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Scientific Aims

« Orbital parameters affect incident radiation and climate

 Biological and geological processes interact with, and
feedback upon, the climate (via, for instance, CO,)

4 glacial cycles recorded in the Vostok ice core
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Parameter Estimation Problem

e Default parameters almost always 20 atmosphere o
b-opti 1£ ] led EMBM (64 x 32) Composition of the_
Sub-optima _OI: newly coupie GENIE model used in
models or existing models of this study.
increased resolution i

Ocean features an
increased
complexity mixing
scheme over the
default GOLDSTEIN
code.

2D slab sea-ice

« Non-linear response of a model to
its parameters makes “tuning” a
dlfflClllt task 2D land surface

« Often find conflicting design e
objectives (improvements in ' it
atmospheric representation can
compromise ocean properties)

GENIE model
bathymetry (depth
profile) used in the
16-level model. The
grid resolution is

50 42 36 30 25 21 17 4 a2 s o oo o1 o o wi | 64 X 32 X16.

e Multi-objective design search and
optimisation methods to Earth
system models found to be
effective
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Multi-objective Optimisation

To compose a single objective function a decision maker
must provide weighting factors for the individual targets

The optimal or best choice for these weightings is often not
known a priori

Multi-objective method seeks Pareto optimal solutions

The C-GOLDSTEIN function is easily split into its NV
constituents
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Multi-objective Optimisation

Evolutionary programming and Genetic Algorithms are ideal for
multi-objective methods

— Maintain a population of solutions which “evolve” over
generations of the algorithm

— Such methods can capture Pareto optimal solutions

Seek designs of high quality that are evenly distributed and
widely spread in the objective space

The NSGA-II algorithm is popular in the literature

— The goal function used to drive the GA is based on relative
ranking and spacing of the designs
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Multiobjective Optimisation + Surrogates

~10 hours per iteration

Optimal Value

Can be extremely expensive

(time, computer resources)

@&

Extensive NSGA search
~1 hour for all iterations

1D

Parallel
updates

Optimal Result

> Optimal Value

The use of surrogate
models with the
OptionsNSGA?2 algorithm
can reduce, by an order of
magnitude, the total
number of simulation
years required for a high
quality result in the
calibration of a GENIE
model. This approach
provides surrogate models
of the underlying problem
which can be extensively
searched at significantly
less cost than the true
expensive functions.
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Response Surface Modelling - Kriging

Kriging is a curve-fitting technique that originated in the field of geological
surveying

This method has been found to work very well for a wide range of multi-objective
problems

However, there is a computational cost to building the Krig models of the underlying
functions

The curvature of each Krig is controlled by a set of hyper-parameters that must
Ehemselves be tuned (optimised) to provide the best fit of the surface to the sampled
ata

This is achieved by maximising a concentrated likelihood function (CLF) over a set
of sampled data points

The evaluations of the CLF involve the inversion of a matrix of correlation measures
(an O(IN3) operation) and consequently the tuning of the Krig can incur significant
computational expense



Optimisation Workflow

1. Initial sampling of the underlying function (LPr)

2, Tune the hyper-parameters of the Krig
metamodef})or each objective using the best
training data available. High Performance
Computing resource targeted for this

High Performance Computing

Extensive NSGA-II searches of surrogate models
4. Select update points

—  Points from the Pareto front
—  Random points (escape from local minima)
—  Points from a small secondary NSGA-ii
—  Points of greatest Expected Improvement
—  Points of greatest RMS error in the Krigs

5. Evaluate the update points
High Throughput Computing

6. Add the results to the existing data pool

7. Choose the best points in terms of closeness to
the last Pareto front and separation in objective
space

8. Rank the pool of function evaluations and extract

the Pareto front

0. Return to 2

Design of
Experiments
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Build Data

Construct
Krig

Cache
v

Construct
Krig

Tune

Krig

NSGA-Il Search

over Nogj Krigs
(Pareto Front)

NSGA-Il Search
over Nogj Krigs
(Max. Exp. Imp.)

NSGA-Il Search
over Nggj Krigs
(Max. Error)

v
Submit Update
Evaluations

I GENIE I

Converged Ra=lo

OptionsNSGA2_RSM

Optimal
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Software

e Geodise Compute Toolbox

Grid access from the Desktop
Matlab and Jython interfaces
Globus and Condor support

o Geodise Database Toolbox

Associate metadata with data
Programmatic and GUI access

« OptionsMatlab

Engineering Design Optimisation
Suite of multi-dimensional optimisation algorithms

e OptionsNSGA2

Multi-objective optimisation package
Augmented implementation of NSGA-II
Supplied courtesy of Rolls-Royce, PLC
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Geodise

Compute
Toolbox

gd _createproxy.m
gd_destroyproxy.m

Creates a Globus proxy certificate for the user's credentials

Destroys the local copy of the user's Globus proxy certificate

gd_jobsubmit.m
gd jobstatus.m

Submits a compute job to a Globus GRAM job manager
Gets the status of a Globus GRAM job

gd_putfile.m
gd getfile.m
gd_mfile.m

gd_makedir.m

gd_rmdir.m

Puts a remote file using GridFTP
Retrieves a remote file using GridFTP
Deletes a remote file using GridF TP
Creates a remote directory using GridFTP
Deletes a remote directory using GridFTP

Geodise
Database
Toolbox

gd_archive.m

gd_query.m

gd_retrieve.m

Archives a file or data structure to the database

Query the datat for data hing specified criteria.

Retrieves a file or data structure from the database

. Jython

- -
A MATLAR

Client Grid
LT T T T T \ Database
}Geodise Database Toolbox @ ! Web Services
! Location
| Jython Java
! Functions Client Code
|
g | Apache
| Axis Authorisation
! Matlab
| Functions CoG
I Metadata
S Database
GridFTP|

Globus Server XML Schema
—

11
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Matlab Jython
.m files py files
Geodise Java API
v v L 4
SSH Java Client Java CoG
Condor Condor Globus
Native Web Service GT2
/- T T T T T N soTTTTTETTETETS N sloTTTTTTTTTEETETETTTTTS N
Condor Pool Microsoft Institutional Y | UK National Grid Service (GT2) |

Compute
Cluster Server

Resources (GT2)
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http://windowshpc.net/

Matlab PSE Scripting

« OptionsNSGA2_RSM
requires the user to provide
two Matlab function pairs

— Submission and post-
Erocessmg functions for the
yper-parameter tuning
process

— Submission and post-
processing functions for
managing the GENIE
simulations

« Users are free. to target the
most appropriate resource
for their problem
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function retrievallID=krigtune ccs (i, USERDATA)
% Configure the location of the CCS cluster
GT2HOST="'cecsglobusgateway.soton.ac.uk’;
GT2DIR =['/home/andrew/tuning/',num2str (i) ];
try
% Create a remote directory and transfer files

gd_makedir (GT2HOST, GT2DIR) ;
gd_putfile(GTZHOST,'tune.zip',[GTZDIR,'/tune.zip'],'binary');

% Write the input training structure to disk and transfer

gd_putfile (GT2HOST, [jobid '/input.dat'], [GT2DIR,'/input.dat']);
% Write the RSL string and submit the compute job
rslstr=['& (executable=' GT2DIR '/tuneHP.bat' ")'...
' (directory="' GT2DIR ') '...
stdout=' GT2DIR '/gt2stdout.txt)'...
stderr=' GT2DIR '/gt2stderr.txt)'...
count=1)"'...
jobType=single) '...
'"'(maxWallTime="' num2str (60) ') '];
handle=gd_jobsubmit (rslstr, [GT2HOST, '/jobmanager-ccs']);
% Return job handle
retrievalID.handle=handle;
catch
retrievalID.handle="'failed to submit';

'
'
'
'

end

function eval=krigtune ccs parse2 (rID)
while true,
% Poll job status
status=gd_jobstatus (rID.handle) ;
% Handle failures

% Process if job complete
if status==3,
gd getfile (rID.GT2HOST, [rID.GT2DIR '/hyperDHC.dat'], ...
[rID.jobid '/hyperDHC.dat']);
% Load the tuned hyper parameters
hyperDHC=dat2struct ([rID.jobid '/hyperDHC.dat']);
eval.OBJHYPER=hyperDHC.OBJHYPER;
end;
pause (checkfrequency) ;
end
% Clean up remote resource
gd_rmuniquedir (rID.GT2HOST,rID.GT2DIR);
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Condor DAGMan

e 4,000 simulated model years required ~5 - 7 hours CPU time on
the range of resource in the Condor pool

« Compute tasks of this duration at high risk of pre-emption,
suspension and eviction

— Throughput adversely affected
« University of Southampton pool exclusively Win32 machines
— Native Condor check-pointing not available

« Use Condor DAGMan to manage simulations through a linear
series of checkpoints and restarts

14



Condor DAGMan

Matlab scripts auto-generate the
Condor Directed Acyclic Graph
(DAG) for a given number o
checkpoints

Condor DAGMan manages the
submission of the DAG of
compute tasks to Condor

Pre-processing scripts manage
the staging of the output files to
the following task

Some fault tqlerancg 1s provided
through retries of failed tasks.
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# Auto-generated DAG file

Job A stageA.condor
Job B stageB.condor
Job C stageC.condor
Job D stageD.condor
Job E stageE.condor Compute
Job F stageF.condor TaSkS

Job G stageG.condor
Job H stageH.condor
Job I stagel.condor
Job J staged.condor

Script PRE J PRE mv_restart.sh J
PARENT A CHILD B

PARENT T CHILD J
Retry A 3

Script PRE B PRE mv restart.sh B
Script PRE C PRE mv_restart.sh C
Script PRE D PRE mv restart.sh D
Script PRE E PRE mv_restart.sh E Task
Script PRE F PRE mv restart.sh F Pre_
Script PRE G PRE mv restart.sh G .
Script PRE H PRE mv restart.sh H Processmg

Script PRE I PRE mv restart.sh I

PARENT B CHILD C

PARENT C CHILD D D d
PARENT D CHILD E Irecte

PARENT E CHILD F Acychc
PARENT F CHILD G
PARENT G CHILD H Graph (DAG)

PARENT H CHILD I

Retry B 1
Retry C 1
Retry D 1
Retry E 1 FaUIt

retry F 1 | Tolerance
Retry G 1

Retry H 1
Retry I 1

Retry J 1 15
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Condor Pool Usage

= 155 Condor pool Condor, Pool User Statistics for Apr - Windows Internet Explorer

@ :—: - E hktp: v, soton. ac, ukfescondar frondor _vievsfUserapr, html B ‘ 45| X | | e ik
w o [.ISS Condor pool Condor Pool Liser Statistics For Apr ]_I £ - B & - hrage v (FTeok -
ISS Condor pool Condor Pool User Statistics for Apr
8500 From Tue Apr 01 09:33.39 BST 2008 fo Wed Apr 30 23:47:29 BST 2008
680.0 7
Total
Jobsldle
510.0 7
340.0 7
Taotal
170.0 ] JahsRunning
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Configure... Zoom In | Zoom Out T Reset About U nivers |ty Of SO ut h am ptO n
[Grsphs Hints: The Y-axis is number of jobs, the Keaxis is tirme, When graph Snishes updating, press éﬁ;f . o vier &t ::d:?;::w = iii“i‘: ;;;;:ﬂ:: jiﬂ;r to draw 3 rectangle on the graph and then press *Zoom In. Press “Reset” to center'rasize th data afier C on d or p 0 OI DS g e | n A p I’I I
User Total Allocation Time (Hours) JobsRunning Average JobsIdle Average JobsRunning Peak JobsIdle Peak 2 O O 8 . Th ree O pt I ons N SGA2
1149 63 590.0 2940 1- 1 1 1 1 1
Total 661388 e s R 100.0%) multi-objective optimisation
andrew 661172 128.1 6.6 5900 293.0 prOCESSGS were runnlng
pacifica rdis soton ac uk ' (83.0%) (15.0%) (100.0%) {100.0%) .
00 1o 00 0 concurrently from the middle
ECI"JlJIBT uk 2 0.0% 100.0% 0.0% 100.0%
.sofon.acuk (0%, (0%, | U% U,
- o s o oo of the month. The
wasadmin y E 2 5. |
portal e-science.soton.ac.ak 104 (90.0%) (10.0%) (100.0%) (50.0%) management of the short
— - individual compute tasks by
.J.Baker(@soton.ac.
Condor DAGMan keeps the
@ et S - optimisations in phase. 16
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Multi-objective Optimisation Results
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Results of the multi-objective
optimisation. Top right triangle
of plots shows the function
evaluations projected onto 2D
objective space for

each pair of objectives. Two
points from the Pareto front are
highlighted (A,B) which have a
similar score by a “traditional”
single objective measure but
exhibit significantly different
behaviour in the Atlantic
Meridional Overturning
Circulation (AMOC). 17



Optimisation Results
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Plots of the latitudinally
averaged RMS residuals for the
ocean temperature and salinity
profiles for the default and
tuned parameters sets
compared to the target

observational data. 18
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Conclusions

e Multi-objective optimisation

— Avoids the need for a single weighted composite objective

Surrogate modelling significantly reduces number of expensive objective
function evaluations

e Grid computing

OptionsNSGA2 implemented in Matlab Problem Solving Environment
Geodise software provides an interface to the Computational Grid
Tailor the demands of the calculation to the most appropriate resource

Concurrent executions of the expensive model code performed using High
Throughput Computing

Condor DAGMan used to manage each simulation through a series of
checkpoints and restarts

RSM hyper-parameter tuning process targeted at High Performance
Computing resource

19
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