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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

Modelling approaches for the low-frequency analysis of

built-up structures with non-deterministic properties

by Lars Hinke

Virtual simulations of the behaviour of mechanical systems are of widespread

use in academia and industry. Mechanical structures are often analysed using the fi-

nite element method, where deterministic models with one particular set of physical

parameters are employed. However, the underlying assumption that the input data

is precisely known is in general not valid, because there are uncertainties about the

parameters, often until the last stage of the design cycle and even when the product

is in service. Furthermore, every manufacturing process naturally introduces some

product variability, which is inevitable. These effects can be compensated for by

the application of safety factors. However, with the increasing requirements towards

product performance, the effects of non-deterministic properties are of growing con-

cern and advanced methods are needed that properly take them into account. In

this context, it is often more important to predict the variation in the response than

attempt to further improve the accuracy of a deterministic model. A number of

viable methods to take non-deterministic properties into account already exist, but

their computational efficiency and applicability have to be increased.

In this thesis, a framework for the non-deterministic analysis of built-up struc-

tures using component mode synthesis (CMS) is presented. It is shown how several

coordinate systems in CMS can be used advantageously for the quantification and

propagation of non-deterministic data. A specific approach, based on considering the

variation in component natural frequencies only, is introduced and its efficiency and

accuracy investigated. The application of perturbational relations for uncertainty

propagation in CMS is discussed. The framework of CMS is also used to com-

bine qualitatively different uncertain data and the inclusion of experimental data

is addressed. Overall, CMS methods can be used to reduce the numerical costs,

improve the applicability of the approaches and also gain some physical insight for a

structural dynamic problem with non-deterministic properties. Furthermore, several



contributions are made to simulation methods that are usually applied in connection

with the CMS approach. Different concepts for non-deterministic modal superposi-

tion are presented, which can be used to estimate the variation in frequency response

functions from uncertain modal data. The application of the Line-Sampling simula-

tion method, as an advanced Monte Carlo approach, to structural dynamic problems

is shown. Finally, the modelling of spatial variations in components using random

fields and the implementation in existing finite element models are addressed. Nu-

merical examples are presented throughout.
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Chapter 1

Introduction and background

1.1 Preface and motivation

All industrial sectors face the challenge of improving the performance and quality

of their products and, at the same time, reducing the development time and cost.

This can be achieved by employing virtual prototyping and simulation, i.e. using

numerical models. In this way, the optimal product design can be found at an early

stage in the product development cycle, where the cost associated with changes and

modifications is small, and the number and range of necessary practical tests can be

reduced. Hence, there is a constant need for appropriate modelling and simulation

methods and tools. In this context, the effects of non-deterministic properties are

of growing concern and advanced approaches are needed to take them into account.

1.1.1 Virtual simulation and non-deterministic effects

Figure 1.1 shows the outline of a typical computer simulation. Input data is specified

for the numerical model of a real system and the response is calculated. Mechanical

structures are often analysed using the finite element method (FEM) [9, 10]. In

a structural dynamic analysis [11, 12], the input parameters are mass, stiffness

and damping properties and the response quantities of interest can be frequency

response functions (FRFs), eigenfrequencies etc. If a physical realisation of the

structure is available, response measurements can be performed and compared with

the calculated response to validate the numerical model.

In general, methods for the analysis of mechanical structures employ determin-

istic models with one particular set of physical input parameters. However, the un-

derlying assumption that the input data is precisely known is in general not valid,

because there are uncertainties about the parameters, often until the last stage of

the design cycle and even when the product is in service. There are also uncertain-

1
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INPUT DATA � Mass � Stiffness � Damping � etc. 

MODEL � FEM � etc. 

RESPONSE � Eigenfrequency � FRF amplitude � etc. 

STRUCTURE 

Data Uncertainty 

Model Uncertainty 

Response Variation 

Product Variability 

Quantification Propagation Prediction 

Figure 1.1: Outline of a numerical simulation with non-deterministic effects.

ties about the model, because it is always an idealisation of the real system, based

on assumptions and approximations. Furthermore, every manufacturing process

naturally introduces some product variability, which is inevitable. These sources

of uncertainty and variability are indicated in Figure 1.1, and lead to variation in

the response. The non-deterministic effects can be compensated for by the applica-

tion of safety factors. However, with the increasing requirements towards product

performance, advanced methods are needed that properly take these aspects into

account. In this context, it is often more important to predict the variations in the

response than attempt to further improve the accuracy of a deterministic model.

This forward analysis concerns the quantification of uncertainties and variabilities,

their numerical propagation through the model and the prediction of variations in

the system response (see Figure 1.1).

Considering non-deterministic effects also implies changes to the objective of

inverse analyses, such as optimisation and model updating [13]. Instead of optimis-

ing the value of a certain response quantity, it might be important to minimise its

sensitivity with respect to changes in the input parameters and the model. In the

context of product variability, sometimes an ensemble of different measurements for

nominally identical products is available. The model should then be updated such

that it predicts the mean response and its variations. The overall objective of all

non-deterministic analyses is to achieve a more robust design.

The work presented in this thesis concerns modelling approaches for the dy-

namic analysis of mechanical structures based on the finite element method. It is
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confined to the forward analysis, addressing the quantification of non-deterministic

properties in the structure and their subsequent propagation through the model.

Non-determinism in the excitation is not considered.

1.1.2 Types of non-determinism

There are many different classifications for non-deterministic effects. In the follow-

ing, three complementary definitions based on the origin and cause of the variations,

the way they are described in the modelling process and the point at which they are

quantified in the numerical model will be presented.

The sources of non-determinism can be distinguished into two fundamentally

different categories [14]. Reducible uncertainty, also known as epistemic uncer-

tainty, is due to a lack of knowledge, especially in the early stages of the design

process and even when a product is in service. It can be removed by gathering

more information. The uncertainty associated with a development process can be

purely man-made, for example if input parameters of an initial design are expected

to change over time and the resulting variations in the response are to be predicted.

When a product is in service, there is often incomplete information about the accu-

racy of the model, for example the damping properties. However, this means that

the data might be either correct by chance or incorrect. Irreducible uncertainty

or variability, also known as aleatory uncertainty, describes inherent, naturally

introduced variation that cannot be removed. It can be further separated into intra-

variability and inter-variability, concerning the variation of the properties of one

product with time and the variation of the properties of more than one realisation

of a product, respectively. Intra-variability is due to environmental effects (e.g.

temperature), operating conditions, wear, fatigue and so on. Inter-variability de-

scribes differences between individual realisations of a product, which can be due to

variations in the material and geometric properties and the manufacturing process

(tolerances etc.). A comprehensive survey of sources of uncertainty and variability

in general FE analysis is given by Alvin [15]. Although the definition of these two

categories is widely accepted in the literature, the use of the terminology is not

unambiguous. The term ’uncertainty’ alone is often used to describe all non-de-

terministic effects.

From an engineering and design point of view, it is important to understand the

source of the uncertainties. However, when it comes to numerical simulation, the

variation has to be quantified to make it accessible for the modelling. In general this

step is of crucial importance for the analysis, because it determines the calculation

approaches that can be applied and the quality of the results that can be achieved.
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Two different classes of a non-deterministic analysis, based on the quantification of

the uncertainty, can be defined. In possibilistic approaches the variation of a

parameter is specified by a range of possible values, given by a lower and an upper

bound for example. It is only known that there are possible realisations within the

interval, but no information about their likelihood are given. Similarly, the output of

any possibilistic analysis in general can not provide any information about the prob-

ability of events and only intervals of response quantities, such as FRF envelopes, can

be obtained. On the other hand, in probabilistic approaches information about

the probability of events is included. The variation of a parameter is typically spec-

ified by a probability density function (pdf), for example by assuming a common

distribution, such as a normal distribution. Therefore, distribution functions and

statistics of the response, such as a probability of failure, can be calculated. In

general, product variability has an underlying probability distribution that can be

quantified by observations. If there is not enough data available however, it might

be reasonable to use a possibilistic description instead. Epistemic uncertainties in

general can not be associated with distinct probabilities and a possibilistic approach

is often applied.

Finally, a separation can be made into parametric and non-parametric un-

certainties, the former directly related to given parameters and the latter often

associated with all other effects, such as the accuracy of the model. The numerical

model of a real system, including the specified parameters, is always an idealisa-

tion. It is therefore impossible to cover all non-deterministic effects by considering

parametric uncertainties only. However, in many cases it is reasonable to quantify

variation in the input parameters only, especially in a low-frequency analysis and

when the model has been validated. Product variability can often be appropriately

quantified using parametric approaches. Additionally, by quantifying uncertainties

numerically or experimentally in non-physical parameters, such as modal proper-

ties, some of the model uncertainties can be included. It is often observed that

the statistics of various quantities are asymptotic, especially for higher frequencies.

The natural frequency spacing, for example, can then be described by the Gaus-

sian orthogonal ensemble [16]. Furthermore, response levels often have a normal or

log-normal distribution. Therefore, it is possible to predict the response variations

inherent in the design without the need to quantify specific variations in input pa-

rameters. Other non-parametric approaches focus on the random structure of the

system matrices, utilising for example random matrix theory [17] and matrix variate

distributions [18]. Methods have been proposed that are based on the direct con-

struction of a probabilistic model for the mass, damping and stiffness matrices of a

FE model [19, 20]. Furthermore, a unified approach [21] to model both paramet-
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(a) (b)

Figure 1.2: Measured FRFs of beer cans: (a) variability in nominal identical struc-
tures, (b) repeatability [1].

ric and non-parametric uncertainties simultaneously has been proposed. Random

matrix theory also gives rise to asymptotic statistics.

Various types of non-determinism will be considered in this work, with a focus

on parametric uncertainties. Both probabilistic and possibilistic approaches will be

addressed and some emphasis is placed on combining them, which can be a realistic

approach in some industrial applications.

1.1.3 Uncertainty assessment - experimental measurements

The inherent variations between nominally identical products are often of interest

in experimental investigations. Fahy [1] took 41 nominal identical mechanical struc-

tures (cans) and measured the FRFs for acoustic excitation. Figure 1.2a shows the

ensemble of 41 FRFs. There is a large variation over the whole frequency range and

only a few resonance peaks can be matched between the realisations. Figure 1.2b

shows a test of the repeatability of the measurements, where the same structure

has been measured, removed and replaced 8 times. There is some variation between

the 8 FRFs, which is due to differences and errors in the measurement set-up and

procedure. Therefore, it can be assumed that the higher variations in Figure 1.2a

are due to differences in the structural properties of the 41 cans.

Kompella and Bernhard [2] carried out an extensive experimental campaign mea-

suring structure-borne noise on a large number of nominally identical vehicles. The

ensemble of 98 FRFs is shown in Figure 1.3. The variations are considerable, but

resonance peaks can be identified at lower frequencies. A comprehensive analysis

of measured variability data for this, and other experimental campaigns, has been

performed in [22, 23]. The work focused on the FRF magnitude distribution at a
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Figure 1.3: Ensemble of measured FRFs for 98 nominal identical vehicles [2].

fixed frequency and the change of the distribution with frequency. It has been found

that a normal distribution is a reasonably good fit to the variations. In general, if

an assumption about the probability distribution of a input parameter has to be

made, a normal distribution seems to be most appropriate. It reflects the expected

behaviour that there is a concentration of realisations around the mean and fewer

realisations far away from the mean. Other works on the variations within nominally

identical product lines include that of Brown and Gear [24].

This thesis focuses on numerical methods for non-deterministic modelling and

no new experimental results will be presented. Newly proposed computationally

efficient approaches will be compared with numerical reference solutions and virtual

experiments are conducted. However, theoretical concepts that have the purpose of

improving the quantification of experimental data will be discussed.

1.1.4 Frequency range

In structural dynamics, the modelling requirements and objectives depend on the

frequency of vibration [25]. Many modelling approaches, such as FEM, are based on

domain discretisation, where the mesh size has to be refined for higher frequencies in

order to obtain results of similar detail and accuracy. Therefore, the model size and

the required computing resources increase with frequency and an analysis becomes

numerically more expensive. On the other hand, the required level of detail of an

analysis can differ depending on the frequency range of interest. Figure 1.4 shows a

typical ensemble of FRFs for a non-deterministic mechanical system, where the FRF

of one realisation is highlighted. The entirety of all possible FRFs (dark area) can
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Figure 1.4: Ensemble of FRFs and an individual FRF realisation.

be described by a lower and upper FRF envelope. Some frequency characteristics

of a deterministic FRF realisation can be described by the modal overlap M(f),

quantifying the number of modes that are significantly excited in a system at any

one frequency f . It is a dimensionless parameter, defined by M(f) = n(f) ∆(f),

where n(f) is the modal density, defined as the expected value of the number of

modes per unit frequency, and ∆(f) is the half-power bandwidth, which is the

difference between the frequencies where the FRF magnitude of a mode falls to

1/
√

2 of the peak value. Furthermore, if the whole ensemble of FRFs is considered,

there is a degree of overlap due to the spread of individual natural frequencies. It can

be quantified by the stochastic overlap S(f), defined by S(f) = 2n(f)σ(f), where

σ(f) is the standard deviation of a natural frequency. In general, the modal density,

the half-power bandwidth and the standard deviation of natural frequencies increase

with frequency and so do the modal and stochastic overlaps. These parameters can

also be used as criteria to determine the required level of detail.

At low frequencies, both the modal and stochastic overlaps are typically small

and typically only one or two modes of vibration contribute to the response of the

structure at any one frequency. The individual resonance peaks are distinct and do

not overlap, even when their variation is considered. Therefore, detailed structural

results for modal properties and the FRF are of interest. These can be calculated

using standard finite element techniques and modal analysis. However, FE methods

in general might require a very large model size and therefore be numerically costly.

In connection with non-deterministic approaches, which often require that a deter-

ministic problem is solved repeatedly, the numerical cost becomes a major factor.

In the high frequency range, the modal and stochastic overlaps are typically greater
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than unity and many modes of vibration contribute to the structural response at a

given frequency. Individual resonance peaks cannot be recognised within the FRF

envelope. Therefore, the required level of detail for modal properties is low and

average quantities of the FRF are of interest. For this case, energy methods, such

as statistical energy analysis (SEA) [26, 27], are often employed. The models are

in general relatively small and the numerical cost does not pose a problem. In the

mid-frequency region, neither FEM nor SEA alone seem appropriate. A detailed

FE analysis is not necessary and also becomes unfeasible, because of the increase in

numerical cost with frequency. On the other hand, high frequency energy methods

do not provide the required level of detail. Therefore hybrid methods combining

both approaches have been suggested [28]. Within a built-up structure, the contri-

butions of components to the overall dynamic characteristics can be quite different.

Some components require a detailed FE analysis and others can be appropriately

modelled by energy methods [29].

This thesis will focus on low-frequency modal approaches for cases when rela-

tively large finite element models are required to obtain detailed structural responses.

1.2 Approaches for a non-deterministic analysis

It is appropriate to classify methods for an uncertainty analysis into probabilistic

and possibilistic approaches. In general, this determines the quantification and

propagation of non-deterministic data and the form of output response.

1.2.1 Possibilistic approach

In possibilistic approaches [30], the basic quantification of a parameter variation is

an interval, where only knowledge about a lower and upper bound is required. As

shown in Figure 1.5, a lower and an upper limit (xL, xU) of the parameter x are given.

There is no information about the probability of a realisation within the interval,

i.e. there is no difference in the importance of a value near the middle of the interval

compared to one near the bounds. In general, a baseline value within the interval is

assumed for the deterministic problem. The difficulty lies in quantifying the bounds,

which are in general taken to be conservative. However, the specification of a bound

can easily be too conservative and unrealistic, especially if used to describe physical

variability.

If the variation in input parameters is defined by an interval, the variation in the

output can in general only be predicted as an interval. In Figure 1.6, the baseline

frequency response function (FRF) and conservative estimates for the lower and
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Figure 1.6: Example FRF: 100
realisations; baseline FRF;

lower and upper envelopes.

upper FRF envelopes are shown. The goal of a possibilistic propagation approach

[31] is to calculate the bounds on the response quantity of interest. If the problem

is monotonic, i.e. the output depends monotonically on every input parameter, it is

sufficient to consider all combinations of the bounds of the input parameters only,

which is referred to as the vertex method [32]. The numerical cost of this approach

is 2n solutions of the deterministic problem, where n is the number of random

variables. The results are conservative, because correlations between several interval

variables and intermediate response calculations are neglected. If the conservatism

is unreasonably high, advanced interval methods, such as affine analysis [33], can be

applied to improve results. If the problem is non-monotonic, the vertex method does

not necessarily lead to conservative results, because any parameter value within an

interval may contribute to an extreme system response. In an approximate numerical

approach, additional points within the interval can be considered to cover some of

the non-monotonicity. The design of experiments (DOE) [34] methodology provides

a framework to facilitate the selection of a set of points in the uncertain input

parameter space. DOE methods apply to both experimental and numerical tests,

where only a limited number of parameter realisations can be considered and an

optimal selection has to be found.

There are approaches that extend the basic possibilistic concept by including

additional information within the interval. Fuzzy sets, for example, have been used

to represent incomplete information [35, 36]. Figure 1.7 shows a triangular fuzzy

membership function, where a level of membership µ between 0 and 1 is indicated.

If µ(x) = 0 then x is definitely not a member of the set, if µ(x) = 1 then x is

definitely a member of the set. For all 0 < µ < 1 the membership is not certain.

This approach to uncertainty quantification is intended to be used for special types

of uncertain data, where neither a pdf nor an interval are appropriate, such as lin-



1. Introduction and background 10

xL x0 xU

xαL
xαU

x

µ(x)

1

0

α

Figure 1.7: Fuzzy membership function of random variable x: xαL
, xαU

- lower and
upper bounds at membership level α, x0 - crisp value at α = 1.

guistic data from expert opinion. In order to make the fuzzy membership function

accessible for numerical propagation methods, it can be represented by a number

of intervals [37]. At predefined levels of membership α, the fuzzy membership func-

tion is intersected to find an interval for this α-cut. Subsequently, general interval

methods can be used and the output membership function can be reassembled from

the output intervals. This approach can also be seen as a framework for combining

several interval analyses, controlled by the shape of the fuzzy membership functions

and the parameter α. Specific interval propagation techniques, such as the trans-

formation method [38], have been developed for fuzzy membership functions. A

review of possibilistic uncertainties in finite element analysis, with a focus on fuzzy

methods, is given by Moens [30].

1.2.2 Probabilistic approach

In probabilistic approaches [39, 40], information about the likelihood and probabil-

ity of events are included. In Figure 1.8 the variation in the parameter y is specified

by a probability density function (pdf), with mean value y0 and standard deviation

σy. Similarly, the variation in the response can be quantified in terms of distribu-

tion functions or statistics. For example, Figure 1.9 shows percentiles for the FRF

distribution. In practice there is often not enough data to quantify a distribution

exactly and a standard pdf, such as a normal distribution, is assumed. The mean

value can be taken as the deterministic value and only the variance has to be quan-

tified. A normal distribution is often a reasonable assumption to model product

variability in physical processes. In statistics, this is also supported by the Central

Limit Theorem [41], which states that any sum of many independent and identically

distributed variables with finite variance is approximately normally distributed. The

unbounded tails of the normal distribution are often inconsistent with reality, which
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has to be taken into account.

Uncertain mechanical structures often have spatially varying properties, such as

the thickness of metal panels, which can be represented by random fields [42]. In

stochastic finite element methods [43], the continuous random fields are first dis-

cretised and represented in terms of a finite number of random variables, i.e. the

number of degrees of freedom (DOFs) of the system. Subsequent decomposition

schemes, such as the Karhunen-Loève (KL) expansion [44], lead to a system of ran-

dom algebraic equations, which are accessible by uncertainty propagation methods.

The standard method for propagating probabilistic data is the Monte Carlo (MC)

method [45–47]. In standard MC sampling, parameter values are randomly drawn

according to their probability distributions and a deterministic problem is solved for

each sample. The results are analysed to estimate response statistics and distribu-

tion functions. The method is very robust and converges to the exact solution as the

sample size tends to infinity. It makes no approximations and considers all effects

modelled in the deterministic problem. In general, a sample size of the order of 10

is sufficient to estimate the mean of a distribution function and a sample size of the

order of 100 is required to obtain a reasonable estimate of the variance. However,

the numerical cost to estimate a small probability of failure can be in the order of

thousands of deterministic solutions.

In contrast to sampling approaches, there are various subspace projection schemes

[48], such as polynomial chaos expansion [43] and stochastic reduced basis methods

[49]. Other approaches for uncertainty quantification include Dempster-Shafer the-

ory (DST), which is an evidence based approach [50, 51]. It allows one to consider

a level of confidence in the probabilities of certain events. Similarities with fuzzy

approaches and probability distributions have been shown [52].
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1.3 Challenges for and solutions of a

non-deterministic analysis

Virtual simulations of the behaviour of mechanical systems are of widespread use

in academia and industry. There are well-established commercial software pack-

ages for the finite element analysis of mechanical structures. However, in general

a deterministic model with one particular set of physical parameters is employed.

The effects of non-deterministic properties are of growing concern in the design of

engineering structures and a number of viable methods to take them into account

already exist. In order for them to become of widespread use in industry, the ad-

ditional challenges of a non-deterministic analysis have to be addressed. These are

in general the increased numerical cost and the applicability and practicality of the

approaches.

1.3.1 Numerical cost

For the analysis of a structure with non-deterministic properties, most approaches

require that the deterministic problem is solved repeatedly and are therefore numer-

ically expensive. Probabilistic methods, such as Monte Carlo sampling, may require

a large sample size. The numerical cost of possibilistic approaches, such as interval

methods, increases exponentially with the number of uncertain parameters. There-

fore, research has focused on reducing both the number of necessary deterministic

solutions and the calculation time for one deterministic run.

Reducing the number of necessary deterministic solutions. In a Monte

Carlo analysis, the number of necessary evaluations can be reduced by using ad-

vanced sampling techniques [53]. These reduce the variance of the sampling esti-

mator and achieve the same accuracy with a lower number of samples. The most

common techniques are importance sampling [54], directional sampling [55], subset

simulation [56] and Line-Sampling [57].

The DOE methodology can also be applied to create advanced MC methods to

estimate the mean and variance of a distribution using a very low number of samples.

Latin Hypercube sampling [58] is a version of stratified sampling, where it is ensured

that the samples are taken more evenly from the input parameter distribution.

In a possibilistic interval analysis the number of required solutions mainly de-

pends on the number of independent variables. Therefore a reduction in the number

of variables or the inclusion of assumptions regarding their interdependence can re-

duce the numerical cost. In the case of non-monotonic possibilistic problems, the

accuracy of the results is related to the number of simulations performed. The DOE
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methodology provides a systematic approach to get the best results from a minimum

number of deterministic runs. In this context, advanced transformation methods are

available for the propagation of fuzzy membership functions [38]. Furthermore, hy-

brid exact/approximate techniques have been developed for the fuzzy finite element

method [59].

Reducing the calculation time for one deterministic solution. In general,

a smaller model can be solved faster and therefore most model reduction techniques,

such as Guyan reduction [60] or component mode synthesis (CMS) [61], are appro-

priate to be applied in a non-deterministic analysis.

The calculation cost for one solution can also be reduced drastically, if numeri-

cally expensive operations, such as solving the eigenvalue problem, are replaced with

numerically cheap formulations. First order perturbation methods using response

sensitivities [62] are appropriate for low levels of uncertainty. For larger uncertain-

ties, higher order perturbation or interpolation can be used. A systematic approach

to select the reference solutions for an interpolation is given by the design of ex-

periments methodology. It can also be used to construct an approximate response

surface model (RSM) [63], which replaces the original model to provide a relation-

ship between input parameters and response quantities. Although a replacement of

the original model is often associated with errors due to approximations, these can

often be neglected with respect to the level of uncertainty in the input data.

1.3.2 Applicability and practicality

The other main challenge to achieve a successful and beneficial use of non-determin-

istic simulation approaches is to increase their applicability and practicality. This

concerns the quantification of uncertainties using available experimental or numer-

ical data, and the combination of qualitatively and quantitatively different data,

amongst others.

In order to increase the applicability, the requirements for industrial applications

have to be considered. Approaches should support the use of standard finite element

software and not be limited by the size and complexity of the model. In industrial

applications, there can be a large number of uncertain parameters (> 100) with a

considerable magnitude of variation. These could include physical, geometrical and

material properties as well as loads and boundary conditions. Some approaches,

such as Monte Carlo sampling, are independent of the number of uncertain parame-

ters. Substructuring and model reduction techniques become more useful for larger

models.

Empirical data should be used for uncertainty quantification wherever possible.
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It is therefore important to assess what experimental data are likely to be obtained.

Some theories and models for the quantification of non-deterministic effects (e.g.

random fields) have been around for many decades, but the experimental data re-

quired to define them is often not available. In this context, the quantification of

uncertainties in modal properties can be more practical.

In practice it is most likely that both probabilistic and possibilistic uncertainty

descriptions are given within a built-up structure or an individual component. There-

fore, the modelling has to consider their practical combination, i.e. defining some

data probabilistically and some possibilistically.

The modelling of damping in structural dynamic models is a difficult problem.

However, for some cases the variation in damping might be the most decisive factor

for the variation in the response. In a modal analysis, it can be assumed that a

change in damping only causes a change in response magnitude. Therefore, vari-

ability and uncertainty in damping can be considered independent of variations in

eigenfrequencies and modeshapes.

Most mechanical structures comprise some sort of joints and often the effects of

the uncertainty in joints can be more important than other sources of uncertainty

in a structure. There is a wide range of dynamic characteristics between different

joints and the behaviour of joints often differs greatly from the behaviour of the rest

of the structure.

A promising approach to address several of these challenges is substructuring,

which will be addressed in this thesis.

1.4 Scope of the thesis

The thesis concerns the dynamic analysis of mechanical structures that are modelled

by the finite element method. The vibrations of multi-degree-of-freedom, viscously-

damped linear systems is described by the differential equation

Mü + Cu̇ + Ku = f (1.1)

where M, C and K are the mass, damping and stiffness matrices, respectively, u is

a vector of displacements and f a vector of forces. For free vibration (f = 0), the

undamped eigenvalue problem

[K − λiM]φi = 0 (1.2)
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gives the ith eigenvalue and eigenvector λi and φi respectively. If damping is as-

sumed to be proportional (Rayleigh damping) then these eigenvectors are also eigen-

vectors of the damped system. This work considers low-frequency modal approaches

for the forward analysis concerning eigenvalues, eigenvectors and frequency response

functions. Parametric uncertainty in both physical and modal properties is consid-

ered. The excitation is deterministic and all properties are time-invariant.

At low-frequencies, the modal and stochastic overlaps are small and detailed

information about the structural response is desired. The frequency response can

be expressed in terms of modes of vibration, obtained from solving the eigenvalue

problem. It is appropriate to first estimate the variation in the eigenvalues and

eigenvectors and subsequently propagate these effects to the FRF. The thesis will

present a framework for the non-deterministic analysis of built-up structures us-

ing component mode synthesis (CMS). First, the variation in modal properties at

component level is estimated. Subsequently, it is propagated to the global modal

level and to the global physical frequency response. In this context, it is shown how

CMS is suitable to address several of the challenges of a non-deterministic analysis.

Overall, CMS methods can be used to drastically reduce numerical costs, improve

the applicability of the approaches and also gain some physical insight of the under-

lying problem. In addition, several advanced uncertainty propagation methods are

presented that can be used in conjunction with a CMS model.

The next chapter reviews some of the basic concepts for a numerically efficient

reanalysis of the eigenvalue problem, which is fundamental to linear modal anal-

ysis, but usually associated with high numerical costs. Chapter 3 addresses the

modelling of spatial variations in components using random fields and their imple-

mentation in existing finite element models. The concept of a random field model

with a possibilistic parameter variation will be presented. Subsequently, Chapter

4 focuses on model reduction techniques and the deterministic component mode

synthesis method. Chapter 5 discusses the advantages of substructuring and CMS

for a non-deterministic analysis. These arise from that fact that each substructure

can be treated independently regarding the quantification and propagation of non-

deterministic data. For each component a qualitatively and quantitatively different

analysis method can be chosen. A specific approach, based on considering the vari-

ation in component natural frequencies only, is introduced and its efficiency and

accuracy investigated. The application of perturbational relations for uncertainty

propagation is presented. The framework of CMS is also used to combine possi-

bilistic and probabilistic data. Subsequently, free and fixed-interface methodologies

in CMS are discussed in Chapter 6. In low-frequency approaches, the global fre-

quency response can be expressed in terms of modal responses. Chapter 7 discusses
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various aspects of non-deterministic model superposition. A new approach to the es-

timation of frequency response function envelopes from possibilistic or probabilistic

data is presented. The Monte Carlo method will be used to propagate all prob-

abilistic uncertainties and especially to estimate percentiles of modal properties.

Advanced Monte Carlo methods are essential for reducing the cost of the analy-

sis and will be discussed in Chapter 8. Novel contributions will be made to the

Line-Sampling technique, including its application to the estimation of distribution

functions and its use in conjunction with random field models. The application case

of an automotive windshield is presented in Chapter 9. The creation of an ap-

propriate non-deterministic model, implementation within the finite element model

and processing using commercial software are discussed.

In summary, the original contributions of this thesis are:

• CMS as a framework for the low-frequency analysis of built-up structures with

non-deterministic properties (Chapters 5 and 6)

- Advantages of substructuring and multi-level quantification and propagation

of uncertainties

- Application of perturbational methods within CMS

- Assessment of approaches regarding efficiency, sources of inaccuracies and

error

- Combination of probabilistic and possibilistic approaches

• Uncertainty quantification (Chapters 3 and 6)

- Possibilistic parameter variation in random field models

- Free and fixed-interface methodologies in CMS

• Non-deterministic modal superposition (Chapter 7)

- Proposal of new parameter set for the modal space

- Combination of possibilistic and probabilistic approaches

• Application of Line-Sampling (Chapters 8 and 9)

- Estimation of distribution functions and other statistics

- Efficient combination of Line-Sampling and random field models

• Industrial application case (Chapter 9)

- Implementation of random field in existing FE model

- Automated analysis using a PERL script, MATLAB and NASTRAN software



Chapter 2

Eigensolution reanalysis

2.1 Introduction

This chapter concerns the numerically efficient reanalysis of the eigenvalue problem

in the context of a non-deterministic analysis. The eigenvalue problem is one of the

most important equations in structural dynamics and many other fields. It is essen-

tial for linear modal analysis and modal superposition. The eigenvalues correspond

to resonance frequencies of the system and the eigenvectors can be used to perform

a transformation from physical to modal coordinates. In general, the eigenvalue

problem also involves the highest numerical cost in an analysis. Therefore, reducing

the numerical cost and resources that are associated with the eigenvalue problem

has a significant effect on making a non-deterministic analysis more efficient. This

chapter reviews some basic concepts to replace the eigenvalue problem with numer-

ically cheap algebraic equations. These are based on the fact that the reanalysis of

the eigenvalue problem in a non-deterministic analysis often occurs only with small

changes in the governing parameters. Some of the expressions will be used in later

chapters, for example in combination with component mode synthesis.

2.2 Eigenvalue problem

Consider a multi-degree-of-freedom damped linear dynamic system with mass (M),

stiffness (K) and damping (C) matrices of size n × n. The eigenvalue problem of

the undamped system is given by

(K − λiM)φi = 0 (2.1)

where λi and φi are the eigenvalues and eigenvectors, respectively, i = 1, 2, . . . n and

n is the number of degrees of freedom (DOFs).

17
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Assuming that the system matrices are symmetric, real-valued and positive defi-

nite, the eigensolutions are real and the eigenvalues non-negative. As a consequence,

the eigenvalue and eigenvector sensitivities are also real. In the case of a proportion-

ally damped system (Rayleigh damping), the damping matrix can be diagonalised

by the eigenvectors. Furthermore, the eigenvalue problem is self-adjoint and can

also be written as

φT
i (K − λiM) = 0 (2.2)

because the right eigenvector coincides with the left eigenvector. The orthogonality

conditions for mass-normalised eigenvectors are

φT
k Mφi = δki (2.3)

φT
k Kφi = λkδki (2.4)

where δ is the Kronecker Delta.

Changes in the stiffness or mass matrices lead to changes in the modal properties

and therefore a reanalysis of the eigenvalue problem is required. However, an exact

reanalysis, solving Equation 2.1, is often not feasible due to the high numerical

cost associated with the eigenvalue problem. In the following, numerically cheap

approximate reanalysis methods based on perturbation and interpolation will be

reviewed.

2.3 First order modal sensitivities

A change in the ith eigenvalue (∆λi) due to changes in parameters (∆pj) can be

approximated using first order sensitivities in the form

∆λi ≈
∑

j

∂λi

∂pj

∆pj (2.5)

where ∂λi

∂pj
is the derivative of the ith eigenvalue λ with respect to the jth parameter

p evaluated when ∆p = 0. A similar expression can be used for the variation in

eigenvectors. The rate of change of eigenvalues and eigenvectors has been studied

extensively [64–67]. Differentiation of Equation 2.1 with respect to a parameter pj

yields (
∂K

∂pj

− λi
∂M

∂pj

)
φi −

∂λi

∂pj

Mφi + (K − λiM)
∂φi

∂pj

= 0 (2.6)
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Premultiplying by φT
i and some manipulation leads to

∂λi

∂pj

= φT
i

(
∂K

∂pj

− λi
∂M

∂pj

)
φi (2.7)

which involves derivatives of the mass and stiffness matrices as well as the baseline

eigenvalues and eigenvectors.

The rate of change of an eigenvector with respect to a parameter pj can be

expressed as the sum of contributions from all eigenvectors with factors γ in the

form
∂φi

∂pj

=
∑

l

γilφl (2.8)

Substituting this expression in Equation 2.6 and premultiplying by φT
k gives

φT
k (K − λiM)

N∑

l=1

γilφl + φT
k

(
∂K

∂pj

− λi
∂M

∂pj

)
φi − φT

k

∂λi

∂pj

Mφi = 0 (2.9)

which can be simplified to

(λk − λi) γik + φT
k

(
∂K

∂pj

− λi
∂M

∂pj

)
φi −

∂λi

∂pj

δki = 0 (2.10)

It follows that

γik = −
φT

k

(
∂K
∂pj

− λi
∂M
∂pj

)
φi

(λk − λi)
k 6= i (2.11)

Differentiation of Equation 2.3 with respect to a parameter pj yields

∂φT
i

∂pj

Mφi + φT
i

∂M

∂pj

φi + φT
i M

∂φi

∂pj

= 0 (2.12)

Substituting Equation 2.8 into Equation 2.12 and some manipulation leads to

γii = −1

2
φT

i

∂M

∂pj

φi (2.13)

Therefore the eigenvector sensitivity is found as

∂φi

∂pj

=
∑

k 6=i

−
φT

k

(
∂K
∂pj

− λi
∂M
∂pj

)
φi

(λk − λi)
φk −

1

2

(
φT

i

∂M

∂pj

φi

)
φi (2.14)
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2.4 Perturbation of eigenvalue problem

If a change ∆p in a parameter p changes the mass and stiffness matrices by ∆M

and ∆K, respectively, defined as

∆K = K(p+ ∆p) − K(p) ∆M = M(p+ ∆p) − M(p) (2.15)

then Equation 2.1 can be written as

(K + ∆K)(φi + ∆φi) = (λi + ∆λi)(M + ∆M)(φi + ∆φi) (2.16)

where ∆φi and ∆λi denote the resulting change of the ith eigenvector and eigenvalue,

respectively. Expanding this equation and ignoring higher order terms gives

(Kφi + K∆φi + ∆Kφi) ≈ (λiMφi + λiM∆φi + λi∆Mφi + ∆λiMφi) (2.17)

Premultiplying by φT
i and some manipulation leads to

∆λi ≈ φT
i (∆K − λi∆M)φi (2.18)

which approximates the change in eigenvalue due to a change in the physical matrices

to first order. It is equivalent to Equation 2.7 in the limit ∆p→ 0.

The perturbation in the ith eigenvectors can be expressed as

∆φi =
∑

i6=k

γilφl (2.19)

where γik are first order quantities. By substituting Equation 2.19 into Equation

2.17, multiplying by φT
k and some manipulations, it can be shown that

∆φi = −
∑

k 6=i

φT
k (∆K − λi∆M)φi

(λk − λi)
φk −

1

2

(
φT

i ∆Mφi

)
φi (2.20)

which can be compared to Equation 2.14. The approaches reviewed in this and the

last section are based on the assumption that there are no repeated eigenvalues,

which can be seen in the denominators of Equations 2.14 and 2.20. There are

advanced approaches that can cope with repeated eigenvalues [68, 69] or consider

damped dynamic systems [70, 71].
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2.4.1 Example

A single-degree-of-freedom model of a cantilever beam is considered, where the mass

is proportional to the length (m ∼ L) and the stiffness is inverse proportional to the

length cubed (k ∼ 1/L3). All other variables are equal to one and the length is the

parameter to be modified (p = L). The baseline value p0 and the change ∆p are

specified as follows

p = p0 + ∆p p0 = 1 − 0.5 ≤ ∆p ≤ 0.5 (2.21)

The eigenvalue is given as

λ =
k

m
=

1

p4
(2.22)

In Figure 2.1 the approximations of the eigenvalue from Equation 2.7 and Equa-

tion 2.18 are compared with the exact solution. Whereas the sensitivity approach

results in a straight line with the same gradient as the exact solution at p0, the

perturbation of the eigenvalue problem gives a nonlinear approximation, which com-

pares much better to the exact solution. Although the perturbation only considers

first order terms, the approximation can be nonlinear, because the differences ∆K

and ∆M are nonlinear if the mass and stiffness matrices are nonlinear functions of

the parameter p. If the conditions

∂K

∂pj

∆pj = ∆K and
∂M

∂pj

∆pj = ∆M (2.23)

hold, then the perturbation and the sensitivity approach yield the same results.

The perturbation and linear sensitivity approaches are useful techniques if the

change in a parameter is small and the change in the quantity of interest is small

as well. In general, except for periodic structures or if two eigenvalues are equal or

close, a small change in a physical parameter results in a relatively small change in

the eigensolutions.

2.5 Interpolation of eigenvectors

The perturbation and linear sensitivity approach both approximate a new evaluation

based on the change from the baseline solution. In contrast, there are interpolation

approaches, which use more than one exact solution to approximate a new evalua-

tion. The basic concept of these is reviewed next.

If Equation 2.16 is multiplied by (φi+∆φi)
T it follows after some rearrangement
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Figure 2.1: Approximation of an eigenvalue by perturbation of the eigenvalue problem
and linear sensitivity approach for a nonlinear function.

that

λi + ∆λi =
(φi + ∆φi)

T (K + ∆K)(φi + ∆φi)

(φi + ∆φi)
T (M + ∆M)(φi + ∆φi)

(2.24)

which is also referred to as the Rayleigh quotient. The computationally expensive

part of this equation is to calculate a new eigenvector for any change in parameter

p. Bhaskar [72] suggested to solve the eigenvalue problem only for the smallest and

largest values of the parameter p and interpolate the eigenvectors for intermediate

values of p. Equation 2.24 becomes

λi + ∆λi =
φ̄

T
i (K + ∆K)φ̄i

φ̄
T
i (M + ∆M)φ̄i

(2.25)

where φ̄ denotes the interpolated eigenvector. Considering the lower and upper

limits in the space of parameter p as

pL ≤ p ≤ pR (2.26)

two eigenvalue problems at p = pL and p = pR have to be solved, which are given as

KLφL = λLMLφL KRφR = λRMRφR (2.27)



2. Eigensolution reanalysis 23

The exact eigenvectors φL and φR are then combined using a varying weight by

φ̄ = (1 − t)φL + tφR (2.28)

The weight t depends on the point of interest in the parameter space and is defined

by

t =
p− pL

pR − pL

(2.29)

This approach can be extended to any number of parameters. The parameter

space of two variable parameters pa and pb is shown in Figure 2.2. The eigenvalue

problem has to be solved for the parameter combinations in each of the four corners.

The normalised weights are defined as

ta =
pa − pa

L

pa
R − pa

L

tb =
pb − pb

L

pb
R − pb

L

(2.30)

and the eigenvector for any combination of pa and pb within the parameter space

can be estimated by

φ̄ = (1 − ta)(1 − tb)φLL + ta(1 − tb)φRL + tb(1 − ta)φLR + tatbφRR (2.31)

which is a bilinear interpolation using the four exact solutions at the corners. The

number of eigenvalue problems to be solved increases exponentially with the number

of parameters, which makes this method computationally expensive.

An alternative approach would be to calculate the exact eigenvectors in two

opposite corners (φLL,φRR) only. The interpolation is then given by

φ̄ = (1 − td)φLL + tdφRR (2.32)

where the weight is

td = (ta + tb)/2 (2.33)

2.6 Interpolation of eigenvalues

The interpolation technique can also be applied to estimate eigenvalues. In [73] an

approach is presented where several approximate solutions of an eigenvalue, based

on perturbations about different points, are combined to one approximate eigenvalue

solution.

Equation 2.18 can be used to find the approximate solutions λ̃L and λ̃R based

on a perturbation about p = pL and p = pR, respectively. Alternatively, Rayleigh’s
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Figure 2.3: Two-DOF system.

quotient, Equation 2.25, can be used with eigenvectors from the corner points in the

form of

λ̃L =
φ̄

T
L(K + ∆K)φ̄L

φ̄
T
L(M + ∆M)φ̄L

λ̃R =
φ̄

T
R(K + ∆K)φ̄R

φ̄
T
R(M + ∆M)φ̄R

(2.34)

Both methods give an approximation of the eigenvalue from the left and from the

right side, which can be combined to one estimate based on the position in the

parameter space by

λ̃ =
pR − p

pR − pL

λ̃L +
p− pL

pR − pL

λ̃R (2.35)

Furthermore, since each approximation is exact in one corner, the error of the other

approximation can be evaluated, which can be used to change the weights and im-

prove the combined approximation. The values obtained using the Rayleigh quotient

are always larger than the exact solution, due to the nature of this approximation

[73].

The response surface methodology (RSM) [63] can be seen as an extension of the

interpolation approaches. It is used to construct an approximate meta-model, which

replaces the original model to provide a relationship between input parameters and

response quantities.
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Figure 2.4: Change of eigenvalue λ1 due to changes in parameter k2: absolute val-
ues (a) and relative errors (b); exact; perturbation about k2 = 1; . .
perturbation about k2 = 1.5; . . . . interpolation approach.

2.6.1 Numerical example

A two-DOF mass-spring chain (Figure 2.3) is considered, where the stiffness k2 can

vary as 1 < k2 < 2 and the other properties have a deterministic value of one. The

mass and stiffness matrices are thus given as

M =

[
1 0

0 1

]
K =

[
(1 + k2) −k2

−k2 k2

]
(2.36)

The fundamental eigenvalue is calculated using an exact approach and several

approximations. The interpolated eigenvector method (Equation 2.25) is applied

based on exact solutions for k2 = 1 and k2 = 2. Results for the interpolation of

eigenvalues (Equation 2.35) are not shown. The perturbation approach (Equation

2.18) around a baseline value of k2 = 1 and k2 = 1.5, respectively, is realised. The

results for the eigenvalues are shown in Figure 2.4a and the relative errors are shown

in Figure 2.4b.

In all cases the differences increase for values of k2 that are further away from

an exact deterministic solution. The perturbation approach about the lower limit

of the interval of k2 results in the largest errors of about 10% at the upper limit.

The perturbation about the centre point of the interval causes considerable errors of
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up to 3%. The interpolated eigenvector approach gives good results over the whole

interval with the maximum error of about 0.2%.

2.7 Discussion and concluding remarks

The basic concepts of modal perturbation and interpolation approaches have been

presented. The perturbation and linear sensitivity approaches are useful techniques

if the change in a parameter is small and the change in the quantity of interest is

small as well. In general, except for periodic structures or if two eigenvalues are equal

or close together, a small change in a physical parameter results in a relatively small

change in the eigensolutions. The interpolation approaches give good results for the

system discussed here. There are some constraints in addition to the ones above

in that eigenvalues must not change order when a parameter varies. The effects of

veering and crossing of eigenvalues have to be considered. The computational cost

of solving the eigenvalue problem at a number of points can become quite large. In

non-deterministic modelling, usually the baseline properties are known exactly but

lower and upper limits are difficult to define. There are many variations of these

approaches considering more complex systems and a larger number of uncertain

variables.



Chapter 3

Modelling of spatial variations by

random fields

3.1 Introduction

This chapter concerns the modelling of spatial variations, which is a common type of

uncertainty in mechanical structures. Many physical parameters, such as material

and geometric properties, vary locally and spatially, which can be modelled by prob-

abilistic random fields [42]. The Karhunen-Loève (KL) expansion [40] is well suited

to represent random fields. It can be used to transform correlated random variables

into uncorrelated random variables. In the following sections, first the theory of

discretised random fields and the KL expansion are reviewed. The implementation

of random fields within existing finite element models and the relation between cor-

relation length and finite element size are discussed. Perturbational approaches are

considered in order to reduce the numerical cost. Finally, a new concept to model

spatial variations is presented in Section 3.4, which incorporates possibilistic bounds

for the local physical parameter variations and probabilistic parameters to include

the spatial variations.

3.2 Theory

3.2.1 Random field and Karhunen-Loève expansion

A simple model for a random field is a homogenous isotropic Gaussian field, where

the random variables have a Gaussian distribution that does not change with di-

rection or location. Therefore, the interdependency between two random variables

defined at two points depends only on the distance between them. The correlation r

27
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between two Gaussian random variables can be modelled by an exponential function

of the form

r(d, Lc, σ) = σ2 exp

(
−
∣∣∣∣
d

Lc

∣∣∣∣
)

(3.1)

where σ is the standard deviation, Lc is the correlation length and d = |x1 − x2| is

the distance between two positions x1 and x2.

A Gaussian random field P (x) can be represented by the KL expansion in the

form [40]

P (x) = P (x) +
∞∑

j=1

ψ(x)j
√
µjζj (3.2)

where ζj are uncorrelated standard normal random variables, independent of x. The

deterministic terms µj and ψj are the eigenvalues and eigenvectors, respectively, of

the covariance function C of the continuous random field. The integral eigenvalue

problem is given in the form

∫
C(x1,x2)ψj(x

1)dx1 = µjψj(x
2) (3.3)

There are several approaches to the solution of Equation 3.3, for example by means

of a Galerkin procedure [43]. Similarly, there are several procedures for the dis-

cretisation of the continuous random field for a FE analysis, for example spatial

averaging methods, shape function methods and point discretisation methods [74].

Following the discretisation the covariance function can be replaced by a nxn co-

variance matrix C, for which the (k, l)th element is given by

ckl = R(dkl, Lc, σ) k, l = 1 . . . n (3.4)

where n is the number of finite elements and where dkl = |xk − xl|, xk being the

centre of the kth element. The matrix C is a symmetric completely positive matrix

and the values on the diagonal refer to the autocorrelation and are equal to the

variance of the Gaussian variable. The eigenvalue problem of the covariance matrix

is

Cψj = µjψj (3.5)

A discretised random field in one dimension, given by a vector p of length n, can be

represented by the KL expansion in the form [40]

p = p̄ +

r≤n∑

j=1

ψj

√
µjζj (3.6)
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where p̄ denotes the mean, ζj are uncorrelated standard normal (zero mean and

unit variance) random variables. The mean p̄ and the eigensolutions µj and ψj

are deterministic. The randomness of the field is only included in ζ. There are n

eigensolutions, but in general it is sufficient to consider only the r < n eigenfunctions

with the largest eigenvalues, which give a good approximation of the random field.

The parameters of the Gaussian random field are the mean value p, the standard

deviation σ and the correlation length Lc.

3.2.2 Finite element methods

In the finite element (FE) method [9], the structure is divided into a number ne of

elements of finite size. The element mass- and stiffness matrices Me and Ke are

assembled to give the global mass- and stiffness matrices M and K of the complete

structure. For simplicity, only the stiffness matrix will be considered in the following

derivations, but all expressions are equally valid for the mass matrix as well. The

global stiffness matrix can be written as

K =
ne∑

e=1

AT
e KeAe (3.7)

where Ae are transformation matrices given by

ue = Aeu (3.8)

where ue and u are the element and global coordinates, respectively.

In order to model uncertainty, that is given by a probabilistic random field model,

point discretisation methods are often appropriate. These are known for their easy

and efficient implementation, because the value of the random field at location xi is

given by pi = P (xi). If the random field is discretised using the finite element mesh,

one value of the random field has to be assigned to each finite element, which can

be expressed as

Ke = Ke(pe) (3.9)

This can be done using the midpoint method, where the random field is evaluated at

the geometric midpoint of the element. Other approaches use a combination of the

random field values that are evaluated at the node points of an element [74]. It has to

be noted that the modelling of the random field using point discretisation methods

depends on the finite element mesh. However, this approximation is justified, if the

correlation length is large compared to the element size.
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The global eigenvalue problem is then given by

(K(p) − λi(p)M(p))φi(p) = 0 (3.10)

where λi and φi are the eigenfrequencies and mode shapes of the structure, respec-

tively, that depend on the vector p.

The statistics of the variation of these properties are usually estimated by a

Monte Carlo simulation approach, where the problem is solved repeatedly to obtain

a number of samples. In each run, first the element matrices Ke(pe) and Me(pe)

are updated according to a realisation of the random field vector p (Equation 3.6).

Subsequently the global system matrices K(p),M(p) are assembled and finally the

eigenvalue problem 3.10 is solved. Alternative approaches include polynomial chaos

expansion [43] and stochastic reduced basis methods [49].

If the stiffness matrix K(p) is linearly dependent on p, then Equations 3.6, 3.7

and 3.9 can be combined to give

K(p) = K0 +
r∑

j=1

Kjζj (3.11)

where K0 is the baseline stiffness matrix and the deterministic matrices Kj are given

by

Kj = K(pj) pj = ψj

√
µj (3.12)

3.2.3 Perturbation

Expressions for modal sensitivities have been introduced in the previous chapter.

The rate of change of an eigenvalue with respect to a parameter v was found to be

[64]
∂λi

∂v
= φT

i

(
∂K

∂v
− λi

∂M

∂v

)
φi (3.13)

Therefore, the derivatives of the stiffness and mass matrices with respect to the

parameter v are needed. For the application of random fields, these parameters are

the random variables ζ. The derivative of the stiffness matrix with respect to a

random variable ζj can be written using Equation 3.7 as

∂K

∂ζj
=

ne∑

e=1

AT
e

∂Ke

∂pe

∂pe

∂ζj
Ae (3.14)
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where ∂Ke

∂pe
is the derivative of the eth element stiffness matrix with respect to pa-

rameter pe and
∂pe

∂ζj
= ψej

√
µj (3.15)

is the derivative of the parameter pe with respect to the random variable ζj. Equation

3.13 then becomes

∂λi

∂ζj
= φT

i

[
ne∑

e=1

AT
e

(
∂Ke

∂pe

− λi
∂Me

∂pe

)
Aeψej

√
µj

]
φi (3.16)

which can be written as

∂λi

∂ζj
= φT

i

[
ne∑

e=1

AT
e D̃eiAeψej

]
φi

√
µj (3.17)

where

D̃ei =
∂Ke

∂pe

− λi
∂Me

∂pe

(3.18)

Finally the change in eigenvalue λi due to changes in the KL variables ζ can be

approximated by

λi(ζ) = λ̄i +

r≤nj∑

j=1

∂λi

∂ζj
ζj (3.19)

3.3 Example

A cantilever beam as shown in Figure 3.1 is used as a numerical example. The

element stiffness and mass matrices for Euler-Bernoulli beam theory and transverse

and rotational nodal DOFs are [9]

Me =
ρAa

105




78 22a 27 −13a

22a 8a2 13a −6a2

27 13a 78 −22a

−13a −6a2 −22a 8a2




Ke =
EI

2a3




3 3a −3 3a

3a 4a2 −3a 2a2

−3 −3a 3 −3a

3a 2a2 −3a 4a2




(3.20)

where ρ is the density, E is Young’s modulus and a is half the element length. The

second moment of area I and the cross-sectional area A for a rectangular cross-

section with thickness h and width b are given by

I =
bh3

12
A = bh (3.21)
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l h b ρ E
[m] [m] [m] [kg] [N/m2]
1 0.01 0.1 7850 2.1e11

l

h

Figure 3.1: Uniform cantilever beam with rectangular cross section, baseline para-
meters.

The uniform beam is divided into 20 elements. The left end is fixed and the length

of the beam is l = 1m.

3.3.1 Random field for Young’s modulus

In this analysis, the Young’s modulus E is modelled by a random field and a Monte

Carlo simulation with 104 realisations is performed. The pseudo-exact numerical

solution is compared with approximate solutions: first, a reduction in the number of

random variables ζj from 20 to 5 in Equation 3.6 is considered (r < n). Second, the

perturbation (3.19) is applied to both the complete and the reduced set of random

variables ζj. The criterion for comparison is the probability that the first eigenfre-

quency is lower than a certain limit. This limit was calculated for a probability of

10% from the exact numerical solution.

In Figure 3.2 the results are shown with reference to the exact solution. The

correlation length is Lc = 0.5m and the coefficient of variation (CV = σ/E) is

varied from 5% to 20%. The error introduced by discretising the random field is very

small and can be neglected, because the correlation length is 10 times the element

length. It can be seen that all approximate solutions underestimate the probability

of occurrence and that the error increases for higher CV. The reduced exact solution

gives the best results, followed by the full perturbation and the reduced perturbation,

although there is little difference between the last two.

In Figure 3.3 the CV is 10% and the correlation length is varied. All approximate

solutions converge to the exact solution for a correlation length larger than Lc =

10m. In this case, only the first few random variables ζj are important. For very

large correlation lengths, the random field models a constant distribution of Young’s

modulus, which corresponds to a linear relation between the eigenfrequencies and

the first random variable ζ1.
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Figure 3.2: Variation in the fundamental eigenfrequency of a beam due to spatial
variation in Young’s modulus, different coefficient of variation, approximate results
by reduction in number of random variables and perturbation, Lc = 0.5m.
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Figure 3.3: Variation in the fundamental eigenfrequency of a beam due to spatial
variation in Young’s modulus, different correlation lengths, approximate results by
reduction in number of random variables and perturbation.
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3.3.2 Random field for beam thickness

In this analysis, the variation of the beam thickness h is modelled by a random field.

This parameter appears linearly in the mass matrix and with a cubic term in the

stiffness matrix. In Figure 3.4 the correlation length is 0.5m and the CV is varied

from 5% to 20%. The error in the approximations increases with higher CV. The

reduced solution underestimates the exact results, because some contributions to the

variation are neglected. However, the perturbation overestimates the probability,

because there is a shift to lower values for the fundamental eigenfrequencies.

In Figure 3.5, the CV is 10% and the correlation length is varied. The reduced

exact solution always underestimates the exact result and converges to it for larger

correlation lengths. The perturbation underestimates the exact result for low cor-

relation lengths and overestimates it for large correlation lengths.
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Figure 3.4: Variation in the fundamental eigenfrequency of a beam due to spatial

variation in thickness, different coefficient of variation, approximate results by re-

duction in number of random variables and perturbation.



3. Modelling of spatial variations by random fields 35

0

2

4

6

8

10

12

14

1.E-06 0.1 0.5 1 10

Correlation length [m]

P
ro

b
ab

ili
ty

 o
f 

F
ai

lu
re

 [
%

]

reduced pert reduced pert

Figure 3.5: Variation in the fundamental eigenfrequency of a beam due to spatial

variation in thickness, different correlations lengths, approximate results by reduction

in number of random variables and perturbation.

3.4 Possibilistic approach for spatial variations

In this section, the combination of the KL expansion with a possibilistic concept

is investigated. The basic idea is that the uncorrelated standard normal random

variables in the probabilistic approach are allowed to vary within a range where the

limits refer to possibilistic bounds of the physical variables. The KL expansion in

Equation 3.6 can be rewritten in the form

p = p̄ +

r≤n∑

j=1

ψj

√
µj vj (3.22)

where vj = σζj and the eigenvalues µj are independent of the standard deviation σ.

In this case, the correlation function

R(d, Lc) = exp

(
−
∣∣∣∣
d

Lc

∣∣∣∣
)

(3.23)

depends only on the distance d and the correlation length Lc. In the standard

probabilistic random field approach, vj are uncorrelated random variables with zero

mean and variance σ (vj = N(0, σ)). In the proposed possibilistic approach, vj are

given by intervals with lower and upper limits referring to the given physical limits
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Figure 3.6: Variation of the upper limit of the fundamental eigenfrequency over
correlation length; possibilistic approach using KL eigenvectors; results for complete
and reduced set of variables.

(vj = [vj, vj]).

There are n independent variables vj and a vertex approach [32] with 2n combi-

nations can be performed. If only the r eigenvectors with the largest eigenvalues µj

are considered, the number of vertices reduces to 2r.

The numerical example of Section 3.3 is used to obtain results. The beam is

modelled by 12 finite elements and the thickness of each element can vary by ±10%.

The upper limit of the first eigenfrequency has been computed for correlation lengths

from Lc = 10−3 up to Lc = 104. In Figure 3.6 the results are shown for the cases

that all 12 eigenvectors of the covariance matrix and a reduced set of the first 6

eigenvectors are used in the KL expansion.

There is a maximum in the upper limit of the fundamental frequency for a

correlation length of about 1/3 of the length of the beam (Lc = 0.3m). In this

case the contributions from the eigenvectors in the KL expansion are related to the

characteristic spatial variation of the thickness that results in a high upper limit for

the first eigenfrequency. For a higher correlation length, the upper limit of the first

eigenfrequency decreases and converges to the value for the case of a constant but

random thickness (f1 = 10.66Hz). In this region, the reduced set of eigenvectors

yields accurate results. For correlation lengths Lc < 1/3m, the upper limit decreases
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and converges to a value around f1 = 11.25Hz. This corresponds to a solution where

all eigenvectors in the KL expansion contribute the same. However, in this region,

the correlation length is down to about one tenth of the element length and the

model is not valid, because the finite element mesh has an influence on the results.

Below a correlation length of about Lc = 2× 10−3, the correlation is numerical zero

and all elements vary independently. In this case, the results shift to a larger value of

about f1 = 12.1Hz. The solution with the reduced set of eigenvectors approximates

a lower value.

The standard possibilistic vertex approach requires that m = 2n combinations

are considered, where n is the number of uncertain parameters. However, only one of

these combinations corresponds to the upper limit of a response parameter. It would

be a computational advantage, if a reduced number of vertices can be identified

such that a smaller number of combinations (m < 2n) has to be considered. In

this context, the eigenvectors of the covariance matrix can be used to select vertex

combinations. If the signs of the elements of the n eigenvectors are considered, 2n

vertices are described out of the complete set of m = 2n. These selected vertices

are related to characteristic spatial variations of physical properties. For the one-

dimensional beam, these shapes are similar to the natural modes, which could also

be used to identify 2n vertices. In Figure 3.7 the results are compared for the cases

that all elements are independent (m = 2n) or dependent (m = 2), and where 2n

vertices are found from KL eigenvectors and mode shapes, respectively. The results

for the upper limit of the first five eigenfrequencies are given in percent of the

maximum values from the exact vertex method. If a constant but random variation

is modelled for all elements, the results give much lower values for the first modes.

For higher modes the results from this approach improve continuously. The vertices

obtained from the KL eigenvectors give the best approximation for the fundamental

eigenfrequency. For higher frequency, there is no improvement compared to the

constant variation. This however seems normal for this simple beam model and

more complicated structures should be investigated.
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Figure 3.7: Upper limit of first five eigenfrequency. A - vertices from all elements

m = 2n, B - vertices from KL eigenvectors m = 2n, C - vertices from natural modes

m = 2n, D - constant variation m = 2

3.5 Discussion and concluding remarks

Spatial variations of properties in mechanical structures occur often and should be

considered. Random field models and the KL representation are appropriate to

model spatial variations. A discretisation of the continuous random field at the

element mesh using point discretisation methods is convenient for implementation

within existing FE models and software. However, the dependency on the mesh size

has to be considered. If the correlation length is large compared to the finite element

size, then errors due to the approximation can be neglected. A perturbation method

is straightforward to implement, because the sensitivities of the random field vector

with respect to the KL variables are already given. The KL expansion can be used

to drastically reduce the number of random variables. The random field model can

be used to estimate the extreme cases of total correlation or no correlation between

the random variables by selecting a very large or very small correlation length,

respectively. However, in most practical cases, no data about the correlation length

is available. It has been shown [75] that the correlation length is more important

than the shape of the correlation function.

In this chapter a numerical example with spatially varying properties has been

considered. The efficient application of a random field model based on the KL ex-
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pansion was shown. The effects of a reduction in the number of DOFs and the

use of approximate perturbation methods were investigated. The introduced errors

depend on the correlation length. The truncation of terms in the KL expansion

leads to an underestimation of the variation. The number of required terms in the

KL expansion to achieve a certain accuracy can be calculated from the magnitudes

of the eigenvalues of the covariance matrix. The errors due to perturbation are

less predictable with both under- and overestimation of results possible, depending

on the correlation length and the uncertain parameters. In general perturbation

also leads to a shift in the mean value of response parameters. However, it is of-

ten appropriate to use perturbational relations to reduce the numerical costs. The

idea of a random field model with a possibilistic parameter variation has been pre-

sented. Although some physical interpretation of the results is possible, it remains

a theoretical approach.



Chapter 4

Model reduction and

substructuring for built-up

structures

4.1 Introduction

This chapter addresses the use of deterministic model reduction and substructuring

methods for the analysis of built-up structures. The calculation time of most math-

ematical operations increases nonlinearly with the size of the model and the storage

of large amounts of data is a problem as well. Model reduction techniques can be

used to reduce the computational cost drastically. This effect is even more important

in the context of repeated solutions of a deterministic model in a non-deterministic

analysis. Additionally, the concept of substructuring offers possibilities to include

uncertainties and variabilities at the component level in an appropriate way. All

methods introduced in this chapter are independent of the non-deterministic data.

There are some model reduction and substructuring methods that take the un-

certainty in properties into account directly [76]. However, for most cases, the

differences are small and negligible in the context of other sources of inaccuracies.

A reduction in model size can imply a loss of information and the reduced model

then only gives an approximation to the solution provided by the full model. There-

fore a reduction method should be case-specific and truncate only unwanted, unim-

portant or redundant information. The finite element model of a vibrating structure

is often defined by a mass and a stiffness matrix. Solving for dynamic properties

or responses generally involves an inverse matrix operation or an eigenvalue prob-

lem, which has a computational cost associated with it that is disproportionately

high compared to the number of DOFs. Therefore, reduction techniques have been

40
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specifically developed for static and dynamic FE problems. It is often appropri-

ate to perform a coordinate transformation and apply the reduction in a different

coordinate space than the original physical space.

An approach that goes hand in hand with reduction techniques is substructuring

[77]. If a structure is divided into several components, the computational cost of

solving all smaller problems independently is in general less than solving the orig-

inal large problem. In practice many complex structures already consist of several

components which are assembled in the final stage of production. They could be

manufactured by different companies and independent numerical models or solu-

tions already exist for each of them. In this case it is advisable to use the predefined

substructuring. It is then normally the case that uncertainties in each component

are statistically independent. It is also often appropriate and physically meaningful

to reduce the size of models at the component level. While here, the substructuring

is applied to the physical components, in general a structure could be divided into

substructures arbitrarily. Components can be defined according to mathematical

properties rather than physical or geometric criteria. One such method is Auto-

mated Multi-Level Substructuring (AMLS) [78], where a finite element model is

repeatedly divided into substructures based on the sparsity of the system matrices.

In Section 4.2.1 static and dynamic reduction methods, including Guyan re-

duction [60] are presented. These approaches are, in general, exact only for one

particular frequency. Section 4.2.2 describes the modal reduction approach, where

the model is transformed into modal space and some of the higher frequency modes

are neglected. Section 4.2.3 demonstrates a combination of the static and dynamic

reduction to make use of the advantages of both with respect to substructuring.

The main focus of this chapter is on component mode synthesis (CMS) methods

[9, 61, 79–87], which are described in detail in Section 4.3. These methods have

been developed mainly to improve the modelling of coupled substructures to get im-

proved accuracy of the assembled model, which is of a reduced size. The reduction

in size is done at the component level in the modal space.

In this chapter, deterministic model reduction and component synthesis will be

reviewed. In Chapters 5 and 6, the fixed-interface CMS method, which is reviewed

in Section 4.3.4, will be used as a framework for a non-deterministic analysis. In

order to follow the flow of the thesis, it is suggested to focus on Section 4.3.4 of this

chapter only.
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4.2 Model reduction methods

4.2.1 Static and dynamic reduction

The Guyan reduction method [60] is based on the reduction of the stiffness matrix

and is therefore also known as static condensation. The governing equation in static

analysis is given by

F = Ku (4.1)

where F and u are vectors of force and DOFs respectively and K is the stiffness

matrix. This equation can be partitioned in the form

[
FS

FM

]
=

[
KSS KSM

KMS KMM

][
uS

uM

]
(4.2)

where the coordinates are divided into two sets S and M , which are referred to as

slave and master coordinates. If the forces FS are zero then the first line of Equation

4.2 gives

uS = −K−1
SSKSMuM (4.3)

which can be used to eliminate the coordinates where no forces are applied. Substi-

tuting Equation 4.3 into the first line of Equation 4.2 gives the governing equation

of the reduced system in the form

FM = KMuM (4.4)

with

KM =
[
KMM − KMSK

−1
SSKSM

]
(4.5)

This reduced static equation yields the exact solutions for uM , and uS are then

calculated from Equation 4.3.

In a dynamic analysis the undamped equation of motion is given as

Mü + Ku = f (4.6)

where M is the mass matrix and ü denotes acceleration. Assuming time harmonic

motion u = Ueiωt with magnitudes U and frequency ω due to forces f = Feiωt,

Equation 4.6 can be written as

[
K − ω2M

]
U = F (4.7)
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which may be partitioned into two sets of coordinates S and M in the form

[
KSS − ω2MSS KSM − ω2MSM

KMS − ω2MMS KMM − ω2MMM

][
US

UM

]
=

[
FS

FM

]
(4.8)

Assuming that FS = 0, the first line of Equation 4.8 gives

US = −
[
KSS − ω2MSS

]−1 [
KSM − ω2MSM

]
UM (4.9)

In contrast to a static analysis, Equation 4.9 depends on the angular frequency ω.

In order to perform the model reduction, a fixed value for the frequency can be

chosen. This approach is referred to as dynamic reduction, which is exact for the

chosen frequency only.

If the terms including mass and frequency in Equation 4.9 are small or zero, this

expression can be approximated by

US = −K−1
SSKSMUM (4.10)

which conforms to the Guyan reduction method (Equation 4.3) where effectively a

frequency ω = 0 is chosen. The transformation matrix Ψ is then given by

[
US

UM

]
=

[
−K−1

SSKSM

I

]
UM = ΨUM (4.11)

and the mass, stiffness and force matrices of the reduced system are calculated by

KR = ΨTKΨ

MR = ΨTMΨ (4.12)

fR = ΨT f

The equation of motion

MRüM + KRuM = fR (4.13)

and the eigenvalue problem

[KR − λjMR]φj = 0 (4.14)

are now reduced to the size of the set of master coordinates M . The solutions

for the set of slave coordinates S are calculated using the transformation matrix

(4.11). The static response is exact and the reduced stiffness matrix KR preserves

all information. The reduced mass matrix however is not exact since approximations
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have been made to Equation 4.9. The eigenvalues and eigenvectors found from

Equation 4.14 are thus close approximations to the exact solutions [60]. These are

justified if low frequencies are considered or if the mass is small compared to the

stiffness at coordinates S [77]. Additionally the off-diagonal terms MSM are zero in

diagonal mass-matrices or there may be no mass associated with some coordinates

in a lumped-mass parameter model.

In practice often only a few coordinates have forces acting on them and the ma-

jority of coordinates could be reduced. The partitioning depends on the application

and should comply with the approximations made in Equation 4.10. In substruc-

turing the coordinates at the boundaries are retained and the interior coordinates

can be eliminated.

A numerical example for the Guyan reduction method will be given for the

system shown in Figure 4.1. It is a mass-spring chain consisting of four masses and

 

m4m3m2m1

k4k3k2k1

k1 k2 k3 k4

N/m 1025 1575 3025 2325
m1 m2 m3 m4

kg 5.5 13 9.5 17

Figure 4.1: Four degree of freedom model for analysis

four springs, where at the left end spring k1 is fixed and at the right end mass m4 is

free. The eigenfrequencies range from 0.58Hz to 4.55Hz. The system is treated as

one subsystem and mass 4 at the right boundary will be retained as a master DOF

in all cases.

In Figure 4.2 the receptance frequency response function (FRF) |α14| is plotted.

This gives the response at DOF 1 for a time harmonic force applied at DOF 4. The

exact solution and solutions of reduced systems with different sets of master and

slave coordinates are shown. In Figure 4.2a, results are shown where coordinate

4 and one other coordinate at a time were chosen as master coordinates with the

remaining two coordinates being condensed. The size of the reduced system is half

the size of the original system and therefore two resonances are calculated. It can
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be seen that the first resonance matches the exact solution very well in all cases.

The second natural frequency however differs for the three cases. The accuracy

depends on the approximation made as describe in the previous section. In general,

the mass associated with the condensed coordinates and the contributions to the

modal masses, which depend on the mode shapes, are determining factors. The

fundamental frequency is predicted well, because the fundamental mode shape is

similar to the static mode shape. In Figure 4.2b, results are shown for the cases

where coordinate 4 and two other coordinates are retained, and hence only one

coordinate is condensed. If mass 3 is condensed, the approximation of the second

natural frequency is good, but the third frequency is in error. If mass 2 is condensed,

the results improve for the third frequency but worsen for the second.

The Guyan reduction method is correct for a static analysis, but in a dynamic

analysis a general error is introduced to the reduced mass matrix and therefore to the

modal properties. In general all natural frequencies and modes shapes are affected

because a modal mass depends on many physical masses. If the stated assumptions

are met then the approximations are valid and Guyan reduction can also be used

for dynamic analysis. However, the computational cost associated with calculating

the inverse of KSS in Equation 4.3 can be high. In substructuring, some or all of

the interior DOFs can be condensed. The DOFs at the boundaries are retained so

that the physical coupling of components is simple.

4.2.2 Modal reduction

The eigenvalue problem of a structure is given by

[K − λjM]φj = 0 (4.15)

where K and M are nxn matrices. A modal transformation from the physical

coordinates u to the modal coordinates q can be done by the transformation

u = Φq (4.16)

where the natural modes φ are the columns of the modal matrix Φ. If only k modes

are retained, this matrix reduces to Φk and the transformation

u = Φkqk (4.17)

becomes a modal reduction from physical coordinates u to a smaller number of

modal coordinates qk. The reduced mass and stiffness matrices and the force vector
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Figure 4.2: Guyan reduction: comparison of implementations with different master
coordinates.
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are given by

MR = ΦT
k MΦk (4.18)

KR = ΦT
k KΦk (4.19)

fR = ΦT
k f (4.20)

and the reduced equation of motion is

MRq̈k + KRq = fR (4.21)

where KR and MR are now of size kxk.

Such a reduction has been applied to the system in Figure 4.1. In Figure 4.3

the FRF of the reduced system is shown and compared with the exact solution.

Different sets of modes were used for the modal transformation. Figures 4.3a and

4.3b show the results if sets of two and three modes are used, respectively. It can be

seen that each mode dominates the FRF around its associated resonance frequency,

which is true if the damping is small. For a finite frequency range, only modes with

resonance frequencies close to that range are needed to obtain the exact solution

within limits.

In practice higher frequency modes are often neglected to reduce the size of the

system. Since the modal coordinates are independent, other natural frequencies and

mode shapes are not affected. Compared to static condensation the reduction takes

place in the frequency domain rather than in the geometrical domain. This is most

appropriate since only unneeded information is deleted and the effects are clear.

However, the full eigenvalue problem has to be solved to obtain the required modes.

The approach would be worthwhile though, if the reduced system can be used for

a number of subsequent calculations. Another advantage arises in substructuring

where it may be cheaper to solve the eigenvalue problem of a number of the compo-

nents and of the assembled reduced global system compared to solving the complete

global eigenvalue problem. The drawback of this approach is that all physical DOFs

are transformed into modal DOFs and therefore the synthesis of components is not

straightforward. Additionally the reduced equation of motion is not statically exact.

4.2.3 Modal reduction including static modes

Consider a modal transformation of a set of physical coordinates S in the form

uS = ΦSqS (4.22)
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Figure 4.3: Modal reduction: comparison of implementations with different modes
retained.
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where ΦS is a set of the natural modes of the structure. Alternatively, the static

reduction from Equation 4.3 can be included to get

uS = ΦSqS − K−1
SSKSMuM (4.23)

and the transformation matrix follows as

[
uS

uM

]
=

[
ΦS −K−1

SSKSM

0 I

][
qS

uM

]
(4.24)

In Equation 4.24 the natural modes ΦS and the static modes are used to relate

the set of slave coordinates S to modal coordinates and master coordinates M .

The transformation 4.24 is exact, if the natural modes and the static modes are

linearly independent. A static mode is the displacement of all nodes due to a unit

displacement applied at one coordinate of the M set and all other coordinates M

fixed. Therefore, the modes ΦS can be defined as the natural modes of the structure

with all DOFs uM fixed. The eigenvalue problem for this case is given by

[KSS − λjMSS]φS
j = 0 (4.25)

If none of the natural modes are used, this approach equals the Guyan reduction

presented in Section 4.2.1. If all nodes are considered as slave coordinates S, this

becomes the modal reduction method described in Section 4.2.2.

In order to achieve a reduction in the size of the equation of motion, only some

of the natural modes will be kept in ΦS
k and the transformation matrix becomes

B =

[
ΦS

k −K−1
SSKSM

0 I

]
(4.26)

which reduces the mass and stiffness matrices by

KR = BTKB

MR = BTMB (4.27)

fR = BT f

The transformation presented here is used in one method of component mode syn-

thesis, where a component is modelled with fixed-interface normal modes and static

constraint modes to account for the fixed interfaces. The boundary DOFs, which

are shared with other components, are selected for the set of coordinates M , while

all interior DOFs form the set S of coordinates. The physical boundary coordi-
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Figure 4.4: Comparison of modal reduction and CMS approach. Approximation of
first two and three modes, respectively.

nates are retained and the assembly of components is straightforward. The size of

the component model can be reduced by neglecting some of the higher frequency

fixed-interface normal modes. Additionally the reduced equation of motion is stat-

ically exact due to the constraint modes. The advantages of modal reduction and

Guyan reduction are combined. Guyan reduction, modal reduction and component

mode synthesis belong to the class of Rayleigh-Ritz methods with certain Ritz basis

vectors [77].

For the example in Figure 4.1, this fixed-interface CMS approach will be com-

pared with the modal reduction approach. Mass 4 at the right end will be considered

the boundary DOF where other components may be attached. Three natural modes

are found for masses 1 to 3 when mass 4 is fixed. Some of these will be used in ad-

dition to the static constraint mode for the transformation into modal space. The

results for different cases, where one or two of the natural modes are retained are

plotted in Figure 4.4a and 4.4b, respectively. The static mode is a good approxima-

tion to the fundamental mode and therefore the fundamental frequency is predicted

well. The first, second and third mode of the constrained system correspond to the
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second, third and fourth mode of the original system. The resonance frequencies are

predicted very well with a small difference in the magnitude for the CMS solution.

If more natural modes are taken into account, as in Figure 4.4b, the approximation

of all modes improves.

4.3 Component Mode Synthesis

The component mode synthesis method will be described in detail in this section.

Component mode synthesis (CMS) is a technique to assemble models of several

components. The static and dynamic behaviour of each component is described

in terms of a set of basis functions, e.g. the modes of the component. These

include normal modes found from solving a component eigenvalue problem and

additional static constraint or attachment modes. The reduction in size is achieved

by truncating higher frequency modes at the component level.

CMS methods originated in the 1960’s and 70’s, starting with a publication by

Hurty in 1965 [79]. Since then, numerous CMS methods have been presented, with

major contributions by Craig et al. [61, 85, 88]. Books on structural dynamics with

chapters dedicated to CMS are [9, 82, 83]. A general review of CMS methods can

be found in [81, 84, 86, 87].

In the following sections, first, different types of common component modes are

defined and a generalised approach for the coupling of components is presented. Sub-

sequently, the two most common CMS methods, the fixed-interface Craig-Bampton

method [61] and the free-interface Craig-Chang method [85, 88] are discussed in

detail and compared by numerical examples.

4.3.1 Modes in Component Mode Synthesis

In this section, component modes of different types will be derived. The undamped

equation of motion of a component is given by

Mü + Ku = f (4.28)

where u are the physical DOFs and M and K are the mass and stiffness matrices,

respectively. The physical DOFs can be partitioned into a set of interior DOFs uI

and a set of interface, or boundary, DOFs uB. The interface coordinates are those

coordinates where two or more components are joined together. Each component

alone can be unconstrained or constrained (no rigid body freedom). Equation 4.28
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can be written as

[
MII MIB

MBI MBB

][
üI

üB

]
+

[
KII KIB

KBI KBB

][
uI

uB

]
=

[
fI

fB

]
(4.29)

where fB = 0 if the interface is free and uB = 0 if the interface is fixed. There are

no forces acting on the interior DOFs (fI = 0).

Free-interface normal modes

The free-interface normal modes of a component are the eigenvectors of the com-

ponent with the boundary DOFs free. They are found from solving the eigenvalue

problem

(K − λfr
j M)φfr

j = 0 (4.30)

and can be combined as columns to give the normal mode matrix Φfr
n . The normal

modes may be divided into a set of modes k to be kept for further calculations and

a complementary set of modes d that will be deleted, i.e.

Φfr =
[

Φfr
k Φfr

d

]
(4.31)

Similarly, the eigenvalues λ are arranged on the diagonal of the eigenvalue matrix

Λ and can be divided into sets k and d to give

Λfr =

[
Λfr

k 0

0 Λfr
d

]
(4.32)

If a component is unconstrained, the normal mode set contains rigid body modes

with zero-valued eigenvalues.

Fixed-interface normal modes

The fixed-interface normal modes of a component are the eigenvectors of the compo-

nent with the interface DOFs fixed. The size of the eigenvalue problem is therefore

reduced by the number of interface DOFs. It is governed by the elements of the

mass and stiffness matrices associated with the interior DOFs only and given as

(KII − λfi
j MII)φ

fi
Ij

= 0 (4.33)

where λfi
j are the fixed-interface eigenvalues. The eigenvectors φfi

Ij
form the columns

of the normal mode matrix Φfi, which can be divided into a matrix with kept (k)
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and deleted (d) modes, respectively. The normal mode matrix is then

Φfi =
[

Φfi
k Φfi

d

]
=

[
Φfi

Ik Φfi
Id

0Bk 0Bd

]
(4.34)

where 0B relate to the DOFs of the fixed boundary. There are no rigid body modes

in Equation 4.34 if the set of fixed boundary DOFs is sufficient to constrain all rigid

body modes of the unconstrained component.

Constraint modes

Static constraint modes will be defined with respect to the interface DOFs and

denoted by the subscript c. A constraint mode is the static displacement of all

nodes due to a unit displacement applied to one interface coordinate and with all

other interface coordinates fixed. This can be written in matrix form as

[
KII KIc

KcI Kcc

][
ΨIc

Icc

]
=

[
0Ic

Fcc

]
(4.35)

where ΨIc is a matrix of displacements of the interior DOFs and Icc is an identity

matrix, which defines zero and unit displacements for all constraint modes. Fcc are

the force reactions at the nodes with prescribed displacements and the interior nodes

are force-free. From the first line of Equation 4.35 it follows that

ΨIc = −K−1
II KIc (4.36)

and the complete matrix of constraint modes is given by

Ψc =

[
−K−1

II KIc

Icc

]
(4.37)

To make the structure of the previous matrix expressions more clear, they are rewrit-

ten for the case of two boundary DOFs. Equation 4.35 becomes




KII KIc1 KIc2

Kc1I Kc1c1 Kc1c2

Kc2I Kc2c1 Kc2c2







ΨIc1 ΨIc2

1 0

0 1


 =




0Ic1 0Ic2

Rc1c1 Rc1c2

Rc2c1 Rc2c2


 (4.38)
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where the constraint modes are given by

Ψc =




−K−1
II KIc1 −K−1

II KIc2

1 0

0 1


 (4.39)

Rigid body modes

Rigid body modes appear if a component is unconstrained. They are obtained

either as free-interface normal modes (Equation 4.31) from the eigenvalue problem or

recovered from constraint modes (Equation 4.37). However they are often regarded

as a separate class of component modes and will be denoted by Ψr.

Attachment Modes

Static attachment modes will be defined with respect to the boundary DOFs and

will be denoted by the subscript a. An attachment mode is the static displacement

of all nodes due to a unit force applied to one boundary coordinate and with all other

boundary coordinates a force-free. Since forces are applied, the cases of a constrained

and an unconstrained component have to be distinguished. If the component is

constrained the governing static equation is given by

[
KII KIa

KaI Kaa

][
ΨIa

Ψaa

]
=

[
0Ia

Iaa

]
(4.40)

where ΨIa and Ψaa are the unknown nodal displacements. The identity matrix Iaa

arises from the forces at the boundary DOFs. All interior DOFs are force-free. A

solution can be found by inverting the stiffness matrix K, where G = K−1 is the

flexibility matrix, assuming the inverse exists, to give

[
ΨIa

Ψaa

]
=

[
KII KIa

KaI Kaa

]−1 [
0Ia

Iaa

]
=

[
GII GIa

GaI Gaa

][
0Ia

Iaa

]
(4.41)

The attachment modes are then found to be

Ψa =

[
GIa

Gaa

]
(4.42)

If the component is not constrained there is no solution for the displacement

due to an applied force. The stiffness matrix is singular and cannot be inverted.

Therefore, the component must be sufficiently restrained against rigid body motion

at a set of coordinates r, normally a subset of the interior DOFs. Rigid body modes



4. Model reduction and substructuring for built-up structures 55

are then added separately. The attachment modes with respect to the boundary

coordinates a and relative to the restraint coordinates are described by




KÎ Î KÎa KÎr

KaÎ Kaa Kar

KrÎ Kra Krr







ΨÎa

Ψaa

0ra


 =




0Îa

Iaa

Fra


 (4.43)

where ΨÎa and Ψaa are the unknown displacements and 0ra correspond to the fixed

restraint coordinates. The forces acting on the boundary DOFs are Iaa, while the un-

restrained interior DOFs are force-free and the restrained coordinates have reactive

forces Fra acting on them. The static equation can be reduced to

[
KÎ Î KÎa

KaÎ Kaa

][
ΨÎa

Ψaa

]
=

[
0Îa

Iaa

]
(4.44)

and the resulting stiffness matrix can be inverted. The attachment modes are found

as columns of the flexibility matrix with zeros added for the fixed displacements.

Ψa =




GÎa

Gaa

0ra


 (4.45)

Residual attachment modes

The flexibility matrix of a system without rigid body modes can be written in terms

of free-interface properties as

G = ΦΛ−1ΦT (4.46)

where Φ is the free-interface normal mode matrix and Λ are the free-interface eigen-

values. Equation 4.46 can be rewritten as

G = ΦΛ−1ΦT = ΦkΛ
−1
k ΦT

k + ΦdΛ
−1
d ΦT

d (4.47)

where subscripts k and d denote the kept and deleted modes, respectively.

Gd = ΦdΛ
−1
d ΦT

d (4.48)

is the residual flexibility matrix associated with the deleted modes. The matrix of
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forces is given in Equation 4.40 as

Fa =

[
0Ia

Iaa

]
(4.49)

where a unit force is a applied to one of the boundary DOFs at a time with all other

DOFs force-free. A set of residual attachment modes is then defined by

ΨaR
= GdFa (4.50)

By using the residual flexibility matrix the residual attachment modes are a linear

combination of the deleted normal modes and therefore linearly independent of

the kept normal modes. Another advantage is that this approach also holds for

components with rigid body freedom.

For an unconstrained system, the response in the rigid body modes can be repre-

sented by inertia relief attachment modes. In one approach these are defined as the

static displacement of all nodes due to d’Alembert forces resulting from a rigid body

motion. Another approach is to apply both unit forces and d’Alembert forces, which

would result from the rigid body motion due to the unit forces alone, to the set of

boundary DOFs. In both cases the component has to be sufficiently constrained.

There are also residual inertia relief attachment modes, which are independent of

the kept normal modes. An equivalent to the modal space is the Krylov space, which

is described by Krylov vectors instead of eigenvectors. These Krylov modes are also

used in CMS. Details on these other component modes can be found in the review

papers [81, 84, 86, 87].

4.3.2 Synthesis of Components

A selection of component modes described in the previous section is arranged in a

component modal matrix B. Usually these are one of two general types: kept fixed-

interface modes and constraint modes; kept free-interface modes and attachment

modes. The physical coordinates uα of a component α can be transformed into the

component modal coordinates qα by

uα = Bαqα (4.51)

where the columns of B correspond to the appropriate mode shapes. The component

modal mass and stiffness matrices µ and κ are calculated by

µα = BαTMαBα and κα = BαTKαBα (4.52)
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respectively, which are diagonal matrices if the modes used in Bα are linearly inde-

pendent. If two components α and β are considered, a global modal vector q can

be formed as

q =

[
qα

qβ

]
(4.53)

and the modal mass and stiffness matrices of the components are assembled as

µ =

[
µα 0

0 µβ

]
and κ =

[
κα 0

0 κβ

]
(4.54)

Let n be the number of DOFs of the global structure. Then

n = nα + nβ − nαβ
B (4.55)

where nα and nβ are the numbers of modal DOFs of component α and β, respectively,

and nαβ
B is the number of common interface DOFs. The number of modal DOFs in

Equation 4.53 is given by

nq = nα
k + nβ

k + nα
c,a + nβ

c,a (4.56)

where nα
k and nβ

k are the numbers of kept modes and nα
c,a and nβ

c,a are the numbers

of constraint or attachment modes used for each component.

The constraints at the component interface are continuity of displacement, uα
B =

uβ
B, and equilibrium of forces, fα

B+fβ
B = 0. The constraint equations of the conditions

to be satisfied can be expressed in terms of the modal coordinates q and written in

matrix form as

Hq = 0 (4.57)

where H is the constraint matrix. This equation can be partitioned into linearly

independent coordinates l and dependent coordinates d which will be condensed and

whose number equals the number of constraint equations considered. Thus

[
Hdd Hdl

] [ qd

ql

]
= 0 (4.58)

The dependent coordinates are related to the linearly independent coordinates by

qd = −H−1
dd Hdlql (4.59)
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and a linear transformation can be defined as

q =

[
qd

ql

]
= Cql = Cv (4.60)

where v is the new set of independent modal coordinates and

C =

[
−H−1

dd Hdl

Ill

]
(4.61)

is the transformation matrix. The mass and stiffness matrices of the global system

are then found by

Mgl
R = CTµC and Kgl

R = CTκC (4.62)

which are reduced in size compared to the original system if not all of the natural

modes of the components are kept in Equation 4.51.

If the component mass, stiffness and modal matrices are assembled in the form

Mαβ =

[
Mα 0

0 Mβ

]
, Kαβ =

[
Kα 0

0 Kβ

]
, B =

[
Bα 0

0 Bβ

]
(4.63)

then the mass and stiffness matrices of the global system are determined by two

consecutive transformations in the form

Mgl
R = CTBTMαβBC (4.64)

and

Kgl
R = CTBTKαβBC (4.65)

where the transformation B into modal coordinates may imply a reduction in size

and the transformation C imposes the selected interface conditions.

4.3.3 Global modes and frequency response function

The free vibration equation of motion of the global system in terms of coordinates

v is given by

Mgl
Rv̈ + Kgl

Rv = 0 (4.66)

A transformation into global modal coordinates w can be done by

v = Dw (4.67)
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where D is the matrix of global eigenvectors, which are found from the global eigen-

value problem (
Kgl

R − λgl
j Mgl

R

)
φ

gl
j = 0 (4.68)

Provided these modes are mass-normalised, the global modal mass and stiffness

matrices are given by

µ
gl
R = DTMgl

RD = I (4.69)

and

κ
gl
R = DTKgl

RD = Λgl (4.70)

which are uncoupled diagonal matrices.

To summarise, the transformation from the physical coordinates u to the global

modal coordinates w involves the following transformations and coordinates:

u physical coordinates

u = Bq modal transformation at component level

q component modal coordinates

q = Cv transformation to impose coupling conditions

v linearly independent component modal coordinates

v = Dw modal transformation at global level

w global modal coordinates

Initially, each component and its properties are defined in terms of the physical

coordinates u. Depending on the particular method, appropriate modes are selected

to form the modal matrix B. Usually these include free or fixed-interface modes

and additional component modes. The synthesis of components is done at the

component modal level and is represented by the linear transformation C. The

modal coordinates q, which include dependencies between different components,

are transformed into an independent set of component modal coordinates v. The

equation of motion of the whole structure is given in terms of coordinates v and the

modal properties of the whole structure can be found by the transformation D into

global modal coordinates w.

The relation between global modal coordinates w and physical coordinates u

can be expressed as

u = Lw ; L = BCD (4.71)

where L is the global modal matrix that contains the global modes in terms of the

physical coordinates.
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The equation of motion for forced vibration in terms of the global modal coor-

dinates is given as

µ
gl
Rẅ + κgl

Rw = f (4.72)

where

f = LT fαβ and fαβ =

[
fα 0

0 fβ

]
(4.73)

Assuming time harmonic motion u = Ueiωt, w = Weiωt and forces f = Feiωt, the

frequency response in global modal coordinates follows as

W = diag

(
1

λgl
j − ω2

)
F (4.74)

and the receptance matrix A in terms of the physical coordinates and forces is given

such that

U = AFαβ =

[
L diag

(
1

λgl
j − ω2

)
LT

]
Fαβ (4.75)

The two most common approaches in CMS are the fixed-interface method with

constraint modes and the free-interface method with attachment modes. These will

be described in more detail in the remaining sections of this chapter.

4.3.4 Fixed-interface method with constraint modes

In the fixed-interface method of CMS, fixed normal modes Φfi of a component are

found with the boundaries fixed. To account for that condition, Craig and Bampton

[61] add static constraint modes Ψc to the component modal matrix B. These assure

the compatibility of the components, improve convergence and also yield the exact

static solution. A reduction in the size of the component model can be achieved

by keeping only some of the fixed-interface normal modes in Φfi
k . The component

modal matrix of a component α is then defined as

Bα =
[

Φfi
k Ψc

]α
(4.76)

and the transformation from physical coordinates uα to component modal coordi-

nates qα is given by

uα = Bαqα =

[
uα

I

uα
B

]
=

[
Φfi

Ik −K−1
II KIc

0 Icc

]α [
qα

k

qα
c

]
(4.77)
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The interior physical coordinates uI are transformed into modal coordinates qk. The

physical boundary coordinates uB are retained, but will be denoted as constraint

coordinates qc. The component modal mass matrix follows in the form

µα =

[
Ikk mkc

mT
kc mcc

]α

(4.78)

where Ikk is a identity matrix if the normal modes are mass-normalised. The matrix

mcc contains the modal constraint masses and mkc are coupling matrices between

the modal coordinates qk and the constraint coordinates qc. The component modal

stiffness matrix is given by

κα =

[
Λkk 0

0 kcc

]α

(4.79)

where Λkk is a diagonal matrix of eigenvalues and kcc is the constraint modal stiffness

matrix. If two components α and β are considered, the vector of modal coordinates

q can be written as

q =
[

qαT

k qαT

c qβT

k qβT

c

]T
(4.80)

At the interface of components α and β, the boundary condition of continuity of

displacements is given by

uα
B = uβ

B (4.81)

which can be transformed into modal space by Equation 4.77 to become

qα
c = qβ

c = qc (4.82)

if qα
c and qβ

c are consistent. The matrix constraint equation now takes the form

Hq =
[

0 I 0 −I
] [

qαT

k qαT

c qβT

k qβT

c

]T
= 0 (4.83)

and the transformation to impose the coupling conditions follows from Equation

4.61 as

q =




qα
k

qα
c

qβ
k

qβ
c




=




I 0 0

0 0 I

0 I 0

0 0 I







qα
k

qβ
k

qc


 = Cv (4.84)

where C is the transformation matrix and v are linearly independent modal coor-

dinates. The reduced global system matrices are found by Equation 4.63. Their
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structure is similar to the component modal matrices, so that

Mgl
R =




Iα
kk 0 mα

kc

0 Iβ
kk mβ

kc

mα
kc

T mβ
kc

T
mα

cc + mβ
cc


 (4.85)

and

Kgl
R =




Λα
kk 0 0

0 Λβ
kk 0

0 0 kα
cc + kβ

cc


 (4.86)

Due to the simplicity of the transformation matrix C in the fixed-interface CMS

method, the component synthesis is straightforward and the global system matrices

have the same structure as the component matrices. The global matrices are re-

duced in size based on the number of modes deleted in the component mode matrix

B. The special structure of the global matrices, especially the fact that the com-

ponent eigenvalues appear uncoupled, has many advantageous also for uncertainty

propagation, which will be the subject of investigation in the following chapters.

4.3.5 Interface DOF reduction

The size of the constraint matrices in Equations 4.85 and 4.86 depends on the

number of interface DOFs. In applications involving line and surface coupling of

components, the number of interface DOFs can be considerable compared to the

overall number of DOFs. Therefore it might be desirable to reduce the number

of interface DOFs as well. An appealing approach using characteristic constraint

modes has been presented in [89]. An eigenanalysis of the form

[Kcc − λjMcc]υj = 0 (4.87)

is performed where Mcc and Kcc are constraint matrices given as

Mcc = mα
cc + mβ

cc and Kcc = kα
cc + kβ

cc (4.88)

The eigenvectors υj are referred to as characteristic constraint modes. They can be

used to transform the interface DOFs into a reduced set of characteristic interface

DOFs by

qc = Υq∗
c (4.89)
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where Υ contains a few kept characteristic constraint modes that are associated

with the largest eigenvalues. Finally, the constraint matrices can be reduced by

K∗
cc = ΥTKccΥ and M∗

cc = ΥTMccΥ (4.90)

If the characteristic constraint modes are mass normalised, the constraint stiffness

matrix is given by the characteristic constraint eigenvalues on the diagonal. There-

fore, the complete CMS stiffness matrix in the fixed-interface method is diagonal

and all terms are uncoupled.

Similar interface reduction methods have been proposed for free-interface and

hybrid-interface CMS methods in [90, 91].

4.3.6 Free-interface method

In this section a free-interface method is presented where no additional modes are

used. The modal matrix Bα for a component α consists only of the kept free-interface

modes

Bα =
[

Φfr
k

]α
(4.91)

The superscript fr will be omitted for the remainder of this section. The physical

coordinates are transformed into the modal space by

[
uα

I

uα
B

]
=

[
ΦIk

ΦBk

]α [
qα

k

]
(4.92)

This approach is the same as that discussed in Section 4.2.2. The component modal

mass and stiffness matrices are diagonal matrices of the form

µα = [Ikk]
α (4.93)

and

κα = [Λkk]
α (4.94)

If two components are considered the vector of modal coordinates becomes

q =
[

qαT

k qβT

k

]T
(4.95)

The coupling condition of continuity of displacements is given by

uα
B = uβ

B (4.96)
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which can be written in terms of the modal coordinates using Equation 4.92 as

Φα
Bkq

α
k = Φβ

Bkq
β
k (4.97)

If there are a number nB of constraint equations, nB modal coordinates in Equation

4.95 are dependent and can be condensed. Therefore the set of coordinates of

component α is divided into linear independent and dependent coordinates in the

form [
qαT

k qβT

k

]T
=
[

qαT

kd qαT

kl qβT

k

]T
(4.98)

The constraint equations can now be written as

[
Φα

Bd Φα
Bl

] [ qα
kd

qα
kl

]
= Φβ

Bkq
β
k (4.99)

and the constraint matrix equation follows as

Hq =
[

Φα
Bd Φα

Bl −Φβ
Bk

] [
qαT

kd qαT

kl qβT

k

]T
= 0 (4.100)

Using Equation 4.61 the matrix C is found and the transformation is given by

q =




qα
kd

qα
kl

qβ
k


 =




−Φα
Bd

−1Φα
Bl Φα

Bd
−1Φβ

Bk

I 0

0 I



[

qα
kl

qβ
k

]
= Cv (4.101)

The reduced global mass and stiffness matrices Mgl
R and Kgl

R , which follow from

Equations 4.62, are fully populated and do not have any special structure. This is

due to the complex form of the transformation matrix C. Another disadvantage is

that the reduced global equation of motion is not statically correct.

4.3.7 Free-interface method with residual attachment modes

The use of free-interface normal modes is sometimes preferred because these can

be measured more easily than fixed-interface modes. In this section residual at-

tachment modes will be added to the set of free-interface normal modes to improve

the accuracy of the free-interface CMS method, as described by Craig and Chang

[85, 88]. The component modal matrix B is then given as

Bα =
[

Φα
k Ψα

aR

]
(4.102)
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and the transformation into modal space follows as

[
uα

I

uα
B

]
=

[
ΦIk ΨIaR

ΦBk ΨBaR

]α [
qα

k

qα
a

]
(4.103)

If the component is constrained and only some of the normal modes are kept it is

best to use residual attachment modes. These are linearly independent of the normal

modes and therefore the equations of motion will be uncoupled and the component

modal mass and stiffness matrices become

µα =

[
Ikk 0

0 maa

]α

(4.104)

and

κα =

[
Λkk 0

0 ΨBa

]α

(4.105)

The vector of modal coordinates is given by

q =
[

qαT

k qαT

a qβT

k qβT

a

]T
(4.106)

The coupling condition of continuity of displacements

uα
B = uβ

B (4.107)

can be written in terms of the modal coordinates as

[
Φα

Bk Ψα
Ba

] [ qα
k

qα
a

]
=
[

Φβ
Bk Ψβ

Ba

] [ qβ
k

qβ
a

]
(4.108)

Due to the use of attachment modes the conditions of equilibrium of forces

fα
B = −fβ

B (4.109)

can be imposed as well. The static equation of component α in terms of modal

coordinates is given by

[
Λkk 0

0 ΨBa

]α [
qα

k

qα
a

]
=

[
ΦT

k

ΨT
a

]α [
0

fα
B

]
(4.110)
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where fα
B are the forces at the boundary. The second line of this equation can be

written as

Ψα
Baq

α
a = Ψα

Baf
α
B (4.111)

and it follows that

qα
a = fα

B (4.112)

Because of the special structure of the modal stiffness matrix, which is due to the

attachment modes, the forces at the boundary are simply the modal constraint

coordinates in a pseudostatic approximation. The equilibrium of forces can therefore

be replaced by

qα
a + qβ

a = 0 (4.113)

The constraint equations in matrix form become

Hq =

[
Ψα

Ba −Ψβ
Ba Φα

Bk −Φβ
Bk

I I 0 0

]



qα
a

qβ
a

qα
k

qβ
k




= 0 (4.114)

where the submatrices of the dependent and linearly independent coordinates are

given by

Hdd =

[
Ψα

Ba −Ψβ
Ba

I I

]
, Hdl =

[
Φα

Bk −Φβ
Bk

0 0

]
(4.115)

The transformation imposing the displacement and force boundary conditions is

then obtained by Equation 4.62 as

q =




qα
a

qβ
a

qα
k

qβ
k




=




−mΦα
Bk mΦβ

Bk

mΦα
Bk −mΦβ

Bk

I 0

0 I




[
qα

k

qβ
k

]
= Cv (4.116)

where

m =
(
Ψα

Bd + Ψβ
Bd

)−1

(4.117)

The reduced global mass and stiffness matrices Mgl
R and Kgl

R , found by Equation 4.63,

are fully populated and do not have any special structure. The reduced equation of

motion is statically correct because of the static attachment modes. The accuracy

of this approach is in general better compared to the fixed-interface and simple free-

interface CMS approaches because both the continuity of displacements and the

equilibrium of forces are ensured.
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component α component β

free-interface components

fixed-interface components

Figure 4.5: 8-DOF mass-spring chain divided into two CMS components.

4.3.8 Numerical example of CMS for two components

In this section a numerical example of the implementation of the fixed-interface

Craig-Bampton method [61] and the free-interface Craig-Chang method [85, 88] is

presented. Consider the mass-spring chain in Figure 4.5 that has 8 DOFs and is

fixed at the left end and free at the right end. This structure will be divided into two

components α and β at coordinate 5. Mass number 5 will be assigned with half of

its physical mass to each component. In theory it is possible to make any division,

including creating a massless DOF. However, in such cases, numerical problems can

arise that require special attention. Figure 4.5 also shows the realisation of free-

interface and fixed-interface components. The free-interface components α and β

have five and four DOFs, respectively. In total they have one more DOF than the

original structure, because one additional DOF was created when dividing mass

number 5. It has to be noted that component β is now unconstrained and has

rigid body freedom, whereas the whole structure is sufficiently constrained. The

fixed-interface components have the boundary DOF number 5 fixed. Therefore the

components have four and three internal DOFs, respectively, and in total one DOF

less than the original structure. Component β is now constrained at the boundary

and does not have rigid body freedom.

The objective is to couple the components, by using different CMS methods, to

obtain an exact equation of motion and a reduced equation of motion. The total

number of DOFs is to be reduced from 8 to 4 and therefore each component will

be reduced by two DOFs. In Table 4.1, the type and number of component modes

used are listed for each CMS method. The simple free-interface method with normal

modes only, the free-interface method with attachment modes (Craig-Chang) and
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Component modes and DOFs boundary total
component α component β condition DOFs

normal other normal other

Free no red. 5 0 3 1 r.(n.) −1 8
red. 5 − 2 = 3 0 3 − 2 = 1 1 r.(n.) −1 4

Free red.a 5 − 2 = 3 1 a. 3 − 2 = 1 1 r.(n.)+1 a. −2 5
+ a. red.b 5 − 3 = 2 1 a. 3 − 2 = 1 1 r.(n.)+1 a. −2 4

Fixed no red. 4 1 c. 3 1 r.(c.) −1 8
+ c. red. 4 − 2 = 2 1 c. 3 − 2 = 1 1 r.(c.) −1 4

Abbr. of modes: n. - normal ; a. - attachment ; c. - constraint ; r. - rigid body

Table 4.1: Component modes and number of DOFs for two components in different
CMS methods.

the fixed-interface method with constraint modes (Craig-Bampton) are considered.

There are the cases where there is no reduction, and hence all modes are kept

(no. red.), and where higher frequency normal modes are deleted (red.). For each

component, the resulting number of normal modes and other modes (attachment,

constraint, rigid body) is stated. The number of DOFs that are removed if the

boundary conditions are imposed are noted with a minus sign. The total number of

DOFs of the assembled structure is given in the last column and can be calculated

by a summation over the row.

With the interfaces free, the eigenvalue problem gives five normal modes for

component α and three normal modes and one rigid body mode for component

β. In the simple free-interface CMS method, the boundary condition of continuity

of displacements removes one DOF. Therefore the original size of eight DOFs is

retained and the equation of motion yields the exact results. If two normal modes

are deleted, respectively, component α is described by three normal modes and

component β is described by one normal mode and one rigid body mode. The

assembled structure then has a total of four DOFs and yields an approximate result

compared to the full model.

In the Craig-Chang method, one residual attachment mode is added to each

component. Because these modes include the effects of the deleted modes, this

method is only meaningful if a component model is reduced. If this is not the case,

the DOFs are not independent. Since also the equilibrium of forces is ensured,

two DOFs are removed due to the boundary conditions. However, if two normal

modes are truncated in each component, the total number of DOFs is only reduced
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by 3 (case a). In order to achieve the desired reduction by 4 DOFs, three normal

modes will be deleted in component α (case b). Because component β has rigid

body freedom, it would have to be restrained before an attachment mode due to a

force could be defined. However, the residual attachment mode is determined by

the residual flexibility matrix, which depends on the higher frequency modes, and

therefore the rigid body freedom is not relevant.

In the fixed-interface method, the number of DOFs is reduced to 4 and 3 for

components α and β, respectively, because the boundary coordinate 5 is fixed. The

fixed-interface components are sufficiently constrained and only normal modes are

obtained from the eigenvalue problem. Additional constraint modes are necessary

to carry out the coupling and to preserve the exact result. For component β the

constraint mode, where a unit displacement is applied at the boundary, is a rigid

body mode. One DOF is removed by the coupling condition at the boundary.

In summary, all CMS methods preserve the exact result of the full model if

the number of independent modal component coordinates is the same as the total

number of physical DOFs and if the component modes are linearly independent.

The normal modes found from an eigenvalue problem are linearly independent by

definition and the residual attachment modes are independent of the kept normal

modes. The constraint modes of a fixed-interface component are independent of each

other and independent of the fixed normal modes, because if a unit displacement is

described at one coordinate all other coordinates are fixed.

For a reduced component model, the simple free-interface method is not statically

correct. The use of additional attachment modes ensures the correct static result

and improves the approximation, but also increases the size of the model. In the

fixed-interface method, some of the dynamical information is lost compared to the

free-interface method, because the mode set comprises static constraint modes and

a reduced number of normal modes. However, the result is statically correct and

the size of the assembled model is unchanged.

In Table 4.2, the estimates of the natural frequencies by the different CMS meth-

ods are shown. The number of DOFs was reduced for all cases from 8 to 4. The

first five natural frequencies of the exact system range from 0.38 Hz to 3.599 Hz and

the errors in the estimated values are given in percent.

The fixed-interface method gives accurate results for the lower modes but approx-

imations get worse for higher frequency. The free-interface method with attachment

modes behaves in the same manner, but gives an accurate result also for the third

natural frequency and is less in error for the fourth. The simple free-interface method

achieves the best result for the third natural frequency but shows unsystematic er-

rors for the others. In Figure 4.6, a transfer FRF and a point FRF are plotted to
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Mode Exact Fixed+Constr. Free Free+Attach.b Free+Attach.a

Hz Hz err. % Hz err. % Hz err. % Hz err. %

1 0.380 0.380 0 0.385 1.3 0.380 0 0.380 0
2 1.105 1.105 0 1.192 7.9 1.105 0 1.105 0
3 2.018 2.029 0.5 2.021 0.2 2.018 0 2.018 0
4 3.086 3.372 9.2 3.433 11.2 3.112 0.8 3.099 0.4
5 3.599 3.628 0.8

Table 4.2: Natural frequencies of a mass-spring chain modelled by different CMS
methods.

show the qualitative variations in the different approximations.

This numerical example was used to demonstrate some of the basic characteristics

of different CMS approaches. The specific performance of these methods depends

on the properties of the structure and the objective of the application. However, it

is indicated in the literature that the free-interface method with residual attachment

modes gives the best results of the three approaches illustrated. The fixed-interface

method with constraint modes is accurate for lower modes and at the same time is

the most simple to implement.

4.4 Discussion and concluding remarks

The static reduction by Guyan is most appropriate for static problems. For linear

dynamic problems, the modal reduction approach should be used, if some of the

lower frequency modes can be neglected. In the context of built-up structures, CMS

methods combine the benefits of modal reduction with the capability to couple dif-

ferent component models. The accuracy of both the free and fixed-interface CMS

methods is sufficient, if the frequency of the highest mode considered is relatively

large compared to the highest frequency of interest. The substructuring approaches

considered in this chapter were based on the system matrices. However, there are

also other techniques, which consider response data, for example FRF based sub-

structuring [92–94].

This thesis concerns the low-frequency analysis of built-up structures with non-

deterministic properties, focusing on the first few modes of vibration where the

modal and stochastic overlaps are low. The possible reduction in model size, without

loss of accuracy, can be substantial depending on the overall number of DOFs.

Therefore, model reduction is an essential step in a low-frequency non-deterministic

analysis in order to reduce the computational cost and make it more applicable.
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Figure 4.6: Frequency response of a mass-spring chain modelled by different CMS
methods.



Chapter 5

CMS and non-deterministic data

5.1 Introduction

A promising methodology to address several of the challenges in the modelling of

the dynamics of non-deterministic properties in complex structures is substructuring.

The component modes synthesis (CMS) method combines the benefits of substruc-

turing with the benefits of modal approaches. The application of CMS methods for

the deterministic analysis of structures that are built-up of several components, as

is generally the case in industrial applications, has been reviewed in the previous

chapter.

In the analysis of structures with non-deterministic properties, a deterministic

problem often has to be solved repeatedly, which is numerically expensive. In this

context, deterministic model reduction by CMS is especially important because the

benefits accurre multiple times. Reanalysis is required of only those components of

the structure which are uncertain or where uncertainty is significant. The individual

components and the joints are typically statistically independent, being made up by

different manufacturing processes. The advantage of CMS that it can deal with

quantitatively and qualitatively different deterministic FE component models can

be extended to a non-deterministic analysis as well.

Other benefits concern how uncertain data is quantified and propagated. Un-

certainties in properties can be naturally and straightforwardly introduced at the

component level, either in terms of the component physical properties or the compo-

nent modal properties. The former typically require quantification of a random field

for each physical property, while the latter involve component natural frequencies -

a discrete set of data of low order - and eigenfunctions. This enables possibilities

for substantial reduction in the quantity of uncertain data that must be included in

the model. It is therefore possible to estimate uncertainties in response using a rel-

72
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atively small set of uncertain input data, further reducing computational cost. The

propagation of uncertainties in CMS can be treated in several independent steps

using four different coordinate systems in CMS.

CMS methods are amenable to the inclusion of experimentally measured variabil-

ity data. Theories and models for the representation of variation in properties (e.g.

random fields for spatial variation) have been in existence for many years, but the

experimental data required to quantify them is often not available. In this context,

it is much easier to measure the variation in modal properties of a component than

quantifying the spatial distribution of physical properties. A simple hammer test

can be sufficient to determine the statistics of component modal properties. Finally,

advantages arise from the fact that each substructure can be treated independently

regarding the quantification and propagation of non-deterministic data. For exam-

ple, a hybrid description can be adopted, with different parts of a built-up structure

perhaps being described by possibilistic and probabilistic concepts. Overall, CMS

offers more physical insight into the analysis of structures with uncertain properties

than other methods.

Numerical models are most easily constructed using the fixed-interface (Craig-

Bampton) method, which has been reviewed in the previous chapter. In this case, ad-

vantages arise from the special structure of the CMS equations that can be exploited.

This chapter addresses the quantification and propagation of non-deterministic prop-

erties with a focus on the fixed-interface CMS method. First, the various possibili-

ties for uncertainty quantification and propagation as well as the influence of modal

parameters are discussed. Subsequently, Section 5.4 concerns the combination of

possibilistic and probabilistic approaches in one analysis. This is followed by a pre-

sentation of the use of perturbational relations for forward propagation within the

CMS framework.

5.2 Uncertainty quantification and propagation in

CMS

The fixed-interface CMS method has been reviewed in detail and in the context of

other CMS methods in the previous chapter. The main equations will be summarised

in this section for easier reference. The undamped equation of motion of a component

α is

Mü + Ku = f (5.1)
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At component level, the fixed-interface eigenvalue problem

(
KII − λfi

j MII

)
ΦI,j = 0 (5.2)

has to be solved. The modal matrix Bα is given as

B =

[
ΦIk −K−1

II KIc

0 Icc

]α

(5.3)

where constraint modes have been added to improve convergence. The modal matrix

Bα is then used to transform the component matrices from physical to component

modal coordinates. Following the synthesis of components the global mass and

stiffness matrices are found as

Mgl =




Iα
kk 0 mα

kc

0 Iβ
kk mβ

kc

mα
kc

T mβ
kc

T
mα

cc + mβ
cc


 Kgl =




Λα
kk 0 0

0 Λβ
kk 0

0 0 kα
cc + kβ

cc


 (5.4)

These constitute the global eigenvalue problem

(
Kgl − λgl

i Mgl
)

Φgl
i = 0 (5.5)

which yields the global eigenvalues and eigenvectors. Finally, the global eigenvectors

can be related to global physical coordinates by the transformation

V = BCD (5.6)

which is required to calculate the FRF by modal summation.

5.2.1 Quantification of uncertainties

There are four different coordinate systems in the CMS framework, given by compo-

nent and global, physical and modal coordinates as shown in Figure 5.1. Parametric

uncertainties can be introduced at the component physical level in terms of mass and

stiffness properties. In practice, many of these properties vary spatially and random

field models (Chapter 3) are required to represent them. However, the quantification

of these models is often difficult or impossible, due to a lack of data and the effort

and expense of acquiring it. For example, there is almost no data available for the

correlation length that is a parameter in random field models. In most cases, exper-

imental quantification at the physical level is difficult and expensive. Quantification

in a numerical model is therefore an approximation. Alternatively, uncertainties
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Figure 5.1: Outline of uncertainty quantification in CMS.

can be introduced at the component modal level in terms of the modal parame-

ters: the fixed-interface component eigenfrequencies, mode shapes and constraint

modes. The special structure of the global matrices (Equation 5.4), where the com-

ponent eigenvalues appear uncoupled on the diagonal of the stiffness matrix, is most

advantageous for this purpose. Experimental quantification of the eigenvalues in

particular is straightforward using a simple hammer test, for example. However, in

practice it might be simplest to perform this with a free rather than fixed interface.

The quantification of uncertainty in the mode shapes and in the constraint terms is

not so straightforward. A simple and practical approximate approach is therefore to

consider variation in component eigenfrequencies only. The inaccuracies and errors

caused by this approach will be investigated in the next section. In contrast to

physical properties, quantification in modal properties takes account of all sources

of uncertainty, including non-parametric effects. Finally it should be noted that it

is possible to describe uncertainty in different subsystems in a different qualitative

manner, some possibilistically and some probabilistically.

5.2.2 Propagation of uncertainties

The different strategies for uncertainty propagation are outlined in Figure 5.2. In

a classical analysis, the variation in physical properties can be propagated directly

to the global physical level, e.g. the frequency response function (FRF). In a modal

approach, first the variations in global modal properties are calculated, which are

subsequently propagated to the global physical level. Within the CMS framework,
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Figure 5.2: Outline of uncertainty propagation in CMS.

a further coordinate level is introduced. Therefore, a total of three different and

independent propagation steps can be considered. At component level, only those

components where uncertainty is significant have to be considered. The component

model size is much smaller than the original global problem and the computational

cost is less. If components are considered to be statistically independent, the num-

ber of random variables is also smaller, which makes interval analyses more feasible.

Therefore, it is often reasonable to use an exact propagation method, such as MC

simulation, at this stage. A further advantage is that for each component a different

propagation approach can be applied. Therefore, exact and approximate, as well

as probabilistic and possibilistic concepts, can be applied as appropriate. The sec-

ond step of propagation, associated with the component synthesis, is independent

of the previous propagation approaches. It is based on a different and reduced set

of random variables, which can be selected according to the frequency range of in-

terest. In general, the modal properties of different components are uncorrelated.

At this stage, all quantitatively and qualitatively different approaches are combined.

Probabilistic and possibilistic descriptions can be unified by putting bounds on the

distributions of modal parameters. Finally, there are different strategies for non-

deterministic modal superposition that can be applied to estimate the variation in

the FRF. The latter are discussed in detail in Chapter 7. The use of modal sensi-

tivities and the application of perturbational relations within the CMS framework

are discussed in Section 5.5 and Chapter 6.
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Figure 5.3: Outline of uncertainty propagation in the fixed-interface CMS method.

5.2.3 Influence of random parameters

In this section, the propagation of uncertainties through the various coordinate

systems will be examined to investigate the influence of individual parameters in

the fixed-interface CMS method. A model with two components α and β is used for

simplicity. Parametric uncertainty is assumed to be present in the physical mass and

stiffness matrices, denoted by a vector p in the form M(p),K(p). The objective is to

calculate the resulting variation in the global eigenfrequencies λgl
i and the frequency

response A of the whole structure. In Figure 5.3, the four coordinate levels, the

corresponding parameters and the paths of uncertainty propagation are outlined.

At the component modal level, uncertainty exists in the component eigenvalues and

eigenvectors. Additionally, the terms associated with the static constraint modes

are random as well. Therefore, at component modal level, uncertainty is present in

elements of the modal mass and stiffness matrices and the component mode matrix

B.

The global eigenvalues λgl
i and eigenvectors φgl

i are calculated from Equation

5.5 and depend on the component eigenvalues Λα
kk, Λβ

kk, the constraint mass and

stiffness matrices kα
cc + kβ

cc, mα
cc + mβ

cc and the coupling mass matrices mα
kc, mβ

kc.

In order to calculate the frequency response, the physical mode shapes are needed,

which depend on the transformation V = BCD. This also involves the component
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Simulation Uncertainty considered in:

Exact global stiffness and mass matrices Kgl Mgl B
component mode matrices

A global stiffness matrix Kgl Mgl B
component mode matrix

B component eigenvalues K̃gl Mgl B

component modal matrix (Λ, kcc)

C global stiffness and mass matrices Kgl Mgl B

D component eigenvalues K̃gl Mgl B

(Λ, kcc)

x - baseline value of x

Table 5.1: Definition of different cases for a numerical analysis, where uncertainty
is neglected in various component modal properties.

mode matrix B.

In the following analysis, the error caused by neglecting component constraint

terms on uncertainty propagation is investigated. In Table 5.1, four different simu-

lation cases are defined. For the exact solution, randomness in all component modal

properties is considered. In case A, randomness in the global mass matrix Mgl is

neglected and is replaced by its baseline matrix Mgl. In the next case, the random

constraint terms in the global stiffness matrix K̃gl are neglected and replaced with

their baseline values kcc, leaving only the component eigenvalues Λ as random vari-

ables. Finally, in cases C and D, the baseline component mode matrix B is used.

The results for all cases and a numerical example are presented in Section 5.3. The

next two sections are concerned with the method of uncertainty propagation and

the choice between probabilistic and possibilistic approaches.

5.3 Numerical example

The numerical example is a two-component beam structure as shown in Figure 5.4.

The components are rigidly connected to each other and clamped at the ends. The

structure is modelled using standard FE matrices for Euler-Bernoulli beam theory

[9], including transverse and rotational DOFs. The beams are governed by bending

stiffness EI and mass per unit length ρA. Each component is divided into 10

identical beam elements over the length L. The baseline values are given in Figure



5. CMS and non-deterministic data 79

5.4. Damping is included by a modal loss factor of 3%. A fixed-interface CMS model

is constructed and component normal modes corresponding to a frequency higher

than 150 Hz are neglected. The transfer accelerance between two points, each 0.4m

from the clamped ends, for a frequency range from 0Hz to 50Hz will be considered.

Figure 5.5 shows the baseline FRF for the exact solution and a fixed-interface CMS

approximation, where the total number of DOFs is reduced from 38 to 20. In the

following simulations, a frequency range from 0Hz to 50Hz, including the first 10

resonances, will be of interest. The error from model reduction can be neglected for

at least up to the 10th mode, because there are twice as many DOFs retained.

Uncertainty is introduced in the thickness h and the Young’s modulus E of each

component. The Young’s modulus contributes linearly to the stiffness matrix, but

the thickness h appears as a cubic term in the bending stiffness and a linear term in

the mass per unit length. In the following, both a possibilistic and a probabilistic

analysis are performed.

5.3.1 Possibilistic analysis

In this analysis, the Young’s modulus E and the thickness h of each component α

and β can vary by ±8.2% around the baseline value. They are assumed to be con-

stant over the length of each component. Therefore, there are 4 random variables

in the whole structure and a vertex analysis with 24 = 16 deterministic solutions of

the original eigenvalue problem is performed as a reference analysis. For the CMS

model, there are 2 random variables in each component and 22 = 4 vertex solutions

are performed for each component. When the components are assembled, there are a

total of 42 = 16 combinations to be considered for the solution of the reduced global

eigenvalue problem. However, this is only the case if the individual solutions for each

deterministic calculation are traced, i.e. the correlations between component eigen-

 

Lα

Lβ

(EI)α, (ρA)α (EI)β, (ρA)β

L h b E ρ
[m] [m] [m] [N/m2] [kg/m3]

component α 1 0.01 0.1 1e8 1000
component β 1 0.015 0.1 1e8 1000

I = bh3

10
, A = bh

Figure 5.4: Two component beam structure and baseline properties.
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Figure 5.5: Baseline FRF: exact solution (38 DOFs) and CMS (16 DOFs).

values are known. The lower and upper limits of variation of the eigenfrequencies

are found as the minimum and maximum values of the vertex combinations.

First, the influence of neglecting various component modal parameters will be

investigated. The upper limit of global eigenfrequencies ωU
i is computed for cases A

and B as defined in Table 5.1. In Figure 5.6 the difference from the exact solution

is shown for the first 10 eigenfrequencies. It can be seen that the approximation is

inaccurate for the first two eigenfrequencies but improves for higher modes. In case

A, where uncertainty in the global mass matrix is neglected, the eigenfrequencies

are overestimated. This is possible because the interdependency between the mass

and stiffness matrices is not considered. However, if the uncertainty in stiffness

constraint terms is neglected too and only the component eigenvalues are considered,

the exact results are underestimated. For the third and higher eigenfrequencies, the

approximation error introduced by neglecting all constraint terms in the mass and

stiffness matrices is less than 2%.

In case B the component eigenvalues are the only uncertain parameters at com-

ponent level, which are in general correlated within one component. If those correla-

tions are neglected, there is a set of nΛ = 18 independent uncertain variables, where

nΛ is the total number of kept fixed-interface component modes. If interdependen-

cies between variables are neglected, the results of the analysis will be conservative.

However, a vertex analysis requires 218 = 262144 deterministic solutions of the global

eigenvalue problem, which is often infeasible. Therefore, a reduction in the number



5. CMS and non-deterministic data 81

-12

-10

-8

-6

-4

-2

0

2

4

1 2 3 4 5 6 7 8 9 10

Global mode number

D
if

fe
re

n
ce

 t
o

 e
xa

ct
 v

al
u

e 
[%

] 

uncertainty in stiffness matrix only
uncertainty in eigenvalues only
uncertainty in eigenvalues only, data reduction
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for the upper limit of global
eigenfrequencies for cases A and B.

of uncertain parameters could be considered. Figure 5.6 also shows results for the

case, where the number of independent uncertain component eigenvalues has been

reduced to nΛ = 8. It can be seen that this introduces non-conservative errors for

higher frequencies. Alternatively, total correlation could be assumed for the eigen-

values within one component. In this case, only 2ncomp = 4 deterministic solution

have to be performed, where ncomp = 2 is the number of components. However,

in general the upper limits of all component eigenvalues correspond to the upper

limits of all global eigenvalues. This can also be seen by the special structure of the

CMS matrices. Therefore, only two deterministic solutions of the global eigenvalue

problem are required. For the current numerical example, the results for case B are

identical for any description of the correlation of component eigenvalues.

A FRF is calculated for every solution using deterministic modal superposition.

A FRF envelope is then obtained as the maximum and minimum value of the mag-

nitude, for every frequency, from the results of the vertex analysis. The magnitude

over a resonance range is approximated by the maximum value in this range (non-

deterministic modal superposition is the subject of Chapter 7). In Figure 5.7 the

pseudo-exact FRF envelope is compared with several approximations. The results

for cases A and B, where uncertainties are neglected in constraint terms of the global

system matrices, are presented in Figure 5.7a. It can be seen that this mostly affects

the resonance range at lower frequencies. Figure 5.7b concerns the influence of un-

certainties in the component mode matrix B. The whole frequency range is affected,

but only to a very limited degree. Finally, the results based on the approach to con-

sider uncertainty only in the component eigenvalues are shown in Figure 5.7c. The
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differences are small except for low frequencies, which are governed by the constraint

terms. In addition, the results are shown for the approach where component eigen-

value intervals are considered as independent. In this case, the resonance ranges

remain unchanged, but there is more conservatism in the approximation of the FRF

magnitude.

5.3.2 Probabilistic analysis

For the probabilistic analysis, the thickness h and Young’s modulus E are modelled

by a one-dimensional homogenous Gaussian random field with a CV of 5% and

correlation length 0.5m. The CV is linked to the possibilistic analysis by the criterion

that 90% of the realisations lie between the lower and upper limits. The random

field is discretised at element level so that there is a constant value for each of the

10 finite elements. A Monte Carlo (MC) approach with 10000 deterministic runs is

applied to estimate eigenfrequency and FRF statistics. For the reference solution,

the original eigenvalue problem is solved directly each run. In the CMS approach,

first the component models are solved independently and then the reduced global

problem is solved. The standard deviation of the global eigenfrequencies is computed

for cases A and B, where uncertainty is neglected in constraint terms in the global

system matrices. The corresponding errors are presented in Figure 5.8. The results

show the same tendencies as those described for the possibilistic analysis. There

are large differences for the first two eigenfrequencies, but results improve for higher

modes.

In contrast to the possibilistic analysis, the number of solutions does not de-

pend on the number of uncertain parameters or if correlations are considered or

not. It can be different for the propagation at component level and the propagation

to global modal level. In case B the component eigenvalues are the only random

parameters. They are given by pdfs and are in general correlated. The correlations

can be considered, if the sequence of the deterministic solutions in a MC simulation

approach is traced. If only the pdf of each component eigenvalue is known, further

errors are introduced in the MC propagation to the global eigenvalues. The results

for this case are also shown in Figure 5.8. The statistics are underestimated, be-

cause the likelihood that certain combinations of the component eigenvalues occur

is lower. The results presented here relate to the real distribution discretised by

10000 samples. However, in many cases it might be reasonable to propagate only

the mean values and variances of probabilistic properties.

A FRF is calculated for every MC solution and FRF statistics are evaluated

from a sample of 1000 MC results. In Figure 5.9, the 5 and 95 percentiles of the
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Figure 5.7: FRF envelope: exact solution and approximations from cases A,B,C
and D.
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Figure 5.8: Approximation error for the standard deviation of global eigenfrequencies
for cases A and B.

FRF magnitude are shown for the exact FRF and various approximations, where

uncertainty is neglected in certain modal properties. The variation at lower modes

is strongly dependent on the constraint terms. The modal matrix B has a limited

influence in the whole frequency range (case C). The approximation considering

variation only in the component eigenvalues (case D) is reasonably good for fre-

quencies above the second mode. In Figure 5.9c, it is also shown that neglecting

the correlations between component eigenvalues leads to errors, especially to an un-

derestimation of the resonance range statistics. These observations are qualitatively

similar for general systems, but the frequency above which the influence of uncer-

tainty in the constraint terms can be neglected depends strongly on the coupling of

the components.

5.4 Combined possibilistic and probabilistic ap-

proaches

Most non-deterministic analyses follow either a probabilistic or a possibilistic ap-

proach. The main criteria for this choice are the available information about the

input uncertainty and the objective of the analysis. However, there are several rea-

sons which can make the selection of the correct approach problematic. The results

of a possibilistic method might be associated with a very low likelihood and there-

fore of little practical use in an application. Probabilistic approaches often suffer

from the lack of accurate data and many assumptions have to be made concerning

probabilistic distributions etc. A further problem arises if different qualitative and
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Figure 5.9: 5 and 95 percentiles of FRF: exact solution and approximations by cases
A,B,C and D.
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quantitative descriptions of non-deterministic input data are given for one struc-

ture. In this case the combination of possibilistic and probabilistic approaches has

to be considered. In terms of pdf and interval descriptions, two principle techniques

are apparent. A distribution can be assumed for the possibilistic results, where the

lower and upper bounds are replaced with specified percentiles of the pdf. However,

this involves further assumptions and can introduce errors. On the other hand, the

probabilistic results can be transformed into an interval by using percentiles of the

pdf as lower and upper limits. In this case, no assumptions have to be made, but

valuable information is lost and bounds are no longer strict bounds.

The CMS framework is appropriate for the combination of probabilistic and pos-

sibilistic approaches, which will be discussed in this section. Options and advantages

arise from the fact that the propagation at component level can be treated indepen-

dently of the propagation to the global modal level. In the following, two numerical

examples are given to illustrate the combination of possibilistic and probabilistic

approaches in CMS.

5.4.1 Change from a probabilistic to a possibilistic uncer-

tainty description

Consider the numerical example shown in Figure 5.4, where the input data is mod-

elled by a probabilistic random field as presented in Section 5.3.2. The goal of the

analysis is to estimate a FRF envelope based on 5 and 95 percentiles. However,

in theory the percentiles could be applied at any of the four coordinate systems in

CMS, as outlined in Figure 5.2. A standard option is to apply a sampling approach

and estimate percentiles for a FRF sample. This analysis has been shown in Sec-

tion 5.3.2. Alternatively, an interval approach can be followed, if the percentiles

are applied already to the pdf at the component physical level. This equals the

analysis performed in Section 5.3.2. Furthermore, a hybrid approach is possible,

where a probabilistic approach is applied for the component level and a possibilis-

tic approach for the subsequent propagation. The results for these three described

analyses are shown in Figure 5.10. In each case uncertainty is considered only in

the component eigenvalues and correlations are neglected. The probabilistic steps

are based on 10000 runs and the vertex method is applied for possibilistic steps.

As expected, the percentiles of the FRF sample look qualitatively different to the

FRF envelopes. In each of those three cases, bounds are put to the pdf of a funda-

mentally different property and any of them could be a valid approach for a specific

application. However, it can be noted that if the change from a probabilistic to

a possibilistic description is done in a later propagation step, the resulting FRF



5. CMS and non-deterministic data 87

0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

Frequency [Hz]

F
R

F
 [d

B
 r

ef
 1

m
/N

/s
2 ]

 

 

possibilistic

hybrid

percentiles

Figure 5.10: FRF envelopes based on a possibilistic, probabilistic and hybrid ap-
proach.

envelope will be narrower.

Similar concepts in relation to non-deterministic modal superposition are also

discussed in more detail in Chapter 7.

5.4.2 Combination of a probabilistic and a possibilistic un-

certainty description

It is possible that parametric uncertainty in one component is given an interval,

whereas sample statistics or distributions are known for others. In this case, both

descriptions have to be unified at some stage and it seems appropriate to do it at the

component modal level. Figure 5.11 outlines this strategy, where the appropriate

propagation method is used at component level and subsequently the qualitatively

different results are combined at component modal level. Considering the numerical

example shown in Figure 5.4. Uncertainty in component α is now modelled pos-

sibilistically, as described in Section 5.3.1, whereas uncertainty in component β is

modelled probabilistically, as described in Section 5.3.2. Figure 5.12 shows the re-

sults for the estimated FRF envelopes. For the possibilistic approach, the uncertain

data was unified at the component physical level and for the hybrid approach, it was

unified at the component modal level. It can be seen that the hybrid method gives

much closer bounds to the FRF than a classical possibilistic approach. Therefore,
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Figure 5.11: Outline of a combined probabilistic and possibilistic analysis in CMS.

conservatism could be reduced and the available information is used as much as pos-

sible. However, bounds are not strict possibilistic bounds nor can they be associated

with distinct probabilities. The combination of possibilistic and probabilistic data

remains a mathematical and philosophical challenge.

5.5 Modal sensitivities and perturbation in CMS

This section concerns modal sensitivities and the use of perturbational relations for

the propagation of non-deterministic data within the CMS framework. Perturbation

methods can be used to replace numerically expensive operations, such as solving

an eigenvalue problem. The propagation problem is then reduced to an algebraic

equation, which is numerically very cheap. In general, the accuracy of first order

perturbation methods is reasonable if the variations in input parameters are small.

However, in the context of calculations involving uncertain properties, the accu-

racy that can be achieved is limited by the level of uncertainty in the input data.

Therefore, exact or highly accurate propagation methods are often unnecessary and

approximate techniques might be appropriate.

The coordinate systems and uncertain parameters that will be considered for

uncertainty propagation in this section are shown in Figure 5.13. At the component

physical level, uncertainty is present in parameters p. At component modal level,

uncertainty is only considered in terms of the component eigenvalues, which can be
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Figure 5.12: FRF envelopes based on a possibilistic and a hybrid approach.

fixed or free-interface eigenvalues. The arising inaccuracies and errors have been

discussed previously. At global modal level, the variation in eigenvalues and eigen-

vectors is included. The propagation to the global physical level by non-deterministic

modal superposition is discussed in Chapter 7.

Component physical Physical parameters p

Component modal Component eigenvalues λfi,λfr

Global modal Global eigenvalues λgl,φgl

Figure 5.13: Outline of coordinate levels and parameters considered for uncertainty
propagation by perturbation.
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5.5.1 Perturbation from physical to modal properties

The rate of change of an eigenvalue λi with respect to a parameter pj is given by

[64]
∂λi

∂pj

= φT
i

(
∂K

∂pj

− λi
∂M

∂pj

)
φi (5.7)

where M and K are the mass and stiffness matrices respectively and φ is the ith

eigenvector. Similar expressions exist for the first order sensitivity of the ith eigen-

vectors, as shown in Chapter 2. The baseline modal properties are given by the

deterministic solution and only the derivatives of the stiffness and mass matrices

with respect to the uncertain physical parameters have to be obtained. If a sensi-

tivity matrix R is defined such that rji = ∂λi

∂pj
, a change in component eigenvalues

can be approximated from a change in parameters as

∆Λ = R∆p (5.8)

It follows that the covariance matrix of the eigenvalues can be approximated from

the covariance matrix of the physical parameters as

COV (Λ) = R COV (p) RT (5.9)

In practice, spatially varying physical properties can be modelled by random fields.

In FE methods, these are discretised using the existing mesh. In this case, p is a

vector of correlated finite element properties and COV (p) is the covariance matrix

as used in the representation of random fields. The gradients rji depend on the FE

model and their calculation might not be trivial.

In a classical approach, this perturbation can be used for uncertainty propaga-

tion from component physical to global modal properties. In the CMS framework,

it describes propagation from component physical to component modal properties.

It is valid for both fixed-interface and free-interface methods. The subsequent prop-

agation to the global modal level, which concerns the synthesis of components, is

addressed next.

5.5.2 Perturbation from component modal to global modal

properties

A local modal/perturbational propagation method from the component modal to the

global modal level has been presented in [95]. It makes use of the special structure of

the global system matrices, Equation 5.4 where the component eigenvalues appear
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uncoupled on the diagonal of the stiffness matrix. If Equation 5.7 is applied, where

the uncertain parameters are now the component eigenvalues (pj = λc
j), it follows

that
∂λgl

i

∂λfi
j

=
(
φ

gl
i

)
j

(
φ

gl
i

)
j

(5.10)

where λgl
i and λfi

j are the ith global and jth component eigenvalue respectively and

φ
gl
i is the ith baseline global eigenvector. Thus changes in the component eigenvalues

can be related to changes in the global eigenvalues by

∆Λgl = S∆Λfi (5.11)

where a sensitivity matrix S has been defined such that sji =
(
(φgl

i )j

)2

.

If the covariance matrix of the component eigenvalues is known, the covariance

matrix of the global eigenvalues can be estimated by

COV (Λgl) = SCOV (Λfi)ST (5.12)

This sensitivity approach can be extended to the propagation of uncertainties in

the component and constraint mode shapes, but is less straightforward if these

submatrices are not diagonal. The constraint mode shapes in particular seem to

affect the FRF variability primarily for the lowest few modes, where the static

constraint terms are more important. An approach considering the variation in

component modes was suggested in [96], although quantifying the uncertainty in a

practical situation might be problematical.

5.5.3 Numerical example

Consider the numerical example in Figure 5.4, with a probabilistic description of

uncertainties as described in section 5.3.2. A Monte Carlo approach with 10000

runs was applied in order to estimate the statistics of the global eigenvalues for

the case that uncertainty at component modal level is only considered in the com-

ponent eigenvalues. Equation 5.9 can be used to estimate the covariance matrices

of the component eigenvalues from the covariance matrices of the random fields.

Subsequently, Equation 5.10 can be used to estimate the covariance matrix of the

global eigenvalues. The corresponding first order sensitivities for both relations are

obtained from the baseline solution. In Figure 5.14, the errors in the estimated

standard deviation of the first 10 global eigenvalues due to the use of a perturbation

are shown. In one case, perturbation is applied to both propagation steps, i.e. from

component physical to global modal properties. In the other case, perturbation is



5. CMS and non-deterministic data 92

-1.5

-0.5

0.5

1.5

1 2 3 4 5 6 7 8 9 10

Global mode number

D
if

fe
re

n
ce

 t
o

 e
xa

ct
 v

al
u

e 
[%

] 

perturbation from component physical to component modal properties

perturbation from component modal to global modal properties

Figure 5.14: Errors in standard deviation of the global eigenvalues due to perturba-
tion.

only considered for the propagation from component modal to global modal proper-

ties. The maximum error is about 1.5% which is very satisfactory, especially in the

context of other inaccuracies in the analysis and the level of uncertainty in general.

In practice the modal/perturbational relation from component modal to global

modal properties is highly relevant. It concerns, in general, the numerically most

expensive propagation step. However, the required modal sensitivities are automat-

ically obtained by the baseline solution of CMS. It can be used if uncertainty is

directly quantified in the component eigenvalues, if quantitatively different data de-

scriptions are unified or if correlations are neglected. Figure 5.15 shows the results

for FRF percentiles, where a perturbation has been used from component modal to

global modal properties. Similarly, Figure 5.16 presents the results for a possibilistic

uncertainty description.

In both cases the agreement between the results for the exact and approximate

propagations is reasonably good.

5.6 Discussion and concluding remarks

Component mode synthesis is a well-established method for the deterministic anal-

ysis of built-up structures. CMS also provides an appealing framework for the

analysis of structures with non-deterministic properties. The computational cost

of a non-deterministic analysis can already be reduced drastically by model reduc-

tion. Several advantages arise from the fact that CMS introduces the component
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Figure 5.15: 5 and 95 FRF percentiles: exact propagation and perturbation from
component modal to global modal level.
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Figure 5.16: FRF envelope: exact propagation and perturbation from component
modal to global modal level.
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modal level as an additional coordinate system. Uncertainty can be straightfor-

wardly introduced at the component level, either in physical or modal coordinates.

The propagation of uncertainties from physical to component modal coordinates and

from component modal to global modal coordinates can be treated independently.

The application of perturbational relations is most appropriate and has been shown

to be reasonable accurate and numerically very cheap.

The fixed-interface CMS method has further advantages for the analysis of struc-

tures with uncertain properties, because the global mass and stiffness matrices pos-

sess a special structure. The global mass and stiffness matrices are governed by

the component eigenvalues and the constraint terms. Quantifying the uncertainty

in component eigenfrequencies experimentally is straightforward, for example from

repeated hammer tests on an ensemble of structures. In contrast it is much more

difficult to quantify the variation in normal and constraint modes experimentally, as

is the case for spatial variation of physical properties. Similarly, for the numerical

propagation of uncertainties several benefits arise if the variations in the constraint

terms, especially the off-diagonal terms, are neglected. However, this introduces

approximation errors, particularly for the lower modes. For higher frequencies, the

approximation gives good results. Other errors in the FRF magnitude arise if the

variations in the component modal matrices are neglected. Overall the approxi-

mation of considering uncertainty only in component eigenvalues seems reasonable

for a frequency range where the lower limit is determined by the influence of the

constraint terms. If this approximation is made, the analysis simplifies greatly. The

perturbational relations discussed can be implemented, with the required sensitiv-

ities already being known from the baseline eigenvector matrix. The perturbation

can be performed at very little cost and can be combined with probabilistic or pos-

sibilistic approaches. Statistics such as the variance can be computed directly. It is

worth noting that the approximation errors introduced may well be comparable to

errors in the quantification of uncertainty in the component physical properties. A

core strength of CMS is the ability to combine component models with qualitatively

and quantitatively different deterministic FE models. Similarly, different descrip-

tions of uncertain properties can be considered at component level. This includes

the combination of probabilistic and possibilistic data, which can be a realistic re-

quirement. Uncertainty in damping mainly affects the magnitude of the FRF and

could be included independent of the eigenvalue and eigenvector analysis at little

extra cost. Similarly, uncertainties in joints can be included through the constraint

matrices, although this has not been considered here.



Chapter 6

Uncertainty propagation using

free- and fixed-interface

methodologies in CMS

This chapter mainly concerns a perturbational relation between free- and fixed-

interface component eigenvalues, which has potential applications for the experi-

mental quantification of uncertainties. Measurements on components are most easily

performed in a free configuration, which can easily be realised and leads to relatively

accurate results. Each component of a structure may be tested in a free configuration

and the statistics of the free-interface natural frequencies can be determined straight-

forwardly. For numerical analysis, however, fixed-interface methods are preferable

for various reasons, as discussed before. Therefore, an approximate approach will be

discussed where free-interface data is used to estimate fixed-interface data, which is

then used in fixed-interface analysis to predict response statistics.

6.1 Fixed and free-interface methodology for one

component

Considering a component model in free configuration, described by the mass and

stiffness matrices M and K respectively, the free-interface eigenvalues λfr
i can be

found by solving the eigenvalue problem

(
K − λfr

i M
)
ψ

fr
i = 0 (6.1)

If there are fixed-interface conditions, the fixed-interface eigenvalues λfi
i can be

calculated from the eigenvalue problem associated with the internal coordinates,

95
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given by

(KII − λfi
j MII)ψ

fi
j = 0 (6.2)

Introducing a transformation in the form

µ = BTMB and κ = BTKB (6.3)

where B is the component mode matrix, the modal mass and stiffness matrices take

the form

κ =

[
diag(Λfi) 0

0 kcc

]
µ =

[
I mc

mT
c mcc

]
(6.4)

where Λfi is a vector of fixed-interface eigenvalues λfi
i . The eigenvalue problem

(
κ− λfr

i µ
)
φ

fr
i = 0 (6.5)

yields the free-interface eigenvalues λfr. Therefore, the free-interface eigenvalues de-

pend on the fixed-interface eigenvalues and the constraint stiffness and mass terms

in the matrices κ and µ. The constraint stiffness matrix kcc is in general not di-

agonal, but can be made diagonal by a transformation that follows from solving

the eigenvalue problem associated with the constraint coordinates. A diagonal ma-

trix of characteristic constraint stiffnesses, the eigenvalues of kcc, and characteristic

constraint modes are obtained [89].

If the model has nfr DOFs, the free-interface solution will have nRB zero-valued

rigid-body eigenvalues and nfr − nRB nonzero eigenvalues. In the fixed-interface

CMS model, there are nfi fixed-interface eigenvalues, nRB zero-valued characteristic

constraint stiffnesses and nfr−nfi−nRB nonzero characteristic constraint stiffnesses.

As expected, the number of nonzero free-interface eigenvalues is equal to the number

of nonzero elements in the diagonal of the modal stiffness matrix κ. However, if there

are more than the necessary interface conditions to constrain all DOFs, then the

number of fixed-interface eigenvalues is less than the number of nonzero free-interface

eigenvalues.

The derivative of the ith free-interface eigenvalue with respect to the jth fixed-

interface eigenvalue is given by elements of the free-interface eigenvectors in the

form
∂λfr

i

∂λfi
j

= (φi)j(φi)j (6.6)

This sensitivity approach can be extended to the characteristic constraint terms,

but is less straightforward if these submatrices are not diagonal. In practice, it is

also not feasible to quantify variation in the constraint terms experimentally. There-
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fore, only variation in the component eigenvalues will be considered. A sensitivity

matrix T relating changes in fixed-interface eigenvalues to changes in free-interface

eigenvalues can be defined as

∆Λfr
m = Tmp ∆Λfi

p (6.7)

where tji = ((φi)j)
2 and Tmn is a submatrix of T corresponding to selected sets m

and p of fixed and free-interface eigenvalues. A change in fixed-interface eigenvalues

can be related to a change in free-interface eigenvalues using the inverse formulation

∆Λfi
p = T−1

mp ∆Λfr
m (6.8)

The number of selected eigenvalues in the sets m and p is important for the in-

verse formulation. If Tmp is a square matrix, the problem is determined and the

matrix can be inverted normally. If it is a rectangular matrix, the problem is under-

determined or over-determined and methods such as singular value decomposition or

the pseudoinverse have to be employed. In general, problems such as ill-conditioning

have to be addressed.

Equation 6.8 could be used in a model updating procedure in order to update

the fixed-interface eigenvalues directly from experimental free-interface eigenvalue

data. An example is given in the next section. However, in practice it is more

appropriate to update the free-interface eigenvalues and subsequently include the

interface conditions in the model.

The sensitivity matrix Tmp can be used to estimate the covariance matrix of the

free-interface eigenvalues from the covariance matrix of the fixed-interface eigenval-

ues by

COV (Λfr
m ) = Tmp COV (Λfi

p ) TT
mp (6.9)

In practice, it is preferable to quantify free-interface statistics of eigenvalues exper-

imentally, but fixed-interface statistics are often preferred in a numerical analysis.

Therefore, the inverse formulation of Equation 6.9 is of interest, which is given by

COV (Λfi
p ) = T−1

mp COV (Λfr
m ) T−T

mp (6.10)

In the next section, a numerical example is used to illustrate this approach.

6.1.1 Numerical example: cantilever beam

The numerical example is a cantilever beam with rectangular cross-section as shown

in Figure 6.1. It is modelled by 11 finite elements using standard Euler-Bernoulli



6. Uncertainty propagation using free- and fixed-interface methodologies 98

beam theory [9]. To include variation, the beam thickness is modelled by a one-

dimensional random field [42] with a Gaussian distribution. The coefficient of vari-

ation is 10% and the correlation length is 0.5m, half the length of the beam. Monte

Carlo simulation with 10000 runs is used to estimate sample statistics of the eigen-

values. The free-interface eigenvalue statistics are considered as experimental data

and form the input for the estimation of the fixed-interface eigenvalue statistics.

The exact fixed-interface eigenvalues are used as the reference solution.

First, a theoretical approach is demonstrated, where the mean free-interface

eigenvalues are used to update mean fixed-interface eigenvalues. In order to create

start values to be updated, the exact fixed-interface eigenvalues are perturbed by

10%. Equation 6.8 is then employed in an iterative scheme, where the sensitivity

matrix is updated each step when the eigenvalue problem is solved. This approach

is not exact, if the static constraint mass and stiffnesses are not considered. In

Figure 6.2, the error before and after updating is shown for the first 10 modes.

The error for the first mode could not be reduced, the error for the second mode is

about half and for higher modes it gradually reduces towards zero. This shows the

general effect in approaches were static constraint terms are neglected in the CMS

formulation, where a lower frequency limit can be observed, below which the results

are not particularly accurate. In practice, the free-interface eigenvalues would be

updated directly, subsequently the interface conditions would be imposed and finally

the fixed-interface eigenvalue problem solved to obtain exact results.

 

L b

hE, ρ

L h b E ρ

[m] [m] [m] [N/m2] [kg]

1 0.02 0.1 2.1e11 7850

I = bh3

12

A = bh

Figure 6.1: One component beam structure and baseline properties.
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Figure 6.2: Mean value of component eigenfrequencies: error before and after up-

dating of fixed-interface eigenvalues using data on free-interface eigenvalues.

Next, the standard deviations of the fixed-interface eigenvalues are estimated

from the covariance matrix of the free-interface eigenvalues using Equation 6.10.

The estimated results are compared with the exact solution and the difference is

shown in Figure 6.3. In this case, all nonzero free-interface eigenvalue statistics

have been considered to estimate the covariance matrix of all except the first fixed-

interface eigenvalues. The error is large for the lowest modes, but gradually decreases

for higher modes and is less than 1% above the 8th mode. The condition number of

the sensitivity matrix depends on the selected sets of eigenvalues. If the first fixed-

interface eigenvalue is neglected, the condition number of the sensitivity matrix is

lower and the results for the other modes improves. This and other issues will also

be addressed in the discussion section.
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Figure 6.3: Standard deviation of fixed-interface component eigenvalues: approxi-

mation error for estimation from free-interface statistics.

6.2 Built-up structure

The propagation of non-deterministic data in a built-up structure has been discussed

in the previous chapter. A perturbational relation between fixed-interface compo-

nent modal and global modal eigenvalues was discussed, where S is the sensitivity

matrix given by
∂λgl

i

∂λfi
j

= sji (6.11)

If the covariance matrix of the fixed-interface component eigenvalues is known, the

covariance matrix of the global eigenvalues can be estimated by

COV (Λgl
r ) = Srs COV (Λfi

s ) ST
rs (6.12)

where r refers to the set of selected global eigenvalues (Λgl
r ) and s refers to the set

of selected fixed-interface eigenvalues of components α and β.

If Equations 6.10 and 6.12 are combined, a relation between the statistics of the

global eigenvalues of the built-up structure and the statistics of the free-interface

eigenvalues of individual components can be written as

COV (Λgl
r ) = Srs T−1

mp COV (Λfr
m ) T−T

mp ST
rs (6.13)
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where

COV (Λfr
m ) =

[
COV (αΛfr

mα
) 0

0 COV (βΛfr
mβ

)

]
(6.14)

is the matrix containing the covariance matrices for selected sets mα and mβ of

free-interface eigenvalues for components α and β respectively. The corresponding

component sensitivity matrices are arranged as

Tmp =

[
αTmαpα

0

0 βTmβpβ

]
(6.15)

Equation 6.13 involves first an inverse calculation at component level, where

fixed-interface eigenvalue statistics are estimated from free-interface eigenvalue statis-

tics independently for each component, and secondly a forward approach to estimate

global eigenvalue statistics from fixed-interface component eigenvalue statistics. In

the formulation of Equation 6.13, all component statistics estimated by the inverse

step are also used in the forward step and therefore sizes of the matrices corre-

spond (index p = index s). In practice, both steps can be treated independently. A

numerical example is presented in the next section.

6.2.1 Numerical example: two component beam structure

 

Lα Lβ

Eα, ρα Eβ, ρβ

L h b E ρ

[m] [m] [m] [N/m2] [kg]

component α 1 0.02 0.1 2.1e11 7850

component β 0.8 0.01 0.1 2.1e11 7850

I = bh3

12

A = bh

Figure 6.4: Two component beam structure and baseline properties.

The two-component structure in Figure 6.4 is used as a numerical example for a

built-up structure. The model consists of two connected Euler-Bernoulli beam com-

ponents and the built-up structure is fixed at one side. The baseline values are

given in Figure 6.4, where the components differ in length and thickness. To sim-

ulate experimental data, a random field model for the thicknesses of the beams is
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A
Built-up model in practice:

(Global boundary conditions)

B
Fixed-interface components in CMS:

(Additional interface conditions )

C
Free-interface components for experiments:

(Remove boundary and interface conditions)

Figure 6.5: Different interface conditions for components.

used. A Gaussian distribution with a coefficient of variation of 10% is assumed and

the correlation length is chosen as 0.5m. A standard Monte Carlo simulation ap-

proach with 10000 runs is used to calculate mean values and the covariance matrix

of eigenvalues.

In Figure 6.5, different interface conditions for the components are illustrated.

Case A shows the global built-up structure, which will be used to obtain reference

results. In case B, the independent fixed-interface components are shown as they are

used in the CMS formulation. Case C refers to the components under free-interface

conditions, which is the preferred situation to perform experimental measurements.

In this analysis, first Equation 6.10 is used to estimate the covariance matrix of

the fixed-interface eigenvalues from the free-interface statistics, independently for

both components. In the second step, the global covariance matrix is estimated

by Equation 6.12. The variation in the first fixed-interface eigenvalues of both

components has been neglected in both steps. The results can be compared with

the reference solution obtained for case A. The differences for the standard deviations

of the first 30 modes is shown in Figure 6.6. There is no variation estimated for

the first two global modes. For higher frequencies up to the 10th mode, the error is

up to about 40%. For higher modes, the error is less than 10% and decreasing. A

discussion of the results and alternative approaches follows in the next section.

6.3 Discussion

The fixed-interface CMS method was used to relate free-interface modal properties

to fixed-interface eigenvalues and constraint terms. It is convenient for the analysis

to neglect variation in the constraint terms. The sensitivities between free and fixed-

interface eigenvalues are directly given by terms of the eigenvectors found by solving

the component eigenvalue problem. In order to estimate fixed-interface eigenvalue
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Figure 6.6: Standard deviation of global eigenvalues: approximation error for pro-
posed approach.

statistics from free-interface statistics, the sensitivity matrix has to be inverted.

This is related to problems such as ill-conditioning. The sensitivity matrix is well

conditioned if it is square and the fixed and free-interface eigenvalues involved have

about the same magnitude. In the simple case of a beam that is clamped at both

ends, the fixed-interface eigenvalues correspond well to the nonzero free-interface

eigenvalues. For a cantilever beam, the results are similar, but there is a shift by

one mode. In general, the eigenfrequencies for fixed and free-interface conditions

will match very well for higher modes, but can be shifted by a certain number of

modes. For lower modes, fixed and free-interface results are in general very different.

The transition depends on the characteristics of the boundary conditions and how

they change the mode shapes of the structure. The results for the lowest fixed-

interface eigenvalues have the largest errors. Numerically, this overestimation seems

to compensate for neglecting the variations in the static constraint terms.

The forward propagation of component statistics to global statistics does not

impose any numerical problems. The perturbation approach for CMS is known

to yield reasonably accurate results and the sensitivity matrix is directly obtained

from the global modal eigenvectors. The component statistics appear independently

in the assembled model, since the variations in the coupling constraint terms are

neglected. There are no variations predicted in the lowest eigenvalues, because these

are governed by the static constraint terms. The largest error for the other modes,

which is about 40%, is due to overestimations in the lower fixed-interface component

modes. For higher frequencies, the errors gradually reduce.
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The numerical framework discussed here aims at predicting the statistics of in-

dividual modal properties at component and global level. However, in practice it

may be sufficient to consider an average coefficient of variation for eigenfrequencies

at component level and neglect any correlations. Additionally, in some cases the

difference between free and fixed-interface component statistics is small and can be

neglected within a given accuracy.



Chapter 7

Non-deterministic modal

superposition

7.1 Introduction

This chapter concerns the estimation of the frequency response function (FRF) and

its variations based on the modal superposition principle. This constitutes the final

step in a component mode synthesis analysis or general finite element analysis, where

uncertainty is propagated from the global modal level to the global physical level.

The FRF is a function of frequency ω and can be calculated from the eigenvalues

λi and eigenvectors φi. The receptance FRF between two coordinates q1 and q2 can

be written as a summation of contributions from individual modes as

α(ω, q1, q2) =
n∑

i=1

αi(ω, q1, q2) =
n∑

i=1

(φi)q1
(φi)q2

λi − ω2 + jdi

(7.1)

where αi is the modal receptance of mode i and n is the number of modes. Contri-

butions from the modal displacements of the ith eigenvector at coordinates q1 and

q2 appear in the numerator. The term j di represents modal damping, which could

be viscous or structural damping.

In a non-deterministic analysis, the modal parameters are random or interval

variables, which are generally correlated. An analysis with uncertain parameters

has to be performed for each frequency, especially since the FRF magnitude varies

non-monotonically. The number of required deterministic solutions of Equation 7.1

can therefore be high, but the computational cost in solving this algebraic equation

is very small. Another advantage of the modal superposition approach is that only a

limited number of modes have to be considered according to the frequency range of

interest, therefore further reducing numerical costs. However, the non-deterministic

105
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eigenvalue problem has to be solved first to obtain the modal properties.

The first part of this chapter concerns a possibilistic approach, where the vari-

ation in modal properties is specified by intervals. The goal of the analysis is to

obtain the FRF envelope, consisting of lower and upper bounds. A numerically effi-

cient approach is discussed, where first the FRF envelopes for each mode are found

and subsequently combined to obtain the total FRF envelope. In this context, the

often-used definition of modal mass and stiffness as modal space parameters [59] is

compared with a new formulation using a modal constant and the eigenvalue. The

benefits of this novel family of methods are shown using a numerical example.

In the second part of this chapter, probabilistic uncertainties are considered and

FRF percentiles are calculated. A Monte Carlo sampling approach, considering dis-

tribution functions and correlations of modal parameters, can be applied to obtain

an ensemble of FRFs, from which FRF statistics can be estimated. However, the

input data available in practice is often limited. Therefore, the effects of neglecting

various correlations and assuming distribution functions are investigated. Further-

more, a hybrid probabilistic/possibilistic approach to quantify variations in the FRF

is presented. In this method, a FRF envelope is calculated based on bounds of the

probability distribution functions at the modal level.

7.2 Possibilistic approach

In this section, uncertainty is specified by intervals and the goal of the analysis is to

calculate the global FRF envelope, denoted by α. The undamped single mode FRF

is given by

αi(ω, q1, q2) =
(φi)q1

(φi)q2

λi − ω2
(7.2)

In the approach presented here, damping is initially neglected for simplicity. It

can be shown [59] that the combination of single mode FRF envelopes yields a

conservative approximation to the global FRF envelope, written as

α(ω, q1, q2) ⊆
n⊕

i=1

αi(ω, q1, q2) (7.3)

where
⊕

denotes a summation where the uncertain parameters are considered inde-

pendent between all modes. The calculation of a single mode FRF αi from Equation

7.2 is not trivial, because it constitutes an interval problem as a function of frequency

and with correlated parameters. Several methods have been developed in order to

make conservative approximations of the single mode FRF envelope in a system-

atic way and potentially at a lower cost. In the following, different modal space
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formulations and approximation methods will be investigated.

7.2.1 Modal spaces

The single mode FRF (Equation 7.2) can be written as

αi(ω, q1, q2) =
Ai

λi − ω2
(7.4)

where

Ai = (φi)q1
(φi)q2

(7.5)

is the modal constant. Alternatively, it can be written in the form

αi(ω, q1, q2) =
1

k̂i − ω2m̂i

(7.6)

where

k̂i =
λi

(φi)q1
(φi)q2

, m̂i =
1

(φi)q1
(φi)q2

(7.7)

are the specific modal stiffness and mass, respectively, defined in terms of a pair of

excitation and response coordinates. The modal parameters defined in Equation 7.5

and Equation 7.7 describe different modal spaces, which will be referred to as the

the A - λ space and the m̂ - k̂ space. The transformation between the two spaces is

given by

λi =
k̂i

m̂i

, Ai =
1

m̂i

(7.8)

The mode index i will be omitted for convenience for the remainder of this

section.

7.2.2 Uncertain modal space

If the system is deterministic, there are unique values m̂0, k̂0, A0 and λ0 describing a

point in both modal spaces for each mode. However, if the modal space parameters

are uncertain variables, they describe a region in the m̂ - k̂ and A - λ modal spaces.

In Figure 7.1, the region described by the uncertain modal parameters is represented

qualitatively by an ellipse. In a possibilistic analysis, the boundary of this region

represents the envelope of all possible parameter realisations.

In the m̂ - k̂ space, the equation k̂ = ω2m̂ + 1
α

describes straight lines with

gradient ω2. In Figure 7.1a, two lines, which bound the region, are fitted for a

particular frequency ωa and hence two intersections with the k̂-axis are found. The

magnitude of the single mode FRF corresponds to the inverse of these values. If both
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Figure 7.1: Qualitative representation of the region due to uncertainty and construc-
tion of bounds on the FRF in different modal spaces.

intersections lie either on the positive or on the negative part of the k̂-axis, then they

represent the upper and lower bounds of the single mode FRF. If one intersection

lies on the positive part and the other on the negative part of the k̂-axis, then the

range of the FRF magnitude is not monotonic and includes resonance. In this case,

the upper bound of the single mode FRF is infinite, if no damping is considered,

and the lower bound is found as the smaller value of the two intersections.

In the A - λ space, the equation λ = 1
α
A+ ω2 describes straight lines that cross

the λ-axis at ω2. In Figure 7.1b, two lines are fitted to the uncertain region for the

frequency ωa and the magnitude of the single mode FRF corresponds to the inverse

value of the gradient. If both gradients are either positive or negative, then they

represent the upper and lower bounds of the single mode FRF. If one gradient is

positive and the other is negative, then the range between them includes a line with

zero gradient, which represents resonance.

7.2.3 Modal space approximation

In general, it is computationally expensive to determine the boundary of the uncer-

tain region exactly, because the modal space parameters are correlated and a large

number of data points is required. A conservative approximation to the bounds of

the uncertain region can be made if the interdependency between the modal space

parameters is neglected. In this case, the lower and upper bounds, denoted by in-

dices L and U respectively, of the parameters are determined individually, which

implies only four different values for the two modal parameters. In Figure 7.2,

this approximation is illustrated by a rectangular boundary surrounding the region.

This approach has been referred to as the modal rectangle (MR) method [59, 97].

Furthermore, it has been shown that the approximation in the m̂ - k̂ space can be
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Figure 7.2: Approximations by the modal rectangle (MR) method and appropriate
corrections: (a) m̂ - k̂ space and (b) A - λ space.

improved if the bounds on the eigenvalue, which are given by straight lines from the

origin, are included. This approach is referred to as the modal rectangle method

with eigenvalue correction (MRE) [59, 97]. The same approaches can be applied to

the A - λ space, where the modal rectangle is described by the bounds on the modal

constant A and the eigenvalue λ. Similarly to the m̂ - k̂ space, lines from the origin

also improve the approximation, but in the A - λ space they relate to the bounds

of the static solution. Therefore, this approach will be called the modal rectangle

method with static correction (MRS).

In Figure 7.3, the estimation of the single mode FRF envelope based on the

different approximations is compared qualitatively for the m̂ - k̂ and A - λ spaces.

Lines are shown that refer to frequencies ωa and ωb, below and above the resonance

range, respectively. The points used (△, ◦) are bounds on the parameters from

which the upper bound of the FRF is calculated. In the m̂ - k̂ space, only the upper

left and lower right corners (△) of the modal rectangle are used in the calculations.

If the eigenvalue correction is implemented, these two points are replaced by four

points (◦) defined by the bounds of the eigenvalue. For very low and very high

frequencies, the MR and MRE methods give similar results. For frequencies close

to resonance (e.g. ωa, ωb), the MRE method gives much better results than the MR

method. This can be seen by a closer fit of the frequency lines to the uncertain area

in Figure 7.3. It has been shown that the correction using the eigenvalue bounds

is essential to give not overly conservative results for approximations in the m̂ - k̂

space. In the A - λ space, all four corners (△) of the modal rectangle are considered.

If the static correction is used, two of them are replaced by other points (◦), but

two corner points remain unchanged. It can be seen that for frequencies above the

resonance range (e.g. ωb), the results from the MR and MRS methods are the same,
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Figure 7.3: Construction of points to calculate the upper bound of the FRF for two
frequencies ωa and ωb using the standard and improved modal rectangle methods: △
- points used by MR method; © - points used by MRE or MRS methods; (a) m̂ - k̂
space and (b) A - λ space.

because the same point (△ ≡ ◦) is used. The MRS method gives better results then

the MR method in the A - λ space only for low frequencies (e.g. ωa).

7.2.4 Damping

It is straightforward to include either viscous or structural damping in the form

of a modal damping ratio ζ or modal loss factor η, respectively. Table 7.1 shows

the corresponding equations governing the single mode FRF for the m̂ - k̂ and A

- λ spaces. The FRF is now a complex function and it has been shown [97] that

the bounds on the real and the imaginary parts can be evaluated separately for all

modes and combined in the final stage. If the damping constants are deterministic,

only the two-parametric modal space has to be evaluated and the approximations

discussed in the previous section are still valid. For the m̂ - k̂ space, it has been

shown [97] that only the horizontal and vertical lines of the approximation have to

be considered in order to find the extreme values of the real and imaginary parts.

In the A - λ space, only the vertical lines (A=constant) which describe the range of

the eigenvalue, have to be considered, since the influence of the modal constant is

monotonic.

For the numerical example presented in the next section, a simple approximation

of the effects of damping will be used. Damping is only considered over the eigen-

frequency range related to possible resonance, where the magnitude of the FRF will

be bounded by a constant value. If the damping is small and the modal overlap is

low, the magnitude of the FRF at resonance is dominated by the resonant mode.



7. Non-deterministic modal superposition 111

α(ω, q1, q2) m̂ - k̂ space A - λ space

Rayleigh damping

Modal damping ratio ζ 1/(k̂ − ω2m̂+ j2ω
√
k̂m̂ζ) A/(λ− ω2 + j2ω

√
λζ)

Structural damping

Modal loss factor η 1/(k̂ − ω2m̂+ jk̂η) A/(λ− ω2 + jλη))

Table 7.1: Complex single mode FRF expressions for different damping models.

The maximum magnitude of the single mode FRF can be approximated for ω2 = λ

and is then given by the imaginary part of the FRF. It can be calculated from the

interval problem

αi(ω
2 ∈ [λ], q1, q2) =

A

λη
=

1

k̂η
(7.9)

The results are identical for both Rayleigh and structural damping if ζ = 2η. The

approximations of the modal parameters can be used to find a conservative approx-

imation to the FRF magnitude. In general, the MRE and MRS methods give best

results. In the m̂ - k̂ space, the FRF magnitude depends on the specific modal

stiffness only and the modal rectangle approximation is sufficient.

7.3 Comparison of modal space formulations

In this section a numerical example, a simple four-DOF spring-mass system with

eight independent parameters as shown in Figure 7.4, is considered to compare the

accuracy of the above approaches. An uncertainty interval of ±10% for each param-

eter is considered and possibilistic results are sought. Structural damping has been

included by a modal loss factor of 0.2%. In the following, first the approximations

in the non-deterministic modal spaces are compared and then the uncertain FRF

envelopes are shown.

7.3.1 Modal spaces

In Figure 7.5, the region described by the uncertain parameters is plotted for all four

modes in the m̂ - k̂ modal space. In each figure (a-d), there are 28 = 256 points rep-

resenting the results from calculations using the vertex combinations, which depict

the shape of the uncertain area. The boundary of the region is approximated by the

modal rectangle method with eigenvalue correction. It can be seen that the specific

modal mass and stiffness parameters are distributed almost uniformly for the first
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kg 5.5 13 9.5 17

Figure 7.4: Four degree of freedom model for analysis.

mode. Therefore, the MR approximation can be expected to yield accurate results.

The improvement achieved by using the eigenvalue bounds is small. In contrast, the

vertex points for the higher modes are spread out around a line corresponding to

the baseline eigenvalue. There is interdependency between the specific modal mass

and stiffness and therefore the approximation by the MR method gives very conser-

vative results. The bounds on the eigenvalue range provide a distinct improvement

of the approximation. It can be noted that the distribution of the points about the

baseline solution is non-symmetric.

In Figure 7.6, the same data is plotted in the A - λ modal space. For the first

mode, there is clear interdependency between the modal constant and the eigenvalue

and the rectangle approximation method is improved by using the bounds provided

by the static solution. For the higher modes, the vertex points are distributed more

uniformly in the parameter space and the MR method may be sufficient. It can be

noted that the points also extend uniformly about the baseline solution.

7.3.2 Frequency response functions

The receptance FRF between masses 3 and 4, α34, will be considered. In Figure 7.7,

the baseline FRF, the pseudo-exact FRF envelope and a conservative FRF envelope

approximation are shown. The pseudo-exact reference solution for the FRF envelope

is computed by considering all 256 vertex combinations of the uncertain mass and

stiffness parameters in a direct analysis. It can be considered as exact, due to the

monotonic behaviour in this numerical example, except around resonance or antires-

onance. The conservative approximation to the total FRF envelope was obtained by

combining the exact single mode FRF envelopes according to Equation 7.3. In this

case, interdependencies between the modes are neglected and conservatism is intro-
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Figure 7.5: Vertex points and approximations in the k̂ - m̂ modal space.
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Figure 7.7: Four-DOF system: baseline FRF (. . . .) and FRF envelopes for ±10%
uncertainty: pseudo-exact FRF envelope; . . approximate FRF envelope by
summation of single mode FRF envelopes.

duced to the total FRF envelope. Damping is only included to bound the upper

FRF envelope over each eigenfrequency range, using the model presented earlier.

Outside the eigenfrequency range, the effect of the modal damping is negligible in

this example and does not affect the outcome of this analysis.

In Figure 7.8, results obtained from the MR and MRE methods in the m̂ - k̂

space are compared with the FRF envelope obtained by summation of exact single

mode FRFs. The MR method is only able to capture the first resonance of the

FRF envelope and is far too conservative. The reason is that the bandwidths of

the resonance ranges are substantially overpredicted and begin to overlap from a

frequency of about 1Hz onwards. If the exact bounds to the eigenvalues are used,

the approximation of the FRF envelope clearly improves and compares very well with

the reference solution. The upper bound to the magnitude of the FRF envelope over

a eigenfrequency range is calculated from the bounds of the specific modal stiffness

of the corresponding mode.

Figure 7.9 shows the same results for the case that approximations are made

in the A - λ space. The MR method is now capable of capturing the complete

FRF reasonably accurately. The resonant regions are predicted exactly, since the

eigenvalue is one of the parameters of the modal space. The approximation is more

conservative between resonances and for the static solution. The magnitude at
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Figure 7.8: FRF envelopes for ±10% uncertainty, different approximations:
approximate FRF envelope by summation of single mode FRF envelopes; . . . . MRE
method in m̂ - k̂ space; MR method in m̂ - k̂ space.

resonance is slightly overpredicted, because the interdependency between the modal

parameters is neglected. Using the MRS method, the conservatism can be reduced

in all frequency regions, except immediately above a resonant frequency. This is in

line with the findings in the last section.

Finally, for comparison, the results of both modal space formulations are shown

in Figure 7.10. The MRS and MRE methods yield identical results. The MR method

applied in the A - λ space clearly provides better results than the MR method applied

in the m̂ - k̂ space.

7.3.3 Perturbation

The application of perturbation methods can reduce the numerical costs drasti-

cally, but also introduces inaccuracies. In the context of non-deterministic modal-

superposition it can be used to estimate the lower and upper bounds on the modal

space parameters by a first order perturbation about the nominal values. Figure

7.11 and Figure 7.12 show the uncertain modal space using exact and approximate

bounds in the m̂ - k̂ and A - λ spaces, respectively. The inaccuracies are relatively

small, except for the third mode in both spaces. However, in the A - λ space, the

errors can be assessed more easily. The lower and upper bounds of the eigenvalues
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Figure 7.9: FRF envelopes for ±10% uncertainty, different approximations:
approximate FRF envelope by summation of single mode FRF envelopes; . . . . MRS
method in A - λ space; MR method in A - λ space.
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Figure 7.10: FRF envelopes for ±10% uncertainty, comparison of approximations
in different modal spaces: approximate FRF envelope by summation of single
mode FRF envelopes; . . . . MRE/MRS methods; MR method in m̂ - k̂ space;
. . MR method in A - λ space.
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Figure 7.11: Perturbation of bounds of modal parameters in m̂ - k̂ space: exact
and . . . . perturbation about nominal values.

are consistently approximated with smaller values as a effect of the perturbation.

There is a larger inaccuracy in the approximation of the modal constant in the third

mode. In contrast, in the m̂ - k̂ space, the errors in the modal constants affect

the accuracy of both modal space parameters, which makes the interpretation more

difficult.

Finally, the FRF envelopes are calculated using the MR method in the A - λ

space. Figure 7.13 compares the results based on exact and approximated bounds

on the modal parameters. A shift of the eigenfrequency ranges and a difference in

the resonance magnitude of the third mode can be seen.

7.3.4 Discussion

Both the m̂ - k̂ and A - λ spaces can be used to make safe approximations for

the modal parameters and single mode FRFs. However, for some applications the

A - λ formulation might be advantageous. In the m̂ - k̂ space, the MR method

alone is highly conservative and the eigenvalue corrections are essential to obtain

meaningful results. In the A - λ space, the theory and the numerical example show

that the MR method can be sufficient. First of all, the important eigenvalue is one

of the parameters and the static correction only improves the approximation for low

frequencies. Furthermore, it seems that the region converges to a rectangular shape

for higher frequencies, which is also advantageous for the MR method.
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Figure 7.12: Perturbation of bounds of modal parameters in A - λ space: exact
and . . . . perturbation about nominal values.

0 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

0

Frequency [Hz]

lo
g  1

0 | 
α 34

 | 

Figure 7.13: FRF envelopes for ±10% uncertainty; comparison of perturbation and
exact methods: pseudo-exact FRF envelope; MR method in A - λ space;
. . . . MR method in A - λ space with perturbation.
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In many implementations, optimisation is used to calculate the bounds on the

modal parameters. This requires four optimisations to be carried out for the MR

method and two more for the MRE method per mode. Therefore, the use of the

MR method in the A - λ space is numerically cheaper and gives adequate results.

Additionally, the bounds on the static solution required for the MRS method may

be obtained at a lower cost compared to dynamic properties. If different FRFs are

of interest, the modal parameters have to be computed several times, except the

eigenvalues, which are shared by all FRFs. Therefore, only the modal constant has

to be recalculated in the A - λ space. This is a major advantage of the A - λ space.

In practice, it is also relatively easy to measure the bounds on resonance frequencies,

which could then be used in the numerical model.

Different exact and approximate methods can be used to estimate the bounds of

some or all modal parameters. In this context the use of a modal constant and the

eigenvalue seems more convenient than using the specific modal mass and stiffness.

In the m̂ - k̂ space, the distribution of the vertex points around the baseline value

is non-symmetric for some modes. This is because the inverse is taken of a modal

constant that might be close to zero. Therefore, this formulation is more sensitive

to approximations. Overall, the eigenvalue and the modal constant show different

physical characteristics and it seems sensible to keep them separate.

7.4 Probabilistic approaches

In this section, various aspects of a probabilistic approach to estimate the FRF vari-

ation are discussed. The use of modal superposition and the effects of correlations

between modal parameters are addressed. Furthermore, approaches based on the

variance of random modal parameters are presented, including the application of

the Karhunen-Loève (KL) decomposition.

7.4.1 FRF statistics

The goal of the analysis is to obtain statistics of the FRF, such as the 10 and 90

percentiles. A standard approach is to use Monte Carlo sampling to obtain an en-

semble of FRFs, from which the statistics can be estimated. The numerical example

shown in Figure 7.4 will be used, where the uncertainty in all eight parameters is

now modelled by normal distributions with a coefficient of variation of 7.8%. The

baseline values are taken as mean values. Figure 7.14 shows the 10 and 90 percentiles

of the magnitude, which were calculated from n = 104 samples. It is a classical ap-

proach to evaluate statistics of the FRF magnitude at a given frequency. However,
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Figure 7.14: FRF of four-DOF system: 100 realisations and . . . . 10/90
percentiles.

variation in damping is mainly responsible for a variation in the magnitude around

resonance or antiresonance. A change in mass or stiffness properties mainly causes

a shift of the FRF along the frequency axis. Therefore, statistics of the FRF along

the frequency axis, such as percentiles of natural frequencies, are also important.

Information about the FRF magnitude statistics at a specific frequency are useful

if a deterministic excitation frequency is considered. In many cases, however, the

statistics of the magnitude of a resonance peak, independent of its frequency, can be

more useful. In Figure 7.14 it becomes evident that the classical approach does not

provide this information, because the 90 percentile of the FRF magnitude is dras-

tically lower than the magnitude of the baseline FRF. In fact, since the damping is

considered deterministic, the magnitude at resonance is almost identical for all real-

isations. Every FRF realisation is resonant and lies above the 90 percentiles at some

frequency. Therefore, the percentiles shown in Figure 7.14 are not representative of

any realisation.

Another possible approach to quantify the FRF variation would be to evaluate

the statistics of the FRF in a direction perpendicular to the locus of the baseline

FRF. Alternatively, the FRF magnitude statistics can be calculated using a sliding

frequency window, where the maximum and minimum values within this specified

frequency window for each realisation are considered. Figure 7.15 shows the 10

and 90 percentiles of both the maximum and minimum FRF magnitudes for two
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Figure 7.15: FRF realisations and 10/90 percentiles of four DOF-system based on
maximum ( ) and minimum ( ) values in a sliding frequency window with a
width of 0.1Hz (a) and 1Hz (b).

different frequency window widths. For example, the 90 percentile of the maximum

FRF magnitude at a specific frequency is the value that will not be exceeded, with

a probability of 90%, in a frequency band centered about that frequency, i.e. 90%

of the ensemble members do not exceed this value. However, the results depend

greatly on the width chosen for the frequency window. This approach is therefore

especially useful if the excitation frequency is non-deterministic and can be specified

by an interval.

7.4.2 Modal superposition and correlations

In a direct approach, a large number of deterministic solutions must be found for each

frequency at which the FRF is evaluated. This might be infeasible due to the large

computational cost. In a modal approach, first the non-deterministic eigenvalue

problem is solved independent of frequency. Subsequently, Monte Carlo simulation

is applied to the numerically cheap modal superposition equation for each selected

frequency.

The receptance FRF can be calculated by

α(ω, q1, q2) =
n∑

i=1

Ai

λi − ω2 + jdi

(7.10)

where Ai and λi are now correlated random variables. In practice, the probability

distribution functions of modal constants and eigenvalues may be given, but some
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Figure 7.16: Correlation coefficient matrices: (a) full correlation, (b) A - λ correla-
tion neglected; vi = λi, v4+i = Ai, i = 1 . . . 4.

of the correlations might not be known. In the following, the effects of neglecting

various correlations are illustrated. Figure 7.16(a) shows the correlation coefficient

matrix ρ for the numerical example, where the eight modal parameters are arranged

as

vi = λi, v4+i = Ai, i = 1 . . . 4 (7.11)

Figure 7.16(b) shows the case where the correlations between eigenvalues and modal

constant are neglected. If all correlations are neglected, only the autocorrelations,

located on the diagonal of the correlation coefficient matrix, are considered. Figure

7.17 compares the 10 and 90 percentiles for these approximations with the exact

solution. The differences are negligible. The correlations between different modes

are not influential, because the modal overlap is low. The correlation between the

eigenvalue and the modal constant of one mode is small, as shown in Figure 7.16,

and the resulting differences in the FRF are not significant.

7.4.3 Variance-based approaches

The results in the previous section were based on the real distribution of the modal

parameters. However, in practice, the variation is often only characterised by the

variance and the mean value. In that case, the variance can be propagated or a

distribution can be assumed to facilitate Monte Carlo simulation. A first order

approximation for the variance of the FRF is given by

V AR(α(ω)) = S(ω) COV (v) S(ω)T (7.12)
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Figure 7.17: FRF 10/90 percentiles of four-DOF system for different correlations:
all correlations considered; correlation between A and λ neglected; . . . . all

correlations neglected.

where si = ∂α
∂vi

is the derivative of the FRF with respect to the modal parameter vi

and COV (v) is the covariance matrix of modal parameters. Expressions for the FRF

sensitivity, a complex function of frequency if damping is considered, can be found by

differentiating Equation 7.10 [98]. In general the approximation is reasonably good

for frequencies outside the resonance range. There are inaccuracies near resonance,

due to the highly non-monotonic behaviour of the FRF. It is possible to extend the

first order approximation by using a series expansion based on Equation 7.10.

A Monte Carlo sampling technique in combination with modal superposition

seems to be a reasonable approach to estimate statistics of the FRF. It allows all

correlations to be considered and is very robust, but requires distribution functions.

If these are not known, distribution functions have to be assumed. A normal dis-

tribution, for example, which can be quantified by the variance and the mean, is

often a good estimate for the eigenvalues. In contrast, the FRF magnitude is known

not to be normally distributed, especially near resonance. Figure 7.18 compares the

real distribution of the eigenvalue and modal constant for the second mode with

a normal distribution with the same mean and variance. For this simple numeri-

cal example, the agreement is very good. Therefore, it can be expected that the

agreement for the FRF is also very good. Figure 7.19 shows a comparison of FRF

percentiles based on the real distribution and a distribution assumed to be normal.
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Figure 7.18: Comparison of histogram for real distribution with normal distribution
model for modal parameters.

The differences are negligible.

7.4.4 Characteristic variation of modal parameters

If the full covariance matrix of the modal parameters is given, the correlations can be

considered by using the KL expansion [40]. Assuming a normal distribution, it pro-

vides a relation between the correlated random modal properties v and uncorrelated

random variables ζ in the form

v = v0 +

r≤n∑

i=1

ψi

√
µiζi (7.13)

where ψj and
√
µj are the eigenvectors and eigenvalues of the covariance matrix

COV (q) respectively. Monte Carlo sampling can then be applied in the uncorrelated

standard normal random variables. The eigenvectors of the covariance matrix give

characteristic variations of the modal space parameters. The corresponding eigen-

value is a measure of their contribution to the expansion. Therefore, it is possible

to reduce the number of terms in the summation of Equation 7.13 by considering

only the terms associated with largest eigenvalues. However, the modal parameters

constitute an inhomogeneous discrete random field problem, because the mean and

variance values vary between them. It is therefore appropriate to use the eigenvalues

µ∗
i and eigenvectors ψ∗

i that can be obtained from the correlation coefficient matrix

ρ. In this case the expansion becomes

v = v0 + diag(σv)

r≤n∑

i=1

ψ∗
i

√
µ∗

i ζi (7.14)
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Figure 7.19: FRF 10/90 percentiles of four-DOF system based on real ( ) and
assumed normal ( ) distributions for the modal parameters.

Figure 7.20 shows the estimation of the FRF percentiles, where only a few terms

of the KL expansion are retained. If the first characteristic variation of modal

parameters considered, there are considerable differences, especially around the third

mode. However, if the first three terms, out of a total of eight, are taken into account,

the agreement is reasonably good. In practice, all contributions can be considered

and in this case, both Equation 7.13 and Equation 7.14 yield the exact results.

A second numerical example will be considered to illustrate the physical mean-

ing of characteristic variations of modal space parameters. Figure 7.21 shows a

cantilever beam with rectangular cross-section. It is modelled by 10 uniform fi-

nite elements using standard Euler-Bernoulli beam theory [9]. The thickness h and

Young’s modulus E are modelled by random fields with a coefficient of variation of

5% and a correlation length of 0.5m.

Figure 7.22 shows the 10 and 90 percentiles of the FRF obtained from a Monte

Carlo simulation with 104 samples. In addition, the approximate percentiles based

on retaining only the most important term in the KL expansion, is given. The results

agree very well, except for a few frequency regions for the lower FRF percentile

and at the antiresonance around 55Hz. The approximate FRF percentiles depend

only on one standard normal random parameter, which facilitates the application of

various analytical methods. The good agreement is mainly due to the fact that, for



7. Non-deterministic modal superposition 126

0 1 2 3 4 5 6
−6

−4

−2

0

Frequency [Hz]

lo
g  1

0 | 
α 34

 | 

0 1 2 3 4 5 6
−6

−4

−2

0

Frequency [Hz]

lo
g  1

0 | 
α 34

 | 

(b)

(a)

Figure 7.20: FRF 10/90 percentiles of four-DOF system based on characteristic
variations of modal parameters: exact results ( ), (a) first characteristic vector
( ); (b) first three characteristic vectors ( ).
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Figure 7.21: One component beam structure and baseline properties.
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Figure 7.22: FRF 10/90 percentiles for cantilever beam based on the first character-
istic variation of modal parameters ( ) and exact results ( ).

this numerical example, the first characteristic variation of the eigenvalues is very

dominant. It corresponds to the case of total correlation between the eigenvalues

and the KL expansion simplifies to

λ = λ0 + σλζ1 (7.15)

if only this component is retained.

7.5 Hybrid probabilistic/possibilistic approach

In this section, a hybrid approach, which uses the modal space as an intermediate

level between the physical parameters and the FRF, is presented. In the first step,

the percentiles of modal constants and eigenvalues are evaluated. Subsequently,

the distributions are truncated to form possibilistic bounds at a chosen level to

calculate a FRF envelope. The evaluation of statistics in the A - λ modal space

seems appropriate, because the physical effects are clearly distinguished. The effects

of a shift in frequency, due to varying mass and stiffness, is captured predominantly

in the variation of the eigenfrequency λ. The effects of uncertain damping in general

does not affect the eigenvalues and modal constants significantly. For the numerical

example, a Monte Carlo approach with n = 104 samples is used to estimate the
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Figure 7.23: FRF for four-DOF system: 100 realisations ( ), 10/90 percentiles
(. . . .) and hybrid FRF envelope ( ).

10 and 90 percentiles of the modal space parameters. These are then considered

as lower and upper bounds of the modal space parameters and a conservative FRF

envelope, using the MR method discussed in Section 7.2, is calculated. The FRF

envelope obtained from this hybrid method is shown in Figure 7.23 together with

the exact FRF percentiles. Statistics on the width of the resonance range as well

as on the magnitude of the resonance peak are included. However, there is some

conservatism due to the approximations in the modal space and the superposition

of independent single mode FRF envelopes.

Next, the hybrid envelope method will be compared with an approach where the

possibilistic bounds are already introduced in the physical parameter space. The 10

and 90 percentiles of the physical parameters are evaluated and the FRF envelope

is calculated using the MR method. The results for this direct method are shown

in Figure 7.24. The direct envelope, which is based on statistics in the physical

parameter space, is clearly broader then the hybrid FRF envelope, as expected.

The difference is due to the conservatism introduced by the possibilistic propagation

from the physical to the modal space.
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Figure 7.24: FRF for four-DOF system: 100 realisations ( ), 10/90 percentiles
(. . . .), hybrid ( ) and direct ( ) FRF envelopes.

7.6 Conclusions

Different approaches to estimate response variations using non-deterministic modal

superposition have been discussed. A possibilistic approach was considered and the

effects of the choice of modal space parameters were investigated. It was shown

that, for some applications, a formulation using a modal constant and the eigen-

value has advantages compared to the often-used definition of a specific modal mass

and stiffness. Monte Carlo simulation is the most appropriate approach in a prob-

abilistic analysis. The errors introduced by neglecting correlations or assuming a

normal distribution for the modal parameters are often reasonably small compared

to the required accuracy of the results. A general advantage of modal superposi-

tion methods is that the system response is decomposed into modal contributions,

which introduces an intermediate step in the propagation of uncertainties. First,

the numerically expensive non-deterministic eigenvalue problem is solved and sub-

sequently the FRF variation as a function of frequency is calculated based on an

algebraic relation. A two-step approach can be used to apply a hybrid technique,

where a probabilistic method is used to estimate the variation in modal properties

and a possibilistic method is used to propagate it to the physical FRF. This ap-

proach offers a qualitatively different way to quantify response variations compared

to traditional concepts.



Chapter 8

Application of Line-Sampling to

structural dynamics

8.1 Introduction

In a probabilistic approach [39, 40], Monte Carlo (MC) simulation [99] can be applied

to estimate the statistics of response properties. In the standard MC simulation

method, parameter values are randomly drawn from their distributions and a number

of deterministic problems are solved. The method is very robust and converges to the

exact solution if the sample size tends to infinity. However, in practice a large sample

size can often not be realised, due to time and computing restrictions. Therefore,

advanced MC simulation methods, that can achieve the same accuracy with a lower

number of deterministic solutions, have been developed.

There are advanced MC methods to estimate the mean and variance of a distri-

bution using a low number of samples, such as Latin Hypercube sampling [58]. It is

a version of stratified sampling, where it is ensured that the samples are taken more

evenly from the input parameter distribution. A different class of advanced MC

methods concerns the efficient estimation of low probability events [53, 100], which

is addressed in Section 8.1.1. In this context, Line-Sampling (LS) has been devel-

oped, amongst others, to calculate a small probability of failure in high-dimensional

systems.

This chapter concerns the application of the LS simulation method to the dy-

namic analysis of structures with non-deterministic properties. In particular, LS is

applied to efficiently estimate the distribution functions of natural frequencies and

frequency response functions (FRFs) of a system. In the following section, the the-

ory of LS is reviewed. Subsequently, the application of the LS method to estimate

distribution functions is presented. In Section 8.4, various numerical examples are

130
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given based on a structural dynamic model. Finally, the application of LS to random

field models is investigated. The efficiency of the LS approach is compared with the

standard MC simulation method.

8.1.1 Low probability events

The probability of occurrence of an event E can be expressed as

pE =

∫
1E(θ)h(θ)dθ (8.1)

where 1E(θ) is the indicator function of the event, θ is the vector of random pa-

rameters and h(θ) is the joint probability density function (pdf). A performance

function g(θ) can be defined such that g(θ) < g0 describes the event domain E where

1E(θ) = 1, g(θ) > g0 is associated with 1E(θ) = 0 and g(θ) = g0 is the limit state

function. The often high dimensionality of θ makes analytical integration infeasible.

Furthermore, the indicator function is in general not known in closed form, because

it is often connected with the response of the system. Therefore, the response of

the structure is typically calculated repeatedly for different values of θ, according

to their distributions, to obtain information about the response. The number of

calculations required to achieve a certain accuracy is the criterion for the efficiency

of the solution method.

Standard MC simulation uses an estimator for Equation 8.1 in the form

p̂E =
1

N

N∑

i=1

1E(θ(i)) =
NE

N
(8.2)

where N is the total number of samples, NE is the number of samples associated

with event E. The realisations of parameters θ(i) are independent and identically

distributed (i.i.d.) with respect to h(θ). The variance of the estimator p̂E is a

measure of the accuracy of this approach and the coefficient of variation (CV) is

given as [53]

CVMC =

√
V ar[p̂E]

pE

=

√
1 − p̂E

NE

(8.3)

The disadvantage of this approach is that for small probabilities pE << 1 a very

large number of samples is required in order to obtain a reasonable number NE of

hits in the event domain. The required sample size is typically inversely proportional

to the target probability.

Several methods have been developed to reduce the variance of the estimator

and to achieve the same accuracy with a lower number of samples. These include
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Importance Sampling [54], Directional Sampling [55], Subset Simulation [56] and

Line Sampling [53, 57, 101]. In this chapter the LS technique and its application

in structural dynamic analyses with non-deterministic properties will be considered.

After a review of the theoretical background, the application of the method to

estimate statistics and distribution functions of response parameters of structural

dynamics systems will be discussed. Finally, the combination of LS with other

non-deterministic modelling approaches is considered.

8.2 Theory of Line-Sampling

LS [53, 57, 101] has been developed for problems in high dimension and where

small failure event probabilities are of interest. It involves sampling along a line in

an important direction in the parameter space towards the event domain. If the

formulation is made in the standard normal space, the random parameters θ(i) are

independent and Gaussian distributed with zero mean and unit variance. In this

case the joint probability density function can be written as

h(θ) =
d∏

i=1

φ(θi) (8.4)

where d is the number of random parameters and φ(θi) = (1/
√

2π)e−(θ2

i /2). Equation

8.1 can now be written in the form

pE =

∫

d

1E(θ)
d∏

i=1

φ(θi)dθ (8.5)

The event domain E can be alternatively expressed as

E := {θ1 ∈ E1(θ−1)} (8.6)

which defines occurrence of the event for the case that the parameter θ1 lies in a

subset event domain E1 of dimension d − 1 and where θ−1 denotes all parameters

except θ1. The indicator function is then written as 1E1
(θ−1) and Equation 8.5
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becomes

pE =

∫

d

1E1
(θ−1)

d∏

i=1

φ(θi)dθ (8.7)

pE =

∫

d−1

(∫
1E1

(θ−1)φ(θ1)dθ1

) d∏

i=2

φ(θi)dθ−1 (8.8)

pE =

∫

d−1

Φ(E1(θ−1)) h(θ−1)dθ−1 (8.9)

where

Φ(E1(θ−1)) =

∫
1E1

(θ−1)φ(θ1)dθ1 = pE1
(θ−1) (8.10)

is the probability of event E for a given set of parameters θ−1. The LS estimator

for the probability of event E is

pE =
1

N

N∑

i=1

Φ(E1(θ
(i)
−1)) =

1

N

N∑

i=1

pE1
(θ

(i)
−1) (8.11)

where θ
(i)
−1 are independent and identically distributed with respect to h(θ−1). For

each sample of the parameters θ
(i)
−1 the probability of the event pE1

(θ
(i)
−1) is calcu-

lated as a one-dimensional problem in terms of parameter θ1. The variance of this

estimator is

V ar[pE] =
1

N(N − 1)

N∑

i=1

(p
(i)
E1

− pE)2 (8.12)

and the CV for LS is

CVLS =

√
V ar[p

(i)
E1

]
√
NpE

(8.13)

In Equation 8.1, the probability pE is expressed as the expectation of the indi-

cator function 1E(θ), but in Equation 8.9 it is expressed as the expectation of the

random variable Φ(E1(θ−1)) = pE1
(θ−1). It has been shown that [57]

V ar[Φ(E1(θ−1))] ≤ V ar[1E(θ)] (8.14)

and therefore the variance of the LS estimator is always less than, or equal to, the

variance of the standard MC estimator. In fact, the variance of the standard MC

estimator depends on the value of the event probability, whereas the variance of

the LS estimator depends only on the variability of the event probabilities pE1
(θ

(i)
−1).

Therefore the accuracy of the LS estimator is better, the more dominant the influence

of the direction given by parameter θ1 and the less important the influence of all other
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Figure 8.1: Example of a two-dimensional parameter space with event domain.

directions θ−1 are on the performance function. Similarly, gains in computational

cost using LS depend on whether or not a parameter θ1 can be identified for which the

integral in Equation 8.10 can be evaluated efficiently, i.e. if the response is relatively

insensitive to the remaining parameters θ−1. The variation between realisations of

Φ(E1(θ
(i)
−1)) is an indication of this. The next paragraph concerns a simple example.

Consider the two-dimensional space in Figure 8.1 with parameters q1, q2 and

failure domain F . If the LS direction is perpendicular to the failure domain, θ1 = q1,

then V ar[Φ(F1(θ2))] is zero and the CV of the probability estimator is zero. In

contrast, if the sampling direction is parallel to the failure domain, θ1 = q2, then

V ar[Φ(F1(θ2)) = V ar[1F (θ)] and the CV for LS is the same as for the standard MC

estimator.

The implementation of LS is illustrated in Figure 8.2, considering a d-dimensional

space with parameters q (d = k+m). If an important direction α, given by the unit

vector eα, is known, a new set of coordinates θ can be introduced, where θ1 points

in the direction of α and θ−1 denotes the d − 1 dimensional space perpendicular

to α. A sample θ
(i)
−1 describes a point on the θ−1 axis and the one dimensional

probability problem of parameter θ1 in direction α has to be solved. In the most

simple case, as shown in Figure 8.2a, the limit state function g(q) = g0 is intersected

only once and the probability of an event E is given by p
(i)
E1

= Φ(β(i)), where Φ is the

cumulative density function and β(i) is the shortest distance in the standard normal

space between the point θ
(i)
−1 and the limit state function g(q) = g0. Figure 8.2b

illustrates an approach to approximate the distance β(i). The performance function

g(q) is evaluated at predefined values βj and the distance β(i) for g(q) = g0 is found

by linear interpolation. Therefore, for ni samples and nj predefined values βj, the

performance function has to be evaluated at ni × nj points to describe g
(i)
j . The
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Figure 8.2: Implementation of Line-Sampling.

sampling vector in terms of coordinates q is defined as

q
(i)
S (j) = βjeα + (q(i)− < eα,q

(i) > eα) (8.15)

where (q(i)− < eα,q
(i) > eα) = θ

(i)
−1 is the projection on the d−1 dimensional plane

perpendicular to α and <,> denotes the scalar product.

LS is a robust method and especially suited for high dimensional problems. It

can deal with irregular limit state functions and several event domains. However, it

is most advantageous if an important sampling direction can be identified and if the

limit state function is simple. Compared to other sampling methods it is not affected

by low event probabilities or a large number of random parameters. A common

choice for the important direction is the gradient at a point in the parameter space,

for example at the baseline solution. However, the gradient should be weighted by

the variances of the random variables. In general, gradient estimation requires some

additional calculation and can be numerically expensive, but efficient methods for

high dimensions exist [102].
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8.3 Application of the LS method to the estima-

tion of response parameter statistics and dis-

tribution functions

In this section, the application of the LS simulation method to estimate distribution

functions and other statistics is examined. First, a simple analytical example is used

to illustrate the concept. Subsequently, LS is applied to a structural dynamic model

to estimate the distribution functions of natural frequencies and FRF magnitudes.

The numerical efficiency of the LS approach is compared with the standard MC

simulation method.

8.3.1 Analytical example

Considering the function

g = 5q1 + q2 (8.16)

where q1 and q2 are normally distributed independent random variables with a mean

value of 10 and variance 1. The function g is then normally distributed as well,

with a mean value of 60 and variance 26. This analytical problem can be used to

illustrate the application of LS to estimate the distribution of g. A standard MC

approach and the proposed LS approach with n = 10 samples each are compared.

The important direction is defined by parameter q1, such that θ1 = q1 and θ2 = q2.

Therefore, the parameter q1 is varied corresponding to the distance β and samples

are taken for parameter q2. In Figure 8.3a, the values g
(i)
j are plotted for ni = 5

samples and values βj = [−5, 5]. For each sample, the data points are connected by

a straight line. In this simple example, the linear interpolation is exact for all levels

of β. For a given value g0, ni = 5 corresponding values of β0 are found. Using the

standard normal space, the associated probabilities p
(i)
0 can be calculated. Finally,

the mean probability p0 for the given value g0 is calculated and can be plotted

in the normal probability plot in Figure 8.3b. If this is done systematically for a

number of values g0 covering the whole range of g, then the complete distribution

can be estimated. Alternatively, a given probability p0 could be used to estimate a

corresponding mean value g0. In Figure 8.3b, the results of the LS approach show

a very good estimation of the exact distribution, especially at the tails, which is a

straight line. The number of deterministic solutions required for the LS approach

is given by the number of evaluations g
(i)
j , which is the number of samples (ni = 5)

multiplied by the number of levels βj (nj = 2). The number of data points used

to describe the distribution function is independent of the total sample size and
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Figure 8.3: (a) Evaluation of function g
(i)
j at levels βj along the important direction

for ni = 5 samples; (b) estimation of the normal distribution by the LS approach
(n = 10) and the MC method (n = 10).

can be increased with little numerical cost. The accuracy of the LS approach is

also independent of the probability and only depends on the discretisation of the

performance function g(β) and the sample size. In Figure 8.3b, the results of a MC

simulation with n = 10 samples are also shown. The data points are spread around

the mean value and no estimate is given for the tails of the distribution. Both

approaches estimate the mean value of g reasonably well. However, a sample size

of n = 10 is not enough to estimate the variance of g accurately using the standard

sampling approach. A sampling approach with 1000 samples was used to estimate

the variance of the variance estimator for both approaches. Based on a probability

of 90%, the standard MC method predicts an interval for the variance of [10 : 51]

whereas the LS approach predicts an interval of [23 : 30], the exact value being 26.

In this simple example of a normal distribution it is sufficient to approximate the

function g(β) for two values βj. In general, the number of levels βj required and the

numerical cost depend on the characteristics of the function g(β). However, if the

shape of the output distribution is known, then the number of LS solutions required

is equal to the number of independent parameters in that distribution.

Other statistics, such as the mean, variance and percentiles, can be deduced from

the distribution function. For the estimation of percentiles, values of the distribu-
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tion function only have to be calculated in the corresponding probability region.

However, an iterative process has to be followed to calculate a given percentile with

the required accuracy. A qualitatively different approach is to calculate a percentile

directly, which will be referred to as the LSp approach later. For a given value of

probability p corresponding values of g can be found. However, the mean value of

them in general does not correspond to the correct result for the percentile. In the

special case of a linear performance function, as given by Equation 8.16, the result

is exact. For non-linear functions g, the result is not exact, but it can be useful in

the case monotonic functions. This will be investigated further using the numerical

example in the next section.

8.4 Structural dynamics example

 
 

k1 k2 m1 m1

16 12 3.5 2.5

k1

m1

k2

m2

Case Vector in Important direction

k1 − k2 space

A (0, 1) k2, one parameter

B (1, 1) k1, k2, diagonal

C (1, 0) k2, one parameter

D (1, 0.45) gradient of λ1

Figure 8.4: Spring-mass system; baseline parameter values; definition of important

directions for LS.

The numerical example considered is a spring-mass system as shown in Figure 1.

Both stiffnesses are treated as random variables and modelled by a normal distri-

bution with a coefficient of variation of 10%. Damping is included by a modal loss

factor of 0.1.

8.4.1 Eigenvalue distribution

The LS approach is used to estimate the distribution function of the first eigenvalue

of the system. As a reference, a standard MC approach with a sample size of n = 106

is used. The random parameter space is two-dimensional, given by the parameters

k1 and k2. Four different cases are defined for the selection of the important direction

as listed in Figure 8.4. In Figure 8.5 the evaluations of the performance function

λ
(i)
j are shown for ni = 5 samples and nj=5 values βj. According to the direction of
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Figure 8.5: Evaluation of the performance function λ1 at given values βj along four
different important directions (A,B,C,D) using the same sample of size ni = 5 at all
points (LSa).

LS (cases A,B,C,D), the paths of the curves and the variation between them varies.

The best result for the LS approach can be achieved using direction D (gradient),

because the variation between the samples is small and the graph is almost linear.

The sample size of ni = 5 and the discretisation at nj = 5 points are sufficient, and

only n = 25 deterministic solutions of the eigenvalue problem are required. For the

results shown in Figure 8.5, the same sample has been used for the evaluation of

the performance function at different values βj, which will be denoted as the LSa

approach. However, a different sample can also be used at each step (LSb), which is

illustrated by the performance functions shown in Figure 8.6, where the lines cross

at various points. The numerical cost is the same, but the approach is based on

more independent samples, which can increase the robustness. A further approach

(LSc) is to order the independent samples such that the lines do not cross, as shown

in Figure 8.7. However, it has to be noted that these approaches (LSb,LSc) are

not theoretically rigorous. The influence of these different implementations will be

investigated.

In Figure 8.8, the estimates of the cumulative density function (cdf) of the first

eigenvalue λ1 for the MC method and the LS approach (n = 25 each) are compared

with the reference distribution function. The data is shown using a normal proba-
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Figure 8.6: Evaluation of the performance function λ1 at given values βj along four
different important directions (A,B,C,D) using different samples of size ni = 5 at
all points (LSb).

bility plot to emphasise the tails of the distribution. The n = 25 MC samples are

plotted separately as data points. The LS results can be shown as a line, because the

number of points (found by interpolation) is independent of the number of solutions

of the eigenvalue problem. The MC estimate is the same in all four cases, but the LS

estimate depends on the chosen important direction. While the MC data points only

give a reasonable estimate of the distribution around the mean, the LS approach is

able to capture the tails of the distribution at no extra numerical cost. As expected

from Figure8.5, the results in case D are best and are clear improvements compared

to the standard MC estimate. Figure 8.9 concerns the comparison of the different

LS implementations (LSa, LSb, LSc) regarding the use of independent samples for

the evaluation of the performance function (see Figures 8.5, 8.6, 8.7). Furthermore,

results for the LSp approach, where percentiles are calculated directly from given

probabilities, are shown. For directions B and C, LS gives good results and there

is no clear advantage for the LSa, LSb or LSc approaches. Direction D seems to

be most appropriate for LS and there is no significant difference for the various

approaches. Results for direction A are not considered because of numerical prob-

lems due to the introduced non-monotonicity. The approach based on calculating

percentiles directly (LSp) gives good results in this case of a monotonic behaviour
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Figure 8.7: Evaluation of the performance function λ1 at given values βj along four
different important directions (A,B,C,D) using different, but sorted, samples of size
ni = 5 at all points (LSc).

of the performance function. Therefore, it might constitute an alternative approach

for special applications, but future work is required.

The estimated distributions are compared with the reference distribution using

two different criteria related to distribution tests. A mean-absolute-error test of the

cdf and a mean-square-normalised error test of the pdf (similar to a χ2-test), each

using 200 evenly distributed points over the range of values g are used. The mean-

absolute-error test puts a large emphasis on the centre of the distribution, whereas

the mean-square-normalised-error test considers the tails of the distribution as well.

If there is no data for any of the approaches towards the lower or upper tail of the

distribution, the probabilities 0 and 1 have been assigned, respectively. Figure 8.10

shows the results for the MC method and the three different implementations of LS,

each for four different important directions and with the same numerical cost. The

errors shown are mean values from 30 samples. The LS approaches give better results

than the standard MC method. The accuracy of the LS approaches is best in the

case of the gradient direction. The differences between the three implementations

of LS are small and inconclusive. Future work is required in that area.
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Figure 8.8: CDF of λ1: comparison of the LS approach (n = 25, using four different
directions A,B,C,D) with the standard MC method (n = 25 and n = 106).
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Figure 8.9: CDF of λ1: comparison of different implementations (a,b,c,p) of the LS
approach (n = 25, using different important directions B,C,D) with the standard
MC method (n = 106).
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reference distribution (n = 106): differences (mean values based on 30 samples) for
the standard MC method and the LS approaches (using three different implementa-
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Figure 8.11: FRF of two-DOF system with uncertain parameters: 100 realisations.

8.4.2 FRF magnitude distribution at baseline resonance fre-

quency

The transfer FRF α between the two masses is now considered and the LS approach

is used to estimate the distribution of the FRF magnitude at the first baseline

eigenfrequency |α(ω1)| as shown in Figure 8.11. Two different cases are defined for

the selection of the important direction in the two-dimensional parameter space. In

case F the direction is given by the gradient of the baseline response magnitude with

respect to the stiffnesses k1,k2 and in case E it is arbitrarily chosen to be at an angle

of 30 degrees to this gradient. Figure 8.12 shows the performance function |α(ω1)|(i)
for ni = 5 samples and the two different important directions. The performance

function is non-monotonic and sharply varying, similar to the resonance peak in

the frequency domain. The variation between the 5 samples is less for the gradient

direction F and therefore a higher accuracy can be expected for LS.

For the implementation within the LS approach, the performance function has

to be discretised. Figure 8.13a shows a discretisation using nj = 20 values βj,

which were chosen such that a linear interpolation gives a good approximation.

If a linear spacing is used, the number of levels required would be much higher.

Furthermore, for one value |α0|, two mean probabilities p1 and p2 are obtained. The

probability of occurrence for a magnitude greater than |α0| is given by p = p2 − p1.
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Figure 8.12: Evaluation of the performance function |α(ω1)| at given values βj along
two different important directions (E,F) using the same sample of size ni = 5.

The discretisation of the performance function is numerically costly and the total

number of calculations required is now n = 100.

In Figure 8.14, the estimated distribution is compared with the reference distri-

bution (MC with 106 samples) in the normal probability plot. The results for case

F are slightly better than for case E. The tail of the distribution for smaller values

of the FRF magnitude is estimated well. The tail including the highest magnitudes

is only covered up to a level of about 99%. This is due to the fact that the perfor-

mance function is parallel to the important direction around the peak, which limits

the efficiency of LS. In this case, the maximum value of the peak is highly dependent

on the sampling and less dependent on a change along the important direction.

In order to reduce the numerical cost of LS, it is possible to parameterise the

performance function. The shape of the performance function is related to the FRF

of a 1-DOF system, given by

|α| =
a√

(1 − (ω/b)2)2 + cω2/b2
(8.17)

However, this model leads to numerical difficulties, because of the symmetry with

respect to ω. Instead, a similar 3-parameter model, given by

|α| =
1√

a(β − b)2 + c
(8.18)

where the distance β has been substituted for the angular frequency can be used.

There are 3 independent parameters a, b, c, which control the spread, position and

height of the peak, respectively. This approximates the correct form of |α| and is
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Figure 8.13: Comparison of the exact performance function with approximations:
a) linear interpolation with 20 data points, b) fit of a 3-parameter model (Equation
8.18) using 3 data points.
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Figure 8.14: CDF of |α(ω1)|: comparison of the LS approach (n = 100, using two
different directions E,F ) with the standard MC method (n = 106).
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Figure 8.15: CDF of |α(ω1)|: comparison of the LS approach (n = 2000 with linear
interpolation and n = 15 with parameterised (param.) model) with the standard MC
method (n = 106 and n = 15).

particularly good around the resonance, where an accurate approximation is most

important and |α| changes most rapidly. Alternatively, a higher order polynomial

model can be used, but the 3-parameter model is robust and has the lowest asso-

ciated computational cost. Figure 8.13b shows the exact performance function and

the result using the model in Equation 8.18. The graphs compare very well in the

region around the peak. There are increasing differences for values further away

from the peak, which correspond to the lower magnitudes.

The results for the estimation of the cdf are shown in Figure 8.15. A Monte

Carlo simulation with n = 106 samples is used as reference. LS has been performed

with 5 samples using two different methods for the discretisation of the performance

function. A pseudo-exact approach uses 400 data points and linear interpolation,

which corresponds to an overall numerical cost of n = 2000 evaluations. The pro-

posed approach based on parameterisation uses 3 data points and the model given

by Equation 8.18, therefore requiring a total of n = 15 calculations. For compari-

son, the results from 15 Monte Carlo simulations are plotted as well. The agreement

between the LS solutions is reasonably good, there are only small differences in the

tails of the distribution. Overall, the parameterisation approach works very well for

this specific application.

The estimated distributions from the various approaches can be compared using
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Figure 8.16: Comparison of the estimated FRF magnitude distributions (n = 100)
with the reference distribution (n = 106): differences (mean values based on 30
samples) for the standard MC method and the LS approaches (using two different
directions E,F).

the mean-absolute-error and mean-square-normalised-error tests, respectively. The

calculated mean values from 30 samples are shown in Figure 8.16 according to the

numerical cost. LS has been performed using the important directions (E,F ) and

with the same sample of size ni = 5 (LSa) in all cases. The difference in numerical

cost of the LS approaches is only due to the different number of data points used

to evaluate the performance function. For the standard MC method, the numerical

cost shown corresponds directly to the number of samples. It can be seen that, if

the performance function is discretised accurately using 400 points, the numerical

cost (n = 2000) is so high that the standard Monte Carlo method achieves a better

accuracy. If the performance function is discretised using 20 points, the numerical

cost corresponds to n = 100 calculations and LS achieves a better accuracy then the

standard MC method. In the case of the parameterisation of Equation 8.18, LS only

requires n = 15 solutions of the model and the accuracy is much better then the

standard MC method with that number of samples. Comparing the LS approaches

amongst each other, Figure 8.16a shows that the gradient direction F gives better

results than direction E. However, the results shown in Figure 8.16b do not show

that difference. Overall, as might be expected, the LS solutions achieve about the

same accuracy for all numerical costs. The differences are small compared to the

coefficients of variation of the mean values, which are around 45%. This means that

the parameterisation using 3 data points and the discretisation using 20 data points

give comparable results to the discretisation using 400 data points.
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Figure 8.17: Comparison of the exact performance function |α(ω2)| with approxi-
mations: a) linear interpolation with 400 data points, b) fit of a 3-parameter model
(Equation 8.18) using 7 data points.

8.4.3 FRF magnitude distribution off resonance

This section concerns the distribution of the transfer FRF magnitude away from

the resonance peak, at the frequency ω2 = 0.17Hz as shown in Figure 8.11. Figure

8.17a shows the evaluation of the performance function |α(ω2)| for ni = 5 samples

using the gradient direction. The performance function shows the same behaviour

as discussed in the previous section, but the peak is shifted by a distance of 5 along

the important direction. This corresponds to the probability that the resonance

occurs at the specified frequency ω2. In order to use the most efficient LS approach,

the performance function will be parameterised using the model given by Equation

8.18. A reasonable number of 7 data points are used and a fit based on a nonlinear-

least-square approach is performed. The total numerical cost is therefore given by

n = 35 calculations. Figure 8.17b shows the pseudo-exact performance function

and the results from the parameterisation. The agreement is reasonably good. The

7 data points have been spread about the origin such that they could be used for

a parameterisation of the performance function at different frequencies including

resonance.

The estimated distribution is compared with the reference solution in Figure 8.18.

For comparison, the results of the LS approach, using the pseudo-exact evaluation of

the performance function with nj = 400 data points, and the standard MC method

with n = 35 samples are shown. The shape of the distribution function has changed

and is still non-Gaussian. The LS approaches give very accurate results in both tails
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Figure 8.18: CDF of |α(ω2)|: comparison of the LS approach (n = 2000 with linear
interpolation and n = 15 with parameterised model) with the standard MC method
(n = 106 and n = 15).

of the distribution. The influence of the resonance peak, which caused problems in

the previous example, can not be seen on the graph, because it is associated with very

low probabilities. The FRF magnitude below resonance at ω2 is stiffness dominated

and hence the FRF magnitude distribution is proportional to the distribution of

1/(k1).

8.4.4 FRF magnitude distribution at resonance and uncer-

tainty in damping

This analysis focuses on the transfer FRF magnitude distribution at resonance and

considers uncertainty in damping in addition to uncertainty in the stiffnesses. The

modal loss factor (η) is modelled by a normal distribution with a coefficient of

variation of 10%. Three different important directions will be considered as shown

in Table 8.1, where case F is the same as in the previous section. Case G defines

the important direction with respect to damping only case H used the gradient with

respect to all uncertain parameters.

Figure 8.19 shows the evaluation of the performance function for ni = 10 samples

and three different important directions. For case F , the important direction is given

by the gradient of the FRF magnitude with respect to both stiffnesses. The shape
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Case Vector in Important direction
k1 − k2 −mlf space

F (1, 0.54, 0) gradient with respect to stiffnesses
G (0, 0, 1) damping
H (1, 0.54, 2.17) gradient with respect to all parameters

Table 8.1: Definition of important directions for LS.

of the performance function is the same as in the previous section and the effect of

the uncertainty in damping can only be seen in a larger variation in the magnitude

of the peak. In case G, the variation between the 10 samples is relatively large. The

FRF magnitude depends inverse proportionally on the damping, which is reflected

in asymptotic curves (g ∼ 1/β). However, the shift of the resonance peak due to

uncertainties in the stiffnesses introduces the non-monotonic behaviour as seen in

case G. The latter effect is seen more clearly in case H as a combination of the

asymptotic and the resonance peak behaviour. In the following, the performance

functions have been discretised with a very large number of data points (nj = 400)

so that the errors in this part of the approximation can be neglected. The focus is

on interpreting the influence of the important direction and the variability between

the samples.

Figure 8.20 compares the calculated distribution functions with the reference

solution. For cases F and G, the lower tail or the upper tail of the distribution is

estimated very well, respectively. There is either no data or larger differences in the

opposite tail. In case H, based on the gradient direction, data for all parts of the dis-

tribution is available, but with slightly lower accuracy. It seems that a combination

of cases F and G would result in the best estimation of the distribution function.

In order to implement this idea, it is possible to use two important directions, one

given by the gradient with respect to the uncertain stiffnesses and another given by

the gradient with respect to the uncertain damping. This seems logical, since these

uncertainties have qualitatively different effects on the FRF. The implementation

of two important directions β1 and β2 would require that the performance function

g(β1, β2) is evaluated in a two-dimensional domain. This concept of multi-level LS

is a subject for future work.

In many applications, it might be more important to know the FRF magnitude

distribution of the first resonance instead of the FRF magnitude distribution at the

baseline resonance frequency. The difference lies in the effect of the frequency shift

that is caused by the uncertainty in the stiffnesses. For the evaluation of statistics
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Figure 8.19: Evaluation of the performance function |α(ω1)| at given values βj along
three different important directions (F,G,H) using the same sample of size ni = 10.
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Figure 8.20: CDF of |α(ω1)|: comparison of the LS approach ( n = 4000 with
linear interpolation) with the standard MC method ( n = 106).
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Figure 8.21: Evaluation of the performance function |α1| at given values βj along
three different important directions (F,G,H) using the same sample of size ni = 10.

at a fixed frequency, a shift of the FRF along the frequency axis greatly affects the

results. In comparison, if only the magnitude of the resonance peak is considered,

independent of its frequency, any shift of the FRF along the frequency axis has little

effect. The following analysis follows the same lines as the previous one, except that

the magnitude of the resonance peak is considered. Figure 8.21 shows the evaluation

of the performance function in this case for ni = 10 samples and the three different

important directions. It can be seen that the graphs follow the asymptotic behaviour,

which corresponds to the effect of uncertainty in damping. Only for case F , there

is non-monotonic behaviour within the considered range of values. For cases G and

H, the performance function varies monotonically for the considered range of values

β.

Figure 8.22 shows the corresponding results for the estimated FRF distribution

functions. The magnitude of the resonance peak is dominated by the damping and

hence the cdf is proportional to the cdf of 1/η.

The results show reasonable agreement for case G and very good agreement for

case H. The errors in case F are due to the fact that the important direction

does not consider the effect of uncertainty in damping. The discretisation of the

performance function in cases G and H can be performed with a few data points

only, which makes the LS approach very efficient.
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Figure 8.22: CDF of |α1|: comparison of the LS approach (n = 4000 with linear
interpolation) with the standard MC method (n = 106).

8.5 Discussion

The LS simulation method is known to be an effective method to estimate small

probability events, such as a probability of failure of a structure. It is robust and

independent of the number of random variables. If an important sampling direction

can be identified and the limit state function is simple, a reduction in the numerical

cost by a factor of 100 or more can be achieved.

In the application of the LS method to estimate a complete distribution function,

the limit state value is moved through the range of possible values of the performance

function and a number of subsequent LS problems are solved. Compared to the

standard MC method, where the solutions concentrate around the mean, the LS

approach basically allows one to choose the probability of the individual solutions.

Therefore, there is no difference in the numerical cost for estimating the tails of

a distribution compared to the area around the mean. The LS approach is in

general more efficient than the standard MC approach, especially if the performance

function can be approximated along the important direction by a reasonably small

number of points. If the shape of the distribution function is known a priori, only

as many LS solutions are required as there are independent parameters to describe

the distribution. In this case mean values and variances can be estimated with high
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accuracy at very low numerical cost.

The LS approach works well for the estimation of the distribution of natural fre-

quencies in structural dynamic systems with uncertain mass and stiffness properties,

because in this case the performance function varies smoothly and monotonically

along the important direction and only a few points are required to estimate it. The

performance function of frequency response magnitudes varies sharply and non-

monotonically along the important direction and a larger number of discretisation

points is required, which reduces the efficiency of the LS approach in this case. In

the region around the resonance peak, which is responsible for the upper tail of the

magnitude distribution, the accuracy of the estimate is limited. This is due to the

interpolation and the fact that the gradient is zero at the peak. The performance

function has a shape similar to that of the FRF of a single degree-of-freedom system

and can be parameterised to further reduce numerical costs.

8.6 Application of Line-Sampling to random field

models

This section concerns the application of the LS method to random field models.

The use of random fields to model spatial variations in mechanical structures has

been discussed in Chapter 3. A simple model for a random field is a homogenous

isotropic Gaussian field, where the random variables have a Gaussian distribution

with parameters independent of direction and location. Therefore, the interdepen-

dency between two random variables defined at two points depends only on the

distance between them. The correlation between two Gaussian random variables

can be modelled by an exponential function of the form

R(d, Lc, σ) = σ2 exp

(
−
∣∣∣∣
d

Lc

∣∣∣∣
)

(8.19)

where σ is the standard deviation, d is the distance between two points and Lc is

the correlation length. For n random variables, a nxn covariance matrix C can then

be constructed. A random field in one dimension, given by a vector p of length n,

can be represented by the Karhunen-Loève (KL) expansion in the form [40]

p = p̄ +

r≤n∑

j=1

ψj

√
µjζj (8.20)

where p̄ denotes the mean, ζj are uncorrelated standard normal (zero mean and unit

variance) random variables and µj and ψj are the eigenvalues and eigenfunctions of
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the covariance matrix respectively. The mean p̄ and the eigensolutions µj and ψj

are deterministic. The randomness of the field is only included in ζ . There are n

eigensolutions, but in general it is sufficient to consider only the r most important

eigenfunctions, which give a good approximation of the random field. The parame-

ters of the Gaussian random field are the mean value p, the standard deviation σ

and the correlation length Lc.

For the application of the LS approach, it seems reasonable to derive the impor-

tant sampling direction α directly from the KL expansion. One possible approach

is to associate the KL variables ζj directly with the LS variables θj such that θ = ζ

and ζ1 = θ1 is the coordinate in the important direction α. The advantages of

this approach are that no additional calculations are needed to define an important

direction and the parameters are already given in the required standard normal

space. LS will then be most effective, if the variable ζ1 in the important direction

is dominant compared to all other variables ζ−1. The influence of these variables

is determined by the corresponding eigenvalues of the covariance matrix. For small

correlation lengths all eigenvalues have a value of about 1 and for large correlation

lengths all except one eigenvalue approach a value of 0. Therefore the larger the

correlation lengths, the more efficient the LS procedure will be.

A cantilever beam as shown in Figure 3.1 is used as a numerical example. Stan-

dard finite element stiffness and mass matrices for Euler-Bernoulli beam theory [9]

with transverse and rotational degrees of freedom are used. The beam of length

l = 1m is divided into 10 elements. A random field model is considered for the

Young’s modulus E with a CV of 10% and varying correlation length. It is dis-

cretised such that each element has a different but constant thickness. In order to

compare the LS approach with the standard MC approach, a low probability event

of the fundamental frequency f1 will be calculated. First, the performance function

f1 is evaluated at arbitrarily chosen values βj = [−6 : 2 : 4] along the important

direction, which is defined by the first coordinate in the KL decomposition of the

random field. Figure 8.24 shows the performance function for ni = 100 samples and

based on linear interpolation. In Figure 8.24a the correlation length is 10−6m, which

is a theoretical value, in Figure 8.24b,c the correlation length is comparable to the

length of the beam and in Figure 8.24d it is considerably larger than the length of

the beam. The convergence rate of LS is better if the variance within the samples is

small, which is shown as a narrow spread of lines in Figure 8.24. As expected, the

variation clearly reduces for larger correlation lengths.

In Figure 8.25, the coefficient of variation of the probability estimator is com-

pared for the two sampling methods and different correlations lengths. Standard

MC simulations with n = 104 and n = 103 samples were performed and the lower
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Figure 8.23: Uniform cantilever beam with rectangular cross section and the baseline
parameters.

bound of the fundamental frequency corresponding to a probability of 5% was found.

The corresponding CVs can be calculated from Equation 8.3 and are independent

of the correlation length. Subsequently, LS was performed with n = 100 and n = 10

samples, respectively, and the CV was calculated from Equation 8.13. Figure 8.25

clearly shows that these results depend on the correlation length. In case of the LS

method, the extra numerical cost required to evaluate the performance function has

been neglected. In general, at least two points have to be evaluated for the approx-

imate approach using linear interpolation. Any inaccuracies due to approximations

to the performance function are not contained in the CV of the LS estimator. The

results in Figure 8.25 show that for a correlation length of Lc = 0.5m, which is half

the length of the beam, the standard MC approach requires about 10 times the num-

ber of samples as the LS approach. For larger correlation lengths, this ratio steadily

increases. Similarly, the smaller the probability of the event the more effective LS

performs compared to the standard MC approach.

8.7 Conclusions

The standard MC method is of widespread use in many fields of application and is

often used to provide reference solutions for other approaches. The only disadvan-

tage is the high numerical cost. Several advanced MC methods have been developed

to reduce the numerical cost for specific problems, such as calculating a low proba-

bility of failure. It seems reasonable also to apply these successful methods to other

areas, where standard MC methods are normally used.

In this chapter, the Line-Sampling method has been applied successfully to es-

timate distribution functions of structural dynamic systems. The emphasis was on

low-cost approaches that require less than 100 solutions of a deterministic problem,
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Figure 8.24: Evaluation of the performance function f1 for samples along the im-
portant direction, different correlation lengths.
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but are capable of capturing the complete distribution function up to probabilities

of 10−5 or so. Furthermore, the efficient combination of LS with random field models

of spatial variations has been presented. It is appropriate to define the important

direction in LS according to the first random variable in the KL expansion.



Chapter 9

Numerical example: automotive

windshield with uncertain

properties

9.1 Introduction

This chapter concerns the vibration analysis of an automotive windshield with un-

certain parameters. In particular, the modelling of spatial variations using random

fields and the implementation within a finite element model are discussed. Spatial

variations are considered for the thicknesses of the five layers of the laminate wind-

shield and for the properties of the glue joint by which the windshield is mounted

on the car. These spatially varying parameters can be modelled appropriately by

random fields, as discussed in Chapter 3. The analysis is based on the FE model

of the baseline system and information about parameter uncertainties. The vari-

ation in the frequency response of the windshield is investigated for the cases of

a free and constrained configuration of the windshield. The Line-Sampling proce-

dure, as described in Chapter 8, is applied to estimate statistics of the fundamental

eigenfrequency of the windshield.

Continuous random fields are discretised using the existing FE mesh such that

each finite element has a constant parameter value. A point discretisation method

based on the geometric centre of each finite element is employed. The discrete

random field for one windshield parameter is based on n correlated random variables,

where n is the number of finite elements. The spatial correlation of the random

variables mainly depends on the correlation length. If the spatial interdependencies

are neglected, e.g. the correlation length is zero, then there are n uncorrelated

random variables. If total spatial correlation is assumed, e.g. the correlation length

160
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is infinite, then there is only one random variable covering all finite elements.

The next section concerns the analysis of the windshield in a free configuration.

Subsequently, the windshield is considered in a constrained configuration as mounted

on the car. Results from numerical and experimental studies of the windshield [103–

105] are considered.

9.2 Windshield in free configuration

9.2.1 Windshield FE model

The windshield shown in Figure 9.1 is a laminate shell structure, slightly curved,

consisting of five layers with different materials and thicknesses. Figure 9.2 shows

a schematic of the cross-section of the laminate. The two external layers are made

of glass and the intermediate layers of two different polymers, two PVB (poly vinyl

butyral) layers and one further polymer (AP) in the middle. The windshield mea-

sures approximately 800mm in the vertical and 1500mm in the horizontal direction.

Compared to the surface dimensions, the nominal thickness of 4.96mm is small.

The structure has been modelling using planar shell elements with the capability of

including multi-layered cross-sections (NASTRAN PCOMP element). The calcula-

tions are performed using a mesh consisting of 793 nodes (4758 degrees of freedom),

758 rectangular (NASTRAN CQUAD4) and triangular (NASTRAN CTRIA3) ele-

ments. It has to be noted that the current finite element model may not be sufficient

to model the dynamic behaviour of the windshield accurately, but it is appropriate

in regard to the objectives of this chapter. A more accurate finite element model of

the windshield should comprise solid finite elements, allowing individual shear de-

formation in each layer, and a temperature and frequency dependent material model

for the polymers. Overall, it can be shown that results from the finite element model

compare qualitatively well to measured data. Therefore, the model of the windshield

is appropriate to study the modelling and the effects of spatial variations in various

properties.

9.2.2 Variability and uncertainty

In [103] two different sources of nondeterministic data for the windshield were iden-

tified. First, there is the change of material properties of one structure with tem-

perature, which has been referred to as intra-variability and was considered in [103].

On the other hand, inter-variability refers to the variation between two or more

structures, for example in the thickness of the individual layers. It is inevitable that
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Figure 9.1: Windshield FE mesh.

  1  Glass                                             2.1   mm 

2  PVB - polymer (vinyl butyral)    0.33 mm 

3  AP   - acoustic polymer                0.1   mm 

4  PVB - polymer                            0.33 mm 

5  Glass                                             2.1   mm 

Figure 9.2: Schematic view of cross-
section and nominal thicknesses.

Geometric variability Nominal value Tolerance
Sandwich thickness (1+2+3+4+5) 4.96mm (−0.2; +0.2)mm

Polymers thickness (2+3+4) 0.76mm (−0.16; 0)mm

Table 9.1: Mean values and tolerances for thicknesses.

the thickness of each individual layer will differ from the nominal value and vary

over the layer, because neither an exact nor constant thickness can be achieved in

manufacturing. The available information on mean values and expected bounds are

listed in Table 9.1. In this work, the use of random field models to describe the

variation in thicknesses is investigated.

9.2.3 Simulation

The simulations were carried out using the FE software NASTRAN. For the nom-

inal FE model, the material parameters and modal damping ratios were selected

according to a constant temperature of 5 ◦C according to [103].

For the random field model, a Gaussian distribution for the thicknesses was as-

sumed. The mean value was calculated to lie in the centre of the given interval using

the nominal and tolerance values in Table 9.1. The standard deviation was obtained

by the criterion that a sample from the Gaussian distribution has a probability of

95% to fall within the specified interval. A constant coefficient of variation was

calculated for all polymer layers. Furthermore, the random fields of the individual

layers were treated independently and a correlation length of 500mm was assumed

(no data). The parameter values used in the simulations are given in Table 9.2.
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Parameter / Layer Glass (1,5) PVB (2,4) AP(3)
Mean value [mm] 2.14 0.29 0.1

Coefficient of variation (CV) % 4 12 12
Correlation length [mm] 500 500 500

Table 9.2: Parameters of Gaussian random field for layer thickness.

  
Figure 9.3: Realisation of a homogenous isotropic Gaussian random field, 2D and 3D
views; mean value 0.29mm, coefficient of variation 12%, correlation length 500mm.

The application of the random field model is straightforward, if a discretisation

at element level is chosen. The NASTRAN input file is changed accordingly by

creating one property card for each element. The random field model is implemented

in MATLAB. For the calculation of the distances between elements, information on

element nodes and node coordinates is used to calculate the geometric centre of

each element. The distance of two elements, which determines their correlation,

should be the shortest connection on the surface. For simplification, the shortest

distance in space was used, which however is expected to be a sufficiently accurate

approximation. Figure 9.3 shows one realisation of the random field for a PVB layer.

A Monte Carlo simulation is applied to obtain a response sample. The procedure

has been automated using a script in the programming language PERL. First, an

input file is created, which specifies the parameters for the random field model

(mean, standard deviation, correlation length) and the number of runs. Next, a file

containing the thicknesses for all layers and all evaluations is created by MATLAB.

In the main simulation loop, the PERL script updates the NASTRAN input files

with the new thickness values, then submits them to the NASTRAN solver and

subsequently extracts and saves the required results. All steps are automated by

the script and the NASTRAN environment can be used unchanged.
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Figure 9.4: Comparison of FRF measurements on three different windshields with
deterministic simulation.

9.2.4 Results

In Figure 9.4 the deterministic results from the nominal FE model are compared with

the measured FRFs from three different windshields. The experimental campaign is

described in [103]. The measurements were performed on three nominally identical

acoustic windshields in a free configuration. An excitation by an impact hammer was

used and the acceleration was measured by piezoelectric accelerometers at different

locations. Furthermore, modal damping ratios have been estimated from the FRFs.

All experimental data relate to the temperature of 5 ◦C and the same point FRF.

In general, the simulations capture the characteristics of the dynamic response well.

However, there is a shift to lower frequencies for the simulation results. This is

mostly due to the fact that the frequency dependence of the elastic properties of

the polymers was not modelled. For higher frequencies the dynamic stiffness of the

polymers can be expected to increase.

Figure 9.5 shows the results from a Monte Carlo simulation with 500 samples

including the 5 and 95 percentiles of the FRF magnitude. As expected, the variation

increases with frequency and therefore predicts a larger range in magnitude for higher

frequencies. In Figure 9.6, results are shown for two cases where the correlation

length Lc of the random field is set to a very small and very high value, respectively.

The changes in the FRF statistics are significant. A very large correlation length

corresponds to the case that there is a constant but random value for all elements
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Figure 9.5: FRFs from 500 MC simulations and statistics.

and leads to increased FRF variation. The statistics for the case of zero correlation

length, where all elements are nearly statistically independent, show a much smaller

variation. This is because the effects due to uncorrelated variation in all finite

elements is averaged out.

9.3 Windshield in constrained configuration

This section concerns the practical case where the windshield is mounted on the

car. The glue joint and polymer seal, by which the windshield is connected to the

car, have spatially varying material and geometric properties over their lengths.

These inherent variations can have a considerable effect on the dynamic response

of the system. For this analysis, the effects of the joint and the chassis on the

dynamic behaviour of the windshield are approximated by translational stiffnesses

in all directions at the 102 nodes along the edge of the windshield. A measurement

campaign on the windshield in a constrained configuration has been conducted [103]

and four resonance frequencies were identified. The nominal values of the joint

stiffnesses were calculated such that the fundamental eigenfrequency from simulation

and measurement are identical. The best results were achieved for the case where

in-plane motions are effectively constrained and the out-of plane stiffness has a value

of 2500N/mm. The comparison between the first four simulated eigenfrequencies

and measured resonance frequencies is shown in Table 9.3. The agreement is good.

However, uncertainties were neglected in this step, because the baseline joint stiffness
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Figure 9.6: 5 and 95 FRF percentiles for very small and very large correlation
lengths, 500 MC simulations.

Eigenfrequencies [Hz] / Mode 1 2 3 4
Simulation 58 106 162 226

Measurement 58 109 163 227

Table 9.3: Comparison of eigenfrequencies for simulation and measurement.

was updated using one available measurement of the fundamental eigenfrequency

only.

Variability data on the joint properties [103] indicates that a CV of 30% is real-

istic for the joint stiffness. A correlation length of Lc = 500mm has been assumed.

500 Monte Carlo simulations have been performed considering the random field

models for the individual thicknesses, as described before, and the out-of-plane stiff-

ness of the joint. The FRFs and statistics are shown in Figure 9.7. The frequency

response is characteristically different to the free configuration case. There is very

large variation around the fundamental resonance and much less variation for higher

frequencies. It is clear that the joint properties mainly affect the lower frequencies.

In addition to the variation of the FRF magnitude, the variation in the frequency of

resonance peaks can be of interest. Figure 9.8 shows a histogram of the fundamental

eigenfrequency of the windshield based on 2000 MC simulations. The shape is close

to a Gaussian distribution, but is skewed somewhat. In practice various statistics of

the fundamental frequency can be of interest, for example the 5 and 95 percentiles or
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Figure 9.7: FRFs from 500 MC simulations and statistics.

the probability of the fundamental frequency being below a certain value. In general

the numerical cost for such an analysis can be relatively large. In the next section,

the application of a simple Line-Sampling procedure to estimate the distribution

and statistics of the fundamental eigenfrequency will be considered.

9.4 Line-Sampling

This section concerns the application of the Line-Sampling method to the random

field model in order to increase computational efficiency, as discussed in Chapter

8. The Karhunen-Loève (KL) expansion of the spatially varying discretised joint

stiffnesses can be written as

k = k̄ +ψ1

√
µ1ζ1 +

r≤n∑

j=2

ψj

√
µjζj (9.1)

where the term associated with the largest eigenvalue µ1 of the covariance matrix

has been explicitly separated from the sum. The term associated with the largest

eigenvalue makes the largest contribution to the expansion and therefore has the

largest effect on the variation in the fundamental eigenfrequency. The Line-Sampling

technique is based on an important direction in the parameter space, along which

a performance function is evaluated at predefined values, and MC samples taken

in the perpendicular direction. If this concept is applied to Equation 9.1 then the
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Figure 9.8: Histogram of fundamental eigenfrequency of constrained windshield.

parameter ζ1 can be used to define the important direction. The parameters ζi

are already standard normal (zero mean unit variance) random variables as used

in the Line-Sampling procedure. First, a vector of discrete values for ζ1 is defined

arbitrarily, for example as ζ1 = [−3 : 0.5 : 3] with a total of 13 values. Subsequently,

for each value of ζ1, a standard MC simulation with 5 runs is performed considering

the n − 1 random variables ζi, i 6= 1. Overall, the fundamental eigenfrequency is

calculated for 13 x 5 = 65 realisations. The results are shown in Figure 9.9, where

four different correlation lengths have been considered. The further analysis can

be performed using any chosen correlation length, but the accuracy of the results

will be different. The highest accuracy can be expected for the case of the largest

correlation length (D), because the variation between the MC samples is small and

the gradient of the curves is large.

The data in Figure 9.9 can be used to estimate the cdfs, which are shown in

Figure 9.10. It can be seen that all cdfs have the same mean value (58 Hz), but

the spread depends on the correlation length. For larger correlation lengths, the

standard deviation of the fundamental eigenfrequency is larger and more extreme

realisations are likely. This indicates that an extreme value of the fundamental

eigenfrequency occurs if the stiffnesses are either high or low for all locations around

the edge of the windshield.

The accuracy of these cdf estimates depends on the correlation length as dis-

cussed before. Figure 9.11 shows the CV of the LS estimator for an event with a

probability of 5% based on n = 10 deterministic solutions, calculated from Equation
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Figure 9.9: Evaluation of the fundamental eigenfrequency along important direction
ζ1 for different correlation lengths.
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by LS approach, different correlation lengths.
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based on 5% event and n = 5 samples.

8.13. The accuracy increases with larger correlation lengths. The CV of the MC

estimator for a 5% event is independent of the correlation length and about 9%

based on n = 2000 samples. Figure 9.12 shows a comparison of the cdf estimates

from the MC and LS approaches with n = 2000 and n = 65 required deterministic

solutions respectively. The agreement is very good and it can be expected that the

LS approach provides better results towards the tails of the distribution.

9.5 Discussion and concluding remarks

The use of a random field model for the spatial variation of thicknesses of a lami-

nate windshield has been discussed. The theory of a simple Gaussian random field

and its realisation using the KL representation was reviewed. The implementation

within an existing deterministic FE model and standard FE software was shown to

be straightforward. Experimental and numerical results were compared and the in-

fluence of the random field parameters was investigated. A Monte Carlo simulation

approach is most appropriate to obtain the statistics of a response sample. The

numerical cost can be reduced by using advanced sampling techniques.

The discretisation of the random field at the element level is convenient for

implementation within existing FE models and software. This approximation is

justified if the correlation length is large compared to the element size. Since a

refinement of the FE mesh is in general easily done, this approach seems suitable

for many applications.

The quantification of the random field suffers from the lack of experimental data.

In particular, information about the correlation length is not known, which has been

shown to be much more important than the type of correlation function (exponential,
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Figure 9.12: Cumulative density function of fundamental eigenfrequency: compari-
son of MC (n=2000) and LS (n=65) approaches, same correlation length.

triangular, Gaussian) [75]. A zero correlation length implies that the elements are

statistically independent. For a large correlation length, the results converge to

the case of total correlation, where all elements have the same properties. The

influence of the correlation length on the dynamic response of the windshield can be

fundamental. The maximum variation in the FRF is obtained if the thicknesses of

elements are all at a maximum or minimum. If the correlation between elements is

small, the probability that all thicknesses are near a maximum or minimum for the

same realisation of the random field is very low. If the correlation length is large

then the element thicknesses are all similar and it is more likely that all of them

are large or small for the same realisation. The sample statistics in Figure 9.6 show

the differences in the predicted response variation. If the correlation length is small

enough, the effect of variation in thicknesses can be neglected.

The assumption of a homogenous isotropic random field is reasonable, if no other

information about the manufacturing process is available. A Gaussian distribution

has been assumed for convenience, which seems reasonable for the nature of the

manufacturing process. The polymer layers mainly influence the acoustic properties

of the automotive windshield and also introduce a substantial amount of uncer-

tainty and variability. The change of material properties with temperature was not

considered in this work. There are well-established relations for temperature and

frequency dependent elastic properties of viscoelastic materials, which should be

included. The spatial variation of material properties is due to product variability
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and should be considered as well.

The use of a Monte Carlo simulation approach is often limited by the resources

available (especially time), because the deterministic model has to be solved repeat-

edly. If events with small probability of occurrence are of concern, for example in a

reliability analysis, the required number of evaluations can be much higher. In this

context the LS technique was applied, which achieves the same accuracy as the stan-

dard MC approach in a lower number of runs. It was shown that the term associated

with the largest contribution to the KL expansion is an appropriate choice for the

important direction. However, it has to be noted that in this case the convergence

of the LS estimator depends on the correlation length.



Chapter 10

Concluding remarks

This thesis concerned modelling approaches for the low-frequency analysis of built-

up structures with non-deterministic properties. The uncertainties due to a lack of

knowledge or the naturally inherent variation of properties in a numerical model are

of growing concern in industry and research. It is recognised that these effects have to

be taken into account in order to satisfy the increasing requirements towards product

performance. The challenges for an analysis with non-deterministic properties were

identified to be mainly the high numerical costs and the applicability and practicality

of the approaches. The high numerical costs are due to the repeated analysis of a

deterministic problem in most cases. The computational cost for one deterministic

solution is already high, because at low frequencies detailed information about the

response variation of the system is desired, which in turn requires a large finite

element model. In this work various strategies to reduce the number of deterministic

solutions and the computational cost for one deterministic solution were discussed.

First of all, any model reduction method is beneficial and can in general be

combined with other probabilistic or possibilistic approaches. In the context of

built-up structures, as is often the case in practice, the component mode synthesis

method is most appropriate, and a comprehensive review of deterministic component

mode synthesis approaches has been given. A number of original contributions were

made regarding component mode synthesis as a framework for the analysis of built-

up structures with non-deterministic properties. It has been shown that various

possibilities and advantages arise from the multi-level quantification and propagation

of uncertainties and the substructuring itself. These include the numerical costs

as well as issues of applicability and practicality. Overall, the component mode

synthesis method offers some physical insight in the analysis and can be effectively

combined with other non-deterministic approaches.

The second class of methods to reduce the numerical costs concerns the applica-

tion of approximate propagation methods. In a linear modal analysis, the eigenvalue
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problem is often the computationally most expensive operation. For the reanalysis

of the eigenvalue problem, it is often appropriate to replace it with perturbation or

interpolation methods. Within this work, perturbational relations have been con-

sidered mostly within the component mode synthesis framework, which can in some

cases reduce the numerical cost of an uncertainty analysis to that of a deterministic

analysis. The accuracy of such numerically cheap approaches has to be seen in con-

text with the level of uncertainty in the statistics of the input data and is therefore

often acceptable.

The frequency response function in linear structural dynamic problems is often

found by modal superposition. The numerical cost of deterministic modal super-

position is very small. However, if there is uncertainty or variation in the modal

properties, a non-deterministic problem has to be solved for every frequency consid-

ered. In this work novel contributions have been made to non-deterministic modal

superposition, where the modal parameters are described either by probability den-

sity functions or intervals. In the latter case, it is appropriate to make conservative

approximations in the modal space, independent of frequency, in order to calculate

frequency response function envelops efficiently.

Finally, a reduction in the number of required reanalyses for probabilistic ap-

proaches has been considered. The Monte Carlo simulation method is often used as

a reference solution, because it is robust and the Monte Carlo estimator converges to

the exact results for a larger sample size. The numerical cost of such an analysis can

be drastically reduced if advanced Monte Carlo methods are employed. In this the-

sis, the Line-Sampling technique has been reviewed and original contributions have

been made for its application in structural dynamics. In general, the Line-Sampling

method is as robust as the standard Monte Carlo method and the Line-Sampling es-

timator also converges to the exact solution for a large enough sample size. However,

if some additional information about the system, such as parameter sensitivities, is

known, then Line-Sampling achieves the same accuracy at a much smaller number

of deterministic solutions.

Many non-deterministic properties in mechanical structures are varying spatially

and can be appropriately modelled by random fields. The quantification of spatially

varying uncertain properties in existing finite element models and software has been

addressed in various applications.

All modelling approaches discussed in this thesis can be applied together. Com-

ponent mode synthesis is applicable to the linear analysis of built-up structures

and can be used to reduce the size of the model. At component level, spatially

varying properties can be quantified by random field models. Alternatively, uncer-

tainties can be quantified directly in terms of modal properties, for example from
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experimental data. The influence of neglecting uncertainty in various properties, for

example in component mode shapes, has been investigated. Perturbational relations

can be applied at any level of the component mode synthesis framework, but seem

most appropriate from component modal to component global properties. Subse-

quently, non-deterministic modal superposition is applied to estimate the variation

in the physical frequency response of the structure. Finally, for most probabilistic

propagations, the Line-Sampling method can be applied. The known characteris-

tics of structural dynamic properties allow Line-Sampling to work very efficiently.

Overall, all methods discussed provide some physical insight into the quantification

and propagation of non-deterministic properties. The main focus is on reducing the

computational costs and increasing the applicability. The introduced approxima-

tions and errors are transparent and can often be neglected in view of the level of

uncertainty in the input parameters. In any case, the results of the baseline analysis

are still available and have been enhanced with information concerning the more

complex behaviour of the system.

10.1 Conclusions

The specific conclusions of this thesis are:

• The high numerical cost is a major challenge in the low-frequency uncertainty

analysis of structures using the FE method.

• Approximate propagation methods based on perturbation and interpolation

are appropriate to reduce the numerical cost.

- Perturbation and linear sensitivity approaches are useful techniques if the

change in a parameter is small and the change in the quantity of interest

is small as well.

- Approximation errors can often be neglected with respect to the level of

uncertainty in the statistics of input data.

• Spatial variations of properties should be considered and can be appropriately

modelled by random fields and the KL expansion.

- A discretisation of the continuous random field at the element mesh us-

ing point discretisation methods is convenient for implementation within

existing FE models and software.

- The correlation length is the most important parameter of the random field

model and influences the results and their accuracy in many applications.
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• Deterministic model reduction can be used in an uncertainty analysis to reduce

the numerical cost.

- It is often an essential step in a low-frequency non-deterministic analysis,

where the models are in general large.

- The CMS method is appropriate for the modelling of built-up structures and

their components.

• The CMS method provides a suitable framework for uncertainty quantification

and propagation.

- Several advantages arise from the fact that CMS introduces the component

modal level as an additional coordinate system.

- Each substructure can be treated independently.

- The fixed-interface CMS method has further advantages due to the special

structure of the global mass and stiffness matrices.

• The modal superposition method can be applied to non-deterministic modal

data.

- A definition of the modal space using a modal constant and the eigenvalue

has advantages compared to the often-used definition of a specific modal

mass and stiffness.

• LS is a numerically efficient approach that can often be applied instead of the

MC method.

- Its accuracy depends on the existence and identification of an important

direction.

- It can be applied efficiently to structural dynamics, e.g. for the evaluation

of eigenfrequency and FRF distribution functions and statistics.

10.2 Suggestions for future work

Future work in order to extend the contents of this thesis should first of all concern

the effects of further sources of uncertainty, such as damping and the properties of

joints. The modelling of the effects of deterministic damping in structural dynamic

models is a difficult problem and still a subject of basic research. Therefore, the

uncertainty and variability in damping is often neglected and simple deterministic

damping models are employed. However, for some cases the variation in damping
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might be the most decisive factor for the variation in the response. In a modal anal-

ysis, it can be assumed that a change in damping only causes a change in response

magnitude. Therefore, variability and uncertainty in damping could be considered

independent of variations in eigenfrequencies and modeshapes at little extra cost.

However, non-classical damping approaches have to be used for joints and other com-

plex components. Most mechanical structures comprise some sort of joints and often

the effects of the uncertainty in joints can be more important than other sources of

uncertainty in a structure. There is a wide range of dynamic characteristics between

different joints and the behaviour of joints often differs greatly from the behaviour of

the rest of the structure. Furthermore, the influence of the joint properties depends

on many factors such as the frequency of vibration. Novel approaches are required

to assess the influence of joint uncertainty and include them in the modelling. A

promising idea is to define characteristic joint properties, which are different from

the physical properties, and to model the variation in the most important of them.

An important task for future work is the assessment of the numerical approaches

in regards to their application to realistic engineering problems. Existing and newly

developed methods have to be validated and tested. This could include benchmarks

against other numerical methods and a comparison with experimental data. In this

context it is important to assess what experimental data are likely or possible to

be obtained in connection with an application case. Some theories and models for

the quantification of non-deterministic effects (e.g. random fields) have been around

for many decades, but the experimental data required to define them is often not

available.

In a practical situation various sources and types of uncertainty are present

in general. Therefore, a comprehensive framework for uncertainty modelling that

makes used of all available individual methods should be provided. In this context,

the full frequency range has to be considered. The combination of probabilistic and

possibilistic data remains a challenge and further research is required regarding the

modelling of hybrid data and the use of hybrid methods.

The work in this thesis concerns the forward propagation of non-deterministic

data. In order to achieve the overall goal of a robust design of structures, this can

be complemented with inverse propagation methods and optimisation techniques.

In this context, it can be the case that the variation in the response is given and

the corresponding variation in input parameters has to be found, which conforms to

model updating under uncertainties. Similarly, the objective function in reliability-

based design optimisation takes account of the variation in the properties of interest.
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