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UNIVERSITY OF SOUTHAMPTON 
ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 
School of Ocean and Earth Science   

Doctor of Philosophy 
The Influence of Viruses on Trace Metal Speciation during the Life Cycle of Emiliania 

huxleyi. 
By Turki Al-Said 

 The main objective of this study is to examine the effects of phytoplankton growth, senescence and 
decay on concentrations and the physico-chemical speciation of trace metal. The role of 
coccolithovirus induced lysis was examined on trace metal (Cu, Co, Ni) speciation in laboratory 
Emiliania. huxleyi culture experiments and in natural blooms in the Western English Channel 
(summer of 2005 and 2006). Depth profiles of trace metals (Cu, Co, Ni, Zn) were obtained and in 
particular the speciation of Cu was investigated in detail.  
In the laboratory, E. huxleyi was grown in seawater enriched only with N and P, without the control of 
free metal concentrations using EDTA. Dissolved metal speciation was determined using well 
established  adsorptive cathodic stripping voltammetric (Ad-CSV) methods. Total dissolved Cu was 
constant in the control and virus (EhV-86) infected cultures, in agreement with reported observations. 
Viral lyses of E. huxleyi caused a sharp increase in the concentration of Cu per cell reaching a 
maximum of 4.78 10-17 mol/cell. Ligand production in both cultures resulted in a decrease in the 
concentration of free aqueous Cu (Cu2+) with time. The Cu-organic complexes observed in all 
samples were classed as weak ligands. Cu2+ became more abundant in the dissolved fraction relative 
to particulate Cu, following cell lyses. However, no increase in the dissolved/labile Cu fraction was 
observed in response to the decrease in the particulate Cu in the virus infected culture. Measuring the 
incremental effect of EhV-86, additions on the Cu assay showed enhanced Ad-CSV peaks in the 
absence of EhV-86. The subsequent removing virus fractions from the samples (days 8 & 16) in the 
culture experiments showed an increase in labile Cu, confirming the inhibitory effect EhV-86 has on 
Ad-CSV based Cu measurements and thus Cu speciation. The ratio of labile to total Ni was almost 
constant throughout the experiments (control and virus). High labile fraction of Ni observed in our 
experiment indicated limited influence of the E. huxleyi/EhV-86 life cycles and/or on Ni speciation. In 
the control culture, the ratio of labile to total Co concentrations decreased over time, which indicated 
accumulation by the healthy E. huxleyi cells; the ratio decreased in the virus infected culture until day 
4, following an immediate increase until day 8 due to virus infection. The relationship between 
phytoplankton and metal speciation in viral lyses affected systems has not been investigated before 
and our findings serve as a basis for future research.  
In the Western English Channel, none of the viruses detected during the 2005-2006 surveys exhibited 
typical coccolithovirus analytical flow cytometry (AFC) signatures. The investigated E. huxleyi bloom 
was in the process of being succeeded by Synechoccocus, and the virus community was dominated by 
small viruses (most likely bacteriophage). Coccolithoviruses were present at concentrations below the 
limit detection for AFC. Synechoccocus dominated the phytoplankton community during both 
surveys. Total dissolved Cu concentrations in the depth profiles in the Channel ranged between 1.87-
3.73 nM in 2005, and between 2.11- 4.43 nM in 2006. Furthermore, the ligand concentrations (3.62-
5.98 nM in 2005, 6.10-9.76 nM in 2006) exceeded total dissolved Cu concentration, resulting in low 
[Cu2+]. Copper organic ligands in both surveys presented a high conditional stability constant (Log 
KCuL 12.20-13.77 M), which is characteristic of the strong Cu-binding L1 ligand class. The Cu2+ 

concentration range was higher in 2005 (0.14-1.69 pM) than in 2006 (0.01-0.73 pM), when slightly 
higher ligand concentrations were observed. The synchronicity of the appearance of L1 and 
Synechoccocus abundance points strongly to these cyanobacteria as a strong ligand source. A 
comparison between Cu speciation in the culture experiments and the findings of coastal surveys is 
difficult as the survey studies looked at different ‘snap shots’ of bloom dynamics. In both years, the 
non-labile fractions of Co and Zn were the dominant species. This indicates that these elements were 
strongly complexed by organic ligands. Collection of samples from the same stations during different 
seasons is highly recommended to provide a seasonal picture of metal speciation in these shelf waters.  
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Chapter 1 
 

1.General Introduction 
 

The distribution and chemical speciation of trace metals in the upper water column plays 

an important role in the community structure and physiology of phytoplankton (Sunda, 

1994).  Speciation of trace metals is important because only particular chemical forms of 

given metals are biologically available. In the upper water column, the speciation of 

many biologically active trace metals is controlled by complexation with strong organic 

ligands (Bruland et al., 1991). In general, when a metal is complexed by an organic 

ligand, the metal becomes less biologically available, because the free metal ions are the 

most available to the biota (Campbell, 1995; Sunda, 1994; Morel et al., 2004; Bruland 

and Lohan, 2004; Leao et al., 2007).  

 

Emiliania huxleyi is the most abundant of the coccolithphores on a global basis and it is 

extremely widespread (Winter et al., 1994). Viruses are known to infect a range of 

phytoplankton species. Viruses have been responsible for the demise of E. huxleyi 

blooms in the English Channel (Wilson et al., 2002 b). Information regarding the effects 

of the viral lyses of E. huxleyi on trace metal speciation is not readily available in the 

literature. 

 

The main objective of this study is to examine the effects of phytoplankton growth, 

senescence and decay on dissolved trace metal concentrations and their physico-chemical 

speciation. To this end the role of viral induced senescence (lysis) was examined on trace 

metal speciation in E. huxleyi culture experiments and natural blooms in the Western 

English Channel in the summers of 2005 and 2006. Trace metal (Cu, Co, Ni and Zn) 

depth profiles were obtained; in particular the speciation of copper was investigated. The 

following section highlights the thesis structure.               

 

Chapter 2  

This chapter provides an overview of the importance for the phytoplankton community 

of trace metal speciation in marine waters. The findings from culture experiments and 
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field surveys focusing on the relationship between phytoplankton and trace metals 

speciation are reviewed. The overview includes trace metal speciation studies, in 

particular those involving the life cycle of E. huxleyi (the species of interest in this study) 

and the role of viruses in the marine environment.      

 

Chapter 3    

Chapter 3 describes all the methods used for sampling, storing and the determination of 

dissolved trace metals: cleaning procedures, the equipment used for trace metal sample 

collection and the techniques for analysis. This will include related measurements of 

dissolved organic carbon, nutrients, graphite furnace atomic absorption spectroscopy 

(GFAAS) for particulate trace metals and flow cytometry. The important technique of 

Stripping Voltammetry for trace metal speciation studies will be discussed in detail.   

 

Chapter 4       

Chapter 4 will describe the role of viruses on the speciation of cobalt, copper and nickel 

during the life cycle of E. huxleyi and will detail the findings from culture experiments. 

Experimental design, experiments and all precautions taken for the research will be 

outlined and the results will be discussed. The objective of the experiments was to 

examine the effects of E. huxleyi growth, senescence and decay on Cu speciation. 

Furthermore, the influence on particulate copper concentrations and the concentrations 

and binding strengths of copper complexing ligands was determined. An important focus 

was to document the effects of viral infection of E. huxleyi on metal speciation.          

 

Chapter 5  

This chapter will present the study on the speciation of metals (Cu, Co, Ni and Zn) 

during an E. huxleyi bloom in the English Channel (summer 2005 & 2006). This is the 

first reported study carried out to investigate the speciation of trace metals during an E. 

huxleyi bloom in the Western English Channel. Sampling, all related measurements and 

findings will be described. Trace metal (Cu, Co, Ni and Zn) depth profiles during the 

sampling period will be interpreted, in particular focussing on the speciation of copper.      

        

Chapter 6 

This chapter will present conclusions and final remarks on the current research. Aspects 

that need further research and investigation are highlighted in this chapter.   
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 The thesis is presented in chapters that complement each other, but can also be read and 

interpreted as individual research studies. Thus, in order to promote readability, some 

repetition was necessary in describing and explaining the results. 
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Chapter 2 

 

2.Interaction of Phytoplankton, Trace Metals and Viruses in the 
Marine Environment. 

 

2.1 Abstract 
 

This chapter highlights the importance of trace metal speciation in marine waters. It 

presents the findings of culture experiments and field surveys. Speciation studies related 

to copper and other metals during the life cycle of the E. huxleyi are reviewed. The 

importance of viruses in the marine food web and the correlation with E. huxleyi are also 

discussed. 

 

The free metal ion of many metals have been reported to be the most bioavailable and 

toxic, indicating the importance of speciation studies. Studies in the English Channel and 

the North Sea have confirmed a correlation between the presence of viruses and shifts in 

phytoplankton communities following crashes of E. huxleyi blooms. Results from E. 

huxleyi culture experiments revealed that they can produce organic ligands in response to 

elevated free Cu ions. Cyanobacteria are also able to release strong trace metal binding 

compounds into seawater. The high abundance of viruses in the oceans and their small 

size suggest that they may serve as nucleation centres for iron adsorption and 

precipitation in the ocean. 
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2.2 Introduction  
  
Phytoplankton play a major role in the cycling of trace metals in oceanic waters. Our 

understanding of the processes involved is reasonably well advanced (Bruland et al., 

1991; Whitfield, 2001; Bruland and Lohan, 2004; Morel et al., 2004). In contrast, little is 

known about the influence of phytoplankton related processes on trace metal speciation 

and distribution in coastal waters. 

 
Biological processes can strongly influence the chemistry of trace metals; in turn trace 

metals can influence plankton production and community structure (Sunda, 1989).  

Metals are of environmental interest both as limiting nutrients and as toxicants (Sunda 

and Huntsman, 1998). At enhanced concentrations, metals are toxic when entering cells 

through known essential metal transport systems (Bruland et al., 1991), and metal 

toxicity often occurs when toxic metals displace essential metals from their metabolic 

sites (Sunda and Huntsman, 1998).         

 

Metal complexes with organic ligands dominate the chemical speciation of essential 

metals such as Cu, Zn, Co and Fe (Elwood and van den Berg, 2001; Gledhill and van den 

Berg, 1994). Their biological availability is determined by the concentration of free metal 

ions or of kinetically labile organic species (free ions plus weak inorganic and organic 

complexes) (Sunda, 1989; Sunda and Huntsman, 1995 (a); Bruland et al., 1991).           

 

This chapter provides an overview of the importance of trace metal speciation in marine 

waters. Findings of culture experiments and field surveys focusing on the correlation 

between phytoplankton and trace metals will be reviewed. This will include trace metal 

speciation studies, in particular the speciation of copper and other metals during the life 

cycle of E. huxleyi (species of interest in this study).    

 

Although their existence has been known for years, marine viruses have recently been 

recognised as an important factor influencing the community dynamics (Poorvin et al., 

2004). They play an important role in marine geochemical cycles (Fuhrman, 1999; Suttle, 

2005). It is the current opinion that the primary result of cell lysis is the release of 

dissolved organic matter and nutrients into the surrounding water, thereby directly 
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promoting bacterial production (Brussaard, 2003). Consequently, the importance of 

viruses in marine food webs and its effect on E. huxleyi will be also discussed.        

2.3 Trace metals in marine waters; the importance of metal speciation 

2.3.1 Sources of trace metal to marine waters  
 

Trace metals are generally defined as those metals present in concentrations of less than 

1 µM (Bruland, 1983). Understanding of the marine chemistry of trace metals has been 

enhanced since the 1970s (Libes, 1992). Sample contamination has decreased due to 

improved analytical procedures, as a result of advances in trace metal “clean” sampling 

techniques and analytical protocols (Connelly, 1997).        

 

Metals are introduced into the sea by rivers, the atmosphere, vent fluids associated with 

hydrothermal activity and benthic release (Bruland, 1983; Libes, 1992 and Martin et al., 

1993). Riverine and hydrothermal inputs are considered to be point sources, and their 

impact can be localised (Connelly, 1997). However, over the last 20 years, it has been 

recognised that the atmosphere is an important source of trace metals to the surface ocean 

in both oceanic and coastal regions (Chester et al., 1997, Chester et al., 2000, Herut et 

al., 2001). Atmospheric inputs can also be responsible for the long range transport of 

trace metals away from their source i.e. to the open ocean (Chester et al., 2000). Most 

atmospheric metals are associated with aerosols, which are fine particulate matter. 

Particles are divided into two broad groups, fine particles (< 2 µm) and coarse particles 

(> 2 µm) (Chester, 2000). Table 4.1 in (Chester, 2000) defined a number of aerosol types 

on the basis of their composition and sources. Components of aerosols originate from 

two different types of processes: (1) the direct formation of particles (crustal weathering, 

seasalt generation, volcanic emissions) and (2) the indirect formation of particles in the 

atmosphere (Chester, 2000). In the dry deposition mode, aerosols are nearly continuously 

delivered to the sea surface. Chester et al. (2000) found that the trace metal composition 

of aerosol particles transported to coastal sites reflects the air mass source areas. Close to 

the source, the composition of a specific aerosol component, such as mineral dust, will be 

related closely to that of the parent material (Chester et al., 1994). Both coarse and fine 

particles can undergo physical and chemical modifications, and the charcter of an aerosol 

will change with increasing distance from the source (Chester et al., 2000). Therefore, 

the physical and chemical composition of the marine aerosol is variable in both space and 
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time and aerosol charecterstics are governerd by a combination of processes that are 

involved in the generation, conversion, transport and removal of particles (Chester, 

2000). The rate and the quantity of the trace metal dissolution from particulate mode is 

constrained by particle-seawater reactivity (Biscombe et al., 2004).  Both atmospheric 

inputs are influnced by the aerosol metal loadings which vary spatially and seasonally 

depending on dominating aerosol types, emission strengths and physical and chemical 

modifications to the aerosol population during atmospheric transport (Kocak et al., 

2007). The processes that influence seawater and rainwater dissolution of trace metals 

from aerosol material are varied and act in a complex manner (Kocak et al., 2007). 

Chemical, biotic and physical factors such as pH, presence of dissolved organic 

complexing ligands, particle concentrations, bacteria, phytoplankton, and temperature 

may influence the extent of metal dissolution (Chester et al., 1994, Kocak et al., 2007).         

2.3.2 Distributions of trace metals in coastal waters 
 

Since the early 1970s, marine chemists have gained a first-order understanding of the 

concentrations, distributions, and chemical behaviours of trace metals in seawater 

(Bruland and Lohan, 2004). The revolution in our knowledge of the distribution of trace 

metals in sea water was a result of the advances in instrumental analysis and control of 

contamination (Bruland, 1983). As mentioned earlier, the distribution of trace metals in 

coastal waters is controlled by either input of metals by rivers, atmosphere, sediment and 

benthic inputs (Connelly, 1997). Processes removing trace metals include active 

biological uptake and particle scavenging (Bruland, 1983; Bruland et al., 1991; Bruland 

and Lohan, 2004).            

 

Tappin et al. (1993) studied the concentrations, distributions and variability of dissolved 

Cd, Co, Cu, Mn, Ni, Pb and Zn in the English Channel. The most important factor 

controlling metal concentrations in the English Channel according to these workers was 

the mixing of Northeast Atlantic Ocean surface water with fresh water with higher metal 

concentrations. Other inputs (atmospheric and benthic), the transfer of metals between 

dissolved and particulate phases in the water column and variations in the end member of 

river inputs affected the correlations between metal and salinity (Tappin et al., 1993). 

The rivers Seine, Tamar and Fal founded to be most important interm of their inputs to 

the English Channel (Tappin and Reid, 2000).           
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Statham et al. (1999) investigated dissolved and particulate metals at five stations across 

the English Channel between Cherbourg and the Isle of Wight. For Cu, Ni, Mn and Co 

coastal inputs from the UK were shown to be significant. Dissolved Ni and Cu were 

higher in concentration on the English side of the Channel, which reflected the riverine 

sources. Also dissolved fluxes of Mn and Co were significantly influenced by east to 

west fluxes associated with a gyre feature to the southeast of the Isle of Wight.      

2.3.3 The distribution of trace metals in oceanic waters.   
 

The horizontal and vertical distributions of dissolved trace metals are controlled by their 

relative supply and removal. The balance determines the depth profiles of the metals, 

which can be classified into the following categories: 1- conservative metals; 2- metals 

that have a nutrient-like distribution; 3- metals that are rapidly removed from the water 

column by scavenging processes (Bruland, 1983; Libes, 1992).  

 

Conservative profiles show constant concentrations relative to salinity. Libes (1992) 

suggests that this behaviour is controlled by physical processes such as advection and 

mixing.  Metals that show a nutrient-like profile exhibit surface depletion and enrichment 

at depth as a result of the involvement of the element in the biogeochemical cycle. This 

group is subdivided by Bruland (1983) into labile or refectory nutrient types and those 

that have a combination of both. The labile nutrient type profile is similar to nitrate and 

phosphate; surface depletion follows a mid-depth concentration maximum produced 

when there is regeneration of metal at shallow depths (Libes, 1992). Cadmium is an 

example of a labile nutrient-type metal.  

 

A deep-water maximum is exhibited by metals that undergo regeneration below the 

thermocline. These metals (e.g. Zn) have a distribution similar to silicate and are thought 

to be exported to deep waters by the components of shell and skeletal material and hence 

have a refactotry nutrient profile. Nickel demonstrates a mixed behaviour (bio-

intermediate metals), with both shallow and deep water regeneration (Libes, 1992).  

 

Scavenged metals exhibit a surface enrichment and depletion at depth. These metals are 

delivered to the oceans via the atmosphere and scavenged throughout the water column, 
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the best examples being lead and aluminium. Mid-depth minima can result from surface 

input and regeneration at or near bottom waters; aluminium, lead and copper are reported 

to show this type of profile (Bruland, 1983). 

2.3.4 Trace metals in seawater; separation techniques  
 
Seawater samples can be divided into different physical fractions by filtration. Filtration 

is a widely used technique for separating dissolved and particulate forms of trace metals 

in natural waters. The definitions for dissolved and particulate forms are purely 

operational (Connelly, 1997).           

 

The definition of truly dissolved metal species is determined as those metals that are in 

solution after the sample has passed through a 0.2-0.45 µm filter. This pore size prevents 

the passage of particulate matter (Lerman, 1979; Lohan, 2003; Connelly, 1997) and most 

biological particles, with the exception of bacteria and viruses. According to Muller 

(1996), this permeates with associated trace metals can be defined as dissolved. The 

filtrate contains particles that are colloidal in nature and have size range of 1 nm- 0.2 µm 

(Buffle, 1990). Some colloids of Fe and Mn oxides and macromolecules can pass 

through a 0.45 µm filter. They are not truly dissolved and not biologically available 

(Martin et al., 1995; Guo et al., 1995). There are various different size classifications 

reported and the size class used is dependent on the methods used for the collection of 

particles. For example, Moran et al. (1996) used cross flow filtration resulting in a 0.2 

µm size.  As described earlier, marine colloids are mostly organic in nature, they can 

strongly bind trace metals and thus play important role in the biogeochemical cycling of 

trace metals in natural waters (Martin et al., 1995). Martin et al. (1995) indicated that 

50% of iron, lead and manganese were present in association with colloidal material. The 

range of metals in colloidal phases in different marine systems is large (Santschi et al., 

1999), which indicates that the nature and composition of organic and inorganic ligands 

that bind trace metals vary greatly in different systems. Wang and Guo (2001) 

demonstrated that the decomposition of biogenic particles may contribute considerably to 

the production of colloids in the marine environment.                           

 

In summary, trace metals are present in seawater in different physical-chemical forms or 

species. The speciation of an element represents its individual physico-chemical form. 
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The forms together make up the total composition in a sample. Trace metals occur as 

aqueous metal ions and dissolved inorganic or organic complexes. They may associate 

with colloids and particulate matter.   

2.3.5 The importance of speciation studies  
 

Total dissolved trace metal concentrations do not reveal sufficient information about the 

toxicity, bioavailability and geochemical behaviour of trace metals in seawater 

(Achterberg and Braungardt, 1999). Dissolved trace metals in seawater exist in different 

forms - free hydrated ions, inorganic complexes and organic complexes (Bruland et al., 

1991). For many metals, including Cu, Ni and Zn the free aqueous metal ions have been 

reported to be the most bioavailable and toxic (Campbell, 1995; Gledhill et al., 1997; 

Leal et al., 1999). This is because of their ability to pass through the cell membranes of 

phytoplankton. However, metals complexed by organic ligands are not able to pass 

through membranes; organic ligands in natural waters hence reduce the availability of 

metals to organisms (Hunter et al., 1997; Sunda and Huntsman, 1998; Sunda and 

Huntsman, 1995 (b); Leal et al. 1999). However, little is known about the source and the 

structure of organic ligands (Laglera and van den Berg, 2003; Croot et al., 2000). There 

is some evidence that ligands may include sulphide species (Rozan et al., 2000), 

including thiol compounds specifically complexing copper (Leal and van den Berg., 

1998; Leal et al., 1999), but also colloidal ligands have been observed (Tang et al., 

2001). The Cu-binding ligands in the colloidal fraction have relatively higher stability 

constants than soluble ligands (Muller, 1996; Tang et al., 2001). The calculated stability 

constants LogKCuL for the colloidal ligands was 12.9 compared to 12.3 and 11.1 for the 

filter passing fraction (dissolved) and ultrapermeat fraction respectively for samples 

collected from Galveston Bay (Tang et al., 2001).      

Organic complexation and the particulate binding of metals therefore decrease the 

concentration of free metal ions and labile inorganic complexes (Sunda and Huntsman, 

1998; Bruland et al., 1991). Consequently, it is necessary to study the specific forms of 

each trace metals in order to gain more knowledge about the role of metals in 

biogeochemical processes.     

 

Electrochemical techniques (e.g ASV and Ad-CSV) have been widely used in trace metal 

speciation studies. The electrode system a typically includes the hanging mercury drop 



Chapter 2                                    Phytoplankton, Trace Metals and Viruses in the Marine Environment   
 

 12

electrode which is popular due to its reproducible surface (Achterberg and Braungardt, 

1999, Bruland and Lohan, 2004). The electrochemical labile fraction of metals is the 

fraction that is kinetically labile in the boundary layer of a hanging mercury drop during 

stripping voltammetry analysis and is thought to include the biological available fractions 

of metal in the solution (Achterberg and van den Berg, 1997; Achterberg and Braungardt, 

1999; Whitfield, 2001). Therefore it is more relevant than total metal concentrations 

when assessing their biological impacts and involvement in biogeochemical processes in 

the marine environment.     

2.4 Phytoplankton and Trace Metals 
  
Trace metals have a range of functions in prokaryotes (cells without membrane-bound 

nuclei, e.g. bacteria) and eukaryotes (organisms with membrane bound nuclei, e.g. 

coccolithophores). They are used for a variety of catalytic and electron transfer functions. 

Specific roles may differ between different groups of organisms. It is generally inferred 

from previous studies that biological metal uptake is a function of free metal ion 

concentration (Campbell, 1995; Sunda and Huntsman, 1995 b; Croot et al., 1999).  

 

Williams (1981) stated four conditions that must be met for an element to perform an 

effective role in processes in cells: 

1- Sufficient abundance to provide a reliable resource. 

2- Ready availability for uptake, i.e. the metal chemistry in the solution should allow 

this. 

3- Capability to be taken up and held by the cell in a suitable kinetic trap; to be 

transferred and used in the cell. 

4- The capability to perform an efficient function within the cell.   

 

The uptake of trace metals by phytoplankton cells can be summarised in three steps 

(Whitfield, 2001), bearing in mind the differences in characteristics of prokaryotes 

and eukaryotes (Table 2.1).   

1. Diffusion: the transport of metal species to the cell surface 

2. Sequestration or capture: binding to a biologically-produced ligand.   

3. Internalization: transfer of complexes into the cell membrane.   
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The links between the functions of nutrients (elements) within cells are shown in Figure 

2.1.  
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Figure  2.1: The links between the functions of nutrients (elements) within the cell (redrawn from 
Whitfield, 2001).  

 

Table  2-1: Characteristics of prokaryotic and eukaryotic phytoplankton, taken from Whitfield, 2001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small cells ( prokaryotes) 
(eg. Cyanobacteria) 

 

Large cells (eukaryotes) 
(eg. Diatoms) 

Large surface to volume ratios; efficient 
assimilation of nutrients, etc.   

 

Smaller surface to volume ratios; less 
efficient assimilation of nutrients, etc. 

  
 

 
Low total requirement per cell of nutrients; 

reaching reproductive stage (division) 
quickly 

 

 
High total requirement per cell of nutrient; 

reaching reproductive stage (division) slowly 
 

 
Rapid division (hours) 

 
Slow division (days) 

 
High non-chlorophyll pigment: Chlorophyll a 

ratios are efficient at absorbing incident 
radiation   

 

 
Low non-chlorophyll pigment: Chlorophyll a 

ratios are inefficient at absorbing incident 
radiation   

 
 
 

Function most effectively in nutrient poor 
conditions 

 
 

Function most effectively in nutrient rich 
conditions 

 
Grazed by small protozoa; short 

multiplication time 
 

 
Grazed by large copepods; long 

multiplication time 



Chapter 2                                    Phytoplankton, Trace Metals and Viruses in the Marine Environment   
 

 15

Sunda and Huntsman (1998) suggested that metal ions are taken up into cells by 

membrane proteins designed for intracellular transport and regulation of nutrient metals. 

This transport is related to the external concentration of either free metal ions or 

kinetically labile inorganic and organic species. 

 

Trace metals are essential to phytoplankton metabolism, because of their catalytic roles 

in enzymes (Sunda, 1989). However, a number of trace metals are toxic, and may 

compete with nutrients for the same binding sites on enzymes and membrane transport 

sites (Bruland et al., 1991). When competition occurs and the wrong metal is bound, a 

toxic effect can be observed (Sunda and Huntsman, 1998; Bruland et al., 1991).        

 

In the case of copper and zinc, the largest fraction of the metal present in the upper layer 

of the ocean is generally considered to be unavailable for uptake by phytoplankton. This 

may be due to organic complexation, occlusion of the metal in particulate material or 

formation of an insoluble oxide phase. Therefore the physicochemical speciation of these 

metals is an extremely important consideration in any attempt to describe and quantify 

their biogeochemical cycles (Muller et al., 2001, Hunter et al., 1997, Leal et al., 1999). 

 

Phytoplankton affect trace metal chemistry in natural waters by surface reactions, by 

direct uptake and by production of extra cellular organic matter with metal complexing 

properties. A number of studies have illustrated that several trace metals are strongly 

complexed by natural organic ligands, which has important implications for geochemical 

cycling, biological uptake and toxicity (Bruland et al., 1991; Hunter et al., 1997; Sunda 

and Huntsman, 1998). Indeed, complexation of trace metals with organic ligands often 

ameliorates trace metal toxicity and influences the biogeochemistry of these elements in 

the aquatic environment by preventing metal scavenging and precipitation (Moffett et al., 

1990).  

 

Enhanced metal concentrations may result in toxic effects. In contrast, low metal 

availability may restrict the critical cell physiological responses. For example, low Cu in 

the oxygen minimum zone was hypothesized to be responsible for the release of NO2 to 

the atmosphere (Granger and Ward, 2003). Also, low Ni concentrations may limit 

phytoplankton ability to assimilate urea, which is an important source of nitrogen (Price 

and Morel, 1991). The Zn metallo-enzyme carbonic anhydrase is present in all marine 
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phytoplankton and is involved in the carbon concentration mechanism, catalysing the 

equilibrium between HCO3
- and CO2 (Buitenhuis et al., 2003). Cobalt and cadmium can 

replace Zn as a metal centre and function with the enzyme carbonic anhydrase. The 

acquisition of carbon dioxide will depend to some extent on the availability of these 

metals, especially under conditions of low pCO2 (Sunda and Huntsman, 1992). 

 

In summary, trace metals influence marine algae, and conversely the algal community 

affects trace metal concentrations and chemical speciation (Sunda, 1989). Thus, 

phytoplankton and bacteria are not only influenced by the availability of trace elements 

(Whitfield, 2001) but can actively alter the composition of their environment to optimise 

the use of these elements (Muller et al., 2005). To understand the interactions between 

phytoplankton and trace metals, several levels of complexity must be considered (Figure 

2.2).                           

 

 

 

 

 

 

 

 

 
Figure  2.2: Interaction of trace metals with marine algae (Sunda 1989).     
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2.4.1 Copper (Cu) 
 
Plastocyanin is a single strand protein and is considered to play an integral part in 

electron transfer proteins (Redinbo et al., 1994). Cu plays a major role in photosynthesis 

as a structural and electron exchange component of plastocyanin (Whitfield, 2001). In 

eukaryotes, the most common use of copper is in electron transfer (oxidative enzymes 

and energy capture) (Sunda, 1989). Copper is an essential, required element but can be 

toxic at relatively low concentrations. In addition, there is no evidence of copper being a 

limiting growth factor for phytoplankton (Morel et al., 2004).                  

    

Total copper (CuT) concentrations in the North Pacific range between 0.5 nM at the 

surface to 5 nM at 5000 m (Coale and Bruland, 1990). CuT concentrations in the North 

Atlantic are higher in surface waters (1.2 nM) than in the Pacific, but lower in deep 

waters (2 nM). Aeolian sources influences greatly the distribution of total copper in the 

Indian Ocean, with surface concentrations ranging from 2-4 nM (Saager et al., 1992). 

Deep water scavenging has been reported, with total dissolved copper ranges from 0.5 to 

1 nM at 500 m (Saager et al., 1992). Tappin et al. (1993) reported that average total 

dissolved copper in the English Channel was around 3.2 nM, and distributions remained 

relatively uniform over the period of their observations (July-August 1986).         

 

Culture studies of diatoms and a coccolithophorid, E. huxleyi, have included observations 

of copper exposures. Interesting levels of interaction between phytoplankton physiology 

and copper have been observed (Sunda and Huntsman, 1995a). The results indicated that 

the Cu: C ratio within the cells of all study species was related to the free Cu2+ in the 

culture medium.   

 

Copper has been reported to be > 99% complexed by organic ligands, resulting in low 

Cu2+ concentrations (Croot, 2003; Muller et al., 2003; Croot et al., 2000; Mofett et al., 

1997; Leão et al., 2007). Cu speciation is dominated by low concentrations of very 

strong chelators, log K´
Cul is 12-13, where K´

Cul is the conditional stability constant for the 

CuL interaction and L is the natural complexing ligand. The strong ligands are 

designated as class 1 ligands. Also, weaker ligands have been observed in seawater. 

These ligands become important in Cu complexation when stronger ligands become fully 

saturated. The weaker ligands (class 2) of lower stability constant 3 to 4 orders of 
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magnitude lower than those of L1 (Leão et al., 2007) tend to occur in greater 

concentration in coastal and estuarine waters (Moffett et al., 1997, 2000 Muller et al., 

2003; Leal et al., 1999; Croot, 2003). The structure and exact composition of the 

dissolved Cu complexing ligands remain unknown in spite of several attempts at 

elucidating their identity (Gordon et al., 2000; Ross et al., 2003). These ligands may be 

produced by organisms by excretion or cell lysis or breakdown of exisiting organic 

material (Leal et al., 1999). There is some evidence that the ligands may be sulphide 

species (Rozan et al., 2000) or thoil compounds (Leal and van den Berg, 1998; Dupont et 

al., 2004) and also colloidal (Tang et al., 2001). Dupont et al. (2004) used precolumn 

derivatization high-performance liquid chromatography electrospray ionization ion-trap 

mass spectroscopy to identify thiols (organic ligands) produced and exuded by E. 

huxleyi. They found that E. huxleyi constitutively produced two thiols, arginine-cysteine 

and glutamine-cycteine in high intracellular concentrations (Dupont et al., 2004). In 

addition, E. huxleyi exudes these novel thiols in response to increased Cu concentration 

in their growth media. Laglera and van den Berg (2003) used a different approach to 

quantify thiol compunds in estuarine waters using Ad-CSV in the presence of SA as this 

lowers the free copper concentration thus realising thiols making them available for 

detection.              

2.4.2 Cobalt (Co) 
 
Cobalt is an essential growth factor for phytoplankton, as it is an active metal centre of 

vitamin B12 (Whitfield, 2001); few cobalt metalloproteins are known (Kobayashi and 

Shimizu, 1999). When marine phytoplankton are cultured under zinc limiting conditions, 

cobalt has been reported to substitute for zinc in the enzyme carbonic anhydrase (Sunda 

and Huntsman, 1995b; Yee and Morel, 1996). Laboratory cultures have shown that 

marine cyanobacteria Synechococcus and the coccolithophore E. huxleyi have a strong 

requirement for cobalt (Sunda and Huntsman, 1995 b).    

 

In ocean waters, Co concentrations are generally low in surface waters (10-40 pM) with 

an increase to a maximum in the upper thermocline (30-100 pM) and then a decrease to 

10-30 pM in deep waters (Martin et al., 1993). In a transect from the ocean to coastal 

waters, Co concentrations increased from about 25 pM in open waters (NE Atlantic 

Ocean) to 103 pM in the English Channel (Ellwood and van den Berg, 2001). 
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A number of workers have reported that Co is strongly complexed by naturally occurring 

complexing ligands (Zhang et al., 1990; Ellwood and van den Berg, 2001). Zhang et al. 

(1990) reported that a variable fraction (average 73%) of dissolved cobalt was very 

strongly complexed by organic ligands.  

 

The low free Co2+ concentrations determined in open ocean waters suggest that certain 

phytoplankton, such as cocccolithophores and cyanobacteria, may be cobalt limited 

(Ellwood and van den Berg, 2001). High nitrogen, low chlorophyll regions tend to be 

iron-limited, but are also characterised by low cobalt concentrations, which suggests that 

they could possibly be Co-limited for certain phytoplankton species.   

2.4.3 Nickel (Ni) 
 

Nickel is not affected by redox cycling and it shows a typical nutrient profile, with 

surface depletion and deep water enrichment (Haraldsson & Westerlund, 1988). 

However, surface concentrations always remain higher than 1 nM, and the deep water 

concentrations are typically < 10 nM.  Nickel concentrations observed in the Pacific 

Ocean (Bruland, 1980), the Indian Ocean (Saager et al., 1992) and the Atlantic Ocean 

(Bruland and Franks, 1983) showed an increase in deep water concentrations (from 7 to 

10 nM) moving from the Atlantic to the Pacific Ocean, along the ocean conveyor belt. 

The profiles do not show very strong correlations with P or Si (Saager et al., 1992). In 

the English Channel, total dissolved nickel concentrations were around 3.8 nM (Tappin 

et al., 1993), with no spatial differences.          

 

Nickel is an essential co-factor in the enzyme involved in urea uptake (Price and Morel, 

1991). Urea can form an important source of nitrogen, following the release of waste 

products by grazing organisms (Whitfield, 2001; Sunda, 1989). Low free Ni 

concentrations can limit phytoplankton growth in culture experiments if they are grown 

on urea as a nitrogen source (Harrison et al., 1985). No such limitation has been reported 

for natural waters. This may be due to the relatively high background levels of Ni. There 

is some evidence of organic complexation by relatively small concentrations of strong 

binding ligands, which are capable of complexing ca 50% of the total nickel (van den 
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Berg and Nimmo, 1987). Achterberg and van den Berg (1997) reported that speciation of 

Ni is dominated by an electrochemically labile fraction.   

2.4.4 Zinc (Zn) 
 

Zinc is a cofactor in nearly 300 enzyme systems, such as alcohol dehydrogenase, 

carboxypeptidase and carbonic anhydrase (Sunda and Huntsman, 1995b; Ellwood and 

van den Berg, 2000; Buitenhuis et al., 2003). These enzymes are involved in nearly all 

aspects of metabolism. This makes zinc an essential micro-nutrient for organism growth 

(Anderson and Morel, 1978). Zinc also has a role in exported hydrolytic enzymes, which 

break down external organic debris. Low dissolved Zn concentrations, observed in the 

open ocean, have the potential to limit phytoplankton growth and its ability to acquire 

carbon dioxide (Sunda and Huntsman, 1992; Brand et al., 1983; De La Rocha et al., 

2000). 

 

Zinc exhibits vertical profiles characteristic of nutrient like elements with surface 

depletion and deep water regeneration. In the North Atlantic, Collier and Edmond (1984) 

reported total surface Zn concentrations around 0.1 nM, with levels increasing to 1.5 nM 

in deep waters. Similar surface concentrations have been observed in the North Pacific 

(Bruland, 1980), but deep water concentrations reached 8 nM. Saager et al., (1992) 

reported that Zn in the Indian Ocean showed a surface value of 1-3 nM, with deep water 

values 9-12 nM. Zinc ranged from 0.04 nM in the North East Pacific surface waters, to 

0.9 nM at the station near to the Canadian shelf (Lohan et al., 2002). The overall mean 

concentration of Zn in the English Channel was reported to be around 7.6 nM (Tappin et 

al., 1993).   

 

Growth at low Zn2+ concentrations was achieved by oceanic species of Emiliania 

huxleyi; the species reduced their internal Zn requirements (Sunda and Huntsman, 1992). 

This suggests that phytoplankton can adjust their requirements to match the Zn2+ levels 

available.  

  

The influences of zinc and iron enrichments on phytoplankton growth in the north-

eastern subarctic Pacific were studied by Crawford et al. (2003). The addition of Zn 

slightly increased chlorophyll concentrations relative to the control (p<0.05). Diatom and 
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coccolithophore abundance were higher in the seawater treated with added Zn, compared 

to the control.  However the researchers observed that Zn additions had limited influence 

on conventional indices of phytoplankton growth compared to additions of Fe in the 

study region.  

 

Results from the incubation experiments by Ellwood (2004), which were designed to 

investigate potential Zn limitation in the algal community, indicated that Zn additions 

had little effect on growth rates, chlorophyll a production and nutrient drawdown, 

compared to the control. Incubation speciation results suggested that phytoplanktons in 

subantarctic waters either have low requirements of Zn, lower than algae grown in 

laboratory culture experiments or that these organisms are able to use other metals such 

as cadmium and cobalt to satistfy their metabolic requirements (Ellwood, 2004).       

2.5 Emiliania huxleyi 
 

Emiliania huxleyi is the most abundant of the coccolithphores on a 

global basis and it is extremely widespread, occurring in all oceans 

except the polar oceans (Vasconcelos et al., 2002). Massive 

blooms have been observed in many coastal seas when water 

conditions are favourable. E. huxleyi tend to occur in highly 

stratified water where the mixed layer depth is usually 10-20 m, 

and is always ≤ 30 m (Nanninga and Tyrrell 1996).  

The E. huxleyi cells in a bloom outnumber all other species 

combined, accounting for 80-90% or more of the phytoplankton cells in the water 

(Brand, 1994). The armoured appearance of the E. huxleyi cell is due to its calcium 

carbonate platelets (coccoliths) (Figure 2.3). 

 

E. huxleyi has a global significance as blooms of E. huxleyi are highly reflective, 

resulting in reflection of light and cooling of surface waters (Tyrell et al., 1999). The 

production of the coccoliths is strongly, but not completely, light dependent (Brand, 

1994). The growth of huge numbers of E. huxleyi, with associated uptake of calcium and 

carbon, and their subsequent sinking to the ocean floor, has implications for marine 

biogeochemistry. For example it affects the ocean carbon system, decreasing alkalinity 

and CO2 storage in the ocean (Malin et al., 1994; Nobel et al., 2003). Production of 

Figure  2.3: Transmission 
electron microgragh 
depicting E. huxleyi 
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calcium carbonate by E. huxleyi and its role in CO2 cycling and dimethyl sulphide (DMS) 

production makes E. huxleyi a key species with respect to past and present marine 

primary productivity, sediment formation, global biogeochemical cycles and climate 

modelling studies (Schroeder et al., 2003; Malin et al., 1994; Iglesias-Rodrigues et al., 

2002).  

 

Vast coastal and midocean populations of E. huxleyi can be viewed by satellite imagery 

(Holligan et al., 1993) due to their reflective calcium carbonate coccoliths, which often 

disappear suddenly (Ziveri et al., 2000). Until recently, the mechanisms of E. huxleyi 

bloom disintegration were poorly understood, but recently it has been confirmed that 

viruses are intrinsically linked to those sudden crashes (Wilson et al., 2002a, Schroeder 

et al., 2002).  

2.6 The role of viruses in the marine environment 
  

Viruses are small particles, about 20-200 nm long, consisting of genetic material (DNA 

or RNA) surrounded by a protein coat (Fuhrman, 1999). Viral abundances are typically 

around 107 viral particles ml-1 in seawater (Suttle, 2005) and in ocean waters generally 

exceed those of bacteria by about one order of magnitude (Marie et al., 1999; Wienbauer 

and Suttle, 1999). 

 

Viruses are ubiquitous in the marine environment and they exert a significant control on 

bacteria and phytoplankton populations, influencing diversity, nutrient flow and 

biogeochemical cycling (Fuhrman, 1999; Wommack & Colwell, 2000). It was first 

established by Suttle et al, (1990) that viruses were responsible for lysis of algal cells in 

the sea. Viral termination of algal blooms has significant biogeochemical implications, 

due to the conversion of cells to dissolved organic matter (Fuhrman 1999; Wilhelm and 

Suttle, 1999). Several studies have investigated the role of viruses in controlling the 

bloom forming E. huxleyi in the North Sea area (Bratbak et al., 1993; Brussaard et al., 

1996; Wilson et al., 1998; Wilson et al., 2002 a) and Western English Channel (Wilson 

et al., 2002 b). It is clear from these investigations that viruses are intrinsically linked to 

the decline of E. huxleyi blooms and a correlation between the presence of viruses and a 

shift in phytoplankton communities following the crash of an E. huxleyi bloom has been 

demonstrated. 
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The liberation of carbon and nutrients by viral lysis may be important in supplying 

nutrients and carbon to photosynthetic and heterotrophic organisms (Gobler et al., 1997 

and Wilhelm and Suttle, 1999).  Viral lysis of microorganisms within sinking aggregates 

may effectively dissolve the particles converting some sinking particulate matter into 

non-sinking dissolved material and colloids at the specific depth at which lysis occurs 

(Fuhrman, 1999). The viral lysis of an Aureococcus anophagefferens bloom in the field 

released 40 µM dissolved organic carbon and rapidly transferd released metals to bacteria 

(Gobler et al., 1997). 

 

Simple models (Wilhelm and Suttle, 1999; Fuhrman, 1999) have demonstrated that 

viruses are catalysts that accelerate the transformation of nutrients (which may include 

trace metals used in metabolism) from particulate (living organisms) to dissolved states, 

in which they can be incorporated by microbial communities (Suttle, 2005). Figure 2.4 

shows the viral role in the marine food web.  

 

 

 

 

 

 

 

 

 

 

 

Figure  2.4: The viral short-circuit in marine food webs adapted from (Gobler et al., 1997 and 
Wilhelm and Suttle, 1999).Viruses divert the flow of carbon and nutrients from secondary 
consumers (red arrows). They destroy cells and release the content of these cells into the pool of 
dissolved organic matter (black arrows). DOM is then used as a food source for bacteria, which 
return it back to the food web.  

 

Viruses are abundant in the aquatic environment and most microbial organisms have 

viruses that infect them (Wilson et al., 2002 a). Viral infection affects the dynamics of 
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microbial loops and has demonstrated impacts (sometimes dramatic) on both bacterial 

and phytoplankton populations (Nobel et al., 2003).  

 

Virus abundance in the ocean is dynamic; in surface waters viruses are rapidly destroyed 

or damaged by sunlight and other factors such as grazing or sinking via attachment to 

marine aggregates (Wilhelm et al., 1998). New viral progeny must be continuously 

produced to replace the destroyed viruses. High production of viruses will result in 

significant lysis in host cells. The destruction of host cells can represent a significant 

source of organic carbon, nutrients and trace metals in the marine microbial food web 

(Wilhelm and Suttle, 1999; Suttle, 2005; Gobler et al., 1997; Fuhrman, 1999). Different 

cellular fractions released by lysis will include soluble cytoplasmic components and 

structural materials.       

 

Significant advances have been made in understanding the dynamics of viruses and their 

effects on marine phytoplankton communities. Several studies (Wilson et al., 2002 a & b 

and Schroeder et al., 2002) found a correlation between the presence of viruses and a 

shift in phytoplankton communities following the crash of an E. huxleyi bloom. The 

viruses responsible for infection of E. huxleyi have been isolated from a number of 

locations. They are typical of the family Phycodnaviridae, being large double standard 

DNA viruses (Castberg et al., 2001; Wilson et al., 2005). Phylogenetic analysis of the 

DNA Polymerase genes of E. huxleyi viruses suggest they belong to a new genus within 

the family Phycodnaviridae, which has been designated Coccolithovirus (Schroeder et 

al., 2002).   

Figure 2.5 show an example of a transmission electron microscopy (TEM) image of EhV-

86 Emiliania huxleyi specific virus isolates which is about 170-175 nm in diameter 

(Wilson et al., 2002 b).    
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Figure  2.5: Transmission electron microscope (TEM) analysis of Emiliania huxleyi-specific virus 
isolates (Wilson et al., 2002 b)  

 

Viral infection and host lysis are a continuous process; if host productivity increases, 

there will be a concurrent increase in viral activity (infection of hosts to produce viruses) 

(Wilson and Mann, 1997). Therefore, if there is an increase in host production there will 

be an initial decrease in virus numbers as they infect, then propagate within the hosts. 

During this continuous process, virus numbers will eventually increase as more hosts 

lyse (Wilson et al., 2002 b).   

 

Viruses may also be important in shaping global climate (Fuhrman, 1999) because they 

induce the release of dimethyl sulphide (DMS). Culture studies by Malin et al. (1998) 

confirmed the release of DMS during the viral lysis of Phaeocystis pouchetii. Recent 

research by Evans (2004) provides the first conclusive evidence that the viral induced 

mortality of E. huxleyi directly resulted in DMS production. This was also observed in 

mesocosms containing natural seawater (Evans, 2004).       

 

Gobler et al. (1997) examined the release of C, N, P, Se and Fe following viral lysis of 

the Aureococcus anophagefferens. Only 5% of the Fe was released into the dissolved 

phase during vial lysis. It has been suggested that virally lysed cells release high 
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molecular-weight proteins and nucleic acids that can promote particle formation (Proctor 

and Fuhrman, 1991). 

  

Recent work by Poorvin et al. (2004) reported the activity of naturally occurring viral 

populations in high-nutrient low-chlorophyll (HNLC) regimes; can regenerate sufficient 

concentrations of dissolved Fe to support the growth of the phytoplankton community. 

Their results demonstrated that viral activity is of vital importance and, along with 

grazing regenerators, supplied organically complexed Fe.   

 

The high abundance of viruses in the oceans and their small size suggest that they may 

serve as nucleation centres for iron adsorption and precipitation in the ocean (Daughney 

et al., 2004). Their results clearly demonstrated the potential of marine bacteriophage to 

serve as nuclei for iron adsorption and precipitation and models developed suggested that 

they may represent a significant reservoir of iron in seawater. However, as these 

experiments utilize a limited range of iron-to-viruses ratios relative to natural seawater, 

the results of their study do not prove that viruses affect the marine iron cycle. Their 

study might serve to justify continued research into iron-virus interactions.        

2.7 Emiliania huxleyi and Trace Metals 

 
Leal et al. (1999) undertook E. huxleyi incubation experiments that revealed that Cu 

complexing ligands were produced in response to copper additions. Glutathione and 

other unidentified thiols were produced by the alga in these incubations (Leal et al., 

1999). The results indicated that thiols may account for an important part of the copper-

complexing ligands produced by this alga. Production of the ligands was stimulated by 

an increase of [Cu2+] from 0.4 to 1.5 pM. The authors suggest that this release of ligands 

might be a general defence mechanism to cope with excessive metal levels. Moreover, 

this study reported that E. huxleyi constitutively produced two uncharacterised thiol 

compounds at high Cu intracellular concentrations. Recent research by Dupont et al. 

(2004) suggested that E. huxleyi appears to utilize ligands in nitrogen storage and 

assimilation as they are synthesised upon nitrogen addition to nitrogen-depleted cultures. 

Vasconcelos et al. (2002) studied the effect on growth, trace metal uptake and exudation 

of Emiliania huxleyi cultures of different exudates released by a range of phytoplankton, 

grown in natural seawater. The exudates of diatom Phaeodactylum tricornutum were able 



Chapter 2                                    Phytoplankton, Trace Metals and Viruses in the Marine Environment   
 

 27

to inhibit E. huxleyi’s growth rate and final cell yield. In contrast, Enteromorpha (green 

macroalgae) exudates enhanced the final cell yield and growth of E. huxleyi. This was 

related to the presence of a high concentration of the glutathione-like compounds 

produced by Enteromorpha. The inhibition of growth of E. huxleyi as a result of P. 

tricornutum exudates appeared to be a result of the production of cysteine-like 

compounds. The nature and concentrations of the organic compounds present in the 

culture medium also influence directly or indirectly trace metal uptake, and also affect 

the concentration and composition of the exudates produced by E. huxleyi (Vasconcelos 

et al., 2002). 

 

The speciation of Cu, Zn and Mn was investigated over the course of a bloom of E. 

huxleyi (Muller et al., 2003) in a mesocosm. The labile fraction of Cu decreased from 1.1 

to 0.3 nM during the formation of E .huxleyi bloom. This was likely to be due to the 

active release of organic ligands by phytoplankton, which stopped as soon as the level of 

labile Cu reached 0.3 nM, [Cu2+]=0.02 nM. Organic Zn ligand production coincided with 

a 15-fold increase in the cell numbers of dead E. huxleyi. This suggests that Zn-binding 

ligands may have originated from dead or decaying E. huxleyi cells. 

Marine cyanobacteria are an important phytoplankton group with the ability to release 

trace metal-binding compounds into the seawater medium (Leão et al., 2007).  Croot et 

al. (2000) and Croot (2003) observed that prokaryotes such as the cyanobacteria 

Synechococcus are the source of class 1 ligands. Those ligands have log KCuL values 

within the range of 12-14. Their survey (Croot et al., 2000) showed that there are many 

biological sources of copper binding ligands, but cyanobacteria are more plausible 

sources of class 1 ligands in the open ocean than eukaryotes. This is because other 

eukaryotes such as E. huxleyi is known to be copper tolerant (Brand et al., 1986) and 

other eukaryotes have other detoxification mechanisms such as intracellular metal 

sequestration (Leáo et al., 2007; Croot et al., 2000). It was observed recently during a 

nutrient-stimulated summer bloom (Muller et al., 2005), that copper speciation was 

controlled by the formation of very strong organic complexes. The cyanobacteria 

Synechococcus was the source of such complexes, whereas weak Cu-binding ligands 

were produced by metabolic production or decomposition of diatoms.      

 

In culture experiments, E .huxleyi can release class 2 ligands (log KCuL 11-12), as 

observed in response to Cu addition (Leal et al., 1999). Toxic effects of E. huxleyi 
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occurred at [Cu2+] levels around 0.025 nM (Leal et al., 1999; Muller et al., 2003). The 

ligands produced in Muller et al (2003) had different Cu-complexing strengths (log KCuL 

= 9.9-10.5) to the class 2 ligands (log KCuL 11-12) observed by Leal et al. (1999) and 

Vasconcelos et al. (2002) in axenic E. huxleyi culture experiments. These differences 

might also be due to the differences in the physiological conditions of E. huxleyi in 

laboratory cultures and mesocosms.  

2.8  Aim and objectives of this study 
 

The overall aim is to study trace metal speciation through the life cycle of phytoplankton 

by specifically addressing the following:  

 To use the coccolithophorid E. huxleyi in laboratory experiments as a model 

organism. 

 Examine the effects of E. huxleyi growth, senescence and decay on dissolved 

trace metal (Cu, Co, Ni) concentrations and their physico-chemical speciation.  

 To investigate the effect of viral induced lysis of E. huxleyi on metal (Cu, Co, Ni) 

speciation. 

 To determine the trace metal speciation (Cu, Co, Ni, Zn) composition in situ 

during or post a natural E. huxleyi bloom event in the Western English Channel.  
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Chapter 3 
 

3.Experimental Procedures 

3.1 Introduction 
 
Trace metals are generally defined as those metals present in concentrations of less than 

1 µM (Bruland, 1983). Understanding of the marine chemistry of trace metals has 

improved since the 1970s (Libes, 1992; Achterberg and Braungardt, 1999) as 

contamination has been minimised due to improved analytical procedures, and advances  

in “clean” sampling and analytical protocols (Connelly, 1997; Bruland et al., 1979; 

Lohan, 2003). Detection limits of measurements have dropped as a result of 

improvements in the handling and analysis of seawater samples for dissolved trace metal 

(Lohan et al., 2002).  Most often contamination occurs during the stages of sampling, 

filtration and storage (Hill, 1997).  

 

Trace metal speciation studies have become very important during the last two decades. 

This is because of the recognition that total dissolved trace metal concentrations do not 

reveal sufficient information about the bioavailability, toxicity and geochemical 

behaviour of metals (Achterberg and Braungardt, 1999). This makes speciation studies 

very important, in order to improve our understanding of the role of metals in 

biogeochemical processes. According to Sunda, (1991), stripping voltammetry is one of a 

few sufficiently sensitive techniques to determine labile/free metal fractions directly in 

natural waters.  

 

The aim of this chapter is to describe all methods and cleaning protocols used to control 

metal contamination, and to detail the methods and instruments used to measure total 

dissolved and labile metals. This includes stripping voltammetry for metal speciation 

measurements and the digestion of filter membranes to obtain total particulate copper 

concentrations using graphite furnace atomic absorption spectroscopy. The sample 

collection and analysis for dissolved organic carbon, inorganic nutrients and chlorophyll 

is also explained. 
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All biological growth experiments concerning E. huxleyi, including viral infection and 

associated measurements are explained in detail. Finally, sampling procedures during an 

E.huxleyi bloom in the Western English Channel are described. 

The chapter is divided into two main sections: 

1.  Chemical analysis and measurements, 2.  Biological experiments and measurements.  

3.2. Chemical Analysis and Measurements 

3.2.1 Cleaning Processes 

3.2.1.1 Sample storage and the cleaning process for trace metal analysis  
 

Low density polyethylene (LDPE, Nalgene) bottles were used for sampling and storage 

of samples. Trace metal clean polystyrene vials (30 ml) were used for storage of standard 

and reagent solutions.  All plasticware used in the study was acid cleaned to remove trace 

metal contamination. Typically, bottles were soaked in Decon 90 (2% v/v, 24 h), rinsed 

using ultra-pure water, supplied by reverse osmosis (Milli-RO, Millipore) followed by 

ion exchange with a conductivity <0.1µS cm-1(18 MΩ/cm) (Milli-Q water; Millipore), 

and then soaked in hydrochloric acid (HCl) (Aristar grade; Fisher Scientific) (50% v/v, 1 

week). The bottles were rinsed with Milli-Q water and then submerged in nitric acid 

(HNO3) (Aristar grade; Fisher Scientific) (50% v/v, 1 week). Lastly, bottles were rinsed 

thoroughly with Milli-Q water, filled with Milli-Q water, acidified to pH 2 using sub-

boiled HCL (10 µl per 10 ml sample) and then double bagged and stored until needed.  

 

The filtration unit (polysulfonic, Nalgene) was also soaked in Decon 90, rinsed with 

Milli-Q water and then soaked in 10% HCl, rinsed again with Milli-Q water, and double 

bagged ready to be used. Polycarbonate filters (Whatman) (0.4 µm 47 mm diameter) 

were soaked in (HCl), (1% v/v, 24 h) and rinsed with Milli-Q water prior to filtration of 

trace metal samples.  

 

The quartz test tubes fitted with Teflon screw lids and collars, used for U.V. digestion, 

were washed twice in HCL. First, the tubes were soaked in HCl (10% v/v, 24h), rinsed 

with Milli-Q water, soaked again in HCl (10% v/v, 24h) and thoroughly rinsed with 

Milli-Q water. Screws and lids were acid washed in a similar way as the test tubes in 

separated HCl (2% v/v, 24h) baths (Lohan et al., 2002; Ellwood and van den Berg, 2001; 

Achterberg and Braungardt, 1999; Achterberg et al., 1999; Achterberg et al., 2003).  
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In order to obtain a bottle blank, cleaned bottles were filled with Milli-Q water and left 

for 2-4 days. Blank measurements on this MQ water were conducted. Negligible blanks 

(< 0-0.2 nM) were observed which indicated the efficiency of the cleaning process 

conducted in order to decontaminate bottles for any metal under study.         

 

The 20 L poly carbonate (Nalgene) carboys were used for the culturing experiments and 

were acid washed to assure decontamination. The carboys were first filled with a Decon 

solution (2% v/v, 24 h), then rinsed with Milli-Q water, filled with HCL (2% 24 h), then 

rinsed three times with Milli-Q water; finally they were autoclaved. Note that the carboys 

were double bagged using auto clave bags to prevent contamination during autoclaving. 

The plastic tubes, carboy venting cabs and connections used in the experiments were 

decon washed (2%, 24 h), rinsed with Milli-Q water, then soaked in HCL (10%, 24 h), 

and rinsed 3 times with Milli-Q water. They were double bagged and autoclaved ready 

for the experiments.  

3.2.1.2 Cleaning Processes for DOC and TDN analysis 
 

All glassware, plastic and glass sample bottles used for the DOC and TDN samples were 

washed thoroughly. All glass and plasticware and filtration units were soaked in 2% 

Decon for 24 h, and then rinsed with UV-irradiated Milli-Q water. They were then 

soaked in 10% HCl for 24 h and subsequently rinsed with the UV irradiated ultrapure 

water three to five times. All the glassware used for sample collection and the filtration 

units were combusted at 450oC for 6 hours. This was to remove any remaining organic 

contaminants (Badr et al., 2003).  

3.2.2 Analytical procedures 

 3.2.2.1 Preparation of chemicals: 
 

Sub-Boiling Distilled water (SBDW): Sub-Boiling Distilled Water was produced in the 

clean room at NOCS using a quartz system similar to the one described by Lohan (2003) 

and Connelly (1997). Milli-Q water was poured into a quartz flask and heated with two 

infra-red lamps. Water evaporates and condenses on a quartz cold finger and then drips 

through a collection tube and into a clean Teflon bottle. This system was placed in a 
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laminar flow hood in a clean room environment to eliminate contamination problems. 

Sub-Boiling Hydrochloric Acid (SBHCl) and Sub-Boiling Nitric Acid (SBHNO3) were 

produced in a similar way.  

Isothermally Distilled Ammonia solution (ID-NH4OH): 

The ammonia solution used for neutralisation of all acidified seawater samples was 

purified from analytical grade ammonia solution. Fluorinated ethylene propylene (FEP) 

beakers containing SBDW and analytical grade ammonia were placed in an airtight 

container and left for approximately 2 days. During this time, the ammonia partitioned 

the SBDW and ammonia solution and formed ID-NH4OH. This was transferred into an 

FEP bottle and stored. 

3.2.2.2 Reagents and Standards 
 
All handling steps for reagents, standards, solutions and samples were carried out in a 

Class 100 laminar flow cabinet situated in a clean room.  All reagents and standards were 

prepared in ultra-pure water. All samples and reagents were stored in LDPE bottles, 

placed in re-sealable plastic bags. Table 3.1 shows the Adsorptive Cathodic Stripping 

Voltammetric ligands used in the experiments and their final concentrations in the 

voltammetric cell. All reagents, samples and standards were prepared using monthly-

calibrated auto-pipettes (Finnpipette, Labsystems Oy, Finland).   

 

Metal standards were prepared from Spectrosol grade standards BDH (1000 mg L-1), by 

serial dilution and acidification to pH 2, using sub-boiled HCl (10 µl per 10 ml standard). 

Standards were prepared on a weekly basis and stored at ca. 4oC. 

Boric acid was used as a pH buffer. The final concentration for the buffer in the 10 ml 

cell was 0.01 M. The buffer was cleaned in a Chelex column (Ellwood and Van den 

Berg, 2001). NaNO2 (0.25 M) was used as a catalyst in the measurement of Co to 

enhance sensitivity.  NaNO2 was cleaned using a mercury pool electrode, as described by 

Vega and van den Berg (1997). 
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Table  3-1: The Ad-CSV ligands used in this study. The amount added and final concentrations in the 
cell are provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Samples for Chemical Analysis 

3.2.3.1 Culture Experiments in the Laboratory  
 

Culture experiments were conducted at the Marine Biological Association (MBA, 

Plymouth). Samples were collected from the culture carboys on day 0, 2, 4, 6, 8, 10 and 

14 for the March 2004 experiments and days 0, 2, 4, 6, 8, 10, 12 and 16 for the May and 

August 2004 experiments.    

 

For trace metal analyses, samples were gently filtered in a Class 100 laminar flow cabinet 

using 0.4 µm polycarbonate membrane filters (Whatman) with a hand-operated pump 

(Nalgene) not exceeding 0.3 bar vacuum. A microscopic check of the algae on the filters 

revealed that they did not rupture or break during filtration. The filter membranes were 

stored in individual Petri dishes at -20oC until analysis. The membranes were retained for 

use for quantifying total particulate metal concentration in the algae (extracellular algal 

adsorption plus intracellular uptake).    

 

Samples were transferred into acid washed low density polyethylene bottles. Samples for 

Cu organic ligand titration measurements were stored frozen at -20oC after filtration. 

Element Complexing Ligand & 
concentrations in (M) 

Amount 
added  (µL) 

Final concentration in 
cell  (10ml) 

Co Nioxime 
5.10-3 Total 

 5.10-4 Labile 
 

 
20 
40 

 
10 µM 
2 µM 

Cu        Salicylaldoxime (SA) 
 1.10-2 Total 

   1.10-3  Labile 

 
25 
30 

 
25 µM 
3 µM 

Ni Dimethylglyoxime(DMG) 
1.10-1  Total 
 1.10-2 Labile 

 
20 
20 

 
0.2   mM 
0.02 mM 

Zn Ammonium Pyrrolidine 
Dithiocarbamate (APDC) 

1.10-1  Total 
 1.10-2 Labile 

 
 

20 
20 

 

 
 

0.2   mM 
0.02 mM 
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Samples for total trace metal analysis were acidified to pH 2 (addition of 10µl of sub-

boiled HCl 6 M per 10 ml sample). Acidification was essential in order to stabilize the 

total dissolved concentration of metals (Tappin et al., 1995; van den Berg, 1989) and to 

prevent trace metal adsorption onto bottle walls (van den Berg, 1988). Labile dissolved 

trace metals were measured as soon as possible, without previous acidification or UV 

digestion, following storage at 4oC.  

3.2.3.2 DOC, TDN, and chlorophyll a; sample filtration, preservation of samples 

 
Samples (125 ml from each 20 L carboy) were collected in Pyrex glass bottles. The 

bottles were rinsed twice with the sample to reduce contamination and adsorption onto 

the walls of the bottles. The DOC and TDN samples were filtered immediately after 

collection. This was to reduce loss of TDN or DOC through any biological activity. An 

acid washed glass filtration unit (Millipore) was used to filter all samples related to the 

organic measurements in the experiments. Glass fibre filters of 0.7 µm nominal pore 

diameter (47mm diameter, Whatman GF/F) were used.  The filters were combusted at 

450oC for 6 hours prior to the filtration. 

 

Following filtration, two 30 ml plastic bottles were filled and stored at -20oC for DIN 

(NO3
- and NO2

-) and PO3- analysis. The samples for TDN/DOC were transferred to clean 

and combusted glass ampoules (10ml/20ml). Then the samples were acidified to pH 2 

using 50% HCl 10µL per 10 ml of sample. Acidification stops any biological activity and 

removes inorganic carbon as carbon dioxide. After acidification of the sample, the 

ampoules were flame sealed using a butane burner and stored at 4oC until analysis. 

Chlorophyll a samples from cultures and the English Channel samples were filtered 

using GF/F filters. The filters were folded, placed into foil envelopes and stored in a 

freezer at -20oC until further analysis. 

3.2.3.3 Sampling in the English Channel 
 
A field study was conducted on the RV ‘Squilla’ (Plymouth Marine Laboratory research 

vessel) during E. huxleyi blooms in the western English Channel, August 2005 and July 

2006. Full station positions are shown in Chapter 5. At each station hydrographic data 

were collected using a CTD. Trace metal clean GoFlo (General Oceanis, 10 L) seawater 

samplers were used for collecting ultra clean samples for trace metal analysis and 
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biological analysis (van den Berg, 1999; Achterberg and Braungardt, 1999).  The GoFlo 

samplers (supplied by National Marine Facilities Division in the National Oceanography 

Centre) were cleaned one week prior to the sampling in the laboratory using HCl (2% 

v/v, 24 h) rinsed 3 times by Milli-Q water and then covered with polyethylene sheets 

until used. Intial check experiments were carried out by measuring blanks for Cu, Co, Ni, 

and Zn (0.13, 0.05, 0.10, 0.25 nM repectively). Low blanks indicates the efficiency of the 

cleaning process. Kevlar wire (8 mm) was mounted on a winch for collection of seawater 

samples using the GoFlo bottles. The bottles were tripped by a Teflon messenger. Water 

samples were collected from depth profiles at three stations in both 2005 and 2006. Trace 

metal samples were collected into clean 500 ml LDPE (Nalgene) bottles, and nutrients 

and organic compounds sampled into acid washed Pyrex glass bottles. Bottles were 

always rinsed twice with the sample and gloves were worn during sampling. Samples 

were placed in a cool box until returned to the laboratory. Filtration was conducted at 

MBA in a laminar flow hood using similar procedures and filtration units as used for the 

culture samples.       

3.2.3.4 Ultra Violet Digestion of Organic Complexes  
 

Total dissolved trace metal concentrations analysis by voltammetric measurements 

require the use of ultraviolet (U.V.) digestion of the samples. This is because natural 

organic ligands form strong and co-ordinated bonds with trace metals and could compete 

with the added Ad-CSV ligand for the analyte. Surfactants could also foul the mercury 

drop and thus prevent the metal-ligand complex from adsorbing on the mercury drop. 

These factors would result in a lower observed dissolved trace metal concentration (van 

den Berg, 1988). Therefore, U.V. digestion and acidification of the sample is essential to 

break down interfering organic substances and metal complexing organic ligands. 

(Achterberg and van den Berg, 1994; Lohan, 2003).  

 

U.V digestion was performed using a purpose built system (Achterberg and van den 

Berg, 1994; Achterberg et al., 2003). This system was housed in an aluminium box and 

fitted with a medium pressure (400W) mercury lamp (Photochemical Reactors Ltd, 

Reading, UK). Fan assisted cooling of the lamp was essential to maintain a sample 

temperature of between 60 and 70oC. The system can digest 8 samples during each 

digest. The samples were placed in quartz tubes (ca. 30 ml) around the lamp and were 
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exposed to U.V light (4-5 h). Acidified samples (pH 2, ca. 30 ml) were transferred to acid 

washed quartz tubes, and hydrogen peroxide (H2O2) (27% v/v; 60 µl) was added. The 

H2O2 was added to enhance sample digestion. The samples were stored for at least 24 h 

after UV digestion, at laboratory temperature, in order to remove any interference from 

hypochlorite ions (Achterberg et al. 2003; van den Berg 1988).             

3.2.4 Analytical Measurements: 

3.2.4.1 Introduction 
 

Few analytical methods can be utilised for the direct determination of trace metals in 

seawater, due to interference from major ions (Na2+,Mg2+, Ca2+ and Cl-) (Hill, 1997) . 

The methods most regularly used for measuring trace metals in marine samples include 

graphite furnace atomic absorption spectroscopy (GF-AAS) and inductively coupled 

plasma mass spectrometry (ICP-MS). Both methods require sample pre-treatment prior to 

analysis (Hill, 1997; Achterberg and Braungardt, 1999). It is important for the GF-AAS 

technique to remove interfering compounds and preconcentrate the metals of interest.   

  

The GF-AAS technique is based on the fact that free atoms absorb light at a wavelength 

characteristic of the element of interest. The amount of light absorbed is linearly 

correlated to the concentration of analyte present. Free atoms of any element can be 

produced from samples by the application of a high temperature (Atkins, 1999).    

 

In GF-AAS, samples are deposited in a small graphite or pyrolytic carbon coated 

graphite tube, which is heated to vaporize and atomize the analyte. Atoms absorb 

ultraviolet or visible light using a specific lamp for each metal of interest and make 

transitions to higher electronic energy levels. Concentrations can be determined from a 

working curve after calibrating the instrument with standards of the metal concentrations 

(Connelly, 1997).  GF-AAS is widely used to measure trace metals in seawater (Bruland, 

1983; Hill, 1997) and is a very selective technique, in which control of the temperature 

profile can be utilised to separate the analyte from the interfering matrix prior to 

atomisation (Atkins, 1999).  

 

ICP-MS is a type of mass spectrometry that is highly sensitive and capable of 

determining a range of metals at concentrations below one part in 1012 (Hill, 1997). ICP-
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MS requires sample dilution, as it must be introduced into the instrument as a liquid with 

less than 0.1% dissolved solids, to prevent a build up of solids on the nickel cones 

(Ebdon et al., 1998).   

 

The disadvantages of any analytical technique requiring  pre-treatment of samples are: 1) 

the sample preparation requires more time and 2) there is an increased risk of sample 

contamination or change through sample handling (Hill, 1997).  

 

The stripping voltammetry technique does not have the multi-element capabilities of 

ICP-MS. However, it has the advantage of measuring trace metals directly in the sample 

and the pre-concentration step is performed in the cell (Achterberg and Braungardt, 

1999).     

 

The following section will include background and details of measurements conducted to 

measure dissolved, labile and particulate trace metals. Stripping Voltammetry is used for 

the determination of trace metal speciation in water and (GFAAS) for total particulate 

copper on filters.  

3.2.5 Dissolved Trace Metal Measurements:  

3.2.5.1 Voltammetric Methods:  
 

Voltammetry is based on the measurement of a current response as a function of the 

potential applied to an electrochemical cell. Stripping voltammetry techniques include 

anodic stripping voltammetry (ASV) and adsorptive cathodic stripping voltammetry (Ad-

CSV).  

 Voltammetric instruments include a potentiostat and a three electrode cell; containing a: 

1- Working electrode Hanging Mercury Drop Electrode (HMDE)  

2- Reference electrode Ag/AgCl/KCl 

3- The counter electrode platinum wire or carbon graphite rod 

In stripping voltammetry, a pre-concentration step (isolating the metal of interest from 

the matrix) is combined with a stripping step. During the pre-concentration step, the trace 

metal of interest is collected onto or in a working electrode and, during the stripping step, 

the collected metal is either oxidised or reduced back into solution. This enhances the 

selectivity of the analysis. The advantages of the use of a HMDE are its reliability; with 
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the formation of each new drop, a new electrode surface is produced, which decreases 

any possible contamination.  

 

The determination of trace metal species in the nano to pico molar ranges has been made 

possible by the development of Ad-CSV, which accommodates small sample volumes, 

allows different metal species to be determined and has very low detection limits 

(Achterberg and van den Berg, 1997; Achterberg and Braungardt, 1999). Ligands used in 

Ad-CSV should have the ability to form a complex with an element of interest. Also it 

should be electroactive i.e. capable of adsorbing onto the surface of the HMDE working 

electrode. The resultant current-potential stripping voltammogram provides quantitative 

information; the height of the peak is proportional to the metal concentration. The 

quantification of metal concentration in samples during voltammetry analysis is by the 

use of the standard addition method. A buffer is used in the measurement of samples to 

control pH, because the formation of metal complexes is pH dependent (van den Berg, 

1988; Braungardt, 2000).  

3.2.5.2 Theory of ASV 
 
The technique of ASV involves the formation of a mercury-metal amalgam. A small 

fraction of metal is deposited during the deposition step {Eq. (1)}. Sensitivity is 

enhanced by using an Hg film instead of an Hg drop as a result of higher surface to 

volume ratio. Following this initial pre-concentration stage, the metal is stripped out of 

the mercury by application of a voltammetric scan towards a more positive potential. The 

metal is oxidized back into the solution {Eq (2)} and the oxidation current produced is 

determined. ASV has been applied successfullt for trace metal measurements of Cu, Cd, 

Pb and Zn (Achterberg and Braungardt, 1999). The number of of trace metals that can be 

determined by ASV however, is limited to those that can be reduced and reoxidized at 

appropriate potentials and that are soluble in a mercury amalgam (Bruland and Lohan, 

2004).   

 

  Mn+ +Hg + ne- → M (Hg)      Equation 1  

The pre-concentration process of a complex formation and adsorption  

M (Hg) → Mn+ +Hg + ne      Equation 2  

The stripping process  
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3.2.5.3 Theory of Ad-CSV 
 

Ad-CSV makes use of ligand metal complexation. A specific ligand (AL) is added to a 

sample and electrochemically labile metals (Mn+) form a complex with the ligand 

My(AL)z  {Eq. (3)}. This metal-ligand complex is adsorbed on the surface of the working 

electrode during the pre-concentrate stage and a potential scan is subsequently carried out 

during which the metal is stripped from the surface of the mercury by the application of 

negative potential scan {Eq. (4)}. This is carried out under carefully controlled 

conditions. The scan direction is towards more negative potentials. The metal is reduced 

back into the solution during the potential scan {Eq. (5)}, and the reduction current is 

measured (Achterberg and van den berg, 1997; Achterberg and Braungardt, 1999).  

Range of metals detected by Ad-CSV are Fe, Cu, Zn, Co, and Ni (Achterberg and 

Braungardt, 1999)             

 
yMn+ +zALm- ↔ My(AL)z

(y.n-z.m)      Equation 3 

The pre-concentration process involving the formation of the metal-ligand 

 complex . 

My(AL)z
(y.n-z.m) ↔ My(AL)z

(y.n-z.m)  adsorbed  Equation 4 

The adsorption step. 

 

My(AL)z
(y.n-z.m) adsorbed + e- ↔ yM (n-1)+  + zALm-     Equation 5 

The stripping process. 

3.2.5.4 Measurements using Adsorptive Cathodic Stripping Voltammetry (Ad-CSV) 

 
Adsorptive cathodic stripping voltammetry (Ad-CSV) was used to measure trace metals 

in seawater during this study. The use of Ad-CSVmethods does not require the metal to 

be soluble in a mercury amalgam (ASV) and thus can be used for a wide variety of trace 

metals (Bruland and Lohan, 2004). The advantages of using Ad-CSV are lower detection 

limits and shorter pre-concentration time (reducing the interferences from organic 

compounds present in the sample) compared to ASV. However, manual handling of 

samples using Ad-CSV can be a source of contamination and it is mostly limited to 

single element analysis. The voltammeter system used consisted of an Auto lab 
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potentiostat (Eco Chemie, the Netherlands) and a hanging mercury drop electrode (663 

VA stand, Metrohm) interfaced with an ALT 386 SX, Amstrad compatible PC. The 

reference electrode was a double junction Ag/AgCl, KCl (3 M) electrode, with a 

saturated AgCl internal solution and a salt bridge filled with 3 M KCl. The counter 

electrode was a carbon graphite rod. 

 

Measurements were made by introducing a 10ml sample (acidified to pH 2 and UV 

digested in case of total metal analysis) into the voltammetric cell. Distilled ammonia 

was used to neutralise the pH. Different ligands for the various metals and a buffer 

(borate) were added. The sample, buffer and ligand solution were purged with nitrogen to 

remove dissolved oxygen, which interferes with voltammetric measurements. The sample 

was continually stirred during the deposition stage. This is to enhance transport of the 

metal of interest to the surface of the mercury drop and to prevent a significant 

concentration gradient occurring at the electrode surface. All voltammetric measurements 

were repeated three times, for each aliquot of the sample, until peak heights gave (<5%) 

RSD. 

 

Quantification of the metal (Co, Cu, Ni and Zn) in each sample was undertaken by 

introducing a known quantity of metal standard into the cell and measuring the resultant 

increase in peak height. The metal added was always sufficient to increase the peak 

height by at least a factor of two. Repeated voltammetric measurements were recorded 

for each aliquot of sample until peak heights were <5%. The linearity of the signal was 

checked by adding a second standard addition to the same cell in a similar manner. The 

concentration of the metal of interest was calculated using extrapolation. Two to three 

aliquots were analysed for each sample.  The precision relative standard deviation (RSD) 

for Cu, Co, Ni and Zn was (1.17, 2.33, 0.43, and 5.90 % respectively).  

 

Both cell and electrode were rinsed three times using Milli-Q water between aliquots. 

Measurements of blanks were performed using Milli-Q water and the same reagent 

concentrations and experimental conditions as for the samples. This also helps to assess 

the carry over between aliquots. Figure 3.1 summarises the steps undertaken during Ad-

CSV analysis.  
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Figure  3.1 Schematic diagram of Ad-CSV steps used for the determination of dissolved trace metals 
redrawn from Achterberg and Braungardt (1999) and Braungardt (2000). 

 

Experimental conditions for Ad-CSV analysis of Co, Cu, Ni and Zn were optimised prior 

to sample analyses. The optimisation experiments investigated the effect of different 

experiment conditions (scan speed, deposition potential, deposition time, and buffer and 

ligand concentration) on metal measurements using Ad-CSV. All experiments were 

performed using Milli-Q water and seawater samples collected from the Plym estuary. 

Table 3.2 shows the conditions selected for experiments following the optimisation 

experiments. Calibration curves of Co, Cu, Ni and Zn were produced after optimising 

measurements to assess the linearity of the method used (Figure 3.2). This was conducted 

every month to asses the reducibility of Ad-CSV. To assess the accuracy of the entire 

analytical procedures, prior to every set of analyses, estuarine water (SLEW-2, 1999) and 

nearshore seawater (CASS-4, 2002) (National Research Council, Canada) reference 

material was analysed in triplicate. It was analysed as a sample and all procedures were 

similar as for samples measured using Ad-CSV. Blanks were determined on a daily basis 

using Milli-Q water and the limit of detection was calculated as three times the value of 

the standard deviation of the value for the blank (Miller and Miller, 1993). The detection 
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limits for Co, Cu, Ni and Zn was 0.08, 0.09, 0.16 and 0.05 nM, respectively. The low 

detection limit observed, confirmed the sensitivity of the method used for trace metal 

speciation studies.  

   

A summary of data for the quality control measurements for this study can be found in 

Table 3.3. Certified reference material findings indicate close agreement between the 

observed and certified values. This enhances confidence in the methods and instruments 

used. 

 

Table  3-2: Voltammetric experimental conditions used for the determination of trace metals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Co Cu Ni Zn
Voltammetric Experiment conditions 

Purge (S) 240 300 100 240
Initial potential (v) -0.8 -0.15 -0.75 -0.85
Final Potential (v) -1.2 -0.6 -1.1 -1.3
Deposition potential (v) -0.8 -0.15 -0.75 -0.85
Speed (Hz) 100 20 50 50
Deposition time (s) 60 60 30 60
Equilibration time (s) 8 8 8 8
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Table  3-3:Certified reference material and blanks analyses for the quality control of the 
measurements.    

 

 

 

 

 

 

 

 

        

 

 

 

 
 
 
 
 
 
 

 

Dissolved 
metal 

Blank  
(nM) 

SLEW-2  
 Certified Value 

(nM) 

SLEW-2 
Observed 

(nM) 

CASS-4 
Certified 

Value 
(nM) 

CASS-4 
Observed 

(nM) 

     Cu 0.13±0.03 25.44 ± 1.73 25.65 ± 0.30 9.31 ±0.80 8.91± 0.26 

Ni 0.07±0.05 12.00 ± 0.92 12.53 ± 0.06 5.53 ± 0.50 5.74 ± 0.03 

Zn 0.22±0.01 16.82 ± 2.14 15.38 ± 1.29  5.82 ± 0.87 6.41 ± 0.42 

Co  0.03±0.02 0.933 ± 0.135 0.951 ± 0.0250 0.44± 0.05 0.39± 0.01 
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3.2.5.5 Copper Complexing Ligand Titration 
 
Several studies have shown that Cu and other metals are bound by dissolved organic 

ligands, which form metal complexes that are less available to phytoplankton (Croot et 

al., 2000; Ellwood and van den Berg, 2001; Gledhill and van den Berg, 1994; Tang et al., 

2001). There is evidence that the Cu2+ ion induces the release of complexing ligands by 

cyanobacteria (Moffett and Brand, 1996) and other species in seawater (Croot et al., 

2000; Moffett and Brand, 1996).  

 

Organic ligands are thought to consist of a continuous spectrum of ligands spanning 

complexing properties with 1:1 co-ordination sites to polyfunctional chelators (Gerringa 

et al, 1995).  Organic ligands may include phytoplankton and bacteria exudates, products 

produced by the organic breakdown of these organisms and also fulvic and humic acids 

and sewage effluents (Kozelka and Bruland, 1998; Hill, 1997; Whitfield, 2001).  

 

Theory of titration:  

 

The concentrations of complexing organic ligands (L), free Cu2+, inorganic Cu (Cu’) and 

the respective conditional stability constant (log KCuL) were determined by titration of the 

filtered culture media and samples collected from the English Channel. This was carried 

out using competitive ligand titration with SA as the added Ad-CSV ligand described in 

Campos and van den Berg (1994). A full description of this titration is given in Chapter 

4.  

 

A titration technique was employed in order to quantify the free ionic Cu concentration 

and dissolved Cu complexing ligands and their binding strengths. The titration data was 

transformed by the linearisation method of van den Berg (1982) /Ruzic (1982). 

The following relationship was used:    

 
[L] = [L’] + [CuL]      Equation 6 

 
where L is the ligand that forms non-labile complexes, L’ is the ligand not complexed 

with Cu, and CuL is the Cu-organic complex. The conditional stability constant for the 

formation of the complex CuL (K´CuL) is defined as: 
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K´CuL = [CuL] / [Cu2+] x [L]     Equation 7 

 

A linear relationship is obtained by substitution of L’ in equation 6 with equation 7, 

providing that Cu complextaion is predominantly controlled by a single class of organic 

ligand (Campos and Van den Berg, 1994):  

 

([Cu2+] / [CuL]) = ([Cu2+] / [L] + (1 / K´CuL x [L])  Equation 8  

 

The titration of a sample with the metal of interest (Cu) is made in the presence of an 

added ligand (salicylaldoxime SA). This will result in a series of labile Cu concentrations 

[Culabile]. 

 

[CuL] = [Cu Total] – [Cu labile]     Equation 9 

 

[Cu Total] is the total dissolved Cu concentration in the sample of interest which should 

be calculated from the total dissolved Cu concentration in the original sample. This 

sample was UV irradiated in addition to the Cu concentration added during the titration. 

In the presence of added ligand (SA), [CuTotal] is:   

 

  [CuTotal] = [Cu’] + [Cu SA] + [CuL]    Equation 10 

 

Where [Cu'] is the inorganic Cu concentration. [Culabile] is the fraction which equilibrates 

with the added ligand (SA), and this is measured by Ad-CSV. The combination of 

equations 9 and 10 will result in: 

 

  [Culabile] = [Cu'] + [Cu SA]     Equation 11     

 

The Ad-CSV peak height is related to [Culabile] via the sensitivity, S, which is defined as 

peak current/ Cu concentration (nA/nM)  

 

  Ip = S x [Culabile]      Equation 12 
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S is calculated by standard additions of Cu to the sample. The [Culabile] includes [Cu’] as 

a small constant of the added Cu, which remains uncomplexed by SA. [Cu2+] is related to 

the [Culabile] by α’: 

 

[Cu2+] = [Culabile] / α’      Equation 13 

 

α’ is the overall α-coefficient, excluding complexation by L (Campos and van den Berg 

1994). When [Cu2+] is substituted in equation 8 using equation 11 will result in: 

 

                           ([Culabile] / [CuL]) = ([Culabile] / [L]) + (α’ / [L] x K'CuL) Equation 14 

 

This equation is used for the van den Berg (1982) /Ruzic (1982) plot, as it is [Culabile] 

which is measured by cathodic stripping voltammetry (AdCSV) rather than [Cu2+]. α’ is 

obtained from: 

α’ =  α’Cu’ + αCuSA        Equation 15 

 

Where α’Cu’ is the α coefficient for inorganic complexation of Cu2+ and αCuSA   is the α 

coefficient for the complexation of Cu2+ by SA: 

 

αCuSA = β’CuSA [SA’]      Equation 16 

      

[SA’] is the concentration of SA not complexed by Cu and β’CuSA is the conditional 

stability constant of CuSA in seawater:     

 

β’CuSA = [CuSA] / [Cu2+] [SA’]     Equation 17 

 

The values for [Culabile] in equation 14 are obtained from the Ad-CSV peak current as = 

Ip/S (equation 12) and the concentration of CuL from equation 9. The sensitivity S should 

be obtained from the linear portion of the titration, where all the ligands are saturated; 

ligand saturation is verified by comparison with the slope obtained from further Cu 

standard additions to a sample. This is when Cu-complexing ligands were previously 

saturated by increments greater than the ligand concentration.  This should provide an 

estimation of whether the end of the titration had been reached. [L] and K´Cul values will 
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be calculated from the linear squares regression from 1/slope and α’/ (y-intercept x [L]) 

of a plot of [Culabile] / [CuL] as a function of [Culabile] (Campos and Van den Berg, 1994). 

Titration of natural samples typically produces a linear Van den Berg/Ruzic plot. This 

suggests that one group of ligands is present in the sample (saturation). However, a 

curvature would indicate the presence of more than one class of complexing sites (Croot 

et al., 1999; Muller et al., 2003., Moffett et al., 1997). The range of detectable ligands is 

restricted by the detection windows of the method applied. The detection windows is set 

by the relative magnitudes of the α coefficient of the added ligand (Campos and van den 

Berg, 1994).      

 

The free Cu2+, inorganic Cu' concentrations in the sample were estimated by speciation 

calculations based on the values of total dissolved copper, the overall inorganic side-

reaction coefficient, total dissolved ligand concentration and the respective conditional 

stability constant.     

3.2.6 Total Particulate Copper: 
 
Graphite Furnace Atomic Absorption Spectroscopy (GF-AAS) was used to determine 

total particulate Cu. A Perkin-Elmer 1100B AAS equipped with an HGA-700 graphite 

furnace and an AS-70 autosampler were used. All analyses were performed using 

pyrolytically coated L’Vov platforms and tubes. The programme used in the 

determination of copper is shown in table 3.4. 

Table  3-4: Temperature programme used for the GFAAS analysis 

 

 

 

 

 

 

 

 

 

 

 

  
Wavelength 324.8 
Lamp energy  15 
Drying oC 140 
Ramp (sec) 
Hold (sec) 

15 
15 

Ashing  oC 1000 
Ramp (sec)  
Hold (sec) 

20 
10 

Standing oC 20 
Ramp (sec) 
Hold (sec) 

5 
4 

Atomisation oC 2300 
Ramp (sec) 
Hold (sec) 

0 
4 

Clean oC 2500 
Ramp (sec) 
Hold (sec) 

2 
3 
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Copper stock standard (Sigma) 100 µg L-1 was used and referred to as the stock standard. 

A working stock standard was prepared on a daily basis (by dilution of the stock 

standard) to a concentration of 10 µg L-1 and increased to 20 µg L-1 for the culture 

samples when high particulate copper concentrations were expected. This working 

standard was used for the primary standard on the GFAAS. The autosampler was 

programmed to produce serial dilutions of the working standard. All analyses were 

performed with deuterium arc lamp background correction. All results were quantified in 

µg L-1, determined according to the dilution factor and volume of seawater initially 

filtered and then reported in nM. Each concentrate was analysed in triplicate on the 

GFAAS. Samples with high relative standard deviation RSD (10%) were re-analysed. In 

fact, all results were maintained below ± 6% RSD. Examples of copper standard curves 

are shown in Figure 3. 

 

 

 

 

                                                                    

 

 

 

 

                     

 

 

 

  
 

 

 

 

 

Figure  3.3: Examples of calibration curves obtained in GFAAS for determination of total 
pariticulate copper: (a) low copper range, (b) higher copper range. 
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Digestion of the 0.4µm polycarbonate membranes was performed using high-pressure 

Teflon digestion bombs. Prior to any digestions, the bombs were thoroughly cleaned 

using the following steps: 

1-  A rinse in SBDW 

2-  1 ml SBDW and 1 ml SBHNO3 were added sealed and heated at 70°C 

3- A rinse with SBDW and the 1 ml SBHNO3 was added to each Teflon bomb 

sealed and heated at 70°C. This step was conducted twice.  

4- A rinse in SBDW and then air dried under a laminar flow hood in the clean room.  

  

Total copper concentrations in the algae were determined after the digestion of 

membranes using 2 ml sub boiled nitric acid in the Teflon bombs, heated on a hot 

plate at 70°C for 24 hours. Membranes were always submerged in the SBHNO3 to 

ensure full digestion. After the digestion, the bombs were removed from the hot plate 

and allowed to cool at room temperature. The solution containing the membrane was 

transferred to trace metal clean polystyrene vials and diluted with 2 ml sub boiled 

distilled water. This gave a total sample volume of 4 ml. Samples were stored in the 

clean room until analysis. Filter blanks were carried through the same procedures for 

every digestion run conducted. The digestions were placed in the laminar flow hood 

in a clean room environment to eliminate possible contamination problems.  

 

Reference standard Saragasso Seaweed CRM 279 was used to check the accuracy of 

the digestion and analysis procedures. The certified value for Cu is 4.9± 0.02 µg/g 

and the Cu content found was 4.7± 0.08 µg/g where 0.08 µg/g was the standard 

deviation on separate measurements of the same sample. The concentration obtained 

in this study is within the specified range. The precision of the digestion technique is 

± 2% RSD.  

3.2.7 Nutrient Measurements:  
 

Seawater samples for nutrient analysis were collected in acid-washed Pyrex glass bottles. 

The bottles were rinsed two times with sample to reduce contamination and adsorption 

on to the walls of the bottles. Samples were filtered using acid washed glass filtration 

units (Millipore), through 0.7 µm nominal pore diameter glass-fibre filters (47mm 

diameter, Whatman GF/F). Samples were transferred to two 30 ml acid cleaned high 
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density polyethylene (HDPE) bottles (Nalgene), frozen at -20°C until analysed. Samples 

were analysed within 2-4 months.  

 

Inorganic nutrients were determined using a Burkard Scientific (model SFA-2) 

autoanalyser. This system had an autosampler, a chart recorder and computer. The 

analytical system was linked to digital-analysis Microstream logging software and a 

reduction system. The colorimetric methods used for nutrient analysis were those 

described by Hydes (1984) and Hydes and Wright (1999).   

    

The system was calibrated with potassium nitrate for nitrate and potassium dihydrogen 

phosphate for inorganic phosphate. Stock standards of nitrate (10 mM) and phosphate (10 

mM) were prepared every month. Variable working standard concentrations were 

prepared prior to every measurement according to the expected range of concentrations. 

Milli-Q water was used to prepare all reagents, and stock standards. The instrument was 

set up to measure nitrate concentrations up to 200 µM and phosphate concentrations up 

to 8 µM for culture samples. A calibration was run at the beginning of each batch of 63 

samples, and drift standards every 30 samples. Artificial seawater (NaCL 40 g L-1 (0.7 

M)) was used as the wash, blank and the matrix for the working standard. Dilutions using 

the artificial seawater were conducted for samples that showed high nitrate 

concentrations. Drift standards of intermediary concentrations, low nutrient seawater and 

blanks were used in the middle and at the end of each run. 

 

The analysis of nitrate requires the reduction of nitrate to nitrite. This was performed by 

passing the sample through a cadmium column and the sample was then mixed with 

sulphanilamide and naphthylethelynedihydrochloride (NED) to produce a pink 

compound with peak absorbance at 540 nm (Grasshof et al., 1999). Absorbance was 

measured in a 15 mm flow cell. Final values are the sum of nitrate and nitrite 

concentrations in the original sample.  

 

Phosphate reacts with a molybdate reagent in an acidified medium forming a 

phosphomolybdate complex, which is reduced to a highly coloured blue compound 

(Grasshof et al., 1999). Ascorbic acid was used as a reducing agent and antimonyl 

tartrate speeded up the reaction. Absorbance was measured at 880 nm in a 50 mm flow 
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cell. Concentrations of nutrients (µM) were calculated by the computer programme. 

However, in some cases, manual calculations were performed from the chart peaks. Also 

the calibration plot was used to recalculate concentrations when there was uncertainty 

concerning the computer generated readings. Figure 3.4 shows an example of the 

calibration curves of nitrate and phosphate. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure  3.4: Calibration graphs for nitrate and phosphate. 

3.2.8 Determination of TDN and DOC 
 

DOC and TDN were measured using a high-temperature catalytic oxidation (HTCO) 

system with single injection of the sample. The system used comprised of a Shimadzu 

TOC 5000A coupled to a Sievers nitrogen chemiluminescence detector (NCD). After 

sample acidification, sparging was performed using high purity carbon free oxygen 

which results in removing all dissolved inorganic carbon (DIC) from the sample. Oxygen 

was also used as a carrier gas.  

  

 
a 

b 
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The sample was injected (100 µL) onto the combustion column, which contained 

platinum on an aluminium oxide catalyst; DOC and TDN were oxidized to carbon 

dioxide, nitrogen oxide and water. This was undertaken at 680°C. Carbon dioxide was 

determined using a non-dispersive infrared detector (NDIRD). The quantification of 

DOC concentrations was achieved using data integration system and peak-area 

measurement. This system recorded the signals created from the NDIRD. A vacuum 

pump pulled the combusted gases from the NDIRD into the NCD. TDN peak areas were 

quantified using Lab View software (Badr et al., 2003). Water blanks (CRM Deep Ocean 

Water Hansell Laboratory, University of Miami) (44-46 µM DOC and 21.5µM TDN) 

were determined for each analysis to assure high quality measurements. In addition, daily 

calibration of the system using easily oxidized standard compounds (potassium hydrogen 

phthalate and glycine mixture (C: N atom 6:1)) were conducted.  The calibration curves 

showed a high correlation coefficient (R2), which indicated high precision. The analysis 

of the CRM (44.3 µM DOC and 21.2 µM TDN) were in good agreement with the 

certified values. Figure 3.5 (a,b) shows an example of the calibration graphs obtained 

form DOC and TDN. The limit of detection was 0.8 µM for C and 1.2 µM for N.  
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Figure  3.5: DOC and TDN calibration figures.  

3.2.9 Chlorophyll a  
 

Chlorophyll-a was determined by measurement of fluorescence, according to the 

methods of Welschmeyer (1994). The culture and the English Channel samples were 

filtered through 0.7 µm nominal pore diameter glass-fibre filters (47mm diameter, 

Whatman GF/F). The filters were folded, placed into foil envelopes and stored in a 

freezer at -20 oC until further analysis. Chlorophyll-a was extracted from the filters with 

90% v/v acetone (5 ml). The extracts were carefully sonicated for 30 seconds using a 

Vibra Cell sonicator. This is to detach cells from membranes. Samples were then 

centrifuged (separate filters and debris) in a MSE Mistral 2000 centrifuge at 3000 rpm 

for 10 minutes. The fluorescence of each extracted sample was measured using a Turner 

Designs model 10AU fluorometer fitted with a F4T41/2B2 lamp, a 436 nm excitation 

filter and a 680 nm emission filter. This optical combination resulted in the greatest 

a 

b 
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discrimination of chlorophyll-a against chlorophyll-b, phytin-a and phytin-b, providing a 

sensitive method for the determination of chlorophyll-a (Welschmeyer, 1994). 90% 

acetone was used as a blank and in the preparation of the working standard solution of 

chlorophyll-a (Sigma) which has been used to calibrate the fluorometer (Jeffrey and 

Humphery, 1975). The concentration of chlorophyll-a standard was determined by 

spectrometry according to the equation by Jeffrey and Humphery, (1975):  

Chla = 11.85 E664 - 1.54 E647 – 0.08 E630  

Where E= the absorbance readings of the spectrometer at 664, 647 and 630nm, using a 1 

cm cell, after correction for turbidity by subtracting the reading at 750nm. The working 

standard solution was prepared (diluted according to the expect range of concentration) 

and the fluorescence measured prior to all analyses. The fluorometer was recalibrated if 

the concentration of the diluted standard was 10% higher than the value displayed by the 

flurorometer. Chlorophyll-a concentrations (µg/L) were calculated according to the 

following equation:  C= f*v/V, 

where f is the fluorescence reading, v is the volume of the extract (in 90 % acetone) in ml 

and V is the volume of the sample filtered in ml.  

3.3  Biological Experiments and Measurements:  

3.3.1 Stock Culture of Emiliania huxleyi 
 

Cells of an axenic E. huxleyi (strain 1516) were obtained from the collection of the 

Marine Biological Association (MBA). Stock cultures of E. huxleyi were grown in F/2 

medium. Seawater collected from station L4 (which is located 10 nautical miles south-

west of Plymouth) was filtered using Sartorius cartridges (high capacity filter 0.2 µm 

cartridges). The filtered seawater was autoclaved for 30 minutes and kept in the culture 

room until it reached room temperature. Nitrate, phosphate, silicate, trace metals, 

Fe/EDTA and vitamins were added. This is the F/2 complete media preparation as 

described by Guillard and Ryther (1962). Finally, after addition of the recipe, the media 

was filtered again using a new Sartorius filter. This F/2 media was used to build the E. 

huxleyi stock culture to be used in the experiments.  
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3.3.2 Biological Experiments  
 

Preliminary growth experiments with E. huxleyi strain CCMP 1516 in one litre bottles 

(Nalgene) were conducted using two different culture media. The main objective of the 

experiments was to gain knowledge of phytoplankton culturing techniques and any other 

related measurements. The two media used in the biological experiments were: 

(1) F/2 media (N, P, Si trace metals, Fe/EDTA and vitamins), as described by 

Guillard and Ryther (1962). 

(2) Filtered sea water media (FSW) with the addition of nitrate and phosphate only 

(final concentrations (176 µM N and 7.26 µM P respectively) according to 

Vasconcelos et al. (2002), Vasconcelos and Leal (2001). 

Experiments with the F/2 media were conducted on 13.03.03 to verify the growth of E. 

huxleyi and to build a viral stock (specific for this species) which would be used for 

future experiments. Growth rates were comparable and reproducible with published rates 

for this species (Wilson et al., 2002 b; Schroeder et al., 2002). 500 µL of EhV86 virus 

(provided by Declan Schroeder) was added to the culture during the exponential phase of 

growth. Viruses were used to infect the E. huxleyi cultures. This was to observe the role 

of viruses in the speciation of metals during the life cycle of E. huxleyi. This growth 

experiment indicated a clear effect of viral induced lysis on cell numbers of E. huxleyi 

(Figure 3.6). The preliminary experimental results confirmed that virus lysis effectively 

controlled the cell numbers. This work also served to build up a viral stock. 
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Figure  3.6: Growth curve of E.  huxleyi (experiment conducted on 13.03.03). Error bars indicate 
standard error of cell counts. 

 

In addition, viruses were added to a FSW experiment 28.03.03. Incubation, growth and 

the death process were monitored by cell counting using a Zeiss compound microscope 

and an Improved Neubauer haemocytometer. Initially E. huxleyi was grown in FSW (1 

L) and subdivided into four sub-samples at the exponential phase. Growth rate was 

comparable and reproducible with the F/2 growth rate. Different amounts of virus (50, 

20, and 10 µL) were added at day 17 to three bottles. A bottle with no virus added was 

considered as a control.  Figure 3.7 shows that the viral induced lysis also strongly 

affected cell numbers in this medium (FSW) compared with the control. Although 

viruses were added in different quantities, a similar effect was observed. This indicates 

that larger volumes of the virus suspension contain viruses in excess for the infection. 

Triplicate bottles showed excellent reproducibility. 
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Figure  3.7: The growth curve of E. huxleyi (experiment conducted on 28.03.03). Different amounts of 
virus (50 , 20, and 10 µL) were added at day 17 to three bottles. A bottle with no virus added was 
considered as a control. Error bars indicate standard error of cell counts. 

 

Culture experiments were conducted where by E. huxleyi was grown in FSW media 

(10.02.03) to monitor the growth and decay process. The one litre bottle was subdivided 

into three sub-samples and a control. No viruses were added in this experiment. Another 

growth experiment (08.04.03) was undertaken to confirm and document the effect of the 

new virus produced as a result of the 13.03.03 experiment. The new virus (10 µL) was 

added to 20 ml of a well-grown E. huxleyi culture. Cell numbers decreased from (1.93 to 

0.12 x 106 cells ml-1) within 6 days.  

 

All culture experiments were conducted at the Marine Biological Association, Plymouth, 

at constant temperature (14oC) in a clean culture room with a constant light flux (150 

µmol photons m-2 s-1) and a photo-period of 12 h light and 12 h dark. Zondervan et al. 

(2002) reported that photosynthesis by E. huxleyi was saturated at 140-150 µmol photons 

m-2 s-1. 

 

Cultures were gently shaken once a day.  All seawater filtration sets, bottles and glass-

ware used in the biological experiments were soaked in hydrochloric acid (HCl) (10% 

v/v, 1 week), rinsed with Milli-Q water and then dried in the clean laminar flow hood, 

after sterilising using an auto clave (Touch Autoclave-LAB, K150)  . 
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3.3.3 Stock of Virus EhV86  
 

Infection kinetics of EhV86 were determined following a method described by Schroeder 

et al. (2002). A culture of exponentially growing E. huxleyi in F/2 medium (1 L) (approx. 

1.61 x 106 cells ml-1) was inocculated with 0.5 ml of virus lysate (approx. 1 x 105 pfu ml-

1). Six days later, once clearing of the host culture was observed, the lysate was passed 

through a 0.2 µm syringe filter (Gelman) to remove large cellular debris (Schroeder et 

al., 2002). Lysis was evident when the culture turned from a normal healthy milky-green 

colour to a milky white colour. In addition, a characteristic sulphurous odour was also 

indicative of culture lysis. The indications were similar to those described by Wilson et 

al. (2002 a&b). A virus clone was obtained by serial dilution to extinction three times. 

The highest dilution to lyse the host culture was passed through a 0.2 µm syringe filter 

(Gelman) for use in subsequent inoculations. Virus filtrates were concentrated by 

tangential flow ultrafiltration with a 50 K MW size cut-off unit (Vivaflow 50, Sartorius) 

to a final volume of 20 ml. Virus stock was subsequently stored at 4 oC in the dark. The 

effectiveness of this virus was tested on an E .huxleyi culture (08.04.03). 

 

Virus provided by Schroeder was obtained from a stock previously prepared by his 

group. Viruses were isolated by these researchers using a dilution, extinction and plaque 

assay from seawater samples. These samples were collected at different stations and 

depths during the later stages of E. huxleyi blooms in the Western English Channel, 

during July 1999 and 2001. One ml of 0.45 µm filtered seawater collected during the late 

stages of a bloom was added to an exponentially growing host culture of E.huxleyi strain 

1516.  Filtration similar to the one outlined above was performed. In addition, plaque 

purification assays were performed. The plaque assay is a classical virological technique, 

originally developed for bacteriophages and it is still widely used for virus isolation and 

purification (Schroeder, pers. Comm.). Full details of virus isolation and plaque assays 

are described in Wilson et al. (2002) (a&b) and Schroeder et al. (2002&2003). 
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3.3.4 Preliminary Emiliania huxleyi cultures (20 L carboys)    
 

The first attempt to grow E. huxleyi in a 20 L FSW carboy (Nalgene) was performed on 

17.09.03. The culture was grown in 20 L because a large volume of sample was needed 

for trace metal analyses and all related measurements for the life cycle studies. Firstly the 

FSW was prepared by filtering L4 seawater using Sartorius cartridges (high capacity 

filter 0.2 µm). Nutrients were added (similar to the final concentrations stated earlier). 

Cells were added to the 20 L carboy; 0.0005 x 106 cells ml-1 was the initial cell density. 

The photo-period was 16 h light and 8 h dark. Samples were collected for trace metal 

analyses. This was also the first attempt to conduct biological and chemical 

measurements on a single culture. The experimental growth curves indicated longer lag 

and exponential phases of growth compared to previous experiments in a similar medium 

with 1 L bottles (Figure 3.8). Cells did not reach the same cell concentration as observed 

in previous experiments. The highest cell numbers observed were 0.22 x 106 cells ml-1 

compared to 1.34 x 106 cells ml-1 in the 28.03.03 control bottle. This is perhaps due to the 

low inoculation of 0.0005 x 106 cells ml-1, which did not seem sufficient to properly start 

the 20 L growth experiments. A bloom stage was not observed. Viruses were not added 

to this experiment due to low cell numbers.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.8: E. huxleyi growth curve for the experiment performed on 17.09.03. Error bars indicate 
standard error of cell counts. 
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This single 20 L carboy experiment was repeated on 23.02.04. The main objective of this 

was to grow E. huxleyi with a higher starting cell density (0.035 x106 cells ml-1) 

compared to the starting cell numbers for the experiment described earlier. Figure 3.9 

shows the growth curve for this experiment, and viruses being added on day 7. The 

exponential phase was shorter this time, because the cell starting density was higher and 

the viral induced lysis affected cell numbers. The experiment was shorter in time (16 

days). The findings formed the basis for all culturing experiments in terms of starting cell 

numbers, and expected time needed for culturing E. huxleyi in a 20 L carboy.  

 

   

 

 

 
 
 
 

 

 

 

Figure  3.9: Growth curve of Emiliana huxleyi grown in 20 L using FSW media (23.02.04). Error bars 
indicate standard error of cell counts. 

 

3.3.5 Experimental Design 
 

Two controls and three virus infected 20 L experiments were undertaken in, May and 

August and four virus infected for March (2004) using E. huxleyi. The experimental 

design is shown in Figure 3.10. E.huxleyi was grown for the experiments in l L bottles 

and sub-cultured to five 1 L bottles (50 ml of the healthy cultured added to each bottle). 

The sub-culturing was conducted at the exponential phase of growth. The cells were 

subsequently added to the 20 L carboys, following washing (see below).   

The seawater used to prepare the FSW media was collected from L4 and filtered twice 

using Sartorius cartridges (0.2 µm). After filtration, the seawater was enriched with 
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nitrate and phosphate to final concentrations of 176 µM and 7.26 µM (Vasconcelos et al., 

2002; Vasconcelos and Leal, 2001). 

3.3.5.1 Cell Concentration by Centrifugation: 
 

E.huxleyi cells were centrifuged before the start of the experiments, using a Megafuge 

Heraeus centrifuge at 6000 rpm for 5 minutes. Cells were washed three times after 

spinning, using the FSW media. Note that sterile tubes were used for centrifuging.   

 

This process was conducted to remove remnants of the trace metal, EDTA, and the 

nutrient-rich F/2 medium. After that, cells were added to five 20 L carboys and the 

experiment was started (Day 0).   

3.3.5.2 Virus dialyses  
 

Dialyzed viruses (EhV-86) (50 ml each) were added to 3 carboys, with 2 carboys treated 

as control. This took place at the exponential phase on day 4 for the March and August 

2004 experiments. Viruses were dialyzed prior to the infection using dialyzing tubes 

(Medicell Visking). These are high purity membranes with extremely thin walls 

(cellulose membranes). This step was taken because virus stock had been built from the 

lyses of E.huxleyi grown in F/2 medium. All particles < 1200 Daltons would pass 

through the dialyzing tubes. Viruses >1200 Daltons should remain in the tubes.            

 

To remove the remnants of the F/2 media,  tubes were filled with viruses, sealed at the 

end using membrane closures and placed in an acid washed beaker filled with filtered 

seawater media (FSW)  (media used for the incubation experiment), then left for 1 hour 

to equilibrate. The media was changed 3 times every hour. During the last step, the tubes 

were left in the beaker overnight to equilibrate. The viruses in the tubes were transferred 

into sterilised containers ready for infection.  
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Figure  3.10: Schematic diagram of the culture experiments obtained at the MBA.    

3.3.5.3 Samples collected from culture experiments for flow cytometry measurements  
  

Daily samples were collected for biological measurements. Emiliania huxleyi in the 

cultures were enumerated using a Neubauer improved haemocytometer (Schroeder et al. 

2002).    

 

Samples for viral analysis using Analytical Flow Cytometery (AFC) were collected on a 

daily basis. Firstly, a one ml sample was collected from each 20 L carboy and samples 

were fixed in 0.5% (final concentration) glutaraldehyde. This sample can be used for E. 

huxleyi, virus and bacteria counts using AFC. Secondly, a one ml sample was collected 

from the carboys and centrifuged using a Sorval Pico centrifuge at 13000 rpm for 1 

minute, and the supernatant was preserved using 0.5% (final concentration) 

glutaraldehyde. This was to be used for quantifying the concentration of the virus (EhV-

86). This method requires a different staining regime, and the count of the virus is more 

accurate when E. huxleyi is removed. Samples were stored at -80 oC until analysis.  Flow 

cytometry analysis was conducted for the second sample only and the first sample was 

stored as backup.             
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3.3.6 Viral and Bacteria Enumeration  
  

Flow cytometry is commonly used in marine science as an analytical technique to 

analyse and sort cells on the basis of their optical characteristics (viruses and bacteria) 

(Marie et al., 1999; Brussaard et al., 2000). However, Epifluorescence Microscopy (EM) 

is a commonly used method for counting viruses (Suttle, 2005). This is because of higher 

accuracy and precision (Noble and Fuhrman, 1998).     

Flow cytometry involving the analysis of cells in a flow-through mode. Flow cytometry 

is a technique whereby a stream of cells is passed through a laser beam at high speed 

(10,000 cells/second) (Sobti and Krishan, 2003).  As each cell passes through the laser 

beam, the light scatter and fluorescence of each particle are recorded simultaneously and 

the information is processed by computer. Cram (2002) emphasised that flow cytometry 

has been rapidly evolving into a technique for rapid analysis of DNA content, cellular 

markers, expression and electronic sorting of cells of interest. 

 

Analyses were conducted using a Becton Dickinson FACSort flow cytometer at 

Plymouth Marine Laboratory. This flow cytometer is equipped with an air-cooled 15 mW 

laser providing 488 nm with a standard filter set-up. Virus and bacteria enumeration was 

performed on each sample at the same time using methods adapted from Marie et al. 

(1999) and Wilson et al. (2002 a). Fixed frozen samples were defrosted at room 

temperature. Fluorescent nucleic acid stain SYBR Green I was used, as recommended by 

Brussaard et al. (2000). This SYBR Green stain was purchased from Molecular Probes at 

10,000 times concentrate in Dimethyl sulfoxide (DMSO). On a monthly basis, the SYBR 

stain was diluted (1:10) with sterile distilled water and stored at -20 °C (main stock).  

 

Working stock was produced as required by the dilution 1:100 of the main stock in sterile 

distilled water. The defrosted samples were diluted with TE buffer (10 mM Tris-HCL pH 

7.5, 1 mM EDTA) which had been pre filtered through a 50-kDa  VivaFlow 200 system 

(Sartorius) and then autoclaved.  For samples from cultures, dilutions of 1 in 100 to 1 in 

200 (samples after day 10) were used.  Dilutions were applied to samples collected from 

the English Channel according to the expected virus concentrations. Diluted samples 

were mixed with the SYBR Green 1 at a final concentration of 10-4 of the commercial 

dilutions and heated at 65 oC for 10 minutes in the dark. According to Brussaard (2003) 
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many phytoplankton viruses exibit a relatively high green fluorescent signal after 

staining.   

Heating was essential to allow the SYBR stain to adsorb on to the cells. Samples were 

analysed by AFC for 2 minutes at high flow rate (42-51.5 µl min-1). The system was 

calibrated prior to every analysis using a concentration of 1.0157 x 106 ml-1 Beckman 

Coutler Flowset Beads. The beads were diluted 10 times in distilled water and analysed 

by AFC 6 times. Flow rate was calculated from the beads analysis. Data acquisition was 

triggered on green fluorescence and side scatter and collected on CellQuestProTM 

software (Becton Dickinson) with log amplification on a four-decade scale. The amount 

of noise was reduced by analyses of blanks and subtracted from the samples. To prepare 

the blank, 10 kDa filtered seawater was diluted 10-fold with TE buffer, which contained 

0.1 % Tritonx-100 and SYBR Green I. Data analysis was carried out using WinMDI 2.8 

software. Scatter-plots of side-scatter vs. green fluorescence were used to detect viruses 

and bacteria groups. 

 

This chapter has shown and summarised all methods (sampling and trace metal cleaning 

procedures) used in the current study. The voltammetric technique (Ad-CSV) and GF-

AAS were described in detail. They have proved to be cost effective and sensitive 

analytical methods for the speciation of trace metals. The certified reference seawater 

samples analysed were close to certified values, which provided confidence in the 

methods and instruments used. The low detection limits and high precision levels 

observed in this study indicate the accuracy of the handling and the analysis of trace 

metal procedures.    

 

The initial biological experiments and all biological measurements used in later 

experiments have been detailed in this chapter. Growth of E. huxleyi in FSW media was 

comparable and reproducible with F/2 growth rate. Virus additions strongly affected cell 

numbers in the medium. Accordingly, an appropriate experimental design was set and 

successfully tested. The methods for counting E. huxleyi cells and viruses, using a Zeiss 

compound microscope and AFC, respectively, have been explained in the chapter.       
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Chapter 4 

 

4.Life Cycle and Virus Infection of Emiliania huxleyi; Influence 
on Trace Metal Speciation 

4.1 Abstract 
Phytoplanktons influence the cycling and distribution of trace metals in oceanic and 
coastal waters. Viruses are known to infect a range of phytoplankton species and thus 
may influence trace metal speciation in these waters. This work aims to look at trace 
metal speciation during the life cycle of the coccolithophore Emiliania huxleyi in 
uninfected (control) and infected cultures. E. huxleyi was grown in seawater enriched 
only with nitrogen and phosphorus, and without the control of free metal concentration 
using EDTA. Cathodic Stripping Voltammetry was used to measure labile and total 
metals, and Cu complexing ligands. Total particulate Cu in algal cells was determined 
using GFAAS. 
 
A typical AFC signature of E. huxleyi specific virus was observed 1 day post virus 
addition in the virus addition element. The increase in virus numbers directly related with 
the decline in the E. huxleyi cell numbers, indicating that they crashed as a result of the 
virus infection.  
 
Total dissolved Cu concentrations were near constant in the control and virus infected 
cultures. However, labile Cu concentrations decreased with time in both control and virus 
infected cultures. Particulate Cu in the control cultures increased with time and therefore 
could be correlated with increasing algal biomass. Similarly, in the virus infected cultures 
the particulate Cu increased with time, until the cell number decreased due to viral 
infection. In the control culture the amount of Cu per cell decreased exponentially during 
algal growth, although the overall cellular Cu content increased. Viral lyses of E. huxleyi 
caused a sharp increase in Cu per cell, reaching a maximum of 4.78 x 10-17 mol/cell.  
Ligand production in the control culture resulted in a decrease in the free aqueous Cu 
concentration [Cu2+] with time. The lowest [Cu2+] in the control culture was between 
6.73-5.15 x 10-13 M, coinciding with the highest organic ligand concentrations. Also in 
the virus infected culture, [Cu2+] decreased with enhanced organic ligand concentrations, 
while no increase in the dissolved Cu fraction in response to the decrease in the 
particulate concentration of Cu were observed. It is hypothesised that the virus particles 
played an important role in the Cu cycling. 
Labile Ni accounted for 70-80% of the total Ni concentration in the virus infected 
culture, and 76-91 % in the control culture. In the control cultures the ratio of labile to 
total Co decreased with time which indicates the production of strong Co complexing 
ligands by the healthy Emiliania huxleyi cells. The ratio decreased in the virus infected 
culture until day 8 and then increased following the virus infection.      

 



Chapter 4                 Life Cycle and Virus Infection of E. huxleyi; Influence on Trace Metal Speciation  
 

 86

4.2 Introduction 
 

Trace metals such as Co, Cu, Fe, Mn and Zn are essential elements and perform key 

biochemical functions in prokaryotic and eukaryotic cells (Whitfield, 2001). Whilst at 

low concentrations, these elements may be growth limiting, at enhanced levels they are 

potentially toxic (Muller et al., 2005). The uptake of elements by algal or bacterial cells 

depends on their chemical form (Hudson and Morel, 1993). Trace metals are usually 

taken up by algae via the formation of coordination complexes with specific transport 

ligands in their outer membranes (Sunda, 1989; Moffett and Brand, 1996). The biological 

availability of trace metals is determined by the concentration of free metal ions or of 

kinetically labile inorganic species (Sunda, 1989; Bruland et al., 1991). Trace metals 

(including Fe, Mn, Zn, Cu, Co) play a key role in the metabolism of cells, making for 

example essential contributions in metalloenzymes (Sunda, 1989, Sunda and Huntsman, 

1998). However, trace metals may also inhibit metabolism (Bruland et al., 1991), when 

they bind to a metabolic site normally occupied by essential metal ions. In order to 

understand the impact of trace metals, the study of their chemical and phase speciation 

forms an important aspect in aquatic biogeochemical cycles research (Tang et al., 2001).     

 

Complexation by organic matter dominates the chemical speciation of the Cu, Zn, Co and 

Fe in seawater (Ellwood and van den Berg, 2001; Gledhill and van den Berg, 1994; 

Moffett, 1995). Copper is one of the most extensively studied trace metals in natural 

waters, as it is an essential micro-nutrient (Leão et al., 2007), but is toxic at 

concentrations only slightly higher than the limiting levels. It has been reported that pico- 

to nanomolar concentrations of Cu2+ in seawater caused a reduction in the cellular 

division rates of cyanobacteria (Brand et al., 1986), and Cu2+ concentrations higher than 

tolerance levels may lower photosynthetic rates and cause interference with the uptake of 

other metals (Sunda and Huntsman, 1998). Strong organic ligands are largely responsible 

for Cu complexation in open ocean surface water (Coale and Bruland, 1988; Moffett et 

al., 1990), whereas weaker ligands often dominate Cu speciation in coastal waters (Donat 

et al., 1994). A nickel speciation study conducted in Southwest Spain (Braungardt et al., 

2007) indicated that an average of 80% Ni was labile throughout the observed 

concentration range and this lies with in the range (40-80%) reported for other estuaries 

and coastal waters (Nimmo et al., 1989; van den Berg et al., 1987). There is some 
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evidence to suggest that cobalt may be strongly complexed by natural organic ligands in 

estuarine waters (Zhang et al., 1990; Ellwood and van den Berg, 2001). The presence of 

non-labile voltammetric fractions of cobalt indicates that it was at least partialy 

complexed in the Mediterranean (Vega and van den Berg, 1997).                               

             

The presence of viruses in the marine environment has been acknowledged for many 

years, and it is now well established that viruses are abundant in marine ecosystems 

(Fuhrman, 1999; Wilhelm and Suttle, 1999; Suttle, 2005). Viruses are known to infect a 

wide spectrum of hosts, including prokaryotes and eukaryotes (Suttle et al., 1990; 

Brussaard et al., 1996). Several studies have documented a correlation between the 

presence of viruses and a shift in phytoplankton communities following the crash of E. 

huxleyi blooms observed in the western English Channel (Wilson et al., 2002 a-b; 

Schroeder et al., 2002). Viral lysis of single species dominated phytoplankton blooms 

has been shown to significantly affect the transfer and the cycling of energy and matter 

within the pelagic food web (Gobler et al., 1997; Fuhrman, 1999; Wilhelm and Suttle, 

1999).            

 

Several culture and mesocosm experiments have been conducted to study the speciation 

of trace metals during the life cycle of E. huxleyi. These studies were conducted under 

exposure to metals, and/or under different nutrient regimes, and investigated the effects 

of the exudates released by phytoplankton on metal speciation and the growth of E. 

huxleyi (Vasconcelos et al., 2002; Vasconcelos and Leal, 2001; Leal et al., 1999; Muller 

et al., 2003). However, effects of the viral lyses of E. huxleyi on trace metal speciation 

has yet to be determined. The objective of the experiments reported in this chapter is to 

examine the effects of E. huxleyi growth, senescence and decay on dissolved trace metal 

(Cu, Co and Ni) concentrations and their electrochemical lability. Furthermore, the 

influence on particulate Cu concentrations and the concentrations and binding strengths 

of Cu complexing ligands was determined. Consequently, the aim was to document for 

the first time the effect of viral infection of E. huxleyi on trace metal speciation. Here 

data is presented from two culture experiments using 20 L carboys. 

4.3 Methods 

4.3.1 Reagents and Standards 
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The water used for reagent preparation and vessel rinses was Milli-Q water ((Millipore, 

UK); >18 MΩ cm-1). All reagents were AnalaR grade unless indicated otherwise. The 

metal standard solutions used in voltammetric determinations were prepared by dilutions 

of standard atomic absorption spectrometry solutions (Spectrosol grade, BDH) and 

acidified with sub-boiled HCL. Salicylaldoxime (SA, Sigma, 0.01 M) was prepared 

monthly in 0.1 M HCL. Solutions of 0.1 M dimethlglyoxime (DMG, Aldrich) were 

prepared in methanol (HPLC grade, Fisher Scientific) whilst 0.1 M ammonium 

pyrrolidinedithiocarbamate (APDC, Aldrich) was prepared in Milli-Q water.  A stock 

solution of 0.1 M nioxime (10 µM final concentrations, Aldrich) was prepared in 0.2 M 

sodium hydroxide.  

 

Sodium nitrite (5 M) solution was used as a catalyst in the cathodic stripping 

voltammetric (AdCSV) analyses of Co and prepared in Milli-Q water. The final 

concentration of sodium nitrite in the cell was 0.25 M. The sodium nitrite solution was 

cleaned electrochemically following the procedure described by Vega and van den Berg 

(1997). Cobalt was removed from this solution in a mercury pool acting as the cathode 

and an anode consisting of a platinum wire. The 5 M nitrite solution was placed in the 

electrolysis device and de-aerated for 30 min by bubbling nitrogen through the stirred 

solution. The electrodes were connected to the potentiostat and the bubbling rate was 

then reduced. A potential of -1.35 V was set to the working electrode for a period of 24 h.           

 

Low concentrations of Ad-CSV ligands were prepared by serial dilution of the stock 

reagent solutions. Borate buffer was prepared by adding sodium hydroxide to the boric 

acid solution (1 M) (Pure grade, Fisher Scientific) to achieve pH 8.3. The buffer was 

cleaned by passing through a Chelex-100 (Sigma) column followed by in-line UV 

digestion to remove organic ligands (Achtenberg and van den Berg, 1994; Ellwood and 

van den Berg, 2000). 100 µL of this buffer added to 10 ml seawater (0.01 M) gave a pH 

of 8.3. The Chelex-100 column was cleaned beforehand by passing sub-boiled HCL (0.5 

M, 100 ml) for a duration of 2-3 hours and then rinsed by Milli-Q water (200 ml), 

isothermally distilled ammonia NH3 (4 M, 50 ml) and finally with Milli-Q water (a 

further 100 ml). The column was cleaned after each use with Milli-Q water (200 ml) and 

isothermally distilled ammonia NH3 (5 M, 50 ml).                         



Chapter 4                 Life Cycle and Virus Infection of E. huxleyi; Influence on Trace Metal Speciation  
 

 89

4.3.2 Cultures of Emiliania huxleyi in enriched natural seawater 
 
Cultures of E. huxleyi were grown in natural seawater that was filter sterilised (using 0.2 

µm high capacity filtration cartridges, Sartorius) using a pump (Dymax 30, Charles 

Austen Pump, UK) and enriched with 176 µM N and 7.26 µM P. The media was not 

autoclaved to avoid trace metal contamination. The starting E. huxleyi cell numbers were 

approximately 3.00 x 104 cells ml-1 for the August 2004 experiment, and 2.50 x 104 cells 

ml-1 for the March 2004 experiment. Dialyzed virus EhV-86 was added to the cultures on 

day 4 of the experiment. Full details of the experimental design, cell centrifugation and 

virus dialysis were given in Chapter 3, section 3.3.5. All bottles, carboys, venting caps, 

filters and tubes used in the biological experiments were cleaned prior to the experiments 

(see Chapter 3, sections 3.2.1.1 and 3.3). Samples were collected from the incubation 

experiments at the same time (11 am) for chemical analysis and biological numeration of 

cells, viruses and bacteria, as described in sections 3.2.3 and 3.3.5 (Chapter 3).      

4.3.3 Determination of chlorophyll a, cell numbers, viruses and bacteria 
enumeration  

 

Chlorophyll a analysis was carried out using a Turner Designs fluorometer according to 

the methods of Welschmeyer (1994). Full details were described in Chapter 3, section 

3.2.9. E. huxleyi growth was monitored using an improved Neubauer haemocytometer as 

described by Schroeder et al. (2002). Virus and bacteria enumeration was carried out 

using a Becton Dickinson FACSort flow cytometer (Wilson et al., 2002 a&b). Full 

details of sample collection and analysis were given in sections 3.3.5 and 3.3.6.    

4.3.4 Determination of nutrient and, DOC in the cultures  
 
Nutrients were determined using a Burkard Scientific nutrient autoanalyser (model SFA-

2). A detailed description of the analysis and instrumentation was given in Chapter 3, 

section 3.2.7. The colorimetric method used for nutrient analysis is described by Hydes 

(1984) and Hydes and Wright (1999). 

 

The high temperature combustion (HTC) technique, was used for simultaneous analyses 

of dissolved organic carbon DOC and total dissolved nitrogen TDN. This approach 

provides precise and accurate results (Badr et al., 2003). The system comprised of a 
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Shimadzu TOC 5000A coupled to a Sievers nitrogen chemiluminescence detector (NCD) 

(section 3.2.8).  

4.3.5 Determination of total trace metal content in seawater and algae 
 
The total dissolved concentrations of Co, Cu Ni and Zn were determined in the seawater 

and the culture media after removal of biomass by filtration (using acid washed 0.4 µm 

polycarbonate membrane filters, Whatman). The filtration was conducted using a 

polysulfonic filtration unit with a hand-operated pump (Nalgene), not exceeding 0.3 bar. 

Microscopic examination of the algae on the filters revealed that they did not rupture or 

break during filtration. After filtration, aliquots of the media were acidified to pH ≈ 2 

using sub-boiled HCl and UV-digested (400 W medium pressure mercury vapour lamp, 

Photochemical Reactors Ltd) in acid washed quartz tubes for 5 h. Metal concentrations 

were determined by CSV. The pH of the samples was neutralized with distilled ammonia 

and subsequently a 10 ml aliquot was transferred into the voltammetric cell. The 

voltammetric equipment used for the measurements has been described in Chapter 3, 

section 3.2.5. The determination of Cu, Ni and Co was carried out at pH 8.3 (0.01 M 

borate buffer), using the competitive ligand SA for Cu (Campos and van den Berg, 

1994), DMG for Ni (Colombo and van den Berg, 1985) and Nioxime for Co (Vega and 

van den Berg, 1997). In order to remove all oxygen, the sample solutions were purged 

with oxygen free nitrogen (BOC) for 240 seconds for Co, and 300, 100 seconds for Cu 

and Ni respectively. All experimental conditions were provided in Table 3.2. The 

concentrations of total metals were quantified using the internal standard addition 

approach. Measurements were conducted twice and repeated when the differences 

between measurements were higher than 4%. The analysis of certified reference material 

(Table 3.3) was in good agreement with certified values. The labile dissolved metal 

concentration was determined as described for total dissolved metal but without previous 

acidification or UV digestion.  

 

The total Cu concentrations in the algae were determined after digestion of the filters on 

which the biomass was collected, using 2 ml sub-boiled nitric acid. Full digestion 

procedures were described in Chapter 3. Graphite Furnace Atomic Absorption 

Spectroscopy (GF-AAS) was used to determine total particulate Cu. For this purpose, a 

Perkin-Elmer 1100B AAS equipped with an HGA-700 graphite furnace and an AS-70 
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auto sampler were used. The total cellular Cu content (extracellular adsorption plus 

intracellular uptake) was calculated and metal fixed per microalgal cell was calculated 

from the cell count. Reference standard seaweed was used to assess the accuracy of the 

digestion and analysis procedures; the Cu content was found to be not significantly 

different from certified values.      

4.3.6 The speciation of Cu in the cultures and theoretical considerations for 
metal speciation measurements  

 

Copper titrations in filtered culture media were conducted to determine the 

concentrations of the natural Cu-complexing organic ligands (L), their conditional 

stability conditional constants, and free Cu2+ and inorganic Cu (Cu') concentrations. The 

competitive ligand titrations were carried out using SA according to Campos and van den 

Berg (1994). Eleven sample aliquots of 10 ml each were pipetted into 30 ml polystyrene 

cups together with SA and the borate buffer. Prior to the first titration the cups were 

conditioned twice with seawater containing the same range of Cu concentrations as used 

in the titrations. Ad-CSV was used to determine the labile Cu concentrations in the 

titrations, and the analysis was performed using the same conditions as described for total 

dissolved Cu. For Ad-CSV determinations, the pH was fixed at 8.3 (0.01 M) using borate 

buffer, and the SA ligand concentration was 3 µM. A previous study by Leal and van den 

Berg (1998) reported added Cu concentration in the range 0-50 nM for Ad-CSV Cu-

complexing ligand titrations. The concentrations of detected ligands and the conditional 

stability constants of their Cu complexes did not vary significantly when SA 

concentrations were varied between 2-10 µM.       

 

Cups were used containing sample, buffer, SA and added Cu in the range of 0-50 nM for 

the August 2004 experiment, and 0-200 nM for the March 2004 experiment. Two 

different ranges of copper concentrations were applied to check whether this could affect 

ligand trends (i.e. production) in the two different culture experiments. The solutions 

were equilibrated overnight (12-15 h) prior to analysis. The aliquots were measured 

sequentially, and the voltammetric cell was not rinsed between aliquots to maintain cell 

conditioning for the Cu and SA concentrations. The cups used were rinsed with Milli-Q 

water between sample titrations and the same order of cups was maintained. Triplicate 

measurements were performed to assess the precision of the analysis. This resulted in 
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relative standard deviations (RSD) of 0.53% and 0.20% for the observed ligand 

concentrations and the conditional stability constants, respectively.  

 

The Ad-CSV-labile fraction of the dissolved metal is operationally determined by the 

analytical parameters employed during the analysis (van den Berg et al., 1990). The 

analytical competition strength of the Ad-CSV method is defined as the α-coefficient 

(αMeAL) of the target metal with the added Ad-CSV ligand (AL), e.g. for Cu with SA: 

 
2

2 ]'[']'['1 SASAK CuSACuSACuSA βα ++= + .    (1) 

Metal-organic complexes (MeL) with α-coefficients (αMeL) approximately within one 

decade either side of the αMeAL can be detected (Nimmo et al., 1989; Apte et al., 1988). 

The non-labile metal fraction is assumed to be complexed by natural metal binding 

organic ligands and is kinetically inert during the competitive ligand exchange reactions, 

and was calculated by subtracting the labile from the total dissolved metal concentration.  

 

The conditional stability constants K’CuSA+ and β’CuSA2 at the appropriate salinities and 

pH were derived from values given in Campos and van den Berg (1994). Copper 

complexing ligands with low stability constants (log K’CuL ≈ 10-12) are more abundant in 

estuarine and coastal waters than those with higher log K values >13 (Muller, 1998; 

Mofett et al., 1997). For this study, a relatively low α CuSA value was chosen (log αCuSA = 

3.99) for Cu determinations using 3 µM SA. Values for the conditional stability constants 

of the complex formed between Ni and DMG were taken from literature (van den Berg 

and Nimmo, 1987) to calculate the α-coefficient for a DMG concentration of 20 µM, 

based on a 1:2 Ni:DMG complex log αNiDMG = 8.2 to 7.6 at S = 14 to 37 and pH 8.3. For 

Co it was assumed that it will forms 1:2 complex with nioxime to be dominant, and 

experimental values (Ellwood and van den Berg, 2001) of the conditional stability 

constant for this complex at different pH values were used to estimate log K’Co (nioxime) = 

15-16 at pH 8.3. From this, the α-coefficient for the Co (nioxime) complex as log αCo (nioxime) 

= 4.74 at S = 32-35 [nioxime= 2 µM] (Ellwood and van den Berg, 2001).  

  

The van den Berg/Ruzic data transformation was employed to compute titration data, 

yielding [L] and K’CuL. The free Cu ion [Cu2+] was calculated from this data using the 

thermodynamic equilibrium calculation program prepared by van den Berg. The 
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concentration of L not complexed by Cu was calculated using the Cu speciation model 

suggested by van den Berg and Donat (1992), and the α-coefficient of the complex CuL 

was calculated from:  

]Cu['K+1
]L['K

=α +2
CuL

CuL
CuL                                                 (2) 

4.4 Results and Discussion  

4.4.1 Growth of Emiliania huxleyi in enriched natural seawater. 
 

Preliminary growth experiments described in Chapter 3 section 3.3.2 were carried out to 

evaluate whether E. huxleyi would grow satisfactorily in seawater supplemented with 

only N and P. These experiments therefore tested the effects on growth of omitting the 

additions of trace metals, vitamins and EDTA to the culture media. Results presented in 

this chapter represent the average of two controls and three virus infected 20 L culture 

experiments. Figures 4.1 and 4.2 represent cell number and chlorophyll a concentrations 

observed for the August 2004 experiment. Omission of trace metals and vitamins and the 

absence of EDTA from the growth media had no effects on the growth rate or timing of 

viral lyses in these growth experiments. The results were similar to those obtained 

previously for the same algal species and culture medium (Leal et al., 1999; Vasconcelos 

and Leal, 2001).  Growth dynamics of E. huxleyi in the filtered enriched seawater 

medium with or without virus addition were also compared in terms of the concentration 

of chlorophyll a and cell numbers. The two parameters gave a very close correlation 

(correlation coefficient (r) = 0.98 for infected culture and 0.94 for the control). Repeated 

culture experiments showed that the exponential growth phase started typically 3-4 days 

post incubation and was maintained for 2-3 days, after which the stationary phase set in. 

The maximum cell density was observed on day 6 (0.69 x 106 cells ml-1), corresponding 

with chlorophyll a concentrations (25.6 µg L-1). The highest cell numbers (1 x 106 cells 

ml-1) were observed in the uninfected cultures (Figure 4.1 a). Chlorophyll a 

concentrations remained relatively stable during the early stages of stationary phase 

growth in the control cultures but sharply decreased on day 16 (Figure 4.2 a).  Leal et al 

(1999) reported that the exponential phase started after 6-7 days of incubation. This 

difference could possibly be explained by the lower cell numbers used during the start of 

their incubations, as compared in this experiment, and/or the use of a different strain of 

E. huxleyi.     
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Viruses were added during the exponential growth phase (day 4). The viral induced lyses 

resulted in a decrease in cell numbers on day 8 compared with the uninfected cultures 

(Figure 4.1 b). Similarly, the infected cultures of Schroeder et al. (2002) and Wilson et 

al. (2002b) collapsed three days post-inoculation of viruses, while the non-infected 

cultures showed a typical growth curve.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  4.1: Emiliania huxleyi cell numbers in enriched natural seawater. (a) control culture (b) viral 
infected culture (viruses added on day 4). 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

Figure  4.2: Chlorophyll a concentrations (a) control culture, (b) viral infected culture (viruses added 
day 4).  

The pH of the E. huxleyi cultures did not vary significantly (pH 7.80) over the course of 

the experiments (data not shown).  
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Leal et al. (1999) showed a similar pH pattern, which remained fairly constant. This may 

be due to the production of organic matter and calcite coccoliths. Leal et al. (1999) also 

assessed the growth dynamics of E. huxleyi in cultures with and without 0.01 M HEPPS 

buffer. Their observations were that the growth rate was ten fold higher in the absence of 

buffer.  This is in agreement with previous work, where Lage et al. (1996) used HEPPS 

pH buffer (pH 8) which was thought to negatively affect the algae by increasing pH 

toxicity. This was evaluated based on growth changes i.e. effective concentration of 

labile copper that reduces the growth rate by 50% of the dinoflagellate, Amphidinium 

carterae. HEPES increased toxicity (synergistic effect) as it did not significantly 

complex copper and this effect was possibly due to its surfactant properties (Lage et al., 

1996). This confirms the importance of using media without added pH buffers, as was 

done in this research.  

4.4.2 Viruses and bacteria   
 
Virus and bacteria numbers present in the biomass-free fraction (biomass removed 

through centrifugation) were monitored by analyitical flow cytometry (AFC), based on 

their side scatter versus green fluorescence (Figure 4.3). A typical AFC signature of the 

E. huxleyi- specific virus EhV-86 was observed 1 day post virus addition in the virus 

addition experiment. The increase in virus numbers directly related with the decline in 

the E. huxleyi cell numbers, indicating that they crashed as a result of the virus infection 

(Figure 4.4). Total virus concentrations ranged from 0.029 x 107 particles ml-1 (day 5) to 

9.59 x 107 particels ml-1 (day 13). The maximum EhV-86 numbers were observed on 

days 12 and 13, which coincided with the lowest algal cell numbers (Figures 4.1a & 4.4). 

Results obtained by Evans (2004) for mesocosm experiments showed a lower abundance 

of viruses (3.75 x 107 ml-1) than in the present study. This is because the mesocoms 

experiment worked with natural occurring viruses and a lower E. huxleyi cell density (7 x 

104 cells ml-1). Virus concentrations observed in this study were within the range 

expected for a marine ecosystem (known to range from <104 to >108 ml-1) (Wilson et al., 

2002 a). Viruses and bacteria concentrations determined by AFC, throughout the viral 

infection of E. huxleyi, are presented in Figure 4.4. 
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Figure  4.3: Analytical flow cytometry scatter plot of a) sample taken on day 2 before virus addition, 
b) sample taken on day 14 from the virus addition experiment. The arrow indicates the position of 
the Emiliania huxleyi-specific virus EhV-86, while the circle indicates the position of heterotrophic 
bacteria. 

 

 

 

 

 

 

 

 

 

Figure  4.4: Virus and bacteria concentrations determined by AFC for the August 2004 experiment 
(viral infected).   

 

In the virus addition culture, bacterial numbers remained at around 0.04-0.27 x 106 cells 

ml-1 between days 0 and 7 (Figure 4.4). A rapid increase in bacterial numbers coincided 

with the start of the decline of E. huxleyi cell numbers and the sharp increase in free virus 

particles. The highest bacterial concentrations were observed between days 11 and 13 

(Figure 4.4). Bacteria concentrations were lower than viruses by an order of magnitude. 

These observations are consistent with studies reported by Evans (2004) and Marie et al. 

(1999), who found that viral lyses stimulated bacterial production. Bacterial 
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concentrations in the control cultures were much lower than in the viral cultures (Figure 

4.5).                   

 

 

 

 

 

 

 

 

 
 

Figure  4.5: Bacteria numbers determined by AFC for the August 2004 experiment (control).   

 

E. huxleyi cell number, viruses and bacteria concentrations, Chlorophyll a, nutrients and 

DOC concentrations for the August 2004 experiment are presented in Tables 4.1 (control 

cultures) and 4.2 (viral infected). 
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Table  4-1: Biological data (Emiliania huxleyi, viruses and bacteria ml-1), chlorophyll a, nutrients and 
DOC in the control culture (Aug-2004).   

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table  4-2: Biological data (Emiliania huxleyi, viruses and bacteria ml-1), chlorophyll a, nutrients and 
DOC in the viral infected culture (Aug-2004).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time Emiliania 
huxleyi 

PO4 

(days)  
106 cells ml-1 

Virus 
 

107  
ml-1  

Bacteria 
 

106 
ml-1 

Chl a 
 

µg L-1 

 

NO3 

 
µM µM 

DOC  
 

µM 

0 0.03 0 0.45 0.91 ± 0.06 167.04 ± 2.39 6.75 ±  0.25 165.8 ± 23.21 
1 0.06 0 0.04     
2 0.11 0 0.06 2.34 ± 0.22 161.66 ± 2.20 6.34 ± 0.11 187.3 ± 5.94 
3 0.19 0 0.30     
4 0.30 0.02 0.21 13.36 ± 5.26 155.10 ± 3.15 5.15 ± 0.27 184.2 ± 10.27 
5 0.53 0.11 0.38     
6 0.69 0.53 0.29 25.62 ± 2.80 144.32 ± 1.91 2.57 ± 0.50 117.4 ± 23.45 
7 0.65 4.96 0.27     
8 0.27 7.04 1.36 14.68 ± 6.84 151.24 ± 9.67 3.36 ± 0.37 139 ± 11.50 
9 0.07 7.22 4.71     
10 0.07 8.49 4.29 0.45 ± 0.06 139.10 ±  6.20 3.91 ± 0.68 153 ±  23.23 
11 0.06 8.89 5.51     
12 0.05 9.20 5.25 0.32 ± 0.01 144.50 ± 5.44 4.79 ± 0.76 155 ± 18.92 

13 0.05 9.59 5.24     
14 0.06 8.98 4.68     
16 0.06 6.86 4.19 0.16 ± 0.14 138.31 ± 1.72 4.37 ± 0.71 149 ± 8.80 

 

Time Emiliania 
huxleyi 

Bacteria Chl a 
 

NO3 
 

PO4 

(days) 106 cells 
ml-1 

106 
ml-1 

µg L-1 

 
µM µM 

DOC  
 

µM 

0 0.03 0.06 0.57 ± 0.18 164.94  ±  0.36 6.66 ± 0.00 182.3 ± 18.44 

1 0.06 0.05     
2 0.11 0.07 3.14 ± 0.53 162.92 ± 1.07 5.62 ± 0.17 215.3 ± 27.08 
3 0.20 0.12     
4 0.30 0.27 8.76 ± 2.32 155.09 ±  0.00 4.90 ± 0.17 198.7 ± 48.29 
5 0.53 0.24     
6 0.68 0.22 20.86 ± 1.33 146.00 ± 2.14 2.33 ± 0.20 141.98 ± 30.67 
7 0.81 0.31     
8 0.99 0.25 20.04 ± 0.51 142.39 ± 1.61 2.45 ± 0.10 110.57 ± 10.66 
9 0.99 0.60     
10 0.98 0.95 18.00 ± 2.38 141.08 ± 0.23 1.47 ± 0.17 110 .69  ± 4.37 
11 0.98 1.09     
12 0.86 1.08 20.06 ± 5.74 139.13 ± 2.53 1.87 ± 0.17 136.91 ± 14.30 
13 0.76 1.48     

14 0.62 1.48     
16 0.42 2.17 7.82 ± 3.76 144.5 ± 8.29 3.01 ± 0.68 122.94 ± 1.57 
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4.4.3 Variations in nutrient concentrations during the incubations 

 
The nitrate and phosphate concentrations were determined in the culture media on day 0 

(when the experiment started), and during the exponential and, stationary growth phases, 

and the decay stage for the viral infected cultures. Nutrient samples were also analysed 

for the control cultures. Table 4.1 and 4.2 show the nutrient concentrations in control and 

virus infected cultures. The concentration of phosphate decreased significantly with time 

in the control incubations (6.60 to 1.47 µM). The lowest phosphate concentration was 

observed on day 10 (1.47 µM) which coincided with the highest number of E. huxleyi 

cells (Figure 4.1). Leal et al. (1999) also showed that phosphate concentrations in E. 

huxleyi cultures decreased from 7.61 to 0.18 µM during their culture period. In the virus 

infected cultures, phosphate concentrations decreased with time during the first week, but 

remained fairly constant from day 8 at 4.10 µM.  

Nitrate concentrations in control and virus infected cultures remained near constant 

throughout the experiments at around 160-148 µM. E. huxleyi appears to grow well under 

high and low nutrient concentrations or high as well as low ratios of nitrate to phosphate 

(Zondervan, 2007). Wal et al. (1994) found that different nutrient regimes in mesocosm 

enclosures had no influence on the gross growth rate of E. huxleyi populations. This was 

confirmed by Lessard et al. (2005), who showed that there is no strong relation between 

high N:P ratios (P more limiting than N) and the occurrence of E. huxleyi blooms in the 

field. 

4.4.4 Variations in dissolved organic carbon (DOC) during the incubations  

 
Dissolved organic carbon (DOC) ranged from 110 to 215 µM in the control cultures and 

from 138 to 187 µM in the viral infected culture (Tables 4.1 & 4.2). DOC decreased with 

time in the control culture, in parallel with the increase in E. huxleyi cell numbers (Figure 

4.6a). A decrease in DOC was observed on day 6 in the virus infected culture, followed 

by a release of approximately 28 µM DOC (difference between day 6 and 10) into the 

media upon the viral lysis (Figure 4.6b). In a similar manner, viral lyses of A. 

anophagefferens bloom in the field resulted in a 40 µM DOC release to the water column 

(Gobler et al., 1997).  
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Figure  4.6: Dissolved organic carbon concentration (µM) during E. huxleyi culture experiment 
(August 2004) a) control, b) viral infected.    

 

There was no significant correlation between E.huxleyi cell numbers and DOC (P> 0.05) 

in the virus infected culture, whereas a negative correlation was observed between cell 

numbers and DOC in the control culture (P<0.05 & r=0.85) (Figure 4.7). This correlation 

may be explained by the observed increase in heterotrophic bacteria numbers during the 

incubation culture period which could be responsible for removal of DOC (Bratbak et al., 

1998). The release of DOC during cell lysis resulted in a positive correlation (P<0.05) 

between DOC and heterotrophic bacteria (r = 0.97) Figure 4.18. These observations 

indicate that the increase in DOC concentration resulted in an increased abundance of 

heterotrophic bacteria. The results by Middelboe et al (2002) similarly suggested that 

DOC released by the collapse of the spring phytoplankton bloom resulted in an increase 

in bacterial numbers and activity. No correlation found between DOC and bacteria in the 

control culture.      
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Figure  4.7: E. huxleyi cell numbers versus dissolved organic carbon concentrations in the control 
cultures. 

 

 

 

 

 

 

 

 

 

 

Figure  4.8: Dissolved organic carbon concentrations Versus Bacteria 106 ml-1 post viral lyses of E. 
huxleyi day 8.  

4.4.5 Copper speciation during incubation experiments (August 2004 
experiment). 

4.4.5.1 Copper ligand titrations: 
 

Representative Cu-ligand titration and linearization curves are shown in Figure 4.9 for 

virus infected cultures from the March and August 2004 experiments, and control 

cultures from the August 2004 experiment. The curvature at the beginning of the titration 

curves (Figure 4.6 a,c,e) indicates the presence of natural Cu-complexing ligands in these 

samples. Linear treatment of the titration data (Figure 4.6 b,d,f) produced a straight line 

for all samples, indicating that Cu-complexation was controlled by a single class of 

ligands (Campos and van den Berg, 1994).  
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Two sets of titrations were performed, using different added Cu concentration and a 

similar general trend in organic ligand concentrations was observed in the viral infected 

cultures. Ligand concentrations were higher (reaching a maximum of 34.32 nM, day 6) 

and the sensitivity of AdCSV was slightly enhanced when using the higher added Cu 

range (0-200 nM) compared to the lower added Cu range (0-70 nM).  Measurements of 

Cu speciation in coastal waters by AdCSV are complicated by the presence of natural 

and anthropogenic surfactants (Moffett, 1995). Surfactants compete with Cu complexes 

for the surface of the mercury drop (Moffett et al., 1997). This interference becomes 

more pronounced at higher deposition times. Hence, for the titrations in this study the 

deposition times were limited to between 30 and 60 s to avoid interferences from 

surfactants.
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Figure  4.9: March 2004 experiment a&b, August 2004 experiment c&d (virus infected cultures); 
(e&f) control culture from August 2004 experiment. Titration curve for the culture samples (a, c, e), 
van den Berg linearization for the titration data (b, d, f). CuTotal = Cu in the sample plus Cu added 
for the titration; CuL = Cu complexed by natural organic ligands; Culabile = Cu complexed by SA.            
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4.4.5.2 Total and labile dissolved Cu and organic ligands concentrations   

 
Total dissolved Cu concentrations were near constant in the control and virus infected 

cultures (Tables 4.3-4.4). The concentrations ranged between ca. 17 and 20 nM. 

However, labile Cu concentrations decreased with incubation time in both control and 

virus infected cultures (Figure 4.10). In both the control and virus infected cultures, labile 

Cu decreased after day 6 to ca. 3 nM and then remained constant until the end of the 

experiment. Labile Cu concentrations in the control cultures decreased in a similar 

manner to those in the cultures of Leal et al (1999), Vasconcelos and Leal (2001). The 

total and labile dissolved Cu and organic ligand distributions in the control and the virus 

infected cultures are shown in Figure 4.10.     

 

The total Cu concentrations observed in this experiment appeared to be optimal for E. 

huxleyi (Leal et al., 1999). According to Leal et al. (1999) the growth of E. huxleyi was 

enhanced in the presence of 18 and 28 nM Cu, as compared with 8.4 nM. Growth of E. 

huxleyi decreased dramatically when the Cu concentration rose to 33 nM. This finding 

and the excellent growth achieved in our experiments confirm that total dissolved Cu 

concentrations were optimal for the growth of E. huxleyi.          

 

In the control culture experiment, the organic Cu complexing ligand concentrations were 

higher than or close to total Cu concentrations.  An increase in ligand concentrations was 

observed after day 10, when ligand concentrations reached 24.8 nM. This coincided with 

the lowest labile Cu concentrations. In the virus infected cultures, organic ligand 

concentrations were highest on day 6, and this coincided with highest cell numbers and 

lowest labile Cu concentrations.      

 

The conditional stability constants (log KCuL) observed during the culture experiments 

(control and virus infected cultures) ranged between 11.81 and 12.78. Only small 

differences in ligand strength were observed during the experiments, indicating that the 

organic ligands produced by the algae in the culture were functionally similar to those 

originally present in the seawater (Leal et al., 1999). The conditional stability constant 

for the Cu-organic complexes (log KCuL< 13) observed in all samples collected from the 

cultures were in the range of weak ligand class (Moffett et al., 1997). The conditional 
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stability constant observed in the current experiment was in a similar range to the values 

reported by Leal et al. (1999) and Vasconcelos et al. (2002). The March 2004 culture 

experiment results (Appendix) showed a similar range in conditional stability constants 

as observed in the August 2004 experiment. However, the ligand concentrations were 

higher (34.5 nM) in the March experiment (using a high Cu range in the titrations). 

Stronger ligands with conditional stability constant of Cu complexes log KCuL> 13 

(Moffett, 1995; van den Berg et al., 1987), which are designated as type 1 or class 1 

ligands (L1) by Leão et al., 2007, were not observed in these experiments. Cyanobacteria 

have been considered as probably the most important source of L1 ligands in the open 

ocean (Croot et al., 2000; Gordon et al., 2000; Croot, 2003). 

 

Copper in these experiments was nearly fully complexed by ligands (99.98 % CuL), 

yielding CuL as the major Cu species for all samples. The Cu speciation in the samples 

followed trends observed in other aquatic systems, where the concentration of Cu 

complexing ligands increased with total Cu concentration, resulting in CuL being the 

dominant Cu species (Kozella and Bruland, 1998; van den Berg et al., 1987; Moffett et 

al. 1990; Croot, 2003). Tables 4.3 and 4.4 present the concentrations of total, labile 

dissolved and particulate Cu, organic ligands, free Cu2+, inorganic Cu’, together with the 

conditional stability constant for the Cu-organic complexes (log KCuL) and the degree of 

Cu-complexation (% CuL) for the control and virus infected cultures respectively.     

  

The chemical characteristics of the Cu complexing ligands were not identified in these 

experiments. However, previous E. huxleyi culture and mescosom experiments (Leal et 

al., 1999; Muller et al., 2003) showed that thiols accounted for an important part of the 

Cu complexing ligands produced by the algae. Furthermore, Cu complexing titrations 

have revealed that thiol ligands could be from strong (L1) or weak (L2) organic ligands 

(Laglera and van den Berg, 2003).  Nevertheless, the structure and exact composition of 

the dissolved Cu complexing ligands remains an important open question (Croot et al., 

2000, Leão et al., 2007). 

 

The most critical difference in Cu speciation between the virus infected and control 

cultures was in terms of organic ligand concentrations (Figure 4.10). In particular the 

timing of organic ligand production strongly influenced the Cu speciation. In the virus 

infected culture, the highest organic ligand concentrations were observed on day 6, 
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following the virus infection, while the highest concentration in the control cultures was 

observed between day 10 and 12. EhV-86 started to increase after day 6 reaching 

maximum on days 12 and 13 (Figure 4.4). 

 

Cells numbers in the cultures were positively correlated (P< 0.05) with organic ligand 

concentrations in the control (r = 0.78) and virus infected cultures (r = 0.80) (Figure 

4.11), which indicates that the organic ligand production was related to exudation and 

virus related release processes in the cultures.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure  4.10: Copper speciation (labile, total dissolved Cu and organic ligands (nM) and E. huxleyi 
cell numbers in the control (a) and virus infected (b) cultures (virus added on day 4). 
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Figure  4.11: Organic Cu complexing ligand concentrations versus E. huxleyi cell numbers in control 
(a) and virus infected (b) cultures. 
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4.4.5.3 Particulate Cu in phytoplankton:  
 

The Cu associated with algal biomass, which may have been either taken up or adsorbed 

onto cell surface, is presented in Figure 4.12 for the control and viral infected cultures. 

Particulate Cu in the control cultures increased with time (0.34 nM to 6.20 nM), and 

could therefore be correlated with algal biomass. This finding agrees with observations 

by Vasconcelos and Leal (2001b) and Leal et al. (1999), where particulate Cu increased 

with time (3 nM to 19 nM). Similarly, in the virus infected culture the particulate Cu 

increased with time, until the cell number declined due to viral lysis. In our experiments, 

the intra-cellular uptake was not determined as no rinse with an EDTA or oxalate 

solution was conducted to remove extra-cellular Cu. Previous work by Vasconcelos and 

Leal (2001) has shown that 86-96% of total particulate Cu was intra-cellular, with the 

uptake occurring very quickly.                          

 

An important point to affirm is that the decrease in particulate Cu in the virus infected 

culture was associated with cell lysis as a result of virus infection on day 10. Labile Cu 

remained unchanged in this culture, and this issue will be discussed later in this chapter.   

 

A strong positive correlation (P< 0.05) was observed between the concentration of 

particulate Cu and cell number in the control (r=0.95) similar to (Vasconcelos and Leal, 

2001) findings and virus infected (r=0.85) cultures. These observations indicate that the 

two parameters were significantly correlated (Figure 4.13).  

 

Total dissolved copper remained constant through the experiment whereas total 

particulate copper increased and this could be correlated with algal biomass as explained 

earlier. These finding agree well with those reported by Vosconcelos and Leal (2001) and 

Leal et al.  (1999). However, the fact that total dissolved copper remains constant and did 

not increase is puzzling. Total particulate copper could be introduced through collecting 

and handling of samples and also through the digesting processes of the membranes.          
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Figure  4.12: Particulate Cu concentrations and E. huxleyi cell numbers in control (a) and virus 
infected (b) cultures. 
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Figure  4.13: Particulate Cu concentrations versus E. huxleyi cell numbers in control (a) and virus 
infected (b) cultures. 
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Copper per cell decreased when cell numbers reached a maximum in the virus infected 

culture (day 6). Viral lyses of E. huxleyi caused a sharp increase in Cu per cell, reaching 

a maximum of 4.78x 10-17 mol/cell (Figure 4.14 b). EhV-86 encodes a number of proteins 

that require metals for their activity, like most cellular systems that require metals for the 

functioning of their DNA & RNA replication enzymes. EhV-86 has for example an 
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during its infection cycle.  
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Figure  4.14: Particulate Cu concentrations and cellular Cu content and E. huxleyi cell numbers in 
control (a) and virus infected (b) cultures. 

4.4.5.4 Dissolved Cu species 
The chemical speciation of Cu in the culture was calculated from the determined 

concentrations of total dissolved Cu, organic Cu complexing ligands and their 

conditional stability constants. Ligand production in the control culture decreased the 

free aqueous Cu concentration [Cu2+] with time (Figure 4.15a). The lowest [Cu2+] in the 

control culture was between 6.73-5.15x 10-13 M, coinciding with the highest organic 

ligand concentrations. The decrease in Cu2+ concentrations during the control experiment 

was also observed by Vasconcelos and Leal (2001a), and this was related to the 

production of Cu complexing organic ligands. In the virus infected culture, [Cu2+] 

decreased when enhanced organic ligand concentrations were observed (Figure 4.15b). 

Also production of organic ligands in both cultures decreased the concentrations of 

inorganic Cu’. 
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Figure  4.15: Copper speciation results and chlorophyll a concentrations for August 2004 experiment; 
control (a) and virus infected (b) cultures.  

 

The relation between the organic ligand concentrations and log [Cu2+] is plotted in Figure 

4.16 for the control and virus cultures. A negative correlation between the organic ligand 

concentrations and log [Cu2+] was observed (P <0.01), with r = 0.80 for the control 

culture and r = 0.87 for the virus infected culture (Figure 4.16). This relationship 

confirms that the concentrations of Cu2+ in both cultures were controlled by the organic 

ligand concentration and they were specific ligands that bound free Cu ion.   

 

 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O
rg

an
ic

 li
ga

nd
s,

 C
u 

(n
M

) a
nd

 c
hl

 a
 

( µ
g 

 L
-1
)

0

2E-12

4E-12

6E-12

8E-12

1E-11

1.2E-11

Free C
u

2+ (M
)

a 

b 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (days)

O
rg

an
ic

 li
ga

nd
s,

 C
u 

(n
M

) a
nd

 c
hl

 a
 

( µ
g 

 L
-1
)

0

5E-12

1E-11

1.5E-11

2E-11

2.5E-11

3E-11

Free C
u

2+ (M
)



Chapter 4                 Life Cycle and Virus Infection of E. huxleyi; Influence on Trace Metal Speciation  
 

 115

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.16: Organic ligand versus Cu2+ concentration in control (a) and virus infected (b) cultures. 

 

Leal et al. (1999) showed that the growth of E. huxleyi was optimal at a concentration of 
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production to be simulated by E. huxleyi (Muller et al., 2003; Leal et al., 1999). In these 

current experiments (control and virus infected), lower [Cu2+] were observed (Tables 4.3-

4.4). This suggests that the bioavailabile Cu2+ fraction was negatively influencing E. 

huxleyi growth or physiology. As study by Brand et al. (1986) showed a high Cu 

tolerance of E. huxleyi, with a concentration threshold of 0.6 nM Cu2+, which is well 

above the range found in the present and other studies. It is important to note that the 

studies by Leal et al. (1999) and Muller et al. (2003) were investigating production of 

organic ligands in response to added Cu and other metals, whereas no metal was added to 

these experiment.  
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4.4.5.5 Particulate to dissolved Cu ratios in the cultures 
 

Figure 4.17 presents the ratios of particulate Cu to Cu2+, particulate Cu to labile Cu, and 

particulate Cu to total dissolved Cu in the control and virus infected cultures for the 

August 2004 experiment. In the control, the ratio of particulate Cu to total dissolved Cu 

increased with time as cell numbers increased (Fig. 4.17a). Copper was incorporated into 

the particulate phase until day 12 in the control experiment, after which the ratio 

decreased following release of Cu from the particulate phase. The other ratios showed a 

similar pattern. These observations for the control cultures were in close agreement with 

those by Vasconcelos and Leal, (2001) as plotted in Figure 4.17 d, e.  

The Cu species ratios in the virus infected cultures differed from the control 

experiments. It is evident that EhV-86 had an effect on the particulate and dissolved 

phase Cu concentrations during cell lyses. Copper became more abundant in the 

dissolved fraction relative to particulate Cu following day 6 (cell lyses) (Fig. 4.17). As 

outlined by Suttle (2005), viruses play an important role in marine biogeochemical 

cycles. Viral lyses of microorganisms within sinking aggregates may effectively dissolve 

particles and convert a fraction of them into dissolved material (Fuhrman, 1999; Wihelm 

and Suttle, 1999), which can subsequently be assimilated by the microbial community. 

The findings of the current study of a decreasing importance of the particulate fraction 

upon viral infection support this hypothesis. Nevertheless, Gobler et al. (1997) found that 

only 5% of Fe was released into the dissolved phase during vial lyses of A. 

anpphagefferens. This may be due to the fact that virally lysed cells release high 

molecular weight proteins, nucleic acids that can act as aggregating agents, promoting 

particle formation (Proctor and Fuhrman, 1991). In the current experiments no increase 

in the dissolved phase Cu concentrations were observed post viral infection.  Direct 

comparison between current research findings and Gobler et al. (1997) is not possible, 

because of differences between metal species and viruses tested. Recent research by 

Poorvin et al. (2004) reported that the activity of naturally occurring viral populations in 

a high nutrient low chlorophyll (HNLC) coastal upwelling region can regenerate 

sufficient dissolved Fe to support the growth of phytoplankton community, indicating 

that viral lysis plays a key role in re-supplying microbial communities with dissolved 

micronutrients.  
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Figure  4.17: Particulate Cu to total dissolved (a), labile Cu (b) ,and Cu2+ (c) ratios in control and 
virus infected cultures for August 2004 experiment. Particulate Cu to total dissolved and labile Cu 
(d), and Cu2+ (e) ratios E. huxleyi cultures reported by Vasconcelos and Leal (2001). 
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and Table 4.3). Conversely, viral lysis of E. huxleyi caused a sharp increase in Cu per 

cell, reaching a maximum of 4.78 10-17 mol cell-1 (Figure 4.14 and Table 4.4). Moreover, 

there was no significant increase in the dissolved Cu fraction in response to the decrease 

in the particulate Cu concentration, hence creating a the missing Cu fraction (Figures 

4.10 & 4.12). It can thus be hypothesise that the virus particles played a direct role in Cu 

cycling, possibly by binding to the Cu directly. 

 

This observation led to a reconsideration of the experimental design. The dissolved or 

labile measurements (Chapter 3 subsection 3.2.3.1) were taken from the 0.4 µm filtrate.  

It should be noted that virus particles pass through these filters (size range of EhV-86 is 

170 to 190 nm – Schroeder et al., 2002).  If this hypothesis is correct, then it is likely that 

the virus influenced the dissolved Cu measurements by competing with the ligands in the 

assay. To test this hypothesis we removed the virus fraction from the 0.4 µm filtrate by 

passing it through a 50 KDa filter (Viva flow 50, Sartorius - Schroeder et al., 2002). The 

permeate was reanalyzed for its Cu content.  In addition, the effect of incremental EhV-

86 additions on the assay was measured. 

 

When the virus fraction was removed from samples collected on days 8 and 16 

(presented in Figure 4.10), the labile Cu increased from 6.85 to 11.20 nM and from 3.33 

to 7.21 nM, respectively.  Titrations of these samples were conducted to measure the 

concentration of the natural complexing organic ligands (L), their conditional stability 

conditional constants and free [Cu2+] in a similar manner as for the samples that were 

anticipated to contain viral fractions. Titration revealed that Cu organic ligands and log 

KCuL were higher without the virus fraction. In addition, the sensitivity of the AdCSV 

measurements was enhanced. Ligand concentrations increased approximately by 4 nM 

and log KCuL by 1 M. For example, on day 8 the stability constants increased from 12.17 

to 13.01 M when virus fraction was removed. Consequently, the Cu2+ concentration 

decreased from 10 to 0.41 pM on day 8 and from 7.70 to 0.6 pM on day 16.  This 

decrease can be correlated to the higher ligand concentrations observed on removal of the 

virus fraction. In summary, labile Cu increased upon removal of viruses from the assay, 

resulting in lower [Cu2+]. Further experiments were conducted to investigate possible 

interactions between virus particles and Cu.  Virus free water (Milli-Q water and 0.2 µm 

filtered seawater) was used to create a Cu calibration curve (0-25 nM) for CSV. The 

effect of EhV-86 on this standard curve was determined by adding incremental 
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percentages of EhV-86 (20, 50 and 100% solutions containing 1.8, 4.5, 9 x 107 virus 

particles ml-1, respectively). Peaks were highest when EhV-86 was not present in the 

solution (Figure 4.18).  The sensitivity and peak heights of the CSV were affected as the 

virus concentration increased, with no changes being observed in the peak height for 

100% virus addition. A possible explanation is that either the virus out-competes the 

added ligand for Cu on the mercury drop or Cu is attached to the virus particles, which 

prevents Cu from complexing with the added ligand (SA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.18: Cu and virus assay experiments using a) MQ water, b) filtered seawater.    
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has been demonstrated here for the first time that all current measurements 

underestimated the Cu species concentrations when the virus fraction is not removed. 

This means that there was an increase in labile Cu in the current experiment as an effect 

of the viral lysis of E. huxleyi. However, the presence of viruses in the samples prevented 

documenting such an increase in labile Cu, but all labile Cu reported was underestimated.    

 

Metal ions are an integral part of some viral proteins and play an important role in their 

survival and pathogenesis. Zinc, Mg and Cu are the commonest metal ions to bind with 

viral proteins (Chaturvedi and Shrivastava, 2005). EhV-86 encodes a number of proteins 

that require metals for their activity, like most cellular systems that require metals for the 

functioning of their DNA & RNA replication enzymes. EhV-86 has for example an 

edonuclease (ehv018) that requires divalent metal ions for its activity (Wilson et al., 

2005). Therefore, there is strong possibility that the virus was using some of the free Cu 

during its infection cycle. Further work is required to confirm this observation.  

Moreover, Daughney et al. (2004) demonstrated that viruses have capsids that are 

reactive towards dissolved protons and iron and those virus capsids can also serve as 

nuclei for the growth of iron-oxide particles. Current results pertain to laboratory systems 

with simple chemistry and limited range of Cu-to-virus concentration ratios and so 

cannot be quantitatively extended to predict the role of viruses on the natural marine Cu 

cycle. Natural virus communities will be composed of several species, each of which 

might interact with Cu differently (Daughney et al., 2004; Suttle, 2005). Other substrates 

such as dissolved organic ligands might compete with the viruses for the available Cu 

and other dissolved elements might compete with Cu for the binding sites on the viruses.    

 

 An important question arises as to whether trace metals are complexed by viruses (107 

ml-1) in the water column, and does this apply for all viruses including bacteriophage? 

This has not been investigated before and these findings might serve as a base for future 

research focusing into the correlation between virus particles and Cu in the marine 

environment.     

4.4.7 Nickel and Co behaviour for the August 2004 experiment 

 
Variations of labile and total dissolved Ni and Co concentrations for the August 2004 

experiment are shown in Figures 4.19-4.20. During virus infection, changes in labile and 
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total dissolved Ni concentrations occurred simultaneously, and the ratio of labile to total 

Ni concentrations was almost constant throughout the experiment (control and virus). E. 

huxleyi, it seems, did not accumulate Ni, since there was no change in the ratio of labile 

to total Ni in the infected and control cultures.   

 

Labile Ni accounted for 70-80% of the total Ni concentration in the virus infected 

culture, and 76-91% of the total Ni concentration in the control cultures. Nickel 

speciation in the Mediterranean was similarly dominated by the labile fraction (> 80%) 

(Achterberg and van den Berg, 1997). The high labile fraction of Ni observed in these 

experiment indicated the limited influence of the E. huxleyi life cycle or EhV-86 

infection on Ni speciation. Total Ni concentrations slightly decreased throughout the 

experiment, which might be due to adsorption onto phytoplankton cell walls. Viral 

infection and consequent Ni adsorption onto the virus particles may have indirectly 

affected the speciation of Ni, with a decrease in Ni species observed during infection as 

observed in copper experiments. In addition, particulate fraction of Ni could be bounded 

by virus particles. However, it was not possible to quatify this as particulate faction of Ni 

was not measured in the current study.    

 

Nickel is an essential co-factor in the enzyme involved in urea uptake (Price and Morel, 

1991). It has been reported that the diatom Thalassiosira weissflogii needs Ni when urea 

is the main source of nitrogen for growth (Price and Morel, 1991).  

 Tables 4.6-4.7 present labile and dissolved Ni and Co and labile to total for both metals 

(August 2004 experiment).    
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Figure  4.19: Labile and total dissolved Ni during E. huxleyi life cycle a) control, b) virus cultures 
(August 2004 experiment).  

 

In the control culture, the ratio of labile to total Co decreased over time, which suggests 

accumulation by the healthy E. huxleyi cells, and use in for example vitamin B12. 

Indeed, Sunda and Huntsman’s (1995) culture studies showed that E. huxleyi and 

Synechococcus have a strong requirement for Co. Decreases in the growth of E. huxleyi 

were observed when Co2+ concentrations were lowered in the culture medium (Sunda 

and Huntsman, 1995). 
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The ratio of labile to total Co in the virus infected culture decreased with time, which 

coincided with the high cell numbers till day 6. The ratio increased (day 8) due to virus 

infection, and this matched the increase in this ratio of labile to total Cu on removal of 

the virus fraction (section 3.3.6). This indicates that virus lyses affected the speciation of 

Cu and Co but with a higher influence on Cu. Adsorption onto virus, particles may 

explain the decrease in concentrations of the Co species in the virus infected culture.  

 

Unlike the copper findings where total dissolved copper did not decrease with the 

increase in E. huxleyi cell number a slight decrease was observed in both Ni and Co total 

dissolved fraction. The decrease was most significant when viruses were highly abundant 

between days 10-16 which was unexpected, as it would be expected to observe Ni and 

Co to be released into the media. This once again highlights the role of viruses in metal 

speciation not only to Cu but also to Ni and Co.       

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  4.20: Labile and total dissolved Co during E.huxleyi life cycle a) control, b) virus infected 
cultures.    
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Table  4-5: Labile and total dissolved Ni, Co and labile to total % of Ni and Co in the control culture 
(Aug 2004).   

 

 
 
 

 

  

 

 

 

 

Table  4-6: Labile and total dissolved Ni, Co and labile to total % of Ni and Co in the viral infected 
culture (Aug 2004).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time Growth     Ni labile    Ni Total Ni  
lab: total 

Co labile Co total Co 
lab: total 

(days) 106 cells 
ml-1 

(nM) (nM) % (nM) (nM) % 

0 0.03 4.26 ± 1.01 5.16 ± 0.05 82.56 0.24 ± 0 0.32 ± 0.02 74.4 
2 0.11 4.34 ± 0.56 4.76 ±0.30 91.18 0.25 ± 0 0.29 ± 0.09 87.06 
4 0.30 4.11 ± 0.17 5.19 ± 0.03 79.19 0.25 ± 0 0.28 ± 0.04 89.28 
6 0.68 3.81 ± 0.10 4.72 ± 0.30 80.72 0.16 ± 0.01 0.29 ± 0.09 55.19 
8 0.99 3.98 ± 0.37 4.56 ± 0.70 87.28 0.15 ± 0.02 0.28 ± 0.07 53.63 
10 0.98 3.57 ± 0.47 4.57 ± 0.74 78.12 0.19 ±  0 0.25 ± 0.03 75.99 
12 0.86 3.60 ± 0.24 4.70 ± 0.74 67.6 0.16 ± 0.01 0.32 ± 0.09 49.65 
16 0.42 3.01 ± 0.42 3.85 ±0.03 78.18 0.19 ± 0.01 0.28 ± 0.06 68.48 

 

Time Growth Ni labile Ni Total Ni  
lab: total 

Co labile Co total Co 
lab: total 

(days) 106 cells 
ml-1 

(nM) (nM) % (nM) (nM) % 

0 0.03 4.08 ± 0.30 5.25 ± 0.34 77.71 0.24  ± 0.01 0.51 ± 0.08 47.24 
2 0.11 4.21 ± 0.31 5.36 ± 0.08 78.54 0.24  ± 0.01 0.43 ± 0.06 56.54 

4 + virus 0.30 3.92 ±  0.24 4.91 ± 0.61 79.84 0.24  ± 0.01 0.44  ± 0.08 55.73 
6 0.69 4.11 ± 0.18 4.95 ± 0.08 83.03 0.20  ± 0.01 0.29  ± 0.01 68.5 
8 0.27 3.73 ± 0.27 5.02 ± 0.34 74.3 0.23  ± 0.01 0.31  ± 0.05 74.71 
10 0.07 3.19 ± 0.16 4.28 ± 0.45 74.53 0.20  ± 0.01 0.33  ± 0.04 61.55 
12 0.05 2.58 ± 0.42 3.47 ± 0.23 74.35 0.19 ± 0.01 0.30  ± 0.05 62.89 
16 0.06 2.77 ± 0.24 3.90 ± 0.52 71.03 0.154 ± 0.03 0.35 ± 0.06 44.54 
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4.5 Conclusions  
 

This is the first report of the influence of viral infection of E. huxleyi on metal speciation. 

Total dissolved Cu concentrations were constant in the control and virus infected 

cultures. Particulate Cu concentrations in the control culture decreased with time which 

was related to the algal biomass. In the virus infected culture particulate Cu increased 

with time until the cells crashed upon infection. There was no increase in the dissolved 

Cu fraction in response to the decrease in the particulate Cu. Viral lyses of E. huxleyi 

caused a sharp increase in Cu per cell.      

 

Experiments conducted to investigate possible interactions between virus particles and 

Cu revealed important findings. The overarching conclusions of these experiments were 

that EhV-86 directly affected the Cu measurements when using the virus and Cu 

speciation measurements. It has been demonstrated for the first time that all current 

measurements underestimated the concentrations of Cu species when the virus fraction 

was not removed. This means that there was an increase in labile Cu in the current 

experiment as an effect of the viral lysis of E. huxleyi. However, the presence of viruses 

in the samples prevented documenting such an increase in labile Cu, but all labile Cu 

reported was underestimated. 

   Important question arises as to whether trace metals are complexed by viruses (107 ml-

1) in the water column, and whether this applies to all viruses. This has not been 

investigated before and these findings might serve as a base for future research focusing 

into the correlation between virus particles and Cu in the marine environment.     

Changes in labile and total dissolved Ni concentrations corresponded, with the ratio of 

labile to total Ni being almost constant throughout the experiment (control and virus). E. 

huxleyi, it seems, did not accumulate Ni, since there was no change in the ratio of labile 

to total Ni in both cultures. In the control culture, the ratio of labile to total Co 

concentrations decreased over time, which indicated accumulation by the healthy E. 

huxleyi cells, and which might be used for vitamin B12 production. Viral lysis affected 

the speciation of Cu and Co, but the effects were stronger for Cu.   
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Chapter 5 
 

5. The speciation of trace metals in the English Channel 
during E. huxleyi bloom 2005-2006 

5.1 Abstract 
The aim of this part of the study was to determine the trace metal speciation in samples 
collected during or post a natural E. huxleyi bloom event in the Western English Channel. 
Samples were collected during the summers of 2005 and 2006. Virus and plankton 
abundances, the concentrations of trace metals (Cu, Co, Ni, and Zn) and other relevant 
parameters were measured in depth profiles. In the 2005 survey, chlorophyll a 
concentrations ranged from 0.03 to 3.45 µg L-1 and higher concentration were observed 
during the 2006 survey, reaching a maximum of 3.70 µg L-1. None of the viruses detected 
using AFC exhibited a signature typical of E. huxleyi viruses (EhV-86). Only able 
smaller bacteriophage/cynophage-like viruses were detected. The concentration of 
viruses and bacteria were within the range expected for the marine ecosystem. Generally 
viruses were highest in the near surface waters and decreased with depth. Molecular 
evidence has confirmed the presence of EhVs in these blooms. However, it is highly 
likely that E. huxleyi viruses were present at concentration below the limit of AFC 
detection. The Synechococcus density in the current study coincided with the highest 
chlorophyll a and the highest concentrations of E. huxleyi. Synechococcus dominated the 
phytoplankton community during both surveys. Hence, at the time of sampling, the E. 
huxleyi bloom was being succeeded by Synechoccocus in both years. 
Total dissolved Cu concentrations ranged between 1.87-3.73 nM in 2005, and between 
2.11- 4.43 nM in 2006. All results indicated that ligand concentrations (3.62-5.98 nM in 
2005, 6.10-9.76 nM in 2006) exceeded total dissolved Cu concentration. Copper organic 
ligand in both surveys presented high conditional stability constants (Log KCuL 12.20-
13.77 M), which is characteristic of the strong Cu-binding L1 ligand class. The Cu2+ 

concentration range was higher in 2005 (0.14-1.69 pM) than in 2006 (0.01-0.73 pM), 
when a slightly higher ligand concentrations was observed. The synchronicity of the 
appearance of L1 and Synechoccocus abundance points strongly to these cyanobacteria as 
a strong ligand source. A comparison between Cu speciation in the culture experiments 
and findings of coastal surveys is difficult as the survey studies looked at different ‘snap 
shots’ of bloom dynamics. However, it is assumed that EhV-86 viruses were present in 
the coastal waters and equivalent to 5% virus solution used in chapter 4 (which is below 
AFC detection limit); this virus concentration will still potentially interfere with the Cu 
measurements.  
The average surface Ni values in the surveys were 3.99 nM for 2005 and 3.23 nM for 
2006. The labile fraction of Ni was relatively high, in particular during 2005 survey. 
Total dissolved Zn concentrations ranged between 5.78-8.67 nM in 2005, and higher 
concentrations were observed in 2006. Total dissolved Co ranged between 0.12-0.22 nM 
in 2005, and between 0.16-0.45 nM in 2006. In both years, the non labile fraction Co was 
dominant which indicates that Co was strongly complexed by exudates from the 
phytoplankton community.                   
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5.2 Introduction  
 

The English Channel is a marginal coastal sea located between the south coast of 

England and the northern coast of France with a maximum depth range of 40 m in the 

east to 100 m in the west (Tappin and Reid, 2000). During the summer months the 

western Channel current speeds are relatively low and so the waters become thermally 

stratified (Qurban et al., 2004). This seasonal stratification and the stability of the water 

column are ideal for the development of phytoplankton blooms (Tyrell and Taylor, 1996; 

Tappin and Reid, 2000).  

 

The concentrations and distribution of trace metals in seawater are controlled by a 

combination of processes. Trace metals are delivered to coastal seas by rivers, wet and 

dry deposition derived from industrial sources and arid and semi-arid continental regions, 

and from sedimentary inputs (Tappin et al., 1993; Statham et al., 1999; Bruland and 

Lohan, 2004; Morel et al., 2004). Processes removing trace metals from seawater include 

active biological uptake or passive scavenging on either living or nonliving particulate 

material with subsequent sedimentation (Bruland and Lohan, 2004; Tappin et al., 1993). 

Availability of trace metals in seawater is determined by their chemical speciation (van 

den Berg and Donat, 1992; Leal and van den Berg, 1998). Several metals are known to 

be complexed by natural organic ligands of as yet unknown composition (Leal and van 

den Berg, 1998; Sunda and Huntsman, 1998; Bruland et al., 1991).      

  
Emiliania huxleyi regularly forms extensive and intensive blooms in many coastal and 

oceanic regions (Brown and Yoder, 1994; Wilson et al., 2002b). The high reflectance of 

E. huxleyi blooms allows them to be captured by satellite imagery (Holligan et al., 1993; 

Tyrrell and Merico, 2004) which is caused by backscattering of light by the coccoliths 

detached from E. huxleyi cells (Gordon and Du, 2001). Coccoliths are shed continuously, 

however, when the cells die or lyse, large amounts of coccoliths become detached and 

the colour of the surrounding water turns milky white. It is in this period of the bloom 

that it can easily be captured by satellite imagery. High reflectance areas of blooms are 

likely to comprise of dead or dying E. huxleyi cells. One of the main mechanisms for the 

termination of E. huxleyi blooms is thought to be viral lysis (Wilson et al., 2002b, 

Schroeder et al., 2002).   
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Viruses are the most abundant biological constituents of the oceans (Bergh et al., 1989) 

and are known pathogens of both heterotrophic and autotrophic marine organisms (Paul 

et al., 1993; Furhman, 1999; Wilson et al., 2002 a). Viruses exert a strong influence over 

the diversity and abundance of phytoplankton communities by maintaining populations at 

non-blooming levels (Larsen et al., 2001), and by causing the rapid demise of 

phytoplankton blooms (Wilson et al., 2002 a,b). The majority of reports of virus-induced 

algal mortality in seawater have been for the coccolithophore E. huxleyi (Bratbak et al., 

1996; Wilson et al., 2002a). Viruses were responsible for the demise of a reported E. 

huxleyi bloom in the English Channel in 1999 (Wilson et al., 2002b). Two virus strains, 

EhV-84 and EhV-86, that lyse cultures of the E. huxleyi host strain 1516, were isolated 

from this bloom in the English Channel. Several studies have shown that virus numbers 

increased following the demise of E. huxleyi bloom (Brussaard et al., 1996; Castberg et 

al., 2001; Jacquet et al., 2002, Schroeder et al., 2003, Martinez-Martinez et al., 2007). 

Interest in marine viruses stems not only from their ability to shape planktonic 

communities, but also from their impact on the biogeochemistry of the oceans (Furhman, 

1999; Suttle, 2005).        

 

As indicated above, the English Channel is an important transition zone between the 

continent and the open ocean. E. huxleyi blooms occur frequently in these regions in 

summer periods and it is thought that viruses are responsible for the demise of these 

blooms (Schroeder, pers. comm.). There are no known studies on trace metal speciation 

in a natural E. huxleyi-virus bloom dynamic cycle, and therefore this study is unique. The 

aim was to determine the effects of the E. huxleyi bloom termination on the speciation of 

trace metals in coastal water.  

 

The aim of this study is to investigate trace metal speciation dynamics in a phytoplankton 

bloom in coastal waters. Previous work in Western English Channel (Tappin et al., 

1993), the North Sea (Tappin et al., 1995) and in the Central English Channel (Statham 

et al., 1999) did not observe any depletion of metals concurrent with the depletion in 

nutrients. In addition, the aim was to determine whether correlations existed between 

findings from laboratory based culture experiments (Chapter 4) and those in the field.              

This chapter presents results from surveys in the English Channel undertaken during E. 

huxleyi blooms in the summers of 2005 and 2006. First, the research site will be 
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introduced, followed by a brief description of the sampling regime, the parameters 

measured and method of analysis. The results and discussion section will describe and 

analyse the physical parameter profiles, and the distribution of chlorophyll a, E. huxleyi, 

Synechococcus, and viruses. Trace metal (Cu, Co, Ni and Zn) depth profiles during the 

sampling period will be interpreted, and the speciation of Cu will be discussed in detail.           

5.3 Study site  
 

The main study was conducted on the RV Squilla, the vessel from Plymouth Marine 

Laboratory (PML), on the 5th of August 2005 and 26th of July 2006 during E. huxleyi 

blooms in the Western English Channel. Sampling locations were based on satellite 

observations (Figure 5.1), courtesy of Dr Peter Miller (Remote Sensing Group, PML). 

Three stations were sampled during each survey. The survey in 2005 went from 49º 

21.26´N 5º15.20´W (station 1, high satellite reflectance area) via 49º 30.17´N 5º08.08´W 

(station 2, edge of high satellite reflectance area) to 49º 40.01´N 5º05.54´W (station 3 

outside the area of high reflectance). The 2006 survey went from 50º 11.58´N 4º19.98´W 

(station 1 outside the area of high reflectance) via 49º 54.72´N 4º39.66´W (station 2, edge 

of high satellite reflectance area) to 49º 32.22´N 5º14.46´W (station 3, high satellite 

reflectance area). Prior to each sample collection, a CTD cast was carried out to provide a 

depth profile of the temperature and salinity. In 2005, seawater was collected at 10 m 

intervals down to 60 m, and in 2006, seawater was collected at 5 m intervals down to 40 

m depth.  
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Figure  5.1: True colour satellite images of the high reflectance E. huxleyi blooms (2005-2006) south 
of Plymouth, UK. Sammpling track with approximate positions of stations: (a) 5th of August (2005) 
49º 21.26´N 5º15.20´W (station 1, in high reflectance area); 49º 30.17´N 5º08.08´W (station 2, edge of 
high reflectance area); 49º 40.01´N 5º05.54´W (station 3 outside), (b) 26th of July 2006, 50º 11.58´N 
4º19.98´W (station 1 outside); 49º 54.72´N 4º39.66´W (station 2, edge of high reflectance area); 49º 

32.22´N 5º14.46´W (station 3, in high reflectance area). Satellite images courtesy of Plymouth Marine 
laboratory, UK, Remote Sensing Group.    
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5.4 Sampling and Analysis 

5.4.1 Samples for chemical analyses: 
 

Seawater samples were collected using 10 L Teflon-coated GoFlo bottles (General 

Oceanics) attached to a Kevlar Line. These GoFlo bottles are specifically used for trace-

metal clean sampling of seawater at different depths (Statham et al., 1999). The GoFlo 

samplers (supplied by National Marine Facilities Division in the National Oceanography 

Centre) were cleaned one week prior to the sampling in the laboratory using HCl (2% 

v/v, 24 h) rinsed 3 times by Milli-Q water and then covered with polyethylene sheets 

until used. Precautions against contamination were applied throughout the sampling and 

filtration processes. Details of sampling were given in section 3.2.3.3.  

 

Samples for trace metal analysis were collected using acid cleaned low density 

polyethylene bottles (Nalgene). Each sample storage bottle was rinsed several times with 

the seawater sample before filling, and the collected samples were stored in re-sealable 

plastic bags.  All trace metal sample handling and preparation was carried out in a 

laminar flow hood. 

 

Samples were filtered using acid clean 0.4 µm polycarbonate filters (Whatman). Samples 

for the determination of total dissolved metals were acidified with quartz-distilled HCl to 

pH 2 and stored until analysis. Samples for labile dissolved metals were stored (4ºC) 

until analysis. Filters for quantification of total particulate metal concentrations in algae 

were stored in a Petri dish (-20oC). Samples for nutrients and dissolved organic carbon 

measurements were collected using cleaned Pyrex glass bottles and filtered using glass 

fibre filters of 0.7 µm (Whatman).  

5.4.2 Biological Samples  
 
Samples for bacterial and viral enumeration were collected as described in Wilson et al. 

(2002 a&b). For each depth at each station, a 1.5 ml aliquot of seawater was collected 

and fixed with 0.5% glutaraldehyde (final concentration) and kept in a cool box at 4oC. 

Upon return to the laboratory (within 24 h), the samples were stored frozen at – 80oC 

until analysis (within two weeks). Samples for E. huxleyi cell and coccoliths counts, were 

collected in sterile Blue MaxTM 50 ml polypropylene conical centrifuge tubes (Becton 
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Dickinson Labware, USA) and maintained in the dark at ambient seawater temperature in 

covered flow-through tanks (Wilson et al.,2002 b). These samples were immediately 

analysed according to the methods described by Marie et al. (1999) and Wilson et al. 

(2002 a,b). Analyses were carried out courtesy of Dr Claire Evans, PML, using a Becton 

Dickinson FACSort flow cytometer. Full details of measurements were given in section 

3.3.6. 

5.4.3 Determination of chlorophyll a, nutrients, and DOC in the English 
Channel 
 

Chlorophyll a analysis was carried out using a Turner Designs fluorometer 

(Welschmeyer, 1994). A detailed description of the analysis is provided in section 3.2.9. 

Nutrients were determined using a Burkard Scientific nutrient autoanalyser (model SFA-

2). The colorimetric method used for nutrient analysis is described by Hydes (1984) and 

Hydes and Wright (1999). A more detailed description of the analysis and 

instrumentation is given in section 3.2.7. For the 2005 survey, ammonia measurements 

were undertaken using the spectrophotometric indephenol blue method (data courtesy of 

Malcolm Woodward (PML)).  

 

The high temperature combustion (HTC) technique was used for DOC analyses (Badr et 

al., 2003). The system comprises a Shimadzu TOC 5000A, coupled to a Sievers nitrogen 

chemiluminescence detector (NCD) (section 3.2.8).  

5.4.4 Determination of total particulate and dissolved total and labile trace 
metals in seawater 
 

The determination of total and labile dissolved metals (Cu, Ni, Zn, Co) in seawater was 

performed using adsorptive cathodic stripping voltammetry (AdCSV). The voltammetric 

equipment used for the measurements has been described in section 3.2.5.4. The reagents 

and standards, together with the full details of AdCSV measurements, have been 

provided in sections 4.3.1 & 4.3.5. The analyses of certified reference material (CASS-4) 

for all metals were in good agreement with certified values (Table 3.3). Digestion of the 

filters and measurement of total particulate Cu using Graphite Furnace Atomic 

Absorption Spectroscopy (GF-AAS) have been described in section 3.2.6. 
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5.4.5 Natural organic ligands and copper species in the English Channel 
 

Concentrations of free aqueous Cu ions (Cu2+) and natural organic ligands (L), together 

with the conditional stability constants (log KCuL) of the ligands, in the filtered samples 

collected from Western English Channel were obtained using competitive ligand 

titrations with SA as added ligand (Campos and van den Berg, 1994), as described in 

section 4.3.6. The limit of detection for Cu by AdCSV using adsorptive collection of 

complexes with SA (0.1 nM) is lower than using catechol 0.2 nM (van den Berg, 1984), 

tropolone 0.4 nM (van den Berg and Donat, 1992) or oxine 0.2 nM (van den Berg, 1986). 

The high sensitivity of SA as a competitive ligand enhances the reliability of results 

obtained using the titrations.      

 

In brief, eleven sample aliquots of 10 ml each were pipetted into polystyrene cups, pH 

buffer (0.01 M borate) and ligand (2 µM SA) were added. Copper was added in a range 

between 0-20 nM to the 2005 samples, and in a range between 0-30 nM to the 2006 

samples. The solutions were equilibrated for at least 16 h at room temperature. The 

scanning parameters were as those reported for the determination of total dissolved Cu. 

The sensitivity was calibrated using Cu additions (two or three depending on the relative 

peak heights) to the voltammetric cell containing the aliquot with the highest Cu 

concentration, where the ligands were saturated with Cu. The voltammetric measurement 

was conducted one minute later, thus allowing for equilibration of added Cu with SA. 

Triplicate titrations resulted in RSD of 1.48 nM and 1.50 for the ligand concentration and 

LogKCuL, respectively. 

5.5 Results and Discussion   

5.5.1 Physical parameters 
 

E. huxleyi blooms typically occur in stratified water (Nanninga and Tyrell, 1996) and 

under conditions of high irradiance (Tyrell and Merico, 2004). Indeed, during the E. 

huxleyi blooms, there was a well-developed thermocline at all stations during both 

surveys (Figures 5.2 & 5.3). The stratified region was characterised by warmer water 

overlying colder water of higher salinity (Figures 5.2 & 5.3, Tables 5.1 & 5.2). Qurban et 

al. (2004) noted that during the summer months, the Western Channel current speeds are 

relatively low and consequently the waters become thermally stratified. The seasonal 
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stratification and the stability of the water column influence the growth of phytoplankton 

(Tyrell and Taylor, 1996; Nanninga and Tyrell, 1996). In 2005 all stations had a 

thermocline at approximately 15 m depth and salinity did not vary significantly 

throughout the vertical profile resulting in weak haloclines.  

Station 2 sampled during the 2006 survey had a deeper summer thermocline (25 m) 

compared to other stations and the stations sampled in 2005. The salinity profile for 

station 1 in 2006, was near constant, whereas a halocline was observed at stations 2 and 

3. Note that the surface water temperature was approximately 2oC warmer in the 2006 

survey compared to 2005. Tables 5.1 & 5.2 show the physical data, nutrients and DOC in 

the 2005 and 2006 surveys.   
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Table  5-1: Physical data (temperature and salinity) chlorophyll a, DOC and nutrients (NO3, PO4, 
NH4) for depth profiles of 2005 survey.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table  5-2: Physical data (temperature and salinity) chlorophyll a, DOC and nutrients (PO4,) for 
depth profiles of 2006 survey.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

station Depth 
       m 

Temperature 
oC 

Salinity Chlorophylla 
µg L-1 

DOC  
µM 

Phosphate  
µM 

1 1 18.84 35.39 0.30 91.37 0.1 
 5 18.43 35.29 0.48 89.16 0.03 
 10 16.27 35.23 0.67 197.28 <0.03 
 15 14.77 35.23 0.95 110.73 <0.03 
 25 13.72 35.27 0.73 98.46 <0.03 
 40 13.47 35.29 0.80 78.04 <0.03 
2 1 20.48 35 3.02 109 0.1 
 5 20.27 34.94 3.70 224.93 0.12 
 10 18.98 34.81 3.02 102.9 0.25 
 15 17.65 34.7 1.87 98.99 0.27 
 25 11.77 35.47 1.70 75.53 0.36 
 40 12.03 36.12 0.34 242.43 0.41 
3 1 20.18 35.11 0.63 107.58 0.08 
 5 19.42 35.06 0.52 85.93 0.07 
 10 18.2 34.91 0.59 116.63 <0.03 
 15 16.4 34.91 3.41 134.96 <0.03 
 25 11.8 35.4 2.91 132.88 0.18 
 40 12.77 35.76 0.54 85.56 0.31 

station Depth 
m 

Temp 
oC 

Salinity Chlorophyll a 
µg L-1 

DOC 
µM 

 

NO3 
µM 

 

PO4 
µM 

 

NH4 
µM 

 
1 5 17.84 35.05 0.37 206.13 <0.02 0.08  0.29 
 10 13.82 35.38 0.61 123.50 0.2 <0.01   0.08 
 20 13.01 35.24 1.61 95.23 <0.02 <0.01  0.14 
 40 12.51 35.33 0.38 94.55 2.5 0.1  0.27 
 60 12.38 35.33 0.11 81.76 2.4 0.1 <0.05 
2 5 17.85 35.26 0.52 132.14 <0.02 <0.01 <0.05 
 10 17.36 35.2 0.77 199.71 <0.02 <0.01  0.05 
 40 12.07 35.34 3.45 129.25 <0.02 <0.01 <0.05 
 60 12 35.35 0.09 132.67 1.7 0.04 <0.05 
3 5 17.05 35.25 0.51 136.05 <0.02 <0.01 <0.05 
 10 16.48 35.23 0.4 171.32 <0.02 <0.01 <0.05 
 20 12.23 35.35 0.26 113.56 1.5 0.03 0.2 
 40 12.17 35.35 0.03 107.64 1.5 0.08 0.2 
 60 12.16 35.35 0.25 114.32 2.2 0.09  0.3 
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5.5.2 Results for Biological measurements 

5.5.2.1 Chlorophyll a 
The concentrations of chlorophyll a measured in the summer of 2005 and 2006 are 

shown in Figure 5.4. Chlorophyll a concentrations were lowest at the bottom of the 

profiles as a result of light limitation of the phytoplankton. In the 2005 survey, 

chlorophyll a ranged from 0.03 µg L-1 to a maximum of 3.45 µg L-1 at 40 m (station 2, 

edge of the high reflectance area). The chlorophyll a levels at each station in 2005 

showed different profiles (Figure 5.4), with the highest concentrations at the edge of the 

high reflectance area. High reflectance areas caused by backscattering of light by the 

detached coccoliths represent regions of inactive cells (Wilson et al., 2002 b). Higher 

chlorophyll a concentrations are expected to be observed at station 2 as more active cells 

were present (this will be discussed later in the chapter).    

 

Chlorophyll a concentrations were higher during the survey in 2006 compared with 

2005. The highest concentrations of chlorophyll a concentrations were observed at 

station 2, reaching a maximum of 3.70 µg L-1 at 5 m depth. High concentrations of 

chlorophyll a were also recorded at 15 m at station 3 (3.41 µg L-1; station situated within 

the high reflectance area,). The lowest chlorophyll a concentration was observed at 

station 1, which was outside the high reflectance area.  

A recent investigation in the Western English Channel (Qurban, 2008) observed that 

summer sea surface chlorophyll a ranged around 4-6 µg L-1, which is in good agreement 

with the highest chlorophyll a observed in the current study. These values agree well 

with values reported in the literature (Wilson et al., 2002 b) for samples collected during 

a demise of an E. huxleyi bloom in summer 1999 (at station 1 in high reflectance area).  

Tappin and Reid (2000) found that, during the summer months, a chlorophyll a 

maximum is located at the pycnocline separating surface nutrient poor waters from 

nutrient rich deep waters. Exceptionally, large blooms of algae can occur in the Western 

channel when conditions are favourable (Tappin and Reid, 2000), including low winds 

and strong stratification. This matches the situation in the current study, where on both 

occasions the chlorophyll a maxima occurred at in the upper 40 m. 
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Figure  5.4: Chlorophyll a (µg L-1) depth profiles in the 2005 (a) and 2006 (b) surveys.    

 

5.5.2.2 Viruses and Bacteria  
None of the viruses detected using AFC exhibited a signature typical of the E. huxleyi 

viruses (section 4.4.2). Similarly, AFC analysis of viruses detected by Evans (2004) from 

samples collected from the English Chanel summer 2001 did not show a signature of E. 

huxleyi viruses. We were only able to detect smaller bacteriophage -like viruses (Figure 

5.5a). Circle indicates heterotrophic bacteria detected from samples collected during 

2005-2006 survey’s (Figure 5.5b)         

 

 

 

 

 

 

 

 

 

 

Figure  5.5: Examples of samples collected from the Western English Channel and analysed by flow 
cytometry: (a) detected viruses groups (R2,R3,R4) are bacteriophage viruses and R1 is unidentified 
group; (b) heterotrophic bacteria circled. 

 
The distribution of viruses and bacteria during the summer of 2005 and 2006 can be 

found in Figures 5.6 and 5.7, respectively. The concentration of viruses detected during 

a b
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summer 2005 ranged from 2.69 x 107 ml-1 to 6.51 x 107 ml-1 and was generally highest 

near the surface and decreased with depth. All stations exhibited an approximately 

similar viral abundance. A comparable distribution was observed for bacteria and the 

concentrations were one order of magnitude lower than those of viruses.   

 

For the summer 2006 survey, virus particle concentrations ranged from 4.4 x 106 ml-1 to 

2.6 x 108 ml-1 and were also high in the surface waters and decreased with depth. 

Maximum virus concentrations were observed at station 2 (edge of the E. huxleyi 

reflectance area), followed by station 3 (inside the E. huxleyi reflectance area), and the 

lowest virus concentrations were found at station 1 (outside the E. huxleyi reflectance 

area). Bacteria did not correlate well with the distribution of viruses, but the highest 

concentrations were observed at station 2.  

In general, the virus concentrations observed in this study were within the range expected 

for a marine ecosystem (Wilson et al., 2002 a; Suttle, 2005). Wilson et al. (2002 b), 

reporting on large viruses, and Evans (2004), reporting on small viruses, observed total 

virus concentrations in the English Channel during E. huxleyi bloom similar to the 

concentrations observed in this study. However, virus concentrations were one order of 

magnitude higher in the current study at station 2 (edge of the E. huxleyi high reflectance 

area, 2006) compared to the other stations. No significant statistical relationship was 

observed between viruses and chlorophyll a in 2005. However, a positive relationship 

(R2= 0.44) was observed in 2006 survey. Viruses and biological findings for the 2005 

and 2006 surveys are shown in Tables 5.3 & 5.4.  
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Figure  5.6: Depth profiles of viruses (ml-1) for 2005 (a) and 2006 (b) surveys.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  5.7: Depth profiles of bacteria (ml-1) for 2005 (a) and 2006 (b) surveys.  
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5.5.2.3 E. huxleyi and Synechococcus Distribution  
 

Figure 5.8 show E. huxleyi profile in the 2005 and 2006 surveys. E. huxleyi 

concentrations were highest at station 2 (edge of reflectance area) in 2005, ranging from 

less than 100 to a maximum of 1010 cells ml-1 at 40 m. The highest concentrations of E. 

huxleyi were correlated with the observed highest chlorophyll a at 40 m for the three 

stations. E. huxleyi cell numbers dropped at station 3. Concentrations at station 1 were 

between 61 to 494 cells ml-1, and decreased with depth at all stations. Detached coccolith 

concentrations were low outside the high reflectance areas at stations 2 and 3, ranging 

between 1.21 x 104 and 6.90 x 104 coccoliths ml-1. Inside the high reflectance areas, the 

concentrations were one order of magnitude higher (1.21 x 105 coccoliths ml-1). These 

findings agree with those of Wilson et al. (2002 b) regarding E. huxleyi cell 

concentrations and coccoliths during an E. huxleyi bloom in the Western English Channel 

in 1999. 

 

The summer 2006 survey showed higher E. huxleyi cell concentrations compared to the 

2005 survey. The highest cell numbers were observed at station 3 (inside the high 

reflectance area), ranging from 1200 to 2250 cells ml-1, and coinciding with the highest 

chlorophyll a concentrations recorded at 15 and 25 m. In the surface waters at station 2, 

E. huxleyi cell numbers were highest (2450 cells ml-1) for all stations sampled in 2006, 

and that also coincided with a high chlorophyll a concentration. Coccoliths data for the 

2006 surveys are unavailable.  A significant positive trend was observed between E. 

huxleyi cell numbers and chlorophyll a in 2005 (R2= 0.66) whereas a weaker relationship 

(R2 = 0.20) was recorded in 2006.   

  

 

 

 

 

 

 

 

Figure  5.8: Depth profiles of E. huxleyi cells (ml-1) concentrations determined by AFC: (a) 2005, (b) 
2006. 
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The cyanobacterium Synechococcus dominated the phytoplankton community (with 

respect to cell numbers) during both surveys (Figure 5.9). The highest concentrations of 

Synechococcus were observed at station 1, 2005, reaching 1.17 x 105 cells ml-1 and were 

one order of magnitude lower at other stations. Concentrations decreased with depth. The 

highest concentrations of Synechococcus during 2006 were for example found at 25 m 

depth at station 3 (1.17 x 105 cells ml-1) and at depths of 1, 5 and 10 m at station 2 (5.52-

6.89 x 104 cells ml-1). Synechococcus numbers were somewhat lower during the 2006 

survey. Muhling et al (2005) reported Synechococcus abundance in the Gulf of Aqaba, 

Read Sea over an annual cycle with a maximum cell density of 3.4 x 104 ml-1.    

The Synechococcus density in the current study coincided with the highest chlorophyll a 

and the highest concentrations of E. huxleyi (Tables 5.3 & 5.4). This was confirmed by 

the positive trend observed between Synechococcus density and chlorophyll a in 2006 

(R2= 0.44).  

 

 

 

 

 

 

 

 

 

   

 

Figure  5.9: Depth profiles of Synechococcus (particles ml-1) concentrations through the water column 
determined by AFC: (a) 2005, (b) 2006. 
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Table  5-3: Biological data (Synechococcus, E. huxleyi, Coccoliths, virus, and bacteria ml-1) 
determined by AFC for 2005 survey.   

  

 

 

 
 

 

 

 

 

 

 

 

 

 

Table  5-4: Biological data (Synechococcus, E. huxleyi, virus, and bacteria ml-1) determined by AFC 
for 2006 survey.   

 

 

 

 

 

Station Depth 
m 

Synechococcus 
cells ml-1 

 
 

E. huxleyi   
cells ml-1 

Coccoiths 
ml-1 

Virus 
ml-1 

Bacteria 
ml-1 

1 5 8.06E+04 494 1.22E+05 5.07E+07 1.96E+06 
 10 7.92E+04 344 1.05E+05 6.51E+07 2.01E+06 
 20 1.17E+05 239 4.97E+04 4.03E+07 2.71E+06 
 40 5.66E+03 320 1.92E+04 2.69E+07 1.10E+06 
 60 4.17E+02 61 9.59E+03 2.72E+07 7.97E+05 
2 5 7.71E+04 514 6.53E+04 4.95E+07 1.77E+06 
 10 8.52E+04 364 7.12E+04 4.86E+07 1.90E+06 
 40 4.24E+04 1008 7.21E+04 5.00E+07 2.11E+06 
 60 5.47E+02 97 1.44E+04 4.96E+07 7.70E+05 
3 5 4.19E+04 121 1.61E+04 5.74E+07 1.15E+06 
 10 4.25E+04 219 1.46E+04 6.03E+07 1.22E+06 
 20 5.14E+03 150 1.28E+04 4.41E+07 1.85E+06 
 40 3.57E+03 202 7.20E+03 2.96E+07 7.81E+05 
 60 2.12E+03 146 9.95E+03 3.12E+07 7.13E+05 

 

Station Depth Synechococcus 
cells ml-1 

 

E. huxleyi   
cells ml-1 

 

Virus 
 ml-1 

Bacteria 
ml-1 

1 1 6.90E+04 603 2.39E+07 3.81E+06 
 5 6.33E+04 557 4.19E+07 1.88E+06 
 10 1.68E+04 503 1.74E+07 4.62E+05 
 15 1.74E+04 233 1.29E+07 4.24E+05 
 25 7.81E+03 110 5.04E+06 4.86E+05 
 40 8.65E+03 40 9.20E+06 2.34E+05 
2 1 6.11E+04 2497 2.60E+08 5.72E+06 
 5 6.89E+04 1750 2.43E+08 4.79E+06 
 10 5.52E+04 487 1.45E+08 4.55E+06 
 15 4.78E+04 523 1.09E+08 3.82E+06 
 25 7.84E+03 27 4.43E+06 1.48E+05 
 40 1.63E+03 20 2.36E+07 1.12E+06 
3 1 2.98E+04 1310 5.42E+07 1.27E+06 
 5 3.05E+04 2076 5.38E+07 4.58E+05 
 10 3.70E+04 2250 4.27E+07 1.19E+06 
 15 8.95E+04 1580 4.30E+07 1.55E+06 
 25 1.07E+05 1196 1.68E+07 5.58E+05 
 40 2.17E+04 140 3.59E+07 1.05E+06 
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Other phytoplankton determined by AFC in samples collected during the 2005 survey 

included dinoflagellates, nanophytoplankton, cryptophytes and picoeukaryotes. The 

concentrations of these organisms increased from stations 2 to 3, inside the high 

reflectance area (data not shown). Dinoflagellates were most numerous at station 1 (20 

m, 2963 particles ml-1) and station 2 (40 m, 1935 particles ml-1), which correlated with 

the highest observed chlorophyll a concentration (3.45 µg L-1) and E. huxleyi cell 

numbers. For the 2006 survey, picoeukaryotes and nanoflagellates were most abundant at 

the edge of the high reflectance area (station 2). High cell numbers at depths of 1, 5 and 

10 m coincided with the enhanced chlorophyll a concentrations and high E. huxleyi cell 

numbers.  

 

In summary of this section, maximum chlorophyll a concentrations at each station in 

both years were observed at different depths in the Western English Channel. 

Chlorophyll a concentrations and E. huxleyi cells concentrations were correlated and 

higher in 2006 compared to 2005. Synechococcus dominated the phytoplankton 

community in both years. It can be concluded that at the time of sampling, the E. huxleyi 

bloom was being succeeded by Synechoccocus in both years.      

 

None of the viruses detected exhibited an AFC signature typical of E. huxleyi viruses (see 

section 4.4.2; Figure 4.3). As the E. huxleyi bloom was being succeeded by 

Synechoccocus, this observation that the virus community was dominated by cynophage 

and not E. huxleyi viruses is not to surprising. Consequently, its highly likely that the E. 

huxleyi viruses were present at concentrations below the limit of AFC detection. Wilson 

et al. (2002 b) The findings of (Wilson et al., 2002 b)  during demise of E. huxleyi bloom 

observed in Western English Channel showed strong evidence for the role of viruses in 

bloom decimation in these waters. It was reported that at stations inside the bloom area, 

concentrations of viruses, bacteria and free coccoliths were higher, whereas cell counts 

were lower compared to other stations outside the high reflectance area. This indicates 

that viruses induced lysis of E. huxleyi occurs because of large concentrations of free 

coccoliths detaching from cells. This was also supported by the isolation of two viruses, 

EhV-84 and EhV-86 (used in cultures, chapter 4), from the high reflectance area, which 

lysed cultures of the E. huxleyi host strain CCMP1516 (Schroeder et al., 2002 & 2003 

Wilson et al., 2002 b). Indeed, as was described earlier, detached coccolith counts were 

highest at station 1 in 2005. Molecular evidence has confirmed the presence of EhVs in 
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these blooms (Schroeder, pers. comm.). The low level of EhVs indicates that the biology 

had progressed on and another virus-host population had been established.      

 

During an E. huxleyi bloom in the North Sea (Wilson et al., 2002a), it was reported that 

viruses played a minor role in E. huxleyi mortality and that microzooplankton out-

competed viruses for algal prey/hosts. However, new molecular based evidence suggests 

that viruses did in fact play an important role in terminating this bloom (Schroeder, pers. 

comm.). Moreover, high levels of visibly infected E. huxleyi at the same location were 

observed by Brussaard et al. (1996), which indicated that viruses may be linked to the 

decline of E. huxleyi blooms. As discussed earlier, studies have reported that viruses 

were the cause for the decline of E. huxleyi populations despite previous reports linking 

microzooplankton grazing as more important in the demise of blooms than viruses 

(Wilson et al., 2002a).  

 

Indeed, in both surveys, E. huxleyi concentrations were relatively low (i.e. high 

reflectance are where large E. huxleyi bloom occurred at some stage), with maximum 

concentrations of only just over 2000 cells ml-1 in 2006 at stations 2 and 3, and over 1000 

cells ml-1 in 2005 at station 2. Therefore, this represents in both years a completely 

senescent bloom [corresponding to a situation many days after the end of the lab 

experiment (Chapter 4)] and not a bloom in the initial phases of senescence (equivalent 

to the start of the crash in the lab experiment).  

 

Much higher E. huxleyi concentrations of up to 6000 cells ml-1 were observed by Head et 

al. (1998) in the North Sea. Furthermore, E. huxleyi concentrations up to two orders of 

magnitude greater than this were observed in coastal mesocosm studies (Jacquet et al., 

2002) and in open water sites (Holligan et al., 1993). Wilson et al. (2002 a) argued that 

viruses would play a much more important role towards the end of a bloom when virus 

concentrations would reach the threshold level required to cause termination of that 

bloom. Indeed mesocosm experiments (e.g. Jacquet et al., 2002) have revealed that high 

concentrations of E. huxleyi virus-like particles have been observed immediately after the 

demise of E. huxleyi populations.  

 

It should also be noted that AFC is routinely used to detect ‘free’ viruses in the water 

column. Hence, viruses in infected cells are not included in total counts. Sampling of the 
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same area prior to the succession of E. huxleyi by Synechococcus might have revealed an 

increase in those viruses (EhV-86). Therefore, different results for virus numbers may 

have been achieved if sampling had been conducted throughout different stages of  the 

bloom. This is always difficult to assess, as it is not often logistically possible to be on a 

ship throughout the progression of a bloom. Evans (2004) suggested that it is possible 

that E. huxleyi in addition to being infected by members of the family Phycodnaviridae 

(e.g. EhV-86), which are easily identified by AFC, can also be infected by other viruses 

which have different characteristics. In summary, during the current study in the English 

Channel, it was highly probable that viral infection had a major role in the decline of E. 

huxleyi bloom but it was not possible to distinguish the causative viral agent from the 

overall virus community or it may be that sampling was conducted too late and the 

typical coccolithovirus had dropped below the limits of AFC detection.   

5.5.3 Results of Chemical analyses 

5.5.3.1 DOC in the Western English Channel 
 

Dissolved organic carbon (DOC) and nutrient concentrations for the 2005 and 2006 

surveys are shown in Tables 5.1 and 5.2. DOC concentrations ranged between 82-206 

µM in 2005 (Figure 5.10). A general trend of a decrease in DOC concentrations with 

depth can be identified, the highest concentrations were found at all stations in the near 

surface waters. Maximum DOC concentrations in the 2005 surveys (206 µM) were 

observed at station 1 (in the high reflectance area) and so coincided with enhanced 

phytoplankton productivity. This was also coincided with the highest liths (1.22 x 105 ml-

1) observed in the first 10 m of the water column. Minimum DOC concentrations were 

typically obtained at depth at all stations sampled in 2005. DOC concentrations in 2006 

fell into a similar range as for 2005 (Table 5.1). Concentrations ranged between 75-225 

µM and the highest concentrations (225 µM) were observed at station 2 (edge of the high 

reflectance area, Figure 5.10). This coincided with the highest chlorophyll a 

concentration and the highest E.  huxleyi cell numbers (Table 5.4) which were observed 

at depths between 5 and 15 m. Similar observations were made at depths 15 and 25 m at 

station 3 (in the high reflectance area). No significant statistical relationship was 

observed between DOC and biological parameters. The high levels of DOC observed in 

this study can be attributed to phytoplankton production dominating DOC dynamics 

through the sampling period. In terms of DOC concentrations, Aminot and Kerouel 
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(2004) reported concentrations of between 61 and 62 µM in the surface waters of the 

North East Atlantic (Bay of Biscay), which are lower than the concentrations observed in 

the present study. However, higher concentrations (81 to 83 µM) for the North West 

Atlantic were reported in bloom conditions (Chen et al.,1996). Pan et al. (2005) reported 

DOC concentrations between about 65 and 88 µM in samples collected from the North 

Sea.          

     

 

 

 

 

 

 
 

 

 

 

 

Figure  5.10: Depth profile of DOC ( µM) through the water column a) 2005, b) 2006.  

 

It has been reported that a DOC peak can be associated with a chlorophyll a maximum 

(Kepkay and Wells, 1992). This was observed in the 2006 surveys, where the highest 

DOC correlated with the chlorophyll maximum at station 2. An increase in DOC also 

accompanied an increase in chlorophyll a and highest E. huxleyi cell number at station 3. 

However this was not observed in the 2005 surveys as the chlorophyll maximum 

occurred at greater depths in comparison to DOC.     

 

Figure 5.11 does show a weak positive correlation between DOC and chlorophyll a in 

both years (stronger in 2006). Kepkay and Wells (1992) stated that there is no simple 

relationship between DOC and chlorophyll a. The highest DOC concentrations observed 

at different depths is most likely due to enhanced primary productivity at these stations. 

Kirchman et al. (1991) reported that the breakdown of DOC is undertaken by bacteria.  
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Packard et al. (2000) demonstrated that bacterial remineralisation dominated DOC 

dynamics after a phytoplankton bloom had occurred, and that DOC generation by 

zooplankton feeding could serve to offset bacterial degradation at night.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure  5.11: Correlation between chlorophyll a and DOC, a) 2005 and b) 2006.    

5.5.3.2 Nutrients 
 

The nutrients observed in the English Channel exhibited important variations in 

concentrations, which can be attributed to the variation in productivity in the water 

column. All nutrients increased down the water column, due to phytoplankton uptake in 

the surface waters, and light limited productivity combined with remineralisation of 

sinking organic debris at depth.  

 

Phosphate concentrations in the Western English Channel during the 2005 survey were 

between below detection limit, <0.01 µM and 0.1 µM (Table 5.1). Higher phosphate 

concentrations were observed at deeper depths at all stations. Concentrations were 

generally low and agreed well with the sea surface values reported by Tappin et al. 

(1993). Qurban (2008) reported low surface phosphate concentrations (< 0.05 µM) in the 

Western English Channel in summers 2003-2004, which are close to the values reported 

in the present study. However, higher concentrations (0.39 to 0.91 µM) were reported in 
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the central English Channel (Bentley et al. 1999). This was thought to be caused by 

freshwater inputs.  

 

E. huxleyi has been shown to grow efficiently at low phosphate concentrations (Egge and 

Heimdal, 1994). Tyrell and Taylor (1996) reported phosphate values between 0.18 and 

0.2 µM in the North Atlantic. Lower phosphate (0.04 to 0.1) was observed in the English 

Channel (Garcia-Soto et al., 1995) during late stages of an E. huxleyi bloom.  

 

Phosphate concentrations in 2006 varied between below detection limit and 0.41 µM 

(Table 5.2). Concentrations increased with depth at stations 2 and 3. Low surface 

concentrations coincided with the highest chlorophyll a and highest E. huxleyi observed 

at similar depths. The nitrate vs phosphate (2005) plot (Figure 5.12) shows a strong 

positive correlation.  

 

 

 

 

 

 

 

Figure  5.12: Relationship between phosphate and nitrate for 2005 survey.   

 

Nitrate concentrations varied between below the detection limit to 0.20-2.50 µM (Table 

5.1). Bentley et al. (1999) reported nitrate concentrations in the Central English Channel 

between 8 and 14 µM, which is higher than the concentrations observed in this study. 

The lower maximum observed in this study, is likely due to the shallower sampling 

depths compared with the Bentley (1998) study. However, nitrate remained between 2 

and 5 µM during an oceanic North Atlantic E. huxleyi bloom (Tyrell and Taylor, 1996), 

which is in close agreement with the values reported in the current study.  Tappin et al. 

(1993) sampled a station in the English Channel at a similar position to that in the current 

study; they found low nitrate concentrations in summer, in agreement with current 

observations. Stations sampled in winter in the English Channel by Tappin et al. (1993) 

showed higher nutrients concentrations compared with summer, which is an indication of 
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higher primary productivity and consequent nutrient uptake in the summer months. A 

recent survey in the Western English Channel by Qurban (2008) observed highest surface 

nitrate concentrations in early spring, with a maximum of 9 µM in March 2003, and a 

minimum of 0.1 µM in summer. Nitrate concentrations increased in winter (December) 

to 2.84 µM due to winter mixing (Qurban, 2008).                  

 

E. huxleyi has two alkaline phosphatase systems and the highest observed affinity for 

inorganic phosphate for a phytoplankton species. Consequently it is able to out-compete 

other algal groups for P at levels down to the nM range (Riegman et al., 2000). This was 

documented in this study where phosphate concentrations were low, and actually below 

detection limit at many depths. Phosphate concentrations were low in the current study, 

compared to reported literature values. In addition nitrate concentrations were relatively 

low in surface waters and increased with depth. The nitrate: phosphate ratio was not 

calculated, as many concentrations either for phosphate or nitrate were below the 

detection limit.   

 

Ammonium (NH4
+) concentrations for the 2005 survey ranged from below detection 

limit to 0.05-0.29 µM (Table 5.1). Bentley et al. (1999) reported higher values (0.5 to 0.8 

µM) for Central Atlantic Ocean surface waters than the concentrations observed in this 

study. Ammonium is the preferential source of nitrogen for most species of 

phytoplankton and inhibits the utilization of nitrate (Varela and Harrison, 1999).  Skoog 

et al. (2001) reported that the highest NH4
+ concentrations were found within bloom 

waters and that this is indicative of the recycling of organic nitrogen from the 

degradation of dissolved or particulate organic matter fractions. 

 

Nutrient limited E. huxleyi cells can acquire extra layers of coccoliths, possibly allowing 

them to sink to greater depths to access nutrient-richer waters (Paasche, 2001). This was 

demonstrated at station 2 (40 m) for the 2005 survey where the chlorophyll maximum 

was found at greater depths in the water column, with high nutrient concentrations and E. 

huxleyi cell numbers. Similarly, the highest chlorophyll observed in 2006 coincided with 

the highest E. huxleyi cell numbers. A lack of nitrate data for the 2006 survey makes it 

difficult to link cell numbers to the nutrient status of the waters. However, phosphate 

concentrations were relatively high at deeper depths, where high chlorophyll a and E. 

huxleyi cell numbers were also observed. 
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Blooms of E. huxleyi almost always occur in areas where nitrate and/or phosphate 

concentrations are very low (Holligan et al., 1993; Buitenhuis et al., 1996; Tyrrell and 

Merico, 2004). From these findings it has been argued that E. huxleyi is able to build up 

its massive blooms by out competing other phytoplankton species at levels of inorganic P 

down to the nM range (Riegman et al., 2000; Egge and Heimdal, 1994).  

 

The ability to grow at low nutrient concentrations was confirmed by Lessard et al. 

(2005), who showed that there is no strong link between high N:P ratios and the 

occurrence of E. huxleyi blooms. They suggested that most E. huxleyi blooms occurred in 

N limiting waters, which is enabled by the ability of E. huxleyi to use non-nitrate forms 

of N (amino acids, amides and urea) (Palenik and Henson, 1997), and under low P 

conditions due to its exceptional P acquisition capacity (Riegman et al., 2000).  

However, other studies using mesocosms have reported that E. huxleyi is able to grow 

well under both high and low nutrient concentrations. Wal et al. (1994) found that 

different nutrient regimes in mesocosm enclosures had no influence on the gross growth 

rate of E. huxleyi populations. Furthermore, blooms in the Eastern Bering Sea under 

enhanced P concentrations (Olson and Storm, 2002) offer evidence that phosphate 

limitation is not a prerequisite for E. huxleyi bloom formation. Lessard et al. (2005) 

believe that ecosystem modelling related to E. huxleyi should not contain a dependency 

on a high N:P ratio as a trigger for blooms of this species.  
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5.5.4 Trace metals in the Western English Channel  
 

Adsorptive cathodic stripping voltammetric methods have been applied to studies in 

seawater of the speciation of Cu (van den Berg, 1984; Moffett et al., 1990), Zn (Ellwood 

and van den Berg, 2000; Lohan et al., 2002) and Co (Ellwood and van den Berg, 2001). 

Typically more than 99% of Cu in marine waters exists as organic complexes (Coal and 

Bruland, 1998). Approximately 98% of dissolved Zn in surface waters is complexed with 

organic ligands (Ellwood and van den Berg, 2000; Lohan et al., 2002). More than 90% of 

Co is complexed to strong cobalt-binding organic ligands (Ellwood and van den Berg, 

2001). The number of studies looking at the speciation of trace metals during 

phytoplankton blooms is limited because both of the difficulty of capturing blooms in the 

field and attributing any observed changes in the metal concentrations to bloom 

processes (Luoma et al., 1998).  

5.5.4.1 Copper  
Organic ligands play a key role in the speciation of dissolved Cu in seawater, with a large 

fraction (80->99%) being complexed by natural ligands (Buck and Bruland 2005; Coal 

and Bruland 1998; van den Berg and Donat 1992; Moffett et al., 1990). Ligands 

produced by cyanobacteria are thought to contribute to the complexation of Cu (Moffett 

and Brand, 1996). Luoma et al. (1998) found that dissolved Cu was not depleted during a 

diatom bloom, indicating that the requirement for Cu by these organisms did not outstrip 

supply. Buck and Bruland (2005) found that Cu concentrations and associated speciation 

remained relatively constant during a phytoplankton bloom. They suggested that the 

phytoplankton community did not influence the presence of Cu binding organic ligands, 

total dissolved and Cu2+ in San Francisco Bay. These observations are consistent with 

previous studies, which have shown that diatom blooms do not substantially impact Cu 

concentrations or speciation (Beck et al., 2002). Similarly, Luengen et al. (2007) 

reaffirmed that diatom blooms did not significantly affect ambient dissolved Cu 

concentrations. These observations are consistent with our laboratory based experiments 

as total dissolved Cu did not vary through the E. huxleyi growth cycle (Chapter 4). 

Therefore, we would expect that total dissolved Cu would not be affected strongly as a 

result of the bloom.  
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Total dissolved Cu in the 2005 survey ranged between 1.87 to 3.73 nM, and between 

2.11 to 4.43 nM during the post bloom of E. huxleyi in 2006 (Figures 5.13 & 5.14). 

These values agree well with those reported by Tappin et al. (1993) (3.2 nM in the 

Western English Channel) and by Statham et al. (1999) (4.1 nM in Atlantic waters, Table 

4 in Statham et al., 1999). Campos and van den Berg (1994) also reported Cu 

concentrations in NE Atlantic at around 1.3 to 3.1 nM. Although the sampling stations in 

both years are considered as shelf sea stations, total Cu concentrations were in a close 

agreement with values reported in oceanic waters.  

 

Comparison between average Cu (4.1±1.59 nM) in the central English Channel (Statham 

et al., 1999) and values reported for the Atlantic (Statham et al., 1999, in Table 4 and 

Campos and van den Berg, 1994) revealed that values are higher in the Channel, 

particularly closer to the coasts. This reflects inputs of land and sediment derived natural 

and anthropogenic metals.  All stations sampled in our study were away from land and 

freshwater input, which indicates that those sources are less likely to have influenced the 

distribution of metals in this part of the English Channel.  

 

Labile Cu concentrations in 2005 and 2006 ranged between 0.22 & 1.30 nM and 0.57 & 

2.17 nM, respectively. The highest concentration of particulate Cu in the 2005 surveys 

was at station 1 (0.33 nM) whereas the lowest observed was at station 3 (40 m) (0.022 

nM). The concentrations of particulate Cu (0.29 to 0.93 nM) were higher in 2006 

compared to the 2005, which reflects the higher chlorophyll a measured in 2006 and 

higher biological species abundances in that year.       
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Figure  5.13: Depth profiles of concentrations of total and labile dissolved copper and organic ligands 
(nM), 2005 survey. 
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Figure  5.14: Depth profiles of concentrations of total and labile dissolved copper and organic ligands 
(nM), 2006 survey. 

5.5.4.2 Speciation of Cu in the Western English Channel  
 

Titrations were carried out in order to determine Cu speciation with respect to the 

conditional stability constant and the concentration of the natural organic Cu-binding 

ligands. Figure 5.15 shows representative Cu-ligand titration of English Channel samples 

(2005 & 2006). The titration curves for both samples showed a clear curvature (Figure 

5.15 a) at low Cu concentrations (beginning of the titration curve), which indicates the 

presence of natural Cu-complexing ligands (i.e. not all natural ligands were saturated by 

the Cu initially present in the sample) (Achterberg and van den Berg, 1994). At higher 

Cu additions, the CSV response was found to increase linearly with the added Cu 

concentration, indicating that the natural ligands were saturated. Plots of [Culabile]/[CuL] 

vs. [Culabile] were linear for all samples (Figure 5.15 b), indicating that the complexation 

was controlled by a single class of competing ligands (Campos and van den Berg, 1994), 

as was the case for all samples determined. The parameters obtained from the titration 
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and linearization together with total, labile dissolved and particulate copper for both 

transects are presented in tables 5.5-5.6.     

 

Copper organic complexes in both surveys presented high conditional stability constants 

(Log KCuL 12.2-13.77), in the range for strong ligands, at the detection window (log 

αCuSA = 3.99) used. The concentrations of these ligands were 3.62-5.98 nM in 2005 and 

6.10-11.51 nM in 2006 (Figures 5.13-5.14).  Campos and van den Berg (1994) reported 

similar ligand concentrations in samples collected in NE Atlantic, varying between 3 and 

8 nM (Log KCuL 13.1), which is in good agreement with the values reported in the current 

study. Note that similar detection windows (utilising 2 µM SA) were used in both 

studies. The stability of the complexes in Campos and van den Berg (1994) and the 

present study were high, with values for the log conditional stability constants of ca. 13. 

These results confirm Campos and van den Berg’s (1994) findings that ligand 

competition using SA was a suitable approach to investigating the complexation of Cu in 

seawater. Achterberg and van den Berg (1994) reported ligand concentrations of ca 7 

nM, also in Atlantic surface waters, a maximum of ca 12 nM at 200 m and conditional 

stability constants ranging between 12 and 13 (log values), using tropolone as a 

competitive AdCSV ligand (log αCuTrop = 3.29). Surface organic ligand values 

(Achterberg and van den Berg, 1994) were in agreement with the values observed in the 

2006 survey. 

The ligand concentrations observed in current study were always greater than the Cu 

concentrations. The Cu2+ concentrations ranged between 0.14-1.69 pM in 2005, with 

lower concentrations in 2006 (0.01-0.73 pM) because of the higher ligand concentrations 

(Figures 5.16-5.17). The inorganic Cu´concentrations ranged between 3.16-13.40 pM in 

2005 and similarly to Cu2+ lower range was observed in 2006 (Tables 5.5-5.6).        
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Figure  5.15: a) Typical titration curve for the Western English Channel samples (Station 3 depth 
15m, 2006 survey); b) van den Berg linearization for the titration data. Cu Total = Cu in the sample 
plus Cu added for the titration; CuL = Cu complexed by natural organic ligands; Cu labile = Cu 
complexed by SA.  
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Earlier studies on Cu speciation in open ocean waters have found low concentrations of 

L1 ligands in an almost 1:1 relationship with ambient dissolved Cu (van den Berg et al., 

1987; Moffett et al., 1990; Moffett, 1995; Croot, 2003). However, the ratio in the present 

study (1.7:1 in 2005, 2:1 in 2006) was slightly higher than the published ratios. Tang et 

al. (2001) found a 5:1 molar ratio between ligand and total dissolved Cu. This ratio is 

higher than that reported in the current study. Tang et al. (2001) suggested that excess of 

ligand might indicate that not all Cu complexing ligands are actually bound by Cu in 

Galveston Bay waters, which reflects the possibility that organic ligands are not specific 

Figure  5.16: Depth profiles of Cu2+ 

(pM) for 2005 survey 
Figure  5.17: Depth profiles of Cu2+ 
(pM) for 2006 survey 



Chapter 5                                     Speciation of trace metals in the Western English Channel 2005-2006 
 

 170

to Cu but can be complexed by other metals (Ni and Zn) in the same waters (Tang, 

2000). It is unclear whether the conclusions reached by Tang (2000) for Cu speciation in 

the river influenced Galveston Bay, with high Cu and ligand concentrations and a 

different experimental set-up, are transferrable to the Western Channel study, where 

lower oceanic levels of Cu and ligands were observed.    

 

The observed Cu speciation results in this study agree well with the values reported by 

Buck and Bruland (2005), who reported ligand concentrations exceeding total dissolved 

copper concentrations, and copper being strongly complexed by L1 ligands. The strong 

organic complexation of copper resulted in very low Cu2+, which did not exceed pM 

levels and was suitably below the toxicity limit for aquatic micro-organisms (Buck and 

Bruland, 2005). 

5.5.4.3 Possible source and sinks for Cu complexing ligands:  
 

Fieldwork in the Sargasso Sea has shown a strong link between the presence of strong Cu 

complexing ligands (L1) and the cynobacterium Synechoccocus (Moffett, 1995). 

Laboratory cultures of Synechoccocus isolated from the Sargasso Sea have also been 

found to produce strong Cu binding ligands when under Cu Stress (Moffett and Brand, 

1996). Synechoccocus growth will be significantly inhibited if there is no organic 

complexation of Cu in ambient open ocean seawater (1-5 nM Cu) (Croot, 2003 and Croot 

et al., 2000). Thus, Synechoccocus benefits from the production of (L1) ligands in the 

presence of elevated Cu concentrations. Also the production of these ligands creates 

conditions more favourable for its growth as it maintains Cu2+ concentrations low.           

 

In the present work, the synchronicity of the appearance of enhanced L1 concentrations 

and Synechoccocus abundance points strongly to these cyanobacteria as a possible strong 

ligand source, as Synechoccocus dominated the phytoplankton community in both survey 

years.  Interestingly, there was no correlation between bulk chlorophyll and ligands or 

Cu2+ in either year, indicating that only a small part of the phytoplankton community 

might be responsible for ligand (L1) production. There are no statistically significant 

relationships (P>0.05) found between Synechoccocus and complexing ligands for both 

years.   
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The data presented here are consistent with the hypothesis that Synechococcus is a strong 

candidate for L1 production (Moffett et al., 1990; Moffett and Brand, 1996; Croot, 2003; 

Croot et al., 2000; Muller et al., 2005). The strong ligand L1 was only found in Gullmar 

Fjord, Sweden (Croot, 2003) in regions of, and times of, significant (>1 x 107 cells L-1) 

Synechococcus abundance. Similarly, in the current surveys in the English Channel, 

Synechococcus average abundance was 4.20 x 107 cells L-1. Currently only 

Synechococcus has been reported to produce L1 type ligands (Croot, 2003; Croot et al., 

2000; Muller et al., 2005). In this study, a 1:1 correlation between L1 concentration and 

Synechococcus abundance was not found and this was not in agreement with data from 

Croot (2003) and Croot et al. (2002).  This might indicate that those ligands are present 

in the water column throughout the year but only in a higher concentration during the 

periods of high Synechococcus abundance. Sampling the same location at different times 

throughout the year would be very useful to document any changes in organic ligand 

concentrations and speciation of copper in the English Channel.  

 

However, other organisms present in the water column could be responsible for L1 

production- in particular, heterotrophic bacteria. Presently, there is no evidence for 

production of strong ligands (L1) by any species of heterotrophic bacteria (Croot, 2003; 

Muller et al., 2005), although it cannot be discounted. Of the eukaryotic species present 

in samples where L1 was observed, there was no strong candidate for L1 production. As 

discussed in Chapter 4 and reported by Leal et al. (1999) and Vasconcelos and Leal 

(2001), E. huxleyi is reported to produce weak ligands (L2) and has a high Cu tolerance 

(Brand et al. 1986). According to Croot (2003) many of the algae (e.g. Ceratium sp, 

Prorocentrum sp) are reasonably Cu tolerant and known to produce weaker ligands. For 

example, dinoflagellates (Amphidinium carterae) produce weak Cu complexing ligands 

(Log K = 12) when under Cu stress (Croot et al., 2000). Diatoms also produce Cu 

complexing ligands during different stages of growth (Zhou and Wangersky, 1989; Croot 

et al., 2000), with one species of the common coastal diatom S. costatum found to 

produce Cu chelating ligands with log K ≈ 12 (Croot, 2003).  

  

Weak dissolved copper complexing ligands, not detected by the established analytical 

conditions, should be at concentrations higher than strong ligands (Moffett et al., 1997; 

Croot, 2003; Tang et al., 2001) and could also be important for the total metal buffering 

capacity of the system, despite their weaker binding strengths.     
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This study therefore indicates that the phytoplankton presented in stations sampled 

affected the speciation of Cu on the study area, with the production of strong ligands 

resulting in low Cu2+ concentrations.  

5.5.4.4 Possible role of viruses in copper speciation   
 

As mentioned earlier, the viruses detected in the 2005 and 2006 surveys where 

bacteriophage viruses only; the flow cytometry signature of EhV-86 was not detected. 

Therefore, a comparison between Cu speciation from the culture experiments (Chapter 4) 

and the Western English Chanel data would be difficult as the studies are looking at 

different ‘snap shots’ of the bloom dynamics. Large viruses (e.g. EhV-86) were not 

identified, as they were more than likely at levels below AFC detection (6.9 x 105 ml-1, 

Schroeder, pers. comm.). It was shown in Chapter 4 (section 4.4.6) that a 20% virus 

solution (which represents a late E. huxleyi senescent bloom) did interfere with the 

AdCSV measurements. Therefore we assume that EhV-86 were equivalent to 5% 

solution which is below AFC detection limit, but it will still potentially interfere with the 

measurements.             

 

As viruses pass through the membrane used for filtration, we assume that there is less 

free Cu2+ available. This is because Cu2+ may been bound by viruses or used by them, as 

they require metals for the functioning of their DNA and RNA replication enzymes 

(Wilson et al., 2005). This is only a speculation, and no data is yet available to prove it. 

Results by Daughney et al. (2004) demonstrated the potential of marine bacteriophage to 

serve as nuclei for iron adsorption and precipitation. Therefore, viruses detected in the 

current study (cyanophage), and the undetected viruses responsible for the demise of the 

E. huxleyi bloom i.e. EhV-86 may affect metals speciation either by metal adsorption 

onto the virus particles or by using free metal ions in their proteins structure.               

 

Total dissolved Cu concentrations observed in this study were similar to those reported in 

the literature. Since there were no pronounced differences between Cu concentrations in 

this study and previous published work, it is difficult to determine whether the virus 

particles were chelating metals to a great extend. This could be documented if the virus 

fraction was removed, similar as for the culture samples (Chapter 4), in particular for 

dissolved labile copper. Consequently, the effects of viruses in the water column must 
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not be ignored as they potentially can affect the speciation of Cu in the water column.  

More studies are required here. 

5.5.4.5 Nickel, Zinc and Cobalt in the Western English Channel   
 

Both Zn and Ni have a nutrient-type oceanic distributions characterized by a depletion in 

surface ocean waters as a result of phytoplankton uptake (Bruland and Lohan, 2004). 

Luengen et al. (2007) hypothesised that those metals would be depleted during a 

phytoplankton bloom. It would be expected, as Luengen et al. (2007) hypothesised, that 

those metals are to be assimilated by phytoplankton during the blooms observed in our 

study, unless they were strongly complexed to organic ligands. In open ocean waters 

cobalt has a unique profile, with generally low concentrations in surface waters and an 

increase in the thermocline (Knauer et al., 1982; Martin et al., 1993). The current study 

was undertaken in shelf sea waters, with more complex water circulations compared with 

open ocan environments.  

 

Ni     

In vertical oceanic profiles of dissolved Ni, this element exhibits a surface nutrient 

depletion, with surface values typically in the 1-5 nM range (Bruland et al., 1994; Tappin 

et al., 1993). Nonetheless, laboratory data demonstrate that Ni is necessary for the 

assimilation of urea. For example, the diatom Thalassiosira weissflogii requires Ni when 

urea is its main source of nitrogen (Price and Morel, 1991). 

 

Total dissolved Ni concentrations in the 2005 survey ranged from 2.95 to a maximum of 

5.50 nM at 5 m at station 2 (edge of high reflectance area). The vertical profiles showed a 

decrease in total and labile Ni with depth at stations 1 and 2 (Figure 5.18). Labile Ni 

concentrations ranged from 1.24 to 2.34 nM. The enhanced Ni concentrations in the 

surface waters indicate atmospheric inputs. The highest total Ni observed in 2006 was at 

40 m at station 2 (3.53 nM). There were no significant concentration variations in the 

depth profiles in 2006 (Figure 5.19). The average surface Ni values in the current study 

(3.99 nM for 2005 and 3.23 nM for 2006) agree well with values reported in the literature 

for dissolved Ni in the English Channel (3.8 nM Tappin et al., 1993). A higher 

concentration is observed for dissolved Ni (Statham et al.,1999) close to the Solent (7.14 

nM), which is affected by riverine inputs, relative to lower concentration in the Central 
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Channel (typically 2-2.3 nM), of principally Atlantic origin. This is close to values 

observed in the current study.        

 

In oceanic waters and in the Mediterranean, Ni speciation is dominated by the labile 

fraction (>80 %) (Achterberg and van den Berg, 1997). The labile fraction was high in 

the current study in the depth profiles, and in particular in both transects (40-70%). These 

percentages lie within the range (40-80%) reported for estuaries and coastal waters 

(Nimmo et al., 1989; van den Berg and Nimmo, 1987; Braungardt et al., 2007).   

Labile and total dissolved Ni concentrations in both years are shown in Figures 5.18-

5.19.  Tables 5.7-5.8 show labile and total dissolved Ni, Zn and Co concentrations 

together with the labile to total % for the 2005 and 2006 surveys.  

 

Despite their need for Ni in the enzyme urease, which assists the assimilation of urea, in 

the current study marine phytoplankton did not deplete Ni concentration in the surface 

seawaters to values below a few nanomolars. The plentiful supply of Ni in the system, 

combined with a relatively low requirement resulted in a lack of obvious biological Ni 

depletion in depth profiles (Morel et al. ,2004).  
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Figure  5.18: Depth profiles of labile 
and total dissolved Ni (nM) for 2005 
survey. 

Figure  5.19: Depth profiles of labile 
and total dissolved Ni (nM) for 2006 
survey 
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Table 5.7 Labile and total dissolved metal (Ni, Zn, Co) concentrations for 
2005 survey.   
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Zn 

Zn had the highest concentration observed compared to other metals investigated in the 

current study. The Zn profiles in both years are presented in Figures 5.20-5.21. Dissolved 

Zn concentrations ranged from 5.78 to 8.67 nM in 2005. The highest total dissolved Zn 

concentration was observed in 2005 at 40 m at station 3 (9.88 nM). An important 

observation of Zn concentrations in the 2005 survey was that the non-labile fraction was 

higher than the labile fraction (labile to total Zn ranged between 16-38%, Table 5.7) at all 

stations which indicates that Zn was highly complexed by the phytoplankton community.  

Compared with 2005, higher total dissolved Zn concentrations were observed in 2006, 

reaching 10.84 nM at station 1 (depth 5m) (Table 5.8). The Zn concentrations were in 

good agreement with previously observed Zn concentration profiles for the study region 

(7.6 nM by Tappin et al., 1993 and 5.3 ± 1.98 nM by Statham et al., 1999). However, 

Ellwood and van den Berg, (2000) reported lower Zn concentrations nearer the English 

coast (1.5 nM).  Non-labile Zn concentrations in 2006 were also higher compared with 

labile concentrations, with the exception of station 3 (Table 5.8). It is unclear why Zn 

was complexed less strongly at station 3 compared with other stations in 2006 or 2005. 

This may be due to the higher total dissolved Zn observed at station 3.  Bruland (1989) 

and Ellwood and van den Berg (2000) indicated that ≈ 98% of dissolved Zn was highly 

complexed by organic ligands in open ocean waters. However, a comparison between the 

current findings and studies mentioned above is not possible due to the lack of speciation 

data and higher Zn concentrations observed.          

 Determination of Zn speciation in marine systems has always been a challenge, due to 

the difficulty in collecting uncontaminated samples for total dissolved Zn and Zn-

complexing ligand concentrations. Zinc is present in nearly 300 enzymes that perform 

many different metabolic functions in organisms (Ellwood and van den Berg, 2000; 

Lohan et al., 2002). Unlike Cu, Zn is not toxic to phytoplankton at the concentration 

observed in the open ocean. There appears to be no immediate advantage to the 

phytoplankton community in reducing [Zn2+] through organic complexation (Bruland and 

Lohan, 2004). Ambient Zn speciation measurements in the North Atlantic were 

compared to phytoplankton incubation experiments (Brand et al., 1983; Sunda and 

Huntsman, 1992), and indicated that Zn does not limit phytoplankton growth (Ellwood 

and van den Berg, 2000). This was furthermore enforced by Crawford et al. (2003) and 

Lohan et al. (2005) who did not observed immediate Zn limitation in oceanic waters 

using ship-board bio-assay experiments. The addition of Zn to the incubations showed no 
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major chlorophyll a biomass change in comparison to the Fe enriched treatments where 

chlorophyll a increased 20-fold above initial concentrations (Lohan et al., 2005). Total 

dissolved Zn concentrations observed in the current survey indicates that Zn was not a 

limiting factor for phytoplankton at stations sampled in 2005 and 2006.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.18: Depth profiles of 
labile and total dissolved Zn 
(nM) for 2005 survey.   

Figure  5.19: Depth profiles of labile 
and total dissolved Zn (nM) for 
2006 survey.   
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The lack of a measurable decline in dissolved Zn concentrations in this study (2005-2006 

surveys) were different from observations in previous field studies (Luoma et al.,1998) 

and in mesocosm experiments (Wang et al.,2005). In the field study of 1994, Luoma et 

al. (1998) found that dissolved Zn was depleted in a coastal phytoplankton bloom in the 

South Bay. This was confirmed in mesocosm studies (Riedel and Sanders, 2003). Wang 

et al. (2005) showed that phytoplankton accumulated Zn in Hong Kong coastal waters. 

However, a bloom of diatoms (Luengen et al., 2007) did not show any depletion of Zn.   

The contrasting results in the current study could be because sampling started too late to 

capture a clear Zn drawdown, or Zn was rapidly repartitioned from the particulate phase 

(Luengen et al., 2007). Organic complexation may limit Zn bioavailability. Indeed, the 

non-labile fraction of Zn in the present study was dominant in the majority of samples, 

which may indicate strong ligand complexation of Zn.  

Although Cu and Zn have nutrient-like behaviour in the ocean (Bruland, 1983), there was 

no observable depletion of these metals concurrent with the depletion of nutrients. Other 

studies (Tappin et al., 1993; Tappin et al., 1995; Statham et al., 1999) have demonstrated 

depletion in micronutrients without any decrease in dissolved trace metals such as Cu, Zn 

and Ni. The enhanced metal supply in shelf waters, combined with small requirements of 

micro-organisms for these metals, may explain these findings.   

 

Co 

Total dissolved Co concentrations ranged between 0.12 and 0.22 nM in 2005 and 

between 0.15 and 0.45 nM in 2006. In both years, similarly to Zn (except station 3, 

2006), the non-labile fraction was dominant compared to the labile fraction (15-38% in 

2006, Table 5.8). This indicates that Co was strongly complexed by the phytoplankton 

community. Zhang et al. (1990) and Ellwood and van den Berg (2001) showed that Co 

was highly complexed by organic ligands. However, a recent study by Braungardt et al. 

(2007) in Huelva Estuary (Southwest Spain) reported high labile fraction of Co >88% of 

total dissolved Co. The concentrations of Co in profiles observed in this study were in 

good agreement with the values reported by Statham et al. (1999) (0.30 nM), and Tappin 

et al. (1993) (0.08-0.56 nM). Total dissolved and labile Co concentrations in the Western 

English Channel are displayed in figure 5.22-5.23.  

 

Cobalt plays a particularly important role in the growth of cyanobacteria. Cobalt is 

required in vitamin B 12. Both Prochlorococcus and Synechococcus show an absolute 
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Co requirement that Zn cannot substitute for (Saito et al., 2002; Sunda and Huntsman, 

1995). 

     

The importance of cobalt in the physiology and ecology of cyanobacteria is underscored 

by evidence showing that they produce strong specific cobalt chelators. Production of 

such organic complexes has been observed during a Synechococcus bloom in the 

equatorial Pacific (Saito and Moffett, 2001) and uptake of organically complexed cobalt 

has been demonstrated in Prochlorococcus cultures (Saito et al., 2002). These results 

have led to the hypothesis that cobalt ligands in surface seawater are produced by 

cyanobacteria and that they are ‘cobalophores’ whose function in cobalt chelation and 

uptake is analogous to that of siderophores for iron. As Synechococcus dominated the 

phytoplankton population in our surveys, if speciation of Co had been performed in the 

current study, it would have been possible to document the production of Co ligands 

more likely produced by these cyanobacteria.   

 

 As with the other metals referred to earlier, it was possible that a decrease in dissolved 

Co could not be observed because of the timing of the sampling in 2005 and 2006. 

Furthermore, the supply of Co in the shelf seawaters may have been higher than the 

demand by the microbial community, and hence no clear Co depletions could be 

observed in the depth profiles related to a relatively enhanced cell numbers.  
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Figure  5.21: Depth profiles of labile 
and total dissolved cobalt (nM) for 
2006 survey.   

Figure  5.20: Depth profiles of labile 
and total dissolved cobalt (nM) for 
2005 survey. 
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5.5.5 Correlation of trace metals with salinity and chlorophyll a 

 
Figures 5.24-5.25 display the correlation between dissolved metals and salinity for the 

2005 and 2006 surveys. A narrow salinity range was observed during the surveys and no 

clear correlations between metals and salinity was observed. In case of a wider salinity 

range, it would have been expected to see enhanced metal concentrations in low salinity 

samples collected close to the coast and freshwater input, reflecting the terrestrial inputs 

of metals in these waters. Tappin et al. (1993) observed wider salinity ranges in their 

study in the English Channel and found that mixing of Atlantic Ocean surface water with 

freshwater containing higher concentrations of dissolved trace metals was a key factor 

determining the distribution of trace metals. These workers (Tappin et al., 1993) 

observed a significant inverse linear correlation of metals with salinity. Nevertheless, in 

summer surveys in the Western Channel, Cd, Cu, lead and Zn showed no linear 

relationship with salinity (Tappin et al., 1993). This observation was attributed to 

biological removal of metals during the phytoplankton growth season. Similarly, it is 

likely that in the current study, conducted during the summer months, biological 

processes may have contributed to the lack of correlation between metals and salinity.      

Overall, the variability observed in the metal-salinity relationship was probably due to 

the interaction of a number of factors, including biological processes, aeolian inputs, 

exchange across the benthic boundary and metal partitioning between dissolved and 

particulate phases (Tappin et al., 1993; Tappin et al., 1995; Statham et al., 1999).   

 

As time-series sampling was not carried out at the same stations in this study, it was 

hence difficult to assess the relationship between metals and the biology in the water 

column at the stations sampled in 2005 and 2006. Nevertheless, a comparison of 

chlorophyll a profiles and metal profiles indicated that there were no clear links between 

chlorophyll and metal species. These observations indicate that in the dynamic shelf 

waters of the study, the supply of the metals was sufficient to remove any indications of 

metal depletions by biological uptake.  
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Figure  5.20: Salinity vs trace 
metals metals for 2005 survey 

Figure  5.21: Salinity vs trace 
metals for 2006 survey.   



Chapter 5                                     Speciation of trace metals in the Western English Channel 2005-2006 
 

 185

5.6 Conclusions 
 

This study is the first to report on the speciation of Cu, Co, Ni, and Zn in the Western 

English Channel during and post a natural E. huxleyi bloom. The Synechococcus density 

in the current study coincided with the highest chlorophyll a and the highest 

concentrations of E. huxleyi. Synechococcus dominated the phytoplankton community 

during both surveys. Hence, at the time of sampling, the E. huxleyi bloom was being 

succeeded by Synechoccocus in both years. None of virus detected using AFC exhibited 

a signature of E. huxleyi viruses (EhV-86). Molecular evidence has confirmed the 

presence of these viruses in both surveys. E. huxleyi viruses were present at 

concentrations below the limit of AFC detection. The detected viruses were likely 

bacteiophage-like viruses. A general trend of decrease in DOC concentrations with depth 

was observed, the highest concentrations being found at all stations in the near surface 

waters. All nutrients increased in concentration with depth in the water column. Total 

dissolved metals observed in our study agreed well with values reported in the English 

Channel and the Atlantic Ocean. There was no observable depletion of these metals 

concurrent with the depletion of nutrients. 

 

Copper speciation study revealed that organic ligand exceeded total dissolved Cu 

concentrations, and the ligands had strong binding strengths for Cu. The Cu2+ 

concentrations ranged between 0.14-1.69 pM (2005), with lower concentrations in 2006 

(0.01-0.73 pM), associated with higher ligand concentrations. The synchronicity of the 

appearance of L1 and Synechoccocus abundance points at these cyanobacteria as a strong 

ligand source.       

 

A comparison between Cu speciation from the culture experiments (Chapter 4) and the 

Western English Chanel data was difficult as the studies looked at different parts of the 

bloom dynamics. Since there were no pronounced differences between Cu concentrations 

in this study and previous published work, it is difficult to determine whether the virus 

particles were chelating metals. This could be documented if the virus fraction was 

removed as observed in the culture samples (Chapter 4), in particular with respect to 

dissolved labile Cu.  

Viruses detected in current study (cyanophage) and the viruses that were responsible for 

the demise of E. huxleyi bloom, but not detected, i.e. EhV-86, may affect metal 
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speciation either by metal adsorption into viruses or by using free metal ions in their 

protein structure.               

 

The labile fraction of Ni was high during the surveys which indicated the absence of 

strong organic complexation. In both years, for Co and Zn, the non-labile fraction was 

dominant compared to the labile fraction. This indicates that these elements were 

strongly complexed by organic ligands produced by the phytoplankton community. In the 

case of Co, cyanobacteria (e.g. Synechoccocus) have been suggested to play a key role in 

Co biogeochemistry. Synechoccocus was dominating the phytoplankton community in 

this study. No clear correlations between total dissolved metals and salinity or 

chlorophyll a were observed.  

 

The real picture is more complicated than this as many species are present. In addition 

the effect of viruses cannot be eliminated. Further study is needed on the chemical 

speciation of metals in the Western English Channel. Collecting samples from the same 

stations during different seasons is essential to be able to clarify the whole picture of the 

area on a wider scale. 
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Chapter 6 

 

6. Conclusions and Future Work 
 

The main objective of this study was to examine the effects of phytoplankton growth, 

senescence and decay on dissolved trace metal concentrations and their physico-chemical 

speciation. This objective was fulfilled by establishing a baseline for Cu, Ni, Zn & Co 

speciation and distribution following E. huxleyi blooming events in the Western English 

Channel in 2005 and 2006. Moreover, this study revealed for the first time the 

importance of coccolithoviruses in regulating trace metal speciation during and follow E. 

huxleyi bloom development. This is especially important as our current understanding of 

the potential role of viruses in metal speciation was limited to comparatively only a few 

studies (Gobler et al., 1997; Poorvin et al., 2004; Daughney et al., 2004). 

 

The voltammetric technique, AdCSV, is a cost effective, rapid and sensitive analytical 

method to quantify organically complexed, inorganic and free metal forms in the 

dissolved phase. Extensive analyses of Certified Reference estuarine water (SLEW-2, 

1999) and nearshore seawater (CASS-4, 2002) were in close agreement with certified 

values, thus providing confidence in the methods and instruments used.  This study used 

the AdCSV technique to determine Cu, Ni, Zn & Co speciation in both in vitro and in 

situ environments. In batch E. huxleyi culture based experiments, total dissolved Cu, Ni 

& Co concentrations were found to be stable irrespective of the means of phytoplankton 

decay. This is in agreement with observations reported previously (Vasconcelos and 

Leal, 2001; Leal et al., 1999). However, speciation analyses revealed that the labile Cu 

fraction increased when viruses were responsible for the phytoplankton decay.  This 

observation was only made when the virus fraction was removed from the samples.  

Removal of the virus fraction resulted in an overall increase in labile Cu (day 8) from 

3.33 nM to 7.21 nM (ca. 4-4.5 nM). The labile Co and to a lesser extent labile Ni 

measurements were not directly affected by the coccolithovirus but unfortunately due to 

time constraints, it was not possible to resolve this issue in this study. In addition, Cu was 

incorporated into the particulate phase during active growth after which the ratio of 
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particulate to total dissolved decreased following release of Cu from the particulate 

phase. The ratios of particulate to Cu2+ in the virus infected cultures also differed from 

the control experiments. It is therefore evident that EhV-86 had an effect on the 

particulate and dissolved fractions of Cu during cell lysis, with Cu2+ becoming more 

abundant in the dissolved fraction relative to particulate Cu following cell lysis. This 

supports the hypothesis that viral lysis of microorganisms converts material from 

particulate to dissolved phases (Fuhrman, 1999; Wihlem and Suttle, 1999). Recently, 

Brussaard et al (2008) discussed how grazing and virus mediated cell mortality both 

regenerate nutrients but in a different forms. Grazing results in the release of for example 

faecal pellets (Brussaard et al., 2008), whereas viruses regenerate dissolved elements in 

organic forms (Wihlem and Suttle, 1999). Poorvin et al. (2004) suggested that viruses 

regenerate Fe in dissolved organic species that are more biological available to 

phytoplankton (Hutchins et al., 1999). 

 

In the virus-free cultures the amount of Cu per cell decreased exponentially during algal 

growth while the overall cellular Cu content (particulate Cu) increased. Viral lysis of E. 

huxleyi caused a sharp increase in Cu per cell.  There is therefore a strong possibility that 

EhV-86 is using some of the free Cu during its infection cycle. The EhV-86 genome 

encodes a number of proteins that requires divalent metal ions for its activity (Wilson et 

al., 2005).  Future investigations are needed to confirm that this is in fact the case. 

 

When determining the effect of incremental EhV-86 additions on the Cu assay, the 

highest CSV peaks where observed when viruses were not present in solution. No 

changes were observed in the peak height for 100% virus addition.  Titrations without 

viruses showed higher organic ligand concentrations (4 nM) and LogKCuL by 1. All this 

showed that viruses potentially interfere with the measurements of Cu. The overarching 

conclusion of the experiments is that EhV-86 directly affected the Cu measurements. As 

these speciation measurements are primarily used to quantify the presence of Cu, it was 

demonstrated for the first time that all current measurements underestimated the Cu 

species concentration. As automated technologies using an auto sampler with Ad-CSV 

capability is being developed to routinely monitor in real-time in situ and in vitro 

samples, caution needs to be heeded as these samples are likely to be influenced by 

viruses such as EhV-86. 
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Results from the culture experiments pertain to laboratory systems with simple chemistry 

and a limited range of Cu-to-virus concentration ratios and can not be extended to predict 

the role of viruses in natural marine Cu cycle. Dissolved organic ligands may compete 

with the viruses for the available Cu and other dissolved trace metals may compete with 

Cu for the binding sites on the viruses (Daughney et al., 2004). Although present results 

cannot be directly correlated to natural seawaters, they demonstrate the need of further 

research on the potential role of viruses in oceanic waters. Daughney et al. (2004) 

showed the potential of marine bacteriophage to serve as nuclei for iron adsorption and 

precipitation.  Important questions arise to whether trace metals are complexed by viruses 

in the water column and whether this applies for all viruses?  In addition, would metals 

adsorbed to or precipitated onto virus particles be available for assimilation by 

phytoplankton or bacteria? This has not been investigated before and this study 

demonstrates that future research is warranted to relate viruses and trace metals in the 

marine environment.  For example, recent work by a colleague at NOCS, Dr Aurelie 

Devez, revealed that E. huxleyi survived toxic levels of Cu (10 µM) when EhV-86 was 

added to the media.  In the current study, total dissolved Cu concentrations were one 

order of magnitude lower, however, the fact the higher concentration metals can affect 

the effectiveness of viruses and vice versa, this interaction cannot be ignored and needs 

to be investigated further. 

 

Little is known on trace metal speciation in natural E. huxleyi-virus bloom assemblages, 

and therefore samples were collected during the latter stages of two E. huxleyi blooms in 

the Western English Channel.  It was hoped to correlate findings from laboratory based 

culture experiments with those in the field. Unfortunately, at the time of sampling and 

analyzing samples for both E. huxleyi blooms, the interference by coccolithovirus on Cu 

measurements was not realised, and potentially these measurements were influenced by 

the presence of viruses. Nevertheless, no discernable coccoliuthovirus AFC signature 

could be detected in the collected samples.  As the E. huxleyi bloom was being rapidly 

succeeded by a Synechoccocus bloom (on both occasions), it became clear that the 

coccolithoviruses were less than 5% of the virus stock solution used in the laboratory 

virus-Cu assays.  Molecular analyses on the samples confirmed the presence of 

coccolithoviruses in these blooms (Schroeder, pers. comm). Therefore, the measurements 

taken were at the very least minimally affected by the presence of the coccolithoviruses 
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but it cannot be excluded the potential inhibitory effects by other viruses, notably 

bacteriophage. 

 

Total dissolved metal concentrations observed in the current study agreed well with 

values reported by other workers for the English Channel and the Atlantic Ocean.  

Copper speciation measurments revealed that organic ligand concentrations exceeded 

total dissolved Cu concentrations and the ligands showed high conditional stability 

constants and can be characterised as part of the strong copper binding L1 ligand class. 

Synechoccocus was dominating the phytoplankton community in the region. The 

synchronicity of the appearance of L1 and Synechoccocus abundance points strongly to 

these cyanobacteria as the strong ligand source. A direct comparison between Cu 

speciation from the culture experiments and the Western English Channel data was 

difficult as the studies looked at different parts of the bloom dynamics.  There was no 

pronounced difference between Cu concentrations in current study and previous 

published work; hence it is difficult to determine whether the virus particles were 

chelating metals. In both years, for Co and Zn, the non-labile fraction was dominant 

compared to the labile fraction. This indicates that these elements were strongly 

complexed by organic ligands produced by the phytoplankton community. In the case of 

Co, cyanobacteria (e.g. Synechoccocus) have been suggested to play a key role in Co 

biogeochemistry. No clear correlations between total dissolved metals and salinity or 

chlorophyll a were observed in the study.  Further studies are needed on the chemical 

speciation of metals in the Western English Channel. Collection of samples from the 

same stations during different seasons is essential to be able to clarify the whole picture 

of the area on a wider scale. 

 

Finally, are we potentially underestimating trace metal concentrations (for example Cu) 

in the oceans and coastal waters when coccolithoviruses such as EhV-86 and/or other 

viruses are present in the water column?  In this case, strong evidence suggested that any 

inhibitory effect did not come from the coccolithoviruses but the potential effects of the 

cyanophage fraction could not be excluded. To resolve this question, further work is 

required to look at viruses and metals interactions. 
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Summary of proposed future work: 

1. Further investigations are required into the Cu-virus particle interactions. The 

particles appear to act as a adsorption medium for Cu. Whether other metals also 

interact with virus particles also should be a focus of research, and the physical 

metal-virus interactions may influence the biogeochemical cycles of the metals. 

2. Further work is required on the biological/biochemical interactions between Cu 

and viruses, as this  metal appears to reduce the effectiveness of the viral action 

3. This study is one of the first to study metal speciation during life cycles of 

phytoplankton. More such studies will be required in the laboratory and field 

using different phytoplankton species to investigate whether these observations 

are ‘typical’ for phytoplankton communities 

4. Viral lysis has been used in this study as a means to induce cell death and study 

metal speciation changes. The influence of zooplankton grazing of phytoplankton 

on metal speciation will form a very interesting study as well. 

5. Copper has received a great deal of attention in this study. Investigating 

zooplankton and viral lysis effects on phytoplankton communities with respect to 

iron speciation will be an important research area. 
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March 2004 culture experiment results (Copper speciation)   
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