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ABSTRACT

In marine sediments, bubbles of gas (often methane) exist in a variety of forms,
ranging from near-spherical bubbles to coin- or slab-like gas inclusions. The phases
present (gas, liquid and particulates) can co-exist in a number of forms, ranging from
the presence of gas pockets contained wholly within the liquid interstices between
particles, to bubbles where the solid phase forms an integral part of the effective
bubble wall. All these types of bubbles can strongly influence the acoustic properties
of the sediment, depending on the frequency of interest. Such an influence can be seen
as an unwanted, inhomogeneous and poorly-characterised artefact in acoustic
measurements. However if they are sufficiently understood, the effect of the bubbles
on the sound field can be seen as providing acoustic tools for monitoring the gas
bubble population, in order to provide key information for civil engineering projects,

petrochemical surveying or climate modelling.

This report attempts to advance that understanding, and thereby facilitate the
provision of such tools. The assumption that the bubbles interact with the sound field
through volumetric pulsation and remain spherical at all times is maintained. Current
bubble models for sediments assume that the bubbles exist only in the water phase or
neglect the shear properties of the medium. This paper outlines a theory which is not
so restricted: it does not require the above assumptions and can be applied to model
any elastic or poroelastic material provided that the thermal effects are not important
(i.e. provided that thermal phenomena occur over much larger spatial and temporal
scales than do the acoustical processes). Moreover, the theory allows for the nonlinear
pulsation of bubbles, and so can model amplitude-dependent effects which linear
theories cannot predict. This feature is particularly important for gassy sediments,
where the high levels of attenuation of necessitate the use of sound fields of sufficient
amplitude to generate nonlinear effects. Moreover, it provides a numerical model
which will be useful to those who use specifically nonlinear techniques (such as the

generation of sum-and difference-frequencies) to measure gas bubbles in sediment.
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1 Introduction

Over the past few decades, there has built up a considerable body of work in the
literature on the theory of acoustic propagation in marine sediment [Biot 1956a,
1956b; Hampton, 1967; Hamilton 1971; Stoll, 1972; Hovem and Ingram 1979;
Kibblewhite, 1989; Chotiros, 1995; Richardson and Briggs, 1996; Buckingham, 1997,
1998, 2000; Williams 2001; Thorsos et al., 2001]. However incorporation of gas
bubbles into such theories is done with the inclusion of assumptions which severely
limit the applicability of those models to practical gas-laden marine sediments
[Leighton, 2007a]. Whilst there have been important advances, nevertheless the

current theories require assumptions to which many gassy sediments do not conform.
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Type lll, Sediment-displacing bubbles

Figure 1. The characterisation by Anderson et al. [1998] of bubbles in gassy sediments, into three
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types. Type I bubbles (“interstitial bubbles”), are necessarily small, and may be free-floating or

adhering to one or more solid particles, or stabilized within a crevice within a particle. In type 11
(“reservoir bubbles™), the gas pockets displace liquid but do not significantly affect the distribution of
the solid particles. In type III (“sediment-displacing bubbles”) the gas pockets displace both liquid and
sediment, with a bubble wall formed from material which is substantially similar to the bulk sediment.

Reproduced from Anderson et al. [1998].



In marine sediments, bubbles of gas (often methane) exist in many locations [Judd
and Hovland, 1992; Fleischer et al., 2001], and occur in a variety of forms, ranging
from near-spherical bubbles to coin- and slab-like gas inclusions [Abegg and
Anderson, 1997; Anderson et al., 1998]. The phases present (gas, liquid and
particulates) can co-exist in a number of forms, ranging from gas pockets contained
wholly within the liquid interstices between particles, to bubbles where the solid
phase forms an integral part of the effective bubble wall. Anderson et al. [1998]
categorized three types of gas bubble in marine sediment, shown in Figure 1. It is of
course important to appreciate that the ‘bubble’ is more than the pocket of gas, as in
many circumstances the phenomenon in question is dominated by the coupling of that
gas to the surrounding host medium (which provides the majority of the inertia for
acoustic considerations [Leighton et al., 2000], and which provides the reservoir of
material if chemical or mass flux effects are important). Shear and thermal boundary

layer occur at the bubble wall, as do depletion layers [Birkin et al., 2004].

All these types of bubbles can strongly influence the acoustic properties of the
sediment, depending on the frequency of interest. Such an influence can be seen as an
unwanted, inhomogeneous and often unpredictable artefact in acoustic measurements
[Richardson and Briggs, 1996; Anderson et al., 1998; Leighton and Evans, 2007].
However if they are sufficiently understood, the effect of the bubbles on the sound
field can be seen as providing acoustic tools for monitoring the gas bubble population,
in order to provide key information for civil engineering projects [Wheeler and
Gardiner, 1989; Sills et al., 1991], petrochemical and geophysical surveying
[Leighton, 2007a] or the assessment of the sources and sinks of hydrocarbons and the
implications for the environment [Fleischer et al., 2001; Kruglyakova et al., 2002;
Judd, 2003].

This report attempts to advance that understanding, and thereby facilitate the
provision of such tools. Current bubble models for sediments modify in an ad hoc
way the natural frequency and damping of the bubble [Andersonand Hampton, 1980 ]
or neglect the shear properties of the medium [Boyle and Chotiros, 1998]. This paper

outlines a theory which is not so restricted: it does not require the above assumptions



and can be applied to model any elastic or poroelastic material provided that the
thermal effects are not important (i.e. provided that thermal phenomena occur over

much larger spatial and temporal scales than do the acoustical effects).

This derivation maintains the assumption that the bubbles interact with the sound field
in the long-wavelength limit through volumetric pulsation and remain spherical at all
times, and that the void fraction is sufficiently low that multiple scattering can be
neglected. These are clearly important assumptions that will be violated on occasion,
and will need addressing in the future. However for those sediments which conform to
the above assumed conditions, the new approach overcomes other common and
limiting assumptions. An earlier paper [Leighton, 2007a] presented the first stage in
developing the new theory. It described how the approach overcame the need for
common assumptions in the dynamics of gas bubbles in sediments, including:

e the assumption of quasi-static bubble dynamics, which effectively limits
applicability to cases where the frequency of insonification is very much less
than the resonances of any bubbles present. Furthermore, it eliminates from
the theory all bubble resonance effects, which often of are overwhelming
practical importance when marine bubble populations are insonified. This
limitation becomes more severe as gas-laden marine sediments are probed
with ever-increasing frequencies.

e the assumption of monochromatic steady-state bubble dynamics, where the
bubbles pulsate in steady state. This is inconsistent with the use of short
acoustic pulses to obtain range resolution.

e the assumption of monodisperse bubble populations, which is inconsistent
with the wide range of bubble sizes that are found in marine sediments.

e the assumption of linear bubble pulsations, which becomes increasingly
questionable as acoustic fields of increasing amplitudes are used to overcome
the high attenuations. This is particularly appropriate for gassy sediments,
where the high levels of attenuation of necessitate the use of sound fields of
sufficient amplitude to generate nonlinear effects. The new approach allows
for the nonlinear pulsation of bubbles, and so can predict amplitude-dependent
effects which linear theories cannot predict [Leighton et al., 2004, 2008].

Furthermore, it provides a numerical model which will be useful to those who



use specifically nonlinear techniques (such as the generation of sum- and
difference-frequencies; [Didenkulov et al., 2001; Ostrovsky et al., 2003]) to
measure gas bubbles in sediment [Karpov et al., 1996; Tegolwski et al., 2006;
Leighton et al., 2008].

As with the earlier paper [Leighton, 2007a], the current manuscript is based on
consideration of the dynamics of a given bubble, and presents that next stage of
development of the theory. Leighton [2007a] concludes that the next stage of
development of the theory is to overcome the assumption that the medium outside of

the bubble is incompressible. That development will now be described.

2 The dynamics of a single gas bubble in an

elastic medium

2.1 The Keller-Miksis equation

The approach combines the general form of the Keller-Miksis equation with the linear
Voigt model for viscoelastic solids, in the manner applied by Yang and Church [2005]
to study the dynamics of bubbles in soft tissue. Equations from the Herring-Keller-
Miksis family incorporate acoustic radiation losses through an assumed characteristic

compressional wave speed in the effective host medium at the bubble wall (c,).

Although the general theory for wave propagation in porous media predicts the
existence of two compressional waves [Biot, 1956a, 1956b] here the second (slow)
compressional wave is neglected as explained in section 2.3. If, in these equations,
this sound speed is set equal to infinity, they revert to the Rayleigh-Plesset equation
which was the basis for the earlier paper [Leighton, 2007a]. The particular equation of
the Herring-Keller-Miksis family used by Yang and Church [2005] relates the bubble

radius R and wall velocity R to the inertial, forcing and dissipative terms as follows:
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It should be noted that the following formulation is also valid:
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[Prosperetti and Lezzi, 1986]. The pressure p, at the bubble wall can be evaluated in

a number of ways, one of which (as described in the earlier paper [Leighton, 2007a] is

to equate it to the sum of the gas pressure ( p, ), surface tension pressure ( p, = 20/R,
where o is the surface tension) and stress tensor of the near field (T ):

PL=P, = P, T, (R,D) 3)

The pressure far from the bubble (at range r — co from the bubble centre) will be

represented by p_. As described in earlier papers [Church, 1995; Yang and Church,
2005; Leighton 2007a], it can be found from the static pressure p,, a function P(t)

which is the time-varying external acoustic pressure at I — oo, and the stress tensor

of the near and far field, given by I : (T, /r)dr:

p..(t)= Py + PO +T,(R,)+3[ (T, /r)dr (4)

Similarly, the time-varying gas pressure in the bubble can be found through

assumption of a polytropic gas law:

RO 3k (5)
pg = pgo F )

Assuming that there are no residual stresses in the surrounding medium, when the

bubble is at its equilibrium radius R, , the gas pressure is p,:
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2.2 Evaluating viscoelastic stress components

In this section, the viscoelastic stress components that may be used in equation (1) are
evaluated. Because of the assumed spherical symmetry, the radial stress component
depends only on the radial deformation of the medium at distancer from the bubble
centre. Assuming Hookean medium behaviour [Reismann and Pawlik, 1980], the

elastic part of the tensor component T_is expressed in terms of the radial strain ¢_ as

[Reismann and Pawlik, 1980 ]:

I +Zﬂs&. )
r r

T

1r _ elastic

= (A4 +2G,)

os
0

where A is the first Lamé constant and G, is the modulus of rigidity (the dynamic
shear modulus, or second Lamé constant) [Church 1995; Yang and Church, 2005;
Leighton 2007a]. In incompressible conditions, spherical divergence or convergence

of particle velocity gives the radial straing,_ through conservation of mass [Leighton

2007a] as follows:

u=(R/r)R (8)
where U is the radial velocity of the medium surrounding a bubble.

Assuming small deformations, the viscous dissipation is proportional to the viscosity
of the medium [Church, 1995]. As a result, the viscous part of the radial stress tensor

can be expressed as function of the shear viscosity 77, of the host medium outside of

the bubble wall:

o€ )

_ T
r_viscous s 8’[ .

The radial strain rate is approximated from equation (8) according to:
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oc., __2R_2 :
ot r

Radial strain for small amplitudes

For small amplitudes, the radial strain component is approximated as follows:

Ar (RjzAR
g, 2—=—| —=

r r)r
g_(EJZ(R—Ro) (1)
r r r
Hence the expression of instantaneous strain of equation (11) can be written as:
R2 12
& =—(R-R)). (12)
r’

Substituting the expression of equation (12) into (7) leads to cancellation of the terms

containing the first Lamé parameter in equation (7) and the elastic component T ..

becomes:
13
Trr elastic = 2C;s 88” . ( )
- or

Taking both the elastic and lossy characteristics of the medium together (equations

(13) and (9) respectively) [Church, 1995], the radial component of the stress tensor is:

T —4R—2(GS(R—R0)+775R). (14)

rr7

and the integral for the medium in equation (4) can be evaluated with equation (14)

[Leighton, 2007a]:

-R, R 15
3] _ e (15)




Radial strain for large amplitudes.

For large amplitude pulsations equation (12) is not valid. In this case the radial strain
is better approximated by equation (16) according to Yang and Church [2005]:
2

Eq :—?(R3—R3).

(16)

The viscous part of the radial strain is by definition the strain rate Jg_ /ot.

Differentiation of equation 16 with respect to time results in the expression of
equation (9). Hence taking both the lossy and elastic characteristics of the medium

together the radial component of the stress tensor becomes:
G (R'-R’ ) (17)
T, _i{_—s( °)+775R2R].

The stress tensor integral of equation (4) results from integration of (17)

at R according to :

. S_R : 18
3 Togro_dg R=R 4 R (18)
Ror 30 R "R

In both the small (equation (15)) and large amplitude (equation (18)) case, the radial
stress can be expressed also in terms of radial strain as:

w 19
3 Edr = —4(688IT +1, %] (19)
Ry ot



The bubble model for large amplitudes in porous materials

Since here we are interested at large amplitudes, the tensor in the form of equation
(18) will be used rather than from equation (15). The model we present in this report

results from substitution of equations (3), (4), (5) and (18) in (2):
’ . . ' 20
[I—EJRRJFERQ(I—ij: (20)
C, 2 3¢,

. . N
LYW AT I W
P.C, ** RJR "R ‘(R R

2.3 Definition of model parameters

Equation (20) will be used for predicting the nonlinear time-dependent dynamics of a
single bubble in a gassy marine sediment. This approach is identical to that provided
for tissue by Yang and Church [2005]. However the bubble dynamics as described by
equation (20) is restricted to media that behave as Voigt solids. In addition, the

meanings of the model parameters p ,G, and 7, are different to the interpretations

for tissue given by Yang and Church [2005], and the sound speed entering equation
(1) needs further consideration. This section is devoted to the adaptation of these

parameters for sediments.

Marine sediments can be regarded as a two-phase porous continuum which is
composed of a grain skeleton and pore fluid [Biot, 1956a, 1956b]. An alternative
approach is to regard the sediment as a continuous medium (frame plus fluid) with
effective properties; an example of this approach is given by Williams [2001]. In this
effective medium, the volume of a particle must be much smaller than the entire
domain but larger than the pore and the grain size to permit meaningful statistical

averages of the properties in question [Bear, 1972]. Therefore this treatment is



applicable to the Type III bubbles of Figure I, which Anderson et al. [1998] (with
some qualifications) indicate are probably the most common form of marine sediment

bubble observed.

The following discussion seeks to assign effective medium values for key parameters
which the previous sections showed to be relevant to predicting the bubble dynamics.
It is important to note that these parameters are here defined as those attributed to a
bubble-free medium surrounding a Type III bubble. The presence of bubbles in the
medium will cause some of the parameter values to be potentially frequency- and

amplitude-dependent [Leighton, 2007a].

Under the effective medium assumption, the mixture low applies and the density

entering the equation (20), is the effective density, which is defined as:

p=ep, +(1=5)p,. (21)

where p, is the water density, p, is the sediment grain density, and & =V, /V_ is
the porosity (given that a volume V  of pore water is contained within a volume V, of
the bubble free sediment). The sound speed C, entering equation (20) can be

interpreted as the compressional wave speed in the bubble free medium:

(22)

where G, and K are, respectively, the shear and bulk moduli of that effective
medium. The bulk modulus K can be expressed as function of the grain bulk
modulus K, , the fluid bulk modulus and the solid frame (drained) bulk modulus
Kiame [Gassmann, 1951]:

Kframe + Y (23)

K =K
¢ K, +Y

10



where:

K, (K, + Kie) (24)
(K +K)

Equations (21) and (22) assume no relative motion between the fluids and the skeletal

Y=

frame, thus they are a low frequency approximation for the effective density and
sound speed of the medium surrounding the bubble. According to Biot theory [Biot,
1956a, 1956b], in the low frequency regime the skeletal frame (which consists of the
solid grains and the intersitial fluid) move together. In contrast, in the high frequency
regime they move out of phase, so that at high frequencies the inertia depends on the
coupling between solid and fluid. Equation (22) is the Biot fast wave low- frequency
asymptotic hence this approximation is valid for that frequency regime where the Biot
theory predicts P-waves with constant value. If marine sediments of high permeability
are considered (i.e. very fine slits and clays), the relative fluid motion is limited and
therefore the Biot low frequency regime spans over a large frequency range. Under
the assumption of the limited relative motion, the slow wave can be neglected and the
fast wave can be approximated from equation (22) in the low frequency range. An
example is shown with the simulations of Figure 2 where the fast P-wave velocity is
plotted according to Biot theory (after the modifications of Stoll [1]). The values used

for both models are shown in table 1.

1793 : e
— Biot

1792.81- Gassmann||
©1792.61
£
5 1792.41 .
>

1792.2

1792 L IR L Lol L | L Lol L IR L L
10° 10" 10° 10° 10" 10° 10°

Frequency (Hz)

Figure 2 P wave sound speed according to Biot theory (solid line) and Gassmann approximation
(dashed line). The values used for the simulation are typical for sediments with high silt content ,

parameter values shown in table 1.

! Biot code written by A.I.Best

11



The results of figure 1 show that Gassmann’s equation can be a good approximation
over a wide frequency range in the low frequency regime. For this example,
frequencies above 1 kHz render the global flow phenomena important and therefore

Gassmann’s approximation fails. An additional requirement is the porosity remains

constant.
Table 1 Model parameters for the models of figurel.
Fluid density pg 1000 kg/m3 Frame bulk modulus [P GPpa
Fluid bulk modulus 2.2 GPa Frame shear Modulus 0.7 MPa

Mean  grain  size
Fluid shear viscosity [0.001 Pas .
(microns)

Grain density 0650 Kg/m3 Porosity 0.6

Grain Bulk Modulus [36.5 GPa

The definition of shear modulus is less complicated since fluids cannot carry shear
forces. Hence the effective shear modulus is assumed to be equal to the skeletal frame
shear modulus [Gassmann, 1951], which is the same for drained and saturated
conditions [Gassmann, 1951]. Additionally only one shear wave has ever been
observed and Biot theory predicts the existence of one shear wave. The effective
shear modulus, entering the bubble model, is therefore an inherent property of the
matrix material, and it can be either inferred from geotechnical properties of the

sediment or measured in situ by shear vane testing.

It is more difficult to establish the physical correspondence between the effective
medium viscosity 7, and the sediment viscosity (a rheological property of the
sediment). The effective viscosity in the equation (20) represents energy dissipation

during shear deformation of the medium. Hence the parameter 7, can be inferred

from shear wave attenuation provided that the medium is behaving in shear according
to the Voigt viscoelastic model in the frequency rage of interest. He following

paragraph discusses the modelling of shear losses in sediments.

12



The question is if this model (Figure 3(a)) can describe the velocity and attenuation of
acoustic waves propagating in bubble free sediments. At this point the kind of
sediment under consideration must be distinguished because observations cannot be
generalised. In this report we are mainly interested in muddy sediments. That is

sediments with high silt or clay content which are characterised by high permeability.

Referring to the Voigt model of figure 3(a), considerable body of measurements in
this field has shown that the Voigt model is not adequate (see page 4046 of Hamilton
et al. [1970] for an extensive discussion on this topic) for silts and clays because a
linear dependence of the shear wave attenuation with frequency has been observed
(see for example [Wood and Weston, 1964]. According to these experimental
observations the model of (Figure 2(b)) is more adequate to describe the shear wave
velocity and attenuation because a rather constant —Q behaviour has been observed in
muddy sediments. The model of Figure 2(b) allows for this by fitting the imaginary

part of the shear modulus.

A wave propagating in a Voigt viscoelastic medium (i.e. according to the model of

Figure 3(a)) undergoes shear wave attenuation («,, in Np m™") which is proportional

to the square of the frequency f (a, [Np/m]oc f?) [Kolsky, 1953]. This is

equivalent to stating that the logarithmic decrement is proportional to the frequency

(1/Q, oc ), where the Q,-factor relates the shear wave speed to the attenuation

(Q, =7f /e, Cs)z). There are a few works that conform to this model: The

measurements of Stoll [1985] show regimes where there is linear dependence of the
logarithmic decrement with the frequency (see Figure 3 of Stoll [1985]). Also the
work of Leurera and Brown [2008] shows that linear dependence of the logarithmic
decrement as function of frequency can be observed at high frequencies. According to
these measurements, the shear wave showed a logarithmic decrement proportional to f
in sediment with high clay content. An explanation to these measurements is that the
sediment has a high intrinsic attenuation because of the ‘house-of-cards’ frame
structure in combination with clay content and high porosity [Stoll and Bautista,
1998].

2 Muddy sediments exhibit in general no dispersion

13



The results of Stoll [1985] and Leurera and Brown [2008] are two of the few
examples that show that the effective viscosity of the bubble model cannot be fitted
form the modified Voigt model (figure 3 (b))’. The constant-Q behaviour, which has
been mostly observed, can be modelled with the viscoelastic model shown in figure
3(b) which will be further considered. However it must be noted that this model has
acausal behaviour if not purely sinusoidal excitations are considered. Hence, the
Kelvin-Voigt model (shown in Figure 3 (c)) [Kolsky,1953] is a more rigorous
viscoelastic model to describe the behaviour of the background material. Tuning of
the model parameters (i.e. the dashpot G' and spring constants G;, G, ) can lead to a
good approximation of the experimental results. The main drawback is that the
constitutive reological of figure 3 (c¢) requires apparent material properties. That is the
spring constants G;, G, and dashpot constant G' in Figure 3(c) must be coupled to
the geotechnical sediment properties. That is, the model constants should be
expressed as material properties: shear modulus, bulk modulus etc (see Schanz, and
Cheng [2001] and the extensive discussion in Abousleiman et al. [1996]).

For this reason this report proceeds with the use of the model (figure 3(b)) which is in
accordance with the experimental observations that the attenuation increases linearly

with the frequency ¢, [Np/m]oc f . The model parameters are described below:

The visco elastic operator G, + 77, — of equation (21) in the time domain is assumed to

have a correspondent form in the frequency domain:

G =G + |G, (25)

and the corresponding Q-factor for this viscoelastic material model is [Whorolow,

1992]:

G (26)

According to this model, the dynamic shear modulus is assumed to be a complex

number with constant real and imaginary parts. The real part is equal to the dynamic

14



shear modulus. The correspondence between the imaginary part and the medium
viscosity is found by applying a Laplace transform (More details on this approach can

be found in Whorolow [1992]:

G, (27)

S

27f

s =

According to this model, at one particular frequency the steady state behaviour of the
linear medium corresponds to the behaviour of a single Voigt element shown in
Figure 2(a) [Whorolow, 1992]. For a frequency range there is no correspondence

between the two models.

Considering single frequency insonification, for the bubble model, equation (20), the

effective viscosity 7, is found from equation (27). The value of G, equals to the best-

fit value the material, sediment in this case. This ‘value-fit' value will result from an
iterative process from attenuation measurements. Predictions and applications of this

model is a topic of current research.
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(a)

(b)

(©)

G

Figure 3. Reological models: (a) Voigt model with constant parameters; (b) Modified Voigt model with
the dashpot parameter inversely proportional to frequency (equation (27)); and (c) Voigt model with

auxiliary spring (Kelvin-Voigt model).
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Conclusions

This paper has outlined a progression from the theory for a single bubble in a gassy
marine sediment outlined by Leighton [2007a]. As with Leighton [2007a], the bubble
dynamics need not be assumed to be quasi-static, monochromatic, steady-state or
linear. However whereas Leighton [2007] assumed that the medium outside of the
bubble wall was incompressible, the current paper includes finite compressibility (and
therefore radiation losses) by adapting the Keller-Miksis equation, using an approach
of Yang and Church [2005]. As outlined by Leighton [2007a], in the nonlinear regime
this approach is more appropriate than other options, such as artificially enhancing the
shear viscosity to account for radiation and thermal losses. The analysis is applicable
to marine sediments where global flow phenomena are limited. Further work is

expected to refine the estimates of the key parameter values.
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