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Overview

• GENIE Project

• Multi-objective Optimisation

• Surrogate Modelling

• Grid Computing Infrastructure

• Parameter Estimation for a new Ocean Mixing Scheme

• Conclusions
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Scientific Aims

• Orbital parameters affect incident radiation and climate

• Biological and geological processes interact with, and 
feedback upon, the climate (via, for instance, CO2)
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The mechanisms that 

have driven the most 

fundamental changes 

of planet Earth are not 

yet fully understood.



Parameter Estimation Problem

• Default parameters almost always 
sub-optimal for newly coupled 
models or existing models of 
increased resolution

• Non-linear response of a model to 
its parameters makes “tuning” a 
difficult task

• Often find conflicting design 
objectives (improvements in 
atmospheric representation can 
compromise ocean properties)

• Multi-objective design search and 
optimisation methods to Earth 
system models found to be 
effective
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GENIE model 

bathymetry (depth 

profile) used in the 

16-level model. The 

grid resolution is 

64 x 32 x16.

Composition of the 

GENIE model used in 

this study.

Ocean features an 

increased 

complexity mixing 

scheme over the 

default GOLDSTEIN 

code.

2D atmosphere

EMBM (64 x 32)

3D ocean

Increased Complexity

Mixing Scheme

(64 x 32 x 16)

2D slab sea-ice

2D land surface



Multi-objective Optimisation

• To compose a single objective function a decision maker 
must provide weighting factors for the individual targets

• The optimal or best choice for these weightings is often not 
known a priori

• Multi-objective method seeks Pareto optimal solutions

• The C-GOLDSTEIN function is easily split into its N
constituents
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Multi-objective Optimisation

• Evolutionary programming and Genetic Algorithms are ideal for 
multi-objective methods

– Maintain a population of solutions which “evolve” over 
generations of the algorithm

– Such methods can capture Pareto optimal solutions

• Seek designs of high quality that are evenly distributed and 
widely spread in the objective space

• The NSGA-II algorithm is popular in the literature

– The goal function used to drive the GA is based on relative 
ranking and spacing of the designs
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Multiobjective Optimisation + Surrogates
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GENIE Model

Optimization

Optimal Value

~10 hours per iteration

GENIE Model

Optimization

Optimal Result

Extensive NSGA search
~1 hour for all iterations

e

Surrogate 
Model

Optimal Value
Can be extremely expensive
(time, computer resources)

Parallel 
updates The use of surrogate 

models with the 

OptionsNSGA2 algorithm 

can reduce, by an order of 

magnitude, the total 

number of simulation 

years required for a high 

quality result in the 

calibration of a GENIE 

model. This approach 

provides surrogate models 

of the underlying problem 

which can be extensively 

searched at significantly 

less cost than the true 

expensive functions.



Response Surface Modelling - Kriging
• Kriging is a curve-fitting technique that originated in the field of geological 

surveying

• This method has been found to work very well for a wide range of multi-objective 
problems

• However, there is a computational cost to building the Krig models of the underlying 
functions

• The curvature of each Krig is controlled by a set of hyper-parameters that must 
themselves be tuned (optimised) to provide the best fit of the surface to the sampled 
data

• This is achieved by maximising a concentrated likelihood function (CLF) over a set 
of sampled data points

• The evaluations of the CLF involve the inversion of a matrix of correlation measures 
(an O(N3) operation) and consequently the tuning of the Krig can incur significant 
computational expense
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Optimisation Workflow
1. Initial sampling of the underlying function (LPt)

2. Tune the hyper-parameters of the Krig
metamodel for each objective using the best 
training data available. High Performance 
Computing resource targeted for this

High Performance Computing

3. Extensive NSGA-II searches of surrogate models

4. Select update points

– Points from the Pareto front

– Random points (escape from local minima)

– Points from a small secondary NSGA-ii

– Points of greatest Expected Improvement

– Points of greatest RMS error in the Krigs

5. Evaluate the update points

High Throughput Computing

6. Add the results to the existing data pool

7. Choose the best points in terms of closeness to 
the last Pareto front and separation in objective 
space

8. Rank the pool of function evaluations and extract 
the Pareto front
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Software

• Geodise Compute Toolbox

– Grid access from the Desktop

– Matlab and Jython interfaces

– Globus and Condor support

• Geodise Database Toolbox

– Associate metadata with data

– Programmatic and GUI access

• OptionsMatlab

– Engineering Design Optimisation

– Suite of multi-dimensional optimisation algorithms

• OptionsNSGA2

– Multi-objective optimisation package

– Augmented implementation of NSGA-II

– Supplied courtesy of Rolls-Royce, PLC
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Grid Computation
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Institutional

Resources (GT2)

UK National Grid Service (GT2)

Oxford Leeds

RAL Manchester

Matlab
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Native
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Web Service

http://windowshpc.net/


Matlab PSE Scripting

• OptionsNSGA2_RSM 
requires the user to provide 
two Matlab function pairs

– Submission and post-
processing functions for the 
hyper-parameter tuning 
process

– Submission and post-
processing functions for 
managing the GENIE 
simulations

• Users are free to target the 
most appropriate resource 
for their problem
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function retrievalID=krigtune_ccs(i,USERDATA)

% Configure the location of the CCS cluster

GT2HOST='ccsglobusgateway.soton.ac.uk';

GT2DIR =['/home/andrew/tuning/',num2str(i)];

...

try

% Create a remote directory and transfer files

gd_makedir(GT2HOST,GT2DIR);

gd_putfile(GT2HOST,'tune.zip',[GT2DIR,'/tune.zip'],'binary');

...

% Write the input training structure to disk and transfer

...

gd_putfile(GT2HOST,[jobid '/input.dat'],[GT2DIR,'/input.dat']);

% Write the RSL string and submit the compute job

rslstr=['&(executable=' GT2DIR '/tuneHP.bat' ')'...

'(directory=' GT2DIR ')'...

'(stdout=' GT2DIR '/gt2stdout.txt)'...

'(stderr=' GT2DIR '/gt2stderr.txt)'...

'(count=1)'...

'(jobType=single)'...

'(maxWallTime=' num2str(60) ')'];

handle=gd_jobsubmit(rslstr,[GT2HOST,'/jobmanager-ccs']);

% Return job handle

retrievalID.handle=handle;

catch

retrievalID.handle='failed to submit';

end

function eval=krigtune_ccs_parse2(rID)

while true,

% Poll job status

status=gd_jobstatus(rID.handle);

% Handle failures

...

% Process if job complete

if status==3,

gd_getfile(rID.GT2HOST,[rID.GT2DIR '/hyperDHC.dat'], ...

[rID.jobid '/hyperDHC.dat']);

% Load the tuned hyper parameters

hyperDHC=dat2struct([rID.jobid '/hyperDHC.dat']);

eval.OBJHYPER=hyperDHC.OBJHYPER;

end;

pause(checkfrequency);

end

% Clean up remote resource

gd_rmuniquedir(rID.GT2HOST,rID.GT2DIR);



Condor DAGMan

• 4,000 simulated model years required ~5 - 7 hours CPU time on 
the range of resource in the Condor pool

• Compute tasks of this duration at high risk of pre-emption, 
suspension and eviction

– Throughput adversely affected

• University of Southampton pool exclusively Win32 machines

– Native Condor check-pointing not available

• Use Condor DAGMan to manage simulations through a linear 
series of checkpoints and restarts
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Condor DAGMan

• Matlab scripts auto-generate the 
Condor Directed Acyclic Graph 
(DAG) for a given number of 
checkpoints

• Condor DAGMan manages the 
submission of the DAG of 
compute tasks to Condor

• Pre-processing scripts manage 
the staging of the output files to 
the following task

• Some fault tolerance is provided 
through retries of failed tasks.
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# Auto-generated DAG file

Job A stageA.condor

Job B stageB.condor

Job C stageC.condor

Job D stageD.condor

Job E stageE.condor

Job F stageF.condor

Job G stageG.condor

Job H stageH.condor

Job I stageI.condor

Job J stageJ.condor

Script PRE B PRE_mv_restart.sh B

Script PRE C PRE_mv_restart.sh C

Script PRE D PRE_mv_restart.sh D

Script PRE E PRE_mv_restart.sh E

Script PRE F PRE_mv_restart.sh F

Script PRE G PRE_mv_restart.sh G

Script PRE H PRE_mv_restart.sh H

Script PRE I PRE_mv_restart.sh I

Script PRE J PRE_mv_restart.sh J

PARENT A CHILD B

PARENT B CHILD C

PARENT C CHILD D

PARENT D CHILD E

PARENT E CHILD F

PARENT F CHILD G

PARENT G CHILD H

PARENT H CHILD I

PARENT I CHILD J

Retry A 3

Retry B 1

Retry C 1

Retry D 1

Retry E 1

Retry F 1

Retry G 1

Retry H 1

Retry I 1

Retry J 1

Compute 

Tasks

Directed 

Acyclic 

Graph (DAG)

Fault 

Tolerance

Task

Pre-

Processing



Condor Pool Usage
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University of Southampton 

Condor pool usage in April 

2008. Three OptionsNSGA2 

multi-objective optimisation 

processes were running 

concurrently from the middle 

of the month. The 

management of the short 

individual compute tasks by 

Condor DAGMan keeps the 

optimisations in  phase.



Multi-objective Optimisation Results
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Results of the multi-objective 

optimisation. Top right triangle 

of plots shows the function 

evaluations projected onto 2D 

objective space for

each pair of objectives. Two 

points from the Pareto front are 

highlighted (A,B) which have a 

similar score by a “traditional” 

single objective measure but 

exhibit significantly different 

behaviour in the Atlantic  

Meridional Overturning 

Circulation (AMOC).



Optimisation Results
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Plots of the latitudinally 

averaged RMS residuals for the 

ocean temperature and salinity 

profiles for the default and 

tuned parameters sets 

compared to the target 

observational data.



Conclusions
• Multi-objective optimisation

– Avoids the need for a single weighted composite objective

– Surrogate modelling significantly reduces number of expensive objective 
function evaluations

• Grid computing

– OptionsNSGA2 implemented in Matlab Problem Solving Environment

– Geodise software provides an interface to the Computational Grid

– Tailor the demands of the calculation to the most appropriate resource

– Concurrent executions of the expensive model code performed using High 
Throughput Computing

– Condor DAGMan used to manage each simulation through a series of 
checkpoints and restarts

– RSM hyper-parameter tuning process targeted at High Performance 
Computing resource
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