration files to modify the log information displayed here.

• The table component marked with number 7 display the values of B variables.

The values are updated at runtime.

• The table component, which is in a separate frame and marked with number 8,

shows the information of runtime records. The process column display the records

received, which including the process name, the process position from where the

record was sent, and the value of process parameters. The occurrence column

contains two numbers which are separated by a semicolon: the first number is the

occurrence of the record, and the second number counts the violation of runtime

assertions.

• The button marked with number 9 is a two-state button used for user control. The

button is in automatic state as default, which means the GUI can run automatically

Figure 5.25: The interface of translation tool in PROB

Chapter 5 JCSProB: A Java Implementation of B+CSP 88

Figure 5.26: The interface of translation tool in PROB

Chapter 5 JCSProB: A Java Implementation of B+CSP 89

without user interaction. When the button is pressed, it changes to manual state,

in which the user has to manually drive the GUI.

Chapter 6

Translation from B+CSP to Java

The JCSProB package provides basic facilities for constructing concurrent Java appli-

cations from B+CSP models. However, there is still a big gap between the combined

specification and its Java implementation. Manually constructing the Java implemen-

tation is still very complex, and cannot guarantee the Java application correctly imple-

ments its formal model. To close the gap, a set of translation rules are developed to

provide an explicit connection between formal models and the target Java code. The

translation rules can be recursively used to generate a concurrent Java application from

a B+CSP model. In Section 6.1, we discuss a number of translation rules concerning

the translation of CSP processes. An automated translation tool, which implements the

translation rules, is also developed as an extension of the PROB tool. It can save effort

and avoid careless errors that are very common in writing code. In Section 6.2, the tool

is discussed in detail.

In Appendix A, more translation rules are presented.

6.1 Translation Rules

To define the translation rules Tr, we first use the BNF (Backus Naur Form) notation

to define a subset of the B+CSP specification language that can be implemented in

the Java/JCSProB programs. The translation uses language elements in the definition

of the two specification languages, and specifies their translation to Java code. In the

translation rules:

• The items with fat font in translation rules, e.g. GuardsList, are names of

translation rules.

• The items with italic font, e.g. Chs, are language elements from B+CSP specifi-

cations.

90

Chapter 6 Translation from B+CSP to Java 91

• The items with type writer font are terminals, which are Java code. The symbols

from Java code are marked with single quotation marks, e.g. ‘;’, in order to avoid

confusion with BNF symbols.

To understand a translation rule, users need to refer the B+CSP language elements

involved, as well as the rule itself. For example, the following translation rule generates

a Java class for a B set definition:

Rule 2.1. BSetClass⌈BSet⌋ ⇒Pa
kageDefClassHeader
public enum Print⌈BSetName⌋ ‘{’Print⌈Iden⌋+′,′

‘}’

B+CSP: BSet ⊢ BSetName′ = {′ Iden+′,′ ′}′

The name of the rule, BSetClass⌈BSet⌋ is defined first, between the rule number Rule

2.1, and the symbol⇒. After ⇒, the rule body, which defines how to translate the rule,

is given. The rule body can include:

• Names of other rules, such as ClassHeader, which can be further translated

using their rule definitions.

• Terminals, such as public, ‘{’.

• Extended BNF notations, such as +. Print⌈Iden⌋+′,′ here means that the rule

can be applied more than once, but each of them needs to be separated by a ’,’.

The additional B+CSP language definition after the main rule body, labelled as B+CSP,

provides information of formal models involved in this translation rule. However, in some

cases, the language definition of B+CSP cannot clearly provide enough information for

the translation. To make the translation rules more explicit, supplements are introduced

to express the information which cannot be easily specified in the BNF definition of

B+CSP. For example, in the Java implementation of external choice, a Java switch

statement is used to express all the choice pathes:

Rule 3.6.10.3. Choi
e⌈ProcBPrefix∗⌋ ⇒
case Integer ‘:’Choi
eRtnEv⌈ProcBPrefix⌋

Chapter 6 Translation from B+CSP to Java 92

| Choi
eRtnEvValue⌈ProcBPrefix⌋
| Pro
E⌈ProcBPrefix⌋
break‘;’

‘}’

CSP: ProcBPrefix ⊢ ChCall→ ProcB

Supplement: When ChCall is a B+CSP event without output data, chooseChoi
eRtnEv
Supplement: When ChCall is a B+CSP event with output data, chooseChoi
eRtnEvValue
Supplement: When ChCall is a CSP communication channel, choose Pro
E
Supplement: The rule Integer provides various values for all different repeatable in-

stances of ProcBPrefix. It starts with 0, increasing by 1 each time.

The integer numbers next to each case statement should increase each time when the

rule is applied, but it is fairly hard to express this in the BNF definition of B+CSP. With

the supplement in this rule, we can explicitly instruct users on how to correctly make

use of the translation. Accordingly, the translation rules Tr are defined as a conversion

from B+CSP specification languages and additional supplements S to Java programs:

B + CSP
S

=⇒Tr Java/JCSProB

The translation rules have two translation modes: without-GUI and with-GUI. In the

translation rule definitions, the elements marked with [NoGUI] are used only in without-

GUI mode, while those elements marked with [GUI] are used only in with-GUI mode.

For example, Rule 3.6.9.6 is designed for translating the channel input of a communica-

tion channel:

Rule 3.6.9.5.1. CommChannelRead⌈InputCh⌋ ⇒
{Pro
VarName⌈V ar⌋ ‘=’ChObjName⌈ChName⌋ ‘.’read‘();’ }[NoGUI]

| { Pro
VarName⌈V ar⌋ ’=’ channelRead‘(’ChObjName⌈ChName⌋ ‘,"’ ChObjName⌈ChName⌋
‘");’ }[GUI]

CSP: InputCh ⊢ ChName’?’V ar

In the without-GUI mode, the first line of this rule marked with [NoGUI] is applied.

The rest part of this rule, marked with [GUI], is applied in the with-GUI mode. The

mode options serves as a static environment setting for the translation. When users start

to employ the translation rules for generating Java programs, they must first define the

translation mode they want, and then apply it all through a translation run.

Chapter 6 Translation from B+CSP to Java 93

The translation rules of without-GUI mode mainly consists three rule sets:

• Rules for generating process classes

• Rules for generating channel classes

• Rules for generating B variable classes, invariants and assertions

The translation rules set with GUI have a set of translation rules for generating config-

uration files for GUI, as well as three corresponding rules sets of the three ones above.

6.1.1 Translation Rules for Processes

Processes are elementary structures for both CSP models and JCSProB programs. The

translation rules for processes provide the regulations for constructing and composing

JCSProB processes classes from CSP process specifications. In this section, we go over

some essential rules for translating process classes.

Rule 3.1 shows the translation rule for producing a process class from a CSP process. A

named CSP process specification Process is implemented to a Java class which extends

the BCSProcess or BGProcess class of JCSProB.

Rule3.1. Pro
essClass⌈Proc⌋ ⇒Pa
kageDefClassHeader
public class Pro
ClassName⌈ProcName⌋ extends
{BCSProcess}[NoGUI] | {BGProcess}[GUI] ‘{’Pro
ChsDe
l⌈Chs⌋Pro
VarsDe
l⌈Vars⌋Pro
Constru
torPro
Run⌈ProcBody⌋

‘}’

B+CSP: Proc ⊢ ProcHeader ‘=’ ProcBody

B+CSP: ProcHeader ⊢ ProcName {‘(’VarsList’)’}
Supplement: Chs consists of all the channels/events called by the process, or its sub-

process

Supplement: Vars consists of all the variables used in the process

A CSP process may include a number of variables. In its Java implementation, these pro-

cess variables are translated into variables of the process class. Rule 3.3 Pro
VarsDe
l

Chapter 6 Translation from B+CSP to Java 94

is designed for generating declarations for these variables. Also, a process and its sub-

processes may call both combined B+CSP events and CSP communication channels.

Rule 3.2 Pro
ChsDe
l (Section 6.1) and Rule 3.2.1 Pro
ChDe
l is for generating

the declaration of channels/evnets.

Rule 3.2. Pro
ChsDe
l⌈Chs⌋ ⇒ Pro
ChDe
l⌈Ch⌋∗

B+CSP: Chs ⊢ Ch∗

Rule 3.2.1. Pro
ChDe
l⌈Ch⌋ ⇒ChannelType⌈Ch⌋ ChObjName⌈Ch⌋ ‘;’

The rule ChannelType called in Rule 3.2.1 returns the type information of a channel.

The typing here need not to be an implementation channel class. For combined B+CSP

event, it returns the abstract class which provides ready methods, while for JCSP com-

munication channels, it returns the interfaces of channel input and output. The ruleChannelType is presented in Section 6.1.3.

A JCSProB process class gets references of channel/event objects and input variables

from the environment. Therefore, when a process object is constructed, this information

needs to be assigned to it. Rule 3.4 generates the constructor method of a process

class. The required information from the environment are assigned to the process in the

constructor.

Rule 3.4. Pro
Constru
tor⇒Print⌈ProcName⌋ ‘ ’procclass‘(’Pro
ChsTypeList⌈Chs⌋ ‘,’
{ChannelOutput conf ‘,’}[GUI]Pro
VarsTypeList⌈Vars⌋‘){’
{super()‘;’}[NoGUI] | { super(conf)‘;’ }[GUI]Pro
ChsAssign⌈Chs⌋Pro
VarsAssign⌈ExtVars⌋

‘}’

B+CSP: ProcHeader ⊢ ProcName {‘(’VarsList‘)’}
Supplement: Chs is all the channels/evnets involved in this process or its sub-processes.

Supplement: Vars is all the variables involved in this process.

Supplement: ExtVars is all the external variables in VarsList of the ProcHeader defini-

tion.

Chapter 6 Translation from B+CSP to Java 95

The constructor method obtains the references of channel/event objects, and values of

variables from parameters of the method. Rule 3.4.1 Pro
ChsTypeList prints out the

list of channel/event objects, and Rule 3.4.2 Pro
VarsTypeList provides the list for

input variables ExtVars. Inside the method body, the external object references or values

are assigned to their internal counterparts. Here, the rule for translating assignments of

channels/events is presented:

Rule 3.4.3. Pro
ChsAssign⌈Chs⌋ ⇒ Pro
ChAssign⌈Ch⌋∗

Supplement: Chs is all the channels/evnets involved in this process or its sub-processes.

Supplement: Chs ⊢ Ch∗

Rule 3.4.3.1. Pro
ChAssign⌈Ch⌋ ⇒

this‘.’ChObjName⌈Ch⌋ = ChObjName⌈Ch⌋ ‘;’

Above rules, from Rule 3.2 to Rule 3.4, focus on making all the data and channel/event

references ready. The execution sequences of a process, which is expressed in ProcBody

(refer to Rule 3.1 for the definition), is translated into the run method of the process

class. Rule 3.5 Pro
Run is designed for generating the run method.

Rule 3.5. Pro
Run⌈ProcBody⌋ ⇒

public void run‘(){’
{this‘.’creatGUIProc‘();’}[GUI]

{start‘();’}[GUI]Pro
E⌈ProcBody⌋
{end‘();’}[GUI]

‘}’

Rule 3.6 Pro
E appeared in the above rule is an important rule for process expressions.

It generates all the CSP process expressions supported by the B+CSP specification.

Rule 3.6. Pro
E⌈ProcB⌋ ⇒Pro
EParallel⌈ProcBParallel⌋
| Pro
EReplParallel⌈ProcBReplParallel⌋
| Pro
EInterleave⌈ProcBInterleave⌋
| Pro
EReplInterleave⌈ProcBReplInterleave⌋
| Pro
ESequen
e⌈ProcBSequence⌋
| Pro
EIfThen⌈ProcBIfThen⌋

Chapter 6 Translation from B+CSP to Java 96

| Pro
EPrefix⌈ProcBPrefix⌋
| Pro
EChoi
e⌈ProcBChoice⌋
| Pro
EReplChoi
e⌈ProcBReplChoice⌋
| Pro
ECall⌈ProcBCall⌋

B+CSP: ProcBody ⊢ ProcBParallel

| ProcBReplParallel

| ProcBInterleave

| ProcBReplInterleave

| ProcBSequence

| ProcBIfThen

| ProcBPrefix

| ProcBChoice

| ProcBReplChoice

| ProcBCall

When using this rule, we first need to check the BNF definition of ProcB to find the pat-

tern of the current CSP process expression. For example, if the current CSP expression

matches ProcBParallel in the definition of B+CSP, the translation rule Pro
EParallel
⌈ProcBParallel⌋ would be applied here. Many process expression rules are appeared in

Rule 3.6, but we only continue the discussion of these rules with one particular rule for

parallel composition. Other rules can be found in Appendix A.

Rule 3.6.1. Pro
EParallel⌈ProcBParallel⌋ ⇒ParaChsNums⌈Chs⌋
{ new CSParallel’(’ }[NoGUI] | { parallelCtrl’(’ }[GUI]

{ new BCSProcess’[]{’ }[NoGUI] | { new BGProcess’[]{’ }[GUI]CallPro
⌈Proc⌋+′,′

’}’
{ ’).run’();’’ }[NoGUI] | { ’);’ }[GUI]

B+CSP: ProcBParallel ⊢ Proc+′‖′

Supplement: Chs includes all the B+CSP events that have multi-way synchronizing

Supplement: Procs includes all the process in the parallel composition

The translation of parallel composition starts with defining numbers of processes syn-

chronizing on shared events. A shared event needs this number for counting down the

synchronization barrier. Rule 3.6.2 is designed for calling a special method inc syn procs no

to increase the barrier number.

Chapter 6 Translation from B+CSP to Java 97

Rule 3.6.2. ParChsNums⌈Chs⌋ ⇒ ParChNums⌈Ch⌋∗

Supplement: Chs ⊢ Ch∗

Rule 3.6.2.1. ParChNums⌈Ch⌋ ⇒ChObjName⌈Ch⌋‘.’inc‘ ’syn‘ ’proces‘ ’no‘(’ Integer ’);’
Supplement: Rule Integer here should be the number of processes which synchronize

on the event Ch.

The other translation rule referred in Rule 3.6.1 is CallPro
, which translates the call

on a new process object. As this rule involves many other rules, we do not discuss it

here in detail. If interested, please refer to Rule3.6.4.1 in Appendix A.

Also in Rule 3.6.1, the without-GUI and with-GUI modes generate quite different Java

code. In the without-GUI mode, a new CSProcess object is built upon an array of

BCSProcess objects, while in the with-GUI mode, the parallelCtrl method provided

by the BGProcess class is called, and an array of BGProcess objects is passed to the

method as a parameter. However, although the target Java codes are different, the ways

in which they apply translation are similar, which means they call same translation

rules and use these rules in a similar structure. In this case, the two modes both use

rules ParChNums and CallPro
, and the ways they apply these rules are identical.

Therefore, the differences of the two modes in the translation are just on the syntax

level.

6.1.2 Translation Rules for Events

The translation rules for generating event classes obtain most information from the B

part of the combined specification. Rule 4.1 is designed for generating the main structure

of an event class.

Rule 4.1. EventClass⌈Ev⌋ ⇒Pa
kageDefClassHeader
public class EventClassName⌈Ev⌋ extends EventType⌈Ev⌋ ‘{’Ma
hName‘ ’machine var‘;’EventVarsDe
l⌈BOpV ars⌋EventConstru
tor⌈Ev⌋

Chapter 6 Translation from B+CSP to Java 98

{EventInputMethod⌈BInV ars⌋}
{EventOutputMethod⌈BOutV ars⌋}EventRun⌈BOpBody⌋
{EventPre
ondition⌈BOpBody⌋}

‘}’

B: Ev ⊢ BOutV ars← EvName′(′BInV ars′)′BOpBody

Supplement: BOpV ars ⊢ BOpInV arsBOpOutV arsy

In Rule 4.1, the rule EventVarsDe
l⌈BOpV ars⌋ produces the Java code for declaring

event variables. The type information of all the B variables is defined as type invariants

inside the INVARIANTS clause of a B machine. In Rule 4.2, the type of a B variable

is obtained from the rule BVarType⌈BOpV ar⌋.

Rule 4.2. EventVarsDe
l⌈BOpV ars⌋ ⇒
{BVarType⌈BOpV ar⌋Print⌈BOpV ar⌋}+′;′

B: BOpV ars ⊢ BOpV ar+′,′

Also in Rule 4.1, the rule EventInputMethod⌈BInV ars⌋ prints out the Java method

assign input, which is used to assign input data to the event variables, and the ruleEventOutputMethod⌈BOutV ars⌋ generates the method make output for outputing

data from event variables. The constructor method of an event class is generated by

Rule 4.3 EventConstru
tor⌈Ev⌋. All the three rules are presented in Appendix A.

The run method of an event class implements the data substitutions inside the B op-

eration of the combined event. Rule 4.6 EventRun⌈BOpBody⌋ is defined to generate

the run method.

Rule 4.6. EventRun⌈BOpBody⌋ ⇒
protected synchronized void run‘(){’BeforeStateVars⌈StateV ars⌋BSubstitution⌈BSub⌋

var‘.’check‘();’

{ varsPanelsStore‘.’getInstance‘().’getPanelInstance‘(’
‘"’ Ma
hName ‘").’refresh‘();’ }[GUI]

‘}’

B: BOpBody ⊢ BSub

Chapter 6 Translation from B+CSP to Java 99

Supplement: V ars consists of all the state variables

The rule BeforeStateVars⌈StateV ars⌋ declares copies of all the state variables of

the B machine. These copies represent the system state before performing the data

substitutions. In the implementation of the data substitutions, the real state variables

can only appear on the left side of the data transitions, whereas the state copies can only

appear on the right side. Rule 4.6.2 BeforeStateVar⌈StateV ar⌋ provides different

options for different types of state variables, as the Java code for making a copy of an

existing object can be different.

Rule 4.6.1. BeforeStateVars⌈V ars⌋ ⇒BeforeStateVar⌈V ar⌋∗
Supplement: V ars includes all the state variables: V ars ⊢ V ar∗

Rule 4.6.2. BeforeStateVar⌈V ar⌋ ⇒BType⌈V ar⌋Print⌈V ar⌋ ‘=’BeforeStateVarPSet⌈V ar⌋
| BeforeStateVarArray⌈V ar⌋
| BeforeStateVarRelation⌈V ar⌋
| BeforeStateVarAssignObj⌈V ar⌋
‘;’

Supplement: If V ar is a B set, BeforeStateVarPSet
Supplement: If V ar is an array, BeforeStateVarArray
Supplement: If V ar is a relation, BeforeStateVarRelation
Supplement: Otherwise, BeforeStateVarObj

The rule BSubstitution⌈BSub⌋ used in Rule 4.6 generates the Java code for imple-

menting B substitutions. All the supported B substitutions in the translation can be

found in this rule. The unsupported substitutions are not included in the translation for

different reasons. For example, the WHILE loop is not here because it is not supported

by PROB, and the SELECT is too abstract and non-deterministic to be implemented

in concrete programs(Use IF or PRE instead!).

Rule 5.1. BSubstitution⌈BSub⌋ ⇒BSubstitutionPre
ondition⌈BSubPrecdtn⌋
| BSubstitutionBegin⌈BSubBegin⌋
| BSubstitutionVar⌈BSubV ar⌋

Chapter 6 Translation from B+CSP to Java 100

| BSubstitutionParallel⌈BSubPar⌋
| BSubstitutionBeEqual⌈BSubBeq⌋
| BSubstitutionIf⌈BSubIf⌋
| BSubstitutionBeEqualFun
⌈BSubBeqFunc⌋
| BSubstitutionAny⌈BSubAny⌋

B: BSub ⊢
BSubPrecdtn

| BSubBegin

| BSubV ar

| BSubPar

| BSubBeq

| BSubIf

| BSubBeqFunc

6.1.3 Translation Rules for Integration

The B and the CSP are connected on combined B+CSP events. The translation rules

concerning the combined event usually obtain information from both sides. In Rule 7.2.1

and Rule 7.2.2, the main rule bodies provide all the possible outputs from applying the

rules. It is the supplements in these rules that actually instruct users on how to determine

the outputs from applying these rules.

Rule 7.2. ChannelType⌈Ch⌋ ⇒EventType⌈Ev⌋ | CChType⌈CCh⌋

B+CSP: Ch ⊢ Ev | CCh

Rule 7.2.1. EventType⌈Ev⌋ ⇒

CChannel | InCChannel | OutCChannel | OutInCChannel

Supplement: If the combined event Ev has no data flow between B and CSP, returns

CChannel. (CSP: ch B: op)

Supplement: If the combined event Ev only has input data, from the CSP channel to the

B operation, returns InCChannel. (CSP: ch‘!′InV ars B: op‘(′InV ars‘)′)

Supplement: If the combined event Ev only has output data, from the B operation to the

CSP channel, returns OutCChannel. (CSP: ch‘?′OutV ars B: OutV ars← op)

Chapter 6 Translation from B+CSP to Java 101

Supplement: If combined event Ev has both input data, from CSP to B, and output data,

from B to CSP, returns OutInCChannel. (CSP: ch‘!′InV ars‘?OutV ars′ B: OutV ars←
op‘(′InV ars‘)′)

Rule 7.2.2. CChType⌈CCh⌋ ⇒

ChannelInput | ChannelOutput | ChClassName⌈CCh⌋

Supplement: If the process only read from channel CCh, returns ChannelInput.

Supplement: If the process only output to channel CCh, returns ChannelOutput.

Supplement: If the process and its sub-processes both read and write to channel CCh,

returns the channel class name using rule CChClassName⌈CCh⌋.

Rule 7.2.2 returns the implementation class for the CSP communication channels; thus

it only concern the CSP part. Rule 7.2.1 is one of the rules which concern both the B

and the CSP parts. Choosing an implementation class for the combined B+CSP event is

based on the data flow between the B operation and the CSP channel, which is defined

in the restricted semantics of B+CSP. The supplements of Rule 7.2.1 use both the B

and the CSP syntax, and combine them together for the translation. They implement

a part of the B+CSP semantics in the translation.

6.2 Translation Tool

The automatic translation tool is constructed as an extension of the PROB tool. It is

also developed using SICStus Prolog, which is the implementation language of PROB.

The translation tool has two main functions:

• Preprocessing. The translation tool first gets information of a combined B+CSP

model, and transforms it into an information structure which is more accessible in

the translation.

• Translation. The translation tool implements the translation rules, and translates

the model information into Java programs.

In PROB, a B+CSP specification is parsed and interpreted into Prolog clauses, which

express the combined specification. As the translation tool works in the same environ-

ment as PROB, it acquires information on the combined specification from these Prolog

clauses, and translates the information into Java programs.

Figure 6.1 illustrates how PROB parses and interprets B and CSP specifications, and

where the translator lies in PROB. The B part and the CSP part of the combined

Chapter 6 Translation from B+CSP to Java 102

specification are stored in separate files. The PROB tool first carries out syntax analysis

on the two specifications. A CSP parser parses the CSP specification into a parsed tree

structure, while the JBTools package [Bru01] is employed to translate B notations into

XML format. After that, the CSP interpreter, CIA (CSP Interpreter and Animator)

[Leu01], converts the parsed trees of CSP processes into a Prolog fact agent/2. The first

parameter of agent/2 provides information of the process name. The second parameter

represents the process definition. On the other hand, the Pillow package [CH01] is used

to convert the XML representation of B specifications into a series of Prolog clauses.

Pillow is an external Prolog program, which provides certain methods to access XML

files by translating XML into Prolog clauses. Finally, the PROB interpreter takes Prolog

clauses of the two specifications and produces new Prolog clauses which expresses the

semantics of the combined B+CSP model.

The translation tool obtains semantic information from Prolog clauses of the combined

model. It also builds some new Prolog facts, which are transformed from clauses of the

B+CSP specification. For example, in PROB, the Prolog rule b get machine variables/1

in the bmachine module of PROB can return names of all the B variables. However, the

data type information of these variables are mixed in the invariant, which can be ob-

tained from calling the b get invariant from machine/1 rule from the bmachine module.

Also, the initialization of these variables is in the INITIALISATION statement of a

Figure 6.1: The parsing and interpretation in PROB

Chapter 6 Translation from B+CSP to Java 103

B machine, which can be obtained from calling the b get initialisation from machine/1

rule. However, the invariant and initialization information obtained from calling these

rules are in complex tree structures which are not very straightforward for the transla-

tion. Therefore, we build two new Prolog facts from these rules.

• jcsp b vars types/2 . This fact contains two arguments: the variable name, and

its typing.

• jcsp b vars inits/2 . This fact contains two arguments: the variable name, and

its initialization values.

The preprocessed information are more accessible and easier to use in the translation.

In some cases, the preprocessing step even implements some fundamental translation

rules. In the above example, the data type information stored in jcsp b vars types/2 is

actually the corresponding Java typing of variables, which means the translation ruleType is partially implemented in the preprocessing step.

When the information of combined models is ready, the translation tool starts to generate

Java programs according to the translation rules. As we discussed in Section 6.1, the

translation rules are expressed in BNF-like production rules. The Prolog language,

which is a declarative logic language and is based on mathematic logic and inference, is

very appropriate for expressing such a kind of logic rule. Especially, the Prolog rules,

which are also inference rules, can implement the translation rules in a straightforward

way. In the development of the translation tool, there are correlations defined between

translation rules and Prolog rules. For example, in Section 6.1.1, we gave the (Rule 3.5)Pro
Run for translating the run method of process classes.

Rule 3.5. Pro
Run⌈ProcBody⌋ ⇒

public void run‘(){’
{this‘.’creatGUIProc‘();’}[GUI]

{start‘();’}[GUI]Pro
E⌈ProcBody⌋
{end‘();’}[GUI]

’}’

In the translation tool, there is a corresponding Prolog rule for implementing this rule:

print jcsp process class run(Proc,ProcBody) :-

jcsp print(1,’public void run(){’),nl,
(withGUI ->

(

Chapter 6 Translation from B+CSP to Java 104

jcsp print(2,’this.createGUIProc();’),nl,

jcsp print(2,’start();’),nl,

print jcsp process run proce(Proc,ProcBody,2),

jcsp print(2,’end();’),nl

);

print jcsp process run proce(Proc,ProcBody,2)

),

jcsp print(1,’}’),nl.

The correlation of the two rules are quite obvious. The Prolog rule jcsp print/2 is

used for printing out a string with certain indention. For example, a query of the rule

jcsp print(2,’start();’)

would print out the string ’start();’ with the indention of two tabs. The special fact

withGUI contains the information of whether the translation is in the with-gui mode.

Also, readers may quickly start to presume that the Prolog rule print jcsp process run proce/2

is the implementation of Rule 3.6 Pro
E. For most translation rules, such correspond-

ing Prolog rules can be directly recognized. However, for some rules which are partially

implemented in the preprocessing step of the translation tool, the correlation may be

not so easy to identify.

Accordingly, as there is tight correspondence between the translation rules and the

Prolog rules of the translator program, the correctness of the translation tool heavily

depends on the correctness of the translation rules. For each translation rule, if we can

make sure the corresponding Prolog rules produce the same output as the translation

rule, then we can say the translation rules correctly implements the translation rule.

6.3 Translation of External Choice

In this section, we use the translation of external choice to demonstrate the translation

procedure. The translation rule of external choice, as well as the Prolog rules, are

discussed. We also use a toy example of external choice to test the translation, and the

generated Java code is presented.

A simple process Breakfast has a data Egg as its process parameters. The process needs

to make choice on two events fry and boil. The CSP specification of this toy example is:

Breakfast(Egg) = fry.Egg → Breakfast(Egg) � boil.Egg → Breakfast(Egg)

In Section 5.4, we discussed the implementation of external choice for the B+CSP event.

The ready state of a combined event is resolved not only based on the processes that

Chapter 6 Translation from B+CSP to Java 105

synchronize on the event, but also depends on the precondition of the event. Therefore,

the value of input parameters are also required for resolving the choice. Rule 3.6.10

represents the main translation rule for external choice.

Rule 3.6.10. Pro
EChoi
e⌈ProcBChoice⌋ ⇒

BCSPGuard’[]’ in ’={’ GuardsList⌈ProcBPrefix∗⌋ ’};’
Vector’<’Vector’<’Object’>>’ choiceVec

= new Vector’<’Vector’<’Object’>>();’Choi
eValueAssign⌈ProcBPrefix∗⌋
{ Alter alt ’=’ new Alter’(’in’,’ choiceVec’);’

switch’(’alt.select’(){’Choi
es⌈ProcBPrefix∗⌋
’}’ }[NoGUI]

| { switch’(’choiceCtrl’(’in’,’ choiceVec’)){’Choi
es⌈ProcBPrefix∗⌋
’}’ }[GUI]

B+CSP: ProcBChoice ⊢ ProcBPrefix {’[]’ ProcBPrefix}∗

The translation rule first uses the rule GuardsList to construct an array of guards in,

which includes the first events of all the possible choice pathes. After that, it introduced

a Java Vector object choiceVec for keeping the values of all the input arguments of

these events. In the without-GUI mode, the two objects are used to construct an Alter

object, whose select method actually returns decision of the external choice. In the

with-GUI mode, the two objects are passed to the choiceCtrl method of the BGProcess

class for choice decision making. The definitions of the sub-rules, e.g. Choi
es, can be

found in Appendix A.

Based on the translation rules of external choice, a number of Prolog rules are imple-

mented:

print jcsp process run proce(Proc,choice(TransA,TransB),N) :-

jcsp print(N,’BCSPGuard[] in = ’),

retractall(jcspcommasymbol),

print jcsp process run proce choice guard list(TransA,TransB),

jcsp print(N,’Vector<Vector<Object>> choiceVec

= new Vector<Vector<Object>>();’),nl,

print choice value assign trans(TransA,N),

print choice value assign trans(TransB,N),

print(’;’),nl,

Chapter 6 Translation from B+CSP to Java 106

(withGUI ->

print jcsp process run proce choice with gui(TransA,TransB,Proc,N);

print jcsp process run proce choice(TransA,TransB,Proc,N)

).

print jcsp process run proce choice with gui(TransA,TransB,Proc,N) :-

jcsp print(N,’switch(choiceCtrl(in, choiceVec)){’),nl,
print jcsp process run proce choice with gui trans(TransA,Proc,N+1,0),

print jcsp process run proce choice with gui trans(TransB,Proc,N+1,1),

jcsp print(N,’}’),nl.
print jcsp process run proce choice(TransA,TransB,Proc,N) :-

jcsp print(N,’Alter alt = new Alter(in,choiceVec);’),nl,

jcsp print(N,’switch(alt.select()){’),nl,
print jcsp process run proce choice trans(TransA,Proc,N+1,0),

print jcsp process run proce choice trans(TransB,Proc,N+1,1),

jcsp print(N,’}’),nl.

In PROB, the choice pathes are parsed and stored in a tree structure. For example, a

external choice on three choice pathes

ProcA � ProcB � ProC

would be expressed as:

choice(ProcA,choice(ProcB,ProcC))

Therefore, the Breakfast process we specified above would be transformed by the CSP

interpreter into the following form:

choice(

prefix([out(term(Egg))],fry,agent call(a Breakfast(Egg))),

prefix([out(term(Egg))],boil,agent call(a Breakfast(Egg)))

).

The rule head of print jcsp process run proce can capture this tree structure with

its second argument choice(TransA,TransB). Also, the following rules, which make

use of TransA and TransB, recursively explore the tree structure to access all the chioce

pathes.

• The Prolog rule print jcsp process run proce choice guard list implements

the translation rule GuardList. It explores all the choice paths, and prints out

an event list including the first event of all the choice paths.

Chapter 6 Translation from B+CSP to Java 107

• The rule print choice value assign trans, which implements the translation

rules Choi
eValueAssign, explores the tree structure of all the choices, and

prints out the Java code for add the values of the first events of all the choice

pathes.

• Similarly, the rule print jcsp process run proce choice with gui trans and

print jcsp process run proce choice trans also explore the choices tree, and

generate all choice pathes in a Java switch statement. These two Prolog rules

implement Rule 3.6.10.3 Choi
es, which is presented in Section 6.1

Giving the parsed tree of the Breakfast process in without-GUI mode, the above Prolog

rules would generate the following Jave code:

PCChannel[] in = {fry ch,boil ch};
Vector<Vector<Object>> choiceVec = new Vector<Vector<Object>>();

choiceVec.addElement(inputVec(new Object[]{proc index a}));
choiceVec.addElement(inputVec(new Object[]{proc index a}));
Alter alt = new Alter(in,choiceVec);

switch(alt.select()){
case 0 : callNextProc(new Breakfast procclass(fry ch,boil ch,proc index a));

break;

case 1 : callNextProc(new Breakfast procclass(fry ch,boil ch,proc index a));

break;

}

In the GUI mode, the translator generates a slightly different Java code:

PCChannel[] in = {fry ch,boil ch};
Vector<Vector<Object>> choiceVec = new Vector<Vector<Object>>();

choiceVec.addElement(inputVec(new Object[]{proc index a}));
choiceVec.addElement(inputVec(new Object[]{proc index a}));
switch(choiceCtrl(in,choiceVec)){

case 0 : choiceRtn(fry ch);

nextProcRtn(new Breakfast procclass(fry ch,boil ch,proc index a));

break;

case 1 : choiceRtn(boil ch)

nextProcRtn(new Breakfast procclass(fry ch,boil ch,proc index a));

break;

}

Chapter 7

Experimentations

In this section, experimental evaluation of the whole development strategy from B+CSP

to Java is discussed. We first test the expressivity of the restricted B+CSP semantics,

and syntax coverage of the translation by applying different syntactic structures to

construct various formal models. The generated Java programs are tested, and compared

with their formal models.

An important experimentation is to evaluate different kind of properties on the Java

programs generated from B+CSP models. The known properties, which can be verified

in PROB, are also evaluated in the generated Java programs at runtime. Then the

runtime checking result is compared with that from the PROB model checking on the

B+CSP model. For the properties which are not so easy to express in B+CSP or cannot

be verified in PROB, we specify them as runtime assertions, and design runtime assertion

checking for them. The example in Section 7.1 shows how the invariant check works for

the JCSProB package. In Section 7.2, we construct several models from Wot-no-chicken

example to demonstrate the user-defined assertion checking.

Another target for the experimentations is to evaluate the scalability issue of this work.

One import aspect for scalability here is on the composition/decomposition of the

B+CSP model and its Java implementation. Currently, the composition rules for the

combined B+CSP model has not been developed. The compositional examples in Sec-

tion 7.3 practically shows a possible composition style for B+CSP models. There are

no formal rules to back this composition attempt.

7.1 Invariant Check: Simple Lift Example

Figure 7.1 presents an abstract lift model. We use this simple example to demonstrate

the implementation of invariant check for JCSProB programs.

108

Chapter 7 Experimentations 109

MACHINE lift

VARIABLES level

INVARIANT level : NAT & level ≥ 0 & level ≤ 10

INITIALIZATION level := 1

OPERATIONS

inc = BEGIN level := level + 1 END;

dec = BEGIN level := level - 1 END

END

—————

MAIN = inc −→ inv check −→ MAIN [] dec −→ inv check −→ MAIN ;;

Figure 7.1: Combined Specification of lift

Invariants in a B machine demonstrate safety properties of the system model. In the

PROB model checking, B invariants are checked on all the states of the system. The

violation of the invariants indicates an unsafe state of the system model. The runtime

invariant check in the target Java programs can be used to demonstrate the generated

Java program preserves the safety properties, which are specified in the invariant of its

formal model, in the current trace.

The invariants supported by the translation are mainly from the B0 language condi-

tions. The B0 conditions can be easily translated into Java boolean conditions. The

abstract JcspVar class, which maintains the system states of B machines, needs to be

implemented in a JCSProB program. The check method of JcspVar need to be imple-

mented for the invariant checking. The Java boolean conditions generated from the B

invariants are tested in the check method. The check method is called each time when

an event object performed data changes on state variables. The success of this checking

demonstrates the invariants are also preserved in the Java program. When we test a

Java program generated from verified B+CSP model, failures of this checking also means

the translation does not preserve the semantics of B+CSP.

The unguarded B operations inc and dec can freely increase or decrease the B variable

floor. That would easily break the invariant on floor (level ≥ 0 & level ≤ 10). In the

PROB model checking, the violated state can be quickly identified from the state model.

Runtime results of the target Java application demonstrate that the check mechanism

can find violation of invariant conditions, and terminate the system accordingly. There-

fore, we correct the model to that of Figure 7.2, by adding preconditions.

MACHINE lift

VARIABLES level

INVARIANT level : NAT & level ≥ 0 & level ≤ 10

INITIALISATION level := 1

OPERATIONS

inc = PRE level < 10 THEN level := level + 1 END;

dec = PRE level > 0 THEN level := level - 1 END

END

Figure 7.2: An example of B machines: lift

Chapter 7 Experimentations 110

The Java programs generated from the modified specification find no violation of invari-

ants.

7.2 Wot-no-chickens: Fairness Assertions

The Wot,no chickens? example [Wel98] was originally constructed for emphasizing

possible fairness issues in the wait-notify mechanism of Java concurrent programming.

There are five philosophers and one chef in this story. The chef repeatedly cooks four

chickens each time, puts the chicken in a canteen, and notifies the waiting philosophers.

On the other hand, philosophers, but not the greedy one, cyclically continue the following

behaviours: think, go to canteen for chickens, get a chicken, and go back to think again.

The greedy philosopher does not think, and goes to the canteen directly and finds it

devoid of chickens. The Java implementation in [Wel98] employs the Java wait-notify

mechanism (using the pattern advised by the Java API documentation) to block the

philosopher object when there are no chickens left in the canteen. The chef claims the

canteen monitor lock (on which the greedy philosopher is waiting), takes some time to

set out the freshly cooked chickens and, then, notifies all (any) who are waiting. During

this claim period, the diligent philosophers finish their thoughts, try to claim the monitor

lock and get in line. If that happens before the greedy philosopher is notified, he finds

himself behind all his colleagues again. By the time he claims the monitor (i.e. reaches

the canteen), the shelves are bare and back he goes to waiting! The greedy philosopher

never gets any chicken.

7.2.1 The Two Models

To test the syntax coverage of the JCSProB package and the translation, several formal

models of this example are specified. We use various synchronization strategies and

recursion patterns to explore the syntax coverage and the semantics expressivity of the

B+CSP specification in the JCSProB package, as well as in the translation. Furthermore,

we also want to compare fairness properties of different formal models, in order to

evaluate the behaviour of the generated Java programs in practice.

The first combined B+CSP model of this example is presented in Figure 7.3. The

CSP part of the specification in Figure 7.4 features some interleaving processes. The

atomic access control on the B global variables, and the precondition on the get chicken

channel actually require synchronization mechanisms to preserve the consistency of the

concurrent Java programs. As all the features concerning the concurrency model are

implemented in the JCSProB package, users can work with the high-level concurrency

model without noticing the low-level implementation of synchronization.

Chapter 7 Experimentations 111

MACHINE chicken

VARIABLES

canteen,chef,state

INVARIANT

canteen ∈ NAT & chef ∈ NAT & state ∈ (0..4)→NAT

INITIALISATION

canteen := 0 ‖ chef := 0 ‖ state := (0..4) * {1}
OPERATIONS

thinking(pp) =

SELECT pp:0..4 THEN

state(pp) := state(pp) - 1

END;

getchicken(pp) =

PRE pp:0..4 & canteen > 0 THEN

canteen := canteen - 1

END;

eat(pp) =

SELECT pp:0..4 THEN

state(pp) := state(pp) + 1

END;

cook =

BEGIN

chef := chef + 4

END;

put =

BEGIN canteen := canteen + 4 ‖ chef := chef - 4 END

END

Figure 7.3: The B machine of the Wot-no-chicken example

The reader may find that the two machine variables state and chef are not interesting in

this specification. They seems just making some state changes without much meaning.

We keep them in the machine in order to use them in later Section 7.3 to demonstrate a

decomposition approach. In Appendix B.3, we presents a part of Java source codes for

this example.

MAIN = Chef ||| XPhil ||| PHILS ;;

PHILS = |||X:0,1,2,3@Phil(X);;

Phil(X) = thinking.X → getchicken.X → eat.X → Phil(X);;

XPhil = getchicken.4 → eat.4 → XPhil;;

Chef = cook → put → Chef ;;

Figure 7.4: The CSP spec of the Wot-no-chicken example: Model 1

An alternative model is specified in Figure 7.5. As the B machine is the same as the

first one in Figure 7.3, only the CSP specification is given here. This model explicitly

uses a multi-way synchronization on the put channel to force all the philosophers and

the chef to synchronize.

Chapter 7 Experimentations 112

MAIN = Chef [|{put}|] PhilA(4) [|{put}|] PHILS ;;

PHILS = [|{put}|]X:{0,1,2,3}@Phil(X) ;;

Phil(X) = thinking.X → PhilA(X) ;;

PhilA(X) = put → PhilA(X) [] getchicken.X → eat.X →
if(X == 4)

then PhilA(4)

else Phil(X)

;;

Chef = cook → put → Chef ;;

Figure 7.5: Formal specification of Wot-no-chicken example, Model 2

7.2.1.1 Assertion Check and Results

The experimental evaluation test is based on the two models specified above. In the first

part of the evaluation, we test the safety and deadlock-freeness properties on the two

channels. In Table 7.1, the test results on these properties are demonstrated. The Timing

column indicates how many different timing configurations are tested with the model,

and the Steps column shows the lengths of the runtime records we collected. As the

concurrent Java applications constructed with the JCSProB package need to preserve

the same safety and deadlock-freeness properties as their formal models, it partially

demonstrates the correctness of the JCSProB package, as well as the translation tool.

Model
Name

Property Processes Timing Steps Result

Model 1 Safety/Invariant - 15 1000
√

Model 1 Deadlock-freeness - 15 1000
√

Model 2 Safety/Invariant - 15 1000
√

Model 2 Deadlock-freeness - 15 1000
√

Table 7.1: The experimental result: Safety and Deadlock-freeness

To test the bounded fairness properties on the target Java programs at runtime, we first

need to generate various traces from the concurrent Java programs. In the configura-

tion file of the GUI program, we can define various timing configurations for generating

traces for the program. The GUI can force the process to sleep for a fixed time pe-

riod. In this way, we can explicitly animate formal models with specific timing settings

for experimental purposes. Then we employ the fairness assertions check on Java pro-

grams embedded with timing settings. The target of this experiment is to practically

animate the Java/JCSProB applications, and evaluate their runtime performances with

the bounded fairness properties.

In Table 7.2, we show the experimental results of the two models with bounded fairness

properties. Frequency 1, 2, and 3 are three different frequency assertion settings (du-

ration and occurrence, Section 5.7.3). For each property, we use five different timing

Chapter 7 Experimentations 113

settings; and for each timing setting, the Java program is tested in five runs. In the

result column of the table, 18P7F means in 25 runs, the check passes 18 times and fails

7 times.

Model
Name

Property Processes Timing Steps Result

Model 1 Frequency 1 All 5 150 4P21F
Model 1’ Frequency 2 Phils+XPhil 5 150 1P24F
Model 1” Frequency 3 Phils 5 150 23P2F

Model 2 Frequency 1 All 5 150 5P20F
Model 2’ Frequency 2 Phils+XPhil 5 150 0P25F
Model 2” Frequency 3 Phils 5 150 24P1F

Table 7.2: The experimental result: Bounded Fairness Properties

The assertions check also concerns different process groups. In the tests on Model 1

and Model 2, both the philosophers and the chef processes are recorded for assertions

check. In model Model 1’ and Model 2’, only the philosopher processes are checked. In

Model 1” and Model 2”, the greedy philosopher is removed and only normal philosopher

processes are tested. The testing shows that generated Java programs provide useful

simulations for their formal model. It is used to explore and discover the behaviour

properties which cannot be verified in PROB model checking.

7.3 Composition of JCSProB Programs

In section, we use two examples to demonstrate a practical composition attempt for the

combined B+CSP model, and the JCSProB programs generated from them. In [BL05],

only one B and CSP specification pair is allowed, which also applies to the PROB model

checker, which means only one such specification pair can be model checked in PROB.

However, as the B+CSP semantics also allow CSP communication channels, it is possible

and reasonable to connect two specification pair through communication channels. Sim-

ilar technique [STE05] has been applied in the CSP‖B approach for composing different

specification pairs.

7.3.1 Composition: Odd-Even example

In [STE05], an Odd-Even example is presented. In this example, two B and CSP spec-

ification pairs are connected through their CSP controllers. The Odd machine only

receives and keeps odd number, whereas the Even machine only keeps even number.

The controllers of the two machines communicate with each other for the values. For

convenience, Figure 7.6 reproduces Figure 2.2 here to specify this example.

Chapter 7 Experimentations 114

The two B+CSP specification pairs are connected through two CSP communication

channels, oddpass and evenpass. The CSP part of the Even model first receives a data

Z from the the Odd model through the oddpass channel. As the value of the data

from the Odd is an odd number, the CSP increases the number by 1 and uses the

increased number as an input data to call the combined event evenput. The B machine

Even has a state variable even for the even number. It provides a corresponding B

operation evenput which gets the data from its corresponding CSP channel, and also

has an evenget operation for outputing the data value of even to CSP. After the CSP

controller receives the data W from the combined evenget event, it sends the data out

through the evenpass channel. The function of the Odd model is very similar to Even,

except the B machine Odd keeps the state of odd numbers. Figure 7.7 graphically

illustrates the communication in this example.

In PROB, we managed to model check the two specification pairs separately. With

our JCSProB translator, we can generate two separate Java programs from the models.

However, one B+CSP pair in this example only contains one end of a communication

channel, while the other end of the channel is in the other specification pair. The model

would wait for the channel input or output from the other end. The PROB tool can use

its enumeration mechanism to produce the response for the channel call. In JCSProB,

we implement special channel-end classes to display channel output to the user, and

allow the user to provide data for channel input. Appendix B.4.1 presents the main

Java class of the Even model. In the class, the oddpass channel is declared as the

Ext2OneGUIChannel class, which is one of the channel-end classes from JCSProB.

The CSP part of the Even model requires a channel input from the oddpass channel. As

the Java program is generated from the Even model, it does not have the output-end of

this channel which is in the Odd model. The translator can detect the absence of the

output-end, and employs a message box from the channel-end class to allow the user to

Figure 7.6: The specification of the Odd-Even example

Chapter 7 Experimentations 115

input data for the channel call. Figure 7.8 shows the screenshot of data input for the

oddpass channel in the Even model.

The Java program generated from the Even model lacks the output-end of oddpass, and

the input-end of evenpass, whereas the Odd model lacks the input-end of oddpass, and

the output-end of evenpass. If we can connect the two programs together using the

oddpass and evenpass channel, it would create a program which implements the whole

system model. It is actually very ease to do that. We just need to put the main classes of

the two programs together, and replace the four channel-end classes in the two programs

with two JCSP communication channels. Appendix B.4.2 shows the main Java class of

the combined JCSProB program. In the Oddeven run class, the evenpass and oddpass

Figure 7.7: The communication in the Odd-Even example

Figure 7.8: Data input for communication channel

Chapter 7 Experimentations 116

channels are declared as JCSP communication channels, which are passed to the Odd

and Even models as arguments.

Figure 7.9 shows a screenshot of the combined Java program. Each of the two models

runs in different GUI frames, and maintains its own states. They communicate with

each other through the two communication channels. Both automatic execution and

manual animation of this program practically demonstrated that the composed program

correctly implements the CSP ‖ B model specified in Figure 7.6.

7.3.2 Decomposition: Wot-no-chicken

Both wot-no-chicken models showed in Section 7.2 contain multiple processes in their

CSP specification. In this section, we practically decomposed the B+CSP model in

Figure 7.3 and Figure 7.4 into several distributed modules. Each of this decomposed

module is a combined B and CSP specification pair. All these modules are connected

together through CSP communication channels. In Section 8.2.3, we give a discussion

on this decomposition effort.

The combined model defined in Figure 7.3 and Figure 7.4 contain multiple processes,

and just one B machine for maintaining the system state. Large scale complex systems

are usually distributed system which consists of multiple locations in a network environ-

ment. Each of these locations has its own physical memory and thus maintains its own

memory state. To model such a system, it is ideal if the system model can have multiple

modules. Each of these module should maintain its own state, and can be deployed on

an independent location in the distributed system.

It is also not safe to keep all the data variables in a single state machine or memory,

because it is not easy to restrict data access control from various processes. In this

example, the B variable state consists an array of the data for indicating a kind of

status of all the philosophers. However, because all the data variables are globally

visible to all the processes, it is possible for a process to directly access, or even update

the status variables of other processes. Considering both scalability and data safe issues,

it should be better to decompose such a model into a distributed model with multiple

modules, where each module maintains its own state or physical/virtual memory, and

communicates with each other through communication channels.

First Step: Refining the CSP

The CSP specification in Figure 7.4 does not explicitly express the canteen as an entity.

In the implementation, we expect a canteen module which maintains the B state variable

canteen and runs an independent module. Therefore, for the first step, we refines the

Chapter 7 Experimentations 117

Figure 7.9: The GUI program of the combined Odd-Even model

Chapter 7 Experimentations 118

CSP specification by introducing the Canteen process. Figure 7.10 presents the new

CSP specification with the Canteen process.

MAIN = Chef [| {put} |] Canteen [| {getchicken} |] XPHIL [| {getchicken} |]
PHILS ;;

PHILS = |||X:0,1,2,3@Phil(X);;

Phil(X) = thinking.X → getchicken.X → eat.X → Phil(X);;

XPhil = getchicken.4 → eat.4 → XPhil;;

Chef = cook → put → Chef ;;

Canteen = CProc ||| PProc ;;

CProc = put → CProc ;;

PProc = getchicken.X → PProc ;;

Figure 7.10: The Wot-no-chicken example: introducing the Canteen process

Second Step: Decomposing Chef and Canteen

To decompose the B machine specified in Figure 7.3, we need to justify which the relation

between the B state variables and the CSP processes regarding the events used in each

process. In this example, the model is decomposed into three modules: Chef, Canteen

and Phils. Figure 7.11 illustrates the connections between three decomposed modules.

The specification of this decomposed model can be find in Appendix C.1.

Figure 7.11: The decomposed wot-no-chicken model: Step 2

The variable chef, which shows the number of chicken in chef’s hand, is updated by

the put and cook operations in the B machine. The two corresponding CSP channels

only appear in the Chef process. So for this variable, we can easily divide it into a new

machine for the Chef process. The new machine contains the chef variable, and the two

operations, put and cook. The situation for the put operation is more complex than that

of cook, as it also updates another B variable canteen. That means the combine event

put also belongs to another decomposed module Canteen, which contains the B variable

canteen. We decomposed the put operation into two B operations which belong to two

different modules. The Chef module has an event put1, which updates the B variable chef

Chapter 7 Experimentations 119

in the Chef machine, whereas the Canteen module has an event put2, which updates

variable canteen in the Canteen machine. The two events are connected through a

communicate channel put chicken between the two modules. The above decomposition

step transforms an atomic B operation with two parallel data transition into two B

operations on two separate B machines, and the two new B operations communicate

through a CSP channel.

The other decomposed B operation is getchicken. Although it only update the canteen

variable from the Canteen module, it is a synchronized event. The philosopher processes

synchronize with the Canteen process on this event. Although the event does not update

any state variable on the B machine of the Phils module, the philosopher processes

need the output data from this event as a data input. Therefore, the getchchicken

event is decomposed into a combined event getchicken in the Canteen module, and a

communication channel take between Canteen and Phils.

Final Step: Decomposing the Philosophers

In the previous step, all the philosopher processes still remain in the same module.

The state variable state consists of an array of natural numbers which indicate the

status of all the philosophers. The philosopher processes update the state variable using

the think and eat events. When decomposing the B machine, each array element of

state is treated as an individual state variable for its corresponding philosopher process.

As there is no direct communication or synchronization between these processes and

the state variables can be clearly decomposed, we do not need to decompose any B

operation. Each of the decomposed modules keeps a copy of the two B operations which

update its state variables. The Phils module is finally be decomposed into four normal

philosopher modules Phil, and a greedy philosopher module XPhil. In Appendix C.2,

the specification of the decomposed Phil and XPhil modules are presented.

In [But93, But96, But06], similar event-based decomposition technique has been applied

on classical B and Event-B. We give a discussion of this in Section 8.2.3.

In our experiments, each module of this decomposed model is model checked in the

PROB tool, and also translated into Java programs. Finally, we employs the composition

technique used in Section 7.3.1 to compose all the generated Java programs together.

Then we test the two Java programs, one generated from the abstract model and the

other from the decomposed model. The result does not show any difference in the

behaviours of the two programs, except the decomposed one maintains its state on

separate modules.

Chapter 8

Discussion

In this chapter, we draw some conclusions on the current development of this work,

and discuss related techniques. We also propose several possible future research and

development areas, which can improve the scalability and usability of this work.

8.1 Conclusions

This work was motivated by the recent trends on integrating state- and event- based

formal methods for achieving a more expressive specification language. Our work is

to implement such a combined B and CSP specification [BL05] in the Java language.

The JCSP package [WM00b] gave us an important inspiration on constructing runnable

applications from formal specifications.

We first examined the B+CSP semantics in PROB, and found it is too flexible and non-

deterministic for implementation purposes. Thus, we developed a restricted semantics

for combining B operations and CSP channels. The restriction is weak enough to allow

most B+CSP models in PROB to be expressed, and is also strong enough to give clear

synchronization and dataflow patterns between B operations and CSP channels, mak-

ing it possible to be implemented in a conventional programming language, e.g. Java.

The synchronization pattern of the restricted semantics is a multi-way synchronizing

rendezvous: multiple CSP processes can synchronize on a combined event; the CSP

channel and the B operation of a combined event need to synchronize with each other

on the enablement of the event; there are state changes inside the combined event.

We also introduced the JCSProB package, which implements the restricted B+CSP

semantics in Java. Although the development of the package is inspired by the develop-

ment of JCSP and is partially based on JCSP, it is different from JCSP because of the

semantics of B+CSP. The target of combined event implementations is to implement the

multi-way synchronizing rendezvous pattern. We argue that in order to provide a safe

120

Chapter 8 Discussion 121

and effective multi-way synchronization implementation, the guarded external choice

decisions of a system should be made in a sequential order. Thus we implemented a

multi-way synchronization for the JCSProB event classes using a similar algorithm to

[Bag89]. We also presented a new thread/process mechanism, which targets providing

a memory-efficient solution for implementing CSP recursion. In the implementation,

a process object can create and call a new process object without causing Java stack

overflow error. This allows complex mutual recursions to be used in the CSP part of

the combined specification. Additionally, we also developed a GUI package for the Java

programs constructed with JCSProB. The GUI package and the configuration file al-

low user interactions with the underlying JCSProB programs. The GUI package also

supports runtime checking on invariants, and user-defined assertions.

We constructed a set of translation rules, which formally define the correspondence

between the B+CSP specification language and Java/JCSProB. We also developed an

automated translation tool for implementing the translation rules. The translation tool

is developed as an add-on to the PROB tool, which means users can automatically

generate runnable Java programs from developed B+CSP specifications in PROB.

We tested and evaluated this work through a number of experiments. We evaluated

the expressivity of the restricted B+CSP semantics, explore the coverage of both the

semantics and the translation. The examples are also tested with fairness assertions to

evaluate their behavioural properties. The scalability of this development strategy was

also discussed with practical composition and decomposition efforts.

8.2 Related Works and Discussions

8.2.1 The Circus Translation

In Section 2.3.1.5, we introduced the Circus [WC01] specification language, and in Sec-

tion 3.3.4 briefly discussed the automated translation [OC04, FC06] from Circus to Java

programs using JCSP [WM00b]. It probably is the most closely related work to ours as

it also translates integrated state- and event-based formal specifications into Java pro-

grams, and makes use of the JCSP package in its translation. Furthermore, it develops

a GUI for user interaction with the generated Java programs.

A significant advantage of Circus is that it has formally defined refinement and composi-

tion rules for the integrated models, whereas such rules are still unavailable for B+CSP.

With the refinement technique, an abstract Circus model can be developed into concrete

models with refinement proofs. Therefore, currently, the Circus translation is based on a

more mature integrated formal model, and provides a better scalability on development

than our approach. More discussion on this issue can be found in Section 8.2.4.

Chapter 8 Discussion 122

The Circus translation makes use of the JCSP package to implement the semantics of

the Circus specification language. However, as JCSP is mainly based on CSP/occam,

the translation has many limitations. For example, it only allows use of the JCSP

communication channels and barrier for communication. It does not support external

choice with multi-way synchronization. Therefore, the Circus semantics that can be

put into the translation are restricted. The restriction is mainly because of the incom-

patibility between the different CSP subsets [OC04] supported by Circus and JCSP.

In Section 5.1.2, we described pragmatic difficulties (memory problems) in the direct

implementation in JCSP of unbounded mutual tail recursion (a common idiom in CSP).

This was solved with a new thread/process mechanism that efficiently hands over the

executing thread of one process to another, allowing the memory resources of the first

process to be reclaimed. Surprisingly, the Circus translation allows an existing process

to directly create and call new process objects without modifying the thread/process

structure in JCSP.

The GUI programs generated by the Circus translator contain simple graphical inter-

faces, and allow limited interaction with the user. Neither the system behaviours nor

the system states are clearly displayed on the GUI. Our GUI package provides a bet-

ter interaction with the user, and the GUI are configurable and extendable. Also, our

GUI package supports runtime checking on invariants and user defined assertions, which

presents useful features for evaluating behaviour properties of the generated Java pro-

grams.

8.2.2 Event-B and RODIN

The Event-B language [MAV05b] has recently evolved from the classical B-Method

[Abr96] as a new generation of state-based formal modelling and development method-

ology. It has been developed as an essential part of the EU project RODIN. Unlike

classical B, Event-B does not have a fixed syntax definition, which provides better ex-

pandability to new language constructs. The RODIN tool platform [ABHV06] is an

open development environment for Event-B. Basically, it provides modeling, refinement

and mathematical proof support for Event-B specifications.

Ongoing development in Event-B includes a RODIN plug-in development which maps an

intermediate language, Object- oriented Concurrent-B (OC-B), to both Event-B models

and Java programs. The new notation sits at the interface between Event-B and Java.

A model specified using OC-B can be used for building a formal Event-B model. It is

also can be translated into concurrent Java program. At the time of writing, this work

remains unpublished.

It would be very useful to evolve the integrated B+CSP specifications from classical B to

Event-B, and move the development environment from PROB to the RODIN platform.

Chapter 8 Discussion 123

As the semantics of Event-B is based on that of classical B, it would be feasible to

develop an integrated Event-B and CSP model. Also, as Event-B and the RODIN

platform provide very good expandability, it should not be difficult to introduce CSP

to Event-B, or implement the translation in the RODIN platform. The definition of the

integrated Event-B and CSP semantics, as well as its refinement and composition rules,

would be the most important part of this future development.

8.2.3 Composition and Decomposition of B+CSP models

Being an event-based formal approach, CSP has a convenient way to practise composi-

tion and decomposition. The sequential and parallel composition structures can easily

model the composition between different subsystems. Processes from different subsys-

tems can use shared events to interact and communicate with each others.

A system model in B is an action system [BKS83b], which consists a number of state

variables and uses some guarded atomic operations to change the system state. A B

model specifies an isolated reactive system. For large scale, distributed systems, the

system model should be able to be decomposed into parallel subsystems. Each of these

subsystems maintains its own state, and can be refined or further decomposed into more

concrete models.

In both the classical B method and the new Event-B, there are composition and de-

composition approaches for constructing large-scale distributed system. In [MAV05a],

a state-based composition and decomposition is proposed for the Event-B specification

language. This technique is based on shared variables between subsystems. The shared

variables are forced to be refined in the same functional manner on different subsystems.

This restriction creates dependency among compositional subsystems.

On the other hand, Butler developed an event-based composition and decomposition

technique [But93, But96, But97, But06] for both classical B and Event-B. The event-

based composition and decomposition approach models the interaction between subsys-

tems using message passing on shared actions. The idea this approach is based on the

CSP semantics, and the correspondence between action systems and CSP, which was

introduced in [Mor90].

In principle, an abstract B+CSP model should be able to be decomposed into a com-

positional model with multiple subsystems. To carry out such a system development,

it would be better to decompose the system specification in the early design stages of

the development process. Then each subsystem can be refined or further decomposed

independently. A subsystem maintains its own state variables in the B machine, and

the CSP specification defines the behaviour of the subsystem. It uses internal data

transitions from the B part to change the state of the system. The CSP part of the

combined specification specifies behaviours of the system, and the communication with

Chapter 8 Discussion 124

other subsystems. Composition and decomposition rules should define the allowed trans-

formation for decomposing an abstract model into parallel subsystems, and the formal

proofs for verifying their refinement. One important feature of the composition rule is

that a subsystem should be refined or further decomposed independently from the rest

the system.

Unfortunately, the composition and decomposition rules of B+CSP have not been for-

mally defined, and PROB only supports model checking on one B and CSP specification

pair. The CSP‖B approach developed a composition technique [ST05] for its combined

model through message passing. In CSP‖B, a B machine communicates with its CSP

controller, and various CSP controllers can communicate with each other through shared

CSP channels. So far as we know, there is no direct tool support for the CSP‖B models,

so it provides a compositional verification approach, which includes several steps using

various tools, to verify the consistency of the compositional models.

Arguably, the restricted semantics of B+CSP discussed in Section 4.3 is very close to

the semantics of CSP‖B models. It should be possible to develop a similar composition

technique for B+CSP models. In Section 7.3, we tested a CSP‖B example from [STE05]

in the PROB environment. We model checked the two compositional components sep-

arately, and generated Java programs from the two models. Although we still cannot

combine the verification results from PROB into a compositional correctness proof, the

effort of model checking a CSP‖B component using PROB can still help the CSP‖B
development by simplifying the verification procedures. We believe it is also possible to

establish a connection between the CSP‖B and B+CSP approaches.

The practical composition and decomposition efforts in Section 7.3 can also be compared

with the event-based composition and decomposition technique used in [But96] and

[But06]. Although that approach is based on pure state-based formal specifications, the

composition of multiple B/Event-B machines is defined based on the CSP semantics

and Morgan’s work in [Mor90]. The composition of B operations (or Event-B events)

from different machines are composed using parallel and hiding semantics from CSP. It

would be ideal if we can utilize the formal basis of this technique to develop a similar

composition for B+CSP.

Comparing the experimental attempts in Section 7.3 with existing composition/decom-

position approaches shows that it is possible to develop a similar compositional develop-

ment technique for B+CSP. Also, the JCSProB package and the translation showed good

support for this potential composition approach. Developing such formal composition

rules and technique would be a promising future work for the B+CSP development.

Chapter 8 Discussion 125

8.2.4 Refinement Rules for B+CSP

Currently, refinement rules for B+CSP are also unavailable, which means the user does

not have systematic techniques for developing B+CSP models.

Circus [WC01], which also integrates state- and event- based formal methods, has de-

veloped refinement rules [CSW03] for its combined specification. The refinement rules

of Circus inherit the correct-by-construction style refinement rules from the Z method,

and extend them with refinement rules for the CSP part. The correct-by-construction

style refinement defines a series of rules on the transformations from an abstract model

to a more concrete one. Each of these transformation steps guarantees refinement. As

the transformation targets, which the user can get, are strictly defined in the refinement

rules, it sometimes restricts the freedom of development.

The refinement development in the B method is slightly different. It employs a posit-

and-prove approach, in which the developer provides both the abstract and refinement

models. The refinement rules define what kinds of proof obligations need to be proved

to guarantee refinement, and usually this step is done by the proof obligation generation

tool. Many proof obligations can be proved automatically using theorem provers. In

some cases, gluing invariants need to be introduced to help proving some proof obliga-

tions, which cannot be automatically proved by the prover.

The user gets more freedom on building the refinement model from the posit-and-prove

approach. But it is not so easy to define the refinement rules for discovering proof

obligations. Especially, for the integrated formal specifications, it is more difficult to

define proof obligation rules across various specification languages. That is the main

reason why there are still no refinement rules for the B+CSP model.

One possible solution is restricting the allowable refinement transformation for B+CSP

using the correct-by-construction style refinement rules. There also should be posit-and-

prove rules which are used to generate proof obligations for handling the possible side

conditions brought by the correct-by-construction rules. This can reduce the complexity

of defining such refinement rules, although it would probably limit the development of the

refinement model at the same time. Certainly, more investigation work is still required

to justify a proper method for developing such a solution. It would be a very important

breakthrough for the B+CSP development to have the refinement rules developed.

8.2.5 Compatibility with JCSP

Although we developed a new JCSProB package, many JCSP classes are also used in

the development. The main compatibility issue between JCSP and JCSPorB is on our

implementation of external choice in JCSProB. In Section 5.2, we explained that a

combined JCSProB event object cannot be put into the same external choice with a

Chapter 8 Discussion 126

JCSP channel object, because we implement the external choice with a different class

Alter from the Alternative class used in JCSP.

That is because when we started to develop the JCSProB package, the AltingBarrier

class, which supports guarded external choice with multi-way synchronization, still had

not been introduced to the JCSP package. Now as the multi-way synchronization has

been fully implemented in JCSP, it is possible to re-implement the synchronization

guard of the combined B+CSP event using the AltingBarrier class. That would make

the event classes using compatible synchronization guards as the JCSP channels, and

would remove the current restriction on external choice.

In Section 5.5.4, we discussed the extra cost introduced by the JCSProB thread container

in sequential composition. Each child process introduces a new thread container, which

can be unnecessary in many cases. A possible solution is proposed. Before running a

child process object in a sequential composition, we first test if the process introduce

recursion. If yes, the process object should be run inside a new thread container, oth-

erwise, it should be run just inside the thread container of the parent process to avoid

extra cost. To test the if a process has recursion, the process or its thread container

needs to keep a tree of its descendant process objects. And the tree needs to be built

when the process object is created, and before the process starts to run. We will compare

the cost introduced by the this solution with the current one to see if it is substantial

to implement such a feature.

8.2.6 Formal Correctness Verification for the JCSProB

A correctness verification for the translation is also a potential future development.

In [RRS03, OC04], the translations are discussed without considering the correctness

proofs. Formal verification which proves the correctness of the translation in terms of

semantic models of the specification and Java programs respectively would be the best

solution. We propose a more modest approach based on [WM00a] for future work.

In [WM00a], the correctness of the JCSP communication channel classes is verified. Each

JCSP channel class (i.e. Java implementation) is formally specified as a CSP model. The

desired channel behaviour (which the JCSP class implements) is also specified using CSP.

The FDR tool [For03] is employed to verify equivalent between the two CSP models.

The proving strategy starts with the simple One2OneChannel class without alternation,

and gradually builds formal models for more complex JCSP channel classes.

To verify the correctness of the event class in JCSProB, a similar strategy is proposed

to prove that the Java implementation refines the B+CSP semantics. First, a B+CSP

model for the event class is constructed. Then, the concerned behaviour of the combined

B+CSP event is also specified using B+CSP. As the PROB tool supports refinement

Chapter 8 Discussion 127

checking between B+CSP models, we can check if the event class correctly implements

the B+CSP semantics.

Constructing B+CSP models for the JCSProB implementations of the B+CSP events

with full functionality would be a difficult task. It would be better to starting with ab-

stract models of event classes with limited functionality, and gradually building concrete

models with more complex B+CSP semantics.

Appendix A

Translation Rules

Rule 0. Translator⇒BStateClassBSetClasses⌈BSets⌋Pro
essClasses⌈Procs⌋EventClasses⌈Evs⌋
{XMLConfiguration}[GUI]MainClass

B+CSP: Clause sets ⊢ ‘SETS’ BSets

Supplement: Procs include all the CSP processes in the B+CSP model

Supplement: Evs include all the B+CSP events in the B+CSP model

Rule 1. BStateClass⇒Pa
kageDefClassHeader
public class Ma
hName‘ ’machine extends JcspVar{VarsDe
l⌈Vars⌋ConstsDe
l⌈Consts⌋BStateConstru
torBStateChe
k

{BVarsVe
}[GUI]

}

B+CSP: Clause variables ⊢ ’VARIABLES’ Vars

B+CSP: Clause constants ⊢ ’CONSTANTS’ Consts

128

Appendix A Translation Rules 129

Rule 1.1. VarsDe
l⌈Vars⌋ ⇒ VarDe
l⌈Var⌋∗

B+CSP: V ars ⊢ V ar∗

Rule 1.1.1. VarDe
l⌈Var⌋ ⇒ Type⌈Var⌋ Var Name⌈Var⌋ ‘;’

Rule 1.2. ConstsDe
l⌈Consts⌋ ⇒ ConstDe
l⌈Const⌋∗

B+CSP: Consts ⊢ Const∗

Rule 1.2.1. ConstDe
l⌈Const⌋ ⇒ Type⌈Const⌋ Var Name⌈Const⌋ ‘;’

Rule 1.3. BStateConstru
tor⇒
public Ma
hName‘ ’machine‘(’String MachName‘)’{

super‘("’MachName‘");’VarsInit⌈Vars⌋ConstsInit⌈Consts⌋
{ buildArgVec‘();’ }[GUI]

B+CSP: Clause variables ⊢ ’VARIABLES’ Vars

B+CSP: Clause constants ⊢ ’CONSTANTS’ Consts

Rule 1.3.1. VarsInit⌈Vars⌋ ⇒ VarInit⌈Var⌋∗

B+CSP: V ars ⊢ V ar∗

Rule 1.3.2. VarInit⌈Var⌋ ⇒

this‘.’ Var Name⌈Var⌋ ‘=’ BExpr⌈Var Init⌋ ‘;’

Supplement: Var Init is the initialization information for the variable Var from the

INITIALISATION clause of the B part.

Rule 1.3.3. ConstsInit⌈Consts⌋ ⇒ ConstInit⌈Const⌋∗

B+CSP: Consts ⊢ Const∗

Appendix A Translation Rules 130

Rule 1.3.4. ConstInit⌈Const⌋ ⇒

this‘.’ Var Name⌈Const⌋ ‘=’ BExpr⌈Const Init⌋ ‘;’

Supplement: Const Init is the initialization information for the variable Const from the

PROPERTIES or VALUES clause of the B part.

Rule 1.4. BStateChe
k⇒
public synchronized void check‘(){’

try‘{’
if‘(!(’ BInvs ‘)){’

System‘.’out‘.’println

‘("’Invariant check failed‘!");’

{RecordsFrame‘.’getInstant‘().’terminate‘();’}[GUI]

this‘.’terminate‘();’

‘}’Ex
eptionHandler
‘}’

Rule 2. BSetClasses⌈BSets⌋ ⇒ BSetClass⌈BSet⌋∗

B+CSP: BSets ⊢ BSet+
′;′

Rule 2.1. BSetClass⌈BSet⌋ ⇒Pa
kageDefClassHeader
public enum Print⌈BSetName⌋ ‘{’Print⌈Iden⌋+′,′

‘}’

B+CSP: BSet ⊢ BSetName′ = {′ Iden+′,′ ′}′

Rule 3. Pro
essClasses⌈Procs⌋ ⇒ Pro
essClass⌈Proc⌋∗

B+CSP: Procs ⊢ Proc∗

Appendix A Translation Rules 131

Rule 3.1. Pro
essClass⌈Process⌋ ⇒Pa
kageDefClassHeader
public class Pro
ClassName⌈ProcName⌋ extends
{BCSProcess}[NoGUI] | {BGProcess}[GUI] ‘{’Pro
ChsDe
l⌈Chs⌋Pro
VarsDe
l⌈V ars⌋Pro
Constru
orPro
Run⌈ProcBody⌋
’}’

B+CSP: Proc ⊢ ProcHeader ‘=’ ProcBody

B+CSP: ProcHeader ⊢ ProcName {’(’VarsList’)’}
Supplement: Chs consists of all the channels/events called by the process, or its sub-

process

Supplement: Vars consists of all the variables used in the process

Rule 3.2. Pro
ChsDe
l⌈Chs⌋ ⇒ Pro
ChDe
l⌈Ch⌋∗

Supplement: Chs ⊢ Ch∗

Rule 3.2.1. Pro
ChDe
l⌈Ch⌋ ⇒ChannelType⌈Ch⌋ ChObjName⌈Ch⌋ ‘;’

Rule 3.3. Pro
VarsDe
l⌈ProcVars⌋ ⇒ Pro
VarDe
l⌈ProcVar⌋∗

Supplement: ProcV ars ⊢ ProcV ar∗

Rule 3.3.1. Pro
VarDe
l⌈ProcVar⌋ ⇒Type⌈ProcVar⌋ Pro
VarObj⌈ProcVar⌋ ‘;’

Rule 3.4. Pro
Constru
tor⇒
public Pro
ClassName⌈ProcName⌋ ‘(’ ‘(’Pro
ChsTypeList⌈Chs⌋ ‘,’

{ChannelOutput conf ‘,’}[GUI]

Appendix A Translation Rules 132Pro
VarsTypeList⌈Vars⌋‘){’
{super()‘;’}[NoGUI] | { super(conf)‘;’ }[GUI]Pro
ChsAssign⌈Chs⌋Pro
VarsAssign⌈ExtVars⌋

‘}’

B+CSP: ProcHeader ⊢ ProcName {’(’VarsList’)’}
Supplement: Chs is all the channels/evnets involved in this process or its sub-processes.

Supplement: Vars is all the variables involved in this process.

Supplement: ExtVars is all the external variables in VarsList of the ProcHeader defini-

tion.

Rule 3.4.1. Pro
ChsTypeList⌈Chs⌋ ⇒ Pro
ChType⌈Ch⌋+′,′

Supplement: Chs ⊢ Ch∗

Rule 3.4.1.1. Pro
ChType⌈Ch⌋ ⇒ ChannelType⌈Ch⌋ ChObjName⌈Ch⌋

Rule 3.4.2. Pro
VarsTypeList⌈ProcVars⌋ ⇒Pro
VarType⌈ProcVar⌋+′,′

Supplement: ProcV ars ⊢ ProcV ar∗

Rule 3.4.2.1. Pro
VarType⌈ProcVar⌋ ⇒ Type⌈ProcVar⌋ Pro
VarObj⌈ProcVar⌋

Rule 3.4.3. Pro
ChsAssign⌈Chs⌋ ⇒ Pro
ChAssign⌈Ch⌋∗

Supplement: Chs is all the channels/evnets involved in this process or its sub-processes.

Supplement: Chs ⊢ Ch∗

Rule 3.4.3.1. Pro
ChAssign⌈Ch⌋ ⇒
this‘.’ChObjName⌈Ch⌋ ‘=’ ChObjName⌈Ch⌋ ‘;’

Rule 3.4.4. Pro
VarsAssign⌈ProcVars⌋ ⇒ Pro
Assign⌈ProcVar⌋∗

Supplement: ProcV ars ⊢ ProcV ar∗

Appendix A Translation Rules 133

Rule 3.4.4.1. Pro
VarAssign⌈ProcVar⌋ ⇒
this‘.’Pro
VarObj⌈ProcVar⌋ ‘=’ Pro
VarObj⌈ProcVar⌋‘;’

Rule 3.5. Pro
Run⌈ProcBody⌋ ⇒
public void run‘(){’

{this‘.’createGUIProc‘();’}[GUI]

{start‘();’}[GUI]Pro
E⌈ProcBody⌋
{ end‘();’}[GUI]

‘}’

Rule 3.6. Pro
E⌈ProcB⌋ ⇒Pro
EParallel⌈ProcBParallel⌋
| Pro
EReplParallel⌈ProcBReplParallel⌋
| Pro
EInterleave⌈ProcBInterleave⌋
| Pro
EReplInterleave⌈ProcBReplInterleave⌋
| Pro
ESequen
e⌈ProcBSequence⌋
| Pro
EIfThen⌈ProcBIfThen⌋
| Pro
EPrefix⌈ProcBPrefix⌋
| Pro
EChoi
e⌈ProcBChoice⌋
| Pro
EReplChoi
e⌈ProcBReplChoice⌋
| Pro
ECall⌈ProcBCall⌋

B+CSP: ProcBody ⊢ ProcBParallel

| ProcBReplParallel

| ProcBInterleave

| ProcBReplInterleave

| ProcBSequence

| ProcBIfThen

| ProcBPrefix

| ProcBChoice

| ProcBReplChoice

| ProcBCall

Rule 3.6.1. Pro
EParallel⌈ProcBParallel⌋ ⇒ParaChsNums⌈Chs⌋
{ new CSParallel‘(’ }[NoGUI] | { parallelCtrl‘(’ }[GUI]

Appendix A Translation Rules 134

{ new BCSProcess‘[]{’ }[NoGUI] | { new BGProcess‘[]{’ }[GUI]CallPro
⌈Proc⌋+′,′

‘}’
{ ‘)’.run‘();’ }[NoGUI] | { ‘);’ }[GUI]

B+CSP: ProcBParallel ⊢ Proc+′‖′

Supplement: Chs includes all the B+CSP events that have multi-way synchronizing.

Supplement: Procs includes all the process in the parallel composition.

Rule 3.6.2. ParaChsNums⌈Chs⌋ ⇒ ParaChNums⌈Ch⌋∗

Supplement: Chs ⊢ Ch∗

Rule 3.6.2.1. ParaChNums⌈Ch⌋ ⇒ChObjName⌈Ch⌋‘.’inc‘ ’syn‘ ’proces‘ ’no‘(’ Integer ‘);’
Supplement: Rule Integer here should be the number of processes which synchronize

on the event Ch.

Rule 3.6.3. Pro
EReplParallel⌈ProcBReplParallel⌋ ⇒ParaChsNums⌈Chs⌋
{ new CSParallel‘(’ }[NoGUI] | { parallelCtrl‘(’ }[GUI]

{ new BCSProcess‘[]{’ }[NoGUI] | { new BGProcess‘[]{’ }[GUI]CallPro
⌈Proc⌋+′,′

‘}’
{ ‘)’.run‘();’ }[NoGUI] | { ‘);’ }[GUI]

B+CSP: ProcBReplParallel ⊢ [| {Chs} |]x ∈ N@Proc

Rule 3.6.4. CallPro
⌈Proc⌋ ⇒ CallPro
New⌈Proc⌋ | CallPro
Existing⌈Proc⌋

Supplement: The rule CallPro
Existing is applied when a named process is called.

Rule 3.6.4.1. CallPro
New⌈Proc⌋ ⇒
{new BCSProcess‘(){’}[NoGUI] | { new BGProcess‘(){’ }[GUI]

Appendix A Translation Rules 135

public void run‘(){’
{this‘.’createGUIProc‘();’}[GUI]

{start‘();’}[GUI]Pro
E⌈ProcBody⌋
{ end‘();’}[GUI]

‘}’
‘}’

B+CSP: Proc ⊢ ProcName′ =′ ProcBody

Rule 3.6.4.2. CallPro
Exist⌈Proc⌋ ⇒
new Pro
ClassName⌈ProcName⌋‘(’Pro
ChsList⌈Chs⌋

{ configure‘,’ }[GUI]Pro
VarsList⌈V ars⌋
‘)’

B+CSP: Proc ⊢ ProcName′ =′ ProcBody

Supplement: Chs includes all the channels/events called by the process

Supplement: ProcV ars includes all the process variables in the process

Rule 3.6.4.3. Pro
ChsList⌈Chs⌋ ⇒ ChObjName⌈Ch⌋+′,′

Supplement: Chs ⊢ Ch∗

Rule 3.6.4.4. Pro
VarsList⌈V ars⌋ ⇒ Pro
VarObj⌈V ar⌋+′,′

Supplement: V ars ⊢ V ar∗

Rule 3.6.5. Pro
EInterleave⌈ProcBInterleave⌋ ⇒
{ new CSParallel‘(’ }[NoGUI] | { parallelCtrl‘(’ }[GUI]

{ new BCSProcess‘[]{’ }[NoGUI] | { new BGProcess‘[]{’ }[GUI]CallPro
⌈Proc⌋+′,′

‘}’

Appendix A Translation Rules 136

{ ‘)’.run‘();’ }[NoGUI] | { ‘);’ }[GUI]

B+CSP: ProcBInterleave ⊢ Proc+′|||′

Rule 3.6.6. Pro
EReplInterleave⌈ProcBReplInterleave⌋ ⇒
{ new CSParallel‘(’ }[NoGUI] | { parallelCtrl‘(’ }[GUI]

{ new BCSProcess‘[]{’ }[NoGUI] | { new BGProcess‘[]{’ }[GUI]CallPro
⌈Proc⌋+′,′

‘}’
{ ‘).’run‘();’ }[NoGUI] | { ‘);’ }[GUI]

B+CSP: ProcBInterleave ⊢ ||| x ∈ N@Proc

Rule 3.6.7. Pro
ESequen
e⌈ProcBSequence⌋ ⇒
{ new CSPSequence‘(’ }[NoGUI] | { sequenceCtrl‘(’ }[GUI]

{ new BCSProcess‘[]{’ }[NoGUI] | { new BGProcess‘[]{’ }[GUI]CallPro
⌈Proc⌋+′,′

‘}’
{ ‘).’run‘();’ }[NoGUI] | { ‘);’ }[GUI]

B+CSP: ProcBSequence ⊢ Proc+′;′

Rule 3.6.8. Pro
EIfThen⌈ProcBIfThen⌋ ⇒
if‘(’ Pro
Cond⌈CSPCdtn⌋ ‘({’Pro
E⌈ProcB⌋
‘}’
{ else‘{’Pro
E⌈ProcB⌋
‘}’ }

B+CSP: ProcBIfThen ⊢ ′if ′CSPCdtn′then′ProcE{′else′ProcE}

Rule 3.6.9. Pro
EPrefix⌈ProcBPrefix⌋ ⇒ChannelCalls⌈ChCall⌋Pro
E⌈ProcB⌋

Appendix A Translation Rules 137

B+CSP: ProcBPrefix ⊢ ChCall→ ProcB

Rule 3.6.9.1. ChannelCalls⌈ChCall⌋ ⇒CombinedEventCall⌈ChCall⌋ | CommChannelCall⌈ChCall⌋

Rule 3.6.9.2. CombinedEventCall⌈ProcB⌋ ⇒EventCall⌈ChCall⌋ | EventReturn⌈ChCall⌋

Rule 3.6.9.3. EventCall⌈Ev⌋ ⇒
{ChObjName⌈Ev⌋ ‘.’ready‘(’

{ inputVec‘(’newObject‘[]{’CSPExprList⌈CSPExpr∗⌋
‘}’ }

‘);’ }[NoGUI]

| { channelCall‘(’ChObjName⌈Ev⌋ ‘.’ready‘(’
{ ‘,’inputVec‘(’newObject‘[]{’CSPExpsList⌈CSPExpr∗⌋
‘}’ }

‘);’ }[GUI]

CSP: Ev ⊢ EvName’ !’CSPExpr∗

B: Ev ⊢ EvName’(’Exprs’)’

Rule 3.6.9.4. EventReturn⌈Ev⌋ ⇒
{ ‘{’ Vector‘<’Object‘>’ rtnVec ‘=’ ChObjName⌈Ev⌋ ‘.’ready‘(’

{ inputVec‘(’newObject‘[]{’CSPExprList⌈InExpr∗⌋
‘}’ }

‘);’EventReturnValues⌈OutV ars⌋
}[NoGUI]

| { ‘{’ Vector‘<’Object‘>’ rtnVec ‘=’ channelCall‘(’ChObjName⌈Ev⌋ ‘.’ready‘(’
{ ‘,’inputVec‘(’newObject‘[]{’CSPExprList⌈InExpr∗⌋
‘}’ }

Appendix A Translation Rules 138

‘);’EventReturnValues⌈OutV ars⌋
}[GUI]

CSP: Ev ⊢ EvName’ !’InExpr∗’?’OutVars

B: Ev ⊢ OutVars ← EvName’(’InVars’)’

Rule 3.6.9.4.1. EventReturnValues⌈V ars⌋ ⇒ EventReturnValue⌈V ar⌋∗

Supplement: V ars ⊢ V ar∗

Rule 3.6.9.4.2. EventReturnValue⌈V ar⌋ ⇒Pro
VarObj⌈V ar⌋ ‘=’ rtnVec.elementAt‘(’ Integer ‘);’
Supplement: The Integer values are recursively generated from Rule 3.6.9.4.1

Rule 3.6.9.5. CommChannelCall⌈Ch⌋ ⇒CommChannelRead⌈InputCh⌋ | CommChannelWrite⌈OutputCh⌋

CSP: Ch ⊢ InputCh | OutputCh

Rule 3.6.9.5.1. CommChannelRead⌈InputCh⌋ ⇒
{Pro
VarObj⌈V ar⌋ ‘=’ChObjName⌈ChName⌋ ‘.’read‘();’ }[NoGUI]

| { Pro
VarObj⌈V ar⌋ ‘=’ channelRead‘(’ChObjName⌈ChName⌋ ‘,"’ ChObjName⌈ChName⌋
‘");’ }[GUI]

CSP: InputCh ⊢ ChName’?’V ar

Rule 3.6.9.5.2. CommChannelWrite⌈OutputCh⌋ ⇒
{ChObjName⌈ChName⌋ ‘.’write‘(’Pro
VarObj⌈V ar⌋ ‘);’ }[NoGUI]

| { { channelWrite‘(’ChObjName⌈ChName⌋ ‘,"’ ChObjName⌈ChName⌋ ‘",’Pro
VarObj⌈V ar⌋
‘");’ }[GUI]

Appendix A Translation Rules 139

CSP: InputCh ⊢ ChName’?’V ar

Rule 3.6.10. Pro
EChoi
e⌈ProcBChoice⌋ ⇒Pro
EChoi
eJCSProB⌈ProcBChoice⌋
| Pro
EChoi
eJCSP⌈ProcBChoice⌋

Rule 3.6.10.1. Pro
EChoi
eJCSProB⌈ProcBChoice⌋ ⇒
BCSPGuard‘[]’ in ‘=’ ‘{’ Pro
ChsList⌈ProcBPrefix∗⌋ ‘};’
Vector‘<’Vector‘<’Object‘>>’ choiceVec

‘=’ new Vector‘<’Vector‘<’Object‘>>();’Choi
eValueAssign⌈ProBPrefix∗⌋
{ Alter alt ‘= ’new Alter‘(’in‘,’ choiceVec ‘);’

switch‘(’alt‘.’select‘()){’Choi
es⌈ProBPrefix∗⌋
‘}’ }[NoGUI]

| { switch‘(’choiceCtrl‘(’in‘,’choiceVec‘)){’Choi
e⌈ProcBPrefix∗⌋
‘}’ }[GUI]

CSP: ProcBChoice ⊢ ProcBPrefix+′
�

′

Rule 3.6.10.1.1. GuardsList⌈ProcBPrefix∗⌋ ⇒ ChObjName⌈Ev⌋+‘,′

CSP: ProcBPrefix ⊢ Ev → ProcB

Rule 3.6.10.1.2. Choi
eValueAssign⌈ProcBPrefix⌋ ⇒
{ choiceVec‘.’addElement‘(’inputVec‘(’new Object‘[]{’CSPExprList⌈CSPExpr∗⌋
‘}))’

CSP: ProcBPrefix ⊢ Ev → ProcB

CSP: Ev ⊢ EvName′!′CSPExpr∗ | EvName’ !’CSPExpr∗’?’OutV ars

Rule 3.6.10.2. Pro
EChoi
eJCSP⌈ProcBChoice⌋ ⇒
Guard‘[]’ in ‘=’ ‘{’ Pro
ChsList⌈ProcBPrefix∗⌋ ‘};’

Appendix A Translation Rules 140

Alternative alt ‘= ’new Alternative‘(’in‘);’ {
switch‘(’alt‘.’select‘()){’Choi
es⌈ProBPrefix∗⌋
‘}’ }[NoGUI]

| { switch‘(’choiceCtrl‘(’in‘,’null‘)){’Choi
e⌈ProcBPrefix∗⌋
‘}’ }[GUI]

CSP: ProcBChoice ⊢ ProcBPrefix+′
�

′

Rule 3.6.10.3. Choi
e⌈ProcBPrefix∗⌋ ⇒
case Integer ‘:’Choi
eRtnEv⌈ProcBPrefix⌋

| Choi
eRtnEvValue⌈ProcBPrefix⌋
| Pro
E⌈ProcBPrefix⌋
break‘;’

‘}’

CSP: ProcBPrefix ⊢ ChCall→ ProcB

Supplement: When ChCall is a B+CSP event without output data, chooseChoi
eRtnEv
Supplement: When ChCall is a B+CSP event with output data, chooseChoi
eRtnEvValue
Supplement: When ChCall is a CSP communication channel, choose Pro
E
Supplement: The rule Integer provides various values for all different repeatable in-

stances of ProcBPrefix. It starts with 0, increasing by 1 each time.

Rule 3.6.10.3.1. Choi
eRtnEv⌈ProcBPrefix⌋ ⇒ Pro
E⌈ProcB⌋
CSP: ProcBPrefix ⊢ Ev → ProcB

Rule 3.6.10.3.2. Choi
eRtnEvValue⌈ProcBPrefix⌋ ⇒
{ ‘{’

Vector‘<’Object‘>’ rtnVec

‘=’ ChObjName⌈ChName⌋ ‘.’output‘ ’return‘();’EventReturnValues⌈OutV ars⌋
‘}’ }[NoGUI]

| { ‘{’
Vector‘<’Object‘>’ rtnVec

‘=’ choiceRtn‘(’ ChObjName⌈ChName⌋ ‘);’

Appendix A Translation Rules 141EventReturnValues⌈OutV ars⌋
‘}’ }[GUI]

CSP: ProcBPrefix ⊢ Ev’?’OutV ars | Ev’ !’CSPExpr∗’?’OutV ars→ ProcB

Rule 3.6.11. Pro
EReplChoi
e⌈ProcBReplChoice⌋ ⇒Pro
EChoi
e⌈ProcBChoice⌋

Rule 3.6.12. Pro
ECall⌈ProcBCall⌋ ⇒
nextProcCtrl‘(’ CallPro
Exist(ProBCall) ‘);’

Rule 4. EventClasses⌈Evs⌋ ⇒ EventClass⌈Ev⌋∗
Supplement: Evs ⊢ Ev∗

Rule 4.1. EventClass⌈Ev⌋ ⇒Pa
kageDefClassHeader
public class EventClassName⌈Ev⌋ extends EventType⌈Ev⌋ ‘{’Ma
hName‘ ’machine var‘;’EventVarsDe
l⌈BOpV ars⌋EventConstru
tor⌈Ev⌋

{EventInputMethod⌈BInV ars⌋}
{EventOutputMethod⌈BOutV ars⌋}EventRun⌈BOpBody⌋
{EventPre
ondition⌈BOpBody⌋}

‘}’

B: Ev ⊢ BOutV ars← EvName′(′BInV ars′)′BOpBody

Supplement: BOpV ars ⊢ BOpInV arsBOpOutV arsy

Rule 4.2. EventVarsDe
l⌈BOpV ars⌋ ⇒
{BVarType⌈BOpV ar⌋Print⌈BOpV ar⌋}+′;′

B: BOpV ars ⊢ BOpV ar+′,′

Rule 4.3. EventConstru
tor⌈Ev⌋ ⇒
public EventClassName⌈Ev⌋ ‘(’Ma
hName ‘ ’machine var‘,’Block block‘){’

Appendix A Translation Rules 142

this‘.’var ‘=’ var‘;’

this‘.’block ‘=’ block‘;’

this‘.’setChName‘(’this‘.’getClass‘().’getSimpleName‘());’

‘}’

Rule 4.4. EventInputMethod⌈BInV ars⌋ ⇒
protected synchronized void assign‘ ’input‘(’

Vector‘<’Object‘>’ inputVec‘){’AssignInVar⌈BInV ar⌋∗

‘}’

B: BInV ars ⊢ BInV ar+′,′

Rule 4.4.1. AssignInVar⌈V ar⌋ ⇒AssignInVarInt⌈V ar⌋
| AssignInVarSet⌈V ar⌋
| AssignInVarPSet⌈V ar⌋
| AssignInVarObj⌈V ar⌋

Supplement: When V ar is an Integer, choose AssignInVarInt
Supplement: When V ar is an element of a B set, choose AssignInVarSet
Supplement: When V ar is a set, choose AssignInVarPSet
Supplement: Otherwise, choose AssignInObj

Rule 4.4.2. AssignInVarInt⌈V ar⌋ ⇒Print⌈V ar⌋
‘=’ ‘(’Integer‘)(’inputVec‘.’elementAt‘(’ Integer ‘);’

Supplement: V ar ∈ Ingeter

Rule 4.4.3. AssignInVarSet⌈V ar⌋ ⇒
if‘(’inputVec‘.’elementAt‘(’ Integer ‘)’ instanceof String‘){’Print⌈V ar⌋ ‘=’ returnSet‘(’BType⌈V ar⌋ ‘.’class‘,’

‘(’String‘)’inputVec‘.’elementAt‘(’Integer ‘)’
‘);’

}else{Print⌈V ar⌋ ‘=’ ‘(’ BType⌈V ar⌋ ‘)(’

Appendix A Translation Rules 143

inputVec‘.’elementAt‘(’ Integer ‘)’
‘);’

‘}’
Supplement: V ar ∈ Set

Rule 4.4.4. AssignInVarPSet⌈V ar⌋ ⇒
if‘(’inputVec‘.’elementAt‘(’ Integer ‘)’ instanceof String‘){’Print⌈V ar⌋ ‘=’ returnSets‘(’BType⌈V ar⌋ ‘.’class‘,’

‘(’String‘)’inputVec‘.’elementAt‘(’Integer ‘)’
‘);’

}else{Print⌈V ar⌋ ‘=’ ‘(’EnumSet‘<’ BType⌈V ar⌋ ‘>)(’
inputVec‘.’elementAt‘(’ Integer ‘)’

‘);’

‘}’
Supplement: V ar ∈′ POW ′BSet

Rule 4.4.5. AssignInVarObj⌈V ar⌋ ⇒Print⌈V ar⌋ ‘=’ inputVec‘.’elementAt‘(’ Integer ‘);’
Rule 4.5. EventOutputMethod⌈BOutV ars⌋ ⇒EventOutputMethodWithoutInput⌈BOutV ars⌋

| EventOutputMethodWithInput⌈BOutV ars⌋

B: BInV ars ⊢ BInV ar+′,′

Rule 4.5.1. EventOutputMethodWithoutInput⌈BOutV ars⌋ ⇒
protected synchronized void make‘ ’output‘(){’MakeOutVar⌈BOutV ar⌋∗

‘}’

B: BOutV ars ⊢ BOutV ar+′,′

Rule 4.5.2. EventOutputMethodWithInput⌈BOutV ars⌋ ⇒

Appendix A Translation Rules 144

protected synchronized void make‘ ’output‘(’int indexInt‘){’MakeOutVarWithIn⌈BOutV ar⌋∗

‘}’

B: BOutV ars ⊢ BOutV ar+′,′

Rule 4.5.3. MakeOutVar⌈V ar⌋ ⇒
out‘ ’element‘(’ Integer ‘,’ Print⌈V ar⌋ ‘);’

Rule 4.5.4. MakeOutVarWithIn⌈V ar⌋ ⇒
out‘ ’element‘(’indexInt‘,’ Integer ‘,’ Print⌈V ar⌋ ‘);’

Rule 4.6. EventRun⌈BOpBody⌋ ⇒
protected synchronized void run‘(){’BeforeStateVars⌈StateV ars⌋BSubstitution⌈BSub⌋

var‘.’check‘();’

{ varsPanelsStore‘.’getInstance‘().’getPanelInstance‘(’
‘"’ Ma
hName ‘").’refresh‘();’ }[GUI]

‘}’

B: BOpBody ⊢ BSub

Supplement: V ars consists of all the state variables

Rule 4.6.1. BeforeStateVars⌈V ars⌋ ⇒BeforeStateVar⌈V ar⌋∗
Supplement: V ars ⊢ V ar∗

Rule 4.6.2. BeforeStateVar⌈V ar⌋ ⇒BType⌈V ar⌋Print⌈V ar⌋ ‘=’BeforeStateVarPSet⌈V ar⌋
| BeforeStateVarArray⌈V ar⌋
| BeforeStateVarRelation⌈V ar⌋
| BeforeStateVarAssignObj⌈V ar⌋
‘;’

Supplement: If V ar is a B set, BeforeStateVarPSet

Appendix A Translation Rules 145

Supplement: If V ar is an array, BeforeStateVarArray
Supplement: If V ar is a relation, BeforeStateVarRelation
Supplement: Otherwise, BeforeStateVarObj

Rule 4.6.2.1. BeforeStateVarPSet⌈V ar⌋ ⇒
EnumSet‘.’copyOf‘(’var‘.’ Print⌈V ar⌋ ‘)’

B: V ar ∈ P (Set)

Rule 4.6.2.2. BeforeStateVarArray⌈V ar⌋ ⇒
new Type⌈V ar⌋‘[’var‘.’Print⌈V ar⌋‘.’length‘];’
System‘.’arraycopy‘(’

var‘.’Print⌈V ar⌋‘,’0‘,’Print⌈V ar⌋‘,’0‘,’var‘.’Print⌈V ar⌋‘.’length
‘);’

Supplement: V ar is an array

Rule 4.6.2.3. BeforeStateVarRelation⌈⌋ ⇒
var‘.’ Print⌈V ar⌋ ‘.’clone‘();’

Supplement: V ar is a relation type

Rule 4.6.2.4. BeforeStateVarAssignObj⌈⌋ ⇒
var‘.’ Print⌈V ar⌋ ‘;’

Rule 4.7. EventPre
ondition⌈BSubPreCdtn⌋ ⇒
protected synchronized boolean conditionCheck‘(){’

return BCondition⌈BCdtn⌋ ‘;’
‘}’

B: BSubPreCdtn ⊢′ PRE′BCdtn′THEN ′BSub′END′

Rule 5.1. BSubstitution⌈BSub⌋ ⇒BSubstitutionPre
ondition⌈BSubPrecdtn⌋
| BSubstitutionBegin⌈BSubBegin⌋

Appendix A Translation Rules 146

| BSubstitutionVar⌈BSubV ar⌋
| BSubstitutionParallel⌈BSubPar⌋
| BSubstitutionBeEqual⌈BSubBeq⌋
| BSubstitutionIf⌈BSubIf⌋
| BSubstitutionBeEqualFun
⌈BSubBeqFunc⌋
| BSubstitutionAny⌈BSubAny⌋

B: BSub ⊢
BSubPrecdtn

| BSubBegin

| BSubV ar

| BSubPar

| BSubBeq

| BSubIf

| BSubBeqFunc

Rule 5.1.1. BSubstitutionPre
ondition⌈BSubPrecdtn⌋ ⇒BSubstitution⌈BSub⌋

B: BSubPreCdtn ⊢′ PRE′BCdtn′THEN ′BSub′END′

Rule 5.1.2. BSubstitutionBegin⌈BSubBegin⌋ ⇒ BSubstitution⌈BSub⌋

B: BSubPreCdtn ⊢′ BEGIN ′BSub′END′

Rule 5.1.3. BSubstitutionVar⌈BSubV ar⌋ ⇒EventVarsDe
l⌈V ars⌋BSubstitution⌈BSub⌋

B: BSubV ar ⊢′ V AR′V ars′IN ′BSub′END′

Rule 5.1.4. BSubstitutionParallel⌈BSubPar⌋ ⇒BSubstitution⌈BSub⌋BSubstitution⌈BSub⌋

B: BSubPrePar ⊢ BSub ‖ BSub

Appendix A Translation Rules 147

Rule 5.1.5. BSubstitutionBeEqual⌈BSubBeq⌋ ⇒BBeEqualArray⌈BSubBeq⌋
| BBeEqualSetUnion⌈BSubBeq⌋
| BBeEqualSetMinus⌈BSubBeq⌋
| BBeEqualOther⌈BSubBeq⌋

B: BSubBeq ⊢ BV ar′ =′ BExpression

Supplement: If BV ar is an array, BeforeStateVarArray
Supplement: If BExpression is a B Set union, BBeEqualSetUnion
Supplement: If BExpression is a B Set minus, BBEqualSetMinus
Supplement: Otherwise, BBeEqualOther

Rule 5.1.6. BSubstitutionIf⌈BSubIf⌋ ⇒
if‘(’ BCondition⌈BCdtn⌋ ‘){’BSubstitution⌈BSub⌋
‘}’BSubstitutionElseIf⌈BCdtn,BSub⌋∗BSubstitutionElse⌈BSub⌋

B: BSubIf ⊢
’IF’ BCdtn ’THEN’ BSub

{ ’ELSIF’ BCdtn ’THEN’ BSub }∗
{ ’ELSE’ BSub }
’END’

Rule 5.1.7. BSubstitutionBeEqualFun
⌈BSubBeqFunc⌋ ⇒BSubstitutionBeEqualArray⌈BSubBeqFunc⌋ | BSubstitutionBeEqualFun
tion
B: BSubBeq ⊢ BV ar′ =′ BExpression

Supplement: If BV ar is an array, BSubstitutionBeEqualArray
Supplement: If BV ar is a function, BSubstitutionBeEqualFun
tion

Rule 5.1.8. BSubstitutionAny⌈BSubBeqAny⌋ ⇒EventVarsDe
l⌈V ars⌋BSubstitution⌈BSub⌋

B: BSubV ar ⊢′ ANY ′V ars′WHERE′Predicates′IN ′BSub′END′

Appendix A Translation Rules 148

Rule 5.2. BExpression⌈BExpr⌋

Rule 5.3. BCondition⌈BCdtn⌋ ⇒

Rule 5.4. BVarType⌈V ar⌋ ⇒BVarTypeInteger⌈V ar⌋
| BVarTypeSet⌈V ar⌋
| BVarTypePSet⌈V ar⌋

Rule 5.4.1. BVarTypeInteger⌈V ar⌋ ⇒ Integer

B: V ar ∈ INT | NAT

Rule 5.4.2. BVarTypeSet⌈V ar⌋ ⇒ Print⌈BSetName⌋

B: V ar ∈ BSet

Rule 5.4.3. BVarTypePSet⌈V ar⌋ ⇒
EnumSet‘<’ Print⌈BSetName⌋ ‘>’

B: V ar ∈′ POW ′BSet

Rule 5.4.4. BVarTypeRelation⌈V ar⌋ ⇒
Relation‘<’ Print⌈BType⌋ ‘,’ Print⌈BType⌋ ‘>’

B: V ar ∈ BType′ +− >′ BType

Rule 5.4.5. BVarTypeArray⌈V ar⌋ ⇒Print⌈BType⌋ ‘[]’

B: V ar ∈ NAT ′ −− >′ BType

Rule 5.5. BExprType⌈BExpr⌋

Appendix A Translation Rules 149

Rule 6.1. CSPExpression⌈CSPExpr⌋

Rule 6.2. CSPCondition⌈CSPCdtn⌋

Rule 6.3. CSPExprList⌈CSPExpr∗⌋

Rule 7.2. ChannelType⌈Ch⌋ ⇒EventType⌈Ev⌋ | CChType⌈CCh⌋

B+CSP: Ch ⊢ Ev | CCh

Rule 7.2.1. EventType⌈Ev⌋ ⇒

CChannel | InCChannel | OutCChannel | OutInCChannel

Supplement: If the combined event Ev has no data flow between B and CSP, returns

CChannel. (CSP: ch B: op)

Supplement: If the combined event Ev only has input data, from the CSP channel to the

B operation, returns InCChannel. (CSP: ch‘!′InV ars B: op‘(′InV ars‘)′)

Supplement: If the combined event Ev only has output data, from the B operation to the

CSP channel, returns OutCChannel. (CSP: ch‘?′OutV ars B: OutV ars‘ < −−′ op)

Supplement: If combined event Ev has both input data, from CSP to B, and output data,

from B to CSP, returns OutInCChannel. (CSP: ch′!′InV ars′?′OutV ars B: OutV ars′ <

−−′ op′(′InV ars′)′)

Rule 7.2.2. CChType⌈CCh⌋ ⇒

ChannelInput | ChannelOutput | ChClassName⌈CCh⌋

Supplement: If the process only read from channel CCh, returns ChannelInput.

Supplement: If the process only output to channel CCh, returns ChannelOutput.

Supplement: If the process and its sub-processes both read and write to channel CCh,

returns the channel class name using rule CChClassName⌈CCh⌋.

Rule 7.3. ChClassName⌈Ch⌋ ⇒EventClassName⌈Ev⌋
| CChClassName⌈CCh⌋

B+CSP: Ch ⊢ Ev | CCh

Appendix A Translation Rules 150

Rule 7.3.1. EventClassName⌈Ev⌋ ⇒ Print⌈EvName⌋ ‘ chclass’

B: BEv ⊢ OutV ars′ < −−′EvName′(′InV ars′)′

Rule 7.3.2. CChClassName⌈CCh⌋ ⇒

One2OneChannel | One2AnyChannel | Any2OneChannel

| Any2AnyChannel | ChEndClassName⌈CCh⌋

Supplement: One output end, one input end: One2OneChannel.

Supplement: One output end, multiple input ends: One2AnyChannel.

Supplement: Multiple output ends, one input end: Any2OneChannel.

Supplement: Multiple output ends, multiple input ends: Any2AnyChannel.

Rule 7.3.3. ChEndClassName⌈CCh⌋ ⇒

{ Ext2OneChannel | One2ExtChannel

| Any2OneChannel | Any2ExtChannel }[NoGUI]

{ Ext2OneGUIChannel | One2ExtGUIChannel

| Ext2AnyGUIChannel | Any2ExtGUIChannel }[GUI]

Rule 7.4. ChObjName⌈Ch⌋ ⇒EventObjName⌈Ev⌋
| CChObjName⌈CCh⌋

B+CSP: Ch ⊢ Ev | CCh

Rule 7.4.1. EventObjName⌈Ev⌋ ⇒ Print⌈EvName⌋ ‘ ch’

B: BEv ⊢ OutV ars′ < −−′EvName′(′InV ars′)′

Rule 7.4.2. CChObjName⌈CCh⌋ ⇒ Print⌈CChName⌋

CSP: BCCh ⊢ CChName{′?′InV ars}{′!′OutV ars}

Appendix B

Java Classes

B.1 Runtime Assertion Checking

B.2 Dining Philosophers

B.2.1 PHIL procclass.java

package dps;

import org.dsse.jcsprob.lang.*;

import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

import java.util.*;

public class PHIL_procclass extends BGProcess{

private InCChannel sits_ch;

private InCChannel picks_ch;

private InCChannel eats_ch;

private InCChannel putsdown_ch;

private InCChannel getsup_ch;

Integer proc_index_a;

public PHIL_procclass(InCChannel sits_ch,InCChannel picks_ch,

InCChannel eats_ch,InCChannel putsdown_ch,

InCChannel getsup_ch,Integer proc_index_a){

super();

this.sits_ch = sits_ch;

this.picks_ch = picks_ch;

this.eats_ch = eats_ch;

this.putsdown_ch = putsdown_ch;

151

Appendix B Java Classes 152

this.getsup_ch = getsup_ch;

this.proc_index_a = proc_index_a;

}

public void run(){

this.createGUIProc();

start();

channelCall(sits_ch,inputVector(new Object[]{proc_index_a}));

Vector<Vector<Object>> choiceVec = new Vector<Vector<Object>>();

choiceVec.addElement(inputVector(

new Object[]{proc_index_a,proc_index_a}));

choiceVec.addElement(inputVector(

new Object[]{proc_index_a,(proc_index_a + 1) % 5}));

BCSPGuard[] in = {picks_ch,picks_ch};

switch(choiceCtrl(in, choiceVec)){

case 0 :

choiceRtn(picks_ch);

channelCall(picks_ch,inputVector(

new Object[]{proc_index_a,(proc_index_a + 1) % 5}));

channelCall(eats_ch,inputVector(

new Object[]{proc_index_a}));

channelCall(putsdown_ch,inputVector(

new Object[]{proc_index_a,(proc_index_a + 1) % 5}));

channelCall(putsdown_ch,inputVector(

new Object[]{proc_index_a,proc_index_a}));

channelCall(getsup_ch,inputVector(

new Object[]{proc_index_a}));

nextProcCtrl(new PHIL_procclass(

sits_ch,picks_ch,eats_ch,putsdown_ch,getsup_ch,proc_index_a));

break;

case 1 :

choiceRtn(picks_ch);

channelCall(picks_ch,inputVector(

new Object[]{proc_index_a,proc_index_a}));

channelCall(eats_ch,inputVector(

new Object[]{proc_index_a}));

channelCall(putsdown_ch,inputVector(

new Object[]{proc_index_a,proc_index_a}));

channelCall(putsdown_ch,inputVector(

new Object[]{proc_index_a,(proc_index_a + 1) % 5}));

channelCall(getsup_ch,inputVector(

new Object[]{proc_index_a}));

nextProcCtrl(new PHIL_procclass(

sits_ch,picks_ch,eats_ch,putsdown_ch,getsup_ch,proc_index_a));

break;

}

Appendix B Java Classes 153

end();

}

}

B.2.2 FORK procclass.java

package dps;

import org.dsse.jcsprob.lang.*;

import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

import java.util.*;

public class FORK_procclass extends BGProcess{

private InCChannel picks_ch;

private InCChannel putsdown_ch;

Integer proc_index_a;

public FORK_procclass(InCChannel picks_ch,

InCChannel putsdown_ch,Integer proc_index_a){

super();

this.picks_ch = picks_ch;

this.putsdown_ch = putsdown_ch;

this.proc_index_a = proc_index_a;

}

public void run(){

this.createGUIProc();

start();

Vector<Vector<Object>> choiceVec = new Vector<Vector<Object>>();

choiceVec.addElement(inputVector(

new Object[]{proc_index_a,proc_index_a}));

choiceVec.addElement(inputVector(

new Object[]{(proc_index_a + 4) % 5,proc_index_a}));

BCSPGuard[] in = {picks_ch,picks_ch};

switch(choiceCtrl(in, choiceVec)){

case 0 :

choiceRtn(picks_ch);

channelCall(putsdown_ch,

inputVector(new Object[]{proc_index_a,proc_index_a}));

nextProcCtrl(

new FORK_procclass(picks_ch,putsdown_ch,proc_index_a));

break;

Appendix B Java Classes 154

case 1 :

choiceRtn(picks_ch);

channelCall(putsdown_ch,

inputVector(new Object[]{(proc_index_a + 4) % 5,proc_index_a}));

nextProcCtrl(

new FORK_procclass(picks_ch,putsdown_ch,proc_index_a));

break;

}

end();

}

}

B.2.3 picks chclass.java

package dps;

import org.dsse.jcsprob.gui.*;

import org.dsse.jcsprob.lang.*;

import java.util.*;

public class picks_chclass extends InCChannel{

diningphils_machine var;

Integer pp;

Integer ff;

public picks_chclass(diningphils_machine var, BLock block){

this.var = var;

this.block = block;

this.setChName(this.getClass().getSimpleName());

}

protected synchronized void assign_input(Vector<Object> inputVec){

pp = (Integer)(inputVec.elementAt(0));

ff = (Integer)(inputVec.elementAt(1));

}

protected synchronized void run(){

try{

var.pstate[pp] = 2;

var.fstate[ff] = 1;

varsPanelsStore.getInstance().getPanelInstance("diningphils").refresh();

}catch(Exception e){

System.out.println("Exception in

Channel picks_chclass :> "+e.getMessage());

System.exit(0);

}

}

Appendix B Java Classes 155

protected synchronized boolean conditionCheck(){

return pp>=0 && pp<=4 && ff>=0 && ff<=4;

}

}

B.2.4 eats chclass.java

package dps;

import org.dsse.jcsprob.gui.*;

import org.dsse.jcsprob.lang.*;

import java.util.*;

public class eats_chclass extends InCChannel{

diningphils_machine var;

Integer pp;

public eats_chclass(diningphils_machine var, BLock block){

this.var = var;

this.block = block;

this.setChName(this.getClass().getSimpleName());

}

protected synchronized void assign_input(Vector<Object> inputVec){

pp = (Integer)(inputVec.elementAt(0));

}

protected synchronized void run(){

try{

var.pstate[pp] = 3;

var.count[pp] = var.count[pp] + 1;

varsPanelsStore.getInstance().getPanelInstance("diningphils").refresh();

}catch(Exception e){

System.out.println("Exception in

Channel eats_chclass :> "+e.getMessage());

System.exit(0);

}

}

protected synchronized boolean conditionCheck(){

return pp>=0 && pp<=4;

}

}

Appendix B Java Classes 156

B.3 Wot, no chicken?

B.3.1 chicken run.java

package wnck1;

import org.dsse.jcsprob.lang.*;

import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

public class chicken_run{

public static void main(String[] args){

try{

GUIModelConfigStore.getInstance().addModelInstance("chicken");

chicken_machine var = new chicken_machine("chicken");

BLock block = new BLock();

varsPanelsStore tmp = varsPanelsStore.getInstance();

tmp.addPanelInstance(var);

thinking_chclass thinking_ch = new thinking_chclass(var,block);

getchicken_chclass getchicken_ch = new getchicken_chclass(var,block);

eat_chclass eat_ch = new eat_chclass(var,block);

cook_chclass cook_ch = new cook_chclass(var,block);

put_chclass put_ch = new put_chclass(var,block);

final One2OneChannel configure = new One2OneChannel();

final One2OneChannel comm = new One2OneChannel();

tmp.setCommCh(comm);

new CSParallel(

new BCSProcess[]{

new BCSProcess(){

public void run(){

GUIFrame frame = new GUIFrame(configure,"chicken");

frame.pack();

frame.setVisible(true);

frame.run();

}

},

new BCSProcess(){

public void run(){

RecordsFrame rcdFrame = RecordsFrame.getInstance();

rcdFrame.init(comm);

rcdFrame.pack();

rcdFrame.setVisible(true);

rcdFrame.run();

}

},

Appendix B Java Classes 157

new chicken_procclass(

cook_ch,put_ch,getchicken_ch,eat_ch,thinking_ch,configure)

}

).run();

}catch(Exception e){

System.out.println("Error: chicken_run main() :> "+e.getMessage());

System.exit(0);

}

}

}

B.3.2 chicken procclass.java

package wnck1;

import org.dsse.jcsprob.lang.*;

import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

import java.util.*;

public class chicken_procclass extends BGProcess{

private CChannel cook_ch;

private CChannel put_ch;

private InCChannel getchicken_ch;

private InCChannel eat_ch;

private InCChannel thinking_ch;

public chicken_procclass(CChannel cook_ch,CChannel put_ch,

InCChannel getchicken_ch,InCChannel eat_ch,

InCChannel thinking_ch,ChannelOutput conf){

super(conf);

this.cook_ch = cook_ch;

this.put_ch = put_ch;

this.getchicken_ch = getchicken_ch;

this.eat_ch = eat_ch;

this.thinking_ch = thinking_ch;

}

public void run(){

this.createGUIProc();

start();

parallelCtrl(

new BGProcess[]{

new Chef_procclass(cook_ch,put_ch),

Appendix B Java Classes 158

new XPhil_procclass(getchicken_ch,eat_ch),

new PHILS_procclass(thinking_ch,getchicken_ch,eat_ch)

}

);

end();

}

}

B.3.3 Phil procclass.java

package wnck1;

import org.dsse.jcsprob.lang.*;

import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

import java.util.*;

public class Phil_procclass extends BGProcess{

private InCChannel thinking_ch;

private InCChannel getchicken_ch;

private InCChannel eat_ch;

Object proc_index_a;

public Phil_procclass(InCChannel thinking_ch,InCChannel getchicken_ch,

InCChannel eat_ch,Object proc_index_a){

super();

this.thinking_ch = thinking_ch;

this.getchicken_ch = getchicken_ch;

this.eat_ch = eat_ch;

this.proc_index_a = proc_index_a;

argsVec.add(proc_index_a);

}

public void run(){

this.createGUIProc();

start();

channelCall(thinking_ch,

inputVector(new Object[]{(Integer)proc_index_a}));

channelCall(getchicken_ch,

inputVector(new Object[]{(Integer)proc_index_a}));

channelCall(eat_ch,

inputVector(new Object[]{(Integer)proc_index_a}));

nextProcCtrl(new Phil_procclass(

thinking_ch,getchicken_ch,eat_ch,proc_index_a));

Appendix B Java Classes 159

end();

}

}

B.3.4 getchicken chclass.java

package wnck1;

import org.dsse.jcsprob.gui.*;

import org.dsse.jcsprob.btypes.*;

import org.dsse.jcsprob.lang.*;

import java.util.*;

public class getchicken_chclass extends InCChannel{

chicken_machine var;

Integer pp;

public getchicken_chclass(chicken_machine var, BLock block){

this.var = var;

this.block = block;

this.setChName(this.getClass().getSimpleName());

}

protected synchronized void assign_input(Vector<Object> inputVec){

pp = (Integer)(inputVec.elementAt(0));

}

protected synchronized void run(){

try{

Integer[] state = new Integer[var.state.length];

System.arraycopy(var.state,0,state,0,var.state.length);

Integer chef = var.chef;

Integer canteen = var.canteen;

var.canteen = canteen - 1;

var.check();

varsPanelsStore.getInstance().getPanelInstance("chicken").refresh();

}catch(Exception e){

System.out.println("Exception in Channel

getchicken_chclass :> "+e.getMessage());

System.exit(0);

}

}

protected synchronized boolean conditionCheck(){

return pp>=0 && pp<=4 && var.canteen > 0;

}

}

Appendix B Java Classes 160

B.4 The Odd-Even Example

B.4.1 Even run.java

package oddeven.Even;

import org.dsse.jcsprob.lang.*;

import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

public class Even_run{

public static void main(String[] args){

try{

GUIModelConfigStore.getInstance().addModelInstance("Even");

Even_machine var = new Even_machine("Even");

BLock block = new BLock();

varsPanelsStore tmp = varsPanelsStore.getInstance();

tmp.addPanelInstance(var);

evenput_chclass evenput_ch = new evenput_chclass(var,block);

evenget_chclass evenget_ch = new evenget_chclass(var,block);

/* The following channel communicates with the environment */

final Ext2OneGUIChannel oddpass_ch

= new Ext2OneGUIChannel("oddpass_ch");

/* The following channel communicates with the environment */

final One2ExtGUIChannel evenpass_ch

= new One2ExtGUIChannel("evenpass_ch");

final One2OneChannel configure = new One2OneChannel();

final One2OneChannel comm = new One2OneChannel();

tmp.setCommCh(comm);

new CSParallel(

new BCSProcess[]{

new BCSProcess(){

public void run(){

GUIFrame frame = new GUIFrame(configure,"Even");

frame.pack();

frame.setVisible(true);

frame.run();

}

},

new BCSProcess(){

public void run(){

RecordsFrame rcdFrame = RecordsFrame.getInstance();

rcdFrame.init(comm);

rcdFrame.pack();

rcdFrame.setVisible(true);

Appendix B Java Classes 161

rcdFrame.run();

}

},

new Even_procclass(

oddpass_ch,evenput_ch,evenget_ch,evenpass_ch,configure)

}

).run();

}catch(Exception e){

System.out.println("Error: Even_run main() :> "+e.getMessage());

System.exit(0);

}

}

}

B.4.2 Oddeven run.java

package oddeven;

import org.dsse.jcsprob.lang.*;

import org.dsse.jcsprob.gui.*;

import jcsp.lang.*;

import oddeven.Even.*;

import oddeven.Odd.*;

public class Oddeven_run{

public static void main(String[] args){

try{

GUIModelConfigStore.getInstance().addModelInstance("Odd");

GUIModelConfigStore.getInstance().addModelInstance("Even");

Even_machine var1 = new Even_machine("Even");

Odd_machine var2 = new Odd_machine("Odd");

BLock block1 = new BLock();

BLock block2 = new BLock();

varsPanelsStore tmp = varsPanelsStore.getInstance();

tmp.addPanelInstance(var1);

tmp.addPanelInstance(var2);

evenput_chclass evenput_ch = new evenput_chclass(var1,block1);

evenget_chclass evenget_ch = new evenget_chclass(var1,block1);

oddput_chclass oddput_ch = new oddput_chclass(var2,block2);

oddget_chclass oddget_ch = new oddget_chclass(var2,block2);

final One2OneChannel oddpass_ch = new One2OneChannel();

final One2OneChannel evenpass_ch = new One2OneChannel();

final One2OneChannel configure1 = new One2OneChannel();

Appendix B Java Classes 162

final One2OneChannel configure2 = new One2OneChannel();

final Any2OneChannel comm = new Any2OneChannel();

tmp.setCommCh(comm);

new CSParallel(

new BCSProcess[]{

new BCSProcess(){

public void run(){

GUIFrame frame = new GUIFrame(configure1,"Even");

frame.pack();

frame.setVisible(true);

frame.run();

}

},

new Even_procclass(

oddpass_ch,evenput_ch,evenget_ch,evenpass_ch,configure1),

new BCSProcess(){

public void run(){

GUIFrame frame = new GUIFrame(configure2,"Odd");

frame.pack();

frame.setVisible(true);

frame.run();

}

},

new BCSProcess(){

public void run(){

RecordsFrame rcdFrame = RecordsFrame.getInstance();

rcdFrame.init(comm);

rcdFrame.pack();

rcdFrame.setVisible(true);

rcdFrame.run();

}

},

new Odd_procclass(

oddget_ch,oddpass_ch,evenpass_ch,oddput_ch,configure2)

}

).run();

}catch(Exception e){

System.out.println("Error: Oddeven_run main() :> "+e.getMessage());

System.exit(0);

}

}

}

Appendix C

Specifications

C.1 The Decomposed Wot-no-chicken model: Step 2

C.1.1 The CSP Specification

MAIN = Chef [| {put} |] Canteen [| {take} |] PHILS ;;

PHILS = GPhils ||| XPhil ;;

GPhils = |||X:0,1,2,3@Phil(X);;

Phil(X) = thinking.X → take?Y → eat.X.Y → Phil(X);;

XPhil = take?Y → eat.4.Y → XPhil;;

Chef = cook → put → Chef ;;

Canteen = CProc ||| PProc ;;

CProc = put → CProc ;;

PProc = getchicken.X → PProc ;;

C.1.2 B Machine: Chef

MACHINE Chef

VARIABLES

chef

INVARIANT

chef ∈ NAT

INITIALISATION

chef := 0

OPERATIONS

cook =

BEGIN

chef := chef + 4

END;

nn ← put1 =

BEGIN chef := chef - 4 ‖ nn := 4 END

163

Appendix C Specifications 164

END

C.1.3 B Machine: Canteen

MACHINE Canteen

VARIABLES

canteen

INVARIANT

canteen ∈ NAT

INITIALISATION

canteen := 0

OPERATIONS

nn ← getchicken(pp) =

PRE canteen > 0 THEN

canteen := canteen - 1 ‖ nn := 1

END;

put2(pp) =

PRE pp ∈ NAT ∧ pp > 0 THEN

canteen := canteen + pp END

END

C.1.4 B Machine: Phils

MACHINE Phils

VARIABLES

state

INVARIANT

state ∈ (0..4)→NAT

INITIALISATION

state := (0..4) * {1}
OPERATIONS

thinking(pp) =

PRE pp∈0..4 THEN

state(pp) := state(pp) - 1

END;

eat(pp,nn) =

PRE pp∈0..4 ∧ nn∈NAT ∧ nn>0 THEN

state(pp) := state(pp) + nn

END

END

Appendix C Specifications 165

C.2 The Decomposed Wot-no-chicken model: Step 3

C.2.1 The CSP Specification

MAIN = Chef [| {put} |] Canteen [| {take} |] PHILS ;;

PHILS = GPhils ||| XPhil ;;

GPhils = |||X:0,1,2,3@Phil(X);;

Phil(X) = thinking → take?Y → eat.Y → Phil(X);;

XPhil = take?Y → eat.Y → XPhil;;

Chef = cook → put → Chef ;;

Canteen = CProc ||| PProc ;;

CProc = put → CProc ;;

PProc = getchicken.X → PProc ;;

C.2.2 B Machine: Phil

MACHINE Phil

VARIABLES

state

INVARIANT

state ∈ NAT

INITIALISATION

state := 1

OPERATIONS

thinking =

BEGIN

state := state - 1

END;

eat(nn) =

PRE nn∈NAT ∧ nn>0 THEN

state := state + nn

END

END

C.2.3 B Machine: XPhil

MACHINE XPhil

VARIABLES

state

INVARIANT

state ∈ NAT

INITIALISATION

state := 1

OPERATIONS

eat(nn) =

Appendix C Specifications 166

PRE nn∈NAT ∧ nn>0 THEN

state := state + nn

END

END

Bibliography

[ABHV06] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An

open extensible tool environment for event-b. In ICFEM, pages 588–605, 2006.

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University

Press, New York, NY, USA, 1996.

[AM98] Jean-Raymond Abrial and Louis Mussat. Introducing dynamic constraints in b. In

B’98, volume LNCS 1393, pages 83–128, 1998.

[Ate01] Atelier b. http://www.atelierb.societe.com/index uk.html, 2001.

[Bac80] Ralph-Johan Back. Correctness Preserving Program Refinements: Proof Theory

and Applications, volume 131 of Mathematical Center Tracts. Mathematical Centre,

Amsterdam, The Netherlands, 1980.

[Bag87] Rajive Bagrodia. A distributed algorithm to implement n-party rendezvous. In Proc.

of the seventh conference on Foundations of software technology and theoretical

computer science, pages 138–152, London, UK, 1987. Springer-Verlag.

[Bag89] Rajive Bagrodia. Process synchronization: Design and performance evaluation of

distributed algorithms. IEEE Trans. Software Eng., 15(9):1053–1065, 1989.

[BCo01] B-toolkit. http://www.b-core.com/ONLINEDOC/BToolkit.html, 2001.

[BFMW01] Detlef Bartetzko, Clemens Fischer, Michael Möller, and Heike Wehrheim. Jass -

java with assertions. Electr. Notes Theor. Comput. Sci., 55(2):15, 2001.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating

sequential processes. J. ACM, 31(3):560–599, 1984.

[BKS83a] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized

control. In PODC ’83: Proceedings of the second annual ACM symposium on

Principles of distributed computing, pages 131–142, New York, NY, USA, 1983.

ACM Press.

[BKS83b] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized

control. In PODC ’83: Proceedings of the second annual ACM symposium on

Principles of distributed computing, pages 131–142, New York, NY, USA, 1983.

ACM Press.

[BL05] Michael J. Butler and Michael Leuschel. Combining CSP and B for specification

and property verification. In FM ’05: Proceedings of the International Symposium

of Formal Methods Europe, volume LNCS 3582, pages 221–236, 2005.

167

BIBLIOGRAPHY 168

[BM02] Mark Brörken and Michael Möller. Jassda trance assertions: Runtime checking the

dynamic of java programs. In International Conference on Testing of Communicat-

ing Systems, 2002.

[BMRA98] Juan Bicarregui, Brian Matthews, Brian Ritchie, and Sten Agerholm. Investigating

the integration of two formal methods. Formal Asp. Comput., 10(5-6):532–549,

1998.

[BR85] S. D. Brookes and A. W. Roscoe. An improved failures model for csp. In the

Pittsburgh Seminar on Concurrency, volume LNCS 197. Springer, 1985.

[Bru01] Tatibouet Bruno. The JBTools Package, 2001. Available at http://lifc.univ-

fcomte.fr/ tatibouet/JBTOOLS/index en.html.

[BS05] Peter A. Beerel and Arash Saifhashemi. High Level Modeling of Channel-Based

Asynchronous Circuits Using Verilog. In Communicating Process Architectures

2005, sep 2005.

[But93] Michael J. Butler. Refinement and decomposition of value-passing action systems.

In CONCUR ’93: Proceedings of the 4th International Conference on Concurrency

Theory, pages 217–232, London, UK, 1993. Springer-Verlag.

[But96] Michael J. Butler. Stepwise refinement of communicating systems. Sci. Comput.

Program., 27(2):139–173, 1996.

[But97] Michael J. Butler. An approach to the design of distributed systems with b amn. In

ZUM ’97: Proceedings of the 10th International Conference of Z Users on The Z

Formal Specification Notation, pages 223–241, London, UK, 1997. Springer-Verlag.

[But99] Michael J. Butler. csp2B: A practical approach to combining CSP and B. In World

Congress on Formal Methods, pages 490–508, 1999.

[But06] Michael J. Butler. RODIN Deliverable D19: Intermediate report on methodology,

chapter 3.6, pages 47–56. RODIN project, 2006.

[CGJ+01] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Progress on the state explosion problem in model checking. In Informatics - 10

Years Back. 10 Years Ahead., pages 176–194. Springer-Verlag, 2001.

[CH01] D. Cabeza and M. Hermenegildo. The pillow web programming library. Techni-

cal report, The CLIP Group, School of Computer Science, Technical University of

Madrid, 2001. Available at http://www.clip.dia.fi.upm.es/.

[Che00] Jessica Chen. On verifying distributed multithreaded java programs. In HICSS ’00:

Proceedings of the 33rd Hawaii International Conference on System Sciences-Volume

8, page 8010, Washington, DC, USA, 2000. IEEE Computer Society.

[CKK+00] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and

Alexandre Yakovlev. Hardware and petri nets: Application to asynchronous circuit

design. In ICATPN, pages 1–15, 2000.

[Cle01] ClearSy. B Language Reference Manual, 1.8.5 edition, 2001.

BIBLIOGRAPHY 169

[Cle02] ClearSy. Atelier B Translator User Manual, 4.6 edition, 2002.

[CS02] Ana Cavalcanti and Augusto Sampaio. From csp-oz to java with processes. In IPDPS

’02: Proceedings of the 16th International Parallel and Distributed Processing Sym-

posium, page 161, Washington, DC, USA, 2002. IEEE Computer Society.

[CSW03] ALC Cavalcanti, A. Sampaio, and JCP Woodcock. A Refinement Strategy for Circus.

Formal Aspects of Computing, 15(2 - 3):146 – 181, 2003.

[Dij65] Edsger W. Dijkstra. Programming considered as a human activity. In the 1965 IFIP

Congress, pages 213–217. North-Holland Publishing Co., 1965.

[Dij68] Edsger W. Dijkstra. A constructive approach to the problem of program correctness.

BIT, 8(3):174–186, 1968.

[Dij97] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1997.

[DRS95] R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated for

the description of standards. Computer Standards & Interfaces, 17(5–6):511–533,

September 1995.

[DS98] C. Demartini and R. Sisto. Static analysis of java multithreaded and distributed

applications. In PDSE ’98: Proceedings of the International Symposium on Software

Engineering for Parallel and Distributed Systems, page 215, Washington, DC, USA,

1998. IEEE Computer Society.

[ELL94] René Elmstrøm, Peter Gorm Larsen, and Poul Bøgh Lassen.

The ifad vdm-sl toolbox: a practical approach to formal specifications. SIGPLAN

Not., 29(9):77–80, 1994.

[EMCP99] Orna Grumberg Edmund M. Clarke and Doron A. Peled. Model Checking. The

MIT Press, 1999.

[FC06] A. F. Freitas and A. L. C. Cavalcanti. Automatic Translation from Circus to Java.

In J. Misra, T. Nipkow, and E. Sekerinski, editors, FM 2006: Formal Methods,

volume 4085 of Lecture Notes in Computer Science, pages 115–130. Springer-Verlag,

2006.

[Fis97a] Clemens Fischer. CSP-OZ: A combination of Object-Z and CSP. Technical report,

Fachbereich Informatik, University of Oldenburg, 1997.

[Fis97b] Clemens Fischer. CSP-Z: A combination of Z and CSP. Technical report, University

of Oldenburg, 1997.

[Fis98] Clemens Fischer. How to combine Z with a process algebra. In J. Bowen, A. Fett,

and M. Hinchey, editors, ZUM’98: The Z Formal Specification Notation, volume

1493 of LNCS, pages 5–23. Springer, 1998.

[Fis99] Clemens Fischer. Software development with Object-Z, CSP, and Java: A pragmatic

link from formal specifications to programs. In Proceedings of the Workshop on

Object-Oriented Technology, pages 108–109, London, UK, 1999. Springer-Verlag.

BIBLIOGRAPHY 170

[Fis00] Clemens Fischer. Combination and Implementation of Processes and Data: From

CSP-OZ to Java. PhD thesis, Fachbereich Informatik, Universitat Oldenburg, 2000.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for java. In PLDI ’02: Proceed-

ings of the ACM SIGPLAN 2002 Conference on Programming language design and

implementation, pages 234–245, New York, NY, USA, 2002. ACM.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,

Mathematical Aspects of Computer Science, volume 19 of Proceedings of Symposia

in Applied Mathematics, pages 19–32, Providence, Rhode Island, 1967. American

Mathematical Society.

[For03] Formal System Ltd. Failures-Divergence Refinement - FDR2 User Manual, 2003.

[FW99] Clemens Fischer and Heike Wehrheim. Model-checking CSP-OZ specifications with

FDR. In 1st International Conference on Integrated Formal Methods, pages 315–34.

Springer-Verlag, 1999.

[Gal96] A. Galloway. Integrated Formal Methods. PhD thesis, University of Teesside, 1996.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci-

fication, Second Edition. Addison-Wesley, Boston, Mass., 2000.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci-

fication Third Edition. Addison-Wesley, Boston, Mass., 2005.

[Goe03] Brain Goetz. Introduction to java threads. Sep 2003.

https://www6.software.ibm.com/developerworks/education/j-threads/j-threads-

a4.pdf.

[Goe04] Brain Goetz. Concurrency in JDK 5.0. 2004.

http://www.ibm.com/developerworks/edu/j-dw-java-concur-i.html.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formal-

ism for artificial intelligence. In IJCAI, pages 235–245, 1973.

[HHS86] Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In

ESOP ’86: Proceedings of the European Symposium on Programming, pages 187–

196, London, UK, 1986. Springer-Verlag.

[HK91] Iain Houston and Steve King. Cics project report experiences and results from the

use of z in ibm. In VDM’91 Formal Software Development Methods, volume Volume

551/1991, pages 588–596. Springer, 1991.

[HL06] Max Haustein and Klaus-Peter Löhr. Jac: declarative java concurrency: Research

articles. Concurrency and Computation : Practice and Experience, 18(5):519–546,

2006.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969.

BIBLIOGRAPHY 171

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–

677, 1978.

[Hoa80] C. A. R. Hoare. A model for communicating sequential processes. In On the Con-

struction of Programs, pages 229–254. Cambridge University Press, 1980.

[Hoa85] C.A.R Hoare. Communicating Sequential Processes. Prentice Hall International,

1985.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.

Addison-Wesley Professional, September 2003.

[HOS+93] M. R. Hansen, E.-R. Olderog, M. Schenke, M. Fränzle, B. von Karger, M. Müller-

Olm, and H. Rischel. A Duration Calculus semantics for real-time reactive systems.

Technical Report [OLD MRH 1/1], Universitat Oldenburg, Germany, 1993.

[HS00] Klaus Havelund and Jens Skakkebaek. Practical application of model checking in

software verification. In the 6th Workshop on the SPIN Verification System, 2000.

[Jav] http://java.sun.com/j2se/1.5.0/docs/api/java/lang/object.html.

[Jon90] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall Inc.,

1990.

[Law04] Jonathan Lawrence. Practical application of csp and fdr to software design. In

Communicating Sequential Processes: The First 25 Years., volume 3525/2005 of

LNCS, pages 151–174. Springer, 2004.

[LB03] Michael Leuschel and Michael J. Butler. Prob: A model checker for B. In FME

2003: International Symposium of Formal Methods Europe, pages 855–874, 2003.

[LC03] Gary T. Leavens and Yoonsik Cheon. Design by contract with JML, 2003.

[Lea99] Douglas Lea. Concurrent Programming in Java. Second Edition: Design Principles

and Patterns. Addison-Wesley Longman Publishing Co., Inc., 1999.

[Leu01] Michael Leuschel. Design and implementation of the high-level specification language

csp(lp) in prolog. In PADL01, LNCS 1990, pages 14–28. Springer-Verlag, 2001.

[Lim95] SGS-Thomson Microelectronics Limited. occam 2.1 reference manual, 1995.

[LMC01] Michael Leuschel, Thierry Massart, and Andrew Currie. How to make fdr spin ltl

model checking of csp by refinement. In FME ’01: Proceedings of the International

Symposium of Formal Methods Europe on Formal Methods for Increasing Software

Productivity, pages 99–118, London, UK, 2001. Springer-Verlag.

[LPC+05] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok,

Peter Müller, and Joseph Kiniry. JML Reference Manual. Iowa State University,

Department of Computer Science, Iowa State University, Iowa, USA, 1.156 edition,

8 2005.

BIBLIOGRAPHY 172

[LS03] Brad Long and Paul Strooper. A classification of concurrency failures in java compo-

nents. In IPDPS ’03: Proceedings of the 17th International Symposium on Parallel

and Distributed Processing, page 287.1, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[MAV05a] C. Métayer, J-R. Abrial, and L. Voisin. RODIN Deliverable D7: Event-B language.

RODIN project, 2005.

[MAV05b] C. Mtayer, J.-R. Abrial, and L. Voisin. Event-B Language. Rigorous Open De-

velopment Environment for Complex Systems, rodin deliverable 3.2 edition, May

2005.

[McE06] Alasdair A. McEwan. Concurrent Program Development. PhD thesis, The Univer-

sity of Oxford, 2006.

[MD99] Brendan P. Mahony and Jin Song Dong. Overview of the semantics of tcoz. In IFM

’99: Proceedings of the 1st International Conference on Integrated Formal Methods,

pages 66–85, London, UK, 1999. Springer-Verlag.

[Mey92] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag,, 1980.

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[Mil99] Robin Milner. Communicating and mobile systems: the pi-calculus. Cambridge

University Press, New York, NY, USA, 1999.

[MK99] Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs. John

Wiley & Sons, 1999.

[Möl02] Michael Möller. Specifying and checking java using CSP. Technical report, Com-

puting Science Department, University of Nijmegen, 2002.

[Mor88] Carroll Morgan. The specification statement. ACM Trans. Program. Lang. Syst.,

10(3):403–419, 1988.

[Mor90] Carroll Morgan. Of wp and CSP. In Beauty is our business: a birthday salute to

Edsger W. Dijkstra, pages 319–326. Springer-Verlag New York, Inc., 1990.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model.

In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 378–391, New York, NY, USA, 2005.

ACM Press.

[MS98] Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z. In FASE’98: Funda-

mental Approaches to Software Engineering, volume 1382 of LNCS, pages 205–220,

1998.

[MS01] Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z: strategy, tool support

and industrial application. Sci. Comput. Program., 40(1):59–96, 2001.

BIBLIOGRAPHY 173

[MS02a] Giuseppe Milicia and Vladimiro Sassone. Jeeg: A programming language for con-

current objects synchronization. In JavaGrande/ISSCOPE 2002, Seattle, November

2002.

[MS02b] P. Mota, A.and Borba and A. Sampaio. Mechanical abstraction of CSP-Z processes.

In FME 2002: Formal Methods-Getting IT Right. International Symposium of For-

mal Methods Europe. Springer-Verlag, 2002.

[MST92] David May, Roger Shepherd, and Peter Thompson. The t9000 transputer. In ICCD,

pages 209–212, 1992.

[MU05] Petra Malik and Mark Utting. CZT: A framework for Z tools. In ZB 2005: Formal

Specification and Development in Z and B, LNCS, pages 65–84. Springer, 2005.

[MW00] H. Muller and K. Walrath. Threads and swing, 2000.

http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html.

[Nel89] Greg Nelson. A generalization of dijkstra’s calculus. ACM Trans. Program. Lang.

Syst., 11(4):517–561, 1989.

[OC04] M.V.M. Oliveira and A.L.C. Cavalcanti. From Circus to JCSP. In J. Davies et al.,

editor, Sixth International Conference on Formal Engineering Methods, volume 3308

of Lecture Notes in Computer Science, pages 320 – 340. Springer-Verlag, November

2004.

[Pel04] Jan Peleska. Applied formal methods - from csp to executable hybrid specifications.

In Communicating Sequential Processes: The first 25 Years, volume 3525/2005 of

LNCS, pages 293–320. Springer, 2004.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 1981.

[PGB+05] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David

Holmes. Java Concurrency in Practice. Addison-Wesley Professional, 2005.

[PST96] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification

and Z. Prentice Hall, 1996.

[Pug00] William Pugh. The Java memory model is fatally flawed. Concurrency: Practice

and Experience, 12(6):445–455, 2000.

[RDF+05] Edwin Rodŕıguez, Matthew B. Dwyer, Cormac Flanagan, John Hatcliff, Gary T.

Leavens, and Robby. Extending jml for modular specification and verification of

multi-threaded programs. In ECOOP, pages 551–576, 2005.

[RGS94a] A. W. Roscoe, M.H. Goldsmith, and B.G.O. Scott. Denotational semantics for

occam2, part 1. Transputer Communications, 1:65–91, 1994.

[RGS94b] A. W. Roscoe, M.H. Goldsmith, and B.G.O. Scott. Denotational semantics for

occam2, part 2. Transputer Communications, 2:25–67, 1994.

[RH88] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Theor. Comput.

Sci., 60:177–229, 1988.

BIBLIOGRAPHY 174

[Ros98] A W Roscoe. The Theory and Practice of Concurrency. Pearson Education, 1998.

[RRS03] V. Raju, L. Rong, and G. S. Stiles. Automatic Conversion of CSP to CTJ, JCSP,

and CCSP. In Jan F. Broenink and Gerald H. Hilderink, editors, Communicating

Process Architectures 2003, pages 63–81, 2003.

[RS05] Rafael Ramirez and Andrew E. Santosa. Formal verification of concurrent and

distributed constraint-based java programs. In ICECCS, pages 76–84, 2005.

[SB06] Colin Snook and Michael Butler. Uml-b: Formal modeling and design aided by uml.

ACM Trans. Softw. Eng. Methodol., 15(1):92–122, 2006.

[Sch00] Steven Schneider. Concurrent and Real-Time System: The CSP Approach. John

Wiley and Sons LTD, 2000.

[Sch01] Steven Schneider. The B-Method: An Introduction. Palgrave Macmillan, 2001.

[SH00] Graeme Smith and Ian J. Hayes. Structuring real-time object-z specifications. In

IFM ’00: Proceedings of the Second International Conference on Integrated Formal

Methods, pages 97–115, London, UK, 2000. Springer-Verlag.

[ST02] Steve Schneider and Helen Treharne. Communicating B machines. In ZB ’02:

Proceedings of the 2nd International Conference of B and Z Users on Formal Speci-

fication and Development in Z and B, pages 416–435, London, UK, 2002. Springer-

Verlag.

[ST03] Steven Schneider and Helen Treharne. CSP theorems for communicating B ma-

chines. Technical report, Department of Computer Science, University of London -

Royal Holloway, 2003.

[ST05] Steve Schneider and Helen Treharne. Csp theorems for communicating b machines.

Formal Asp. Comput., 17(4):390–422, 2005.

[STE05] Steve A. Schneider, Helen Treharne, and Neil Evans. Chunks: Component verifica-

tion in csp——b. In IFM, pages 89–108, 2005.

[TB06] Edd Turner and Michael Butler. Symmetry reduction in the prob model checker. In

FM 2006 Doctoral Symposium, McMaster University, Canada, 2006.

[TS99a] Helen Treharne and Steve Schneider. Capturing timing requirements formally in

AMN. Technical Report CSD-TR-99-06, University of Surrey, Egham, Surrey TW20

0EX, England, 1999.

[TS99b] Helen Treharne and Steve Schneider. Using a process algebra to control B operations.

In IFM ’99: Proceedings of the 1st International Conference on Integrated Formal

Methods, pages 437–456, London, UK, 1999. Springer-Verlag.

[TS00] Helen Treharne and Steve Schneider. How to drive a B machine. In ZB ’00: Pro-

ceedings of the First International Conference of B and Z Users on Formal Specifi-

cation and Development in Z and B, pages 188–208, London, UK, 2000. Springer-

Verlag.

BIBLIOGRAPHY 175

[TSB03] Helen Treharne, Steve Schneider, and Marchia Bramble. Composing specifications

using communication. In ZB, pages 58–78, 2003.

[VHBP99] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model check-

ing programs. In Int. Conf. on Automated Software Engineering, 1999.

[WB04] Peter H. Welch and Fred R. M. Barnes. Communicating mobile processes. In 25

Years Communicating Sequential Processes, pages 175–210, 2004.

[WBM+07] Peter Welch, Neil Brown, James Moores, Kevin Chalmers, and Bernhard Sputh.

Integrating and extending jcsp. In CPA ’07: Communicating Process Architectures

2007, 2007.

[WBP06] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Communicating complex sys-

tems. In Michael G Hinchey, editor, the 11th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS-2006), pages 107–117, Stan-

ford,California, August 2006. IEEE.

[WC01] JCP Woodcock and ALC Cavalcanti. A concurrent language for refinement. In

A. Butterfield and C. Pahl, editors, IWFM’01: The 5th Irish Workshop in Formal

Methods, BCS Electronic Workshops in Computing, Dublin, Ireland, July 2001.

[WC02] J. C. P. Woodcock and A. L. C. Cavalcanti. The semantics of circus. In D. Bert,

J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specifi-

cation and Development in Z and B, volume 2272 of Lecture Notes in Computer

Science, pages 184–203. Springer-Verlag, 2002.

[Weh99] Heike Wehrheim. Data abstraction for CSP-OZ. In J. Davies J. Wing, J. Woodcock,

editor, FM’99: World Congress on Formal Methods, volume 1709 of LNCS, pages

1028–1047. Springer-Verlag, 1999.

[Wel98] Peter H. Welch. Java Threads in the Light of occam/CSP. In P.H.Welch and

A.W.P.Bakkers, editors, Architectures, Languages and Patterns for Parallel and

Distributed Applications, volume 52 of Concurrent Systems Engineering Series,

pages 259–284, Amsterdam, April 1998. WoTUG, IOS Press.

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Commun. ACM,

14(4):221–227, 1971.

[WM00a] Peter H. Welch and Jeremy M.R. Martin. Formal analysis of concurrent java sys-

tem. In CPA ’00: Communicating Process Architectures 2000, volume 58 of Con-

current Systems Engineering, pages 275–301. IOS Press (Amsterdam), 2000.

[WM00b] Petre H. Welch and Jeremy M.R. Martin. A CSP Model for Java Multithreading.

In P.Nixon and I.Ritchie, editors, Software Engineering for Parallel and Distributed

Systems, pages 114–122. ICSE 2000, IEEE Computer Society Press, June 2000.

