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ABSTRACT 

 
In marine sediments, bubbles of gas (often methane) exist in a variety of forms, 

ranging from near-spherical bubbles to coin- or slab-like gas inclusions. The phases 

present (gas, liquid and particulates) can co-exist in a number of forms, ranging from 

the presence of gas pockets contained wholly within the liquid interstices between 

particles, to bubbles where the solid phase forms an integral part of the effective 

bubble wall. All these types of bubbles can strongly influence the acoustic properties 

of the sediment, depending on the frequency of interest. Such an influence can be seen 

as an unwanted, inhomogeneous and poorly-characterised artefact in acoustic 

measurements. However if they are sufficiently understood, the effect of the bubbles 

on the sound field can be seen as providing acoustic tools for monitoring the gas 

bubble population, in order to provide key information for civil engineering projects, 

petrochemical surveying or climate modelling.  

 

This report attempts to advance that understanding, and thereby facilitate the 

provision of such tools. The assumption that the bubbles interact with the sound field 

through volumetric pulsation and remain spherical at all times is maintained. Current 

bubble models for sediments assume that the bubbles exist only in the water phase or 

neglect the shear properties of the medium. This paper outlines a theory which is not 

so restricted: it does not require the above assumptions and can be applied to model 

any elastic or poroelastic material provided that the thermal effects are not important 

(i.e. provided that thermal phenomena occur over much larger spatial and temporal 

scales than do the acoustical processes). Moreover, the theory allows for the nonlinear 

pulsation of bubbles, and so can model amplitude-dependent effects which linear 

theories cannot predict. This feature is particularly important for gassy sediments, 

where the high levels of attenuation of necessitate the use of sound fields of sufficient 

amplitude to generate nonlinear effects. Moreover, it provides a numerical model 

which will be useful to those who use specifically nonlinear techniques (such as the 

generation of sum-and difference-frequencies) to measure gas bubbles in sediment.  
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1 Introduction 

Over the past few decades, there has built up a considerable body of work in the 

literature on the theory of acoustic propagation in marine sediment [Biot 1956a, 

1956b; Hampton, 1967; Hamilton 1971; Stoll, 1972; Hovem and Ingram 1979; 

Kibblewhite, 1989; Chotiros, 1995; Richardson and Briggs, 1996; Buckingham, 1997, 

1998, 2000; Williams 2001; Thorsos et al., 2001]. However incorporation of gas 

bubbles into such theories is done with the inclusion of assumptions which severely 

limit the applicability of those models to practical gas-laden marine sediments 

[Leighton, 2007a]. Whilst there have been important advances, nevertheless the 

current theories require assumptions to which many gassy sediments do not conform.  

 
Figure 1. The characterisation by Anderson et al. [1998] of bubbles in gassy sediments, into three 

types. Type I bubbles (“interstitial bubbles”), are necessarily small, and may be free-floating or 

adhering to one or more solid particles, or stabilized within a crevice within a particle. In type II 

(“reservoir bubbles”), the gas pockets displace liquid but do not significantly affect the distribution of 

the solid particles. In type III (“sediment-displacing bubbles”) the gas pockets displace both liquid and 

sediment, with a bubble wall formed from material which is substantially similar to the bulk sediment. 

Reproduced from Anderson et al. [1998]. 
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In marine sediments, bubbles of gas (often methane) exist in many locations [Judd 

and Hovland, 1992; Fleischer et al., 2001], and occur in a variety of forms, ranging 

from near-spherical bubbles to coin- and slab-like gas inclusions [Abegg and 

Anderson, 1997; Anderson et al., 1998]. The phases present (gas, liquid and 

particulates) can co-exist in a number of forms, ranging from gas pockets contained 

wholly within the liquid interstices between particles, to bubbles where the solid 

phase forms an integral part of the effective bubble wall. Anderson et al. [1998] 

categorized three types of gas bubble in marine sediment, shown in Figure 1.  It is of 

course important to appreciate that the ‘bubble’ is more than the pocket of gas, as in 

many circumstances the phenomenon in question is dominated by the coupling of that 

gas to the surrounding host medium (which provides the majority of the inertia for 

acoustic considerations [Leighton et al., 2000], and which provides the reservoir of 

material if chemical or mass flux effects are important). Shear and thermal boundary 

layer occur at the bubble wall, as do depletion layers [Birkin et al., 2004].  

 

All these types of bubbles can strongly influence the acoustic properties of the 

sediment, depending on the frequency of interest. Such an influence can be seen as an 

unwanted, inhomogeneous and often unpredictable artefact in acoustic measurements 

[Richardson and Briggs, 1996; Anderson et al., 1998; Leighton and Evans, 2007]. 

However if they are sufficiently understood, the effect of the bubbles on the sound 

field can be seen as providing acoustic tools for monitoring the gas bubble population, 

in order to provide key information for civil engineering projects [Wheeler and 

Gardiner, 1989; Sills et al., 1991], petrochemical and geophysical surveying 

[Leighton, 2007a] or the assessment of the sources and sinks of hydrocarbons and the 

implications for the environment [Fleischer et al., 2001; Kruglyakova et al., 2002; 

Judd, 2003].  

 

This report attempts to advance that understanding, and thereby facilitate the 

provision of such tools. Current bubble models for sediments modify in an ad hoc 

way the natural frequency and damping of the bubble [Andersonand Hampton, 1980 ] 

or neglect the shear properties of the medium [Boyle and  Chotiros, 1998]. This paper 

outlines a theory which is not so restricted: it does not require the above assumptions 



3 

and can be applied to model any elastic or poroelastic material provided that the 

thermal effects are not important (i.e. provided that thermal phenomena occur over 

much larger spatial and temporal scales than do the acoustical effects).   

 

This derivation maintains the assumption that the bubbles interact with the sound field 

in the long-wavelength limit through volumetric pulsation and remain spherical at all 

times, and that the void fraction is sufficiently low that multiple scattering can be 

neglected. These are clearly important assumptions that will be violated on occasion, 

and will need addressing in the future. However for those sediments which conform to 

the above assumed conditions, the new approach overcomes other common and 

limiting assumptions. An earlier paper [Leighton, 2007a] presented the first stage in 

developing the new theory. It described how the approach overcame the need for 

common assumptions in the dynamics of gas bubbles in sediments, including:  

 the assumption of quasi-static bubble dynamics, which effectively limits 

applicability to cases where the frequency of insonification is very much less 

than the resonances of any bubbles present. Furthermore, it eliminates from 

the theory all bubble resonance effects, which often of are overwhelming 

practical importance when marine bubble populations are insonified. This 

limitation becomes more severe as gas-laden marine sediments are probed 

with ever-increasing frequencies.  

 the assumption of monochromatic steady-state bubble dynamics, where the 

bubbles pulsate in steady state. This is inconsistent with the use of short 

acoustic pulses to obtain range resolution. 

 the assumption of monodisperse bubble populations, which is inconsistent 

with the wide range of bubble sizes that are found in marine sediments. 

 the assumption of linear bubble pulsations, which becomes increasingly 

questionable as acoustic fields of increasing amplitudes are used to overcome 

the high attenuations. This is particularly appropriate for gassy sediments, 

where the high levels of attenuation of necessitate the use of sound fields of 

sufficient amplitude to generate nonlinear effects.  The new approach allows 

for the nonlinear pulsation of bubbles, and so can predict amplitude-dependent 

effects which linear theories cannot predict [Leighton et al., 2004, 2008]. 

Furthermore, it provides a numerical model which will be useful to those who 
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use specifically nonlinear techniques (such as the generation of sum- and 

difference-frequencies; [Didenkulov et al., 2001; Ostrovsky et al., 2003]) to 

measure gas bubbles in sediment [Karpov et al., 1996; Tegolwski et al., 2006; 

Leighton et al., 2008]. 

 

As with the earlier paper [Leighton, 2007a], the current manuscript is based on 

consideration of the dynamics of a given bubble, and presents that next stage of 

development of the theory. Leighton [2007a] concludes that the next stage of 

development of the theory is to overcome the assumption that the medium outside of 

the bubble is incompressible. That development will now be described.  

 

2 The dynamics of a single gas bubble in an 

elastic medium 

 

2.1 The Keller-Miksis equation 

 

The approach combines the general form of the Keller-Miksis equation with the linear 

Voigt model for viscoelastic solids, in the manner applied by Yang and Church [2005] 

to study the dynamics of bubbles in soft tissue. Equations from the Herring-Keller-

Miksis family incorporate acoustic radiation losses through an assumed characteristic 

compressional wave speed in the effective host medium at the bubble wall ( sc ). 

Although the general theory for wave propagation in porous media predicts the 

existence of two compressional waves [Biot, 1956a, 1956b] here the second (slow) 

compressional wave is neglected as explained in section 2.3. If, in these equations, 

this sound speed is set equal to infinity, they revert to the Rayleigh-Plesset equation 

which was the basis for the earlier paper [Leighton, 2007a]. The particular equation of 

the Herring-Keller-Miksis family used by Yang and Church [2005] relates the bubble 

radius R  and wall velocity R  to the inertial, forcing and dissipative terms as follows: 
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   2 L
L

s s s s s

d ( ) ( )3 1
1 1 1 ( ) ( )

2 3 ds

p t p tR R R R
R R R p t p t

c c c c t 




    
          

     

  
 

 

 (1)

 
It should be noted that the following formulation is also valid: 
 

   2 L
L

s s s s s

( )3 1
1 1 1 ( ) ( )

2 3s

d p tR R R R
R R R p t p t

c c c c dt 

    
          

     

  
 

 

 (2)

 
[Prosperetti and Lezzi, 1986]. The pressure Lp  at the bubble wall can be evaluated in 

a number of ways, one of which (as described in the earlier paper [Leighton, 2007a] is 

to equate it to the sum of the gas pressure ( gp ), surface tension pressure ( σ 2p R , 

where  is the surface tension) and stress tensor of the near field ( rrT ):  

L g σ rr ( , )p p p T R t     (3)

 

The pressure far from the bubble (at range r   from the bubble centre) will be 

represented by p . As described in earlier papers [Church, 1995; Yang and Church, 

2005; Leighton 2007a], it can be found from the static pressure 0p , a function ( )P t  

which is the time-varying external acoustic pressure at r  , and the stress tensor  

of the near and far field, given by rr( / )
R

T r dr


 : 

 

0 rr rr( ) ( ) ( , ) 3 ( / )
R

p t p P t T R t T r dr


        (4)

 

Similarly, the time-varying gas pressure in the bubble can be found through 

assumption of a polytropic gas law: 

 

3

0
g g0

R
p p

R


   
 

, 
 (5)

 

Assuming that there are no residual stresses in the surrounding medium, when the 

bubble is at its equilibrium radius 0R , the gas pressure is g0p :  
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g0 0
0

2
p p

R


  . 

 (6)

 

2.2 Evaluating viscoelastic stress components 

 

In this section, the viscoelastic stress components that may be used in equation (1) are 

evaluated. Because of the assumed spherical symmetry, the radial stress component 

depends only on the radial deformation of the medium at distance r  from the bubble 

centre. Assuming Hookean medium behaviour [Reismann and Pawlik, 1980], the 

elastic part of the tensor component rrT is expressed in terms of the radial strain rr as  

[Reismann and Pawlik, 1980 ]: 

 

rr rr
rr _ elastic s s s( 2 ) 2T G

r r

  
  


. 

 (7)

 

where s  is the first  Lamé constant and sG  is the modulus of rigidity (the dynamic 

shear modulus, or second Lamé constant) [Church 1995; Yang and Church, 2005; 

Leighton 2007a]. In incompressible conditions, spherical divergence or convergence 

of particle velocity gives the radial strain rr  through conservation of mass [Leighton 

2007a] as follows: 

 

 2
/u R r R     (8)

where u  is the radial velocity of the medium surrounding  a bubble.  

Assuming small deformations, the viscous dissipation is proportional to the viscosity  

of the medium [Church, 1995]. As a result, the viscous part of the radial stress tensor 

can be expressed as function of the shear viscosity s  of the host medium outside of 

the bubble wall:  

rr
rr _ viscous s2T

t

 



. 

 (9)

        

The radial strain rate is approximated from equation (8) according to:  
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rr

2
rr

3
2

u

t r

R
R

t r





 
 

 


 



  (10)

Radial strain for small amplitudes 

For small amplitudes, the radial strain component is approximated as follows:  

 

2

rr

2
0       

r R R

r r r

R Rr R

r r r

      
 

    
 

 

 

(11)

Hence the expression of instantaneous strain of equation (11) can be written as:  

 
2

rr 03

R
R R

r
   . 

 (12)

Substituting the expression of equation (12) into (7) leads to cancellation of the terms 

containing the first Lamé parameter in equation (7) and the elastic component rr_elasticT  

becomes:  

rr
rr _ elastic s2T G

r





. 

 (13)

 

Taking both the elastic and lossy characteristics of the medium together (equations 

(13) and (9) respectively) [Church, 1995], the radial component of the stress tensor is: 

  
2

rr_SA s 0 s3
4

R
T G R R R

r
     . 

 (14)

 

and the integral for the medium in equation (4) can be evaluated with equation (14) 

[Leighton, 2007a]: 

 

0rr
s s3 4 4

R

R RT R
dr G

r R R


 
  


. 

 (15)
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Radial strain for large amplitudes. 

 

For large amplitude pulsations equation (12) is not valid. In this case the radial strain 

is better approximated by equation (16) according to Yang and Church [2005]:  

 3 3
rr 03

2

3
R R

r
    . 

 (16)

 

The viscous part of the radial strain is by definition the strain rate rr / t  . 

Differentiation of equation 16 with respect to time results in the expression of 

equation (9). Hence taking both the lossy and elastic characteristics of the medium 

together the radial component of the stress tensor becomes: 

 

 3 3
s 0 2

rr_LA s3

4

3

G R R
T R R

r


 
    
 
 

 . 
 (17)

 

The stress tensor integral of equation (4) results from integration of (17) 

at R according to : 

 

3 3
0

s s3

4
3 4

3
rr

R

R R R
dr G

r R R


 
  


. 

 (18)

 

In both the small (equation (15)) and large amplitude (equation (18)) case, the radial 

stress can be expressed also in terms of radial strain as: 

rr rr
s rr s3 4

R

T
dr G

r t

 
       . 

 (19)
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The bubble model for large amplitudes in porous materials 

 

Since here we are interested at large amplitudes, the tensor in the form of equation 

(18) will be used rather than from equation (15). The model we present in this report 

results from substitution of equations (3), (4), (5) and (18) in (2):  

 

2

s s

g 0
s s

3 2
0

g s s4 2
s s

3
1 1

2 3

1 2
1 ( )

2
                                           3 4 4

R R
R R R

c c

R
p p P t

c R

R RR R R R
p G

c R R R R R




 


   
      

   
            

          
    

 
 



  

 

 

 (20)

 

2.3 Definition of model parameters 

 

Equation (20) will be used for predicting the nonlinear time-dependent dynamics of a 

single bubble in a gassy marine sediment. This approach is identical to that provided 

for tissue by Yang and Church [2005]. However the bubble dynamics as described by 

equation (20) is restricted to media that behave as Voigt solids. In addition, the 

meanings of the model parameters s , sG  and s  are different to the interpretations 

for tissue given by Yang and Church [2005], and the sound speed entering  equation 

(1) needs further consideration. This section is devoted to the adaptation of these 

parameters for sediments.  

Marine sediments can be regarded as a two-phase porous continuum which is 

composed of a grain skeleton and pore fluid [Biot, 1956a, 1956b]. An alternative 

approach is to regard the sediment as a continuous medium (frame plus fluid) with 

effective properties; an example of this approach is given by Williams [2001]. In this 

effective medium, the volume of a particle must be much smaller than the entire 

domain but larger than the pore and the grain size to permit meaningful statistical 

averages of the properties in question [Bear, 1972]. Therefore this treatment is 
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applicable to the Type III bubbles of Figure I, which Anderson et al. [1998] (with 

some qualifications) indicate are probably the most common form of marine sediment 

bubble observed.  

 

The following discussion seeks to assign effective medium values for key parameters 

which the previous sections showed to be relevant to predicting the bubble dynamics. 

It is important to note that these parameters are here defined as those attributed to a 

bubble-free medium surrounding a Type III bubble. The presence of bubbles in the 

medium will cause some of the parameter values to be potentially frequency- and 

amplitude-dependent [Leighton, 2007a].  

 

Under the effective medium assumption, the mixture low applies and the density 

entering the equation (20), is the effective density, which is defined as:  

 

s w g(1 )      .  (21)

 

where w  is the water density, g  is the sediment grain density, and w s/V V    is 

the porosity (given that a volume wV  of pore water is contained within a volume sV  of 

the bubble free sediment). The sound speed sc  entering equation (20) can be 

interpreted as the compressional wave speed in the bubble free medium: 

s s

s
s

4
3

K G
c




 , 

 (22)

 

where sG  and sK  are, respectively, the shear and bulk moduli of that effective 

medium. The bulk modulus sK  can be expressed as function of the grain bulk 

modulus gK , the fluid bulk modulus and the solid frame (drained) bulk modulus 

frameK  [Gassmann, 1951]: 

frame
s g

g

K
K K

K

 


 
. 

 (23)
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where: 

 
 

w g frame

g w

K K K

K K


 


. 

 (24)

Equations (21) and (22) assume no relative motion between the fluids and the skeletal 

frame, thus they are a low frequency approximation for the effective density and 

sound speed of the medium surrounding the bubble. According to Biot theory [Biot, 

1956a, 1956b], in the low frequency regime the skeletal frame (which consists of the 

solid grains and the intersitial fluid) move together. In contrast, in the high frequency 

regime they move out of phase, so that at high frequencies the inertia depends on the 

coupling between solid and fluid. Equation (22) is the Biot fast wave low- frequency 

asymptotic hence this approximation is valid for that frequency regime where the Biot 

theory predicts P-waves with constant value. If marine sediments of high permeability 

are considered (i.e. very fine slits and clays), the relative fluid motion is limited and 

therefore the Biot low frequency regime spans over a large frequency range. Under 

the assumption of the limited relative motion, the slow wave can be neglected and the 

fast wave can be approximated from equation (22)  in the low frequency range. An 

example is shown with the simulations of Figure 2 where the fast P-wave velocity is 

plotted according to Biot theory (after the modifications of Stoll [1]). The values used 

for both models are shown in table 1.  
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Figure 2 P wave sound speed according to Biot theory (solid line) and Gassmann approximation 

(dashed line). The values used for the simulation are typical for sediments with high silt content , 

parameter values shown in table 1. 

 

                                                 
1 Biot code written by A.I.Best 
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The results of figure 1 show that Gassmann’s equation can be a good approximation 

over a wide frequency range in the low frequency regime. For this example, 

frequencies above 1 kHz render the global flow phenomena important and therefore 

Gassmann’s approximation fails. An additional requirement is the porosity remains 

constant.  

Table 1 Model parameters for the models of figure1. 

Fluid density s 1000 kg/m3  Frame bulk modulus 2 GPa 

Fluid bulk modulus  2.2 GPa  Frame shear Modulus 0.7 MPa 

Fluid shear viscosity  0.001 Pas 
Mean grain size 

(microns) 
5 

Grain density  2650 Kg/m3  Porosity 0.6 

Grain Bulk Modulus 36.5 GPa   

 

The definition of shear modulus is less complicated since fluids cannot carry shear 

forces. Hence the effective shear modulus is assumed to be equal to the skeletal frame 

shear modulus [Gassmann, 1951], which is the same for drained and saturated 

conditions [Gassmann, 1951]. Additionally only one shear wave has ever been 

observed and Biot theory predicts the existence of one shear wave. The effective 

shear modulus, entering the bubble model, is therefore an inherent property of the 

matrix material, and it can be either inferred from geotechnical properties of the 

sediment or measured in situ by shear vane testing.  

 

It is more difficult to establish the physical correspondence between the effective 

medium viscosity s  and the sediment viscosity (a rheological property of the 

sediment). The effective viscosity in the equation (20) represents energy dissipation 

during shear deformation of the medium. Hence the parameter s  can be inferred 

from shear wave attenuation provided that the medium is behaving in shear according 

to the Voigt viscoelastic model in the frequency rage of interest. He following 

paragraph discusses the modelling of shear losses in sediments.  
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The question is if this model (Figure 3(a)) can describe the velocity and attenuation of 

acoustic waves propagating in bubble free sediments. At this point the kind of 

sediment under consideration must be distinguished because observations cannot be 

generalised. In this report we are mainly interested in muddy sediments. That is 

sediments with high silt or clay content which are characterised by high permeability. 

Referring to the Voigt model of figure 3(a), considerable body of measurements in 

this field has shown that the Voigt model is not adequate (see page 4046 of Hamilton 

et al. [1970] for an extensive discussion on this topic) for silts and clays because a 

linear dependence of the shear wave attenuation with frequency has been observed 

(see for example [Wood and Weston, 1964]. According to these experimental 

observations the model of (Figure 2(b)) is more adequate to describe the shear wave 

velocity and attenuation because a rather constant –Q behaviour has been observed in 

muddy sediments. The model of Figure 2(b) allows for this by fitting the imaginary 

part of the shear modulus.   

A wave propagating in a Voigt viscoelastic medium (i.e. according to the model of 

Figure 3(a)) undergoes shear wave attenuation ( s , in Np m-1) which is proportional 

to the square of the frequency f  ( 2
s   [Np/m] f  ) [Kolsky, 1953]. This is 

equivalent to stating that the logarithmic decrement is proportional to the frequency 

( s1/ Q f ), where the sQ -factor relates the shear wave speed to the attenuation 

( s s/(  )sQ f c  2). There are a few works that conform to this model: The 

measurements of Stoll [1985] show regimes where there is linear dependence of the 

logarithmic decrement with the frequency (see Figure 3 of Stoll [1985]). Also the 

work of Leurera and Brown [2008] shows that linear dependence of the logarithmic 

decrement as function of frequency can be observed at high frequencies. According to 

these measurements, the shear wave showed a logarithmic decrement proportional to f 

in sediment with high clay content.  An explanation to these measurements is that the 

sediment has a high intrinsic attenuation because of the ‘house-of-cards’ frame 

structure in combination with clay content and high porosity [Stoll and Bautista, 

1998].  

                                                 
2 Muddy sediments exhibit in general no dispersion 
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The results of Stoll [1985] and Leurera and Brown [2008] are two of the few 

examples that show that the effective viscosity of the bubble model cannot be fitted 

form the modified Voigt model (figure 3 (b))’. The constant-Q behaviour, which has 

been mostly observed, can be modelled with the viscoelastic model shown in figure 

3(b) which will be further considered. However it must be noted that this model has 

acausal behaviour if not purely sinusoidal excitations are considered. Hence, the 

Kelvin-Voigt model (shown in Figure 3 (c)) [Kolsky,1953] is a more rigorous  

viscoelastic model to describe the behaviour of the background material. Tuning of 

the model parameters (i.e. the dashpot 'G  and spring constants G1, G2 ) can lead to a 

good approximation of the experimental results. The main drawback is that the 

constitutive reological of figure 3 (c) requires apparent material properties. That is the 

spring constants G1, G2 and dashpot constant 'G  in Figure 3(c) must be coupled to 

the geotechnical sediment properties. That is, the model constants should be 

expressed as material properties: shear modulus, bulk modulus etc (see Schanz, and 

Cheng [2001] and the extensive discussion in Abousleiman et al. [1996]).  

For this reason this report proceeds with the use of the model (figure 3(b)) which is in 

accordance with the experimental observations that the attenuation increases linearly 

with the frequency s  [Np/m] f  . The model parameters are described below: 

The visco elastic operator s sG
t

 



of equation (21) in the time domain is assumed to 

have a correspondent form in the frequency domain: 

 

'
s s sG G jG   ,  (25)

 

and the corresponding Q-factor for this viscoelastic material model is [Whorolow, 

1992]: 

s
'
s

G
Q

G
 . 

 (26)

 

According to this model, the dynamic shear modulus is assumed to be a complex 

number with constant real and imaginary parts. The real part is equal to the dynamic 
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shear modulus. The correspondence between the imaginary part and the medium 

viscosity is found by applying a Laplace transform (More details on this approach can 

be found in Whorolow [1992]:  

'

s 2
sG

f



 . 

 (27)

 

According to this model, at one particular frequency the steady state behaviour of the 

linear medium corresponds to the behaviour of a single Voigt element shown in 

Figure 2(a) [Whorolow, 1992]. For a frequency range there is no correspondence 

between the two models.  

Considering single frequency insonification, for the bubble model, equation (20), the 

effective viscosity s is found from equation (27). The value of '
sG  equals to the best- 

fit value the material, sediment in this case. This ‘value-fit' value will result from an 

iterative process from attenuation measurements. Predictions and applications of this 

model is a topic of current research.  
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Figure 3. Reological models: (a) Voigt model with constant parameters; (b) Modified Voigt model with 

the dashpot parameter inversely proportional to frequency (equation (27)); and (c) Voigt model with 

auxiliary spring (Kelvin-Voigt model). 
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Conclusions 

This paper has outlined a progression from the theory for a single bubble in a gassy 

marine sediment outlined by Leighton [2007a]. As with Leighton [2007a], the bubble 

dynamics need not be assumed to be quasi-static, monochromatic, steady-state or 

linear. However whereas Leighton [2007] assumed that the medium outside of the 

bubble wall was incompressible, the current paper includes finite compressibility (and 

therefore radiation losses) by adapting the Keller-Miksis equation, using an approach 

of Yang and Church [2005]. As outlined by Leighton [2007a], in the nonlinear regime 

this approach is more appropriate than other options, such as artificially enhancing the 

shear viscosity to account for radiation and thermal losses. The analysis is applicable 

to marine sediments where global flow phenomena are limited. Further work is 

expected to refine the estimates of the key parameter values. 
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