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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS
SCHOOL OF OCEAN & EARTH SCIENCES

Doctor of Philosophy
ACCOUNTING FOR UNPREDICTABLE SPATIAL VARIABILITY IN PLANKTON

ECOSYSTEM MODELS
by Philip John Wallhead

Limitations on our ability to predict fine-scale spatial variability in plankton ecosystems can
seriously compromise our ability to predict coarse-scale behaviour. Spatial variability which
is deterministically unpredictable may distort parameter estimates when the ecosystem model
is fitted to (or assimilates) ocean data, may compromise model validation, and may produce
mean-field ecosystem behaviour discrepant with that predicted by the model. New statistical
methods are investigated to mitigate these effects and thus improve understanding and pre-
diction of coarse-scale behaviour e.g. in response to climate change. First, the standard model
fitting technique is generalised to allow model-data ‘phase errors’ in the form of time lags,
as has been observed to approximate mesoscale plankton variability in the open ocean. The
resulting ‘variable lag fit’ is shown to enable ‘Lagrangian’ parameter recovery with artificial
ecosystem data. A second approach employs spatiotemporal averaging, fitting a ‘weak prior’
box model to suitably-averaged data from Georges Bank (as an example), allowing liberal
biological parameter adjustments to account for mean effects of unresolved variability. A
novel skill assessment technique is used to show that the extrapolative skill of the box model
fails to improve on a strictly empirical model. Third, plankton models where horizontal vari-
ability is resolved ‘implicitly’ are investigated as an alternative to coarse or higher explicit
resolution. A simple simulation study suggests that the mean effects of fine-scale variability
on coarse-scale plankton dynamics can be serious, and that ‘spatial moment closure’ and
similar statistical modelling techniques may be profitably applied to account for them.
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Chapter 1

Introduction

1.1 Problem addressed in this thesis

This thesis addresses the following general problem in plankton ecosystem modelling:

• Fine-scale spatial variability in plankton ecosystems which we may not want to or be
able to predict and/or reproduce can seriously compromise our ability to understand
and predict coarse-scale ecosystem behaviour.

The overall objective of this work is to devise and test new statistical methods for dealing
with this problem. In this Introduction, it is first explained what plankton ecosystems are and
why they are important, what plankton ecosystem models are and why they are necessary
for understanding and prediction, as well as the importance of model validation or ‘skill
assessment’. Second, current thinking is summarised regarding the nature and origins of
spatial variability in plankton ecosystems over the full range of scales at which it is observed.
Third, the predictive capacity of models is discussed, including limitations on how much
spatial variability they can and should be designed to predict in a deterministic sense. Fourth,
the effects of spatial variability which is ‘unpredictable’ in a deterministic sense are explained
and existing approaches to mitigate them are reviewed. Fifth, and finally, the statistical
methods investigated in this thesis are outlined, explaining why they are worth investigating
as well as how they differ from and build upon previous methods.

1.2 Plankton ecosystems and models

In most general terms, ‘plankton’ are aquatic organisms with very limited ability to swim
against currents (from the Greek for ‘drifter’). The vast majority of plankton, by num-
bers and biomass, consists of microscopic protists, bacteria, animals and viruses. Plankton
are often categorised as ‘phytoplankton’, which perform photosynthesis and make their own
food (‘autotrophy’), ‘zooplankton’, protists and animals which feed on other organisms (‘het-
erotrophy’), or ‘bacterioplankton’ to describe aquatic bacteria. Referring to plankton in
combination with their fluid and chemical environment, we speak of ‘plankton ecosystems’.
In seas and oceans, plankton ecosystems form part of larger marine ecosystems, including
swimming organisms such as fish (the ‘nekton’) and organisms fixed to or residing in the
sea/ocean floor (the ‘benthos’). Marine plankton ecosystems play a key role in regulating the
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global climate by sequestering carbon from the atmosphere in the deep ocean (the biological
pump), and by releasing aerosols which promote cloud-formation (4th IPCC report, Chapter
7: Denman et al., 2007). They also support marine species of great economic and intrinsic
value. The ability to accurately predict their behaviour is therefore essential for understand-
ing, forecasting, and mitigating the effects of climate change and for sustainable management
of natural resources and biodiversity.

In order to make such predictions, it is necessary to synthesise knowledge and assump-
tions about how plankton populations respond to changes in their physical environment,
nutrient supply and predation pressure, all of which may be influenced by human activities
such as waste disposal, fishing and carbon emissions. This synthesis is encapsulated in plank-
ton ecosystem ‘models’ — systems of mathematical relationships designed to make accurate
quantitative predictions. It is also important to estimate the likely magnitude of errors in the
model predictions due to erroneous information used by the model (model parameter values,
forcings, and initial/boundary conditions) and errors in model formulation, in lieu of any firm
underlying theory (analogous to the Navier-Stokes equations in fluid dynamics) from which
to formulate plankton ecosystem models.

Another goal is to understand plankton ecosystems: to be able to explain their behaviour
in terms of true causal relationships. A model which encapsulates a good understanding
(high mechanistic veracity) need not necessarily have good predictive ability, in the sense of
providing accurate inter-/extrapolation from data (predictive skill), because the model may
be highly sensitive to errors in required input information provided by the data (via model
fitting or ‘calibration’). For example, a model of a well-understood system such as the double
pendulum may yet make poor predictions due to extreme sensitivity to initial conditions
or ‘chaos’. Similarly, predictive skill need not necessarily imply high mechanistic veracity,
since a model may mimic the behaviour of a real system without accurately describing the
underlying causal relationships. In general, however, mechanistic veracity is evidenced by
predictive skill. Such evidence is stronger for large, nonlinear extrapolations from fitted data
(beyond the decorrelation scale of the true signal), since in such cases predictive accuracy
is much less likely to arise ‘simply as an artefact of data fitting’. Predictive skill may be
measured, given sufficient data, by careful model testing (‘skill assessment’ or ‘validation’).

Nevertheless, useful predictions in marine ecology and climate science are sometimes made
with ‘strictly empirical’ models which do not aim for any mechanistic veracity, and describe
statistical correlations rather than causes (e.g. Sarmiento et al., 2004). However, such models
are usually a stop-gap for accurate mechanistic models: their predictive accuracy is likely
to be limited to a narrow range of conditions similar to those in which calibration data
were collected, and they do not aid the development of understanding. Mechanistic models
have the potential to extrapolate well beyond the conditions of calibration, and promote
understanding by allowing hypotheses to be tested about how ecosystems behave and why
they do so. Therefore, the pursuit of predictive tools in marine ecology is assisted by the
simultaneous pursuit of understanding via mechanistic modelling. Similarly, mechanistic
understanding is evidenced to the extent that predictive skill is demonstrated. In lieu of any
such validation, modelling studies exploring how different ecosystem processes might interact
lose both credibility and relevance.

Plankton ecosystem models are thus essential tools for marine ecology. The two modelling
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goals of prediction and understanding are complementary and require good techniques for
model calibration and validation (skill assessment). In this study, methods are investigated
by which plankton models might be better formulated, calibrated and validated to account
for a fundamental characteristic of plankton ecosystems: spatial variability which is deter-
ministically unpredictable over the timescale of interest. The focus is on understanding and
predicting ecosystem behaviour on seasonal to decadal timescales, and on spatial scales of
perhaps 100km or more, although some of the findings will also pertain to the development
of ‘marine ecosystem weather forecasting’ on smaller spatio-temporal scales. The methods
are demonstrated mainly using simple plankton models ‘mechanistic’ at the level of ‘NPZ’
(Nutrient-Phytoplankton-Zooplankton), but more empirical models are also used where nec-
essary.

1.3 Spatial Variability in Plankton Ecosystems

1.3.1 Large-scale spatial variability (> 500km in the horizontal)

Perhaps the most obvious source of large-scale plankton variability is their biological response
to astronomical forcing. The diel (day-night) cycle in solar irradiance drives a diel cycle in
phytoplankton growth (primary production) and is a control on zooplankton ‘diel vertical
migration’ — a behaviour which allows zooplankton to graze fertile surface waters at night
and retreat to darker depths by day, thereby avoiding predation. The seasonal cycle in solar
irradiance induces variability between north and south hemispheres, and latitudinal time lags
in ecosystem responses such as the phytoplankton ‘spring bloom’.

However, the form of the seasonal plankton cycle also varies on the large scale. Biogeo-
graphical patterns can be identified which evolve on relatively slow interannual and inter-
decadal timescales (associated with e.g. El Niño Southern Oscillations and climate change).
Much of this pattern may be attributed to large-scale gradients in physical conditions, such
as latitudinal or vertical variations in solar radiation. However, some important physical fac-
tors, such as the depth of mixing in the fertile upper ocean, may change over shorter scales
across ‘fronts’ separating water masses with distinct properties (e.g. the ∼200km-wide fronts
comprising the subtropical convergence zones, or the ∼10km-wide fronts between stratified
deep ocean water and a well-mixed shallow sea). Consequently, the concepts of distinct
oceanic ‘biomes’, and within these ‘biogeochemical provinces’ (Longhurst, 1998), are widely
considered to be useful for describing large-scale variability.

The minimal set of factors by which to define ocean biomes is disputable (cf. Longhurst,
1998, Sarmiento et al., 2004, and Lévy, 2005), but current emphasis is on physical rather
than biological factors, partly because the sparseness of current biological data sets and the
difficulty of categorising plankton prohibit a useful small set of biological factors (Longhurst,
1998). Also, the large-scale variations in the seasonal plankton cycle are thought to be largely
determined by variations in the seasonal physics controlling light and nutrient supply to phy-
toplankton, which over time have structured variations in plankton community composition
via competition and natural selection. Light supply is mainly controlled by changes in surface
irradiance, affected by latitude and ice cover, and the depth of upper ocean mixing, affected
by surface heat transfer and wind stress. Nutrient supply is mainly controlled in the open
ocean by wind-driven upwelling flows and turbulent mixing of surface and nutrient-rich deep
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water, and nearer land by lateral flows from riverine sources, tidally-induced mixing, and
coastal upwelling due to wind and bottom topography.

Biomes may be subdivided into ‘provinces’ according to the ocean/hemisphere in question,
smaller-scale upwelling and downwelling patterns, as well as other nutrient supply factors
such as airborne dust deposition. Note that these biomes do not strictly coincide with the
boundaries of large-scale gyre circulations. Horizontal fluid transport or ‘advection’, on the
large scale, is generally too slow to stir the large-scale plankton patterns e.g. between the
north and south sides of the northern subtropical gyres, which are generally considered to lie
in different biomes.

Given these large-scale horizontal variations in light and nutrient availability, and pos-
sibly turbulence intensities, it is widely held that some aspects of the plankton community
in the surface ocean can be predicted using the principles of competition and natural selec-
tion. By this paradigm, turbulent and nutrient-rich ‘eutrophic’ waters tend to favour larger
phytoplankton species (diatoms) which are less efficient at absorbing nutrients but are more
resilient and respire less relative to their body size when mixed to depth. These produce
more intense blooms, shorter food chains, more ‘mesozooplankton’ (relatively big herbivores
of size 0.2–20mm) and more export of biogenic material to the ocean depths. Calmer and
nutrient-poor ‘oligotrophic’ waters tend to favour smaller phytoplankton which are less re-
silient to turbulent and dark water but more efficient at absorbing nutrients. These produce
lesser blooms, less mesozooplankton and longer food chains, with more recycling and less
export (Azam et al., 1983). Consequently, the definition of biomes is roughly supported
by large-scale data on mesozooplankton abundance (Haury et al., 1978) as well as satellite
chlorophyll data (Longhurst, 1998; Sarmiento et al., 2004). As with terrestrial communities,
there is also a general latitudinal trend in plankton species diversity moving from the poles to
the tropics, as a result of increased light energy and greater competition for nutrients nearer
the equator.

Vertical large-scale plankton variability, on scales 100m–1000m, consists of a general de-
cline in total biomass moving from the well-lit ‘euphotic’ surface ocean into the dark inter-
mediate ocean, essentially due to the lack of light for photosynthetic primary production.
The boundary between the two is an O(100m)-thick vertical front known as the permanent
thermocline. Plankton do survive below this boundary in the mesopelagic or ‘twilight’ zone,
where food webs of bacteria and zooplankton are largely fuelled by organic matter sinking
from the surface ocean. Chemotrophic primary production at hydrothermal vents supports
plankton communities in yet deeper waters on the ocean floor.

1.3.2 Meso-/submesoscale spatial variability (1–500km in the horizontal)

Over smaller scales, the magnitude of plankton variability is generally smaller (the spectral
slope of plankton spatial variability is negative over all wavenumbers), as is the timescale
over which structure evolves. At the oceanic mesoscale (10–500km in the horizontal, weeks
to months in time), plankton spatial variability includes intricate evolving patterns of ‘whorls’
and ‘tendrils’ (see Fig. 1.1). These complex patterns are thought to be largely shaped by
highly energetic mesoscale flows. Such flows provide the ‘weather of the ocean’, in the form
of ‘turbulent’ eddy and front structures roughly on the scale of the first internal Rossby
radius, which decreases with increasing latitude and decreasing stratification. Like their
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large-scale counterparts, mesoscale flows are mostly two-dimensional, but do induce small but
ecologically important vertical velocities which upwell and downwell nutrients into and out of
the euphotic zone, thereby affecting mesoscale plankton variability. In fact, the combination
of 2D, time-dependent advection with 100km-scale variability in nutrient input can produce
plankton spectral slopes consistent with observations over length scales 10–100km even in
highly simplified plankton ecosystem models (Abraham, 1998).

Mesoscale eddies can induce upwelling due to upward deformation of the seasonal thermo-
cline during the formation/intensification phase (Flierl and McGillicuddy, 2002), eddy-wind
interactions (McGillicuddy et al., 2007) and perturbations to the circular flow (Martin and
Richards, 2001). Nutrients upwelled by these flows may stimulate increased large-scale pri-
mary production, especially in the subtropical oligotrophic biome (Falkowski et al., 1991;
McGillicuddy and Robinson, 1997; Oschlies and Garçon, 1998; McGillicuddy et al., 1998),
provided there is a mechanism to restore the deep nutrient concentrations (Oschlies, 2002).
Similarly, the horizontal motion of eddies across biome boundaries may induce large-scale
fluxes of nutrients (Oschlies and Garçon, 1998; Garçon et al., 2002; Oschlies, 2002). As
well as net abundance, plankton species composition may be altered inside eddies by the
nutrient-rich local environment (Lochte and Pfannkuche, 1987; McGillicuddy et al., 2007).
Eddy distribution and intensity is strongly inhomogeneous on the large-scale (Woods, 1988;
Garçon et al., 2002), which may also affect large-scale variability.

Mesoscale fronts are also strongly associated with plankton patchiness. The largest of
these flow structures occur in deep ocean waters where major ocean water masses con-
verge/diverge and at the boundaries of large-scale jets such as the Gulf Stream, and may
produce plankton patches of scale 100km in the horizontal and 100m in the vertical (e.g.
Fernandez and Pingree, 1996). Such patches may result from accumulation due to plankton
swimming or floating/sinking vertically against the slow cross-frontal flows in order to main-
tain a preferred depth for nutrient/light availability (Franks, 1992a,b; Fernandez and Pingree,
1996). Despite their name, most plankton can swim or move by altering their buoyancy at
speeds of order 0.1mm s−1 (for phytoplankton, perhaps 1–10mm s−1 for zooplankton), which
is often comparable with cross-frontal vertical velocity components (Franks, 1992a). Smaller
patches are associated with coastal fronts. In these cases, it is commonly found that a plank-
ton patch of horizontal scale 5–50km resides subsurface and sloping down along the front,
but does not reflect the scale of the front itself (Franks, 1992b). This implies a decoupling of
the biology from the physical front formation processes, perhaps suggesting that ‘diffusion’
(fine-scale mixing) is important (Franks, 1992b, and references therein; Franks and Chen,
1996), or perhaps wind forcing (Franks and Walstad, 1997).

Fronts may also become unstable, developing ‘meanders’ and large cross-frontal vertical
velocity components of order up to 10mm s−1 (100m d−1) which in turn upwell/downwell
nutrients and biota (e.g. Spall and Richards, 2000, and references therein), with potentially
serious consequences for net primary production (Mahadevan and Archer, 2000; Lévy et al.,
2001). The resulting plankton variability ranges from O(100km) coherent eddies to thin sub-
mesoscale ‘filaments’ of a few kilometres in width. Plankton community structure is also
thought to be strongly affected as plankton are displaced outside their ecological niches with
respect to nutrient and light availability (Martin et al., 2001). Finally, mesoscale Rossby
waves may also be important sources of mesoscale plankton variability (Uz et al., 2001;
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Figure 1.1: Normalised water leaving radiance at 551nm, a measure of coccolithophore (a type
of phytoplankton) concentration, from a 7-day composite of MODIS (Moderate Resolution
Imaging Spectroradiometer) satellite data for the North Atlantic in summer. Units are mW
cm−2 um−1 sr−1. The image was produced by NERC Earth Observation Data Acquisition
and Analysis Service (NEODAAS) at Plymouth Marine Laboratory.
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Cipollini et al., 2001; Dandonneau et al., 2003; Killworth et al., 2004, Charria et al., 2006),
although the importance and dominant mechanism of their interactions with plankton are
still very much in dispute.

1.3.3 Small-/microscale spatial variability (< 1km in the horizontal)

Early theoretical investigations argued that horizontal plankton variability due to growth
acting on initial heterogeneities of scale < 1km should be smoothed out by the ‘effective
diffusion’ of small-/microscale turbulent advection (Kierstead and Slobodkin, 1953; Okubo,
1978). Observations of small-/microscale plankton variability are relatively scarce, since satel-
lites cannot resolve these scales, but significant small and microscale (< 1m) variance has
been observed by other methods (Platt 1972; Derenbach et al., 1979; Mitchell and Fuhrman,
1989; Davis et al., 1992; Franks and Jaffe, 2001; Doubell et al., 2006). This may be due to
a host of factors neglected in early studies, such as nonlinear biological interactions (Petro-
vskii 1999a,b), predator swarming or mating aggregation behaviour (Folt and Burns, 1999),
and physical effects of realistic small-/microscale ocean turbulence not captured by the effec-
tive diffusivity parameterisation used by models in these studies. These latter may include:
buoyant interactions with vertical eddy structures such as Langmuir circulations (Bees, 1998),
the intermittent stirring effects of convective overturns and shear instabilities (Cowles et al.,
1998), or the action of inertial waves, shown to be capable of creating strong vertical gradients
or ‘thin layers’ (Franks, 1995). Generally, these physical flow structures vary on timescales of
a day or less. A more complete discussion of the mechanisms which may generate microscale
variability is given in Yamazaki et al. (2002).

Early observations (Platt, 1972) also suggested that the spatial power spectrum of small-
scale plankton variability follows a k−5/3 shape, similar to that predicted for a passive tracer
in the ‘inertial subrange’ of 3D, high Reynolds number turbulence (Kolmogorov, 1941). Nu-
merous theoretical attempts have been made to explain such spectral slope observations at
small and larger scales, necessarily neglecting some or all of the factors mentioned above
(see Martin, 2003, and references therein). Early studies assumed linear biology and ‘simi-
larity’ relations premissed on an inertial subrange separating coarse-scale forcing from fine-
scale dissipation (Denman et al., 1977; Powell and Okubo, 1994). However, the neglect of
intermediate-scale forcing may be invalid for the ocean (Martin, 2003), and in many cases the
observed spectra may not actually resolve the inertial subrange even if it does exist (usually
over 1mm–1m — Franks, 2005). Therefore, given the limited data and understanding of
small-/microscale plankton behaviour and ocean turbulence, as well as the inherent ambigu-
ities of spectral analysis (Armi and Flament, 1985; Martin, 2003; Franks, 2005), it is likely
premature to interpret observations such as Platt’s as evidence for a ‘physics dominated’
regime for plankton variability at small scales, as is often argued. Whatever the cause, the
observed small-/microscale patchiness has serious implications for local plankton growth and
grazing rates (Davis et al., 1992) and poses severe challenges for observing and modelling
plankton ecosystems.
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1.3.4 Summary remarks

• Plankton spatial variability occurs on a wide range of spatial and temporal scales.
Partly, this is driven by spatial variability in physical variables, including ocean flows,
which usually vary on an approximate timescale of 1 day per 1km of spatial struc-
ture (tidal flows being the notable exception). The other driver is the biologically en-
coded behaviour of plankton populations. On timescales shorter than those of climatic
changes, population behaviour generally ‘reacts’ to physical variables rather than the
reverse (a possibly important exception being biotically induced warming — Oschlies,
2004).

• The drivers of spatiotemporal variability in plankton ecosystems are often phase-related
in the sense that similar changes occur in different places at different times, separated
by phase or time lags (e.g. the seasonal irradiance/mixed layer depth cycle, propagating
patterns in upwelling due to wind stress, or propagating mesoscale flow structures such
as fronts and eddies).

• Different spatial scales of variability in plankton ecosystems interact. For example,
mesoscale variability in vertical fluid transports is thought to upwell nutrients to the
euphotic zone where they are then utilised by plankton (thus ‘rectifying’ the nutrient
flux), resulting in large-scale nutrient fluxes and changes in plankton abundance. Such
mesoscale variability in nutrients/plankton also drives finer-scale variability under the
action of fluid stirring.

1.4 Predicting Spatial Variability in Plankton Ecosystems

1.4.1 To what extent can spatial variability be predicted?

The word ‘prediction’ can imply different levels of stringency in plankton ecology. At the
‘softer’ end, models can be constructed to ‘predict’ spatial features in a semi-quantitative
manner. For example, we might ask: is a deep chlorophyll maximum predicted by the model?
Does the model predict significantly enhanced concentrations within the eddy? Are different
biomes, if not their spatial extent, predicted by the model? Or somewhat harder: does
the model predict spectral slopes consistent with observations? Naturally, as a relatively new
science, plankton modelling has first concerned itself with this level of prediction (Arhonditsis,
2004), and with some success. On the large scale, General Circulation Models coupled to
plankton ecosystem models can reproduce many of the general patterns in satellite-based
estimates of seasonal and annual-mean chlorophyll and primary production (e.g. Fasham et
al., 1993; Sarmiento et al., 1993; Six and Maier-Reimer, 1996; Oschlies et al., 2000; Palmer
and Totterdell, 2001; Rothstein et al., 2006; Popova et al., 2006). On the meso-/submesoscale,
most of the qualitative features seen in data have been reproduced in high-resolution regional
models such as in Spall and Richards (2000) or Franks and Walstad (1997), and even basin-
ranging models such as that of Oschlies (2002) or McGillicuddy et al. (2003), simulating
most of the Atlantic ocean at a resolution of roughly 0.1o. Less effort has been deployed to
reproduce small-/microscale features, partly because fewer data are available at this scale to
allow model-data comparisons (current satellite resolution being insufficient).
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In recent years, the predictive ambitions of plankton modellers have increased to build on
earlier qualitative successes and to meet growing demands for quantitatively accurate pre-
dictions of ‘harmful algal blooms’ and ecosystem responses to climate change, pollution and
aquaculture (Rothstein et al., 2006). For example, we might ask: does the model correctly
forecast the time, location and severity of algal blooms? Unfortunately, the development and
application of quantitative skill assessment or validation methods for plankton models does
not appear to have kept pace (Arhonditsis and Brett, 2004). Where quantitative validation
is attempted at all, modelling studies often merely quantify model-data discrepancy in some-
what arbitrary ways based largely on convention. A much preferable approach would be to
first provide an explicit definition of ‘skill’ and then proceeding to estimate it. Definitions
will inevitably vary, since different models may be designed to fulfil different predictive pur-
poses (a point we return to in the next section). Of particular relevance to this thesis, the
predictive aims of models may vary with respect to the spatial scales of variability which they
are designed to predict.

At the large scale, almost all of the global ocean modelling studies mentioned above make
visual comparisons between spatial model output and satellite observations from the Coastal
Zone Colour Scanner (CZCS) and/or the Sea Wide Field-of-view Sensor (SeaWiFS). None,
however, provides a quantitative metric to estimate how accurate the predicted large-scale
variability is on average, or which which would allow us to say which model is most skillful
at predicting present regional patterns as a whole.

At the coastal meso-/submesoscale, Di Lorenzo (2007) investigated the forecast skill,
defined by a predictive average squared error, for physical variables of the Regional Ocean
Modeling System (ROMS) model fitted to artificial data using the ‘4DVAR’ assimilation
method. Given a realistic set of data, as might be obtained from an oceanographic cruise
taking CTD casts, they found that forecast skill was better than climatology for roughly
20 days beyond the end of the cruise for alongshore velocity, and for roughly 15 days for
temperature. Ecosystem variables were not investigated, but given the more noisy sampling
and larger model errors expected with plankton dynamics, due to stronger nonlinearity and
less accurate model formulations, a two week timescale of predictability is likely an upper
bound.

Similar mesoscale twin experiments have been performed on open-ocean physical models
employing a widely-used simplification of the ‘optimal interpolation’ method (Dombrowsky
and De Mey, 1992). Their conclusion was that ‘model predictability limits the reliability of
the forecast beyond 20 days’ — although their experiments seem to suggest a forecast decor-
relation time of 50–100 days beyond the last assimilation. The same method, used in the
Harvard Ocean Prediction System (HOPS), has also been tested for assimilating real data
into an open-ocean model (Robinson, 1996), with the conclusion that ‘predictability of the
region is about 30 days’. Again, since these are for predictions of physical variabilities with
better-known dynamics, we should take 30 days as an upper bound for mesoscale plankton
predictability in the open ocean. Results from using HOPS to predict mesoscale plankton
variability in the open ocean (Popova et al., 2002a,b) do not seem to support a predictabil-
ity timescale as long as this, although forecast accuracy is not quantitatively estimated or
compared with climatology in these studies.

There do not appear to be any predictability studies for small-/microscale variability
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in physical or biological variables. However, the meso-/submesoscale studies suggest that
predictability is limited roughly by the timescale of variability in the ocean flows at that scale.
Hence a timescale of a few days or less is to be expected for small-/microscale predictability.

1.4.2 To what extent should spatial variability be predicted?

Fine-scale spatial variability in plankton ecosystems can have significant coarse-scale effects
(e.g. Mahadevan and Archer, 2000; Lévy et al., 2001; McGillicuddy et al., 2003). Therefore,
one might argue that, for making predictions, as much spatial resolution as is computationally
feasible should be included in plankton models. Although we may not be able to exactly
predict/forecast the fast, fine-scale behaviour over a useful timeframe (as discussed above),
the statistical effect of fine-scale variability on the slow, coarse-scale behaviour may yet be
accurately represented in a model.

This predictive strategy raises two issues. First, the computational feasibility of a partic-
ular spatial resolution depends on how the model is used. Model-fitting or ‘data assimilation’
has been shown to generally improve the accuracy of plankton model predictions (Friedrichs,
2001; Friedrichs et al., 2006, 2007) (Appendices 1A and 1B provide technical summaries of
model fitting and testing methods in the context of plankton modelling). If the model is used
to estimate poorly known biological parameters by fitting to data, limited computational
resources might be better committed to performing more runs of a faster, lower-resolution or
lower-dimensional model with different parameter values, allowing a more rigorous parameter
fit. The fitted parameters may subsequently be employed in a single run of a higher-resolution
or higher-dimensional model to make predictions. For example, Schartau and Oschlies (2003)
used a 1D ecosystem model to estimate biological parameters which were later used in the
3D basin-scale model of Oschlies and Schartau (2005). Necessarily, horizontal fluxes could
not be accounted for in the 1D model, but it was fast enough to be run O(104) times, there-
fore allowing parameter optimisation via a powerful ‘micro-genetic’ algorithm. A faster run
time also allows more rigorous skill assessment by exploring the robustness of parameter esti-
mates/predictions to errors in model ‘inputs’ (forcings and initial/boundary conditions) and
fitted data, perhaps using bootstrap methods (see Schartau and Oschlies, 2003 and Appendix
1B). A danger of this method, however, is that biological parameters may be distorted to ac-
count for the lower spatial resolution/dimension of the fitted model, and consequently yield
poor predictions in the higher spatial resolution/dimension predictive model (c.f. Oschlies
and Schartau, 2005).

Second, one might ask: how accurately will the statistical effects of finer scales be captured
by the higher-resolution model? Suppose we have a coarse and a fine resolution model for
making coarse-scale predictions, and suppose computational resources are unlimited. The
same biological model is used in both models. As argued above, the exact pattern of fine-scale
plankton variability cannot be predicted over long timescales (in the same way atmospheric
weather forecasts are limited to short period — generally a few days — beyond the last
data fit or ‘analysis’). Moreover, forecasting this fine-scale variability is not, by assumption,
within the remit of either model. Therefore, an optimal strategy to fit biological parameters
might be to fit both models to data averaged over the coarse scale (see section 1.5.4). Which
model will give better coarse-scale predictions? If the high-resolution model formulation and
inputs are good enough, the extra resolution will accurately capture the statistical effect of
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fine-scale variability on the large-scale dynamics, and predictions will be less biased (here,
‘bias’ is a mean discrepancy with truth at given times/locations if the whole experiment
were repeated many times over an ‘ensemble’). If, however, the model produces inaccurate
statistical behaviour at the fine scale, because the physical model misrepresents the fine scale,
or the semi-empirical parameterisations of biological processes are less accurate at the fine
scale, the prediction biases could in fact be worse than those of the coarse-resolution model.
Alternatively, the additional information used by the high-resolution model, in the form of
high-resolution forcings and initial/boundary conditions, may be sufficiently noisy to increase
bias or, which is perhaps more likely, to increase the ‘variance’ of predictive errors (variation
at a given time/location over an ensemble of repeat experiments). Typically, we are interested
in predictions which are ‘accurate’ in the sense of low ‘mean-square error’, a sum of (bias)2

and variance. Hence there can be a ‘bias-variance trade-off’ between the more-complex,
higher resolution model (lower bias, higher variance) and the simpler low-resolution model
(higher bias, lower variance). A simple illustration of the bias-variance trade-off is given in
Figure 1.2.

The over-arching factor in deciding model spatial resolution will be the particular sci-
entific purpose or remit that the model is designed to fulfil. Figure 1.2 demonstrates how
the best choice of model resolution for a specific predictive purpose defining ‘skill’ can be
an intermediate-complexity model, when the same model is used for parameter fitting and
prediction. Of course, if the purpose of the model is to test hypotheses regarding the statis-
tical effects of fine-scale variability, this variability must be explicitly resolved in the model.
Similarly, in some applications, the exact spatiotemporal evolution of fine-scale variability
might be crucial. A high-resolution coastal ocean model of a harmful algal bloom which
predicts algal growth just 1km further up the coast could (in theory) influence a manage-
ment decision to close a beach to public bathing. Alternatively, a model which is envisaged
to guide fishing vessels to plankton-rich and therefore nekton-rich frontal areas needs to be
deterministically precise about when and where fine-scale plankton patches will occur. How-
ever, in other applications e.g. to understanding and predicting the larger-scale effects of El
Niño Southern Oscillations or climate change on plankton ecosystems, we do not particularly
care about the fact that our models cannot predict the exact configuration of eddies and
other mesoscale features on annual or even seasonal timescales. We do care, however, about
the effects this deterministically-unpredictable spatial variability may have on biological pa-
rameter estimates obtained from fitting plankton models, and about its statistical effects on
larger-scale variability. These problems, and current solutions, are further discussed in the
next section.

1.4.3 Summary remarks

• The ability of current plankton models to predict spatial variability on different scales
is understudied. However, it seems that the timescale of deterministic predictability is
roughly bounded by the timescale of change in ocean flows at that scale (about 1 day per
1km of scale). This correlation may be weakened by variation with scale of the degree
of system sensitivity to forcings and initial/boundary conditions (including chaoticity),
or system dimensionality (number of non-negligible influences on the dynamics).
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Figure 1.2: Bias-variance trade-off in model complexity. Data sets are created by sampling
a ‘true’ variation yt(x) = ex non-uniformly in the range 0.5 < x < 1.0 with 10% Gaussian
error superposed. A series of increasingly complex polynomial models yp(x) (containing more
and more terms in yt(x)) are fitted by Ordinary Least Squares linear regression, and then
used to predict values in the range 0 < x < 1.5. Predictive ‘skill’ is defined by average
predictive mean-square error: Skill = −∑i E[(yt(xi) − yp(xi))2] where the expectation E
denotes an average over an ensemble of 5000 ‘repeat experiments’ with different data sets
but the same truth. The quadratic model is an optimal compromise between high prediction
bias (difference between solid green ensemble-mean prediction and solid blue truth) for low
model complexity and high prediction variance (dashed green shows ±1 ensemble standard
deviation in the prediction) for high model complexity
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• The amount of spatial variability that should be resolved in a plankton model de-
pends strongly on the purpose that the model is designed to fulfil. Models designed
to predict variability at a specified scale of averaging may need to explicitly resolve
finer scales in order to reduce bias in predictions resulting from the statistical effects of
fine-scale variability on coarse-scale averages (unless this can be achieved by sub-grid
scale parameterisation). However, errors in fitted data and model inputs (forcings and
initial/boundary conditions) at the fine scale of averaging may increase the variance of
predictions, which in turn may mitigate improvements in predictive skill gained from
bias reduction (bias-variance trade-off). A trade-off in computational feasibility should
also be considered: faster, lower resolution models may be run more times (larger en-
semble), allowing more rigorous calibration (which may improve predictive skill) and
skill assessment/validation (including better uncertainty estimates).

1.5 Effects of unpredictable spatial variability and existing

methods to mitigate them

1.5.1 The need for model calibration/validation with ocean data

Plankton models generally contain a large number of poorly-known biological parameters.
This is partly simply because they represent processes which are poorly understood and
poorly measured in general. Also, the parameters are associated with ‘average’ rates of
growth and grazing in a patchy and time-varying ocean environment and community of
species which is almost impossible to reproduce in a laboratory experiment. Furthermore,
they are applied to model grid cells which are usually several orders of magnitude larger than
laboratory containers and 10m-scale mesocosm enclosures (e.g. Vallino, 2000). Hence labo-
ratory parameter estimates may require adjustment to describe the concentration dynamics
of a much larger scale of averaging (although there may be preferable solutions, as we will
see). Consequently, the standard approach is to try to estimate these parameters, or some
subset of them, by fitting ecosystem models to ocean data (assuming a sufficiently fast model
is available for this purpose). This process of ‘calibration’ will therefore be assumed to be an
important if not vital initial stage of a plankton modelling study.

However, it is worth noting that alternatives have been and are being sought, in view
of the problems of inadequate model constraint by ocean data and the semi-empirical (and
therefore less extrapolatable) nature of the standard approach. For example, some investi-
gators favour the development of more mechanistic plankton models, including more com-
plexity/detail but basing it on more accurate plankton cell physics/chemistry/biology which
is better constrained by physical laws and laboratory experiments (e.g. Baird and Emsley,
1999; Flynn, 2001, 2005). By this approach, if successful, little or no ‘tuning’ to ocean data
would be required. It is questionable, however, that there will ever be a sufficient number
of realistic laboratory experiments to constrain parameters for all plankton species that sig-
nificantly affect marine ecosystems. Furthermore, even if such an approach could deal with
the ‘aggregation’ or ‘integration over species’ problem (a view challenged in Anderson, 2005,
2006), the ‘integration over space’ problem, due to all the fluid flow structures and patchiness
contained within each model grid cell, remains. Consequently, the benefits of highly mech-
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anistic multi-species models might only be realised with very high model spatial resolutions
(e.g. Baird and Emsley, 1999). This would compound the problems of computational speed
and robustness to errors in model dynamics/inputs associated with higher model complexity,
even if it is not fitted to ocean data. Nevertheless, it is a promising line of enquiry which,
perhaps in moderation, might allow better use to be made of the information gathered by
laboratory plankton experimentalists in more mechanistic plankton models.

Another alternative worthy of note is the idea of using principles of competition and
natural selection to constrain the relative abundances of species at different locations in
the ocean (Follows et al., 2007). By this approach, ecological ‘niches’ and their associated
abundances are naturally selected from an initial state uniform in space and random in
biological parameter space, and the process is repeated over an ensemble to identify robust
patterns. This is an innovative new approach, but it is not clear yet whether it can be made
computationally practical for general usage, or how close the similarity really is between such
simulations and the real, dynamic, ocean biogeography, which represents a single evolution
obtaining variety from genetic variation among offspring rather than a random initial state.
Initial comparisons with data are nevertheless quite promising (Follows et al., 2007).

Finally, note that even if these alternative approaches become preferable, we will still
need to validate model predictions with ocean data, in order to show that they are successful
and to measure predictive skill. Hence the effects of deterministically-unpredictable spatial
variability on model-data discrepancies will still need to be considered in model testing or
‘skill assessment’ (see Appendix 1B).

1.5.2 Effects of unpredictable model inputs and undersampling

Consider the fine-scale concentration of a single plankton ecosystem variable y(x, l, t) at a
point x, averaged over a fine sampling scale l at a time t (the discussion easily generalises
to multiple variables). Typically, l might represent the 1–10 centimetres scale of a fluid
mass collected in a Niskin bottle or sampled by a continuous plankton recorder in a single
measurement. Larger-scale averages are available from satellite measurements (with pixel
sizes of order 1km), but it is not generally thought that this surface chlorophyll data is
on its own sufficient to constrain a plankton ecosystem model. Consequently, the smallest
scale l associated with plankton data is generally the order of centimetres. Observations,
o(x, l, t), are made of the true sample-scale concentration yt(x, l, t) with observational error
due to instrumental noise (superscript ‘t’ denotes ‘truth’). The observational error in the ith

fine-scale observation may be defined as:

εo
i ≡ o(xi, l, ti) − yt(xi, l, ti) (1.1)

Typically, these observations need to be somehow used to maximise the ‘skill’ of model
predictions for certain ecosystem variables over certain spatio-temporal ranges over certain
scales of averaging. Alternatively, only estimates of unknown model parameters may be
required, in order to test some ecological hypothesis, or to provide inputs for future predictive
models. Since a model is only optimal for a specified purpose (see Figure 1.2), it is important
and helpful to specify the objectives of the modelling study as precisely as possible at the
outset (perhaps using a ‘skill function’ — see Chapter 3). A general way to achieve these

14



goals is model fitting or ‘data assimilation’.
In practice, the fitted model is unlikely to resolve yt(x, l, t): the computational demands

of using model grid cells of scale l to cover a region traced by fluid masses over the timescales
of plankton growth is almost certainly prohibitive. Rather, the fitted model attempts to
reproduce the true coarse-scale concentration Y t(X,L, t) ≡ yt(x, l, t) where the bar denotes
spatial averaging over a larger model grid cell of scale L centred at X at time t. We may
then define the true unresolved spatial deviation δyt as:

δyt(x, l,X,L, t) ≡ yt(x, l, t) − Y t(X,L, t) (1.2)

Hence δyt(x, l,X,L, t) ≡ 0. In order to fit and test the model, we might compare model output
to observational estimates of the true grid-scale concentrations Y t(X,L, t). The coarse-scale
observation O for model grid cell Xi at time tj may be written generally as a function of
the full set of fine-scale observations: O(Xi, L, tj) ≡ hij(o). In the simplest approach, the
‘function’ h could be a simple synoptic (same time) average over observations lying within
the grid cell Xi at time tj (or O(Xi, L, tj) = o(xi, l, tj) if there is only one such observation).
In practice, better estimates may be obtained by averaging over asynoptic samples, or over
‘objective analysis’ fields generated by inter-/extrapolating the sparse biological data over
space/time, using statistical (‘kriging’) and deterministic (trend surfaces, ‘feature models’)
empirical models (Thiébaux and Pedder, 1987; Anderson et al., 2000). The coarse-scale
observational error εO

ij may then be defined as:

εO
ij ≡ O(Xi, L, tj) − Y t(Xi, L, tj) (1.3)

Now, the coarse-scale plankton model output Y m can be written generally as a function
Y m(a, κ̂,X, t) of some ‘adjustable’ or ‘control’ parameter set a, a set of fixed model inputs
κ̂ (which may include include e.g. fixed biological parameters and/or fixed forcings such as
velocity fields from a physical model), spatial coordinates of the grid cell centre X, and time t.
The hat notation is used in this thesis to denote estimates subject to significant error (such as
κ̂). There are many alternative ways to fit a, but they can usually be categorised, in Bayesian
language, as either ‘posterior mode’ estimation (or ‘variational assimilation’), or ‘posterior
mean’ estimation, often employed in ‘sequential assimilation’ methods (see Appendix 1A).
Perhaps the simplest estimation method, of the posterior mode type, is Ordinary Least
Squares. Here, we adjust a such that it minimises cost ≡ ∑

ij(ε
r
ij)

2, where the misfit or
‘residual’ εr

ij at model coordinates (Xi,tj) is given by:

εr
ij ≡ Y m(a, κ̂,Xi, tj) − O(Xi, L, tj)

= Y m(a, κ̂,Xi, tj) − Y t(Xi, L, tj) − εO
ij

= εm
ij − εO

ij (1.4)

where, in the last line, we have substituted the ‘fitted model prediction error’:

εm
ij ≡ Y m(a, κ̂,Xi, tj) − Y t(Xi, L, tj) (1.5)

Note, this is not to be confused with the ‘ultimate predictive error’, which may involve a
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different model to the fitted model, or ‘model error’ which is conventionally used to described
stochastic corrections to model dynamics.

From (1.4) and (1.5), it is clear that unpredictable model inputs (κ) will make spurious
contributions to the εm

ij which will compromise the fit of a. From (1.3) and (1.4), it is also
clear that undersampling will contribute to the εO

ij and further compromise the fit. There
is no easy solution to these problems. The simple estimation method might be improved
by added complexity in the form of extra statistical parameters to account for correlations
in the εO

ij, or extra adjustable parameters in a to account for errors in the model inputs κ̂,
or by integrating estimates over a modelled probability distribution conditional on the data
(posterior mean approach). However, such attempts to improve ‘realism’ do not necessarily
improve estimation, essentially because the extra parameters invariably need to be estimated
directly or indirectly from data (cf. Fig. 1.2). Further complexity, whether in the dynamical
model or the estimation method, should always be added with care.

One strategy to reduce the mean size and hence effects of the εO
ij is to increase the spatial

resolution of the fitted ecosystem model (smaller L). As we decrease the grid cell size L,
the total spatial variance of the unresolved variability decreases. Therefore, assuming that
the number of samples per grid cell does not change, the εO

ij should get smaller. However, as
discussed above, the predictability of grid cell averages also decreases with grid cell size, hence
the predictive errors εm

ij in smaller grid cells are liable to increase more rapidly with time due
to errors in the ecosystem model inputs κ̂, or stochastic errors in the physical or biological
model dynamics, which are likely to be larger at smaller averaging scales. Similarly, if we
attempt to validate the high-resolution model with fine-scale data, we may get an excessively
pessimistic skill assessment using misfits such as (1.4) because the model fails to reproduce
exact fine-scale patterns without phase error (see Appendix 1B), even if it does a good job
of reproducing them in a statistical sense (including coarse-scale patterns and spatial power
spectra).

Alternatively, by sufficiently decreasing the resolution of the fitted model (larger L), we
may improve the predictability of model inputs κ̂, and perhaps also reduce the εO

ij if more
‘raw data’ are employed to constrain the coarse-scale observational estimates. However, â

may then be distorted to account for the statistical effect of unresolved variability on the
dynamics of the true coarse-scale averages Y t(X,L, t), as discussed in the next section. This
may lead to inaccurate predictions when used in higher resolution models, and also in coarse
resolution models if these are required to predict beyond the range of conditions in which
they were calibrated (extrapolation failure due to excessive empiricism or ‘data-fitting’).

1.5.3 Effects of inadequate resolution

Subject to various assumptions, discussed in Chapter 4, plankton ecosystem dynamics may
be written as a system of advection-reaction equations:

∂yi

∂t
= −∇.(vyi) + Fi(y) (1.6)

where yi is the concentration of the ith ecosystem component, averaged over a suitably fine
scale, v is the fine-scale fluid velocity vector, and Fi(y) describes the fine-scale biological
dynamics (nutrient uptake, growth, grazing etc.). For simplicity, plankton motility is ne-
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glected in (1.6). Note that since v is the fine-scale velocity, and motility is neglected, a
diffusion term is not included (Abraham, 1998). From (1.6), the dynamics of grid cell av-
erages Y (X,L, t) = y(x, l, t) are given by the Reynolds equations (Reynolds, 1895; Lévy,
2006):

∂Yi

∂t
= −∇.(V Yi) + Fi(Y ) −∇.(δvδyi) + δF (1.7)

where V ≡ v, δv ≡ v−V , δy ≡ y−Y and δF (y) ≡ F (y)−F (Y ). Hence the grid cell dynamics
differ from the fine-scale dynamics by two terms: the third term on the RHS of (1.7) is the
‘eddy-flux’ or ‘physical Reynolds term’ due to nonlinear transport coupling and sub-grid scale
correlations between v and F (e.g. due to mesoscale eddies upwelling nutrients); the fourth
term is the ‘biological Reynolds term’ and arises due to nonlinear biological dynamics and
sub-grid scale correlations between the components of F . The combination of these terms
is the statistical effect of unpredictable spatial variability on coarse-scale dynamics. Clearly,
if this effect is significant and inadequately resolved by the model, the parameter estimates
â may be distorted to account for it, which again may lead to loss of predictive accuracy.
Moreover, even if we do not fit the model to ocean data, and use accurate values of fine-scale
biological parameters in F (obtained e.g. from systematic laboratory studies), a model which
does not adequately resolve these Reynolds terms will produce inaccurate predictions.

1.5.4 Existing methods

A good strategy to minimise ecosystem model forcing error, and hence its distortion effect
on â, is to fit the physical model to physical data. In order avoid spurious physical model
adjustments to account for biological data, and vice versa, and to maintain a computationally
tractable model fit, it may be expedient to fit the physics first with fixed biology (e.g. Schartau
and Oschlies, 2003). However, this entails the neglect of potentially important biological
adjustments on the physics, such as alterations to photon fluxes (Oschlies, 2004; Miller et al.,
2006). It also neglects potentially useful information in the biological data for constraining the
physics, and may lead to inconsistencies when the biology is subsequently adjusted (Anderson
et al., 2000).

Even if the physical model fit is successful in minimising ecosystem model forcing error,
there remains the problem of unpredictable ecosystem initial/boundary conditions. One so-
lution to the latter is to apply the same variational techniques used to fit initial/boundary
conditions in physical models to the ecosystem model fit. However, the fit of the ecosystem
model initial/boundary conditions is clearly dependent on the values of the biological pa-
rameters used, and the neglect of this dependence would seem much harder to justify than
for the physical variables. Consequently, by this approach, the ecosystem initial/boundary
conditions may need to be fitted simultaneously with the biological parameters, resulting in
a much larger control parameter space dimension. This tends to prohibit a thorough param-
eter search using ‘non-greedy’ optimisation methods such as simulated annealing and genetic
algorithms, which avoid ‘trapping’ in local minima of cost resulting from the nonlinearity of
the regression (Press et al., 1999).

Such fits have in fact been achieved. For example, Li et al. (2006) simultaneously fitted
spatially-variable ‘forcings’ in the form of zooplankton ‘sources’, spatially-variable parameters
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in the form of mortality rates, and spatially-variable initial conditions using the greedy-but-
efficient variational adjoint method. It is not clear, however, that such large numbers of
model input errors can be skillfully estimated in combination with poorly-known biological
parameters, i.e. without overfitting the data and losing predictive accuracy (see Figure 1.2),
or fitting the data for the wrong reasons and losing extrapolative skill. Similar concerns
may be felt about the use of ‘weak constraint’ methods to fit ecosystem model forcings along
with biological parameters (Losa et al., 2003, 2004). This approach aims to mitigate the
combined effect of forcing errors and errors in the model dynamical formulation by fitting
stochastic ‘model errors’. Again, it is not established that biological parameter estimates can
be properly constrained along with model errors (although the twin experiment in Losa et
al., 2004, gives some evidence that they can). The alternative approach of fitting ecosystem
model input errors instead of biological parameters (e.g. Nerger and Gregg, 2008; Gregg,
2008 and references therein) should help to constrain the model input errors, but seems
to hold little hope of obtaining extrapolative skill in view of the large prior uncertainty
in biological parameter values. In all of these approaches, errors in the assumed a priori
statistics of ecosystem model input error may also result in loss of predictive skill (though use
of error covariance estimates from a physical model-data assimilation should help to constrain
the ecosystem forcing error statistics). Although certainly interesting lines of enquiry, they
perhaps do not sufficiently acknowledge the differences between biological and physical model
fits: biological model parameters are much more poorly known, model input error statistics
are more uncertain, model dynamics are potentially more nonlinear, and the data sets are
much poorer.

For these reasons, and computational practicality, errors in ecosystem model forcings/dynamics
and initial/boundary conditions have generally not been fitted along with biological parame-
ters, even for 0D and 1D ecosystem model data assimilations (see e.g. Evans (1999), Fasham
and Evans (1995), Fennel et al. (2000), Hemmings et al. (2004), Hurtt and Armstrong (1996,
1998), Kuroda and Kishi (2004), Matear (1995), Schartau et al. (2001), Spitz et al. (1998,
2001) for single box studies; Dadou et al. (2004), Friedrichs et al. (2006, 2007), Prunet and
Minster (1996), Prunet et al. (1996), Schartau and Oschlies (2003) for 1D studies). In such
studies, biological initial conditions are usually assumed to be related to the forcing via a
steady state assumption imposed by a period of model ‘spin-up’. The physical forcing is usu-
ally taken as given from climatological estimates or the output of physical models, perhaps
fitted separately to physical data. Even so, robust fits with reasonably constrained biological
parameter estimates are often unobtainable for fitting more than a small number of biological
parameters (Matear 1995; Schartau et al., 2001; Garcia-Gorriz et al., 2003; Hemmings et al.,
2004; Friedrichs et al., 2006, 2007). And of course, if the model grid is made coarse to improve
the accuracy of these model inputs, we return to the problem of large-scale dynamics being
perturbed by the action of sub grid-scale variability.

Another strategy to mitigate these problems is to use a high-resolution ecosystem model,
and simply average both model output and data over larger spatiotemporal scales in the
model-data comparison (calibration and validation). In theory this might take care of the
unpredictable forcing and inadequate resolution effects, and also the undersampling effect
by including more data in the ‘observations’ at the comparison scale O(Xi, Lc, tj), thereby
reducing the observational errors εO

ij. For example, time-averaging of data and fitted model
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output was applied in Schartau and Oschlies (2003) to allow for the effect of ‘misplaced
eddies’ in their 1D ecosystem model fit due to ‘physical phase errors’ in the forcing provided
by a 3D physical model. Presently, there are relatively few examples in the literature of
2/3D plankton model fits to real data where biological parameters are objectively optimised
(Garcia-Gorriz et al., 2003; Huret et al., 2007; Li et al., 2006; Tjiputra et al., 2007) but
many more are sure to appear in coming years. Perhaps the first question of such studies
should be: can the model reproduce the more-predictable, large-scale patterns in the data
when only these are used to constrain it? Run-time constraints may limit the rigour of the
high-resolution ecosystem model fit and skill assessment, although it seems likely that such
constraints will be substantially relaxed by future improvements in processing power. A
more serious problem with this approach is the implicit disposal of information, or degrees
of freedom, in the data that could potentially help to constrain the model. In many areas of
the ocean, fitting e.g. monthly or mixed layer averages may simply not provide enough signal
to constrain biological parameters.

1.5.5 Summary remarks

• Spatial variability which is ‘unpredictable’ in a deterministic sense causes error in
ecosystem model dynamics, forcings and initial/boundary conditions and observational
estimates at the averaging scales at which model and data are compared. This results
in distortion of adjustable parameters during calibration, potentially over-punitive skill
assessment, and ultimately inaccurate predictions.

• Many methods for mitigating these effects have been explored, but no clearly effective
or ‘best’ solution has been demonstrated. Degrees of freedom in the model or estimation
method need to be added strategically and rigorously tested for improvements in pre-
dictive skill. Differences need to be acknowledged between plankton modelling and the
relatively well-sampled, dynamically linear (Hsieh et al., 2005) and well-known physical
modelling fields from which many of the new methods originate. Perhaps more urgently
required than new methods are methods of objectively and independently comparing
different methods/models by estimating their predictive skill in realistic scenarios.

1.6 Methods investigated in this thesis

Here the statistical methods investigated in this thesis are outlined and motivated, and how
they differ from and build upon previous methods is explained. Chapter 2 starts with the idea
that the combined effect of errors in fine-scale plankton model forcings and initial/boundary
conditions might be jointly accounted for (modelled) as effective time lags. The idea came
from a mesoscale survey of the North Atlantic, for which the data in ‘phase space’ (the
space of different plankton variables plotted against each other) showed a much clearer tra-
jectory than the individual time series (Srokosz et al., 2003). This suggested that some of
the mesoscale plankton variability could be described by displacements along a common dy-
namical trajectory, or equivalently, by ‘phase errors’ or ‘time lags’. This ‘phase relation’1

1Phase relation could be defined as a type of low-dimensional behaviour whereby at different locations,
similar changes occur with different timing. A complementary low-dimensional phenomenon is ‘synchronisa-
tion’, whereby, at different locations, possibly-different changes occur with similar timing. Synchronisation in
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phenomenon might be anticipated from the drivers of mesoscale plankton variability dis-
cussed above. Hence, if we can infer these time lags from the data, we might fit all the
data from a large area using a 0D ecosystem model representing the fine-scale ‘Lagrangian’
dynamics following a single ‘typical’ fluid mass. The resulting parameter estimates would
then be suitable for use in future high-resolution plankton models. In theory, this would
mitigate the effects mentioned above by allowing time lags to ‘mop-up’ the net model-data
discrepancy due to model input and dynamical error, hence allowing the model to effectively
fit parameters to the sample scale (L = l) without explicitly resolving this variability. Similar
methods of allowing for ‘phase error’ could be used to make ‘suitably forgiving’ calibrations
and skill assessments of plankton models at various levels of spatial resolution.

A simple method is presented to estimate time lags within a Bayesian framework, whereby
the time lags are extra adjustable parameters in the ecosystem model fit constrained by prior
assumptions about their statistical distribution. This ‘variable lag fit’ is tested using simple
experiments generating artificial data with a 0D NPZ model and fitting the data with the
same model.

However, to assess the extrapolative skill of a method for fitting plankton models to real
data, twin tests are seldom adequate because, in reality, the plankton model will almost
certainly not fit all the data. Chapter 3 explores a method to estimate extrapolative skill by
fitting a strictly-empirical ‘data simulation’ model to all the data, then using it to generate
ensembles of data sets for fitting and testing different 0D plankton models, allowing estimation
of their predictive skill as well as bias and variance as functions of time. The method is a
kind of replicated ‘sibling’ experiment (Evans, 1999) or ‘Observational System Simulation
Experiment’ (McGillicuddy et al., 2001) which also employs the technique of dividing the data
into calibration (‘active’) and validation (‘passive’) subsets (cf. Friedrichs et al., 2007; Smith
et al., submitted). The method is used to estimate the skill of a ‘weak prior bulk plankton
model’ — the standard approach of aggregating space and allowing extensive retuning of
biological parameters (i.e. using a broad or ‘weakly informative’ Bayesian prior pdf or ‘a
priori bias function’) to account for the statistical effect of unpredictable spatial variability
on coarse-scale dynamics. The question is: Can this approach yield better skill than a strictly
empirical or ‘inductive’ model, when asked to extrapolate from real Georges Bank data?

Although the coarse-resolution modelling approach of Chapter 3 may, in some cases,
‘shield’ the biological parameter fit from the effects of unpredictable model inputs and fine-
scale observational error, the extrapolative skill will likely always be limited by inability
to account for the Reynolds terms in (1.7)) without distorting parameter estimates. In
recent years, investigators have begun to seek ways of parameterising the ‘physical Reynolds
terms’ or eddy-fluxes in (1.7) to improve the predictive accuracy of coarse-resolution plankton
models, mostly by modification of the standard ‘eddy-diffusivity’ approach to account for
the finite ‘reaction’ timescale of plankton (Pasquero, 2005; Lévy, 2006). None, it seems,
have attempted to parameterise the contributions due to nonlinear biological dynamics, even
though studies have shown that these contributions can be very significant (Brentnall et al.,
2003).

To address this problem, Chapter 4 investigates methods of accounting for the ‘biological
Reynolds term’ (see section 1.5.3) by modelling the evolution of the phase space distribution of

plankton ecosystem models has been studied in Hillary and Bees (2004) and Guirey et al. (2007).

20



plankton concentrations. The main method investigated is to dynamically model the spatial
moments (covariances) of plankton variability — a technique which has been successfully
used for many years in ‘turbulence closure’ models of coarse-scale velocity dynamics. To this
end, a simulation study is performed whereby coarse-scale output from a simple, spatially-
resolved, reaction-diffusion spatial plankton model is compared to the predictions of the
standard ‘mean field approximation’, which neglects biological Reynolds terms, and various
‘spatially-implicit’ plankton models. These latter parameterise the Reynolds terms by making
suitable assumptions about the evolution of the distribution of plankton concentrations in
phase space (e.g. the neglect of third and higher central moments).

Finally, in the Conclusions Chapter 5 a brief summary is given of the most important
findings. Limitations of the methods investigated and their potential importance in a broader
context is discussed, including the most promising lines of future enquiry to build on this
work.

Appendix 1A: Model Fitting

Model fitting (or ‘data assimilation’) offers a more rigorous and objective way to adjust
model parameters than ‘fit-by-eye’ approaches. However, there are limits to this objectivity,
particularly when a fitting method is claimed to be ‘optimal’. In this Appendix, the main
types of estimation methods are summarised and their ‘optimality’ or otherwise is discussed.

Irrespective of the statistical methodology or paradigm adopted by the modeller, the
Bayesian framework provides a convenient means of categorising different approaches to
model fitting. Bayes’ rule defines the ‘posterior probability’ p12(a|D,M) of adjustable pa-
rameter values a given the data D and model formulation M in terms of the ‘Likelihood’ or
probability p21(D|a,M) of the data D given a and M, the ‘prior probability’ p1(a|M) of the
adjustable parameters a given M, and the total probability p2(D|M) of the data D given
M (see e.g. O’Hagan and Forster, 2004):

p12(a|D,M) =
p21(D|a,M)p1(a|M)

p2(D|M)
(1A-1)

In order to compare different model formulations, the Bayesian framework also allows the
assignment of prior probabilities p(M) to the model formulations themselves. However,
these are irrelevant to the present discussion of how to fit any single model (and we are not
considering multi-model predictions), hence the argument M will be dropped. Referring to
(1A-1), the various approaches used by plankton modellers to fit a set of adjustable parameters
a may be broadly categorised, in Bayesian language, as ‘posterior mode’ or ‘posterior mean’
types of estimation2.

1) ‘Posterior mode’ type estimation In this category of approach, we choose â such that it
maximises or minimises an objective function f(a,D) of the adjustable model parameters
a and the data D. We may choose to interpret this as maximising a posterior probability
p12(a|D,M), or more usually, minimising cost = − log p12(a|D,M). However, the probability

2Posterior median estimation appear not to have been tried in plankton modelling. Perhaps this could be
a more robust estimate than the mode and mean, which latter may be distorted by inaccurate modelling of
the distribution tails?
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interpretation is not prerequisite for a valid estimation method. For example, more accurate
predictions may in some cases result from using a ‘sum of squares’ (or ‘least squares’) objective
function even if a normal Likelihood function (which is consistent with a ‘sum of squares’
cost function) is not regarded as an accurate description of model/data errors (see section
3.2.6 and the lognormal example below).

Setting p1 = const, the Bayesian method reduces to Maximum Likelihood Estimation
(MLE) (Edwards, 1972). In the frequentist paradigm of ‘objective’ probability, ‘true’ proba-
bility distributions of events, estimates and predictions are defined via an infinite ‘ensemble’
of idealised ‘trials’ or ‘repeat experiments’ (see section 3.2.1 for discussion of this in the
context of plankton modelling). Within this paradigm, if MLE is applied with ‘perfect’ for-
mulations of the model and of the data error distribution, and with an asymptotically-large
sample size (number of data), the MLE estimates âMLE will be unbiased and have the mini-
mum possible variance for any non-Bayesian estimate (Stuart et al., 1999). Hence predictions
made using âMLE will be ‘optimal’ in the sense of minimal mean-square error over the ‘true’
ensemble. Note, however, that such conditions are rather unlikely to pertain in plankton
modelling. With finite sample size, MLEs are not, in general, unbiased (e.g. the MLE of the
standard deviation of a normal distribution) or indeed minimal-variance (e.g. when the data
are ‘truly’ lognormal, the simple sample mean obtained by Ordinary Least Squares estimation
has a lower mean-square error than the MLE of the mean for small sample size, even if the
Likelihood is correctly specified).

More accurate Bayesian estimates can always be made by incorporating accurate prior
information (for example: the posterior mode given a prior centred on the true value with
zero width!). In general, however, Bayesian posterior mode estimates obtain lower variance
at the price of higher bias, due to the prior constraints. It is often argued that Bayesian
estimates are ‘best’ because they make use of all available information, including subjective
prior information (e.g. O’Hagan and Forster, 2004). This is not true, however, if the prior
information is sufficiently biased (an alternative term for ‘prior information’ is prejudice). For
example, an ‘unfair’ coin might have a relative frequency of landing ‘heads’ θt = 0.7 in the
long term (after n → ∞ tosses). In this case, a rational Bayesian might impose a subjective
prior centred on θ = 0.5 (a fair coin). Given the same binomial Likelihood model, Bayesian
estimates of θt based on n tosses may (depending on the form of the prior) be less accurate
than the MLE for moderate n, because the posterior distribution of θ converges more slowly
than the Likelihood function to a delta-function on the ‘true’ value θt as n increases. For
small n, however, even biased prior information may be better than no prior information at
all, viz. the higher variance in θ̂MLE may overcompensate for the higher bias in θ̂MB .

Posterior mode estimation, or ‘variational data assimilation’, has been the more usual
method of plankton model fitting to date (Gregg, 2008). In these studies, usually only
biological model parameters and possibly initial/boundary conditions were fitted. These
are ‘strong constraint’ data assimilations in the physical oceanography jargon, since model
forcings were not adjusted. A ‘weak constraint’ plankton model fit, with forcings adjusted as
well as initial/boundary conditions and biological parameters, was attempted using posterior
mode estimation in Losa et al. (2004).

2) ‘Posterior mean’ type estimation Here, we choose â =
∫

a′f(D,a′)da′ for some integrating
function f . In the Bayesian interpretation, where f is the posterior pdf p12, this yields the
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Bayesian posterior mean estimate âMEB. This estimate may be more robust (lower variance)
than âMB , since information about the fit for a range of parameter values is used, although
it may still be biased due to bias in the prior pdf. Suppose, however, that the parameter or
variable a involved in the Bayesian prior can be regarded as a frequentist random variable
with known pdf p1(a) (e.g. a might be an initial condition, or the outcome of a coin toss).
If the conditional pdf p21(D|a) of data D given a is also known (e.g. D could be the result
of a plankton measurement, or the output of a mechanical ‘coin reader’), then the ‘optimal’
minimum mean-square error estimate âo, over the ‘true’ ensemble, of a given D, p1 and p21

is the ‘posterior mean’ âMEB:

âo =
∫

ap21(D|a)p1(a)da∫
p21(D|a)p1(a)da

=
∫

ap12(a|D)da

= âMEB (1A-2)

which is easily derived by minimising the mean-square error:

MSE =
∫

(â − a)2p21(D|a)p1(a)da (1A-3)

with respect to â for each value of D. The posterior mean âMEB is then unbiased, minimal
variance and distributed according to p12 over the ‘true’ ensemble. Hence a Bayesian optimal
estimate can also be optimal within the frequentist paradigm of ‘true’ probability. The
difficulty for the frequentist paradigm comes when a is a strictly fictitious quantity, such
as a structural parameter θ within a biological model. In this case, θ only strictly has
a meaning within the model. The prior estimate θ̂pr might be thought of as a random
variable — a function of prior model fits — varying over an objective ensemble of repetitions
of all previous experiments with a ‘prior pdf’ p1(θ̂pr). However, this prior estimate is, in
reality, independent of the data D. Hence the above optimality argument does not apply,
if a = θ, within the frequentist paradigm. Nevertheless, the posterior mean can still be
justified as a robust estimate within either paradigm. Without prior constraints, the resulting
Mean Likelihood Estimate (MELE) shares the asymptotic unbiased and efficiency (minimal
variance) properties of the MLE, but is often more robust for finite samples (McLeod and
Quenneville, 2001).

Posterior mean estimation has been commonly used to estimate biological parameters, but
less for making predictions in studies where biological parameters are adjusted. This may
be because plankton model posterior pdfs are ‘nasty’ functions of the biological parameters:
the regression is highly nonlinear and local maxima in the posterior pdf are common. Con-
sequently, predictions generated by the posterior mean parameters may be obviously poorer
fits than posterior mode predictions, and in fact poorer estimates of the true fields. Also,
integrating over the posterior pdf is nontrivial for the 5–10 biological parameters typically
adjusted, and is likely to require Monte Carlo methods (Harmon and Challenor, 1997). When
posterior mean estimation is applied to model forcings as well as initial/boundary conditions
(weak constraint fit) the integral becomes of too high dimension even for Monte Carlo meth-
ods, and a simplification is necessary — typically, to only allow information to propagate
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forwards in time. This results in a ‘filter’ or ‘sequential data assimilation’ which is amenable
to Monte Carlo methods (Losa et al., 2003). Sequential data assimilation has been applied
quite commonly to fit plankton models (Gregg, 2008), but almost always without adjusting
biological parameters — the exception here being Losa et al. (2003).

Appendix 1B: Model Testing

Model testing or validation is a crucial part of any modelling study which seeks to draw in-
ferences from model output. In oceanography, an emerging community jargon for this is ‘skill
assessment’. Assessing how wrong a model’s predictions are (validation or skill assessment) is
a separate, additional estimation problem to the one of estimating true fields or making model
predictions (calibration or model fitting — see Appendix 1A). In general, we want to know
how wrong a model’s predictions are (in some specified sense e.g. root-mean-square error) in
a range of conditions or spatio-temporal coordinates which may extend beyond those of the
fitted data (‘intra-’ and ‘extra-sample’ accuracy, in the statistical modelling jargon). Fur-
thermore, it is useful to distinguish systematic error (bias) from random error (variance). As
discussed in section 1.2, empirical evidence for the mechanistic veracity of a model is provided
by demonstrated predictive accuracy at high levels of extrapolation from fitted data.

The specific predictive purpose of the model may be mathematically defined as maximising
a ‘skill function’. This skill function then informs the choice of fitting method (cost function
for calibration) and suggests ‘skill metrics’ which might be applied to estimate the skill
function, or relative skills of different models, with available data (see Chapter 3). With the
toy problem presented in Figure 1.2, it is possible to test different types of skill metric and
measure their ‘performance’ in terms of the true skill of the model chosen by the skill metric,
on average over repeat experiments (see Table 1B.1). The take-home message seems to be that
when extrapolative skill is demanded of a model, skill metrics which only account for noise-
fitting in the calibration data, such as Likelihood Ratio Tests (Stuart et al., 1999) or Akaike’s
Information Criterion (Akaike, 1973; Burnham and Anderson, 1998), do not perform as well as
‘cross-validation’ or ‘division’ skill metrics which demand extrapolation by the model between
disjoint calibration and validation data subsets (Stone, 1974). Though not tested here, similar
shortfalls would be expected of Bayesian skill metrics based on calibration data, such as the
Bayesian Information Criterion or the ‘Evidence’ p2(D|M) in (1A-1). Data simulation or
‘parametric bootstrap’ techniques (Young, 1994) may allow more robust ‘simulation and
division’ skill metrics, particularly when the number of different disjoint data divisions is
small (resulting in a ‘noisy’ cross-validation metric — see Hastie et al., 2001 and Table 1B.1).
In such cases, simulation may also improve the robustness of predictive bias and variance
estimates.

The distinction between calibration and skill assessment seems to have gone under-
appreciated in plankton modelling. Usually, the calibration cost (typically, a spatiotemporally-
averaged squared misfit) is used as a skill metric to compare different model formulations.
This is, in general, a poor estimate of intra-sample accuracy, because it neglects observational
error, favours more complex models which are more able to fit observational errors, and fails
to test extrapolative accuracy (see Table 1B.1 and Chapter 3). Taylor diagrams (Taylor,
2001) are very widely used to display average squared misfit in geometric relation to model-
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Table 1B.1: Skill and skill metric performance for the toy problem simulation study (Figure
1.2). 5000 simulations were performed to evaluate the frequency with which each model
obtained the highest Skill(1) = −∑i(y

t(xi) − yp(xi))2 and the average value of Skill(1) for
each model over the ensemble: Skill(2) = E[Skill(1)] (first three rows). Also, for each of the
5000 data sets, a different skill metric was used to select the model with the highest Skill(2).
The relative frequency with which each model was selected by each metric is shown, along with
the resulting average true value of Skill(2)(choice) over all 5000 model choices, this being a
measure of the overall performance of the skill metric. The ‘Näıve’ metric was the calibration
cost (row 6). Akaike’s Information Criterion (AIC) was used to correct the calibration cost
for noise fitting (row 7). The Likelihood Ratio Test (LRT, row 8) was applied to reject
successively more complex models with a significance threshold α = 0.15 (the more standard
threshold of α = 0.05 yielded even more parsimonious model selection). Simulation (row 9)
involved fitting a statistical data simulation model to the given data set and using it to create
a ‘simulated ensemble’ of 50 auxiliary data sets, each used to fit the models and estimate skill
with the simulation model as a proxy for ‘truth’ (sometimes called the ‘parametric bootstrap’
method). Skill estimates were averaged over a new simulated ensemble for each of the 5000
true ensemble data sets. Division(n) (rows 10–12) involved using only n of the 5 data clumps
to fit the models and estimating skill using the remaining 5−n clumps. Here, skill estimates
were averaged over all possible calibration/validation combinations. Simulation&Division(n)

(rows 13–15) involved applying both data simulation and division techniques simultaneously.
Constant Linear Quadratic Cubic

Freq. Best Skill(1) (%) 0 16 80 4
Skill(2) -1.015 -0.073 -0.040 -1.153

Freq. Selected (%)
Skill Metric Constant Linear Quadratic Cubic E[Skill(2)(choice)]

Näıve 0 0 0 100 -1.12
AIC 0 46 40 14 -0.20

LRT (α=0.15) 8 92 0 0 -0.15
Simulation 0 24 45 31 -0.38
Division(4) 0 55 36 9 -0.16
Division(3) 0 85 15 0 -0.07
Division(2) 0 100 0 0 -0.07

Simulation&Division(4) 0 77 22 1 -0.08
Simulation&Division(3) 0 99 1 0 -0.07
Simulation&Division(2) 0 100 0 0 -0.07
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data spatiotemporal correlation and model/data spatiotemporal ‘variance’ (after correcting
for average misfit or spatiotemporal ‘bias’). Although certainly an effective visualisation tool,
the utility of Taylor diagrams for skill assessment is perhaps overestimated, and they seem
to have instilled a rather specialised use of the terms ‘bias’ and ‘variance’ in the plankton
modelling community. Bias and variance in classical statistical modelling are defined by
true fields and an ensemble, and may therefore be defined at single points in space/time.
The average (over space/time) misfit is an unbiased estimate of average ensemble bias (for
unbiased data), although this is not a very informative quantity (since biases at different
places/times can compensate each other). However, the spatiotemporal ‘variance’ is not an
unbiased estimate of average (over space/time) ensemble variance (we can make predictions
with little spatiotemporal variability but high predictive error variance), nor is the average
squared misfit an unbiased estimate of average ensemble mean-square error (or intra-sample
accuracy). Furthermore, simple linear correlation between model and data does not account
for time lags or phase error (explored in Chapter 2). For example, the Taylor diagram would
attribute equal ‘skill’ to a model which predicts all features perfectly except for a single phase
error (causing zero correlation) and a model which is entirely random in space and time but
with the correct spatiotemporal variance.
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Chapter 2

Time Lag Model Fitting

Published article: Wallhead, P.J., Martin, A.P., Srokosz M.A., 2006. Accounting for unre-
solved spatial variability in marine ecosystems using time lags. J. Mar. Res. 64, 881–914.

2.1 Introduction

Accounting for spatio-temporal variability in fitting marine ecosystem models is a challenging
problem. Limitations on our ability to track turbulent fluid motions, by observations and/or
physical circulation models, inevitably result in a mixing or confusion of spatial and temporal
variability in ‘Lagrangian’ ocean data (data attributed to ‘individual’ water parcels). A
solution might to be somehow filter out these effects, so that a biological model can be fitted
to the temporal variability within a ‘typical’ moving water mass (the ‘Lagrangian biological
trajectory’1), rather than the combination of spatial and temporal variability represented in
most practical (non-Lagrangian) data sets. A model thus-fitted could provide more accurate
tests of biological hypotheses, and better predictive skill when coupled to a physical model
of mesoscale circulation or even a General Circulation Model.

This chapter demonstrates that if unpredictable spatial variability in the phase or ‘dy-
namical time’ of the ecosystem is significant, then the optimal biological trajectories and
parameter sets obtained using existing techniques may be biased as estimates of their ‘true’,
small-scale, Lagrangian counterparts. A method is demonstrated to account for this spatial
variability by assuming random between-sample time lags imposed on a common biological
trajectory (temporal variation). The method is equivalent to allowing the initial conditions
of the biological variables in each sampled water mass to vary in the model fit, but only along
a common dynamical trajectory.

The method was largely inspired by a cruise data set from the eastern North Atlantic
collected after a period of unsettled weather. It suggested that a significant proportion of
the scatter seen in the data might be accounted for by time lags, since the time series data
appeared less scattered when plotted in ‘phase space’ (the space of state variables plotted
against each other) in which scatter due to time lags is suppressed (see Fig. 2.1 and Srokosz et
al. (2003) for more details). In fact, the latter study showed that time lags may even assist the
trajectory delineation in phase space, compensating for intermittency in the sampling times.
Näıvely, this may suggest that models would be better fitted to the phase space trajectory

1A dynamical trajectory in phase space, not to be confused with a ‘physical’ or ‘spatial’ Lagrangian
trajectory describing the motion of a water parcel in real space.
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Figure 2.1: Data from RRS Discovery cruise D227 (with permission, from Srokosz et al.
(2003)) displayed as time series (left), and in state variable phase space (right). Mixed layer
concentrations of chlorophyll (chl) and two size classes of zooplankton (BV1 = 250 − 500μm
and BV2 = 500 − 1000μm biovolume) are shown, with different symbols used for different
sampling subintervals.

rather than the time series whenever time lags are present. Doing so, however, effectively
discards all temporal information, and consequently any timescale parameter estimates (e.g.
the duration of a phytoplankton bloom) would have infinite variance. The method described
here is a more general ‘middle way’ between time series and phase space fitting, relaxing
constraints on sampled time lags to a controlled extent in order to allow for this kind of
variability between sampled water masses.

In this study the issue of the extent to which spatial variability in real data can be at-
tributed to time lags is not addressed. Before answering that question it is necessary to
develop the techniques needed to diagnose the phenomenon if it is there, and assess the
importance of correcting it. This is done here using twin tests. The potential impact of
between-sample time lags on standard model fits which do not account for them is investi-
gated, then a fitting technique is developed which allows for the presence of finite, random
between-sample time lags. This new ‘variable lag fit’ is shown to be capable, given certain
assumptions, of significantly outperforming the conventional ‘zero lag’ or ‘time series’ fit for
a broad range of time lag and measurement noise levels, where performance is measured by
the ability to recover, or hindcast, the true (Lagrangian) biological dynamics from practical
(non-Lagrangian) data. The zero lag fit is shown to be biased by the confusion of temporal
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and spatial variability in the data set in such a way that the inferred temporal variation
of biological variables is ‘smoothed out’. The variable lag fit incurs significantly less bias
in estimating the Lagrangian biological dynamics. The measurement error and time lag
statistics are assumed to be known in this study, but methods of estimating these from real
oceanographic data sets are also discussed.

The chapter is structured as follows. Section 2.2 details assumptions (including the model
equations), methods of generating artificial data and fitting the model to it, and how ‘fit
performance’ is evaluated (skill assessment). Section 2.3 discusses results from the twin tests
and their robustness to changes in ‘truth’, ‘model’ and sampling conditions, and potential
extensions of the method for practical applications. Conclusions are drawn in section 2.4.

2.2 Methods

2.2.1 Lagrangian Biological Model

For convenience of analysis and numerical implementation, a simple (though potentially ap-
plicable) marine ecosystem model is used for the twin tests. A basic requirement is that
the modelled mean trajectory may yield significant information about the model parame-
ters. This rules out trajectories for which the temporal variability is not significant relative
to measurement noise over the sampling period. The chosen system executes free, periodic,
stable nonlinear oscillations with a frequency ω, which is some unknown function of the inter-
nal model parameters. This behaviour is observed in some more complex marine ecosystem
models (e.g. Ryabchenko et al., 1997), but it is not a prerequisite for the technique, and
serves rather as a simple proxy for the more generic case of external seasonal forcing. The
variable lag fit is essentially a ‘type II regression’ and as such may be applied to any system
of ODEs with an independent variable (in this case time) which is assumed to be subject to
finite noise variations. Whether in fact the between-sample variability in the dynamics may
be robustly described by time lags concerns the particular system of interest (and is unlikely
to be true, for instance, if the system dynamics are chaotic, or if the system behaviour varies
significantly between sampled water masses).

Hence the following NPZ model, adapted from Edwards and Brindley (1996), adapted in
turn from the model of Steele and Henderson (1981), is used:

dN

dt
= −u0

N

kn + N

1
1 + cP

P + γR(1 − e−ΛzP )Z + mpP

+rzmzZ
2 + k(N0 − N) (2.1)

dP

dt
= u0

N

kn + N

1
1 + cP

P − R(1 − e−ΛzP )Z − mpP

−(k + sp)P (2.2)
dZ

dt
= ezR(1 − e−ΛzP )Z − mzZ

2 (2.3)

where N,P,Z are nutrient (N), phytoplankton (P ) and zooplankton (Z) concentrations
measured in g C m−3 (carbon currency). The model parameters and their ‘true’ values are
listed in Tabel 2.1, again, adapted from Edwards and Brindley (1996), where the original
set was chosen from realistic ranges based on a review of literature sources. The functional
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Table 2.1: Model structural parameters, true values and relative sensitivities.
Parameter Symbol ‘True’ value θt

i Sensitivity
maximum P growth u0 1.0 day−1 high
nutrient half-saturation constant kn 0.03 g C m−3 medium
P self-shading coefficient c 2.0 (g C m−3)−1 medium
Z excretion fraction γ 0.33 medium
maximum Z grazing rate R 0.6 day−1 high
Z search efficiency Λz 20 (g C m−3)−1 high
P recycled losses mp 0.15 day−1 medium
Z remineralisation fraction rz 0.5 low
Z mortality rate mz 1.5 (g C m−3)−1 day−1 high
cross-thermocline exchange rate k 0.05 day−1 medium
N concentration below mixed layer N0 0.6 g C m−3 medium
P sinking loss rate sp 0.04 day−1 low
Z assimilation efficiency ez 0.25 low
Nutrient initial condition N(0) 0.131 g C m−3 low
Phytoplankton initial condition P(0) 0.0398 g C m−3 medium
Zooplankton initial condition Z(0) 0.0750 g C m−3 medium

forms parameterise various biological processes and shall not be discussed at length here (see
Edwards and Brindley (1996) for detailed argument). Briefly, the trophic transfers are driven
by: Michaelis Menten-parameterised uptake of nutrient by phytoplankton, phytoplankton
self-shading, Ivlev-parameterised grazing of phytoplankton by zooplankton (replacing the
Hollings III function used in Edwards and Brindley (1996), which may produce excitable
behaviour and hence undesirable trajectory sensitivity, with the grazing form used by Franks
et al. (1986)), and predation of zooplankton by higher trophic levels. Recycling terms account
for remineralised products of phytoplankton mortality/respiration, and zooplankton excretion
and mortality fractions. Non-recycled loss terms represent phytoplankton sinking and vertical
mixing of nutrient and phytoplankton. Vertical mixing also allows influx of nutrient (only)
from below the seasonal pycnocline, where the nutrient concentration is N0 (the model only
explicitly represents shallower waters). The robustness of our results to changes in the choice
of model formulation is discussed in section 2.3.4.

In order to assess the relative sensitivity of the chosen true solution to changes in each
of the parameters, artificial Lagrangian data are generated with 5% measurement error (see
section 2.2.3). Then each parameter is varied in turn from 90 to 110% of their ‘true’ values,
and the maximum increase in model-data discrepancy (cost) is computed. Tabel 2.1 iden-
tifies the model parameters, their true values and respective sensitivities. ‘High’ sensitivity
parameters incurred more than 103 units of cost, ‘medium’ sensitivity parameters incurred
102–103 units, and ‘low’ sensitivity parameters less than 102 units.

Note that (2.1–2.3) describe the ‘average’ dynamics over a constant mixed layer depth and
some horizontal scale, which should be reflected in the optimal parameter values. For zero
lag fits, the horizontal scale represented by the optimal parameter set will be the total area of
fluid spanned by the samples. By allowing variable time lags, this scale may be reduced to a
scale on which the sampled dynamics may be described by a common trajectory with variable
time lags. Imposing a weaker restriction on the model thus allows the data to express a finer
scale of spatial resolution in the optimal parameter set. The model is therefore ‘Lagrangian’
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on a scale determined by the data set.

2.2.2 Between-Sample Variability in Time Lag

Unresolved spatial variability is assumed to impose time lags on the time series data. For
the twin test, these time lags are generated by a ‘true’ time lag model of independent ran-
dom variables drawn from a stationary normal distribution with mean zero and variance σ2

τ .
Though motivated by simplicity, this model may serve as a good first approximation in ar-
guably realistic circumstances. The assumption of normality is justified by a Central Limit
Theorem argument, considering the net effect of the many independent time lagging mech-
anisms, including fluxes of nutrient/plankton and stratification changes due to horizontally
propagating features such as eddies. The assumption of a stationary distribution requires
that the sampling interval be small relative to possible changes in time lag variance, which
seems reasonable for data sets spanning O(month), but may be unrealistic over a seasonal
cycle. The assumption of sampled time lag independence is a reasonable approximation if
the interval between successive samples is longer than the time for the largest coherent fluid
structure (eddy) to pass through the sampler. For spatial surveys sampling from a cruise
vessel moving at ∼400km/day (such as produced the data in Figure 2.1, see Srokosz et al.
(2003)), the interval of 1 day used in this study should be adequate at mid-latitudes (where
eddies are less than ∼ 100 km in size), although lower-latitude surveys may require a lower
sampling frequency for this assumption to be realistic.

To choose a realistic range of time lag variability to use in our twin tests, a rough estimate
is obtained from the time series in Figure 2.1 by examining the vertical scatter about the
mean value of one of the sampled variables (e.g. BV1) over a subinterval (e.g. the green dots),
and estimating the time interval over which this mean value changes by an equal amount
(cf. the blue dots). An approximate upper limit of 10 days is thereby estimated for a time
lag standard deviation relevant to the ocean. A more precise estimate would seem to require
fitting an ecosystem model without allowing distortion due to time lags, which begs the
question of this study. Estimation of this parameter, which is assumed to be known in the
twin tests, is discussed in section 2.3.3.

Note that even if these assumptions are not strictly met in reality, they may yet prove
adequate as assumptions in estimating the Lagrangian biological trajectory and biological
parameters from the data (see section 2.2.6). Dealing with the effects of violation of these
assumptions is discussed in section 2.3.4.

2.2.3 Measurement and Model Errors

To generate the data, a ‘true’ error model is adopted in which all measurement errors are inde-
pendent random variables sampling from a normal distribution with zero mean and standard
deviation proportional to the modelled mean value (after time lagging). Negative sampled
values are disallowed, effectively truncating the true error distribution, although this was a
rare occurrence for the chosen trajectories and noise levels. No covariance is assumed be-
tween measurement errors in different state variables in the same sample, between the same
state variables in different samples, or between measurement errors and time lags. This is
an extension of a standard model for measurement error often assumed in fitting (cf. Hurtt
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and Armstrong, 1996). The assumption of normality is justified again by the Central Limit
Theorem; the stationarity, independence and zero mean assumptions imply that the measur-
ing instruments perform consistently and without significant systematic error over the course
of the sampling survey, which is a plausible (if slightly optimistic) assumption. The lack
of covariance between measurement errors in state variables in the same sample effectively
assumes independent measurements. Model error unaccounted for by time lags is assumed
to be indistinguishable from measurement error viz. no covariance or non-Gaussianity con-
tribution is included in the total error. The error model assumed in fitting (section 2.2.6) is
identical to the true error model barring the (small) truncation effect. Again, section 2.3.4
discusses ways to deal with violation of these assumptions.

2.2.4 Generating a Noisy, Non-Lagrangian Data Set

The ‘true’ biological dynamics used to generate the data are specified by (2.1–2.3) and the
‘true’ biological parameter set θt shown in Tabel 2.1. Note that the superscript t will be
used to denote the ‘true’ value throughout. The equations are integrated using fourth order
Runge-Kutta with a step size of 1/128 days. The initial conditions [N(0), P (0), Z(0)] are
chosen from a point on the repeating cycle, of period roughly 40 days, that results from
running the model for 710 days from an arbitrary but fixed set of starting values to eliminate
any transient. The model is run for a further integration time of 80 days and the output
is recorded at intervals of 1/8 days, producing a non-transient trajectory over the sampling
interval of 40 days, with 20 days of integration either side to allow for time lagging. A data set
of observations for each field is then generated by sampling the model output at a sequence
of Ns = 40 true ‘dynamical times’ given by:

t′t = ts − τ t (2.4)

where ts is a 40-component vector of sampling times as measured by the sampler, starting at
20 days of integration time and advancing uniformly at intervals of 1 day, τ t is the vector of
true time lags drawn from a Gaussian probability distribution with mean zero and standard
deviation στ at a resolution of 1/8 day, and t′t is the resultant vector of true sampled dynam-
ical times. Time lags of magnitude greater than 20 days are disallowed, effectively truncating
the distribution to a range of roughly one period. Note that simultaneous measurements
are assumed of all modelled variables at each sampling time. This allows time lagging to be
most easily distinguished from other sources of noise, although it may be difficult to obtain
for real data sets. To simulate measurement error, independent Gaussian noise is added
to each variable datum, with constant proportional variance (sjy

t
j(t

′t
i ))2 where yt

j(t
′t
i ) is the

true mean value of the jth variable at the ith true sampled dynamical time t′ti and sj is the
true fractional error in the jth variable (following the measurement error model of Hurtt and
Armstrong (1996)). There is no correlation between state variable measurement errors or
between measurement errors and the time lag random variables.

2.2.5 Trajectory and Parameter Estimation

We start with a noisy, non-Lagrangian artificial data set where the spatial variability in biolog-
ical dynamics is generated by time lags. The problem is to use it to obtain optimal estimates
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of the true Lagrangian biological trajectory yt and associated true biological parameters θt

starting with plausible initial guesses θi, given the correct biological model formulation given
by (2.1–2.3), the correct level of a priori uncertainty in the dynamical time of samples rep-
resented by the modelled variance σ2

τ and the correct a priori fractional uncertainty sj. No
prior information about yt and θt is assumed except that all trajectory values and parameters
are non-negative.

First, the data are fitted using a standard time series fitting technique: the ‘Zero Lag
Fit’ (hereafter ZLF). This implicitly assumes the ‘null hypothesis’ that there is no significant
between-sample variability in time lag, hence the modelled time lag vector τ is set to zero,
and the fit is independent of the a priori uncertainty στ . The data are then fitted using the
new technique: the ‘Variable Lag Fit’ (hereafter VLF). This assumes that τ is a possibly non-
zero time lag vector constrained by the data and the a priori uncertainty στ . The ZLF must
interpret the scatter in the data set generated by time lags as a product of the true trajectory
and measurement errors. The VLF can potentially distinguish time lags from measurement
error, using the fact that time lags produce correlated changes in the state variables (along the
phase space trajectory), and thereby achieve a better estimate of the Lagrangian dynamics.
However, optimising the VLF does involve added complications beyond those of optimising
the ZLF, as will be seen below.

To infer model parameters from the data, the ‘posterior probability’ of the model pa-
rameter set is maximised (posterior mode estimation). This is a product of the Likelihood,
the probability of the data given the parameter set (hypothesis), and the ‘prior probability’
of the parameter set. The latter prior probability density is assumed to be uniform in all
parameters except the time lags (see below). Thus we obtain estimates â = {θ̂,τ̂} of the
full set of ‘true’ adjustable parameter values at = {θt,τ t}. The method can be interpreted
as Bayesian estimation or Maximum Likelihood Estimation where the Likelihood function
includes errors in the regressor variable (time) — hence a ‘nonlinear model II regression’
type with ‘controlled’ regressor errors in the terminology of Laws (1997), or a ‘functional
relationship without replication’ in statistical jargon (Seber and Wild, 2003). For the ZLF,
estimates will be classical Maximum Likelihood (ML) estimates without regressor errors.

Assuming that the model parameter set for the ZLF is minimal (containing no two param-
eters with identical effects), then the ML estimates should be unique, or ‘identifiable’ (Stuart
et al., 1999). Given the correct model formulation and hypothesis, these ML estimates will
also be ‘consistent’, meaning that as the number of observations becomes large, they can be
expected to converge on the true values. However, ML estimates are not in general ‘unbiased’
(bias being defined as the expected difference between the ML estimates and the true values
over an ensemble of repeat experiments). It is also desirable for estimates to be ‘efficient’,
meaning that they have minimal variance over the ensemble. For the ZLF, fitted to data
without time lags, and given the correct model formulation, the ML estimates will be asymp-
totically (as sample size n → ∞) efficient and normally distributed (with variance decreasing
as n−1) (Stuart et al., 1999). In fact, the parameter variance-covariance matrix is given
asymptotically by the inverse of the ‘Fisher information matrix’, which may be estimated
in practice by the inverse of the Hessian matrix for parameter perturbations about the ML
solution for a single data set (Thacker, 1989; Matear, 1995).

For the VLF, fitted to data with time lags, many of the above desirable properties are
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not guaranteed. The difficulties stem from the fact that as the number of observations
increases, so does the number of ‘incidental’ parameters (dimension of t′), thus theoretical
results associated with large sample size may not apply. The incidental parameter estimates
t̂′ = ts− τ̂ may not be consistent, since each of the components only occurs in a finite number
of observable variables (Neyman and Scott, 1948). The structural parameter estimates θ̂ may
remain consistent, but perhaps only if the ratio of the coefficients s/στ is known, and even
then, the MLEs θ̂ may not be asymptotically efficient (Neyman and Scott, 1948; Seber and
Wild, 2003). This forewarns us that the VLF parameter estimates might not be robust. As it
turns out, a modified maximisation function is required to address this problem (see below).

2.2.6 Objective Functions

The objective or cost functions for the VLF and ZLF are specified by a general hypothesis
defining the VLF, of which the ZLF submodel is a restriction. The composite hypothesis H
asserts the following:

H(1): The observational vector of (fixed) sampling times is given by ts = t′+τ where t′ is a
vector of modelled dynamical times (dimension Ns = 40) and τ is the vector of modelled time
lags, assumed to be independent Gaussian random variables with mean zero and variance σ2

τ .
AND
H(2): The jth observed variable at sampling time tsi is given by oij = yj(t′i|θ) + εij, where

yj(t′i|θ) is the output of model (2.1–2.3) at time t′i = tsi − τi given the set of parameters and
initial conditions θ, and εij is an independent Gaussian random variable with mean zero and
variance (sjyj(t′i|θ))2, representing measurement noise and remaining model error.

The estimation method now consists of maximising the posterior pdf with respect to the
adjustable parameters a = {θ,τ}, given the data D and under the hypothesis H:

P (a|D) ∝ p(1)(τ)p(2)(D|τ, θ) (2.5)

where p(1) is a ‘prior’ pdf of the time lags, and p(2) is the ‘Likelihood’ of the data given the
model with parameter values a = {θ,τ}. Note that the assumed independence of τ and the
εij allows us to decompose the posterior pdf in this way.

Now, the ZLF restricts the optimisation to (τ = 0), whilst the VLF allows non-zero τ

within the allowed range of ±20 days for each component (see section 2.2.4). Therefore, the
posterior pdf for the standard ZLF is given by:

MZLF = p
(1)
ZLF .p

(2)
ZLF (2.6)

where

p
(1)
ZLF =

Ns∏
i=1

1√
2πσ2

τ

(2.7)

is the (restricted) prior pdf of the time lags (a constant), and

p
(2)
ZLF =

Ns∏
i=1

m∏
j=1

1√
2π(sjyj(tsi ))2

e
− (oij−yj(ts

i
))2

2(sjyj(ts
i
))2 (2.8)
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is the Likelihood function, combining Likelihoods of the data over the m (independent)
variables and over the N (independent) simultaneous samples of these variables. For the new
VLF, the posterior pdf is given by:

MV LF = p
(1)
V LF .p

(2)
V LF (2.9)

where

p
(1)
V LF =

Ns∏
i=1

1√
2πσ2

τ

e
− (τi)

2

2σ2
τ (2.10)

is the (variable) prior probability density function of the time lags, and

p
(2)
V LF =

Ns∏
i=1

m∏
j=1

1√
2π(sjyj(t′i))2

e
− (oij−yj(t′

i
))2

2(sjyj(t′
i
))2 (2.11)

is the Likelihood function, now evaluating the model at the modelled dynamical times:

t′i = tsi − τi (2.12)

In this study, no attempt is made to optimise the statistical parameters s and στ . In all
optimisations, the same value of s is used during fitting as that used to generate the data.
For fitting to data ‘generated on the null’ (τ t = 0), στ is set equal to some fixed (possibly
wrong) value for each optimisation. For fitting data generated ‘on the alternative’ (τ t �= 0),
the same value of στ is used as that used to generate the data. Whilst it may be unrealistic to
set these a priori estimates equal to the true values given the difficulties of estimating these
quantities in practice (especially στ ), it serves as a starting point which ensures consistent
a posteriori estimates of θt using the VLF (Seber and Wild, 2003), and which may later be
generalised to include consistent a posteriori estimates of s and στ where ‘replicated’ data
are available (see section 2.3.3).

Now, maximising MV LF in (2.9–2.12) yields consistent structural parameter estimates
given accurate a priori estimates of the error parameters (s, στ ), but these are not necessarily
the ‘best’ as regards bias and variance. The problem is that by relaxing constraints on the
sampled time lags, variance is increased in the estimated frequency of oscillation. To suppress
this variance, the VLF maximisation function is multiplied by a ‘lag drift penalty’ term S

which measures the probability, assuming independent Gaussian time lags with variance σS
τ ,

of obtaining a persistent ‘drift’ in the time lags:

S(τ |σS
τ ) =

max(p′(0)(τ |σS
τ )

max(p′(A)(τ |σS
τ )

(2.13)

where p′(A), p′(0) are the maximum Likelihoods for fitting mean trends τ(t) = At + B and
τ = C respectively to the series of time lags plotted against sampling time. S can be thought
of as an additional prior on the time lags which strengthens the hypothesis of independence
— a kind of automated ‘residual analysis’ on the time lags. With this penalty term the
calibration cost function for the VLF becomes:

M ′
V LF = p

(1)
V LF .p

(2)
V LF .S(τ |σS

τ ) (2.14)
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Ŝ → 1 as number of sampling times Ns → ∞, so the consistency of the structural pa-
rameter estimates is not spoilt by the maximisation of M ′

V LF . A first choice of σS
τ might be

στ ; however, better performance was obtained using a ‘weighted’ S with a reduced variance:
σS

τ = 0.1στ . The use of S with this weighting improves validation fit and reduces the bias
and variance of the structural parameter estimates. Note that such ‘Likelihood modifiers’ are
nothing new in random regressor problems (e.g. Neyman and Scott, 1948). A possible alter-
native would be to fit a model with the timescales effectively fixed by non-dimensionalisation,
then estimate the timescales separately (Froda and Colativa, 2005). The method described
here aims to constrain all structural parameters in a single estimation procedure.

In summary, the maximisation functions are MZLF defined in (2.6–2.8) for the ZLF and
M ′

V LF defined in (2.10–2.14) for the VLF. Unless otherwise stated, σS
τ = 0.1.στ as a weighting

for S in the VLF.

2.2.7 Optimisation

The task is to maximise (2.6) with respect to the θ free parameter vector for the ZLF (13 rate
constants + 3 initial conditions), and (2.14) with respect to the {θ,τ} free parameter vectors
for the VLF (13 rate constants + 3 initial conditions + 40 time lags). The data set consists
of 40 simultaneous measurements of each of 3 variables (hence total sample size n = 120).
For the purposes of optimisation, it is more convenient to minimise the ‘cost functions’:
costZLF = − log MZLF and costV LF = − log M ′

V LF . In the ZLF, the 16 free parameters
are all varied by the search algorithm. However, for the 56 free parameters of the VLF, a
massive computational saving is obtained by performing a nested optimisation (similar to
‘concentrating the Likelihood’) over the 40 time lag parameters at each iteration. This is
facilitated by the fact that the costV LF decomposes (except for the small contribution of
− log S) into a sum of contributions from each sample time, allowing each τi to be optimised
by choosing the value from the allowed range for which the cost increment is minimised. The
contribution of − log S is then calculated and added to give the (partially) optimised cost for
the trial value of θ.

The search algorithm varies the 16 structural parameters comprising θ in order to (fully)
minimise the cost, using the ‘Downhill Simplex with Simulated Annealing’ algorithm of Press
et al. (1999). Simulated Annealing (SA) algorithms attempt to avoid trapping in local min-
ima by adding random cost fluctuations chosen from a Gibbs distribution with a certain
‘temperature’ (rms fluctuation). The temperature is then cooled as the optimisation pro-
ceeds on the expectation that the global minimum is being approached and less fluctuation
is required. Given any Markovian transition matrix for exploring the parameter space, if the
SA rule for accepting ‘uphill’ moves with a probability ∝ e−Δ(cost)/T is applied, the equi-
librium probability state vector will be a Gibbs distribution over cost. It follows that for
a slow ‘cooling schedule’ that varies as 1/ log k for k iterations, the search remains ergodic
even as T → 0, implying that the global minimum will be approached with certainty as
k → ∞. Unfortunately, such cooling schedules are found to be too slow for practical applica-
tions (Matear (1995) — although there may be ways to enable a speed-up without sacrificing
ergodicity — see Ingber (1993)) and in any case would not necessarily work for our simplex
algorithm since it is not a Markovian search (next position dependent at most on last posi-
tion). After trial-and-error testing, the schedule found to be most practically effective was to
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set T (k) = max (cost, T0e
−k/γ), so that the temperature adapts to any improvements in cost

beyond a baseline exponential cooling rate of 1/γ.
The optimisations were all limited by a maximum number of iterations. This number

was set by the criterion that the maximal ‘optimisation error’ due to finite iterations be
much less than the typical between-data set variation for our chosen test statistic Λ(V ) (see
section 2.2.8 for definition). The maximal optimisation error was estimated by comparing
with a single long optimisation of 5×105 iterations. It was found that, for model fits to data
generated by the alternative hypothesis (τ t �= 0), 105 iterations safely satisfied this criterion
for initial guesses with 10% error in every parameter and στ of up to 8 days. For model fits
on the null (τ t = 0), 104 iterations were sufficient as long as the initial guess was close to the
optimum, i.e. at θi = θt. Note that with finite noisy data, the exact optimal (ML) solution
θ0 is in general not coincident with the ‘true’ generating solution θt, since inevitably some
of the noise is fitted by the modelled mean variability in the exact optimal solution. Since
the main purpose of this study is to test an estimation method (cost function) rather than
an optimisation algorithm, θi = θt was used in some cases for speed of convergence. For all
fits on the alternative (τ t �= 0), the ZLF was slower (necessitating 105 iterations) as a result
of a larger discrepancy between θt and θ0, leading, as will be seen, to larger biases on the
parameter estimates.

2.2.8 Skill Metrics

The principal measure of ‘fit performance’ or ‘skill’ in this study is the expected accuracy of
the model fit in recovering (hindcasting) the true (Lagrangian) biological trajectory. Thus
we estimate the relative skill using the following skill metric:

Λ(V ) = max (log p
(V )
V LF ) − max (log p

(V )
ZLF ) (2.15)

where − log p
(V )
ZLF/V LF is the ‘validation cost’ of the ZLF/VLF. The function p

(V )
ZLF/V LF is

identical in form to p
(2)
ZLF (equation (2.8)), but here the ‘validation data’ are generated by θt

with zero measurement noise and no time lags (the true (Lagrangian) trajectory sampled at
times ts), and the model prediction is generated by the estimates θ̂ZLF/V LF obtained by the
ZLF/VLF in calibration. Of course, no time lags are included in the model prediction since
the Lagrangian biological trajectory is being predicted. Λ(V ) is a measure of the difference
in total squared predictive error, weighted to give greater importance to predictive error
where the true values (and hence measurement errors) are low. Note that the superscript
(V ) denotes a ‘validation’ statistic only accessible in the context of a twin test where the true
trajectory is known. Also note that since (2.15) is evaluated over an independent (noise-free)
validation data set, it does not require correction for the different noise-fitting capacities of
the ZLF and VLF (the latter having Ns more free parameters), therefore we use Λ(V ) = 0
as our threshold for selecting the most skillful prediction method. In addition, we will also
estimate the bias and variance of the fitted parameter vectors θ̂ZLF/V LF over an ensemble of
data fits.
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2.3 Results and Discussion

2.3.1 Visual Skill Assessment

i. Dependence on time lag variance and measurement noise. For a visual assessment of fit
performance, we ran zero and variable lag fits to several data sets generated with time lag
standard deviations of στ = 0, 4 and 8 days and measurement error coefficients of s = 0.05 and
0.15, using θi = 0.9θt and 1.1θt as initial guesses. Two examples are shown, with s = 0.05
in Figure 2.2 and s = 0.15 in Figure 2.3. In both cases, the generating trajectory is well
recovered when στ = 0 days, but the VLF clearly does a better job when στ = 4 or 8 days.
The effect of the time lag variance is in general to cause underestimates of the (N ,P ,Z)
temporal variability when fitted using the standard ZLF technique, whilst the VLF seems to
accurately recover the extent of variability even at στ = 8 days and s = 0.15. The distortion
of the ZLF first becomes noticeable over intervals when the (N ,P ,Z) trajectory curvature
(d2N

dt2 , d2P
dt2 , d2Z

dt2 respectively) is high, i.e. at the peaks and troughs (see the fits for στ = 4
days in Figs. 2.2,2.3). This suggests that intervals in the fine-scale seasonal cycle such as
spring/autumn blooms and subsequent troughs due to flourishing grazers may be ‘smoothed
out’ or underestimated in magnitude by standard model fits.

Note that at στ = 8 days the smoothing effect appears to result in a decaying oscillation
in the ZLF rather than the true stable limit cycle, and indeed this was confirmed by running
the ZLF solution over a longer integration time. It is clear that such mistaken decays to
equilibrium would seriously impair the forecast accuracy for the true dynamics after the
sampling interval — and may perhaps help to explain the dearth of predator-prey oscillations
found in models fitted to real data sets in the literature. These errors in the topology/stability
of the dynamics are shown more clearly in Figure 2.4, where the results for στ = 0, 4 and 8
days and s = 0.15 shown in Figure 2.3 are replotted in phase space cross-sections. Viewed in
this way, dynamical transience is much more apparent: the ZLF seems to produce smaller,
yet stable limit cycles at στ = 4 days, and spirals towards equilibrium at στ = 8 days, whilst
the VLF maintains stable limit cycles with a small amount of transience at both στ = 4 and
στ = 8 days.

Comparing Figures 2.2 and 2.3, the increase in measurement noise is seen to increase
the deviation of the inferred trajectory from the true trajectory of both fits at στ = 0 days,
whilst it does not appear to significantly alter the trajectories at στ = 4 and 8 days. Thus
the relative importance of errors due to spatial time lag variability must be a function of
the measurement noise level as well as the amount of time lag variation. For high enough
measurement noise level, the benefit of using the VLF will be insignificant for realistic levels
of time lag variability (although from Figs. 2.2 and 2.3 this does not seem to be the case at
s ≤ 0.15 for 4 ≤ στ ≤ 8 days). For any level of time lag variability, the improvement yielded
by the VLF will be insignificant when measurement errors become comparable with the extent
of mean temporal variability in the data set — in which case any kind of time-dependent
model fit is a questionable exercise.
ii. Optimisation vs. fit-by-eye. Looking at the data for στ = 8 days in Figures 2.2 and 2.3,
one might wonder how the optimiser is able to extract any information at all from such a
scattered set. Note, however, that the optimiser considers the model-data discrepancy in
all three state variables simultaneously, whilst the eye tends not to do this when examining
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Figure 2.2: Best fit trajectories to data (+) generated by ‘true’ (Lagrangian) trajectory (solid
line) using standard zero lag method (ZLF, dotted) and using the new variable lag method
(VLF, dashed). Data were generated with time lag standard deviations στ = 0 days (upper),
4 days (middle), and 8 days (lower) and 5% measurement noise imposed on each variable
(s = 0.05). N = Nutrient (left), P = Phytoplankton (middle), and Z = Zooplankton (right).
Initial guess parameter error was -10% in each model parameter (see equations (2.1–2.3) and
Tabel 2.1 for specification of the true model).
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Figure 2.3: As in Figure 2.2 but with 15% measurement noise (s = 0.15) imposed on each
state variable, and initial guess parameter error of +10% in every parameter.
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Figure 2.4: Phase space cross-sections showing best fit trajectories to data (+) generated
by ‘true’ Lagrangian biological trajectory (solid line) using standard zero lag method (ZLF,
dotted) and using the new variable lag method (VLF, dashed). Data were generated with
time lag standard deviations στ = 0 days (upper), 4 days (middle), and 8 days (lower) and
15% measurement noise imposed on each variable (s = 0.15).
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a set of time series (although this is partly achievable by displaying 2D phase space cross-
sections as in Fig. 2.4, perhaps using colours to retain some temporal information as in
Figure 2.1). Thus, in all of the optimisations, at least the correct patterns of variability and
phase relationships between N , P and Z are robustly recovered (these being absent in the
‘initial guess’ trajectory). The extent of variability is underestimated by the ZLF, which
tries to follow a smoothed variation over sampling time (within the constraints imposed by
the model formulation (2.1–2.3)). The VLF has the additional freedom to effectively shift
data points forwards and backwards in time (left and right in Figs. 2.2 and 2.3) to an extent
roughly proportional to στ in order to achieve a better fit. Crucially, however, the temporal
shift applied to each sample must be the same for all three state variables (which, again, is
difficult to perceive by eye in time series data sets).

2.3.2 Quantitative Skill Assessment

i. Recovery of the Lagrangian biological trajectory. First, the potential benefits of the new
technique are assessed when finite time lags are present in the data set. This is done by
computing Λ(V )

(alt) over 5 different data sets, each requiring 105 iterations, for στ = 0, 0.5, 1, 2,
4 and 8 days and s = 0.05 and 0.15 (see Figs. 2.5 and 2.6). Here the subscript ‘alt’ denotes use
of the alternative hypothesis to generate the data (τ t �= 0), and recall that the correct value
of στ is used as an a priori estimate to explore the maximum potential benefit of the VLF.
Also, θi = θt is used for speed of convergence (note: convergence time is still non-zero for the
VLF, since the ‘true’ solution is generally not equivalent to the optimal solution for fitting
finite, noisy data). As στ increases, the mean Λ(V )

(alt) increases as worsening performance of
the ZLF, due to negative bias on the estimated extent of variability (the smoothing effect),
outweighs the deterioration in the VLF due to timescale variance. This bias arises as the
ZLF tries to minimise vertical scatter and hence fit to the smoothed variability over sampling
time, which is a convolution of the true trajectory with the true time lag distribution.

From Figures 2.5 and 2.6, the maximum mean saving in validation cost achieved by the
VLF (at στ = 8 days) is about 450 units for s = 0.05 and about 350 units for s = 0.15
— or 750% and 580% respectively of the expected true validation cost due to measurement
noise (n/2 = 60 units). The mean Λ(V )

(alt) strays beyond one standard deviation of zero
(VLF performs better in more than 70% of cases) at σc

τ ≈ 1 days for s = 0.05 and σc
τ ≈

4 days for s = 0.15. It seems, therefore, that the minimum lag variability required for
significant improvement in fit performance with the VLF scales roughly in proportion to the
measurement noise level (at low s) and that these conditions are not unrealistic for marine
ecosystem sampling.

Second, the potential dangers of using the new technique are assessed by comparing with
the ZLF when time lags are in fact absent in the data set (τ t = 0). This was done by
computing Λ(V )

(null) over 100 different data sets (each requiring 104 iterations) for στ = 0,
0.5, 1, 2, 4 and 8 days and s = 0.05 and 0.15 (see Figs. 2.7,2.8). Here the subscript ‘null’
denotes data generated on the null hypothesis (τ t = 0). The means and standard deviations
show that the VLF performs persistently worse and is less robust than the ZLF when time
lags are not present. This is to be expected, since in this case the ZLF suffers no smoothing
effects whilst the VLF produces increasingly variable timescale estimates as στ is increasingly
overestimated.
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Figure 2.5: Validation cost savings yielded by new technique Λ(V )
(alt) (triangles) vs. time lag

standard deviation στ when time lags in calibrating data set are non-zero (the ‘alternative’
hypothesis τ t �= 0) and 5% measurement noise is imposed on all three state variables (s =
0.05). Means (triangles) and standard deviations (error bars) are shown from 5 optimisations
over different calibrating data sets for each value of στ .
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Figure 2.6: As in Figure 2.5 but with 15% measurement noise imposed (s = 0.15).
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Figure 2.7: Validation cost savings yielded by new technique Λ(V )
(null) vs. modelled time lag

standard deviation στ when time lags in calibrating data set are zero (the null hypothe-
sis τ t = 0) and 5% measurement noise is imposed on all three state variables (s = 0.05).
Means (triangles) and standard deviations (error bars) are shown from 100 optimisations
over different calibrating data sets for each value of στ .
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Figure 2.8: As in Figure 2.7 but with 15% measurement noise imposed (s = 0.15).
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From Figures 2.7 and 2.8, the maximum mean increase in validation cost incurred by using
the VLF (at στ = 8 days) is about 1.2 units for s = 0.05 and about 35 units for s = 0.15 —
or 2% and 60% respectively of the true cost due to measurement noise. Thus the expected
error of the VLF in recovering the true Lagrangian biological trajectory is a strong function
of measurement noise s, which increases the tendency of the VLF to give distorted timescale
estimates.

Note also, that since the ensemble variance in Λ(V )
(null) increases roughly in proportion to

the decrease in the mean, the mean stays within one standard deviation of zero (over our
realistic range of στ ), which implies that the ZLF never performs better in more than roughly
70% of data sets, even when time lags are truly absent.

The potential risks vs. benefits of using a VLF may now be summarised in the more
realistic circumstances where στ is only known to be some value less than ∼ 8 days. At
5% measurement noise (s = 0.05), we stand to incur an increase of roughly 2% but save
potentially 750% on average of the true validation cost due to measurement error alone
(= n/2), assuming (τ t = 0) is a ‘worst case scenario’ for the VLF. At 15% measurement
noise (s = 0.15), we stand to incur an increase of roughly 60% but save potentially 580% on
average. In summary, the risks appear to be outweighed by the potential benefits of using
the VLF, although to fully realise this potential, one must accurately estimate στ , which is
discussed in section 2.3.3.

Qualitatively similar plots to Figures 2.5 and 2.6 were obtained using the logarithm of
the ratio of the optimal Likelihoods p

(2)
ZLF/V LF (the Likelihood Ratio Test LRT) as a test

statistic (see Figs. 2.9,2.10):

Λ(C) = max (log p
(2)
V LF ) − max (log p

(2)
ZLF ) (2.16)

where the superscript (C) denotes a ‘calibration’ statistic accessible when the true Lagrangian
biological trajectory is unknown (as for fitting real data sets). Comparing Figures 2.9 and
2.10 allows rejection of the null hypothesis (τ t = 0) at similar threshold values of the time
lag standard deviation σc

τ as those quoted above. Fig. 2.10 also confirms, for high στ , the
classical result that the asymptotic distribution of 2× the LRT statistic on the null, given
correct model and data error formulations, should be chi-square with K degrees of freedom,
where K is the number of extra parameters in the ‘alternative’ model (in our case the 40
time lags), hence Λ(C) should have a mean value of K/2 = 20 (Stuart et al., 1999).

ii. Bias and variance in structural parameter estimates. Bias and variance are estimated by
performing 100 optimisations using στ = 8 days and s = 0.15 to generate and fit different data
sets (see Table 2.2), initialising the optimisation with θi = θt each time. This latter choice
may lead to underestimation of optimal parameter variances, if the cooling is insufficiently
gradual to prevent search localisation near θi. However, our main aim is not to assess the
absolute performance of the model fits — rather the relative performance of the VLF vs. the
ZLF, and we expect any search localisation in θ-space to affect the VLF and ZLF equally.

First, note from Table 2.2 that the VLF yields smaller bias than the ZLF in almost
all parameter estimates (except rz, sp and N0, which are all low sensitivity parameters in
determining the model trajectory), and smaller estimator variance in all cases. Therefore the
VLF estimates of all the biological parameters to which the Lagrangian biological trajectory
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Figure 2.9: Calibration cost savings yielded by new technique Λ(C)
(alt) vs. modelled = true time

lag standard deviation στ when time lags in calibrating data set are non-zero (the ‘alternative’
hypothesis τ t �= 0). Means (triangles/circles) and standard deviations (error bars) are shown
for s = 0.05/0.15. The dashed line marks the theoretical expected value of Λ(C)

(null) for στ → ∞
(see Figure 2.10)

48



0 1 2 3 4 5 6 7 8 9
−5

0

5

10

15

20

25

30

στ (days)

Λ
(C

)
(n

ul
l)

Figure 2.10: Calibration cost savings yielded by new technique Λ(C)
(null) vs. modelled time lag

standard deviation στ when time lags in calibrating data set are zero (the null hypothesis
τ t = 0). Means (triangles/circles) and standard deviations (error bars) are shown for s =
0.05/0.15. The dashed line marks the theoretical expected value of Λ(C)

(null) for στ → ∞
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Table 2.2: Bias and variance in structural parameter estimates using the (standard) zero lag
fit (ZLF), variable lag fit (VLF), and variable lag fit with no lag drift penalty S (VLF(no S)),
expressed as percentages of the true values. The data were generated with time lag standard
deviation and fractional measurement noise levels of στ = 8 days and s = 0.15 respectively.
Estimates highlighted in bold have biases more than three standard errors above or below
zero.
Parameter Sensitivity Estimator Bias (%) Estimator Stdev (%)

ZLF VLF VLF(no S) ZLF VLF VLF(no S)
u0 high -0.8 0.0 0.6 4.8 1.4 0.6
R high -1.0 0.2 -0.1 6.4 1.1 0.4
Λz high -18.8 0.1 -0.5 12.5 1.5 0.6
mz high 7.8 -0.3 0.0 16.0 2.3 1.4
kn medium 67.1 0.2 42.8 62.0 16.7 29.8
c medium 17.6 -12.3 -34.4 65.3 24.1 22.3
γ medium -6.5 1.3 -16.4 48.0 19.1 25.8
mp medium 11.1 0.4 -24.9 40.8 8.1 21.4
k medium 10.4 -0.9 0.1 32.4 6.1 10.2
N0 medium 9.1 2.8 -1.9 21.9 4.5 4.2
P(0) medium 54.7 8.3 56.5 52.6 30.0 45.0
Z(0) medium -4.8 0.8 8.5 21.0 8.6 8.9
rz low -4.0 14.8 49.3 48.2 42.7 46.3
sp low -2.0 9.9 25.9 64.4 41.8 49.3
ez low 6.2 0.5 1.9 15.1 2.6 2.2
N(0) low 4.2 -8.1 -25.2 46.7 36.5 35.9

is sensitive (‘high’ and ‘medium’ sensitivity parameters) are more accurate than those of the
ZLF, as one might have expected from Figure 2.6. The lower variance of the VLF estimates
may be a result of the fact that the true trajectory lies within the (θ, τ) search space, whilst
the ZLF effectively fits to the convolution of the true trajectory with the time lag distribution,
which is a smaller signal relative to the measurement noise, and may not lie exactly in the θ

search space.
Table 2.2 can be used to infer the parameter biases that are likely most responsible

for persistent distortion effects. Highlighted in bold are the significantly biased parameter
estimates, defined as those with a bias more than three standard errors from zero. The ZLF
produces several more significantly biased estimates than the VLF, including two among the
high sensitivity parameters. This suggests that the persistent smoothing effect is achieved by
a general slow-down in ecosystem conversion rates — decreasing grazer search efficiency Λz

and increasing uptake saturation constant kn — whilst mean concentrations over the sampling
interval are roughly maintained by increasing diapycnal influx of nutrient (increasing k and
N0) and adjusting the initial conditions (N(0),P (0),Z(0)).

Tables 2.3 and 2.4 show true values and biases/variances for a few interesting ‘derived
parameters’ i.e. functions of the structural parameters in Tabel 2.1, again for στ = 8 days,
s = 0.15. First, the bias and variance in oscillation frequency ω are estimated by calculating
the peak-to-trough separations in the true and optimal zooplankton trajectories (zooplankton
showing the most symmetrical oscillation — see Figs. 2.2 and 2.3) over the 100 optimisations.
Although the bias in the VLF estimated frequency is very low (less than 1%), the standard
deviation is significant (≈ 15 %), and causes significant increase in validation cost as the
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Table 2.3: ‘Derived parameters’ (functions of the parameters in Table 2.1) and true values,
where ‘mean’ denotes average over the sampling interval (roughly one cycle).
Derived Parameter Symbol ‘True’ value
Oscillation frequency ω 0.18 rad s−1

Mean gross primary production GPP 0.05 g C m−3 day−1

Mean net nutrient export rate NNE -0.02 g C m−3 day−1

Table 2.4: Bias and variance in ‘derived parameter’ estimates using the (standard) zero lag
fit (ZLF), variable lag fit (VLF), and variable lag fit with no lag drift penalty S (VLF(no S)),
expressed as percentages of the true values. The data were generated with time lag standard
deviation and fractional measurement noise levels of στ = 8 days and s = 0.15 respectively.
Estimates highlighted in bold have biases more than three standard errors above or below
zero.
Parameter Estimator Bias (%) Estimator Stdev (%)

ZLF VLF VLF(no S) ZLF VLF VLF(no S)
ω 24.2 -0.6 -6.7 166 14.7 32.8
GPP 8.5 -1.3 -4.6 11.4 4.0 5.6
NNE -3910 -4460 -5860 -2100 -1740 -1860

estimated trajectory drifts out of phase with the true Lagrangian biological trajectory (see
e.g. Fig. 2.2, lower). The estimated bias and variance in ZLF oscillation frequency is very
poor, as expected since many of the ZLF trajectories are decaying to equilibrium (see Figs.
2.2, 2.3 and 2.4).

Second, estimates of mean (over sampling interval) gross primary production (GPP ),
defined by the uptake term in equation (2.2), are considered. The ZLF performs much worse
(+9% bias, 11% standard deviation) than the VLF (bias -1%, standard deviation 4%). Note
that underestimation of the extent of variability in biological variables (N ,P ,Z etc.) does not
necessarily imply underestimation of fluxes between them, since errors in multiple fluxes may
compensate each other. The net nutrient export rate NNE, defined by the sum of sinking and
mixing terms in equations (2.1) and (2.2), was poorly estimated by both methods — probably
because of its small absolute true value of -0.02 g C m−3 day−1 (indicating a delicate balance),
and because the parameters which determine it (k, N0 and s) are not highly sensitive for the
chosen true trajectory (see Table 2.2).

Finally, the importance of using the time lag drift penalty S (see section 2.2.6) is illustrated
by comparing the VLF parameter estimates with those obtained by maximising MV LF in
equation (2.9) which has no lag drift penalty S (‘VLF(no S)’) for στ = 8 days, s = 0.15 (see
Tables 2.2 and 2.4). For almost all parameters, the bias and variance is significantly increased
by not using S, the main effect of which is to allow more variance in estimated oscillation
frequency. In fact the variance almost entirely offsets any improvement in fit performance
relative to the ZLF due to lack of smoothing and similar validation cost is obtained using
the ZLF and the VLF(no S). The VLF(no S) also incurs about a factor of 10 larger bias,
and roughly twice the standard deviation, in ω̂ relative to the VLF. The mean gross primary
production estimate GPP is also impaired relative to estimates obtained using S.
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2.3.3 Estimating time lag variance.

Although the true measurement error coefficient st and time lag variance σt
τ were assumed

known in this twin test study, in practical applications this will not be the case. Knowledge
of the measuring apparatus/method should give reasonable constraints on st, but σt

τ will
be less well known a priori. It would probably be best to fix s a priori so that στ can be
adjusted to data with maximal constraint. If both s and στ are adjusted, estimates ŝ and
σ̂τ are liable to covary and may even be jointly degenerate (individually unconstrainable) if
the trajectory y is largely linear in time. With s fixed, there should be no problem fitting
στ as long as it is not allowed to be so large that timescale constraints are entirely relaxed,
such that timescale distortion via θ̂ is not detected by the lag drift penalty S. Also, a
large στ may make the fit indifferent to time lags shifting model output to different sides of
peaks/troughs in y. To some extent this is unavoidable near peaks/troughs of the unlagged
trajectory, but the implied degeneracy in the fit of individual time lags may cause problems if
it becomes excessive (particularly if successive lags covary — see section 2.3.4iii). Therefore,
it is probably wise to make a ‘conservative’ choice of allowed range for στ , or of parameters
for a Bayesian prior on στ . It may in fact be preferable to fit an empirical model which is
by-design capable of fitting the Lagrangian data as a first step for deconvolving the data
and/or estimating time lag variance, after which a mechanistic model may be fitted (see
section 2.3.5).

Note also that Figures 2.9 and 2.10 show that Λ(C) is a powerful statistic, in the sense
that it is very sensitive to σt

τ , hence it has a high probability of correctly rejecting the null
when used as a hypothesis test statistic (Stuart et al., 1999). It might therefore be used as
follows to estimate time lag variance without treating στ as an adjustable parameter. First,
the null hypothesis is as σt

τ = 0 and ZLF/VLF model fits are performed using a suitably
conservative modelled value of στ , say σ

(1)
τ = 1 day. Using θ̂ZLF from the real data fit to

generate data sets, the null distribution of Λ(C) for στ = σ
(1)
τ may be computed and compared

with Λ(C) from the real data fit. If the latter lies in the 5% upper tail of the null distribution,
the null is rejected. Then a new null of, for example, σt

τ = 1 day is proposed, and θ̂V LF

from the real data fit is used to generate the new null distribution of Λ(C) for στ = σ
(2)
τ = 2

days, and again this is compared with Λ(C) from a real data fit. The process is repeated
until the null cannot be rejected, at which point the null value of σt

τ is taken as our estimate
σ̂τ , and the last value of θ̂V LF is our best estimate of the Lagrangian biological parameters.
A conservative shortcut to computing the null distribution might be to assume the classical
chi-squared distribution for στ → ∞, this being the expected result when overestimated lag
variance is only improving the fit to measurement errors.

Alternatively, if sufficient ‘replicated’ data are available i.e. multiple samples within the
same fluid mass, the nonlinear optimisation methods detailed here might be extended to
consistently fit both the measurement error s and time lag variability στ simultaneously
(Seber and Wild, 2003).

2.3.4 Robustness of the method

i. Different data sets/initial parameter guesses. In Figure 2.11 the robustness of the results
in Figure 2.2 (στ = 8 days, s = 0.05) is illustrated with different realisations of the data set
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Figure 2.11: Variance associated with poor convergence in the variable lag fit for στ = 8 days,
s = 0.05. Upper panel reproduces Figure 2.2 lower. Middle and lower panels show examples
of poor convergence in estimated frequency and phase of the oscillation respectively.

and different initial guesses θi = 0.9 or 1.1 × θt. Examples are shown for which errors in the
optimal frequency and phase of oscillation resulted in the worst fit performance by the VLF,
using 105 iterations of the optimiser for convergence of the calibration cost. They show that
for high levels of assumed time lag variability (στ = 8 days) the VLF may incur high variance
in both the estimated oscillation frequency ω̂ and overall oscillation phase despite use of the
lag drift penalty S. This variance is mainly responsible for the large error bars in Figures 2.5
and 2.6 for high στ .

It may be possible to diagnose a frequency/phase deviation in a real data fit by comparing
with the ZLF or a VLF with tighter timescale constraints (lower στ ), or perhaps subdividing
the sampling interval to detect significant trends in the fitted time lags. Alternatively, robust-
ness issues might be addressed by strengthening prior constraints on θ (e.g. from small-scale
laboratory studies), or averaging estimated parameters over an ensemble of optimisations,
using different data sets generated by subsampling replicated data or by bootstrap methods
(e.g. see Schartau and Oschlies, 2003).

Given accurate estimation of ωt, τ t was well-estimated on the whole, except for some
occasional ‘slip’ in the estimated time lags away from their true values (see Fig. 2.12 upper).
This positive result may depend to some extent on the accurate specification of the measure-
ment noise s and time lag variability στ prior to fitting. In Figure 2.12 the effect on τ̂ of
VLF overestimation of ωt is evident. Here, the optimal time lags are accurate only over the
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Figure 2.12: Best fit time lags (dashed) compared to true values (solid) for (στ = 8 days,
s = 0.05), for optimisations with good convergence (upper) and poor convergence (lower)
in estimated frequency and phase of oscillation (corresponding to fits shown in Figure 2.11
upper and middle panels).

second half of the sampling interval, when the fitted oscillation is roughly in phase with the
true cycle (Fig. 2.11 middle). Looking further back in time the estimated and true time lags
become increasingly divergent, reflecting the overestimation of ωt.

ii. Different Lagrangian ‘truth’/models. The results should be largely robust to different
Lagrangian models provided: 1) The fitted model formulation is close to truth (it was per-
fect in this study), otherwise the fitted time lag parameters are liable to compensate for
inadequacies in the model formulation; 2) the Lagrangian biological trajectory is strongly
nonlinear in time, so that the effect of time lags on the time series is not equivalent to uncor-
related measurement noise (which would also help to constrain στ if this were fitted — see
section 2.3.3). In addition, models with more state variables all sharing the same time lags
should allow better constraint on τ , so long as simultaneous samples in all state variables
are provided. The fact that many state variables are in theory available to jointly constrain
dynamical phase noise is a potential strength for biological modelling, with the strong proviso
that these need to be somehow measured simultaneously.

iii. Different spatial variability and sampling conditions. Consider relaxing the assumption
that true time lags between samples are uncorrelated, as may be necessary to apply the tech-
nique to real cruise survey data. As long as the decorrelation timescale is shorter than the
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total sampling interval, these correlations will not be penalised by the lag drift penalty S in
(2.13). If the correlation is underestimated in the time lag prior (2.10), multiple correlated
lags will be overpenalised in the model fit, and the biological parameters θ may be distorted
to compensate. Similarly, overestimating the correlation would allow trends in the time lags
to compensate for errors in the ecosystem dynamical tendency (wrong θ). The same con-
siderations apply to possible correlations in the ‘measurement error’ representing remaining
model error and instrumental noise. Therefore, correlations should either be estimated in
the model fit (possible with ‘replicated’ data — see Seber and Wild, 2003) or else avoided
by subsampling or averaging the data (which may also allow ensembles of data sets to be
generated).

2.3.5 Alternative methods.

The VLF may be regarded as an attempt to do two things simultaneously: first to reverse
the smearing or ‘convolving’ effects of phase noise — i.e. to ‘deconvolve’ the data set by
a ‘parametric’ (model-fitting) or ‘Bayesian’ method; second to fit a dynamical model to
the deconvolved data by nonlinear regression. It might be better to use a strictly empirical
interpolation model (e.g. splines) for the first step, so that deconvolution and time lag variance
estimation may be carried out ‘unfettered’ by mechanistic assumptions, then fit a mechanistic
model to a set of deconvolved Lagrangian data, or fit the original data with the time lag
variance estimate provided by the empirical model fit. An obvious alternative is to use
nonparametric deconvolution methods to remove the suspected phase noise in Fourier space
(e.g.: divide the frequency transform of the data by the frequency transform of the time
lag distribution, and inverse transform the result to obtain a deconvolved ‘Lagrangian’ time
series). Note, however, that parametric methods generally tend to work better with short
time series (Laws, 1997), as are often obtained from cruise surveys. Also, the model-fitting
approach may allow estimation of the time lag variance as a free parameter (see section 2.3.3).

2.4 Conclusions

A simulation study was performed to compare the effects of time lags in simultaneously
sampled ecosystem variables, due to unresolved spatial variability, on two methods of fitting
a simple marine ecosystem model to data. The first (standard) method did not account for
time lags; the second was a new method which allows for time lags from an assumed statistical
distribution. The experiments showed that:

1) Fitting a model using the standard time series approach leads to a ‘smoothing out’
or underestimation of ecosystem temporal variability when spatial variability in the form
of random time lags is significant. This is because the non-Lagrangian data set effectively
samples from a true Lagrangian biological trajectory smoothed out by (or convolved with)
the distribution of random time lags. The smoothing is most apparent around periods of high
temporal curvature, hence peaks and troughs are underestimated in magnitude. For large
enough time lags, the estimated variability may be damped out entirely, such that periodic
oscillations in the Lagrangian dynamics are misfitted as exponential decays.

Although these twin tests used a free predator-prey oscillating system, similar smoothing
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out and associated parameter biases may occur in the more generic case of fitting to seasonal
data, where Lagrangian phytoplankton blooms and subsequent troughs due to grazing may
be underestimated as a result. Consequently, gross and net primary production rates during
blooms may be significantly underestimated. Although the impact on estimates of annual
averages of these rates cannot be predicted from this study, it is clear that the effects of
unresolved time lags or ‘phase noise’ on standard model fits may be serious, and warrant
further investigation.

2) A new ‘variable lag’ model fitting technique was shown to perform significantly better
in recovering the ‘Lagrangian’ biological dynamics, when spatial time lag variability is large
enough relative to measurement noise. The new technique was estimated to perform better in
more than 70% of cases (data sets) when the standard deviation in the time lag distribution
was 1 day or more with 5% measurement noise imposed on all three state variables, and when
the lag standard deviation was 4 days or more with 15% measurement noise, provided that
the time lag variance was accurately estimated prior to fitting. Given only a realistic range
of possible time lag variances, the potential losses/gains in recovery performance from using
the new method were estimated as 2%/750% with 5% measurement noise and 60%/580%
with 15% measurement noise.

Correspondingly, the biases (in comparison with the Lagrangian ‘truth’) and variances
in most parameter estimates were significantly reduced using the new technique. The bias
and variance of several ‘derived estimates’ (functions of the model parameters) such as time-
averaged gross primary production was also reduced, although a certain amount of variance
in oscillation frequency could not be avoided. Although the time lag and measurement error
statistics were assumed to be known in the twin tests, it is possible that these may be
estimated in practical applications from knowledge of the measuring methods and by fitting
time lag (co)variance parameters, possibly employing an empirical (deconvolving) model as a
first step. Given sufficiently frequent sampling spanning nearby water masses (a ‘replicated’
data set), the variable lag fit might be extended to fit both time lag and measurement error
variances.

In summary, if unresolved spatial variability in plankton ecosystems can be modelled as
‘phase noise’, the optimal ‘Lagrangian’ parameter sets obtained by a new ‘variable lag fit’
method may reveal a robust mean dynamics on a smaller scale of spatial averaging than
standard model fits, without explicitly resolving those scales. The method may help to im-
prove estimation of the biological parameters for high-resolution plankton models, and allow
accounting for sub grid-scale variability in coarse-resolution plankton models by convolving
a fitted Lagrangian biological trajectory with a distribution of time lags.

56



Chapter 3

Bulk Model Fitting and Testing

Submitted article: Wallhead, P.J., Martin, A.P., Srokosz M.A. Skill Assessment by Cross-
Validation and Monte Carlo Simulation: An Application to Georges Bank Plankton Models.
J. Mar. Sys.

3.1 Introduction

In this chapter, highly-aggregated 0D plankton models are fitted to real data, allowing liberal
tuning of biological parameters to account for the effects of unresolved spatial variability and
biological diversity/adaptation. Such ‘weak prior’ bulk plankton models were also fitted to
real data in Evans (1999), Fasham and Evans (1995), Hurtt and Armstrong (1996, 1998),
Kuroda and Kishi (2004), Schartau et al. (2001) and Spitz et al. (1998, 2001) (see Gregg,
2008, for a broader summary of plankton model fitting studies). In all these studies, model
predictions were tested or ‘skill-assessed’ solely in terms of how well they fitted the calibration
data. This is, ultimately, an inadequate criterion to test ecological hypotheses and guide
plankton model development. The weak prior constraint on plankton model parameters,
combined with the sparseness and noisiness of plankton data, means that improvements in
data fit may be partly due to improved fit to data noise, rather than convergence on truth.
Statistical hypothesis testing has been applied to determine if improvements in data fit are
significant beyond expected improvements in noise-fitting due to greater model freedom (see
e.g. Stock et al., 2005, and Chapter 2). However, even if data noise is not fitted, true trends
in the data may yet be fitted for the wrong dynamical reasons, especially with a weakly
constrained plankton model. Much stronger evidence of mechanistic veracity is the ability of
a fitted model to predict true variability beyond the conditions in which it was fitted — in
other words, to extrapolate.

This chapter investigates methods of testing extrapolative ‘skill’, suitably defined, which
also account for noise fitting. New skill metrics are used to compare a weak prior bulk
plankton model to a strictly empirical model, with the aim of testing the weak prior, coarse-
resolution approach to plankton modelling in general. The skill assessment methodology
should however be applicable to a broad range of plankton models, given sufficient computa-
tional power.

The data are a set of chlorophyll samples and associated ‘forcing’ data for 1997–1999
derived from the GLOBEC database. The empirical model is a simple temporal interpo-
lation of the chlorophyll data pooled from all sampled years, termed ‘inductive’ because it
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assumes that the variability in future years will be the mean of observed variability during
sampled years in the past. The inductive model serves as a baseline of model skill. The
mechanistic ‘process’ model is a simple bulk plankton model forced by observed nutrient and
mesozooplankton variability for the fitted and predicted years.

The term ‘skill’ generally refers to predictive accuracy. A precise definition is problem-
dependent: it depends on the data available for model-fitting, the variables we want to predict
and their relative importance, and the range of fixed ‘model inputs’ (information supplied
to the model and not fitted to the data, such as forcing parameter values or spatio-temporal
coordinates) we want to predict for. Also, the definition of ‘accuracy’ depends on the relative
importance assigned to prediction ‘bias’ (expected deviation of the prediction from truth
over repeat experiments) and prediction ‘variance’ (variance in the prediction over repeat
experiments)1. Often, accuracy is conceived in terms of the ‘mean-square error’ between
predictions and truth (this being a sum of (prediction bias) squared and prediction variance)
but alternative skill definitions might focus on, for example, mean absolute error or mean
absolute percentage error. Consequently, the choice of ‘most skillful’ model will depend
critically on the details of the predictive task.

Therefore, skill assessment of marine ecosystem models should start by specifying the
predictive objectives as precisely as possible. Ideally, these are defined mathematically in
a ‘skill function’ which compares predictions to true values. The most skillful prediction
maximises this ‘skill function’. It will not be possible to directly evaluate this skill function,
since it will involve the true values of the quantities we wish to predict, possibly under
different conditions to those for which the model was calibrated. It is therefore necessary to
estimate the skill — or more realistically, the relative skill — of different model predictions
using appropriate ‘skill metrics’ which approximate the skill function and can be evaluated
with available data.

Skill functions and metrics should not be confused with the ‘cost functions’ used in cali-
bration to define model-data misfit, though there may be formal similarities between them,
and the choice of skill function may inform the choices of skill metrics and calibration cost
functions. Skill functions and metrics express objectives and estimates of how well the model
meets them. Cost functions only detail the method of calibration, typically measuring how
well the model fits the calibration data, which is not the final objective. The final objective
is to predict true fields, and fitting the data is simply a means to this end.

Nevertheless, the first question asked by a modeller is usually: ‘Can the model fit the
calibration data?’. Failure to do so may indicate model underfit — bias in the model pre-
dictions due to inadequacy in the model formulation (assuming a sufficiently rigorous fitting
method and sufficiently broad allowed parameter ranges). Underfit is an acute problem in ma-
rine ecosystem modelling, where no firm mechanistic theory (cf. the Navier-Stokes equations
in fluid dynamics) offers guidance in deriving biological dynamics, and models persistently
underfit the data despite apparently large numbers of adjustable parameters2. However: pre-
diction bias does not only occur at the calibration data (‘underfit’ or ‘intra-sample bias’ in the
statistical modelling jargon). Prediction bias also occurs at times and/or locations beyond

1Note that the classical statistical definitions of bias, variance and mean square error — with respect to
truth and an infinite ensemble — are used (Laws, 1997; Stuart et al., 1999).

2This is a general interpretation on the part of the author. Too few studies explicitly acknowledge the full
extent of underfit; many do not adequately expose model deficiencies by graphical model-data comparison.

58



the calibration data (‘extra-sample bias’). Extra-sample bias may well make a larger contri-
bution to the skill function, but it is not measured at all by the calibration misfit metrics
often used in marine ecosystem modelling.

If and when the model does fit the data, the modeller might then ask: ‘Is the model
overfitted?’. When a model has too much freedom to fit to limited data, the model predictions
may covary strongly with the noise in the data, resulting in a loss of predictive accuracy. If
this covariance is excessive (a subjective judgement) then we may say that the model is
‘overfitted’. A clear sign of overfit is if the variance in the misfit between model predictions
and some of the data is less than the variance of the observational error. If the difference
between the overfitted data and the corresponding fitted model output is used näıvely as a
skill metric, the covariance will bias the skill estimates in favour of more complex models
with more degrees of freedom. There are metrics based on calibration misfit which attempt
to quantify and correct for this effect, such as the Akaike Information Criterion (Akaike,
1973). However, they generally presuppose that the model can fit all the data reasonably
well (Burnham and Anderson, 1998), which is unlikely to be the case in marine ecosystem
modelling. Moreover, the covariance between model and noise is likely to be strongest outside
the calibration data set. Again, this ‘extra-sample variance’ cannot be accounted for by skill
metrics based on calibration misfit, yet it is likely to be important when the model must
significantly generalise (interpolate between or extrapolate beyond the data) for some of the
model input values required by the skill function.

Two general methods are applied in this chapter in order to produce skill metrics which
measure both intra- and extra-sample bias and variance. The first is ‘simulation’ of the
data set, whereby surrogate repeat samples are produced artificially at each sampling time,
using a statistical simulation model for the data. Simulated ensembles are then used to test
different predictive models, in a similar manner to a replicated ‘sibling experiment’ (Evans,
1999) or an ‘Observational System Simulation Experiment’ (McGillicuddy et al., 2001). The
data simulation model is chosen to accurately simulate repeat samplings of the original data,
and is itself fitted to these data. The second method is ‘division’ of the full data set into
calibration (active) and validation (passive) subsets of years and associated model inputs (cf.
Hemmings et al., 2004; Friedrichs et al., 2007; Smith et al., submitted). These two methods
allow the use of skill metrics based on replicated tests for different divisions of the sampled
years. The metrics are used to gauge the relative ability of the models to make accurate,
extrapolative predictions of the chlorophyll mean field in future years (cf. application of this
method to the toy problem in Appendix 1B).

The chapter is structured as follows. Section 3.2 describes the skill function, skill metrics,
data, model formulations and calibration methods. Results are presented in section 3.3 and
a Discussion follows in section 3.4. Conclusions are drawn in section 3.5.

3.2 Methods

3.2.1 Skill Function

The objective of this study is to identify the bulk model formulation which best predicts the
mean near-surface chlorophyll concentration on Georges Bank for January to June in future
years (attention is restricted to the first half of the year in lieu of data for the second half
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of any year). The ‘best’ model minimises predictive mean-square error, integrated over the
period Tint = 180 days, given the available data and model inputs for the sampled years 1997–
1999, and model inputs for the unsampled ‘target’ years in the future. Equal importance is
assigned to all AT target years. Hence the following skill function is to be minimised:

Skill ≡ −1
AT Tint

AT∑
i=1

∫ Tint

0
E[(Y t

Ti
(t) − Y p

Ti
(DS , κ̂S , λ̂Ti , t))

2]dt (3.1)

where Y t
Ti

(t) is the true spatial mean chlorophyll concentration for target year Ti at time
t, and Y p

Ti
(DS , κ̂S , λ̂Ti , t) is the corresponding prediction, written here as a function of the

assimilated data set DS (constraining some finite adjustable parameter set a), the assimilation
model inputs κ̂S , the (interannually-variable) target year model inputs λ̂Ti , and time t. Here,
the hats recall the fact that the fixed model inputs κ̂S and λ̂Ti generally include uncertain
estimates, which therefore vary over an ‘ensemble’ of ‘repeat experiments’. The assimilation
model inputs κ̂S = {Va, η̂, λ̂S , tS} include: prior distribution or allowed range parameters
for the adjustable model parameters (Va), interannually-constant model parameter estimates
(η̂), interannually-variable model inputs for the assimilation years (λ̂S), and highly certain
temporal coordinates for the samples (tS).

The expectation E is an average over a conceptual infinite ensemble of repeat experi-
ments, representing an idealisation of how skill might be evaluated in absence of any practical
constraints. A single ‘repeat experiment’ involves the same truth Y t (hence ‘resetting’ the
ocean) but different data and model input errors, hence different predictions Y p. Obviously,
we cannot practically perform such repeat experiments, but we can approximate them by
resampling from assumed distributions of data and model input errors (generating a simu-
lated ensemble). Arguably, what really matters is prediction error in a single experiment
— the real one! One might therefore prefer a ‘single-experiment’ skill function similar to
(3.1) but without the expectation operator. However, prediction errors in the single exper-
iment depend on the particular values of data/model input errors which are by definition
unpredictable. Consequently, the best estimate of ‘ensemble skill’ is in practice also the best
estimate of single-experiment skill. For example, in the toy problem of Chapter 1 (Fig. 1.2),
the overfitting cubic model did in fact yield the best single-experiment skill in 4% of repeat
experiments, but no practical skill metric could diagnose these ‘flukes’ without knowledge of
yt (Table 1B.1).

Furthermore, estimates of ensemble statistics (such as bias and variance) may guide im-
provements in the model/prediction method. If the ensemble is defined such that all data and
model input errors are randomised, then ensemble bias indicates where predictions are sys-
tematically in error, suggesting inadequacies in model formulation. Variance indicates where
the model is randomly in error, suggesting inadequate accuracy of data and model inputs. It
should be remembered, however, that variance at one time can produce bias at other times
(via dynamical nonlinearity), and bias at one time can also affect the subsequent variance
produced by forcing errors.

Generally, the prediction Y p need not be an exact solution of the model Y m: for example,
it could be an average of Y m over a Bayesian posterior pdf. In this study, the inductive model
Y p = Y m is formed by fitting a set of interpolation ‘nodes’ (see section 3.2.4), and no model
inputs are required (except for a set of allowed range parameters Va). The process model Y m
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is fitted by adjusting only the bulk biological parameters θ (including bulk initial conditions),
hence a = θ (see section 3.2.5). Interannually-constant model inputs η̂ account for the effect
of changing surface irradiance and mixed layer depth. Interannually-variable model inputs λ̂

account for nutrient and mesozooplankton forcings. The process model predictions Y p are
formed by re-running the fitted model once with the interannually-variable model inputs for
the target year, hence: Y p = Y m(θ̂(DS , κ̂S), λ̂Ti , t).

Maximisation of Skill requires the model predictions to have minimal predictive mean-
square error. Negative skill may result from failure of the model to accurately generalise
(inter-/extrapolate) the chlorophyll mean field over the model input space (λ, t) due to in-
adequacies in the model formulation or prediction method. Alternatively, error may result if
the estimated model inputs (κ̂S , λ̂Ti) are inaccurate or incomplete, i.e., missing information
that is necessary to determine the true mean field. The model is required to ‘interpolate’ the
chlorophyll field over a model input if the target value of that input lies on or between the
maximum and minimum values in the assimilated set, and ‘extrapolate’ if it lies beyond —
this being generally a more stringent test of the model.

In this application, mainly interpolation in seasonal time t (varying within years) is re-
quired with relatively little extrapolation (O(weeks) over the six-month interval Tint). How-
ever, both interpolation and significant extrapolation are required in the forcings λ, since
these vary significantly over the sampled years and may vary beyond the range of the three
sampled years in future years. Skill metrics must therefore be devised to test for this specific
kind of predictive ability.

3.2.2 Skill Metrics

In order to estimate Skill, predictive mean-square error (MSE) must be estimated. A näıve
estimate of MSE is provided by comparing data with the model output fitted to the same
data:

M̂SE
n ≡ 1

N

N∑
k=1

((Ok − Y p
k (D, κ̂, tk))2 − (σ̂O

k )2) (3.2)

where N is the number of chlorophyll samples, Ok is the mean-field chlorophyll datum at
time tk, and Y p

k (D, κ̂, tk) is the model prediction at sampling time tk, after calibration to the
data set D with the model inputs κ̂, and the superscript n denotes ‘näıve’. The estimated
observational error variances (σ̂O)2 are independent of the tested models and are therefore
irrelevant to estimating relative skill. To estimate absolute skill or MSE, their contribution
must be subtracted from the squared misfit (see Appendix 3A). In general (σ̂O)2 may be
estimated from prior knowledge of the observational method, but here they are estimated by
the data simulation model as discussed below.

The above estimate is näıve for two reasons. First, it is biased downward as an estimate
of the intra-sample MSE (at the assimilation model inputs κ̂), due to the covariance of
the prediction Y p with the test data O, since Ok ∈ D (see Appendix 3A). This covariance
depends on the model formulation, and in general increases with formulation complexity,
therefore favouring more complex models even if they are not in fact more skillful. Note that
if the (σ̂O)2 are accurately estimated, this covariance may drive the näıve mean-square error
estimate negative, especially if the model is overfitted (see section 3.1). Second, the näıve
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metric makes no attempt to estimate the extra-sample accuracy (accuracy at unsampled
times/years) which is required by (3.1). What is needed, therefore, are alternative metrics
that test against data which are independent of the calibration data, to remove spurious
covariances, and which are representative of the generalising task defined by (3.1).

One method of achieving independent and representative tests is to divide the data set
into disjoint calibration and validation data sets (‘active’ and ‘passive’ data as in Friedrichs
et al., 2007; Smith et al., submitted). These calibration and validation data sets should be
sufficiently separated that their errors are decorrelated and the task of extrapolating between
them is repesentative of the task defined by (3.1). Many possible divisions may be applied
in the search for independent and representative tests, but in this study only divisions with
respect to the sampled years are considered. Hence, a subset Si comprising AC < AS years
of data DSi is used to calibrate the model, and predictions are tested against data Dj from
validation years j where j /∈ Si, so that the validation data Dj are independent of the
predictions Y p. Hence an extra-sample MSE estimate for year j after fitting to the ith

subset of AC years is:

M̂SE
d(AC)

ij ≡ 1
Nj

Nj∑
k=1

((Ojk − Y p
jk(DSi , κ̂Si , λ̂j , tjk))2 − (σ̂O

jk)
2) (3.3)

where Nj is the number of chlorophyll samples in year j and the superscript d(Ac) denotes
‘division’ and ‘fitting to AC years’. The hope is that the task of generalising from (λ̂Si , tSi)
to (λ̂j , tj) is representative of the task defined by Skill. Such tests become more stringent
as AC is reduced. A more robust estimate of Skill is formed by averaging over all possible
AC-year division experiments, fitting to AC < AS years and testing predictions for each of
the remaining (AS −AC) years. There are (AS −AC)BC such tests, where BC is the binomial
coefficient AS !/((AS − AC))!AC !). Hence:

Ŝkill
d(AC) ≡ −1

(AS − AC)BC

BC∑
i=1

∑
j /∈Si

M̂SE
d(AC)

ij (3.4)

In general, this may yet be unsatisfactory for several reasons. First, the least stringent
metric Ŝkill

d(AS−1)
, based on fitting to (AS −1) years, may still be too stringent to represent

Skill. For example, suppose that the forcings in the future target years were known to be
within the ranges of values explored in 1997–1999. In this case, the least stringent division
metric, based on fitting two years and predicting the third, is liable to underestimate skill,
because it will test for extrapolative abilities which are not actually required by the skill
function. Or, suppose the objective were just to estimate mean fields during the sampled
months in 1997–1999 — again, no division metric would approximate the skill function,
because division skill tests cannot measure intra-sample accuracy (accuracy at the sampled
data). Second, the number of calibration-validation tests (AS − AC)BC may not be large
enough to obtain a robust skill metric or robust estimates of predictive bias and variance
(Hastie et al., 2001; Appendix 1B). These two problems are especially serious if AS is small.

These shortcomings are addressed by combining the division method with a data sim-
ulation technique sometimes referred to as ‘Monte Carlo Simulation’ (Press et al. 1999) or
the ‘parametric bootstrap’ (Young, 1994). Here, a simulation model is fitted to the original
full data set, and used to produce new data with realistic random errors. Thus, independent
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ensembles of simulated calibration and validation data sets {DC} and {DV } are produced
for testing predictive models, with the fitted data simulation model Y sim playing the role of
the unknown truth Y t. The model predictions Y p are compared with the ‘truth’ Y sim

j for the
validation year j, after fitting to the calibration data subset DC

Si
and supplying independent

validation forcing estimates λ̂V
j derived from DV . By using the same simulation model to

create {DC} and {DV }, it is implicitly assumed that the target year forcing estimates λ̂T

will have similar uncertainty to those used in calibration λ̂S. The resulting tests will not be
biased by prediction covariance, even if the validation year is contained in the calibration sub-
set. They may of course be biased by infidelities in the data simulation. Twin experiments
suggested however that this information loss was not serious enough to prohibit accurate
estimation of the tested model prediction statistics, assuming that the simulation model is
reasonably accurate (see section 3.4.1).

By this approach, a matrix of AC -year mean-square predictive error estimates (MSEsd(AC))
is formed from all possible combinations of AC calibration years and single validation years,
which may now include those in the calibration set:

M̂SE
sd(AC)

ij ≡ 1
Nj

Nj∑
k=1

(Y sim
jk − Y p

jk(D
C
Si

, κ̂C
Si

, λ̂V
j , tjk))2 (3.5)

where the superscript sd denotes ‘simulation and division’ and the overline here denotes an
average over an ensemble of simulations with different realisations of the noise in DC

Si
, κ̂C

Si

and λ̂V
j . By averaging over an ensemble of independent skill tests (50 in our case) a more

robust estimate is achieved. Note that the data simulation model need only be accurate at
the data — it does not require any ability to generalise. An estimate of Skill is now obtained
by averaging over all components of this matrix:

Ŝkill
sd(AC) ≡ −1

ASBC

BC∑
i=1

AS∑
j=1

M̂SE
sd(AC)

ij (3.6)

These metrics are likely to become increasingly stringent as AC is decreased from AS down
to the minimum calibration set size of AC = 1. In theory, there is an (unknown) optimal
value AC = A∗

C which provides the best ‘gauge’ of Skill, in the sense that the expected Skill

of the model selected by the skill metric is optimal. Since only AS = 3 sampled years are
available in this case, and the precise degree of extrapolation required is not specified in (3.1),
all possible values of AC will be considered as potentially optimal gauges of Skill.

Hence the primary skill metrics of this study are the matrices M̂SE
sd(1)

, M̂SE
sd(2)

,
and M̂SE

sd(3)
and corresponding scalar metrics Ŝkill

sd(1)
, Ŝkill

sd(2)
and Ŝkill

sd(3)
. For

comparison, the näıve metric Ŝkill
n(3)

= −M̂SE
n(3)

and the two division-only skill metrics
Ŝkill

d(1)
and Ŝkill

d(2)
are also evaluated, using the data simulation model to estimate (σ̂O

jk)
2

(see Appendix 3B). For each of these metrics, the relative skill metric for a model formulation
M is defined as:

ΔŜkill(M) ≡ Ŝkill(M) − Ŝkill(ind) (3.7)

where Ŝkill(ind) is any skill metric obtained using the inductive model (see section 3.2.4).
Hence positive ΔŜkill(M) is good, negative ΔŜkill(M) is bad, and the inductive model acts
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Figure 3.1: Raw sample locations on Georges Bank within the 60m isobath (longitude hor-
izontal, latitude vertical). Triangles denote nutrient and phytoplankton samples, crosses
denote mesozooplankton samples.

as a baseline (ΔŜkill(ind) = 0).

3.2.3 Data

The data were all taken from the GLOBEC website for Georges Bank3 — see Acknowledge-
ments for specific data providers. Attention is restricted to a volume of study comprising the
near-surface mixed layer and constrained horizontally within the 60m isobath. This maxi-
mum water depth was chosen as the smallest value that allowed sample sizes large enough
for robust mean field estimation, as a strategy to include a minimal volume of water which is
not permanently well-mixed (Steele et al., 2007). Extracted chlorophyll-a and ‘nutrient’ (ni-
trate + nitrite + ammonium) concentrations within this region were sampled at near-surface
(<5m) depths. Mesozooplankton abundance estimates were also obtained as ‘displacement
volume’ samples (the total volume of matter in cm3 per 10m3 of filtered water) using a towed
Bongo net with a mesh size of 333 μm. The locations of all samples within the study region
are shown in Figure 3.1.

The raw data are clustered into roughly 10-day cruise intervals for each month from Jan-
uary up to and including June (with a few omissions). The data are treated as mean-field
estimates with ‘data errors’ due to instrument noise and spatial variability (see section 1.5.2).

3http://globec.whoi.edu/jg/dir/globec/gb/
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Figure 3.2: Georges Bank time series of diel-averaged data (dots) for phytoplankton (a,b,c),
nutrient (d,e,f) and mesozooplankton data (g,h,i) during 1997 (a,d,g), 1998 (b,e,h) and 1999
(c,f,i). Error bars show simulation model means with 95% confidence intervals.

Estimating the along-track temporal autocorrelation function for each sampled variable re-
veals significant error correlations due to spatial structure between points sampled less than
roughly 1 day apart. All samples are therefore diel-averaged to remove these correlations,
which might otherwise lead us to underestimate the variance of our predictions. This av-
eraging also removed any significant error correlations detectable between cruise samples of
different variables sampled at the same locations and times, as well as any day-night signals
(although none were apparent).

In the resulting diel-averaged data set (see Figure 3.2), the data errors are independent and
generally much larger than any mean trend during each cruise. Linear regressions on the time
series for each cruise revealed significant mean trends (at the 5% level) in at most 2 cruises
out of 15-18 for each variable. This motivated use of a data simulation model consisting
of independent samples from stationary lognormal distributions for each month and each
variable. The data simulation model and its selection process are detailed in Appendix 3B.
The data simulation model also helped to identify outlying data which were subsequently
discarded (see Appendix 3C).

For the purpose of fitting and testing predictive models, the data were finally averaged
again to minimise noise in the mean-field signal. In keeping with the assumption of negligible
mean-field variation during each cruise in the simulation model, the running-average window
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was chosen to cover each roughly 10-day cruise period — in other words, the data were
averaged over each cruise (month). Note that this two-step averaging is not equivalent to a
simple average of the monthly data: multiple samples within the same day (and therefore
correlated) have the same combined weight in the two-step average as a single sample from
another day of the cruise sampled only once. The same cruise-averaging was applied to any
‘new’ diel-averaged data sets simulated by the data simulation model.

3.2.4 Inductive Model Formulation

The ‘inductive’4 model in this study is a six-point piecewise-linear interpolation of the
chlorophyll-a data. It acts a baseline of predictive skill. The inductive model makes no
use of forcing parameter information for the calibration years or target year viz. it is constant
over forcing parameter space. It is formally specified by:

Y p(ind)(t) =

⎧⎪⎪⎨⎪⎪⎩
a1 + (t−p1)

(p2−p1)
(a2 − a1) t < p1

ai + (t−pi)
(pi+1−pi)

(ai+1 − ai) pi ≤ t < pi+1, i = 1, ..., 5

a6 + (t−p6)
(p6−p5)

(a6 − a5) t ≥ p6

where a1,...,6 are free parameters (the ‘node amplitudes’) and p1,...,6 are node times fixed at
the averages of the sampling times of the diel-averaged data for each month, so that the nodes
are positioned approximately in the regions of maximum data constraint. Negative values of
Y p were set to zero. For computational purposes, the allowed range for each parameter in
this model-fit was set as 0 < ai < 20 mg m−3 for a1,...,6, but this did not restrict the fit.

3.2.5 Process Model Formulation

The process (dynamical) model used in this study is essentially a Lotka-Volterra predator-
prey interaction between chlorophyll (P ) and microzooplankton (Z1) mean fields, driven by a
dimensionless factor γ(t) to account for seasonal changes in mean surface irradiance and mixed
layer depth, and by the mean concentrations of limiting nutrients N(t) and mesozooplankton
Z2(t), which eat the microzooplankton:

dP

dt
= u0γ(t)

N(t)
kN + N(t)

P

1 + cP
− gPZ1

dZ1

dt
= gPZ1 − fZ1Z2(t) (3.8)

The equations (3.8) were integrated using the 4th-order Runge-Kutta scheme over the 180-
day January to June interval with a step of 1/4 day. The seven free parameters are: the
maximal growth rate u0, the nutrient half-saturation constant kN , the self shading parameter
c, the microzooplankton grazing rate g, the mesozooplankton carnivory rate f , the initial
chlorophyll concentration P (0) and the initial microzooplankton concentration Z1(0). These
parameters are identified with their units and allowed ranges (defining the allowed volume
Vθ in parameter space) in Table 3.1. Note that the grazing rate g and concentration Z1(t) in
(3.8) are scaled by 1/e′ and e′ respectively, where e′ accounts for microzooplankton growth

4From the Bertrand Russell’s ‘Inductivist Turkey’ which successfully predicted its feeding time based on
an average of past observations, right up until the morning of Christmas Eve...
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Table 3.1: Process model parameters, symbols, units and allowed ranges
Parameter Symbol Units Allowed range
maximum P growth rate u0 day−1 0.001 – 1
nutrient half-saturation constant kN mg chla m−3 0.001 – 3
self-shading constant c (mg chla m−3)−1 0.05 – 0.3
Z1 grazing rate g (mg chla m−3)−1 day−1 0.001 – 0.5
Z2 carnivory rate f (cc/(10m3))−1 day−1 0.001 – 0.5
Initial P concentration P (0) mg chla m−3 0.01 – 1.5
Initial Z1 concentration Z1(0) mg chla m−3 0.01 – 5.00

efficiency and unit conversion factors (see below). The process model allowed parameter
ranges are discussed in Appendix 3D.

The dimensionless factor γ(t) in (3.8) is computed as follows. First, a relationship is
assumed between cell photosynthesis (Ph) and irradiance (I) explored in Platt et al. (1990):

Ph(I) = A(1 − eI/Is)eI/Ii (3.9)

where Is and Ii denote saturation and inhibition intensities respectively. These are estimated
using the photosynthesis-irradiance data sets collected by D. Townsend in Massachusetts Bay
during February and August 1990 (Ji et al., 2006). Fitting (3.9) to each of these two data
sets yields significantly lower Â, Îs and Îi in February than in August. Therefore, to obtain
estimates (Îs, Îi) applicable to the period January to June, the two data sets are renormalised
by their respective values of Â and (3.9) is refitted to the resulting combined data set. An
ensemble of such estimates is generated by bootstrap resampling5 the combined data and
refitting (3.9). From this ensemble, the uncertainty in the estimates is estimated, hence:
Îs = (0.128 ± 0.014) × 10−3 Ein/m2/s and Îi = (5.45 ± 1.38) × 10−3 Ein/m2/s.

Second, the form of the diel variability in surface irradiance I0(x, y, t) is determined by
fitting functions of the form I0(t′) = Imax

0 sinn(πt′/D(t)) (for 0 < t′ < D(t), zero otherwise) to
R. Payne’s 60-minute averaged data for Georges Bank in 1997–1999, using NOAA’s ‘low accu-
racy’ solar position equations (http://www.srrb.noaa.gov/highlights/sunrise/solareqns.PDF)
to calculate the daylength D(t), sunrise (t′ = 0) and sunset (t′ = D(t)) times for each of the
180 days. The square exponent n = 2 was found to give the best fit. The resulting spatial
estimates Îmax

0 (x, y, t) provided a time series which was highly variable due to changing sam-
pling locations and the high-frequency spatio-temporal variability in cloud cover. By fitting
a linear trend to this time series, a smooth increase in the areal-mean noon surface irradiance
Im
0 (t) is assumed (data from all three years were fitted together in lieu of any significant

interannual variability). Again, bootstrap resampling is used to generate an ensemble of ini-
tial and final mean intensity estimates, hence: Îm

0 (0) = (1.31 ± 0.14) × 10−3 Ein/m2/s and
Îm
0 (180) = (4.00 ± 0.19) × 10−3 Ein/m2/s.

Third, mixed layer depths are estimated by applying the Levitus criterion (Δσθ = 0.125
kgm−3 with respect to the surface) to potential temperature profiles calculated from temper-

5Here, samples are chosen at random with replacement from the original data set, thereby generating a new
‘bootstrap’ data set (Young, 1994; Efron and Tibshirani, 1993). This simple nonparametric technique works
well for linear model fits where the (Gauss-Markov) assumptions of standard linear regression may invalidate
the standard approach to estimating parameter uncertainty. However, twin tests suggested that it was not
as effective as a ‘parametric bootstrap’ method for simulating resamplings of the chlorophyll, nutrient and
mesozooplankton data sets (see section 3.2.2)
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ature and salinity data. The resulting time series for each year are very highly variable due
to spatially-variable stratification and are relatively poorly-sampled in later months. Linear
trends are therefore fitted to robustly estimate the areal-mean variations M(t). Although a
significantly steeper slope is observed in the 1999 fit, the uncertainty in M̂(t) defrays any
improvement in predictive skill gained by using M̂(t) as an interannually-variable forcing.
Therefore the data from all three years are combined to give an interannually-constant forc-
ing M̂(t), again using bootstrap resampling to generate an ensemble of linear trend parameter
estimates, yielding: M̂ (0) = (55.6 ± 1.6) m and M̂(180) = (41.5 ± 2.2) m.

Bulk primary productivity averaged over horizontal space, the mixed layer 0 < z < M̂(t)
and the diel cycle 0 < t′ < 1, is now approximated by the first term in (3.8), with:

γ(t) =
1

M̂(t)

∫ D(t)

0

∫ M̂(t)

0
(1 − e−Î(z′,t′)/Îs)e−Î(z′,t′)/Îidz′dt′ (3.10)

where Î(z′, t′) = Îm
0 (t) sin2(πt′/D(t))e−k̂ez′ . As in other cases, the effects of horizontal vari-

ability on the areal average of the nonlinear integrand (the ‘biological Reynolds fluxes’ —
see section 1.5.3 and Chapter 4) are assumed to be accounted for by retuning the control
parameters (see Appendix 3D). Note that any diel signals in mixed layer depth M(t′), phyto-
plankton P (t′) or nutrient concentrations N(t′) are neglected (although none were apparent).
Also, the effect of self shading is not accounted for by γ(t), but rather by a separate factor
(1 + cP )−1 in (3.8). This is valid because γ(ke, t) ∝ k−1

e to a very good approximation.
Hence accounting for self shading by replacing ke with (ke + kpP ) only introduces the factor
(1 + cP )−1 with c ≡ kp/ke.

A first attempt to compute γ(t) involved expanding the exponents as power series and
integrating each term as in Platt et al. (1990). However, this was found to be numerically
inaccurate for our largest estimates of the relative mean noon surface irradiance Îm

0 (t)/Îs > 40
(requiring over 50 terms for convergence). Therefore simple mid-point rule integration over
z′ and t′ was used with step sizes small enough for convergence (Δz′ = 0.2m and Δt′ = 0.02
days). This numerical expense is affordable because the integration does not need to be
repeated when running or fitting the process model — rather, γ(t) is approximated by a
polynomial (linear was found to be adequate) and the parameters are exported to the process
model fit. Note that the strong linearity of γ(t) does not imply that saturation/inhibition
effects may be neglected: e−keM(t) 
 1, implying γ(ke, t) ∝ k−1

e , but Îm
0 (t)/Îs ∼ O(10), so

many more terms in the exponential expansion beyond the first are required for convergence.
Integration of (3.10) requires estimation of ke, the light attenuation due to water and

non-phytoplankton suspended matter. An estimate k̂e = 0.15m−1 is used for consistency
with Ji et al. (2007), with an allowed (uniform prior uncertainty) range 0.1 < ke < 0.2m−1.
An ensemble of parameter estimates is generated by repeating the integration and linear
fit with an ensemble of randomly-chosen k̂e combined (independently) with the ensembles
of parameters for Îm

0 (t), M̂ (t) and {Îs, Îi}. This finally yields: γ(0) = 0.074 ± 0.015 and
γ(180) = 0.257 ± 0.043.

Nutrient (nitrate + nitrite + ammonium) limitation is represented by a simple Michaelis-
Menten term, neglecting any limitation by silicate concentrations as these were not observed
to vary much between years, surely not enough to explain the interannual variability in chloro-
phyll. Phytoplankton mortality due to causes other than grazing is neglected. The primary
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consumers are assumed to be microzooplankton (heterotrophic protozoans, which were not
sampled in the GLOBEC program) which are then consumed by the mesozooplankton (mainly
the copepod Calanus finmarchicus) (Ji et al., 2006). A constant bulk C (or N):Chl ratio is
implicitly assumed for the primary producers, since the consumption by microzooplankton Z1

depends on biomass rather than chlorophyll content. Herbivory by mesozooplankton is ne-
glected. The grazing rates for microzooplankton on phytoplankton, and for mesozooplankton
on microzooplankton, are both assumed to be non-saturating. Entrainment and losses from
the mixed layer due to cross-pycnal mixing and sinking are neglected (Evans and Parslow,
1985). The initial concentrations P (0) and Z1(0) are assumed to be invariant between years.

Readers uncomfortable with these assumptions should note: first, the primary concern of
this study is with methods for rigorously comparing the skill of two models, not finding the
best model to explain the observations; second, the aim is to model concentrations averaged
over a coarse scale (O(100km)), whose behaviour may differ widely from laboratory-scale
population dynamics (see Chapter 4); third, the robustness of the ecological conclusions is
tested by fitting various extensions of (3.8) (see section 3.4.1).

Finally, one might wonder why the RHS of the Z1 equation in (3.8) does not read: egPZ1−
fZ1Z2(t) with e the product of an ingestion efficiency α and a units conversion factor β

(units(Z1)/units(P )). This is because, in lieu of data for Z1, fitting e would result in a
degenerate or ‘non-identifiable’ triplet of parameters (g, e, Z1(0)). The only data constraint
on Z1 is due to its effect on P via the grazing rate G(t) = gZ1(t) = g(Z1(0)+

∫ t
0 egP (s)Z1(s)−

fZ1(s)Z2(s)ds). This rate is invariant under the parameter rescalings: g′ = ζg, Z1(0)′ =
Z1(0)/ζ, e′ = e/ζ, which only result in a rescaling: Z1(t)′ = Z1(t)/ζ and no effect on the
data fit. Hence: using any arbitrary value of e to perform the model fits, exactly the same
P (t) can be recovered for a different value of e simply by applying the appropriate rescalings
to g and Z1. Therefore, for simplicity, the minimisation problem is solved using e = 1 with
Z1 measured in units of equivalent chlorophyll concentration.

3.2.6 Prediction method

The method adopted for fitting the inductive and process models, and for estimating forcing
parameters, is Ordinary Least Squares. Hence the cost function is defined by:

cost =
AC∑
j=1

Nj∑
k=1

(Ojk − Y m
jk (θ, κ̂j , tjk))2 (3.11)

where AC is the number of calibration years (≤ AS), Ojk is the kth datum for year j and
Y m

jk (θ, κ̂j , tjk) is the corresponding fitted model value, written here as a function of the
model parameters θ, the model inputs κ̂j , and the time tjk. Note that variables are not
log-transformed. Although the diel-averaged data are lognormal, the cruise-averaged data
used for fitting are sample means of lognormal variables. For the cruise sample sizes (3–9)
these sample means are intermediate between lognormal and normal variables. Moreover,
even if they were lognormal, minimising the sum of squares in log space will fit the Y m to the
median of the population (true distribution) rather than the population mean, which is the
true value (for unbiased data). In other words, the exponent of the sample mean in log space
is a biased (under)estimate of the population mean, and needs to be corrected (unbiased) by
a less-robust estimate of the population variance (Campbell, 1995). Also, un-weighted Least
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Squares is used even though the cruise-averaged data uncertainty varied strongly month-to-
month (see Fig. 3.2). Fitting the inductive model using Weighted Least Squares was found
to yield biased and consequently less skillful estimates, as months with high error variances
were ‘smoothed over’ in the piecewise-linear interpolation. The cost in (3.11) is minimised
using a non-local optimisation algorithm discussed in Appendix 3E.

The process model forcings N(t) and Z2(t) were determined prior to fitting (3.8) by fitting
piecewise-linear models, as described in section 3.2.5, to nutrient and mesozooplankton bio-
volume data from each year individually. The resulting forcings comprised the interannually-
variable model inputs: λ̂ = {N̂ (t), Ẑ2(t)}. The interannually-constant model inputs η̂ in-
cluded the parameters defining γ(t) in (3.8) (see section 3.2.5). Having fitted the process
model to obtain θ̂(D, κ̂), the model is re-run with the forcings λ̂j for the prediction (test)
year j to give the model predictions Y p = Y m(θ̂(D, κ̂), λ̂j , t).

3.3 Results

3.3.1 Inductive Model Predictions

Figure 3.3 shows a selection of inductive model skill tests. The least challenging are shown in
Figs. 3.3a–c, where the ability of the model to predict the mean chlorophyll concentration in
one year given data from the same year is tested. The fact that the mean of the predictions
over the 50-member ensemble coincides with the true values (as defined by the data simulation
model) shows that the predictions are unbiased. The width of the ensemble envelope shows
the prediction standard deviation due to errors in the calibration data. This increases with
the true mean field, due to the lognormality of the diel-averaged data, and as expected covers
roughly half the widths of the cruise-average confidence intervals shown in Figs. 3.2a–c. The
näıve mean-square error estimates (not shown) are all negative, showing that the model is
overfitted (inevitable for these tests given the freedom of the inductive model). However, the
simulation-division mean-square error estimates shown in Figs. 3.3a–c are small but positive,
since they account for the covariance of predictions with data errors, and are therefore not
biased by overfit.

Obviously, when the one-year inductive model fits shown in Figs. 3.3a–c are used to pre-
dict different years, the predictions suffer high extra-sample bias (outside the calibration
data), reflecting the large interannual variability. The resulting mean-square error estimates
for different validation years, represented by the ‘off-diagonal’ components of the M̂SE

sd(1)

matrix, are high (see Table 3.2), especially those where 1997 is used to predict 1998 or
1999 and vice versa. These latter errors tend to dominate the matrix-average, yielding
Ŝkill

sd(1)
(ind) = −6.3 ± 0.2 (suppressing units). The result obtained using the division-only

skill metric Ŝkill
d(1)

(ind) = −9.3 ± 2.2 is necessarily more pessimistic because same-year
tests must be excluded, and less robust because it is formed by an average only over the 6
possible values of M̂SE

d(1)

ij for i �= j, using the original data and no ensemble.
The results for two-year and three-year tests of the inductive model skill are unsurprising.

Figs. 3.3d–f show the two-year tests for which the validation year is not included in the
calibration set (and to which the division-only metric is restricted). The predictions are
obviously biased although there is a slight decrease in variance due to increased calibration
sample size. The corresponding skill estimate is less pessimistic than the one-year estimate:
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Figure 3.3: Inductive model forecast skill tests: fitting to one year and testing against the
same year (a,b,c), fitting to two years and testing against the remaining year (d,e,f), and
fitting to all three years (g,h,i). Predictions are for 1997 (a,d,g), 1998 (b,e,h) and 1999 (c,f,i).
Solid and dashed lines show prediction ensemble means ± 1 standard deviation. Error bars
show the true values ± 1 ensemble standard deviation of the cruise-averaged data. Numbers
in bold show time-averaged mean-square error (MSE) estimates based on the ensembles of
simulation-division skill tests.
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Table 3.2: Mean-square error estimates (M̂SE
sd

ij ) and skill metrics (Ŝkill
sd

and ΔŜkill
sd

)
for the process model, with inductive model results shown in brackets for comparison. The
validation index j runs over the three years: 1997 (j=1), 1998 (j=2) and 1999 (j=3), as does

the calibration index i in M̂SE
sd(1)

ij . In M̂SE
sd(2)

ij , the calibration index i runs over the sets
of years: (1997,1998) (i=1), (1997,1999) (i=2), (1998,1999) (i=3).

M̂SE
sd

j = 1 j = 2 j = 3 Ŝkill
sd

ΔŜkill
sd

M̂SE
sd(1)

1j 2.1 ± 0.2 8.9 ± 0.9 4.6 ± 0.5
(0.6 ± 0.1) (12.1 ± 0.4) (11.6 ± 0.5)

M̂SE
sd(1)

2j 5.6 ± 0.4 1.6 ± 0.4 5.6 ± 0.4 -5.2 ± 0.2 +1.1 ± 0.3
(13.0 ± 0.3) (0.4 ± 0.1) (3.1 ± 0.1) (-6.3 ± 0.2) (0.0 ± 0.0)

M̂SE
sd(1)

3j 12.3 ± 0.3 5.5 ± 0.3 0.8 ± 0.2
(11.5 ± 0.3) (4.0 ± 0.2) (0.4 ± 0.1)

M̂SE
sd(2)

1j 4.7 ± 0.5 3.8 ± 0.6 6.9 ± 0.8
(3.4 ± 0.2) (4.4 ± 0.2) (4.6 ± 0.2)

M̂SE
sd(2)

2j 2.9 ± 0.5 11.2 ± 0.9 2.7 ± 0.4 -5.0 ± 0.2 -0.8 ± 0.3
(3.8 ± 0.1) (5.4 ± 0.1) (2.6 ± 0.1) (-4.2 ± 0.1) (0.0 ± 0.0)

M̂SE
sd(2)

3j 7.7 ± 0.4 3.1 ± 0.5 2.2 ± 0.3
(11.6 ± 0.2) (1.2 ± 0.1) (0.8 ± 0.1)

M̂SE
sd(3)

j 4.6 ± 0.4 5.5 ± 0.6 5.3 ± 0.6 -5.1 ± 0.4 -1.7 ± 0.5
(5.8 ± 0.1) (2.8 ± 0.1) (1.6 ± 0.1) (-3.4 ± 0.2) (0.0 ± 0.0)

Ŝkill
sd(2)

(ind) = −4.2± 0.1, reflecting the smaller extrapolative demands. The division-only
metric gives a similar but less certain result: Ŝkill

d(2)
(ind) = −7.3 ± 2.6. The predictions

based on fitting to three years (Figs. 3.3g–i) are again biased but are now maximally robust,
and the skill metric is again less pessimistic: Ŝkill

sd(3)
(ind) = −3.4 ± 0.2. No division-

only metric is available when fitting to all three years of data, since divisions of the data
within each year are not considered. In this case, the näıve metric gives a similar result:
Ŝkill

n(3)
(ind) = −3.1± 0.7. This reflects the fact that when fitted to a large amount of data

the inductive model yields robust predictions with little covariance between predictions and
data errors.

3.3.2 Process Model Predictions

Figs. 3.4a–c show the process model predictions fitted to one year and tested against the same
year. The prediction bias and variance are both clearly greater than for the inductive model,
resulting in greater mean-square error. Again, the mean-square error increases markedly
when we try to predict a different year (off-diagonal elements in Table 3.2), showing that the
given (N(t), Z2(t)) forcing information (Fig. 3.5) is inadequate to allow the process model
to extrapolate accurately from a single year of data. The skill estimate derived from such
tests (Ŝkill

sd(1)
(pr) = −5.2 ± 0.2) is nevertheless slightly better than the inductive model

skill (ΔŜkill
sd(1)

(pr) = +1.1 ± 0.3). A similar but less certain result is obtained by the
division-only metric (Ŝkill

d(1)
(pr) = −5.5 ± 1.3, ΔŜkill

d(1)
(pr) = +3.8 ± 2.5).

Using two years to calibrate the process model (as in Figs. 3.4d–f) results in a sim-
ilar measure of process model skill (Ŝkill

sd(2)
(pr) = −5.0 ± 0.2), this time significantly

worse than the inductive model (ΔŜkill
sd(2)

(pr) = −0.8 ± 0.3). The division-only metric
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Figure 3.4: Process model forecast skill tests: fitting to one year and testing against the
same year (a,b,c), fitting to two years and testing against the remaining year (d,e,f), and
fitting to all three years (g,h,i). Predictions are for 1997 (a,d,g), 1998 (b,e,h) and 1999 (c,f,i).
Solid and dashed lines show prediction ensemble means ± 1 standard deviation. Error bars
show the true values ± 1 ensemble standard deviation of the cruise-averaged data. Numbers
in bold show time-averaged mean-square error (MSE) estimates based on the ensembles of
simulation-division skill tests.
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Figure 3.5: Process model forcing estimates for nutrient N(t) (a,b,c) and mesozooplankton
Z2(t) (d,e,f) mean fields during 1997 (a,d), 1998 (b,e) and 1999 (c,f). Solid and dashed lines
show prediction ensemble means ± 1 standard deviation. Error bars show the true values ±
1 ensemble standard deviation of the cruise-averaged data.

74



gives an inconclusive result (Ŝkill
d(2)

(pr) = −7.4 ± 0.2, ΔŜkill
d(2)

(pr) = −0.1 ± 2.6). The
three-year tests (Figs. 3.4g–i) also favour the inductive model: Ŝkill

sd(3)
(pr) = −5.1 ± 0.4,

ΔŜkill
sd(3)

(pr) = −1.7 ± 0.5. By contrast the näıve metric gives Ŝkill
n(3)

(pr) = −0.6 ± 0.4
and ΔŜkill

n(3)
(pr) = +2.5 ± 0.8, hence strongly favouring the process model.

3.4 Discussion

3.4.1 Limitations of the Process Model

In the skill tests, the inductive model performance was quite predictable, but the process
model performance was rather disappointing. For example, the one-year tests shown in
Figs. 3.4a–c might have resembled ‘curvy’ versions of Figs. 3.3a–c. Instead, the process
model predictions are found to have slightly higher bias and higher variance, resulting in
significantly higher mean-square error. The reason lies in the process model forcings, which
as Figure 3.5 shows are estimated with significant error. If the ensemble of predictions is
re-run using the same forcing parameter estimates as those used in calibration (see Fig. 3.6),
the resulting ‘predictions’ are significantly more accurate (cf. Figs. 3.6a–c and Figs. 3.4a–c),
but they are not relevant to the forecast-based skill function (3.1). Figure 3.6 shows the skill
of hindcasts generated by Y p = Y m(θ̂(DC , κ̂C), λ̂C

j , t) (the corresponding näıve estimates of
hindcast skill are all negative, showing that, as with the inductive model, the process model
is overfitted to single years of data). To measure forecast skill, the validation year must be
treated as a ‘target’ year in the future which happens to resemble one in the past, and for
which the model must be given an independent set of forcing parameter estimates. Hence,
the forecasts in Figure 3.4 were generated by: Y p = Y m(θ̂(DC , κ̂C), λ̂V

j , t). In forecasting,
a greater penalty is incurred by inaccurate forcings, because errors occur independently in
both assimilation and forecast intervals. Figs. 3.6a–c demonstrate that this is the main cause
of the loss of skill in Figs. 3.4a–c.

Another likely source of variance in the process model predictions is the weak prior con-
straints imposed by the wide allowed parameter ranges in Table 3.1 (a measure to allow
the model to fit the coarse-scale dynamics — see Appendix 3D). Table 3.3 shows that the
estimated uncertainty in all parameter estimates was generally between 50 and 100%, even
when all three years of chlorophyll data were used to constrain the model. Also, the ensemble
parameter fits revealed a strong positive correlation (> 0.95) between the microzooplankton
grazing rate ĝ and the mesozooplankton feeding rate f̂ . Hence only six of the seven param-
eters were ‘constrainable’ by the (correlation < 0.8) criterion of Matear (1995). The main
reason for this is surely the lack of microzooplankton data, which also results in very poorly
constrained (at least 100% standard deviation) predictions of microzooplankton abundance
(not shown).

Twin tests were also performed in which the ‘true ensemble’ variance of parameter esti-
mates was calculated using the simulation model as a surrogate for truth. Then, an artificial
‘original’ data set was produced and used to fit a new data simulation model, which was
subsequently used to produce ‘simulated ensemble’ estimates of ‘true ensemble’ parameter
(co)variances as described in section 3.2.2. The simulated ensemble estimates were found
to be much more accurate (20–30% error) than those given by the inverse Hessian method,
which almost always underestimated the uncertainty. These tests also validated the simu-
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Figure 3.6: Process model hindcast skill tests: fitting to one year and testing against the
same year (a,b,c), and fitting to all three years (d,e,f). Predictions are for 1997 (a,d), 1998
(b,e) and 1999 (c,f). Solid and dashed lines show prediction ensemble means ± 1 standard
deviation. Error bars show the true values ± 1 ensemble standard deviation in the cruise-
averaged data. Numbers in bold show time-averaged mean-square error (MSE) estimates
based on the ensembles of simulation-division skill tests.
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Table 3.3: Parameter estimates for the process model fitted to each year individually and to
all three years simultaneously (ensemble mean ± one standard deviation)

S û0 k̂N ĉ ĝ f̂ P̂ (0) Ẑ1(0)
1 0.8 ± 0.3 0.7 ± 1.2 0.09 ± 0.05 0.04 ± 0.04 0.03 ± 0.02 0.6 ± 0.3 2.0 ± 1.3
2 0.5 ± 0.2 0.3 ± 0.6 0.06 ± 0.03 0.05 ± 0.02 0.02 ± 0.01 0.7 ± 0.6 1.3 ± 1.4
3 0.3 ± 0.2 0.6 ± 1.1 0.13 ± 0.10 0.02 ± 0.01 0.01 ± 0.01 1.2 ± 0.2 0.4 ± 1.1

(1,2,3) 0.6 ± 0.4 1.2 ± 1.0 0.09 ± 0.07 0.21 ± 0.14 0.15 ± 0.11 0.9 ± 0.5 0.8 ± 0.9

lated ensemble (parametric bootstrap) estimates of bias, variance and trajectory-averaged
mean-square error. Note that the simpler nonparametric method of bootstrap resampling
(sampling with replacement from the original data set — see Efron and Tibshirani, 1993)
used in Evans (1999) and herein for estimating uncertainty in γ(t) (see section 3.2.5) was
found to yield much poorer estimates of ensemble statistics for predictions and parameter
estimates in this case.

The process model predictions also suffered from bias because of the model’s inability to
fully account for the interannual chlorophyll variability using the given interannual nutrient
and mesozooplankton variability (underfit). This is best observed in the hindcast predictions
(Fig. 3.6). Comparing the hindcasts for 1997 and 1998 where all three years are fitted (Figs.
3.6d,e), the model seems able to explain the earlier primary bloom in 1998 as a consequence
of the earlier mesozooplankton increase (Figs. 3.5d,e) which suppresses the microzooplankton
population (not shown), thereby releasing the phytoplankton. This hindcast skill is better
if 1999 is excluded from the fit (Figs. 3.7a,b). Here, the sudden crash in phytoplankton
between April and May 1998 is largely accounted for by a combination of microzooplankton
grazing and nutrient limitation (the ensemble-mean nutrient saturation constant for these
fits k̂N = 0.74 is comparable with the low nutrient concentrations in Fig. 3.5b).

However, the year 1999 is poorly accounted for by the model in hindcasting the three
years (Fig. 3.6f). The model is unable to reproduce the early, gradual rise in the chlorophyll
mean field during the first three months of 1999. In the single-year fit to 1999 (Fig. 3.6c),
a good fit is achieved by assuming a lower initial microzooplankton population, slower graz-
ing/feeding, and slower phytoplankton growth than in the previous two years, as shown by
the fitted parameter statistics in Table 3.3. Looking at Table 3.3, the extra-sample bias of
the process model might be anticipated from the significant differences in mean parameter
estimates between different single-year fits (most obviously between 1997 and 1999). The
extra-sample variance might also be anticipated from the large ensemble standard deviations
in the parameter estimates, which are partly a result of the uncertainty in the forcings. When
all three years are fitted, the mean estimates û0 can be understood as a compromise between
the fast-growth conditions of 1997 and the slow-growth conditions of 1999. The model re-
covers as much as possible of the required interannual chlorophyll variability from the given
interannual nutrient and mesozooplankton variability by increasing the half-saturation con-
stant k̂N , grazing rate ĝ, and feeding rate f̂ over any of the single-year results.

To investigate the source of underfit in 1999 when all three years are fitted, several exten-
sions of the process model were fitted, relaxing some of the strong assumptions detailed in
section 3.2.5. Since this is only a test for underfit, rather than an attempt to estimate model
bias, variance or skill, an ensemble testbed is not necessary. A single fit to the full three
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Figure 3.7: Process model hindcast skill tests, fitting to two years: 1997 and 1998. Predictions
are for 1997 (a), and 1998 (b). Solid and dashed lines show prediction ensemble means ±
1 standard deviation. Error bars show the true values ± 1 ensemble standard deviation of
the cruise-averaged data. Numbers in bold show time-averaged mean-square error (MSE)
estimates based on the ensembles of simulation-division skill tests.
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years of original (cruise-averaged) data does the job. Each model extension was tested in
turn rather than in combination, as this latter would greatly increase the necessary optimisa-
tion time. The tested extensions include: interannually-variable mixed layer depth changes,
interannually-variable initial conditions as model inputs, herbivory by mesozooplankton, a
constant specific phytoplankton mortality rate, 2-parameter Ivlev grazing of phytotplank-
ton by microzooplankton and mesozooplankton and Ivlev feeding on microzooplankton by
mesozooplankton. Implicit resolution of two size classes of phytoplankton was attempted by
assuming a small size fraction given by a saturating function of the total, consistent with the
‘background/bloom hypothesis’ (Denman 2003). Parameterisation of phytoplankton losses
to the microbial loop was attempted using a function of the phytoplankton abundance scaled
by a saturating function of available nutrient, as in Steele (1998).

None of these extensions relieved the serious underfit in the first three months of 1999,
or indeed gave much improvement in overall data fit. Perhaps most surprising is the lack
of support for mesozooplankton herbivory (the data fit consistently forces this grazing rate
towards zero), since this is usually assumed to be the primary grazing loss for the large
phytoplankton (diatoms) which dominate phytoplankton biomass on Georges Bank (Ji et al.,
2006; Steele et al., 2007). Therefore the underfit is probably best explained by one or more
of the following:

1) The zero-dimensional process model is incapable of capturing the mean-field behaviour
on Georges Bank due to the effects of unresolved horizontal spatial variability, even allowing
for substantial ‘retuning’ of model parameters.

2) The assumption of zero net boundary fluxes of chlorophyll on/off Georges Bank is
invalid.

3) A combination of the individually-tested model extensions is required to improve data
fit, such that any single extension on its own yields little improvement.

3.4.2 Comparative skill assessment and model selection

The skill tests revealed that the inductive model predictions tend to be quite biased, especially
outside the calibration years (see Figs. 3.3d–f), due to the significant interannual variability in
the mean chlorophyll field, and probably also between cruise periods, due to likely nonlinear
variation between them. On the other hand, the predictions are at least robust and not very
susceptible to overfit, due to the strong linearity assumption. As a result, estimates of the
rms predictive error (= (−Skill)1/2) of the inductive model were: 1.85 ± 0.05 mg chla m−3

fitting to all three years, 2.05±0.03 mg chla m−3 fitting to two years, and 2.51±0.03 mg chla
m−3 fitting to individual years. Hence the uncertainty in the inductive model predictions
for future years may be estimated as in the range 1.8–2.5 mg chla m−3, on average over the
period January through June.

The process model was able to make less biased three-year hindcasts than the inductive
model, and generally made more skillful predictions when fitted to individual years, as long
as 1999 is excluded (see Table 3.2). This suggests that (3.8) does at least partly capture the
response of the chlorophyll mean field to changes in the nutrient and mesozooplankton mean
fields. However, the process model forecasts suffer from a much greater variance compared
to those of the inductive model, largely due to errors in model forcings which the predictive
method allowed to perturb the biological model parameter estimates. This may be a rather
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general problem in marine ecosystem model-fitting (cf. Schartau and Oschlies 2003). In
addition, the process model was clearly unable to fit (underfitted) the data during January–
March 1999, indicating a failure of the model assumptions. The net effect was that the
process model rms predictive error estimates were only better than those of the inductive
model in one-year tests: 2.26 ± 0.09 mg chla m−3 fitting to all three years, 2.24 ± 0.05 mg
chla m−3 fitting to two years, and 2.29± 0.05 mg chla m−3 fitting to individual years. Hence
the average uncertainty in the process model predictions for future years may be estimated
as in the range 2.2–2.3 mg chla m−3.

In section 3.2.2, an optimal skill metric Ŝkill
sd(A∗

C)
was defined as that which optimally

gauges the Skill defined by (3.1) using tests within the full sampled set of model inputs.
However, there is no way of determining the size of the optimal calibration subset A∗

C . This
must rely on intuition, informed by any available information on the likely distribution of
model inputs for the target years. For example, if the nutrient and mesozooplankton abun-
dances in the future target years were expected to lie roughly within the ranges observed
during 1997–1999, A∗

C = AS might be favoured as an optimal gauge, and hence the induc-
tive model chosen. Alternatively, nutrient and/or mesozooplankton variability might have
changed persistently over the ten years since the data were collected, e.g., due to changing
fishing practices. In this case, substantial extrapolation is required of the model, so A∗

C = 1
might be favoured as a representative test, hence the process model is chosen.

In lieu of target year information, however, the inductive model might be chosen to predict
the mean chlorophyll variability in future years, since the metrics based on simulation and
division usually gauge it as having higher Skill than the process model in its current form.
By contrast, a näıve skill assessment based on calibration cost, which ignores prediction
variance due to data and forcing errors, would strongly favour the process model on the basis
of the three-year fits (measuring an rms predictive error or uncertainty of 1.76 ± 0.20 mg
chla m−3 and 0.79 ± 0.26 mg chla m−3 for the inductive and process models respectively). A
division-only or ‘cross-validation’ metric similar to that used in Friedrichs et al. (2007) gave
skill estimates consistent with our simulation-and-division metric, but which were not robust
enough to distinguish between the two models.

Finally, note that even though the process model failed to consistently outperform the
inductive model in terms of prediction, it revealed more about the mean-field chlorophyll dy-
namics on Georges Bank than the strictly-empirical inductive model, by allowing mechanistic
hypotheses to be tested. Also, the successes and failures of the process model suggest future
developments to improve process model predictions (e.g., more robust forcings, accurate net
boundary flux inputs). By contrast, the inductive approach is something of a modelling cul-
de-sac: it gives no understanding, and its predictions can only get more robust as more data
becomes available, never addressing the bias due to interannual variability which it cannot
account for.

3.4.3 Potential Improvements

In terms of data, the objective of finding representative skill tests was compromised by the
small number of years (AS = 3) for which nutrients, phytoplankton and mesozooplankton
had all been sampled. For the years which were sampled, the data constraint would probably
have been stronger if, practical considerations aside, samples had been taken more evenly-
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spaced in time. Sampling for the whole year rather than just the first half would obviously
aid constraint, although whether the same number of cruises distributed over the whole year
would improve matters is an open question. In terms of spatial distribution, the samples
were very irregularly-spaced over the bank (Fig. 3.1), and a more uniform distribution would
probably have been better for mean field estimation. Measurements of microzooplankton
concentrations would greatly improve data constraint, especially of microzooplankton pa-
rameters. Remotely-sensed data might also be blended with the in situ data to improve
estimates of surface chlorophyll concentrations.

A better mean field estimation method might be to fit a spatial trend surface to the
cruise data and integrate over it (Thiébaux and Pedder, 1987), perhaps after correcting
for asynopticity using an ‘advective correction’ as in McGillicuddy et al. (2001). Or, the
simple two-step, unweighted cruise-averaging used in this study could be replaced with an
optimal weighted average based on fitting spatio-temporal covariance parameters to the raw
data. Alternatively, the raw data might be treated as estimates of the mean field with
error correlations accounted for by extra statistical parameters within a Maximum Likelihood
calibration method (e.g. Stock et al., 2005).

Variance in process model predictions may by reduced by narrowing the allowed ranges of
adjusted parameters, but this may be at the expense of greater prediction bias, resulting in no
improvement in prediction accuracy. One strategy to reduce variance without increasing bias
is a priori fixing of ‘insensitive’ parameters which have little effect on the fit to calibration data
when varied by small amounts. This does not guarantee, however, that their variation has
little effect on extra-sample bias. Also, this ‘sensitivity’ would be better defined ‘globally’ over
the allowed volume of parameter space, rather than locally along 1D ‘transects’ as is common
practice (e.g. Garcia-Gorriz et al., 2003; Friedrichs et al., 2007). An alternative might be to
fix parameters a priori as the values measured in laboratory experiments. Unfortunately,
there is a general lack of relevant, multispecies laboratory ‘microcosm’ or field ‘mesocosm’
experiments to constrain the parameters of any species-aggregated model (indeed, this might
be an argument in favour of using less aggregated models). A compromise might be to allow
moderate retuning (e.g. ±30%) of parameter values based on semi-relevant laboratory studies
and previous model fits.

Note that Bayesian methods of estimating a posteriori uncertainties may be computa-
tionally cheaper than the simulated ensemble (parametric bootstrap) approach, if an efficient
way of integrating over the posterior distribution can be found (e.g. Harmon and Challenor,
1997). However, these should first be validated by a realistic twin test (see section 3.4.1).

As regards model formulation, the inductive model could be improved with a more sophis-
ticated interpolation method (e.g., splines, Gaussian processes, etc.) but the basic predictive
properties would probably not differ significantly from those measured herein. For the process
model, it is possible that a reformulation of the biology, such as the explicit resolution of large
and small phytoplankton types and use of silicate data, as in Ji et al. (2006), could address the
serious underfit problem for 1999 and perhaps improve model skill (if model-noise covariance
does not increase too much with the increased number of parameters). Prediction variance
due to forcing uncertainty might be reduced by dynamically modelling other trophic levels
(e.g. NPZD as in Ji et al., 2007) if the resulting extended model uses better-known forcing
inputs. As noted above, bias in the process model predictions may be the result of neglected
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net boundary fluxes (see section 3.4.1). This could potentially be remedied by embedding the
process model within a larger-scale model which provides accurate input boundary fluxes.

Of particular interest is the effect of increased spatial resolution. Several studies of the
Georges Bank ecosystem have employed high-resolution dynamic circulation models (Ji et
al., 2006, 2007) and model-derived climatological fluid transports (McGillicuddy et al., 1998,
2001; Li et al., 2006). It would be interesting to use the same Georges Bank data to fit e.g.
an NPZD model coupled to one of these circulation models, and compare the skill of mean
field predictions, accounting for all sources of error, with that of the equivalent bulk model.
This study demonstrates a general methodology for making such a comparison.

3.5 Conclusions

There is a pressing need to objectively establish and inter-compare the extrapolative skill of
mechanistic marine ecosystem models and prediction methods. When computational expense
is not too restrictive, the following is a useful method:

1) Define a ‘skill function’ to specify the precise predictive objectives. Skill assessment is
then focussed on estimating this skill function.

2) Find a statistical model for simulating repeat samplings of the data set, and fit it to
the data. This ‘data simulation model’ need only simulate repeat samplings with reasonable
accuracy and need not interpolate or extrapolate accurately beyond the data. It should not
therefore be limited by ecological assumptions.

3) Use the fitted data simulation model to produce an ‘ensemble testbed’ of repeat data
sets for the predictive models. For each new simulated data set, recalculate estimates of
forcings, initial/boundary conditions and adjustable model parameters in keeping with prior
uncertainty, and recompute predictions. The resulting distributions of predictions, and the
truth estimated by the simulation model, allow estimation of the ‘bias’, ‘variance’ and ‘mean
square error’ of model predictions in the classical statistical modelling sense. Restricting the
predictive model calibration to subsets (‘divisions’) of the full data set allows skill tests which
are representative of the inter-/extrapolative task defined by the skill function. Skill metrics
defined over this ensemble testbed can then be used to estimate the skill function, and hence
the relative skills of the different predictive models or prediction methods.

This method was applied to estimate the mean-square predictive error of two models for
predicting the mean chlorophyll variation on Georges Bank in future years, based on data
from the GLOBEC sampling program in the years 1997–1999. The first ‘inductive’ model was
a simple piecewise-linear interpolation of chlorophyll data, the second a simple bulk process
model assuming Lotka-Volterra grazing by an unsampled microzooplankton population and
interannually-variable forcing by nutrient and mesozooplankton mean fields.

The ensemble skill tests showed that the process model could account for some of the
interannual variability in mean chlorophyll concentrations. However, errors in forcing es-
timates caused high variance in model forecasts, due to distortion of the fitted biological
parameters in calibration, and further model input error for the forecasted year. This vari-
ance was exacerbated by the weak prior constraints on biological model parameters, which
may be necessary for fitting coarse-scale, mean-field plankton dynamics. Uncertainty on most
parameters was 50–100% even when all three half-years of chlorophyll data were fitted. Two
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of the seven parameters could not be independently constrained, due to the lack of microzoo-
plankton data. In addition, the process model was consistently unable to fit the data in the
first three months of 1999, possibly due to failure of the zero net boundary flux assumption.

Consequently, the skill of the process model was estimated as generally worse than the
inductive model, despite strong bias in the latter’s predictions due to interannual variability
(rms prediction error or uncertainty of 2.2–2.3 mg chla m−3 for the process model compared
with 1.8–2.5 mg chla m−3 for the inductive model).

By contrast, a näıve skill assessment based on calibration cost for fitting all three years
gave a qualitatively wrong result, strongly favouring the process model (which can fit the
data better) mainly because of the neglect of prediction variance. The use of data division
without simulation produced skill metrics consistent with the above, but the number of
available divisions was insufficient to allow robust estimation of skill and of bias and variance
as functions of time.

Appendix 3A: Bias in näıve skill metrics based on fitted data

misfit

Consider estimating the mean-square error MSE =
∑

i E[(Y t
i − Y p

i (D))2] using the näıve
estimate M̂SE

n
=
∑

i(Oi − Y p
i (θ̂(D)))2, where the model used to produce Y p is fitted to

the data D = {Oi} via the adjustable parameter set θ. Unbiased data are assumed, so that
Oi = Y t

i + εi where E[εi] = 0. The bias in M̂SE
n

is then given by:

E[M̂SE
n
] − MSE =

∑
i

E[ε2
i ] − 2

∑
i

E[Y p
i (θ̂(D))εi] (3A.1)

The first term on the RHS is just the sum of observational error variances, which can often
be estimated (and subtracted from M̂SE

n
) from knowledge of the measuring apparatus and

data processing method, or empirically from the data (see Appendix 3B). The second term
is a sum of covariances between the model prediction and the fitted data errors. This term is
harder to estimate, but is generally positive and increases with model complexity (dimension
of θ). If the size of this covariance is judged to be excessive, the model may be said to be
‘overfitted’.

Appendix 3B: Data simulation model

The data simulation model represents our best efforts to simulate repeat samplings of the
original data set. It need not be designed to provide estimates of mean fields beyond the
sampling times and years specified by the original data, and therefore requires a different
skill function and different skill metrics to those discussed in the text (see below).

The simulation model consists of statistical distributions, so to assess its skill the accuracy
both of mean values and variance parameters must be considered. But how should the relative
importance of means vs. variances be weighted in a skill function for the data simulation
model? One answer is to consider the Likelihood (L), defined as the probability of the data
given the fitted model with parameters θsim (L(θ̂sim|D) ≡ P (D|θ̂sim), with the conventional
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use of ‘|’ to denote ‘given’). However, the data used to evaluate this Likelihood should be
independent of the calibration data, in order to negate the covariance effect discussed in
Appendix 3A. Hence the following skill function should be maximised:

Skillsim = E[log L(θ̂sim(DC)|DV )] (3B.1)

where DC and DV are independent calibration and validation data sets respectively, and the
expectation E is over the product of the pdfs of DC and DV (equivalently, the ‘information
loss’ due to approximating the truth with the statistical model is to be minimised — Akaike,
1973). An estimate of (3B.1) might be obtained by dividing the data into independent
calibration and validation sets, but in this case (as is fairly typical) there are insufficient data
to make this a representative test (for some months there are only 3 nutrient samples from
which to estimate a mean value). Fortunately, however, (3B.1) only requires intra-sample
accuracy (accuracy ‘at the data’), and the data simulation model is by-design capable of
fitting all the data reasonably well. Therefore, analytical results can be used to correct for
the noise-fitting bias incurred by using L(θ̂sim(DC)|DC) to estimate (3B.1). Specifically, the
following skill metric is used:

Ŝkill
sim

= AICc = log L(θ̂sim(DC)|DC) − nK

n − K − 1
(3B.2)

where n is the total sample size, K is the number of fitted model parameters, and AICc

denotes the Akaike Information Criterion (Akaike, 1973) in its second-order form (Hurvich
and Tsai, 1989; Burnham and Anderson, 1998).

The candidate data simulation models consist of stationary probability distributions for
each variable and each month, with zero correlation between diel-averaged samples of the
same variable on different days and between different variables on the same day. Looking
at the data (Figure 3.2), it is clear that the variance increases with the mean value for each
month for all variables. This suggests either lognormal distributions (cf. Campbell, 1995) or
normal distributions with standard deviations proportional to the mean value (cf. Hurtt and
Armstrong, 1996) and a single truncation point at zero. Given the small number of samples
for each month (<10), it seems plausible to fit either separate variance parameters for each
year (≈ 30 samples per year per variable), or one variance parameter for all three years
(≈ 90 samples per variable). Hence, for each variable P , N , Z2, there are four candidate
models corresponding to different combinations of distributional form and number of variance
parameters.

Before fitting the candidate models, outlier data common to outlier-screenings by all four
candidate models are removed (see Appendix 3C). Having committed to the skill function
(3B.1), it is logical to then use Maximum Likelihood Estimators (MLEs) to fit the data
simulation model parameters. For the non-truncated lognormal distributions, the necessary
mean and variance in log space parameters (μi, σ

2
i ) for month i are estimated using the MLEs

(mi, s
2) where mi is a sample mean in log space of the data in month i, and s2 is the sample

variance in log space calculated over the data in one or all three years, depending on the
candidate model. For the truncated normal distributions with means μi and coefficients
of variation α, the truncation at zero prohibits closed analytical expressions for the MLEs
of (μi, α

2). Therefore, sample statistics (mi, a
2) are used, where a2 is the variance of the
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Table 3B.1: Relative skill metric ΔAICc for each variable and each candidate data simulation
model, assuming lognormal or normal (with truncation at zero and constant coefficient of
variation) distributions with one variance parameter for all three years (nσ = 1) or one
variance parameter per year (nσ = 3). p-values for a Monte-Carlo version of the chi-squared
hypothesis test are shown in parentheses for each model.

Lognormal Normal
Variable nσ = 1 nσ = 3 nσ = 1 nσ = 3

P 0 -0.7 -0.1 -1.6
(0.26) (0.08) (0.68) (0.13)

N 0 -0.2 -0.9 -3.3
(0.28) (0.36) (0.01) (0.02)

Z 0 -2.0 -8.4 -11.8
(0.29) (0.15) (0.15) (< 0.001)

data errors scaled by the appropriate mean estimates, averaging over one or three years as
required. The distribution means and variances (μi, σ

2
i = μ2

i α
2) are then written as functions

(fi(μ̃i, σ̃
2
i , xmin, xmax), g(μ̃i, σ̃

2
i , xmin, xmax)) of the mode μ̃i and non-truncated variance σ̃2

i

parameters, for given truncation points xmin = 0 and xmax = ∞. These functions are inverted
numerically by Gauss-Newton iteration to yield the parameters required to reproduce data
sets (μ̃i, σ̃

2
i ), using the sample estimates (mi, s

2 = m2
i a

2) of (μi, σ
2
i = μ2

i α
2).

Having fitted the models, the relative skill metric ΔAICc is calculated with respect to
the maximum value across each of the four alternatives (see Table 3B.1). Note that any
sub-optimality in the Likelihood for the truncated normal fits due to the lack of MLEs is
neglected. The results suggest that the lognormal distributions with one variance parameter
for all 3 years offer the best skill for all variables. Without the noise-fitting bias correction
term in (3B.2), the lognormal distributions with 3 variance parameters would have been
selected, resulting in higher L(θ̂sim(DC)|DC) but poorer skill as defined by (3B.1).

In order to check that the chosen model is a good fit, a Monte-Carlo generalisation of
the classical chi-squared hypothesis test is performed as follows. First, a null distribution
is calculated (assuming the data simulation model is true) of total squared deviation of the
residual histogram (obtained from fitting to a single artificial data set) from the expected
residual histogram (Pearson statistic). Then the Pearson statistic is calculated for the original
data and the percentage of all values in the null distribution more extreme than the value
given by the original data is found, yielding the p-values shown in Table 3B.1. The results
indicate that the lognormal, single variance parameter models selected by the AICc metric
are a reasonable fit to the diel-averaged data (Figure 3.2), since the relevant p-values are well
above the significance threshold of 0.05. By contrast, the normal distribution with 3 variances,
identified by AICc as the worst model for all variables, is rejected by the hypothesis test as
having produced the original N and Z2 data. This gives some confidence that the most
skillful data simulation model as defined by (3B.1) has been selected.

As well as providing an ensemble testbed for the inductive and process models, the data
simulation model allows estimation of confidence intervals for the monthly mean field esti-
mates in the data simulation model, by computing the distribution and variance of these es-
timates over the simulated ensemble. Estimates for the error variances of the cruise-averaged
data used to fit the predictive models (see section 3.2.2) are similarly obtained. These two
error variances were broadly equal to 1 decimal place, reflecting the fact the Maximum Like-
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lihood mean assuming lognormality and the sample mean are equally skillful estimators of
the true mean fields for the observed means/variances and sample sizes of 3–9.

Appendix 3C: Outlier data

It is useful to distinguish two different types of outlier. The first is ‘bad data’ in the truest
sense, as may occur due to e.g. apparatus malfunction or human recording error. One such
datum was identified in the raw data set as the surface nitrate concentration of 0.6 μ M in
June 1999, which was exactly a factor of 10 larger than the 9 similar measurements made
in subsequent days, and a factor of 5 larger than the next largest measurement in preceding
days. This datum was discarded at the outset after it was found to spoil the system of
outlier detection described below, because it distorted the variance parameter estimates for
the year(s) of data errors by such a large amount (see Appendix 3B). Similarly, all zero
measurements of chlorophyll and mesozooplankton abundance were assumed to be the result
of instrument malfunction or human error, and discarded them from the analysis. For a
valid nutrient (=nitrate+nitrite+ammonium) measurement, both (nitrate+nitrite)>0 and
ammonium≥0 were required, since there were in fact a few negative readings for each! Zero
measurements of ammonium were deemed usable because there were a large number of them
and ammonium concentrations were generally very low over the sampled period.

The second type of outlier is not necessarily a ‘wrong’ measurement, but represents a rare
extreme event (significant at the 5% level) in an ensemble of repeat samplings of the diel-
averaged data simulated by the data simulation model. In general it is predictively expedient
(reduces prediction variance) to discard such data (‘All’s fair in love and prediction’). How-
ever, having discarded such an outlier, the data simulation model must be refitted, threshold
extreme data errors recalculated, and the data retested. The process is reiterated until no
new outliers are found.

Applying this procedure to the diel-averaged data using the most skillful data simulation
model (see Appendix 3B), one outlier datum is identified for each variable: a low P value of
0.19 mg chla m−3 during June 1999, a low N value of 1.07 μ M during April 1997, and a high
Z value of 35.6 cc/10m3 during June 1997. These data were therefore removed from the data
set used for fitting the simulation model and testing the models discussed in the text. For
testing the data simulation models (see Appendix 3B), only those data identified as outliers
by all data simulation models were discarded — those being the above values for P and Z

only.

Appendix 3D: Allowed Parameter Ranges for the Process Model

The allowed range of each parameter had to encompass the values adopted in previous studies
using simple biological models for the Georges Bank ecosystem (Franks and Chen, 2001; Ji
et al., 2006; Ji et al., 2007). However, the larger scale of spatial averaging in this study was
accounted for by allowing substantial ‘retuning’ of parameters perhaps formerly derived from
measurements of laboratory-scale averages (this is a ‘weak prior mean-field model’). Usually,
larger-scale growth/grazing/feeding rates are slower due to negative spatial covariance be-
tween consumer and resource arising from the action of consumption itself (see Chapter 4).
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Therefore, the minimum allowed values of these rate parameters are reduced. For the same
reason, the maximum allowed value of the nutrient half-saturation concentration is increased
from ∼ 1μM in previous studies to 3μM . The allowed range for the self shading parameter
c ≡ kp/ke is based on assuming 0.02 < kp < 0.06 (mg chla m−3)−1m−1 and 0.1 < ke < 0.2
m−1 (consistent with Ji et al., 2007), which implies a ‘safe’ range of 0.05 < c < 0.3 (mg chla
m−3)−1.

The allowed range of carnivory rates 0.001 < f < 0.500 (cc/(10m3))−1 day−1 is consistent
with Ji et al. (2006), using the ratio of January concentrations to convert the units (Z2(Jan) ≈
1.7 biovolume units in this study, whilst Z2(Jan) ≈ 0.2μM N in Ji et al. (2006)). The allowed
range of initial chlorophyll concentration 0.01 < P (0) < 1.50 mg chla m−3 is consistent with
the mean field estimates for January 1st obtained by linearly extrapolating the trends over
the first two sampled months (0.7 mg chla m−3 in 1997, 0.5 mg chla m−3 in 1998 and 1.1 mg
chla m−3 in 1999).

The maximum allowed value of the scaled microzooplankton grazing rate g = αβg′ =
0.5 (mg chla m−3)−1day−1 assumes a maximum allowed unscaled grazing rate g′ = 0.5
(μMN)−1day−1 (consistent with Ji et al., 2006), a maximum plausible assimilation efficiency
α = 0.8 and a maximum plausible unit conversion factor β = 1.2 (mol N)/(g chla) (using
a maximum Redfield molar N:C ratio of = 1/5.5 and a maximum mass ratio C:chla = 80
from Townsend and Thomas (2002)). Similarly, the scaled microzooplankton initial condition
Z1(0) = Z ′

1(0)/(αβ) was based on a plausible maximum value Z ′
1(0) < 0.50 μM N (consistent

with Ji et al., 2006) and plausible minimum values α = 0.2 and β = 0.4 (mol N)/(g chla)
(using a minimum Redfield molar N:C ratio of = 1/6.5 and a minimum mass ratio C:chla =
30 from Townsend and Thomas (2002)).

Appendix 3E: Optimisation algorithm

The cost in (3.11) is minimised by varying the adjustable parameters a (which may include
initial conditions) using the Downhill Simplex with Simulated Annealing optimisation sched-
ule of Press et al. (1999) with a fixed number of iterations and an exponential cooling schedule
(a similar method to that of section 2.2.7). The parameter search was restricted to a ‘reason-
able’ volume of parameter space by adding to the cost in (11) a penalty (or an ‘a priori bias’
term) of 105 cost units for every trial parameter value outside its allowed range. Although
this is a ‘non-greedy’ parameter search algorithm (i.e. one that takes occasional uphill steps
to avoid trapping in local minima), single optimisations still tended to yield local minima
solutions due to the finite cooling time, and therefore exhibited dependence on the initial
parameter guess aI . To reduce this dependence, optimisations each of length nit iterations
were repeated for nI randomly chosen aI for each data set and the solution with the lowest
cost was selected. The aI were chosen by Latin Hypercube Sampling from the allowed volume
of parameter space Va with uniform probability (see Press et al., 1999). This ensured that
a reasonable coverage of Va is achieved with a much smaller number of samples, by prevent-
ing samples having any of their parameter values in the same segment of the allowed range
(where no. of segments = 5nI). When an initial guess resulted in a very high initial cost
(costI > 105) the random selection was repeated.

Each optimisation required input of initial and final temperatures (TI and TF ) and number
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of iterations nit as cooling schedule parameters. Hence values of four ‘optimisation param-
eters’ including the number of initial guesses {TI , TF , nit and nI} needed to be chosen to
maximise fitting performance. First, the parameters nit and nI were varied for a fixed prod-
uct nitnI , which determined the overall run-time, for a reasonable choice of TI and TF , and
the mean costs achieved over an ensemble of 5 different simulated data sets were compared.
It was found that the best choice for a given run-time involved a trade-off of cooling slowness
and number of restarts. For the process model fit: {nit = 1 × 104, nI = 50} yielded best
results; however for the ‘less non-linear’ regression problems of the inductive model fit, fewer
repeats were necessary and {nit = 2×104, nI = 3} gave good fitting performance. Then {TI ,
TF } were varied for fixed {nit, nI}. The process model fit generally required higher temper-
atures than the piece-wise linear regressions: {TI = costI , TF = 0.1} gave good results for
the process model fit, whilst {TI = 1, TF = 0.1} was better for the piecewise-linear fits. The
schedule was tested by repeating the optimisation over an ensemble of 50 identical data sets,
varying only the set of initial guesses between each data set. The algorithm found the same
optimal solution in all 50 cases for piecewise-linear and process model fits.
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Chapter 4

Spatially-Implicit Modelling

Accepted article: Wallhead, P.J., Martin, A.P., Srokosz M.A. Spatially-Implicit Plankton
Population Models: Transient Spatial Variability. J. Theor. Biol.

4.1 Introduction

Plankton population models have had a degree of success in explaining the dynamics of
laboratory cultures (Fussman et al., 2000; McCauley et al., 1999). In such experiments, the
plankton are kept well mixed by stirring and zooplankton swimming. This means that they
move or are moved around the experimental volume swiftly and randomly enough that they
experience the volumetric average concentrations of nutrients, prey etc. over their generation
timescales (Dieckmann et al., 2000). Consequently, spatial variability within the laboratory
experiment has by-design a negligible influence on the population dynamics.

At slightly larger scales (tens of metres or less) in the ocean surface mixed layer, turbulent
currents might be expected to do a good job of creating well-mixed conditions. Tracer
experiments (Okubo, 1971) suggest an order-of-magnitude turbulent ‘eddy-mixing’ timescale
of between 0.01 and 1 day for mixed layer volumes of scale 10m. Plankton populations with
typical generation timescales of 1 day are therefore likely to be well-mixed on these scales.

A crucially important feature of the oceans, however, is that they mix material slower
over larger spatial scales (Okubo and Levin, 1980). In fact, Okubo (1976) proposes a mixing
rate λa ≈ 120L−0.85 day−1, plus or minus an order of magnitude, for an ocean scale of L m
(obtained from the Okubo (1976) relation: K(L) = 0.068L1.15 cm2s−1 for L cm, by dividing
by L2 and converting the units). Consequently, at scales larger than L = 10 m it is not
generally safe to assume well-mixed plankton populations. A plankton population that is
not well-mixed may not obey the same dynamics as a well-mixed one, because of dynamical
nonlinearity : laboratory population growth rates usually do not depend just on population
size but also on (population size)2 and perhaps higher powers. Dynamical nonlinearity acts
on spatial variability to distort the coarse-scale (mean-field) population dynamics. This may
lead to failure of the mean field approximation (MFA), whereby the population dynamics
are extrapolated from the fine to the coarse scale. For plankton populations, this failure
could be very serious, as demonstrated for a simplified plankton model by Brentnall et al.
(2003) (hereafter B03). Failures of the MFA could be endemic in plankton modelling, where
well-mixed laboratory population dynamics are often assumed to hold true over ocean model
grid cells ranging in scale from 100 m in regional models to 100 km in global ocean models.
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The most obvious, and currently prevalent, method of accounting for fine-scale variability
in plankton ecosystems is to increase the explicit spatial resolution of the model (number
of grid cells). However, this places heavier demands on data and model inputs (forcings,
initial/boundary conditions) to accurately constrain the extra degrees of freedom when fitting
the model and making predictions. Moreover, the added computational burden may impose
practical restrictions e.g. on the spatio-temporal range of the model run, or the number of
times it may be re-run with different parameter values, which in turn may limit our ability
to make, and assess the robustness of, model predictions for different scenarios e.g. changes
in climate.

An alternative, long-familiar to the turbulence modelling community, is to model higher
moments of the unresolved variability as well as the mean fields (Reynolds, 1895). Hence, fine
scales are resolved ‘implicitly’ in terms of their effect on larger scales. Over recent decades,
a host of ‘turbulence closure’ models, themselves derived from models used in engineering,
have been applied to modelling the ocean mixed layer and horizontal boundary layers (see
Sander (1998) and Umlauf and Burchard (2005) for general reviews, or Carniel et al. (2007)
for an oceanographic summary). These account for the effect of advective nonlinearity acting
on unresolved variability in physical/biological fields to produce mean turbulent fluxes, also
known as the ‘transport Reynolds terms’ (Lévy, 2006). Similar techniques have also been
applied to coarse-resolution large-scale ocean models to parameterise the effects of unresolved
mesoscale eddies (e.g. Gent and McWilliams, 1990; Gent et al., 1995). Modification of the
standard eddy-diffusivity approach to parameterising turbulent fluxes to allow for the finite
lifetime of reactive scalars such as plankton has been suggested by Pasquero (2005).

However, apparently no attempt has been made to implicitly resolve the statistical effect
of biological nonlinearity on unresolved variability in plankton ecosystems, i.e. the ‘biological
Reynolds term’ (Lévy, 2006). This is surprising, given that the biological dynamics usually
involves nonlinearity that is of higher order than the quadratic nonlinearity of advective
transport, and the spatial variability in plankton concentrations seen in data is usually very
high (e.g. Martin et al., 2005), suggesting that the size of these neglected biological Reynolds
terms may be very significant.

In this chapter, simple two-component, 2D ‘reaction-diffusion’ plankton models are used
as high-resolution simulations (HRSs). The grid-cell scale populations react via a set of
continuous-time, deterministic biological dynamics, identical in every grid cell, and interact
with nearest-neighbour cells by standard linear mixing, representing eddy-diffusion. Spatial
heterogeneity is only provided by variable initial conditions, and decays due to mixing and
transience of the fine-scale biological dynamics. The accuracy of extrapolating the fine-scale
biological dynamics to the domain-scale mean-field dynamics (the MFA) is investigated, as
well as the possibility of improving on this approximation with implicit spatial resolution
(ISR) models. These include ‘spatial moment closure’ (SMC) models, which assume central
dominance of the phase space distribution, and a ‘2-spike approximation’ (2SA), which as-
sumes strong bimodality. The biological models and parameter sets are chosen to explore
different strengths of biological nonlinearity, and mixing rates are varied to explore a range
of scales relevant to practical ocean model grid cells.

Moment closure models have been used extensively in recent years in terrestrial ecology
(e.g. Bolker and Pacala, 1997; Dieckmann et al., 2000; Keeling, 2000a,b; Keeling et al., 2002;
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Law and Dieckmann, 2000a,b; Law et al., 2003; Lewis and Pacala, 2000; Murrell et al., 2004;
Ovaskainen and Cornell, 2006; Pascual and Levin, 1999) and terrestrial epidemiology (e.g.
Ferguson et al., 2001; Filipe and Gibson, 2001; Filipe and Maule, 2003). Readers familiar
with this literature should note that the problem treated here is different on several accounts.
First, as argued above, plankton populations may be considered well-mixed in the ocean at
the laboratory scale (< 10 m). Therefore, rather than starting with an individual-based
model (IBM), we start with a population model for the laboratory scale, which then needs
to be modified somehow to work on the (much larger) ocean grid cell scale.

Second, land plants are tethered to a solid substrate and act spatially only when they
reproduce, dispersing seeds or pollen broadly via air or animal movement on a timescale
much shorter than that of plant growth. By contrast, phytoplankton are fully committed to
their liquid environment: they are shifted around continuously by ocean currents (‘plankton’
deriving from the Greek for ‘drifter’), and reproduce locally.

Third, in contrast to terrestrial systems, marine primary producer/consumer populations
are generally large (> 100 individuals) at the scale of the laboratory, at least if the con-
sumers are microzooplankton. This suggests that deterministic models may be applicable
to phytoplankton/zooplankton population dynamics (Renshaw, 1991). If the zooplankton
are interpreted as mesozooplankton, which are only moderately-numerous (O(10–100)) at
the laboratory scale, it may be necessary to include demographic stochasticity at the level
of fine-scale populations (Vainstein et al., 2007). The methods used in this chapter may be
generalised to account for this (e.g. Rodriguez and Tuckwell, 1996).

Hence deterministic reaction-diffusion equations are used as ‘simulation’ models in this
study. This is not to deny that stochastic IBMs with local (Martin, 2004) and non-local inter-
actions (Birch and Young, 2006; Flierl and Grünbaum, 1999; Hernández-Garćıa and López,
2004) may be necessary for deriving population dynamics at higher trophic levels — perhaps
mesozooplankton and higher. However, simulating realistic numbers of individual mesozoo-
plankton in even a single ocean model grid cell may be computationally unfeasible. IBMs
might be used to derive fine-scale, deterministic population behaviour using ‘moment closure’
as understood in terrestrial applications (see next paragraph). However, there remains the
problem of extrapolating the fine-scale deterministic population dynamics to coarser scales
for ocean models. An alternative approach might be to let simulated ‘super-individuals’ or
‘agents’ each represent large numbers of real individuals (Scheffer et al., 1995; Batchelder et
al., 2002; Woods, 2005).

Consequently, the use of moment closure in this study has a more ‘classical’ flavour. In
terrestrial ecology, it has been used to approximate the average behaviour of a stochastic
IBM over a computationally-expensive ‘ensemble’ of runs. The result is typically a closed
set of partial integro-differential equations for the first moments (as functions of time) and
second moments (as functions of time and spatial lag), derived using ‘closure assumptions’
to approximate the effects of third-order moments on the dynamics of the second moments
(Murrell et al., 2004). By contrast, in the problem treated here, little is gained by just
transforming from one set of finely-resolved, partial differential equations (PDEs) in (time,
real space) to another set of finely-resolved PDEs in (time, lag space), even if the higher-order
moments can be successfully approximated. However, it is shown herein that the effect of
non-zero lag second moments on the zero-lag second moments can often be neglected without
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much loss of accuracy. The result is an SMC model of complexity comparable to the MFA.
The chapter is ordered as follows. In section 4.2 (and the Appendices) two ISR methods

are discussed in a general context: spatial moment closure (SMC) and the ‘n-spike approx-
imation’ (nSA). SMC is applied to a general, two-component reaction-diffusion model, and
numerical methods are detailed. In section 4.3 three examples are investigated with different
strengths of biological nonlinearity, obtained by varying the functional forms and parameter
values of the general model, comparing HRS model output with the MFA and ISR models.
In the Discussion section 4.4 limitations and possible extensions of this work are discussed.
Conclusions are drawn in section 4.5.

4.2 Methods

4.2.1 Spatial Moment Closure (SMC)

Consider a discrete 1D chain of deterministic, nonlinear plankton subsystems (well mixed
sub-populations) interacting by Fickian mixing, representing eddy-diffusion. The method
easily generalises to 2D and 3D grids and continuous space — see Appendices 4A and 4B.
To include stochasticity at the subsystem level, see Rodriguez and Tuckwell (1996). Hence,
the nth subsystem is governed by a set of m ODEs:

ẏ
(n)
i = Fi(y(n)) + λi(y

(n−1)
i + y

(n+1)
i − 2y(n)

i ) (4.1)

for i = 1,. . . ,m subsystem components with mixing rates λi, using the dot to denote d/dt.
F describes the fine-scale biological reactions, perhaps derived from laboratory experiments.
The spatial means are defined by Yi ≡ N−1∑N

n=1 y
(n)
i and the zero spatial lag central covari-

ances by Cij(0, t) ≡ N−1∑N
n=1 δy

(n)
i δy

(n)
j where δy

(n)
i ≡ y

(n)
i − Yi and the summation is over

all N subsystems. Taylor-expanding the biological interactions Fi about the spatial means,
averaging over space, and dropping third and higher central moments, results in second-order
moment closure approximation for the evolution of the spatial means in terms of the spatial
means and covariances (see Appendix 4A):

Ẏi ≈ Fi(Y ) +
1
2

∂2Fi(Y )
∂yj∂yk

Cjk(0, t) (4.2)

using the convention that identical indices are implicitly summed over.
A few comments are in order. First, note that the ‘standard’ assumption in plankton

models is that the net effect of terms involving the second and higher central moments on the
mean concentrations over the grid cell is negligible (the MFA). By contrast, (4.2) proposes
that the net effect of terms involving all third and higher central moments is negligible. These
are different closure assumptions. Importantly, note that neither the spatial deviations nor
any of the moments themselves are assumed to be small relative to the mean (since the
coefficients in the expansion may vary by orders of magnitude), nor is it assumed that the
neglected terms are individually small relative to the mean field dynamics. Rather, their net
effect — the sum of all neglected terms — is assumed to be negligible.

Second, note that the coupling between the spatial means and higher moments in (4.2)
results from the nonlinearity in the biological interactions (nonzero second derivatives of F ).
This nonlinearity also couples the dynamics of the higher moments, but always such that the
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dynamics of the kth moments depend on terms multiplying the kth and higher-order moments,
with coefficients dependent on the mean field (see Appendix 4A). Thus we generate an infinite
hierarchy of moment dynamics which must be truncated by a suitable closure assumption.

Third, note that in deriving (4.2), net boundary fluxes or external mixing is neglected (see
Appendix 4A). The linear internal mixing has no direct effect on the dynamics of the mean
concentrations. Within the MFA, mixing has no effect at all on the mean concentrations.
However, to higher order in moment closure, the nonlinearity allows the mixing to affect the
mean field dynamics via the coupling to zero-lag higher moments, which are directly affected
by mixing. In fact, the dynamics of the zero-lag covariances are given, neglecting the net
effect of third and higher central moments, by:

Ċij(0, t) ≈ ∂Fi(Y )
∂yk

Ckj(0, t) +
∂Fj(Y )

∂yk
Cki(0, t) − 2(λi + λj)(Cij(0, t) − Cij(1, t)) (4.3)

(see Appendix 4A). Note, however, that different closure assumptions for the zero-lag covari-
ance dynamics can be made without necessarily being inconsistent with (4.2).

In (4.3) the zero-lag covariance dynamics depend on the covariance dynamics at one unit
lag (Cij(1, t) ≡ N−1∑N

n=1 δy
(n)
i δy

(n+1)
j ), where the spatial unit is the separation between

adjacent subsystems (L). In this study, these terms are neglected in order to obtain a closed
system (4.2) and (4.3). This may seem a rather drastic assumption. However, due to the
scale dependence of mixing rate in the ocean, a situation is possible where sub grid-scale
populations are sufficiently mixed to obey (4.1), but grid-scale mixing (λi, λj) is slow enough
that covariances between adjacent grid cells may be neglected in a first approximation to the
local covariance dynamics.

The neglect of third and higher order moment contributions is consistent with the as-
sumption of a normal distribution — one which is sufficiently compact that the fourth and
higher even-order central moments make a negligible net contribution. However, for biologi-
cal variables, the assumption of normal distributions in phase space may well be inaccurate.
An alternative is to neglect the net effect of third and higher central moments in log space,
consistent with the assumption of a compact lognormal distribution (as is often observed in
chlorophyll data — see Campbell, 1995; Appendix 3B). This closure assumption is most-
easily imposed by log-transforming the fine-scale dynamics (4.1) into logarithmic variables
ỹi = log yi, hence:

˙̃y
(n)
i = F̃i(ỹ(n)) + λi(eỹ

(n−1)
i + eỹ

(n+1)
i − 2eỹ

(n)
i )e−ỹ

(n)
i (4.4)

Then the means Ỹi ≡ N−1∑N
n=1 ỹ

(n)
i and covariances C̃ij(0, t) ≡ N−1∑N

n=1 δỹ
(n)
i δỹ

(n)
j ,

C̃ij(1, t) ≡ N−1∑N
n=1 δỹ

(n)
i δỹ

(n+1)
j may be defined in log space, where δỹ

(n)
i ≡ ỹ

(n)
i − Ỹi.

Now Taylor-expanding about Ỹ and averaging over space, dropping third and higher-order
moments, yields:

˙̃Y i ≈ F̃i(Ỹ ) +
1
2

∂2F̃i(Ỹ )
∂ỹj∂ỹk

C̃jk(0, t) + 2λi(C̃ii(0, t) − C̃ii(1, t)) (4.5)

and
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˙̃Cij(0, t) ≈ ∂F̃i(Ỹ )
∂ỹk

C̃kj(0, t) +
∂F̃j(Ỹ )

∂ỹk
C̃ki(0, t) − 2(λi + λj)(C̃ij(0, t) − C̃ij(1, t)) (4.6)

Hence the Fickian mixing, being nonlinear in log space, acts on Ỹ by decreasing the variance,
thereby forcing an increase in the mean in log space Ỹ via the mixing term in (4.5) (recall
that for a lognormal distribution: log Yi = Ỹi + C̃ii(0, t)/2). Note that the approximations
(4.5) and (4.6) neglect more terms than (4.2) and (4.3) (namely, third and higher-order lag
covariances). Nevertheless, when lognormality does significantly skew the spatial statistics,
(4.5) and (4.6) are likely to be more accurate approximations.

Finally, note that in general it is possible that some transformation of variables ỹi =
s(yi) could linearise the dynamics F̃ . However, to do so, the function s(y) must itself be
nonlinear (as in the log transform) which implies that the mean is not preserved under the
transformation (E[s(X)] �= s(E[X])). Therefore, higher moments would still require tracking
in order to be able to convert back to the mean fields in non-transformed space, under suitable
distributional assumptions. For example, in order to convert between moments in log space
and moments in normal space, lognormality is assumed and the following standard conversion
formulae are applied:

Ỹi = 2 log Yi − 1
2

log (Cii + Y 2
i )

C̃ij = log (1 +
Cij

YiYj
) (4.7)

and:

Yi = eỸi+C̃ii/2

Cij = eỸi+Ỹj+(C̃ii+C̃jj)/2(eC̃ij − 1) (4.8)

where, as in the rest of this paper, Cij is shorthand for Cij(0, t).

4.2.2 n-Spike Approximation (nSA)

The nSA forms a natural complement to the SMC method. Whereas SMC assumes a
centrally-dominated distribution in phase space, the nSA approximates the phase space dis-
tribution as a sum of n delta functions (a multi-modal distribution), and may therefore
attribute dominance to extreme values. The delta functions or ‘spikes’ comprise constant
fractions {q1, ..., qn−1, (1−∑n−1

s qs)} of the total number N of subsystems in the HRS (obvi-
ously, to yield advantages over the HRS, we must have n << N). Again, lag-covariances are
neglected. Under these assumptions, averaging over all subsystems in the kth spike (a subset
of the N subsystems in the HRS) yields m equations for each of the i = 1,. . . ,m subsystem
components:

ẏ
(k)
i = Fi(y(k)) + 2Dλi(

n∑
s=1

qsy
(s)
i − y

(k)
i ) (4.9)
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where qn = 1−∑n−1
s=1 qs. Be careful not to think of the spikes as spatial entities or ‘patches’—

rather they are subsets of the the N subsystems distributed randomly in space, and as
such each member of a subset may mix with members of the same subset as indicated by
(4.9). The spatial mean fields are given by Yi =

∑n
s=1 qsy

(s)
i and local covariances by Cij =∑n

s=1 qs(y
(s)
i − Yi)(y

(s)
j − Yj). Note that the spikes mix faster for higher spatial dimensions

with more nearest neighbours (factor 2D). Also, note that the mixing is asymmetric between
spikes: the higher the proportion of subsystems q in the spike, the less it differs from the
spatial mean, hence the less net mixing flux it experiences.

4.2.3 SMC model for a general plankton system

This study considers fine-scale phytoplankton-zooplankton (pz) population dynamics of the
general form:

ṗ = f(p)p − g(p)z

ż = rg(p)z − h(z) (4.10)

where f(p)p = a(1 − bp)p represents phytoplankton growth, assumed to be logistic; g(p)z
describes grazing by the zooplankton, where different forms of g(p) are considered; r is a
constant accounting for zooplankton feeding and assimilation efficiency; h(z) = dz describes
zooplankton mortality and other losses, assumed to be proportional to z. The subsystem
(4.10) has a single ‘coexistence’ equilibrium at (p∗ = g−1(d/r), z∗ = (r/d)f(p∗)p∗) which ex-
ists in the positive quadrant provided p∗ is real and positive and less than the carrying capacity
(g−1(d/r) < b−1). This equilibrium is stable provided K ≡ (f ′(p∗)p∗ + f(p∗) − g′(p∗)z∗) < 0
(primes denoting derivatives), in which case it is a stable spiral (eigenvalues complex) if
K2 < 4rg′(p∗)g(p∗)z∗, otherwise it is a stable sink (eigenvalues real). The positivity require-
ments for g and g′ rule out a saddle coexistence equilibrium. An important parameter in our
study will be the linear transience time defined as τlin ≡ −2/K, the constant K/2 being the
oscillation decay rate in the case of a stable spiral and the average decay rate in the case of
a stable sink equilibrium.

The MFA simply replaces (p, z) with their spatial means (P , Z). Applying the second
moment closure approximation for the mean field dynamics (4.2) yields the SMC mean field
dynamics:

Ṗ = fP − gZ +
1
2
((2f ′ − g′′Z)Cpp − 2g′Cpz)

Ż = rgZ − h +
r

2
(g′′ZCpp + 2g′Cpz)) (4.11)

where f , g and h and their derivatives are evaluated at (P , Z) and Cij is short for the
covariance at zero lag (Cij(0, t)). Applying the second moment closure approximation for the
zero-lag covariance dynamics (4.3), and neglecting lag covariances, yields the SMC covariance
dynamics:
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Ċpp = 2(f + f ′P − g′Z)Cpp − 2gCpz − 2D+1λpCpp

Ċpz = rg′ZCpp + (f + f ′P − g′Z + rg − h′)Cpz − gCzz − 2D(λp + λz)Cpz

Ċzz = 2rg′ZCpz + 2(rg − h′)Czz − 2D+1λzCzz (4.12)

where D is the number of spatial dimensions (D = 2 in our study). Thus (4.11) and (4.12)
form a closed system. In log space, the biological model (4.10) is restated as:

˙̃p = f̃(p̃) − g̃(p̃)ez̃

˙̃z = rg̃(p̃)ep̃ − d (4.13)

where p̃ = log p and z̃ = log z. Note that the transformed function f̃(p̃) = a(1−ep̃) is no longer
linear. Applying the second moment closure approximation for the mean field dynamics (4.5)
and zero-lag covariance dynamics (4.6) in log space, again neglecting lag covariances, yields
the SMC mean field dynamics:

˙̃P = f̃ − g̃eZ̃ +
1
2
((f̃ ′′ − g̃′′eZ̃)C̃p̃p̃ − 2g̃′eZ̃C̃p̃z̃ − g̃eZ̃C̃z̃z̃) + 2DλpC̃p̃p̃

˙̃Z = rg̃eP̃ − d +
r

2
(g̃′′ + 2g̃′ + g̃)eP̃ C̃p̃p̃ + 2DλzC̃z̃z̃ (4.14)

and the SMC covariance dynamics:

˙̃C p̃p̃ = 2(f̃ ′ − g̃′eZ̃)C̃p̃p̃ − 2g̃eZ̃C̃p̃z̃ − 2D+1λpC̃p̃p̃

˙̃C p̃z̃ = r(g̃′ + g̃)eP̃ C̃p̃p̃ + (f̃ ′ − g̃′eZ̃)C̃p̃z̃ − g̃eZ̃C̃z̃z̃ − 2D(λp + λz)C̃p̃z̃

˙̃C z̃z̃ = 2r(g̃′ + g̃)eP̃ C̃p̃z̃ − 2D+1λzC̃z̃z̃ (4.15)

4.2.4 Numerical methods

The high-resolution simulations require solution of the discrete reaction-diffusion equations.
Note that since the subsystems are assumed to be of finite size in the problem, on a scale
at which continuous-time population dynamics is applicable, diffusive mixing is implemented
simply as stated in (4.1). Hence we have a coupled (for non-zero mixing rate) system of 5122

ODEs in 2D. Since the model is defined in continuous time, the finite numerical time step is
compensated by a fifth-order, adaptive step-size Runge-Kutta solver from Press et al. (1999).
Error tolerance is set to 0.01% of the maximum absolute value of each variable over recording
intervals of 0.1, 0.02 and 0.1 days for examples 1, 2 and 3 respectively. As an accuracy check,
results were repeated at a higher error tolerance (0.1%), resulting in no perceptible difference.
These integrations were coded in Fortran for speed purposes.

For the moment closure models, requiring integration of 5 ODEs, the ‘ode45’ solver in the
Matlab mathematical software package (http://www.mathworks.com/) was used, but only
after validating against output from the Fortran solver, since the non-negativity requirement
for mean field and variance variables could not be strictly imposed at all intermediate ‘trial’
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steps in the fixed Matlab routines. The two methods showed no significant disagreement.

4.3 Examples

4.3.1 Example 1a: Weak nonlinearity with no mixing (λ = 0)

Consider a small piece of ocean surface mixed layer where phytoplankton concentrations (p)
obey self-limited, logistic growth but are too low to saturate a linear grazing response by
zooplankton (z), and where these zooplankton are subject to a constant specific mortality
rate due to senescence and higher predation. Nutrient limitation and layer-averaged light
exposure are assumed to be constant. Omitting mixing interactions, the population dynamics
in this volume might be represented by the Lotka-Volterra predator-prey equations:

ṗ = ap(1 − bp) − cpz

ż = rcpz − dz (4.16)

The concentrations (p, z) are assumed to be measured in the same units (e.g. μM Nitrogen),
hence the constant r accounts only for imperfect feeding and assimilation efficiency. Since
this study is concerned with model behaviour rather than fitting real data, it makes sense
to rescale the equations in order to allow us to explore model behaviour more efficiently.
Applying the rescalings: t = t′/a, p = p′/b, z = az′/c yields:

ṗ = p(1 − p) − pz

ż = αpz − βz (4.17)

where primes have been dropped, α = rc/(ab) and β = d/a. The system (4.17) has a single
coexistence equilibrium at (p∗ = β/α, z∗ = (1 − β/α)), which is stable while it is in the
positive quadrant (α > β). As an example, plausible values (α = 0.2, β = 0.1) are chosen
— hence the mortality rate of z is a factor of 10 slower than the maximum growth rate of
p, and, if b ∼ 1 pz-unit−1, the zooplankton growth is an order of magnitude slower than the
phytoplankton growth. This results in a stable sink equilibrium (see section 4.2.3).

In this study, spatial heterogeneity is provided exclusively by the initial conditions: (p(0),
z(0)) are assumed to be independent (zero lag-covariance) lognormal variables with mean
values (P (0) = p∗, Z(0) = 0.78z∗ — chosen for parity with B03) and standard deviations
100% of the mean values (hence Cpp(0, 0) = P (0)2, Cpz(0, 0) = 0, and Czz(0, 0) = Z(0)2).
The initial coefficients of variation (standard deviations/mean values) are high (1, 1) but
not implausible in view of the range of values found in plankton data from the Celtic Sea
(Adrian Martin, pers. comm.). Subsequently, the HRS is run for 60 time units i.e. 60 × the
growth timescale of phytoplankton, allowing convergence on the homogeneous equilibrium
(p(x, y) = p∗, z(x, y) = z∗).

The MFA model for the domain is made simply by replacing (p, z) by (P , Z) in (4.17)
and evolving the system of 2 ODEs from the HRS mean initial conditions (P (0), Z(0)).
The SMC approximation is given by the general model (4.14 and 4.3.1), substituting for the
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Figure 4.1: Time Series for Example 1a (weak nonlinearity, no mixing), showing High Res-
olution Simulation (HRS), Mean Field Approximation (MFA) and Spatial Moment Closure
(SMC) output for phytoplankton and zooplankton spatial mean fields (a, b), mean primary
productivity (c) and spatial covariances (d–f). Units are non-dimensional (see section 4.3.1).

functions (f̃ = (1 − eP̃ ), g̃ = 1) and the constants (r = α, d = β) and setting mixing rates
(λp, λz) to zero. This model, which neglects third and higher central moments in log space,
is a better choice than (4.11 and 4.12) given that the imposed initial variability is lognormal.
The resulting system of 5 ODEs is evolved from (P̃ (0), Z̃(0), C̃p̃p̃(0, 0), C̃p̃z̃(0, 0), C̃z̃z̃(0, 0)),
using the formulae (4.7 and 4.8), which assume lognormality, to convert moments to/from
log space.

The resulting behaviour of (P , Z, Cpp, Cpz, Czz) is shown for HRS, MFA and SMC models
in Figure 4.1. Note that the ensemble variability (between repeat runs due to different initial
configurations) is negligible in the spatial moments, thanks to the large number of subsystems
(5122) in 2D (hence the simulation is ‘ergodic’ in the sense that spatial averages are equivalent
to ensemble averages). Therefore single-run results rather than ensemble averages are shown.
Also shown are the model predictions for bulk primary productivity (PP ), defined as the
spatial mean self-limited phytoplankton growth rate, as this is often a quantity of interest
to plankton modellers. Note that: PP = P (1 − P ) − Cpp with no approximation — spatial
variance enhances coarse-scale logistic self-limitation.

The spatial heterogeneity amplifies the coarse-scale phytoplankton ‘bloom’ and slightly
delays the timing of the peak relative to the MFA (Fig. 4.1a). The HRS zooplankton mean
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field approaches equilibrium slower than in the MFA, and undergoes an initial decrease not
predicted by the MFA (Fig. 4.1b). The bulk primary productivity is slightly suppressed
relative to the MFA for about the first third of the transient interval, implying that in this
case the deficit in primary production due to local variance (Cpp) outweighs the increase in
P (Fig. 4.1c).

The time series for the local covariances also allow us, in this case, to anticipate the
qualitative evolution of the pz-distribution in phase space (Figure 4.2). After 5 time units
Cpp(0, t) has reduced dramatically, Cpz(0, t) has dropped to a negative trough, and Czz(0, t)
has reduced slightly (Figs. 4.1d–f). Hence, starting from the initial ‘blob’ of lognormal vari-
ability (Fig. 4.2a), the distribution contracts into a ‘sausage’ shape sloping steeply towards
lower z with increasing p at t = 5 (Fig. 4.2b). The differential contraction is largely a linear
effect of stronger dynamical flow convergence in the direction of the more stable manifold
(reverse-time trajectory of a subsystem perturbed from equilibrium along the eigenvector
associated with the more negative eigenvalue) leaving the distribution elongate along the
direction of the least stable manifold (associated with the less negative eigenvalue). The dy-
namical nonlinearity acts on the distribution width to perturb the mean fields with respect
to the MFA. Subsequently, the covariances decay gradually (Figs. 4.1d–f) as the distribution
becomes ‘needle’ shaped, slowly contracting in the long direction as the mean inches towards
the equilibrium (Figs. 4.2b,c).

All features of the HRS mean field behaviour are accurately predicted by the SMC model
(Figs. 4.1 and 4.2). In addition, the SMC does a good job of reproducing the transient
variability in local covariances (see Figs. 4.1d–f, the MFA prediction for each being zero for all
time). This latter is more surprising because the SMC model includes first-order corrections
to the mean field dynamics (due to local covariances) but only retains the zeroth-order terms
in the local covariance dynamics (again due to local covariances).

The success of the SMC model allows us to explain the results of the HRS model in terms
of interactions between the mean fields and local covariances. This is done most simply by
referring to (4.11) and (4.12) rather than (4.14) and — the latter is more accurate given
lognormal variability but requires us to convert to/from log space. First, a negative pz-
covariance develops due to grazing and relatively slow zooplankton growth (an imbalance
between the Cpp and Czz terms in Ċpz). This negative covariance reduces the domain-
scale grazing rate because the zooplankton exhaust their local food supply (Cpz term in Ṗ ),
thereby allowing an enhanced mean-field bloom due to local predator release (outweighing
the reduction of PP due to Cpp). The predator-prey decoupling (negative Cpz) also delays
the domain-scale increase in zooplankton and resulting depletion of the phytoplankton crop
(Cpz term in Ż). Subsequently, all local covariances decay due to dynamical convergence of
(p, z) phase space trajectories towards the stable equilibrium (Cpp, Cpz and Czz terms in their
respective time derivatives).

However, in this weakly nonlinear example the effect of nonlinearity is after-all rather
small. To quantify it, ΔMFA

P is defined as the root-mean-square discrepancy between the
MFA and HRS model P fields, averaged over a nonlinear transient interval and normalised
by p∗. The nonlinear transient interval for P is defined to last from t = 0 until the largest
time at which PHRS(t) is more that 5% away from the equilibrium p∗. This yields an rms
error of ΔMFA

P = 11%, compared to ΔSMC
P = 1%. Similarly, for zooplankton rms error we
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Figure 4.2: Phase space phytoplankton-zooplankton distributions for Example 1a (weak non-
linearity, no mixing) at t = 0 (a), t = 5 (b), t = 10 (c) and t = 15 (d). Symbols mark the
position of the equilibrium (cross), the mean of the High Resolution Simulation (square),
the mean predicted by the Mean Field Approximation (dot), and the mean predicted by the
Spatial Moment Closure model (triangle). Units are non-dimensional (see section 4.3.1)
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have ΔMFA
Z =9% vs. ΔSMC

Z <1%. The % error in the total primary production over the
interval of PP -transience is similar (δMFA

PT = +13% vs. δSMC
PT = −1%). In plankton data,

such errors could easily be undetectable. Also, mixing has not yet been included. This is a
crucial ocean process expected to suppress discrepancies between the HRS mean fields and
the MFA.

Nevertheless, it is instructive to investigate the controls on ΔMFA/SMC in this simple
model with no mixing. To this end, the above experiment is repeated for 500 different
values of (α, β) randomly distributed (uniformly and independently) over plausible ranges
(0.01 < α < 2, 0.01 < β < 2) with the restriction α > β to provide a positive and stable
equilibrium. Results are discarded of runs for which the PSMC or ZSMC exceeded 100 units
(20 cases) and for which the nonlinear transience time exceeded the run time of 100 units (35
cases). Figure 4.3 shows the resulting ΔMFA/SMC

P plotted against the linear transience time
τlin (see section 4.2.3), excluding 4 cases with ΔSMC

P > 0.5 by choice of axis limits. There is
a clear positive correlation between ΔMFA,SMC

P and τlin (r2 = 0.76 and 0.41, p < 0.001 for
both). The relationship is remarkably clean though nonlinear up to τlin ≈ 6, becoming noisy
for higher τlin as the performance of both models becomes erratic. This supports the intuitive
view that for more oscillatory transience with longer τlin, the phase space distribution devel-
ops more complex ‘boomerang-shaped’ and skewed distributions which cause stronger MFA
discrepancies and pose difficulties for the SMC, which assumes a compact normal distribution
in log space. Even so, the SMC model is clearly quite robust and yields improved accuracy
for almost all sensible parameter values.

4.3.2 Example 1b: Weak nonlinearity with realistic mixing rates (λ > 0)

The fine-scale population dynamics in the HRS (4.17) are assumed to be accurate at the
scale of laboratory and mesoscale experiments (1–10m in the ocean surface mixed layer).
The Okubo relation: λa ≈ 120L−0.85 day−1 (plus or minus an order of magnitude) implies
a minimal mixing rate of λa = 1.7 day−1 at the scale L = 10 m. Assuming that (p, z)
may be treated as passive tracers as regards their eddy-mixing timescales (a questionable
assumption — see section 4.4), and assuming a maximum phytoplankton growth rate of a = 1
day−1, a minimum non-dimensional mixing rate (‘diffusive Damköhler number’) is given by
λmin = λmin

a /a = 1.7. Repeating the first experiment of section 4.3.1 using λp = λz = 1.7
yields negligible discrepancy between the HRS/MFA/SMC. Hence in this case, the fine-scale
dynamics may be safely extrapolated from L = 10 m to an ocean model grid cell of scale
D = 512L ≈ 5km, as might be used in a standard regional ocean model or a very high
resolution General Circulation Model (GCM) for the global ocean.

By a similar argument, a minimal dimensionless mixing rate for L = 100 m is λp = λz =
0.24, which yields (ΔMFA

P ,ΔSMC
P ) = (3, 1)% for an ocean grid cell of scale D ≈ 50km, as in a

moderate-resolution GCM. For the largest relevant fine scale L = 1km, using λp = λz = 0.03,
(ΔMFA

P ,ΔSMC
P ) = (6, 1)% for D ≈ 500km. Hence, if 10% error is taken as a threshold

of importance, the results suggest that, for this model formulation, the error involved in
extrapolating transient behaviour from laboratory to ocean model grid cell scale is negligible
for all practical grid cell scales.
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Figure 4.3: Average (rms) errors in the phytoplankton mean field over transient interval, ΔP ,
vs. linear transience time, τlin, for the Mean Field Approximation (dots) and Spatial Moment
Closure (crosses) model, using a weakly nonlinear model with 500 sets of parameter values
randomly-chosen from plausible ranges. Mixing rate λ = 0. Units are non-dimensional (see
section 4.3.1).
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4.3.3 Example 2a: Moderate nonlinearity with no mixing (λ = 0)

Moderately nonlinear dynamics, in the sense of discrepancy between the HRS mean field
dynamics and the MFA, result from modifying the formulation in (4.16) to account for grazer
saturation. Following B03 and numerous other studies (Matthews and Brindley, 1997; Neufeld
et al., 2002; Steele and Henderson, 1981; Truscott and Brindley, 1994), the following simple
plankton model is used:

ṗ = ap(1 − bp) − cp2z

k2 + p2

ż =
rcp2z

k2 + p2
− dz (4.18)

where the new parameter k is the half-saturation constant for zooplankton grazing. Note also
the change in units of c from (pz-unit−1 day−1) in (4.16) to (day−1) in (4.18). The Holling
III functional response implies a slow (quadratic) increase in grazing pressure at low phyto-
plankton concentrations (p < k) as well as saturation at high concentrations (p > k). The
former is consistent with the presence of an alternative food source for the zooplankton, and
a minimal level of zooplankton behavioural complexity (see B03 for more detailed justifica-
tion). Dynamically, the inclusion of saturation effects raises the ‘degree’ of nonlinearity above
the quadratic nonlinearity of the Lotka-Volterra dynamics in (4.16). Applying the rescalings:
t = t′/a, p = p′/b, z = az′/c (note that z remains dimensional) yields the following scaled
system:

ṗ = p(1 − p) − p2z

ν2 + p2

ż =
αp2z

ν2 + p2
− βz (4.19)

where primes have been dropped, α = rc/a, β = d/a and ν = kb. The system (4.19) has a
single coexistence equilibrium at (p∗ = (βν2/(α−β))1/2, z∗ = (α/β)p∗(1− p∗)), which exists
in the positive quadrant if 0 < p∗ < 1 and is stable if K = 1−2p∗−2(νβ/α)2z∗/(p∗)3 < 0 (see
section 4.2.3). Plausible parameter values (α = 1, β = 0.1, ν = 0.1) are used as an example
— hence the zooplankton grow as fast as the phytoplankton but die much slower, and grazing
half-saturates well below the phytoplankton carrying capacity. The resulting equilibrium is
a stable spiral.

The initial pz distribution is as in Example 1: (p(0), z(0)) lognormally distributed with
mean values (P (0) = p∗, Z(0) = 0.78z∗) and 100% variance with no covariance or lag-
covariance (Cpp(0, 0) = P (0)2, Cpz(0, 0) = 0, Czz(0, 0) = Z(0)2). The individual pz trajec-
tories subsequently decay towards the homogeneous equilibrium (p(x, y) = p∗, z(x, y) = z∗),
within the 20 units of integration time. As before, the MFA is given by replacing (p, z) by
(P,Z) in (4.19), whilst the SMC model is given by the 5 ODEs (4.14 and 4.3.1), substituting
(f̃ = (1 − eP̃ ), g̃ = eP̃ /(ν2 + e2P̃ )), (d, e) = (β, α), (λp = 0, λz = 0), and using the formulae
(4.7 and 4.8) to covert moments to/from log space.

The results are shown in Figure 4.4. Compared to the weakly nonlinear example (Figure
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Figure 4.4: Time Series for Example 2a (moderate nonlinearity, no mixing), showing High
Resolution Simulation (HRS), Mean Field Approximation (MFA) and Spatial Moment Clo-
sure (SMC) output for phytoplankton and zooplankton spatial mean fields (a, b), mean
primary productivity (c) and spatial covariances (d–f). Phytoplankton units are non-
dimensional. Zooplankton concentration is scaled by a constant with units (plankton con-
centration unit)−2. Time units are non-dimensional (see section 4.3.3).

4.1), the spatial heterogeneity amplifies the mean phytoplankton bloom to a much greater
extent (Fig. 4.4a), and the zooplankton mean field undergoes a larger, this time positive,
deviation from the MFA (Fig. 4.4b). In this case, the mean primary productivity is strongly
enhanced relative to the MFA (Fig. 4.4c), the increase in P outweighing the deficit due to
Cpp (Fig. 4.4d).

The evolution of the phase space distribution (Figure 4.5) is qualitatively similar to Ex-
ample 1 (Figure 4.2), except that here the initial asymmetric contraction is less severe (Fig.
4.5b), corresponding to weaker negative covariance (Fig. 4.4e) and the distribution initially
expands in the p direction (Fig. 4.5b), as indicated by the variance time series (Fig. 4.4d).
As in Example 1, the distribution remains strongly skewed, as indicated by the separation
of means from modal peaks (Figs. 4.5b–d), but here the skew is in the general direction of
approach to the spiral equilibrium, rather than along a slow manifold (Figs. 4.2b–d).

All features of the domain-scale HRS dynamics are predicted and explained by the SMC
model, albeit less accurately than in Example 1. Again, it suffices to refer to (4.11 and 4.12)
for qualitative explanations rather than the more accurate but less tractable system (4.14)

104



0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

z

a

t = 0
y*

HRS
MFA
SMC

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

z

b

t = 2

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

p

z

c

t = 4

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

p

z

d

t = 6

Figure 4.5: Phase space phytoplankton-zooplankton distributions for Example 2a (moderate
nonlinearity, no mixing) at t = 0 (a), t = 2 (b), t = 4 (c) and t = 6 (d). Symbols mark
the position of the equilibrium (cross), the mean of the High Resolution Simulation (square),
the mean predicted by the Mean Field Approximation (dot), and the mean predicted by
the Spatial Moment Closure model (triangle). Phytoplankton units are non-dimensional.
Zooplankton concentration is scaled by a constant with units (plankton concentration unit)−2.
Time units are non-dimensional (see section 4.3.3).
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and 4.3.1) which was actually employed. As before, grazing acts on the initial heterogene-
ity to decouple the predator and prey populations (imbalance of Cpp and Czz terms in Ċpz

leads to negative Cpz) which in turn suppresses the domain-scale grazing losses and zooplank-
ton growth (Cpz terms in Ṗ and Ż). However, with the sigmoidal functional response, the
zooplankton reduce their grazing activity where phytoplankton are depleted (g′′(p) positive
for low p), which tends to exacerbate the predator-prey decoupling, allowing an even larger
domain-scale bloom. Meanwhile, the spatial variance in phytoplankton grows due to local
predator release (Cpz term in Ċpp). Because in this case the p and z maximum growth rates
are equal (α = 1), the zooplankton are able to rapidly respond to the blooming crop. Also, the
sigmoidal grazing response allows the zooplankton to better exploit relatively phytoplankton-
rich areas, thus enhancing their domain-scale grazing and growth (g′′ terms in Ṗ and Ż). The
bloom is further limited by the enhancement of logistic self-limitation due to spatial variance
in phytoplankton (f ′ term in Ṗ ). Hence the system is restored rather more rapidly to the
homogeneous equilibrium (cf. Fig. 4.1).

The SMC reduces the rms error in the MFA by 24% of the equilibrium values for
P (ΔMFA

P =35%, ΔSMC
P =11%), by 8% of the equilibrium values for Z (ΔMFA

Z =11%,
ΔSMC

Z =3%), by 20% of the equilibrium values for PP (ΔMFA
PP =28%, ΔSMC

PP =8%), and
reduces the % error in total production by a factor of 3 (δMFA

PT =-9%, δSMC
PT =-3%) (see

section 4.3.1 for definitions of these measures). Such errors could well be detectable in data.
Again, before investigating mixing effects, the controls on ΔMFA/SMC are investigated.

The above experiment is repeated for 500 different values of (α, β, ν), chosen as uniform
and independent random variables in ‘plausible’ ranges 0.01 < α < 2, 0.01 < β < 2 and
0.01 < ν < 2, integrating for 100 time units. Again, results are discarded for runs where
PSMC or ZSMC exceeds 100 units (14 cases) and for which the nonlinear transience time
exceeds the run time of 100 units (37 cases). The resulting rms errors (ΔMFA

P ,ΔSMC
P ) were

plotted against different parameters. No significant correlation was observed with linear
transience time τlin (see section 4.2.3) or α or β. However, a significant inverse correlation
was observed with ν (Figure 4.6 — excluding 22 cases by choice of axis limits) (r2 = 0.66,
0.13, p < 0.001, 0.01). This supports the intuitive view that decreasing ν increases the
‘nonlinearity’ of (4.19), with the system tending towards a third-degree nonlinear system
for large ν. Also, Figure 4.6 clearly demonstrates the robustness of the SMC model, which
significantly outperforms the MFA for almost all sensible parameter values.

4.3.4 Example 2b: Moderate nonlinearity with realistic mixing rates (λ >

0)

To explore the effect of mixing, the scaled mixing rate λ was varied over 2.5 orders of magni-
tude from 0.01 to 3 (see Figure 4.7), assuming equal diffusion rates of p and z (λp = λz = λ).
Recall that λ is the ratio of the dimensional mixing rate λ̂ to the maximum phytoplankton
growth rate a. Hence, assuming a ≈ 1 day−1, a range: λ̂ = 0.01–3 day−1 is explored. The
Okubo relation: λa ≈ 120L−0.85 day−1 (plus or minus an order of magnitude) then implies
that the range of λ is relevant to grid cells in our model of scale L = 100m–10km (plus
or minus an order of magnitude). The domain scale D = 512L in the HRS is assumed to
be the grid cell scale of a practical ocean model. Therefore, the slowest mixing results per-
tain to poorly-mixed grid cells of scale 500km (representative of a coarse-resolution GCM),
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Figure 4.7: Average (rms) errors for Example 2b (moderate nonlinearity with mixing) vs.
log10 λ where λ is the ratio of the mixing rate to the maximum phytoplankton growth rate,
showing rms errors in the phytoplankton and zooplankton mean fields (a, b) and mean
primary productivity (c), and fractional error in the total transient production (d). Results
are shown for the Mean Field Approximation (dots) and Spatial Moment Closure model
(dashes). Phytoplankton units are non-dimensional. Zooplankton concentration is scaled by
a constant with units (plankton concentration unit)−2. Time units are non-dimensional (see
section 4.3.3).

whilst the fastest mixing results pertain to poorly-mixed grid cells of scale 5km (typical of a
regional/coastal ocean model).

Figures 4.7a–d show that mixing generally reduces the error of the MFA. Errors in P (Fig.
4.7a) are largest, ranging from around 25% of the equilibrium value for λ ≈ 0.01 to less than
1% for λ ≈ 3, and becoming significant (> 10%) at rates lower than λ ≈ 0.1. This threshold
corresponds to L ≈ 4km, using the Okubo relation, hence a domain scale of 2000km. Given
the order of magnitude uncertainty in the Okubo relation (and its inverse), this suggests that
significant error in mean phytoplankton fields may be incurred by ocean model grid cells of
scale 200km or more, when the dynamics extrapolated from smaller scales are moderately
nonlinear.

Similar errors and threshold mixing rates are obtained if primary productivity is the
quantity of interest (Fig. 4.7c). If only the % error in total primary production during the
transient interval is important, this example suggests that lower mixing rates (λ ≈ 10−1.5 ≈
0.03) can be tolerated (Fig. 4.7d). Curiously, the % errors in zooplankton mean fields are
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much smaller than those of the phytoplankton (Fig. 4.7b), even though, in this example, prey
and predator populations have equal maximum growth rates.

The SMC model does a consistently good job of correcting these errors. SMC accuracy
does decrease with decreased mixing, but never gets worse than 5%. Importantly, the SMC
maintains significant improvement over the MFA (factor of 2 or more error reduction) for mix-
ing rates as high as λ = 0.1. This shows that the simplistic treatment of mixing in the SMC
model (neglecting interactions with lag covariances) is nevertheless a useful approximation
for moderate levels of biological nonlinearity.

4.3.5 Example 3a: Strong nonlinearity with no mixing (λ = 0)

Strong nonlinearity is invoked by modifying the parameter values in (4.18) to those used in
B03, where (4.18) produced ‘excitable’ behaviour. This means that, for some initial con-
ditions, the transient plankton trajectories undergo large bloom-like excursions before the
phytoplankton are grazed down and the system enters a ‘refractory’ phase, whereby the
zooplankton die off and the phytoplankton slowly recover. In the scaled system (4.19), the
B03 parameter values are (α = 0.05/0.43, β = 0.05 × 0.34/0.43, ν = 0.053). Further-
more, the initial pz distribution of B03 is used: a uniform ‘top hat’ in pz space centred on
(P (0) = p∗, Z(0) = 0.78z∗) with initial value ranges ((1 − 0.657)P (0) < p < (1 + 0.657)P (0),
(1−0.277)Z(0) < z < (1+0.277)Z(0)), and as before, no initial covariance or lag covariance.
This in fact implies initial coefficients of variation of 0.379 and 0.160 for p and z respectively,
which are within observed ranges.

The results are shown in Figure 4.8. As found in B03, the P and Z peaks in the HRS
are greatly enhanced relative to the MFA (factors of 4 and 2 larger respectively — see Figs.
4.8a,b). The mean primary productivity is also enhanced (Fig. 4.8c) but only by a factor of
2, since the greatly increased P is compensated by both logistic self-limitation and the strong
peak in Cpp (see Fig. 4.8d and recall: PP = P (1 − P ) − Cpp). The slightly broader peak in
P with respect to Cpp results in the double-peak in PP (Fig. 4.8c). The peaks in Cpz and
Czz are roughly an order of magnitude smaller than in Cpp (Figs. 4.8e,f).

The phase space evolution is dominated by this p variability (Figure 4.9). In fact, the
distribution becomes very strongly bimodal (Fig. 4.9b — note the change in scale of the p

axis), with such sharp peaks that we had to take logarithms of our 2D histogram frequencies
in order to obtain visible contours. This is a consequence of the excitability threshold — over
a very small range of z(0), the peak values reached by the individual subsystems increases
from a modest level (attained by the MFA) to a level almost an order of magnitude greater
(see Richards and Brentnall, 2006). The bimodality persists as the distribution ‘rotates’ an-
ticlockwise and contracts towards the equilibrium, meanwhile developing skew in the average
direction of approach to equilibrium (see Figs. 4.9c,d).

The first ISR model tried was the dynamical second moment closure model in normal
space (4.11 and 4.12) with the appropriate functions and constants. Unfortunately, for these
parameter values and initial conditions, it blows up! P goes negative and Cpp increases
without bound. This was always a danger with (4.11), because the fCpp term in Ṗ can drive
the mean phytoplankton field below zero if Cpp fails to decrease rapidly enough, most likely
due to inaccuracy in the (zeroth order) covariance dynamics (4.12). Therefore, alternatives
are sought. A casual comparison of Figs. 4.8a,b and Figs. 4.8d–f suggests an ‘algebraic’
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Figure 4.8: Time series for Example 3a (strong nonlinearity, no mixing), showing High Res-
olution Simulation (HRS), Mean Field Approximation (MFA) and 2-Spike Approximation
(2SA) output for phytoplankton and zooplankton spatial mean fields (a, b), mean primary
productivity (c) and spatial covariances (d–f). Phytoplankton units are non-dimensional.
Zooplankton concentration is scaled by a constant with units (plankton concentration unit)−2.
Time units are non-dimensional (see section 4.3.3).
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Figure 4.9: Phase Space phytoplankton-zooplankton distributions for Example 3a (strong
nonlinearity, no mixing) at t = 0 (a), t = 15 (b), t = 30 (c) and t = 45 (d). Symbols mark
the position of the equilibrium (cross), the mean of the High Resolution Simulation (square),
the mean predicted by the Mean Field Approximation (dot), and the mean predicted by the
2-Spike Approximation (triangle). Phytoplankton units are non-dimensional. Zooplankton
concentration is scaled by a constant with units (plankton concentration unit)−2. Time units
are non-dimensional (see section 4.3.3).

111



closure, exploiting an approximately quadratic relation between covariances and mean fields.
By this method the following model is fitted to HRS output:

Cij(0, t) = γij(Yi − y∗i )(Yj − y∗j ) (4.20)

where the γij are time-independent regression constants and the y∗ are the equilibrium values.
The result is (γpp = 1.09, γpz = 0.90, γzz = 1.00) with r2 values (0.9916, 0.9973, 0.9995).
Using (4.20) in combination with (4.11) did yield a stable solution, reducing ΔP by a factor
2–3. However, this model was unsatisfactory because for λ > 0 (next section) it required
re-fitting all 3 constants (or at least one) to HRS output, as well the use of an ad hoc
decay constant to maintain stability, and even then showed dramatically poor performance
for certain high mixing rates.

Clearly, a different approach is required. The phase space view (Fig. 4.9) suggests strong
bimodality of the phase space distribution under the dynamical flow, as does the remarkably
accurate approximation (4.20). To see the latter, consider a bimodal distribution consisting of
two delta-function peaks (spikes), with an ‘unexciting’ fraction q at y1 and a ‘exciting’ fraction
(1− q) at y2. The variance of this distribution may be expressed as Cyy = q/(1− q)(Y − y1)2

where Y is the mean. Since in this example the average of the unexciting trajectories is always
close to equilibrium (see Fig. 4.9), the approximation (4.20) is accurate. The implication is
that the evolution of the phase space distribution might be well approximated by a ‘2-Spike
Approximation’ (2SA — see section 4.2.2). Under this approximation, which neglects all lag
covariances, we have:

ṗ1 = p1(1 − p1) − p2
1z1

ν2 + p2
1

+ 2D(1 − q)λp(p2 − p1)

ż1 =
αp2

1z1

ν2 + p2
1

− βz1 + 2D(1 − q)λz(z2 − z1)

ṗ2 = p2(1 − p2) − p2
2z2

ν2 + p2
2

+ 2Dqλp(p1 − p2)

ż2 =
αp2

2z2

ν2 + p2
2

− βz2 + 2Dqλz(z1 − z2)

(4.21)

where subscripts (1, 2) denote unexciting and exciting spikes respectively. Initialising (4.21)
presents some difficulties, because the 2SA does not apply for small t (the HRS initial condi-
tion is a ‘top hat’ in phase space). Moreover, all first and second moments (P , Z, Cpp, Cpz,
Czz) of the HRS initial condition cannot be reproduced with only two spikes (four spikes would
do it, but at the price of more complexity). However, the z initial condition is known to be a
far more sensitive control on the excitability of (4.19). Therefore, the initial variance Czz(0, 0)
only is reproduced, neglecting the initial variance Cpp(0, 0). Hence, using the above formula,
the unexciting fraction q is initialised at (p1(0) = P (0), z1(0) = Z(0)+((1−q)Czz(0, 0)/q)1/2)
and the exciting fraction is initialised at (p2(0) = P (0), z2(0) = (Z(0) − qz1(0))/(1 − q)).
The fraction q of unexciting subsystems is determined by regressing HRS output for Cpp on
(P − p1)2, yielding q ≈ 0.52. This fit is even better than for (4.20) (r2 = 0.9946) and note
that it only has to be done once for all λ. After running (4.21), y

(1,2)
i (t) is used to determine
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mean fields Yi = qy
(1)
i +(1− q)y(2)

i and local covariances Cij = q/(1− q)(Yi − y
(1)
i )(Yj − y

(1)
j ),

where subscripts label ecosystem components and superscripts label spikes.
The performance of the 2SA is in this case quite spectacular (Fig. 4.8). The approximation

reduces the errors in P and Z by factors 11 and 21 respectively relative to the MFA (ΔMFA
P =

371%, Δ2SA
P = 33%, ΔMFA

Z = 58%, Δ2SA
Z = 3%), therefore fully justifying the approximation

of the phase space distribution as two spikes. The local covariances and consequently the
primary productivity are also accurately predicted.

4.3.6 Example 3b: Strong nonlinearity with mixing (λ > 0)

To explore the effect of mixing, the scaled mixing rate λ is again varied over 2.5 orders
of magnitude from 0.01 to 3 (see Figure 4.7), this time assuming unequal diffusion rates
of p and z for parity with B03 (λp = 2λz = λ). As showed by B03, when the mixing
rate is increased from low values, the discrepancy between HRS mean fields and the MFA
due to bloom enhancement initially increases (Figs. 4.10a,b). Maximal discrepancies occur
for mixing rates approximately 10−1.3 = 0.05 times the phytoplankton growth rate. For
higher mixing rates, the MFA decreases monotonically but gradually, so that there is still
significant error (> 10%) even for rates of order the phytoplankton growth rate. Assuming
a typical phytoplankton growth rate of 1 day−1, this implies a threshold HRS grid cell scale
of L = (1/120)−1/0.85 ≈ 280 m using the Okubo relation. Given D = 512L and the order-of-
magnitude uncertainty in the Okubo relation, this implies that ocean model grid cells of size
15 km or more could incur significant error, if nonlinearity is this strong.

Errors in mean primary productivity ΔMFA
PP follow a similar pattern to errors in mean

phytoplankton ΔMFA
P , since the effect of underestimating mean fields outweighs the effect of

underestimating phytoplankton variance, although the opposition moderates the size of the
% errors (Fig. 4.10c). Consequently, the MFA underestimates the total production during
the transient interval by up to about 40% (Fig. 4.10d).

The 2SA model (4.21) accommodates the effect of mixing via an asymmetric interaction
between the unexciting and exciting spikes (see section 4.2.2). As Figure 4.10 shows, the 2SA
does a good job of reducing the errors by factors 4–5 at low mixing rates, up to λ ≈ 10−1.2 ≈
0.06 times the phytoplankton growth rate. At higher rates, the 2SA model overestimates the
effect of mixing, bringing it into agreement with the MFA at λ ≈ 10−0.75 ≈ 0.18. Hence the
HRS becomes poorly approximated by the 2SA for λ > 0.06. Looking at the phase space
distributions for λ = 0.1 (Fig. 4.11), they are in fact still bimodal but now, under the cohesive
influence of mixing, they have acquired substantial ‘body’ (cf. Figs. 4.11b and 4.9b).

As might be anticipated, the dynamical SMC model starts to work where the 2SA starts
to fail (see Fig. 4.10). For mixing rates higher than λ ≈ 0.055, the SMC ceases to crash, and
in fact slightly outperforms the 2SA at λ ≈ 0.06. However, with increasing λ, it prematurely
converges on the MFA even faster than the 2SA. Hence the increase in 2SA/SMC error at
λ ≈ 0.1 is likely a result of neglected lag covariances, rather than a breakdown of bimodality.
A view of the spatial distributions of p and z at t = 15, for λ = 0.1, is shown in Figure 4.12.
Patches are clearly still small relative to the domain scale at this mixing rate (their spatial
extent increases as λ1/2 — see B03), but they are large enough to violate the assumption of
zero covariance at one unit lag (see Fig. 4.13). Consequently, neither approximation improves
on the MFA for λ > 0.18, which, for phytoplankton growth rates of order 1 day−1, corresponds
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Figure 4.10: Average (rms) errors for Example 3b (strong nonlinearity with mixing) vs. log10 λ
where λ is ratio of the mixing rate to the maximum phytoplankton growth rate, showing
rms errors in the phytoplankton and zooplankton mean fields (a, b) and mean primary
productivity (c), and fractional error in the total transient production (d). Results are
shown for the Mean Field Approximation (dots), 2-Spike Approximation (solid) and Spatial
Moment Closure model (dashes). The ‘X’ marks the lowest mixing rate for which the Spatial
Moment Closure model was stable. Phytoplankton units are non-dimensional. Zooplankton
concentration is scaled by a constant with units (plankton concentration unit)−2. Time units
are non-dimensional (see section 4.3.3).

114



0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

z

a

t = 0
y*

HRS
MFA
2SA

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

z

b

t = 15

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

p

z

c

t = 30

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

p

z

d

t = 45

Figure 4.11: Phase Space phytoplankton-zooplankton distributions for Example 3b (strong
nonlinearity with mixing rate λ = 0.1) at t = 0 (a), t = 15 (b), t = 30 (c) and t = 45
(d). Symbols mark the position of the equilibrium (cross), the mean of the High Reso-
lution Simulation (square), the mean predicted by the Mean Field Approximation (dot),
and the mean predicted by the 2-Spike Approximation (triangle). Phytoplankton units are
non-dimensional. Zooplankton concentration is scaled by a constant with units (plankton
concentration unit)−2. Time units are non-dimensional (see section 4.3.3).
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Figure 4.12: Snapshots of the reaction-diffusion model output for Example 3b (strong non-
linearity with mixing rate λ = 0.1) at time t = 15, showing concentrations of phytoplankton
(a) and zooplankton (b). Phytoplankton units are non-dimensional. Zooplankton concen-
tration is scaled by a constant with units (plankton concentration unit)−2. Time units are
non-dimensional (see section 4.3.3).

to ocean model grid cells of scale 100–10000 km.

4.4 Discussion

The results show that a judicious choice of ISR model can significantly improve upon the
MFA in approximating the domain-scale transient behaviour of simplified, two-component,
reaction-diffusion simulation models. As marine ecosystem modellers, we want to know
roughly how beneficial ISR is likely to be for practical plankton models. This preliminary
study is much too simplified to answer this question. This section discusses these simplifica-
tions and how they may be relaxed in future extensions of this work.

Perhaps the most fundamental shortfalls of this study, as regards realism, are the assump-
tions of transient dynamics and transient spatial variability. Temporal and spatial variability
are not, generally speaking, transient phenomena in marine ecosystems. A realistic simulation
should maintain a periodic seasonal cycle and a stable heterogeneous state, ideally producing
spatial power spectra which are consistent with observations over a yearly cycle. A periodic
seasonal cycle is achieved by including spatially-homogeneous time dependence in the simula-
tion model parameters (e.g. light and stratification dependence in the phytoplankton growth
rate), and this time dependence is simply carried through into the ISR models. However, it
is not clear that the benefits of our SMC model with transient dynamics will carry through
to forced limit-cycle dynamics, where the phase space distribution may contort as it ‘rounds
corners’ such that it is poorly-approximated by a compact (log)normal distribution (as in
the weakly transient runs of Figure 4.3). Alternative or modified ISR models may therefore
be required, perhaps exploiting approximate variability in phase (e.g. spikes along a common
trajectory, or moment closure with respect to phase).

Numerous mechanisms have been proposed for stable heterogeneity or ‘patchiness’ in
plankton ecosystems (e.g. Martin, 2003 for a recent review of meso-/submesoscale mecha-
nisms). Suffice to say here that homogeneous plankton concentrations are very seldom ob-
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Figure 4.13: Snapshots of the lag covariance functions for the reaction-diffusion model output
in Example 3b (strong nonlinearity with mixing rate λ = 0.1) at time t = 15, showing the
phytoplankton lag covariance Cpp(lag,15) (a), the phytoplankton-zooplankton lag covariance
Cpz(lag,15) (b) and the zooplankton lag covariance Czz(lag,15) (c). Phytoplankton units are
non-dimensional. Zooplankton concentration is scaled by a constant with units (plankton
concentration unit)−2. Time units are non-dimensional (see section 4.3.3).

served over scales of model grid cells in the ocean, and that seasonal forcing by stratification
and light levels is likely to provide ample spatial variability to destabilise the homogeneous
state. The ISR methods presented in this paper are easily extended to include sources of
spatial variability. A spatially-variable parameter in a system of m components is simply
‘promoted to the status of a variable’, and the same ISR methods are then applied to the
(m + 1)-component system. As a trivial example, consider an exponentially-growing phyto-
plankton crop with a growth rate that varies randomly in the horizontal, with no mixing. At
the fine scale:

ṗ = ap

ȧ = 0 (4.22)

The SMC model for the domain scale, neglecting third central moments, is then given by:

Ṗ = AP + Cpa

Ȧ = 0

Ċpp = 2ACpp + 2PCpa

Ċpa = ACpa + PCaa

Ċaa = 0 (4.23)

Note how even linear growth models become effectively nonlinear when spatial variability
is included in the parameters. In fact, the dynamics of chlorophyll spatial variance as a
function of covariances with light and nutrient parameters have previously been considered
in Smith et al. (1996), albeit not in the context of an ISR model. Alternatively, the data
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may support strong bimodality of the instantaneous distribution in pa space, suggesting use
of the following 2SA to derive domain-scale behaviour:

ṗ1 = a1p1

ȧ1 = 0

ṗ2 = a2p2

ȧ2 = 0 (4.24)

Perhaps a greater challenge is how to extend the ISR models to account for non-zero
lag covariances, without invoking a high-resolution grid in lag space. This was attempted
by parameterising the time-dependent ratio of one-unit to zero lag covariances ηij(t) ≡
Cij(1, t)/Cij(0, t), allowing closure of (4.2 and 4.3). This ratio is related to the width σij(t) of
a Gaussian lag-covariance function (a decorrelation length) by ηij = exp(−1/(2σ2

ij)) (space
being scaled by the high-resolution grid spacing L). For the transient simulations, a ro-
bust way to do this was not found. However, in the more realistic situation where mixing
is balanced by spatial variability in the forcing, spatial decorrelation lengths and hence ηij

may in fact be more amenable to parameterisation, perhaps based on spatial power spectra
in simulations or real data fits, or perhaps even theoretical predictions based on steady or
quasi-steady state assumptions.

The most conspicuous physical simplification in the simulations is the neglect of grid-
scale advection, or stirring (the Fickian mixing accounting for sub grid-scale advection). The
authors of B03 have in fact already examined how this process affects their previous findings
(Richards and Brentnall, 2006). Their results seem to support the intuitive expectation that
grid-scale stirring should enhance the effective mixing rate of the grid cells, by stretching
incipient patches into filaments upon which mixing acts more efficiently. This would imply
that the simulations in this study underestimate mixing over the model domain and hence
within practical ocean model grid cells. On the other hand, sub grid-scale advection was
parameterised via an empirical (Okubo) relation for passive tracers (based on dye experi-
ments). Pasquero (2005) showed that the effective mixing rate, or rate of rms displacement,
of a reacting tracer in a turbulent fluid is better modelled as the mixing rate at a reaction
timescale after the tracer is released. This rate is less than the asymptotically constant
(Brownian motion) rate associated with a passive tracer, implying that the passive scalar
parameterisation of sub grid-scale mixing overestimates mixing of plankton due to turbulent
advection at these scales. It is not obvious that neglecting these two opposing effects should
bias the results beyond the order-of-magnitude uncertainty inherent in the Okubo relation.

In terms of biological complexity, two-component (pz) systems are very rarely considered
adequate for realistic plankton ecosystem simulations (four-component npzd models are gen-
erally considered minimal). ISR model complexity can be predicted in terms of the number
of dynamical variables. The nSA model has nm components, and therefore its complexity
increases only linearly with m. However, the SMC model with all first and second moments
dynamically resolved has m(m + 3)/2 components, so its complexity increases quadratically.
This could make the SMC approach impractical for highly complex systems, especially if the
larger number of variables increases the chance of dynamically aberrant behaviour (see sec-
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tion 4.3.5). Another effect of having m > 2 is a greater potential for very strongly nonlinear
— even chaotic — dynamical behaviour at the subsystem level. This is liable to increase the
errors in both MFA and ISR models, although complexity of individual subsystem trajecto-
ries does not necessarily imply a complex evolution of the phase space distribution, especially
if stochasticity is also included (see below).

As argued in section 4.1, there are reasonable grounds for assuming deterministic popula-
tion dynamics for lower trophic-level plankton at averaging scales of perhaps 0.1m and larger.
However, it may yet be desirable to include stochasticity as a representation of fine-scale en-
vironmental or demographic fluctuations, in which case the SMC method may be generalised
(Rodriguez and Tuckwell, 1996). Rather than approximating the Louiville dynamics, as in
this study, the SMC would then approximate the Fokker-Planck dynamics. Stochasticity
may ‘smear out’ the phase space distribution enough to prohibit successful nSA models.
Conversely, it could play to the advantage of the SMC model by improving smoothness and
(log)normality of the phase space distribution (cf. Example 3a).

Finally, note that the particular distributional or moment closure assumptions underlying
the ISR models in this study are not essential. The aim here was merely to show that
successful ISR approximations are possible for plankton HRSs via certain general methods.
For example, the neglect of third and higher central moments in the SMC model may lead to
predictions of negative third non-central moments, and for this reason might be exchanged
for an ‘asymmetric’ or ‘higher power’ closure assumption. On the other hand, this ‘reasonable
first guess’ assumption at least has a ‘physical’ interpretation in terms of compactness and
normality of the phase space distribution, so that it may be suggested by phase space data. It
is difficult to say what a distribution which obeys, for example, the Kirkwood superposition
approximation should look like in phase space (Murrell et al., 2004).

4.5 Conclusions

The process of turbulent mixing in plankton ecosystems may allow extrapolation of the pop-
ulation dynamics over a range of spatial scales. If a region of ocean is sufficiently well mixed,
the ‘mean field approximation’, whereby population dynamics valid at the laboratory scale
are applied to regional mean fields, is accurate. However, if the mixing rate is slow enough,
the fine-scale spatial variability is large enough, and the nonlinearity in the fine-scale plank-
ton dynamics is strong enough, the regional mean fields can exhibit an ‘emergent’ behaviour
which is very poorly predicted by the mean field approximation. Brentnall et al. (2003) gave
a simple example of a transient, spatially-variable, two-component reaction-diffusion system
where low diffusion rates produced mean field blooms a factor of 4-5 larger than those pre-
dicted by the mean field approximation. This discrepancy was investigated here for similar
transient, two-component, 2D reaction-diffusion systems with different plankton model for-
mulations and parameter values (resulting in different ‘strengths’ of biological nonlinearity)
and different rates of sub grid-scale mixing (‘eddy-diffusion’). Significant failure of the mean
field approximation, due to ‘biological Reynolds fluxes’, was quite generic, although usually
less extreme than in Brentnall et al. (2003), given realistic initial spatial variances and sub
grid-scale mixing rates applicable to practical ocean models.

Spatially-implicit models were investigated to better approximate the coarse-scale dy-
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namics by making statistical assumptions about the phase space distribution of fine-scale
sub-populations. The main interest was is in spatial moment closure models, whereby the
mean field approximation is extended to include corrections due to higher order moments,
coupled to the mean fields by dynamical nonlinearity. A closed system was obtained by
neglecting the contributions of lag covariances as well as third and higher central moments,
effectively assuming a compact normal distribution in phase space. A similar approximation
was derived for lognormal statistics. These approximations accurately predicted phytoplank-
ton/zooplankton mean fields and spatial covariances, as well as bulk primary productivity,
assuming weak-to-moderate strengths of biological nonlinearity, and over the full range of sub
grid-scale turbulent mixing rates relevant to ocean models. However, they were less accurate
in cases of longer transience and strong nonlinearity, when they may become unstable. An
example of the latter is the excitable system of Brentnall et al. (2003) at low mixing rates.
Here, an alternative ‘two-spike approximation’, assuming a strongly-peaked bimodal distri-
bution comprising ‘exciting’ and ‘unexciting’ fractions, was found to be accurate. At high
mixing rates, both spatially-implicit models as well as the mean field approximation were
inaccurate in this example, mainly due to the neglect of lag covariances.

Inferences regarding the likely benefits of these methods for realistic plankton models
are limited by the simplifications employed in this study, notably: the use of transient dy-
namics rather than seasonally-forced behaviour, the neglect of sources of spatial variability
which might stabilise decorrelation lengths, the neglect of advection, and the restriction to
only two reacting components. The methods described here may, however, be extended to
accommodate these factors in future investigations.

Appendix 4A: Spatial Moment Dynamics in Discrete Space

Consider a 1D chain of N identical, subsystems each with m components interacting via
Fickian diffusive mixing with their nearest neighbours. The dynamics of the ith component
of the nth subsystem obeys:

ẏ
(n)
i = Fi(y(n)) + λi(y

(n−1)
i + y

(n+1)
i − 2y(n)

i ) (4A.1)

where Fi is some generally nonlinear function of y describing the biological interactions. It
is assumed that (4A.1) applies to every subsystem including those at the boundaries (hence
assuming periodic boundary conditions) or that N is large enough and the boundary fluxes
are small enough that the effect of boundary populations on the mean dynamics can be
neglected. Fi(y(n)) can be expressed as an m-dimensional Taylor expansion about the spatial
mean field Y ≡ N−1∑N

n=1 y(n) and the ith component of the nth subsystem can be expressed
as a sum of the mean field Yi plus some (not necessarily small) deviation δy

(n)
i :

Ẏi + δ̇y
(n)
i = Fi(Y ) +

∞∑
r=1

1
r!

∂(r)Fi(Y )
∂ys1 . . . ∂ysr

δys1 . . . δysr + λi(δy
(n−1)
i + δy

(n+1)
i − 2δy(n)

i ) (4A.2)

using the convention that identical indices are implicitly summed over. Averaging over space
has no effect on terms involving the spatial mean field, eliminates terms involving a single
power of δy, and converts the rth powers of δy into rth-order central moments M (r). Hence:
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Ẏi = Fi(Y ) +
∞∑

r=2

1
r!

∂(r)Fi(Y )
∂ys1 . . . ∂ysr

M (r)
s1...sr

(0(r−1), t) (4A.3)

using 0(r−1) to denote a vector of (r− 1) zeros describing the lag coordinates of the rth-order
moment, denoted M (r). Note that the physical interaction terms have no direct effect on the
mean field, because linear diffusive mixing is assumed. So far, no approximation has been
made. The dynamics of a system of N sub-populations are being transformed to an infinite
system or ‘hierarchy’ of spatial moments. A ‘closure assumption’ is required to truncate this
hierarchy. For instance, assuming that the net effect of the terms involving third and higher
moments on the mean field dynamics is negligible yields equation (4.2):

Ẏi ≈ Fi(Y ) +
1
2

∂2Fi

∂yj∂yk
Cjk(0, t)

To derive the dynamics of the higher moments, δ̇y
(n)
i is obtained by subtracting (4A.3)

from (4A.2):

δ̇y
(n)
i =

∞∑
r=1

1
r!

∂(r)Fi(Y )
∂ys1 . . . ∂ysr

(δys1 . . . δysr − M (r)
s1...sr

(0(r−1), t)) + λi(δy
(n−1)
i + δy

(n+1)
i − 2δy(n)

i )

(4A.4)
Consider, for example, the zero-lag covariances: Ckj(0, t) ≡ N−1∑N

n=1 δy
(n)
k δy

(n)
j . These obey

Ċkj(0, t) = N−1∑N
n=1(δ̇y

(n)
k δy

(n)
j + δy

(n)
k δ̇y

(n)
j ). Therefore, to obtain Ċij(0, t), we multiply

(4A.4) by δyj , average over space (eliminating the already-present moment terms), and add
the same again swapping i and j, yielding:

Ċij(0, t) =
∞∑

r=1

1
r!

(
∂(r)Fi(Y )

∂ys1 . . . ∂ysr

M
(r+1)
s1...srj(0

(r), t) +
∂(r)Fj(Y )

∂ys1 . . . ∂ysr

M
(r+1)
s1...sri(0

(r), t)

)
− 2(λi + λj)(Cij(0, t) − Cij(1, t)) (4A.5)

using the symmetries Cij = Cji and Cij(1, t) = Cij(−1, t) to simplify the last term. The
generalisation to a D-dimensional grid consists of replacing the factor of 2 in the mixing
term with a factor 2D. Note the appearance of the spatial covariances at one unit spatial lag
Cij(1, t) ≡ N−1∑N

n=1 δy
(n)
k δy

(n+1)
j , where the spatial unit here is the separation of adjacent

populations. Whilst the nonlinear biology couples zero-lag moments of different order, the
linear mixing couples same-order moments of different spatial lag. The assumption of local
biological interactions causes the biological dynamics in the moment equations to be uniform
in lag space. This implies a set of discrete reaction-diffusion equations for the covariance
dynamics in lag space with a uniform reaction term:

Ċij(1, t) =
∞∑

r=1

1
r!

(
∂(r)Fi(Y )

∂ys1 . . . ∂ysr

M
(r+1)
s1...srj(0

(r−1), 1, t) +
∂(r)Fj(Y )

∂ys1 . . . ∂ysr

M
(r+1)
s1...sri(0

(r−1), 1, t)

)
+ (λi + λj)(Cij(0, t) + Cij(2, t) − 2Cij(1, t)) (4A.6)
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If the net contribution of terms involving third and higher order moments is neglected in
(4A.5), we obtain (4.3):

Ċij(0, t) ≈ ∂Fi

∂yk
Ckj(0, t) +

∂Fj

∂yk
Cki(0, t) − 2(λi + λj)(Cij(0, t) − Cij(1, t))

Appendix 4B: Spatial Moment Dynamics in Continuous Space

The spatially-continuous version of (4A.1) is:

ẏi = Fi(y) + κi
∂2yi

∂x2
(4B.1)

where κi = L2λi is the eddy-diffusivity. This leads to the same equation (4A.3):

Ẏi = Fi(Y ) + δFi (4B.2)

where the bar denotes an average over space (x), Y ≡ y, and δF ≡ F (y) − F (Y ) denotes
the dynamical discrepancy from the MFA, expressed as a Taylor series in (4A.2). Hence the
equivalent of (4A.4) is:

˙δyi = Fi(y) − Fi(Y ) − δFi + κi
∂2yi

∂x2
(4B.3)

Now defining the lag covariances Cij(l, t) ≡ yi(x)yj(x + l) leads to:

Ċij(l, t) = B(l, t) + κjyi(x, t)
∂2yj(x + l, t)

∂x2
+ κiyj(x + l, t)

∂2yi(x, t)
∂x2

(4B.4)

writing the sum of terms due to the biological dynamics, given in (4A.5), as B(l, t). Integrat-
ing the second and third terms once by parts, and using the periodic boundary conditions
yields:

Ċij(l, t) = B(l, t) − (κi + κj)
∂yi(x, t)

∂x

∂yj(x + l, t)
∂x

(4B.5)

Note that for i = j and l = 0, the mixing term simplifies to −2κi(∂yi/∂x)2, which is analogous
to the ‘molecular smearing’ term for scalar variance (Tennekes and Lumley, 1972). Integrating
the mixing term again by parts, changing the sign and shifting both derivatives onto yj(x +
l, t), and swapping x-derivatives for l-derivatives, yields:

Ċij(l, t) = B(l, t) + (κi + κj)
∂2Cij(l, t)

∂l2
(4B.6)

Hence, for a passive scalar (F = B = 0) with delta function initial lag-covariance density
Cij(l, 0) = C0

ijδ(0), the solution of (4B.6) is a Gaussian with a linearly increasing variance in
lag space:

Cij(l, t)
C0

ij

=
1√

4π(κi + κj)t
exp

(
−l2

4(κi + κj)t

)
(4B.7)

The solution in D dimensions is just a product of these solutions in each dimension lx, ly etc.
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Chapter 5

Conclusions

5.1 Overview

The overall aim of this thesis was to investigate new (within plankton ecology) statistical
methods for mitigating the effects of unpredictable spatial variability on plankton modelling.
Clearly, within this broad remit, the investigations could not be exhaustive. Nevertheless, as
discussed below, they have exposed some specific dangers and revealed some promising new
solutions. As a necessary complement to this work, more rigorous methods were developed for
testing and inter-comparing plankton models and prediction methods (such as those proposed
herein) with real data. Although highly simplified plankton models were used, the methods
are general and may, with suitable adaptation, be of benefit in a wide range of plankton
models, especially as computational resources continue to grow. The most general conclusion
then, is that plankton modellers can and should exploit statistical methods to account for
limitations on their ability to predict spatial variability.

In the following, basic findings are first summarised, followed by their primary limitations
and importance in a wider context, referring the reader to individual chapters for more
detailed discussion. Promising avenues for extensions of this work are also suggested.

5.2 Basic Findings

• If unpredictable spatial variability may be approximated by time lags (as appears to
be sometimes the case), this property may be exploited in a ‘Lagrangian’ model-data
fit to recover biological parameter estimates and a dynamical trajectory applicable to a
single, ‘typical’ fine-scale parcel of fluid. The resulting ‘variable lag fit’ greatly increases
the effective resolution of the model without suffering from unpredictable model inputs.

• An alternative approach of fitting ‘coarse-scale’ biological parameters with weak prior
constraints, using a simple bulk plankton model and data from Georges Bank, fails to
produce more skillful predictions than a strictly empirical model, at least if 100km-
scale boundary fluxes are neglected. This is demonstrated using a new skill assessment
method which distinguishes calibration from validation data sets and also replicates
them over a simulated ensemble of data sets generated by a fitted statistical model.

• Unpredictable spatial variability can have serious impacts on grid cell-scale plankton
dynamics via ‘biological Reynolds fluxes’ due to nonlinearity in the sub grid-scale biolog-
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ical dynamics. More accurate coarse-resolution plankton models can be formulated by
parameterising these fluxes, using ‘spatial moment closure’ and other methods which
model the evolution of the distribution of sub grid-scale plankton concentrations in
phase space.

5.3 Limitations and Wider Importance

By assuming fine-scale spatial variability in the form of time lags, Chapter 2 showed that a
‘variable lag fit’ method mitigates the problems of unpredictable model inputs and spatial un-
dersampling in deriving fine-scale biological parameter estimates from ocean data. However,
it is unclear how applicable the assumption of time lag variability or ‘phase relation’ might
be to real plankton ecosystems. Comparing the time series vs. phase space data in Figure 2.1
does suggest intuitively that time lags are important for that particular survey area in the
North Atlantic, but their statistical significance in these data has not been quantified (this
would require use of the methods developed in Chapter 2, as discussed below). Moreover,
the synoptic output of the model used in Srokosz et al. (2003) does not suggest any preferen-
tial alignment of the data spread along the phase space trajectory. If, as this model output
suggests, the alignment in real data is just a consequence of the sampling asynopticity, then
the variable lag fit will be no better (in fact worse) than the standard method.

However, even if time lags are a poor model for fine-scale spatial variability, the lag-fitting
method may yet, with suitable adaptation, be useful in other ways. First, the variable lag fit
can be regarded as an example of a general strategy to simplify and perhaps better model the
statistics of errors in plankton model dynamics and initial/boundary conditions. Previous
studies have attempted to fit these errors separately, but this generally entails neglect of one
or more error sources and/or strong, somewhat ad hoc assumptions about error statistics,
often motivated by computational concerns and smoothness of solution (e.g. Robinson, 1996;
Anderson et al., 2000; Losa et al., 2003, 2004; Li et al., 2006; Smith et al., submitted;
Nerger and Gregg, 2008; Gregg, 2008). It may prove easier to obtain empirical estimates
of error statistics for lags/phase errors or other ‘distortions’ which exploit low-dimensional
patterns in model-data misfit. Atmospheric weather forecasters have begun to investigate this
as a possible way of incorporating into model-fitting/skill-assessment the pattern similarity
evaluation process which occurs automatically in the brains of subjective human experts,
when the information is presented in the right way (Hoffman et al., 1995). Another way
of making model-data discrepancy metrics ‘suitably forgiving’ might be to formulate cost
functions involving Fourier spectral densities or other spatio-temporal statistics such as spatial
covariances (see below) or principal components. Although such approaches do not appear
to have found utility in atmospheric weather forecasting or physical oceanography, they may
yet be useful to plankton modelling seeking to constrain poorly-known biological parameters.

Chapter 3 found that a ‘weak prior’ bulk plankton process model generally could not out-
perform a strictly empirical model in forecast mode. However, the weak prior bulk modelling
approach could not be refuted in view of the limitations of the study, including the potential
importance of neglected net plankton boundary fluxes. If 100km-scale net boundary fluxes of
phytoplankton cannot be neglected, estimates must be provided by observations or a larger-
scale model (i.e. ‘nesting’ or ‘downscaling’). In lieu of such information, a better test site

124



for the method might have been in the open ocean where net boundary fluxes may be less
important, rather than an exceptionally productive shelf sea area like Georges Bank.

Nevertheless, the study demonstrated some important characteristics of the weak prior
method which are likely to be robust to such limitations. The ensemble-generated parameter
uncertainty estimates were about 50–100% in all parameters, much larger than generated by
the inverse Hessian method (still popular for its computational efficiency despite inaccuracy
with poorly constrained, nonlinear model fits, as demonstrated by Vallino (2000) and Schartau
(2001)), and much more accurate on the basis of twin tests. Two of the seven fitted parameters
were unconstrainable in the sense of being highly correlated (Matear, 1995), but probably
because of the lack of microzooplankton data. Hence, three half-years of chlorophyll data
were insufficient to properly constrain the seven parameters of a weak-prior bulk model,
partly due to the weak prior constraints, and partly due to uncertainty in the nutrient and
mesozooplankton forcings (even at the 100km scale).

Chapter 3 also demonstrated a systematic approach to defining and then estimating
predictive skill, using both data ‘division’ (or ‘cross-validation’) and data ‘simulation’ (or
‘parametric bootstrap’) techniques. The first step of mathematically defining the predictive
objectives via a ‘skill function’ guided subsequent calibration and skill assessment methods.
Current debate on ‘correct’ choices of cost function (e.g. Evans, 2003) might be better in-
formed if practitioners specified the sense in which they want their estimates/predictions to
be ‘accurate’. Similarly, the choice of appropriate skill metrics is also informed by the skill
function and its specific inter-/extrapolative demands. It appears relatively easy to ensure
that skill metrics are independent i.e. not biased by covariances between calibration and
validation data errors. Much more difficult is to devise skill tests which are representative
of the inter-/extrapolative demands of the skill function (a particular challenge for climate
modellers at present). Accurate data simulation models extend our ability to assess model
skill, allowing us to distinguish bias and variance in the model’s predictive error distribution
at various levels of extrapolation, and then act accordingly to improve the model formulation
and/or estimation method. Also, they provide independent testbeds in which the skill of
all models and prediction methods may be objectively measured and inter-compared. At
present, there is an urgent need to prove objectively that mechanistic plankton models can
provide better extrapolative skill than strictly empirical models (e.g. a Gaussian process or
spatiotemporal ‘objective analysis’).

The simulated annealing optimisation method used in Chapters 2 and 3 may be too com-
putationally expensive for use outside 0D models at present — O(106) iterations were used
to fit a single data set. However, the ‘genetic’ algorithm global optimisation method has
been successfully implemented with 1D (Schartau and Oschlies, 2003) and 3D (Huret et al.,
2007) models. Moreover, there was surely useful information in the O(106) ‘suboptimal’ runs
discarded by our method. This might be utilised in a Monte Carlo integrations involving the
posterior distribution, allowing ‘posterior mean’ estimates of parameters/trajectories which
may be more robust than the ‘posterior mode’ estimates employed in this thesis (Harmon and
Challenor, 1997). Furthermore, such integrations may provide accurate Bayesian estimates
of parameter and prediction statistics (over a ‘true’ ensemble) without requiring a simulated
ensemble of data fits. However, such a shortcut stands in need of validation by realistic twin
tests, accounting for misspecification of the dynamical model and measurement error hypoth-
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esis. The suboptimal runs may also inform a multi-dimensional, nonlocal model ‘sensitivity’
(cf. Schartau, 2001), perhaps allowing automatic fixing of insensitive parameters over the
course of the parameter search.

Chapter 4 investigated an intuitively more attractive alternative to the weak prior ap-
proach (sometimes referred to pejoratively as ‘data-fitting’) which less invokes the unpre-
dictable model input problem encountered by high explicit spatial resolution. This alterna-
tive is statistical implicit spatial resolution: parameterising the mean effects of unresolved
variability on coarse-scale dynamics. In principle, this approach would allow the results of
multi-species laboratory and 10m-scale mesocosm experiments (e.g. Vallino, 2000) to be im-
posed as strong priors on the ocean data fit, or indeed the experimental and ocean data might
be fitted simultaneously, in both cases mitigating the underconstraint problem in plankton
model fitting. Furthermore, if the parameterisation is sufficiently mechanistic, it may extrap-
olate better beyond fitted data than a ‘weak prior’ model where coarse spatial resolution is
compensated by adjustment of biological parameters.

In particular, the effects of hitherto-unparameterised ‘biological Reynolds fluxes’ on grid
cell-scale plankton ecosystem dynamics were examined and parameterised using spatial mo-
ment closure and ‘n-spike approximation’ methods. The simulation study of Chapter 4 was
highly simplified, most notably limited by the neglect of grid-scale advection and restriction
to transient dynamics. It was not, therefore, a credible means to quantify the significance
of biological Reynolds fluxes, or the expediency of the parameterisations, in real plankton
ecosystems. Nevertheless, the fact that the parameterisation methods were robustly effective
in this artificial scenario is encouraging.

In practice, of course, a spatially-implicit model will still need to be fitted to ocean
data to account for the integration over species and physiological adaptations, and yes, the
parameterisations will require more parameters to be fitted. Is this approach therefore subject
to the criticism made in the Introduction, of approaches which assume that parameter-hungry
methods successful in physical model fitting will work for plankton ecology, and which are in
fact likely to exacerbate the underconstraint problem? There are two key differences. First,
the dynamics of the coarse-scale mean quantities, derived by the moment expansion, and by
assumption the focus of predictive effort, guide the choice of a parsimonious set of degrees
of freedom for the model from the hierarchy of moment dynamics. Hence the model can be
formulated to best fulfil its predictive purpose, rather than to produce output which ‘looks
more realistic’.

Second, by fitting spatial moment dynamics, more degrees of freedom in the data can
be fitted by the same biological parameters, without invoking the problem of deterministic
unpredictability at the small scale. Fitting higher spatial moments would require accounting
for the non-independence of mean field and spatial covariance data, the use (or estimation)
of some extra erroneous model inputs, and possibly estimation of a few ‘closure parameters’.
Nevertheless, it seems possible that the net effect could be increased constraint on biological
parameters. The data set required by such a model should include high-resolution sampling
in at least one ‘typical’ subregion of the sampled region, such that sub grid scale covariance
dynamics might be extrapolated from subregion to region. Fitting moment dynamics could
also be implemented in a high explicit resolution model, as an extension of the mean field fit.
This may, however, raise issues of computational practicality, and fail to accurately constrain
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‘surplus’ degrees of freedom in the higher explicit resolution model.
In summary, plankton modellers can only really hope to predict the statistical effects

of fine-scale spatial variability over extended timescales. Existing methods of formulating,
calibrating and validating plankton models do not sufficiently acknowledge this fact. It
should therefore be no surprise that new statistical methods have much potential to improve
this situation by accounting for unpredictable spatial variability in plankton modelling. The
methods investigated herein reconcile current enthusiasm for deterministic data assimilation
and prediction with an older remit of achieving ‘statistical’ agreement with data. They
also demonstrate the utility of considering plankton ecosystems as dynamical systems in
‘phase space’. However, much more testing and development is required to bring proven
benefits in general applications. In addition, use of these methods will require feedback
to observationalists on how to design better surveys to meet the new modelling demands.
Hopefully, this work will encourage plankton ecologists of all kinds to think more about
plankton population behaviour on different spatial scales of averaging, and to discuss with
balanced, non-evangelical statisticians how best to sample and model these populations.
Interdisciplinary scientists should be inspired to work on this problem, of how the behaviour
of microscopic life in a turbulent fluid environment regulates the behaviour of a planet’s
climate, and of ecosystem behaviour on all spatial scales in between.
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