Hindawi Publishing Corporation
Advances in Nonlinear Optics

Volume 2008, Article ID 480362, 10 pages
doi:10.1155/2008/480362

Research Article

Parabolic Pulse Generation Using Tapered Microstructured

Optical Fibres

Natasha Vukovic, Neil G. R. Broderick, and Francesco Poletti

Optoelectronics Research Centre, University of Southampton, Southampton SO17 1B], UK

Correspondence should be addressed to Natasha Vukovic, ntv@orc.soton.ac.uk

Received 21 September 2007; Accepted 20 December 2007

Recommended by Stephane Coen

This paper presents a numerical study of parabolic pulse generation in tapered microstructured optical fibres (MOFs). Based on
our results and the algorithms presented, one can determine the linear taper profile (starting and finishing pitch values and taper
length) needed to achieve parabolic pulse shaping of an initial Gaussian pulse shape with different widths and powers. We quantify
the evolution of the parabolic pulse using the misfit parameter and show that it is possible to reach values significantly better than

those obtained by a step index fibre.

Copyright © 2008 Natasha Vukovic et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

The generation of parabolic pulse has been widely investi-
gated and is still an active area of research due to its unique
properties and numerous applications. In the normal disper-
sion regime, due to the interaction between dispersive and
nonlinear effects, a high intensity pulse suffers wave break-
ing, manifesting itself as oscillations on the pulse’s tail [1].
However, for a linearly chirped parabolic pulse, this effect can
be avoided if the pulse’s chirp is such that the rate of change
of the time separation is the same for all parts of the pulse, re-
sulting in the pulse evolving in a self-similar fashion [1]. Im-
portantly, linearly chirped parabolic pulses can be efficiently
compressed and are used in many telecommunications appli-
cations such as optical regeneration [2] or temporal Fourier
transforms [3]. Such pulses are useful for applications such
as pulse compression, and indeed compression of picosecond
pulses down to femtosecond range has been experimentally
demonstrated in 4, 5].

Different approaches to the generation of parabolic
pulses have been studied and include a fibre Bragg grat-
ing [4], dispersion decreasing fibre in the normal dispersion
regime [6], normally dispersive two-segment fibre device [7—
9], optical amplifiers [10], or similariton lasers [11]. Applica-
tions requiring high-power parabolic pulses often rely on an

optical amplifier as parabolic pulses are automatically gener-
ated in these amplifiers. On the other hand, there is a range of
applications, particularly related to optical signal processing,
where a high signal power is undesirable, since it requires a
high-power pump source and adds costs and complexity to
the system [7]. Another drawback of using an active system
is that it introduces amplified spontaneous emission noise.
Hence, the need for other ways to generate parabolic pulses
using passive fibres is required.

The passive means to generate parabolic pulses described
above all require relative long lengths of fibre (>1km) and
are suitable for picosecond pulse widths (>1picosecond). In
[12], however, it was shown that by using a comb-like dis-
persion a decreasing profile also leads to parabolic pulse
generation, in a few metres of fibre. Such comb-like pro-
files are complicated to produce (relying on multiple splices),
and hence there is a need for a different approach for effi-
cient generation of parabolic pulses in relative short lengths
and with the flexibility of coping with different input pulse
widths and energies. Due to the exceptional properties of mi-
crostructured optical fibres such as control of optical proper-
ties (dispersion, nonlinearity, and birefringence), “endlessly”
single-mode guidance, extreme mode sizes, low bend loss
[13], we chose to examine microstructured optical fibre-
based tapers for parabolic pulse generation. Tapered MOFs
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have found many other applications, such as pulse compres-
sion [14, 15], supercontinuum generation [16], generating
soliton frequency shift [17], and SBS threshold enhancement
[18].

Our aim here is to investigate whether tapered mi-
crostructured fibres can be used to efficiently generate
parabolic pulses in short lengths (<10 m). We choose to taper
the fibres, since, as it was pointed out in [6, 19-21], thatin a
system described by the ideal lossless nonlinear Schrodinger
equation (NLSE) with decreasing dispersion, optical pulse
evolution is formally similar to that of a medium with a
constant gain. As a consequence, an asymptotic self-similar
parabolic pulse solution is found to exist in a dispersion de-
creasing fibre with normal group velocity dispersion, that
is, a taper [6]. Using linear dispersion profiles, we achieved
parabolic pulses after a finite propagation length, with the
parabolic pulse remaining stable for some length before be-
ing distorted. Formally, this approach does not correspond
to an asymptotic self-similar parabolic pulse, since we used
a linear taper profile and not a hyperbolic dispersion pro-
file. However, our approach is still based on the observation
that the longitudinal decrease of the normal dispersion is for-
mally equivalent to optical gain.

Section 2 presents results of modelling and simulation of
normally dispersive microstructured optical fibres. We have
identified two normal dispersion regions, and outlined a pro-
cedure for choosing the parameters of the taper profile (start-
ing and finishing values of the pitch) and the air-filling fac-
tor, for efficient pulse generation. Then in Section 3, using
the NLSE, we show how initial Gaussian pulses of different
input powers and widths evolve into parabolic pulses with
a linear chirp for two different tapers. Results are quantified
using the misfit parameter, which measures the root mean
square error between the propagated pulse and its parabolic
fit in the time domain, and presented so that the optimum
taper length that corresponds to the best parabolic pulse can
be determined. The best misfit distances for both regions and
a range of pulse power and initial pulse widths are given, al-
lowing one to choose the best taper profiles for a wide range
of initial pulse parameters.

2. MOF AND TAPER MODELLING

A microstructured fibre consists of a periodic array of air-
holes with a central defect acting as the core with the opti-
cal parameters of the fibre being completely determined by
the period A and the relative air-hole size d/A. We used the
finite element method (FEM), implemented in the commer-
cial software package Comsol Multiphysics, to solve for dis-
persion, effective area, and confinement loss of the lowest-
order mode. The FEM elements are flexible from a geometric
point of view (easy treatments of any shape of structure) and
from the material point of view (it allows inhomogeneous,
anisotropic, or nonlinear characteristics to be incorporated)
[22]. The refractive index of silica n(w) is approximated by
the standard Sellmeier equation [23]. The geometry of the
MOF used was a hexagonal pattern with 11 layers of holes,
(see Figure 1). Group theory analysis allows only a quarter
of the structure to be simulated with no loss of information
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FIGURE 1: Cross-section of the MOF with 11 rings of holes (d-hole
diameter, A—pitch).
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F1GURE 2: The magnitude of the Poynting vector.

about the modes saving considerable amount of the compu-
tational time [24]. A typical fundamental mode of a MOEF,
for illustrative purposes, is shown in Figure 2. Note that the
light is well confined to the core region and penetrates only
slightly into the cladding region.

For this study, the crucial result of the fibre simulations is
the propagation constant 3 and associated effective index res
which are related by

2T et

= . 1

p=" ()
Note that for a finite structure, neg is a complex num-
ber with the imaginary part giving the confinement loss of
the mode. In our FEM analysis, we used a perfectly matched

layer (PML) to treat the open boundaries. Using the complex
effective index, the confinement loss is calculated as

20x 10° 27
In10  A[pm]

CL[dB/m] = Im (7). (2)
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FiGure 3: Dispersion (D) contour plot at A = 1.55 ym.

For useful fibres, a loss of less than 1 dB/m is needed and
this forces us to reduce the parameter space of possible fibres
in our study.

The chromatic dispersion, d, of the fibre is given by

2mc
D =-Zp, 3
where 3, is a group velocity dispersion defined as follows:

2
p=2E. @

Note that as pure silica at 1.55 microns has positive dis-
persion, and so fibres with large negative waveguide disper-
sion are needed in this study.

Since ideal MOFs depend on only two parameters, their
optical properties can be best displayed using an optical map
such as that shown in Figure 3 which shows the dispersion
of various MOFs at 1.55um (wavelength mostly used in
telecommunications applications). This plot enables us to
find the range of values for A and d/A that would provide
normal dispersion regime (D < 0) of the fibre. It can be
seen that almost any value of d/A can be used assuming that
the correct value of A is chosen and so we need to choose
a range that can be easily fabricated. Importantly, the dis-
persion characteristics of any fibre taper can be immediately
read off the contour graph as each fibre taper corresponds to
a path in (A, d/A) space. However, for ease of taper fabri-
cation, only vertical paths are considered here as they corre-
spond to fibre tapers with a constant d/A which can be made
by simply heating and stretching the fibre. More complicated
profiles which can be made by pressuring the taper during
fabrication are not considered here.

Since our fibre tapers have a fixed d/A, we can compress
the 2D map in Figure 3 into a series of overlapping curves as
shown in Figure 4.

In Figure 4, the dispersion is calculated versus air-filling
factor d/A, for different values of parameter A. From
Figure 4, it can be seen that there are several regions of d/A
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F1GURE 4: Dispersion versus d/A for different values of A.

that can be chosen so that a fibre operates in the normal
dispersion regime. We chose to examine three regions with
d/A=0.2,0.3, and 0.8, respectively, as these regions have a
low absolute value of dispersion. Both the nonlinearity and
the third-order dispersion differ by an order of magnitude in
the different regions. Thus, these regions allow us to observe
the effects of different fibre parameters on the pulse shaping.

For these regions, we determined the maximum and
minimum values of A, in accordance with the limits that ab-
solute value of the dispersion is lower than —40 ps/nm/km
(as this level of dispersion can be acceptable in communica-
tions applications), according to Figure 3. We next examined
the effect of the confinement loss for each region. Figure 5
shows plots of the dispersion and confinement loss versus
pitch (A) for a fixed d/A = 0.2. Similarly, Figures 6 and 7
show the results for d/A = 0.3 and d/A = 0.8, respectively.

From Figures 5-7, we can see that although the disper-
sion is limited to the absolute value of 40 ps/nm/km, the con-
finement loss changes by several orders of magnitude for dif-
ferent d/ A values, being the lowest for d/A = 0.8 and the high-
est for d/A = 0.2 (as expected). The results obtained for d/A
= 0.2 show that although the dispersion is low, the confine-
ment loss of up to 100 dB/m is the crucial factor making this
region useless for practical experiments. Therefore, we will
concentrate on the regions of d/A = 0.3 and d/A = 0.8, as
both the dispersion and the confinement loss lie within ac-
ceptable limits.

From Figure 6, we choose the parameters of the first
taper, with starting pitch (1.85um) and finishing pitch
(2.2pym) In the same manner, from Figure 7, we chose pa-
rameters of the second taper, the starting pitch (1.18 ym) and
finishing pitch (1.22 ym). Even knowing the starting and fin-
ishing values of the dispersion, there is still an infinite range
of possible tapers to consider. For the sake of simplicity, we
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FIGURE 6: Dispersion and confinement loss versus pitch, when d/A = 0.3.

choose a linear profile for the taper, determined by fibre pitch
at the beginning and the end, from the equation

(Zmax — 2)A(0) + ZzA(Zmax)

Zmax

Az) = (5)
where zm,y is the taper length, A(0) = 1.85 ym, and A(zmax) =
2.2um. In the normal dispersion regime, smaller absolute
values of dispersion correspond to larger core diameters, and
therefore taper should be used from the narrow end. Other
taper profiles are possible (such as exponentially decreasing
profiles that will be studied in a later paper).

The parameters of the MOF that change with tapering are
the chromatic dispersion f3,, third-order dispersion fs, and
nonlinear coefficient y. The nonlinear coefficient y is given
by [20]

_ 2nm
r= AAeff’

(6)

where 1, = 2.2 x 1072 m2/W is the nonlinear refractive in-
dex of the silica fibre, A is the effective mode area, and A is
the optical wavelength. Note that it is the effective area that
changes along the taper and hence y does as well. Tables 1
and 2 summarize taper parameters for regions d/A = 0.3 and
d/A = 0.8, respectively.

The final linear taper profile and change of parameters
B2, B3, and y with the distance are shown in Figures 8 and 9
for d/A = 0.3 and d/A = 0.8, respectively.

3. SIMULATIONS AND DISCUSSION

Having chosen the fibre tapers, the next step is to exam-
ine optical propagation through them. The propagation of

pulses in an optical fibre with variable dispersion and non-
linearity is described by nonlinear Schrodinger equation
(NLSE) [23]:

ou a  .Pz)d*u  Ps(z) Pu

5T Eu+l/32! Friie ﬁ3! Friie iy(z)lul*u=0, (7)
where u is the complex electric field envelope, z is the dis-
tance along the fibre, t is retarded time and is defined such
that for any distance z along the fibre, the centre of the pulse
isatt =0, « is fibre loss, 3, is group velocity dispersion, 3
is third-order dispersion, and y is the nonlinear coefficient.
We solved the NLSE (7) numerically, using the symmetrized
split-step Fourier method [23, 25], for our two tapers. In
order to quantify the evolution towards parabolic pulse, we
computed the evolution of the misfit parameter M? between
the pulse intensity profile |u|? and the parabolic fit | plz, us-
ing [7]

[[lul? - pI* dr
[ lul*dr ’

where p(t) is the generalized expression for the parabolic
pulse

M? =

(8)

t? C T
P, [1-2— — 'ftz), if [t] < i,
p(t) = 1V TgeXp< ) =05 (o)
0, elsewhere,

where P, is the peak power of the pulse, T}, is the tempo-
ral full-width at half maximum (FWHM), and C is the lin-
ear chirp coefficient. We also use a local misfit parameter
which looks at the difference between the pulse and an ideal
parabolic pulse at a particular instant in time.
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TaBLE 1: Parameters of the tapered fibre (d/A = 0.3).
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FIGURE 8: (a) 5, and 35 (- -) versus distance, (b) y versus distance,
and (c) pitch (A) versus distance, when d/A = 0.3.

The initial pulse launched into the fibre was a Gaussian
pulse with various peak powers and temporal widths. We
choose a taper length zmax = 10m (this value determines
slope of the linear taper profile in (5)), as this slope of the
linear profile gives the best parabolic fit. We propagated the
pulse along the taper from the narrow end, with A = 1.85 ym
to A = 2.2 ym, in the first case, when d/A = 0.3. The range of
input pulse peak power was 2 KW to 20 KW, and the range of
input pulse FWHM was 200 femtoseconds to 5 picosecods.
The range of input pulse peak powers and widths ensured
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z (m)
(c)

FIGURE 9: (a) f3, and f3; (- -) versus distance, (b) y versus distance,
and (c) pitch (A) versus distance, when d/A = 0.8.

nonlinear propagation in all cases and prevented pulse dis-
tortion at higher pulse energies.

It has been shown in [7] that pulse reshaping is possible
using nonlinear propagation in a length of a normally dis-
persive step index fibre. The best misfit parameter obtained
in that study was 0.033, for a pulse energy of 31 pJ. Thus, for
our method to be useful, we need to improve upon this fig-
ure. In fact, we find that for a range of parameters the mini-
mum misfit parameter for different input energies is less than
0.002—for the example chosen, when d/A = 0.8, it is 0.0015.
By carefully adjusting input pulse peak power and width, it is
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FiGure 10: (a) Pulse envelope (normalize Iu\z) against parabolic fit
(normalized | p\z), and (b) local misfit parameter, d/A = 0.3.

possible to reach values corresponding to M? < 0.001, that is,
significantly better than that obtained by a step index fibre.

A typical result is presented in Figure 10 which shows a
plot of the intensity profile of the output pulse for a taper
length of 2.2 m (peak power 2.8 KW and the pulse FWHM
width 4.5 picoseconds) and the best parabolic fit, as well as
plot of the local misfit. The pulse envelope is almost perfectly
parabolic, apart from the pulse edges, as expected. The lo-
cal misfit parameter is of the order of 10~* which should be
acceptable for most applications.

The minimum values of M? along the length of the taper
(for d/A = 0.3) are shown in Figure 11 assuming no loss for
different initial conditions. Figure 12 shows distance along
the taper where the misfit parameter has its minimum value.
Similarly, Figure 13 shows the result obtained for the same
taper with an artificially high-fibre loss taken into account
as a = 0.5dB/m. Also, Figure 14 shows distances that cor-
respond to the minimum misfit parameter from Figure 13.
Comparing these two sets of graphs, only minor differences
can be seen showing that realistic fibre losses will not signifi-
cantly affect the parabolic pulse generation. From Figures 11
and 12, or from Figures 13 and 14, we can extract the ta-
per length that will provide the best misfit parameter, that is,
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TaBLE 2: Parameters of the tapered fibre (d/A = 0.8).
A [pm] B> [ps?/m] B5 [ps*/m] y [W-lkm™!]
Start 1.18 0.0436 —0.001131 45.1
End 1.22 0.00031 —0.0009118 44.1
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F1GURE 12: Taper length where the best (minimum) misfit parame-
ter is obtained for input Gaussian pulse: « = 0, d/A = 0.3.

where the best parabolic pulse is generated. From the contour
plots given, it can be concluded that there is a range of val-
ues of input pulse widths and powers that will enable genera-
tion of parabolic pulses. Minimum value of misfit parameter,
from Figure 11, is 0.002, obtained for input powers of around
3 KW, for different input pulse widths. From Figure 11, it can
be seen that misfit parameter is a function of the peak power
whilst it is mostly independent on the value of the pulse
width. The taper length that corresponds to the chosen pulse
peak power and width can be determined from Figure 12.
Therefore, from Figures 11 and 12, it is possible to choose
values for input pulse power, width, and the taper length
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(this choice depends on the choice of the equipment used
in the particular application). For the illustration purposes,
we chose input pulse power, width, and the taper length: Py =
2.8 KW, T = 4.5 picoseconds, and Zmax = 2.2 m, respectively.
Figure 15 shows parabolic pulse evolution for the chosen pa-
rameters of the taper, when d/A = 0.3 and peak power Py =
2.8 KW, FWHM width Ty = 4.5 picoseconds and the taper
length Z . = 2.2 m.

Figure 16 shows the pulse envelope, spectrum, phase, and
chirp, for the chosen values. The spectra broadening factor
is calculated as B/By = 28 (where B is bandwidth at zy.x =
2.2 m, and By is bandwidth, when z = 0 m). From the bottom
plot in Figure 16, which represents instantaneous frequency,
or chirp, it can be seen that the generated parabolic pulse
has a linear chirp across it and therefore can be useful for
practical applications. Figure 17 shows the result of the pulse
compression performed numerically (using ideal pulse com-
pression), where initial pulse full-width at half maximum
(FWHM) is 4.5 picoseconds and after compression 310 fem-
toseconds, so that a compression ratio (calculated as the ratio
of the FWHM of the input pulse to that of the compressed
pulse) of 14.5 is obtained.

For the second taper, when d/A = 0.8, as the nonlinearity
is much higher than when d/A = 0.3, the range of input pulse
peak power was 10 W to 1 KW and the range of input pulse
FWHM was 200 femtoseconds to 5 picoseconds. As for the
first taper, we plotted contour plots of the minimum misfit
parameter along the taper length (see Figure 18) and the cor-
responding distances (Figure 19) versus pulse peak powers
and FWHM widths. From Figures 18 and 19 (as in the previ-
ous case), we could extract the information about the taper
length which will provide the best misfit parameter. Mini-
mum value of misfit parameter, from Figure 18, is 0.002, ob-
tained for input powers of around 0.1 KW, for different in-
put pulse widths. The taper length that corresponds to the
chosen pulse peak power and width can be determined from
Figure 19. Therefore, from Figures 18 and 19, it is possible
to choose values for input pulse peak power, width, and the
taper length: Py = 0.1 KW, T, = 2 picoseconds, and zmax =
2.3 m, respectively. Similarly to the taper, when d/A = 0.3,
from the contour plots given, it can be concluded that there
is a range of values of input pulse widths and powers that will
enable generation of parabolic pulses.

Figure 20 shows parabolic pulse evolution for the cho-
sen parameters of the taper, when d/A = 0.8 and peak power
Py =0.1 KW, FWHM width Ty = 2 picoseconds, and the taper
length Z =2.3m.

Figure 21 shows the pulse envelope, spectrum, phase and
chirp, for the taper, when d/A = 0.8, and the chosen val-
ues for the peak power, FWHM width, and the taper length.
The spectra broadening factor is calculated as B/By = 9.25,
when d/A = 0.8. Result of the numerical pulse compression
is shown in Figure 22. Initial pulse FWHM is 2 picoseconds
and pulse is compressed to 332 femtoseconds, so that com-
pression factor of 6 is obtained for this case. The sidelobes
observed in Figures 17 and 22 are the theoretical wings of a
recompressed parabolic pulse.

In Figure 23, for d/A = 0.8, we present the pulse en-
velope at the taper length 2.3 m, Py = 0.1 KW, and T, =2
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picoseconds and at the bottom plot, the misfit parameter
or the error between the pulse intensity profile and the
parabolic fit calculated using (8). It can be seen that the
pulse exhibits the parabolic intensity profile, but with the
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small discrepancy in the wings of the pulse. By comparison
of Figures 23 and 10, it can be observed that the minimum
misfit parameter has a lower value when d/A = 0.8, so the
intensity profile of the pulse for the taper when d/A = 0.8
deviates less from the parabolic shape in comparison to the
case, when d/A = 0.3, although it deviates slightly more at
the top of the pulse. We anticipate that this asymmetric de-
viation from the parabolic shape is due to the value of the
third-order dispersion, which is nearly one order of magni-
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FIGURE 23: (a) Pulse envelope (normalized lul?) against parabolic
fit (normalized | plz), and (b) local misfit parameter, d/A = 0.8.

tude higher, when d/A = 0.8, in comparison to the case d/A
= 0.3. Also, the higher power of the pulse, when d/A = 0.3, is
another reason for this greater misfit.

4. CONCLUSION

We have presented results of modelling and simulation of
a microstructured optical fibre taper, where the parameters
of the pitch and the air-filling factor are determined so that
the normal dispersion regime is obtained. For two different
values of the air-filling factor 0.3 and 0.8, two different ta-
pers with a linear profile are proposed. In the case when d/A
= 0.3, the confinement loss is non-negligible, so it has been
taken into consideration. Results show that a Gaussian input
pulse of different peak powers and widths can evolve into the
parabolic shape with a linear chirp coefficient in both cases.
The two different spectra broadening factors are calculated
for two different cases, 28 when d/A = 0.3 and 9.25 when d/A
= 0.8. Also, results show that using the first taper, when d/A
= 0.3, linearly chirped parabolic pulse of FWHM width of
4.5 picoseconds can be compressed down to 310 femtosec-
onds, so that compression factor of 14.5 is achieved, and for
the second taper, when d/A = 0.8, initial pulse FWHM width
of 2 picoseconds is compressed to 332 femtoseconds, so that
compression factor 6 is obtained. The optimal taper length,
to achieve the best parabolic characteristic for a range of in-
put powers and pulse widths, has also been determined. Re-
sults show that due to the different nonlinearity parameters
for the two tapers under consideration, the best parabolic fit
can be achieved for different pulse energies. When d/A = 0.3,
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minimum misfit parameter is achieved for pulse energy in
range from 10 n] to 24 nJ, while when d/A = 0.8, due to the
higher nonlinearity coefficient, the pulse energy range that
gives minimum misfit parameter is from 177 pJ to 440 pJ.
Therefore, we can conclude that these results might be of
interest where pulse reshaping is conditioned by the initial
pulse energy availability. Based on the presented procedure,
optimization can be performed to find the best possible taper
profile and length for the parabolic pulse generation.
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