The University of Southampton
University of Southampton Institutional Repository

Clinical studies of real-time monitoring of lithotripter performance using passive acoustic sensors

Leighton, T.G., Fedele, F., Coleman, A.J., McCarthy, C., Ryves, S., Hurrell, A.M., De Stefano, A. and White, P.R., (2008) Clinical studies of real-time monitoring of lithotripter performance using passive acoustic sensors Evan, A.P., Lingeman, J.E., McAteer, J.A. and Williams Jr, J.C. (eds.) In Renal Stone Disease 2: 2nd International Urolithiasis Research Symposium. vol. 1049, American Institue of Physics., pp. 256-277. (doi:10.1063/1.2998033).

Record type: Conference or Workshop Item (Paper)


This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated), comparison of the opinion of the urologist at follow-up with the acoustically derived judgment identified a good correlation (kappa = 0.94), the device demonstrating a sensitivity of 91.7% (in that it correctly predicted 11 of the 12 treatments which the urologist stated had been `successful' at the 3-week follow-up), and a specificity of 100% (in that it correctly predicted all of the 37 treatments which the urologist stated had been `unsuccessful' at the 3-week follow-up). The `gold standard' opinion of the urologist (CTS2) correlated poorly (kappa = 0.38) with the end-of-treatment opinion of the radiographer (CTS1). This is due to the limited resolution of the lithotripter X-Ray fluoroscopy system. If the results of phase 1 and phase 2 are pooled to form a dataset against which retrospectively to test the rules drawn up in phase 1, when compared with the gold standard CTS2, over the two clinical trials (79 patients) the device-derived scored (TS0) correctly predicted the clinical effectiveness of the treatment for 78 for the 79 patients (the error occurred on a difficult patient with a high body mass index). In comparison, using the currently available technology the in-theatre clinician (the radiographer) provided a treatment score CTS1 which correctly predicted the outcome of only 61 of the 79 therapies. In particular the passive acoustic device correctly predicted 18 of the 19 treatments that were successful (i.e. 94.7 sensitivity), whilst the current technology enabled the in-theatre radiographer to predict only 7 of the 19 successful treatments (i.e. 36.8 sensitivity). The real-time capabilities of the device were used in a preliminary examination of the effect of ventilation.

Full text not available from this repository.

More information

Published date: 18 April 2008
Venue - Dates: Renal Stone Disease 2: 2nd International Urolithiasis Research Symposium, 2008-04-17 - 2008-04-18
Keywords: lithotripsy, cavitation, kidney stone fragmentation, eswl, passive acoustic sensor


Local EPrints ID: 63696
ISBN: 9780735405776
PURE UUID: 64c85e22-9937-425d-bcf4-62ca92e5313c
ORCID for T.G. Leighton: ORCID iD
ORCID for P.R. White: ORCID iD

Catalogue record

Date deposited: 28 Oct 2008
Last modified: 17 Jul 2017 14:16

Export record



Author: T.G. Leighton ORCID iD
Author: F. Fedele
Author: A.J. Coleman
Author: C. McCarthy
Author: S. Ryves
Author: A.M. Hurrell
Author: A. De Stefano
Author: P.R. White ORCID iD
Editor: A.P. Evan
Editor: J.E. Lingeman
Editor: J.A. McAteer
Editor: J.C. Williams Jr

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.