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ABSTRACT

A numerical study of laminar to turbulent evolution and free-surface

interaction of a vortex ring

by Philip John Archer

Direct numerical simulation was used to study various aspects of vortex ring evo-
lution and interaction with a free surface. An investigation of a single unbounded
vortex ring at various Reynolds numbers and core thicknesses showed qualitative
differences between the evolution of thin- and thick-core rings, leading to a cor-
rection factor to the classical equation for the ring translational velocity. The
obtained linear modal growth rates were compared with previous work, highlight-
ing the role of the wake in triply periodic numerical simulations. The transition
from a laminar to a turbulent ring is marked by the rearrangement of the outer
core vorticity into a clearly defined secondary structure. The onset of the fully
turbulent state is associated with shedding of the structure in a series of hairpin
vortices. A Lagrangian particle analysis was performed to determine the ring en-
trainment and detrainment properties and to investigate the possibility of an axial
flow being generated around the circumference of the core region prior to the onset

of turbulence.

The orthogonal interaction of laminar, transitional and turbulent rings with an
initially undesturbed free surface was investigated. At small depths, the expanding
ring is unstable to the Crow instability but its dominant mode is predetermined by
the prior development of the Widnall instability. The presence of opposite-signed
vorticity, due to surface curvature, affects the ring dynamics at the surface. The
interaction of a transitional ring modifies the surface displacements, reflecting the
structure of the ring below. The secondary structure associated with a transitional
ring reconnects to the surface in addition to the inner core. In the presence of the
surface, the turbulent ring finds greater coherency of the core due to stretching and
aligning of vorticity filaments. The addition of a planar surface wave field modified
the ring interaction greatly due to the higher surface curvature and associated
surface vorticity. The ring expands asymmetrically and even rebounds locally if
sufficient opposite-signed vorticity is generated. The ring diffracts the surface wave

field and the generation of secondary small-amplitude waves was noted.
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Chapter 1

Introduction

Vortices and vortex filaments have been the fascination of engineers and physicists
for more than a century. Their importance is due not only to their abundance
in nature but also through their presence in engineering flows and turbulence.
Organised vortical structures in the form of loops, hairpins, rings and lines have
been recognised in turbulent flow in both numerical and experimental studies.
Understanding the stability of these structures, their fundamental properties, and

how they propagate and interact, is crucial to aid our understanding of turbulence.

In this report we focus on a single vortex ring, both its instability and break-
down as well as its interaction with a free surface. This is because it embodies
a prototypical turbulent flow and its interaction with a deformable free surface
has practical implications. Considering engineering and biological flows, vortex
rings are principally generated by three methods. The method most commonly
employed in laboratory experiments is to accelerate fluid through an orifice or pipe
into an ambient fluid. The force required to accelerate the fluid through the orifice
is usually delivered by a piston or a loud speaker (see Maxworthy (1972), Glezer &
Coles (1990)(piston), Naitoh et al. (2002) and Dziedic & Leutheusser (1996)(loud-
speaker) to name but a few. Upon entering the ambient fluid the accelerated fluid
forms a vortex sheet which rolls up into a vortex ring a short distance downstream
of the generator exit. The same method of vortex ring generation is also found in
nature for jellyfish, which utilise momentum exchange by pulsing out vortex rings
to propel themselves (Dabiri et al., 2005).

A second method commonly employed to investigate vortex ring motion is to allow
droplets of fluid to free fall onto a pool of fluid; see for example Rodriguez & Mesler
(1988), Peck & Sigurdson (1994) and Peck & Sigurdson (1995). The impact of the

1
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droplet on the surface of the pool causes a vortex sheet to form in the pool which

rolls up to form a vortex ring, which then propagates down away from the surface.

A third method of vortex ring generation is brought about by the development
of the Crow instability on a pair of line vorticies (Crow, 1970). The elliptical
long wave Crow instability (see §2.2.1) causes a stationary sinusoidal wave to
grow on the vortex pair. As the waves grow, localised regions of the line vorticies
are brought into close proximity to one another. Eventually both line vorticies
disconnect locally and reconnect with the opposing line vortex to form a series of
vortex rings. Line vorticies are produced by lifting surfaces of aircraft but also,
more relevant to this study, by submarines (Lloyd & Hanson, 1985). It has been
shown that such vortex pairs reconnect to form rings in the Direct Numerical
Simulations (DNS) of Garten et al. (2001) whilst traveling through an ambient
stratified flow. It has also been shown that turbulent wakes will develope into
vortex ring-like structures far downstream of their production in either a stratified
or non stratified flow (Gourlay et al., 2001).

The decay of vortex pairs in a stratified ambient fluid is of relevance to submarine
wake development. If a submarine or other submersible vehicle undergoes a diving
manoeuvre, negative lift is generated by the aerofoil sections causing a pair of line
vorticies to propagate through the stratified ocean toward the surface. The pair of
line vorticies are subject to the Crow instability and thus are likely to create a series
of vortex rings with a long-lived structure. The vortex rings will then continue
to propagate towards the surface under their own self induced velocity, with the
possibility of reaching the surface if the ocean stratification and turbulence levels
allow. The region directly below the surface of the sea is an unstratified mixed
layer consisting of varying turbulent intensities and scales largely dependent upon
atmospheric conditions. It is here where we pick up the vortex ring story and
simulate numerically its free-surface interaction. The interaction not only covers
interesting vortex ring dynamics but will cause disturbance to surface waves (Cerda
& Lund, 1993) and temperature distribution (Smith et al., 2001) which may allow
for tracing by remote sensing apparatus. The condition of the vortex ring when it
reaches the free surface is largely unknown, although one can postulate that it will
be either laminar, transitional, or in some state of turbulence. We thus first aim
to understand the temporal developement of the unbounded vortex ring before the

free-surface interaction is studied.

This thesis contains the results from a numerical investigation into a single un-

bounded vortex ring and the interaction with a bounding surface. It is based on
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results from DNS of these two cases and organised into the following chapters.
In Chapter 2, we review the relevant literature, focusing on general vortex ring
characteristics, instability, and surface interactions. Drawing on the lessons learnt
from previous investigations we then present our project aims in Chapter 3. The
mathematical and implementational framework of our numerical codes are layed
out in Chapter 4. Chapter 5 discusses various initialisation techniques to provide
starting conditions for our simulations. The following three chapters present the
results of vortex ring motion within an unbounded (Chapter 6) and bounded do-
main, where the bounding surface is initially undisturbed (Chapter 7) and wavy
(Chapter 8). We summarise our findings and their importance in Chapter 9 and

finally make some suggestions for future work in Chapter 10.



Chapter 2

Literature review

We first define the vortex ring and assess the current understanding of its fun-

damental properties, how it develops with time, and how it interacts with a free

surface.
Entrainment
Bubble
Vortex Core
z z
y
O

X

FIGURE 2.1: Schematic diagram of a vortex ring, sliced through its centre.
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2.1 Vortex ring characteristics

In a co-moving reference frame, a laminar vortex ring can be regarded as a toroidal
vortex core of radius, d, which is surrounded by a co-moving mass of rotating
fluid, known as the entrainment bubble (see figure 2.1). The ring has a radius R,
usually defined by experimentalists as the distance from the ring centreline to the
core centre. The slenderness ratio € is defined as the ratio of core to ring radii,
d/R. The core region has a distribution of azimuthal vorticity wy that in the limit
of € — 0 tends to a Gaussian profile. The circulation I' and the impulse P of the

ring are defined as

= /wgdrdz and P = W/TQWQdeZ. (2.1)

The classical expression for the self-induced propagation velocity U of a laminar

vortex ring is

U= % (m (%) + c) , (2.2)

where the constant C'is a function of the shape of the vorticity distribution across
the core region. For a uniform vorticity distribution C' = —1/4 (Lamb, 1932).
Saffman (1970) showed that if a Gaussian distribution of vorticity was specified,
to first order of ¢, C' = —0.558. A comparison of the theoretical prediction of
propagation velocity for a Gaussian core ring was made with the experimental
rings of Dziedic & Leutheusser (1996). They concluded that C' = —0.558 could be
used for both laminar and turbulent rings, however due to the lack of flow data

(a hot-wire probe was used to measure ring velocities), quantities such as I" and
R had to be modeled.

Recently experimentalists have used Particle Image Velocimetry (PIV) techniques
to measure I', R and the core vorticity distribution directly from the flowfield.
Dabiri & Gharib (2004), Cater et al. (2004) and Dazin et al. (2006a) all show
mildly non-Gaussian core profiles, with a sharper drop in vorticity toward the
outer edge of the core compared to the ring centre-line. Cater et al. (2004) also
note that the distribution of vorticity, and indeed subsequent ring dynamics and
instability growth rate are highly effected by the precise method of ring gener-
ation. They found that a piston/cylinder ring generator produced a secondary

ring at the piston head with the same sign vorticity as the primary ring but of
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lower circulation. The two rings were found to quickly merge, consistent with the
leapfrogging experiments of Lim (1997) with the resultant combined ring being of
higher circulation and velocity but more unstable. The generation of the secondary
piston ring could be prevented by ceasing the motion of the piston a distance of

two orifice diameters from the orifice exit.

We adopt a Reynolds number based on ring circulation unless otherwise stated,
with Re = 'y /v, where the subscript ‘0’ relates to the initial conditions and v is
kinematic viscosity. A number of different definitions of Reynolds numbers also
exist in the literature: piston Reynolds number, Rep = UpD, /v, where U, is the
average piston speed and D, is the exit diameter; Reynolds number based on ring
diameter, Rep = UD /v, where D is the ring diameter; and a ‘Saffman’ Reynolds
number, Res = ea?/v, where e is the strain rate experienced by the core, an

estimate of which is given by Saffman (1978) as

3 S8R 17
€ = 167{'R2 |:hl (a—e) - E:| 5 (23)

and a; and a. are measures of the core radius, defined below. A comprehensive

method for estimating corresponding piston parameters given Reynolds number

and core measures is documented by Shariff et al. (1994).

In previous numerical and experimental work the core thickness has usually been
specified by either the speed-effective core thickness, a., or the distance from the
core centre to the point of maximum tangential velocity, a;. The speed-effective
core radius is the projected core radius of an equivalent vortex ring propagating
at identical speed with a uniform distribution of vorticity. For a Gaussian core
a. = 1.36076 and a; = 1.12146 (Shariff et al., 1994).

Vortex rings can be collated into two groups; laminar and the turbulent (see
figure 2.2). The structure and stability of laminar rings was investigated experi-
mentally by Maxworthy (1972) and Widnall & Sullivan (1973). They found that
for the Reynolds numbers tested, the rings began in a laminar state, characterised
by smooth concentric streamlines and a relatively weak wake (left side of figure
2.2(b)). Maxworthy showed that below a Reynolds number Rep of 600 a stable
laminar ring was formed and propagated under the influence of viscosity v, which
diffused the core until the ring eventually became completely dissipated into the
ambient fluid. The core diffusion for laminar rings with a Gaussian distribution

of vorticity is given by Saffman (1970) as

6% = 65 + 4wt (2.4)
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FIGURE 2.2: Vortex ring behaviour. (a) Dye visualisation of laminar and tur-

bulent vortex rings, from Glezer & Coles (1990). (b) Streamlines for a laminar

vortex ring, from Dabiri & Gharib (2004); laboratory frame (upper), Lagrangian
frame (lower).

At Rep > 1000 stationary azimuthal instability waves develope on the core region
which eventually break down, signaling transition from a laminar to a turbulent
state. A turbulent ring, visualised on the right side of 2.2(a), is characterised by
a chaotic vortical bubble structure and a core region of relatively high vorticity.
The turbulent ring ejects a considerably larger amount of circulation into its wake
than the laminar ring does. Experimental investigations into the turbulent vortex
rings have been performed either by evolving a laminar ring through the natural
instability to a turbulent state (Maxworthy, 1974) (Wiegand & Gharib, 1994) or
by creating the vortex ring at sufficiently high Rep (Glezer & Coles, 1990). The ex-
periments of Wiegand & Gharib (1994) tracked vortex rings at an initial Reynolds
number (based on circulation) of 7500 through the laminar regime into the tur-
bulent state via the natural azimuthal instability. Their results also showed that
during transition and throughout the turbulent regime vortical structures were
generated in the periphery of the ring. The vortex core however was maintained
as a definite coherent structure. The ring then relaminarised when the loss of ring
circulation had decreased the Reynolds number to 2300. Vortex shedding into the
wake was attributed to the peripheral vortical structures. The loss of organised
structure lead to a staircase like decay in circulation and velocity, the velocity

lagging the circulation by a small phase shift. Recently Glezer & Coles (1990)
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also noted the vortical structures, inferring that they are likely to be vortex tubes
of alternating sign wrapped around the main core, with their presence influencing

the local entrainment and detrainment dynamics.

The process of detrainment results in wake formation, visualised in figure 2.2(a),
and is caused by diffusion of vorticity across the bubble interface into the ambient
fluid which is left behind the vortex bubble in a wake. Under certain conditions it
has been shown that the circulation shed by a vortex ring into its wake can be a
significant proportion. The inviscid numerical study of Nitsche (2001) considered
the roll up of a spherical vortex sheet into a vortex ring which shed 30% of its initial
vorticity into a wake. The wake subsequently rolled up into a secondary vortex
ring whose subsequent circulation loss caused the roll up of a tertiary ring in its
wake, with the process repeating itself in a self-similar manner. This self-similar

wake roll up has not been seen in previous experiments.

A key property of a vortex ring is that it is surrounded by a co-moving mass of
rotational fluid, known as the entrainment bubble. The bubble surface separates
rotational fluid associated with the ring from the irrotational fluid in which it
moves. The vortex ring dynamics and physical parameters (bubble size, ring
radius and core radius) are not constant and their rate of change is defined by
the balance between entrainment and detrainment. Maxworthy (1972) proposed
a model for diffusive entrainment, whereby the thin layer of irrotational fluid by
the entrainment bubble is contaminated by vorticity diffusing away from the ring.
A proportion of this fluid is then entrained through the rear of the bubble into the
vortex ring and the remainder ejected into the wake. Power-law ratios were given
for the decay of both the overall ring velocity and circulation, but these power
laws were found not to be universal by Dabiri & Gharib (2004), who considered
two distinct rings propagating into both an ambient fluid and an oncoming flow
of uniform velocity. They were, however, able to confirm part of Maxworthy’s
entrainment model, showing that vorticity is diffused across the vortex bubble
and is present in the wake. Note that the existence of the wake implies that
the vortex ring loses both circulation and impulse, although in a control volume

containing both the ring and the (entire) wake, the total impulse is invariant.

The ability of a ring to directly entrain fluid has also been studied by Glezer &
Coles (1990), who used an assumed streamfunction in similarity coordinates to pre-
dict net entrainment of particles for the case of a fully turbulent ring. The concept
of fluid entrainment and detrainment has been further refined by the application

of stable and unstable manifolds of dynamical systems theory to the Lagrangian
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FIGURE 2.3: Sketch of streamlines and manifolds for a steadily translating
vortex ring, taken from Shariff et al. (2006). The hatched region depicts the
vortex core.

surface of the vortex ring entrainment boundary. Let us consider the case of an
inviscid ring propagating at a steady velocity with constant ring and core radii to
illustrate the ideas behind the theory (figure 2.3). In a co-moving reference frame
the velocity field is time independent, hence for this case the streamlines represent
particle trajectories. The vortex ring possesses two stagnation points or hyperbolic
fixed points, F and R, fore and aft of the ring respectively, where hyperbolic refers
to a point in the flow through which two or more streamlines can be drawn. Stable
manifolds M? are defined as the particle trajectories that asymptote toward a hy-
perbolic fixed point as time goes to infinity. Unstable manifolds M* are defined as
particle trajectories that asymptote toward a hyperbolic fixed point as time goes
to negative infinity. The stable and unstable manifolds of F and R are displayed in
figure 2.3. For the case of the steadily translating vortex ring the stable and unsta-
ble manifolds coexist forming a boundary between the rotational inner fluid and
the irrotational flow that passes round it. Connections such as the trajectory FR
that join two stagnation points are known as heteroclinic trajectories. Introducing
a perturbation that is periodic in time has been shown to break such a connection,
splitting apart the stable and unstable manifolds of the front and rear stagnation
points. The result is that the manifolds meander progressively around each other
as they approach the opposing stagnation point. The intersections between the

manifolds are called lobes (see figure 2.4(a)).

Shariff et al. (2006) produced a numerical simulation to do exactly this by sim-
ulating a vortex ring with an elliptical core region that rotated around the core
centre inducing a periodic oscillation on the ring velocity. Time periodic systems
such as this can be viewed via a Poincaré map. In a Poincaré map time is intro-
duced as an extra direction in physical space. It is created by taking a particle a
small radial distance away from a hyperbolic fixed point and mapping it forward

one period. The position of the particle before and after the time period defines
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(a) (b)

FIGURE 2.4: Abridged portions of the stable and unstable manifolds showing
fluid entrainment and detrainment over a number of time periods, taken from

Shariff et al. (2006).

the two end points of a segment. The manifold is then built by iterating a large
number of neighbouring particles forward by one period. The neighbouring par-
ticles converge to the manifold from both sides so the fact that the first particle
may not be exactly on the manifold is irrelevant. The unstable manifold of the
rear stagnation point is then obtained by symmetry since if time were reversed the
vortex would rotate counter clockwise and the rear stagnation point would become
the front stagnation point. A section of the resulting Poincaré map is shown in
figure 2.4(a). One must not interpret the figure as a snap shot in time but as a
history of the movement of the lobes Ay and By. In one time period the lobe Ag
moves to A; and By moves to By, then in the next time period from A; to A,
and B; moves to By and so on. Each manifold (the dividing line between the lobe
and the exterior flow) is invariant, hence flow cannot cross the boundary and flow
inside the lobe remains inside the lobe. If we consider the final destination of A,
on the Poinicaré map it lies inside the vortex ring bubble and so is considered to
be a lobe of entrainment. The lobe By on the other hand consisted of fluid inside
the bubble but by the rear stagnation point is outside the bubble and is thus a
lobe of detrainment. The unstable manifold of the front stagnation point moves
to infinity downstream of the vortex ring in a spiky pattern, as shown in figure
2.4(b). A similar spiky pattern is seen in typical dye visualisations of turbulent
vortex rings, causing Shariff et al. (2006) to postulate that lobe dynamics may
play an important role in explaining entrainment and detrainment of turbulent

vortex rings.



Chapter 2 Literature review 11

Shadden et al. (2006) also used dynamical systems analysis to determine the fluid
transport characteristics of laminar piston-generated vortex rings. The piston-
generated vortex rings present a slightly more complicated problem as the veloc-
ity field is aperiodic, thus a Poinicaré map cannot be constructed to investigate
the lobe dynamics. The aim of their analysis was to find finite-time hyperbolic
manifolds which are analogous to the stable and unstable manifold of the peri-
odic analysis above. These finite-time hyperbolic manifolds are called Lagrangian
Coherent Structures or LCS for short. They are found by constructing finite-time
Lyapunov exponent (FTLE) fields. The FTLE field measures the maximum expo-
nential divergence, at a given time and space within the flow, of nearby trajectories
over a finite time interval. For the vortex ring the maximum divergence of parti-
cle paths occurs at the entrainment bubble boundary, since it separates fluid that
moves with the ring from the outside flow that will increasingly separate with time
downstream of the ring. The FTLE field thus picks out the LCS corresponding to
the Lagrangian entrainment boundary. By calculating the FTLE field forwards in
time the LCS corresponding to the stable manifold is uncovered and by integrating
backwards in time the LCS corresponding to the unstable manifold is revealed.
By over plotting the LCS for the front and rear stagnation points it was found
that lobe dynamics were present, causing entrainment and detrainment patterns
similar to those found by Shariff et al. (2006). The development of lobes on the
laminar ring requires a perturbation to be present on the dynamics of the vortex
ring. Such a perturbation was found by Kumar et al. (1995), who produced vortex
rings over a range of Reynolds numbers. By taking measurements at close time
intervals they found that the propagation velocity of the vortex ring oscillated in
time. The velocity oscillations cause oscillation of the position of the front and
rear stagnation point, in a Lagrangian view, which would be sufficient to create

the lobe dynamics.

Shariff et al. (2006) compared the growth rate of the cross-sectional area of the
Lagrangian surface with previous FEulerian streamline analysis of Dabiri & Gharib
(2004). They found that the growth trends were very similar, corresponding to
net entrainment for both analysis techniques. A net entrainment suggests that
the entrainment bubble must grow with time and conversely a net detrainment
demands a reduction in the entrainment bubble mass. The growth of the bubble
is likely to manifest itself in a change in the ring dynamics. Maxworthy (1977)
measured the radial growth rate, v, of turbulent rings in a stationary ambient
fluid reporting a range of values, with fatter turbulent cores producing higher

radial growth rates. Rusakov (2001) showed experimentally that a concurrent flow
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increased ~ for turbulent rings and that a counter flow decreased ~, which take a

negative value (radial contraction) if the retarding flow is of sufficient strength.

2.2 Vortex ring instability

2.2.1 Linear Phase

The discovery of the presence of unstable azimuthal waves on a vortex ring is at-
tributed to Krutzsch (1939) in a paper overlooked by the scientific community until
a similar instability was discovered by Crow (1970) in aircraft wakes. Maxworthy
(1972) performed a series of experiments to investigate the structure and stabil-
ity of laminar and turbulent vortex rings, discovering that the initially toroidal
core was distorted into a sinusoidal wave, of wavenumber five, around the ring
circumference. Subsequent experiments by the same author (Maxworthy, 1974,
1977) showed that the growth and subsequent wave breaking marked the transi-
tion from a laminar to a turbulent vortex ring. The waves were stationary and
grew in a conical plane at an angle of 45° to the axis of ring propagation; Shariff
et al. (1994) later corrected the angle to 42°. Crow (1970) had already witnessed
a similar long-wavelength instability that grew at a 48° angle to the horizontal for
a pair of trailing vortices generated by aircraft. Through a linear stability analysis
he showed that the vortices are unstable to both symmetric and antisymmetric
waves. The symmetric waves are present in the form of either short- or long-waves,
depending on the external perturbations on the vortices. The most amplified wave-
length, the growth rate and the plane in which the perturbation grew were found
to depend on the ratio c?/% of dimensionless cut-off length (proportional to core
diameter) to dimensionless wavenumber. With the approximation of a constant

vorticity profile in the core region, Crow showed that

~

/k = 0.3210D/b, (2.5)

where D is the core diameter and b is the separation distance between the vortex
cores. For an elliptically loaded wing, d, / k= 0.063, the most unstable wavelength
Amaz = 8.6b, the growth rate o = 1.21(27b?/T)!, and the fixed plane in which per-
turbations develop was 48° to horizontal, for the long-wave symmetric mode. Ac-

cording to the linear theory, both short-wave symmetric and antisymmetric modes

Lwhere (27b%/T) is the time taken for the vortices to move down a distance b under their
own induction
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are also unstable; however since atmospheric turbulence preferentially drives the

long-wave symmetric mode, it is the only instability seen in the atmosphere (Crow,
1970).

Widnall & Sullivan (1973) investigated the ring instability experimentally, showing
that the number of waves observed was a function of €. Inspired by the experi-
mental evidence, Widnall et al. (1974) considered both a rectilinear vortex and a
vortex ring subjected to a strain field and showed that the azimuthal disturbances
are associated with bending waves. They went on to show that the second radial
mode of bending was unstable if the waves had no self-induced rotational velocity
and that the instability grew along a conical surface at 45° to the axis of ring-
propagation. Further analysis by Moore & Saffman (1975) and Tsai & Widnall
(1976) supported this idea and also gave equations for the growth rate of a per-
turbation. Widnall & Tsai (1977) then rigorously proved that a ring with uniform
core vorticity distribution was unstable, with analysis up to O(e?). They found
that the critical wavenumber values, k, for the non-rotating second and third ra-
dial modes are k = 2.51 and 4.35 respectively. The lower-order second radial mode
is more unstable and hence grows preferentially. Shariff et al. (1994) also showed
that, for a more realistic Gaussian profile, the critical wavenumber for the second
and third radial modes become k£ = 2.26 and 3.96 respectively. Their revisions
were inspired by Saffman (1978), who noted that the number of waves on the ring
was dependent on the vorticity profile, with his estimates of wave number showing
good agreement to experimental observations. The ring circumference can only
support an integer number of waves n, where n is estimated as n = kR/a; (Shariff
et al., 1994). The theoretical analysis of Widnall & Tsai (1977) also yielded an

expression for the inviscid growth rate aypr of the instability,

1/2

I 8R
= —— [(0.856In [ — | — 0.9102)> — 0.4 2.
awr 47TR2[(0856H(G> 0.9102)* — 0.4535| (2.6)

where a is some measure of the core radius?.

The ring or Widnall instability was investigated numerically by Shariff et al.
(1994), who solved the three-dimensional Navier-Stokes equations for a single ring,
simulated in a triply periodic domain. The simulations support the theory pre-
sented in Widnall & Tsai (1977), showing an integer number of waves growing

around the ring excited by the lower radial bending modes. A viscous correction

ZNote the last term is corrected from its original form in Widnall & Tsai (1977) to correct a
typo as documented in Shariff et al. (1994)



Chapter 2 Literature review 14

to ayr was also developed for the inviscid growth rate, given by

asha(B) = awr(B) (1 - O%i?) ; (2.7)

where = a;/R and oy is a constant of value between 19.7 and 22.8. This
correction has recently been called into question by the experiments of Dazin et al.
(2006a), who suggest that it is too small. They cite amongst other things, that
the Shariff et al. prediction is only valid for purely Gaussian cores. However, this
takes no account of the fact that in the DNS the initially Gaussian distribution
quickly equilibrates to a skewed pseudo-Gaussian profile similar to that found in

the experiments.

The viscous-correction growth rate agyp, is consistent with the behaviour of the
two-dimensional elliptical streamline flow investigated by Landman & Saffman
(1987), where a low wavelength cut off was deduced for the two-dimensional viscous

growth rate given by

Qaop = %6 — vk? (2.8)
where k is again the wavenumber. Equation (2.8) shows that in the presence
of viscosity the low wavenumber modes grow faster than the higher wavenumber
modes(lower wavelength modes). Landman & Saffman were following work by
Pierrehumbert (1986) and Bayly (1986) who showed that an unbounded uniform
two dimensional vortex with elliptic streamlines in a straining field was linearly

unstable to three-dimensional perturbations.

The similarity between the instability growth of vortex rings, vortex lines and
two-dimensional vortices in strained fields became apparent, and it is now ac-
knowledged that all are due to the elliptical instability. A review of the elliptical
instability is given by Kerswell (2002).

2.2.2 Nonlinear phase

The preferential instability growth of a small number of azimuthal modes n, which
typifies the linear phase, is followed by a nonlinear phase, during which the dom-
inant azimuthal modes interact with one another. The nonlinear phase has been

investigated experimentally by Dazin et al. (2006a,b), who used PIV and novel
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flow visualisations. The study confirmed the earlier numerical results by Shariff
et al. (1994), showing that the nonlinear phase is heralded by the exponential
growth of higher-order harmonics of the most unstable linear modes. The nonlin-
ear interaction of competing modes also causes rapid growth of the n = 1 mode,
which corresponds to asymmetry in wave growth around the ring circumference.
This is followed by the rapid growth of the n = 0 mode in the azimuthal energy
component, corresponding to a mean ‘axial’ or ‘swirling’ flow, accompanied by the
development of vortical structures on the (outer) periphery of the ring, leading to
ejection of vorticity into the wake. (Following Maxworthy, the term ‘axial’ will be
used to indicate the circumferential axis of the vortex core.) The notion of an axial
flow is supported by the experiments of Naitoh et al. (2002) and the numerical
study of Shariff et al. (1994), the latter showing that it takes the form of opposing
streams, necessary to conserve angular momentum. Subsequently, vortical struc-
tures grew on the interior of the ring before the breakdown to turbulence, causing
the authors to infer that the peripheral vortical structures are wrapped progres-
sively around the core in a series of loops; this is consistent with the vorticity
tubes observed in the experiments of Schneider (1980) during the latter stages of

transition.

Recently Bergdorf, Koumoutsakos & Leonard (2007) numerically investigated the
vortical structures, suggesting that they originate from locally stretched regions of
the deformed core. Their ring parameters were chosen to match the experiments
of Wiegand & Gharib (1994), which tracked vortex rings at an initial Reynolds
number (based on ring circulation I') of 7500 through the laminar into the tur-
bulent regime. Qualitative agreement was found between the two studies, which
showed that the turbulent ring sheds vortical structure into the wake in a series
of hairpin vortices leading to the ‘staircase-like’ decay in time of circulation and

velocity mentioned above.

The nonlinear modal growth ends in saturation of the azimuthal modes and the
breakdown of the stationary azimuthal wave. Lack of spatial resolution prevented
Shariff et al. (1994) from investigating further than the early nonlinear phase,
however Maxworthy (1977) inferred from smoke visualisations that immediately
prior to breakdown the stationary waves begin to rotate out of the conical 45°-
plane. The waves then break preferentially around the azimuth, leading to a net
(‘swirling’) flow in the form of a solitary wave propagating along the circumferential
axis of the turbulent ring. No experimental or numerical work has yet been able
to confirm or deny convincingly Maxworthy’s inferences. A net swirling flow in

the core region was induced by the experiments of Naitoh et al. (2002), however
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this was only in cases where the ring had been created through an orifice with a

wavy exit cross section.

2.3 Surface Interactions

The key parameters associated with the interactions of a vortex ring with a free sur-
face are Froude number, Fr = T'/ \/ﬁ (where g is the gravitational acceleration),
angle of propagation toward the surface, ¢, the presence of surface contaminants,
Reynolds number (as defined earlier) and to a lesser extent the Weber number, We.
The ring-surface interactions can be grouped into the following sections: normal
interaction of a vortex ring; oblique interaction of a vortex ring; and vortex-pair

interaction.

2.3.1 Normal interaction of vortex rings

Experimental work by Song et al. (1992) outlines the key stages of the interaction
between a vortex ring and a ‘clean’ free surface. Here ‘clean’ describes a surface
which has been treated to remove surfactants. They focused on two of their ex-
perimental rings to explain the interaction, which we label S1 and S2. S1 featured
a Froude number Fr = 0.287 and Reynolds number Re = 15100, while S2 had
Fr = 0.988 and Re = 64700. Measurements were initiated when the vortex ring

was well formed and a distance of 2.5R, below the free surface.

As both rings propagate from a depth of 2.5R, to approximately 1Ry below the
surface the radius and velocity remain approximately constant. The interaction
then differed for the two cases. At depths of less than 1Ry, the rings begin to
interact more strongly with their virtual image above the surface. For Case S1 the
ring approaches the surface as an axisymmetric toroid. As it moves closer to the
surface its radius expands until it reaches a depth the order of the core thickness.
At this point the ring propagates parallel to the surface, expanding radially at
constant depth. When the core is at a small depth, its dynamics and strain field
are dominated by its image vortex above the surface. The ring locally approxi-
mates a pair of line vortices and the core is susceptible to the Crow instability.
Subsequently at a ring radius of 3.2R,, a wavy core structure developes 3 around

the azimuth of the ring and continues to grow until the ring reconnects with the

3referred to by Song et al. (1992) as ‘three dimensionality’.
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free surface in a series of U-shaped vortex filaments. This is consistent with the
experiments of Lim & Nickels (1992), who investigated the head-on collision be-
tween two vortex rings. In their experiments the free surface and virtual image
is replaced by a real ring, which reconnects with the original ring in a similar
fashion. Lim & Nickels (1992) also found that in some of their experiments a
short-wavelength instability occurred, sometimes coexisting but not ‘interacting
noticeably’ with the long-wavelength instability. The short-wavelength instability
is also predicted by the linear stability analysis of Crow (1970), discussed above,
and its presence is likely to be due to the absence of background turbulence. Re-
call that Crow (1970) proposed that background turbulence favours the long-wave

symmetric mode above the short-wave symmetric and antisymmetric modes.

For Case S2, the observed ‘three dimensionality’ occurred far earlier, almost as
soon as the ring started to expand radially and at a depth of 0.5R,. The ra-
dial expansion that followed occurred at a far slower rate and a greater depth
than for Case S1. Song et al. (1992) attributed this to the size of the respective
cores, however it could also be due to the generation of opposite signed vorticity.
Longuet-Higgins (1998) showed that in any viscous flow, as tangential stress goes

to zero, the vorticity parallel to a surface is given by
ws = —2K4(q, (2.9)

where k is the radius of curvature (negative for a convex surface) and ¢ is the
tangential velocity. (See Lundgren & Koumoutsakos (1999) for a discussion of
vorticity generation at a free surface). The surface curvature is far greater for
Case 52, thus one would expect the generation of significantly more opposite signed
surface vorticity. Case S2 also reconnected to the surface but in a slightly different

fashion, as described below.

The free surface response depends heavily on the Froude number. The approach of
the rings toward the surface induced a bulge directly above the ring. As the rings
expanded in a plane parallel to the surface, the bulge dropped and a depression
formed just outboard of the ring. For the high Fr Case S2, the deformation to
the surface was approximately 20 times larger; furthermore, the collapse of the
initial bulge generated outwardly radiating surface waves. The surface depression
propagated outward, following the expansion of the rings and striations were seen
to form on the surface perpendicular to the depression (and hence vortex core).
For Case S2, small circular indentions formed around the depression correspond-

ing to regions of reconnection. Both rings eventually reconnected with the surface
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and consequentially the depression disappeared, replaced by a number of small
circular indentions corresponding to attachment zones of the U-shaped vortex fila-
ments. The reconnection of vorticity filaments to the surface generated outwardly

radiating short waves. The waves were significantly larger for Case S2.

Song et al. (1992) also performed a numerical study with the ring parameters
matching their experimental rings. They used a vortex/boundary integral method,
where the flow was assumed axisymmetric, inviscid, incompressible, and irrota-
tional except for the ring. The numerical study matched the experimental results
well at early times but the differences increased as the ring developed three dimen-
sional structure (earlier for the high Froude number case). A similar numerical
method was employed by Ye & Chu (1997), whose simulations featured a wide
range of Fr and We. They found that at sufficiently high Fr and We it was possible
for the ring to become trapped inside the surface bulge. As for the numerical study
of Song et al. (1992), no surface reconnection occurred, however this is not unex-
pected as reconnection is a viscous process (Ashurst & Meiron, 1987). Wu et al.
(1995) performed an axisymmetric investigation by direct numerical simulation of
the Navier-Stokes equations and found that high Fr cases, with Fr = 7.07, generate
significant surface vorticity, causing rebounding of the primary vortex ring. For a
moderate Froude number, 0.707, the results of Wu et al. (1995) mirrored that of
Song et al. (1992) except once more for the absence of surface reconnection. The
absence of surface reconnection is due to the assumption of axisymmetry which

prevents the Crow instability from appearing.

An alternative experimental study can be found in Chu et al. (1993), with surface
interactions investigated at lower Re, from 900 to 2350, and in the presence of
surfactants. Free-surface experiments were conducted, at Froude numbers around
0.45, and a solid wall, with similarities and contrasts commented upon. Qualita-
tively both rings behaved in the same way. As the ring approaches both barriers
there is a period of vortex stretching. The induced field of the ring then forms
opposite signed vorticity at the barrier, which rolls up to form a secondary ring
outboard of the primary ring. Both the secondary and primary rings rebound, be-
fore propagating again toward the respective barrier producing a relatively weak
tertiary vortex ring. The major differences between the solid wall and free surface
interactions were the amount of opposite signed vorticity generated, with the free
surface producing around a fifth of that of the solid wall, and the radial increase
of the ring, 2.5R, for the free surface and 1.8R, for the solid wall. For the free
surface interaction the opposite signed vorticity is generated from a mixture of

sources. Surface curvature generates vorticity, as described above, however the
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presence of surfactants causes surface tension gradients which drive a surface flow
that tends to diminish the gradients (Sarpkaya, 1996). Comparing the free surface
deformation to that observed by Song et al. (1992), both studies report a signifi-
cant surface bulge on the ring approach and the generation of outwardly radiating
surface waves as the ring begins to expand radially. However a large difference
appears as the rings expand as the Chu et al. (1993) ring rebounds and the Song
et al. (1992) ring continues to expand until reconnection. This can be attributed

to the presence of surfactants in the experiments of Chu et al. (1993).

In contrast to these findings, Boyovintrev et al. (1997), in a paper scant on detail,
observed that for weaker vortex rings, with Rep < 5000, the rings collapsed in
the vicinity of the surface. For 5000 <Rep < 10,000, the ring was reflected and
traveled downwards away from the surface. At Rep > 13,000, the ring collapsed
on impact with the surface. The collapse at higher Re was said to be ‘explosive’
with fluid ejected above the surface. The paper makes no comment on the degree
of surface contamination or the value of the Froude number. Comparing these
results with Song et al. (1992) the differences can be attributed to the unknown
concentration of surfactants. The paper is less focused on surface interaction and
more focused on showing that the turbulent vortex rings could travel up to 35 ring

diameters vertically towards the surface.

2.3.2 Oblique vortex-ring interaction with a free surface

The process of disconnection and reconnection of vortex filaments has been in-
vestigated by propagating rings at oblique angles toward a free surface. In the
experiments of Gharib & Wiegand (1996) and subsequent numerical calculations
by Zhang et al. (1999), laminar vortex rings were propagated at varying angles
toward an undisturbed free surface with Fr = 0.47. As the ring approaches the
surface, the surface develops a curved bulge above the core region. The associ-
ated surface curvature creates opposite signed vorticity (Longuet-Higgins, 1998)
downstream of the approaching ring. If the surface was not purposefly cleaned,
the secondary vorticity had significantly higher circulation, due to the upwelling of
clean fluid in the surface bulge, which creates high concentrations of surfactants on
either side. The resultant surface strain causes a subsurface boundary layer which
adds to the secondary vorticity due to curvature. Zhang et al. (1999) showed that
the secondary vorticity stretches the rear section of the core which then reconnects
to the surface to form a single U-shaped vorticity filament (figure 2.5d). Under the

action of its self-induced flow the legs of the U-loop move apart and the lower re-
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FIGURE 2.5: The oblique interaction of a vortex ring with a free surface, taken
from Zhang et al. (1999).

gion moves toward the surface. It too reconnects with the surface resulting in two
separate smaller U-shaped vorticity filaments in a process known as ‘bifurcation’

(figure 2.5f). Bifurcation did not occur for the contaminated surface.

The generation of vorticity flux is explored in the numerical calculations of Zhang
et al. (1999). In their discussion they focus on two sectors of the flow: the vis-
cous layer, a region very close to the surface caused by the boundary condition
of zero tangential stress; and a blockage layer stretching further down into the
fluid resulting from the kinematic boundary condition. They showed that inside
the blockage layer, the surface-normal component of vorticity w, increases due to
vortex stretching and vortex turning from the surface-parallel component w,. The
normal component w, is then transported across the viscous layer to the surface

by diffusion, which increases the vorticity in the plane of the surface.

Prior to Zhang et al. (1999), Ohring & Lugt (1996) also performed a DNS of the

oblique ring interaction with a free surface. The simulations explored rings with
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FIGURE 2.6: Surface normal vorticity for a reconnected obliquely propagating
vortex ring, taken from Ohring & Lugt (1996).

propagation angles of 20° to 45° to the surface and Re = 100 — 200, including
the effect of surface tension. Higher surface tension dampens the surface response
while changing the angle of attack modifies the vorticity profile of the reconnection

zones (figure 2.6).

The oblique interaction was investigated experimentally at different stages of the
ring lifetime, laminar, transitional and turbulent by Wiegand & Gharib (1995) and
Wiegand (1996). Laminar rings were generated with initial Reynolds numbers Re
= 7500 and allowed to develop the Widnall instability prior to their contact with
the surface. The transitional rings produced a new type of reconnection known as
trifurcation, involving three reconnected vorticity filaments. The ring initially re-
connects into a single U-shaped vorticity filament, followed by bifurcation into two
U-hoops as the lower section of the ring was propelled toward the surface. Unlike
the laminar interaction, however, the bifurcated vorticity filaments simultaneously
became turbulent. Associated with the transition process is the ejection of elon-
gated vorticity structures into the wake (likely to be in the form of hairpins; see
above (Bergdorf et al., 2007)), which spontaneously form a third reconnected site
at the surface. The interaction produced normal waves which propagate down-
stream of the ring, whereas upstream, the radiated waves bear resemblance to

waves emitted by two point sources.

The interaction of the fully turbulent ring is characterised by the same bifurcation
process, but with the superposition of small-scale activity causing multiple recon-
nections. The circulation measurements for the turbulent case showed that only
70% of the intial circulation is present in the reconnected hoops. By tracking the

small-scale interactions it was found that the surface interaction involved pairing
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and splitting of reconneted vorticity filaments. Pairing of opposite-signed vorticity

filaments caused cancellation of circulation.

2.3.3 Interaction between a pair of vortex lines and a free

surface

Hirsa & Willmarth (1994) investigated the normal interaction of a pair of vortex
lines with a free surface and Willert & Gharib (1997) investigated the same process
with a sinusoidally deformed pair of vortex lines. The interaction was found to be
strongly dependent upon the degree of surface contamination. For clean surfaces a
series of circular depressions formed, located above the underlying sinusoidal peaks
of the vortex pair. PIV measurements showed that the depressions corresponded
to surface reconnection of the vortex pair, which form a series of U-shaped vorticity
filaments. The paper concluded that it is necessary for the flow kinematics to force
the core region into close contact with the surface in order for connection to occur.
If the vortex pair is separated by a distance greater than twice the amplitude of
the induced instability wave, no surface reconnection was observed. When surface
reconnection was achieved, it was shown that the increased circulation on the
surface plane is directly balanced by the loss of surface-normal vorticity from the
vortex pair. In the presence of a contaminated surface layer the upwelling of
clean fluid caused a surface bulge with high concentrations of contaminants either
side, known as a Reynolds ridge. The shear forces produced, and the associated
subsurface boundary layer generated, a large quantity of opposite-signed vorticity
which prevent surface reconnection and cause rebounding of the vortex pair. This
was also shown by Hirsa & Willmarth (1994) for an initially undisturbed vortex

pair.

2.3.4 Surface Waves

No previous numerical or experimental studies could be found on the vortex ring
interaction with a wavy free surface. However, a number of related studies, such
as Umeki & Lund (1997), Coste et al. (1999), Coste & Lund (1999) and Vivanco &
Melo (2004), have considered the wave interaction with a vertical vortex. Umeki &
Lund (1997) constructed a differential equation governing the behaviour of sound
waves during their interaction with a steady vortex flow at low Mach number and

small wavelength. Solutions corresponding to spiral waves were found and shown
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to rotate in the opposite direction to the vortex. Appealing to the analogies
between the interaction and the Aharonov-Bohn effect (Berry et al., 1980) and be-
tween water waves and sound waves, they showed that the equation also permitted
the existence of dislocated surface waves over shallow water. Both scattered spiral
waves and dislocations were also shown by the analytical solutions of Coste et al.
(1999), Coste & Lund (1999) and then experimentally by Vivanco & Melo (2004).
The degree to which the waves were scattered and whether dislocations occurred
were found to be a function of the vortex circulation, and the wave amplitude, fre-
quency and wavelength. A critical case was also found in which the wave remained
continuous (no dislocations), but a spiral scatter was introduced downstream of
the vortex. Vivanco & Melo (2004) considered a vortex dipole and found that if
the dipole is located perpendicular to the wave field the wavefront exhibits a phase
shift proportional to the total dipole circulation. The symmetry of the oncoming
wave is maintained and the wave phase is restored as the wave moves away from
the vortex. It was also shown that arranging the vortex dipole parallel to the wave
front has negligible impact on the wave train. The impact of a progressive surface
wave field on an underlying weakly turbulent flow was investigated numerically by
Teixeira & Belcher (2002) using a rapid-distortion model. The waves modified the
turbulent Reynolds stresses and tilted vertical vorticity into the horizontal plane
through Stokes drift, forming elongated streamwise vortices which subsequently

dominate the flow.
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Project aims

The motivation behind this study is to investigate the temporal development of a
vortex ring as it propagates from an arbitrary depth toward and interacts with a
free surface. The structure of the ring as it approaches the surface is dependent
upon how it has developed during its ascent. The first task is therefore to inves-
tigate the temporal development of a ring in an unbounded fluid. Once this has
been quantified and understood, the knowledge gained can be used to investigate
the free-surface interaction for different characteristic structures. Finally, we seek
to address how the presence of a surface wavefield modifies the interaction. The

different topics of research are explored further below.

3.1 Investigation of vortex ring evolution from a

laminar to a turbulent state

3.1.1 Laminar phase

The first task facing the laminar investigation is to determine the best way of
initialising a coherent ring which exhibits the intended characteristics. The key
questions that the laminar investigation seeks to answer are how the vortex ring
geometry, velocity, integral parameters (impulse and circulation), and entrainmen-
t/detrainment characteristics develop with time. By investigating the effects of
slenderness ratio and Reynolds number we also hope to address the differences in
the linear growth rates recorded by Shariff et al. (1994) and Dazin et al. (2006a).

24
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3.1.2 Transitional phase

Prior to the onset of turbulence the ring undergoes a period of nonlinear wave
growth and structural change, which we refer to as the transitional phase. The
recent studies of Dazin et al. (2006a,b) and Bergdorf et al. (2007) point to the
development of secondary peripheral structure which we intend to investigate and
determine its role on the transition to turbulence. We also seek to address the
experimental observations of instability wave rotation and axial flow prior to the
onset of turbulence. Finally we aim to investigate the effect of the transitional

phase on the entrainment/detrainment characteristics.

3.1.3 Turbulent phase

In the interest of meeting our other objectives, we confine our investigation to
the early turbulent ring regime, considering the development of the structure and

geometry of the ring.

3.2 Interaction of a vortex ring with a free sur-

face

We limit the investigation to the normal ring interaction as it encompasses the
physics discussed in the literature review, featuring vortex stretching, instability
growth, reconnection and wave generation. The normal interaction is also arguably
the most challenging, which is probably why at present no DNS exists of the non-
axisymmetric problem. As the study relates to the ring-surface interaction in the
ocean (e.g. generated by large submersible vehicles), we simplify the problem by

ignoring the effects of surfactants and surface tension.

3.2.1 Interaction of a vortex ring with an undisturbed free

surface

The aim of our undisturbed surface investigation is to investigate the phenomena
and questions posed by the experiments of Song et al. (1992). Their numerical
study, and subsequent investigations by Ye & Chu (1997) and Wu et al. (1995),

have not successfully addressed the interaction past the initial vortex climb toward
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the surface and early expansion. This is due to their assumptions of axisymmetry
and inviscid flow which prohibit the ring from becoming unstable and developing
the Widnall or Crow instabilities and reconnecting with the surface. We are well
placed, with our DNS codes, to ignore these assumptions and model more closely
the full interaction. Our main objective is therefore to develop the ring instability
in the presence of the surface. This will enable us to investigate with a greater
degree of realism both the ring and surface behaviour. Moreover, it will allow us
to focus on the two instability mechanisms (Crow and Widnall) and examine how
they interact. It is hoped that through knowledge of the unstable ring behaviour
at the surface, we may be able to improve understanding of why the high-Fr cases
behaved differently to the low-Fr cases in the experiments of Song et al. (1992).
In particular, we are interested in why the high Fr case expands at greater depth,
why reconnection zones are generated around the depression before the ring core
reconnects in a series of U-shaped vortex filaments, and why both rings form
surface striations. The oblique interaction of rings at different stages of their life
cycle was shown by Wiegand & Gharib (1995) and Wiegand (1996) to modify
the process dramatically. It is therefore also our aim to simulate the normal
interaction of both transitional and turbulent rings, which to our knowledge has

not be addressed in previous experimental or computational studies.

3.2.2 Interaction of a laminar vortex ring with a surface

wave field

The final task is to investigate the ring interaction with a planar surface wave field
of given wavelength and amplitude. The literature review suggests three main
possible outcomes. If the wave energy is small compared to that of the ring, it
is likely that the motion of the surface waves will be strongly affected, with the
possibility of scattering and perhaps even dislocation. However if the wave energy
is large compared to that of the ring, the ring motion could be affected, causing
periodic stretching in phase with the wave motion as found for a turbulent flow
by Teixeira & Belcher (2002). A third possibility also exists, whereby the ring and
waves are of similar strength and affect each other in a strongly coupled nonlinear
fashion. As no previous examples could be found in the literature for this case,
we shall begin by addressing very basic questions. The strategy will be to vary
the surface and wave parameters to assess their effect on the ring/planar wave

interaction and to highlight its main features.
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Numerical codes

Two numerical codes have been used to simulate respectively the evolution of the
vortex ring and its surface interaction, which we label the fixed-boundary code and
the free-surface code. In discussing the numerical codes we start by laying out
the governing equations and spatial and temporal discretisation, common to both

codes, before discussing each in more detail.

4.1 Governing Equation

Both codes seek solutions to the incompressible Navier-Stokes equation for the
fluid velocity u; = (uy,u2,u3) = (u,v,w) given in the usual Cartesian tensor

notation by

ou,; ou,; 1 0p 0*u;
= +v

ot " Yor, T pon  Von,0q,

+F, (4.1)

for a Cartesian coordinate system x; = (x1, za, x3) = (x,¥, z), where the density p
and the kinematic viscosity v are constants, the fluid has pressure p and F; denotes

the contribution of external body forces. Conservation of mass is also enforced by

aui .
oy =0 (4.2)
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4.1.1 Spatial and temporal discretization

The Navier-Stokes equations are discretized on a staggered grid with spatial gra-

dients evaluated using a second-order central differencing scheme.

The solution is advanced in time with the projection method based on a second-
order explicit Adams-Bashforth scheme. The Adams-Bashforth scheme can be

formulated as

3At At At op~t  3Atop™
u'r_H-l:u?_,r__ ZL__Hn—1+_ P; o p

where the superscript n denotes the current time step, At is the duration of the
time step and the quantity H; contains the convective and diffusive terms in (4.1),
with

82ui 8uz

=V — U; .
)
aiCjaiCj ij

H, (4.4)

The projection method entails first evaluating a provisional velocity w; which

comprises the first four terms on the right hand side of (4.3), hence

At At At opnt
f=ul —H'— —HM 4 — : 4.5
u’L u'L —"_ 2 K3 2 7 —"_ 2 axl ( )
Substituting u! into (4.3) leaves
At Op™
Wit =y - 320 (4.6)

By enforcing continuity at the next (n-+ 1) time step, we are left with the Poisson

equation for pressure

o?p" 2 Ou}

p™ is then found by solving (4.7) and the updated velocity computed by (4.6).
The two codes use different methods to solve (4.7) which are described below
along with the two codes strengths and weaknesses with respect to the vortex ring

investigation.
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4.2 Fixed-boundary code

The fixed-boundary code, CGLES, has been written in C/C++ and has been par-
allelised using MPI (Message-Passing Interface) libraries, giving it the capability
of running efficiently on a large numbers of processors. It has been used previously
to investigate flow over complex geometry with both LES (Large Eddy Simulation)
and DNS (Direct Numerical Simulation) techniques; see for example Thomas &
Williams (1999), Yao et al. (2001), Coceal et al. (2007).

The code splits the computational domain into an arbitrary collection of N, blocks
which are then mapped onto N, (< N,) processors. Each block contains its own
portion of the domain plus an overlap region of one layer of grid points beyond
the block boundary. As the flow data is updated within a block the overlap
region of adjacent blocks is updated through message passing. The code solves
(4.7) through use of an efficient parallel multi-grid technique (see below for an
explanation of the technique). The algorithm uses a sequence of grids constructed
by binary subdivision within each block. Each grid has its own overlap region
which is updated through message passing between grids at the same subdivision.
A red-black successive-over-relaxation (RB-SOR)! scheme is used to solve (4.7)
on the bottom grid. It is necessary for the red-black colouring to be consistent
across adjacent blocks, which is ensured by requiring that the length of any closed
path be an even number of grid points; this is enforced by preventing the last level
of subdivision if necessary. Testing has shown that the time spent by the code
solving the Poisson equation on the bottom grid is very small in comparison to
the subsequent projection and restriction operations provided that the top grid
allows for sufficient factoring (Thomas & Williams, 1997).

4.2.1 Outline of the numerical algorithm

1) Sweep domain to collect the convective and diffusive terms, which are summed
to produce H* (4.4) at the current time step, using standard second-order central

differencing for the spatial gradients.

2) Project velocity u* using the Adams Bashforth algorithm (4.5) with H]* and
H* and (0p/0x;)"! stored from the previous time step.

3) Create the source term for the Poisson equation (4.7).

!see Chapter 19 of Press et al. (2003) for an explanation of the RB-SOR scheme.
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FIGURE 4.1: Structure of one multigrid V-cycle. ‘S’ denotes a smoothing proce-
dure, ‘E’ denotes solving for the exact solution on the bottom grid, ‘R’ denotes
a restriction procedure and ‘P’ denotes a prolongation procedure.

4) Solve the Poisson equation (4.7) to give p™ using a parallel multigrid technique.
The procedure conducts a series of V-cycles until the pressure error is below a
given tolerance, following the method layed out in Chapter 19 Press et al. (2003).
The structure of the V-cycle is shown in figure 4.1 and the main steps of the

multigrid technique are listed below:

e Perform two Gauss-Seidel iterations to smooth the solution on the top grid.

e Calculate the current residual and then use a ‘restriction’ operator (see be-
low) to transfer the residual to a coarser grid which has half the grid points

in all three directions.

e Continue to smooth the solution (through two Gauss-Siedel iterations) and
restrict the residual to progressively coarser grids until the grid is small
enough that performing a RB-SOR iteration scheme is more efficient than

further restrictions.

e Perform RB-SOR iterations on this ‘bottom’ grid to reduce the residual

below a given tolerance.

e Interpolate the corrected field to a grid with double the grid points in each

direction through use of a ‘prolongation’ operator (see below).

e Continue to smooth the solution (through two Gauss-Siedel iterations) and
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interpolate the pressure field onto progressively finer grids until we have

returned to the initial grid and perform two final Gauss-Seidel iterations.

The restriction and prolongation operators transfer the residual to lower and higher
grids respectively. The cell on the unknown grid is generated by a combination of
the surrounding cells on the known grid. The factor to which each surrounding
cell contributes to the unknown cell is specified by the operator; see Chapter 19

Press et al. (2003) for a discussion of operators.

n+1

)

4) Use the gradient of the pressure field and the projected velocity to give u
(4.6).

4.2.2 Closing remarks

The parallelisation of the code makes it a powerful tool due its speed. Computer
time on the HPCx high performance parallel computing system, has been provided
by the funding bodies (DSTL and EPSRC) and the UK Turbulence Consortium.
The code is thus ideal for simulating the vortex ring through its natural lifetime
from laminar to turbulence, fulfilling part I of the project. The code can also be
used to simulate the case of a vortex ring interacting with a free surface of very
low Froude number and deflections. This case can be approximated by imposing

free-slip boundary conditions at the extents of the axis of ring propagation.

4.3 Free-surface code

The free-surface code, FRECCLES, is written in Fortran 77 and solves the Navier-
Stokes equations (4.1) on a single processor. The pressure problem (4.7) is solved
with a RB-SOR iterative technique. Consequentially, it performs significantly
slower than the parallel fixed-boundary code. However, the code encorparates a
deformable surface on one of its boundaries. The free-surface boundary conditions
are imposed on the upper extent of the z-axis with a free-slip condition imposed
on the bottom of the domain. The flow moves under the influence of gravity ¢
which is added to (4.1) as the force term F; = —gd;3, where ¢;; is the Kronecker
delta.
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4.3.1 Free-surface boundary conditions

A restriction is placed on surface height h, such that the maximum slope cannot

exceed the aspect ratio of the grid cells,

|Oh/0x| < Az/Az, |0h/0y| < Az/Ay, (4.8)

where Az, Ay and Az are the dimensions of the grid cell. A kinematic boundary
condition is imposed on the free surface, stating that the rate of change of elevation

is proportional to the flux of fluid over the surface,

Oh/ot = (uen) V'S, (4.9)

where S is the ratio of the the sloping surface area to the vertical projection of

the surface area,

S =1+ (0h/0z)” + (Oh/Oy)?, (4.10)

and n denotes the surface unit normal vector,

n = (—9h/0x, —9h/dy, 1) VS, (4.11)

A dynamic free-surface boundary condition is also imposed which states that the
total normal stress (including the viscous component) and tangential stress must

be zero,

ne (r—pl)=0, (4.12)

where I denotes the unit tensor. The dynamic boundary condition leads to a
Dirichlet condition for the pressure equation (4.7) as at the surface z = h(z,y,t),
p(z,y, h) = ps equals the normal viscous stress component and any externally ap-
plied pressure field. By imposing impermeable free-slip conditions on the domain
bed we enforce w = 0 at z = 0 for all time, thus dw/Jt = 0, hence the boundary

conditions for (4.7) in the vertical direction z are
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p = ps(z,yt)  onz=h(z,yt), (4.13)
% = uj onz=0. (4.14)

A further simplification is made by setting uj to zero in the bottom layer of cells.
This is equivalent to applying a constraining force which prevents acceleration in
the cells. This simplifies the boundary condition (4.14) to

%:O on z =0, (4.15)

but does not affect pressure field. Periodic boundary conditions are applied in the

lateral  and y directions.

The free surface elevation h(x,y,t) is updated using the split merge technique

which is outlined in Appendix A.

4.3.2 QOutline of the numerical algorithm

1) Sum the convection and diffusion terms to give the current value of H!* (4.4)

in the surface cells, i.e. the top two layers of cells below the surface.
2) Add contributions of external body forces such as gravity.
3) Calculate H] in the remaining domain.

4) Calculate projected velocity u} for the interior cells (entire domain bar the top
two layers of surface cells) using the Adams Bashforth scheme and history terms

H* and 9p}~!/0x; stored from the previous time step.
5) Project (u})surys in the same way.

6) Solve the Poisson equation (4.7) for p™. The main steps are outlined below, in
which we make a distinction between the surface cells that occupy the uppermost
two planes below the surface and the interior cells which comprise the rest of the

sub-surface cells:

e (Calculate and store the source terms for all the interior cells with standard

second-order finite differences.
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e Store the coefficients for the standard-finite difference stencil factored by the

over-relaxation parameter o for an interior fluid cell.
e (Calculate and store the modified finite-difference stencil for the surface cells.
e (Calculate the source terms for the interior and surface cells.

e Iterate (4.7) with the RB-SOR routine, sweeping the z-y planes of cells
vertically in two stages. In the first stage the interior cells which do not
intersect with the free surface are subjected to full iteration. The second
stage sweeps the surface layer of cells and conducts one full iteration. Note
each full iteration step involves two sweeps, the first sweep updating the red

cells and the second the black cells using the updated red cell values.

e The iterations cease after the error in the pressure field falls below a defined

tolerance.

7) Update the velocity field u*" for the new time step by (4.6).
8) Use the split-merge technique to reassign the surface cells.

The maximum surface deformation constraint means that the surface code cannot
model wave breaking, thus the Froude number must be low enough to prevent
excessive surface deformation. The code can be started with an initially stationary
free surface or alternatively a wave field can be imposed. It is thus suitable for
simulating the free-surface interaction. A limitation is that the code is serial and
thus increasing grid resolution and domain size is costly in physical time. This also
poses the problem of memory space as the RAM demands increase with increasing
number of grid cells. However the free-surface interaction occurs over a relatively
short time scale compared to its life time. It is the aim of this project to investigate
the interaction of the vortex ring at different stages in its lifetime. This can be
best achieved in two steps. In step one, a vortex ring is evolved within the parallel
fixed-boundary code until the vortex ring is at the desired state. The resulting

velocity field can then be embedded within the free-surface code at a desired depth.



Chapter 5
Vortex ring initialisation methods

In this chapter we discuss different methods of initialising the simulations. The
chapter is split into two sections concerning the initial velocity field of a vortex

ring in an unbounded domain (§5.1) and the ring initialisation below a surface

(§5.2).

5.1 Ring initialisation in an unbounded domain

The aim of the initialisation is to produce a coherent vortex ring which displays
the intended characteristics in as short a development time as possible. Three
initialisation methods were tested; a discussion of their strengths and weaknesses

follows.

5.1.1 Initialisation method I

The initial velocity field for a vortex ring was defined by solving the inviscid
analytical expression for the stream function derived from the Biot-Savart law by
Yoon & Heister (2004) as

V= (n ) KO~ B(). (5.1)

where K(¢) and E(¢) represent elliptic integrals of the first and second kind, ¢ =
(x2—x1)/ Oz 4 x1), X2 = 22+ (r— R)” and x% = 22 + (r + R)%. The ‘vertical’

u, and ‘radial’ components u, at each grid cell can then be evaluated from

35
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_ 1oy _ 1oy
r = roz’ uz—rﬁr'

(5.2)

The analytical expression is for an inviscid ring with an infinitely thin core, which
has an unphysical infinite propagation velocity as (2.2) is logarithmically singular
for an infinitely thin core radius. This problem was overcome by patching a Gaus-
sian distribution of vorticity on the core region. However, initial tests showed that
the ring quickly broke down if the Reynolds number was greater than about 2000.
Analysis of the ring velocity profile showed that the patched core region was not
well matched to the analytically defined velocity field. The discontinuity created a
sheet of vorticity around the circumference of the ring at the interface. The sheet
of vorticity was concentrated over one grid cell and high in magnitude. It caused
the ring to break down prematurely within a small number of time steps. Low
Reynolds number simulations (Re < 2000) did not experience the same premature
breakdown, as viscosity quickly smoothed the velocity profile yielding a coherent

vortex ring.

Inspired by these observations an improved method of pre-conditioning was adopted.
A ring with an initially thin core was advanced in time with Re = 400 until the
core radius was the intended size, thus smoothing the patch and the analytical so-
lution. The time scale of the conditioning phase was calculated using (2.4). Once
the conditioning phase was over the simulations were restarted at the required
Reynolds number. Perturbations in the form of broadband random noise of order
2% of the local velocity were added to the initialisation to encourage the Widnall
instability to grow around the circumference of the core. The resultant azimuthal
wave number was checked against the wave number predicted by Saffman (1978).
It was found that the expected wavenumber did not develop around the azimuth,
which favoured a four or eight wave configuration dependant on the size of the
core slenderness ratio €, with smaller e yielding the eight wave pattern. Other
drawbacks of the method were that thin rings could not be initialised and the

conditioning phase resulted in a lack of control of ring geometry.

5.1.2 Initialisation method II

The rational behind initialisation IT was to improve the previous method by avoid-
ing the problematic switch between the inviscid flow field and the Gaussian core.

A new method! incorporated a relaxation term, with magnitude of the desired

Isuggested by Dr K Shariff in a private communication
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core radius 4, into the definition of y, yielding: x? = 2% + (r — R)2 + 62 and
X2 = 22+ (r+ R)* + 6% The velocity field for the whole domain could now be
calculated from the stream function (5.1) without the need of a Gaussian patch
for the core region. A +2% random noise scaling was added to the velocity field
to excite the azimuthal ring instability. The vortex ring was found to adopt the
correct number of azimuthal waves and broke down in a time scale consistent with
the numerical simulations of Shariff et al. (1994). However close examination of
the vorticity field at ¢ = 0 showed that the method produced a core distribution
with a long tail of relatively low vorticity in both the radial and z-directions. This
meant that rings with € > 0.3 suffered canceling of vorticity on the ring centreline,
reducing the overall circulation. It was also difficult to determine the relationship
between the magnitude of the relaxation factor and resultant core radius, thus this

method also lacked a degree of control.

5.1.3 Initialisation method II1

The third method initialised a vortex ring with a Gaussian distribution of vorticity
around the azimuth of the ring, as used by Shariff et al. (1994), with

F 2 2
= =876
T2 € ’

Wy = (53)
where s? = 22 + (r — R)Q. Small initial perturbations were added to the vortex
ring in the form of a local displacement of the radius R around the azimuth of the
ring. Thus s? can be written as s> = 22 + (r — R'(A))*. We suppose that the local
radius R(#) can be written as a small parameter ¢ < 1 multiplied by the sum of

a set of NV Fourier modes, each with unit amplitude and random phase, so that

R(0) = Ro[l+<f(0)

N
fo) = Z A, sin(nf) + By, sin(nf),

where A% + B? = 1. However, although this method would lead naturally to a
divergence-free velocity field, the continuity of the vortex lines themselves is not
guaranteed — partly because the vorticity should be tilted slightly to follow the
tangent to the path of the vortex centreline, and partly because the implied cross-
section area of the vortex is not perfectly constant around the ring. The above

vorticity field can be corrected to become divergence-free by superimposing the
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gradient of a scalar field V¢ and requiring that ¢ satisfy a Poisson equation whose

source term is the divergence error of the original vorticity field?,
Vip= -V - w. (5.4)

The complete initial field is then obtained by solving for the vector stream function

that is consistent with the corrected vorticity distribution w¢,

V3 = —w, (5.5)

and the velocity field then follows directly by taking its curl,

u=V x1, (5.6)

where u is the velocity field and 1 is the vector stream function. This method of
perturbation also allow us to excite solitary modes or groups of modes if the need
arose. The method produced a coherent vortex ring that developed the correct
azimuthal number of waves as predicted by theory and experiments and was thus

adopted as the initialisation technique for the subsequent investigations.

It was noted, by Shariff et al. (1994), that the initial Gaussian distribution of
vorticity is only an exact steady solution in the limit of infinitely thin cores. Since
the Gaussian cores specified here have finite size (and thus only approximately
satisfy the Navier-Stokes equations) the ring initially undergoes an ‘equilibration’
phase, during which the wy profile across the core region relaxes toward a new
equilibrium state. This is obtained after the Gaussian profile approaches the ax-
isymmetric inviscid ideal for which, in axes attached to the ring, wy/r is solely
a function of the streamfunction . The core profile must thus depart from the
initially symmetric Gaussian distribution, and become skewed, with wy decreasing
faster toward the bubble edge than the ring centre. Our results show that during
the equilibration phase wy is shed from the ring (figure 5.1(a)) reducing the circu-
lation and modifying the ring geometry; this process is most severe for thick-core
rings (figure 5.1(b)).

2The maximum correction to the vorticity field was less than 1.7%.



Chapter 5 Vortex ring initialisation methods 39

-1.5 -1 -0.5 0 0.5 1 1.5

tTo/R3
(b)

FIGURE 5.1: Ring adjustment during the equilibration; (a) Vorticity shedding

visualised by wy contours for a thick-core ring, e = 0.4131, at time ¢I'g/ R(% = 5;

increments wy** /50. (b) Loss of I' for two ring of different core thickness: ———,
e=0.2; —,e=04131.

5.2 Ring initialisation below a surface

By introducing surface boundary conditions we are in effect constraining the size
of the simulation. One of the aims is to investigate rings at different stages of their
life cycle. However, allowing a laminar ring to transition naturally to turbulence
before it is in contact with the surface would require an extremely long domain,

unfeasible for the present codes. In light of this we have devised a ring embedding
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method which allows the ring to be defined a given distance from the surface at

the desired stage of its evolution.

5.2.1 Embedding method

The embedding method makes use of ring simulations in the unbounded investi-
gation. The first step is to extract the entire vorticity field from the unbounded
simulation once the ring has evolved to the desired state and store it in an output
file. The intended surface investigation may not have the same domain dimen-
sions or cell density, in which case the output file is then modified to reflect the
free-surface domain. The vorticity is almost entirely concentrated around the ring
in the centre of the domain, with the exception of a relatively small wake, and
naturally becomes zero in the lateral x and y-directions toward the boundaries
(and indeed far from them). This allows us to reduce or expand the domain sim-
ply by adding or subtracting zeros from the output file. The velocity field is then
evaluated from the vorticity field and its vector stream function using (5.5) and
(5.6).

The above is sufficient to initialise a surface investigation as the Froude number
tends to zero as ¢ — oo leading to an ‘infinitly stiff’ free surface. For cases where
Fr > 0, however, we must also prescribe an initial surface deformation consistent
with the vorticity field below. Failure to initialise the free surface correctly leads to
the formation of a propagating surface wave with wavelength equal to the lateral
box size. The wave is created due to an imbalance between the pressure in the
cells directly below the surface and their hydrostatic value leading to an impulse
on the surface. As we define a relatively low viscosity the wave is not significantly
damped during the simulation. It is thus crucial to prevent its creation to avoid
modification of the ring behaviour. In effect, we require the pressure field to be
known before the first time step. An approximation for the pressure field is found
by simulating the ring with free slip boundary conditions for a small number of
very small time steps At = 0.00001R2/Ty. The pressure in the cells in the highest
x — y plane are then used to prescribe a surface elevation through use of the

Bernoulli equation,

_bp
=" (5.7)

Note, in the case of the CGLES rigid lid code the pressure field contains an arbi-
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trary constant which must first be subtracted from the local pressure before the
initial surface elevations are calculated. Testing showed that this method pre-

vented the generation of the initialisation wave if the ring was embedded below
2R,y.

5.2.2 Surface wave field

In prescribing a surface wave field we appeal to the linear theory of surface gravity
waves ignoring the effect of surface tension. This is a reasonable assumption as the
vortex rings of most interest here are of large scale (typically of radius ~ 10m) and
we limit our interest to the interaction of waves with amplitude small compared

to wavelength. The surface waves take the form of a sine wave described by

. [ 2rkx
h = asin ( 7 ) : (5.8)

xT

where a is the wave amplitude,k is the wavenumber and L, is the computational
domain width. In shallow water, the irrotational velocity field for linear gravity
waves can be derived from Laplace’s equation, V2¢ = 0, where ¢ is the velocity
potential (Lighthill, 1978). It follows that the velocity field corresponding to the

waves is given by

u= #é];[/)cosh (kz)sin (kx), (5.9)
= —ﬁsinh (kz) cos (kx) , (5.10)

where € = tanh (kL.) (gk)"” is the angular frequency.



Chapter 6

Investigation of vortex ring
evolution from a laminar to a

turbulent state

In this chapter! we present results from DNS of single naturally evolving lam-
inar vortex rings with different relative core thicknesses and Reynolds number,
and examine their initial breakdown and transition into the early stages of tur-
bulence. After the mathematical and numerical preliminaries are presented in
§6.1 and §6.2, the cases of interest are introduced in §6.3, along with analysis
of the numerical approach in §6.4. We next investigate the laminar evolution
of the ring (§6.5.1), and the wake generation, modal growth, and wave breaking
during the linear (§6.5.2) and nonlinear (§6.5.3) regimes, with special attention
paid to the generation of secondary vorticity structure. Finally we investigate,
using Lagrangian particle-path analysis, the relationship between the amount of
entrainment or detrainment and the various stages of the ring evolution (§6.5.4)

and the possibility of an axial flow generation in the core region (§6.5.5).

6.1 Mathematical background

For the vortex ring evolution investigation we consider a single vortex ring of ra-

dius R and core radius §, with circulation I' and Reynolds number Re = I' /v, with

Much of the material in this chapter has been presented in Archer et al. (2008); see Ap-
pendix B.

42
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FIGURE 6.1: Schematic diagram of the vortex ring domain, the shaded region
corresponds to the logging domain.

impulse P propagating along the positive z-direction with respect to Cartesian co-
ordinates x = (z,¥, z) and with corresponding velocity components u = (u, v, w);
see figure 6.1. The vortex is initiated such that it is centred about x = (0,0, 0)
at time t = 0 and, after an initial adjustment (see section 6.5.1), propagates at a

velocity U that depends on its instantaneous parameters according to (2.2)

We follow Saffman (1970) and define the vortex-ring geometry in terms of integral
parameters. For example, under the assumption of axisymmetry (reasonable for
a laminar ring), measures of the ring radius can be extracted from the first and

second radial moments of the azimuthal vorticity wy, with

1 1
Ry = f/rwg drdz and R; = f/Tng drdz, (6.1)

where the circulation I' and impulse P take their usual forms,
I'= /wg drdz and P =7mR3T, (6.2)

and 72 = 22 + y?. Equivalent three-dimensional formula can be derived for more
general non-axisymmetric distributions of vorticity. The ring radius Ry can be

interpreted as the radial wy-weighted average, and the core thickness dy as the
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wg-weighted measure of its spread. For a Gaussian wy distribution we have
62 = 2(R3 — R2). (6.3)

These quantities are referred to below as impulse-weighted measures of the vortex
geometry; they are particularly useful because of their close relationship to the
integral parameters. It is also convenient to define an integral measure of the ring

radius Rq based on the first moment of enstrophy via

1
Rq = 20 rlw|*dz dy dz, (6.4)
where Q = [ |w|*dz dy dz is the total enstrophy. Since the laminar ring produces a
wake of shed vorticity, all characteristic ring radii and integral properties presented
in this paper have been calculated over a ‘logging domain’, the top and bottom of
which are two initial ring radii Ry from the origin (see figure 6.1). This prevents

the wake from artificially distorting measures of the ring parameters.

6.2 Numerical Approach

The fixed-boundary code was used for all vortex life time investigations as de-
scribed in §4.2. The Cartesian computation domain assumes periodic boundary
conditions in the x and y-directions, so that we are, in effect, simulating an infinite
array of vortices, but with the domain widths L, and L, chosen to be sufficiently
large that the effects of periodicity are small (see below). However, because the
vortex sheds a wake, the ring propagation direction (z) cannot be treated as peri-
odic if interactions with its own wake are to be avoided. We therefore use inflow
and outflow boundary conditions, at z = +L,/2 and —L, /2 respectively, and per-
form the calculations with respect to a moving reference frame attached to the
ring. The time-dependent axial velocity Wi(t) of this moving reference frame is
adjusted by a simple control algorithm to keep the ring at a fixed vertical location
within the domain. It thus provides the inflow boundary condition at z = +L, /2,
with w(z,y, L,/2) = Wi(t). (This assumes that L, is large enough, compared to
the ring radius R, that the velocity induced by the ring vorticity at the inflow
plane is negligible.) In order to avoid introducing spurious vorticity into the do-
main, Neumann conditions are applied to the other two components at z = +L, /2:
Ou/0z = Ov/0z = 0. At the outflow, z = —L,/2, all three components satisfy a
linear gradient condition, with du/dz = dv/0z = Ow/dz = 0.
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Calculation of the reference-frame speed W (i.e. the time-dependent inflow ve-
locity) requires a time-dependent measure of the vertical ring location Z. We

use

1
Z(t) = 20 zlw(t)[* dz dy dz, (6.5)

where  is the total enstrophy (cf. (6.4)). The value of W; that minimises the
difference between Z(t) and the target location Z. = 0 is determined by an integral-

proportional controller,
t
Wi(t) = 2 (Z(t)— Z.) + cg/ (Z(t") — Z.) dt’, (6.6)
0

where c; and ¢y respectively set the damping and oscillation timescales. These
were chosen to give a critically damped response with ¢; = 2Ig/R2 and ¢y =
4T/ R% (where the 0 subscript indicates initial values), which locates the ring
to within 1073Ry of Z. by three R2/Ty time units, and to within 5 x 107°R,
by 20R%/Ty. Once the ring is locked in place, it remains in the centre of the
domain throughout the computation, despite shedding circulation and impulse,

and changing its translational velocity.

Since the DNS effectively approximates the motion of a single vortex ring by
considering a periodic array of rings in x and y, it is necessary to quantify the
influence of the implied image vortices, which act to reduce the speed at which the
ring propagates, compared to the infinite-domain idealisation. The amount of this
reduction can be calculated by integrating the net effect of the velocity induced
by the neighbouring rings, located at distances x = (i€, j&,,0) from the point in
question, where &, and &, are respectively the x and y periods of the image array,
and ¢ and j are integers. The velocity induced by a single image is U = V A A,
where A is the far-field velocity potential, which for |x| > R is

2
A=y (O0ET)
41x]

The net induced axial velocity w is thus

_ 'R? & i2 4 42 I'R?
U=—1s > ~ —9.032— (6.7)

s (P 722 LS

where we assume a square array, with § = §, = &,, and the 7, j summation has

been evaluated numerically. This gives both a criterion for choosing the lateral
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Case 50/R0 Fo/l/ NxXNyXNZ t*Fo/R(% F*/FO R;/RO 5;/R0

Al 0413 5500 256x256x256 40.0 0.907 1.038 0.373
A2 0413 10000 256x256x256 40.0 0911 1.038 0.360
Bl  0.200 5500 256x256x256 25.0 0.992  0.999 0.243
B2 0.200 10000 384x384x384 25.0 0.995 1.000 0.227
B3  0.200 7500 512x512x512 25.0 0.993 1.000 0.232
Cl  0.140 3000  256x256x256 15.0 0.999 0.995 0.203

TABLE 6.1: Run parameters. The *x superscript indicates quantities at the
sampling initiation time ¢*.

sizes L, and L, of the domain, and also allows the translational velocity exhibited
by the ring in the finite-domain simulation to be corrected and compared to the
corresponding infinite-domain experimental results. Note that since I' and R vary
with time so does the w correction, and that the ratio of w to the velocity induced
by the local ring within a square domain of size L is O(R/L)? (2.2).

6.3 Simulation parameters

The parameters that define the six cases summarised in table 6.1 allow consid-
eration of the effects of both Reynolds number Re = I'y/v and the slenderness
ratio g = 0g/Rp. Since this part of the study will revisit some of the issues
first raised by Shariff et al. (1994), two of our runs have been designed to match
theirs. The Case Al and B1 values respectively correspond to those used for
their Runs 3 and 12, with Re = 5500 for both and ¢y ~ 0.4 and ~ 0.2, defin-
ing rings within the thick- and thin-core regimes. Cases A2 and B2 are higher
Reynolds number versions of Al and B1, respectively, with Re = 10000. Case
B3 defines another ¢y = 0.2 thin-core ring, at an intermediate Reynolds number,
Re = 7500. This case, with its intermediate Re and higher spatial resolution,
will be especially useful when we examine the nonlinear breakdown and the early
stages of the fully turbulent regime. Finally, Case C1 was designed to help de-
termine the expression for the translational velocity constant C' (see § 6.5.1), by
capturing both thin- and thick-core behaviour. The number of grid cells employed
in each direction (NV,, Ny, N,) is shown in table 6.1. The quality of the spatial
resolution is examined below. A cubic Cartesian domain was used for all cases,

with L,/Ry = L,/Ry = L,/Ry = 8. Equation (6.7) implies that this introduces
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differences between the finite- and infinite-domain ring translational velocity of
approximately 0.005I'g/Ry. All cases also utilised a constant timestep, with the
Courant-Friedrichs-Lewy (CFL) number, based on local velocity and grid size, al-
ways less than 0.15. A radius perturbation of amplitude ¢ = 2 x 10~* was imposed
on the first 32 azimuthal modes for the thin-core rings (Cases B1, B2, B3 and
C1), while for (thick-core) Cases Al and A2 the first 24 modes were disturbed,
following the approach of Shariff et al. (1994).

6.4 Assesment of the numerical approach

6.4.1 Cell resolution

The reliability and accuracy of the fixed-boundary code was assessed by comparing
the results of Case A1l with linear-instability results obtained with an in-house fully
spectral third-order Runge-Kutta code? using 192 x 192 x 768 Fourier modes®. The
spectral domain was large enough (L, = 32Ry) in the z-direction to prevent the
ring interacting with its wake during the time considered. (Were it not for the
need to employ nonperiodic boundary conditions in z, the fully spectral code could

have been used for this part of the study.)

Excellent agreement was found for the ring translational velocity and integral
measures, as well as the linear-regime growth rates of the azimuthal disturbances,
which after adjusting to a slightly different random initialisation eventually track

each other; see figure 6.2.

A further check of the spatial resolution is provided in figure 6.3, which shows
histories of the rate of change of the volume-integrated kinetic energy K (per
unit mass) within the simulation domain, with respect to the frame of reference
attached to the ring?. Within an infinite domain the rate of change of K is equal
to the volume-integrated rate of kinetic energy dissipation —ex. However, since
kinetic energy is lost to the wake and convected out of the finite domain, here the

energy balance is altered such that

dK
dt
2Written and run by Dr C.P. Yorke of University of Southampton.
3This involved a 2883 collocation grid, to allow de-aliasing of the spatial derivatives.
4The moving coordinate system and the associated unsteady inflow define an effective pressure

gradient of —dW;/d¢, such that K = %fv(uzuz — W12)dV7 where V is the volume of the DNS
domain.

= —€rg + FK, (68)
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FIGURE 6.2: Comparison of modal growth rates for azimuthal modes n = 5
(thin line) and n = 6 (thick line): — , Case Al; — — —, 192 x 192 x 768 spectral
DNS.

where F is the net volume-integrated kinetic energy flux, set by the difference be-
tween the (unsteady) fluxes at the inlet and outlet planes. The difference between
the left- and right-hand sides of (6.8) is a measure of the spatial discretisation er-
ror in resolving the smallest turbulence scales. For all six cases the difference was
within 1 x 107°T3 /Ry up to the point of transition. Transition involves stretching
of the vorticity filaments to fine scale, resulting in an enstrophy and dissipation
peak. Note that the flux term Fk is only significant after the ring breaks down and
its turbulent wake reaches the outflow boundary (compare the solid and chain dot
curves in figure 6.3). Even during this most difficult to resolve phase (¢ > 80R3/T)

the accuracy is reasonable, with the error remaining less than 2.2 x 10713/ Ry.

6.4.2 Sensitivity to domain size

The influence of the distance of the ring to the boundaries was addressed by re-
peating Case Al using two larger domains. In one simulation, the box width
(z-y plane) was increased to 12Ry x 12Ry, to assess the influence of the image
vortices, and to confirm the validity of the periodic correction @ (6.7). In the
other simulation, the box height (z-direction) was increased to 16 Ry, to assess the
influence of distance from the ring to the upstream and downstream boundaries.
As shown in figures 6.4 and 6.5, the effect of increasing the domain size is negli-
gible for all featured results. Figure 6.4 compares slenderness ratio €, ring radius

measures Ry and Rg, circulation I and translational velocity U (which includes
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FIGURE 6.3: Numerical integrity. History of rate of change of volume-integrated

kinetic energy K for Case B3 (thin core): ———, —dK/dt; —- —, ex; —, ex — Fk.

Dissipation and flux terms shown for ¢ > t*, where t* is the sampling initiation
time (see §6.5.1).

the correction factor @) for the different domains. The evolution of the vortex
ring radius measures are least affected by the domain size, with a maximum dif-
ference of 0.2%. The other ring measures show the same order of accuracy, all
within 0.5%. Also shown, in figure 6.5, is the history of the growth rate of the
most amplified azimuthal mode, which for this case is the n = 6 mode. Again
the agreement across the different domain sizes is excellent, with the maximum
difference during the linear growth phase less than 1%. The accuracy of the ve-
locity correction w, employed to account for the finite lateral domain size and the
resulting retarding effect of the periodic spanwise array of rings, is demonstrated
by the close agreement in U between the different sized domains (figure 6.4(d)).
For the original 8 Ryx8 Ryx8Ry domain 1 is approximately 4 x 1073Ry/Ty. This
is an order of magnitude larger than the difference (4 x 107*Ry/T'y) between the
ring translational velocities for the 8 Rgx8 Rgx8 Ry and 12Ryx12Ryx8 Ry domains,
after the respective corrections have been added. The maximum relative difference
between the translational velocities (after @ has been added) is 0.25%. We thus
have confidence that the results have not been spuriously affected by the domain

size or the velocity correction w.
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FIGURE 6.4: Comparison of ring characteristic parameters for Case Al with

three different sized domains: — , 8Rgx8 Rgx8Ry; - - - , 8Ryx8Rox16Ry; — — —

12Rox12Ryx8Ry. (a) Evolution of slenderness ratio e = dg/Ry. (b) Evolution of

Ry and Rq. (c) Decay of circulation I'. (d) History of ring translational velocity
U. (Note U includes the velocity correction w.)

6.5 Results

6.5.1 Laminar Evolution

As mentioned in § 5.1.3, the ring initially undergoes an ’equilibration’ phase, during
which wy is shed from the ring, reducing the circulation and modifying the ring
geometry; this process is most severe for thick-core rings. These observations
led us to define a sampling initiation time t* at a time just after equilibrisation
has occurred, such that the core vorticity distribution has fully adjusted and the
associated shed vorticity has left the logging domain, thereby avoiding spurious
measurements of the ring characteristics. (The impact of the start-up wake as it
passes out of the logging domain can be seen in the local increase in circulation
decay rate between ¢ = 5 and 15R2/T in figure 6.8) The initial sampling time is

documented together with the ring parameters associated with this time (indicated
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FIGURE 6.5: Comparison of azimuthal growth rates of the most amplified n = 6
mode for case Al with three differently sized domains: — , 8 Rgx8 Rgx8Ry; - - -,
8ROX8ROX16R0; - —, 12ROX12ROX8R0.

by an * superscript) in table 6.1.

Having adjusted, the wy profile extends outside the instantaneous zero streamline
(broken vertical line, see figure 6.6) for both the thin- and thick-core rings, but
to a far greater degree for the thick-core ring. Vorticity extending across the zero
streamline is nominally outside of the entrainment bubble. It can then either be
entrained back into the bubble or transverse the bubble surface and depart into the
wake, as suggested by Maxworthy’s model for diffusive entrainment (Maxworthy,
1972). Figure 6.7 shows precisely this mechanism, with weak vorticity (shaded
contours on right-hand side) trailing into the wake over the zero streamline (thick-
solid contour). The fact that vorticity crossing the instantaneous 1) = 0 streamline
can be entrained back into the entrainment bubble is due to the fact that the zero
streamline is not stationary and moves in time to incorporate changes to the ring
translational velocity and integral parameters. The Eulerian view would see any
vorticity crossing the zero streamline into the irrotational fluid convected into the
wake. However the vorticity takes time to transverse the bubble surface down to-
wards the rear stagnation point. During this time the zero streamline can expand,
encompassing vorticity previously outside the entrainment bubble. Lagrangian
analysis of the flow yields an entrainment bubble surface which takes into account
the moving ¢ = 0 streamline. Vorticity diffused across this boundary, outboard of
the zero streamline, passes into the wake. These arguments are explored further
in §6.5.4. Whether the ‘leaked’ vorticity is recovered or not, the vorticity profile is
clipped by the presence of the entrainment bubble surface. This vorticity clipping
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FIGURE 6.6: Comparison of core vorticity distributions for a thick- and a thin-
core ring, at t = t*: — , Case Al (g = 0.41); — — —, Case Bl (¢ = 0.20).

Broken vertical line indicates the location of instantaneous zero streamline on
the concurrent plane. Radial locations nondimensionalised by local R, the dis-
tance from the origin to the peak in wy.

leads to a sharpening in the wy profile in the vicinity of the zero streamline surface,
hence increasing the skewness of the core. It is interesting that for both cases the
instantaneous zero streamline surface appears at a constant distance r ~ 1.33R
from the ring centreline, where R is the current radial location of the wg peak. The
instantaneous zero streamline surface thus expands to track radial displacement of
the vorticity peak as the core diffuses, leading to a relationship between the core

thickness and the rate of decay of wy.

The loss of wy manifests itself in an overall reduction of ring circulation. Figure 6.8
displays the rate of decay in circulation during the laminar regime. The main
figure shows the rate of decay from the start of the simulation, with the early
peaks corresponding to the vorticity shed during the core adjustment leaving the
domain. We focus on the inner figure which presents the behaviour when the
core has adjusted its vorticity distribution, after ¢*. Comparing Cases A1l with
Bl and A2 with B2, we see that despite similar initial Reynolds numbers I'* /v
the thick-core rings reduce in circulation faster than the thin-core rings. This can
be attributed to the increased skewness of the thick-core rings with the result of
greater wy extension across the entrainment bubble surface. The rate of circulation
loss increases with time for the thin-core rings, which is consistent with the ongoing
core diffusion, such that they become increasingly skewed. The thick-core rings,

on the other hand, exhibit a larger but more-nearly constant rate of circulation
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FIGURE 6.7: Loss of of azimuthal vorticity wy for Case Al at (¢t — t*) To/R2 =
20: — , ¢ < 0 (thicker contour denotes ¢ = 0); — — —, ¥ > 0; shaded contours
show wy (darker contours show weaker vorticity).
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FIGURE 6.8: Histories of rate of change of circulation dI'/d¢: — , Case Al
(thicker line) and B1 (thinner); — — — , Case A2 (thicker) and B2 (thinner);
— . —, Case B3.

loss, since they are closer to a quasi-steady state defined by fixed € (compare
figures 6.9(a) and 6.9(b)), and thus experience little change to their skewness and

associated relative rate of wy diffusion.
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Maxworthy’s model for diffusive detrainment (Maxworthy, 1972) predicts a -2/3
power law decay of I'. The decay rate was not found to be universal by Dabiri &
Gharib (2004) however, who experimentally generated rings at Reynolds numbers
between 2000 and 4000, finding that I' decayed with power laws between -0.27 and
-0.067, with the power decreasing with increasing Reynolds number. We find for
the present rings that the circulation tends to decay as I' ~ t¢ where c is in the
range -0.01 to -0.002. One can account for the range of reported circulation decay
rates by the difference in Reynolds numbers across the previous and present cases.
As shown in figure 6.8, for identical initial € the decay rate increases monotonically

with decreasing Reynolds number.

The laminar evolution of the core radius measures, &y, a. and a;®, normalised
by the instantaneous value of Ry, and the ring radii measures Ry and Rq are
shown in figure 6.9, for two rings that typify the behaviour of thin and thick cores
(Cases Al and B3). To calculate ay, the core centre was first determined by linear
interpolation, then second-order polynomial extrapolation was used to find the
distance from the core centre to the location of the maximum tangential velocity
on the plane z = 0 inboard and outboard of the core centre. These two lengths

were then averaged to give a;.

Since the integral measure Rgq is weighted by |w|? it is biased toward regions of high
vorticity and hence approximates the radial location of peak vorticity. On the other
hand, Ry (being weighted by wy) effectively yields the radial location of the centre
of vorticity of the core, which during the laminar regime is always inboard of R,
due to the skewness of the core wy profile. The difference between the two measures
is thus an indication of the core skewness, which is greater for thicker cores. Note
that, prior to transition, Ry for the thin-core rings is approximately constant,
while Rq increases slightly with time, demonstrating the increasing skewness of
the thin-core rings due to core diffusion. The thick-core rings behave differently,
in that both Ry and Ry increase with time. This shows that the ring is expanding

radially while the skewness of the core remains approximately constant.

The three dotted lines in figure 6.9 (a) and (b) represent the predicted core diffusion
for an equivalent core with a Gaussian profile in accordance with (2.3). The
history of the thin-core ring follows the Saffman diffusion equation very closely,
with the exception of a./ Ry, which deviates with time away from the upper dotted
line. The divergence can be attributed to the increasing core skewness. As the

core wy distribution becomes less Gaussian, the translational velocity of the ring

Ssee §2.1
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FIGURE 6.9: Histories of core and ring radii for (a) Case Al (thick core) and

(b) Case B3 (thin core): — , dg/Rg; — - - —, a1/Rg; — - - - —, ae/Rg; - - -,

theoretical core diffusion determined by (2.3) nondimensionalised by Ry, (with

the lower line corresponding to dg, the middle to a; and the upper to a.); — ——,
Ry/Ro; — - —, Ra/Ro.

reduces with an associated increase in a. (cf. (2.2)). For the thick-core ring, the
slenderness ratios a; /Ry and dy/ Ry remain approximately constant with time. The
core expansion is constrained by the ring geometry, as wy must equal zero on the

ring centreline and its outer extent is clipped by the zero entrainment streamline
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FIGURE 6.10: Histories of vortex translational velocity for (a) Case Al (thick
core) and (b) Case B3 (thin core): — — -, Ug; — , Upns.

(which expands at the same rate as the radius). Consequentially the core diffuses
at a very similar rate to the ring radius, leading to a nearly constant e. With
both € and hence the degree of skewness nearly constant, the core distribution of
vorticity changes little, resulting in the nearly constant rate of decay of circulation

for thick cores seen in figure 6.8.

The transitional and early turbulent behavior of the ring is also presented in
figure 6.9, to give perspective to the laminar results. Transition begins near (¢ —
t*)To/R2 = 95 and 55 for Cases Al and B3, respectively, with the decrease of
Rq as the core distorts and the development of interior and peripheral vortical
structures moves the location of the maximum vorticity. The transitional and

early turbulent behavior will be examined further in §6.5.3.

Histories of the translational velocity U of the thick- and thin-core rings are shown
in figures 6.10(a) and 6.10(b) respectively, and compared to equivalent rings with
a Gaussian core profile. These include the periodic correction w (cf. (6.7)) to
account for the induced velocity of the periodic array of vortices, so we in effect
report the translational velocity of a single vortex ring in an unbounded domain.
The Gaussian ring velocity Ug is given by (2.2), where C' = —0.558 and the
instantaneous values of I', Ry and dy are taken from the DNS results. The difference
between Ug and the numerical results reveal the impact of the non-Gaussian core
wy distribution. The difference is greater for the highly skewed thick-core rings and
remains almost constant as the core diffusion is limited (for reasons given above).
Since for thin-core rings the wy distribution becomes increasingly skewed as the

simulation progresses, the difference between the Gaussian and the DNS velocity
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increases with time. For all cases the rings decelerated smoothly until the onset

of turbulence, whereby the translational velocity fluctuates as it decays.

The inclusion of C'in (2.2) allows for cores with finite slenderness ratios € that pos-
sess non-Gaussian core distributions. The difference between the ring translational
velocity and that of a Gaussian-core ring increases with time as the core diffuses.
This implies that C' becomes increasingly negative with increasing €. One might
expect that the effect of increasing skewness would manifest itself as an even-series
expansion in €2, i.e. C' can be approximated as C = Ae? + Be* + C’, where the
constant C” must equal —0.558, since for small finite ¢, C' must equal —0.558. The
parameter C' has been extracted from the simulations and is plotted in figure 6.11
against the instantaneous value of € = dy/ Ry for all cases. The results are well
approximated by C' = —1.12¢*> — 5.0¢* — 0.558 (dashed curve). The generalized
expression for the translation speed of a laminar vortex ring as a function of I', R

and e then becomes

_ F 8 2 4 !
U_47rR [ln<6>—|—Ae +Bes+C'+ .., (6.9)

where A = —1.12, B = —5.0 and C" = —0.558.
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6.5.2 Instability Growth

During the initial laminar phase an azimuthal instability associated with the vor-
tex core develops, and deforms the core into a standing wave with an integer
number n of waves around the circumference. The number of modes depends
on the slenderness ratio such that n ~ 2.26/¢ (for a Gaussian core distribution
of vorticity (Shariff et al., 1994)). The growth rate of a mode n is defined as
o, = 3(1/E,)dE,/dt, where E,, is the energy of the mode. The inviscid case was
examined by Widnall & Tsai (1977) deriving the growth rate ayr (2.6). However,
the numerical study of Shariff et al. (1994) found that the effect of viscosity is to
reduce the growth rate from the inviscid value by a factor that depends on the
local internal Reynolds number of the core, and established a viscous correction
factor (2.7). Shariff et al. formulated the viscous correction by comparing the
measured growth rates for a number of rings with € varying from 0.2066 to 0.4131,
and across a range of Reynolds numbers Re from 1200 to 10000. They determined
the growth rate as being that of the most amplified azimuthal mode (i.e. the mode
with the largest growth rate at a given time, not necessarily the mode currently
with the most energy) observed at a time ¢I'g/R2 between 52.5 and 57.5. The
growth rate was averaged over 15 R2 /Ty time units centred about ¢. However,
as the vortex ring geometry changes slowly over time because of viscous diffusion
of the core, the most amplified mode will also slowly change. In fact, successive
modes with reducing n will be selected and amplified, so that the average growth
rate measured by this method can be expected to be slightly lower than suggested

by the equation above.

Shariff et al. estimated the internal Reynolds number Reg at time ¢ using the
core measures a; and a., and assuming a Gaussian core distribution of vorticity
diffusing in accordance with (2.3) (accurate for thin cores but less so for thicker
ones). Finally, ayr was calculated using the initial ring parameters and it was
found that «; = 18 fitted their results well.

The main differences between our numerical investigation and the simulations of
Shariff et al. are that our boundary conditions are not periodic in the direction of
ring propagation and that we use a cubic domain rather than a cylindrical one.
The latter requires us to interpolate our velocity fields onto a cylindrical grid in
order to extract the modal energy spectrum and associated modal growth rates.
An azimuthal Fourier transform was performed over the cylindrical grid to reveal
the modal energy histories displayed in figure 6.12. We follow Shariff et al. and
report the growth rate of the most amplified mode at {Ty/R3 = 52.5, averaging the



Chapter 6 Investigation of vortex ring evolution from a laminar to a turbulent
state 59

0 20 40 60 80 100 120 140 160
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Case ¢ n(f) o as  D(t) Ro(t) ac(t) ai(t) awr(t) as(t)

Al 525 6 0.072 0.090 0.897 1.173 0.65 0.44 0.081 0.069
A2 525 6 0.082 0.098 0.904 1.144 0.62 0.42 0.087 0.080
Bl 525 9 0.099 0.108 0.989 1.062 042 030 0.128 0.103
B2 475 10 0.130 0.126 0.995 1.044 034 0.26 0.141 0.124
B3 525 9 0.112 0.119 0.989 1.056 0.39 0.28 0.133 0.113

TABLE 6.2: Comparison of present growth rate a with Shariff et al. (1994)
viscous prediction ag. Time f given in units of R3/Ty, growth rates in units of
Lo/ R(Q), circulation in units of I'g and lengths in units of Ry.

growth rate over a time window of +7.5R3/I"y centred at t. The Case B2 result,
however, is reported at the earlier time of t['y/ RZ = 47.5 to avoid the possibility of
being affected by the nonlinear regime. The growth rate ag was calculated using
the instantaneous values of a; and a. at ¢ as approximated by (2.3) and 'y and

Ry in accordance with the methodology used by Shariff et al.

A comparison between the present growth rates o and those given by the Shariff
et al. (1994) viscous correction ayg is presented in table 6.2. It is found that ag
is within 9% of « for the thin-core rings, Cases B1l, B2 and B3. However, the
difference is greater for the thick-core cases, Al and A2, at approximately 25%.
The difference in growth rates for the thick-core rings can be attributed in part to

the periodicity of the Shariff et al. simulations in the direction of ring propagation.
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; / /
Rlng ODaz OWT,Daz QS ,Daz Qyr Qg

A" 078 1.36 1.00 1.39 1.02
c" 091 1.59 1.03  1.39 0.90

TABLE 6.3: Dazin et al.’s (2006a) experimental growth rates ap,. and recorded
quantities aw T paz and ag pg. compared to a%,VT and a’S which result from using
a1 in 2.6. Growth rates given in s~ 1.

Since we follow essentially identical initialisation procedures, the Shariff et al. rings
were subject to the same equilibrilisation phase as documented here. In Shariff
et al.’s triply periodic computations the shed vorticity, associated with the vortex
ring adjusting to its steady-state vorticity profile (see §6.5.1), is ejected from the
ring during the equilibration phase and cycles periodically through the domain.
It interacts with the ring on each pass, providing a forcing of the ring instability.
This explanation was verified using the in-house spectral DNS code mentioned
earlier, periodic in all three directions, by initialising a thick-core ring in domains
of different length. The longest domain ensured breakdown occurred before the
wake interacted with the vortex ring and yielded a growth rate 10% less than
for a domain of similar size to that used by Shariff et al. The growth rate for
thin cores is more accurate because the initial equalibrilisation wake shedding is
negligible, thus the rings are not influenced in the same way. As shown in §6.5.1 all
ring measures vary during the laminar regime, dependent on ¢ and the Reynolds
number. This led us to test the Shariff et al. viscous correction by incorporating
the instantaneous I'(f), Rq(t), a1(f) and a.(t) at ¢ to estimate ayr(t), e(t) and
Reg(t), with ag(t) = awr(t)[1 — a1/Reg(t)]. Using this method and choosing
a; = 8 improves the agreement to within 5% for both the thin- and thick-core
cases. This supports the validity of correcting the inviscid growth rate based on

the internal Reynolds number Reg.

Recently Dazin et al. (2006a) used PIV to calculate the instability growth rate
of two of their experimental rings A’ and C’, reporting differences with their im-
plementation of the Shariff et al. correction. However they followed a slightly
different method to that proposed by Shariff et al. using a. as their core measure
in place of a; in calculating ayr. We have followed the methodology of Shar-
iff et al. to give a corrected prediction for their growth rates, aj,r and ol (see
table 6.3). The difference between the growth rate of ring C’ and ag is reduced

significantly, however for ring A’ the difference is still large. Another important
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FIGURE 6.13: Contours of w, on the horizontal plane through centre of ring
(z = 0) for Case B3 at time (t — t*)[o/R3 = 55: — , w, > 0; - - -, w, < 0.
Contour increments at |w, maz| /10.

difference between the two methods is the sampling period over which the growth
rate is calculated. Dazin et al. had access to very few sample points over the
entire laminar regime with which to calculate the growth rate. Figure 6.12 shows
that this simplification is reasonable for mode 9, which grows at an approximately
constant rate, but much worse for modes 10 and 11, as their growth rate changes
greatly during the laminar regime. In general, the growth rate of a single mode
will not be constant throughout the laminar regime, as viscosity diffuses the core

region amplifying modes with monotonically decreasing mode number.

6.5.3 Non Linear Transition Phase

The elliptical instability initially leads to a narrow band of modes growing indepen-
dently, which determine the number of standing waves around the core azimuth.
However, at a certain amplitude the modes begin to interact nonlinearly with each
other producing higher harmonics and lower-order intermodulation products (see
figure 6.12), consistent with the experiments of Dazin et al. (2006b) and the sim-

ulations of Shariff et al. (1994). Constructive interference between neighbouring
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FIGURE 6.14: Contours of azimuthal velocity averaged around the ring azimuth
at various times prior to the onset of turbulence. (a) Minimum contour level =
1x1075, increments of 2x 1075, (t—t*)Ty/R3 = 43.35 (b) minimum contour level
= 4x1075, increments of 2.5x 1075, (t—t*)['o/R3 = 48.75 (c) minimum contour
level = 9 x 1075, increments od 4 x 1075,(t — t*)I'y/R% = 52.35 (d) minimum
contour level = 1 x 1074, increments od 2 x 1074, (t — t*)Ty/R3 = 61.35.

modes causes a noticeable ‘lob-sidedness’ to the wave growth and associated core
displacement, which is represented by the rapid growth of the n = 1 mode prior to
transition. The relative dominance of the n = 1 mode varies from case to case and
is largest for the thin-core Cases B1, B2 and B3, which during the nonlinear phase

have 8,10 and 10 waves around the core respectively. An n = 0 mode also grows
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FIGURE 6.15: Three-dimensional isosurface visualisations of the secondary
structures for Case B3 at (t —t*)Tg/R3 = 65. (a) Isosurfaces of vorticity viewed
from above. Dark surface corresponds to the inner core region |w| R3/T = 3.8;
mid grey isosurface corresponds to w,R3/T" = 0.8, light grey to w,R%/T' = —0.8
visualising the secondary structure. (b) Isosurface of the second invariant of the
velocity gradient tensor I = (Ou;/dx;)(duj/0x;), IIRS/T? = —0.005, crosses
mark the locations of saddle points where neighbouring loops meet.

rapidly in the azimuthal velocity energy component (i.e. an axial flow along the
circumferential axis of the vortex core), which corresponds to a mean azimuthal
profile of opposing streams, such that angular momentum is conserved. Initially
the opposing streams are configured as two inner crescents, arranged one on top
of the other in the core region and two outer maxima closer to the ring centreline
(figure 6.14(a)). As the n = 0 mode intensifies, the inner crescents rotate anti-
clockwise around the core centre as shown in figure 6.14, until the crescents have
approximately switched positions and the ring breaks down into turbulence. Fig-
ure 6.14(d) shows the azimuthal profile just prior to turbulence and corresponds to
the profile shown by Shariff et al. (1994) in figure 7 of their paper. A description

of the nature of this axial flow follows in §6.5.5.

Here we make a distinction between the region of intense vorticity at the core cen-
tre, which we call the ‘inner core’ and the surrounding outer core region of lower
vorticity, which we call ‘halo’ vorticity (see figure 6.15(b)). The elliptical insta-
bility causes displacement of the inner core into a stationary wave pattern, while
the halo vorticity displaces in the opposite direction, consistent with the second

radial mode (Widnall, 1975). In a slice across the z = 0 plane the signature of the
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second radial mode in the axial and radial components of vorticity is three layers
arranged radially (figure 6.13). The halo vorticity occupies the inner and outer
layers and is 180° out of phase of the inner core. The structure is also apparent
in three-dimensional isosurface plots of the second invariant of the velocity gra-
dient tensor II = (Ou;/0x;)(0u;/0z;)(a useful marker of vortical structure), and
isosurface plots of vorticity shown in figure 6.15. They show that as the inner core
displacement becomes appreciable the halo vorticity rolls up into an interwoven
mesh of secondary structure. The secondary structure develops first in the top left
corner of figures 6.15(a) (bottom of figure 6.15(b)), where constructive interference
between the azimuthal modes n = 9 and n = 10 yields the greatest inner core dis-
placement. It then develops around the azimuth of the ring as the local inner core
displacement increases with time. The figures further show that the secondary
structure consists of a series of loops which encompass the inner core. The inner
core weaves its way through the centre of the loops. It is noted that neighbouring
loops are of alternating signed vorticity, consistent with the observations of Dazin
et al. (2006b) and simulations of Bergdorf et al. (2007), and are formed by tilting
and reorganisation of the halo vorticity. The loops touch at saddle points posi-
tioned in azimuthal planes aligned with the maximum and minimum inner core
displacements but displaced radially in opposition to the core displacement (the
approximate locations of the saddle points is denoted in figure 6.15(b) by crosses).
Two loops wrap around each azimuthal wave, hence there are the same number
of pairs of loops as there are waves around the ring. Bergdorf et al. (2007) give a
slightly different account for the generation of the secondary structure, suggesting
they originate due to stretching of the outer rim regions of the inner core. We
also see stretching of the rims of the inner core (figure 6.16) but this occurs after
the halo vorticity has reorganised into the secondary loops and their magnitude

of vorticity |w| has become comparable to the inner core.

The generation of the organised secondary structures coincides with deformation
of the core wy distribution. During the laminar regime the three-dimensional ge-
ometry of the core approximates a ring with a mildly elliptic cross section. During
transition the cross section is distorted to form a thin crescent shape (figure 6.17).
The distortion is more severe at regions of the core in the periphery of the en-
trainment bubble as the local radial expansion is restricted by the instantaneous
zero streamline. The stretching of the inner core intensifies the local vorticity and
is accompanied by stretching of the secondary structure, which also intensifies in
vorticity causing an overall enstrophy peak (figure 6.3). As the secondary loops

stretch they begin to protrude locally outside the entrainment bubble, trailing be-
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FIGURE 6.16: Formation of horn-like structures visualised with three di-

mensional isosurface of |w|, Case B3, (t — t*)[o/R3 = 64.95. Surface level
wR2 /Ty = 3.0.
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FIGURE 6.17: Contours of wy on the vertical plane through the ring axis (y = 0),
for Case A1l at time (¢ —t*)To/R3 = 116. Contour increments at wg ;nq./10.
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FIGURE 6.18: Isosurfaces of II showing the termination of the secondary struc-
tures forming hairpin vortices in the wake for Case B3 at (a) (t—t*)['o/R3 = 75.8
and (b) (t — t*)[o/R3 = 79.4. Surface level IIR} /T2 = —0.25.

hind the vortex ring and into the wake. The loops originally developed as counter
rotating pairs side by side, but as they trail outside the ring the loops detach and
reattach with their neighbour at the saddle point to form hairpin vortices that fill
the wake (figure 6.18), as reported by Bergdorf et al. (2007). The localised equi-
librium between the inner core and the outer halo vorticity is broken, as portions
of the halo vorticity leave the entrainment bubble, and the core becomes locally
turbulent at the position of the initial hairpin vortex shedding. The azimuthal
instability wave does not rotate prior to the ring becoming turbulent, which con-
flicts with the inferences that Maxworthy (1977) made from smoke visualisations
of the core region. The waves continue to develop across the remainder of the ring
unhindered, until the secondary structure is shed into hairpin vortices around the

entire azimuth of the ring and the ring can be considered to be fully turbulent.

The stationary coherent vortical structure found during the laminar and transi-
tional phases is superseded by the swirling of vorticity filaments. Two cases were
simulated and resolved through to transition and into the early turbulent regime:
Case A1, a thick-core of low Reynolds number and Case B3, a thin-core of moder-
ate Reynolds number. Figure 6.19(a) shows that the thick-core ring breaks down
into a number of interwoven vortex filaments. No well-defined coherent core per-
sists and circulation is shed via a continual stream of vortex filaments into the

wake. The thin-core ring however maintains a core region of concentrated vor-
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FIGURE 6.19: Double isosurface of |w| for turbulent vortex rings. (a) Case Al

at time (t — t*)To/R% = 180: dark surface level |w|R%/To= 1.4; light surface

level |w|R3/To= 0.7. (b) Case B3 at time (¢t — t*)[o/R% = 111.8: dark surface
level |w|R3/To= 2.5; light surface level |w|R3/To= 1.25.

ticity (the dark region in figure 6.19(b)) which is consistent with the turbulent
visualisations of Wiegand & Gharib (1994). The core region is no longer station-
ary, but bends and twists with time. Vorticity filaments, similar to the secondary
structure, are continually generated, wrapping around the turbulent core and cir-
culating around it. Figure 6.19(b) shows a number of these vorticity filaments
wrapped round the core region. The filaments have long looped tails that trail
into the wake and out of the domain. Just as for the thick-core ring, these vor-
ticity filaments circulate around the core and gradually pass out of the vortex
bubble and into the wake as a stream of vorticity filaments and hairpin vortices,
as visualised by Glezer & Coles (1990) and Wiegand & Gharib (1994). The ring
was not simulated further into the turbulent regime, however the beginning of a
staircase-like decay of circulation, as reported by Wiegand & Gharib (1994) and
Bergdorf et al. (2007), was noted.

6.5.4 Particle Paths

Particle paths are a useful tool for analysing the entrainment and detrainment

characteristics of the vortex ring. Particle paths were obtained by integrating the
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FIGURE 6.20: Laminar entrainment of tracked particles released at (¢t —
t*)To/R3 = 20, for Case Al, on the z = 1.7Ry plane. (a) Particles released
on the y = 0 plane between x = 0.25Ry and x = 0.35R(y at increments of
0.005Rp; (b) Particles released at equidistant azimuthal locations around the
circumference of two semicircles of radius 0.25R (dotted), and 0.35Ry (solid).

ordinary differential equation,

= v[x(t),1] (6.10)

where x (¢) denotes the position vector of the particle and v is the time-dependent
velocity field taken from the DNS. The sampling interval of the velocity field
was determined to ensure convergence of the path lines, and was dependent on
the complexity of the flow field. During the laminar phase the sampling interval
was 20 time steps, reducing to 5 time steps during the transitional and early
turbulent phase. Particles could be initialised at any location within the logging
domain, figure 6.1, with the initial particle velocity, v [x (to), to], found by linear

interpolation.

We first examine entrainment and detrainment characteristics of the thick-core
ring, Case Al, during the laminar regime. Figure 6.20(a) shows the tracked par-
ticle pathlines for particles released at (¢t — t*)['o/R% = 20. The particles were
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released at equal intervals on a line between x = 0.25R, and x = 0.35R, with a
spacing of 0.005R, in the y = 0 plane, at z = 1.7. As the particles pass around
the entrainment bubble surface, the pathlines contract before diverging as they
approach the rear stagnation point. At the rear stagnation point the particle
pathlines are divided and are either entrained into the vortex ring bubble or pass
past into the wake. Tracing back the pathlines of the entrained particles it is noted
that a streamtube surface exists upstream of the vortex ring separating flow that
will be entrained and flow that bypasses the vortex ring. Figure 6.20(b) shows
a three dimensional visualisation of the process, the particles here have been re-
leased around the circumference of two semi circles on the plane z = 1.7Ry of
radii 0.25R, and 0.35Ry, with the particles within the streamtube surface, on the
inner semi-circle being entrained. There is no detrainment of particles prior to the
development of significant secondary structure, and the wake is created solely by

vorticity diffusion.

It is important to note that during the laminar regime, no hole exists in the en-
trainment bubble surface through which the particles enter, recall figure 6.7 where
the instantaneous streamlines are closed. As shown in §6.5.1 the laminar ring
gradually expands through radial growth and core diffusion, and decelerates to ac-
commodate changes in the bubble geometry and loss of circulation. This increases
the distance between the front and rear stagnation points and bubble volume.
This results in an expansion of the instantaneous zero streamline which causes the
entrainment of particles. Once inside the bubble the dynamics of the particles are
governed by the highly vortical core region. The growth of the entrainment bub-
ble is illustrated by the path of the entrained particles as they begin to circulate
around the vortex core for a second time, figure 6.20(a), crossing there original
path and circulating further away from the centreline. Although the particle paths
have been limited so as not to extend indefinitely, the particle is in fact still inside
the bubble and continues to circulate with an origin increasing in radial displace-
ment from the ring centreline, as new fluid continually fills the outer reaches of the
rear of the entrainment bubble. There is no detrainment of particles prior to the
development of significant secondary structure, and the wake is created solely by
vorticity diffusion, as evidenced in figure 6.7. The absence of particle detrainment
implies that the stable and unstable manifolds of the front and rear stagnation
points coincide exactly. This is only the case if no velocity perturbations exist
on the propagation velocity of the vortex ring, which is confirmed by the straight
velocity decay lines during the laminar regime of figure 6.10. In contrast, the

Lagrangian bubble interface identified by a Lagrangian Coherent Structure (LCS)
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FIGURE 6.21: Entrainment bubble distortion for Case Al: (a) Lagrangian

pathlines of particles initiated around a circle of radius 0.43R( on the z/Ry = 1.9

plane released at (t — t*)Io/R2 = 79. An isosurface of II with surface level

R} /T2 = —0.005, at (t — t*)Tg/R2 = 110 is included to aid visualisation; (b)

wp contours across the wake, increments of local wyqez/5, at (t —t*)Tg/ R% =100
on the z = —1.95 plane.

technique in the experiments of Shadden et al. (2006) exhibits alternating lobes
of entrainment and detrainment during the laminar regime. Kumar et al. (1995)
showed that experimentally generated rings at a similar Reynolds number to those
studied by Shadden et al. (2006) initially experience large-scale oscillations in their
translational velocity that persist for a short time after formation. We postulate
that these experimental rings may also undergo an equilibrilisation phase similar
to that observed in our simulation, during which the core adjusts to its steady-
state profile. Changes in the distribution of vorticity within the core are sufficient

to explain the initial oscillations in the translational velocity and associated lobe



Chapter 6 Investigation of vortex ring evolution from a laminar to a turbulent
state 71

\
2 1 0 -1 -2
x/ Ry
FIGURE 6.22: Transitional detrainment zones. Two particle pathlines were
initiated on the z/Ry = 1.9 plane at r/Ry = 0.25 at time (t — t*)[o/R3 =
10. A translucent isosurface of II with surface level IIR}/T2 = —0.005, at
(t —t")Ty/R% = 118 is included to aid visualisation.

dynamics. It was necessary for Shadden et al. to use long integration times when
constructing the LCS to reveal the ring’s Lagrangian structure. This included part
of the time immediately after the ring formation, thus the initial transient is likely

to be captured within their results, leading to their observed lobe dynamics.

The laminar entrainment process, characterised by an axisymmetric Lagrangian
surface, is significantly altered by the development of the azimuthal instability and
associated secondary vortical structure. The first effect of the secondary structure
is to deform the Lagrangian surface that defines the entrainment bubble into a
wavy interface, which follows the shape of the secondary structure as shown in
figure 6.21(a). The bubble deformation also changes the structure of the wake
from a circular to a ‘petal-like’ cross-section at fixed z, with the individual petals
corresponding to the azimuthal location of the peripheral secondary structure (fig-
ure 6.21(b)). This petal-like wake structure has been recently visualised in the
experiments of Dazin et al. (2006a). As the secondary structure develops, the

Lagrangian surface is folded to the extent that ‘holes’ are created through which
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particles can detrain. The holes are located at points where the secondary loops
meet in the outer periphery of the ring. This can be seen by comparing the two
particle paths in figure 6.22, both of which were initiated at the same time and
radial distance from the z-axis. Just before the onset of turbulence, fluid that is at
location A detrains into the wake. Note also the slight drift in the left-hand-side
particle around the azimuth of the ring. On the other hand, fluid that passes
between the loops of the secondary structure, location B, continues to circulate
within the entrainment bubble throughout the period of transition. After the on-
set of turbulence the ring continually sheds loops of vortical structure, carrying
fluid (such as the right-hand-side particle) into the wake. This is the principle

mechanism for turbulent detrainment.

6.5.5 Axial flow

We investigate the behaviour of the core region for the possibility of an axial flow
being generated prior to the onset of turbulence. Recall that like Maxworthy
(1977), we use the term axial flow to refer to circumferential flow along the axis

of the vortex core.

The axial flow is analysed by calculating the Lagrangian paths of a number of
fluid particles that are initiated within the core along radial lines that intersect
the vortex centre at four azimuthal positions, labeled A B C and D in figure 6.23(a).
The core centre was interpolated from the local velocity field and the Lagrangian
pathlines were integrated from the start of the transitional phase to the onset of

turbulence.

The thick-core ring (Case A1) shows negligible axial flow. Prior to the onset of
turbulence, the particles orbit the core centre and drift through an angle of less
than one degree along the circumferential axis of the core. However the thin-
core ring (Case B3) shows a pronounced axial flow. Figures 6.23(a) and 6.23(b)
present the particle paths during the early (54.2 < (¢t — t*)[o/R% < 60.5) and
entire (54.2 < (t —t*)[y/R% < 73.1) transitional phase. During the laminar phase
the particles simply orbit around the centre of the vortex core. However during
the transitional phase the orbits begins to drift around the ring. The direction in
which the particles drift depends on how close they are to the centre of the core.
Constructive interference between the azimuthal modes causes a region of increased
core stretching, labeled E in figure 6.23(b). The individual pathlines indicate an

inner region of axial flow directed toward E (such that inner particles at A and B
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FIGURE 6.23: Axial core flow for thin-core ring case B3. (a) Lagrangian path-

lines from time (¢t — t*)[o/R3 = 54.2 — 60.5 with translucent isosurface of

lw| R3/Ty = 3.0 at t = 60.5. (b) Pathlines from time (t—t*)['g/R3 = 54.2 — 73.1
with translucent isosurface of |w| R3/To = 3.0 at (t — t*)Tg/R% = 73.1.
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move anti-clockwise and C and D move clockwise) and an outer region moving in
the opposing direction. The axial flow in the inner core region is greatest at B,
with particles translating 17° along the circumferential axis of the core during the
transitional period. The radius of the inner core region is approximately 0.078 Ry
(27% of g at time (t — t*)Ty/R3 = 54.2). The inner core axial flow is maximum

at the core centre and grows approximately exponentially with time.

This type of axial flow, showing a general drift of particles near the core centre
toward point E of strongest instability development, is consistent with the m =1
type axial flow recorded by Naitoh et al. (2002), in observations of rings generated
through a circular orifice. They inferred that the axial flow was due to an az-
imuthal pressure gradient caused by preferential wave growth and associated core
stretching. This is supported by our simulations as the thick-core ring undergoes
near uniform wave growth leading to negligible axial flow and the thin-core ring
experiences preferential wave growth leading to a pronounced axial flow. The thin-
core ring would be expected to develop with less uniformity as a greater number

of modes are excited by the linear instability leading to a larger n = 1 mode.



Chapter 7

Interaction of a vortex ring with

an undisturbed free surface

In this chapter we focus upon the interaction of a vortex ring with an initially
undisturbed free surface. We start by formulating the mathematical description
of the problem in §7.1 followed in §7.2 by the numerical approach employed to
simulate the interaction. In §7.2.1 we describe the cases of interest and their run
parameters. We then document a series of initial studies which were undertaken
to assess the validity of our numerical techniques (§7.2.2). Finally we present
and discuss the results examining in turn the laminar (§7.3), transitional (§7.4)
and turbulent (§7.5) ring interactions, focusing on the ring dynamics, instability

growth, vortex reconnection and the free surface response.

7.1 Mathematical Background

We consider a single vortex ring of radius R and core radius d, with circulation I"
and Reynolds number Re = I' /v, with impulse P. The ring propagates vertically
toward the free surface, with Froude number Fr = T'/,/gR3, in the z-direction
with respect to Cartesian coordinates x = (z,y,2) and corresponding velocity
components u = (u, v, w); see figure 6.1. The vortex is embedded at depth dy such
that it is centred about x = (0,0,dy) at time ¢ = 0 and initially propagates at a

velocity U that depends on its instantaneous parameters, according to (6.9).

1)
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FIGURE 7.1: Schematic diagram of the normal vortex ring interaction with a
free surface. The shaded region represents the co-moving logging domain, across
which the ring integral measures are calculated.

7.2 Numerical approach

The Cartesian computational domain assumes periodic boundary conditions in the
z- and y-directions, so that we are, in effect simulating an infinite array of rings.
However, the domain widths L, and L, are chosen to be sufficiently large such that
the propagation of the ring toward the surface and subsequent expansion is not
affected greatly by the periodic images. Following the domain sensitivity study
§6.4.2, we require that the ring does not encroach within three ring radii of the
lateral boundaries during its approach to the surface. At small depths the ring
dynamics are dominated by its virtual image above the surface, which induces a
radial expansion of the ring. To prevent the periodic rings, implied by the lateral
periodic boundary conditions, from influencing the dynamics of the expanding ring
we also ensure that it does not move within three ring depths of the lateral domain
limits. For cases where Froude number approaches zero we impose impermeable
free-slip boundary conditions on the upper (z = 0) boundary and simulate the
interaction using the fixed-boundary code described in §4.2. For cases with finite
Froude number, we impose free-surface boundary conditions (§4.3.1) on the upper
(z = 0) boundary and simulate the interaction with the free-surface code described

in §4.3. For both codes, impermeable free-slip boundary conditions are imposed
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on the bottom plane of the z-axis. The initial velocity field is prescribed by
embedding vortex rings which have been aged within an unbounded domain for a

given time period t., following the method described in §5.2.1

Since the ring expands as it approaches the surface (Song et al., 1992) the core
region is increasingly stretched with time. Under the assumption of conservation
of circulation and in the absence of viscosity, one would expect the volume of the

core to be conserved (Fukumoto, 2003), with

8*R = 02 Ry, (7.1)

where a zero subscript indicates an initial value. Viscosity diffuses the core slowly
with time and circulation is shed into the wake, but we can thus expect § to
approximately decrease in proportion to v/R. To maintain resolution as the core
stretches, the flow field is interpolated at discrete intervals onto progressively finer
grids. This requires that cells at the bottom of the domain (far from the ring),
which have very small effect on the dynamics of the ring, are removed or ‘trimmed’
to avoid excessively large computations. In cases where Froude number approaches
zero the bottom cells are trimmed during the interpolation routine. For simulations
with finite Froude numbers, the trimming occurs during the simulation every time
the ring propagates a distance d = 0.11R, in either the radial or the z-directions.
The continuous trimming is required to avoid the generation of a transient surface

wave which is introduced if the reduction to the z-axis is too large; see § 7.2.2.

Interpolation of the flow is performed in all three directions. In the z- and y-
directions a Fourier scheme is employed, however, this high-order method cannot
be implemented in the z-direction due to the non periodic boundary conditions.
Instead a third-order polynomial interpolation scheme is employed. Fourier in-
terpolation is also not suitable in lateral planes near the free surface that feature
air /water discontinuities induced by large surface displacement. In such planes the
polynomial interpolation scheme is used to avoid Gibb’s phenomena. The quality

of the interpolation and trimming routines is examined below.

The ring circulation, impulse and radial measures are defined in §6.1 and are
calculated in a co-moving cubic logging domain whose top and bottom is 2R,
from the ring centre of enstrophy; see figure 7.1. The logging domain moves with
the ring so that the wake is left behind and does not contribute to the integral ring
measures. Differencing neighbouring cells which span the surface would lead to

the summation of ‘artificial’ vorticity in the integral ring measures as u = 0 in cells
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Case

(50 / RQ Fr Re te

F1
F2
D1
D2
D3
D4

0326 0 4988 40
0228 0 7440 40
0.326 0.3 4988 40
0.326 0.6 4988 40
0.341 0.3 4576 130
0.466 0.3 4400 180

o R
0.907 1.145
0.992 1.048
0.907 1.145
0.907 1.145
0.832 1.195
0.800 1.148

TABLE 7.1: Ring parameters for the initially undisturbed surface interaction

cases.

Note Ry = Rq.

te is the time that the ring has been evolved in an

unbounded domain, normalised by its relevant initial parameters, see §6.3.

Case NQEXNyXNZ Lw/RQXLy/RQXLz/RO dO/RO If [R
F1  384x384x224 10.48 x 10.48 x 6.11 3.06 1.5 1.2R,
F2  384x384x256 11.45 x 11.45 x 7.63 3.82 see text see text
D1 384x384x224 10.48 x 10.48 x 6.11 3.3 1.5 1.5R,
D1 354x354x192 11.53 x 11.53 x 6.29 3.3 1.5 1.5R,
D3 384x384x224 10.04 x 10.04 x 5.86 3.3 1.5 1.2Ry
D4 336x336x224 8.9 X 8.9 x 5.99 3.21 1.5 1.2R,

TABLE 7.2: Domain sizes for the initially undisturbed surface interaction cases.
Box dimensions are at the start of the simulation. Cases D1-4 also initially
include 8 passive cells to capture surface displacement (see 7.1). Cells interpo-
lated by interpolation factor Iy when ring radius exceeds Ir. Case F2 features
multiple interpolations and is described in the text.

above the surface. Thus only the contribution of cells below the surface is included

within the ring measures. Likewise to exclude the contribution of opposite-signed

vorticity, generated due to surface curvature, only cells where wy > 0.0 are included

within the ring measures.

7.2.1

Simulation Parameters

The cases, shown in tables 7.1 and 7.2, allow us to investigate the effects of Froude

number and ring age on the surface interaction. The ‘F’ and ‘D’ case labels refer

to simulations performed by the fixed-boundary and deformable free-surface codes

respectively. Cases F1, D1 and D2 are identical thick-core laminar rings at three
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FIGURE 7.2: Ring structure of Cases (a) D3 (transitional) and and (b) D4
(turbulent) at the time of embedding. Ring structure is visualised with an
isosurface of IIR§/T'2 = —0.05.

different Froude numbers. The rings were aged for the duration of the equilibration
phase in the unbounded domain, thus the initial vorticity shed as the ring relaxes
to its steady state profile had left the domain. Case F2 features a thin-core ring
with a high Reynolds number to maintain the slenderness of the core. To ensure
adequate resolution of the core region the domain was interpolated onto finer grids,
sequentially, by factors 1.5, 1.3333, 1.5, and 1.5 after the ring had expanded to
1.2Ry, 1.8Rg, 2.25 Ry, 3.375 Ry respectively. At each interpolation, the number of
cells in the z direction N, was reduced by 50%, 50%, 33.3333% and 66.6666%
respectively. By interpolating the flow field on multiple occasions it was possible
to maintain the core resolution as the ring expanded to 4.9R,, allowing us to
investigate the ring instability. Cases D3 and D4 feature thick-core rings that
have been aged for a greater time period in the unbounded domain. For Case D3
the Widnall instability has developed, distorting the core into a six azimuthal
wave pattern, the secondary looping structure had just begun to develop and
the ring can be considered to be in the transitional regime; see figure 7.2(a). In
Case D4 the core has just become locally turbulent; see figure 7.2(b). The same
nondimensionalisation as for the unbounded investigation is used, except, we now
nondimensionalise lengths by Rq, for ease of comparison with experimental studies.
Experimentalists judge ring radius as the distance from the ring centreline to the
core centre, which is closely approximated by Rq. The initial values, which we use
for nondimensionalisations, are recorded at the time of embedding and are shown
in table 7.1.



Chapter 7 Interaction of a vortex ring with an undisturbed free surface 80

x 10

1.5F

1
11.2

ZL’/RO
FIGURE 7.3: Comparison of surface elevation at the centre (x = [0,0, h]) for
Case D1 with different trim lengths dmaz: — J~: 0.11Rg; - - -, d = 0.22Rp;
—,d=0.33Ry; and — - —, d = 0.55Ry.

7.2.2 Assessment of the numerical approach

The same cell resolution was employed as in the unbounded simulations as it has
been shown in §6.4.1 to provide a high degree of accuracy. The sensitivity of
free-surface simulations to the choice of the trimming length d was investigated by
repeating Case D1 with various magnitudes of d. By trimming cells from the z-axis
we are modifying the flow field near the bottom of the domain. Since the ring is
far from the boundary its dynamics are unaffected, however the code corrects the
flow field by imposing continuity (4.7), thus the pressure in the following time step
contains an error which is distributed throughout the domain. A sudden change in
pressure at the surface causes a wave to be generated which then propagates with
wavelength of the box width around the periodic domain. If the trim is sufficiently
small, the pressure correction and resulting surface wave are negligible. Figure 7.3
shows the effect of d on the free surface elevation at the centre x = (0,0, h). If d
is large a small surface oscillation is formed but vanishes as d falls below 0.22R,

significantly greater than our chosen value.

The validity of the interpolation procedure was checked through repetition of
Case D1 with a constant domain, neither trimmed nor interpolated. The ring

radius, depth, velocity and core thickness are relatively unaffected (<1%), how-
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FIGURE 7.4: A comparison of results from a trimmed and interpolated simula-

tion — — — to a domain with constant box geometry — for Case D1. Subfigures

compare: (a) Ring radius; (b) Ring circulation; (c¢) Circulation of opposite-
signed surface vorticity; (d) Elevation at the centre of the surface.

ever, after interpolating the field (when R > 1.5Ry) the ring circulation decays
faster for the interpolated ring; see figure 7.4(b). The difference can be explained
by analysing the surface vorticity field. Case D1 has a low Froude number and
thus while the ring expands it forms only a small depression on the surface above.
The resulting surface curvature generates a small region of opposite-signed vor-
ticity (Longuet-Higgins, 1998). The opposite-signed surface vorticity cancels with
that of the primary ring, reducing its circulation. This is not well captured by the
coarse uninterpolated simulation (see figure 7.4(c)) leading to higher ring circula-
tion. One consequence of interpolating the flow field is the initiation of a small
surface oscillation (figure 7.9(c)). The transient is likely to be caused by errors in
the interpolated flow field close to the surface. It is small compared to the max-

imum surface elevation (<8%) and tiny compared to the ring radius (< 0.04%),
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thus it has little effect on the dynamics of the ring.

Further confidence in the numerical approach was gained through simulation and
comparison with previous experimental and numerical work. The orthognal in-
teraction of a ring with a free surface was assessed through comparison with the
low Froude and Reynolds number experiment of Song et al. (1992). A ring was
embedded in a computational domain of L, = L, = 11.5R, and L, = 5.75R,
including 0.24 R, of cells above the free surface to allow for surface displacement.
Initially, the simulation featured N, = N, = 384 grid cells in the z- and y-planes,
and N, = 200 cells in the z-plane, but was interpolated when Ro = 1.2R,. Prior
to embedding, the ring was evolved for 25 non-dimensional time units in an un-
bounded domain, sufficient for the ring to adjust to its steady-state core profile
and for its initial start-up wake to be flushed from the domain. At the time of em-
bedding, Rg = Ry = 1.044, I' = T’y = 0.994, Re = 10000, Fr = 0.287, dy = 0.218
and depth d = 2.84Ry. These parameters matched closely those of Song et al.
(1992), with the exception of Reynolds number which was lowered from 15100 to
10000 to stabilise the surface interaction. Lowering the Reynolds number causes a
slightly lower instability growth rate and less core diffusion, but since the surface
interaction lasts for a short time the differences are small. We specify a time tg,
at which the ring had propagated to a depth d = 2.5R,, to compare our results
with Song et al. (1992), who commenced their readings at this depth.

Good quantitative agreement is shown between the results for both ring depth
and radial expansion over the duration of the simulation (see figure 7.5). The
experimental ring propagated under the surface to a radial expansion of 4.2R, at
which point the vortex ring reconnected with the free surface. In order to maintain
adequate resolution of the core it could not be simulated past 2.25R; consider-
ation of later times awaits further interpolation and code parallelisation. If our
simulation had been continued without further interpolation, the core would even-
tually break down into small grid-scale vortical structures. This causes excessive
surface displacement, violating the boundary restriction (4.8) and terminating the

simulation.

Similar surface features were also present in the DNS and experiment. Initially
the surface was deformed into a central bulge which grew with time as the ring
depth decreased (figure 7.6(a)). As the ring radius expanded close to the surface

a circular depression forms above and outboard of the ring (figure 7.6(b)).

Lack of resolution restricts further computation and thus we could not simulate

the ring through to the stage of reconnection. A further test was performed to
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show that the code is capable of capturing reconnection at the surface. The case
of the oblique interaction of a vortex ring with a free surface was undertaken, as
reconnection was observed in the experiments of Gharib & Wiegand (1996) and
the numerical simulations of Zhang et al. (1999). A ring was initiated at depth
dy = 1.57R, with its angle of propagation inclined at 10° above the horizontal
plane toward the free surface. The study was performed before the conception
of initialisation method III, thus initialisation method II was used to prescribe
the initial velocity field. The intended ring parameters were radius Ry = 1.0,
core radius, 6 = 0.35, Reynolds number Re = 1570 and Froude number Fr =
0.47 to match a numerical simulation of Zhang et al. (1999). However, due to
the limitations of the initialisation method (see §5.1.2) the actual core size and
circulation differed greatly. The domain had widths of L, = L, = 8R, and height
L. = 4.25 including 0.25R, of cells above the free surface to allow for surface
displacement. The number of grid cells in the lateral directions were N, = N, =
256, and N, = 136 in the vertical.

Figure 7.7 shows good qualitative agreement with the numerical simulations of
Zhang et al. (1999). As the ring propagates toward the surface it begins to re-

connect toward the rear of the core, producing a U-shaped vorticity filament, as
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FIGURE 7.6: Free surface displacement at various times: (a) (t—t.)To/R2 = 9.0;
(b) (t —te)To/R% = 13.0.

reported in all the relevant literature. The surface normal vorticity profile at the
reconnection site is very similar in shape to that of Ohring & Lugt (1996). The
reconnected ends of the U-shaped filament then move apart and the tail moves
toward the surface as shown in figures 7.7(e) and 7.7(f). These results show that
the free surface code is capable of modeling surface reconnections if the required

resolution is present.
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FIGURE 7.8: Comparison of ring depth (a) and radius (b) against time for a
range of Froude numbers: — , Fr=0; ———, Fr =0.3; - - -, Fr = 0.6. Subplots
show the ring behaviour close to the surface.

7.3 Results

7.3.1 Laminar ring interaction

The variation of depth and radius of laminar rings of differing Froude number is
shown in figure 7.8. As the rings approach a depth of approximately 1R, they all
follow the same trajectory. This result is expected, since the Froude number only
affects the ring close to the surface (Song et al., 1992). It is nevertheless important
as it shows agreement between the two numerical codes. The ring flow field causes
a bulge to form at the centre of the surface, which grows as the ring moves closer,
as shown in figures 7.9(a) and 7.9(c). The magnitude of the surface displacement
is a function of the Froude number. For Case D1, where Fr = 0.3, the centre of
the surface reaches a maximum elevation h,,q., = 0.00815R, whereas for a higher
Froude number, Case D2 (Fr = 0.6), hjae = 0.0326Rg. Surface displacement is

proportional to the square of the Froude number, which is expected, since h oc g1

1/2

(5.7) and g appears in the Froude number as g~'/%. At this stage, the vorticity

distribution in the core is similar to that of an unbounded ring (figure 6.6).

As the ring moves up to a depth of approximately one radius it begins to interact
with its virtual image above the surface and expands radially (figure 7.8). The
initial bulge drops and a surface depression forms above and just outboard of
the ring (see figures 7.9(b) and 7.10(b)). The depth at which the ring expands
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is dependent on Froude number (see subplot in figure 7.8(a)). Case D2 expands
radially further from the surface than the lower Froude number cases, consistent
with the experiments of Song et al. (1992). The increased depth cannot be at-
tributed solely to the deeper surface depression, as the difference in ring depths
is greater than the difference in surface displacement (see figure 7.10). Surface
curvature results in the generation of opposite-signed vorticity, which forms a sec-
ondary ring outboard of the primary ring (see figure 7.10). The secondary ring is
far more intense in Case D2, 17.8% of the primary ring circulation compared to
1.4% for Case D1 (figure 7.11), due to the increased surface curvature, and induces
a downward impulse on the primary ring leading to the ring expanding radially at

a greater depth.

Figure 7.11 shows the evolution of the total circulation and the contribution of the
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FIGURE 7.10: Surface vorticity generation for laminar rings at (t —t.)[o/R% =
20.75: (a) Case D1; (b) Case D2. — and — — — contours represent positive (ring)
and negative (surface) vorticity at increments of wy,qz/10.

opposite-signed vorticity. As the ring propagates toward the surface the total circu-
lation decays slightly because vorticity in the wake leaves the co-moving logging do-
main (see figure 7.11). As the ring moves closer to the surface ((t—t4)Tg/R3 ~ 14)
the total circulation (thick lines in figure 7.11) starts to decay at a faster rate as
opposite-signed vorticity adds a negative circulation component (thin lines in fig-
ure 7.11). The decay rate is far greater for Case D2 as it generates more oppositely
signed vorticity due to its higher Froude number. For the Fr = 0 cases (F1 and
F2) the decay rate of total circulation also increases slightly, dispite the absence
of surface curvature and opposite-signed vorticity, due to a separate mechanism.
When the ring is at very small depths the tail of its vorticity profile touches the
surface and is canceled by its virtual image above the surface. Effectively this

produces a vorticity sink at the surface reducing the ring circulation.

As the ring expands parallel to the surface, the distribution of vorticity in the
core is modified from its unbounded profile. The distribution of vorticity becomes
stretched in the horizontal direction (figure 7.12(a)) and forms a wake of weak
vorticity, just as the unbounded ring does, but in the horizontal plane close to
the surface. In the vertical direction the distribution of vorticity is far narrower
and more Gaussian like (figure 7.12(b)). Figures 7.12(a) and 7.12(b) show the
distribution of wy in horizontal and vertical directions through the core centre.
Consequentially the wake is less apparent in the horizontal profile for Case D2 as
it lies on a horizontal plane that is closer to the surface than the core. Opposite-
signed vorticity is evident in both the horizontal and vertical core profiles for
Case D2 (see figure 7.12) revealing that the secondary vorticity wraps around

the primary ring. For Case D1 the opposite-signed vorticity is only revealed in
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the vertical profile close to the surface. It is noted, for the low Froude number
case, that a region of isolated grid-scale vorticity exists directly below the surface
(revealed in the vorticity contours of figure 7.10(a)) resulting from small localised
movements in the surface. Since the vorticity is tiny compared to the ring it does

not affect its motion below the surface.

7.3.2 Instability growth

Case F2, which features a thin core at Fr = 0, was interpolated a number of
times, allowing the ring to be simulated to a greater radial expansion. Prior to
embedding, Case F2 was evolved for 40 time units in an unbounded domain. The
ring had thus already begun to develop the Widnall instability. Although in the
early stages, and not yet visible in isosurface plots of w or II, an azimuthal modal
decomposition (following the method layed out in § 6.5.2) reveals that n = 10 and
n = 11 are the most unstable modes at the time of embedding; see figure 7.13(a).
Cross referencing figures 7.13(a) and (7.13(b)), we see that as the ring propagates

toward a depth of approximately one radius, modes 9, 10 and 11 are amplified
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(t —te)To/R% =20.34 and (t — t.)['o/R3 = 20.75 respectively.

due to the Widnall instability. Between times (t — t.)Tg/R3 = 14 — 19 the ring
expands radially, and the modes decay with the exception of n = 1 which continues
to amplify. The modal decay continues until the ring approaches R ~ 2R at which
point the ring is very close to the surface. Only selected modes are plotted in figure
7.13(a) for clarity, but as the ring continues to expand radially, all modes amplify
with a similar growth rate, except for n = 1 and n = 22 whose growth rates are

affected by nonlinear modal interactions.

The amplification of a broad spectrum of modes can be explained by examining
the linear stability results of Crow (1970). The radial expansion causes the ring
curvature to decrease, thus locally the core and its image begin to approximate
line vortices. Crow (1970) showed that for line vortices, the instability wavelength,
growth rate and perturbation angle were a function of d, / K (see §2.2.1). In our case,
the close proximity of the core to the surface means that the vortex spacing b is
of order the core diameter D, hence D /b~ 1 and c/i\/E ~ 0.3210 follows from (2.5).
For C/l\//]% ~ 0.3210 figures 10, 11 and 12 in Crow (1970) give the most amplified
wavenumber k., = 1.25, maximum amplification rate a,,., = 0.78 and a planar

angle of maximum amplification of 42°.

In the example of the line vortices there is no stretching of the vortex filaments and
the most amplified mode n,,,, corresponding to k,,,, remains constant with time.

For the case of a vortex ring n,,., is the integer number of waves of wavelength
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FIGURE 7.13: Instability development for Case F2: (a) Evolution of selected

azimuthal modal energies: - - -, n=1,---, n=10;—- -, n=11;—- - —,

n=12, — ,n =22, —.-.—,n=23; (b) Change in ring radius and depth

with time; (c) Most amplified mode predicted by the stability analysis of Crow

(1970); (d) Modal growth rates: same line styles as subfigure(a); — denotes
Qmaz = 0.78 (Crow, 1970).

Amaz that can fit around the ring circumference, thus
Nmaz = (27TR) /)\mama (72>

where \joe = (270/kyq,) and the vortex separation b is approximated as twice
the depth. However, since the ring circumference increases as it expands below
the surface the circumference increases one would expect n,,,, to increase corre-
spondingly (see figure 7.13(c)). The rapidly changing n,,., appears to contradict
the broadband modal amplification shown in figure 7.13(a). However, analysing
figures 6 and 9 in Crow (1970) for the case where 6/1\/75 = 0.3210, reveals that a

broad range of wavenumbers (and corresponding wavelengths) are unstable, all
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FIGURE 7.14: Development of the Crow instability for Case F2 at time (¢ —
te)To/R2 = 26.6 visualised by two isosurfaces of |w|. Dark and light surfaces
correspond to |w| R3/T = 14 and |w| R3/T¢ = 2 respectively.

with similar amplification rates. Thus although the most amplified azimuthal
wavenumber changes rapidly with time, a broad range of modes are similarly am-
plified leading to the observed broadband modal growth. Figure 7.13(d) shows
good agreement between our modal growth rates and the theoretical prediction
Omaz = 0.78 (Crow, 1970). Our modal growth rates are all slightly below the max-
imum theoretical value. Note n = 1 and n = 22 are not plotted as their growth

rate is the product of nonlinear interactions between modes.

In the later stages of the simulation the most unstable mode, n = 11, and its higher
harmonic, n = 22, are greatly elevated above the rest of the modes (7.13(a)). This
results in near uniform wave growth around the circumference of the ring (figure
7.14) and a correspondingly small n = 1 mode. This contrasts greatly to the
modal development of the unbounded ring as the Widnall instability excites a
narrow band of modes whose nonlinear interactions lead to a large n = 1 mode.
The selection of a dominant single mode is consistent with the experiments of both
Song et al. (1992) and Lim & Nickels (1992).

7.4 The surface interaction of transitional rings

As discussed in § 6.5.3 the transitional phase is marked by the reorganisation of the
outer core into a series of counter rotating loops which encompass the sinusoidally
deformed inner core. The secondary structure is at the early stages of its evolution
at the time of embedding (figure 7.2(a)). As the ring propagates toward the

surface, the loops develop as the inner core distortion intensifies due to the Widnall



Chapter 7 Interaction of a vortex ring with an undisturbed free surface 93

FIGURE 7.15: Development of the secondary structure for Case D3 on its ap-
proach to surface at time (t — t.)['o/R3 = 12.24, visualised by an isosurface of
IR /T3 = —0.05.

instability (see figure 7.15). The ascent of Case D3 induces a surface bulge, which
is smaller in height compared to the laminar Case D1, due to the lower ring
circulation and more diffuse core. However, for Case D3 the bulge is not circular
but has a modulated wavy pattern as shown in figure 7.16(a). Comparing the
surface bulge to the ring structure below, the surface modulation is in phase with
the wavy inner core below. As the ring moves closer than approximately one
radius of the surface it expands radially, forming a surface depression which is also

modulated by the wavy inner core, as shown in figure 7.16(b).

The secondary structure is located in the ring periphery, consequentially, as the
depth of the ring decreases it becomes in close contact with the surface. As in the
unbounded domain neighbouring loops form next to one another in pairs but at
the surface the loops move apart in the interior of the ring (indicated with arrows
in figure 7.17(a)) and reconnect with the surface at their outer periphery (labeled
by solid circles in figure 7.17(a)). The surface-normal vorticity w, field is shown in
figure 7.17(b) in which the corresponding reconnection sites are also highlighted
with solid circles. The neighbouring sites are of opposite sign, consistent with
the counter rotating secondary loops. Also shown in figure 7.17(b) are regions of

w, that lie between neighbouring loops of the secondary structure, highlighted by
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FIGURE 7.16: Free surface response to a transitional vortex ring (Case D3), light
regions correspond to elevation, dark regions to depression: (a) (t —t.)To/R2 =
15.21; (b) (t — t.)To/R% = 19.93.

dashed circles. They are also arranged in counter rotating pairs and correspond
to the outer periphery of the inner core. Although the Fr is low, the small surface
displacement does produce a small amount of opposite-signed vorticity (= 0.5% of
the primary ring circulation) due to the curvature of the surface, which forms a sec-
ondary ring as in the laminar case. It is possible that the secondary ring stretches
the outer periphery of the inner core to form the reconnection sites, consistent with
the observations of Zhang et al. (1999) who simulated rings propagating at angles
toward the surface. The surface displacement corresponding to the reconnecting
ring is shown in figure 7.17(c). Notably there are no small surface indentations
corresponding to the reconnecting filaments as seen in the experiments of Song
et al. (1992). This is probably because the filaments are not yet fully connected
to the surface, as w, at the surface is small. Further interpolation and simulation
would presumably lead to the intensification of w, as both the secondary struc-
ture and the ring reconnect fully with the surface. Also evident either side of the
depression, but more so on the interior, are local surface elevations which, like the

depression, are also likely to be a result of the wavy inner core below.

The results of the transitional ring investigation have implications for the inter-
pretation of the results of Song et al. (1992). The reconnection of Case D3 differs
from the laminar instability and interaction, demonstrated by Case F2, due to
the presence of the secondary structure. Its behaviour does, however, bear some
resemblance to the high Re and Fr case of Song et al. (1992). Unlike their lower Re
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FIGURE 7.17: Surface reconnection of the secondary structure for Case D3 at

time (t —t.)To/R3 = 21.85: (a) Double isosurface of |w| at levels; |w| R3 /Ty = 4

(dark) |w| R%/Ty = 1.5(light). Arrows denote splitting apart of neighbouring

secondary structure in the ring interior, circles denote reconnection sites; (b)

Corresponding w, on the surface at contour increments w?'** /5, thicklines de-
note negative vorticity; (c) Surface elevations.
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FIGURE 7.18: Contours of wy on the y = 0 plane for turbulent Case D4 at (a)
(t —te)lo/Rg = 12.75 and (b) (t — t.)l'o/Rf = 25.4. — increments of w;** /20,

-+ increments of wy"™ /20 (negative). Thick solid line denotes surface location.

and Fr case, small surface indentations were seen outboard of the depression. Our
results suggest that the indentations are due to the reconnection of the secondary
structure. We speculate that the high Re leads to an aggressive amplification of
the Widnall instability causing a transitional state to be reached as the ring im-
pacts on the surface. This speculation is prompted by their early observation of
three dimensional structure as the ring moved close to the surface. The surface
striations seen across the depression could also be due to the wavy core structure

below, as revealed by the localised elevations in figure 7.17(c).

7.5 The interaction of turbulent rings

As recorded in §6.5.3, the onset of turbulence is marked by the shedding of sec-

ondary structure as a series of hairpin vortices. The process of instability growth
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FIGURE 7.19: Surface elevations for turbulent Case D4 at times: (a) (t —
te)To/R2 = 18.21; (b) (t — te)To/R2 = 25.4.

and the resulting onset of turbulence is not equal around the azimuth of the ring
(see 6.5.3). For example, the turbulent core is more developed on the left-hand-
side of figure 7.18(a) as the ring propagates toward the surface. The core develops
as if unbounded until it reaches a depth of approximately one radius, where its
dynamics are modified by its image above the surface. Its ascent induces a surface
bulge, of smaller height than the laminar and transitional cases, as shown in figure
7.19. The bulge has no clear pattern reflecting the arrangement of the disorganised

vorticity filaments below the surface.

The subsequent radial expansion below the surface has a profound effect on the
structure of the turbulent core. As the core expands the swirling vorticity fila-
ments that comprise the core region stretch and tilt into the radial plane. Figure
7.18(b) shows that the cores begin to find a greater degree of organisation or co-
herency. The swirling filaments then merge together to form a more defined core
region and the opposite-signed vorticity, present on either side of the ring in figure
7.18(a), is either shed into the wake or canceled. The structure of the expanding
ring resembles a turbulent thin-core ring (see figure 6.19(b) §6.5.3) although with
greater coherency in the core region. A similar phenomena was also seen in the
numerical study of Teixeira & Belcher (2002) for a fully turbulent flow under a
planar propagating wave field. The Stokes drift of particles below the waves tilted
and stretched normal vorticity into the horizontal plane forming elongated stream-
wise vortices. We expect that future simulations of the ring to longer times than
considered here could increase the core’s coherency, such that it may become sus-

ceptible to the Crow instability, leading to reconnection to the surface in a series of
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F1GURE 7.20: Contours of w, showing reconnection of vorticity filaments at the

surface for turbulent Case D4 at time (t —t.)Tg/R% = 25.4. Contour increments

are w'® /10. Solid and broken lines represent positive and negative vorticity
respectively.

turbulent U-shaped vorticity filaments. This requires further interpolation of the

flow and must be left for future studies after the free-surface code is parallelised.

The turbulent core does not expand at a constant depth around the azimuth of
the ring (see figure 7.18(b)). Consequentially the depth of the surface depression
is not constant but deeper near regions of the ring where the core is closer to
the surface, as shown in figure 7.19(b). The turbulent nature of the core means
that its depth around the azimuth changes continually and the surface elevations
change accordingly. Reconnection also occurs as the swirling core filaments come
in close contact with the surface, as shown in figure 7.20. The pattern of the

reconnection sites reflects the random nature of the core below and it is noted
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that once reconnected with the surface, the filaments do not appear to detach

during the simulation.



Chapter 8

Interaction of a laminar vortex

ring with a surface wave field

In this chapter we document some aspects of the vortex ring interaction with a free
surface that features a small amplitude gravity wave field. We start by formulating
the mathematical description of the problem in §8.1, followed by the numerical
approach employed in §8.2. In §8.3 we describe the particular cases studied and
their parameters. The results are given in § 8.4 along with a discussion of how the
vortex modifies the waves (§8.4.1) and how the waves influence the evolution of
the vortex (§8.4.2).

8.1 Mathematical background

We consider a single vortex ring of radius R and core radius §, with circulation
I' and Reynolds number Re = I'/v, with impulse P (defined in §6.1). The ring
propagates in the z-direction, with respect to Cartesian coordinates x = (x,y, 2),
toward a free surface, of Froude number Fr = 1"/ \/ﬁ , with corresponding veloc-
ity components u = (u, v, w); see figure 8.1. The vortex is embedded at depth d,
such that it is centred about x = (0,0, dy) at time ¢ = 0 . The surface has a planar
gravity wave field of amplitude a, wavelength A\, and celerity ¢, which propagates
in the x-direction. In discussing the surface waves, we refer to waves that are yet
to pass over the ring as being ‘upstream’ and waves that have passed over the ring
as being ‘downstream’ (figure 8.1). We ignore the effects of surface tension and

surfactants in our formulation, as we are principly interested in the interaction
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FIGURE 8.1: Schematic diagram of the vortex ring interaction with a surface

wave field. The shaded region denotes the co-moving logging domain. Compu-

tational domain includes 0.22Rj of cells above the average surface position to
capture surface movement.

of large vortex rings (R ~ 10m) produced by submersible vehicles. Therefore we

exclude surface ripples and focus on the gravity waves.

8.2 Numerical Approach

The Cartesian computational domain assumes periodic boundary conditions in
both the z and y-directions, so that we are, in effect, simulating an infinite array
of rings. The presence of the gravity wave field requires that free-surface boundary
conditions (see §4.3.1) are imposed on the upper (z = 0) boundary. We therefore
simulate the interaction using the free-surface code outlined in §4.3. Impermeable
free-slip boundary conditions are imposed in the horizontal plane at the lower
extent of the z-axis. The initial ring velocity field was prescribed by embedding
a vortex ring which has previously been evolved within the unbounded domain,
following the method described in §5.2.1. The initial field was completed by
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Case Fr k/L, a/Ry cRy/Ty Atl'y/R2

W1 0.3 2 0.04 19616 0.004779
W2 0.3 4 0.04 1.3871 0.006759
W3 0.3 8 0.04 0.9808 0.009558
W4 0.3 4 0.02 1.3871 0.006759
W5 0.3 4 0.08 1.3871 0.006759
W6 0.3 2 0.08 19616 0.004779
W7 0.6 2 0.04 0.9808 0.009558

TABLE 8.1: Table to show wave parameters: wavenumber k; amplitude a;
celerity c¢. Also shown is the simulation time step At. All parameters nondim-
sionalised by ring lengths.

linearly superimposing the surface wave train and its associated velocity field (see
§5.2.2).

The ring circulation, impulse and radial measures (defined in §6.1) are calculated
in a co-moving cubic logging domain (see shaded region of figure 8.1) whose top
and bottom is 2R, from the ring centre. By employing a co-moving logging domain
the ring wake trails behind and does not distort the integral ring measures. When
the ring moves near to the surface, only the contribution of active cells (under
the surface) with wy > 0.0 enter the ring integrals, to avoid the contribution of

vorticity generated due to surface curvature.

8.3 Simulation Parameters

We investigate the problem by examining the cases in table 8.1, which allow us to
consider the effects of Froude number, wavenumber and wave amplitude on the ring
interaction with a surface wave field. For all cases an identical thick-core laminar
ring was embedded within the computational domain at an initial depth dy =
3.49 Ry, where the zero subscript corresponds to an initial parameter at the time of
embedding. The ring has been evolved for 40 non dimensional time units within the
unbounded domain and has initial parameters: Ry = 1.147; ¢y = d9/ Ry = 0.333;
and I'g = 0.907. The computational domain had dimensions L, = L, = 6.98R
and L, = 7.2Ry, with N, = N, = 128 and N, = 132 grid cells respectively.
Four grid cells are included above the average surface location to capture surface

movement. Cases W1-3 feature a surface wave field with identical amplitude and
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Froude number but varying wavenumber. The effect of wave amplitude can be
assessed through comparison of Cases W2, W4 and W5 which feature the same
wavenumber and Froude number. Case W6, with its large amplitude and low
wavenumber, possesses the most energetic wavefield. Finally, Case W7 allows us

to investigate the effect of Froude number through comparison with Case W1.

In presenting the results we nondimensionalise flow quantities by Ry and I'y, given
above. Since the aim of these simulations is an exploratory study, we have reduced
the grid resolution and hence duration of the simulations, to allow us to make best

use of available computational resources.

8.4 Results

8.4.1 Surface wave deformation

The degree to which the vortex ring distorts the surface wave train is dependent on
the Froude number, wave amplitude and wavenumber. Let us consider the surface
response from the view point of a wave approaching the vortex ring. As the wave
nears the ring, the surface velocity field induced by the ring (figure 8.2(a)) opposes
its motion. Consequentially the ring ‘diffracts’® the waves, with the central region
lagging behind the rest of the wave (figure 8.2(b)). As the wave passes over the
ring centreline (x = 0) the ring velocity field changes direction and accelerates the
centre of the wave. Gradually the wave moves back in phase with itself downstream
of the ring. A similar type of wave diffraction was observed in the experiments of
Vivanco & Melo (2004), which featured a vortex dipole aligned perpendicularly to
a planar wave train. The degree to which the wave diffracts is dependent on the
wavelength and amplitude of the wave. Short wavelength, small amplitude waves
are distorted to the greatest degree by the vortex, whereas the larger amplitude
cases are only diffracted by a small amount (compare figures 8.2(b) and 8.2(c)).
The wave diffraction intensifies as the ring moves closer to the surface and expands

parallel to it.

The investigation of a laminar vortex ring with an initially undisturbed free surface
(§7.3.1) has shown that the radial expansion of the ring forms a surface depression
(see figure 7.9). As the ring expands in the presence of a surface wave field, short

wavelength waves radiate across the surface. The secondary waves are of small

"'We use the term ‘diffraction’ to refer to the bending of the surface waves.
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FIGURE 8.2: Wave diffraction. (a) A typical surface velocity vector field induced

by a vortex ring on a surface without waves, Case S1, core region marked with

isosurface of I, at (¢ — t¢)Io/R% = 15.15. (b) Surface field for Case W3 at

(t — t.)[o/R3 = 15.15 showing large-scale wave diffraction. (c) Surface field

for Case W6 at (t — t.)['o/R3 = 15.15 showing small-scale wave diffraction.

Direction of wave motion indicated by arrow, crests lightly shaded, troughs
darkly shaded.

amplitude compared to the wave train and appear to originate from the surface
depression. Initially the secondary waves radiate in the positive and negative x-
directions (figure 8.3(a)), but as the ring expands further, the waves radiate from
around the entire circumference of the ring 8.3(b). The secondary wave field is

analogous to that caused by a droplet falling on an initially flat pool of fluid. In



Chapter 8 Interaction of a laminar vortex ring with a surface wave field 105

FIGURE 8.3: The generation of secondary waves for Case W1, the wave train
propagates from left to right with crests lightly shaded and troughs darkly: (a)
(t —te)To/R3 = 18.04 (b) (t —t.)To/R3 = 20.25

the case of the droplet, the waves are radiated due to rapid surface oscillation
caused by the collision. In this case the stimulus appears to be the interaction of

the surface wave train with the surface depression induced by the ring.

It is noted that the secondary wave generation is more pronounced for cases with
large wavelength and small amplitude, greatest for Case W1. Case W4, which
features medium wavelength, small amplitude waves also radiates prominent sec-
ondary waves but with wavelength noticeably smaller than for Case W1. Measur-
ing the distance between successive wave crests shows that the wavelength of the
secondary waves is approximately one quarter of that of the wave train. Cases W3
and W5 show only small signs of secondary wave generation. Case W3 was ter-
minated before the other cases due to violation of the surface maximum slope
condition (4.8). However, at the time of termination it showed far less secondary

wave generation than all of the other cases except Case W5.

The elevation history of two points located on the surface at the centre, x =
(0,0, h) and downstream of the ring at (2.15Ry, 0, h) are shown in figure 8.4. Fig-
ures 8.4(a) and 8.4(c) show the entire history, while figures 8.4(b) and 8.4(d) focus
on the elevation history after the secondary waves have been generated. Consid-
ering first the elevation at the centre of the domain, figure 8.4(a), a noticeable
peak occurs at 14 < g/ R2 < 19 which corresponds to the ring inducing a surface
bulge. The surface elevation at x = (2.15Ry, 0, h) follows an approximately con-

stant sinusoidal motion until time (t—¢.)Ty/R2 = 16, at which point the secondary
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FIGURE 8.4: Plots of surface elevation for Case W1 at two points located at:
(a)&(b) x = (0,0, h); (c)&(d) x = (2.15Ry, 0, h).

waves are evident, superimposed on top of the planar wave train. The secondary
waves radiate toward the domain boundaries and not toward the ring centreline
as the elevation history in figure 8.4(b) continues to follow a sinusoidal path. The
crests of the planar wave train at (t —t.)To/R2 = 19.7 and (¢ — t.)[o/R2 = 22.7
in figure 8.4(d) correspond to depressions of the secondary wave field. The fig-
ure shows that the amplitude of the secondary waves increase slightly with time.
It is likely that this occurs due to the stretching of the ring below the surface,
which intensifies the local vorticity and associated velocity field, increasing the
size of the surface depression with time. The amplitude of the secondary waves at
(t —t.)To/R2 = 19.7 and (t — t.)Ty/R2 = 22.7 is approximately 5-10% of that of

the wave train.
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FIGURE 8.5: Evolution of total circulation for surface wave cases (solid lines
highlighted with symbols): %, Case W1; [0, Case W2; V, Case W3; A, Case W4;
4+, Case W5; o, Case W6; — — — , Case WT.

8.4.2 Vortex dynamics

We now consider the effect of the wave train on the vortex ring. As the ring
moves close to the surface the combination of the curvature of the surface wave
field and the ring’s velocity field creates opposite-signed vorticity, which reduces
the total circulation (see figure 8.5). The magnitude of the surface vorticity de-
pends on both the local surface curvature and the tangential flow velocity below
(Longuet-Higgins, 1998). Cases with shorter wavelength and larger amplitude
waves therefore generate the greater amount of surface vorticity by virtue of hav-
ing higher surface curvature. For this reason the total circulation, which is the sum
of the positive ring circulation and negative surface-curvature-induced circulation,
decays fastest for cases W3 and W5 by virtue of their higher wave curvature. The
higher Froude number Case W7 also features a sharp fall in circulation and will
be addressed below.

We first consider the low Froude number cases. The magnitude of the opposite-
signed vorticity varies from case to case dependent on the degree of curvature of
the waves. For cases with high wave curvature, such as W2, W3, W4 and W5,

the opposite-signed vorticity is strong enough to make the ring expand asymmetri-
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FIGURE 8.6: Vortex rebound for Case W5. w, contours plotted at increments
of wy"* /10 with solid and broken lines corresponding to positive and negative
contours respectively. Surface elevation shown by thick solid line. Subplots at
times: (a) (t—t.)[o/R3 = 16.53; (b) (t —t.)To/R2 = 19.28; (c) (t —te)To/R% =
22.04; and (d) (t — te)To/R3 = 24.79. Waves propagate from left to right.
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cally. Figure 8.6 demonstrates a typical vortex ring interaction with high curvature
surface waves. To help describe the interaction we label the left-side core as the
‘upstream core’ and the right-side core as the ‘downstream core’. Initially the ring
expands symmetrically in the radial direction. However as the ring moves close
to the surface waves it begins to induce surface vorticity (figure 8.6(a)). Near the
upstream core the surface vorticity is of opposite sign but near to the downstream
core the surface vorticity is of the same sign as the ring (figure 8.6(b)). Consequen-
tially, as the downstream core expands radially it merges with the surface vorticity,
increasing the ring circulation locally. Since the surface curvature is far greater
at the upstream core, the opposite-signed vorticity quickly becomes of compara-
ble strength to the ring, and prevents it from expanding further in the upstream
direction (figure 8.6(c)). Indeed, the opposite-signed vorticity becomes so strong
that it wraps around the upstream core and locally the ring and surface vorticity
begin to rebound from the surface under their induced motion (figure 8.6(d)). At
the upstream extent, the ring behaviour is reminiscent of a ring rebounding during
the interaction of a vortex ring with an initially flat free surface featuring surfac-
tants (Chu et al., 1993). The downstream section continues to expand radially,
resulting in a distorted asymmetric ring that is bent away from the surface at the
upstream section. Due to their higher wave curvature, Cases W3 and W5 feature

significantly deeper rebounds than the rest of the cases.

The lower wavenumber cases, W1 and W6 show a different ring behaviour at the
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FIGURE 8.7: Sinusoidal variation in ring depth: %, Case W1; o, Case W6.
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FIGURE 8.8: Evolution of surface vorticity for Case W7. w, contours plotted

at increments of w,"** /10 with solid and broken lines corresponding to positive

and negative contours respectively. Surface elevation shown by thick solid line.

Subplots at times: (a) (t —t.)['o/R3 = 16.53; and (b) (¢ — t.)I'o/R3 = 19.28.
Waves propagate from left to right.

surface. As the rings move closer to the surface their depth varies sinusoidally,
with a period which matches that of the surface waves (see figure 8.7). For these
cases the wavelength of the surface waves are larger than the ring diameter. As
the surface waves pass over the expanding rings the wave crests induce an upwards
motion and the wave troughs induce a downwards motion, keeping the distance

to the surface approximately constant.

The total circulation decays fastest for the high Froude number case (W7) (figure
8.5). The ring behaves in a different way than the lower Froude number cases.
Due to the higher Froude number, the surface is more ‘malleable’ to the ring.
Thus the ring forms a larger surface depression as it expands under the surface.
The surface curvature is higher near the upstream core, thus the ring initially
generates opposite-signed vorticity at this location (figure 8.8(a)). This contrasts
greatly with the free-surface interaction in the absence of waves, where the surface
displacement and corresponding surface vorticity is constant around the circum-
ference of the ring, resulting in a symmetric ring expansion. As the ring expands

below the surface, the core vorticity intensifies through stretching, and the tangen-
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tial velocity below the surface increases. This leads to opposite-signed vorticity
developing outside the downstream core, but of lower circulation than the cor-
responding upstream vorticity (figure 8.8(b)). The generation of opposite-signed
vorticity around the entire circumference of the ring leads to a higher decay rate
of the total circulation than the lower Froude number cases. This is because the
lower Froude number cases only produce opposite-signed vorticity upstream of the

ring and instead produce co-rotating vorticity downstream of the ring.



Chapter 9

Summary

9.1 Investigation of vortex ring evolution from a

laminar to a turbulent state

Our investigation of the evolution of a vortex ring from a laminar to a turbulent
state has uncovered many previously unreported and interesting physics. One im-
portant finding is the difference in evolution of thin- and thick-core vortex rings.
Analysis of integral measures of vortex ring geometry has shown that the slender-
ness ratio (e = §/R) has a strong influence on the evolution of the ring geometry
and dynamics. The diffusion of thin-core rings is well described by Saffman’s equa-
tion (2.3) (Saffman, 1970). However the core diffusion of thick-core rings (¢ > 0.36)
is limited by the ring centreline and the presence of the entrainment bubble sur-
face, which clips the outer edge of the vorticity distribution. It was found that as
€ increases the vorticity distribution within the core becomes increasingly skewed
with a steepening of the vorticity profile in the vicinity of the entrainment bub-
ble surface and greater vorticity diffusion into a laminar wake. The skewing of
the vorticity distribution also has a strong effect on the ring translational velocity,
leading us to define an expression for the constant in the classical velocity equation

as a series expansion of € (6.9).

The simulations have shown that thick-core laminar rings produce a substantial
wake, due to the initial adjustment to a non Gaussian vorticity distribution and
as a result of vorticity detrainment. This has implications for periodic computa-
tional domains, used for example by Shariff et al. (1994) to establish a viscous

correction to the inviscid growth rate of Widnall & Tsai (1977); we have shown
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that the interaction between the ring and its recycled wake increases the growth
rate of the linear Widnall instability. We have presented new revised growth rates
from simulations using inflow and outflow boundary conditions in the axis of ring
propagation. By modifying the viscous correction to use instantaneous values of
the ring parameters we find close agreement for the growth rates of both thin- and

thick-core rings.

Visualising the vortex ring transition to turbulence has highlighted the importance
of secondary vortical structure, which develops when the inner core instability
waves are of large enough amplitude. The secondary structure is formed through
tilting and stretching of the outer or ‘halo’ core vorticity. It develops as counter-
rotating neighbouring loops of vorticity that meet one another at saddle points to
form an interwoven mesh around the inner core region. It was shown, by analysing
Lagrangian pathlines of fluid particles entrained into the vortex ring bubble, that
the secondary structure initiates localised detrainment zones prior to the onset
of turbulence. The latter stages of transition are marked by the protrusion of
the secondary structure outside the entrainment bubble, causing it to trail behind
into the wake. The loops detach and reattach with their neighbour to form hairpin
vortices that are deposited into the wake. The local equilibrium between the inner
core and the halo vorticity is broken and the ring becomes locally turbulent where
the hairpin vortices were ejected. Lagrangian particle analysis of the core region
during the transitional phase has shown the generation of an inner region of axial
flow which moves along the vortex core centreline toward the region of greatest
core stretching. The outer region moves in the opposing direction consistent with
the experimental observations of Naitoh et al. (2002) for naturally evolved rings.
The dominance of the n = 1 mode during transition was found to influence the
magnitude of the axial flow. The structure of the resultant turbulent ring was
found to depend on €, with thin-core rings maintaining a core region of organised
vorticity. During the turbulent phase discrete vortical structure is shed from the

ring in the form of hairpin vortices.

9.2 Interaction of a vortex ring with an undis-

turbed free surface

The orthogonal interaction of a vortex ring with an undisturbed free surface was
found to differ dependent upon the condition of the ring: whether laminar; tran-

sitional; or turbulent. During the ascent of laminar rings the Widnall instability
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develops until the ring approaches a depth of approximately one radius, giving the
ring an azimuthal structure. The degree to which the structure and corresponding
azimuthal modes are amplified depends on the duration of the ring approach to the
surface, the Reynolds number and the ring slenderness ratio. The ring approach
induces a circular surface bulge, but as the ring moves closer than one radius its
dynamics begin to be strongly influenced by its virtual image above the surface
and the bulge drops. The Widnall instability is suppressed as the ring expands
and a depression forms on the surface above and outboard of the ring. The az-
imuthal modes, which define the structure of the unstable ring, decay until the
ring expands to approximately twice its initial radius. At this point the ring and
its virtual image locally resemble two line vortices and the ring becomes unstable
to the Crow instability. The instability amplifies a broadband spectrum of az-
imuthal modes at a higher growth rate than the Widnall instability. The growth
rates of the modes compare well with the stability analysis of Crow (1970). As
all of the modes are amplified at similar growth rates, the dominant mode is pre-
selected by the development of the Widnall instability as the ring approaches the
surface. The experiments of Song et al. (1992) and Lim & Nickels (1992) suggest
that the instability eventually leads to reconnection of the wavy core region with
the surface, however the ring was not expanded far enough here for this to occur,

due to constraints on the resolution and domain size.

Surface displacement scales with the square of the Froude number. The curva-
ture, associated with the displacement of the surface into a depression, produces
opposite-signed vorticity, which roles up to form a secondary ring outboard of the
expanding primary ring. This leads to a decay in the total circulation approxi-
mately equal to the circulation of the secondary ring, larger for the higher Froude
number cases. Another mechanism for circulation decay at the surface is brought
about by the tail of the ring’s vorticity profile touching the surface. This cancels
with its virtual image above the surface, reducing the ring circulation, and occurs
with or without surface curvature present. The secondary ring affects the depth
of the ring during its expansion below the surface. If the secondary ring is signifi-
cantly strong it induces a downwards component on the primary ring, causing it

to expand below the surface at a greater depth.

Analysis of a transitional ring has given some explanations for the experimental
observations of Song et al. (1992). The reorganisation of the transitional ring to
a wavy inner core encapsulated by a series of counter-rotating loops of weaker
vorticity modifies the ring/surface interaction. At first the initial surface bulge is

modulated into a wavy pattern which reflects the shape of the ring’s inner core
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region. The wavy pattern is also present in the subsequent surface depression,
which forms as the ring expands. The impact of the peripheral looping structure
on the surface results in the splitting of neighbouring loops, which reconnect with
the surface in the outer ring periphery. This is the likely source of the surface
indentations reported by Song et al. (1992). Reconnection of the inner core region

was also found, commencing toward its outer extent.

As the turbulent ring expands below the surface, the filaments that comprise its
core region are stretched in the radial direction. This gives the initially thick-core
a degree of coherency as it becomes thinner, reminiscent of a thin-core turbulent
ring. Surface reconnection occurs as the swirling core filaments impact on the
surface. The reconnection sites and surface displacements follow no clear pattern,

reflecting the turbulent nature of the core below.

9.3 Interaction of a laminar vortex ring with a

surface wave field

This exploratory study has highlighted a number of physical features of the inter-
action of a vortex ring with a surface wave field, which can be grouped into wave
effects and ring effects. The ring approach to the surface causes diffraction to the
gravity wave field. The degree to which the ring diffracts the waves is found to be
a function of the wave amplitude and wavelength. Wave diffraction is larger for
gravity waves with small wavelength and amplitude. As the ring expands radially,
its velocity field forms a depression on the surface, from which small-amplitude
waves radiate. These secondary waves are more pronounced for large wavelength
and small amplitude gravity wave trains. Surface curvature, associated with the
waves and surface displacement induced by the ring, produces surface vorticity
which reduces the total circulation. For the low Froude number cases the surface
vorticity is of opposite sign to that in the core upstream of the ring and co-rotating
downstream of the ring. Cases with high wave curvature produce large amounts of
surface vorticity, which restricts the ring from expanding in the upstream direction
and results in a highly asymmetric expansion. If the curvature is sufficiently high,
the opposite-signed vorticity wraps around the upstream core and the ring re-
bounds locally from the surface. For cases with low curvature and large amplitude
waves, the ring depth is modified by the wave field. The ring moves sinusoidally up
and down following the wave crests and troughs, remaining an approximately con-

stant distance from the surface. The high Froude number case produces a surface
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depression, which is sufficiently deep to generate opposite-signed vorticity around
the entire ring azimuth. This results in a faster decay of the total circulation than
the lower Froude number cases. The high Froude number case also expands with
a slight asymmetry as the higher wave curvature near the upstream extent of the

ring produces greater opposite-signed vorticity than the downstream extent.
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Future work

10.1 Investigation of vortex ring evolution from

a laminar to a turbulent state

The area of greatest potential for further work is the turbulent vortex ring which
has only been touched upon by this project due to time constraints. A database
of velocity fields has been generated for both the thick- and thin-core vortex rings
(Cases Al and B3) and awaits analysis. The subject of future work could be
the structure of the turbulence in the core region. Turbulent statistics for the
ring could be compared to those of other turbulent flows such as wakes and jets.
This may help us to distinguish between different types of turbulent motions in
the ocean and determine their sources. It would also be feasible to investigate
the entrainment and detrainment characteristics of the turbulent ring using a
Lagrangian particle approach as conducted here for laminar and transitional rings.
This may go some way to justifying the inferences of Glezer & Coles (1990) that
vortex tubes of alternating sign are wrapped around the turbulent core influencing
entrainment and detrainment of fluid. It is also of interest to determine the end
point of the turbulent ring. Will the rings relaminarise, as in the experiments of
Wiegand & Gharib (1994), or will they become increasingly diffuse through the

influence of viscosity?
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10.2 Interaction of a vortex ring with an undis-

turbed free surface

The investigation into the orthogonal interaction of a vortex ring with a free surface
has answered a number of questions brought up by previous experimental work.
However, the distance through which the ring has been able to expand below
the surface has been limited by the resolution and domain size. Parallelisation
of the free-surface code would alleviate this problem allowing larger domain sizes
and greater grid resolution. This would allow both the laminar and transitional
rings to develop to the point of surface reconnection. In this way the influence of
surface curvature on the development of the Crow instability could be investigated.
Further expansion of the turbulent ring is also of interest as the ring appears to be
relaminarising in the present simulations. The combined influences of the Widnall
and Crow instabilities have been shown by simulating a single ring in the fixed-
boundary code. Repetition of this simulation with rings of differing slenderness

ratio and Reynolds number will allow us to explore the Crow instability further.

10.3 Interaction of a laminar vortex ring with a

surface wave field

A number of previously undocumented phenomena have been uncovered by our
exploratory investigation. The main task of future work is thus to improve the
current simulations to give greater confidence in the results. Firstly the simulations
have been conducted at a relatively low grid resolution, which although adequate
to expose the main flow features, does not capture the ring instability or fine-scale
surface vorticity well. Larger, more refined, simulations need to be carried out to

assess the grid dependency of the results.

As the domain is periodic in the lateral directions the surface waves are recycled
through the domain. Any distortion to the wave field thus interacts with the ring
on subsequent passes. This produces a feedback mechanism which may influence
the results. It is also noted that secondary waves radiate across the surface as the
ring expands. They too have the potential to pass through the periodic boundaries
and interact with the ring. Two methods present themselves to alleviate the
periodic-boundary problem. One option is to greatly increase the lateral boundary

lengths and by doing so prevent distorted waves from interacting with the ring.
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The success of this option depends on parallelisation of the free-surface code and
the time period through which the ring is to be simulated. An alternative method
might utilise the flowfields from the ring interaction with an undisturbed free
surface. A gravity wave field could be linearly superimposed onto the initially
undisturbed surface. The simulation could then be performed until the wavefield
passed over the ring for a second time. At which point the simulation could be
ceased and a new simulation started by superimposing a wave train on a flow
field (from the initially undisturbed ring/surface interaction) at a later time. By
simulating each flowfield for a relatively short time period the wave physics and
ring behaviour could be deduced without the contamination of wave reflections.
A possible drawback of this method is that a sinusoidal wavefield, as employed
to currently initialise the gravity waves, is not a good approximation of the wave

field when the ring becomes close to the surface.
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Appendix A

Included below is an outline of the split merge technique employed by the free
surface code to update the surface elevations. A full description can be found in
Thomas et al. (1995).

11.1 Outline of the split-merge technique

The technique uses a simple surface locater which allows the surface height to be
related to the volume of cells directly below it. Note, as the code uses a staggered
grid only the pressure points are located at the continuity cell centres, whose fluid
volume are F'cij,. The staggered w;ji, viji, wijr cells have volumes Fxyji, Fyiju,
Fz;;, respectively. The surface elevations h;; are defined for both pressure cells
(hcij), and staggered cells (hxz;; and hy;;) as equal to the height of the column of

fluid cells below,

hgi; = Z Fq;;/(AzAy) forallg € ¢, z,y. (11.1)
k

The centred and staggered forms of F' and indeed h must be mutually consistent,

this is achieved by enforcing

1
hij = §(h0z‘,j + heio1g), (11.2)

1
hyij = E(hCiJ’ + hCZ’J‘_l). (113)
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There is a possibility that the cells directly below the surface could possess a
volume that approaches zero, forming a potential singularity in the Navier stokes
equations. This problem is alleviated by allowing surface cells to grow, split or
merge dependent upon the volume of fluid in the cell. If a surface cell becomes less
than half empty it merges with the cell below forming one large surface cell, with

the new velocity u,, and volume F}, updated to conserve momentum and mass:

lm = la + lb, U, = laua/(la + lb)) + lbub/(la + lb) (11.4)

If the height of a merged cell then becomes larger than 3/2Az it will its split into
two cells, a lower cell of dimensions Ax x Ay x Az and a partially filled surface
cell, the process is shown in figure 11.1. Each surface cell has a complete base, a
complete free surface and at least one neighbour in each horizontal direction, but
not necessarily confined to the same vertical level. A complication arises when
considering the surface level in relation to the centred (continuity) cells as shown
in figure 11.2. If we consider cell A to be the surface cell, the surface can be
present at any level between pressure points p; and p;. However, dependent on
the position of the surface, there may or may not be a w-cell between the pressure
cell and the surface. For example, if the surface is above wy (e.g. hg) the w-point
wy will be present above the pressure surface cell, whereas if the surface is below
wy (e.g. hy) the surface w-cell will be w; and the pressure cell will not have a w-
point between it and the surface. In the first case the pressure point is an internal
cell and can be solved by the regular continuity equations, however if there is no
w-cell between the surface and the uppermost pressure cell, such as for the second
case, it is not possible to use the continuity equations and the pressure cell must

be updated through interpolation of the surface boundary condition, see below.
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FIGURE 11.2: The splitting and merging of surface cells.

The two different types of surface pressure cell are referred to as active and passive

respectively.

The reason for treating active and passive cells in different ways can shown when
considering continuity. Consider in 2D, the flux into pressure cell p,. in figure 11.3,
the kinematic free surface boundary condition (4.9) in finite difference form can

be written as

dFC lc - la le - lc
Azdt 7 _“”( 2Az ) _“d( 2Nz ) ' (11.5)

where —u(dh/dzx) is approximated by a centre averaged value and the cell volume
F, has been substituted for h (11.1). The rate of change of volume is simply equal

to the flux of fluid across the wet sides of the cell, thus

OF,
ot

= ublb + wlAm - udld. (116)
By eliminating [, and l4, through insistence that the staggered and centred surface

elevations are mutually consistent (11.3) and combining (11.5)& (11.6) we are left
with

le(ug — up) + Ax(we — wq) = 0, (11.7)
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staggered cell control volume

for the continuity equation in an active surface cell, which is the same as for
subsurface cells as [. becomes Az. However note that the equation does not hold

for passive surface cells for which ws is absent.

11.1.1 Momentum terms for surface cells

When considering the momentum terms in (4.1) with respect to surface cells, we
must consider the cases in which neighbouring cells have common borders, as
shown in figure 11.4, but also neighbouring cells which have been split or merged
leaving jumps in the surface cell geometry as shown in figure 11.5. We consider
the 2D case to demonstrate the principles. The momentum flux across a surface
separating two cells is approximated by the average of the velocity of each cell
multiplied by the mass flux between the two cells. In the case of a surface cell
without jumps (figure 11.4) the momentum equation as applied to a staggered cell

(such as u,) is then

(leue)
ot

1 1 1
= E(ua + ue)qy + 5(“)‘ + UC)Qf - 5(“6 + e )qds (11.8)

where ¢ denotes the mass flux. It is shown by Thomas et al. (1995) that this

scheme conserves kinetic energy.

The more complicated case of a jump between surface cells is shown for u and
w cells in figure 11.5. A jump occurs at a surface cell which has more than one
neighbouring cell on one or more sides. The method used to ensure continuity of
mass in such cases is, after enforcing continuity in the centred (Pressure) cells, to
first calculate the horizontal mass fluxes and then calculate the vertical fluxes by

explicitly enforcing continuity. Considering first the flux between u-cells (figure
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FIGURE 11.4: Momentum flux in a staggered cell (u.).

11.5(a)), the fluxes ¢, and g; are found by calculating the average flux @) across

the interface denoted by subscript b, using

2Qy = 1,U, + Ul + 10l (11.9)

and then assuming constant flux we allot @, in portion to the lengths [; and [}/

which gives

l//Qb

" b

= 11.10

% w410 ( )
/

/ be
= . 11.11
dQp lg 4 lﬁ, ( )

Fluxes ¢/, and ¢} are evaluated in the same way and ¢, is sufficiently far from the
surface to be simply calculated by flux averaging w-velocities. To obtain the final

vertical flux ¢/ we then impose continuity, thus

q. = qc+q — dg- (11.12)

The horizontal fluxes between pairs of w-cells are shown in figure 11.5(b). By
approximating u as constant across a w-cell interface and multiplying the velocity

by the area of the interface yields
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Az

&= (=S, (11.13)
A
g ="l + 721/6. (11.14)

11.1.2 Viscous terms for surface cells

We now consider the influence of the split-merge technique on the contribution
of the viscous stress terms to (4.1). Considering again the 2D case, the viscous
stresses corresponding to a surface cell with no surface jumps is shown in figure
11.6. Here 7., and 7., denote the viscous stress components on the axes and
Ton and 7, denote the surface stress components, where the surface co-ordinates
(s,n) are measured locally in the tangential and normal directions respectively.
Applying (4.10) and (4.11) in 2D form gives the the unit normal vector n on the

surface at c as

n=(ngn,)=S"(=s—1b),Az), (11.15)
S = /(A2 + (Ig — y)?), (11.16)

and the contribution of the viscous stresses to the u-cell momentum is found

through summation of the stress contributions from each side, thus
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FIGURE 11.6: Viscous stresses in surface cell c.

du,
ch = la(Tez)a — o(Tux)p — AZ(Tez)e + (1259)(Tsn) + (125)(Ton) (11.17)
where 7., and 7., are evaluated from the local velocity field. The surface boundary
condition (4.12) requires that the tangential stress tends to zero at the surface

removing the 75, = 0 and 7, is evaluated from

(Tnn)surface - (nxnxsz)surface + (nxnzTarz)surface + (nzn:cTz:c)surface + (nznszz)surface
(11.18)

At a surface jump between cells (such as shown in figure 11.5(a)) the total stress

at interface b is calculated from the stresses in the two adjoining split cells by

(' + 1" 7oy = Ul + "7z, (11.19)

where 7/ and 7)/z are calculated from the local velocity field.

11.1.3 Pressure discretisation in surface cells

As mentioned previously, the presence of the free surface can create continuity cells
without an upper bounding w cell, as demonstrated in figure 11.2. In such cases
the cell pressure is assigned through linear interpolation, appealing to the surface
pressure and the pressure cell below in the vertical direction only. In general the

finite difference formulation equation (4.7) becomes
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0= ngzzpiﬂ,ﬂm,km + s, for imn € {—1,0,+1} (11.20)

Imn

where s is the source term (2/(3At)0u;/dx;), and C"} represents the finite dif-
ference star coefficients for the V2 operator. Although 27 coefficients are implied
by CZMJ”Z only 15 are in fact non zero as interpolation is limited to the vertical di-
rection. The assignment of C’Zl’;“,g is dependent upon the local surface configuration

and the logic behind its structure can be found in Thomas et al. (1995).

11.2 Free surface advancement

Once the velocity field has been advanced to a new time step the surface height
h(z,y,t+ At) must be updated. This is done by calculating the change in volume

of a column of cells Acol;; as

Acol;; = At.(Fluxinto col;;). (11.21)

The flux is based on the old elevation height h(t) and the new velocity u;(x,y,z,t).

The change in surface elevation follows from the surface locater rule (11.1)

1

(Acol;;(t) + Acol;;(t + At)). (11.22)

Since the flux into column col;; is not known accurately at the new time step until
column height is known equations (11.21) & (11.22) must be iterated a number of

times.
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Appendix B

Reprint of Archer et al. (2008)
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