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Abstract 

We propose a general design selection criterion for experiments where a generalised linear model 
describes the response. The criterion allows for several competing aims, such as parameter estimation 
and model discrimination, and also for uncertainty in the functional form of the linear predictor, the link 
function and the unknown model parameters. A general equivalence theorem is developed for this 
criterion. In practice, an exact design is required by experimenters and can be    obtained by numerical 
rounding of a continuous design. We derive bounds on the performance of an exact design under this 
criterion which allow the efficiency of a rounded continuous design to be assessed.  
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Summary

We propose a general design selection criterion for experiments where a gener-

alised linear model describes the response. The criterion allows for several com-

peting aims, such as parameter estimation and model discrimination, and also for

uncertainty in the functional form of the linear predictor, the link function and

the unknown model parameters. A general equivalence theorem is developed for

this criterion. In practice, an exact design is required by experimenters and can be

obtained by numerical rounding of a continuous design. We derive bounds on the

performance of an exact design under this criterion which allow the efficiency of a

rounded continuous design to be assessed.
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1. Introduction

Generalised linear models (GLMs; see McCullagh & Nelder, 1989) are an im-

portant empirical modelling tool which have found application in a wide variety of

experiments in medicine, science and technology (Collett, 2002; Myers et al., 2002).

We consider an experiment on n treatments, or combinations of variable values,

with the ith treatment replicated mi times and
∑n

i=1 mi = N . Each treatment is
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represented as a k-vector xi ∈ X ⊂ Rk (i = 1, . . . , n), that is xi = (xi1, . . . , xik)
′.

Under the assumption of exchangeability of experimental units, the response Yij,

obtained when the ith treatment is applied to the jth unit receiving that treat-

ment (j = 1, . . . ,mi; i = 1, . . . , n), is assumed to follow a distribution from the

exponential family with the following components:

(i) a distribution for the response,

(ii) a linear predictor ηi = f(xi)
′β, where β is a p-vector of unknown model

parameters and f(xi) is a vector of known functions of the k explanatory

variables, whose values for the ith run are held in xi,

(iii) a link function that relates the mean response from the ith support point to

the linear predictor, g(µi) = ηi.

Widely applied examples of GLMs include logistic regression for binary data with

g(µi) = log{µi/(1− µi)}, and log-linear models for count data with g(µi) = log(µi).

As GLMs are nonlinear in the model parameters β, the performance of a design

under any model-based criterion will depend on the values of β. Most research in

the design of experiments for GLMs has focused on locally optimal designs for given

values of β (Atkinson, 2006) or on robust designs for one or two variables (Chaloner

& Larntz, 1989; Sitter, 1992; King & Wong, 2000). Recent work (Woods et al.,

2006; Dror & Steinberg, 2006; Gotwalt et al., 2008) has extended these methods to

multi-variable experiments through the application of a model-robust, or compro-

mise, design criterion implemented in computationally intensive algorithms to find

exact designs. Woods et al. (2006) and Dror & Steinberg (2006) also investigated

robustness to the functional form of f(·) and the choice of link function g(·). There

has been a parallel development of designs for the problem of discriminating between

given GLMs (López-Fidalgo et al., 2007; Waterhouse et al., 2008).

In this paper we propose a general model-robust criterion which extends previous

criteria by encompassing not only uncertainty in the model form and parameters, but

also competing aims of an experiment, such as estimation and model discrimination.
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We establish necessary and sufficient conditions for a continuous, or approximate,

design to be optimal under this criterion. Such a design, ξ ∈ Ξ, relaxes the as-

sumption that mi must be integer (i = 1, . . . , n) and is represented as a probability

measure over a compact design space X with finite support. The support of ξ defines

the set of distinct points of the design, and the non-zero image of the ith element

specifies the proportion, 0 < ω(xi) ≤ 1, of experimental effort assigned to the ith

point. The design is expressed as

ξ =

 x1 x2 · · · xn

ω(x1) ω(x2) · · · ω(xn)

 , (1)

where
∑n

i=1 ω(xi) = 1. Continuous designs are a common tool in optimal design

theory (Atkinson et al., 2007, ch.9), because they are mathematically more tractable

than exact designs and provide a continuous convex optimization problem for design

criteria satisfying mild assumptions. To obtain a realisable exact design, the image

of ξ must be scaled by N , the total number of runs, and the Nω(xi) values rounded

to integer values as necessary; see, for example, Fedorov & Hackl (1997, p.53).

In Section 2, the design selection criterion is outlined and a general equivalence

theorem established. This provides necessary and sufficient conditions for a con-

tinuous design to be optimal. A numerical example is presented in Section 3, and

Section 4 discusses the performance of exact designs through bounds on the size of

the objective function. The approach taken can be applied to other non-linear mod-

els, for example, those derived from mathematical theory in Physics or Chemistry.

2. Design selection criterion

We consider a general class of design selection criteria that explicitly takes ac-

count of uncertainties in the model and potentially differing objectives of an ex-

periment. For a given distribution, a GLM is defined by the triple s = (g, f,β) of

link function, form of linear predictor and vector of model parameters. We represent

uncertainty in the model s through sets G, N and B of possible link functions, linear
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predictors and model parameters, respectively.

The conflicting aims of the experiment are represented through a set C of objec-

tive functions, each of which corresponds to a criterion which assesses the usefulness

of a design for a given task, for example, parameter estimation or model discrimi-

nation. Each element of C is a local objective function φc: (ξ, s) → R where ξ ∈ Ξ

and s ∈ S = G ×N × B. Further, we assume that every φc is a “larger the better”

objective function, that C and S do not depend on the design ξ and that every

φc ∈ C is defined for all s ∈ S. If C and S are uncountably infinite sets, we assume

φc is continuous with respect to c and s.

The criterion for design selection considered in this paper is based on the com-

promise, or portmanteau, objective function defined through the Stieltjes integral

Φ(ξ) =

∫
C

∫
S
φc(ξ, s) dG(s) dH(c) , (2)

where G(·) and H(·) are distribution functions chosen to reflect the relative impor-

tance of each model, and the relative importance of each local objective function,

respectively. A Φ-optimal design ξ? is such that

ξ? = arg max
ξ∈Ξ

Φ(ξ) . (3)

Special cases of (2) have been applied to GLMs by a variety of authors. Chaloner

& Larntz (1989) used a single objective function and allowed uncertainty in β;

Woods et al. (2006) and Dror & Steinberg (2006) investigated the use of a single

objective function and uncertainty in all three aspects of the model s. For linear

models similar criteria, for a single objective function were considered by Läuter

(1974) and Cook & Nachtsheim (1982). Atkinson (2008) and Waterhouse et al.

(2008) found locally optimal designs under a portmanteau criterion for parameter

estimation and model discrimination for linear models and GLMs respectively.

The Φ-criterion may be viewed from a Bayesian perspective. Then G(·) sum-

marises the prior belief across the model space of the experimenters, and (2) is the

preposterior expectation for each element φc of C, averaged across C with respect to
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H(·).

In order to develop a general equivalence theorem, we follow Whittle (1973)

and Chaloner & Larntz (1989) in formulating the theorem directly in terms of the

measure ξ. For linear models, equivalence theorems are usually formulated in terms

of a compact set of information matrices. The same is true for nonlinear models

when only locally optimal designs are considered. For our problem, however, the

information matrices are dependent on s, and we do not wish to restrict to local

objective functions which are convex functions of an information matrix.

Suppose that for all s ∈ S and ξ ∈ Ξ, φc(ξ, s) is a concave, continuous and

differentiable function of ξ with continuous derivatives; see also Chaloner & Larntz

(1989). We also assume that there exists at least one measure ξ such that Φ(ξ) <∞,

and that if ξ1 → ξ2 in weak convergence, then Φ(ξ1)→ Φ(ξ2).

Define the Fréchet directional derivative of Φ(ξ) as

Ψ(ξ1, ξ2) = lim
α→0+

Φ{(1− α)ξ1 + αξ2} − Φ(ξ1)

α
, (4)

where ξ1 and ξ2 are measures and 0 ≤ α ≤ 1. Then ξ̃ = (1 − α)ξ1 + αξ2 is also a

measure, and (4) is the derivative of Φ at ξ1 in the direction of ξ2. The following

general equivalence theorem can be proved which provides necessary and sufficient

conditions for a design to be Φ-optimal.

Theorem 1: The following three conditions are equivalent

1. Φ(ξ?) = max
ξ∈Ξ

Φ(ξ),

2. max
x∈X

Ψ(ξ?, ξx) ≤ 0, where ξx is the measure with point mass at x,

3. Ψ(ξ?, ξx) = 0 for all x ∈ support(ξ?).

The proof is analogous to that of Whittle (1973). The required directional derivative

is provided by
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Ψ(ξ, ξx) = lim
α→0+

1

α

∫
C

∫
S
{φc[(1− α)ξ + αξx, s]− φc(ξ, s)} dG(s) dH(c)

=

∫
C

∫
S
ψc(ξ, ξx) dG(s) dH(c) ,

where

ψc(ξ, ξx) = lim
α→0+

1

α
{φc[(1− α)ξ + αξx, s]− φc(ξ, s)}

is the directional derivative for objective function c. Note that if one or more of

C, G, N and B consists of continuous random variables, then the corresponding

distribution function must be differentiable.

3. Numerical example

In this section, a Φ-optimal design is found numerically for a special case of the

criterion, and its optimality confirmed using the necessary and sufficient conditions.

Consider an experiment with four variables, x1-x4, with each variable scaled so

that X = [−1, 1]4. A logistic regression model is used for the response with η =

β0 +
∑4

l=1 βlxl. A single local D-optimality objective function is considered, namely,

φ(ξ, s) = log |M(ξ,β)|1/5 ,

where M(ξ, β) is the standardised information matrix for design ξ and model pa-

rameters β = (β0, . . . , β4). For logistic regression, the information matrix is given

by

M(ξ, β) = X ′(ξ)W (ξ,β)X(ξ) ,

where X(ξ) is the n×5 model matrix for design ξ, and W (ξ,β) is a diagonal matrix

with entries ω(xi)v(xi) with v(xi) = µi(1− µi). The mean response, µi, at the ith

support point depends on β and xi through the linear predictor.

6



Table 1: Values of the parameters for the example

Model β0 β1 β2 β3 β4

1 1.6 2 1.6 1.6 2

2 0 2.4 2 2.8 2.8

3 -1.6 1.2 2.8 1.2 1.6

4 -0.8 2.8 1.2 2 1.2

5 0.8 1.6 2.4 2.4 2.4

Objective function (2) then becomes

Φ(ξ) =

∫
B

log |M(ξ,β)|1/5 dG(β) . (5)

Suppose that G(β) is a five-point discrete distribution defined on the parameter

values given in Table 1 and with equal weight given to each point. The five points

were selected as a Latin hypercube sample (McKay et al., 1979).

In general, an optimal design is not unique and, for compromise or Bayesian

designs, there is no upper bound on the number of support points (see, for example

Atkinson et al., 2007, ch.18). In addition, any weighted average of two optimal

design measures will itself be an optimal design. Hence to find a Φ-optimal design

for the example, a numerical search was used (see Woods, 2008) where the maximum

number of support points was set to a suitably large number, and then decreased to

find the optimal design with the smallest support. The design obtained is shown in

Table 2 and has 16 support points.

The Φ-optimality of this design may be confirmed numerically from the general

equivalence theorem, using condition 2, by evaluating the directional derivative of (5)

across the design region. This derivative is given by
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Table 2: A Φ-optimal design for four variables in 16 runs

Run x1 x2 x3 x4 w Run x1 x2 x3 x4 w

1 -1 -1 1 1 0.071 9 1 -1 -1 1 0.111

2 1 -1 1 -1 0.088 10 -1 -1 0.03 1 0.058

3 -0.16 1 1 -1 0.038 11 -1 0.03 -1 1 0.003

4 -1 1 -1 -0.14 0.067 12 1 -0.05 -1 1 0.027

5 1 -0.85 1 1 0.018 13 0.17 -1 1 -1 0.067

6 -1 1 -1 1 0.095 14 1 1 -1 -0.18 0.020

7 -1 1 1 -1 0.124 15 1 1 -1 -1 0.142

8 1 -1 -0.39 -1 0.025 16 -1 0.43 1 1 0.045

Ψ(ξ, ξx) =
1

p

∫
B

[
v(x)f(x)′M−1(ξ,β)f(x)− p

]
dG(β)

=
1

25

5∑
i=1

v(x)f(x)′M−1(ξ,βi)f(x)− 1 .

Figure 1 shows two different projections of Ψ(ξ?, ξx) into the x1-x2 plane and illus-

trates that the selected support points are those points for which ψ(ξ?, ξx) has its

maximum value of 0. The other projections are similar, illustrating that the support

points of ξ? form the level set for Ψ(ξ?, ξx) = 0.

4. Assessing the performance of exact designs

In practice, exact designs (i.e. having integer replication of each support point)

are required. Let ∆(N) denote the set of all such designs with N runs. Then

δ(N) ∈ ∆(N) is a measure which has integer non-zero image with
∑n

i=1 ω(xi) = N .

In addition, for any continuous design ξ ∈ Ξ, let ξ̃(N) denote the measure on X

which has identical support to ξ with the ith element of the support having image
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Figure 1: Ψ(ξ?,x) surface in the x1-x2 plane and design points (♦) for the numerical

example: (a) x3 = −1, x4 = 1; (b) x3 = 1, x4 = 1. The area of the diamonds is

proportion to ω(x).

w̃(xi) = Nw(xi). Further, let Ξ̃(N) = {ξ̃; ξ ∈ Ξ}. Note that ξ̃(N) is an exact design

only when it has integer non-zero image.

We extend the domain of Φ in (2) to Ξ̃(N), where ∆(N) ⊂ Ξ̃(N). Let δ?(N) and

ξ̃?(N) be the elements having maximum values of Φ in ∆(N) and Ξ̃(N) respectively.

Then δ?(N) is the Φ-optimal exact design in N runs.

The following theorem establishes bounds on the value of Φ(δ?(N)) when local

objective function φc is a monotonically non-decreasing function with respect to N ,

i.e. φc(ξ̃(N1), s) ≥ φc(ξ̃(N2), s) for N1 ≥ N2.

Theorem 2: If Φ(ξ̃(N)) is monotonically non-decreasing with respect to N ,

then Φ(δ?(N)) is bounded below by

Φ(δ?(N)) ≥ Φ(ξ̃?(N − n)) , for N ≥ n ,

and bounded above by
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Figure 2: Bounds on Φ(δ?(N)) and values of Φ(δ?R(N)) and Φ(δF (N)) for the nu-

merical example.

Φ(δ?(N)) ≤ Φ(ξ̃?(N)) , for N ≥ 0 .

Proof: Let ξ+(N) ∈ ∆(N) be the measure with the same support as ξ ∈ Ξ

and ith element of the support having image ω+(xi) = [Nω(xi)]
+ where [u]+ is the

smallest integer greater than u. Then
∑n

i=1 ω+(xi) ≥
∑n

i=1Nω(xi) and, by the

monotonicity of Φ,

Φ(ξ̃?(N − n)) ≤ Φ(ξ?+(N − n)) ≤ Φ(δ?(N)) for N ≥ n ,

as ξ?+(N − n) is an exact design on N − n runs having the same support as ξ?. The

upper bound follows directly from the fact that ∆(N) ⊂ Ξ̃(N).

Figure 2 shows the bounds for 0 ≤ N ≤ 100 for the numerical example of
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Section 3 and objective function (5). It also shows the values of the objective

function for an exact design, δ?R(N), obtained by numerical rounding of an optimal

continuous design ξ?, and the performance of a 24−1
IV fractional factorial, δF (N). For

this design, the replication for each of the eight support points was chosen to give

the largest value of Φ(δf (N)) while ensuring as equal replication as possible. These

designs can only be assessed for N ≥ 5, when they have sufficient distinct runs to

estimate the model parameters. Clearly, δ?R(N) performs well, nearly attaining the

upper bound for N ≥ 5. This is in contrast to the poor performance of δF (N).
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