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ABSTRACT

A numerical study of laminar to turbulent evolution and free-surface

interaction of a vortex ring

by Philip John Archer

Direct numerical simulation was used to study various aspects of vortex ring evo-

lution and interaction with a free surface. An investigation of a single unbounded

vortex ring at various Reynolds numbers and core thicknesses showed qualitative

differences between the evolution of thin- and thick-core rings, leading to a cor-

rection factor to the classical equation for the ring translational velocity. The

obtained linear modal growth rates were compared with previous work, highlight-

ing the role of the wake in triply periodic numerical simulations. The transition

from a laminar to a turbulent ring is marked by the rearrangement of the outer

core vorticity into a clearly defined secondary structure. The onset of the fully

turbulent state is associated with shedding of the structure in a series of hairpin

vortices. A Lagrangian particle analysis was performed to determine the ring en-

trainment and detrainment properties and to investigate the possibility of an axial

flow being generated around the circumference of the core region prior to the onset

of turbulence.

The orthogonal interaction of laminar, transitional and turbulent rings with an

initially undesturbed free surface was investigated. At small depths, the expanding

ring is unstable to the Crow instability but its dominant mode is predetermined by

the prior development of the Widnall instability. The presence of opposite-signed

vorticity, due to surface curvature, affects the ring dynamics at the surface. The

interaction of a transitional ring modifies the surface displacements, reflecting the

structure of the ring below. The secondary structure associated with a transitional

ring reconnects to the surface in addition to the inner core. In the presence of the

surface, the turbulent ring finds greater coherency of the core due to stretching and

aligning of vorticity filaments. The addition of a planar surface wave field modified

the ring interaction greatly due to the higher surface curvature and associated

surface vorticity. The ring expands asymmetrically and even rebounds locally if

sufficient opposite-signed vorticity is generated. The ring diffracts the surface wave

field and the generation of secondary small-amplitude waves was noted.
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Chapter 1

Introduction

Vortices and vortex filaments have been the fascination of engineers and physicists

for more than a century. Their importance is due not only to their abundance

in nature but also through their presence in engineering flows and turbulence.

Organised vortical structures in the form of loops, hairpins, rings and lines have

been recognised in turbulent flow in both numerical and experimental studies.

Understanding the stability of these structures, their fundamental properties, and

how they propagate and interact, is crucial to aid our understanding of turbulence.

In this report we focus on a single vortex ring, both its instability and break-

down as well as its interaction with a free surface. This is because it embodies

a prototypical turbulent flow and its interaction with a deformable free surface

has practical implications. Considering engineering and biological flows, vortex

rings are principally generated by three methods. The method most commonly

employed in laboratory experiments is to accelerate fluid through an orifice or pipe

into an ambient fluid. The force required to accelerate the fluid through the orifice

is usually delivered by a piston or a loud speaker (see Maxworthy (1972), Glezer &

Coles (1990)(piston), Naitoh et al. (2002) and Dziedic & Leutheusser (1996)(loud-

speaker) to name but a few. Upon entering the ambient fluid the accelerated fluid

forms a vortex sheet which rolls up into a vortex ring a short distance downstream

of the generator exit. The same method of vortex ring generation is also found in

nature for jellyfish, which utilise momentum exchange by pulsing out vortex rings

to propel themselves (Dabiri et al., 2005).

A second method commonly employed to investigate vortex ring motion is to allow

droplets of fluid to free fall onto a pool of fluid; see for example Rodriguez & Mesler

(1988), Peck & Sigurdson (1994) and Peck & Sigurdson (1995). The impact of the

1
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droplet on the surface of the pool causes a vortex sheet to form in the pool which

rolls up to form a vortex ring, which then propagates down away from the surface.

A third method of vortex ring generation is brought about by the development

of the Crow instability on a pair of line vorticies (Crow, 1970). The elliptical

long wave Crow instability (see § 2.2.1) causes a stationary sinusoidal wave to

grow on the vortex pair. As the waves grow, localised regions of the line vorticies

are brought into close proximity to one another. Eventually both line vorticies

disconnect locally and reconnect with the opposing line vortex to form a series of

vortex rings. Line vorticies are produced by lifting surfaces of aircraft but also,

more relevant to this study, by submarines (Lloyd & Hanson, 1985). It has been

shown that such vortex pairs reconnect to form rings in the Direct Numerical

Simulations (DNS) of Garten et al. (2001) whilst traveling through an ambient

stratified flow. It has also been shown that turbulent wakes will develope into

vortex ring-like structures far downstream of their production in either a stratified

or non stratified flow (Gourlay et al., 2001).

The decay of vortex pairs in a stratified ambient fluid is of relevance to submarine

wake development. If a submarine or other submersible vehicle undergoes a diving

manoeuvre, negative lift is generated by the aerofoil sections causing a pair of line

vorticies to propagate through the stratified ocean toward the surface. The pair of

line vorticies are subject to the Crow instability and thus are likely to create a series

of vortex rings with a long-lived structure. The vortex rings will then continue

to propagate towards the surface under their own self induced velocity, with the

possibility of reaching the surface if the ocean stratification and turbulence levels

allow. The region directly below the surface of the sea is an unstratified mixed

layer consisting of varying turbulent intensities and scales largely dependent upon

atmospheric conditions. It is here where we pick up the vortex ring story and

simulate numerically its free-surface interaction. The interaction not only covers

interesting vortex ring dynamics but will cause disturbance to surface waves (Cerda

& Lund, 1993) and temperature distribution (Smith et al., 2001) which may allow

for tracing by remote sensing apparatus. The condition of the vortex ring when it

reaches the free surface is largely unknown, although one can postulate that it will

be either laminar, transitional, or in some state of turbulence. We thus first aim

to understand the temporal developement of the unbounded vortex ring before the

free-surface interaction is studied.

This thesis contains the results from a numerical investigation into a single un-

bounded vortex ring and the interaction with a bounding surface. It is based on
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results from DNS of these two cases and organised into the following chapters.

In Chapter 2, we review the relevant literature, focusing on general vortex ring

characteristics, instability, and surface interactions. Drawing on the lessons learnt

from previous investigations we then present our project aims in Chapter 3. The

mathematical and implementational framework of our numerical codes are layed

out in Chapter 4. Chapter 5 discusses various initialisation techniques to provide

starting conditions for our simulations. The following three chapters present the

results of vortex ring motion within an unbounded (Chapter 6) and bounded do-

main, where the bounding surface is initially undisturbed (Chapter 7) and wavy

(Chapter 8). We summarise our findings and their importance in Chapter 9 and

finally make some suggestions for future work in Chapter 10.



Chapter 2

Literature review

We first define the vortex ring and assess the current understanding of its fun-

damental properties, how it develops with time, and how it interacts with a free

surface.

Figure 2.1: Schematic diagram of a vortex ring, sliced through its centre.

4
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2.1 Vortex ring characteristics

In a co-moving reference frame, a laminar vortex ring can be regarded as a toroidal

vortex core of radius, δ, which is surrounded by a co-moving mass of rotating

fluid, known as the entrainment bubble (see figure 2.1). The ring has a radius R,

usually defined by experimentalists as the distance from the ring centreline to the

core centre. The slenderness ratio ε is defined as the ratio of core to ring radii,

δ/R. The core region has a distribution of azimuthal vorticity ωθ that in the limit

of ε → 0 tends to a Gaussian profile. The circulation Γ and the impulse P of the

ring are defined as

Γ =

∫
ωθdrdz and P = π

∫
r2ωθdrdz. (2.1)

The classical expression for the self-induced propagation velocity U of a laminar

vortex ring is

U =
Γ

4πR

(
ln

(
8R

δ

)
+ C

)
, (2.2)

where the constant C is a function of the shape of the vorticity distribution across

the core region. For a uniform vorticity distribution C = −1/4 (Lamb, 1932).

Saffman (1970) showed that if a Gaussian distribution of vorticity was specified,

to first order of ε, C = −0.558. A comparison of the theoretical prediction of

propagation velocity for a Gaussian core ring was made with the experimental

rings of Dziedic & Leutheusser (1996). They concluded that C = −0.558 could be

used for both laminar and turbulent rings, however due to the lack of flow data

(a hot-wire probe was used to measure ring velocities), quantities such as Γ and

R had to be modeled.

Recently experimentalists have used Particle Image Velocimetry (PIV) techniques

to measure Γ, R and the core vorticity distribution directly from the flowfield.

Dabiri & Gharib (2004), Cater et al. (2004) and Dazin et al. (2006a) all show

mildly non-Gaussian core profiles, with a sharper drop in vorticity toward the

outer edge of the core compared to the ring centre-line. Cater et al. (2004) also

note that the distribution of vorticity, and indeed subsequent ring dynamics and

instability growth rate are highly effected by the precise method of ring gener-

ation. They found that a piston/cylinder ring generator produced a secondary

ring at the piston head with the same sign vorticity as the primary ring but of
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lower circulation. The two rings were found to quickly merge, consistent with the

leapfrogging experiments of Lim (1997) with the resultant combined ring being of

higher circulation and velocity but more unstable. The generation of the secondary

piston ring could be prevented by ceasing the motion of the piston a distance of

two orifice diameters from the orifice exit.

We adopt a Reynolds number based on ring circulation unless otherwise stated,

with Re = Γ0/ν, where the subscript ‘0’ relates to the initial conditions and ν is

kinematic viscosity. A number of different definitions of Reynolds numbers also

exist in the literature: piston Reynolds number, ReP = UPDe/ν, where Up is the

average piston speed and De is the exit diameter; Reynolds number based on ring

diameter, ReD = UD/ν, where D is the ring diameter; and a ‘Saffman’ Reynolds

number, ReS = ea2
1/ν, where e is the strain rate experienced by the core, an

estimate of which is given by Saffman (1978) as

e =
3Γ

16πR2

[
ln

(
8R

ae

)
− 17

12

]
, (2.3)

and a1 and ae are measures of the core radius, defined below. A comprehensive

method for estimating corresponding piston parameters given Reynolds number

and core measures is documented by Shariff et al. (1994).

In previous numerical and experimental work the core thickness has usually been

specified by either the speed-effective core thickness, ae, or the distance from the

core centre to the point of maximum tangential velocity, a1. The speed-effective

core radius is the projected core radius of an equivalent vortex ring propagating

at identical speed with a uniform distribution of vorticity. For a Gaussian core

ae = 1.3607δ and a1 = 1.1214δ (Shariff et al., 1994).

Vortex rings can be collated into two groups; laminar and the turbulent (see

figure 2.2). The structure and stability of laminar rings was investigated experi-

mentally by Maxworthy (1972) and Widnall & Sullivan (1973). They found that

for the Reynolds numbers tested, the rings began in a laminar state, characterised

by smooth concentric streamlines and a relatively weak wake (left side of figure

2.2(b)). Maxworthy showed that below a Reynolds number ReD of 600 a stable

laminar ring was formed and propagated under the influence of viscosity ν, which

diffused the core until the ring eventually became completely dissipated into the

ambient fluid. The core diffusion for laminar rings with a Gaussian distribution

of vorticity is given by Saffman (1970) as

δ2 = δ2
0 + 4νt. (2.4)
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(a) (b)

Figure 2.2: Vortex ring behaviour. (a) Dye visualisation of laminar and tur-
bulent vortex rings, from Glezer & Coles (1990). (b) Streamlines for a laminar
vortex ring, from Dabiri & Gharib (2004); laboratory frame (upper), Lagrangian

frame (lower).

At ReD > 1000 stationary azimuthal instability waves develope on the core region

which eventually break down, signaling transition from a laminar to a turbulent

state. A turbulent ring, visualised on the right side of 2.2(a), is characterised by

a chaotic vortical bubble structure and a core region of relatively high vorticity.

The turbulent ring ejects a considerably larger amount of circulation into its wake

than the laminar ring does. Experimental investigations into the turbulent vortex

rings have been performed either by evolving a laminar ring through the natural

instability to a turbulent state (Maxworthy, 1974) (Wiegand & Gharib, 1994) or

by creating the vortex ring at sufficiently high ReP (Glezer & Coles, 1990). The ex-

periments of Wiegand & Gharib (1994) tracked vortex rings at an initial Reynolds

number (based on circulation) of 7500 through the laminar regime into the tur-

bulent state via the natural azimuthal instability. Their results also showed that

during transition and throughout the turbulent regime vortical structures were

generated in the periphery of the ring. The vortex core however was maintained

as a definite coherent structure. The ring then relaminarised when the loss of ring

circulation had decreased the Reynolds number to 2300. Vortex shedding into the

wake was attributed to the peripheral vortical structures. The loss of organised

structure lead to a staircase like decay in circulation and velocity, the velocity

lagging the circulation by a small phase shift. Recently Glezer & Coles (1990)
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also noted the vortical structures, inferring that they are likely to be vortex tubes

of alternating sign wrapped around the main core, with their presence influencing

the local entrainment and detrainment dynamics.

The process of detrainment results in wake formation, visualised in figure 2.2(a),

and is caused by diffusion of vorticity across the bubble interface into the ambient

fluid which is left behind the vortex bubble in a wake. Under certain conditions it

has been shown that the circulation shed by a vortex ring into its wake can be a

significant proportion. The inviscid numerical study of Nitsche (2001) considered

the roll up of a spherical vortex sheet into a vortex ring which shed 30% of its initial

vorticity into a wake. The wake subsequently rolled up into a secondary vortex

ring whose subsequent circulation loss caused the roll up of a tertiary ring in its

wake, with the process repeating itself in a self-similar manner. This self-similar

wake roll up has not been seen in previous experiments.

A key property of a vortex ring is that it is surrounded by a co-moving mass of

rotational fluid, known as the entrainment bubble. The bubble surface separates

rotational fluid associated with the ring from the irrotational fluid in which it

moves. The vortex ring dynamics and physical parameters (bubble size, ring

radius and core radius) are not constant and their rate of change is defined by

the balance between entrainment and detrainment. Maxworthy (1972) proposed

a model for diffusive entrainment, whereby the thin layer of irrotational fluid by

the entrainment bubble is contaminated by vorticity diffusing away from the ring.

A proportion of this fluid is then entrained through the rear of the bubble into the

vortex ring and the remainder ejected into the wake. Power-law ratios were given

for the decay of both the overall ring velocity and circulation, but these power

laws were found not to be universal by Dabiri & Gharib (2004), who considered

two distinct rings propagating into both an ambient fluid and an oncoming flow

of uniform velocity. They were, however, able to confirm part of Maxworthy’s

entrainment model, showing that vorticity is diffused across the vortex bubble

and is present in the wake. Note that the existence of the wake implies that

the vortex ring loses both circulation and impulse, although in a control volume

containing both the ring and the (entire) wake, the total impulse is invariant.

The ability of a ring to directly entrain fluid has also been studied by Glezer &

Coles (1990), who used an assumed streamfunction in similarity coordinates to pre-

dict net entrainment of particles for the case of a fully turbulent ring. The concept

of fluid entrainment and detrainment has been further refined by the application

of stable and unstable manifolds of dynamical systems theory to the Lagrangian
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Figure 2.3: Sketch of streamlines and manifolds for a steadily translating
vortex ring, taken from Shariff et al. (2006). The hatched region depicts the

vortex core.

surface of the vortex ring entrainment boundary. Let us consider the case of an

inviscid ring propagating at a steady velocity with constant ring and core radii to

illustrate the ideas behind the theory (figure 2.3). In a co-moving reference frame

the velocity field is time independent, hence for this case the streamlines represent

particle trajectories. The vortex ring possesses two stagnation points or hyperbolic

fixed points, F and R, fore and aft of the ring respectively, where hyperbolic refers

to a point in the flow through which two or more streamlines can be drawn. Stable

manifolds Ms are defined as the particle trajectories that asymptote toward a hy-

perbolic fixed point as time goes to infinity. Unstable manifolds Mu are defined as

particle trajectories that asymptote toward a hyperbolic fixed point as time goes

to negative infinity. The stable and unstable manifolds of F and R are displayed in

figure 2.3. For the case of the steadily translating vortex ring the stable and unsta-

ble manifolds coexist forming a boundary between the rotational inner fluid and

the irrotational flow that passes round it. Connections such as the trajectory ~FR

that join two stagnation points are known as heteroclinic trajectories. Introducing

a perturbation that is periodic in time has been shown to break such a connection,

splitting apart the stable and unstable manifolds of the front and rear stagnation

points. The result is that the manifolds meander progressively around each other

as they approach the opposing stagnation point. The intersections between the

manifolds are called lobes (see figure 2.4(a)).

Shariff et al. (2006) produced a numerical simulation to do exactly this by sim-

ulating a vortex ring with an elliptical core region that rotated around the core

centre inducing a periodic oscillation on the ring velocity. Time periodic systems

such as this can be viewed via a Poincaré map. In a Poincaré map time is intro-

duced as an extra direction in physical space. It is created by taking a particle a

small radial distance away from a hyperbolic fixed point and mapping it forward

one period. The position of the particle before and after the time period defines
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(a) (b)

Figure 2.4: Abridged portions of the stable and unstable manifolds showing
fluid entrainment and detrainment over a number of time periods, taken from

Shariff et al. (2006).

the two end points of a segment. The manifold is then built by iterating a large

number of neighbouring particles forward by one period. The neighbouring par-

ticles converge to the manifold from both sides so the fact that the first particle

may not be exactly on the manifold is irrelevant. The unstable manifold of the

rear stagnation point is then obtained by symmetry since if time were reversed the

vortex would rotate counter clockwise and the rear stagnation point would become

the front stagnation point. A section of the resulting Poincaré map is shown in

figure 2.4(a). One must not interpret the figure as a snap shot in time but as a

history of the movement of the lobes A0 and B0. In one time period the lobe A0

moves to A1 and B0 moves to B1, then in the next time period from A1 to A2

and B1 moves to B2 and so on. Each manifold (the dividing line between the lobe

and the exterior flow) is invariant, hence flow cannot cross the boundary and flow

inside the lobe remains inside the lobe. If we consider the final destination of A0

on the Poinicaré map it lies inside the vortex ring bubble and so is considered to

be a lobe of entrainment. The lobe B0 on the other hand consisted of fluid inside

the bubble but by the rear stagnation point is outside the bubble and is thus a

lobe of detrainment. The unstable manifold of the front stagnation point moves

to infinity downstream of the vortex ring in a spiky pattern, as shown in figure

2.4(b). A similar spiky pattern is seen in typical dye visualisations of turbulent

vortex rings, causing Shariff et al. (2006) to postulate that lobe dynamics may

play an important role in explaining entrainment and detrainment of turbulent

vortex rings.
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Shadden et al. (2006) also used dynamical systems analysis to determine the fluid

transport characteristics of laminar piston-generated vortex rings. The piston-

generated vortex rings present a slightly more complicated problem as the veloc-

ity field is aperiodic, thus a Poinicaré map cannot be constructed to investigate

the lobe dynamics. The aim of their analysis was to find finite-time hyperbolic

manifolds which are analogous to the stable and unstable manifold of the peri-

odic analysis above. These finite-time hyperbolic manifolds are called Lagrangian

Coherent Structures or LCS for short. They are found by constructing finite-time

Lyapunov exponent (FTLE) fields. The FTLE field measures the maximum expo-

nential divergence, at a given time and space within the flow, of nearby trajectories

over a finite time interval. For the vortex ring the maximum divergence of parti-

cle paths occurs at the entrainment bubble boundary, since it separates fluid that

moves with the ring from the outside flow that will increasingly separate with time

downstream of the ring. The FTLE field thus picks out the LCS corresponding to

the Lagrangian entrainment boundary. By calculating the FTLE field forwards in

time the LCS corresponding to the stable manifold is uncovered and by integrating

backwards in time the LCS corresponding to the unstable manifold is revealed.

By over plotting the LCS for the front and rear stagnation points it was found

that lobe dynamics were present, causing entrainment and detrainment patterns

similar to those found by Shariff et al. (2006). The development of lobes on the

laminar ring requires a perturbation to be present on the dynamics of the vortex

ring. Such a perturbation was found by Kumar et al. (1995), who produced vortex

rings over a range of Reynolds numbers. By taking measurements at close time

intervals they found that the propagation velocity of the vortex ring oscillated in

time. The velocity oscillations cause oscillation of the position of the front and

rear stagnation point, in a Lagrangian view, which would be sufficient to create

the lobe dynamics.

Shariff et al. (2006) compared the growth rate of the cross-sectional area of the

Lagrangian surface with previous Eulerian streamline analysis of Dabiri & Gharib

(2004). They found that the growth trends were very similar, corresponding to

net entrainment for both analysis techniques. A net entrainment suggests that

the entrainment bubble must grow with time and conversely a net detrainment

demands a reduction in the entrainment bubble mass. The growth of the bubble

is likely to manifest itself in a change in the ring dynamics. Maxworthy (1977)

measured the radial growth rate, γ, of turbulent rings in a stationary ambient

fluid reporting a range of values, with fatter turbulent cores producing higher

radial growth rates. Rusakov (2001) showed experimentally that a concurrent flow
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increased γ for turbulent rings and that a counter flow decreased γ, which take a

negative value (radial contraction) if the retarding flow is of sufficient strength.

2.2 Vortex ring instability

2.2.1 Linear Phase

The discovery of the presence of unstable azimuthal waves on a vortex ring is at-

tributed to Krutzsch (1939) in a paper overlooked by the scientific community until

a similar instability was discovered by Crow (1970) in aircraft wakes. Maxworthy

(1972) performed a series of experiments to investigate the structure and stabil-

ity of laminar and turbulent vortex rings, discovering that the initially toroidal

core was distorted into a sinusoidal wave, of wavenumber five, around the ring

circumference. Subsequent experiments by the same author (Maxworthy, 1974,

1977) showed that the growth and subsequent wave breaking marked the transi-

tion from a laminar to a turbulent vortex ring. The waves were stationary and

grew in a conical plane at an angle of 45◦ to the axis of ring propagation; Shariff

et al. (1994) later corrected the angle to 42◦. Crow (1970) had already witnessed

a similar long-wavelength instability that grew at a 48◦ angle to the horizontal for

a pair of trailing vortices generated by aircraft. Through a linear stability analysis

he showed that the vortices are unstable to both symmetric and antisymmetric

waves. The symmetric waves are present in the form of either short- or long-waves,

depending on the external perturbations on the vortices. The most amplified wave-

length, the growth rate and the plane in which the perturbation grew were found

to depend on the ratio d̂/k̂ of dimensionless cut-off length (proportional to core

diameter) to dimensionless wavenumber. With the approximation of a constant

vorticity profile in the core region, Crow showed that

d̂/k̂ = 0.3210D/b, (2.5)

where D is the core diameter and b is the separation distance between the vortex

cores. For an elliptically loaded wing, d̂/k̂ = 0.063, the most unstable wavelength

λmax = 8.6b, the growth rate α = 1.21(2πb2/Γ0)
1, and the fixed plane in which per-

turbations develop was 48◦ to horizontal, for the long-wave symmetric mode. Ac-

cording to the linear theory, both short-wave symmetric and antisymmetric modes

1where (2πb2/Γ0) is the time taken for the vortices to move down a distance b under their
own induction
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are also unstable; however since atmospheric turbulence preferentially drives the

long-wave symmetric mode, it is the only instability seen in the atmosphere (Crow,

1970).

Widnall & Sullivan (1973) investigated the ring instability experimentally, showing

that the number of waves observed was a function of ε. Inspired by the experi-

mental evidence, Widnall et al. (1974) considered both a rectilinear vortex and a

vortex ring subjected to a strain field and showed that the azimuthal disturbances

are associated with bending waves. They went on to show that the second radial

mode of bending was unstable if the waves had no self-induced rotational velocity

and that the instability grew along a conical surface at 45◦ to the axis of ring-

propagation. Further analysis by Moore & Saffman (1975) and Tsai & Widnall

(1976) supported this idea and also gave equations for the growth rate of a per-

turbation. Widnall & Tsai (1977) then rigorously proved that a ring with uniform

core vorticity distribution was unstable, with analysis up to O(ε2). They found

that the critical wavenumber values, k, for the non-rotating second and third ra-

dial modes are k = 2.51 and 4.35 respectively. The lower-order second radial mode

is more unstable and hence grows preferentially. Shariff et al. (1994) also showed

that, for a more realistic Gaussian profile, the critical wavenumber for the second

and third radial modes become k = 2.26 and 3.96 respectively. Their revisions

were inspired by Saffman (1978), who noted that the number of waves on the ring

was dependent on the vorticity profile, with his estimates of wave number showing

good agreement to experimental observations. The ring circumference can only

support an integer number of waves n, where n is estimated as n = kR/a1 (Shariff

et al., 1994). The theoretical analysis of Widnall & Tsai (1977) also yielded an

expression for the inviscid growth rate αWT of the instability,

αWT =
Γ

4πR2

[
(0.856 ln

(
8R

a

)
− 0.9102)2 − 0.4535

]1/2

, (2.6)

where a is some measure of the core radius2.

The ring or Widnall instability was investigated numerically by Shariff et al.

(1994), who solved the three-dimensional Navier-Stokes equations for a single ring,

simulated in a triply periodic domain. The simulations support the theory pre-

sented in Widnall & Tsai (1977), showing an integer number of waves growing

around the ring excited by the lower radial bending modes. A viscous correction

2Note the last term is corrected from its original form in Widnall & Tsai (1977) to correct a
typo as documented in Shariff et al. (1994)
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to αWT was also developed for the inviscid growth rate, given by

αSha(β) = αWT (β)

(
1 − α1(β)

ReS

)
, (2.7)

where β = a1/R and α1 is a constant of value between 19.7 and 22.8. This

correction has recently been called into question by the experiments of Dazin et al.

(2006a), who suggest that it is too small. They cite amongst other things, that

the Shariff et al. prediction is only valid for purely Gaussian cores. However, this

takes no account of the fact that in the DNS the initially Gaussian distribution

quickly equilibrates to a skewed pseudo-Gaussian profile similar to that found in

the experiments.

The viscous-correction growth rate αSha is consistent with the behaviour of the

two-dimensional elliptical streamline flow investigated by Landman & Saffman

(1987), where a low wavelength cut off was deduced for the two-dimensional viscous

growth rate given by

α2D =
9

16
e− νk2 (2.8)

where k is again the wavenumber. Equation (2.8) shows that in the presence

of viscosity the low wavenumber modes grow faster than the higher wavenumber

modes(lower wavelength modes). Landman & Saffman were following work by

Pierrehumbert (1986) and Bayly (1986) who showed that an unbounded uniform

two dimensional vortex with elliptic streamlines in a straining field was linearly

unstable to three-dimensional perturbations.

The similarity between the instability growth of vortex rings, vortex lines and

two-dimensional vortices in strained fields became apparent, and it is now ac-

knowledged that all are due to the elliptical instability. A review of the elliptical

instability is given by Kerswell (2002).

2.2.2 Nonlinear phase

The preferential instability growth of a small number of azimuthal modes n, which

typifies the linear phase, is followed by a nonlinear phase, during which the dom-

inant azimuthal modes interact with one another. The nonlinear phase has been

investigated experimentally by Dazin et al. (2006a,b), who used PIV and novel
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flow visualisations. The study confirmed the earlier numerical results by Shariff

et al. (1994), showing that the nonlinear phase is heralded by the exponential

growth of higher-order harmonics of the most unstable linear modes. The nonlin-

ear interaction of competing modes also causes rapid growth of the n = 1 mode,

which corresponds to asymmetry in wave growth around the ring circumference.

This is followed by the rapid growth of the n = 0 mode in the azimuthal energy

component, corresponding to a mean ‘axial’ or ‘swirling’ flow, accompanied by the

development of vortical structures on the (outer) periphery of the ring, leading to

ejection of vorticity into the wake. (Following Maxworthy, the term ‘axial’ will be

used to indicate the circumferential axis of the vortex core.) The notion of an axial

flow is supported by the experiments of Naitoh et al. (2002) and the numerical

study of Shariff et al. (1994), the latter showing that it takes the form of opposing

streams, necessary to conserve angular momentum. Subsequently, vortical struc-

tures grew on the interior of the ring before the breakdown to turbulence, causing

the authors to infer that the peripheral vortical structures are wrapped progres-

sively around the core in a series of loops; this is consistent with the vorticity

tubes observed in the experiments of Schneider (1980) during the latter stages of

transition.

Recently Bergdorf, Koumoutsakos & Leonard (2007) numerically investigated the

vortical structures, suggesting that they originate from locally stretched regions of

the deformed core. Their ring parameters were chosen to match the experiments

of Wiegand & Gharib (1994), which tracked vortex rings at an initial Reynolds

number (based on ring circulation Γ) of 7500 through the laminar into the tur-

bulent regime. Qualitative agreement was found between the two studies, which

showed that the turbulent ring sheds vortical structure into the wake in a series

of hairpin vortices leading to the ‘staircase-like’ decay in time of circulation and

velocity mentioned above.

The nonlinear modal growth ends in saturation of the azimuthal modes and the

breakdown of the stationary azimuthal wave. Lack of spatial resolution prevented

Shariff et al. (1994) from investigating further than the early nonlinear phase,

however Maxworthy (1977) inferred from smoke visualisations that immediately

prior to breakdown the stationary waves begin to rotate out of the conical 45◦-

plane. The waves then break preferentially around the azimuth, leading to a net

(‘swirling’) flow in the form of a solitary wave propagating along the circumferential

axis of the turbulent ring. No experimental or numerical work has yet been able

to confirm or deny convincingly Maxworthy’s inferences. A net swirling flow in

the core region was induced by the experiments of Naitoh et al. (2002), however
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this was only in cases where the ring had been created through an orifice with a

wavy exit cross section.

2.3 Surface Interactions

The key parameters associated with the interactions of a vortex ring with a free sur-

face are Froude number, Fr = Γ/
√
gR3 (where g is the gravitational acceleration),

angle of propagation toward the surface, φ, the presence of surface contaminants,

Reynolds number (as defined earlier) and to a lesser extent the Weber number, We.

The ring-surface interactions can be grouped into the following sections: normal

interaction of a vortex ring; oblique interaction of a vortex ring; and vortex-pair

interaction.

2.3.1 Normal interaction of vortex rings

Experimental work by Song et al. (1992) outlines the key stages of the interaction

between a vortex ring and a ‘clean’ free surface. Here ‘clean’ describes a surface

which has been treated to remove surfactants. They focused on two of their ex-

perimental rings to explain the interaction, which we label S1 and S2. S1 featured

a Froude number Fr = 0.287 and Reynolds number Re = 15100, while S2 had

Fr = 0.988 and Re = 64700. Measurements were initiated when the vortex ring

was well formed and a distance of 2.5R0 below the free surface.

As both rings propagate from a depth of 2.5R0 to approximately 1R0 below the

surface the radius and velocity remain approximately constant. The interaction

then differed for the two cases. At depths of less than 1R0, the rings begin to

interact more strongly with their virtual image above the surface. For Case S1 the

ring approaches the surface as an axisymmetric toroid. As it moves closer to the

surface its radius expands until it reaches a depth the order of the core thickness.

At this point the ring propagates parallel to the surface, expanding radially at

constant depth. When the core is at a small depth, its dynamics and strain field

are dominated by its image vortex above the surface. The ring locally approxi-

mates a pair of line vortices and the core is susceptible to the Crow instability.

Subsequently at a ring radius of 3.2R0, a wavy core structure developes 3 around

the azimuth of the ring and continues to grow until the ring reconnects with the

3referred to by Song et al. (1992) as ‘three dimensionality’.
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free surface in a series of U-shaped vortex filaments. This is consistent with the

experiments of Lim & Nickels (1992), who investigated the head-on collision be-

tween two vortex rings. In their experiments the free surface and virtual image

is replaced by a real ring, which reconnects with the original ring in a similar

fashion. Lim & Nickels (1992) also found that in some of their experiments a

short-wavelength instability occurred, sometimes coexisting but not ‘interacting

noticeably’ with the long-wavelength instability. The short-wavelength instability

is also predicted by the linear stability analysis of Crow (1970), discussed above,

and its presence is likely to be due to the absence of background turbulence. Re-

call that Crow (1970) proposed that background turbulence favours the long-wave

symmetric mode above the short-wave symmetric and antisymmetric modes.

For Case S2, the observed ‘three dimensionality’ occurred far earlier, almost as

soon as the ring started to expand radially and at a depth of 0.5R0. The ra-

dial expansion that followed occurred at a far slower rate and a greater depth

than for Case S1. Song et al. (1992) attributed this to the size of the respective

cores, however it could also be due to the generation of opposite signed vorticity.

Longuet-Higgins (1998) showed that in any viscous flow, as tangential stress goes

to zero, the vorticity parallel to a surface is given by

ωs = −2κsq, (2.9)

where κs is the radius of curvature (negative for a convex surface) and q is the

tangential velocity. (See Lundgren & Koumoutsakos (1999) for a discussion of

vorticity generation at a free surface). The surface curvature is far greater for

Case S2, thus one would expect the generation of significantly more opposite signed

surface vorticity. Case S2 also reconnected to the surface but in a slightly different

fashion, as described below.

The free surface response depends heavily on the Froude number. The approach of

the rings toward the surface induced a bulge directly above the ring. As the rings

expanded in a plane parallel to the surface, the bulge dropped and a depression

formed just outboard of the ring. For the high Fr Case S2, the deformation to

the surface was approximately 20 times larger; furthermore, the collapse of the

initial bulge generated outwardly radiating surface waves. The surface depression

propagated outward, following the expansion of the rings and striations were seen

to form on the surface perpendicular to the depression (and hence vortex core).

For Case S2, small circular indentions formed around the depression correspond-

ing to regions of reconnection. Both rings eventually reconnected with the surface
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and consequentially the depression disappeared, replaced by a number of small

circular indentions corresponding to attachment zones of the U-shaped vortex fila-

ments. The reconnection of vorticity filaments to the surface generated outwardly

radiating short waves. The waves were significantly larger for Case S2.

Song et al. (1992) also performed a numerical study with the ring parameters

matching their experimental rings. They used a vortex/boundary integral method,

where the flow was assumed axisymmetric, inviscid, incompressible, and irrota-

tional except for the ring. The numerical study matched the experimental results

well at early times but the differences increased as the ring developed three dimen-

sional structure (earlier for the high Froude number case). A similar numerical

method was employed by Ye & Chu (1997), whose simulations featured a wide

range of Fr and We. They found that at sufficiently high Fr and We it was possible

for the ring to become trapped inside the surface bulge. As for the numerical study

of Song et al. (1992), no surface reconnection occurred, however this is not unex-

pected as reconnection is a viscous process (Ashurst & Meiron, 1987). Wu et al.

(1995) performed an axisymmetric investigation by direct numerical simulation of

the Navier-Stokes equations and found that high Fr cases, with Fr = 7.07, generate

significant surface vorticity, causing rebounding of the primary vortex ring. For a

moderate Froude number, 0.707, the results of Wu et al. (1995) mirrored that of

Song et al. (1992) except once more for the absence of surface reconnection. The

absence of surface reconnection is due to the assumption of axisymmetry which

prevents the Crow instability from appearing.

An alternative experimental study can be found in Chu et al. (1993), with surface

interactions investigated at lower Re, from 900 to 2350, and in the presence of

surfactants. Free-surface experiments were conducted, at Froude numbers around

0.45, and a solid wall, with similarities and contrasts commented upon. Qualita-

tively both rings behaved in the same way. As the ring approaches both barriers

there is a period of vortex stretching. The induced field of the ring then forms

opposite signed vorticity at the barrier, which rolls up to form a secondary ring

outboard of the primary ring. Both the secondary and primary rings rebound, be-

fore propagating again toward the respective barrier producing a relatively weak

tertiary vortex ring. The major differences between the solid wall and free surface

interactions were the amount of opposite signed vorticity generated, with the free

surface producing around a fifth of that of the solid wall, and the radial increase

of the ring, 2.5R0 for the free surface and 1.8R0 for the solid wall. For the free

surface interaction the opposite signed vorticity is generated from a mixture of

sources. Surface curvature generates vorticity, as described above, however the
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presence of surfactants causes surface tension gradients which drive a surface flow

that tends to diminish the gradients (Sarpkaya, 1996). Comparing the free surface

deformation to that observed by Song et al. (1992), both studies report a signifi-

cant surface bulge on the ring approach and the generation of outwardly radiating

surface waves as the ring begins to expand radially. However a large difference

appears as the rings expand as the Chu et al. (1993) ring rebounds and the Song

et al. (1992) ring continues to expand until reconnection. This can be attributed

to the presence of surfactants in the experiments of Chu et al. (1993).

In contrast to these findings, Boyovintrev et al. (1997), in a paper scant on detail,

observed that for weaker vortex rings, with ReD < 5000, the rings collapsed in

the vicinity of the surface. For 5000 <ReD < 10,000, the ring was reflected and

traveled downwards away from the surface. At ReD > 13,000, the ring collapsed

on impact with the surface. The collapse at higher Re was said to be ‘explosive’

with fluid ejected above the surface. The paper makes no comment on the degree

of surface contamination or the value of the Froude number. Comparing these

results with Song et al. (1992) the differences can be attributed to the unknown

concentration of surfactants. The paper is less focused on surface interaction and

more focused on showing that the turbulent vortex rings could travel up to 35 ring

diameters vertically towards the surface.

2.3.2 Oblique vortex-ring interaction with a free surface

The process of disconnection and reconnection of vortex filaments has been in-

vestigated by propagating rings at oblique angles toward a free surface. In the

experiments of Gharib & Wiegand (1996) and subsequent numerical calculations

by Zhang et al. (1999), laminar vortex rings were propagated at varying angles

toward an undisturbed free surface with Fr = 0.47. As the ring approaches the

surface, the surface develops a curved bulge above the core region. The associ-

ated surface curvature creates opposite signed vorticity (Longuet-Higgins, 1998)

downstream of the approaching ring. If the surface was not purposefly cleaned,

the secondary vorticity had significantly higher circulation, due to the upwelling of

clean fluid in the surface bulge, which creates high concentrations of surfactants on

either side. The resultant surface strain causes a subsurface boundary layer which

adds to the secondary vorticity due to curvature. Zhang et al. (1999) showed that

the secondary vorticity stretches the rear section of the core which then reconnects

to the surface to form a single U-shaped vorticity filament (figure 2.5d). Under the

action of its self-induced flow the legs of the U-loop move apart and the lower re-
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Figure 2.5: The oblique interaction of a vortex ring with a free surface, taken
from Zhang et al. (1999).

gion moves toward the surface. It too reconnects with the surface resulting in two

separate smaller U-shaped vorticity filaments in a process known as ‘bifurcation’

(figure 2.5f). Bifurcation did not occur for the contaminated surface.

The generation of vorticity flux is explored in the numerical calculations of Zhang

et al. (1999). In their discussion they focus on two sectors of the flow: the vis-

cous layer, a region very close to the surface caused by the boundary condition

of zero tangential stress; and a blockage layer stretching further down into the

fluid resulting from the kinematic boundary condition. They showed that inside

the blockage layer, the surface-normal component of vorticity ωz increases due to

vortex stretching and vortex turning from the surface-parallel component ωy. The

normal component ωz is then transported across the viscous layer to the surface

by diffusion, which increases the vorticity in the plane of the surface.

Prior to Zhang et al. (1999), Ohring & Lugt (1996) also performed a DNS of the

oblique ring interaction with a free surface. The simulations explored rings with
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Figure 2.6: Surface normal vorticity for a reconnected obliquely propagating
vortex ring, taken from Ohring & Lugt (1996).

propagation angles of 20◦ to 45◦ to the surface and Re = 100 → 200, including

the effect of surface tension. Higher surface tension dampens the surface response

while changing the angle of attack modifies the vorticity profile of the reconnection

zones (figure 2.6).

The oblique interaction was investigated experimentally at different stages of the

ring lifetime, laminar, transitional and turbulent by Wiegand & Gharib (1995) and

Wiegand (1996). Laminar rings were generated with initial Reynolds numbers Re

= 7500 and allowed to develop the Widnall instability prior to their contact with

the surface. The transitional rings produced a new type of reconnection known as

trifurcation, involving three reconnected vorticity filaments. The ring initially re-

connects into a single U-shaped vorticity filament, followed by bifurcation into two

U-hoops as the lower section of the ring was propelled toward the surface. Unlike

the laminar interaction, however, the bifurcated vorticity filaments simultaneously

became turbulent. Associated with the transition process is the ejection of elon-

gated vorticity structures into the wake (likely to be in the form of hairpins; see

above (Bergdorf et al., 2007)), which spontaneously form a third reconnected site

at the surface. The interaction produced normal waves which propagate down-

stream of the ring, whereas upstream, the radiated waves bear resemblance to

waves emitted by two point sources.

The interaction of the fully turbulent ring is characterised by the same bifurcation

process, but with the superposition of small-scale activity causing multiple recon-

nections. The circulation measurements for the turbulent case showed that only

70% of the intial circulation is present in the reconnected hoops. By tracking the

small-scale interactions it was found that the surface interaction involved pairing
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and splitting of reconneted vorticity filaments. Pairing of opposite-signed vorticity

filaments caused cancellation of circulation.

2.3.3 Interaction between a pair of vortex lines and a free

surface

Hirsa & Willmarth (1994) investigated the normal interaction of a pair of vortex

lines with a free surface and Willert & Gharib (1997) investigated the same process

with a sinusoidally deformed pair of vortex lines. The interaction was found to be

strongly dependent upon the degree of surface contamination. For clean surfaces a

series of circular depressions formed, located above the underlying sinusoidal peaks

of the vortex pair. PIV measurements showed that the depressions corresponded

to surface reconnection of the vortex pair, which form a series of U-shaped vorticity

filaments. The paper concluded that it is necessary for the flow kinematics to force

the core region into close contact with the surface in order for connection to occur.

If the vortex pair is separated by a distance greater than twice the amplitude of

the induced instability wave, no surface reconnection was observed. When surface

reconnection was achieved, it was shown that the increased circulation on the

surface plane is directly balanced by the loss of surface-normal vorticity from the

vortex pair. In the presence of a contaminated surface layer the upwelling of

clean fluid caused a surface bulge with high concentrations of contaminants either

side, known as a Reynolds ridge. The shear forces produced, and the associated

subsurface boundary layer generated, a large quantity of opposite-signed vorticity

which prevent surface reconnection and cause rebounding of the vortex pair. This

was also shown by Hirsa & Willmarth (1994) for an initially undisturbed vortex

pair.

2.3.4 Surface Waves

No previous numerical or experimental studies could be found on the vortex ring

interaction with a wavy free surface. However, a number of related studies, such

as Umeki & Lund (1997), Coste et al. (1999), Coste & Lund (1999) and Vivanco &

Melo (2004), have considered the wave interaction with a vertical vortex. Umeki &

Lund (1997) constructed a differential equation governing the behaviour of sound

waves during their interaction with a steady vortex flow at low Mach number and

small wavelength. Solutions corresponding to spiral waves were found and shown
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to rotate in the opposite direction to the vortex. Appealing to the analogies

between the interaction and the Aharonov-Bohn effect (Berry et al., 1980) and be-

tween water waves and sound waves, they showed that the equation also permitted

the existence of dislocated surface waves over shallow water. Both scattered spiral

waves and dislocations were also shown by the analytical solutions of Coste et al.

(1999), Coste & Lund (1999) and then experimentally by Vivanco & Melo (2004).

The degree to which the waves were scattered and whether dislocations occurred

were found to be a function of the vortex circulation, and the wave amplitude, fre-

quency and wavelength. A critical case was also found in which the wave remained

continuous (no dislocations), but a spiral scatter was introduced downstream of

the vortex. Vivanco & Melo (2004) considered a vortex dipole and found that if

the dipole is located perpendicular to the wave field the wavefront exhibits a phase

shift proportional to the total dipole circulation. The symmetry of the oncoming

wave is maintained and the wave phase is restored as the wave moves away from

the vortex. It was also shown that arranging the vortex dipole parallel to the wave

front has negligible impact on the wave train. The impact of a progressive surface

wave field on an underlying weakly turbulent flow was investigated numerically by

Teixeira & Belcher (2002) using a rapid-distortion model. The waves modified the

turbulent Reynolds stresses and tilted vertical vorticity into the horizontal plane

through Stokes drift, forming elongated streamwise vortices which subsequently

dominate the flow.
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Project aims

The motivation behind this study is to investigate the temporal development of a

vortex ring as it propagates from an arbitrary depth toward and interacts with a

free surface. The structure of the ring as it approaches the surface is dependent

upon how it has developed during its ascent. The first task is therefore to inves-

tigate the temporal development of a ring in an unbounded fluid. Once this has

been quantified and understood, the knowledge gained can be used to investigate

the free-surface interaction for different characteristic structures. Finally, we seek

to address how the presence of a surface wavefield modifies the interaction. The

different topics of research are explored further below.

3.1 Investigation of vortex ring evolution from a

laminar to a turbulent state

3.1.1 Laminar phase

The first task facing the laminar investigation is to determine the best way of

initialising a coherent ring which exhibits the intended characteristics. The key

questions that the laminar investigation seeks to answer are how the vortex ring

geometry, velocity, integral parameters (impulse and circulation), and entrainmen-

t/detrainment characteristics develop with time. By investigating the effects of

slenderness ratio and Reynolds number we also hope to address the differences in

the linear growth rates recorded by Shariff et al. (1994) and Dazin et al. (2006a).

24
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3.1.2 Transitional phase

Prior to the onset of turbulence the ring undergoes a period of nonlinear wave

growth and structural change, which we refer to as the transitional phase. The

recent studies of Dazin et al. (2006a,b) and Bergdorf et al. (2007) point to the

development of secondary peripheral structure which we intend to investigate and

determine its role on the transition to turbulence. We also seek to address the

experimental observations of instability wave rotation and axial flow prior to the

onset of turbulence. Finally we aim to investigate the effect of the transitional

phase on the entrainment/detrainment characteristics.

3.1.3 Turbulent phase

In the interest of meeting our other objectives, we confine our investigation to

the early turbulent ring regime, considering the development of the structure and

geometry of the ring.

3.2 Interaction of a vortex ring with a free sur-

face

We limit the investigation to the normal ring interaction as it encompasses the

physics discussed in the literature review, featuring vortex stretching, instability

growth, reconnection and wave generation. The normal interaction is also arguably

the most challenging, which is probably why at present no DNS exists of the non-

axisymmetric problem. As the study relates to the ring-surface interaction in the

ocean (e.g. generated by large submersible vehicles), we simplify the problem by

ignoring the effects of surfactants and surface tension.

3.2.1 Interaction of a vortex ring with an undisturbed free

surface

The aim of our undisturbed surface investigation is to investigate the phenomena

and questions posed by the experiments of Song et al. (1992). Their numerical

study, and subsequent investigations by Ye & Chu (1997) and Wu et al. (1995),

have not successfully addressed the interaction past the initial vortex climb toward
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the surface and early expansion. This is due to their assumptions of axisymmetry

and inviscid flow which prohibit the ring from becoming unstable and developing

the Widnall or Crow instabilities and reconnecting with the surface. We are well

placed, with our DNS codes, to ignore these assumptions and model more closely

the full interaction. Our main objective is therefore to develop the ring instability

in the presence of the surface. This will enable us to investigate with a greater

degree of realism both the ring and surface behaviour. Moreover, it will allow us

to focus on the two instability mechanisms (Crow and Widnall) and examine how

they interact. It is hoped that through knowledge of the unstable ring behaviour

at the surface, we may be able to improve understanding of why the high-Fr cases

behaved differently to the low-Fr cases in the experiments of Song et al. (1992).

In particular, we are interested in why the high Fr case expands at greater depth,

why reconnection zones are generated around the depression before the ring core

reconnects in a series of U-shaped vortex filaments, and why both rings form

surface striations. The oblique interaction of rings at different stages of their life

cycle was shown by Wiegand & Gharib (1995) and Wiegand (1996) to modify

the process dramatically. It is therefore also our aim to simulate the normal

interaction of both transitional and turbulent rings, which to our knowledge has

not be addressed in previous experimental or computational studies.

3.2.2 Interaction of a laminar vortex ring with a surface

wave field

The final task is to investigate the ring interaction with a planar surface wave field

of given wavelength and amplitude. The literature review suggests three main

possible outcomes. If the wave energy is small compared to that of the ring, it

is likely that the motion of the surface waves will be strongly affected, with the

possibility of scattering and perhaps even dislocation. However if the wave energy

is large compared to that of the ring, the ring motion could be affected, causing

periodic stretching in phase with the wave motion as found for a turbulent flow

by Teixeira & Belcher (2002). A third possibility also exists, whereby the ring and

waves are of similar strength and affect each other in a strongly coupled nonlinear

fashion. As no previous examples could be found in the literature for this case,

we shall begin by addressing very basic questions. The strategy will be to vary

the surface and wave parameters to assess their effect on the ring/planar wave

interaction and to highlight its main features.
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Numerical codes

Two numerical codes have been used to simulate respectively the evolution of the

vortex ring and its surface interaction, which we label the fixed-boundary code and

the free-surface code. In discussing the numerical codes we start by laying out

the governing equations and spatial and temporal discretisation, common to both

codes, before discussing each in more detail.

4.1 Governing Equation

Both codes seek solutions to the incompressible Navier-Stokes equation for the

fluid velocity ui = (u1, u2, u3) = (u, v, w) given in the usual Cartesian tensor

notation by

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+ Fi, (4.1)

for a Cartesian coordinate system xi = (x1, x2, x3) = (x, y, z), where the density ρ

and the kinematic viscosity ν are constants, the fluid has pressure p and Fi denotes

the contribution of external body forces. Conservation of mass is also enforced by

∂ui

∂xi

= 0. (4.2)
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4.1.1 Spatial and temporal discretization

The Navier-Stokes equations are discretized on a staggered grid with spatial gra-

dients evaluated using a second-order central differencing scheme.

The solution is advanced in time with the projection method based on a second-

order explicit Adams-Bashforth scheme. The Adams-Bashforth scheme can be

formulated as

un+1
i = un

i +
3∆t

2
Hn

i − ∆t

2
Hn−1

i +
∆t

2

∂pn−1
i

∂xi

− 3∆t

2

∂pn

∂xi

, (4.3)

where the superscript n denotes the current time step, ∆t is the duration of the

time step and the quantity Hi contains the convective and diffusive terms in (4.1),

with

Hi = ν
∂2ui

∂xj∂xj

− uj
∂ui

∂xj

. (4.4)

The projection method entails first evaluating a provisional velocity u∗

i which

comprises the first four terms on the right hand side of (4.3), hence

u∗i = un
i +

3∆t

2
Hn

i − ∆t

2
Hn−1

i +
∆t

2

∂pn−1

∂xi

. (4.5)

Substituting u∗i into (4.3) leaves

un+1
i = u∗i −

3∆t

2

∂pn

∂xi

. (4.6)

By enforcing continuity at the next (n+1) time step, we are left with the Poisson

equation for pressure

∂2pn

∂xi∂xi

=
2

3∆t

∂u∗i
∂xi

. (4.7)

pn is then found by solving (4.7) and the updated velocity computed by (4.6).

The two codes use different methods to solve (4.7) which are described below

along with the two codes strengths and weaknesses with respect to the vortex ring

investigation.
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4.2 Fixed-boundary code

The fixed-boundary code, CGLES, has been written in C/C++ and has been par-

allelised using MPI (Message-Passing Interface) libraries, giving it the capability

of running efficiently on a large numbers of processors. It has been used previously

to investigate flow over complex geometry with both LES (Large Eddy Simulation)

and DNS (Direct Numerical Simulation) techniques; see for example Thomas &

Williams (1999), Yao et al. (2001), Coceal et al. (2007).

The code splits the computational domain into an arbitrary collection of Nb blocks

which are then mapped onto Np (≤ Nb) processors. Each block contains its own

portion of the domain plus an overlap region of one layer of grid points beyond

the block boundary. As the flow data is updated within a block the overlap

region of adjacent blocks is updated through message passing. The code solves

(4.7) through use of an efficient parallel multi-grid technique (see below for an

explanation of the technique). The algorithm uses a sequence of grids constructed

by binary subdivision within each block. Each grid has its own overlap region

which is updated through message passing between grids at the same subdivision.

A red-black successive-over-relaxation (RB-SOR)1 scheme is used to solve (4.7)

on the bottom grid. It is necessary for the red-black colouring to be consistent

across adjacent blocks, which is ensured by requiring that the length of any closed

path be an even number of grid points; this is enforced by preventing the last level

of subdivision if necessary. Testing has shown that the time spent by the code

solving the Poisson equation on the bottom grid is very small in comparison to

the subsequent projection and restriction operations provided that the top grid

allows for sufficient factoring (Thomas & Williams, 1997).

4.2.1 Outline of the numerical algorithm

1) Sweep domain to collect the convective and diffusive terms, which are summed

to produce Hn
i (4.4) at the current time step, using standard second-order central

differencing for the spatial gradients.

2) Project velocity u∗ using the Adams Bashforth algorithm (4.5) with Hn
i and

Hn−1
i and (∂p/∂xi)

n−1 stored from the previous time step.

3) Create the source term for the Poisson equation (4.7).

1see Chapter 19 of Press et al. (2003) for an explanation of the RB-SOR scheme.
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Figure 4.1: Structure of one multigrid V-cycle. ‘S’ denotes a smoothing proce-
dure, ‘E’ denotes solving for the exact solution on the bottom grid, ‘R’ denotes

a restriction procedure and ‘P’ denotes a prolongation procedure.

4) Solve the Poisson equation (4.7) to give pn using a parallel multigrid technique.

The procedure conducts a series of V-cycles until the pressure error is below a

given tolerance, following the method layed out in Chapter 19 Press et al. (2003).

The structure of the V-cycle is shown in figure 4.1 and the main steps of the

multigrid technique are listed below:

• Perform two Gauss-Seidel iterations to smooth the solution on the top grid.

• Calculate the current residual and then use a ‘restriction’ operator (see be-

low) to transfer the residual to a coarser grid which has half the grid points

in all three directions.

• Continue to smooth the solution (through two Gauss-Siedel iterations) and

restrict the residual to progressively coarser grids until the grid is small

enough that performing a RB-SOR iteration scheme is more efficient than

further restrictions.

• Perform RB-SOR iterations on this ‘bottom’ grid to reduce the residual

below a given tolerance.

• Interpolate the corrected field to a grid with double the grid points in each

direction through use of a ‘prolongation’ operator (see below).

• Continue to smooth the solution (through two Gauss-Siedel iterations) and
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interpolate the pressure field onto progressively finer grids until we have

returned to the initial grid and perform two final Gauss-Seidel iterations.

The restriction and prolongation operators transfer the residual to lower and higher

grids respectively. The cell on the unknown grid is generated by a combination of

the surrounding cells on the known grid. The factor to which each surrounding

cell contributes to the unknown cell is specified by the operator; see Chapter 19

Press et al. (2003) for a discussion of operators.

4) Use the gradient of the pressure field and the projected velocity to give un+1
i

(4.6).

4.2.2 Closing remarks

The parallelisation of the code makes it a powerful tool due its speed. Computer

time on the HPCx high performance parallel computing system, has been provided

by the funding bodies (DSTL and EPSRC) and the UK Turbulence Consortium.

The code is thus ideal for simulating the vortex ring through its natural lifetime

from laminar to turbulence, fulfilling part I of the project. The code can also be

used to simulate the case of a vortex ring interacting with a free surface of very

low Froude number and deflections. This case can be approximated by imposing

free-slip boundary conditions at the extents of the axis of ring propagation.

4.3 Free-surface code

The free-surface code, FRECCLES, is written in Fortran 77 and solves the Navier-

Stokes equations (4.1) on a single processor. The pressure problem (4.7) is solved

with a RB-SOR iterative technique. Consequentially, it performs significantly

slower than the parallel fixed-boundary code. However, the code encorparates a

deformable surface on one of its boundaries. The free-surface boundary conditions

are imposed on the upper extent of the z-axis with a free-slip condition imposed

on the bottom of the domain. The flow moves under the influence of gravity g

which is added to (4.1) as the force term Fi = −gδi3, where δij is the Kronecker

delta.
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4.3.1 Free-surface boundary conditions

A restriction is placed on surface height h, such that the maximum slope cannot

exceed the aspect ratio of the grid cells,

|∂h/∂x| ≤ ∆z/∆x, |∂h/∂y| ≤ ∆z/∆y, (4.8)

where ∆x, ∆y and ∆z are the dimensions of the grid cell. A kinematic boundary

condition is imposed on the free surface, stating that the rate of change of elevation

is proportional to the flux of fluid over the surface,

∂h/∂t = (u • n)
√
S, (4.9)

where S is the ratio of the the sloping surface area to the vertical projection of

the surface area,

S = 1 + (∂h/∂x)2 + (∂h/∂y)2 , (4.10)

and n denotes the surface unit normal vector,

n = (−∂h/∂x,−∂h/∂y, 1)
√
S−1. (4.11)

A dynamic free-surface boundary condition is also imposed which states that the

total normal stress (including the viscous component) and tangential stress must

be zero,

n • (τ − pI) = 0, (4.12)

where I denotes the unit tensor. The dynamic boundary condition leads to a

Dirichlet condition for the pressure equation (4.7) as at the surface z = h(x, y, t),

p(x, y, h) = ps equals the normal viscous stress component and any externally ap-

plied pressure field. By imposing impermeable free-slip conditions on the domain

bed we enforce w = 0 at z = 0 for all time, thus ∂w/∂t = 0, hence the boundary

conditions for (4.7) in the vertical direction z are
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p = ps(x, y, t) on z = h(x, y, t), (4.13)

∂p

∂z
= u∗3 on z = 0. (4.14)

A further simplification is made by setting u∗3 to zero in the bottom layer of cells.

This is equivalent to applying a constraining force which prevents acceleration in

the cells. This simplifies the boundary condition (4.14) to

∂p

∂z
= 0 on z = 0, (4.15)

but does not affect pressure field. Periodic boundary conditions are applied in the

lateral x and y directions.

The free surface elevation h(x, y, t) is updated using the split merge technique

which is outlined in Appendix A.

4.3.2 Outline of the numerical algorithm

1) Sum the convection and diffusion terms to give the current value of Hn
i (4.4)

in the surface cells, i.e. the top two layers of cells below the surface.

2) Add contributions of external body forces such as gravity.

3) Calculate Hn
i in the remaining domain.

4) Calculate projected velocity u∗i for the interior cells (entire domain bar the top

two layers of surface cells) using the Adams Bashforth scheme and history terms

Hn−1
i and ∂pn−1

i /∂xi stored from the previous time step.

5) Project (u∗i )surf in the same way.

6) Solve the Poisson equation (4.7) for pn. The main steps are outlined below, in

which we make a distinction between the surface cells that occupy the uppermost

two planes below the surface and the interior cells which comprise the rest of the

sub-surface cells:

• Calculate and store the source terms for all the interior cells with standard

second-order finite differences.
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• Store the coefficients for the standard-finite difference stencil factored by the

over-relaxation parameter σ for an interior fluid cell.

• Calculate and store the modified finite-difference stencil for the surface cells.

• Calculate the source terms for the interior and surface cells.

• Iterate (4.7) with the RB-SOR routine, sweeping the x-y planes of cells

vertically in two stages. In the first stage the interior cells which do not

intersect with the free surface are subjected to full iteration. The second

stage sweeps the surface layer of cells and conducts one full iteration. Note

each full iteration step involves two sweeps, the first sweep updating the red

cells and the second the black cells using the updated red cell values.

• The iterations cease after the error in the pressure field falls below a defined

tolerance.

7) Update the velocity field un+1
i for the new time step by (4.6).

8) Use the split-merge technique to reassign the surface cells.

The maximum surface deformation constraint means that the surface code cannot

model wave breaking, thus the Froude number must be low enough to prevent

excessive surface deformation. The code can be started with an initially stationary

free surface or alternatively a wave field can be imposed. It is thus suitable for

simulating the free-surface interaction. A limitation is that the code is serial and

thus increasing grid resolution and domain size is costly in physical time. This also

poses the problem of memory space as the RAM demands increase with increasing

number of grid cells. However the free-surface interaction occurs over a relatively

short time scale compared to its life time. It is the aim of this project to investigate

the interaction of the vortex ring at different stages in its lifetime. This can be

best achieved in two steps. In step one, a vortex ring is evolved within the parallel

fixed-boundary code until the vortex ring is at the desired state. The resulting

velocity field can then be embedded within the free-surface code at a desired depth.
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Vortex ring initialisation methods

In this chapter we discuss different methods of initialising the simulations. The

chapter is split into two sections concerning the initial velocity field of a vortex

ring in an unbounded domain (§ 5.1) and the ring initialisation below a surface

(§ 5.2).

5.1 Ring initialisation in an unbounded domain

The aim of the initialisation is to produce a coherent vortex ring which displays

the intended characteristics in as short a development time as possible. Three

initialisation methods were tested; a discussion of their strengths and weaknesses

follows.

5.1.1 Initialisation method I

The initial velocity field for a vortex ring was defined by solving the inviscid

analytical expression for the stream function derived from the Biot-Savart law by

Yoon & Heister (2004) as

ψ =
Γ

2π
(χ1 + χ2) [K (ι) − E (ι)] , (5.1)

where K(ι) and E(ι) represent elliptic integrals of the first and second kind, ι =

(χ2 − χ1) / (χ2 + χ1), χ
2
1 = z2 + (r −R)2 and χ2

2 = z2 + (r + R)2. The ‘vertical’

uz and ‘radial’ components ur at each grid cell can then be evaluated from

35
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ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
. (5.2)

The analytical expression is for an inviscid ring with an infinitely thin core, which

has an unphysical infinite propagation velocity as (2.2) is logarithmically singular

for an infinitely thin core radius. This problem was overcome by patching a Gaus-

sian distribution of vorticity on the core region. However, initial tests showed that

the ring quickly broke down if the Reynolds number was greater than about 2000.

Analysis of the ring velocity profile showed that the patched core region was not

well matched to the analytically defined velocity field. The discontinuity created a

sheet of vorticity around the circumference of the ring at the interface. The sheet

of vorticity was concentrated over one grid cell and high in magnitude. It caused

the ring to break down prematurely within a small number of time steps. Low

Reynolds number simulations (Re < 2000) did not experience the same premature

breakdown, as viscosity quickly smoothed the velocity profile yielding a coherent

vortex ring.

Inspired by these observations an improved method of pre-conditioning was adopted.

A ring with an initially thin core was advanced in time with Re = 400 until the

core radius was the intended size, thus smoothing the patch and the analytical so-

lution. The time scale of the conditioning phase was calculated using (2.4). Once

the conditioning phase was over the simulations were restarted at the required

Reynolds number. Perturbations in the form of broadband random noise of order

2% of the local velocity were added to the initialisation to encourage the Widnall

instability to grow around the circumference of the core. The resultant azimuthal

wave number was checked against the wave number predicted by Saffman (1978).

It was found that the expected wavenumber did not develop around the azimuth,

which favoured a four or eight wave configuration dependant on the size of the

core slenderness ratio ε, with smaller ε yielding the eight wave pattern. Other

drawbacks of the method were that thin rings could not be initialised and the

conditioning phase resulted in a lack of control of ring geometry.

5.1.2 Initialisation method II

The rational behind initialisation II was to improve the previous method by avoid-

ing the problematic switch between the inviscid flow field and the Gaussian core.

A new method1 incorporated a relaxation term, with magnitude of the desired

1suggested by Dr K Shariff in a private communication
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core radius δ, into the definition of χ, yielding: χ2
1 = z2 + (r −R)2 + δ2 and

χ2
2 = z2 + (r +R)2 + δ2. The velocity field for the whole domain could now be

calculated from the stream function (5.1) without the need of a Gaussian patch

for the core region. A ±2% random noise scaling was added to the velocity field

to excite the azimuthal ring instability. The vortex ring was found to adopt the

correct number of azimuthal waves and broke down in a time scale consistent with

the numerical simulations of Shariff et al. (1994). However close examination of

the vorticity field at t = 0 showed that the method produced a core distribution

with a long tail of relatively low vorticity in both the radial and z-directions. This

meant that rings with ε > 0.3 suffered canceling of vorticity on the ring centreline,

reducing the overall circulation. It was also difficult to determine the relationship

between the magnitude of the relaxation factor and resultant core radius, thus this

method also lacked a degree of control.

5.1.3 Initialisation method III

The third method initialised a vortex ring with a Gaussian distribution of vorticity

around the azimuth of the ring, as used by Shariff et al. (1994), with

ωθ =
Γ

πδ2
e−s2/δ2

, (5.3)

where s2 = z2 + (r −R)2. Small initial perturbations were added to the vortex

ring in the form of a local displacement of the radius R around the azimuth of the

ring. Thus s2 can be written as s2 = z2 + (r −R′(θ))2. We suppose that the local

radius R(θ) can be written as a small parameter ς � 1 multiplied by the sum of

a set of N Fourier modes, each with unit amplitude and random phase, so that

R′(θ) = R0 [1 + ςf(θ)]

f(θ) =
N∑

n=1

An sin(nθ) +Bn sin(nθ),

where A2
n + B2

n = 1. However, although this method would lead naturally to a

divergence-free velocity field, the continuity of the vortex lines themselves is not

guaranteed – partly because the vorticity should be tilted slightly to follow the

tangent to the path of the vortex centreline, and partly because the implied cross-

section area of the vortex is not perfectly constant around the ring. The above

vorticity field can be corrected to become divergence-free by superimposing the
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gradient of a scalar field ∇φ and requiring that φ satisfy a Poisson equation whose

source term is the divergence error of the original vorticity field2,

∇2φ = −∇ · ω. (5.4)

The complete initial field is then obtained by solving for the vector stream function

that is consistent with the corrected vorticity distribution ωc,

∇2ψ = −ωc, (5.5)

and the velocity field then follows directly by taking its curl,

u = ∇× ψ, (5.6)

where u is the velocity field and ψ is the vector stream function. This method of

perturbation also allow us to excite solitary modes or groups of modes if the need

arose. The method produced a coherent vortex ring that developed the correct

azimuthal number of waves as predicted by theory and experiments and was thus

adopted as the initialisation technique for the subsequent investigations.

It was noted, by Shariff et al. (1994), that the initial Gaussian distribution of

vorticity is only an exact steady solution in the limit of infinitely thin cores. Since

the Gaussian cores specified here have finite size (and thus only approximately

satisfy the Navier-Stokes equations) the ring initially undergoes an ‘equilibration’

phase, during which the ωθ profile across the core region relaxes toward a new

equilibrium state. This is obtained after the Gaussian profile approaches the ax-

isymmetric inviscid ideal for which, in axes attached to the ring, ωθ/r is solely

a function of the streamfunction ψ. The core profile must thus depart from the

initially symmetric Gaussian distribution, and become skewed, with ωθ decreasing

faster toward the bubble edge than the ring centre. Our results show that during

the equilibration phase ωθ is shed from the ring (figure 5.1(a)) reducing the circu-

lation and modifying the ring geometry; this process is most severe for thick-core

rings (figure 5.1(b)).

2The maximum correction to the vorticity field was less than 1.7%.
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Figure 5.1: Ring adjustment during the equilibration; (a) Vorticity shedding
visualised by ωθ contours for a thick-core ring, ε = 0.4131, at time tΓ0/R

2
0 = 5;

increments ωmax
θ /50. (b) Loss of Γ for two ring of different core thickness: – – – ,

ε = 0.2; — , ε = 0.4131.

5.2 Ring initialisation below a surface

By introducing surface boundary conditions we are in effect constraining the size

of the simulation. One of the aims is to investigate rings at different stages of their

life cycle. However, allowing a laminar ring to transition naturally to turbulence

before it is in contact with the surface would require an extremely long domain,

unfeasible for the present codes. In light of this we have devised a ring embedding
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method which allows the ring to be defined a given distance from the surface at

the desired stage of its evolution.

5.2.1 Embedding method

The embedding method makes use of ring simulations in the unbounded investi-

gation. The first step is to extract the entire vorticity field from the unbounded

simulation once the ring has evolved to the desired state and store it in an output

file. The intended surface investigation may not have the same domain dimen-

sions or cell density, in which case the output file is then modified to reflect the

free-surface domain. The vorticity is almost entirely concentrated around the ring

in the centre of the domain, with the exception of a relatively small wake, and

naturally becomes zero in the lateral x and y-directions toward the boundaries

(and indeed far from them). This allows us to reduce or expand the domain sim-

ply by adding or subtracting zeros from the output file. The velocity field is then

evaluated from the vorticity field and its vector stream function using (5.5) and

(5.6).

The above is sufficient to initialise a surface investigation as the Froude number

tends to zero as g → ∞ leading to an ‘infinitly stiff’ free surface. For cases where

Fr > 0, however, we must also prescribe an initial surface deformation consistent

with the vorticity field below. Failure to initialise the free surface correctly leads to

the formation of a propagating surface wave with wavelength equal to the lateral

box size. The wave is created due to an imbalance between the pressure in the

cells directly below the surface and their hydrostatic value leading to an impulse

on the surface. As we define a relatively low viscosity the wave is not significantly

damped during the simulation. It is thus crucial to prevent its creation to avoid

modification of the ring behaviour. In effect, we require the pressure field to be

known before the first time step. An approximation for the pressure field is found

by simulating the ring with free slip boundary conditions for a small number of

very small time steps ∆t = 0.00001R2
0/Γ0. The pressure in the cells in the highest

x − y plane are then used to prescribe a surface elevation through use of the

Bernoulli equation,

h =
p

g
. (5.7)

Note, in the case of the CGLES rigid lid code the pressure field contains an arbi-
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trary constant which must first be subtracted from the local pressure before the

initial surface elevations are calculated. Testing showed that this method pre-

vented the generation of the initialisation wave if the ring was embedded below

2R0.

5.2.2 Surface wave field

In prescribing a surface wave field we appeal to the linear theory of surface gravity

waves ignoring the effect of surface tension. This is a reasonable assumption as the

vortex rings of most interest here are of large scale (typically of radius ≈ 10m) and

we limit our interest to the interaction of waves with amplitude small compared

to wavelength. The surface waves take the form of a sine wave described by

h = asin

(
2πkx

Lx

)
, (5.8)

where a is the wave amplitude,k is the wavenumber and Lx is the computational

domain width. In shallow water, the irrotational velocity field for linear gravity

waves can be derived from Laplace’s equation, ∇2φ = 0, where φ is the velocity

potential (Lighthill, 1978). It follows that the velocity field corresponding to the

waves is given by

u =
aξ

sinh (kLz)
cosh (kz) sin (kx) , (5.9)

w = − aξ

sinh (kLz)
sinh (kz) cos (kx) , (5.10)

where ξ = tanh (kLz) (gk)0.5 is the angular frequency.



Chapter 6

Investigation of vortex ring

evolution from a laminar to a

turbulent state

In this chapter1 we present results from DNS of single naturally evolving lam-

inar vortex rings with different relative core thicknesses and Reynolds number,

and examine their initial breakdown and transition into the early stages of tur-

bulence. After the mathematical and numerical preliminaries are presented in

§ 6.1 and § 6.2, the cases of interest are introduced in § 6.3, along with analysis

of the numerical approach in § 6.4. We next investigate the laminar evolution

of the ring (§ 6.5.1), and the wake generation, modal growth, and wave breaking

during the linear (§ 6.5.2) and nonlinear (§ 6.5.3) regimes, with special attention

paid to the generation of secondary vorticity structure. Finally we investigate,

using Lagrangian particle-path analysis, the relationship between the amount of

entrainment or detrainment and the various stages of the ring evolution (§ 6.5.4)

and the possibility of an axial flow generation in the core region (§ 6.5.5).

6.1 Mathematical background

For the vortex ring evolution investigation we consider a single vortex ring of ra-

dius R and core radius δ, with circulation Γ and Reynolds number Re ≡ Γ/ν, with

1Much of the material in this chapter has been presented in Archer et al. (2008); see Ap-
pendix B.

42
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Figure 6.1: Schematic diagram of the vortex ring domain, the shaded region
corresponds to the logging domain.

impulse P propagating along the positive z-direction with respect to Cartesian co-

ordinates x = (x, y, z) and with corresponding velocity components u = (u, v, w);

see figure 6.1. The vortex is initiated such that it is centred about x = (0, 0, 0)

at time t = 0 and, after an initial adjustment (see section 6.5.1), propagates at a

velocity U that depends on its instantaneous parameters according to (2.2)

We follow Saffman (1970) and define the vortex-ring geometry in terms of integral

parameters. For example, under the assumption of axisymmetry (reasonable for

a laminar ring), measures of the ring radius can be extracted from the first and

second radial moments of the azimuthal vorticity ωθ, with

Rθ =
1

Γ

∫
rωθ drdz and R2

2 =
1

Γ

∫
r2ωθ drdz, (6.1)

where the circulation Γ and impulse P take their usual forms,

Γ =

∫
ωθ drdz and P = πR2

2Γ, (6.2)

and r2 = x2 + y2. Equivalent three-dimensional formula can be derived for more

general non-axisymmetric distributions of vorticity. The ring radius Rθ can be

interpreted as the radial ωθ-weighted average, and the core thickness δθ as the
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ωθ-weighted measure of its spread. For a Gaussian ωθ distribution we have

δ2
θ = 2(R2

2 −R2
θ). (6.3)

These quantities are referred to below as impulse-weighted measures of the vortex

geometry; they are particularly useful because of their close relationship to the

integral parameters. It is also convenient to define an integral measure of the ring

radius RΩ based on the first moment of enstrophy via

RΩ =
1

2Ω

∫
r|ω|2 dx dy dz, (6.4)

where Ω =
∫
|ω|2dx dy dz is the total enstrophy. Since the laminar ring produces a

wake of shed vorticity, all characteristic ring radii and integral properties presented

in this paper have been calculated over a ‘logging domain’, the top and bottom of

which are two initial ring radii R0 from the origin (see figure 6.1). This prevents

the wake from artificially distorting measures of the ring parameters.

6.2 Numerical Approach

The fixed-boundary code was used for all vortex life time investigations as de-

scribed in § 4.2. The Cartesian computation domain assumes periodic boundary

conditions in the x and y-directions, so that we are, in effect, simulating an infinite

array of vortices, but with the domain widths Lx and Ly chosen to be sufficiently

large that the effects of periodicity are small (see below). However, because the

vortex sheds a wake, the ring propagation direction (z) cannot be treated as peri-

odic if interactions with its own wake are to be avoided. We therefore use inflow

and outflow boundary conditions, at z = +Lz/2 and −Lz/2 respectively, and per-

form the calculations with respect to a moving reference frame attached to the

ring. The time-dependent axial velocity W1(t) of this moving reference frame is

adjusted by a simple control algorithm to keep the ring at a fixed vertical location

within the domain. It thus provides the inflow boundary condition at z = +Lz/2,

with w(x, y, Lz/2) = W1(t). (This assumes that Lz is large enough, compared to

the ring radius R, that the velocity induced by the ring vorticity at the inflow

plane is negligible.) In order to avoid introducing spurious vorticity into the do-

main, Neumann conditions are applied to the other two components at z = +Lz/2:

∂u/∂z = ∂v/∂z = 0. At the outflow, z = −Lz/2, all three components satisfy a

linear gradient condition, with ∂u/∂z = ∂v/∂z = ∂w/∂z = 0.
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Calculation of the reference-frame speed W1 (i.e. the time-dependent inflow ve-

locity) requires a time-dependent measure of the vertical ring location Z. We

use

Z(t) =
1

2Ω

∫
z|ω(t)|2 dx dy dz, (6.5)

where Ω is the total enstrophy (cf. (6.4)). The value of W1 that minimises the

difference between Z(t) and the target location Zc = 0 is determined by an integral-

proportional controller,

W1(t) = 2c1 (Z(t) − Zc) + c22

∫ t

0

(Z(t′) − Zc) dt′, (6.6)

where c1 and c2 respectively set the damping and oscillation timescales. These

were chosen to give a critically damped response with c1 = 2Γ0/R
2
0 and c2 =

4Γ0/R
2
0 (where the 0 subscript indicates initial values), which locates the ring

to within 10−3R0 of Zc by three R2
0/Γ0 time units, and to within 5 × 10−5R0

by 20R2
0/Γ0. Once the ring is locked in place, it remains in the centre of the

domain throughout the computation, despite shedding circulation and impulse,

and changing its translational velocity.

Since the DNS effectively approximates the motion of a single vortex ring by

considering a periodic array of rings in x and y, it is necessary to quantify the

influence of the implied image vortices, which act to reduce the speed at which the

ring propagates, compared to the infinite-domain idealisation. The amount of this

reduction can be calculated by integrating the net effect of the velocity induced

by the neighbouring rings, located at distances x = (iξx, jξy, 0) from the point in

question, where ξx and ξy are respectively the x and y periods of the image array,

and i and j are integers. The velocity induced by a single image is U = ∇ ∧ A,

where A is the far-field velocity potential, which for |x| � R is

A = ∇∧
(

(0, 0, R2Γ)

4 |x|

)
.

The net induced axial velocity w̃ is thus

w̃ = −ΓR2

4ξ3

∞∑

i=1, j=1

i2 + j2

(i2 + j2)5/2
≈ −9.032

ΓR2

4ξ3
, (6.7)

where we assume a square array, with ξ = ξx = ξy, and the i, j summation has

been evaluated numerically. This gives both a criterion for choosing the lateral
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Case δ0/R0 Γ0/ν Nx×Ny×Nz t∗Γ0/R
2
0 Γ∗/Γ0 R∗

θ/R0 δ∗θ/R0

A1 0.413 5500 256×256×256 40.0 0.907 1.038 0.373
A2 0.413 10000 256×256×256 40.0 0.911 1.038 0.360
B1 0.200 5500 256×256×256 25.0 0.992 0.999 0.243
B2 0.200 10000 384×384×384 25.0 0.995 1.000 0.227
B3 0.200 7500 512×512×512 25.0 0.993 1.000 0.232
C1 0.140 3000 256×256×256 15.0 0.999 0.995 0.203

Table 6.1: Run parameters. The ∗ superscript indicates quantities at the
sampling initiation time t∗.

sizes Lx and Ly of the domain, and also allows the translational velocity exhibited

by the ring in the finite-domain simulation to be corrected and compared to the

corresponding infinite-domain experimental results. Note that since Γ and R vary

with time so does the w̃ correction, and that the ratio of w̃ to the velocity induced

by the local ring within a square domain of size L is O(R/L)3 (2.2).

6.3 Simulation parameters

The parameters that define the six cases summarised in table 6.1 allow consid-

eration of the effects of both Reynolds number Re = Γ0/ν and the slenderness

ratio ε0 = δ0/R0. Since this part of the study will revisit some of the issues

first raised by Shariff et al. (1994), two of our runs have been designed to match

theirs. The Case A1 and B1 values respectively correspond to those used for

their Runs 3 and 12, with Re = 5500 for both and ε0 ≈ 0.4 and ≈ 0.2, defin-

ing rings within the thick- and thin-core regimes. Cases A2 and B2 are higher

Reynolds number versions of A1 and B1, respectively, with Re = 10000. Case

B3 defines another ε0 = 0.2 thin-core ring, at an intermediate Reynolds number,

Re = 7500. This case, with its intermediate Re and higher spatial resolution,

will be especially useful when we examine the nonlinear breakdown and the early

stages of the fully turbulent regime. Finally, Case C1 was designed to help de-

termine the expression for the translational velocity constant C (see § 6.5.1), by

capturing both thin- and thick-core behaviour. The number of grid cells employed

in each direction (Nx, Ny, Nz) is shown in table 6.1. The quality of the spatial

resolution is examined below. A cubic Cartesian domain was used for all cases,

with Lx/R0 = Ly/R0 = Lz/R0 = 8. Equation (6.7) implies that this introduces
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differences between the finite- and infinite-domain ring translational velocity of

approximately 0.005Γ0/R0. All cases also utilised a constant timestep, with the

Courant-Friedrichs-Lewy (CFL) number, based on local velocity and grid size, al-

ways less than 0.15. A radius perturbation of amplitude ς = 2×10−4 was imposed

on the first 32 azimuthal modes for the thin-core rings (Cases B1, B2, B3 and

C1), while for (thick-core) Cases A1 and A2 the first 24 modes were disturbed,

following the approach of Shariff et al. (1994).

6.4 Assesment of the numerical approach

6.4.1 Cell resolution

The reliability and accuracy of the fixed-boundary code was assessed by comparing

the results of Case A1 with linear-instability results obtained with an in-house fully

spectral third-order Runge-Kutta code2 using 192×192×768 Fourier modes3. The

spectral domain was large enough (Lz = 32R0) in the z-direction to prevent the

ring interacting with its wake during the time considered. (Were it not for the

need to employ nonperiodic boundary conditions in z, the fully spectral code could

have been used for this part of the study.)

Excellent agreement was found for the ring translational velocity and integral

measures, as well as the linear-regime growth rates of the azimuthal disturbances,

which after adjusting to a slightly different random initialisation eventually track

each other; see figure 6.2.

A further check of the spatial resolution is provided in figure 6.3, which shows

histories of the rate of change of the volume-integrated kinetic energy K (per

unit mass) within the simulation domain, with respect to the frame of reference

attached to the ring4. Within an infinite domain the rate of change of K is equal

to the volume-integrated rate of kinetic energy dissipation −εK . However, since

kinetic energy is lost to the wake and convected out of the finite domain, here the

energy balance is altered such that

dK

dt
= −εK + FK , (6.8)

2Written and run by Dr C.P. Yorke of University of Southampton.
3This involved a 2883 collocation grid, to allow de-aliasing of the spatial derivatives.
4The moving coordinate system and the associated unsteady inflow define an effective pressure

gradient of −dW1/dt, such that K = 1

2

∫
V

(uiui −W1
2)dV , where V is the volume of the DNS

domain.
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Figure 6.2: Comparison of modal growth rates for azimuthal modes n = 5
(thin line) and n = 6 (thick line): — , Case A1; – – – , 192× 192× 768 spectral

DNS.

where FK is the net volume-integrated kinetic energy flux, set by the difference be-

tween the (unsteady) fluxes at the inlet and outlet planes. The difference between

the left- and right-hand sides of (6.8) is a measure of the spatial discretisation er-

ror in resolving the smallest turbulence scales. For all six cases the difference was

within 1× 10−5Γ3
0/R0 up to the point of transition. Transition involves stretching

of the vorticity filaments to fine scale, resulting in an enstrophy and dissipation

peak. Note that the flux term FK is only significant after the ring breaks down and

its turbulent wake reaches the outflow boundary (compare the solid and chain dot

curves in figure 6.3). Even during this most difficult to resolve phase (t > 80R2
0/Γ0)

the accuracy is reasonable, with the error remaining less than 2.2 × 10−4Γ3
0/R0.

6.4.2 Sensitivity to domain size

The influence of the distance of the ring to the boundaries was addressed by re-

peating Case A1 using two larger domains. In one simulation, the box width

(x-y plane) was increased to 12R0 × 12R0, to assess the influence of the image

vortices, and to confirm the validity of the periodic correction w̃ (6.7). In the

other simulation, the box height (z-direction) was increased to 16R0, to assess the

influence of distance from the ring to the upstream and downstream boundaries.

As shown in figures 6.4 and 6.5, the effect of increasing the domain size is negli-

gible for all featured results. Figure 6.4 compares slenderness ratio ε, ring radius

measures Rθ and RΩ, circulation Γ and translational velocity U (which includes
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Figure 6.3: Numerical integrity. History of rate of change of volume-integrated
kinetic energyK for Case B3 (thin core): – – – , −dK/dt; – · – , εK ; — , εK−FK .
Dissipation and flux terms shown for t ≥ t∗, where t∗ is the sampling initiation

time (see § 6.5.1).

the correction factor w̃) for the different domains. The evolution of the vortex

ring radius measures are least affected by the domain size, with a maximum dif-

ference of 0.2%. The other ring measures show the same order of accuracy, all

within 0.5%. Also shown, in figure 6.5, is the history of the growth rate of the

most amplified azimuthal mode, which for this case is the n = 6 mode. Again

the agreement across the different domain sizes is excellent, with the maximum

difference during the linear growth phase less than 1%. The accuracy of the ve-

locity correction w̃, employed to account for the finite lateral domain size and the

resulting retarding effect of the periodic spanwise array of rings, is demonstrated

by the close agreement in U between the different sized domains (figure 6.4(d)).

For the original 8R0x8R0x8R0 domain w̃ is approximately 4 × 10−3R0/Γ0. This

is an order of magnitude larger than the difference (4 × 10−4R0/Γ0) between the

ring translational velocities for the 8R0x8R0x8R0 and 12R0x12R0x8R0 domains,

after the respective corrections have been added. The maximum relative difference

between the translational velocities (after w̃ has been added) is 0.25%. We thus

have confidence that the results have not been spuriously affected by the domain

size or the velocity correction w̃.
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Figure 6.4: Comparison of ring characteristic parameters for Case A1 with
three different sized domains: — , 8R0x8R0x8R0; · · · , 8R0x8R0x16R0; – – – ,
12R0x12R0x8R0. (a) Evolution of slenderness ratio ε = δθ/Rθ. (b) Evolution of
Rθ and RΩ. (c) Decay of circulation Γ. (d) History of ring translational velocity

U . (Note U includes the velocity correction w̃.)

6.5 Results

6.5.1 Laminar Evolution

As mentioned in § 5.1.3, the ring initially undergoes an ’equilibration’ phase, during

which ωθ is shed from the ring, reducing the circulation and modifying the ring

geometry; this process is most severe for thick-core rings. These observations

led us to define a sampling initiation time t∗ at a time just after equilibrisation

has occurred, such that the core vorticity distribution has fully adjusted and the

associated shed vorticity has left the logging domain, thereby avoiding spurious

measurements of the ring characteristics. (The impact of the start-up wake as it

passes out of the logging domain can be seen in the local increase in circulation

decay rate between t = 5 and 15R2
0/Γ0 in figure 6.8) The initial sampling time is

documented together with the ring parameters associated with this time (indicated
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Figure 6.5: Comparison of azimuthal growth rates of the most amplified n = 6
mode for case A1 with three differently sized domains: — , 8R0x8R0x8R0; · · · ,

8R0x8R0x16R0; – – – , 12R0x12R0x8R0.

by an * superscript) in table 6.1.

Having adjusted, the ωθ profile extends outside the instantaneous zero streamline

(broken vertical line, see figure 6.6) for both the thin- and thick-core rings, but

to a far greater degree for the thick-core ring. Vorticity extending across the zero

streamline is nominally outside of the entrainment bubble. It can then either be

entrained back into the bubble or transverse the bubble surface and depart into the

wake, as suggested by Maxworthy’s model for diffusive entrainment (Maxworthy,

1972). Figure 6.7 shows precisely this mechanism, with weak vorticity (shaded

contours on right-hand side) trailing into the wake over the zero streamline (thick-

solid contour). The fact that vorticity crossing the instantaneous ψ = 0 streamline

can be entrained back into the entrainment bubble is due to the fact that the zero

streamline is not stationary and moves in time to incorporate changes to the ring

translational velocity and integral parameters. The Eulerian view would see any

vorticity crossing the zero streamline into the irrotational fluid convected into the

wake. However the vorticity takes time to transverse the bubble surface down to-

wards the rear stagnation point. During this time the zero streamline can expand,

encompassing vorticity previously outside the entrainment bubble. Lagrangian

analysis of the flow yields an entrainment bubble surface which takes into account

the moving ψ = 0 streamline. Vorticity diffused across this boundary, outboard of

the zero streamline, passes into the wake. These arguments are explored further

in § 6.5.4. Whether the ‘leaked’ vorticity is recovered or not, the vorticity profile is

clipped by the presence of the entrainment bubble surface. This vorticity clipping
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Figure 6.6: Comparison of core vorticity distributions for a thick- and a thin-
core ring, at t = t∗: — , Case A1 (ε0 = 0.41); – – – , Case B1 (ε0 = 0.20).
Broken vertical line indicates the location of instantaneous zero streamline on
the concurrent plane. Radial locations nondimensionalised by local R̂, the dis-

tance from the origin to the peak in ωθ.

leads to a sharpening in the ωθ profile in the vicinity of the zero streamline surface,

hence increasing the skewness of the core. It is interesting that for both cases the

instantaneous zero streamline surface appears at a constant distance r ≈ 1.33R̂

from the ring centreline, where R̂ is the current radial location of the ωθ peak. The

instantaneous zero streamline surface thus expands to track radial displacement of

the vorticity peak as the core diffuses, leading to a relationship between the core

thickness and the rate of decay of ωθ.

The loss of ωθ manifests itself in an overall reduction of ring circulation. Figure 6.8

displays the rate of decay in circulation during the laminar regime. The main

figure shows the rate of decay from the start of the simulation, with the early

peaks corresponding to the vorticity shed during the core adjustment leaving the

domain. We focus on the inner figure which presents the behaviour when the

core has adjusted its vorticity distribution, after t∗. Comparing Cases A1 with

B1 and A2 with B2, we see that despite similar initial Reynolds numbers Γ∗/ν

the thick-core rings reduce in circulation faster than the thin-core rings. This can

be attributed to the increased skewness of the thick-core rings with the result of

greater ωθ extension across the entrainment bubble surface. The rate of circulation

loss increases with time for the thin-core rings, which is consistent with the ongoing

core diffusion, such that they become increasingly skewed. The thick-core rings,

on the other hand, exhibit a larger but more-nearly constant rate of circulation
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loss, since they are closer to a quasi-steady state defined by fixed ε (compare

figures 6.9(a) and 6.9(b)), and thus experience little change to their skewness and

associated relative rate of ωθ diffusion.
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Maxworthy’s model for diffusive detrainment (Maxworthy, 1972) predicts a -2/3

power law decay of Γ. The decay rate was not found to be universal by Dabiri &

Gharib (2004) however, who experimentally generated rings at Reynolds numbers

between 2000 and 4000, finding that Γ decayed with power laws between -0.27 and

-0.067, with the power decreasing with increasing Reynolds number. We find for

the present rings that the circulation tends to decay as Γ ∼ tc where c is in the

range -0.01 to -0.002. One can account for the range of reported circulation decay

rates by the difference in Reynolds numbers across the previous and present cases.

As shown in figure 6.8, for identical initial ε the decay rate increases monotonically

with decreasing Reynolds number.

The laminar evolution of the core radius measures, δθ, ae and a1
5, normalised

by the instantaneous value of Rθ, and the ring radii measures Rθ and RΩ are

shown in figure 6.9, for two rings that typify the behaviour of thin and thick cores

(Cases A1 and B3). To calculate a1, the core centre was first determined by linear

interpolation, then second-order polynomial extrapolation was used to find the

distance from the core centre to the location of the maximum tangential velocity

on the plane z = 0 inboard and outboard of the core centre. These two lengths

were then averaged to give a1.

Since the integral measure RΩ is weighted by |ω|2 it is biased toward regions of high

vorticity and hence approximates the radial location of peak vorticity. On the other

hand, Rθ (being weighted by ωθ) effectively yields the radial location of the centre

of vorticity of the core, which during the laminar regime is always inboard of RΩ,

due to the skewness of the core ωθ profile. The difference between the two measures

is thus an indication of the core skewness, which is greater for thicker cores. Note

that, prior to transition, Rθ for the thin-core rings is approximately constant,

while RΩ increases slightly with time, demonstrating the increasing skewness of

the thin-core rings due to core diffusion. The thick-core rings behave differently,

in that both Rθ and RΩ increase with time. This shows that the ring is expanding

radially while the skewness of the core remains approximately constant.

The three dotted lines in figure 6.9 (a) and (b) represent the predicted core diffusion

for an equivalent core with a Gaussian profile in accordance with (2.3). The

history of the thin-core ring follows the Saffman diffusion equation very closely,

with the exception of ae/Rθ, which deviates with time away from the upper dotted

line. The divergence can be attributed to the increasing core skewness. As the

core ωθ distribution becomes less Gaussian, the translational velocity of the ring

5see § 2.1
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Figure 6.9: Histories of core and ring radii for (a) Case A1 (thick core) and
(b) Case B3 (thin core): — , δθ/Rθ; – · · – , a1/Rθ; – · · · – , ae/Rθ; · · · ,
theoretical core diffusion determined by (2.3) nondimensionalised by Rθ, (with
the lower line corresponding to δθ, the middle to a1 and the upper to ae); – – – ,

Rθ/R0; – · – , RΩ/R0.

reduces with an associated increase in ae (cf. (2.2)). For the thick-core ring, the

slenderness ratios a1/Rθ and δθ/Rθ remain approximately constant with time. The

core expansion is constrained by the ring geometry, as ωθ must equal zero on the

ring centreline and its outer extent is clipped by the zero entrainment streamline
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Figure 6.10: Histories of vortex translational velocity for (a) Case A1 (thick
core) and (b) Case B3 (thin core): – – – , UG; — , UDNS.

(which expands at the same rate as the radius). Consequentially the core diffuses

at a very similar rate to the ring radius, leading to a nearly constant ε. With

both ε and hence the degree of skewness nearly constant, the core distribution of

vorticity changes little, resulting in the nearly constant rate of decay of circulation

for thick cores seen in figure 6.8.

The transitional and early turbulent behavior of the ring is also presented in

figure 6.9, to give perspective to the laminar results. Transition begins near (t −
t∗)Γ0/R

2
0 = 95 and 55 for Cases A1 and B3, respectively, with the decrease of

RΩ as the core distorts and the development of interior and peripheral vortical

structures moves the location of the maximum vorticity. The transitional and

early turbulent behavior will be examined further in § 6.5.3.

Histories of the translational velocity U of the thick- and thin-core rings are shown

in figures 6.10(a) and 6.10(b) respectively, and compared to equivalent rings with

a Gaussian core profile. These include the periodic correction w̃ (cf. (6.7)) to

account for the induced velocity of the periodic array of vortices, so we in effect

report the translational velocity of a single vortex ring in an unbounded domain.

The Gaussian ring velocity UG is given by (2.2), where C = −0.558 and the

instantaneous values of Γ, Rθ and δθ are taken from the DNS results. The difference

between UG and the numerical results reveal the impact of the non-Gaussian core

ωθ distribution. The difference is greater for the highly skewed thick-core rings and

remains almost constant as the core diffusion is limited (for reasons given above).

Since for thin-core rings the ωθ distribution becomes increasingly skewed as the

simulation progresses, the difference between the Gaussian and the DNS velocity
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Figure 6.11: Translational velocity parameter C vs ε: – – – , C = −5.0ε2 −
1.12ε4 − 0.558; ∗, Case A1; ∆, Case A2; +, Case B1; ∇, Case B2; �, Case B3;

◦, Case C1.

increases with time. For all cases the rings decelerated smoothly until the onset

of turbulence, whereby the translational velocity fluctuates as it decays.

The inclusion of C in (2.2) allows for cores with finite slenderness ratios ε that pos-

sess non-Gaussian core distributions. The difference between the ring translational

velocity and that of a Gaussian-core ring increases with time as the core diffuses.

This implies that C becomes increasingly negative with increasing ε. One might

expect that the effect of increasing skewness would manifest itself as an even-series

expansion in ε2, i.e. C can be approximated as C = Aε2 + Bε4 + C ′, where the

constant C ′ must equal −0.558, since for small finite ε, C must equal −0.558. The

parameter C has been extracted from the simulations and is plotted in figure 6.11

against the instantaneous value of ε = δθ/Rθ for all cases. The results are well

approximated by C = −1.12ε2 − 5.0ε4 − 0.558 (dashed curve). The generalized

expression for the translation speed of a laminar vortex ring as a function of Γ, R

and ε then becomes

U =
Γ

4πR

[
ln

(
8

ε

)
+ Aε2 +Bε4 + C ′ + . . .

]
, (6.9)

where A = −1.12, B = −5.0 and C ′ = −0.558.
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6.5.2 Instability Growth

During the initial laminar phase an azimuthal instability associated with the vor-

tex core develops, and deforms the core into a standing wave with an integer

number n of waves around the circumference. The number of modes depends

on the slenderness ratio such that n ∼ 2.26/ε (for a Gaussian core distribution

of vorticity (Shariff et al., 1994)). The growth rate of a mode n is defined as

αn ≡ 1
2
(1/En)dEn/dt, where En is the energy of the mode. The inviscid case was

examined by Widnall & Tsai (1977) deriving the growth rate αWT (2.6). However,

the numerical study of Shariff et al. (1994) found that the effect of viscosity is to

reduce the growth rate from the inviscid value by a factor that depends on the

local internal Reynolds number of the core, and established a viscous correction

factor (2.7). Shariff et al. formulated the viscous correction by comparing the

measured growth rates for a number of rings with ε varying from 0.2066 to 0.4131,

and across a range of Reynolds numbers Re from 1200 to 10000. They determined

the growth rate as being that of the most amplified azimuthal mode (i.e. the mode

with the largest growth rate at a given time, not necessarily the mode currently

with the most energy) observed at a time tΓ0/R
2
0 between 52.5 and 57.5. The

growth rate was averaged over 15 R2
0/Γ0 time units centred about t. However,

as the vortex ring geometry changes slowly over time because of viscous diffusion

of the core, the most amplified mode will also slowly change. In fact, successive

modes with reducing n will be selected and amplified, so that the average growth

rate measured by this method can be expected to be slightly lower than suggested

by the equation above.

Shariff et al. estimated the internal Reynolds number ReS at time t using the

core measures a1 and ae, and assuming a Gaussian core distribution of vorticity

diffusing in accordance with (2.3) (accurate for thin cores but less so for thicker

ones). Finally, αWT was calculated using the initial ring parameters and it was

found that α1 = 18 fitted their results well.

The main differences between our numerical investigation and the simulations of

Shariff et al. are that our boundary conditions are not periodic in the direction of

ring propagation and that we use a cubic domain rather than a cylindrical one.

The latter requires us to interpolate our velocity fields onto a cylindrical grid in

order to extract the modal energy spectrum and associated modal growth rates.

An azimuthal Fourier transform was performed over the cylindrical grid to reveal

the modal energy histories displayed in figure 6.12. We follow Shariff et al. and

report the growth rate of the most amplified mode at tΓ0/R
2
0 = 52.5, averaging the
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Case t n
(
t
)

α αS Γ(t) RΩ(t) ae(t) a1(t) αWT (t) αS(t)

A1 52.5 6 0.072 0.090 0.897 1.173 0.65 0.44 0.081 0.069
A2 52.5 6 0.082 0.098 0.904 1.144 0.62 0.42 0.087 0.080
B1 52.5 9 0.099 0.108 0.989 1.062 0.42 0.30 0.128 0.103
B2 47.5 10 0.130 0.126 0.995 1.044 0.34 0.26 0.141 0.124
B3 52.5 9 0.112 0.119 0.989 1.056 0.39 0.28 0.133 0.113

Table 6.2: Comparison of present growth rate α with Shariff et al. (1994)
viscous prediction αS . Time t given in units of R2

0/Γ0, growth rates in units of
Γ0/R

2
0, circulation in units of Γ0 and lengths in units of R0.

growth rate over a time window of ±7.5R2
0/Γ0 centred at t. The Case B2 result,

however, is reported at the earlier time of tΓ0/R
2
0 = 47.5 to avoid the possibility of

being affected by the nonlinear regime. The growth rate αS was calculated using

the instantaneous values of a1 and ae at t as approximated by (2.3) and Γ0 and

R0 in accordance with the methodology used by Shariff et al.

A comparison between the present growth rates α and those given by the Shariff

et al. (1994) viscous correction αS is presented in table 6.2. It is found that αS

is within 9% of α for the thin-core rings, Cases B1, B2 and B3. However, the

difference is greater for the thick-core cases, A1 and A2, at approximately 25%.

The difference in growth rates for the thick-core rings can be attributed in part to

the periodicity of the Shariff et al. simulations in the direction of ring propagation.
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Ring αDaz αWT,Daz αS,Daz α′

WT α′

S

A′ 0.78 1.36 1.00 1.39 1.02
C′ 0.91 1.59 1.03 1.39 0.90

Table 6.3: Dazin et al.’s (2006a) experimental growth rates αDaz and recorded
quantities αWT,Daz and αS,Daz compared to α′

WT and α′

S which result from using
a1 in 2.6. Growth rates given in s−1.

Since we follow essentially identical initialisation procedures, the Shariff et al. rings

were subject to the same equilibrilisation phase as documented here. In Shariff

et al.’s triply periodic computations the shed vorticity, associated with the vortex

ring adjusting to its steady-state vorticity profile (see § 6.5.1), is ejected from the

ring during the equilibration phase and cycles periodically through the domain.

It interacts with the ring on each pass, providing a forcing of the ring instability.

This explanation was verified using the in-house spectral DNS code mentioned

earlier, periodic in all three directions, by initialising a thick-core ring in domains

of different length. The longest domain ensured breakdown occurred before the

wake interacted with the vortex ring and yielded a growth rate 10% less than

for a domain of similar size to that used by Shariff et al. The growth rate for

thin cores is more accurate because the initial equalibrilisation wake shedding is

negligible, thus the rings are not influenced in the same way. As shown in § 6.5.1 all

ring measures vary during the laminar regime, dependent on ε and the Reynolds

number. This led us to test the Shariff et al. viscous correction by incorporating

the instantaneous Γ(t), RΩ(t), a1(t) and ae(t) at t to estimate αWT (t), e(t) and

ReS (t), with αS(t) = αWT (t)[1 − α̂1/ReS (t)]. Using this method and choosing

α̂1 = 8 improves the agreement to within 5% for both the thin- and thick-core

cases. This supports the validity of correcting the inviscid growth rate based on

the internal Reynolds number ReS .

Recently Dazin et al. (2006a) used PIV to calculate the instability growth rate

of two of their experimental rings A′ and C′, reporting differences with their im-

plementation of the Shariff et al. correction. However they followed a slightly

different method to that proposed by Shariff et al. using ae as their core measure

in place of a1 in calculating αWT . We have followed the methodology of Shar-

iff et al. to give a corrected prediction for their growth rates, α′

WT and α′

S (see

table 6.3). The difference between the growth rate of ring C’ and αS is reduced

significantly, however for ring A’ the difference is still large. Another important
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Figure 6.13: Contours of ωz on the horizontal plane through centre of ring
(z = 0) for Case B3 at time (t − t∗)Γ0/R

2
0 = 55: — , ωz > 0; · · · , ωz < 0.

Contour increments at |ωz max| /10.

difference between the two methods is the sampling period over which the growth

rate is calculated. Dazin et al. had access to very few sample points over the

entire laminar regime with which to calculate the growth rate. Figure 6.12 shows

that this simplification is reasonable for mode 9, which grows at an approximately

constant rate, but much worse for modes 10 and 11, as their growth rate changes

greatly during the laminar regime. In general, the growth rate of a single mode

will not be constant throughout the laminar regime, as viscosity diffuses the core

region amplifying modes with monotonically decreasing mode number.

6.5.3 Non Linear Transition Phase

The elliptical instability initially leads to a narrow band of modes growing indepen-

dently, which determine the number of standing waves around the core azimuth.

However, at a certain amplitude the modes begin to interact nonlinearly with each

other producing higher harmonics and lower-order intermodulation products (see

figure 6.12), consistent with the experiments of Dazin et al. (2006b) and the sim-

ulations of Shariff et al. (1994). Constructive interference between neighbouring
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Figure 6.14: Contours of azimuthal velocity averaged around the ring azimuth
at various times prior to the onset of turbulence. (a) Minimum contour level =
1×10−5, increments of 2×10−5, (t−t∗)Γ0/R

2
0 = 43.35 (b) minimum contour level

= 4×10−5, increments of 2.5×10−5, (t−t∗)Γ0/R
2
0 = 48.75 (c) minimum contour

level = 9 × 10−5, increments od 4 × 10−5,(t − t∗)Γ0/R
2
0 = 52.35 (d) minimum

contour level = 1 × 10−4, increments od 2 × 10−4, (t− t∗)Γ0/R
2
0 = 61.35.

modes causes a noticeable ‘lob-sidedness’ to the wave growth and associated core

displacement, which is represented by the rapid growth of the n = 1 mode prior to

transition. The relative dominance of the n = 1 mode varies from case to case and

is largest for the thin-core Cases B1, B2 and B3, which during the nonlinear phase

have 8,10 and 10 waves around the core respectively. An n = 0 mode also grows
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Figure 6.15: Three-dimensional isosurface visualisations of the secondary
structures for Case B3 at (t− t∗)Γ0/R

2
0 = 65. (a) Isosurfaces of vorticity viewed

from above. Dark surface corresponds to the inner core region |ω|R2
0/Γ = 3.8;

mid grey isosurface corresponds to ωzR
2
0/Γ = 0.8, light grey to ωzR

2
0/Γ = −0.8

visualising the secondary structure. (b) Isosurface of the second invariant of the
velocity gradient tensor II = (∂ui/∂xj)(∂uj/∂xi), IIR4

0/Γ
2 = −0.005, crosses

mark the locations of saddle points where neighbouring loops meet.

rapidly in the azimuthal velocity energy component (i.e. an axial flow along the

circumferential axis of the vortex core), which corresponds to a mean azimuthal

profile of opposing streams, such that angular momentum is conserved. Initially

the opposing streams are configured as two inner crescents, arranged one on top

of the other in the core region and two outer maxima closer to the ring centreline

(figure 6.14(a)). As the n = 0 mode intensifies, the inner crescents rotate anti-

clockwise around the core centre as shown in figure 6.14, until the crescents have

approximately switched positions and the ring breaks down into turbulence. Fig-

ure 6.14(d) shows the azimuthal profile just prior to turbulence and corresponds to

the profile shown by Shariff et al. (1994) in figure 7 of their paper. A description

of the nature of this axial flow follows in § 6.5.5.

Here we make a distinction between the region of intense vorticity at the core cen-

tre, which we call the ‘inner core’ and the surrounding outer core region of lower

vorticity, which we call ‘halo’ vorticity (see figure 6.15(b)). The elliptical insta-

bility causes displacement of the inner core into a stationary wave pattern, while

the halo vorticity displaces in the opposite direction, consistent with the second

radial mode (Widnall, 1975). In a slice across the z = 0 plane the signature of the
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second radial mode in the axial and radial components of vorticity is three layers

arranged radially (figure 6.13). The halo vorticity occupies the inner and outer

layers and is 180◦ out of phase of the inner core. The structure is also apparent

in three-dimensional isosurface plots of the second invariant of the velocity gra-

dient tensor II = (∂ui/∂xj)(∂uj/∂xi)(a useful marker of vortical structure), and

isosurface plots of vorticity shown in figure 6.15. They show that as the inner core

displacement becomes appreciable the halo vorticity rolls up into an interwoven

mesh of secondary structure. The secondary structure develops first in the top left

corner of figures 6.15(a) (bottom of figure 6.15(b)), where constructive interference

between the azimuthal modes n = 9 and n = 10 yields the greatest inner core dis-

placement. It then develops around the azimuth of the ring as the local inner core

displacement increases with time. The figures further show that the secondary

structure consists of a series of loops which encompass the inner core. The inner

core weaves its way through the centre of the loops. It is noted that neighbouring

loops are of alternating signed vorticity, consistent with the observations of Dazin

et al. (2006b) and simulations of Bergdorf et al. (2007), and are formed by tilting

and reorganisation of the halo vorticity. The loops touch at saddle points posi-

tioned in azimuthal planes aligned with the maximum and minimum inner core

displacements but displaced radially in opposition to the core displacement (the

approximate locations of the saddle points is denoted in figure 6.15(b) by crosses).

Two loops wrap around each azimuthal wave, hence there are the same number

of pairs of loops as there are waves around the ring. Bergdorf et al. (2007) give a

slightly different account for the generation of the secondary structure, suggesting

they originate due to stretching of the outer rim regions of the inner core. We

also see stretching of the rims of the inner core (figure 6.16) but this occurs after

the halo vorticity has reorganised into the secondary loops and their magnitude

of vorticity |ω| has become comparable to the inner core.

The generation of the organised secondary structures coincides with deformation

of the core ωθ distribution. During the laminar regime the three-dimensional ge-

ometry of the core approximates a ring with a mildly elliptic cross section. During

transition the cross section is distorted to form a thin crescent shape (figure 6.17).

The distortion is more severe at regions of the core in the periphery of the en-

trainment bubble as the local radial expansion is restricted by the instantaneous

zero streamline. The stretching of the inner core intensifies the local vorticity and

is accompanied by stretching of the secondary structure, which also intensifies in

vorticity causing an overall enstrophy peak (figure 6.3). As the secondary loops

stretch they begin to protrude locally outside the entrainment bubble, trailing be-
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hind the vortex ring and into the wake. The loops originally developed as counter

rotating pairs side by side, but as they trail outside the ring the loops detach and

reattach with their neighbour at the saddle point to form hairpin vortices that fill

the wake (figure 6.18), as reported by Bergdorf et al. (2007). The localised equi-

librium between the inner core and the outer halo vorticity is broken, as portions

of the halo vorticity leave the entrainment bubble, and the core becomes locally

turbulent at the position of the initial hairpin vortex shedding. The azimuthal

instability wave does not rotate prior to the ring becoming turbulent, which con-

flicts with the inferences that Maxworthy (1977) made from smoke visualisations

of the core region. The waves continue to develop across the remainder of the ring

unhindered, until the secondary structure is shed into hairpin vortices around the

entire azimuth of the ring and the ring can be considered to be fully turbulent.

The stationary coherent vortical structure found during the laminar and transi-

tional phases is superseded by the swirling of vorticity filaments. Two cases were

simulated and resolved through to transition and into the early turbulent regime:

Case A1, a thick-core of low Reynolds number and Case B3, a thin-core of moder-

ate Reynolds number. Figure 6.19(a) shows that the thick-core ring breaks down

into a number of interwoven vortex filaments. No well-defined coherent core per-

sists and circulation is shed via a continual stream of vortex filaments into the

wake. The thin-core ring however maintains a core region of concentrated vor-
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Figure 6.19: Double isosurface of |ω| for turbulent vortex rings. (a) Case A1
at time (t − t∗)Γ0/R

2
0 = 180: dark surface level |ω|R2

0/Γ0= 1.4; light surface
level |ω|R2

0/Γ0= 0.7. (b) Case B3 at time (t − t∗)Γ0/R
2
0 = 111.8: dark surface

level |ω|R2
0/Γ0= 2.5; light surface level |ω|R2
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ticity (the dark region in figure 6.19(b)) which is consistent with the turbulent

visualisations of Wiegand & Gharib (1994). The core region is no longer station-

ary, but bends and twists with time. Vorticity filaments, similar to the secondary

structure, are continually generated, wrapping around the turbulent core and cir-

culating around it. Figure 6.19(b) shows a number of these vorticity filaments

wrapped round the core region. The filaments have long looped tails that trail

into the wake and out of the domain. Just as for the thick-core ring, these vor-

ticity filaments circulate around the core and gradually pass out of the vortex

bubble and into the wake as a stream of vorticity filaments and hairpin vortices,

as visualised by Glezer & Coles (1990) and Wiegand & Gharib (1994). The ring

was not simulated further into the turbulent regime, however the beginning of a

staircase-like decay of circulation, as reported by Wiegand & Gharib (1994) and

Bergdorf et al. (2007), was noted.

6.5.4 Particle Paths

Particle paths are a useful tool for analysing the entrainment and detrainment

characteristics of the vortex ring. Particle paths were obtained by integrating the
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Figure 6.20: Laminar entrainment of tracked particles released at (t −
t∗)Γ0/R

2
0 = 20, for Case A1, on the z = 1.7R0 plane. (a) Particles released

on the y = 0 plane between x = 0.25R0 and x = 0.35R0 at increments of
0.005R0; (b) Particles released at equidistant azimuthal locations around the
circumference of two semicircles of radius 0.25R0 (dotted), and 0.35R0 (solid).

ordinary differential equation,

dx (t)

dt
= v [x (t) , t] (6.10)

where x (t) denotes the position vector of the particle and v is the time-dependent

velocity field taken from the DNS. The sampling interval of the velocity field

was determined to ensure convergence of the path lines, and was dependent on

the complexity of the flow field. During the laminar phase the sampling interval

was 20 time steps, reducing to 5 time steps during the transitional and early

turbulent phase. Particles could be initialised at any location within the logging

domain, figure 6.1, with the initial particle velocity, v [x (t0) , t0], found by linear

interpolation.

We first examine entrainment and detrainment characteristics of the thick-core

ring, Case A1, during the laminar regime. Figure 6.20(a) shows the tracked par-

ticle pathlines for particles released at (t − t∗)Γ0/R
2
0 = 20. The particles were
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released at equal intervals on a line between x = 0.25R0 and x = 0.35R0 with a

spacing of 0.005R0 in the y = 0 plane, at z = 1.7. As the particles pass around

the entrainment bubble surface, the pathlines contract before diverging as they

approach the rear stagnation point. At the rear stagnation point the particle

pathlines are divided and are either entrained into the vortex ring bubble or pass

past into the wake. Tracing back the pathlines of the entrained particles it is noted

that a streamtube surface exists upstream of the vortex ring separating flow that

will be entrained and flow that bypasses the vortex ring. Figure 6.20(b) shows

a three dimensional visualisation of the process, the particles here have been re-

leased around the circumference of two semi circles on the plane z = 1.7R0 of

radii 0.25R0 and 0.35R0, with the particles within the streamtube surface, on the

inner semi-circle being entrained. There is no detrainment of particles prior to the

development of significant secondary structure, and the wake is created solely by

vorticity diffusion.

It is important to note that during the laminar regime, no hole exists in the en-

trainment bubble surface through which the particles enter, recall figure 6.7 where

the instantaneous streamlines are closed. As shown in § 6.5.1 the laminar ring

gradually expands through radial growth and core diffusion, and decelerates to ac-

commodate changes in the bubble geometry and loss of circulation. This increases

the distance between the front and rear stagnation points and bubble volume.

This results in an expansion of the instantaneous zero streamline which causes the

entrainment of particles. Once inside the bubble the dynamics of the particles are

governed by the highly vortical core region. The growth of the entrainment bub-

ble is illustrated by the path of the entrained particles as they begin to circulate

around the vortex core for a second time, figure 6.20(a), crossing there original

path and circulating further away from the centreline. Although the particle paths

have been limited so as not to extend indefinitely, the particle is in fact still inside

the bubble and continues to circulate with an origin increasing in radial displace-

ment from the ring centreline, as new fluid continually fills the outer reaches of the

rear of the entrainment bubble. There is no detrainment of particles prior to the

development of significant secondary structure, and the wake is created solely by

vorticity diffusion, as evidenced in figure 6.7. The absence of particle detrainment

implies that the stable and unstable manifolds of the front and rear stagnation

points coincide exactly. This is only the case if no velocity perturbations exist

on the propagation velocity of the vortex ring, which is confirmed by the straight

velocity decay lines during the laminar regime of figure 6.10. In contrast, the

Lagrangian bubble interface identified by a Lagrangian Coherent Structure (LCS)
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Figure 6.21: Entrainment bubble distortion for Case A1: (a) Lagrangian
pathlines of particles initiated around a circle of radius 0.43R0 on the z/R0 = 1.9
plane released at (t − t∗)Γ0/R

2
0 = 79. An isosurface of II with surface level

IIR4
0/Γ

2
0 = −0.005, at (t − t∗)Γ0/R

2
0 = 110 is included to aid visualisation; (b)

ωθ contours across the wake, increments of local ωmax/5, at (t− t∗)Γ0/R
2
0 = 100

on the z = −1.95 plane.

technique in the experiments of Shadden et al. (2006) exhibits alternating lobes

of entrainment and detrainment during the laminar regime. Kumar et al. (1995)

showed that experimentally generated rings at a similar Reynolds number to those

studied by Shadden et al. (2006) initially experience large-scale oscillations in their

translational velocity that persist for a short time after formation. We postulate

that these experimental rings may also undergo an equilibrilisation phase similar

to that observed in our simulation, during which the core adjusts to its steady-

state profile. Changes in the distribution of vorticity within the core are sufficient

to explain the initial oscillations in the translational velocity and associated lobe
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Figure 6.22: Transitional detrainment zones. Two particle pathlines were
initiated on the z/R0 = 1.9 plane at r/R0 = 0.25 at time (t − t∗)Γ0/R

2
0 =

10. A translucent isosurface of II with surface level IIR4
0/Γ

2
0 = −0.005, at

(t− t∗)Γ0/R
2
0 = 118 is included to aid visualisation.

dynamics. It was necessary for Shadden et al. to use long integration times when

constructing the LCS to reveal the ring’s Lagrangian structure. This included part

of the time immediately after the ring formation, thus the initial transient is likely

to be captured within their results, leading to their observed lobe dynamics.

The laminar entrainment process, characterised by an axisymmetric Lagrangian

surface, is significantly altered by the development of the azimuthal instability and

associated secondary vortical structure. The first effect of the secondary structure

is to deform the Lagrangian surface that defines the entrainment bubble into a

wavy interface, which follows the shape of the secondary structure as shown in

figure 6.21(a). The bubble deformation also changes the structure of the wake

from a circular to a ‘petal-like’ cross-section at fixed z, with the individual petals

corresponding to the azimuthal location of the peripheral secondary structure (fig-

ure 6.21(b)). This petal-like wake structure has been recently visualised in the

experiments of Dazin et al. (2006a). As the secondary structure develops, the

Lagrangian surface is folded to the extent that ‘holes’ are created through which
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particles can detrain. The holes are located at points where the secondary loops

meet in the outer periphery of the ring. This can be seen by comparing the two

particle paths in figure 6.22, both of which were initiated at the same time and

radial distance from the z-axis. Just before the onset of turbulence, fluid that is at

location A detrains into the wake. Note also the slight drift in the left-hand-side

particle around the azimuth of the ring. On the other hand, fluid that passes

between the loops of the secondary structure, location B, continues to circulate

within the entrainment bubble throughout the period of transition. After the on-

set of turbulence the ring continually sheds loops of vortical structure, carrying

fluid (such as the right-hand-side particle) into the wake. This is the principle

mechanism for turbulent detrainment.

6.5.5 Axial flow

We investigate the behaviour of the core region for the possibility of an axial flow

being generated prior to the onset of turbulence. Recall that like Maxworthy

(1977), we use the term axial flow to refer to circumferential flow along the axis

of the vortex core.

The axial flow is analysed by calculating the Lagrangian paths of a number of

fluid particles that are initiated within the core along radial lines that intersect

the vortex centre at four azimuthal positions, labeled A B C and D in figure 6.23(a).

The core centre was interpolated from the local velocity field and the Lagrangian

pathlines were integrated from the start of the transitional phase to the onset of

turbulence.

The thick-core ring (Case A1) shows negligible axial flow. Prior to the onset of

turbulence, the particles orbit the core centre and drift through an angle of less

than one degree along the circumferential axis of the core. However the thin-

core ring (Case B3) shows a pronounced axial flow. Figures 6.23(a) and 6.23(b)

present the particle paths during the early (54.2 ≤ (t − t∗)Γ0/R
2
0 ≤ 60.5) and

entire (54.2 ≤ (t− t∗)Γ0/R
2
0 ≤ 73.1) transitional phase. During the laminar phase

the particles simply orbit around the centre of the vortex core. However during

the transitional phase the orbits begins to drift around the ring. The direction in

which the particles drift depends on how close they are to the centre of the core.

Constructive interference between the azimuthal modes causes a region of increased

core stretching, labeled E in figure 6.23(b). The individual pathlines indicate an

inner region of axial flow directed toward E (such that inner particles at A and B
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Figure 6.23: Axial core flow for thin-core ring case B3. (a) Lagrangian path-
lines from time (t − t∗)Γ0/R

2
0 = 54.2 → 60.5 with translucent isosurface of

|ω|R2
0/Γ0 = 3.0 at t = 60.5. (b) Pathlines from time (t−t∗)Γ0/R

2
0 = 54.2 → 73.1

with translucent isosurface of |ω|R2
0/Γ0 = 3.0 at (t− t∗)Γ0/R

2
0 = 73.1.
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move anti-clockwise and C and D move clockwise) and an outer region moving in

the opposing direction. The axial flow in the inner core region is greatest at B,

with particles translating 17◦ along the circumferential axis of the core during the

transitional period. The radius of the inner core region is approximately 0.078R0

(27% of δθ at time (t − t∗)Γ0/R
2
0 = 54.2). The inner core axial flow is maximum

at the core centre and grows approximately exponentially with time.

This type of axial flow, showing a general drift of particles near the core centre

toward point E of strongest instability development, is consistent with the m = 1

type axial flow recorded by Naitoh et al. (2002), in observations of rings generated

through a circular orifice. They inferred that the axial flow was due to an az-

imuthal pressure gradient caused by preferential wave growth and associated core

stretching. This is supported by our simulations as the thick-core ring undergoes

near uniform wave growth leading to negligible axial flow and the thin-core ring

experiences preferential wave growth leading to a pronounced axial flow. The thin-

core ring would be expected to develop with less uniformity as a greater number

of modes are excited by the linear instability leading to a larger n = 1 mode.



Chapter 7

Interaction of a vortex ring with

an undisturbed free surface

In this chapter we focus upon the interaction of a vortex ring with an initially

undisturbed free surface. We start by formulating the mathematical description

of the problem in § 7.1 followed in § 7.2 by the numerical approach employed to

simulate the interaction. In § 7.2.1 we describe the cases of interest and their run

parameters. We then document a series of initial studies which were undertaken

to assess the validity of our numerical techniques (§ 7.2.2). Finally we present

and discuss the results examining in turn the laminar (§ 7.3), transitional (§ 7.4)

and turbulent (§ 7.5) ring interactions, focusing on the ring dynamics, instability

growth, vortex reconnection and the free surface response.

7.1 Mathematical Background

We consider a single vortex ring of radius R and core radius δ, with circulation Γ

and Reynolds number Re ≡ Γ/ν, with impulse P. The ring propagates vertically

toward the free surface, with Froude number Fr = Γ/
√
gR3, in the z-direction

with respect to Cartesian coordinates x = (x, y, z) and corresponding velocity

components u = (u, v, w); see figure 6.1. The vortex is embedded at depth d0 such

that it is centred about x = (0, 0, d0) at time t = 0 and initially propagates at a

velocity U that depends on its instantaneous parameters, according to (6.9).

75
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Figure 7.1: Schematic diagram of the normal vortex ring interaction with a
free surface. The shaded region represents the co-moving logging domain, across

which the ring integral measures are calculated.

7.2 Numerical approach

The Cartesian computational domain assumes periodic boundary conditions in the

x- and y-directions, so that we are, in effect simulating an infinite array of rings.

However, the domain widths Lx and Ly are chosen to be sufficiently large such that

the propagation of the ring toward the surface and subsequent expansion is not

affected greatly by the periodic images. Following the domain sensitivity study

§ 6.4.2, we require that the ring does not encroach within three ring radii of the

lateral boundaries during its approach to the surface. At small depths the ring

dynamics are dominated by its virtual image above the surface, which induces a

radial expansion of the ring. To prevent the periodic rings, implied by the lateral

periodic boundary conditions, from influencing the dynamics of the expanding ring

we also ensure that it does not move within three ring depths of the lateral domain

limits. For cases where Froude number approaches zero we impose impermeable

free-slip boundary conditions on the upper (z = 0) boundary and simulate the

interaction using the fixed-boundary code described in § 4.2. For cases with finite

Froude number, we impose free-surface boundary conditions (§ 4.3.1) on the upper

(z = 0) boundary and simulate the interaction with the free-surface code described

in § 4.3. For both codes, impermeable free-slip boundary conditions are imposed
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on the bottom plane of the z-axis. The initial velocity field is prescribed by

embedding vortex rings which have been aged within an unbounded domain for a

given time period te, following the method described in § 5.2.1

Since the ring expands as it approaches the surface (Song et al., 1992) the core

region is increasingly stretched with time. Under the assumption of conservation

of circulation and in the absence of viscosity, one would expect the volume of the

core to be conserved (Fukumoto, 2003), with

δ2R = δ2
0R0, (7.1)

where a zero subscript indicates an initial value. Viscosity diffuses the core slowly

with time and circulation is shed into the wake, but we can thus expect δ to

approximately decrease in proportion to
√
R. To maintain resolution as the core

stretches, the flow field is interpolated at discrete intervals onto progressively finer

grids. This requires that cells at the bottom of the domain (far from the ring),

which have very small effect on the dynamics of the ring, are removed or ‘trimmed’

to avoid excessively large computations. In cases where Froude number approaches

zero the bottom cells are trimmed during the interpolation routine. For simulations

with finite Froude numbers, the trimming occurs during the simulation every time

the ring propagates a distance d̃ = 0.11R0 in either the radial or the z-directions.

The continuous trimming is required to avoid the generation of a transient surface

wave which is introduced if the reduction to the z-axis is too large; see § 7.2.2.

Interpolation of the flow is performed in all three directions. In the x- and y-

directions a Fourier scheme is employed, however, this high-order method cannot

be implemented in the z-direction due to the non periodic boundary conditions.

Instead a third-order polynomial interpolation scheme is employed. Fourier in-

terpolation is also not suitable in lateral planes near the free surface that feature

air/water discontinuities induced by large surface displacement. In such planes the

polynomial interpolation scheme is used to avoid Gibb’s phenomena. The quality

of the interpolation and trimming routines is examined below.

The ring circulation, impulse and radial measures are defined in § 6.1 and are

calculated in a co-moving cubic logging domain whose top and bottom is 2R0

from the ring centre of enstrophy; see figure 7.1. The logging domain moves with

the ring so that the wake is left behind and does not contribute to the integral ring

measures. Differencing neighbouring cells which span the surface would lead to

the summation of ‘artificial’ vorticity in the integral ring measures as u = 0 in cells
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Case δ0/R0 Fr Re te Γ0 R0

F1 0.326 0 4988 40 0.907 1.145
F2 0.228 0 7440 40 0.992 1.048
D1 0.326 0.3 4988 40 0.907 1.145
D2 0.326 0.6 4988 40 0.907 1.145
D3 0.341 0.3 4576 130 0.832 1.195
D4 0.466 0.3 4400 180 0.800 1.148

Table 7.1: Ring parameters for the initially undisturbed surface interaction
cases. Note R0 = RΩ. te is the time that the ring has been evolved in an

unbounded domain, normalised by its relevant initial parameters, see § 6.3.

Case Nx ×Ny ×Nz Lx/R0 × Ly/R0 × Lz/R0 d0/R0 If IR

F1 384×384×224 10.48 × 10.48 × 6.11 3.06 1.5 1.2R0

F2 384×384×256 11.45 × 11.45 × 7.63 3.82 see text see text
D1 384×384×224 10.48 × 10.48 × 6.11 3.3 1.5 1.5R0

D1 354×354×192 11.53 × 11.53 × 6.29 3.3 1.5 1.5R0

D3 384×384×224 10.04 × 10.04 × 5.86 3.3 1.5 1.2R0

D4 336×336×224 8.9 × 8.9 × 5.99 3.21 1.5 1.2R0

Table 7.2: Domain sizes for the initially undisturbed surface interaction cases.
Box dimensions are at the start of the simulation. Cases D1-4 also initially
include 8 passive cells to capture surface displacement (see 7.1). Cells interpo-
lated by interpolation factor If when ring radius exceeds IR. Case F2 features

multiple interpolations and is described in the text.

above the surface. Thus only the contribution of cells below the surface is included

within the ring measures. Likewise to exclude the contribution of opposite-signed

vorticity, generated due to surface curvature, only cells where ωθ ≥ 0.0 are included

within the ring measures.

7.2.1 Simulation Parameters

The cases, shown in tables 7.1 and 7.2, allow us to investigate the effects of Froude

number and ring age on the surface interaction. The ‘F’ and ‘D’ case labels refer

to simulations performed by the fixed-boundary and deformable free-surface codes

respectively. Cases F1, D1 and D2 are identical thick-core laminar rings at three
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Figure 7.2: Ring structure of Cases (a) D3 (transitional) and and (b) D4
(turbulent) at the time of embedding. Ring structure is visualised with an

isosurface of IIR4
0/Γ

2
0 = −0.05.

different Froude numbers. The rings were aged for the duration of the equilibration

phase in the unbounded domain, thus the initial vorticity shed as the ring relaxes

to its steady state profile had left the domain. Case F2 features a thin-core ring

with a high Reynolds number to maintain the slenderness of the core. To ensure

adequate resolution of the core region the domain was interpolated onto finer grids,

sequentially, by factors 1.5, 1.3333, 1.5, and 1.5 after the ring had expanded to

1.2R0, 1.8R0, 2.25R0, 3.375R0 respectively. At each interpolation, the number of

cells in the z direction Nz was reduced by 50%, 50%, 33.3333% and 66.6666%

respectively. By interpolating the flow field on multiple occasions it was possible

to maintain the core resolution as the ring expanded to 4.9R0, allowing us to

investigate the ring instability. Cases D3 and D4 feature thick-core rings that

have been aged for a greater time period in the unbounded domain. For Case D3

the Widnall instability has developed, distorting the core into a six azimuthal

wave pattern, the secondary looping structure had just begun to develop and

the ring can be considered to be in the transitional regime; see figure 7.2(a). In

Case D4 the core has just become locally turbulent; see figure 7.2(b). The same

nondimensionalisation as for the unbounded investigation is used, except, we now

nondimensionalise lengths byRΩ, for ease of comparison with experimental studies.

Experimentalists judge ring radius as the distance from the ring centreline to the

core centre, which is closely approximated by RΩ. The initial values, which we use

for nondimensionalisations, are recorded at the time of embedding and are shown

in table 7.1.
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Figure 7.3: Comparison of surface elevation at the centre (x = [0, 0, h]) for

Case D1 with different trim lengths d̃max: — , d̃ = 0.11R0; · · · , d̃ = 0.22R0;
– – – , d̃ = 0.33R0; and – · – , d̃ = 0.55R0.

7.2.2 Assessment of the numerical approach

The same cell resolution was employed as in the unbounded simulations as it has

been shown in § 6.4.1 to provide a high degree of accuracy. The sensitivity of

free-surface simulations to the choice of the trimming length d̃ was investigated by

repeating Case D1 with various magnitudes of d̃. By trimming cells from the z-axis

we are modifying the flow field near the bottom of the domain. Since the ring is

far from the boundary its dynamics are unaffected, however the code corrects the

flow field by imposing continuity (4.7), thus the pressure in the following time step

contains an error which is distributed throughout the domain. A sudden change in

pressure at the surface causes a wave to be generated which then propagates with

wavelength of the box width around the periodic domain. If the trim is sufficiently

small, the pressure correction and resulting surface wave are negligible. Figure 7.3

shows the effect of d̃ on the free surface elevation at the centre x = (0, 0, h). If d̃

is large a small surface oscillation is formed but vanishes as d̃ falls below 0.22R0,

significantly greater than our chosen value.

The validity of the interpolation procedure was checked through repetition of

Case D1 with a constant domain, neither trimmed nor interpolated. The ring

radius, depth, velocity and core thickness are relatively unaffected (<1%), how-
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Figure 7.4: A comparison of results from a trimmed and interpolated simula-
tion – – – to a domain with constant box geometry — for Case D1. Subfigures
compare: (a) Ring radius; (b) Ring circulation; (c) Circulation of opposite-

signed surface vorticity; (d) Elevation at the centre of the surface.

ever, after interpolating the field (when R > 1.5R0) the ring circulation decays

faster for the interpolated ring; see figure 7.4(b). The difference can be explained

by analysing the surface vorticity field. Case D1 has a low Froude number and

thus while the ring expands it forms only a small depression on the surface above.

The resulting surface curvature generates a small region of opposite-signed vor-

ticity (Longuet-Higgins, 1998). The opposite-signed surface vorticity cancels with

that of the primary ring, reducing its circulation. This is not well captured by the

coarse uninterpolated simulation (see figure 7.4(c)) leading to higher ring circula-

tion. One consequence of interpolating the flow field is the initiation of a small

surface oscillation (figure 7.9(c)). The transient is likely to be caused by errors in

the interpolated flow field close to the surface. It is small compared to the max-

imum surface elevation (<8%) and tiny compared to the ring radius (< 0.04%),
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thus it has little effect on the dynamics of the ring.

Further confidence in the numerical approach was gained through simulation and

comparison with previous experimental and numerical work. The orthognal in-

teraction of a ring with a free surface was assessed through comparison with the

low Froude and Reynolds number experiment of Song et al. (1992). A ring was

embedded in a computational domain of Lx = Ly = 11.5R0 and Lz = 5.75R0

including 0.24R0 of cells above the free surface to allow for surface displacement.

Initially, the simulation featured Nx = Ny = 384 grid cells in the x- and y-planes,

and Nz = 200 cells in the z-plane, but was interpolated when RΩ = 1.2R0. Prior

to embedding, the ring was evolved for 25 non-dimensional time units in an un-

bounded domain, sufficient for the ring to adjust to its steady-state core profile

and for its initial start-up wake to be flushed from the domain. At the time of em-

bedding, RΩ = R0 = 1.044, Γ = Γ0 = 0.994, Re = 10000, Fr = 0.287, δθ = 0.218

and depth d = 2.84R0. These parameters matched closely those of Song et al.

(1992), with the exception of Reynolds number which was lowered from 15100 to

10000 to stabilise the surface interaction. Lowering the Reynolds number causes a

slightly lower instability growth rate and less core diffusion, but since the surface

interaction lasts for a short time the differences are small. We specify a time td,

at which the ring had propagated to a depth d = 2.5R0, to compare our results

with Song et al. (1992), who commenced their readings at this depth.

Good quantitative agreement is shown between the results for both ring depth

and radial expansion over the duration of the simulation (see figure 7.5). The

experimental ring propagated under the surface to a radial expansion of 4.2R0 at

which point the vortex ring reconnected with the free surface. In order to maintain

adequate resolution of the core it could not be simulated past 2.25R0; consider-

ation of later times awaits further interpolation and code parallelisation. If our

simulation had been continued without further interpolation, the core would even-

tually break down into small grid-scale vortical structures. This causes excessive

surface displacement, violating the boundary restriction (4.8) and terminating the

simulation.

Similar surface features were also present in the DNS and experiment. Initially

the surface was deformed into a central bulge which grew with time as the ring

depth decreased (figure 7.6(a)). As the ring radius expanded close to the surface

a circular depression forms above and outboard of the ring (figure 7.6(b)).

Lack of resolution restricts further computation and thus we could not simulate

the ring through to the stage of reconnection. A further test was performed to
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Figure 7.5: Comparison of ring depth and radial expansion: — , DNS; and
∗ ∗ ∗, experiment of Song et al. (1992).

show that the code is capable of capturing reconnection at the surface. The case

of the oblique interaction of a vortex ring with a free surface was undertaken, as

reconnection was observed in the experiments of Gharib & Wiegand (1996) and

the numerical simulations of Zhang et al. (1999). A ring was initiated at depth

d0 = 1.57R0 with its angle of propagation inclined at 10◦ above the horizontal

plane toward the free surface. The study was performed before the conception

of initialisation method III, thus initialisation method II was used to prescribe

the initial velocity field. The intended ring parameters were radius R0 = 1.0,

core radius, δ = 0.35, Reynolds number Re = 1570 and Froude number Fr =

0.47 to match a numerical simulation of Zhang et al. (1999). However, due to

the limitations of the initialisation method (see § 5.1.2) the actual core size and

circulation differed greatly. The domain had widths of Lx = Ly = 8R0 and height

Lz = 4.25 including 0.25R0 of cells above the free surface to allow for surface

displacement. The number of grid cells in the lateral directions were Nx = Ny =

256, and Nz = 136 in the vertical.

Figure 7.7 shows good qualitative agreement with the numerical simulations of

Zhang et al. (1999). As the ring propagates toward the surface it begins to re-

connect toward the rear of the core, producing a U-shaped vorticity filament, as
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Figure 7.6: Free surface displacement at various times: (a) (t−te)Γ0/R
2
0 = 9.0;

(b) (t− te)Γ0/R
2
0 = 13.0.

reported in all the relevant literature. The surface normal vorticity profile at the

reconnection site is very similar in shape to that of Ohring & Lugt (1996). The

reconnected ends of the U-shaped filament then move apart and the tail moves

toward the surface as shown in figures 7.7(e) and 7.7(f). These results show that

the free surface code is capable of modeling surface reconnections if the required

resolution is present.
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Figure 7.7: Interaction of a vortex ring propagating at an angle of 10◦ toward
a free surface. Vortical structure visualised by an isosurface of vorticity magni-
tude, |ω| = 0.25 |ω|max
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0 = 36.
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Figure 7.8: Comparison of ring depth (a) and radius (b) against time for a
range of Froude numbers: — , Fr = 0; – – – , Fr = 0.3; · · · , Fr = 0.6. Subplots

show the ring behaviour close to the surface.

7.3 Results

7.3.1 Laminar ring interaction

The variation of depth and radius of laminar rings of differing Froude number is

shown in figure 7.8. As the rings approach a depth of approximately 1R0 they all

follow the same trajectory. This result is expected, since the Froude number only

affects the ring close to the surface (Song et al., 1992). It is nevertheless important

as it shows agreement between the two numerical codes. The ring flow field causes

a bulge to form at the centre of the surface, which grows as the ring moves closer,

as shown in figures 7.9(a) and 7.9(c). The magnitude of the surface displacement

is a function of the Froude number. For Case D1, where Fr = 0.3, the centre of

the surface reaches a maximum elevation hmax = 0.00815R0, whereas for a higher

Froude number, Case D2 (Fr = 0.6), hmax = 0.0326R0. Surface displacement is

proportional to the square of the Froude number, which is expected, since h ∝ g−1

(5.7) and g appears in the Froude number as g−1/2. At this stage, the vorticity

distribution in the core is similar to that of an unbounded ring (figure 6.6).

As the ring moves up to a depth of approximately one radius it begins to interact

with its virtual image above the surface and expands radially (figure 7.8). The

initial bulge drops and a surface depression forms above and just outboard of

the ring (see figures 7.9(b) and 7.10(b)). The depth at which the ring expands
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Figure 7.9: Surface displacement for laminar rings: Surface elevation field at
(a) (t− te)Γ0/R

2
0 = 14.52 and (b) (t− te)Γ0/R

2
0 = 20.75; Surface elevation as a

function of time for (c) the centre of the surface (x = [0, 0, h]) and (d) 1.75R0

from the centre (x = [0, 1.75R0, h])

is dependent on Froude number (see subplot in figure 7.8(a)). Case D2 expands

radially further from the surface than the lower Froude number cases, consistent

with the experiments of Song et al. (1992). The increased depth cannot be at-

tributed solely to the deeper surface depression, as the difference in ring depths

is greater than the difference in surface displacement (see figure 7.10). Surface

curvature results in the generation of opposite-signed vorticity, which forms a sec-

ondary ring outboard of the primary ring (see figure 7.10). The secondary ring is

far more intense in Case D2, 17.8% of the primary ring circulation compared to

1.4% for Case D1 (figure 7.11), due to the increased surface curvature, and induces

a downward impulse on the primary ring leading to the ring expanding radially at

a greater depth.

Figure 7.11 shows the evolution of the total circulation and the contribution of the



Chapter 7 Interaction of a vortex ring with an undisturbed free surface 88

PSfrag replacements

x/R0

z
/R

0

(a)

PSfrag replacements

x/R0

z
/R

0

(b)

Figure 7.10: Surface vorticity generation for laminar rings at (t− te)Γ0/R
2
0 =

20.75: (a) Case D1; (b) Case D2. — and – – – contours represent positive (ring)
and negative (surface) vorticity at increments of ωmax/10.

opposite-signed vorticity. As the ring propagates toward the surface the total circu-

lation decays slightly because vorticity in the wake leaves the co-moving logging do-

main (see figure 7.11). As the ring moves closer to the surface ((t−td)Γ0/R
2
0 ≈ 14)

the total circulation (thick lines in figure 7.11) starts to decay at a faster rate as

opposite-signed vorticity adds a negative circulation component (thin lines in fig-

ure 7.11). The decay rate is far greater for Case D2 as it generates more oppositely

signed vorticity due to its higher Froude number. For the Fr = 0 cases (F1 and

F2) the decay rate of total circulation also increases slightly, dispite the absence

of surface curvature and opposite-signed vorticity, due to a separate mechanism.

When the ring is at very small depths the tail of its vorticity profile touches the

surface and is canceled by its virtual image above the surface. Effectively this

produces a vorticity sink at the surface reducing the ring circulation.

As the ring expands parallel to the surface, the distribution of vorticity in the

core is modified from its unbounded profile. The distribution of vorticity becomes

stretched in the horizontal direction (figure 7.12(a)) and forms a wake of weak

vorticity, just as the unbounded ring does, but in the horizontal plane close to

the surface. In the vertical direction the distribution of vorticity is far narrower

and more Gaussian like (figure 7.12(b)). Figures 7.12(a) and 7.12(b) show the

distribution of ωθ in horizontal and vertical directions through the core centre.

Consequentially the wake is less apparent in the horizontal profile for Case D2 as

it lies on a horizontal plane that is closer to the surface than the core. Opposite-

signed vorticity is evident in both the horizontal and vertical core profiles for

Case D2 (see figure 7.12) revealing that the secondary vorticity wraps around

the primary ring. For Case D1 the opposite-signed vorticity is only revealed in
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number: — , Fr = 0; – – – , Fr = 0.3; – · – , Fr = 0.6 (laminar cases). Thick
lines denote total circulation, thin lines denote the contribution from opposite-

signed vorticity generated at the surface due to surface curvature.

the vertical profile close to the surface. It is noted, for the low Froude number

case, that a region of isolated grid-scale vorticity exists directly below the surface

(revealed in the vorticity contours of figure 7.10(a)) resulting from small localised

movements in the surface. Since the vorticity is tiny compared to the ring it does

not affect its motion below the surface.

7.3.2 Instability growth

Case F2, which features a thin core at Fr = 0, was interpolated a number of

times, allowing the ring to be simulated to a greater radial expansion. Prior to

embedding, Case F2 was evolved for 40 time units in an unbounded domain. The

ring had thus already begun to develop the Widnall instability. Although in the

early stages, and not yet visible in isosurface plots of ω or II, an azimuthal modal

decomposition (following the method layed out in § 6.5.2) reveals that n = 10 and

n = 11 are the most unstable modes at the time of embedding; see figure 7.13(a).

Cross referencing figures 7.13(a) and (7.13(b)), we see that as the ring propagates

toward a depth of approximately one radius, modes 9, 10 and 11 are amplified
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Figure 7.12: Comparison of the distribution of ωθ through the centre of the
core in the (a) x- and (b) z-directions for Cases – – – , D1 and — , D2 at

(t− te)Γ0/R
2
0 = 20.34 and (t− te)Γ0/R

2
0 = 20.75 respectively.

due to the Widnall instability. Between times (t − te)Γ0/R
2
0 = 14 → 19 the ring

expands radially, and the modes decay with the exception of n = 1 which continues

to amplify. The modal decay continues until the ring approaches R ≈ 2R0 at which

point the ring is very close to the surface. Only selected modes are plotted in figure

7.13(a) for clarity, but as the ring continues to expand radially, all modes amplify

with a similar growth rate, except for n = 1 and n = 22 whose growth rates are

affected by nonlinear modal interactions.

The amplification of a broad spectrum of modes can be explained by examining

the linear stability results of Crow (1970). The radial expansion causes the ring

curvature to decrease, thus locally the core and its image begin to approximate

line vortices. Crow (1970) showed that for line vortices, the instability wavelength,

growth rate and perturbation angle were a function of d̂/k̂ (see § 2.2.1). In our case,

the close proximity of the core to the surface means that the vortex spacing b is

of order the core diameter D, hence D/b ≈ 1 and d̂/k̂ ≈ 0.3210 follows from (2.5).

For d̂/k̂ ≈ 0.3210 figures 10, 11 and 12 in Crow (1970) give the most amplified

wavenumber kmax = 1.25, maximum amplification rate αmax = 0.78 and a planar

angle of maximum amplification of 42◦.

In the example of the line vortices there is no stretching of the vortex filaments and

the most amplified mode nmax corresponding to kmax remains constant with time.

For the case of a vortex ring nmax is the integer number of waves of wavelength
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Figure 7.13: Instability development for Case F2: (a) Evolution of selected
azimuthal modal energies: · · · , n = 1; – – – , n = 10; – · – , n = 11; – · · – ,
n = 12; — , n = 22; – · · · – , n = 23; (b) Change in ring radius and depth
with time; (c) Most amplified mode predicted by the stability analysis of Crow
(1970); (d) Modal growth rates: same line styles as subfigure(a); — denotes

αmax = 0.78 (Crow, 1970).

λmax that can fit around the ring circumference, thus

nmax = (2πR) /λmax, (7.2)

where λmax = (2πb/kmax) and the vortex separation b is approximated as twice

the depth. However, since the ring circumference increases as it expands below

the surface the circumference increases one would expect nmax to increase corre-

spondingly (see figure 7.13(c)). The rapidly changing nmax appears to contradict

the broadband modal amplification shown in figure 7.13(a). However, analysing

figures 6 and 9 in Crow (1970) for the case where d̂/k̂ = 0.3210, reveals that a

broad range of wavenumbers (and corresponding wavelengths) are unstable, all
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Figure 7.14: Development of the Crow instability for Case F2 at time (t −
te)Γ0/R
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0 = 26.6 visualised by two isosurfaces of |ω|. Dark and light surfaces
correspond to |ω|R2

0/Γ0 = 14 and |ω|R2
0/Γ0 = 2 respectively.

with similar amplification rates. Thus although the most amplified azimuthal

wavenumber changes rapidly with time, a broad range of modes are similarly am-

plified leading to the observed broadband modal growth. Figure 7.13(d) shows

good agreement between our modal growth rates and the theoretical prediction

αmax = 0.78 (Crow, 1970). Our modal growth rates are all slightly below the max-

imum theoretical value. Note n = 1 and n = 22 are not plotted as their growth

rate is the product of nonlinear interactions between modes.

In the later stages of the simulation the most unstable mode, n = 11, and its higher

harmonic, n = 22, are greatly elevated above the rest of the modes (7.13(a)). This

results in near uniform wave growth around the circumference of the ring (figure

7.14) and a correspondingly small n = 1 mode. This contrasts greatly to the

modal development of the unbounded ring as the Widnall instability excites a

narrow band of modes whose nonlinear interactions lead to a large n = 1 mode.

The selection of a dominant single mode is consistent with the experiments of both

Song et al. (1992) and Lim & Nickels (1992).

7.4 The surface interaction of transitional rings

As discussed in § 6.5.3 the transitional phase is marked by the reorganisation of the

outer core into a series of counter rotating loops which encompass the sinusoidally

deformed inner core. The secondary structure is at the early stages of its evolution

at the time of embedding (figure 7.2(a)). As the ring propagates toward the

surface, the loops develop as the inner core distortion intensifies due to the Widnall
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instability (see figure 7.15). The ascent of Case D3 induces a surface bulge, which

is smaller in height compared to the laminar Case D1, due to the lower ring

circulation and more diffuse core. However, for Case D3 the bulge is not circular

but has a modulated wavy pattern as shown in figure 7.16(a). Comparing the

surface bulge to the ring structure below, the surface modulation is in phase with

the wavy inner core below. As the ring moves closer than approximately one

radius of the surface it expands radially, forming a surface depression which is also

modulated by the wavy inner core, as shown in figure 7.16(b).

The secondary structure is located in the ring periphery, consequentially, as the

depth of the ring decreases it becomes in close contact with the surface. As in the

unbounded domain neighbouring loops form next to one another in pairs but at

the surface the loops move apart in the interior of the ring (indicated with arrows

in figure 7.17(a)) and reconnect with the surface at their outer periphery (labeled

by solid circles in figure 7.17(a)). The surface-normal vorticity ωz field is shown in

figure 7.17(b) in which the corresponding reconnection sites are also highlighted

with solid circles. The neighbouring sites are of opposite sign, consistent with

the counter rotating secondary loops. Also shown in figure 7.17(b) are regions of

ωz that lie between neighbouring loops of the secondary structure, highlighted by
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Figure 7.16: Free surface response to a transitional vortex ring (Case D3), light
regions correspond to elevation, dark regions to depression: (a) (t− te)Γ0/R

2
0 =

15.21; (b) (t− te)Γ0/R
2
0 = 19.93.

dashed circles. They are also arranged in counter rotating pairs and correspond

to the outer periphery of the inner core. Although the Fr is low, the small surface

displacement does produce a small amount of opposite-signed vorticity (≈ 0.5% of

the primary ring circulation) due to the curvature of the surface, which forms a sec-

ondary ring as in the laminar case. It is possible that the secondary ring stretches

the outer periphery of the inner core to form the reconnection sites, consistent with

the observations of Zhang et al. (1999) who simulated rings propagating at angles

toward the surface. The surface displacement corresponding to the reconnecting

ring is shown in figure 7.17(c). Notably there are no small surface indentations

corresponding to the reconnecting filaments as seen in the experiments of Song

et al. (1992). This is probably because the filaments are not yet fully connected

to the surface, as ωz at the surface is small. Further interpolation and simulation

would presumably lead to the intensification of ωz as both the secondary struc-

ture and the ring reconnect fully with the surface. Also evident either side of the

depression, but more so on the interior, are local surface elevations which, like the

depression, are also likely to be a result of the wavy inner core below.

The results of the transitional ring investigation have implications for the inter-

pretation of the results of Song et al. (1992). The reconnection of Case D3 differs

from the laminar instability and interaction, demonstrated by Case F2, due to

the presence of the secondary structure. Its behaviour does, however, bear some

resemblance to the high Re and Fr case of Song et al. (1992). Unlike their lower Re
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Figure 7.17: Surface reconnection of the secondary structure for Case D3 at
time (t− te)Γ0/R

2
0 = 21.85: (a) Double isosurface of |ω| at levels; |ω|R2

0/Γ0 = 4
(dark) |ω|R2

0/Γ0 = 1.5(light). Arrows denote splitting apart of neighbouring
secondary structure in the ring interior, circles denote reconnection sites; (b)
Corresponding ωz on the surface at contour increments ωmax

z /5, thicklines de-
note negative vorticity; (c) Surface elevations.
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Figure 7.18: Contours of ωθ on the y = 0 plane for turbulent Case D4 at (a)
(t− te)Γ0/R

2
0 = 12.75 and (b) (t− te)Γ0/R

2
0 = 25.4. — increments of ωmax

y /20,
···· increments of ωmin

y /20 (negative). Thick solid line denotes surface location.

and Fr case, small surface indentations were seen outboard of the depression. Our

results suggest that the indentations are due to the reconnection of the secondary

structure. We speculate that the high Re leads to an aggressive amplification of

the Widnall instability causing a transitional state to be reached as the ring im-

pacts on the surface. This speculation is prompted by their early observation of

three dimensional structure as the ring moved close to the surface. The surface

striations seen across the depression could also be due to the wavy core structure

below, as revealed by the localised elevations in figure 7.17(c).

7.5 The interaction of turbulent rings

As recorded in § 6.5.3, the onset of turbulence is marked by the shedding of sec-

ondary structure as a series of hairpin vortices. The process of instability growth
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Figure 7.19: Surface elevations for turbulent Case D4 at times: (a) (t −
te)Γ0/R

2
0 = 18.21; (b) (t− te)Γ0/R

2
0 = 25.4.

and the resulting onset of turbulence is not equal around the azimuth of the ring

(see 6.5.3). For example, the turbulent core is more developed on the left-hand-

side of figure 7.18(a) as the ring propagates toward the surface. The core develops

as if unbounded until it reaches a depth of approximately one radius, where its

dynamics are modified by its image above the surface. Its ascent induces a surface

bulge, of smaller height than the laminar and transitional cases, as shown in figure

7.19. The bulge has no clear pattern reflecting the arrangement of the disorganised

vorticity filaments below the surface.

The subsequent radial expansion below the surface has a profound effect on the

structure of the turbulent core. As the core expands the swirling vorticity fila-

ments that comprise the core region stretch and tilt into the radial plane. Figure

7.18(b) shows that the cores begin to find a greater degree of organisation or co-

herency. The swirling filaments then merge together to form a more defined core

region and the opposite-signed vorticity, present on either side of the ring in figure

7.18(a), is either shed into the wake or canceled. The structure of the expanding

ring resembles a turbulent thin-core ring (see figure 6.19(b) § 6.5.3) although with

greater coherency in the core region. A similar phenomena was also seen in the

numerical study of Teixeira & Belcher (2002) for a fully turbulent flow under a

planar propagating wave field. The Stokes drift of particles below the waves tilted

and stretched normal vorticity into the horizontal plane forming elongated stream-

wise vortices. We expect that future simulations of the ring to longer times than

considered here could increase the core’s coherency, such that it may become sus-

ceptible to the Crow instability, leading to reconnection to the surface in a series of
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Figure 7.20: Contours of ωz showing reconnection of vorticity filaments at the
surface for turbulent Case D4 at time (t− te)Γ0/R

2
0 = 25.4. Contour increments

are ωmax
z /10. Solid and broken lines represent positive and negative vorticity

respectively.

turbulent U-shaped vorticity filaments. This requires further interpolation of the

flow and must be left for future studies after the free-surface code is parallelised.

The turbulent core does not expand at a constant depth around the azimuth of

the ring (see figure 7.18(b)). Consequentially the depth of the surface depression

is not constant but deeper near regions of the ring where the core is closer to

the surface, as shown in figure 7.19(b). The turbulent nature of the core means

that its depth around the azimuth changes continually and the surface elevations

change accordingly. Reconnection also occurs as the swirling core filaments come

in close contact with the surface, as shown in figure 7.20. The pattern of the

reconnection sites reflects the random nature of the core below and it is noted
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that once reconnected with the surface, the filaments do not appear to detach

during the simulation.



Chapter 8

Interaction of a laminar vortex

ring with a surface wave field

In this chapter we document some aspects of the vortex ring interaction with a free

surface that features a small amplitude gravity wave field. We start by formulating

the mathematical description of the problem in § 8.1, followed by the numerical

approach employed in § 8.2. In § 8.3 we describe the particular cases studied and

their parameters. The results are given in § 8.4 along with a discussion of how the

vortex modifies the waves (§ 8.4.1) and how the waves influence the evolution of

the vortex (§ 8.4.2).

8.1 Mathematical background

We consider a single vortex ring of radius R and core radius δ, with circulation

Γ and Reynolds number Re ≡ Γ/ν, with impulse P (defined in § 6.1). The ring

propagates in the z-direction, with respect to Cartesian coordinates x = (x, y, z),

toward a free surface, of Froude number Fr = Γ/
√
gR3, with corresponding veloc-

ity components u = (u, v, w); see figure 8.1. The vortex is embedded at depth d0

such that it is centred about x = (0, 0, d0) at time t = 0 . The surface has a planar

gravity wave field of amplitude a, wavelength λ, and celerity c, which propagates

in the x-direction. In discussing the surface waves, we refer to waves that are yet

to pass over the ring as being ‘upstream’ and waves that have passed over the ring

as being ‘downstream’ (figure 8.1). We ignore the effects of surface tension and

surfactants in our formulation, as we are principly interested in the interaction
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Figure 8.1: Schematic diagram of the vortex ring interaction with a surface
wave field. The shaded region denotes the co-moving logging domain. Compu-
tational domain includes 0.22R0 of cells above the average surface position to

capture surface movement.

of large vortex rings (R ≈ 10m) produced by submersible vehicles. Therefore we

exclude surface ripples and focus on the gravity waves.

8.2 Numerical Approach

The Cartesian computational domain assumes periodic boundary conditions in

both the x and y-directions, so that we are, in effect, simulating an infinite array

of rings. The presence of the gravity wave field requires that free-surface boundary

conditions (see § 4.3.1) are imposed on the upper (z = 0) boundary. We therefore

simulate the interaction using the free-surface code outlined in § 4.3. Impermeable

free-slip boundary conditions are imposed in the horizontal plane at the lower

extent of the z-axis. The initial ring velocity field was prescribed by embedding

a vortex ring which has previously been evolved within the unbounded domain,

following the method described in § 5.2.1. The initial field was completed by
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Case Fr k/Lx a/R0 cR0/Γ0 ∆tΓ0/R
2
0

W1 0.3 2 0.04 1.9616 0.004779
W2 0.3 4 0.04 1.3871 0.006759
W3 0.3 8 0.04 0.9808 0.009558
W4 0.3 4 0.02 1.3871 0.006759
W5 0.3 4 0.08 1.3871 0.006759
W6 0.3 2 0.08 1.9616 0.004779
W7 0.6 2 0.04 0.9808 0.009558

Table 8.1: Table to show wave parameters: wavenumber k; amplitude a;
celerity c. Also shown is the simulation time step ∆t. All parameters nondim-

sionalised by ring lengths.

linearly superimposing the surface wave train and its associated velocity field (see

§ 5.2.2).

The ring circulation, impulse and radial measures (defined in § 6.1) are calculated

in a co-moving cubic logging domain (see shaded region of figure 8.1) whose top

and bottom is 2R0 from the ring centre. By employing a co-moving logging domain

the ring wake trails behind and does not distort the integral ring measures. When

the ring moves near to the surface, only the contribution of active cells (under

the surface) with ωθ ≥ 0.0 enter the ring integrals, to avoid the contribution of

vorticity generated due to surface curvature.

8.3 Simulation Parameters

We investigate the problem by examining the cases in table 8.1, which allow us to

consider the effects of Froude number, wavenumber and wave amplitude on the ring

interaction with a surface wave field. For all cases an identical thick-core laminar

ring was embedded within the computational domain at an initial depth d0 =

3.49R0, where the zero subscript corresponds to an initial parameter at the time of

embedding. The ring has been evolved for 40 non dimensional time units within the

unbounded domain and has initial parameters: R0 = 1.147; ε0 = δθ/R0 = 0.333;

and Γ0 = 0.907. The computational domain had dimensions Lx = Ly = 6.98R0

and Lz = 7.2R0, with Nx = Ny = 128 and Nz = 132 grid cells respectively.

Four grid cells are included above the average surface location to capture surface

movement. Cases W1-3 feature a surface wave field with identical amplitude and
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Froude number but varying wavenumber. The effect of wave amplitude can be

assessed through comparison of Cases W2,W4 and W5 which feature the same

wavenumber and Froude number. Case W6, with its large amplitude and low

wavenumber, possesses the most energetic wavefield. Finally, Case W7 allows us

to investigate the effect of Froude number through comparison with Case W1.

In presenting the results we nondimensionalise flow quantities by R0 and Γ0, given

above. Since the aim of these simulations is an exploratory study, we have reduced

the grid resolution and hence duration of the simulations, to allow us to make best

use of available computational resources.

8.4 Results

8.4.1 Surface wave deformation

The degree to which the vortex ring distorts the surface wave train is dependent on

the Froude number, wave amplitude and wavenumber. Let us consider the surface

response from the view point of a wave approaching the vortex ring. As the wave

nears the ring, the surface velocity field induced by the ring (figure 8.2(a)) opposes

its motion. Consequentially the ring ‘diffracts’1 the waves, with the central region

lagging behind the rest of the wave (figure 8.2(b)). As the wave passes over the

ring centreline (x = 0) the ring velocity field changes direction and accelerates the

centre of the wave. Gradually the wave moves back in phase with itself downstream

of the ring. A similar type of wave diffraction was observed in the experiments of

Vivanco & Melo (2004), which featured a vortex dipole aligned perpendicularly to

a planar wave train. The degree to which the wave diffracts is dependent on the

wavelength and amplitude of the wave. Short wavelength, small amplitude waves

are distorted to the greatest degree by the vortex, whereas the larger amplitude

cases are only diffracted by a small amount (compare figures 8.2(b) and 8.2(c)).

The wave diffraction intensifies as the ring moves closer to the surface and expands

parallel to it.

The investigation of a laminar vortex ring with an initially undisturbed free surface

(§ 7.3.1) has shown that the radial expansion of the ring forms a surface depression

(see figure 7.9). As the ring expands in the presence of a surface wave field, short

wavelength waves radiate across the surface. The secondary waves are of small

1We use the term ‘diffraction’ to refer to the bending of the surface waves.
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Figure 8.2: Wave diffraction. (a) A typical surface velocity vector field induced
by a vortex ring on a surface without waves, Case S1, core region marked with
isosurface of II, at (t − te)Γ0/R

2
0 = 15.15. (b) Surface field for Case W3 at

(t − te)Γ0/R
2
0 = 15.15 showing large-scale wave diffraction. (c) Surface field

for Case W6 at (t − te)Γ0/R
2
0 = 15.15 showing small-scale wave diffraction.

Direction of wave motion indicated by arrow, crests lightly shaded, troughs
darkly shaded.

amplitude compared to the wave train and appear to originate from the surface

depression. Initially the secondary waves radiate in the positive and negative x-

directions (figure 8.3(a)), but as the ring expands further, the waves radiate from

around the entire circumference of the ring 8.3(b). The secondary wave field is

analogous to that caused by a droplet falling on an initially flat pool of fluid. In
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Figure 8.3: The generation of secondary waves for Case W1, the wave train
propagates from left to right with crests lightly shaded and troughs darkly: (a)

(t− te)Γ0/R
2
0 = 18.04 (b) (t− te)Γ0/R

2
0 = 20.25

the case of the droplet, the waves are radiated due to rapid surface oscillation

caused by the collision. In this case the stimulus appears to be the interaction of

the surface wave train with the surface depression induced by the ring.

It is noted that the secondary wave generation is more pronounced for cases with

large wavelength and small amplitude, greatest for Case W1. Case W4, which

features medium wavelength, small amplitude waves also radiates prominent sec-

ondary waves but with wavelength noticeably smaller than for Case W1. Measur-

ing the distance between successive wave crests shows that the wavelength of the

secondary waves is approximately one quarter of that of the wave train. Cases W3

and W5 show only small signs of secondary wave generation. Case W3 was ter-

minated before the other cases due to violation of the surface maximum slope

condition (4.8). However, at the time of termination it showed far less secondary

wave generation than all of the other cases except Case W5.

The elevation history of two points located on the surface at the centre, x =

(0, 0, h) and downstream of the ring at (2.15R0, 0, h) are shown in figure 8.4. Fig-

ures 8.4(a) and 8.4(c) show the entire history, while figures 8.4(b) and 8.4(d) focus

on the elevation history after the secondary waves have been generated. Consid-

ering first the elevation at the centre of the domain, figure 8.4(a), a noticeable

peak occurs at 14 ≤ tΓ0/R
2
0 ≤ 19 which corresponds to the ring inducing a surface

bulge. The surface elevation at x = (2.15R0, 0, h) follows an approximately con-

stant sinusoidal motion until time (t−te)Γ0/R
2
0 = 16, at which point the secondary
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Figure 8.4: Plots of surface elevation for Case W1 at two points located at:
(a)&(b) x = (0, 0, h); (c)&(d) x = (2.15R0, 0, h).

waves are evident, superimposed on top of the planar wave train. The secondary

waves radiate toward the domain boundaries and not toward the ring centreline

as the elevation history in figure 8.4(b) continues to follow a sinusoidal path. The

crests of the planar wave train at (t − te)Γ0/R
2
0 = 19.7 and (t − te)Γ0/R

2
0 = 22.7

in figure 8.4(d) correspond to depressions of the secondary wave field. The fig-

ure shows that the amplitude of the secondary waves increase slightly with time.

It is likely that this occurs due to the stretching of the ring below the surface,

which intensifies the local vorticity and associated velocity field, increasing the

size of the surface depression with time. The amplitude of the secondary waves at

(t− te)Γ0/R
2
0 = 19.7 and (t− te)Γ0/R

2
0 = 22.7 is approximately 5–10% of that of

the wave train.
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Figure 8.5: Evolution of total circulation for surface wave cases (solid lines
highlighted with symbols): ∗, Case W1; �, Case W2; ∇, Case W3; ∆, Case W4;

+, Case W5; ◦, Case W6; – – – , Case W7.

8.4.2 Vortex dynamics

We now consider the effect of the wave train on the vortex ring. As the ring

moves close to the surface the combination of the curvature of the surface wave

field and the ring’s velocity field creates opposite-signed vorticity, which reduces

the total circulation (see figure 8.5). The magnitude of the surface vorticity de-

pends on both the local surface curvature and the tangential flow velocity below

(Longuet-Higgins, 1998). Cases with shorter wavelength and larger amplitude

waves therefore generate the greater amount of surface vorticity by virtue of hav-

ing higher surface curvature. For this reason the total circulation, which is the sum

of the positive ring circulation and negative surface-curvature-induced circulation,

decays fastest for cases W3 and W5 by virtue of their higher wave curvature. The

higher Froude number Case W7 also features a sharp fall in circulation and will

be addressed below.

We first consider the low Froude number cases. The magnitude of the opposite-

signed vorticity varies from case to case dependent on the degree of curvature of

the waves. For cases with high wave curvature, such as W2, W3, W4 and W5,

the opposite-signed vorticity is strong enough to make the ring expand asymmetri-
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Figure 8.6: Vortex rebound for Case W5. ωy contours plotted at increments
of ωmax

y /10 with solid and broken lines corresponding to positive and negative
contours respectively. Surface elevation shown by thick solid line. Subplots at
times: (a) (t− te)Γ0/R

2
0 = 16.53; (b) (t− te)Γ0/R

2
0 = 19.28; (c) (t− te)Γ0/R

2
0 =

22.04; and (d) (t− te)Γ0/R
2
0 = 24.79. Waves propagate from left to right.
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cally. Figure 8.6 demonstrates a typical vortex ring interaction with high curvature

surface waves. To help describe the interaction we label the left-side core as the

‘upstream core’ and the right-side core as the ‘downstream core’. Initially the ring

expands symmetrically in the radial direction. However as the ring moves close

to the surface waves it begins to induce surface vorticity (figure 8.6(a)). Near the

upstream core the surface vorticity is of opposite sign but near to the downstream

core the surface vorticity is of the same sign as the ring (figure 8.6(b)). Consequen-

tially, as the downstream core expands radially it merges with the surface vorticity,

increasing the ring circulation locally. Since the surface curvature is far greater

at the upstream core, the opposite-signed vorticity quickly becomes of compara-

ble strength to the ring, and prevents it from expanding further in the upstream

direction (figure 8.6(c)). Indeed, the opposite-signed vorticity becomes so strong

that it wraps around the upstream core and locally the ring and surface vorticity

begin to rebound from the surface under their induced motion (figure 8.6(d)). At

the upstream extent, the ring behaviour is reminiscent of a ring rebounding during

the interaction of a vortex ring with an initially flat free surface featuring surfac-

tants (Chu et al., 1993). The downstream section continues to expand radially,

resulting in a distorted asymmetric ring that is bent away from the surface at the

upstream section. Due to their higher wave curvature, Cases W3 and W5 feature

significantly deeper rebounds than the rest of the cases.

The lower wavenumber cases, W1 and W6 show a different ring behaviour at the
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Figure 8.7: Sinusoidal variation in ring depth: ∗, Case W1; ◦, Case W6.
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Figure 8.8: Evolution of surface vorticity for Case W7. ωy contours plotted
at increments of ωmax

y /10 with solid and broken lines corresponding to positive
and negative contours respectively. Surface elevation shown by thick solid line.
Subplots at times: (a) (t − te)Γ0/R
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Waves propagate from left to right.

surface. As the rings move closer to the surface their depth varies sinusoidally,

with a period which matches that of the surface waves (see figure 8.7). For these

cases the wavelength of the surface waves are larger than the ring diameter. As

the surface waves pass over the expanding rings the wave crests induce an upwards

motion and the wave troughs induce a downwards motion, keeping the distance

to the surface approximately constant.

The total circulation decays fastest for the high Froude number case (W7) (figure

8.5). The ring behaves in a different way than the lower Froude number cases.

Due to the higher Froude number, the surface is more ‘malleable’ to the ring.

Thus the ring forms a larger surface depression as it expands under the surface.

The surface curvature is higher near the upstream core, thus the ring initially

generates opposite-signed vorticity at this location (figure 8.8(a)). This contrasts

greatly with the free-surface interaction in the absence of waves, where the surface

displacement and corresponding surface vorticity is constant around the circum-

ference of the ring, resulting in a symmetric ring expansion. As the ring expands

below the surface, the core vorticity intensifies through stretching, and the tangen-
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tial velocity below the surface increases. This leads to opposite-signed vorticity

developing outside the downstream core, but of lower circulation than the cor-

responding upstream vorticity (figure 8.8(b)). The generation of opposite-signed

vorticity around the entire circumference of the ring leads to a higher decay rate

of the total circulation than the lower Froude number cases. This is because the

lower Froude number cases only produce opposite-signed vorticity upstream of the

ring and instead produce co-rotating vorticity downstream of the ring.
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Summary

9.1 Investigation of vortex ring evolution from a

laminar to a turbulent state

Our investigation of the evolution of a vortex ring from a laminar to a turbulent

state has uncovered many previously unreported and interesting physics. One im-

portant finding is the difference in evolution of thin- and thick-core vortex rings.

Analysis of integral measures of vortex ring geometry has shown that the slender-

ness ratio (ε = δ/R) has a strong influence on the evolution of the ring geometry

and dynamics. The diffusion of thin-core rings is well described by Saffman’s equa-

tion (2.3) (Saffman, 1970). However the core diffusion of thick-core rings (ε > 0.36)

is limited by the ring centreline and the presence of the entrainment bubble sur-

face, which clips the outer edge of the vorticity distribution. It was found that as

ε increases the vorticity distribution within the core becomes increasingly skewed

with a steepening of the vorticity profile in the vicinity of the entrainment bub-

ble surface and greater vorticity diffusion into a laminar wake. The skewing of

the vorticity distribution also has a strong effect on the ring translational velocity,

leading us to define an expression for the constant in the classical velocity equation

as a series expansion of ε (6.9).

The simulations have shown that thick-core laminar rings produce a substantial

wake, due to the initial adjustment to a non Gaussian vorticity distribution and

as a result of vorticity detrainment. This has implications for periodic computa-

tional domains, used for example by Shariff et al. (1994) to establish a viscous

correction to the inviscid growth rate of Widnall & Tsai (1977); we have shown

112
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that the interaction between the ring and its recycled wake increases the growth

rate of the linear Widnall instability. We have presented new revised growth rates

from simulations using inflow and outflow boundary conditions in the axis of ring

propagation. By modifying the viscous correction to use instantaneous values of

the ring parameters we find close agreement for the growth rates of both thin- and

thick-core rings.

Visualising the vortex ring transition to turbulence has highlighted the importance

of secondary vortical structure, which develops when the inner core instability

waves are of large enough amplitude. The secondary structure is formed through

tilting and stretching of the outer or ‘halo’ core vorticity. It develops as counter-

rotating neighbouring loops of vorticity that meet one another at saddle points to

form an interwoven mesh around the inner core region. It was shown, by analysing

Lagrangian pathlines of fluid particles entrained into the vortex ring bubble, that

the secondary structure initiates localised detrainment zones prior to the onset

of turbulence. The latter stages of transition are marked by the protrusion of

the secondary structure outside the entrainment bubble, causing it to trail behind

into the wake. The loops detach and reattach with their neighbour to form hairpin

vortices that are deposited into the wake. The local equilibrium between the inner

core and the halo vorticity is broken and the ring becomes locally turbulent where

the hairpin vortices were ejected. Lagrangian particle analysis of the core region

during the transitional phase has shown the generation of an inner region of axial

flow which moves along the vortex core centreline toward the region of greatest

core stretching. The outer region moves in the opposing direction consistent with

the experimental observations of Naitoh et al. (2002) for naturally evolved rings.

The dominance of the n = 1 mode during transition was found to influence the

magnitude of the axial flow. The structure of the resultant turbulent ring was

found to depend on ε, with thin-core rings maintaining a core region of organised

vorticity. During the turbulent phase discrete vortical structure is shed from the

ring in the form of hairpin vortices.

9.2 Interaction of a vortex ring with an undis-

turbed free surface

The orthogonal interaction of a vortex ring with an undisturbed free surface was

found to differ dependent upon the condition of the ring: whether laminar; tran-

sitional; or turbulent. During the ascent of laminar rings the Widnall instability
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develops until the ring approaches a depth of approximately one radius, giving the

ring an azimuthal structure. The degree to which the structure and corresponding

azimuthal modes are amplified depends on the duration of the ring approach to the

surface, the Reynolds number and the ring slenderness ratio. The ring approach

induces a circular surface bulge, but as the ring moves closer than one radius its

dynamics begin to be strongly influenced by its virtual image above the surface

and the bulge drops. The Widnall instability is suppressed as the ring expands

and a depression forms on the surface above and outboard of the ring. The az-

imuthal modes, which define the structure of the unstable ring, decay until the

ring expands to approximately twice its initial radius. At this point the ring and

its virtual image locally resemble two line vortices and the ring becomes unstable

to the Crow instability. The instability amplifies a broadband spectrum of az-

imuthal modes at a higher growth rate than the Widnall instability. The growth

rates of the modes compare well with the stability analysis of Crow (1970). As

all of the modes are amplified at similar growth rates, the dominant mode is pre-

selected by the development of the Widnall instability as the ring approaches the

surface. The experiments of Song et al. (1992) and Lim & Nickels (1992) suggest

that the instability eventually leads to reconnection of the wavy core region with

the surface, however the ring was not expanded far enough here for this to occur,

due to constraints on the resolution and domain size.

Surface displacement scales with the square of the Froude number. The curva-

ture, associated with the displacement of the surface into a depression, produces

opposite-signed vorticity, which roles up to form a secondary ring outboard of the

expanding primary ring. This leads to a decay in the total circulation approxi-

mately equal to the circulation of the secondary ring, larger for the higher Froude

number cases. Another mechanism for circulation decay at the surface is brought

about by the tail of the ring’s vorticity profile touching the surface. This cancels

with its virtual image above the surface, reducing the ring circulation, and occurs

with or without surface curvature present. The secondary ring affects the depth

of the ring during its expansion below the surface. If the secondary ring is signifi-

cantly strong it induces a downwards component on the primary ring, causing it

to expand below the surface at a greater depth.

Analysis of a transitional ring has given some explanations for the experimental

observations of Song et al. (1992). The reorganisation of the transitional ring to

a wavy inner core encapsulated by a series of counter-rotating loops of weaker

vorticity modifies the ring/surface interaction. At first the initial surface bulge is

modulated into a wavy pattern which reflects the shape of the ring’s inner core
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region. The wavy pattern is also present in the subsequent surface depression,

which forms as the ring expands. The impact of the peripheral looping structure

on the surface results in the splitting of neighbouring loops, which reconnect with

the surface in the outer ring periphery. This is the likely source of the surface

indentations reported by Song et al. (1992). Reconnection of the inner core region

was also found, commencing toward its outer extent.

As the turbulent ring expands below the surface, the filaments that comprise its

core region are stretched in the radial direction. This gives the initially thick-core

a degree of coherency as it becomes thinner, reminiscent of a thin-core turbulent

ring. Surface reconnection occurs as the swirling core filaments impact on the

surface. The reconnection sites and surface displacements follow no clear pattern,

reflecting the turbulent nature of the core below.

9.3 Interaction of a laminar vortex ring with a

surface wave field

This exploratory study has highlighted a number of physical features of the inter-

action of a vortex ring with a surface wave field, which can be grouped into wave

effects and ring effects. The ring approach to the surface causes diffraction to the

gravity wave field. The degree to which the ring diffracts the waves is found to be

a function of the wave amplitude and wavelength. Wave diffraction is larger for

gravity waves with small wavelength and amplitude. As the ring expands radially,

its velocity field forms a depression on the surface, from which small-amplitude

waves radiate. These secondary waves are more pronounced for large wavelength

and small amplitude gravity wave trains. Surface curvature, associated with the

waves and surface displacement induced by the ring, produces surface vorticity

which reduces the total circulation. For the low Froude number cases the surface

vorticity is of opposite sign to that in the core upstream of the ring and co-rotating

downstream of the ring. Cases with high wave curvature produce large amounts of

surface vorticity, which restricts the ring from expanding in the upstream direction

and results in a highly asymmetric expansion. If the curvature is sufficiently high,

the opposite-signed vorticity wraps around the upstream core and the ring re-

bounds locally from the surface. For cases with low curvature and large amplitude

waves, the ring depth is modified by the wave field. The ring moves sinusoidally up

and down following the wave crests and troughs, remaining an approximately con-

stant distance from the surface. The high Froude number case produces a surface
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depression, which is sufficiently deep to generate opposite-signed vorticity around

the entire ring azimuth. This results in a faster decay of the total circulation than

the lower Froude number cases. The high Froude number case also expands with

a slight asymmetry as the higher wave curvature near the upstream extent of the

ring produces greater opposite-signed vorticity than the downstream extent.
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Future work

10.1 Investigation of vortex ring evolution from

a laminar to a turbulent state

The area of greatest potential for further work is the turbulent vortex ring which

has only been touched upon by this project due to time constraints. A database

of velocity fields has been generated for both the thick- and thin-core vortex rings

(Cases A1 and B3) and awaits analysis. The subject of future work could be

the structure of the turbulence in the core region. Turbulent statistics for the

ring could be compared to those of other turbulent flows such as wakes and jets.

This may help us to distinguish between different types of turbulent motions in

the ocean and determine their sources. It would also be feasible to investigate

the entrainment and detrainment characteristics of the turbulent ring using a

Lagrangian particle approach as conducted here for laminar and transitional rings.

This may go some way to justifying the inferences of Glezer & Coles (1990) that

vortex tubes of alternating sign are wrapped around the turbulent core influencing

entrainment and detrainment of fluid. It is also of interest to determine the end

point of the turbulent ring. Will the rings relaminarise, as in the experiments of

Wiegand & Gharib (1994), or will they become increasingly diffuse through the

influence of viscosity?
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10.2 Interaction of a vortex ring with an undis-

turbed free surface

The investigation into the orthogonal interaction of a vortex ring with a free surface

has answered a number of questions brought up by previous experimental work.

However, the distance through which the ring has been able to expand below

the surface has been limited by the resolution and domain size. Parallelisation

of the free-surface code would alleviate this problem allowing larger domain sizes

and greater grid resolution. This would allow both the laminar and transitional

rings to develop to the point of surface reconnection. In this way the influence of

surface curvature on the development of the Crow instability could be investigated.

Further expansion of the turbulent ring is also of interest as the ring appears to be

relaminarising in the present simulations. The combined influences of the Widnall

and Crow instabilities have been shown by simulating a single ring in the fixed-

boundary code. Repetition of this simulation with rings of differing slenderness

ratio and Reynolds number will allow us to explore the Crow instability further.

10.3 Interaction of a laminar vortex ring with a

surface wave field

A number of previously undocumented phenomena have been uncovered by our

exploratory investigation. The main task of future work is thus to improve the

current simulations to give greater confidence in the results. Firstly the simulations

have been conducted at a relatively low grid resolution, which although adequate

to expose the main flow features, does not capture the ring instability or fine-scale

surface vorticity well. Larger, more refined, simulations need to be carried out to

assess the grid dependency of the results.

As the domain is periodic in the lateral directions the surface waves are recycled

through the domain. Any distortion to the wave field thus interacts with the ring

on subsequent passes. This produces a feedback mechanism which may influence

the results. It is also noted that secondary waves radiate across the surface as the

ring expands. They too have the potential to pass through the periodic boundaries

and interact with the ring. Two methods present themselves to alleviate the

periodic-boundary problem. One option is to greatly increase the lateral boundary

lengths and by doing so prevent distorted waves from interacting with the ring.
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The success of this option depends on parallelisation of the free-surface code and

the time period through which the ring is to be simulated. An alternative method

might utilise the flowfields from the ring interaction with an undisturbed free

surface. A gravity wave field could be linearly superimposed onto the initially

undisturbed surface. The simulation could then be performed until the wavefield

passed over the ring for a second time. At which point the simulation could be

ceased and a new simulation started by superimposing a wave train on a flow

field (from the initially undisturbed ring/surface interaction) at a later time. By

simulating each flowfield for a relatively short time period the wave physics and

ring behaviour could be deduced without the contamination of wave reflections.

A possible drawback of this method is that a sinusoidal wavefield, as employed

to currently initialise the gravity waves, is not a good approximation of the wave

field when the ring becomes close to the surface.
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Included below is an outline of the split merge technique employed by the free

surface code to update the surface elevations. A full description can be found in

Thomas et al. (1995).

11.1 Outline of the split-merge technique

The technique uses a simple surface locater which allows the surface height to be

related to the volume of cells directly below it. Note, as the code uses a staggered

grid only the pressure points are located at the continuity cell centres, whose fluid

volume are Fcijk. The staggered uijk, vijk, wijk cells have volumes Fxijk, Fyijk,

Fzijk respectively. The surface elevations hij are defined for both pressure cells

(hcij), and staggered cells (hxij and hyij) as equal to the height of the column of

fluid cells below,

hqij =
∑

k

Fqij/(∆x∆y) for all q ∈ c, x, y. (11.1)

The centred and staggered forms of F and indeed h must be mutually consistent,

this is achieved by enforcing

hxij =
1

2
(hci,j + hci−1,j), (11.2)

hyij =
1

2
(hci,j + hci,j−1). (11.3)
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Figure 11.1: The splitting and merging of surface cells.

There is a possibility that the cells directly below the surface could possess a

volume that approaches zero, forming a potential singularity in the Navier stokes

equations. This problem is alleviated by allowing surface cells to grow, split or

merge dependent upon the volume of fluid in the cell. If a surface cell becomes less

than half empty it merges with the cell below forming one large surface cell, with

the new velocity um and volume Fm updated to conserve momentum and mass:

lm = la + lb, um = laua/(la + lb)) + lbub/(la + lb). (11.4)

If the height of a merged cell then becomes larger than 3/2∆z it will its split into

two cells, a lower cell of dimensions ∆x × ∆y × ∆z and a partially filled surface

cell, the process is shown in figure 11.1. Each surface cell has a complete base, a

complete free surface and at least one neighbour in each horizontal direction, but

not necessarily confined to the same vertical level. A complication arises when

considering the surface level in relation to the centred (continuity) cells as shown

in figure 11.2. If we consider cell A to be the surface cell, the surface can be

present at any level between pressure points p1 and p2. However, dependent on

the position of the surface, there may or may not be a w-cell between the pressure

cell and the surface. For example, if the surface is above w2 (e.g. h2) the w-point

w2 will be present above the pressure surface cell, whereas if the surface is below

w2 (e.g. h1) the surface w-cell will be w1 and the pressure cell will not have a w-

point between it and the surface. In the first case the pressure point is an internal

cell and can be solved by the regular continuity equations, however if there is no

w-cell between the surface and the uppermost pressure cell, such as for the second

case, it is not possible to use the continuity equations and the pressure cell must

be updated through interpolation of the surface boundary condition, see below.
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The two different types of surface pressure cell are referred to as active and passive

respectively.

The reason for treating active and passive cells in different ways can shown when

considering continuity. Consider in 2D, the flux into pressure cell pc in figure 11.3,

the kinematic free surface boundary condition (4.9) in finite difference form can

be written as

dFc

∆xdt
= w2 − ub

(
lc − la
2∆x

)
− ud

(
le − lc
2∆x

)
. (11.5)

where −u(dh/dx) is approximated by a centre averaged value and the cell volume

Fc has been substituted for h (11.1). The rate of change of volume is simply equal

to the flux of fluid across the wet sides of the cell, thus

∂Fc

∂t
= ublb + w1∆x− udld. (11.6)

By eliminating lb and ld, through insistence that the staggered and centred surface

elevations are mutually consistent (11.3) and combining (11.5)& (11.6) we are left

with

lc(ud − ub) + ∆x(w2 − w1) = 0, (11.7)
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for the continuity equation in an active surface cell, which is the same as for

subsurface cells as lc becomes ∆z. However note that the equation does not hold

for passive surface cells for which w2 is absent.

11.1.1 Momentum terms for surface cells

When considering the momentum terms in (4.1) with respect to surface cells, we

must consider the cases in which neighbouring cells have common borders, as

shown in figure 11.4, but also neighbouring cells which have been split or merged

leaving jumps in the surface cell geometry as shown in figure 11.5. We consider

the 2D case to demonstrate the principles. The momentum flux across a surface

separating two cells is approximated by the average of the velocity of each cell

multiplied by the mass flux between the two cells. In the case of a surface cell

without jumps (figure 11.4) the momentum equation as applied to a staggered cell

(such as uc) is then

∂(lcuc)

∂t
=

1

2
(ua + uc)qb +

1

2
(uf + uc)qf −

1

2
(ue + uc)qd, (11.8)

where q denotes the mass flux. It is shown by Thomas et al. (1995) that this

scheme conserves kinetic energy.

The more complicated case of a jump between surface cells is shown for u and

w cells in figure 11.5. A jump occurs at a surface cell which has more than one

neighbouring cell on one or more sides. The method used to ensure continuity of

mass in such cases is, after enforcing continuity in the centred (Pressure) cells, to

first calculate the horizontal mass fluxes and then calculate the vertical fluxes by

explicitly enforcing continuity. Considering first the flux between u-cells (figure
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11.5(a)), the fluxes q′b and q′′b are found by calculating the average flux Q across

the interface denoted by subscript b, using

2Qb = laUa + l′cu
′

c + l′′cu
′′

c (11.9)

and then assuming constant flux we allot Qb in portion to the lengths l′b and l′′b
which gives

q′′b =
l′′bQb

l′′b + l′b
, (11.10)

q′b =
l′bQb

l′′b + l′b
. (11.11)

Fluxes q′d and q′′d are evaluated in the same way and q′c is sufficiently far from the

surface to be simply calculated by flux averaging w-velocities. To obtain the final

vertical flux q′′c we then impose continuity, thus

q′′c = q′c + q′b − q′d. (11.12)

The horizontal fluxes between pairs of w-cells are shown in figure 11.5(b). By

approximating u as constant across a w-cell interface and multiplying the velocity

by the area of the interface yields
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q′′a = (la −
∆z

2
)ua, (11.13)

q′′c = u′′c l
′′

c +
∆z

2
u′c. (11.14)

11.1.2 Viscous terms for surface cells

We now consider the influence of the split-merge technique on the contribution

of the viscous stress terms to (4.1). Considering again the 2D case, the viscous

stresses corresponding to a surface cell with no surface jumps is shown in figure

11.6. Here τxx and τxz denote the viscous stress components on the axes and

τnn and τsn denote the surface stress components, where the surface co-ordinates

(s,n) are measured locally in the tangential and normal directions respectively.

Applying (4.10) and (4.11) in 2D form gives the the unit normal vector n on the

surface at c as

n = (nx, ny) = S−1(−(ld − lb),∆x), (11.15)

S =
√

(∆x2 + (ld − lb)2), (11.16)

and the contribution of the viscous stresses to the u-cell momentum is found

through summation of the stress contributions from each side, thus
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Fc
duc

dt
= ld(τxx)d − lb(τxx)b − ∆x(τxz)c + (nzS)(τsn) + (nxS)(τnn) (11.17)

where τxx and τxz are evaluated from the local velocity field. The surface boundary

condition (4.12) requires that the tangential stress tends to zero at the surface

removing the τsn = 0 and τnn is evaluated from

(τnn)surface = (nxnxτxx)surface+(nxnzτxz)surface+(nznxτzx)surface+(nznzτzz)surface

(11.18)

At a surface jump between cells (such as shown in figure 11.5(a)) the total stress

at interface b is calculated from the stresses in the two adjoining split cells by

(l′ + l′′)τxx = l′τ ′xx+ l′′τ ′′xx, (11.19)

where τ ′xx and τ ′′xx are calculated from the local velocity field.

11.1.3 Pressure discretisation in surface cells

As mentioned previously, the presence of the free surface can create continuity cells

without an upper bounding w cell, as demonstrated in figure 11.2. In such cases

the cell pressure is assigned through linear interpolation, appealing to the surface

pressure and the pressure cell below in the vertical direction only. In general the

finite difference formulation equation (4.7) becomes
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0 =
∑

lmn

C lmn
i,j,kpi+l,j+m,k+n + sijk for lmn ∈ {−1, 0,+1} (11.20)

where s is the source term (2/(3∆t)∂u∗i /∂xi), and C lmn
i,j,k represents the finite dif-

ference star coefficients for the ∇2 operator. Although 27 coefficients are implied

by C lmn
i,j,k only 15 are in fact non zero as interpolation is limited to the vertical di-

rection. The assignment of C lmn
i,j,k is dependent upon the local surface configuration

and the logic behind its structure can be found in Thomas et al. (1995).

11.2 Free surface advancement

Once the velocity field has been advanced to a new time step the surface height

h(x, y, t+∆t) must be updated. This is done by calculating the change in volume

of a column of cells ∆colij as

∆colij = ∆t.(Flux into colij). (11.21)

The flux is based on the old elevation height h(t) and the new velocity ui(x,y,z,t).

The change in surface elevation follows from the surface locater rule (11.1)

hij(t+ ∆t) = hij(t) +
1

2∆x∆y
(∆colij(t) + ∆colij(t+ ∆t)). (11.22)

Since the flux into column colij is not known accurately at the new time step until

column height is known equations (11.21) & (11.22) must be iterated a number of

times.
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Reprint of Archer et al. (2008)
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