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built-up structures with non-deterministic properties

by Lars Hinke

Virtual simulations of the behaviour of mechanical systems are of widespread
use in academia and industry. Mechanical structures are often analysed using the fi-
nite element method, where deterministic models with one particular set of physical
parameters are employed. However, the underlying assumption that the input data
is precisely known is in general not valid, because there are uncertainties about the
parameters, often until the last stage of the design cycle and even when the product
is in service. Furthermore, every manufacturing process naturally introduces some
product variability, which is inevitable. These effects can be compensated for by
the application of safety factors. However, with the increasing requirements towards
product performance, the effects of non-deterministic properties are of growing con-
cern and advanced methods are needed that properly take them into account. In
this context, it is often more important to predict the variation in the response than
attempt to further improve the accuracy of a deterministic model. A number of
viable methods to take non-deterministic properties into account already exist, but
their computational efficiency and applicability have to be increased.

In this thesis, a framework for the non-deterministic analysis of built-up struc-
tures using component mode synthesis (CMS) is presented. It is shown how several
coordinate systems in CMS can be used advantageously for the quantification and
propagation of non-deterministic data. A specific approach, based on considering the
variation in component natural frequencies only, is introduced and its efficiency and
accuracy investigated. The application of perturbational relations for uncertainty
propagation in CMS is discussed. The framework of CMS is also used to com-
bine qualitatively different uncertain data and the inclusion of experimental data
is addressed. Overall, CMS methods can be used to reduce the numerical costs,
improve the applicability of the approaches and also gain some physical insight for a

structural dynamic problem with non-deterministic properties. Furthermore, several



contributions are made to simulation methods that are usually applied in connection
with the CMS approach. Different concepts for non-deterministic modal superposi-
tion are presented, which can be used to estimate the variation in frequency response
functions from uncertain modal data. The application of the Line-Sampling simula-
tion method, as an advanced Monte Carlo approach, to structural dynamic problems
is shown. Finally, the modelling of spatial variations in components using random
fields and the implementation in existing finite element models are addressed. Nu-

merical examples are presented throughout.
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Chapter 1

Introduction and background

1.1 Preface and motivation

All industrial sectors face the challenge of improving the performance and quality
of their products and, at the same time, reducing the development time and cost.
This can be achieved by employing virtual prototyping and simulation, i.e. using
numerical models. In this way, the optimal product design can be found at an early
stage in the product development cycle, where the cost associated with changes and
modifications is small, and the number and range of necessary practical tests can be
reduced. Hence, there is a constant need for appropriate modelling and simulation
methods and tools. In this context, the effects of non-deterministic properties are

of growing concern and advanced approaches are needed to take them into account.

1.1.1 Virtual simulation and non-deterministic effects

Figure 1.1 shows the outline of a typical computer simulation. Input data is specified
for the numerical model of a real system and the response is calculated. Mechanical
structures are often analysed using the finite element method (FEM) [9, 10]. In
a structural dynamic analysis [11, 12|, the input parameters are mass, stiffness
and damping properties and the response quantities of interest can be frequency
response functions (FRFs), eigenfrequencies etc. If a physical realisation of the
structure is available, response measurements can be performed and compared with
the calculated response to validate the numerical model.

In general, methods for the analysis of mechanical structures employ determin-
istic models with one particular set of physical input parameters. However, the un-
derlying assumption that the input data is precisely known is in general not valid,
because there are uncertainties about the parameters, often until the last stage of

the design cycle and even when the product is in service. There are also uncertain-
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Figure 1.1: Qutline of a numerical simulation with non-deterministic effects.

ties about the model, because it is always an idealisation of the real system, based
on assumptions and approximations. Furthermore, every manufacturing process
naturally introduces some product variability, which is inevitable. These sources
of uncertainty and variability are indicated in Figure 1.1, and lead to variation in
the response. The non-deterministic effects can be compensated for by the applica-
tion of safety factors. However, with the increasing requirements towards product
performance, advanced methods are needed that properly take these aspects into
account. In this context, it is often more important to predict the variations in the
response than attempt to further improve the accuracy of a deterministic model.
This forward analysis concerns the quantification of uncertainties and variabilities,
their numerical propagation through the model and the prediction of variations in
the system response (see Figure 1.1).

Considering non-deterministic effects also implies changes to the objective of
inverse analyses, such as optimisation and model updating [13]. Instead of optimis-
ing the value of a certain response quantity, it might be important to minimise its
sensitivity with respect to changes in the input parameters and the model. In the
context of product variability, sometimes an ensemble of different measurements for
nominally identical products is available. The model should then be updated such
that it predicts the mean response and its variations. The overall objective of all
non-deterministic analyses is to achieve a more robust design.

The work presented in this thesis concerns modelling approaches for the dy-

namic analysis of mechanical structures based on the finite element method. It is
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confined to the forward analysis, addressing the quantification of non-deterministic
properties in the structure and their subsequent propagation through the model.

Non-determinism in the excitation is not considered.

1.1.2 Types of non-determinism

There are many different classifications for non-deterministic effects. In the follow-
ing, three complementary definitions based on the origin and cause of the variations,
the way they are described in the modelling process and the point at which they are
quantified in the numerical model will be presented.

The sources of non-determinism can be distinguished into two fundamentally
different categories [14]. Reducible uncertainty, also known as epistemic uncer-
tainty, is due to a lack of knowledge, especially in the early stages of the design
process and even when a product is in service. It can be removed by gathering
more information. The uncertainty associated with a development process can be
purely man-made, for example if input parameters of an initial design are expected
to change over time and the resulting variations in the response are to be predicted.
When a product is in service, there is often incomplete information about the accu-
racy of the model, for example the damping properties. However, this means that
the data might be either correct by chance or incorrect. Irreducible uncertainty
or variability, also known as aleatory uncertainty, describes inherent, naturally
introduced variation that cannot be removed. It can be further separated into intra-
variability and inter-variability, concerning the variation of the properties of one
product with time and the variation of the properties of more than one realisation
of a product, respectively. Intra-variability is due to environmental effects (e.g.
temperature), operating conditions, wear, fatigue and so on. Inter-variability de-
scribes differences between individual realisations of a product, which can be due to
variations in the material and geometric properties and the manufacturing process
(tolerances etc.). A comprehensive survey of sources of uncertainty and variability
in general FE analysis is given by Alvin [15]. Although the definition of these two
categories is widely accepted in the literature, the use of the terminology is not
unambiguous. The term "uncertainty’ alone is often used to describe all non-de-
terministic effects.

From an engineering and design point of view, it is important to understand the
source of the uncertainties. However, when it comes to numerical simulation, the
variation has to be quantified to make it accessible for the modelling. In general this
step is of crucial importance for the analysis, because it determines the calculation

approaches that can be applied and the quality of the results that can be achieved.



1. Introduction and background 4

Two different classes of a non-deterministic analysis, based on the quantification of
the uncertainty, can be defined. In possibilistic approaches the variation of a
parameter is specified by a range of possible values, given by a lower and an upper
bound for example. It is only known that there are possible realisations within the
interval, but no information about their likelihood are given. Similarly, the output of
any possibilistic analysis in general can not provide any information about the prob-
ability of events and only intervals of response quantities, such as FRF envelopes, can
be obtained. On the other hand, in probabilistic approaches information about
the probability of events is included. The variation of a parameter is typically spec-
ified by a probability density function (pdf), for example by assuming a common
distribution, such as a normal distribution. Therefore, distribution functions and
statistics of the response, such as a probability of failure, can be calculated. In
general, product variability has an underlying probability distribution that can be
quantified by observations. If there is not enough data available however, it might
be reasonable to use a possibilistic description instead. Epistemic uncertainties in
general can not be associated with distinct probabilities and a possibilistic approach
is often applied.

Finally, a separation can be made into parametric and non-parametric un-
certainties, the former directly related to given parameters and the latter often
associated with all other effects, such as the accuracy of the model. The numerical
model of a real system, including the specified parameters, is always an idealisa-
tion. It is therefore impossible to cover all non-deterministic effects by considering
parametric uncertainties only. However, in many cases it is reasonable to quantify
variation in the input parameters only, especially in a low-frequency analysis and
when the model has been validated. Product variability can often be appropriately
quantified using parametric approaches. Additionally, by quantifying uncertainties
numerically or experimentally in non-physical parameters, such as modal proper-
ties, some of the model uncertainties can be included. It is often observed that
the statistics of various quantities are asymptotic, especially for higher frequencies.
The natural frequency spacing, for example, can then be described by the Gaus-
sian orthogonal ensemble [16]. Furthermore, response levels often have a normal or
log-normal distribution. Therefore, it is possible to predict the response variations
inherent in the design without the need to quantify specific variations in input pa-
rameters. Other non-parametric approaches focus on the random structure of the
system matrices, utilising for example random matrix theory [17] and matrix variate
distributions [18]. Methods have been proposed that are based on the direct con-
struction of a probabilistic model for the mass, damping and stiffness matrices of a

FE model [19, 20]. Furthermore, a unified approach [21] to model both paramet-
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Figure 1.2: Measured FRFs of beer cans: (a) variability in nominal identical struc-
tures, (b) repeatability [1].

ric and non-parametric uncertainties simultaneously has been proposed. Random
matrix theory also gives rise to asymptotic statistics.

Various types of non-determinism will be considered in this work, with a focus
on parametric uncertainties. Both probabilistic and possibilistic approaches will be
addressed and some emphasis is placed on combining them, which can be a realistic

approach in some industrial applications.

1.1.3 Uncertainty assessment - experimental measurements

The inherent variations between nominally identical products are often of interest
in experimental investigations. Fahy [1] took 41 nominal identical mechanical struc-
tures (cans) and measured the FRFs for acoustic excitation. Figure 1.2a shows the
ensemble of 41 FRFs. There is a large variation over the whole frequency range and
only a few resonance peaks can be matched between the realisations. Figure 1.2b
shows a test of the repeatability of the measurements, where the same structure
has been measured, removed and replaced 8 times. There is some variation between
the 8 FRF's, which is due to differences and errors in the measurement set-up and
procedure. Therefore, it can be assumed that the higher variations in Figure 1.2a
are due to differences in the structural properties of the 41 cans.

Kompella and Bernhard [2] carried out an extensive experimental campaign mea-
suring structure-borne noise on a large number of nominally identical vehicles. The
ensemble of 98 FRF's is shown in Figure 1.3. The variations are considerable, but
resonance peaks can be identified at lower frequencies. A comprehensive analysis
of measured variability data for this, and other experimental campaigns, has been

performed in [22, 23]. The work focused on the FRF magnitude distribution at a
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Figure 1.3: Ensemble of measured FRFs for 98 nominal identical vehicles [2].

fixed frequency and the change of the distribution with frequency. It has been found
that a normal distribution is a reasonably good fit to the variations. In general, if
an assumption about the probability distribution of a input parameter has to be
made, a normal distribution seems to be most appropriate. It reflects the expected
behaviour that there is a concentration of realisations around the mean and fewer
realisations far away from the mean. Other works on the variations within nominally
identical product lines include that of Brown and Gear [24].

This thesis focuses on numerical methods for non-deterministic modelling and
no new experimental results will be presented. Newly proposed computationally
efficient approaches will be compared with numerical reference solutions and virtual
experiments are conducted. However, theoretical concepts that have the purpose of

improving the quantification of experimental data will be discussed.

1.1.4 Frequency range

In structural dynamics, the modelling requirements and objectives depend on the
frequency of vibration [25]. Many modelling approaches, such as FEM, are based on
domain discretisation, where the mesh size has to be refined for higher frequencies in
order to obtain results of similar detail and accuracy. Therefore, the model size and
the required computing resources increase with frequency and an analysis becomes
numerically more expensive. On the other hand, the required level of detail of an
analysis can differ depending on the frequency range of interest. Figure 1.4 shows a
typical ensemble of FRF's for a non-deterministic mechanical system, where the FRF

of one realisation is highlighted. The entirety of all possible FRFs (dark area) can
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Figure 1.4: Ensemble of FRF's and an individual FRF realisation.

be described by a lower and upper FRF envelope. Some frequency characteristics
of a deterministic FRF realisation can be described by the modal overlap M(f),
quantifying the number of modes that are significantly excited in a system at any
one frequency f. It is a dimensionless parameter, defined by M(f) = n(f) A(f),
where n(f) is the modal density, defined as the expected value of the number of
modes per unit frequency, and A(f) is the half-power bandwidth, which is the
difference between the frequencies where the FRF magnitude of a mode falls to
1/ V2 of the peak value. Furthermore, if the whole ensemble of FRF's is considered,
there is a degree of overlap due to the spread of individual natural frequencies. It can
be quantified by the stochastic overlap S(f), defined by S(f) = 2n(f)o(f), where
o(f) is the standard deviation of a natural frequency. In general, the modal density,
the half-power bandwidth and the standard deviation of natural frequencies increase
with frequency and so do the modal and stochastic overlaps. These parameters can
also be used as criteria to determine the required level of detail.

At low frequencies, both the modal and stochastic overlaps are typically small
and typically only one or two modes of vibration contribute to the response of the
structure at any one frequency. The individual resonance peaks are distinct and do
not overlap, even when their variation is considered. Therefore, detailed structural
results for modal properties and the FRF are of interest. These can be calculated
using standard finite element techniques and modal analysis. However, FE methods
in general might require a very large model size and therefore be numerically costly.
In connection with non-deterministic approaches, which often require that a deter-
ministic problem is solved repeatedly, the numerical cost becomes a major factor.

In the high frequency range, the modal and stochastic overlaps are typically greater
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than unity and many modes of vibration contribute to the structural response at a
given frequency. Individual resonance peaks cannot be recognised within the FRF
envelope. Therefore, the required level of detail for modal properties is low and
average quantities of the FRF are of interest. For this case, energy methods, such
as statistical energy analysis (SEA) [26, 27], are often employed. The models are
in general relatively small and the numerical cost does not pose a problem. In the
mid-frequency region, neither FEM nor SEA alone seem appropriate. A detailed
FE analysis is not necessary and also becomes unfeasible, because of the increase in
numerical cost with frequency. On the other hand, high frequency energy methods
do not provide the required level of detail. Therefore hybrid methods combining
both approaches have been suggested [28]. Within a built-up structure, the contri-
butions of components to the overall dynamic characteristics can be quite different.
Some components require a detailed FE analysis and others can be appropriately
modelled by energy methods [29].

This thesis will focus on low-frequency modal approaches for cases when rela-

tively large finite element models are required to obtain detailed structural responses.

1.2 Approaches for a non-deterministic analysis

It is appropriate to classify methods for an uncertainty analysis into probabilistic
and possibilistic approaches. In general, this determines the quantification and

propagation of non-deterministic data and the form of output response.

1.2.1 Possibilistic approach

In possibilistic approaches [30], the basic quantification of a parameter variation is
an interval, where only knowledge about a lower and upper bound is required. As
shown in Figure 1.5, a lower and an upper limit (x,, ) of the parameter x are given.
There is no information about the probability of a realisation within the interval,
i.e. there is no difference in the importance of a value near the middle of the interval
compared to one near the bounds. In general, a baseline value within the interval is
assumed for the deterministic problem. The difficulty lies in quantifying the bounds,
which are in general taken to be conservative. However, the specification of a bound
can easily be too conservative and unrealistic, especially if used to describe physical
variability.

If the variation in input parameters is defined by an interval, the variation in the
output can in general only be predicted as an interval. In Figure 1.6, the baseline

frequency response function (FRF) and conservative estimates for the lower and
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upper FRF envelopes are shown. The goal of a possibilistic propagation approach
[31] is to calculate the bounds on the response quantity of interest. If the problem
is monotonic, i.e. the output depends monotonically on every input parameter, it is
sufficient to consider all combinations of the bounds of the input parameters only,
which is referred to as the vertex method [32]. The numerical cost of this approach
is 2™ solutions of the deterministic problem, where n is the number of random
variables. The results are conservative, because correlations between several interval
variables and intermediate response calculations are neglected. If the conservatism
is unreasonably high, advanced interval methods, such as affine analysis [33], can be
applied to improve results. If the problem is non-monotonic, the vertex method does
not necessarily lead to conservative results, because any parameter value within an
interval may contribute to an extreme system response. In an approximate numerical
approach, additional points within the interval can be considered to cover some of
the non-monotonicity. The design of experiments (DOE) [34] methodology provides
a framework to facilitate the selection of a set of points in the uncertain input
parameter space. DOE methods apply to both experimental and numerical tests,
where only a limited number of parameter realisations can be considered and an
optimal selection has to be found.

There are approaches that extend the basic possibilistic concept by including
additional information within the interval. Fuzzy sets, for example, have been used
to represent incomplete information [35, 36]. Figure 1.7 shows a triangular fuzzy
membership function, where a level of membership u between 0 and 1 is indicated.

If p(x) = 0 then x is definitely not a member of the set, if pu(z) = 1 then x is
definitely a member of the set. For all 0 < p < 1 the membership is not certain.
This approach to uncertainty quantification is intended to be used for special types

of uncertain data, where neither a pdf nor an interval are appropriate, such as lin-
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guistic data from expert opinion. In order to make the fuzzy membership function
accessible for numerical propagation methods, it can be represented by a number
of intervals [37]. At predefined levels of membership «, the fuzzy membership func-
tion is intersected to find an interval for this a-cut. Subsequently, general interval
methods can be used and the output membership function can be reassembled from
the output intervals. This approach can also be seen as a framework for combining
several interval analyses, controlled by the shape of the fuzzy membership functions
and the parameter «. Specific interval propagation techniques, such as the trans-
formation method [38], have been developed for fuzzy membership functions. A
review of possibilistic uncertainties in finite element analysis, with a focus on fuzzy

methods, is given by Moens [30].

1.2.2 Probabilistic approach

In probabilistic approaches [39, 40|, information about the likelihood and probabil-
ity of events are included. In Figure 1.8 the variation in the parameter y is specified
by a probability density function (pdf), with mean value yo and standard deviation
oy. Similarly, the variation in the response can be quantified in terms of distribu-
tion functions or statistics. For example, Figure 1.9 shows percentiles for the FRF
distribution. In practice there is often not enough data to quantify a distribution
exactly and a standard pdf, such as a normal distribution, is assumed. The mean
value can be taken as the deterministic value and only the variance has to be quan-
tified. A normal distribution is often a reasonable assumption to model product
variability in physical processes. In statistics, this is also supported by the Central
Limit Theorem [41], which states that any sum of many independent and identically
distributed variables with finite variance is approximately normally distributed. The

unbounded tails of the normal distribution are often inconsistent with reality, which
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has to be taken into account.

Uncertain mechanical structures often have spatially varying properties, such as
the thickness of metal panels, which can be represented by random fields [42]. In
stochastic finite element methods [43], the continuous random fields are first dis-
cretised and represented in terms of a finite number of random variables, i.e. the
number of degrees of freedom (DOFs) of the system. Subsequent decomposition
schemes, such as the Karhunen-Loeve (KL) expansion [44], lead to a system of ran-
dom algebraic equations, which are accessible by uncertainty propagation methods.

The standard method for propagating probabilistic data is the Monte Carlo (MC)
method [45-47]. In standard MC sampling, parameter values are randomly drawn
according to their probability distributions and a deterministic problem is solved for
each sample. The results are analysed to estimate response statistics and distribu-
tion functions. The method is very robust and converges to the exact solution as the
sample size tends to infinity. It makes no approximations and considers all effects
modelled in the deterministic problem. In general, a sample size of the order of 10
is sufficient to estimate the mean of a distribution function and a sample size of the
order of 100 is required to obtain a reasonable estimate of the variance. However,
the numerical cost to estimate a small probability of failure can be in the order of
thousands of deterministic solutions.

In contrast to sampling approaches, there are various subspace projection schemes
[48], such as polynomial chaos expansion [43] and stochastic reduced basis methods
[49]. Other approaches for uncertainty quantification include Dempster-Shafer the-
ory (DST), which is an evidence based approach [50, 51]. It allows one to consider
a level of confidence in the probabilities of certain events. Similarities with fuzzy

approaches and probability distributions have been shown [52].
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1.3 Challenges for and solutions of a

non-deterministic analysis

Virtual simulations of the behaviour of mechanical systems are of widespread use
in academia and industry. There are well-established commercial software pack-
ages for the finite element analysis of mechanical structures. However, in general
a deterministic model with one particular set of physical parameters is employed.
The effects of non-deterministic properties are of growing concern in the design of
engineering structures and a number of viable methods to take them into account
already exist. In order for them to become of widespread use in industry, the ad-
ditional challenges of a non-deterministic analysis have to be addressed. These are
in general the increased numerical cost and the applicability and practicality of the

approaches.

1.3.1 Numerical cost

For the analysis of a structure with non-deterministic properties, most approaches
require that the deterministic problem is solved repeatedly and are therefore numer-
ically expensive. Probabilistic methods, such as Monte Carlo sampling, may require
a large sample size. The numerical cost of possibilistic approaches, such as interval
methods, increases exponentially with the number of uncertain parameters. There-
fore, research has focused on reducing both the number of necessary deterministic
solutions and the calculation time for one deterministic run.

Reducing the number of necessary deterministic solutions. In a Monte
Carlo analysis, the number of necessary evaluations can be reduced by using ad-
vanced sampling techniques [53]. These reduce the variance of the sampling esti-
mator and achieve the same accuracy with a lower number of samples. The most
common techniques are importance sampling [54], directional sampling [55], subset
simulation [56] and Line-Sampling [57].

The DOE methodology can also be applied to create advanced MC methods to
estimate the mean and variance of a distribution using a very low number of samples.
Latin Hypercube sampling [58] is a version of stratified sampling, where it is ensured
that the samples are taken more evenly from the input parameter distribution.

In a possibilistic interval analysis the number of required solutions mainly de-
pends on the number of independent variables. Therefore a reduction in the number
of variables or the inclusion of assumptions regarding their interdependence can re-
duce the numerical cost. In the case of non-monotonic possibilistic problems, the

accuracy of the results is related to the number of simulations performed. The DOE
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methodology provides a systematic approach to get the best results from a minimum
number of deterministic runs. In this context, advanced transformation methods are
available for the propagation of fuzzy membership functions [38]. Furthermore, hy-
brid exact/approximate techniques have been developed for the fuzzy finite element
method [59].

Reducing the calculation time for one deterministic solution. In general,
a smaller model can be solved faster and therefore most model reduction techniques,
such as Guyan reduction [60] or component mode synthesis (CMS) [61], are appro-
priate to be applied in a non-deterministic analysis.

The calculation cost for one solution can also be reduced drastically, if numeri-
cally expensive operations, such as solving the eigenvalue problem, are replaced with
numerically cheap formulations. First order perturbation methods using response
sensitivities [62] are appropriate for low levels of uncertainty. For larger uncertain-
ties, higher order perturbation or interpolation can be used. A systematic approach
to select the reference solutions for an interpolation is given by the design of ex-
periments methodology. It can also be used to construct an approximate response
surface model (RSM) [63], which replaces the original model to provide a relation-
ship between input parameters and response quantities. Although a replacement of
the original model is often associated with errors due to approximations, these can

often be neglected with respect to the level of uncertainty in the input data.

1.3.2 Applicability and practicality

The other main challenge to achieve a successful and beneficial use of non-determin-
istic simulation approaches is to increase their applicability and practicality. This
concerns the quantification of uncertainties using available experimental or numer-
ical data, and the combination of qualitatively and quantitatively different data,
amongst others.

In order to increase the applicability, the requirements for industrial applications
have to be considered. Approaches should support the use of standard finite element
software and not be limited by the size and complexity of the model. In industrial
applications, there can be a large number of uncertain parameters (> 100) with a
considerable magnitude of variation. These could include physical, geometrical and
material properties as well as loads and boundary conditions. Some approaches,
such as Monte Carlo sampling, are independent of the number of uncertain parame-
ters. Substructuring and model reduction techniques become more useful for larger
models.

Empirical data should be used for uncertainty quantification wherever possible.
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It is therefore important to assess what experimental data are likely to be obtained.
Some theories and models for the quantification of non-deterministic effects (e.g.
random fields) have been around for many decades, but the experimental data re-
quired to define them is often not available. In this context, the quantification of
uncertainties in modal properties can be more practical.

In practice it is most likely that both probabilistic and possibilistic uncertainty
descriptions are given within a built-up structure or an individual component. There-
fore, the modelling has to consider their practical combination, i.e. defining some
data probabilistically and some possibilistically.

The modelling of damping in structural dynamic models is a difficult problem.
However, for some cases the variation in damping might be the most decisive factor
for the variation in the response. In a modal analysis, it can be assumed that a
change in damping only causes a change in response magnitude. Therefore, vari-
ability and uncertainty in damping can be considered independent of variations in
eigenfrequencies and modeshapes.

Most mechanical structures comprise some sort of joints and often the effects of
the uncertainty in joints can be more important than other sources of uncertainty
in a structure. There is a wide range of dynamic characteristics between different
joints and the behaviour of joints often differs greatly from the behaviour of the rest
of the structure.

A promising approach to address several of these challenges is substructuring,
which will be addressed in this thesis.

1.4 Scope of the thesis

The thesis concerns the dynamic analysis of mechanical structures that are modelled
by the finite element method. The vibrations of multi-degree-of-freedom, viscously-

damped linear systems is described by the differential equation
Miu+Cu+Ku=f (1.1)

where M, C and K are the mass, damping and stiffness matrices, respectively, u is
a vector of displacements and f a vector of forces. For free vibration (f = 0), the

undamped eigenvalue problem

K —AiM] ¢, =0 (1.2)
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gives the ith eigenvalue and eigenvector \; and ¢, respectively. If damping is as-
sumed to be proportional (Rayleigh damping) then these eigenvectors are also eigen-
vectors of the damped system. This work considers low-frequency modal approaches
for the forward analysis concerning eigenvalues, eigenvectors and frequency response
functions. Parametric uncertainty in both physical and modal properties is consid-
ered. The excitation is deterministic and all properties are time-invariant.

At low-frequencies, the modal and stochastic overlaps are small and detailed
information about the structural response is desired. The frequency response can
be expressed in terms of modes of vibration, obtained from solving the eigenvalue
problem. It is appropriate to first estimate the variation in the eigenvalues and
eigenvectors and subsequently propagate these effects to the FRF. The thesis will
present a framework for the non-deterministic analysis of built-up structures us-
ing component mode synthesis (CMS). First, the variation in modal properties at
component level is estimated. Subsequently, it is propagated to the global modal
level and to the global physical frequency response. In this context, it is shown how
CMS is suitable to address several of the challenges of a non-deterministic analysis.
Overall, CMS methods can be used to drastically reduce numerical costs, improve
the applicability of the approaches and also gain some physical insight of the under-
lying problem. In addition, several advanced uncertainty propagation methods are
presented that can be used in conjunction with a CMS model.

The next chapter reviews some of the basic concepts for a numerically efficient
reanalysis of the eigenvalue problem, which is fundamental to linear modal anal-
ysis, but usually associated with high numerical costs. Chapter 3 addresses the
modelling of spatial variations in components using random fields and their imple-
mentation in existing finite element models. The concept of a random field model
with a possibilistic parameter variation will be presented. Subsequently, Chapter
4 focuses on model reduction techniques and the deterministic component mode
synthesis method. Chapter 5 discusses the advantages of substructuring and CMS
for a non-deterministic analysis. These arise from that fact that each substructure
can be treated independently regarding the quantification and propagation of non-
deterministic data. For each component a qualitatively and quantitatively different
analysis method can be chosen. A specific approach, based on considering the vari-
ation in component natural frequencies only, is introduced and its efficiency and
accuracy investigated. The application of perturbational relations for uncertainty
propagation is presented. The framework of CMS is also used to combine possi-
bilistic and probabilistic data. Subsequently, free and fixed-interface methodologies
in CMS are discussed in Chapter 6. In low-frequency approaches, the global fre-

quency response can be expressed in terms of modal responses. Chapter 7 discusses
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various aspects of non-deterministic model superposition. A new approach to the es-
timation of frequency response function envelopes from possibilistic or probabilistic
data is presented. The Monte Carlo method will be used to propagate all prob-
abilistic uncertainties and especially to estimate percentiles of modal properties.
Advanced Monte Carlo methods are essential for reducing the cost of the analy-
sis and will be discussed in Chapter 8. Novel contributions will be made to the
Line-Sampling technique, including its application to the estimation of distribution
functions and its use in conjunction with random field models. The application case
of an automotive windshield is presented in Chapter 9. The creation of an ap-
propriate non-deterministic model, implementation within the finite element model
and processing using commercial software are discussed.

In summary, the original contributions of this thesis are:

e CMS as a framework for the low-frequency analysis of built-up structures with
non-deterministic properties (Chapters 5 and 6)
- Advantages of substructuring and multi-level quantification and propagation
of uncertainties
- Application of perturbational methods within CMS
- Assessment of approaches regarding efficiency, sources of inaccuracies and
error

- Combination of probabilistic and possibilistic approaches

e Uncertainty quantification (Chapters 3 and 6)
- Possibilistic parameter variation in random field models

- Free and fixed-interface methodologies in CMS

e Non-deterministic modal superposition (Chapter 7)
- Proposal of new parameter set for the modal space

- Combination of possibilistic and probabilistic approaches

e Application of Line-Sampling (Chapters 8 and 9)
- Estimation of distribution functions and other statistics

- Efficient combination of Line-Sampling and random field models

e Industrial application case (Chapter 9)
- Implementation of random field in existing FE model
- Automated analysis using a PERL script, MATLAB and NASTRAN software



Chapter 2

Eigensolution reanalysis

2.1 Introduction

This chapter concerns the numerically efficient reanalysis of the eigenvalue problem
in the context of a non-deterministic analysis. The eigenvalue problem is one of the
most important equations in structural dynamics and many other fields. It is essen-
tial for linear modal analysis and modal superposition. The eigenvalues correspond
to resonance frequencies of the system and the eigenvectors can be used to perform
a transformation from physical to modal coordinates. In general, the eigenvalue
problem also involves the highest numerical cost in an analysis. Therefore, reducing
the numerical cost and resources that are associated with the eigenvalue problem
has a significant effect on making a non-deterministic analysis more efficient. This
chapter reviews some basic concepts to replace the eigenvalue problem with numer-
ically cheap algebraic equations. These are based on the fact that the reanalysis of
the eigenvalue problem in a non-deterministic analysis often occurs only with small
changes in the governing parameters. Some of the expressions will be used in later

chapters, for example in combination with component mode synthesis.

2.2 Eigenvalue problem

Consider a multi-degree-of-freedom damped linear dynamic system with mass (M),
stiffness (K) and damping (C) matrices of size n x n. The eigenvalue problem of

the undamped system is given by
(K — \M) ¢, = 0 2.1)

where \; and ¢, are the eigenvalues and eigenvectors, respectively, 2 =1,2,...n and

n is the number of degrees of freedom (DOF's).

17
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Assuming that the system matrices are symmetric, real-valued and positive defi-
nite, the eigensolutions are real and the eigenvalues non-negative. As a consequence,
the eigenvalue and eigenvector sensitivities are also real. In the case of a proportion-
ally damped system (Rayleigh damping), the damping matrix can be diagonalised
by the eigenvectors. Furthermore, the eigenvalue problem is self-adjoint and can

also be written as
¢ (K— M) =0 (2.2)

because the right eigenvector coincides with the left eigenvector. The orthogonality

conditions for mass-normalised eigenvectors are

SIMS, = G 2.3
6. Ko = i (2.4)

where ¢ is the Kronecker Delta.

Changes in the stiffness or mass matrices lead to changes in the modal properties
and therefore a reanalysis of the eigenvalue problem is required. However, an exact
reanalysis, solving Equation 2.1, is often not feasible due to the high numerical
cost associated with the eigenvalue problem. In the following, numerically cheap
approximate reanalysis methods based on perturbation and interpolation will be

reviewed.

2.3 First order modal sensitivities

A change in the ith eigenvalue (A);) due to changes in parameters (Ap;) can be

approximated using first order sensitivities in the form

AN ~ Z apj (2.5)

where g}’:; is the derivative of the ith eigenvalue \ with respect to the jth parameter
p evaluated when Ap = 0. A similar expression can be used for the variation in
eigenvectors. The rate of change of eigenvalues and eigenvectors has been studied
extensively [64-67]. Differentiation of Equation 2.1 with respect to a parameter p,

yields

(a_K )y aM) o, — O 9 _ g (2.6)

Pl TN Mep, + (K — AWM
Opj Op; Ip; Pit( ) Ip;
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Premultiplying by qbZT and some manipulation leads to

O\ oK oM
— N— | &, 2.7
Ip; ¢ (apj Ip; ) ¢ 27)

which involves derivatives of the mass and stiffness matrices as well as the baseline
eigenvalues and eigenvectors.

The rate of change of an eigenvector with respect to a parameter p; can be
expressed as the sum of contributions from all eigenvectors with factors v in the

form

Zwl (2.8)

8p]

Substituting this expression in Equation 2.6 and premultiplying by qb;‘f gives

0K 8M)¢ ¢T8)\M¢_O 29)

o1, (K — \M) Z’Yzl¢1+¢k (7

J Dj

which can be simplified to

0K 8M )\
e — Ni) Yie + T<— ) — wi=0 2.10
It follows that ( )
¢k op;j - g?;l ¢z .
Yik = (/\k_)\> k #1i (2.11)

Differentiation of Equation 2.3 with respect to a parameter p; yields

) - OM 06,
PN+ 6T g+ T
Ip; Pj Ip;

=0 (2.12)
Substituting Equation 2.8 into Equation 2.12 and some manipulation leads to

i = ——¢ (2.13)

) 8])]
Therefore the eigenvector sensitivity is found as
(aK oM

a¢ D) g,
=> - TRy bp — = (¢ 0 )qbi (2.14)

Pj k#i
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2.4 Perturbation of eigenvalue problem

If a change Ap in a parameter p changes the mass and stiffness matrices by AM

and AK, respectively, defined as
AK = K(p+ Ap) — K(p) AM = M(p + Ap) — M(p) (2.15)
then Equation 2.1 can be written as
(K + AK)(¢; + Ag,) = (A + AN) (M + AM)(¢; + Ag;) (2.16)

where Ag,; and A); denote the resulting change of the ith eigenvector and eigenvalue,

respectively. Expanding this equation and ignoring higher order terms gives
(Ko, + KA¢, + AK@,) =~ (\i\Mo, + MA@, + \AMa¢, + AA\Me,) (2.17)
Premultiplying by ¢iT and some manipulation leads to
AN = ¢} (AK — \;,AM) o, (2.18)

which approximates the change in eigenvalue due to a change in the physical matrices
to first order. It is equivalent to Equation 2.7 in the limit Ap — 0.

The perturbation in the ith eigenvectors can be expressed as

Ap; =D vy (2.19)
i#k

where ~;;, are first order quantities. By substituting Equation 2.19 into Equation

2.17, multiplying by ¢} and some manipulations, it can be shown that

_ N A (AK-NAM) ¢, ]
Agi=—) Sy b 5 (91AMe) ¢, (2:20)

ki

which can be compared to Equation 2.14. The approaches reviewed in this and the
last section are based on the assumption that there are no repeated eigenvalues,
which can be seen in the denominators of Equations 2.14 and 2.20. There are
advanced approaches that can cope with repeated eigenvalues [68, 69] or consider

damped dynamic systems [70, 71].
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2.4.1 Example

A single-degree-of-freedom model of a cantilever beam is considered, where the mass
is proportional to the length (m ~ L) and the stiffness is inverse proportional to the
length cubed (k ~ 1/L3). All other variables are equal to one and the length is the
parameter to be modified (p = L). The baseline value py and the change Ap are

specified as follows
p=po+Ap po=1 —-05<Ap<05 (2.21)

The eigenvalue is given as
k 1

A= = E (2.22)

In Figure 2.1 the approximations of the eigenvalue from Equation 2.7 and Equa-
tion 2.18 are compared with the exact solution. Whereas the sensitivity approach
results in a straight line with the same gradient as the exact solution at pg, the
perturbation of the eigenvalue problem gives a nonlinear approximation, which com-
pares much better to the exact solution. Although the perturbation only considers
first order terms, the approximation can be nonlinear, because the differences AK
and AM are nonlinear if the mass and stiffness matrices are nonlinear functions of

the parameter p. If the conditions

%Apj = AK and g—I;prj =AM (2.23)
hold, then the perturbation and the sensitivity approach yield the same results.
The perturbation and linear sensitivity approaches are useful techniques if the
change in a parameter is small and the change in the quantity of interest is small
as well. In general, except for periodic structures or if two eigenvalues are equal or
close, a small change in a physical parameter results in a relatively small change in

the eigensolutions.

2.5 Interpolation of eigenvectors

The perturbation and linear sensitivity approach both approximate a new evaluation
based on the change from the baseline solution. In contrast, there are interpolation
approaches, which use more than one exact solution to approximate a new evalua-
tion. The basic concept of these is reviewed next.

If Equation 2.16 is multiplied by (¢, +Adg,)? it follows after some rearrangement
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Figure 2.1: Approximation of an eigenvalue by perturbation of the eigenvalue problem
and linear sensitivity approach for a nonlinear function.

that
(¢ + Ap)" (K + AK)(¢; + Ag,)

(¢; + Ag,)T (M + AM)(¢; + A¢;)

which is also referred to as the Rayleigh quotient. The computationally expensive

(2.24)

part of this equation is to calculate a new eigenvector for any change in parameter
p. Bhaskar [72] suggested to solve the eigenvalue problem only for the smallest and
largest values of the parameter p and interpolate the eigenvectors for intermediate

values of p. Equation 2.24 becomes

ézT(K + AK) 9,

)\i —|— A)\z — -7 —
¢; (M + AM)¢;

(2.25)

where ¢ denotes the interpolated eigenvector. Considering the lower and upper

limits in the space of parameter p as

PL <P < PR (2.26)

two eigenvalue problems at p = p;, and p = pr have to be solved, which are given as

Kro, = A\tMro, Kropr = A\eMrop (2.27)
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The exact eigenvectors ¢; and ¢p are then combined using a varying weight by

¢=(1-t)¢,+1¢p (2.28)

The weight ¢ depends on the point of interest in the parameter space and is defined

by
p= L P (2.29)
PR —PL
This approach can be extended to any number of parameters. The parameter
space of two variable parameters p® and p® is shown in Figure 2.2. The eigenvalue
problem has to be solved for the parameter combinations in each of the four corners.

The normalised weights are defined as

el AR el )

ta
a _ a b _ b
Pr —Pp, Pr —PL

(2.30)
and the eigenvector for any combination of p® and p® within the parameter space

can be estimated by

=1 —t)1—t")pp, + 11— t")pp, + " (1 = t")pp + " "Ppp  (2:31)

which is a bilinear interpolation using the four exact solutions at the corners. The
number of eigenvalue problems to be solved increases exponentially with the number
of parameters, which makes this method computationally expensive.

An alternative approach would be to calculate the exact eigenvectors in two

opposite corners (¢, ®rr) only. The interpolation is then given by

d=1-tYp,, +t"Ppp (2.32)

where the weight is

th = (t" + %) /2 (2.33)

2.6 Interpolation of eigenvalues

The interpolation technique can also be applied to estimate eigenvalues. In [73] an
approach is presented where several approximate solutions of an eigenvalue, based
on perturbations about different points, are combined to one approximate eigenvalue
solution.

Equation 2.18 can be used to find the approximate solutions A and M based

on a perturbation about p = py, and p = pg, respectively. Alternatively, Rayleigh’s
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Figure 2.2: Two-dimensional parameter space.

k1 Ko
%“AAF”“JVVV'W2

Figure 2.3: Two-DOF system.

quotient, Equation 2.25, can be used with eigenvectors from the corner points in the

form of

3= &f(K + AK)o, 3B — {Z)E(K + AK)ép
¢, (M+AM)g,, ¢r(M+ AM)éy,

Both methods give an approximation of the eigenvalue from the left and from the

(2.34)

right side, which can be combined to one estimate based on the position in the

parameter space by

S PR=P5L, PTPL R (2.35)
Pr —PL PR —PL

Furthermore, since each approximation is exact in one corner, the error of the other
approximation can be evaluated, which can be used to change the weights and im-
prove the combined approximation. The values obtained using the Rayleigh quotient
are always larger than the exact solution, due to the nature of this approximation
[73].

The response surface methodology (RSM) [63] can be seen as an extension of the
interpolation approaches. It is used to construct an approximate meta-model, which
replaces the original model to provide a relationship between input parameters and

response quantities.
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Figure 2.4: Change of eigenvalue A\ due to changes in parameter ko: absolute val-
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2.6.1 Numerical example

A two-DOF mass-spring chain (Figure 2.3) is considered, where the stiffness ks can
vary as 1 < ky < 2 and the other properties have a deterministic value of one. The

mass and stiffness matrices are thus given as

1
01

The fundamental eigenvalue is calculated using an exact approach and several

2.36
bk (2.36)

(1+Fke) —ko ]

approximations. The interpolated eigenvector method (Equation 2.25) is applied
based on exact solutions for ks = 1 and ky = 2. Results for the interpolation of
eigenvalues (Equation 2.35) are not shown. The perturbation approach (Equation
2.18) around a baseline value of ks = 1 and ky = 1.5, respectively, is realised. The
results for the eigenvalues are shown in Figure 2.4a and the relative errors are shown
in Figure 2.4b.

In all cases the differences increase for values of ky that are further away from
an exact deterministic solution. The perturbation approach about the lower limit
of the interval of ko results in the largest errors of about 10% at the upper limit.

The perturbation about the centre point of the interval causes considerable errors of
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up to 3%. The interpolated eigenvector approach gives good results over the whole

interval with the maximum error of about 0.2%.

2.7 Discussion and concluding remarks

The basic concepts of modal perturbation and interpolation approaches have been
presented. The perturbation and linear sensitivity approaches are useful techniques
if the change in a parameter is small and the change in the quantity of interest is
small as well. In general, except for periodic structures or if two eigenvalues are equal
or close together, a small change in a physical parameter results in a relatively small
change in the eigensolutions. The interpolation approaches give good results for the
system discussed here. There are some constraints in addition to the ones above
in that eigenvalues must not change order when a parameter varies. The effects of
veering and crossing of eigenvalues have to be considered. The computational cost
of solving the eigenvalue problem at a number of points can become quite large. In
non-deterministic modelling, usually the baseline properties are known exactly but
lower and upper limits are difficult to define. There are many variations of these
approaches considering more complex systems and a larger number of uncertain

variables.



Chapter 3

Modelling of spatial variations by

random fields

3.1 Introduction

This chapter concerns the modelling of spatial variations, which is a common type of
uncertainty in mechanical structures. Many physical parameters, such as material
and geometric properties, vary locally and spatially, which can be modelled by prob-
abilistic random fields [42]. The Karhunen-Loeve (KL) expansion [40] is well suited
to represent random fields. It can be used to transform correlated random variables
into uncorrelated random variables. In the following sections, first the theory of
discretised random fields and the KL expansion are reviewed. The implementation
of random fields within existing finite element models and the relation between cor-
relation length and finite element size are discussed. Perturbational approaches are
considered in order to reduce the numerical cost. Finally, a new concept to model
spatial variations is presented in Section 3.4, which incorporates possibilistic bounds
for the local physical parameter variations and probabilistic parameters to include

the spatial variations.

3.2 Theory

3.2.1 Random field and Karhunen-Loeve expansion

A simple model for a random field is a homogenous isotropic Gaussian field, where
the random variables have a Gaussian distribution that does not change with di-
rection or location. Therefore, the interdependency between two random variables

defined at two points depends only on the distance between them. The correlation r

27
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between two Gaussian random variables can be modelled by an exponential function

) (3.1)

where ¢ is the standard deviation, L. is the correlation length and d = |x! — x?| is
1

of the form
d

r(d, L.,0) = 0% exp (— 7

the distance between two positions x!' and x2.
A Gaussian random field P(z) can be represented by the KL expansion in the

form [40] N
P(x) = P(x) + Zlﬁ(x)j\/ﬂ_j@ (3.2)

where (; are uncorrelated standard normal random variables, independent of z. The
deterministic terms p; and t; are the eigenvalues and eigenvectors, respectively, of
the covariance function C of the continuous random field. The integral eigenvalue

problem is given in the form

/C’(xl,XQ)d)j(xl)dx1 = ,ujd)j(x2) (3.3)

There are several approaches to the solution of Equation 3.3, for example by means
of a Galerkin procedure [43]. Similarly, there are several procedures for the dis-
cretisation of the continuous random field for a FE analysis, for example spatial
averaging methods, shape function methods and point discretisation methods [74].
Following the discretisation the covariance function can be replaced by a nxn co-

variance matrix C, for which the (k,[)th element is given by
Ckl:R(dkl,Lc,O') ]ﬂ,l: 1...n (34)

where n is the number of finite elements and where dy; = |x* — x!|, x* being the
centre of the kth element. The matrix C is a symmetric completely positive matrix
and the values on the diagonal refer to the autocorrelation and are equal to the
variance of the Gaussian variable. The eigenvalue problem of the covariance matrix
is

Y, = e, (3.5)
A discretised random field in one dimension, given by a vector p of length n, can be

represented by the KL expansion in the form [40]

r<n

P=DP+) Vi (3.6)
j=1
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where p denotes the mean, (; are uncorrelated standard normal (zero mean and
unit variance) random variables. The mean p and the eigensolutions u; and 1,
are deterministic. The randomness of the field is only included in (. There are n
eigensolutions, but in general it is sufficient to consider only the r < n eigenfunctions
with the largest eigenvalues, which give a good approximation of the random field.
The parameters of the Gaussian random field are the mean value p, the standard

deviation ¢ and the correlation length L..

3.2.2 Finite element methods

In the finite element (FE) method [9], the structure is divided into a number n. of
elements of finite size. The element mass- and stiffness matrices M, and K, are
assembled to give the global mass- and stiffness matrices M and K of the complete
structure. For simplicity, only the stiffness matrix will be considered in the following
derivations, but all expressions are equally valid for the mass matrix as well. The

global stiffness matrix can be written as

K=> A'K.A, (3.7)

e=1

where A, are transformation matrices given by
u. = A.u (3.8)

where u, and u are the element and global coordinates, respectively.

In order to model uncertainty, that is given by a probabilistic random field model,
point discretisation methods are often appropriate. These are known for their easy
and efficient implementation, because the value of the random field at location x* is
given by p; = P(z"). If the random field is discretised using the finite element mesh,
one value of the random field has to be assigned to each finite element, which can
be expressed as

K. = K.(p.) (3.9)

This can be done using the midpoint method, where the random field is evaluated at
the geometric midpoint of the element. Other approaches use a combination of the
random field values that are evaluated at the node points of an element [74]. It has to
be noted that the modelling of the random field using point discretisation methods
depends on the finite element mesh. However, this approximation is justified, if the

correlation length is large compared to the element size.
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The global eigenvalue problem is then given by

(K(p) — Xi(p)M(p)) ¢;(p) =0 (3.10)

where )\; and ¢, are the eigenfrequencies and mode shapes of the structure, respec-
tively, that depend on the vector p.

The statistics of the variation of these properties are usually estimated by a
Monte Carlo simulation approach, where the problem is solved repeatedly to obtain
a number of samples. In each run, first the element matrices K.(p.) and M.(p.)
are updated according to a realisation of the random field vector p (Equation 3.6).
Subsequently the global system matrices K(p), M(p) are assembled and finally the
eigenvalue problem 3.10 is solved. Alternative approaches include polynomial chaos
expansion [43] and stochastic reduced basis methods [49].

If the stiffness matrix K(p) is linearly dependent on p, then Equations 3.6, 3.7

and 3.9 can be combined to give
K(p) =Ko+ Y K( (3.11)

where Kj is the baseline stiffness matrix and the deterministic matrices K’ are given
by
K'=K({P') P =9 (3.12)

3.2.3 Perturbation

Expressions for modal sensitivities have been introduced in the previous chapter.

The rate of change of an eigenvalue with respect to a parameter v was found to be

[64]
O\ g (0K M
90 ®b; (% - /\iW) ®; (3.13)

Therefore, the derivatives of the stiffness and mass matrices with respect to the
parameter v are needed. For the application of random fields, these parameters are
the random variables (. The derivative of the stiffness matrix with respect to a

random variable ; can be written using Equation 3.7 as

e 0K, Op
§ AT °A 3.14
ac—j — e ape acj ( )
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where %—I;e is the derivative of the eth element stiffness matrix with respect to pa-
rameter p, and
Ope
= Vejv/Hy (3.15)
6(’]

is the derivative of the parameter p. with respect to the random variable (;. Equation
3.13 then becomes

a@ d [Zl (%I;: - Aiaal\zie) Aebes */”—]] » (316)
which can be written as
O\ TN y T
5, = &! [Z; Al DeiAe%] i1t (3.17)
where Y
De; = ap: — A ap: (3.18)

Finally the change in eigenvalue \; due to changes in the KL variables ¢ can be

approximated by

7‘<n]

=X\ + Z 8@ (3.19)

3.3 Example

A cantilever beam as shown in Figure 3.1 is used as a numerical example. The
element stiffness and mass matrices for Euler-Bernoulli beam theory and transverse
and rotational nodal DOFs are [9]

78 22a 27 —13a 3 3a -3 3a
B @ 22a  8a? 13a  —6a? K — ﬂ 3a 4a®> —3a 2a®
105 | 27 13 T8  —22a 27| -3 -3¢ 3 —3a
—13a —6a®? —22a 8a® 3a 2a* —3a 4ad®

(3.20)

where p is the density, F is Young’s modulus and a is half the element length. The
second moment of area I and the cross-sectional area A for a rectangular cross-
section with thickness h and width b are given by

bh?

[ = — A= 21
= bh (3.21)
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I [h [b |p |E
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Figure 3.1: Uniform cantilever beam with rectangular cross section, baseline para-
meters.

The uniform beam is divided into 20 elements. The left end is fixed and the length

of the beam is [ = 1m.

3.3.1 Random field for Young’s modulus

In this analysis, the Young’s modulus £ is modelled by a random field and a Monte
Carlo simulation with 10* realisations is performed. The pseudo-exact numerical
solution is compared with approximate solutions: first, a reduction in the number of
random variables (; from 20 to 5 in Equation 3.6 is considered (r < n). Second, the
perturbation (3.19) is applied to both the complete and the reduced set of random
variables (;. The criterion for comparison is the probability that the first eigenfre-
quency is lower than a certain limit. This limit was calculated for a probability of
10% from the exact numerical solution.

In Figure 3.2 the results are shown with reference to the exact solution. The
correlation length is L. = 0.5m and the coefficient of variation (CV = o/FE) is
varied from 5% to 20%. The error introduced by discretising the random field is very
small and can be neglected, because the correlation length is 10 times the element
length. It can be seen that all approximate solutions underestimate the probability
of occurrence and that the error increases for higher CV. The reduced exact solution
gives the best results, followed by the full perturbation and the reduced perturbation,
although there is little difference between the last two.

In Figure 3.3 the CV is 10% and the correlation length is varied. All approximate
solutions converge to the exact solution for a correlation length larger than L. =
10m. In this case, only the first few random variables (; are important. For very
large correlation lengths, the random field models a constant distribution of Young’s
modulus, which corresponds to a linear relation between the eigenfrequencies and

the first random variable (;.
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Figure 3.2: Variation in the fundamental eigenfrequency of a beam due to spatial
variation in Young’s modulus, different coefficient of variation, approximate results
by reduction in number of random variables and perturbation, L. = 0.5m.
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Figure 3.3: Variation in the fundamental eigenfrequency of a beam due to spatial
variation in Young’s modulus, different correlation lengths, approximate results by
reduction in number of random variables and perturbation.



3. Modelling of spatial variations by random fields 34

3.3.2 Random field for beam thickness

In this analysis, the variation of the beam thickness h is modelled by a random field.
This parameter appears linearly in the mass matrix and with a cubic term in the
stiffness matrix. In Figure 3.4 the correlation length is 0.5m and the CV is varied
from 5% to 20%. The error in the approximations increases with higher CV. The
reduced solution underestimates the exact results, because some contributions to the
variation are neglected. However, the perturbation overestimates the probability,
because there is a shift to lower values for the fundamental eigenfrequencies.

In Figure 3.5, the CV is 10% and the correlation length is varied. The reduced
exact solution always underestimates the exact result and converges to it for larger
correlation lengths. The perturbation underestimates the exact result for low cor-

relation lengths and overestimates it for large correlation lengths.
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Figure 3.4: Variation in the fundamental eigenfrequency of a beam due to spatial
variation in thickness, different coefficient of variation, approximate results by re-

duction in number of random variables and perturbation.
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Figure 3.5: Variation in the fundamental eigenfrequency of a beam due to spatial
variation in thickness, different correlations lengths, approximate results by reduction

in number of random variables and perturbation.

3.4 Possibilistic approach for spatial variations

In this section, the combination of the KL expansion with a possibilistic concept
is investigated. The basic idea is that the uncorrelated standard normal random
variables in the probabilistic approach are allowed to vary within a range where the
limits refer to possibilistic bounds of the physical variables. The KL expansion in

Equation 3.6 can be rewritten in the form

r<n

P=DP+Y Y (3.22)
j=1

where v; = 0(; and the eigenvalues [z; are independent of the standard deviation o.

In this case, the correlation function

d
R(d, L.) = exp (— ‘L_

) (3.23)

depends only on the distance d and the correlation length L.. In the standard
probabilistic random field approach, v, are uncorrelated random variables with zero
mean and variance o (v; = N(0,0)). In the proposed possibilistic approach, v; are

given by intervals with lower and upper limits referring to the given physical limits
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Figure 3.6: Variation of the upper limit of the fundamental eigenfrequency over
correlation length; possibilistic approach using KL eigenvectors; results for complete
and reduced set of variables.

(v; = [U_J’ j]).

There are n independent variables v; and a vertex approach [32] with 2" combi-
nations can be performed. If only the r eigenvectors with the largest eigenvalues fz;
are considered, the number of vertices reduces to 2".

The numerical example of Section 3.3 is used to obtain results. The beam is
modelled by 12 finite elements and the thickness of each element can vary by +10%.
The upper limit of the first eigenfrequency has been computed for correlation lengths
from L. = 1072 up to L. = 10*. In Figure 3.6 the results are shown for the cases
that all 12 eigenvectors of the covariance matrix and a reduced set of the first 6
eigenvectors are used in the KL expansion.

There is a maximum in the upper limit of the fundamental frequency for a
correlation length of about 1/3 of the length of the beam (L. = 0.3m). In this
case the contributions from the eigenvectors in the KL expansion are related to the
characteristic spatial variation of the thickness that results in a high upper limit for
the first eigenfrequency. For a higher correlation length, the upper limit of the first
eigenfrequency decreases and converges to the value for the case of a constant but
random thickness (f; = 10.66Hz). In this region, the reduced set of eigenvectors

yields accurate results. For correlation lengths L. < 1/3m, the upper limit decreases
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and converges to a value around f; = 11.25H 2. This corresponds to a solution where
all eigenvectors in the KL expansion contribute the same. However, in this region,
the correlation length is down to about one tenth of the element length and the
model is not valid, because the finite element mesh has an influence on the results.
Below a correlation length of about L, = 2 x 1073, the correlation is numerical zero
and all elements vary independently. In this case, the results shift to a larger value of
about f; = 12.1Hz. The solution with the reduced set of eigenvectors approximates
a lower value.

The standard possibilistic vertex approach requires that m = 2" combinations
are considered, where n is the number of uncertain parameters. However, only one of
these combinations corresponds to the upper limit of a response parameter. It would
be a computational advantage, if a reduced number of vertices can be identified
such that a smaller number of combinations (m < 2") has to be considered. In
this context, the eigenvectors of the covariance matrix can be used to select vertex
combinations. If the signs of the elements of the n eigenvectors are considered, 2n
vertices are described out of the complete set of m = 2". These selected vertices
are related to characteristic spatial variations of physical properties. For the one-
dimensional beam, these shapes are similar to the natural modes, which could also
be used to identify 2n vertices. In Figure 3.7 the results are compared for the cases
that all elements are independent (m = 2") or dependent (m = 2), and where 2n
vertices are found from KL eigenvectors and mode shapes, respectively. The results
for the upper limit of the first five eigenfrequencies are given in percent of the
maximum values from the exact vertex method. If a constant but random variation
is modelled for all elements, the results give much lower values for the first modes.
For higher modes the results from this approach improve continuously. The vertices
obtained from the KL eigenvectors give the best approximation for the fundamental
eigenfrequency. For higher frequency, there is no improvement compared to the
constant variation. This however seems normal for this simple beam model and

more complicated structures should be investigated.
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Figure 3.7: Upper limit of first five eigenfrequency. A - vertices from all elements
m = 2", B - vertices from KL eigenvectors m = 2n, C - vertices from natural modes

m = 2n, D - constant variation m = 2

3.5 Discussion and concluding remarks

Spatial variations of properties in mechanical structures occur often and should be
considered. Random field models and the KL representation are appropriate to
model spatial variations. A discretisation of the continuous random field at the
element mesh using point discretisation methods is convenient for implementation
within existing FE models and software. However, the dependency on the mesh size
has to be considered. If the correlation length is large compared to the finite element
size, then errors due to the approximation can be neglected. A perturbation method
is straightforward to implement, because the sensitivities of the random field vector
with respect to the KL variables are already given. The KL expansion can be used
to drastically reduce the number of random variables. The random field model can
be used to estimate the extreme cases of total correlation or no correlation between
the random variables by selecting a very large or very small correlation length,
respectively. However, in most practical cases, no data about the correlation length
is available. It has been shown [75] that the correlation length is more important
than the shape of the correlation function.

In this chapter a numerical example with spatially varying properties has been

considered. The efficient application of a random field model based on the KL ex-
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pansion was shown. The effects of a reduction in the number of DOFs and the
use of approximate perturbation methods were investigated. The introduced errors
depend on the correlation length. The truncation of terms in the KL expansion
leads to an underestimation of the variation. The number of required terms in the
KL expansion to achieve a certain accuracy can be calculated from the magnitudes
of the eigenvalues of the covariance matrix. The errors due to perturbation are
less predictable with both under- and overestimation of results possible, depending
on the correlation length and the uncertain parameters. In general perturbation
also leads to a shift in the mean value of response parameters. However, it is of-
ten appropriate to use perturbational relations to reduce the numerical costs. The
idea of a random field model with a possibilistic parameter variation has been pre-
sented. Although some physical interpretation of the results is possible, it remains

a theoretical approach.



Chapter 4

Model reduction and
substructuring for built-up

structures

4.1 Introduction

This chapter addresses the use of deterministic model reduction and substructuring
methods for the analysis of built-up structures. The calculation time of most math-
ematical operations increases nonlinearly with the size of the model and the storage
of large amounts of data is a problem as well. Model reduction techniques can be
used to reduce the computational cost drastically. This effect is even more important
in the context of repeated solutions of a deterministic model in a non-deterministic
analysis. Additionally, the concept of substructuring offers possibilities to include
uncertainties and variabilities at the component level in an appropriate way. All
methods introduced in this chapter are independent of the non-deterministic data.
There are some model reduction and substructuring methods that take the un-
certainty in properties into account directly [76]. However, for most cases, the
differences are small and negligible in the context of other sources of inaccuracies.
A reduction in model size can imply a loss of information and the reduced model
then only gives an approximation to the solution provided by the full model. There-
fore a reduction method should be case-specific and truncate only unwanted, unim-
portant or redundant information. The finite element model of a vibrating structure
is often defined by a mass and a stiffness matrix. Solving for dynamic properties
or responses generally involves an inverse matrix operation or an eigenvalue prob-
lem, which has a computational cost associated with it that is disproportionately

high compared to the number of DOFs. Therefore, reduction techniques have been

40
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specifically developed for static and dynamic FE problems. It is often appropri-
ate to perform a coordinate transformation and apply the reduction in a different
coordinate space than the original physical space.

An approach that goes hand in hand with reduction techniques is substructuring
[77]. If a structure is divided into several components, the computational cost of
solving all smaller problems independently is in general less than solving the orig-
inal large problem. In practice many complex structures already consist of several
components which are assembled in the final stage of production. They could be
manufactured by different companies and independent numerical models or solu-
tions already exist for each of them. In this case it is advisable to use the predefined
substructuring. It is then normally the case that uncertainties in each component
are statistically independent. It is also often appropriate and physically meaningful
to reduce the size of models at the component level. While here, the substructuring
is applied to the physical components, in general a structure could be divided into
substructures arbitrarily. Components can be defined according to mathematical
properties rather than physical or geometric criteria. One such method is Auto-
mated Multi-Level Substructuring (AMLS) [78], where a finite element model is
repeatedly divided into substructures based on the sparsity of the system matrices.

In Section 4.2.1 static and dynamic reduction methods, including Guyan re-
duction [60] are presented. These approaches are, in general, exact only for one
particular frequency. Section 4.2.2 describes the modal reduction approach, where
the model is transformed into modal space and some of the higher frequency modes
are neglected. Section 4.2.3 demonstrates a combination of the static and dynamic
reduction to make use of the advantages of both with respect to substructuring.
The main focus of this chapter is on component mode synthesis (CMS) methods
[9, 61, 79-87], which are described in detail in Section 4.3. These methods have
been developed mainly to improve the modelling of coupled substructures to get im-
proved accuracy of the assembled model, which is of a reduced size. The reduction
in size is done at the component level in the modal space.

In this chapter, deterministic model reduction and component synthesis will be
reviewed. In Chapters 5 and 6, the fixed-interface CMS method, which is reviewed
in Section 4.3.4, will be used as a framework for a non-deterministic analysis. In
order to follow the flow of the thesis, it is suggested to focus on Section 4.3.4 of this

chapter only.
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4.2 Model reduction methods

4.2.1 Static and dynamic reduction

The Guyan reduction method [60] is based on the reduction of the stiffness matrix
and is therefore also known as static condensation. The governing equation in static
analysis is given by

F =Ku (4.1)

where F and u are vectors of force and DOF's respectively and K is the stiffness

matrix. This equation can be partitioned in the form

_ Kss Ksu ug (4.2)
Kys Kuwm Uy

where the coordinates are divided into two sets S and M, which are referred to as

Fs
Fuy

slave and master coordinates. If the forces Fg are zero then the first line of Equation
4.2 gives
Ugs = —K;éKSMuM (43)

which can be used to eliminate the coordinates where no forces are applied. Substi-
tuting Equation 4.3 into the first line of Equation 4.2 gives the governing equation

of the reduced system in the form

with
K = [Kun — KusKgsKsu] (4.5)

This reduced static equation yields the exact solutions for u,;, and ug are then
calculated from Equation 4.3.

In a dynamic analysis the undamped equation of motion is given as
Mu+ Ku=f (4.6)

where M is the mass matrix and 1 denotes acceleration. Assuming time harmonic

iwt

Wi with magnitudes U and frequency w due to forces f = Fe™t,

motion u = Ue

Equation 4.6 can be written as

K-w’M]U=F (4.7)
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which may be partitioned into two sets of coordinates S and M in the form

Kss — w’Mgs Koy — w?*Mgy Ug _ Fg (4.8)
Kus — w*Muys Ky — w?Mpr Uy F '
Assuming that Fg = 0, the first line of Equation 4.8 gives
US = — [KSS — szsg] ! [KSM — w2M5M} UM (49)

In contrast to a static analysis, Equation 4.9 depends on the angular frequency w.
In order to perform the model reduction, a fixed value for the frequency can be
chosen. This approach is referred to as dynamic reduction, which is exact for the
chosen frequency only.

If the terms including mass and frequency in Equation 4.9 are small or zero, this

expression can be approximated by
Us = —Kg5eKsn Uy (4.10)

which conforms to the Guyan reduction method (Equation 4.3) where effectively a

frequency w = 0 is chosen. The transformation matrix ¥ is then given by

Us
Uy

and the mass, stiffness and force matrices of the reduced system are calculated by

I

~K K
. [ §5TRSM ] Uy = OUy, (4.11)

Krp; = 9'Kw¥

Mp = ¥'MW¥ (4.12)
fr = O'f
The equation of motion
MRﬁM—l—KRuM IfR (413)
and the eigenvalue problem
[Kr —AjMg| o, =0 (4.14)

are now reduced to the size of the set of master coordinates M. The solutions
for the set of slave coordinates S are calculated using the transformation matrix
(4.11). The static response is exact and the reduced stiffness matrix Kp preserves

all information. The reduced mass matrix however is not exact since approximations
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have been made to Equation 4.9. The eigenvalues and eigenvectors found from
Equation 4.14 are thus close approximations to the exact solutions [60]. These are
justified if low frequencies are considered or if the mass is small compared to the
stiffness at coordinates S [77]. Additionally the off-diagonal terms Mg, are zero in
diagonal mass-matrices or there may be no mass associated with some coordinates
in a lumped-mass parameter model.

In practice often only a few coordinates have forces acting on them and the ma-
jority of coordinates could be reduced. The partitioning depends on the application
and should comply with the approximations made in Equation 4.10. In substruc-
turing the coordinates at the boundaries are retained and the interior coordinates
can be eliminated.

A numerical example for the Guyan reduction method will be given for the

system shown in Figure 4.1. It is a mass-spring chain consisting of four masses and

N/m | 1025 | 1575 | 3025 | 2325
mq mo ms my

Figure 4.1: Four degree of freedom model for analysis

four springs, where at the left end spring k; is fixed and at the right end mass my is
free. The eigenfrequencies range from 0.58 Hz to 4.55H z. The system is treated as
one subsystem and mass 4 at the right boundary will be retained as a master DOF
in all cases.

In Figure 4.2 the receptance frequency response function (FRF) |aq4| is plotted.
This gives the response at DOF 1 for a time harmonic force applied at DOF 4. The
exact solution and solutions of reduced systems with different sets of master and
slave coordinates are shown. In Figure 4.2a, results are shown where coordinate
4 and one other coordinate at a time were chosen as master coordinates with the
remaining two coordinates being condensed. The size of the reduced system is half

the size of the original system and therefore two resonances are calculated. It can
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be seen that the first resonance matches the exact solution very well in all cases.
The second natural frequency however differs for the three cases. The accuracy
depends on the approximation made as describe in the previous section. In general,
the mass associated with the condensed coordinates and the contributions to the
modal masses, which depend on the mode shapes, are determining factors. The
fundamental frequency is predicted well, because the fundamental mode shape is
similar to the static mode shape. In Figure 4.2b, results are shown for the cases
where coordinate 4 and two other coordinates are retained, and hence only one
coordinate is condensed. If mass 3 is condensed, the approximation of the second
natural frequency is good, but the third frequency is in error. If mass 2 is condensed,
the results improve for the third frequency but worsen for the second.

The Guyan reduction method is correct for a static analysis, but in a dynamic
analysis a general error is introduced to the reduced mass matrix and therefore to the
modal properties. In general all natural frequencies and modes shapes are affected
because a modal mass depends on many physical masses. If the stated assumptions
are met then the approximations are valid and Guyan reduction can also be used
for dynamic analysis. However, the computational cost associated with calculating
the inverse of Kgg in Equation 4.3 can be high. In substructuring, some or all of
the interior DOFs can be condensed. The DOFs at the boundaries are retained so

that the physical coupling of components is simple.
4.2.2 Modal reduction
The eigenvalue problem of a structure is given by
K—-A\M]g¢;, =0 (4.15)

where K and M are nxn matrices. A modal transformation from the physical

coordinates u to the modal coordinates ¢ can be done by the transformation
u = ®q (4.16)

where the natural modes ¢ are the columns of the modal matrix ®. If only £ modes

are retained, this matrix reduces to ®; and the transformation

becomes a modal reduction from physical coordinates u to a smaller number of

modal coordinates q,. The reduced mass and stiffness matrices and the force vector
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Figure 4.2: Guyan reduction: comparison of implementations with different master
coordinates.
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are given by

Mp = &, M, (4.18)
Kp=® K&, (4.19)
fr=®.f (4.20)

and the reduced equation of motion is
Mrar + Kra = fr (4.21)

where K and Mpg are now of size kxk.

Such a reduction has been applied to the system in Figure 4.1. In Figure 4.3
the FRF of the reduced system is shown and compared with the exact solution.
Different sets of modes were used for the modal transformation. Figures 4.3a and
4.3b show the results if sets of two and three modes are used, respectively. It can be
seen that each mode dominates the FRF around its associated resonance frequency,
which is true if the damping is small. For a finite frequency range, only modes with
resonance frequencies close to that range are needed to obtain the exact solution
within limits.

In practice higher frequency modes are often neglected to reduce the size of the
system. Since the modal coordinates are independent, other natural frequencies and
mode shapes are not affected. Compared to static condensation the reduction takes
place in the frequency domain rather than in the geometrical domain. This is most
appropriate since only unneeded information is deleted and the effects are clear.
However, the full eigenvalue problem has to be solved to obtain the required modes.
The approach would be worthwhile though, if the reduced system can be used for
a number of subsequent calculations. Another advantage arises in substructuring
where it may be cheaper to solve the eigenvalue problem of a number of the compo-
nents and of the assembled reduced global system compared to solving the complete
global eigenvalue problem. The drawback of this approach is that all physical DOFs
are transformed into modal DOFs and therefore the synthesis of components is not

straightforward. Additionally the reduced equation of motion is not statically exact.

4.2.3 Modal reduction including static modes

Consider a modal transformation of a set of physical coordinates S in the form

ug = ®qg (4.22)
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where ®° is a set of the natural modes of the structure. Alternatively, the static

reduction from Equation 4.3 can be included to get
us = ®°qs — KgiKgyuy (4.23)

and the transformation matrix follows as

[ Ug ] _ P° —KgéKSM] [ qs ] (4‘24)

0 I Uy
In Equation 4.24 the natural modes ®° and the static modes are used to relate

the set of slave coordinates S to modal coordinates and master coordinates M.
The transformation 4.24 is exact, if the natural modes and the static modes are
linearly independent. A static mode is the displacement of all nodes due to a unit
displacement applied at one coordinate of the M set and all other coordinates M
fixed. Therefore, the modes ®° can be defined as the natural modes of the structure

with all DOFs u,; fixed. The eigenvalue problem for this case is given by
[Kss — A\jMgg] ¢ =0 (4.25)

If none of the natural modes are used, this approach equals the Guyan reduction
presented in Section 4.2.1. If all nodes are considered as slave coordinates S, this
becomes the modal reduction method described in Section 4.2.2.

In order to achieve a reduction in the size of the equation of motion, only some

of the natural modes will be kept in ®¢ and the transformation matrix becomes

o) K K
B=| * SSTRIM (4.26)
0 I
which reduces the mass and stiffness matrices by
Kr = B'KB
M; = B'MB (4.27)
fr = B'f

The transformation presented here is used in one method of component mode syn-
thesis, where a component is modelled with fixed-interface normal modes and static
constraint modes to account for the fixed interfaces. The boundary DOFs, which
are shared with other components, are selected for the set of coordinates M, while

all interior DOFs form the set S of coordinates. The physical boundary coordi-
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Figure 4.4: Comparison of modal reduction and CMS approach. Approximation of
first two and three modes, respectively.

nates are retained and the assembly of components is straightforward. The size of
the component model can be reduced by neglecting some of the higher frequency
fixed-interface normal modes. Additionally the reduced equation of motion is stat-
ically exact due to the constraint modes. The advantages of modal reduction and
Guyan reduction are combined. Guyan reduction, modal reduction and component
mode synthesis belong to the class of Rayleigh-Ritz methods with certain Ritz basis
vectors [77].

For the example in Figure 4.1, this fixed-interface CMS approach will be com-
pared with the modal reduction approach. Mass 4 at the right end will be considered
the boundary DOF where other components may be attached. Three natural modes
are found for masses 1 to 3 when mass 4 is fixed. Some of these will be used in ad-
dition to the static constraint mode for the transformation into modal space. The
results for different cases, where one or two of the natural modes are retained are
plotted in Figure 4.4a and 4.4b, respectively. The static mode is a good approxima-
tion to the fundamental mode and therefore the fundamental frequency is predicted

well. The first, second and third mode of the constrained system correspond to the
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second, third and fourth mode of the original system. The resonance frequencies are
predicted very well with a small difference in the magnitude for the CMS solution.
If more natural modes are taken into account, as in Figure 4.4b, the approximation

of all modes improves.

4.3 Component Mode Synthesis

The component mode synthesis method will be described in detail in this section.
Component mode synthesis (CMS) is a technique to assemble models of several
components. The static and dynamic behaviour of each component is described
in terms of a set of basis functions, e.g. the modes of the component. These
include normal modes found from solving a component eigenvalue problem and
additional static constraint or attachment modes. The reduction in size is achieved
by truncating higher frequency modes at the component level.

CMS methods originated in the 1960’s and 70’s, starting with a publication by
Hurty in 1965 [79]. Since then, numerous CMS methods have been presented, with
major contributions by Craig et al. [61, 85, 88]. Books on structural dynamics with
chapters dedicated to CMS are [9, 82, 83]. A general review of CMS methods can
be found in [81, 84, 86, 87].

In the following sections, first, different types of common component modes are
defined and a generalised approach for the coupling of components is presented. Sub-
sequently, the two most common CMS methods, the fixed-interface Craig-Bampton
method [61] and the free-interface Craig-Chang method [85, 88] are discussed in

detail and compared by numerical examples.

4.3.1 Modes in Component Mode Synthesis

In this section, component modes of different types will be derived. The undamped

equation of motion of a component is given by
Mu+ Ku=f (4.28)

where u are the physical DOFs and M and K are the mass and stiffness matrices,
respectively. The physical DOFs can be partitioned into a set of interior DOFs u;
and a set of interface, or boundary, DOFs upg. The interface coordinates are those
coordinates where two or more components are joined together. Each component

alone can be unconstrained or constrained (no rigid body freedom). Equation 4.28
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can be written as

M M U K K f
II IB .1.11 i II IB uy _ I ( 4‘29)
Mpg; Mpgg up Kgr Kpgp up fp
where fpz = 0 if the interface is free and ug = 0 if the interface is fixed. There are

no forces acting on the interior DOF's (f; = 0).

Free-interface normal modes

The free-interface normal modes of a component are the eigenvectors of the com-
ponent with the boundary DOFs free. They are found from solving the eigenvalue
problem

(K- A"M)gp!" =0 (4.30)

and can be combined as columns to give the normal mode matrix ®/”. The normal
modes may be divided into a set of modes k to be kept for further calculations and

a complementary set of modes d that will be deleted, i.e.
" — [ o ol ] (4.31)

Similarly, the eigenvalues A are arranged on the diagonal of the eigenvalue matrix

A and can be divided into sets k£ and d to give

A" 0

AT =
0 AJ

(4.32)

If a component is unconstrained, the normal mode set contains rigid body modes

with zero-valued eigenvalues.

Fixed-interface normal modes

The fixed-interface normal modes of a component are the eigenvectors of the compo-
nent with the interface DOF's fixed. The size of the eigenvalue problem is therefore
reduced by the number of interface DOFs. It is governed by the elements of the

mass and stiffness matrices associated with the interior DOF's only and given as
(Kir — A'My)f =0 (4.33)

where )\f " are the fixed-interface eigenvalues. The eigenvectors ¢£Z form the columns

of the normal mode matrix ®/*, which can be divided into a matrix with kept (k)
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and deleted (d) modes, respectively. The normal mode matrix is then

fi fi
7, Py

Hli — [ ol Pl } _
g d Opr Opg

(4.34)

where 0p relate to the DOFs of the fixed boundary. There are no rigid body modes
in Equation 4.34 if the set of fixed boundary DOFs is sufficient to constrain all rigid

body modes of the unconstrained component.

Constraint modes

Static constraint modes will be defined with respect to the interface DOFs and
denoted by the subscript ¢. A constraint mode is the static displacement of all
nodes due to a unit displacement applied to one interface coordinate and with all

other interface coordinates fixed. This can be written in matrix form as

K Kie Wy, _ 0rc
Kcl ch Icc Fcc

where Wy, is a matrix of displacements of the interior DOF's and I.. is an identity

(4.35)

matrix, which defines zero and unit displacements for all constraint modes. F,. are
the force reactions at the nodes with prescribed displacements and the interior nodes

are force-free. From the first line of Equation 4.35 it follows that
U, =-K; Ky (4.36)

and the complete matrix of constraint modes is given by

~-K 'K,

To make the structure of the previous matrix expressions more clear, they are rewrit-

ten for the case of two boundary DOFs. Equation 4.35 becomes

Kir Kr, K, Wi, Y, Ore;,  Ore,
KC1I Kclcl chg 1 O = Rclcl Rclcg (438)
ch[ Kczcl chcz 0 1 R0201 RCQCQ
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where the constraint modes are given by

_KI_IIKIq _KI_]1K102
v, = 1 0 (4.39)
0 1

Rigid body modes

Rigid body modes appear if a component is unconstrained. They are obtained
either as free-interface normal modes (Equation 4.31) from the eigenvalue problem or
recovered from constraint modes (Equation 4.37). However they are often regarded

as a separate class of component modes and will be denoted by W¥,.

Attachment Modes

Static attachment modes will be defined with respect to the boundary DOFs and
will be denoted by the subscript a. An attachment mode is the static displacement
of all nodes due to a unit force applied to one boundary coordinate and with all other
boundary coordinates a force-free. Since forces are applied, the cases of a constrained
and an unconstrained component have to be distinguished. If the component is

constrained the governing static equation is given by

K K a lI’ a 0 a
I I Ia | _ I (4.40)

Ka] Kaa \I’aa Iaa
where W, and ¥, are the unknown nodal displacements. The identity matrix I,
arises from the forces at the boundary DOFs. All interior DOF's are force-free. A

solution can be found by inverting the stiffness matrix K, where G = K~! is the

flexibility matrix, assuming the inverse exists, to give

—1
\Illa _ KII KIa OIa _ G’[I GIa OIa (441)
‘;[Iaa Ka[ Kaa Iaa GaI Gaa Iaa

The attachment modes are then found to be

U, = [ gl ] (4.42)

If the component is not constrained there is no solution for the displacement
due to an applied force. The stiffness matrix is singular and cannot be inverted.
Therefore, the component must be sufficiently restrained against rigid body motion

at a set of coordinates r, normally a subset of the interior DOFs. Rigid body modes
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are then added separately. The attachment modes with respect to the boundary

coordinates a and relative to the restraint coordinates are described by

K;i K Kj, v;

a Ia
Kaf Ku Ko Y, = Tua (443)
Krf K,. K, 0,4 |

where W; and ¥,, are the unknown displacements and 0,, correspond to the fixed
restraint coordinates. The forces acting on the boundary DOF's are I,,,, while the un-
restrained interior DOFs are force-free and the restrained coordinates have reactive

forces F,, acting on them. The static equation can be reduced to

Kit Kio || Wia | _
Kaj Kaa \I’aa

and the resulting stiffness matrix can be inverted. The attachment modes are found

Iaa

Oia ] (4.44)

as columns of the flexibility matrix with zeros added for the fixed displacements.
U, = | Gg (4.45)

Residual attachment modes

The flexibility matrix of a system without rigid body modes can be written in terms

of free-interface properties as
G=oA"'®" (4.46)

where ® is the free-interface normal mode matrix and A are the free-interface eigen-

values. Equation 4.46 can be rewritten as
G=oA'®" = AP + DA DY (4.47)
where subscripts k£ and d denote the kept and deleted modes, respectively.
Gy = ®,A; D] (4.48)

is the residual flexibility matrix associated with the deleted modes. The matrix of
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forces is given in Equation 4.40 as

F, =

Ola
4.49
-] (19

where a unit force is a applied to one of the boundary DOF's at a time with all other

DOFs force-free. A set of residual attachment modes is then defined by

¥, = G,F, (4.50)

R

By using the residual flexibility matrix the residual attachment modes are a linear
combination of the deleted normal modes and therefore linearly independent of
the kept normal modes. Another advantage is that this approach also holds for
components with rigid body freedom.

For an unconstrained system, the response in the rigid body modes can be repre-
sented by inertia relief attachment modes. In one approach these are defined as the
static displacement of all nodes due to d’Alembert forces resulting from a rigid body
motion. Another approach is to apply both unit forces and d’Alembert forces, which
would result from the rigid body motion due to the unit forces alone, to the set of
boundary DOFs. In both cases the component has to be sufficiently constrained.
There are also residual inertia relief attachment modes, which are independent of
the kept normal modes. An equivalent to the modal space is the Krylov space, which
is described by Krylov vectors instead of eigenvectors. These Krylov modes are also
used in CMS. Details on these other component modes can be found in the review
papers [81, 84, 86, 87].

4.3.2 Synthesis of Components

A selection of component modes described in the previous section is arranged in a
component modal matrix B. Usually these are one of two general types: kept fixed-
interface modes and constraint modes; kept free-interface modes and attachment
modes. The physical coordinates u® of a component a can be transformed into the

component modal coordinates q* by
u® = B%q” (4.51)

where the columns of B correspond to the appropriate mode shapes. The component

modal mass and stiffness matrices pu and & are calculated by

pt =BM*B* and k®=B*K*B” (4.52)
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respectively, which are diagonal matrices if the modes used in B* are linearly inde-

pendent. If two components a and [ are considered, a global modal vector q can

q= [ @ ] (4.53)

qﬁ

be formed as

and the modal mass and stiffness matrices of the components are assembled as

«

u

K 0
and K = 4.54
[0 ] (1.5)

Let n be the number of DOFs of the global structure. Then
n=n*~+n" —ny (4.55)

where n® and n® are the numbers of modal DOFs of component a and 3, respectively,
and n% is the number of common interface DOFs. The number of modal DOFs in

Equation 4.53 is given by
ng =ny + n’,f +ng, + "f,a (4.56)

where n§ and n,f are the numbers of kept modes and n¢, and nf, are the numbers
of constraint or attachment modes used for each component.

The constraints at the component interface are continuity of displacement, u, =
ug, and equilibrium of forces, f§ —|—f]g = 0. The constraint equations of the conditions
to be satisfied can be expressed in terms of the modal coordinates q and written in

matrix form as
Hq=0 (4.57)

where H is the constraint matrix. This equation can be partitioned into linearly
independent coordinates [ and dependent coordinates d which will be condensed and

whose number equals the number of constraint equations considered. Thus

[ Hi Ha } [ zd ] =0 (4.58)

The dependent coordinates are related to the linearly independent coordinates by

qq = —H  Hyq, (4.59)
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and a linear transformation can be defined as

Qqa
q:
[ a

=Cq, =Cv (4.60)

where v is the new set of independent modal coordinates and

C= (4.61)

—H_/Hy
Ill

is the transformation matrix. The mass and stiffness matrices of the global system
are then found by
M% =CTuC and K% = CTkC (4.62)

which are reduced in size compared to the original system if not all of the natural
modes of the components are kept in Equation 4.51.

If the component mass, stiffness and modal matrices are assembled in the form

M* 0 K* 0
M = , K= , B=
0 M’ 0 K°

B> 0
0 B

] (4.63)

then the mass and stiffness matrices of the global system are determined by two

consecutive transformations in the form
M4% = CTB'M**BC (4.64)

and

K% = C"TBTK*“*BC (4.65)

where the transformation B into modal coordinates may imply a reduction in size

and the transformation C imposes the selected interface conditions.

4.3.3 Global modes and frequency response function

The free vibration equation of motion of the global system in terms of coordinates
v is given by
Mé%v + K%v =0 (4.66)

A transformation into global modal coordinates w can be done by

v = Dw (4.67)
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where D is the matrix of global eigenvectors, which are found from the global eigen-

value problem
(K% - A?’M%) ¢} =0 (4.68)

Provided these modes are mass-normalised, the global modal mass and stiffness

matrices are given by

pih =D'MID =1 (4.69)
and

k% = DTKYD = AY (4.70)

which are uncoupled diagonal matrices.
To summarise, the transformation from the physical coordinates u to the global

modal coordinates w involves the following transformations and coordinates:

u physical coordinates
u = Bq modal transformation at component level
q component modal coordinates
q=Cv transformation to impose coupling conditions
\% linearly independent component modal coordinates
v =Dw modal transformation at global level
w global modal coordinates

Initially, each component and its properties are defined in terms of the physical
coordinates u. Depending on the particular method, appropriate modes are selected
to form the modal matrix B. Usually these include free or fixed-interface modes
and additional component modes. The synthesis of components is done at the
component modal level and is represented by the linear transformation C. The
modal coordinates q, which include dependencies between different components,
are transformed into an independent set of component modal coordinates v. The
equation of motion of the whole structure is given in terms of coordinates v and the
modal properties of the whole structure can be found by the transformation D into
global modal coordinates w.

The relation between global modal coordinates w and physical coordinates u

can be expressed as

u=Lw ; L =BCD (4.71)

where L is the global modal matrix that contains the global modes in terms of the

physical coordinates.
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The equation of motion for forced vibration in terms of the global modal coor-
dinates is given as
o + k9w = f (4.72)

where

fo 0
f=LTf and f* = (4.73)
0 f°

Assuming time harmonic motion u = Ue™!, w = We*! and forces f = Fe™?, the

frequency response in global modal coordinates follows as

. 1

J

and the receptance matrix A in terms of the physical coordinates and forces is given
such that

Fo’ (4.75)

1
U= AF" = [L diag <1—> L”
N — w?

J
The two most common approaches in CMS are the fixed-interface method with
constraint modes and the free-interface method with attachment modes. These will

be described in more detail in the remaining sections of this chapter.

4.3.4 Fixed-interface method with constraint modes

In the fixed-interface method of CMS, fixed normal modes ®/* of a component are
found with the boundaries fixed. To account for that condition, Craig and Bampton
[61] add static constraint modes ¥.. to the component modal matrix B. These assure
the compatibility of the components, improve convergence and also yield the exact
static solution. A reduction in the size of the component model can be achieved
by keeping only some of the fixed-interface normal modes in <I>£i. The component

modal matrix of a component « is then defined as
B — [ ol W, ] (4.76)

and the transformation from physical coordinates u® to component modal coordi-

nates q* is given by

ua:BanZIUI]:

0 L. qc
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The interior physical coordinates u; are transformed into modal coordinates q,. The
physical boundary coordinates ug are retained, but will be denoted as constraint

coordinates .. The component modal mass matrix follows in the form

a L, my, :
mp. MMe

where I, is a identity matrix if the normal modes are mass-normalised. The matrix
m,. contains the modal constraint masses and m;,. are coupling matrices between
the modal coordinates q; and the constraint coordinates q.. The component modal

stiffness matrix is given by

K =

(4.79)

A O |°
0 kcc

where Ay is a diagonal matrix of eigenvalues and k... is the constraint modal stiffness
matrix. If two components o and 3 are considered, the vector of modal coordinates

q can be written as
T
T
q= [ @ o o o ] (4.80)

At the interface of components a and 3, the boundary condition of continuity of
displacements is given by
u$ = u?, (4.81)

which can be transformed into modal space by Equation 4.77 to become

q@ =d; =q (4.82)

if q* and q” are consistent. The matrix constraint equation now takes the form
ol ol 8T a7 T
Hq=]0 10 —I] [qk a q 9 ] =0 (4.83)

and the transformation to impose the coupling conditions follows from Equation
4.61 as

q I 00 i
q~ 0 0 I p
= | = = Cv 4.84
= ¢ 010 (;k (484)
s 0 I ¢

C

where C is the transformation matrix and v are linearly independent modal coor-

dinates. The reduced global system matrices are found by Equation 4.63. Their
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structure is similar to the component modal matrices, so that

I 0 my;,
M = o I s 4.85
R~ k:kT my., (4.85)
T B
mgc mkc m?c + mgc

and
© 0 0
Kh=| 0 A}, 0 (4.86)
0 0 ki + kfc

Due to the simplicity of the transformation matrix C in the fixed-interface CMS
method, the component synthesis is straightforward and the global system matrices
have the same structure as the component matrices. The global matrices are re-
duced in size based on the number of modes deleted in the component mode matrix
B. The special structure of the global matrices, especially the fact that the com-
ponent eigenvalues appear uncoupled, has many advantageous also for uncertainty

propagation, which will be the subject of investigation in the following chapters.

4.3.5 Interface DOF reduction

The size of the constraint matrices in Equations 4.85 and 4.86 depends on the
number of interface DOFs. In applications involving line and surface coupling of
components, the number of interface DOFs can be considerable compared to the
overall number of DOFs. Therefore it might be desirable to reduce the number
of interface DOFs as well. An appealing approach using characteristic constraint

modes has been presented in [89]. An eigenanalysis of the form
K.~ \ M. v, = 0 (4.87)
is performed where M. and K. are constraint matrices given as
M, =m® +m? and K. =k* +k’ (4.88)

The eigenvectors v; are referred to as characteristic constraint modes. They can be
used to transform the interface DOF's into a reduced set of characteristic interface
DOFs by

@ ="Tq’ (4.89)
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where Y contains a few kept characteristic constraint modes that are associated

with the largest eigenvalues. Finally, the constraint matrices can be reduced by
K: =Y"K.Y and M! =Y"M.,Y (4.90)

If the characteristic constraint modes are mass normalised, the constraint stiffness
matrix is given by the characteristic constraint eigenvalues on the diagonal. There-
fore, the complete CMS stiffness matrix in the fixed-interface method is diagonal
and all terms are uncoupled.

Similar interface reduction methods have been proposed for free-interface and
hybrid-interface CMS methods in [90, 91].

4.3.6 Free-interface method

In this section a free-interface method is presented where no additional modes are
used. The modal matrix B for a component « consists only of the kept free-interface

modes

B = [ o/ r (4.91)

The superscript fr will be omitted for the remainder of this section. The physical

coordinates are transformed into the modal space by

(e}

uy |
«

Up

This approach is the same as that discussed in Section 4.2.2. The component modal

[ Q@ } (4.92)

¢Bk

mass and stiffness matrices are diagonal matrices of the form
p* = [T (4.93)

and

K® = [Akk]a (494)
If two components are considered the vector of modal coordinates becomes
T
T
a=|a" o | (4.95)
The coupling condition of continuity of displacements is given by

u$ = u?, (4.96)
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which can be written in terms of the modal coordinates using Equation 4.92 as
@45 = Pp) (4.97)

If there are a number ng of constraint equations, ng modal coordinates in Equation
4.95 are dependent and can be condensed. Therefore the set of coordinates of
component « is divided into linear independent and dependent coordinates in the
form

e ]T — | gy o }T (4.98)

The constraint equations can now be written as

o Fa dj,
|5 @5 || | = @] (4.99)
Qi
and the constraint matrix equation follows as
a @ 38 T o 3T T
Hq = [ Ppy Pr — Py } [qkd qy, d, ] =0 (4.100)

Using Equation 4.61 the matrix C is found and the transformation is given by

Qg —@%d_l@%z q)%d_lq)%k Q¢
a=|q | = I 0 [ q’g =Cv (4.101)
qr 0 1 ’

The reduced global mass and stiffness matrices M% and K%, which follow from
Equations 4.62, are fully populated and do not have any special structure. This is
due to the complex form of the transformation matrix C. Another disadvantage is

that the reduced global equation of motion is not statically correct.

4.3.7 Free-interface method with residual attachment modes

The use of free-interface normal modes is sometimes preferred because these can
be measured more easily than fixed-interface modes. In this section residual at-
tachment modes will be added to the set of free-interface normal modes to improve
the accuracy of the free-interface CMS method, as described by Craig and Chang

[85, 88]. The component modal matrix B is then given as

B = | & g | (4.102)
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and the transformation into modal space follows as

uf _ P Wi, qi (4.103)
ugp

Ppr Wpap q;
If the component is constrained and only some of the normal modes are kept it is

best to use residual attachment modes. These are linearly independent of the normal
modes and therefore the equations of motion will be uncoupled and the component

modal mass and stiffness matrices become

I, 0 |
pt=| ] (4.104)
0 m,,
and N
A 0
= | (4.105)
0 g,
The vector of modal coordinates is given by
_ ol o BT BT T
q= [ 4 da 9 9 ] (4.106)
The coupling condition of continuity of displacements
uf = u’ (4.107)
B = Up :

can be written in terms of the modal coordinates as

| 25 aBa][ZE]Z[‘I’ﬁBk ‘I’%a}hg] (4.108)

a a

Due to the use of attachment modes the conditions of equilibrium of forces
o6 = —f) (4.109)

can be imposed as well. The static equation of component « in terms of modal

[ f(; ] (4.110)

coordinates is given by
Age 0 qa | _ ®;
0 g, q“ v’
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where f7 are the forces at the boundary. The second line of this equation can be
written as
V5o = Yratp (4.111)

and it follows that
q* = ¢ (4.112)

Because of the special structure of the modal stiffness matrix, which is due to the
attachment modes, the forces at the boundary are simply the modal constraint
coordinates in a pseudostatic approximation. The equilibrium of forces can therefore
be replaced by

q, +q, =0 (4.113)

The constraint equations in matrix form become

qq
ve —wl g, P B
Hq _ Ba Ba Bk Bk qa -0 (4114)
I I 0 0 qay
qay

where the submatrices of the dependent and linearly independent coordinates are

ve _gph
Hddzlf“ IB“], Hy =

given by
(4.115)

The transformation imposing the displacement and force boundary conditions is
then obtained by Equation 4.62 as

d; —m®%, m(I)ﬁBk
g %, —md] a
q=| B | = | Mm TR%me A gy (4.116)
qi I 0 qx
qg 0 1
where )
m = (W5, + 9}, (4.117)

The reduced global mass and stiffness matrices M% and K%, found by Equation 4.63,
are fully populated and do not have any special structure. The reduced equation of
motion is statically correct because of the static attachment modes. The accuracy
of this approach is in general better compared to the fixed-interface and simple free-
interface CMS approaches because both the continuity of displacements and the

equilibrium of forces are ensured.
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Figure 4.5: 8-DOF mass-spring chain divided into two CMS components.

4.3.8 Numerical example of CMS for two components

In this section a numerical example of the implementation of the fixed-interface
Craig-Bampton method [61] and the free-interface Craig-Chang method [85, 88] is
presented. Consider the mass-spring chain in Figure 4.5 that has 8 DOFs and is
fixed at the left end and free at the right end. This structure will be divided into two
components « and § at coordinate 5. Mass number 5 will be assigned with half of
its physical mass to each component. In theory it is possible to make any division,
including creating a massless DOF. However, in such cases, numerical problems can
arise that require special attention. Figure 4.5 also shows the realisation of free-
interface and fixed-interface components. The free-interface components o and 3
have five and four DOFs, respectively. In total they have one more DOF than the
original structure, because one additional DOF was created when dividing mass
number 5. It has to be noted that component (3 is now unconstrained and has
rigid body freedom, whereas the whole structure is sufficiently constrained. The
fixed-interface components have the boundary DOF number 5 fixed. Therefore the
components have four and three internal DOF's, respectively, and in total one DOF
less than the original structure. Component 3 is now constrained at the boundary
and does not have rigid body freedom.

The objective is to couple the components, by using different CMS methods, to
obtain an exact equation of motion and a reduced equation of motion. The total
number of DOFs is to be reduced from 8 to 4 and therefore each component will
be reduced by two DOFs. In Table 4.1, the type and number of component modes
used are listed for each CMS method. The simple free-interface method with normal

modes only, the free-interface method with attachment modes (Craig-Chang) and
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Component modes and DOF's boundary | total
component « component (3 condition | DOFs
normal other normal other

Free | no red. 5 0 3 1 r.(n.) -1 8
red. 5—2=3 013—-2=1 1 r.(n.) -1 4
Free | red.” 5—2=3 la |3—-2=1 1r.(n)+1la. —2 5
+a |red® |5-3=2 la |[3-2=1 1r(n)+1la. -2 4
Fixed | no red. 4 lec. 3 1r.(c.) -1 8
+c. | red. 4-2=2 lc |3-2=1 1r.(c) -1 4

Abbr. of modes: n. - normal ; a. - attachment ; c¢. - constraint ; r. - rigid body

Table 4.1: Component modes and number of DOFs for two components in different

CMS methods.

the fixed-interface method with constraint modes (Craig-Bampton) are considered.
There are the cases where there is no reduction, and hence all modes are kept
(no. red.), and where higher frequency normal modes are deleted (red.). For each
component, the resulting number of normal modes and other modes (attachment,
constraint, rigid body) is stated. The number of DOFs that are removed if the
boundary conditions are imposed are noted with a minus sign. The total number of
DOFs of the assembled structure is given in the last column and can be calculated
by a summation over the row.

With the interfaces free, the eigenvalue problem gives five normal modes for
component « and three normal modes and one rigid body mode for component
B. In the simple free-interface CMS method, the boundary condition of continuity
of displacements removes one DOF. Therefore the original size of eight DOFs is
retained and the equation of motion yields the exact results. If two normal modes
are deleted, respectively, component « is described by three normal modes and
component ( is described by one normal mode and one rigid body mode. The
assembled structure then has a total of four DOF's and yields an approximate result
compared to the full model.

In the Craig-Chang method, one residual attachment mode is added to each
component. Because these modes include the effects of the deleted modes, this
method is only meaningful if a component model is reduced. If this is not the case,
the DOFs are not independent. Since also the equilibrium of forces is ensured,
two DOFs are removed due to the boundary conditions. However, if two normal

modes are truncated in each component, the total number of DOF's is only reduced
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by 3 (case a). In order to achieve the desired reduction by 4 DOFSs, three normal
modes will be deleted in component « (case b). Because component [ has rigid
body freedom, it would have to be restrained before an attachment mode due to a
force could be defined. However, the residual attachment mode is determined by
the residual flexibility matrix, which depends on the higher frequency modes, and
therefore the rigid body freedom is not relevant.

In the fixed-interface method, the number of DOFs is reduced to 4 and 3 for
components a and 3, respectively, because the boundary coordinate 5 is fixed. The
fixed-interface components are sufficiently constrained and only normal modes are
obtained from the eigenvalue problem. Additional constraint modes are necessary
to carry out the coupling and to preserve the exact result. For component 3 the
constraint mode, where a unit displacement is applied at the boundary, is a rigid
body mode. One DOF is removed by the coupling condition at the boundary.

In summary, all CMS methods preserve the exact result of the full model if
the number of independent modal component coordinates is the same as the total
number of physical DOFs and if the component modes are linearly independent.
The normal modes found from an eigenvalue problem are linearly independent by
definition and the residual attachment modes are independent of the kept normal
modes. The constraint modes of a fixed-interface component are independent of each
other and independent of the fixed normal modes, because if a unit displacement is
described at one coordinate all other coordinates are fixed.

For a reduced component model, the simple free-interface method is not statically
correct. The use of additional attachment modes ensures the correct static result
and improves the approximation, but also increases the size of the model. In the
fixed-interface method, some of the dynamical information is lost compared to the
free-interface method, because the mode set comprises static constraint modes and
a reduced number of normal modes. However, the result is statically correct and
the size of the assembled model is unchanged.

In Table 4.2, the estimates of the natural frequencies by the different CMS meth-
ods are shown. The number of DOFs was reduced for all cases from 8 to 4. The
first five natural frequencies of the exact system range from 0.38 Hz to 3.599 Hz and
the errors in the estimated values are given in percent.

The fixed-interface method gives accurate results for the lower modes but approx-
imations get worse for higher frequency. The free-interface method with attachment
modes behaves in the same manner, but gives an accurate result also for the third
natural frequency and is less in error for the fourth. The simple free-interface method
achieves the best result for the third natural frequency but shows unsystematic er-

rors for the others. In Figure 4.6, a transfer FRF and a point FRF are plotted to
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Mode | Exact | Fixed+Constr. Free Free+Attach.b | Free+Attach.®
Hz Hz err. % Hz |err. % | Hz |err. % | Hz | err. %

0.380 | 0.380 0 0.385 1.3 ] 0.380 0 0.380 0
1.105 | 1.105 0 1.192 7.9 1.105 0 1.105 0
2.018 | 2.029 0.5 2.021 0.2 |2018 0 2.018 0
3.086 | 3.372 9.2 3.433 | 11.2 | 3.112 0.8 3.099 0.4
3.599 3.628 0.8

Uk~ W N+~

Table 4.2: Natural frequencies of a mass-spring chain modelled by different CMS
methods.

show the qualitative variations in the different approximations.

This numerical example was used to demonstrate some of the basic characteristics
of different CMS approaches. The specific performance of these methods depends
on the properties of the structure and the objective of the application. However, it
is indicated in the literature that the free-interface method with residual attachment
modes gives the best results of the three approaches illustrated. The fixed-interface
method with constraint modes is accurate for lower modes and at the same time is

the most simple to implement.

4.4 Discussion and concluding remarks

The static reduction by Guyan is most appropriate for static problems. For linear
dynamic problems, the modal reduction approach should be used, if some of the
lower frequency modes can be neglected. In the context of built-up structures, CMS
methods combine the benefits of modal reduction with the capability to couple dif-
ferent component models. The accuracy of both the free and fixed-interface CMS
methods is sufficient, if the frequency of the highest mode considered is relatively
large compared to the highest frequency of interest. The substructuring approaches
considered in this chapter were based on the system matrices. However, there are
also other techniques, which consider response data, for example FRF based sub-
structuring [92-94].

This thesis concerns the low-frequency analysis of built-up structures with non-
deterministic properties, focusing on the first few modes of vibration where the
modal and stochastic overlaps are low. The possible reduction in model size, without
loss of accuracy, can be substantial depending on the overall number of DOFs.
Therefore, model reduction is an essential step in a low-frequency non-deterministic

analysis in order to reduce the computational cost and make it more applicable.
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Chapter 5

CMS and non-deterministic data

5.1 Introduction

A promising methodology to address several of the challenges in the modelling of
the dynamics of non-deterministic properties in complex structures is substructuring.
The component modes synthesis (CMS) method combines the benefits of substruc-
turing with the benefits of modal approaches. The application of CMS methods for
the deterministic analysis of structures that are built-up of several components, as
is generally the case in industrial applications, has been reviewed in the previous
chapter.

In the analysis of structures with non-deterministic properties, a deterministic
problem often has to be solved repeatedly, which is numerically expensive. In this
context, deterministic model reduction by CMS is especially important because the
benefits accurre multiple times. Reanalysis is required of only those components of
the structure which are uncertain or where uncertainty is significant. The individual
components and the joints are typically statistically independent, being made up by
different manufacturing processes. The advantage of CMS that it can deal with
quantitatively and qualitatively different deterministic FE component models can
be extended to a non-deterministic analysis as well.

Other benefits concern how uncertain data is quantified and propagated. Un-
certainties in properties can be naturally and straightforwardly introduced at the
component level, either in terms of the component physical properties or the compo-
nent modal properties. The former typically require quantification of a random field
for each physical property, while the latter involve component natural frequencies -
a discrete set of data of low order - and eigenfunctions. This enables possibilities
for substantial reduction in the quantity of uncertain data that must be included in

the model. It is therefore possible to estimate uncertainties in response using a rel-
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atively small set of uncertain input data, further reducing computational cost. The
propagation of uncertainties in CMS can be treated in several independent steps
using four different coordinate systems in CMS.

CMS methods are amenable to the inclusion of experimentally measured variabil-
ity data. Theories and models for the representation of variation in properties (e.g.
random fields for spatial variation) have been in existence for many years, but the
experimental data required to quantify them is often not available. In this context,
it is much easier to measure the variation in modal properties of a component than
quantifying the spatial distribution of physical properties. A simple hammer test
can be sufficient to determine the statistics of component modal properties. Finally,
advantages arise from the fact that each substructure can be treated independently
regarding the quantification and propagation of non-deterministic data. For exam-
ple, a hybrid description can be adopted, with different parts of a built-up structure
perhaps being described by possibilistic and probabilistic concepts. Overall, CMS
offers more physical insight into the analysis of structures with uncertain properties
than other methods.

Numerical models are most easily constructed using the fixed-interface (Craig-
Bampton) method, which has been reviewed in the previous chapter. In this case, ad-
vantages arise from the special structure of the CMS equations that can be exploited.
This chapter addresses the quantification and propagation of non-deterministic prop-
erties with a focus on the fixed-interface CMS method. First, the various possibili-
ties for uncertainty quantification and propagation as well as the influence of modal
parameters are discussed. Subsequently, Section 5.4 concerns the combination of
possibilistic and probabilistic approaches in one analysis. This is followed by a pre-
sentation of the use of perturbational relations for forward propagation within the
CMS framework.

5.2 Uncertainty quantification and propagation in
CMS

The fixed-interface CMS method has been reviewed in detail and in the context of
other CMS methods in the previous chapter. The main equations will be summarised
in this section for easier reference. The undamped equation of motion of a component
a is

Mui+Ku=f (5.1)



5. CMS and non-deterministic data 74

At component level, the fixed-interface eigenvalue problem
(KH - A;.”iMH) ®,,=0 (5.2)

has to be solved. The modal matrix B® is given as

B = (5.3)

0 Icc

&, —K; 'K, ]

where constraint modes have been added to improve convergence. The modal matrix
B“ is then used to transform the component matrices from physical to component
modal coordinates. Following the synthesis of components the global mass and

stifflness matrices are found as

Iy O my, w0 0
M= o0 I, m,, K'=| 0 A}, 0 (5.4)
mg” m), mg +m 0 0 ki+kl

These constitute the global eigenvalue problem
(k- A'M) @7 =0 (5.5)

which yields the global eigenvalues and eigenvectors. Finally, the global eigenvectors

can be related to global physical coordinates by the transformation
V =BCD (5.6)

which is required to calculate the FRF by modal summation.

5.2.1 Quantification of uncertainties

There are four different coordinate systems in the CMS framework, given by compo-
nent and global, physical and modal coordinates as shown in Figure 5.1. Parametric
uncertainties can be introduced at the component physical level in terms of mass and
stiffness properties. In practice, many of these properties vary spatially and random
field models (Chapter 3) are required to represent them. However, the quantification
of these models is often difficult or impossible, due to a lack of data and the effort
and expense of acquiring it. For example, there is almost no data available for the
correlation length that is a parameter in random field models. In most cases, exper-
imental quantification at the physical level is difficult and expensive. Quantification

in a numerical model is therefore an approximation. Alternatively, uncertainties
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‘ Component physical ‘ <= Uncertainty - Physcial parameters: mass, stiffness
- Spatial variations?
l - Experimental quantification: expensive
‘ Component modal ‘ <= Uncertainty - Eigenvalues
- Eigenvectors, constraint modes
l - Correlations?
- Experimental quantification: appropriate

| Global modal

l

‘ Global physical ‘ =3 Response variation

Figure 5.1: OQutline of uncertainty quantification in CMS.

can be introduced at the component modal level in terms of the modal parame-
ters: the fixed-interface component eigenfrequencies, mode shapes and constraint
modes. The special structure of the global matrices (Equation 5.4), where the com-
ponent eigenvalues appear uncoupled on the diagonal of the stiffness matrix, is most
advantageous for this purpose. Experimental quantification of the eigenvalues in
particular is straightforward using a simple hammer test, for example. However, in
practice it might be simplest to perform this with a free rather than fixed interface.
The quantification of uncertainty in the mode shapes and in the constraint terms is
not so straightforward. A simple and practical approximate approach is therefore to
consider variation in component eigenfrequencies only. The inaccuracies and errors
caused by this approach will be investigated in the next section. In contrast to
physical properties, quantification in modal properties takes account of all sources
of uncertainty, including non-parametric effects. Finally it should be noted that it
is possible to describe uncertainty in different subsystems in a different qualitative

manner, some possibilistically and some probabilistically.

5.2.2 Propagation of uncertainties

The different strategies for uncertainty propagation are outlined in Figure 5.2. In
a classical analysis, the variation in physical properties can be propagated directly
to the global physical level, e.g. the frequency response function (FRF). In a modal
approach, first the variations in global modal properties are calculated, which are

subsequently propagated to the global physical level. Within the CMS framework,
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b

| Global physical | FRF

Figure 5.2: Outline of uncertainty propagation in CMS.

a further coordinate level is introduced. Therefore, a total of three different and
independent propagation steps can be considered. At component level, only those
components where uncertainty is significant have to be considered. The component
model size is much smaller than the original global problem and the computational
cost is less. If components are considered to be statistically independent, the num-
ber of random variables is also smaller, which makes interval analyses more feasible.
Therefore, it is often reasonable to use an exact propagation method, such as MC
simulation, at this stage. A further advantage is that for each component a different
propagation approach can be applied. Therefore, exact and approximate, as well
as probabilistic and possibilistic concepts, can be applied as appropriate. The sec-
ond step of propagation, associated with the component synthesis, is independent
of the previous propagation approaches. It is based on a different and reduced set
of random variables, which can be selected according to the frequency range of in-
terest. In general, the modal properties of different components are uncorrelated.
At this stage, all quantitatively and qualitatively different approaches are combined.
Probabilistic and possibilistic descriptions can be unified by putting bounds on the
distributions of modal parameters. Finally, there are different strategies for non-
deterministic modal superposition that can be applied to estimate the variation in
the FRF. The latter are discussed in detail in Chapter 7. The use of modal sensi-
tivities and the application of perturbational relations within the CMS framework

are discussed in Section 5.5 and Chapter 6.
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Figure 5.3: Qutline of uncertainty propagation in the fized-interface CMS method.

5.2.3 Influence of random parameters

In this section, the propagation of uncertainties through the various coordinate
systems will be examined to investigate the influence of individual parameters in
the fixed-interface CMS method. A model with two components o and 3 is used for
simplicity. Parametric uncertainty is assumed to be present in the physical mass and
stiffness matrices, denoted by a vector p in the form M(p), K(p). The objective is to
calculate the resulting variation in the global eigenfrequencies )\?l and the frequency
response A of the whole structure. In Figure 5.3, the four coordinate levels, the
corresponding parameters and the paths of uncertainty propagation are outlined.
At the component modal level, uncertainty exists in the component eigenvalues and
eigenvectors. Additionally, the terms associated with the static constraint modes
are random as well. Therefore, at component modal level, uncertainty is present in
elements of the modal mass and stiffness matrices and the component mode matrix
B.

The global eigenvalues A and eigenvectors ¢ are calculated from Equation
5.5 and depend on the component eigenvalues Aj), Afk, the constraint mass and

B

. . o /8 o B . . o
stiffness matrices k&, + k7, m¢. + m/, and the coupling mass matrices mg,, m,_.

In order to calculate the frequency response, the physical mode shapes are needed,

which depend on the transformation V. = BCD. This also involves the component
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Simulation | Uncertainty considered in:

Exact global stiffness and mass matrices K9 M B
component mode matrices
A global stiffness matrix K9 Myl B
component mode matrix
B component eigenvalues Kol \Y &L B
component modal matrix (A, kee)
C global stiffness and mass matrices K9 M9 B
D component eigenvalues Kol \Y L B
(A, kee)

T - baseline value of x

Table 5.1: Definition of different cases for a numerical analysis, where uncertainty
15 neglected in various component modal properties.

mode matrix B.

In the following analysis, the error caused by neglecting component constraint
terms on uncertainty propagation is investigated. In Table 5.1, four different simu-
lation cases are defined. For the exact solution, randomness in all component modal
properties is considered. In case A, randomness in the global mass matrix MY is
neglected and is replaced by its baseline matrix M¢. In the next case, the random
constraint terms in the global stiffness matrix K9l are neglected and replaced with
their baseline values k.., leaving only the component eigenvalues A as random vari-
ables. Finally, in cases C' and D, the baseline component mode matrix B is used.
The results for all cases and a numerical example are presented in Section 5.3. The
next two sections are concerned with the method of uncertainty propagation and

the choice between probabilistic and possibilistic approaches.

5.3 Numerical example

The numerical example is a two-component beam structure as shown in Figure 5.4.
The components are rigidly connected to each other and clamped at the ends. The
structure is modelled using standard FE matrices for Euler-Bernoulli beam theory
[9], including transverse and rotational DOFs. The beams are governed by bending
stiffness E'1 and mass per unit length pA. Each component is divided into 10

identical beam elements over the length L. The baseline values are given in Figure
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5.4. Damping is included by a modal loss factor of 3%. A fixed-interface CMS model
is constructed and component normal modes corresponding to a frequency higher
than 150 Hz are neglected. The transfer accelerance between two points, each 0.4m
from the clamped ends, for a frequency range from 0H z to 50H z will be considered.
Figure 5.5 shows the baseline FRF for the exact solution and a fixed-interface CMS
approximation, where the total number of DOFs is reduced from 38 to 20. In the
following simulations, a frequency range from OHz to 50Hz, including the first 10
resonances, will be of interest. The error from model reduction can be neglected for
at least up to the 10th mode, because there are twice as many DOFs retained.
Uncertainty is introduced in the thickness h and the Young’s modulus £ of each
component. The Young’s modulus contributes linearly to the stiffness matrix, but
the thickness h appears as a cubic term in the bending stiffness and a linear term in
the mass per unit length. In the following, both a possibilistic and a probabilistic

analysis are performed.

5.3.1 Possibilistic analysis

In this analysis, the Young’s modulus E and the thickness h of each component «a
and (3 can vary by £8.2% around the baseline value. They are assumed to be con-
stant over the length of each component. Therefore, there are 4 random variables
in the whole structure and a vertex analysis with 2* = 16 deterministic solutions of
the original eigenvalue problem is performed as a reference analysis. For the CMS
model, there are 2 random variables in each component and 22 = 4 vertex solutions
are performed for each component. When the components are assembled, there are a
total of 42 = 16 combinations to be considered for the solution of the reduced global
eigenvalue problem. However, this is only the case if the individual solutions for each

deterministic calculation are traced, i.e. the correlations between component eigen-

L |h b E P -
[m] | [m] | [m] | [N/m?] | [kg/m?) || = 75, 4 = bh
component « | 1 0.01 | 0.1 | 1e8 1000
component 3 | 1 0.015 | 0.1 | 1e8 1000
(ED", (pA)° (ET)”, (pA)’
Le I

Figure 5.4: Two component beam structure and baseline properties.
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Figure 5.5: Baseline FRF: exact solution (38 DOFs) and CMS (16 DOFs).

values are known. The lower and upper limits of variation of the eigenfrequencies
are found as the minimum and maximum values of the vertex combinations.

First, the influence of neglecting various component modal parameters will be
U

investigated. The upper limit of global eigenfrequencies w;" is computed for cases A
and B as defined in Table 5.1. In Figure 5.6 the difference from the exact solution
is shown for the first 10 eigenfrequencies. It can be seen that the approximation is
inaccurate for the first two eigenfrequencies but improves for higher modes. In case
A, where uncertainty in the global mass matrix is neglected, the eigenfrequencies
are overestimated. This is possible because the interdependency between the mass
and stiffness matrices is not considered. However, if the uncertainty in stiffness
constraint terms is neglected too and only the component eigenvalues are considered,
the exact results are underestimated. For the third and higher eigenfrequencies, the
approximation error introduced by neglecting all constraint terms in the mass and
stiffness matrices is less than 2%.

In case B the component eigenvalues are the only uncertain parameters at com-
ponent level, which are in general correlated within one component. If those correla-
tions are neglected, there is a set of ny, = 18 independent uncertain variables, where
ny is the total number of kept fixed-interface component modes. If interdependen-
cies between variables are neglected, the results of the analysis will be conservative.
However, a vertex analysis requires 2'® = 262144 deterministic solutions of the global

eigenvalue problem, which is often infeasible. Therefore, a reduction in the number
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of uncertain parameters could be considered. Figure 5.6 also shows results for the
case, where the number of independent uncertain component eigenvalues has been
reduced to npn = 8. It can be seen that this introduces non-conservative errors for
higher frequencies. Alternatively, total correlation could be assumed for the eigen-
values within one component. In this case, only 2"<m» = 4 deterministic solution
have to be performed, where n.,, = 2 is the number of components. However,
in general the upper limits of all component eigenvalues correspond to the upper
limits of all global eigenvalues. This can also be seen by the special structure of the
CMS matrices. Therefore, only two deterministic solutions of the global eigenvalue
problem are required. For the current numerical example, the results for case B are
identical for any description of the correlation of component eigenvalues.

A FRF is calculated for every solution using deterministic modal superposition.
A FRF envelope is then obtained as the maximum and minimum value of the mag-
nitude, for every frequency, from the results of the vertex analysis. The magnitude
over a resonance range is approximated by the maximum value in this range (non-
deterministic modal superposition is the subject of Chapter 7). In Figure 5.7 the
pseudo-exact FRF envelope is compared with several approximations. The results
for cases A and B, where uncertainties are neglected in constraint terms of the global
system matrices, are presented in Figure 5.7a. It can be seen that this mostly affects
the resonance range at lower frequencies. Figure 5.7b concerns the influence of un-
certainties in the component mode matrix B. The whole frequency range is affected,
but only to a very limited degree. Finally, the results based on the approach to con-

sider uncertainty only in the component eigenvalues are shown in Figure 5.7c. The
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differences are small except for low frequencies, which are governed by the constraint
terms. In addition, the results are shown for the approach where component eigen-
value intervals are considered as independent. In this case, the resonance ranges
remain unchanged, but there is more conservatism in the approximation of the FRF

magnitude.

5.3.2 Probabilistic analysis

For the probabilistic analysis, the thickness A and Young’s modulus £ are modelled
by a one-dimensional homogenous Gaussian random field with a CV of 5% and
correlation length 0.5m. The CV is linked to the possibilistic analysis by the criterion
that 90% of the realisations lie between the lower and upper limits. The random
field is discretised at element level so that there is a constant value for each of the
10 finite elements. A Monte Carlo (MC) approach with 10000 deterministic runs is
applied to estimate eigenfrequency and FRF statistics. For the reference solution,
the original eigenvalue problem is solved directly each run. In the CMS approach,
first the component models are solved independently and then the reduced global
problem is solved. The standard deviation of the global eigenfrequencies is computed
for cases A and B, where uncertainty is neglected in constraint terms in the global
system matrices. The corresponding errors are presented in Figure 5.8. The results
show the same tendencies as those described for the possibilistic analysis. There
are large differences for the first two eigenfrequencies, but results improve for higher
modes.

In contrast to the possibilistic analysis, the number of solutions does not de-
pend on the number of uncertain parameters or if correlations are considered or
not. It can be different for the propagation at component level and the propagation
to global modal level. In case B the component eigenvalues are the only random
parameters. They are given by pdfs and are in general correlated. The correlations
can be considered, if the sequence of the deterministic solutions in a MC simulation
approach is traced. If only the pdf of each component eigenvalue is known, further
errors are introduced in the MC propagation to the global eigenvalues. The results
for this case are also shown in Figure 5.8. The statistics are underestimated, be-
cause the likelihood that certain combinations of the component eigenvalues occur
is lower. The results presented here relate to the real distribution discretised by
10000 samples. However, in many cases it might be reasonable to propagate only
the mean values and variances of probabilistic properties.

A FRF is calculated for every MC solution and FRF statistics are evaluated
from a sample of 1000 MC results. In Figure 5.9, the 5 and 95 percentiles of the
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FRF magnitude are shown for the exact FRF and various approximations, where
uncertainty is neglected in certain modal properties. The variation at lower modes
is strongly dependent on the constraint terms. The modal matrix B has a limited
influence in the whole frequency range (case C'). The approximation considering
variation only in the component eigenvalues (case D) is reasonably good for fre-
quencies above the second mode. In Figure 5.9c, it is also shown that neglecting
the correlations between component eigenvalues leads to errors, especially to an un-
derestimation of the resonance range statistics. These observations are qualitatively
similar for general systems, but the frequency above which the influence of uncer-
tainty in the constraint terms can be neglected depends strongly on the coupling of

the components.

5.4 Combined possibilistic and probabilistic ap-

proaches

Most non-deterministic analyses follow either a probabilistic or a possibilistic ap-
proach. The main criteria for this choice are the available information about the
input uncertainty and the objective of the analysis. However, there are several rea-
sons which can make the selection of the correct approach problematic. The results
of a possibilistic method might be associated with a very low likelihood and there-
fore of little practical use in an application. Probabilistic approaches often suffer
from the lack of accurate data and many assumptions have to be made concerning

probabilistic distributions etc. A further problem arises if different qualitative and
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quantitative descriptions of non-deterministic input data are given for one struc-
ture. In this case the combination of possibilistic and probabilistic approaches has
to be considered. In terms of pdf and interval descriptions, two principle techniques
are apparent. A distribution can be assumed for the possibilistic results, where the
lower and upper bounds are replaced with specified percentiles of the pdf. However,
this involves further assumptions and can introduce errors. On the other hand, the
probabilistic results can be transformed into an interval by using percentiles of the
pdf as lower and upper limits. In this case, no assumptions have to be made, but
valuable information is lost and bounds are no longer strict bounds.

The CMS framework is appropriate for the combination of probabilistic and pos-
sibilistic approaches, which will be discussed in this section. Options and advantages
arise from the fact that the propagation at component level can be treated indepen-
dently of the propagation to the global modal level. In the following, two numerical
examples are given to illustrate the combination of possibilistic and probabilistic

approaches in CMS.

5.4.1 Change from a probabilistic to a possibilistic uncer-

tainty description

Consider the numerical example shown in Figure 5.4, where the input data is mod-
elled by a probabilistic random field as presented in Section 5.3.2. The goal of the
analysis is to estimate a FRF envelope based on 5 and 95 percentiles. However,
in theory the percentiles could be applied at any of the four coordinate systems in
CMS, as outlined in Figure 5.2. A standard option is to apply a sampling approach
and estimate percentiles for a FRF sample. This analysis has been shown in Sec-
tion 5.3.2. Alternatively, an interval approach can be followed, if the percentiles
are applied already to the pdf at the component physical level. This equals the
analysis performed in Section 5.3.2. Furthermore, a hybrid approach is possible,
where a probabilistic approach is applied for the component level and a possibilis-
tic approach for the subsequent propagation. The results for these three described
analyses are shown in Figure 5.10. In each case uncertainty is considered only in
the component eigenvalues and correlations are neglected. The probabilistic steps
are based on 10000 runs and the vertex method is applied for possibilistic steps.
As expected, the percentiles of the FRF sample look qualitatively different to the
FREF envelopes. In each of those three cases, bounds are put to the pdf of a funda-
mentally different property and any of them could be a valid approach for a specific
application. However, it can be noted that if the change from a probabilistic to

a possibilistic description is done in a later propagation step, the resulting FRF
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Figure 5.10: FRF envelopes based on a possibilistic, probabilistic and hybrid ap-
proach.

envelope will be narrower.

Similar concepts in relation to non-deterministic modal superposition are also

discussed in more detail in Chapter 7.

5.4.2 Combination of a probabilistic and a possibilistic un-

certainty description

It is possible that parametric uncertainty in one component is given an interval,
whereas sample statistics or distributions are known for others. In this case, both
descriptions have to be unified at some stage and it seems appropriate to do it at the
component modal level. Figure 5.11 outlines this strategy, where the appropriate
propagation method is used at component level and subsequently the qualitatively
different results are combined at component modal level. Considering the numerical
example shown in Figure 5.4. Uncertainty in component « is now modelled pos-
sibilistically, as described in Section 5.3.1, whereas uncertainty in component [ is
modelled probabilistically, as described in Section 5.3.2. Figure 5.12 shows the re-
sults for the estimated FRF envelopes. For the possibilistic approach, the uncertain
data was unified at the component physical level and for the hybrid approach, it was
unified at the component modal level. It can be seen that the hybrid method gives

much closer bounds to the FRF than a classical possibilistic approach. Therefore,
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Figure 5.11: Outline of a combined probabilistic and possibilistic analysis in CMS.

conservatism could be reduced and the available information is used as much as pos-
sible. However, bounds are not strict possibilistic bounds nor can they be associated
with distinct probabilities. The combination of possibilistic and probabilistic data

remains a mathematical and philosophical challenge.

5.5 Modal sensitivities and perturbation in CMS

This section concerns modal sensitivities and the use of perturbational relations for
the propagation of non-deterministic data within the CMS framework. Perturbation
methods can be used to replace numerically expensive operations, such as solving
an eigenvalue problem. The propagation problem is then reduced to an algebraic
equation, which is numerically very cheap. In general, the accuracy of first order
perturbation methods is reasonable if the variations in input parameters are small.
However, in the context of calculations involving uncertain properties, the accu-
racy that can be achieved is limited by the level of uncertainty in the input data.
Therefore, exact or highly accurate propagation methods are often unnecessary and
approximate techniques might be appropriate.

The coordinate systems and uncertain parameters that will be considered for
uncertainty propagation in this section are shown in Figure 5.13. At the component
physical level, uncertainty is present in parameters p. At component modal level,

uncertainty is only considered in terms of the component eigenvalues, which can be
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Figure 5.12: FRF envelopes based on a possibilistic and a hybrid approach.

fixed or free-interface eigenvalues. The arising inaccuracies and errors have been
discussed previously. At global modal level, the variation in eigenvalues and eigen-
vectors is included. The propagation to the global physical level by non-deterministic

modal superposition is discussed in Chapter 7.

‘ Component physical ‘ Physical parameters p
‘ Component modal ‘ Component eigenvalues \/* A"
‘ Global modal ‘ Global eigenvalues A9,

Figure 5.13: Outline of coordinate levels and parameters considered for uncertainty
propagation by perturbation.
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5.5.1 Perturbation from physical to modal properties
The rate of change of an eigenvalue A; with respect to a parameter p; is given by

[64]
o g (aK aM)
— o7 (2 0 T0) 0. 5.7

where M and K are the mass and stiffness matrices respectively and ¢ is the ith

eigenvector. Similar expressions exist for the first order sensitivity of the ith eigen-
vectors, as shown in Chapter 2. The baseline modal properties are given by the
deterministic solution and only the derivatives of the stiffness and mass matrices

with respect to the uncertain physical parameters have to be obtained. If a sensi-

O\ . .
s A change in component eigenvalues

can be approximated from a change in parameters as

tivity matrix R is defined such that r;; =

AA = RAp (5.8)

It follows that the covariance matrix of the eigenvalues can be approximated from

the covariance matrix of the physical parameters as
COV(A)=R COV(p) RT (5.9)

In practice, spatially varying physical properties can be modelled by random fields.
In FE methods, these are discretised using the existing mesh. In this case, p is a
vector of correlated finite element properties and COV (p) is the covariance matrix
as used in the representation of random fields. The gradients r; depend on the FE
model and their calculation might not be trivial.

In a classical approach, this perturbation can be used for uncertainty propaga-
tion from component physical to global modal properties. In the CMS framework,
it describes propagation from component physical to component modal properties.
It is valid for both fixed-interface and free-interface methods. The subsequent prop-
agation to the global modal level, which concerns the synthesis of components, is

addressed next.

5.5.2 Perturbation from component modal to global modal
properties
A local modal/perturbational propagation method from the component modal to the

global modal level has been presented in [95]. It makes use of the special structure of

the global system matrices, Equation 5.4 where the component eigenvalues appear
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uncoupled on the diagonal of the stiffness matrix. If Equation 5.7 is applied, where

the uncertain parameters are now the component eigenvalues (p; = )\;?), it follows

that o
= (o) (o), (5.10)
J

where )\fl and )\]f " are the ith global and jth component eigenvalue respectively and
(ﬁflis the ¢th baseline global eigenvector. Thus changes in the component eigenvalues

can be related to changes in the global eigenvalues by
AN = SAAT (5.11)

2
where a sensitivity matrix S has been defined such that s;; = ((gbfl) j) :
If the covariance matrix of the component eigenvalues is known, the covariance

matrix of the global eigenvalues can be estimated by
COV (A9 = SCOV (AF)ST (5.12)

This sensitivity approach can be extended to the propagation of uncertainties in
the component and constraint mode shapes, but is less straightforward if these
submatrices are not diagonal. The constraint mode shapes in particular seem to
affect the FRF variability primarily for the lowest few modes, where the static
constraint terms are more important. An approach considering the variation in
component modes was suggested in [96], although quantifying the uncertainty in a

practical situation might be problematical.

5.5.3 Numerical example

Consider the numerical example in Figure 5.4, with a probabilistic description of
uncertainties as described in section 5.3.2. A Monte Carlo approach with 10000
runs was applied in order to estimate the statistics of the global eigenvalues for
the case that uncertainty at component modal level is only considered in the com-
ponent eigenvalues. Equation 5.9 can be used to estimate the covariance matrices
of the component eigenvalues from the covariance matrices of the random fields.
Subsequently, Equation 5.10 can be used to estimate the covariance matrix of the
global eigenvalues. The corresponding first order sensitivities for both relations are
obtained from the baseline solution. In Figure 5.14, the errors in the estimated
standard deviation of the first 10 global eigenvalues due to the use of a perturbation
are shown. In one case, perturbation is applied to both propagation steps, i.e. from

component physical to global modal properties. In the other case, perturbation is
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Figure 5.14: Errors in standard deviation of the global eigenvalues due to perturba-
tion.

only considered for the propagation from component modal to global modal proper-
ties. The maximum error is about 1.5% which is very satisfactory, especially in the
context of other inaccuracies in the analysis and the level of uncertainty in general.

In practice the modal/perturbational relation from component modal to global
modal properties is highly relevant. It concerns, in general, the numerically most
expensive propagation step. However, the required modal sensitivities are automat-
ically obtained by the baseline solution of CMS. It can be used if uncertainty is
directly quantified in the component eigenvalues, if quantitatively different data de-
scriptions are unified or if correlations are neglected. Figure 5.15 shows the results
for FRF percentiles, where a perturbation has been used from component modal to
global modal properties. Similarly, Figure 5.16 presents the results for a possibilistic
uncertainty description.

In both cases the agreement between the results for the exact and approximate

propagations is reasonably good.

5.6 Discussion and concluding remarks

Component mode synthesis is a well-established method for the deterministic anal-
ysis of built-up structures. CMS also provides an appealing framework for the
analysis of structures with non-deterministic properties. The computational cost
of a non-deterministic analysis can already be reduced drastically by model reduc-

tion. Several advantages arise from the fact that CMS introduces the component
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modal level as an additional coordinate system. Uncertainty can be straightfor-
wardly introduced at the component level, either in physical or modal coordinates.
The propagation of uncertainties from physical to component modal coordinates and
from component modal to global modal coordinates can be treated independently.
The application of perturbational relations is most appropriate and has been shown
to be reasonable accurate and numerically very cheap.

The fixed-interface CMS method has further advantages for the analysis of struc-
tures with uncertain properties, because the global mass and stiffness matrices pos-
sess a special structure. The global mass and stiffness matrices are governed by
the component eigenvalues and the constraint terms. Quantifying the uncertainty
in component eigenfrequencies experimentally is straightforward, for example from
repeated hammer tests on an ensemble of structures. In contrast it is much more
difficult to quantify the variation in normal and constraint modes experimentally, as
is the case for spatial variation of physical properties. Similarly, for the numerical
propagation of uncertainties several benefits arise if the variations in the constraint
terms, especially the off-diagonal terms, are neglected. However, this introduces
approximation errors, particularly for the lower modes. For higher frequencies, the
approximation gives good results. Other errors in the FRF magnitude arise if the
variations in the component modal matrices are neglected. Overall the approxi-
mation of considering uncertainty only in component eigenvalues seems reasonable
for a frequency range where the lower limit is determined by the influence of the
constraint terms. If this approximation is made, the analysis simplifies greatly. The
perturbational relations discussed can be implemented, with the required sensitiv-
ities already being known from the baseline eigenvector matrix. The perturbation
can be performed at very little cost and can be combined with probabilistic or pos-
sibilistic approaches. Statistics such as the variance can be computed directly. It is
worth noting that the approximation errors introduced may well be comparable to
errors in the quantification of uncertainty in the component physical properties. A
core strength of CMS is the ability to combine component models with qualitatively
and quantitatively different deterministic FE models. Similarly, different descrip-
tions of uncertain properties can be considered at component level. This includes
the combination of probabilistic and possibilistic data, which can be a realistic re-
quirement. Uncertainty in damping mainly affects the magnitude of the FRF and
could be included independent of the eigenvalue and eigenvector analysis at little
extra cost. Similarly, uncertainties in joints can be included through the constraint

matrices, although this has not been considered here.



Chapter 6

Uncertainty propagation using

free- and fixed-interface
methodologies in CMS

This chapter mainly concerns a perturbational relation between free- and fixed-
interface component eigenvalues, which has potential applications for the experi-
mental quantification of uncertainties. Measurements on components are most easily
performed in a free configuration, which can easily be realised and leads to relatively
accurate results. Each component of a structure may be tested in a free configuration
and the statistics of the free-interface natural frequencies can be determined straight-
forwardly. For numerical analysis, however, fixed-interface methods are preferable
for various reasons, as discussed before. Therefore, an approximate approach will be
discussed where free-interface data is used to estimate fixed-interface data, which is

then used in fixed-interface analysis to predict response statistics.

6.1 Fixed and free-interface methodology for one

component

Considering a component model in free configuration, described by the mass and
stiffness matrices M and K respectively, the free-interface eigenvalues )\zf " can be

found by solving the eigenvalue problem
(K - A{’“M) Wm =0 (6.1)

If there are fixed-interface conditions, the fixed-interface eigenvalues A/ can be

calculated from the eigenvalue problem associated with the internal coordinates,

95
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given by
(K — XMyl =0 (6.2)

Introducing a transformation in the form
p=B"MB and k=B'KB (6.3)

where B is the component mode matrix, the modal mass and stiffness matrices take

IT e ] (6.4)

m, Mg

the form

IJ,:

where A’? is a vector of fixed-interface eigenvalues )\Zf '. The eigenvalue problem

(5= A"w) @l =0 (6.5)

yields the free-interface eigenvalues A\/". Therefore, the free-interface eigenvalues de-
pend on the fixed-interface eigenvalues and the constraint stiffness and mass terms
in the matrices k and . The constraint stiffness matrix k.. is in general not di-
agonal, but can be made diagonal by a transformation that follows from solving
the eigenvalue problem associated with the constraint coordinates. A diagonal ma-
trix of characteristic constraint stiffnesses, the eigenvalues of k.., and characteristic
constraint modes are obtained [89].

If the model has ny. DOFs, the free-interface solution will have ngp zero-valued
rigid-body eigenvalues and ny. — nrp nonzero eigenvalues. In the fixed-interface
CMS model, there are ny; fixed-interface eigenvalues, npp zero-valued characteristic
constraint stiffnesses and ny, —ny; —ngrp nonzero characteristic constraint stiffnesses.
As expected, the number of nonzero free-interface eigenvalues is equal to the number
of nonzero elements in the diagonal of the modal stiffness matrix k. However, if there
are more than the necessary interface conditions to constrain all DOFs, then the
number of fixed-interface eigenvalues is less than the number of nonzero free-interface
eigenvalues.

The derivative of the ith free-interface eigenvalue with respect to the jth fixed-
interface eigenvalue is given by elements of the free-interface eigenvectors in the

form

N
fi
ON]

= (¢:);(9i); (6.6)

This sensitivity approach can be extended to the characteristic constraint terms,
but is less straightforward if these submatrices are not diagonal. In practice, it is

also not feasible to quantify variation in the constraint terms experimentally. There-
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fore, only variation in the component eigenvalues will be considered. A sensitivity
matrix T relating changes in fixed-interface eigenvalues to changes in free-interface

eigenvalues can be defined as
AAT =T, AAJ (6.7)

where t;; = ((¢;);)* and T, is a submatrix of T corresponding to selected sets m
and p of fixed and free-interface eigenvalues. A change in fixed-interface eigenvalues

can be related to a change in free-interface eigenvalues using the inverse formulation
j -1
AN =T, AAlS (6.8)

The number of selected eigenvalues in the sets m and p is important for the in-
verse formulation. If T,,, is a square matrix, the problem is determined and the
matrix can be inverted normally. If it is a rectangular matrix, the problem is under-
determined or over-determined and methods such as singular value decomposition or
the pseudoinverse have to be employed. In general, problems such as ill-conditioning
have to be addressed.

Equation 6.8 could be used in a model updating procedure in order to update
the fixed-interface eigenvalues directly from experimental free-interface eigenvalue
data. An example is given in the next section. However, in practice it is more
appropriate to update the free-interface eigenvalues and subsequently include the
interface conditions in the model.

The sensitivity matrix T,,, can be used to estimate the covariance matrix of the
free-interface eigenvalues from the covariance matrix of the fixed-interface eigenval-
ues by

COV(AlT)=T,, COV(AJH TI (6.9)

In practice, it is preferable to quantify free-interface statistics of eigenvalues exper-
imentally, but fixed-interface statistics are often preferred in a numerical analysis.

Therefore, the inverse formulation of Equation 6.9 is of interest, which is given by

COV(AJH)=T,! COV(AL) T,7 (6.10)

mp

In the next section, a numerical example is used to illustrate this approach.

6.1.1 Numerical example: cantilever beam

The numerical example is a cantilever beam with rectangular cross-section as shown

in Figure 6.1. It is modelled by 11 finite elements using standard Euler-Bernoulli
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beam theory [9]. To include variation, the beam thickness is modelled by a one-
dimensional random field [42] with a Gaussian distribution. The coefficient of vari-
ation is 10% and the correlation length is 0.5m, half the length of the beam. Monte
Carlo simulation with 10000 runs is used to estimate sample statistics of the eigen-
values. The free-interface eigenvalue statistics are considered as experimental data
and form the input for the estimation of the fixed-interface eigenvalue statistics.
The exact fixed-interface eigenvalues are used as the reference solution.

First, a theoretical approach is demonstrated, where the mean free-interface
eigenvalues are used to update mean fixed-interface eigenvalues. In order to create
start values to be updated, the exact fixed-interface eigenvalues are perturbed by
10%. Equation 6.8 is then employed in an iterative scheme, where the sensitivity
matrix is updated each step when the eigenvalue problem is solved. This approach
is not exact, if the static constraint mass and stiffnesses are not considered. In
Figure 6.2, the error before and after updating is shown for the first 10 modes.
The error for the first mode could not be reduced, the error for the second mode is
about half and for higher modes it gradually reduces towards zero. This shows the
general effect in approaches were static constraint terms are neglected in the CMS
formulation, where a lower frequency limit can be observed, below which the results
are not particularly accurate. In practice, the free-interface eigenvalues would be
updated directly, subsequently the interface conditions would be imposed and finally

the fixed-interface eigenvalue problem solved to obtain exact results.

L |n |b |E P e

[m] | [m] | [m] | [N/m?] | [kg] 12

1 [0.02]01 |21ell | 7850 A =0bh

Eop | ¢ | 1 h
L ' b

Figure 6.1: One component beam structure and baseline properties.
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Figure 6.2: Mean value of component eigenfrequencies: error before and after up-

dating of fixed-interface eigenvalues using data on free-interface eigenvalues.

Next, the standard deviations of the fixed-interface eigenvalues are estimated
from the covariance matrix of the free-interface eigenvalues using Equation 6.10.
The estimated results are compared with the exact solution and the difference is
shown in Figure 6.3. In this case, all nonzero free-interface eigenvalue statistics
have been considered to estimate the covariance matrix of all except the first fixed-
interface eigenvalues. The error is large for the lowest modes, but gradually decreases
for higher modes and is less than 1% above the 8th mode. The condition number of
the sensitivity matrix depends on the selected sets of eigenvalues. If the first fixed-
interface eigenvalue is neglected, the condition number of the sensitivity matrix is
lower and the results for the other modes improves. This and other issues will also

be addressed in the discussion section.
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Figure 6.3: Standard deviation of fixed-interface component eigenvalues: approxi-

mation error for estimation from free-interface statistics.

6.2 Built-up structure

The propagation of non-deterministic data in a built-up structure has been discussed
in the previous chapter. A perturbational relation between fixed-interface compo-
nent modal and global modal eigenvalues was discussed, where S is the sensitivity
matrix given by
aA;’f _
ON!

Sji (6.11)

If the covariance matrix of the fixed-interface component eigenvalues is known, the

covariance matrix of the global eigenvalues can be estimated by
COV(AY) =8,, COV(AI) ST (6.12)

where 7 refers to the set of selected global eigenvalues (AY') and s refers to the set
of selected fixed-interface eigenvalues of components a and (3.

If Equations 6.10 and 6.12 are combined, a relation between the statistics of the
global eigenvalues of the built-up structure and the statistics of the free-interface
eigenvalues of individual components can be written as

COV(AY)= S, T, COV(Al") T, S (6.13)

mp
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where
COV(“A{ZQ) 0

fry
COV(Am) = 0 COV(°ALL)

(6.14)

is the matrix containing the covariance matrices for selected sets m, and mg of
free-interface eigenvalues for components v and ( respectively. The corresponding

component sensitivity matrices are arranged as

(6.15)

0 ﬁTmeB

Equation 6.13 involves first an inverse calculation at component level, where
fixed-interface eigenvalue statistics are estimated from free-interface eigenvalue statis-
tics independently for each component, and secondly a forward approach to estimate
global eigenvalue statistics from fixed-interface component eigenvalue statistics. In
the formulation of Equation 6.13, all component statistics estimated by the inverse
step are also used in the forward step and therefore sizes of the matrices corre-
spond (index p = index s). In practice, both steps can be treated independently. A

numerical example is presented in the next section.

6.2.1 Numerical example: two component beam structure

L |h b E p
_ bh?
[m] | [m] | [m] | [N/m*] | [kg] |1=75
component « | 1 0.02 0.1 | 2.1el1 | 7850 A—bh
component 5 | 0.8 | 0.01 | 0.1 | 2.1el1l | 7850
E®, p° E7, p° |
L~ LP

Figure 6.4: Two component beam structure and baseline properties.

The two-component structure in Figure 6.4 is used as a numerical example for a
built-up structure. The model consists of two connected Euler-Bernoulli beam com-
ponents and the built-up structure is fixed at one side. The baseline values are
given in Figure 6.4, where the components differ in length and thickness. To sim-

ulate experimental data, a random field model for the thicknesses of the beams is
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Figure 6.5: Different interface conditions for components.

used. A Gaussian distribution with a coefficient of variation of 10% is assumed and
the correlation length is chosen as 0.5m. A standard Monte Carlo simulation ap-
proach with 10000 runs is used to calculate mean values and the covariance matrix
of eigenvalues.

In Figure 6.5, different interface conditions for the components are illustrated.
Case A shows the global built-up structure, which will be used to obtain reference
results. In case B, the independent fixed-interface components are shown as they are
used in the CMS formulation. Case C refers to the components under free-interface
conditions, which is the preferred situation to perform experimental measurements.

In this analysis, first Equation 6.10 is used to estimate the covariance matrix of
the fixed-interface eigenvalues from the free-interface statistics, independently for
both components. In the second step, the global covariance matrix is estimated
by Equation 6.12. The variation in the first fixed-interface eigenvalues of both
components has been neglected in both steps. The results can be compared with
the reference solution obtained for case A. The differences for the standard deviations
of the first 30 modes is shown in Figure 6.6. There is no variation estimated for
the first two global modes. For higher frequencies up to the 10th mode, the error is
up to about 40%. For higher modes, the error is less than 10% and decreasing. A

discussion of the results and alternative approaches follows in the next section.

6.3 Discussion

The fixed-interface CMS method was used to relate free-interface modal properties
to fixed-interface eigenvalues and constraint terms. It is convenient for the analysis
to neglect variation in the constraint terms. The sensitivities between free and fixed-
interface eigenvalues are directly given by terms of the eigenvectors found by solving

the component eigenvalue problem. In order to estimate fixed-interface eigenvalue
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Figure 6.6: Standard deviation of global eigenvalues: approximation error for pro-
posed approach.

statistics from free-interface statistics, the sensitivity matrix has to be inverted.
This is related to problems such as ill-conditioning. The sensitivity matrix is well
conditioned if it is square and the fixed and free-interface eigenvalues involved have
about the same magnitude. In the simple case of a beam that is clamped at both
ends, the fixed-interface eigenvalues correspond well to the nonzero free-interface
eigenvalues. For a cantilever beam, the results are similar, but there is a shift by
one mode. In general, the eigenfrequencies for fixed and free-interface conditions
will match very well for higher modes, but can be shifted by a certain number of
modes. For lower modes, fixed and free-interface results are in general very different.
The transition depends on the characteristics of the boundary conditions and how
they change the mode shapes of the structure. The results for the lowest fixed-
interface eigenvalues have the largest errors. Numerically, this overestimation seems
to compensate for neglecting the variations in the static constraint terms.

The forward propagation of component statistics to global statistics does not
impose any numerical problems. The perturbation approach for CMS is known
to yield reasonably accurate results and the sensitivity matrix is directly obtained
from the global modal eigenvectors. The component statistics appear independently
in the assembled model, since the variations in the coupling constraint terms are
neglected. There are no variations predicted in the lowest eigenvalues, because these
are governed by the static constraint terms. The largest error for the other modes,
which is about 40%, is due to overestimations in the lower fixed-interface component

modes. For higher frequencies, the errors gradually reduce.
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The numerical framework discussed here aims at predicting the statistics of in-
dividual modal properties at component and global level. However, in practice it
may be sufficient to consider an average coefficient of variation for eigenfrequencies
at component level and neglect any correlations. Additionally, in some cases the
difference between free and fixed-interface component statistics is small and can be

neglected within a given accuracy.



Chapter 7

Non-deterministic modal

superposition

7.1 Introduction

This chapter concerns the estimation of the frequency response function (FRF) and
its variations based on the modal superposition principle. This constitutes the final
step in a component mode synthesis analysis or general finite element analysis, where
uncertainty is propagated from the global modal level to the global physical level.
The FRF is a function of frequency w and can be calculated from the eigenvalues
A; and eigenvectors ¢,;. The receptance FRF between two coordinates ¢; and g2 can

be written as a summation of contributions from individual modes as

~ (B)y, (@i)g,

7.1
=1 )\z — w2 + ]dl ( )

n
(W, q1, ) = Z@i(W7Ql>Q2) =
i=1
where «; is the modal receptance of mode 7 and n is the number of modes. Contri-
butions from the modal displacements of the ith eigenvector at coordinates ¢; and
g2 appear in the numerator. The term j d; represents modal damping, which could
be viscous or structural damping.

In a non-deterministic analysis, the modal parameters are random or interval
variables, which are generally correlated. An analysis with uncertain parameters
has to be performed for each frequency, especially since the FRF magnitude varies
non-monotonically. The number of required deterministic solutions of Equation 7.1
can therefore be high, but the computational cost in solving this algebraic equation
is very small. Another advantage of the modal superposition approach is that only a

limited number of modes have to be considered according to the frequency range of

interest, therefore further reducing numerical costs. However, the non-deterministic
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eigenvalue problem has to be solved first to obtain the modal properties.

The first part of this chapter concerns a possibilistic approach, where the vari-
ation in modal properties is specified by intervals. The goal of the analysis is to
obtain the FRF envelope, consisting of lower and upper bounds. A numerically effi-
cient approach is discussed, where first the FRF envelopes for each mode are found
and subsequently combined to obtain the total FRF envelope. In this context, the
often-used definition of modal mass and stiffness as modal space parameters [59] is
compared with a new formulation using a modal constant and the eigenvalue. The
benefits of this novel family of methods are shown using a numerical example.

In the second part of this chapter, probabilistic uncertainties are considered and
FRF percentiles are calculated. A Monte Carlo sampling approach, considering dis-
tribution functions and correlations of modal parameters, can be applied to obtain
an ensemble of FRFs, from which FRF statistics can be estimated. However, the
input data available in practice is often limited. Therefore, the effects of neglecting
various correlations and assuming distribution functions are investigated. Further-
more, a hybrid probabilistic/possibilistic approach to quantify variations in the FRF
is presented. In this method, a FRF envelope is calculated based on bounds of the

probability distribution functions at the modal level.

7.2 Possibilistic approach

In this section, uncertainty is specified by intervals and the goal of the analysis is to
calculate the global FRF envelope, denoted by @. The undamped single mode FRF
is given by

(D), (D),

)\i—(.UQ

In the approach presented here, damping is initially neglected for simplicity. It

ai(w, q1,q2) = (7.2)

can be shown [59] that the combination of single mode FRF envelopes yields a

conservative approximation to the global FRF envelope, written as

@(WthQZ) g @@(Wa%;%) (73)

=1

where @) denotes a summation where the uncertain parameters are considered inde-
pendent between all modes. The calculation of a single mode FRF a; from Equation
7.2 is not trivial, because it constitutes an interval problem as a function of frequency
and with correlated parameters. Several methods have been developed in order to
make conservative approximations of the single mode FRF envelope in a system-

atic way and potentially at a lower cost. In the following, different modal space



7. Non-deterministic modal superposition 107

formulations and approximation methods will be investigated.

7.2.1 Modal spaces

The single mode FRF (Equation 7.2) can be written as

A
i\W, 41, = 7.4
ai(w, q1, g2) N — o2 (7.4)
where
A = (¢z’)q1 (({bz‘)qg (7.5)
is the modal constant. Alternatively, it can be written in the form
(@, 41,02) = —— (7.
ai\Ww,q1,492) = = .
e kl — CL)Zmi
where ) .
ky = : m; = —————— (7.7)

(Di)g, (Di)g, (Di)g, (i),

are the specific modal stiffness and mass, respectively, defined in terms of a pair of
excitation and response coordinates. The modal parameters defined in Equation 7.5
and Equation 7.7 describe different modal spaces, which will be referred to as the
the A - X space and the m - k space. The transformation between the two spaces is

given by

)\i_ki Aizl

m;

(7.8)

) ml
The mode index 7 will be omitted for convenience for the remainder of this

section.

7.2.2 Uncertain modal space

If the system is deterministic, there are unique values my, 150, Ap and )\ describing a
point in both modal spaces for each mode. However, if the modal space parameters
are uncertain variables, they describe a region in the m - k and A - X modal spaces.
In Figure 7.1, the region described by the uncertain modal parameters is represented
qualitatively by an ellipse. In a possibilistic analysis, the boundary of this region
represents the envelope of all possible parameter realisations.

In the m - k space, the equation k= w2+ i describes straight lines with
gradient w?. In Figure 7.1a, two lines, which bound the region, are fitted for a
particular frequency w, and hence two intersections with the k-axis are found. The

magnitude of the single mode FRF corresponds to the inverse of these values. If both
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Figure 7.1: Qualitative representation of the region due to uncertainty and construc-
tion of bounds on the FRF in different modal spaces.

intersections lie either on the positive or on the negative part of the l%-axis, then they
represent the upper and lower bounds of the single mode FRF. If one intersection
lies on the positive part and the other on the negative part of the /%—axis7 then the
range of the FRF magnitude is not monotonic and includes resonance. In this case,
the upper bound of the single mode FRF is infinite, if no damping is considered,
and the lower bound is found as the smaller value of the two intersections.

In the A - X space, the equation A = éA + w? describes straight lines that cross
the A\-axis at w?. In Figure 7.1b, two lines are fitted to the uncertain region for the
frequency w, and the magnitude of the single mode FRF corresponds to the inverse
value of the gradient. If both gradients are either positive or negative, then they
represent the upper and lower bounds of the single mode FRF. If one gradient is
positive and the other is negative, then the range between them includes a line with

zero gradient, which represents resonance.

7.2.3 Modal space approximation

In general, it is computationally expensive to determine the boundary of the uncer-
tain region exactly, because the modal space parameters are correlated and a large
number of data points is required. A conservative approximation to the bounds of
the uncertain region can be made if the interdependency between the modal space
parameters is neglected. In this case, the lower and upper bounds, denoted by in-
dices L and U respectively, of the parameters are determined individually, which
implies only four different values for the two modal parameters. In Figure 7.2,
this approximation is illustrated by a rectangular boundary surrounding the region.
This approach has been referred to as the modal rectangle (MR) method [59, 97].

Furthermore, it has been shown that the approximation in the m - k space can be
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Figure 7.2: Approzimations by the modal rectangle (MR) method and appropriate
corrections: (a) m - k space and (b) A - X space.

improved if the bounds on the eigenvalue, which are given by straight lines from the
origin, are included. This approach is referred to as the modal rectangle method
with eigenvalue correction (MRE) [59, 97]. The same approaches can be applied to
the A - X space, where the modal rectangle is described by the bounds on the modal
constant A and the eigenvalue . Similarly to the 771 - k space, lines from the origin
also improve the approximation, but in the A - X\ space they relate to the bounds
of the static solution. Therefore, this approach will be called the modal rectangle
method with static correction (MRS).

In Figure 7.3, the estimation of the single mode FRF envelope based on the
different approximations is compared qualitatively for the m - kand A -\ spaces.
Lines are shown that refer to frequencies w, and wy, below and above the resonance
range, respectively. The points used (A, o) are bounds on the parameters from
which the upper bound of the FRF is calculated. In the m - k space, only the upper
left and lower right corners (A) of the modal rectangle are used in the calculations.
If the eigenvalue correction is implemented, these two points are replaced by four
points (o) defined by the bounds of the eigenvalue. For very low and very high
frequencies, the MR and MRE methods give similar results. For frequencies close
to resonance (e.g. w,,wy), the MRE method gives much better results than the MR
method. This can be seen by a closer fit of the frequency lines to the uncertain area
in Figure 7.3. It has been shown that the correction using the eigenvalue bounds
is essential to give not overly conservative results for approximations in the m - k
space. In the A - A space, all four corners (A) of the modal rectangle are considered.
If the static correction is used, two of them are replaced by other points (o), but
two corner points remain unchanged. It can be seen that for frequencies above the

resonance range (e.g. wy), the results from the MR and MRS methods are the same,
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Figure 7.3: Construction of points to calculate the upper bound of the FRF for two
frequencies w, and wy using the standard and improved modal rectangle methods: /\
- points used by MR method; O - points used by MRE or MRS methods; (a) 1 - k
space and (b) A - X space.

because the same point (A = o) is used. The MRS method gives better results then
the MR method in the A - A space only for low frequencies (e.g. wy).

7.2.4 Damping

It is straightforward to include either viscous or structural damping in the form
of a modal damping ratio ¢ or modal loss factor 7, respectively. Table 7.1 shows
the corresponding equations governing the single mode FRF for the m - k and A
- X spaces. The FRF is now a complex function and it has been shown [97] that
the bounds on the real and the imaginary parts can be evaluated separately for all
modes and combined in the final stage. If the damping constants are deterministic,
only the two-parametric modal space has to be evaluated and the approximations
discussed in the previous section are still valid. For the m - k space, it has been
shown [97] that only the horizontal and vertical lines of the approximation have to
be considered in order to find the extreme values of the real and imaginary parts.
In the A - X space, only the vertical lines (A=constant) which describe the range of
the eigenvalue, have to be considered, since the influence of the modal constant is
monotonic.

For the numerical example presented in the next section, a simple approximation
of the effects of damping will be used. Damping is only considered over the eigen-
frequency range related to possible resonance, where the magnitude of the FRF will
be bounded by a constant value. If the damping is small and the modal overlap is

low, the magnitude of the FRF at resonance is dominated by the resonant mode.
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a(w, q1,q2) m - k space A - )\ space

Rayleigh damping
Modal damping ratio ¢ | 1/(k — w?m + 52wV kmC) | A/(A — w? + j2wV/AC)

Structural damping
Modal loss factor 7 1/(k — w?m + jkn) A/(N—w?+jAn))

Table 7.1: Complex single mode FRF' expressions for different damping models.

The maximum magnitude of the single mode FRF can be approximated for w? = X
and is then given by the imaginary part of the FRF. It can be calculated from the

interval problem
ai(w? e N, q,q) = A = !
3 bl ) )\/’7 k:n

The results are identical for both Rayleigh and structural damping if ( = 2n. The

(7.9)

approximations of the modal parameters can be used to find a conservative approx-
imation to the FRF magnitude. In general, the MRE and MRS methods give best
results. In the 7 - k space, the FRF magnitude depends on the specific modal

stiffness only and the modal rectangle approximation is sufficient.

7.3 Comparison of modal space formulations

In this section a numerical example, a simple four-DOF spring-mass system with
eight independent parameters as shown in Figure 7.4, is considered to compare the
accuracy of the above approaches. An uncertainty interval of £10% for each param-
eter is considered and possibilistic results are sought. Structural damping has been
included by a modal loss factor of 0.2%. In the following, first the approximations
in the non-deterministic modal spaces are compared and then the uncertain FRF

envelopes are shown.

7.3.1 Modal spaces

In Figure 7.5, the region described by the uncertain parameters is plotted for all four
modes in the 1 - k modal space. In each figure (a-d), there are 28 = 256 points rep-
resenting the results from calculations using the vertex combinations, which depict
the shape of the uncertain area. The boundary of the region is approximated by the
modal rectangle method with eigenvalue correction. It can be seen that the specific

modal mass and stiffness parameters are distributed almost uniformly for the first
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Figure 7.4: Four degree of freedom model for analysis.

mode. Therefore, the MR approximation can be expected to yield accurate results.
The improvement achieved by using the eigenvalue bounds is small. In contrast, the
vertex points for the higher modes are spread out around a line corresponding to
the baseline eigenvalue. There is interdependency between the specific modal mass
and stiffness and therefore the approximation by the MR method gives very conser-
vative results. The bounds on the eigenvalue range provide a distinct improvement
of the approximation. It can be noted that the distribution of the points about the
baseline solution is non-symmetric.

In Figure 7.6, the same data is plotted in the A - XA modal space. For the first
mode, there is clear interdependency between the modal constant and the eigenvalue
and the rectangle approximation method is improved by using the bounds provided
by the static solution. For the higher modes, the vertex points are distributed more
uniformly in the parameter space and the MR method may be sufficient. It can be

noted that the points also extend uniformly about the baseline solution.

7.3.2 Frequency response functions

The receptance FRF between masses 3 and 4, agy, will be considered. In Figure 7.7,
the baseline FRF, the pseudo-exact FRF envelope and a conservative FRF envelope
approximation are shown. The pseudo-exact reference solution for the FRF envelope
is computed by considering all 256 vertex combinations of the uncertain mass and
stiffness parameters in a direct analysis. It can be considered as exact, due to the
monotonic behaviour in this numerical example, except around resonance or antires-
onance. The conservative approximation to the total FRF envelope was obtained by
combining the exact single mode FRF envelopes according to Equation 7.3. In this

case, interdependencies between the modes are neglected and conservatism is intro-
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Figure 7.7: Four-DOF system: baseline FRF (....) and FRF envelopes for £10%
uncertainty: ___ pseudo-exact FRE envelope; _. _. approzimate FRFE envelope by
summation of single mode FRF envelopes.

duced to the total FRF envelope. Damping is only included to bound the upper
FRF envelope over each eigenfrequency range, using the model presented earlier.
Outside the eigenfrequency range, the effect of the modal damping is negligible in
this example and does not affect the outcome of this analysis.

In Figure 7.8, results obtained from the MR and MRE methods in the m - k
space are compared with the FRF envelope obtained by summation of exact single
mode FRFs. The MR method is only able to capture the first resonance of the
FRF envelope and is far too conservative. The reason is that the bandwidths of
the resonance ranges are substantially overpredicted and begin to overlap from a
frequency of about 1Hz onwards. If the exact bounds to the eigenvalues are used,
the approximation of the FRF envelope clearly improves and compares very well with
the reference solution. The upper bound to the magnitude of the FRF envelope over
a eigenfrequency range is calculated from the bounds of the specific modal stiffness
of the corresponding mode.

Figure 7.9 shows the same results for the case that approximations are made
in the A - X\ space. The MR method is now capable of capturing the complete
FRF reasonably accurately. The resonant regions are predicted exactly, since the
eigenvalue is one of the parameters of the modal space. The approximation is more

conservative between resonances and for the static solution. The magnitude at
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Figure 7.8: FRF envelopes for £10% uncertainty, different approzimations: ___
approzimate FRF envelope by summation of single mode FRE envelopes; .... MRE

method in m - k space; - _ _ MR method in m - k space.

resonance is slightly overpredicted, because the interdependency between the modal
parameters is neglected. Using the MRS method, the conservatism can be reduced
in all frequency regions, except immediately above a resonant frequency. This is in
line with the findings in the last section.

Finally, for comparison, the results of both modal space formulations are shown
in Figure 7.10. The MRS and MRE methods yield identical results. The MR method
applied in the A - X space clearly provides better results than the MR method applied

in the 1 - k space.

7.3.3 Perturbation

The application of perturbation methods can reduce the numerical costs drasti-
cally, but also introduces inaccuracies. In the context of non-deterministic modal-
superposition it can be used to estimate the lower and upper bounds on the modal
space parameters by a first order perturbation about the nominal values. Figure
7.11 and Figure 7.12 show the uncertain modal space using exact and approximate
bounds in the m - k and A - spaces, respectively. The inaccuracies are relatively
small, except for the third mode in both spaces. However, in the A - X\ space, the

errors can be assessed more easily. The lower and upper bounds of the eigenvalues
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Figure 7.9: FRF envelopes for +£10% uncertainty, different approrimations:
approximate FRF envelope by summation of single mode FRF envelopes; . ... MRS
method in A - X\ space; - _ - MR method in A - \ space.
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Figure 7.10: FRF envelopes for +£10% wuncertainty, comparison of approximations
in different modal spaces: ___ approximate FRE envelope by summation of single
mode FRF envelopes; .... MRE/MRS methods; - - = MR method in m - k space;
_._. MR method in A - X\ space.
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Figure 7.11: Perturbation of bounds of modal parameters in m - k space: __ exact
and . ... perturbation about nominal values.

are consistently approximated with smaller values as a effect of the perturbation.
There is a larger inaccuracy in the approximation of the modal constant in the third
mode. In contrast, in the m - k space, the errors in the modal constants affect
the accuracy of both modal space parameters, which makes the interpretation more
difficult.

Finally, the FRF envelopes are calculated using the MR method in the A - A
space. Figure 7.13 compares the results based on exact and approximated bounds
on the modal parameters. A shift of the eigenfrequency ranges and a difference in

the resonance magnitude of the third mode can be seen.

7.3.4 Discussion

Both the 7 - k and A - A spaces can be used to make safe approximations for
the modal parameters and single mode FRFs. However, for some applications the
A - X\ formulation might be advantageous. In the m - k space, the MR method
alone is highly conservative and the eigenvalue corrections are essential to obtain
meaningful results. In the A - X space, the theory and the numerical example show
that the MR method can be sufficient. First of all, the important eigenvalue is one
of the parameters and the static correction only improves the approximation for low
frequencies. Furthermore, it seems that the region converges to a rectangular shape

for higher frequencies, which is also advantageous for the MR method.
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In many implementations, optimisation is used to calculate the bounds on the
modal parameters. This requires four optimisations to be carried out for the MR
method and two more for the MRE method per mode. Therefore, the use of the
MR method in the A - X space is numerically cheaper and gives adequate results.
Additionally, the bounds on the static solution required for the MRS method may
be obtained at a lower cost compared to dynamic properties. If different FRFs are
of interest, the modal parameters have to be computed several times, except the
eigenvalues, which are shared by all FRF's. Therefore, only the modal constant has
to be recalculated in the A - X space. This is a major advantage of the A - \ space.
In practice, it is also relatively easy to measure the bounds on resonance frequencies,
which could then be used in the numerical model.

Different exact and approximate methods can be used to estimate the bounds of
some or all modal parameters. In this context the use of a modal constant and the
eigenvalue seems more convenient than using the specific modal mass and stiffness.
In the 7 - k space, the distribution of the vertex points around the baseline value
is non-symmetric for some modes. This is because the inverse is taken of a modal
constant that might be close to zero. Therefore, this formulation is more sensitive
to approximations. Overall, the eigenvalue and the modal constant show different

physical characteristics and it seems sensible to keep them separate.

7.4 Probabilistic approaches

In this section, various aspects of a probabilistic approach to estimate the FRF vari-
ation are discussed. The use of modal superposition and the effects of correlations
between modal parameters are addressed. Furthermore, approaches based on the
variance of random modal parameters are presented, including the application of

the Karhunen-Loeve (KL) decomposition.

7.4.1 FRF statistics

The goal of the analysis is to obtain statistics of the FRF, such as the 10 and 90
percentiles. A standard approach is to use Monte Carlo sampling to obtain an en-
semble of FRFs, from which the statistics can be estimated. The numerical example
shown in Figure 7.4 will be used, where the uncertainty in all eight parameters is
now modelled by normal distributions with a coefficient of variation of 7.8%. The
baseline values are taken as mean values. Figure 7.14 shows the 10 and 90 percentiles
of the magnitude, which were calculated from n = 10* samples. It is a classical ap-

proach to evaluate statistics of the FRF magnitude at a given frequency. However,
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Figure 7.14: FRF of four-DOF system: 100 realisations and .... 10/90
percentiles.

variation in damping is mainly responsible for a variation in the magnitude around
resonance or antiresonance. A change in mass or stiffness properties mainly causes
a shift of the FRF along the frequency axis. Therefore, statistics of the FRF along
the frequency axis, such as percentiles of natural frequencies, are also important.
Information about the FRF magnitude statistics at a specific frequency are useful
if a deterministic excitation frequency is considered. In many cases, however, the
statistics of the magnitude of a resonance peak, independent of its frequency, can be
more useful. In Figure 7.14 it becomes evident that the classical approach does not
provide this information, because the 90 percentile of the FRF magnitude is dras-
tically lower than the magnitude of the baseline FRF. In fact, since the damping is
considered deterministic, the magnitude at resonance is almost identical for all real-
isations. Every FRF realisation is resonant and lies above the 90 percentiles at some
frequency. Therefore, the percentiles shown in Figure 7.14 are not representative of
any realisation.

Another possible approach to quantify the FRF variation would be to evaluate
the statistics of the FRF in a direction perpendicular to the locus of the baseline
FREF. Alternatively, the FRF magnitude statistics can be calculated using a sliding
frequency window, where the maximum and minimum values within this specified
frequency window for each realisation are considered. Figure 7.15 shows the 10

and 90 percentiles of both the maximum and minimum FRF magnitudes for two
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Figure 7.15: FRF realisations and 10/90 percentiles of four DOF-system based on

mazimum (___) and minimum (-__) values in a sliding frequency window with a
width of 0.1Hz (a) and 1Hz (b).

different frequency window widths. For example, the 90 percentile of the maximum
FRF magnitude at a specific frequency is the value that will not be exceeded, with
a probability of 90%, in a frequency band centered about that frequency, i.e. 90%
of the ensemble members do not exceed this value. However, the results depend
greatly on the width chosen for the frequency window. This approach is therefore
especially useful if the excitation frequency is non-deterministic and can be specified

by an interval.

7.4.2 Modal superposition and correlations

In a direct approach, a large number of deterministic solutions must be found for each
frequency at which the FRF is evaluated. This might be infeasible due to the large
computational cost. In a modal approach, first the non-deterministic eigenvalue
problem is solved independent of frequency. Subsequently, Monte Carlo simulation
is applied to the numerically cheap modal superposition equation for each selected
frequency.

The receptance FRF' can be calculated by

a(w, q1,q2) = Z Nt id (7.10)
i=1 " Jdi

where A; and )\; are now correlated random variables. In practice, the probability

distribution functions of modal constants and eigenvalues may be given, but some
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Figure 7.16: Correlation coefficient matrices: (a) full correlation, (b) A - X correla-
tion neglected; v; = N\;;,  v4p; = A;, i=1...4.

of the correlations might not be known. In the following, the effects of neglecting
various correlations are illustrated. Figure 7.16(a) shows the correlation coefficient
matrix p for the numerical example, where the eight modal parameters are arranged
as

vi=N, Upi=A;, i=1...4 (7.11)

Figure 7.16(b) shows the case where the correlations between eigenvalues and modal
constant are neglected. If all correlations are neglected, only the autocorrelations,
located on the diagonal of the correlation coefficient matrix, are considered. Figure
7.17 compares the 10 and 90 percentiles for these approximations with the exact
solution. The differences are negligible. The correlations between different modes
are not influential, because the modal overlap is low. The correlation between the
eigenvalue and the modal constant of one mode is small, as shown in Figure 7.16,

and the resulting differences in the FRF are not significant.

7.4.3 Variance-based approaches

The results in the previous section were based on the real distribution of the modal
parameters. However, in practice, the variation is often only characterised by the
variance and the mean value. In that case, the variance can be propagated or a
distribution can be assumed to facilitate Monte Carlo simulation. A first order

approximation for the variance of the FRF is given by

VAR(a(w)) = S(w) COV(v) S(w)T (7.12)
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Figure 7.17: FRF 10/90 percentiles of four-DOF' system for different correlations:
__ all correlations considered; __ _ correlation between A and X\ neglected; . ... all
correlations neglected.

where s; = g—z is the derivative of the FRF with respect to the modal parameter v;
and COV (v) is the covariance matrix of modal parameters. Expressions for the FRF
sensitivity, a complex function of frequency if damping is considered, can be found by
differentiating Equation 7.10 [98]. In general the approximation is reasonably good
for frequencies outside the resonance range. There are inaccuracies near resonance,
due to the highly non-monotonic behaviour of the FRF. It is possible to extend the
first order approximation by using a series expansion based on Equation 7.10.

A Monte Carlo sampling technique in combination with modal superposition
seems to be a reasonable approach to estimate statistics of the FRF. It allows all
correlations to be considered and is very robust, but requires distribution functions.
If these are not known, distribution functions have to be assumed. A normal dis-
tribution, for example, which can be quantified by the variance and the mean, is
often a good estimate for the eigenvalues. In contrast, the FRF magnitude is known
not to be normally distributed, especially near resonance. Figure 7.18 compares the
real distribution of the eigenvalue and modal constant for the second mode with
a normal distribution with the same mean and variance. For this simple numeri-
cal example, the agreement is very good. Therefore, it can be expected that the
agreement for the FRF is also very good. Figure 7.19 shows a comparison of FRF

percentiles based on the real distribution and a distribution assumed to be normal.
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Figure 7.18: Comparison of histogram for real distribution with normal distribution
model for modal parameters.

The differences are negligible.

7.4.4 Characteristic variation of modal parameters

If the full covariance matrix of the modal parameters is given, the correlations can be
considered by using the KL expansion [40]. Assuming a normal distribution, it pro-
vides a relation between the correlated random modal properties v and uncorrelated

random variables ¢ in the form

r<n

v=vot Y Wi/ (7.13)
i=1

where 1; and /ji; are the eigenvectors and eigenvalues of the covariance matrix
COV (q) respectively. Monte Carlo sampling can then be applied in the uncorrelated
standard normal random variables. The eigenvectors of the covariance matrix give
characteristic variations of the modal space parameters. The corresponding eigen-
value is a measure of their contribution to the expansion. Therefore, it is possible
to reduce the number of terms in the summation of Equation 7.13 by considering
only the terms associated with largest eigenvalues. However, the modal parameters
constitute an inhomogeneous discrete random field problem, because the mean and
variance values vary between them. It is therefore appropriate to use the eigenvalues
pf and eigenvectors 1 that can be obtained from the correlation coefficient matrix

p. In this case the expansion becomes

r<n

v = vo + diag(ew) > i/l (7.14)
=1
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Figure 7.19: FRF 10/90 percentiles of four-DOF system based on real (___) and
assumed normal (- __) distributions for the modal parameters.

Figure 7.20 shows the estimation of the FRF percentiles, where only a few terms
of the KL expansion are retained. If the first characteristic variation of modal
parameters considered, there are considerable differences, especially around the third
mode. However, if the first three terms, out of a total of eight, are taken into account,
the agreement is reasonably good. In practice, all contributions can be considered
and in this case, both Equation 7.13 and Equation 7.14 yield the exact results.

A second numerical example will be considered to illustrate the physical mean-
ing of characteristic variations of modal space parameters. Figure 7.21 shows a
cantilever beam with rectangular cross-section. It is modelled by 10 uniform fi-
nite elements using standard Euler-Bernoulli beam theory [9]. The thickness h and
Young’s modulus E are modelled by random fields with a coefficient of variation of
5% and a correlation length of 0.5m.

Figure 7.22 shows the 10 and 90 percentiles of the FRF obtained from a Monte
Carlo simulation with 10* samples. In addition, the approximate percentiles based
on retaining only the most important term in the KL expansion, is given. The results
agree very well, except for a few frequency regions for the lower FRF percentile
and at the antiresonance around 55Hz. The approximate FRF percentiles depend
only on one standard normal random parameter, which facilitates the application of

various analytical methods. The good agreement is mainly due to the fact that, for
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Figure 7.20: FRF 10/90 percentiles of four-DOF system based on characteristic
variations of modal parameters: exact results (), (a) first characteristic vector
(-__); (b) first three characteristic vectors (- __).
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Figure 7.21: One component beam structure and baseline properties.
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Figure 7.22: FRF 10/90 percentiles for cantilever beam based on the first character-
istic variation of modal parameters (___) and exact results (___).

this numerical example, the first characteristic variation of the eigenvalues is very
dominant. It corresponds to the case of total correlation between the eigenvalues

and the KL expansion simplifies to
A= AO + U}\Cl (715)

if only this component is retained.

7.5 Hybrid probabilistic/possibilistic approach

In this section, a hybrid approach, which uses the modal space as an intermediate
level between the physical parameters and the FRF, is presented. In the first step,
the percentiles of modal constants and eigenvalues are evaluated. Subsequently,
the distributions are truncated to form possibilistic bounds at a chosen level to
calculate a FRF envelope. The evaluation of statistics in the A - A modal space
seems appropriate, because the physical effects are clearly distinguished. The effects
of a shift in frequency, due to varying mass and stiffness, is captured predominantly
in the variation of the eigenfrequency \. The effects of uncertain damping in general
does not affect the eigenvalues and modal constants significantly. For the numerical

example, a Monte Carlo approach with n = 10* samples is used to estimate the
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Figure 7.23: FRF for four-DOF system: 100 realisations ( ), 10/90 percentiles
(....) and hybrid FRF envelope (___).

10 and 90 percentiles of the modal space parameters. These are then considered
as lower and upper bounds of the modal space parameters and a conservative FRF
envelope, using the MR method discussed in Section 7.2, is calculated. The FRF
envelope obtained from this hybrid method is shown in Figure 7.23 together with
the exact FRF percentiles. Statistics on the width of the resonance range as well
as on the magnitude of the resonance peak are included. However, there is some
conservatism due to the approximations in the modal space and the superposition
of independent single mode FRF envelopes.

Next, the hybrid envelope method will be compared with an approach where the
possibilistic bounds are already introduced in the physical parameter space. The 10
and 90 percentiles of the physical parameters are evaluated and the FRF envelope
is calculated using the MR method. The results for this direct method are shown
in Figure 7.24. The direct envelope, which is based on statistics in the physical
parameter space, is clearly broader then the hybrid FRF envelope, as expected.
The difference is due to the conservatism introduced by the possibilistic propagation

from the physical to the modal space.
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Figure 7.24: FRF for four-DOF system: 100 realisations ( ), 10/90 percentiles
(....), hybrid (___) and direct (-__) FRF envelopes.

7.6 Conclusions

Different approaches to estimate response variations using non-deterministic modal
superposition have been discussed. A possibilistic approach was considered and the
effects of the choice of modal space parameters were investigated. It was shown
that, for some applications, a formulation using a modal constant and the eigen-
value has advantages compared to the often-used definition of a specific modal mass
and stiffness. Monte Carlo simulation is the most appropriate approach in a prob-
abilistic analysis. The errors introduced by neglecting correlations or assuming a
normal distribution for the modal parameters are often reasonably small compared
to the required accuracy of the results. A general advantage of modal superposi-
tion methods is that the system response is decomposed into modal contributions,
which introduces an intermediate step in the propagation of uncertainties. First,
the numerically expensive non-deterministic eigenvalue problem is solved and sub-
sequently the FRF variation as a function of frequency is calculated based on an
algebraic relation. A two-step approach can be used to apply a hybrid technique,
where a probabilistic method is used to estimate the variation in modal properties
and a possibilistic method is used to propagate it to the physical FRF. This ap-
proach offers a qualitatively different way to quantify response variations compared

to traditional concepts.



Chapter 8

Application of Line-Sampling to

structural dynamics

8.1 Introduction

In a probabilistic approach [39, 40], Monte Carlo (MC) simulation [99] can be applied
to estimate the statistics of response properties. In the standard MC simulation
method, parameter values are randomly drawn from their distributions and a number
of deterministic problems are solved. The method is very robust and converges to the
exact solution if the sample size tends to infinity. However, in practice a large sample
size can often not be realised, due to time and computing restrictions. Therefore,
advanced MC simulation methods, that can achieve the same accuracy with a lower
number of deterministic solutions, have been developed.

There are advanced MC methods to estimate the mean and variance of a distri-
bution using a low number of samples, such as Latin Hypercube sampling [58]. Tt is
a version of stratified sampling, where it is ensured that the samples are taken more
evenly from the input parameter distribution. A different class of advanced MC
methods concerns the efficient estimation of low probability events [53, 100], which
is addressed in Section 8.1.1. In this context, Line-Sampling (LS) has been devel-
oped, amongst others, to calculate a small probability of failure in high-dimensional
systems.

This chapter concerns the application of the LS simulation method to the dy-
namic analysis of structures with non-deterministic properties. In particular, LS is
applied to efficiently estimate the distribution functions of natural frequencies and
frequency response functions (FRFs) of a system. In the following section, the the-
ory of LS is reviewed. Subsequently, the application of the LS method to estimate

distribution functions is presented. In Section 8.4, various numerical examples are

130



8. Application of Line-Sampling to structural dynamics 131

given based on a structural dynamic model. Finally, the application of LS to random
field models is investigated. The efficiency of the LS approach is compared with the

standard MC simulation method.

8.1.1 Low probability events

The probability of occurrence of an event E can be expressed as

pe = / 15(6)1(6)d6 (8.1)

where 15(0) is the indicator function of the event, 6 is the vector of random pa-
rameters and h(@) is the joint probability density function (pdf). A performance
function g(@) can be defined such that g(€) < go describes the event domain E where
1g(0) =1, g(8) > go is associated with 15(0) = 0 and ¢(0) = g is the limit state
function. The often high dimensionality of @ makes analytical integration infeasible.
Furthermore, the indicator function is in general not known in closed form, because
it is often connected with the response of the system. Therefore, the response of
the structure is typically calculated repeatedly for different values of 8, according
to their distributions, to obtain information about the response. The number of
calculations required to achieve a certain accuracy is the criterion for the efficiency
of the solution method.

Standard MC simulation uses an estimator for Equation 8.1 in the form

1 — N
= — Y 15(0®) =% 8.2
br = 121 2(07) = — (8.2)
where N is the total number of samples, Ng is the number of samples associated
with event E. The realisations of parameters 8 are independent and identically
distributed (i.i.d.) with respect to h(@). The variance of the estimator pg is a
measure of the accuracy of this approach and the coefficient of variation (CV) is

given as [53]

Vv Var[pg] 1—pE
CVye = = 8.3
wo =LV - 53

The disadvantage of this approach is that for small probabilities pp << 1 a very
large number of samples is required in order to obtain a reasonable number Ng of
hits in the event domain. The required sample size is typically inversely proportional
to the target probability.

Several methods have been developed to reduce the variance of the estimator

and to achieve the same accuracy with a lower number of samples. These include
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Importance Sampling [54], Directional Sampling [55], Subset Simulation [56] and
Line Sampling [53, 57, 101]. In this chapter the LS technique and its application
in structural dynamic analyses with non-deterministic properties will be considered.
After a review of the theoretical background, the application of the method to
estimate statistics and distribution functions of response parameters of structural
dynamics systems will be discussed. Finally, the combination of LS with other

non-deterministic modelling approaches is considered.

8.2 Theory of Line-Sampling

LS [53, 57, 101] has been developed for problems in high dimension and where
small failure event probabilities are of interest. It involves sampling along a line in
an important direction in the parameter space towards the event domain. If the
formulation is made in the standard normal space, the random parameters 8 are
independent and Gaussian distributed with zero mean and unit variance. In this

case the joint probability density function can be written as
JORSIEQ (8.4)

where d is the number of random parameters and ¢(6;) = (1/v/27)e~%/2 . Equation

8.1 can now be written in the form

d

pE = /d 1(0) T #(6:)d6 (8.5)

=1

The event domain E can be alternatively expressed as
E:={0, € E1(0_,)} (8.6)

which defines occurrence of the event for the case that the parameter #; lies in a
subset event domain FE; of dimension d — 1 and where 6_; denotes all parameters

except 6. The indicator function is then written as 1g, (6_-1) and Equation 8.5
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becomes
e = | 1E1<0_1>§¢<91>d0 (8.7)
w= [ (/f 1E1<e_1>¢<91>d91)fy(eode_l (53)
pe = [ o) Hedey (8.9)
where

(E,(6_1)) = / 15, (01)6(61)d6) = pr, (6_) (3.10)

is the probability of event E for a given set of parameters _;. The LS estimator

for the probability of event E is

N N
1 . 1 i
Pp = 2 2E(0%) = 5 > _pi (8) (8.11)
i=1 i=1

where 0(_1)1 are independent and identically distributed with respect to h(€_;). For
each sample of the parameters 0@1 the probability of the event pEl(B@l) is calcu-
lated as a one-dimensional problem in terms of parameter #;. The variance of this

estimator is
1 .
_ 7 (4) — \2
Varlpsl = = > (P, — D) (8.12)

and the CV for LS is
Var [p(Ezi]

VNP

In Equation 8.1, the probability pg is expressed as the expectation of the indi-

CVis = (8.13)

cator function 15(@), but in Equation 8.9 it is expressed as the expectation of the
random variable ®(F,(0_1)) = pg,(0_1). It has been shown that [57]

Var|®(E1(0-1))] < Var[lg(0)] (8.14)

and therefore the variance of the LS estimator is always less than, or equal to, the
variance of the standard MC estimator. In fact, the variance of the standard MC
estimator depends on the value of the event probability, whereas the variance of
the LS estimator depends only on the variability of the event probabilities pg, (0(_7’)1)
Therefore the accuracy of the LS estimator is better, the more dominant the influence

of the direction given by parameter ¢, and the less important the influence of all other
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Figure 8.1: Example of a two-dimensional parameter space with event domain.

directions 6_; are on the performance function. Similarly, gains in computational
cost using LS depend on whether or not a parameter 6; can be identified for which the
integral in Equation 8.10 can be evaluated efficiently, i.e. if the response is relatively
insensitive to the remaining parameters @_;. The variation between realisations of
@(El(O(_Z)l)) is an indication of this. The next paragraph concerns a simple example.

Consider the two-dimensional space in Figure 8.1 with parameters ¢, ¢» and
failure domain F'. If the LS direction is perpendicular to the failure domain, 6, = ¢y,
then Var[®(Fi(0s))] is zero and the CV of the probability estimator is zero. In
contrast, if the sampling direction is parallel to the failure domain, 6; = ¢o, then
Var[®(Fi(62)) = Var[lp(0)] and the CV for LS is the same as for the standard MC
estimator.

The implementation of LS is illustrated in Figure 8.2, considering a d-dimensional
space with parameters q (d = k+m). If an important direction «, given by the unit
vector e, is known, a new set of coordinates @ can be introduced, where 6; points
in the direction of o and @_; denotes the d — 1 dimensional space perpendicular
to a. A sample 0(_1)1 describes a point on the @_; axis and the one dimensional
probability problem of parameter ¢; in direction « has to be solved. In the most
simple case, as shown in Figure 8.2a, the limit state function g(q) = g is intersected
only once and the probability of an event E is given by pg = ®(B%), where ® is the
cumulative density function and 5 is the shortest distance in the standard normal
space between the point 0(_1)1 and the limit state function g(q) = go. Figure 8.2b
illustrates an approach to approximate the distance 3®. The performance function
g(q) is evaluated at predefined values 3; and the distance B4 for g(q) = go is found
by linear interpolation. Therefore, for n; samples and n; predefined values 3;, the

performance function has to be evaluated at n; x n; points to describe gj(-i). The



8. Application of Line-Sampling to structural dynamics 135

0_1 ; 0—1

Figure 8.2: Implementation of Line-Sampling.

sampling vector in terms of coordinates q is defined as

as'(j) = Brea+ (@ — < ea, g > €n) (8.15)

where (q)— < e,,q" > e,) = 0@1 is the projection on the d — 1 dimensional plane
perpendicular to a and <, > denotes the scalar product.

LS is a robust method and especially suited for high dimensional problems. It
can deal with irregular limit state functions and several event domains. However, it
is most advantageous if an important sampling direction can be identified and if the
limit state function is simple. Compared to other sampling methods it is not affected
by low event probabilities or a large number of random parameters. A common
choice for the important direction is the gradient at a point in the parameter space,
for example at the baseline solution. However, the gradient should be weighted by
the variances of the random variables. In general, gradient estimation requires some
additional calculation and can be numerically expensive, but efficient methods for

high dimensions exist [102].
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8.3 Application of the LS method to the estima-
tion of response parameter statistics and dis-

tribution functions

In this section, the application of the LS simulation method to estimate distribution
functions and other statistics is examined. First, a simple analytical example is used
to illustrate the concept. Subsequently, LS is applied to a structural dynamic model
to estimate the distribution functions of natural frequencies and FRF magnitudes.
The numerical efficiency of the LS approach is compared with the standard MC

simulation method.

8.3.1 Analytical example

Considering the function
9 =50 +q (8.16)

where ¢; and ¢ are normally distributed independent random variables with a mean
value of 10 and variance 1. The function ¢ is then normally distributed as well,
with a mean value of 60 and variance 26. This analytical problem can be used to
illustrate the application of LS to estimate the distribution of g. A standard MC
approach and the proposed LS approach with n = 10 samples each are compared.
The important direction is defined by parameter ¢;, such that #; = ¢; and 6y = ¢s.
Therefore, the parameter ¢, is varied corresponding to the distance § and samples
are taken for parameter ¢o. In Figure 8.3a, the values g](-i) are plotted for n; = 5
samples and values 3; = [—5, 5]. For each sample, the data points are connected by
a straight line. In this simple example, the linear interpolation is exact for all levels
of B. For a given value gg, n; = 5 corresponding values of 3, are found. Using the
standard normal space, the associated probabilities p(()i) can be calculated. Finally,
the mean probability pg for the given value gy is calculated and can be plotted
in the normal probability plot in Figure 8.3b. If this is done systematically for a
number of values gy covering the whole range of g, then the complete distribution
can be estimated. Alternatively, a given probability py could be used to estimate a
corresponding mean value gg. In Figure 8.3b, the results of the LS approach show
a very good estimation of the exact distribution, especially at the tails, which is a
straight line. The number of deterministic solutions required for the LS approach
is given by the number of evaluations gj(i), which is the number of samples (n; = 5)
multiplied by the number of levels 8; (n; = 2). The number of data points used

to describe the distribution function is independent of the total sample size and
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Figure 8.3: (a) Evaluation of function g](-i) at levels 3; along the important direction

for n; = 5 samples; (b) estimation of the normal distribution by the LS approach
(n =10) and the MC method (n = 10).

can be increased with little numerical cost. The accuracy of the LS approach is
also independent of the probability and only depends on the discretisation of the
performance function g(f3) and the sample size. In Figure 8.3b, the results of a MC
simulation with n = 10 samples are also shown. The data points are spread around
the mean value and no estimate is given for the tails of the distribution. Both
approaches estimate the mean value of g reasonably well. However, a sample size
of n = 10 is not enough to estimate the variance of g accurately using the standard
sampling approach. A sampling approach with 1000 samples was used to estimate
the variance of the variance estimator for both approaches. Based on a probability
of 90%, the standard MC method predicts an interval for the variance of [10 : 51]
whereas the LS approach predicts an interval of [23 : 30], the exact value being 26.
In this simple example of a normal distribution it is sufficient to approximate the
function ¢(f) for two values ;. In general, the number of levels 3, required and the
numerical cost depend on the characteristics of the function g(3). However, if the
shape of the output distribution is known, then the number of LS solutions required
is equal to the number of independent parameters in that distribution.

Other statistics, such as the mean, variance and percentiles, can be deduced from

the distribution function. For the estimation of percentiles, values of the distribu-
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tion function only have to be calculated in the corresponding probability region.
However, an iterative process has to be followed to calculate a given percentile with
the required accuracy. A qualitatively different approach is to calculate a percentile
directly, which will be referred to as the LSp approach later. For a given value of
probability p corresponding values of g can be found. However, the mean value of
them in general does not correspond to the correct result for the percentile. In the
special case of a linear performance function, as given by Equation 8.16, the result
is exact. For non-linear functions g, the result is not exact, but it can be useful in
the case monotonic functions. This will be investigated further using the numerical

example in the next section.

8.4 Structural dynamics example

Case | Vector in Important direction

kl k’Q mq | M 2 3
— ko space

16123525 L2

A (0,1) ko, one parameter

%_/\/W A A ] [B 0 1. by, dingonal
. ) C (1,0) ks, one parameter

! ? D (1,0.45) gradient of A\

Figure 8.4: Spring-mass system; baseline parameter values; definition of important
directions for LS.

The numerical example considered is a spring-mass system as shown in Figure 1.
Both stiffnesses are treated as random variables and modelled by a normal distri-
bution with a coefficient of variation of 10%. Damping is included by a modal loss
factor of 0.1.

8.4.1 Eigenvalue distribution

The LS approach is used to estimate the distribution function of the first eigenvalue
of the system. As a reference, a standard MC approach with a sample size of n = 106
is used. The random parameter space is two-dimensional, given by the parameters
k1 and k. Four different cases are defined for the selection of the important direction
as listed in Figure 8.4. In Figure 8.5 the evaluations of the performance function

)\gi) are shown for n; = 5 samples and n;=5 values 3;. According to the direction of
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Figure 8.5: Fvaluation of the performance function Ay at given values 3; along four
different important directions (A,B,C,D) using the same sample of size n; =5 at all
points (LSa).

LS (cases A,B,C,D), the paths of the curves and the variation between them varies.
The best result for the LS approach can be achieved using direction D (gradient),
because the variation between the samples is small and the graph is almost linear.
The sample size of n; = 5 and the discretisation at n; = 5 points are sufficient, and
only n = 25 deterministic solutions of the eigenvalue problem are required. For the
results shown in Figure 8.5, the same sample has been used for the evaluation of
the performance function at different values 3;, which will be denoted as the LSa
approach. However, a different sample can also be used at each step (LSb), which is
illustrated by the performance functions shown in Figure 8.6, where the lines cross
at various points. The numerical cost is the same, but the approach is based on
more independent samples, which can increase the robustness. A further approach
(LSc) is to order the independent samples such that the lines do not cross, as shown
in Figure 8.7. However, it has to be noted that these approaches (LSb,LSc) are
not theoretically rigorous. The influence of these different implementations will be
investigated.

In Figure 8.8, the estimates of the cumulative density function (cdf) of the first
eigenvalue A; for the MC method and the LS approach (n = 25 each) are compared

with the reference distribution function. The data is shown using a normal proba-
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Figure 8.6: Fvaluation of the performance function Ay at given values 3; along four
different important directions (A,B,C,D) using different samples of size n; = 5 at
all points (LSh).

bility plot to emphasise the tails of the distribution. The n = 25 MC samples are
plotted separately as data points. The LS results can be shown as a line, because the
number of points (found by interpolation) is independent of the number of solutions
of the eigenvalue problem. The MC estimate is the same in all four cases, but the LS
estimate depends on the chosen important direction. While the MC data points only
give a reasonable estimate of the distribution around the mean, the LS approach is
able to capture the tails of the distribution at no extra numerical cost. As expected
from Figure8.5, the results in case D are best and are clear improvements compared
to the standard MC estimate. Figure 8.9 concerns the comparison of the different
LS implementations (LSa, LSb, LSc) regarding the use of independent samples for
the evaluation of the performance function (see Figures 8.5, 8.6, 8.7). Furthermore,
results for the LSp approach, where percentiles are calculated directly from given
probabilities, are shown. For directions B and C, LS gives good results and there
is no clear advantage for the LSa, LSb or LSc approaches. Direction D seems to
be most appropriate for LS and there is no significant difference for the various
approaches. Results for direction A are not considered because of numerical prob-
lems due to the introduced non-monotonicity. The approach based on calculating

percentiles directly (LSp) gives good results in this case of a monotonic behaviour
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Figure 8.7: Fvaluation of the performance function Ay at given values 3; along four
different important directions (A,B,C,D) using different, but sorted, samples of size
n; =5 at all points (LSc).

of the performance function. Therefore, it might constitute an alternative approach
for special applications, but future work is required.

The estimated distributions are compared with the reference distribution using
two different criteria related to distribution tests. A mean-absolute-error test of the
cdf and a mean-square-normalised error test of the pdf (similar to a x?-test), each
using 200 evenly distributed points over the range of values g are used. The mean-
absolute-error test puts a large emphasis on the centre of the distribution, whereas
the mean-square-normalised-error test considers the tails of the distribution as well.
If there is no data for any of the approaches towards the lower or upper tail of the
distribution, the probabilities 0 and 1 have been assigned, respectively. Figure 8.10
shows the results for the MC method and the three different implementations of LS,
each for four different important directions and with the same numerical cost. The
errors shown are mean values from 30 samples. The LS approaches give better results
than the standard MC method. The accuracy of the LS approaches is best in the
case of the gradient direction. The differences between the three implementations

of LS are small and inconclusive. Future work is required in that area.
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Figure 8.8: CDF of A\i: comparison of the LS approach (n = 25, using four different
directions A,B,C,D) with the standard MC method (n =25 and n = 10°).
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Figure 8.9: CDF of A\i: comparison of different implementations (a,b,c,p) of the LS
approach (n = 25, using different important directions B,C,D) with the standard

MC method (n = 10°).
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Figure 8.10: Comparison of the estimated eigenvalue distributions (n = 25) with the
reference distribution (n = 10°): differences (mean values based on 30 samples) for
the standard MC method and the LS approaches (using three different implementa-
tions a,b,c and different important directions B,C,D).
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Figure 8.11: FRF of two-DOF system with uncertain parameters: 100 realisations.

8.4.2 FRF magnitude distribution at baseline resonance fre-

quency

The transfer FRF o between the two masses is now considered and the LS approach
is used to estimate the distribution of the FRF magnitude at the first baseline
eigenfrequency |a(wy)| as shown in Figure 8.11. Two different cases are defined for
the selection of the important direction in the two-dimensional parameter space. In
case F' the direction is given by the gradient of the baseline response magnitude with
respect to the stiffnesses kq,ks and in case F it is arbitrarily chosen to be at an angle
of 30 degrees to this gradient. Figure 8.12 shows the performance function |a(w;)|®
for n; = 5 samples and the two different important directions. The performance
function is non-monotonic and sharply varying, similar to the resonance peak in
the frequency domain. The variation between the 5 samples is less for the gradient
direction F' and therefore a higher accuracy can be expected for LS.

For the implementation within the LS approach, the performance function has
to be discretised. Figure 8.13a shows a discretisation using n; = 20 values (3;,
which were chosen such that a linear interpolation gives a good approximation.
If a linear spacing is used, the number of levels required would be much higher.
Furthermore, for one value ||, two mean probabilities p, and p, are obtained. The

probability of occurrence for a magnitude greater than |ag| is given by p = Dy — ;.-
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Figure 8.12: Evaluation of the performance function |a(wy)| at given values [3; along
two different important directions (E,F) using the same sample of size n; = 5.

The discretisation of the performance function is numerically costly and the total
number of calculations required is now n = 100.

In Figure 8.14, the estimated distribution is compared with the reference distri-
bution (MC with 10° samples) in the normal probability plot. The results for case
F' are slightly better than for case F. The tail of the distribution for smaller values
of the FRF magnitude is estimated well. The tail including the highest magnitudes
is only covered up to a level of about 99%. This is due to the fact that the perfor-
mance function is parallel to the important direction around the peak, which limits
the efficiency of LS. In this case, the maximum value of the peak is highly dependent
on the sampling and less dependent on a change along the important direction.

In order to reduce the numerical cost of LS, it is possible to parameterise the
performance function. The shape of the performance function is related to the FRF

of a 1-DOF system, given by

o] = d (8.17)

VI (@02 + /PP

However, this model leads to numerical difficulties, because of the symmetry with

respect to w. Instead, a similar 3-parameter model, given by

1
o = T (8.18)

where the distance 8 has been substituted for the angular frequency can be used.
There are 3 independent parameters a, b, ¢, which control the spread, position and

height of the peak, respectively. This approximates the correct form of || and is
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Figure 8.13: Comparison of the exact performance function with approximations:
a) linear interpolation with 20 data points, b) fit of a 3-parameter model (Equation

8.18) using 3 data points.
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comparison of the LS approach (n = 100, using two

different directions E,F ) with the standard MC method (n = 10°).
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Figure 8.15: CDF of |a(w)|: comparison of the LS approach (n = 2000 with linear
interpolation and n = 15 with parameterised (param.) model) with the standard MC
method (n =10% and n = 15).

particularly good around the resonance, where an accurate approximation is most
important and |«| changes most rapidly. Alternatively, a higher order polynomial
model can be used, but the 3-parameter model is robust and has the lowest asso-
ciated computational cost. Figure 8.13b shows the exact performance function and
the result using the model in Equation 8.18. The graphs compare very well in the
region around the peak. There are increasing differences for values further away
from the peak, which correspond to the lower magnitudes.

The results for the estimation of the cdf are shown in Figure 8.15. A Monte
Carlo simulation with n = 10° samples is used as reference. LS has been performed
with 5 samples using two different methods for the discretisation of the performance
function. A pseudo-exact approach uses 400 data points and linear interpolation,
which corresponds to an overall numerical cost of n = 2000 evaluations. The pro-
posed approach based on parameterisation uses 3 data points and the model given
by Equation 8.18, therefore requiring a total of n = 15 calculations. For compari-
son, the results from 15 Monte Carlo simulations are plotted as well. The agreement
between the LS solutions is reasonably good, there are only small differences in the
tails of the distribution. Overall, the parameterisation approach works very well for
this specific application.

The estimated distributions from the various approaches can be compared using
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Figure 8.16: Comparison of the estimated FRF magnitude distributions (n = 100)
with the reference distribution (n = 10°): differences (mean values based on 30

samples) for the standard MC method and the LS approaches (using two different
directions E,F).

the mean-absolute-error and mean-square-normalised-error tests, respectively. The
calculated mean values from 30 samples are shown in Figure 8.16 according to the
numerical cost. LS has been performed using the important directions (F,F') and
with the same sample of size n; = 5 (LSa) in all cases. The difference in numerical
cost of the LS approaches is only due to the different number of data points used
to evaluate the performance function. For the standard MC method, the numerical
cost shown corresponds directly to the number of samples. It can be seen that, if
the performance function is discretised accurately using 400 points, the numerical
cost (n = 2000) is so high that the standard Monte Carlo method achieves a better
accuracy. If the performance function is discretised using 20 points, the numerical
cost corresponds to n = 100 calculations and LS achieves a better accuracy then the
standard MC method. In the case of the parameterisation of Equation 8.18, LS only
requires n = 15 solutions of the model and the accuracy is much better then the
standard MC method with that number of samples. Comparing the LS approaches
amongst each other, Figure 8.16a shows that the gradient direction F' gives better
results than direction E. However, the results shown in Figure 8.16b do not show
that difference. Overall, as might be expected, the LS solutions achieve about the
same accuracy for all numerical costs. The differences are small compared to the
coefficients of variation of the mean values, which are around 45%. This means that
the parameterisation using 3 data points and the discretisation using 20 data points

give comparable results to the discretisation using 400 data points.
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Figure 8.17: Comparison of the exact performance function |a(wq)| with approwi-
mations: a) linear interpolation with 400 data points, b) fit of a 3-parameter model
(Equation 8.18) using 7 data points.

8.4.3 FRF magnitude distribution off resonance

This section concerns the distribution of the transfer FRF magnitude away from
the resonance peak, at the frequency wy = 0.17H z as shown in Figure 8.11. Figure
8.17a shows the evaluation of the performance function |a(ws)| for n; = 5 samples
using the gradient direction. The performance function shows the same behaviour
as discussed in the previous section, but the peak is shifted by a distance of 5 along
the important direction. This corresponds to the probability that the resonance
occurs at the specified frequency ws. In order to use the most efficient LS approach,
the performance function will be parameterised using the model given by Equation
8.18. A reasonable number of 7 data points are used and a fit based on a nonlinear-
least-square approach is performed. The total numerical cost is therefore given by
n = 35 calculations. Figure 8.17b shows the pseudo-exact performance function
and the results from the parameterisation. The agreement is reasonably good. The
7 data points have been spread about the origin such that they could be used for
a parameterisation of the performance function at different frequencies including
resonance.

The estimated distribution is compared with the reference solution in Figure 8.18.
For comparison, the results of the LS approach, using the pseudo-exact evaluation of
the performance function with n; = 400 data points, and the standard MC method
with n = 35 samples are shown. The shape of the distribution function has changed

and is still non-Gaussian. The LS approaches give very accurate results in both tails
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Figure 8.18: CDF of |a(ws)|: comparison of the LS approach (n = 2000 with linear
interpolation and n = 15 with parameterised model) with the standard MC method
(n =105 and n =15).

of the distribution. The influence of the resonance peak, which caused problems in
the previous example, can not be seen on the graph, because it is associated with very
low probabilities. The FRF magnitude below resonance at wy is stiffness dominated

and hence the FRF magnitude distribution is proportional to the distribution of

1/(k1).

8.4.4 FRF magnitude distribution at resonance and uncer-
tainty in damping

This analysis focuses on the transfer FRF magnitude distribution at resonance and
considers uncertainty in damping in addition to uncertainty in the stiffnesses. The
modal loss factor (n) is modelled by a normal distribution with a coefficient of
variation of 10%. Three different important directions will be considered as shown
in Table 8.1, where case F' is the same as in the previous section. Case GG defines
the important direction with respect to damping only case H used the gradient with
respect to all uncertain parameters.

Figure 8.19 shows the evaluation of the performance function for n; = 10 samples
and three different important directions. For case F', the important direction is given

by the gradient of the FRF magnitude with respect to both stiffnesses. The shape
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Case | Vector in Important direction
ki1 — ko — mlf space
F (1,0.54,0) gradient with respect to stiffnesses
G (0,0,1) damping
H (1,0.54,2.17) gradient with respect to all parameters

Table 8.1: Definition of important directions for LS.

of the performance function is the same as in the previous section and the effect of
the uncertainty in damping can only be seen in a larger variation in the magnitude
of the peak. In case GG, the variation between the 10 samples is relatively large. The
FRF magnitude depends inverse proportionally on the damping, which is reflected
in asymptotic curves (g ~ 1/3). However, the shift of the resonance peak due to
uncertainties in the stiffnesses introduces the non-monotonic behaviour as seen in
case (G. The latter effect is seen more clearly in case H as a combination of the
asymptotic and the resonance peak behaviour. In the following, the performance
functions have been discretised with a very large number of data points (n; = 400)
so that the errors in this part of the approximation can be neglected. The focus is
on interpreting the influence of the important direction and the variability between
the samples.

Figure 8.20 compares the calculated distribution functions with the reference
solution. For cases F' and G, the lower tail or the upper tail of the distribution is
estimated very well, respectively. There is either no data or larger differences in the
opposite tail. In case H, based on the gradient direction, data for all parts of the dis-
tribution is available, but with slightly lower accuracy. It seems that a combination
of cases F' and GG would result in the best estimation of the distribution function.
In order to implement this idea, it is possible to use two important directions, one
given by the gradient with respect to the uncertain stiffnesses and another given by
the gradient with respect to the uncertain damping. This seems logical, since these
uncertainties have qualitatively different effects on the FRF. The implementation
of two important directions 4 and 3? would require that the performance function
g(B', 3?) is evaluated in a two-dimensional domain. This concept of multi-level LS
is a subject for future work.

In many applications, it might be more important to know the FRF magnitude
distribution of the first resonance instead of the FRF magnitude distribution at the
baseline resonance frequency. The difference lies in the effect of the frequency shift

that is caused by the uncertainty in the stiffnesses. For the evaluation of statistics
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Figure 8.19: Evaluation of the performance function |a(w)| at given values 3; along
three different important directions (F,G,H) using the same sample of size n; = 10.
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Figure 8.21: Ewaluation of the performance function |on| at given values (; along
three different important directions (F,G,H) using the same sample of size n; = 10.

at a fixed frequency, a shift of the FRF along the frequency axis greatly affects the
results. In comparison, if only the magnitude of the resonance peak is considered,
independent of its frequency, any shift of the FRF along the frequency axis has little
effect. The following analysis follows the same lines as the previous one, except that
the magnitude of the resonance peak is considered. Figure 8.21 shows the evaluation
of the performance function in this case for n; = 10 samples and the three different
important directions. It can be seen that the graphs follow the asymptotic behaviour,
which corresponds to the effect of uncertainty in damping. Only for case F', there
is non-monotonic behaviour within the considered range of values. For cases G and
H, the performance function varies monotonically for the considered range of values
g.

Figure 8.22 shows the corresponding results for the estimated FRF distribution
functions. The magnitude of the resonance peak is dominated by the damping and
hence the cdf is proportional to the cdf of 1/7.

The results show reasonable agreement for case G and very good agreement for
case H. The errors in case F' are due to the fact that the important direction
does not consider the effect of uncertainty in damping. The discretisation of the
performance function in cases G and H can be performed with a few data points

only, which makes the LS approach very efficient.
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Figure 8.22: CDF of |ay|: comparison of the LS approach (n = 4000 with linear
interpolation) with the standard MC method (n = 10°).

8.5 Discussion

The LS simulation method is known to be an effective method to estimate small
probability events, such as a probability of failure of a structure. It is robust and
independent of the number of random variables. If an important sampling direction
can be identified and the limit state function is simple, a reduction in the numerical
cost by a factor of 100 or more can be achieved.

In the application of the LS method to estimate a complete distribution function,
the limit state value is moved through the range of possible values of the performance
function and a number of subsequent LS problems are solved. Compared to the
standard MC method, where the solutions concentrate around the mean, the LS
approach basically allows one to choose the probability of the individual solutions.
Therefore, there is no difference in the numerical cost for estimating the tails of
a distribution compared to the area around the mean. The LS approach is in
general more efficient than the standard MC approach, especially if the performance
function can be approximated along the important direction by a reasonably small
number of points. If the shape of the distribution function is known a priori, only
as many LS solutions are required as there are independent parameters to describe

the distribution. In this case mean values and variances can be estimated with high
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accuracy at very low numerical cost.

The LS approach works well for the estimation of the distribution of natural fre-
quencies in structural dynamic systems with uncertain mass and stiffness properties,
because in this case the performance function varies smoothly and monotonically
along the important direction and only a few points are required to estimate it. The
performance function of frequency response magnitudes varies sharply and non-
monotonically along the important direction and a larger number of discretisation
points is required, which reduces the efficiency of the LS approach in this case. In
the region around the resonance peak, which is responsible for the upper tail of the
magnitude distribution, the accuracy of the estimate is limited. This is due to the
interpolation and the fact that the gradient is zero at the peak. The performance
function has a shape similar to that of the FRF of a single degree-of-freedom system

and can be parameterised to further reduce numerical costs.

8.6 Application of Line-Sampling to random field

models

This section concerns the application of the LS method to random field models.
The use of random fields to model spatial variations in mechanical structures has
been discussed in Chapter 3. A simple model for a random field is a homogenous
isotropic Gaussian field, where the random variables have a Gaussian distribution
with parameters independent of direction and location. Therefore, the interdepen-
dency between two random variables defined at two points depends only on the
distance between them. The correlation between two Gaussian random variables

can be modelled by an exponential function of the form

d

d, L., o) =0’ -
R(d, L., 0) crexp( I

) (8.19)

where o is the standard deviation, d is the distance between two points and L. is
the correlation length. For n random variables, a nxn covariance matrix C can then
be constructed. A random field in one dimension, given by a vector p of length n,

can be represented by the Karhunen-Loeve (KL) expansion in the form [40]
r<n

P=D+ ) ¥V (8.20)
j=1

where p denotes the mean, (; are uncorrelated standard normal (zero mean and unit

variance) random variables and p; and 1p; are the eigenvalues and eigenfunctions of
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the covariance matrix respectively. The mean p and the eigensolutions y; and ;
are deterministic. The randomness of the field is only included in ¢ . There are n
eigensolutions, but in general it is sufficient to consider only the r most important
eigenfunctions, which give a good approximation of the random field. The parame-
ters of the Gaussian random field are the mean value p, the standard deviation o
and the correlation length L..

For the application of the LS approach, it seems reasonable to derive the impor-
tant sampling direction « directly from the KL expansion. One possible approach
is to associate the KL variables (; directly with the LS variables 6; such that 8 = ¢
and (; = 6, is the coordinate in the important direction a. The advantages of
this approach are that no additional calculations are needed to define an important
direction and the parameters are already given in the required standard normal
space. LS will then be most effective, if the variable (; in the important direction
is dominant compared to all other variables ¢_;. The influence of these variables
is determined by the corresponding eigenvalues of the covariance matrix. For small
correlation lengths all eigenvalues have a value of about 1 and for large correlation
lengths all except one eigenvalue approach a value of 0. Therefore the larger the
correlation lengths, the more efficient the LS procedure will be.

A cantilever beam as shown in Figure 3.1 is used as a numerical example. Stan-
dard finite element stiffness and mass matrices for Euler-Bernoulli beam theory [9]
with transverse and rotational degrees of freedom are used. The beam of length
[ = 1m is divided into 10 elements. A random field model is considered for the
Young’s modulus E with a CV of 10% and varying correlation length. It is dis-
cretised such that each element has a different but constant thickness. In order to
compare the LS approach with the standard MC approach, a low probability event
of the fundamental frequency f; will be calculated. First, the performance function
fi1 is evaluated at arbitrarily chosen values 8; = [—6 : 2 : 4] along the important
direction, which is defined by the first coordinate in the KL decomposition of the
random field. Figure 8.24 shows the performance function for n; = 100 samples and
based on linear interpolation. In Figure 8.24a the correlation length is 10~%m, which
is a theoretical value, in Figure 8.24b,c the correlation length is comparable to the
length of the beam and in Figure 8.24d it is considerably larger than the length of
the beam. The convergence rate of LS is better if the variance within the samples is
small, which is shown as a narrow spread of lines in Figure 8.24. As expected, the
variation clearly reduces for larger correlation lengths.

In Figure 8.25, the coefficient of variation of the probability estimator is com-
pared for the two sampling methods and different correlations lengths. Standard

MC simulations with n = 10* and n = 10 samples were performed and the lower
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Figure 8.23: Uniform cantilever beam with rectangular cross section and the baseline
parameters.

bound of the fundamental frequency corresponding to a probability of 5% was found.
The corresponding CVs can be calculated from Equation 8.3 and are independent
of the correlation length. Subsequently, LS was performed with n = 100 and n = 10
samples, respectively, and the CV was calculated from Equation 8.13. Figure 8.25
clearly shows that these results depend on the correlation length. In case of the LS
method, the extra numerical cost required to evaluate the performance function has
been neglected. In general, at least two points have to be evaluated for the approx-
imate approach using linear interpolation. Any inaccuracies due to approximations
to the performance function are not contained in the CV of the LS estimator. The
results in Figure 8.25 show that for a correlation length of L. = 0.5m, which is half
the length of the beam, the standard MC approach requires about 10 times the num-
ber of samples as the LS approach. For larger correlation lengths, this ratio steadily
increases. Similarly, the smaller the probability of the event the more effective LS

performs compared to the standard MC approach.

8.7 Conclusions

The standard MC method is of widespread use in many fields of application and is
often used to provide reference solutions for other approaches. The only disadvan-
tage is the high numerical cost. Several advanced MC methods have been developed
to reduce the numerical cost for specific problems, such as calculating a low proba-
bility of failure. It seems reasonable also to apply these successful methods to other
areas, where standard MC methods are normally used.

In this chapter, the Line-Sampling method has been applied successfully to es-
timate distribution functions of structural dynamic systems. The emphasis was on

low-cost approaches that require less than 100 solutions of a deterministic problem,
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but are capable of capturing the complete distribution function up to probabilities
of 107° or so. Furthermore, the efficient combination of LS with random field models
of spatial variations has been presented. It is appropriate to define the important

direction in LS according to the first random variable in the KL expansion.



Chapter 9

Numerical example: automotive
windshield with uncertain

properties

9.1 Introduction

This chapter concerns the vibration analysis of an automotive windshield with un-
certain parameters. In particular, the modelling of spatial variations using random
fields and the implementation within a finite element model are discussed. Spatial
variations are considered for the thicknesses of the five layers of the laminate wind-
shield and for the properties of the glue joint by which the windshield is mounted
on the car. These spatially varying parameters can be modelled appropriately by
random fields, as discussed in Chapter 3. The analysis is based on the FE model
of the baseline system and information about parameter uncertainties. The vari-
ation in the frequency response of the windshield is investigated for the cases of
a free and constrained configuration of the windshield. The Line-Sampling proce-
dure, as described in Chapter 8, is applied to estimate statistics of the fundamental
eigenfrequency of the windshield.

Continuous random fields are discretised using the existing FE mesh such that
each finite element has a constant parameter value. A point discretisation method
based on the geometric centre of each finite element is employed. The discrete
random field for one windshield parameter is based on n correlated random variables,
where n is the number of finite elements. The spatial correlation of the random
variables mainly depends on the correlation length. If the spatial interdependencies
are neglected, e.g. the correlation length is zero, then there are n uncorrelated

random variables. If total spatial correlation is assumed, e.g. the correlation length

160
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is infinite, then there is only one random variable covering all finite elements.

The next section concerns the analysis of the windshield in a free configuration.
Subsequently, the windshield is considered in a constrained configuration as mounted
on the car. Results from numerical and experimental studies of the windshield [103—

105] are considered.

9.2 Windshield in free configuration

9.2.1 Windshield FE model

The windshield shown in Figure 9.1 is a laminate shell structure, slightly curved,
consisting of five layers with different materials and thicknesses. Figure 9.2 shows
a schematic of the cross-section of the laminate. The two external layers are made
of glass and the intermediate layers of two different polymers, two PVB (poly vinyl
butyral) layers and one further polymer (AP) in the middle. The windshield mea-
sures approximately 800mm in the vertical and 1500mm in the horizontal direction.
Compared to the surface dimensions, the nominal thickness of 4.96mm is small.
The structure has been modelling using planar shell elements with the capability of
including multi-layered cross-sections (NASTRAN PCOMP element). The calcula-
tions are performed using a mesh consisting of 793 nodes (4758 degrees of freedom),
758 rectangular (NASTRAN CQUAD4) and triangular (NASTRAN CTRIA3) ele-
ments. It has to be noted that the current finite element model may not be sufficient
to model the dynamic behaviour of the windshield accurately, but it is appropriate
in regard to the objectives of this chapter. A more accurate finite element model of
the windshield should comprise solid finite elements, allowing individual shear de-
formation in each layer, and a temperature and frequency dependent material model
for the polymers. Overall, it can be shown that results from the finite element model
compare qualitatively well to measured data. Therefore, the model of the windshield
is appropriate to study the modelling and the effects of spatial variations in various

properties.

9.2.2 Variability and uncertainty

In [103] two different sources of nondeterministic data for the windshield were iden-
tified. First, there is the change of material properties of one structure with tem-
perature, which has been referred to as intra-variability and was considered in [103].
On the other hand, inter-variability refers to the variation between two or more

structures, for example in the thickness of the individual layers. It is inevitable that
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1 Glass 2/mhm

2 PVB- polymer (vinyl butyral) 0.33 mm

3 AP - acoustic polymer 0.1 mm

4 PVB - polymer 0.33mm

5 Glass 21 mm

Figure 9.1: Windshield FE mesh. Figure 9.2: Schematic view of cross-
section and nominal thicknesses.
Geometric variability Nominal value Tolerance
Sandwich thickness (14+2+3+4+5) 4.96mm (—0.2;4+0.2)mm
Polymers thickness (243+4) 0.76mm (—0.16;0)mm

Table 9.1: Mean values and tolerances for thicknesses.

the thickness of each individual layer will differ from the nominal value and vary
over the layer, because neither an exact nor constant thickness can be achieved in
manufacturing. The available information on mean values and expected bounds are
listed in Table 9.1. In this work, the use of random field models to describe the

variation in thicknesses is investigated.

9.2.3 Simulation

The simulations were carried out using the FE software NASTRAN. For the nom-
inal FE model, the material parameters and modal damping ratios were selected
according to a constant temperature of 5°C according to [103].

For the random field model, a Gaussian distribution for the thicknesses was as-
sumed. The mean value was calculated to lie in the centre of the given interval using
the nominal and tolerance values in Table 9.1. The standard deviation was obtained
by the criterion that a sample from the Gaussian distribution has a probability of
95% to fall within the specified interval. A constant coefficient of variation was
calculated for all polymer layers. Furthermore, the random fields of the individual
layers were treated independently and a correlation length of 500mm was assumed

(no data). The parameter values used in the simulations are given in Table 9.2.
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Parameter / Layer Glass (1,5) | PVB (2,4) | AP(3)
Mean value [mm] 2.14 0.29 0.1
Coefficient of variation (CV) | % 4 12 12
Correlation length [mm] 500 500 500

Table 9.2: Parameters of Gaussian random field for layer thickness.
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Figure 9.3: Realisation of a homogenous isotropic Gaussian random field, 2D and 3D
views; mean value 0.29mm, coefficient of variation 12%, correlation length 500mm.

The application of the random field model is straightforward, if a discretisation
at element level is chosen. The NASTRAN input file is changed accordingly by
creating one property card for each element. The random field model is implemented
in MATLAB. For the calculation of the distances between elements, information on
element nodes and node coordinates is used to calculate the geometric centre of
each element. The distance of two elements, which determines their correlation,
should be the shortest connection on the surface. For simplification, the shortest
distance in space was used, which however is expected to be a sufficiently accurate
approximation. Figure 9.3 shows one realisation of the random field for a PVB layer.
A Monte Carlo simulation is applied to obtain a response sample. The procedure
has been automated using a script in the programming language PERL. First, an
input file is created, which specifies the parameters for the random field model
(mean, standard deviation, correlation length) and the number of runs. Next, a file
containing the thicknesses for all layers and all evaluations is created by MATLAB.
In the main simulation loop, the PERL script updates the NASTRAN input files
with the new thickness values, then submits them to the NASTRAN solver and
subsequently extracts and saves the required results. All steps are automated by

the script and the NASTRAN environment can be used unchanged.
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Figure 9.4: Comparison of FRF measurements on three different windshields with
deterministic simulation.

9.2.4 Results

In Figure 9.4 the deterministic results from the nominal FE model are compared with
the measured FRF's from three different windshields. The experimental campaign is
described in [103]. The measurements were performed on three nominally identical
acoustic windshields in a free configuration. An excitation by an impact hammer was
used and the acceleration was measured by piezoelectric accelerometers at different
locations. Furthermore, modal damping ratios have been estimated from the FRFs.
All experimental data relate to the temperature of 5°C and the same point FRF.
In general, the simulations capture the characteristics of the dynamic response well.
However, there is a shift to lower frequencies for the simulation results. This is
mostly due to the fact that the frequency dependence of the elastic properties of
the polymers was not modelled. For higher frequencies the dynamic stiffness of the
polymers can be expected to increase.

Figure 9.5 shows the results from a Monte Carlo simulation with 500 samples
including the 5 and 95 percentiles of the FRF magnitude. As expected, the variation
increases with frequency and therefore predicts a larger range in magnitude for higher
frequencies. In Figure 9.6, results are shown for two cases where the correlation
length L. of the random field is set to a very small and very high value, respectively.
The changes in the FRF statistics are significant. A very large correlation length

corresponds to the case that there is a constant but random value for all elements
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Figure 9.5: FRFs from 500 MC simulations and statistics.

and leads to increased FRF variation. The statistics for the case of zero correlation
length, where all elements are nearly statistically independent, show a much smaller
variation. This is because the effects due to uncorrelated variation in all finite

elements is averaged out.

9.3 Windshield in constrained configuration

This section concerns the practical case where the windshield is mounted on the
car. The glue joint and polymer seal, by which the windshield is connected to the
car, have spatially varying material and geometric properties over their lengths.
These inherent variations can have a considerable effect on the dynamic response
of the system. For this analysis, the effects of the joint and the chassis on the
dynamic behaviour of the windshield are approximated by translational stiffnesses
in all directions at the 102 nodes along the edge of the windshield. A measurement
campaign on the windshield in a constrained configuration has been conducted [103]
and four resonance frequencies were identified. The nominal values of the joint
stiffnesses were calculated such that the fundamental eigenfrequency from simulation
and measurement are identical. The best results were achieved for the case where
in-plane motions are effectively constrained and the out-of plane stiffness has a value
of 2500 N/mm. The comparison between the first four simulated eigenfrequencies
and measured resonance frequencies is shown in Table 9.3. The agreement is good.

However, uncertainties were neglected in this step, because the baseline joint stiffness
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Figure 9.6: 5 and 95 FRF percentiles for very small and very large correlation
lengths, 500 MC' simulations.

Eigenfrequencies [Hz] / Mode | 1 | 2 3 4
Simulation 58 1 106 | 162 | 226
Measurement 58 1109 | 163 | 227

Table 9.3: Comparison of eigenfrequencies for simulation and measurement.

was updated using one available measurement of the fundamental eigenfrequency
only.

Variability data on the joint properties [103] indicates that a CV of 30% is real-
istic for the joint stiffness. A correlation length of L. = 500mm has been assumed.
500 Monte Carlo simulations have been performed considering the random field
models for the individual thicknesses, as described before, and the out-of-plane stiff-
ness of the joint. The FRFs and statistics are shown in Figure 9.7. The frequency
response is characteristically different to the free configuration case. There is very
large variation around the fundamental resonance and much less variation for higher
frequencies. It is clear that the joint properties mainly affect the lower frequencies.
In addition to the variation of the FRF magnitude, the variation in the frequency of
resonance peaks can be of interest. Figure 9.8 shows a histogram of the fundamental
eigenfrequency of the windshield based on 2000 MC simulations. The shape is close
to a Gaussian distribution, but is skewed somewhat. In practice various statistics of

the fundamental frequency can be of interest, for example the 5 and 95 percentiles or
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Figure 9.7: FRFs from 500 MC simulations and statistics.

the probability of the fundamental frequency being below a certain value. In general
the numerical cost for such an analysis can be relatively large. In the next section,
the application of a simple Line-Sampling procedure to estimate the distribution

and statistics of the fundamental eigenfrequency will be considered.

9.4 Line-Sampling

This section concerns the application of the Line-Sampling method to the random
field model in order to increase computational efficiency, as discussed in Chapter
8. The Karhunen-Loeve (KL) expansion of the spatially varying discretised joint

stiffnesses can be written as

r<n

k =K+ + > ;¢ (9.1)
j=2

where the term associated with the largest eigenvalue p; of the covariance matrix
has been explicitly separated from the sum. The term associated with the largest
eigenvalue makes the largest contribution to the expansion and therefore has the
largest effect on the variation in the fundamental eigenfrequency. The Line-Sampling
technique is based on an important direction in the parameter space, along which
a performance function is evaluated at predefined values, and MC samples taken

in the perpendicular direction. If this concept is applied to Equation 9.1 then the
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Figure 9.8: Histogram of fundamental eigenfrequency of constrained windshield.

parameter (; can be used to define the important direction. The parameters (;
are already standard normal (zero mean unit variance) random variables as used
in the Line-Sampling procedure. First, a vector of discrete values for (; is defined
arbitrarily, for example as (; = [—3 : 0.5 : 3] with a total of 13 values. Subsequently,
for each value of (;, a standard MC simulation with 5 runs is performed considering
the n — 1 random variables (;,i # 1. Overall, the fundamental eigenfrequency is
calculated for 13 x 5 = 65 realisations. The results are shown in Figure 9.9, where
four different correlation lengths have been considered. The further analysis can
be performed using any chosen correlation length, but the accuracy of the results
will be different. The highest accuracy can be expected for the case of the largest
correlation length (D), because the variation between the MC samples is small and
the gradient of the curves is large.

The data in Figure 9.9 can be used to estimate the cdfs, which are shown in
Figure 9.10. It can be seen that all cdfs have the same mean value (58 Hz), but
the spread depends on the correlation length. For larger correlation lengths, the
standard deviation of the fundamental eigenfrequency is larger and more extreme
realisations are likely. This indicates that an extreme value of the fundamental
eigenfrequency occurs if the stiffnesses are either high or low for all locations around
the edge of the windshield.

The accuracy of these cdf estimates depends on the correlation length as dis-
cussed before. Figure 9.11 shows the CV of the LS estimator for an event with a

probability of 5% based on n = 10 deterministic solutions, calculated from Equation



9. Numerical example: automotive windshield with uncertain properties 169

(A) L =125mm (B) L =250mm
70 70
60 60
3 / -
< <
50 50
40 40
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Z1 Z1
() L =500mm (D) L =1000mm
70 70
60 60
— —
< <
50 50
40 : 40
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
Z1 Z1
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Figure 9.11: Coefficient of variation of LS estimator for different correlation lengths
based on 5% event and n =5 samples.

8.13. The accuracy increases with larger correlation lengths. The CV of the MC
estimator for a 5% event is independent of the correlation length and about 9%
based on n = 2000 samples. Figure 9.12 shows a comparison of the cdf estimates
from the MC and LS approaches with n = 2000 and n = 65 required deterministic
solutions respectively. The agreement is very good and it can be expected that the

LS approach provides better results towards the tails of the distribution.

9.5 Discussion and concluding remarks

The use of a random field model for the spatial variation of thicknesses of a lami-
nate windshield has been discussed. The theory of a simple Gaussian random field
and its realisation using the KL representation was reviewed. The implementation
within an existing deterministic FE model and standard FE software was shown to
be straightforward. Experimental and numerical results were compared and the in-
fluence of the random field parameters was investigated. A Monte Carlo simulation
approach is most appropriate to obtain the statistics of a response sample. The
numerical cost can be reduced by using advanced sampling techniques.

The discretisation of the random field at the element level is convenient for
implementation within existing FE models and software. This approximation is
justified if the correlation length is large compared to the element size. Since a
refinement of the FE mesh is in general easily done, this approach seems suitable
for many applications.

The quantification of the random field suffers from the lack of experimental data.
In particular, information about the correlation length is not known, which has been

shown to be much more important than the type of correlation function (exponential,
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triangular, Gaussian) [75]. A zero correlation length implies that the elements are
statistically independent. For a large correlation length, the results converge to
the case of total correlation, where all elements have the same properties. The
influence of the correlation length on the dynamic response of the windshield can be
fundamental. The maximum variation in the FRF is obtained if the thicknesses of
elements are all at a maximum or minimum. If the correlation between elements is
small, the probability that all thicknesses are near a maximum or minimum for the
same realisation of the random field is very low. If the correlation length is large
then the element thicknesses are all similar and it is more likely that all of them
are large or small for the same realisation. The sample statistics in Figure 9.6 show
the differences in the predicted response variation. If the correlation length is small
enough, the effect of variation in thicknesses can be neglected.

The assumption of a homogenous isotropic random field is reasonable, if no other
information about the manufacturing process is available. A Gaussian distribution
has been assumed for convenience, which seems reasonable for the nature of the
manufacturing process. The polymer layers mainly influence the acoustic properties
of the automotive windshield and also introduce a substantial amount of uncer-
tainty and variability. The change of material properties with temperature was not
considered in this work. There are well-established relations for temperature and
frequency dependent elastic properties of viscoelastic materials, which should be

included. The spatial variation of material properties is due to product variability
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and should be considered as well.

The use of a Monte Carlo simulation approach is often limited by the resources
available (especially time), because the deterministic model has to be solved repeat-
edly. If events with small probability of occurrence are of concern, for example in a
reliability analysis, the required number of evaluations can be much higher. In this
context the LS technique was applied, which achieves the same accuracy as the stan-
dard MC approach in a lower number of runs. It was shown that the term associated
with the largest contribution to the KL expansion is an appropriate choice for the
important direction. However, it has to be noted that in this case the convergence

of the LS estimator depends on the correlation length.



Chapter 10
Concluding remarks

This thesis concerned modelling approaches for the low-frequency analysis of built-
up structures with non-deterministic properties. The uncertainties due to a lack of
knowledge or the naturally inherent variation of properties in a numerical model are
of growing concern in industry and research. It is recognised that these effects have to
be taken into account in order to satisfy the increasing requirements towards product
performance. The challenges for an analysis with non-deterministic properties were
identified to be mainly the high numerical costs and the applicability and practicality
of the approaches. The high numerical costs are due to the repeated analysis of a
deterministic problem in most cases. The computational cost for one deterministic
solution is already high, because at low frequencies detailed information about the
response variation of the system is desired, which in turn requires a large finite
element model. In this work various strategies to reduce the number of deterministic
solutions and the computational cost for one deterministic solution were discussed.

First of all, any model reduction method is beneficial and can in general be
combined with other probabilistic or possibilistic approaches. In the context of
built-up structures, as is often the case in practice, the component mode synthesis
method is most appropriate, and a comprehensive review of deterministic component
mode synthesis approaches has been given. A number of original contributions were
made regarding component mode synthesis as a framework for the analysis of built-
up structures with non-deterministic properties. It has been shown that various
possibilities and advantages arise from the multi-level quantification and propagation
of uncertainties and the substructuring itself. These include the numerical costs
as well as issues of applicability and practicality. Overall, the component mode
synthesis method offers some physical insight in the analysis and can be effectively
combined with other non-deterministic approaches.

The second class of methods to reduce the numerical costs concerns the applica-

tion of approximate propagation methods. In a linear modal analysis, the eigenvalue
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problem is often the computationally most expensive operation. For the reanalysis
of the eigenvalue problem, it is often appropriate to replace it with perturbation or
interpolation methods. Within this work, perturbational relations have been con-
sidered mostly within the component mode synthesis framework, which can in some
cases reduce the numerical cost of an uncertainty analysis to that of a deterministic
analysis. The accuracy of such numerically cheap approaches has to be seen in con-
text with the level of uncertainty in the statistics of the input data and is therefore
often acceptable.

The frequency response function in linear structural dynamic problems is often
found by modal superposition. The numerical cost of deterministic modal super-
position is very small. However, if there is uncertainty or variation in the modal
properties, a non-deterministic problem has to be solved for every frequency consid-
ered. In this work novel contributions have been made to non-deterministic modal
superposition, where the modal parameters are described either by probability den-
sity functions or intervals. In the latter case, it is appropriate to make conservative
approximations in the modal space, independent of frequency, in order to calculate
frequency response function envelops efficiently.

Finally, a reduction in the number of required reanalyses for probabilistic ap-
proaches has been considered. The Monte Carlo simulation method is often used as
a reference solution, because it is robust and the Monte Carlo estimator converges to
the exact results for a larger sample size. The numerical cost of such an analysis can
be drastically reduced if advanced Monte Carlo methods are employed. In this the-
sis, the Line-Sampling technique has been reviewed and original contributions have
been made for its application in structural dynamics. In general, the Line-Sampling
method is as robust as the standard Monte Carlo method and the Line-Sampling es-
timator also converges to the exact solution for a large enough sample size. However,
if some additional information about the system, such as parameter sensitivities, is
known, then Line-Sampling achieves the same accuracy at a much smaller number
of deterministic solutions.

Many non-deterministic properties in mechanical structures are varying spatially
and can be appropriately modelled by random fields. The quantification of spatially
varying uncertain properties in existing finite element models and software has been
addressed in various applications.

All modelling approaches discussed in this thesis can be applied together. Com-
ponent mode synthesis is applicable to the linear analysis of built-up structures
and can be used to reduce the size of the model. At component level, spatially
varying properties can be quantified by random field models. Alternatively, uncer-

tainties can be quantified directly in terms of modal properties, for example from
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experimental data. The influence of neglecting uncertainty in various properties, for
example in component mode shapes, has been investigated. Perturbational relations
can be applied at any level of the component mode synthesis framework, but seem
most appropriate from component modal to component global properties. Subse-
quently, non-deterministic modal superposition is applied to estimate the variation
in the physical frequency response of the structure. Finally, for most probabilistic
propagations, the Line-Sampling method can be applied. The known characteris-
tics of structural dynamic properties allow Line-Sampling to work very efficiently.
Overall, all methods discussed provide some physical insight into the quantification
and propagation of non-deterministic properties. The main focus is on reducing the
computational costs and increasing the applicability. The introduced approxima-
tions and errors are transparent and can often be neglected in view of the level of
uncertainty in the input parameters. In any case, the results of the baseline analysis
are still available and have been enhanced with information concerning the more

complex behaviour of the system.

10.1 Conclusions

The specific conclusions of this thesis are:

e The high numerical cost is a major challenge in the low-frequency uncertainty

analysis of structures using the FE method.

e Approximate propagation methods based on perturbation and interpolation

are appropriate to reduce the numerical cost.

- Perturbation and linear sensitivity approaches are useful techniques if the
change in a parameter is small and the change in the quantity of interest

is small as well.

- Approximation errors can often be neglected with respect to the level of

uncertainty in the statistics of input data.

e Spatial variations of properties should be considered and can be appropriately

modelled by random fields and the KL expansion.

- A discretisation of the continuous random field at the element mesh us-
ing point discretisation methods is convenient for implementation within

existing FE models and software.

- The correlation length is the most important parameter of the random field

model and influences the results and their accuracy in many applications.



10. Concluding remarks 176

e Deterministic model reduction can be used in an uncertainty analysis to reduce

the numerical cost.

- It is often an essential step in a low-frequency non-deterministic analysis,

where the models are in general large.

- The CMS method is appropriate for the modelling of built-up structures and

their components.

e The CMS method provides a suitable framework for uncertainty quantification

and propagation.

- Several advantages arise from the fact that CMS introduces the component

modal level as an additional coordinate system.
- Each substructure can be treated independently.

- The fixed-interface CMS method has further advantages due to the special

structure of the global mass and stiffness matrices.

e The modal superposition method can be applied to non-deterministic modal
data.

- A definition of the modal space using a modal constant and the eigenvalue
has advantages compared to the often-used definition of a specific modal

mass and stiflness.

e LS is a numerically efficient approach that can often be applied instead of the

MC method.

- Its accuracy depends on the existence and identification of an important

direction.

- It can be applied efficiently to structural dynamics, e.g. for the evaluation

of eigenfrequency and FRF distribution functions and statistics.

10.2 Suggestions for future work

Future work in order to extend the contents of this thesis should first of all concern
the effects of further sources of uncertainty, such as damping and the properties of
joints. The modelling of the effects of deterministic damping in structural dynamic
models is a difficult problem and still a subject of basic research. Therefore, the
uncertainty and variability in damping is often neglected and simple deterministic

damping models are employed. However, for some cases the variation in damping



10. Concluding remarks 177

might be the most decisive factor for the variation in the response. In a modal anal-
ysis, it can be assumed that a change in damping only causes a change in response
magnitude. Therefore, variability and uncertainty in damping could be considered
independent of variations in eigenfrequencies and modeshapes at little extra cost.
However, non-classical damping approaches have to be used for joints and other com-
plex components. Most mechanical structures comprise some sort of joints and often
the effects of the uncertainty in joints can be more important than other sources of
uncertainty in a structure. There is a wide range of dynamic characteristics between
different joints and the behaviour of joints often differs greatly from the behaviour of
the rest of the structure. Furthermore, the influence of the joint properties depends
on many factors such as the frequency of vibration. Novel approaches are required
to assess the influence of joint uncertainty and include them in the modelling. A
promising idea is to define characteristic joint properties, which are different from
the physical properties, and to model the variation in the most important of them.

An important task for future work is the assessment of the numerical approaches
in regards to their application to realistic engineering problems. Existing and newly
developed methods have to be validated and tested. This could include benchmarks
against other numerical methods and a comparison with experimental data. In this
context it is important to assess what experimental data are likely or possible to
be obtained in connection with an application case. Some theories and models for
the quantification of non-deterministic effects (e.g. random fields) have been around
for many decades, but the experimental data required to define them is often not
available.

In a practical situation various sources and types of uncertainty are present
in general. Therefore, a comprehensive framework for uncertainty modelling that
makes used of all available individual methods should be provided. In this context,
the full frequency range has to be considered. The combination of probabilistic and
possibilistic data remains a challenge and further research is required regarding the
modelling of hybrid data and the use of hybrid methods.

The work in this thesis concerns the forward propagation of non-deterministic
data. In order to achieve the overall goal of a robust design of structures, this can
be complemented with inverse propagation methods and optimisation techniques.
In this context, it can be the case that the variation in the response is given and
the corresponding variation in input parameters has to be found, which conforms to
model updating under uncertainties. Similarly, the objective function in reliability-

based design optimisation takes account of the variation in the properties of interest.
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