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a b s t r a c t

The plane stress sectorial domain is analysed according to a state-space formulation of the
linear theory of elasticity. When loading is applied to the straight radial edges (flanks), with
the circular arcs free of traction, one has the curved beam; when loading is applied to the
circular arcs, with the flanks free of traction, one has the elastic wedge. A complete treat-
ment of just one problem (the elastic wedge, say) requires two state-space formulations;
the first describes radial evolution for the transmission of the stress resultants (force and
moment), while the second describes circumferential evolution for determination of the
rates of decay of self-equilibrated loading on the circular arcs, as anticipated by Saint-
Venant’s principle. These two formulations can be employed subsequently for the curved
beam, where now radial evolution is employed for the Saint-Venant decay problem, and
circumferential evolution for the transmission modes. Power-law radial dependence is
employed for the wedge, and is quite adequate except for treatment of the so-called wedge
paradox; for this, and the curved beam, the formulations are modified so that lnr takes the
place of the radial coordinate r. The analysis is characterised by a preponderance of repeat-
ing eigenvalues for the transmission modes, and the state-space formulation allows a sys-
tematic approach for determination of the eigen- and principal vectors. The so-called
wedge paradox is related to accidental eigenvalue degeneracy for a particular angle, and
its resolution involves a principal vector describing the bending moment coupled to a
decay eigenvector. Restrictions on repeating eigenvalues and possible Jordan canonical
forms are developed. Finally, symplectic orthogonality relationships are derived from the
reciprocal theorem.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The present work is companion to a recent exposition (Stephen, 2004) of a state-space approach to the linear elastostatic
problem for a prismatic beam-like structure. In that formulation, the equilibrium equations and Hooke’s law were rear-
ranged to describe the evolution of a state vector of cross-sectional stress and displacement components as one moves along
the axis of the beam. Eigenanalysis provided a systematic approach to the determination of the transmission modes for the
general cross-section – tension, torsion, bending moment and shearing force, coupled to rigid body displacements and rota-
tions, these being the well-known Saint-Venant solutions. For the specific case of the plane stress strip (beam of thin rect-
angular cross-section), a second formulation describing evolution in the transverse direction was required for determination
of the Saint-Venant decay rates of self-equilibrated end loading (the well-known Papkovitch–Fadle solution, see for example
Timoshenko and Goodier, 1970, article 26).
. All rights reserved.
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Nomenclature

a, b, c inner and outer arc radii, curved beam semi-depth
A, B, C, D constants
A, B, D partitions of system matrix
d vector of displacement components
E Young’s modulus
G shear modulus
H system matrix
i, I

ffiffiffiffiffiffiffi
�1
p

, identity matrix
J, Jm Jordan canonical form, metric
k eigenvalue associated with circumferential evolution
M, M moment, element of, matrix exponential
n, N, N direction cosine, element of, matrix exponential
p vector of stress components
Q shearing force
r, h polar coordinates
R, R curved beam centre-line radius, resolvent matrix
s, S, s, S Laplace variable, radius � stress, state vector, transformation matrix of eigen- and principal vectors for radial

evolution
T tensile force
u, U displacement, strain energy
v, V state vector, transformation matrix of eigen- and principal vectors for circumferential evolution
x, y, z Cartesian coordinates
a semi wedge angle
b arbitrary multiple (of eigenvector)
e, c direct, shearing strain
k eigenvalue associated with radial evolution
m Poisson’s ratio
r,s direct, shearing stress
n lnr, modified radial coordinate
U Airy stress function
D defined by Eqs. (78) and (93)
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Here the plane stress elastic sector is considered using polar coordinates. According to where surface loading is ap-
plied, this geometry encompasses both the wedge and the curved beam, and this state-space approach allows analysis
of the two distinct problems in an efficient manner. A complete treatment of just one problem, say the elastic wedge
where the flanks are free of traction with loads applied to the inner and outer arcs only, requires two state-space for-
mulations, one describing radial evolution for the transmission of the stress resultants (force and moment), and a second
describing circumferential evolution for determination of the rates of decay of self-equilibrated loading, as anticipated by
Saint-Venant’s principle. These two formulations, modified such that lnr takes the place of the radial coordinate r, are
then employed for the curved beam where loads are applied to the straight flanks (ends) only, and the curved arcs
are free of traction; now, radial evolution is employed for the Saint-Venant decay problem, and circumferential evolution
for the transmission modes.

Both Stephen (2004) and the present study were motivated by a series of papers in the Chinese literature, largely by
Zhong and his co-workers (Zhong (1991, 1994, 1995), Zhong and Ouyang (1992), Zhong and Xu (1996), Wang and Tang
(1995), Xu et al. (1997)), concerned with the methods of Hamiltonian mechanics applied to problems of the linear mathe-
matical theory of elasticity, rather than the more usual stress function (for example, Airy and Papkovitch–Neuber) or semi-
inverse methods described in most, if not all, of the well-known texts on elasticity. The Hamiltonian approach is more famil-
iar within the study of both rigid body and quantum mechanics, and results in a first-order matrix differential equation. This,
in itself, is not the distinctive feature as one can always trade the order of a single differential equation with the size of the
system matrix; rather, it treats position and momentum as independent variables on an equal footing, and these extra de-
grees of freedom aid the search for canonical transformations (which preserve Hamiltonian structure) for which the set of
differential equations are either fully or partially solved. For application to the elasticity of a beam-like structure, a state vec-
tor consisting of cross-sectional displacement and stress components naturally takes the place of position and momentum,
and the governing equations then describe how these evolve spatially (rather than temporally) as one moves along the beam.

In general, an elastostatic solution must satisfy the Hooke’s law, the boundary conditions and the force equilibrium equa-
tions; if the latter are expressed in terms of stress then one must also employ strain compatibility in one form or another.
However, if the equilibrium equations are expressed in terms of displacement (the Navier equations), then strain compat-
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ibility equations are not required; one immediate advantage of the state-space approach is that it treats displacement and
stress components simultaneously, so strain compatibility is satisfied naturally. A second advantage is that it unifies the two
(usually) separate problems which bear the name of Saint-Venant – the transmission of load applied to the ends only,
according to a prescribed distribution (Saint-Venant’s problem), and the decay of self-equilibrated end loading (Saint-Ve-
nant’s principle) – through the machinery of an eigenvalue problem.

Zhong (1994) and Yao and Xu (2001) have previously shown how the governing state-space equations for the wedge
can be derived from a Lagrangian function and use of the calculus of variations; but since these governing equations are
already well-known, all that is really required is their manipulation into an appropriate state-variable form. Moreover,
these authors only considered a formulation for radial evolution; here, the formulation is extended to evolution in the
circumferential direction, as is required for the curved beam, and for determination of the Saint-Venant decay rates
for the wedge.

While recent papers by Zhong and his co-workers have drawn attention to the advantage of these modern (control) sys-
tem state-variable methods, it appears that Bahar (1975) was the first to note that classical elasticity is well suited to the
state-space approach, and applied it to the problem of the plane stress elastic strip; he also noted the relationship to the
method of initial function, or parameter, as developed earlier by Vlasov (1957). Sosa and Bahar (1992) represented the
fourth-order biharmonic (Airy) stress function approach as a first-order 4 � 4 matrix mixed state-variable problem, and indi-
cated advantages in the treatment of the Flamant problem. Earlier, Johnson and Little (1965) also considered the strip prob-
lem, but introduced an auxiliary function in addition to the three stress components, rather than the mixture of cross-
sectional stress and displacement components employed by later authors.

The paper is laid out as follows: the governing equations are presented in Section 2, and are cast into a state-space form
suitable for radial evolution in Section 3. Initially, displacement and stress components are assumed to have a power-law
radial dependence, leading to a Hamiltonian system matrix H. Further assuming exponential h-dependence leads to a char-
acteristic equation, whose numerous roots are consistent with the compendium of solution forms for the biharmonic stress
functions in polar coordinates, presented by Timoshenko and Goodier (1970), article 43, and Southwell (1941), articles 419,
420. This power-law formulation for radial evolution is adequate for solution of the force and moment transmission problem
for the wedge, which is considered in Section 4. Associated with the double eigenvalue k = 0 are the eigenvector describing a
rigid body displacement in an arbitrary radial direction, coupled to a principal vector describing a force, again in some arbi-
trary direction. Each of these vectors can be split into symmetric and asymmetric parts, which are the known solutions for
the wedge subjected to a tensile force, and a shearing force. The eigenvalue k = 1 pertains to a rigid body rotation about the
origin, while the eigenvalue k = �1 pertains to the wedge subjected to pure bending, which is the well-known Carothers
(1912) solution. This collection of transmitting eigen- and principal vectors is employed to transform the system matrix into
a Jordan canonical form.

As with the plane stress strip considered by Stephen (2004), the ‘‘end problem” for the wedge – determination of the rates
of decay of self-equilibrated loading as anticipated by Saint-Venant’s principle – requires a second state-space formulation,
now for evolution in the circumferential direction. This is presented in Section 5, again employing a power-law radial depen-
dence. Modified formulations, involving the natural logarithm of r, for both radial and circumferential evolution are required
for the transmission and decay problems for the curved beam, and treatment of the wedge paradox; these are developed in
Section 6. In Section 7, this modified formulation for circumferential evolution is employed for determination of the trans-
mission modes of the curved beam, while in Section 8, radial evolution is employed for the end-problem (Saint-Venant de-
cay) for the curved beam. The wedge paradox, the pathological behaviour of the Carothers (1912) solution for the wedge
angle 2a* defined by sin 2a* = 2a*cos 2a*, occurs when the eigenvalue k = �1 describing the rate of decay of self-equilibrated
loading repeats the eigenvalue pertaining to diffusion of a pure bending moment into a divergent domain, an accidental
degeneracy; this is treated in Section 9. Strain energy arguments lead to restrictions on possible Jordan canonical forms –
equivalently possible repeating eigenvalues, and these are considered in Section 10 for both the wedge and the curved beam.
In Section 11, symplectic orthogonality relationships for the wedge and the curved beam are developed from the reciprocal
theorem. Conclusions are drawn in Section 12.

Finally note that, strictly, solution terms such as rk and ln r should be non-dimensionalised with respect to some arbitrary
radius r0 to become (r/r0)k and ln(r/r0), respectively. However in the interests of simplicity, and to provide maximum com-
monality with the majority of research papers and textbooks in this field, such modification has not been made in the pres-
ent analysis; nevertheless, resulting stress fields are in agreement with the solutions in standard monographs, such as
Timoshenko and Goodier (1970), and other sources.
2. Governing equations in polar coordinates

The stress equilibrium equations are
orr

or
þ 1

r
osrh

oh
þ rr � rh

r
¼ 0; ð1aÞ

osrh

or
þ 1

r
orh

oh
þ 2srh

r
¼ 0; ð1bÞ
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with strains
er ¼
our

or
; ð2aÞ

eh ¼
ur

r
þ 1

r
ouh

oh
; ð2bÞ

crh ¼
ouh

or
� uh

r
þ 1

r
our

oh
; ð2cÞ
and Hooke’s law
er ¼
rr

E
� m

E
rh; ð3aÞ

eh ¼
rh

E
� m

E
rr ; ð3bÞ

crh ¼
srh

G
: ð3cÞ
Eqs. (3a),(3b) may also be written as
rr ¼
E

ð1� m2Þ ðer þ mehÞ; ð4aÞ

rh ¼
E

ð1� m2Þ ðeh þ merÞ: ð4bÞ
3. State-space formulation for radial evolution

Define a state vector describing radial evolution as
s ¼ ½ur uh rr srh�T; ð5Þ
consisting of the displacement and stress components on an arc of any given radius. First, one needs to eliminate rh from the
equilibrium Eqs. (1a),(1b), as it is not a state variable for an arc of the domain; from Eq. (2b) and the Hooke’s law (3b) one has
rh ¼ mrr þ E
ur

r
þ 1

r
ouh

oh

� �
: ð6Þ
Now rearrange Eq. (4a) as
our

or
¼ ð1� m2Þ

E
rr � m

ur

r
� m

r
ouh

oh
; ð7Þ
and rearrange Eq. (2c) as
ouh

or
¼ srh

G
þ uh

r
� 1

r
our

oh
: ð8Þ
Eliminate rh from Eq. (1a), and rearrange to give
orr

or
¼ �1

r
osrh

oh
þ E

r2 ur þ
E
r2

ouh

oh
� 1� m

r
rr: ð9Þ
Last, eliminate rh from Eq. (1b), and rearrange to give
osrh

or
¼ � m

r
orr

oh
� E

r2

our

oh
� E

r2

o2uh

oh2 � 2
srh

r
: ð10Þ
Eqs. (7)–(10) may be written in the matrix form
o

or

ur

uh

rr

srh

26664
37775 ¼

�m=r �mo=roh ð1� m2Þ=E 0
�o=roh 1=r 0 1=G

E=r2 Eo=r2oh ðm� 1Þ=r �o=roh

�Eo=r2oh �Eo2=r2oh2� �mo=roh �2=r

26664
37775

ur

uh

rr

srh

26664
37775: ð11Þ
The presence of the coordinate r within the right-hand side of Eq. (11) means that separation of variables has not yet been
achieved; however, introduction of barred quantities, which are functions of h only, and radial power-law dependence
according to the scheme
ur ¼ �urrk; uh ¼ �uhrk; rr ¼ �rrrk�1; srh ¼ �srhrk�1; rh ¼ �rhrk�1; ð12Þ
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does achieve separation, and leads to the eigenproblem
k

�ur

�uh

�rr

�srh

26664
37775 ¼

�m �md=dh ð1� m2Þ=E 0
�d=dh 1 0 1=G

E Ed=dh m �d=dh

�Ed=dh �Ed2
=dh2 �md=dh �1

266664
377775

�ur

�uh

�rr

�srh

26664
37775; ð13Þ
or
k�s ¼ H�s; ð14Þ
where the system matrix H and state vector �s are defined accordingly.
Matrix H in this form has been derived previously by both Zhong (1994) and Yao and Xu (2001), although these authors

employ ln r as the radial coordinate, with the state vector modified accordingly. (Yao and Xu (2001) treated a paradox arising
when tractions applied to the flanks of the wedge have a power-law distribution rk�1 (k P 1), and k coincides with an eigen-
value associated with the decay of self-equilibrated loading applied to an arc; although related, such secondary paradoxes
are not treated in the present paper.) As will be seen, introduction of this modified radial coordinate is not necessary for solu-
tion of the transmission and Saint-Venant decay problems for the wedge, but is necessary for treatment of the wedge par-
adox, and both the transmission and decay problems for the curved beam. Matrix H is Hamiltonian, having the 2 � 2
partition block form
H ¼
A B
D �AT

� �
: ð15Þ
In the above, AT denotes the adjoint of A, which for a matrix differential operator is its transposition with the sign changed
for all odd order differentials, while for a constant matrix, the adjoint is the same as the transpose; one of the properties of a
Hamiltonian matrix is that its eigenvalues occur as ± pairs. The characteristic equation associated with Eqs. (13),(14) is
ððkþ 1Þ2 þ d2
=dh2Þððk� 1Þ2 þ d2

=dh2Þ ¼ 0: ð16Þ
Numerous possibilities follow from the assumption of circumferential dependence as exp(kh), when Eq. (16) becomes
ððkþ 1Þ2 þ k2Þððk� 1Þ2 þ k2Þ ¼ 0: ð17Þ
Suppose initially that k = 0, that is, apparent independence of h; Eq. (17) reduces to (k + 1)2(k � 1)2 = 0, and hence k = ±1
are repeated roots. According to the power law scheme in Eq. (12), k = 1 implies that stresses are independent of radius, so
one would expect this to be associated with a rigid body displacement or rotation (it is the latter). The root k = �1 implies
stress varying as r�2 which is known to occur for pure bending of both the wedge (moment applied to the inner and outer
arcs) and the curved beam (moment applied to the straight flanks). However, more can be gleaned: for k = ±1, Eq. (17) re-
duces to k2(22 + k2) = 0, implying that k = 0 also repeats, and additional terms involving h, and sin 2h and cos 2h, which
are known to occur for pure bending of the curved beam and the wedge, respectively. This need to consider the implication
of both single and repeating eigenvalues for evolution in both directions simultaneously is a feature of the present analysis,
and arises because the displacement components ur and uh and the stress component srh appear in the state vectors for both
circumferential and radial evolution.

One might also expect that k = ±i are associated with the curved beam subject to shear and/or tension, as this leads to
(co)sinusoidal dependence on h; Eq. (17) then reduces to ((k + 1)2 � 1)((k � 1)2 � 1) = 0. The first term in this product leads
to k = 0, � 2, the second to k = 0,2; recall that stress varies as rk�1, so k = �2,0, and 2 lead, respectively, to stress varying as
r�3,r�1 and r, which are known forms for shear. As will be seen, shear of the curved beam is a principal vector, while tension
is a combination of shear and pure bending, which are principal vectors from different eigen-spaces. The double root k = 0
implies an lnr term which arises from the coupling of a principal vector to an eigenvector for a repeating eigenvalue, as de-
scribed in Section 6, and occurs for pure bending of the curved beam. Moreover, this double root implies, from Eq. (17), that
k = ± i is also repeated, indicating additional terms involving hsinh and hcosh; such terms occur for the force transmission
problem within the wedge.

Complex k, or at least the real part, is associated with the Saint-Venant decay of self-equilibrated end loading for the
curved beam; the first term in the product Eq. (17) leads to k = � 1 ± ik, and hence stress varying as r�2r±ik, the second to
k = 1 ± ik and hence r±ik. Noting the relationship rik = (eln r)ik = eik ln r, this leads to terms such as sin(klnr), r�2sin(klnr), together
with their cosine counterparts. Such terms have been employed previously by Kitover (1952) and Stephen and Wang (1993).
On the other hand, general real and complex k are associated with the decay of self-equilibrated loading for the wedge, and
give rise to terms of the form sin(k + 1)h and sin(k � 1)h, together with their cosine counterparts. Such terms have been em-
ployed previously by Stephen and Wang (1999) in a study of the applicability of Saint-Venant’s principle for the elastic
wedge. As will be seen, the treatment of these decay problems is particularly simple with the present state-space formula-
tion, use of the matrix exponential, and a symbolic computation package such as MAPLE.

Finally, note that repetition and concurrence of the roots k = ±1 as occurs for the particular angle associated with the
wedge paradox implies, from Eq. (17), that the root k = ±2i is also repeated, indicating additional terms involving hsin2h
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and hcos2h. The root pertaining to decay from the inner arc, k = �1 repeats that pertaining to a pure bending moment
for the wedge, which leads to additional lnr terms; the root pertaining to decay from the outer arc, k = 1 repeats that
pertaining to a rigid body rotation. Both these roots herald the breakdown of Saint-Venant’s principle for asymmetric
loads, in different ways. These degeneracies may be regarded as accidental, as they occur for one specific wedge angle
only.

The possible multiple eigenvalues, and their associated eigen- and principal vectors, (e) and (p) respectively, are shown in
Table 1; apart from the accidental degeneracies, these have been listed previously by Joseph and Zhang (1998).

4. Transmission modes for the wedge: radial evolution

When loading is applied to the circular arcs, with the flanks free of traction, one has the elastic wedge, Fig. 1. The radial
evolution of the state vector on some generic arc is described by Eqs. (13),(14) with characteristic Eq. (16).

4.1. Eigenvector associated with k = 0: rigid body displacement

A zero eigenvalue implies that the eigenvector satisfies the equation
Table 1
Multipl

Radial e

0, 0
1
�1
±1, ±1
0,0, ± 2
±1, ± 1
H�sð0Þ1 ¼ 0: ð18Þ
The characteristic Eq. (16) becomes
ð1þ d2
=dh2Þ2 ¼ 0; ð19Þ
and setting the circumferential dependence as exp(kh) leads to k = ±i with a multiplicity of two, and hence terms involv-
ing sinh, cosh, hsinh and hcosh. Within a Cartesian coordinate system, the obvious eigenvectors are the rigid body dis-
placements in the x- and y-directions with stress components equal to zero, and these take a particularly simple
form; within a polar coordinate system, a rigid body displacement in the x-direction of magnitude A, leads to the sym-
metric eigenvector
�sð0Þ1sym ¼ ½A cos h �A sin h 0 0�T; ð20Þ
while a rigid body displacement in the y-direction of magnitude B, leads to the asymmetric eigenvector
�sð0Þ1asym ¼ ½B sin h B cos h 0 0�T: ð21Þ
The above are special cases of what may be gleaned from Eq. (18), under the assumption that the stress components are zero;
in particular, this leads to the three distinct equations
�ur þ d�uh=dh ¼ 0; ð22aÞ
� d�ur=dhþ �uh ¼ 0; ð22bÞ
d�ur=dhþ d2�uh=dh2 ¼ 0: ð22cÞ
Addition of the second two of these leads to the equation
d2�uh=dh2 þ �uh ¼ 0; ð23Þ
and the solutions may be written as
�uh ¼ �A sin hþ B cos h; �ur ¼ �d�uh=dh ¼ A cos hþ B sin h; ð24Þ
with constants A and B as defined above. The most general eigenvector is therefore
�sð0Þ1 ¼ �sð0Þ1sym þ �sð0Þ1asym ¼ ½ ðA cos hþ B sin hÞ ð�A sin hþ B cos hÞ 0 0 �T; ð25Þ
and represents a rigid body displacement of the wedge of magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
in the direction h = tan�1(B/A).
e eigenvalue possibilities from the characteristic equation, Eq. (17), and accidental degeneracies associated with the wedge paradox

igenvalues, k Circumferential eigenvalues, k Eigen- (e) and principal (p) vector

±i, ± i Rigid displacement of wedge (e), tension/shear of wedge (p)
0,0, ± 2i Rigid rotation of wedge (e)
0,0, ± 2i Pure bending of wedge (e)
±2i, ±2i Associated with the critical wedge angle 2a* � 257�
±i, ±i Rigid displacement of curved beam (e), shear of curved beam (p)
0, 0 Rigid rotation of curved beam (e), pure bending of curved beam (p)
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Fig. 1. Elastic wedge, showing positive stress resultants.
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4.2. Principal vector associated with k = 0: tensile and shearing forces

Coupled to this eigenvector is a principal vector, which again may be decomposed into symmetric and asymmetric com-
ponents. The symmetric part
�sð1Þ1sym ¼

Að1� mÞh sin h=2� Að1þ mÞ cos h=2
Að1� mÞh cos h=2

EA cos h

0

26664
37775; ð26Þ
describes a tensile force in the x-direction, and is coupled to the rigid body displacement in the x-direction, �sð0Þ1sym, according
to
H�sð1Þ1sym ¼ �sð0Þ1sym: ð27Þ
The requirement that the direct stress on the outer arc should constitute a tensile force T leads to
T ¼ r

R a
�a rr cos hdh ¼ r

R a
�a EA cos2 hdh, from which one finds A = 2T/(Er(2a + sin2a)); note that this and all other stress resul-

tants are per unit thickness. The constant A is now related to the deformation produced by the tensile force T. As is well-
known, one can add any multiple of the generating eigenvector to a principal vector, and the result is still a principal vector.
Physically, this represents the addition of an arbitrary rigid body displacement.

The asymmetric part
�sð1Þ1asym ¼

�Bð1� mÞh cos h=2� Bð1þ mÞ sin h=2
Bð1� mÞh sin h=2

EB sin h

0

26664
37775; ð28Þ
describes a shearing force in the y-direction, and is coupled to the rigid body displacement in the y-direction, �sð0Þ1asym, accord-
ing to
H�sð1Þ1asym ¼ �sð0Þ1asym: ð29Þ
The requirement that the direct stress on the outer arc should constitute a shearing force Q leads to
Q ¼ r

R a
�a rr sin hdh ¼ r

R a
�a EB sin2 hdh, from which one finds B = 2Q/(Er(2a � sin 2a)). The constant B is now related to the

deformation produced by the shearing force Q. Again one can add multiples of the generating eigenvector to this principal
vector, representing the addition of arbitrary rigid body displacement. The sum of the symmetric and asymmetric parts gives
the most general principal vector as
�sð1Þ1 ¼
T

rð2aþ sin 2aÞ

ðð1� mÞh sin h� ð1þ mÞ cos hÞ=E
ð1� mÞh cos h=E

2 cos h

0

26664
37775þ Q

rð2a� sin 2aÞ

ð�ð1� mÞh cos h� ð1þ mÞ sin hÞ=E
ð1� mÞh sin h=E

2 sin h

0

26664
37775; ð30Þ
which describes a force in some arbitrary direction.
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4.3. Eigenvector associated with k = 1: rigid body rotation

For the strip problem using a Cartesian coordinate system (Stephen, 2004) a rigid body rotation is a principal vector cou-
pled to a rigid body displacement in the y-direction, with k = 0. For the present sector problem, rotation about the origin is
simply uh = C0r, where C0 is a constant, and the eigenvector is
�s2 ¼ 0 C0 0 0½ �T; ð31Þ
with k = 1.

4.4. Eigenvector associated with k = �1: pure bending

Pure bending is associated with the eigenvalue k = �1; the characteristic Eq. (16) then takes the form
d2
=dh2ðð�2Þ2 þ d2

=dh2Þ ¼ 0; ð32Þ
which suggests displacement components as
ur ¼ �urr�1 ¼ ðC1 þ C2hþ C3 sin 2hþ C4 cos 2hÞr�1;

uh ¼ �uhr�1 ¼ ðC5 þ C6hþ C7 sin 2hþ C8 cos 2hÞr�1;
ð33Þ
where C1,2,. . .,8 are constants. If one calculates the strain and thence the stress components from the above, the first two rows
of Eqs. (13) are satisfied identically (as they must – after all these are just the Hooke’s law rearranged), while the third and
fourth rows demand that the eigenvector should take the form
�ur

�uh

�rr

�srh

26664
37775 ¼

C1 þ C3 sin 2hþ C4 cos 2h

C5 � C4ð1� mÞ sin 2h=2þ C3ð1� mÞ cos 2h=2
�EC1=ð1þ mÞ � EC3 sin 2h� EC4 cos 2h

EC3 cos 2h=2� EC4 sin 2h=2� EC5=ð1þ mÞ

26664
37775; ð34Þ
with circumferential stress �rh ¼ EC1=ð1þ mÞ; since the flanks of the wedge are free of traction, one must have C1 = 0. Set
C4 = 0, which is consistent with asymmetric radial displacement and stress fields, and also the requirement that there should
be no resultant in the x-direction, and imposing srh on h = ±a, leads to C5 = C3 (1 + m)cos 2a/2; finally, the requirement that the
shearing stress on the inner arc should constitute a moment M about the origin, that is M ¼ r2

R a
�a srhdh, leads to

M = EC3(sin2a � 2acos2a)/2. The resulting eigenvector is then
�s3 ¼

�ur

�uh

�rr

�srh

26664
37775 ¼ M
ðsin 2a� 2a cos 2aÞ

2 sin 2h=E

ðð1þ mÞ cos 2aþ ð1� mÞ cos 2hÞ=E

�2 sin 2h

cos 2h� cos 2a

26664
37775; ð35Þ
which corresponds to the well-known Carothers (1912) solution (see also Timoshenko and Goodier, 1970, article 39). Note
that the stress components apparently become infinite for sin 2a* = 2a*cos 2a*, which occurs for 2a* equal to approximately
257�; this is the original wedge paradox, described first by Sternberg and Koiter (1958). In fact, for this particular wedge an-
gle, it is clear from the above that the bending moment M becomes equal to zero, so the stress field is self-equilibrating.
Moreover, k = �1 is now repeating, an accidental degeneracy, as the decay problem has the same eigenvalue for this partic-
ular wedge angle. The wedge paradox is therefore resolved by the introduction of a coupled principal vector, and is treated in
Section 9.

4.5. Jordan canonical form for the wedge transmission modes

Now construct a 4 � 4 transformation matrix S consisting of the eigen- and principal vectors as S ¼ �sð0Þ1
�sð1Þ1

�s2 �s3

h i
,

and one finds HS = SJ, where
J ¼

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 �1

26664
37775; ð36Þ
is the Jordan canonical form (JCF) for the wedge transmission modes, in which the single unity on the superdiagonal couples
the eigen- and principal vector for the repeating zero eigenvalue. The eigenvalues occur as ± pairs, in accordance with the
Hamiltonian property of H. Now, despite the system matrix H having dimension 4 � 4, there are an infinite number of eigen-
vectors (beside the four transmission vectors considered above) associated with the decay of self-equilibrated loading. The
characteristic equation for these decay eigenvalues is derived in Section 5, although the associated decay vectors are not
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determined explicitly. In principle however, once determined, any four vectors could be chosen at random to form a square
transformation matrix S, and the system matrix H transformed into a new JCF. Two questions then spring to mind: first,
would the eigenvalues on the leading diagonal of this new JCF still occur as ± pairs? Second, what repeating eigenvalues
can give rise to coupling between eigen- and principal vectors, with an attendant unity element on the superdiagonal of
the JCF? The answer to the first question is that while the decay eigenvalues, as will be seen, do indeed occur as ± pairs,
the probability of choosing such a pair from the infinite set of decay vectors is extremely remote, so in general one should
only expect the eigenvalues displayed on the leading diagonal of the JCF to occur as ± pairs for the transmission modes, as
above. The answer to the second evolves from the treatment of the wedge paradox in Section 9, and strain energy arguments
advanced in Section 10.1. Besides the repeating zero eigenvalue noted above, only repeating k = 1 and k = �1 can give rise to
non-trivial Jordan blocks; these are accidental degeneracies that occur only for the critical wedge angle 2a*.

5. Saint-Venant decay for the wedge: circumferential evolution

Define a state vector describing circumferential evolution as
v ¼ ½ur uh srh rh�T: ð37Þ
First, one needs to eliminate rr from the equilibrium Eq. (1a), as it is not state-variable for this problem, and one employs the
Hooke’s law (3a), (2a) rearranged as
rr ¼ mrh þ Eour=or: ð38Þ
Proceeding in a similar fashion to Section 3, initially one finds
o

oh

ur

uh

srh

rh

26664
37775 ¼

0 1� ro=or r=G 0
�1� mro=or 0 0 rð1� m2Þ=E

�Eo=or � Ero2=or2 0 0 ð1� mÞ � mro=or

0 0 �2� ro=or 0

26664
37775

ur

uh

srh

rh

26664
37775: ð39Þ
Again, introduce the barred quantities according to Eq. (12), to give
d
dh

�ur

�uh

�srh

�rh

26664
37775 ¼

0 1� k 1=G 0
�ð1þ mkÞ 0 0 ð1� m2Þ=E

�Ek2 0 0 ð1� mkÞ
0 0 �ð1þ kÞ 0

26664
37775

�ur

�uh

�srh

�rh

26664
37775; ð40Þ
or
d�v=dh ¼ H0�v; ð41Þ
which defines the primed system matrix; note that the characteristic equation associated with the above is identical to Eq.
(17) for radial evolution. The formal solution may be written as
�vðhÞ ¼ eH0h�vð0Þ; ð42Þ
where the matrix exponential M ¼ eH0h is calculated as the inverse Laplace transform of the resolvent matrix R
0
= (sI � H

0
)�1,

and s is the Laplace variable; this is readily accomplished using a symbolic computation package, such as MAPLE. The ele-
ments of matrix M are given in Appendix A. It is convenient, although not necessary, to redefine the coordinate system such
that the wedge angle ranges from h = 0 to h = 2a, rather than h = ±a. The traction-free boundary condition on the lower flank
of the wedge, now a = 0, implies that the ‘‘initial” state vector is �vð0Þ ¼ �urð0Þ �uhð0Þ 0 0½ �T, so Eq. (42) becomes, in more
detail
�vðhÞ ¼

�urðhÞ
�uhðhÞ
�srhðhÞ
�rhðhÞ

26664
37775 ¼

M11ðhÞ�urð0Þ þM12ðhÞ�uhð0Þ
M21ðhÞ�urð0Þ þM22ðhÞ�uhð0Þ
M31ðhÞ�urð0Þ þM32ðhÞ�uhð0Þ
M41ðhÞ�urð0Þ þM42ðhÞ�uhð0Þ

26664
37775: ð43Þ
But one also has traction-free conditions on the upper flank of the wedge, that is �srhð2aÞ ¼ �rhð2aÞ ¼ 0; giving
M31ð2aÞ M32ð2aÞ
M41ð2aÞ M42ð2aÞ

� �
�urð0Þ
�uhð0Þ

� �
¼ 0: ð44Þ
Since the displacement components on the lower flank are not zero, the determinant must be equal to zero, leading to the
eigenequation
k2ð1� k2 � cos 4kaþ k2 cos 4aÞ ¼ 0; ð45Þ



Fig. 2. Locus of symmetric decay eigenvalues; solid and dotted lines represent real and complex roots, respectively. The lines k = ±1 are not roots, but are
inserted as a reference.
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which may be expressed in the more familiar form (see Timoshenko and Goodier, 1970, article 46) as
1 Not
k2ðsin 2ka� k sin 2aÞ ¼ 0: ð46Þ
If one does not wish to redefine the coordinate system, then from Eq. (42) one has �vð�aÞ ¼ eH0 ð�aÞ�vð0Þ, or �vð0Þ ¼ eH0a�vð�aÞ.
Eq. (42) can then be rewritten as �vðhÞ ¼ eH0heH0a�vð�aÞ ¼ eH0 ðhþaÞ�vð�aÞ. The traction-free condition on the upper flank (now
h = a) leads to Eq. (44), but with the displacement components in the column vector defined on the lower flank h = �a;
the governing eigenequation is obviously the same.

It is clear from Eq. (46) that if k is an eigenvalue, then so too is �k. The leading double root k = 0 pertains to the rigid body
displacement eigenvector and the coupled principal vector describing tensile and/or shearing force. The plus and minus signs
pertain to the symmetric and asymmetric decay problems, respectively; the asymmetric case is also satisfied, for all a, by the
roots k = �1 which is associated with pure bending, and k = 1 which is associated with a rigid body rotation.

The roots of Eq. (46) for varying wedge angle are plotted in Figs. 2 and 3, for the symmetric and asymmetric case, respec-
tively. In Fig. 3, note the repeating eigenvalues k = ±1 for the so-called critical wedge angle 2a*, equal to approximately 257�;
these are associated with the breakdown of Saint-Venant’s principle (for asymmetric loading) and also the wedge paradox.
This limit of applicability of Saint-Venant’s principle has been attributed by Stephen and Wang (1999) to the effect of the
diverging/converging geometry and, in fact, arises initially for the half-space, 2a = p. First recall that stress varies as rk�1;
for asymmetric loads applied to the inner arc r = a, the divergent geometry leads to a reduction in stress associated with
the moment, which diffuse as r�2 (k = �1). Thus Saint-Venant’s principle breaks down in the sense that self-equilibrating
loads on the inner arc associated with k = �1 decays at precisely the same rate as the moment diffuses; this occurs at
2a = p (point A, Fig. 2) and 2a* = 1.43p (point B, Fig. 3) for symmetric and asymmetric self-equilibrated load, respectively.

Further, the eigenvalue k = 1 implies that stress is independent of radius, and the associated vectors describing self-equil-
ibrated loading now ceases to decay. This eigenvalue1 also occurs at 2a = p for symmetric loading, and 2a* for asymmetric
loading. For larger angles, Saint-Venant’s principle now breaks down in the sense that stress due to self-equilibrating loads ap-
plied to the outer arc, r = b, increases as one moves toward the origin due to the convergent geometry. For the maximum wedge
angle, 2a = 2p, the unique modes I and II inverse square root stress singularities at a crack-tip, which lie at the heart of the dis-
cipline of Linear elastic fracture mechanics (LEFM), can be attributed to the breakdown of Saint-Venant’s principle for just one
symmetric and one asymmetric eigenvector, each associated with the eigenvalue k = 1/2.

6. Radial and circumferential evolution employing lnr

The assumption of radial power-law dependence has been adequate for dealing with the transmission and Saint-Venant
decay problems for the wedge. However, modified formulations for both radial and circumferential evolution are required
e that the eigenvalue k = 1 in the present paper is equivalent to k = �2 of Stephen and Wang (1999).



Fig. 3. Locus of asymmetric decay eigenvalues; solid and dotted lines represent real and complex roots, respectively.
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for the transmission and decay problems for the curved beam, and treatment of the wedge paradox; these formulations are
developed now.

6.1. Radial evolution

Introduce n = lnr,thenrk ¼ ðeln rÞk ¼ ek ln r ¼ ekn; further
o

or
¼ o

on
dn
dr
¼ 1

r
o

on
: ð47Þ
In addition
o2

or2 ¼
o

or
1
r

o

on

� �
¼ � 1

r2

o

on
þ 1

r
o

or
o

on
¼ 1

r2

o2

on2 �
o

on

 !
: ð48Þ
Eq. (7) becomes
1
r

our

on
¼ ð1� m2Þ

E
rr � m

ur

r
� m

r
ouh

oh
; ð49Þ
r-dependence can be removed by writing Sr = rrr, when this becomes
our

on
¼ ð1� m2Þ

E
Sr � mur � m

ouh

oh
: ð50Þ
Similarly, by introducing Srh = rsrh, Eq. (8) becomes
ouh

on
¼ Srh

G
þ uh �

our

oh
: ð51Þ
Eqs. (9),(10) require greater attention: first note that oSr=on ¼ oðrrrÞ=on ¼ roðrrrÞ=or ¼ rðrr þ r orr
or Þ, so
r2 orr

or
¼ oSr

on
� Sr: ð52Þ
Similar relationships hold between srh and Srh, and rh and Sh. Eqs. (9),(10) are therefore multiplied by r2, and with appropriate
substitutions, Eq. (9) becomes
oSr

on
¼ � oSrh

oh
þ Eur þ E

ouh

oh
þ mSr; ð53Þ
while Eq. (10) becomes
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oSrh

on
¼ �m

oSr

oh
� E

our

oh
� E

o2uh

oh2 � Srh: ð54Þ
In matrix form, Eqs. (50),(51),(53),(54) are
o

on

ur

uh

Sr

Srh

26664
37775 ¼

�m �mo=oh ð1� m2Þ=E 0
�o=oh 1 0 1=G

E Eo=oh m �o=oh

�Eo=oh �Eo2=oh2 �mo=oh �1

26664
37775

ur

uh

Sr

Srh

26664
37775; ð55Þ
or more compactly os=on ¼ Hs. This system matrix is identical to that in Eq. (13), except that the differentials with respect to
h are, at this stage, still partial; also, the state vector s is defined in a slightly different manner. Writing
s ¼ �sðhÞekn ¼ ½ �ur �uh Sr Srh �
Trk; ð56Þ
leads to the eigenequation
k�s ¼ H�s; ð57Þ
and the system matrix H is now the same as in Eq. (13); again, note that an over bar indicates that the vector is independent
of radius. When a principal vector is coupled to a generating eigenvector (designated by superscripts (1) and (0), respec-
tively) with a repeating eigenvalue, one has the chain
H�sð1Þ ¼ k�sð1Þ þ �sð0Þ: ð58Þ
The state vector is then
s ¼ ð�sð1Þ þ n�sð0ÞÞekn: ð59Þ
Also note that one can add an arbitrary multiple (say b) of the generating eigenvector to a principal vector, and it is still a
principal vector, that is
Hð�sð1Þ þ b�sð0ÞÞ ¼ kð�sð1Þ þ b�sð0ÞÞ þ �sð0Þ; ð60Þ
and the state vector is then
s ¼ ðð�sð1Þ þ b�sð0ÞÞ þ n�sð0ÞÞekn: ð61Þ
In more detail, this is
ur

uh

rrr

rsrh

26664
37775 ¼

�ur

�uh

Sr

Srh

26664
37775
ð1Þ

þ ðbþ ln rÞ

�ur

�uh

Sr

Srh

26664
37775
ð0Þ0BBBB@
1CCCCArk: ð62Þ
6.2. Circumferential evolution

Now one requires the use of Eqs. (47),(48) within Eq. (39), together with the modified stress components Srh = rsrh and
Sh = rrh, to give
o

oh

ur

uh

Srh

Sh

26664
37775 ¼

0 1� o=on 1=G 0
�1� mo=on 0 0 ð1� m2Þ=E

�Eo2=on2 0 0 1� mo=on

0 0 �1� o=on 0

26664
37775

ur

uh

Srh

Sh

26664
37775; ð63Þ
or
ov=oh ¼ H00v: ð64Þ
Writing
v ¼ ~vðnÞekh ¼ ~ur ~uh
eSrh

eSh

h iT
ekh; ð65Þ
where tilde denotes independence of h, leads to the eigenequation
k~v ¼ H00~v: ð66Þ
When a principal vector is coupled to a generating eigenvector with a repeating eigenvalue, one has the chain
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H00~vð1Þ ¼ k~vð1Þ þ ~vð0Þ; ð67Þ
where again superscripts (0) and (1) are employed for the eigen- and principal vectors, respectively. The state vector is then
v ¼ ð~vð1Þ þ h~vð0ÞÞekh: ð68Þ
Again, an arbitrary multiple (b) of the generating eigenvector may be added, that is
H00ð~vð1Þ þ b~vð0ÞÞ ¼ kð~vð1Þ þ b~vð0ÞÞ þ ~vð0Þ; ð69Þ
and the state vector is
v ¼ ðð~vð1Þ þ b~vð0ÞÞ þ h~vð0ÞÞekh: ð70Þ
In more detail, this is
ur

uh

rsrh

rrh

26664
37775 ¼

~ur

~uheSrheSh

26664
37775
ð1Þ

þ ðbþ hÞ

~ur

~uheSrheSh

26664
37775
ð0Þ0BBBB@
1CCCCAekh: ð71Þ
7. Transmission modes for the curved beam: circumferential evolution

For the curved beam, Fig. 4, loading is confined to the straight radial edges (flanks) while the circular arcs are traction-
free. Here we employ circumferential evolution according to Eq. (63).

7.1. Eigenvector associated with k = 0: rigid body rotation

The eigenvector describing a rigid body rotation about the origin may be stated simply as
~vð0Þ1 ¼ ½0 C0r 0 0 �T ¼ ½0 C0en 0 0 �T; ð72Þ
where C0 is a constant. Eq. (66) leads to the requirement H00~vð0Þ1 ¼ 0, which reduces to (1 � ro/or)C0r = 0, and is satisfied
identically.

7.2. Principal vector associated with k = 0: pure bending

The repeated root k = 0 implies, from the characteristic Eq. (17), that k = ±1 are also repeating roots, and suggests that the
expressions for the displacement components should take the form
ur ¼ C1r þ C2rhþ C3=r þ C4r ln r; ð73aÞ
uh ¼ C5r þ C6rhþ C7=r þ C8r ln r: ð73bÞ
Two of the terms in each component arise from the radial dependence of rk, with k = ±1; the rh term originates from the cou-
pling with the eigenvector as in Eq. (68), for the repeating root k = 0, while the r lnr (=nen) term originates from the coupling
y

x

r
θ

b
a

O

M

M

Q

Q

T

T

Fig. 4. Curved beam showing positive stress resultants.
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with the eigenvector as in Eq. (59), for a repeating root k = 1. Again, we note the necessity of considering the implication of
repeating eigenvalues for evolution in both directions. From Eqs. (73) one may determine stress components as
2 A p
rr ¼
E

ð1� mÞ ðC1 þ C4 ln rÞ � E
ð1þ mÞ

C3

r2 þ
E

ð1� m2Þ ðC4 þ mC6Þ; ð74aÞ

rh ¼
E

ð1� mÞ ðC1 þ C2hþ C4 ln rÞ þ E
ð1þ mÞ

C3

r2 þ
E

ð1� m2Þ ðC6 þ mC4Þ; ð74bÞ

srh ¼
E

2ð1þ mÞ ðC2 þ C8Þ: ð74cÞ
First note that the shearing stress is apparently a constant, but as it is zero everywhere on the boundary, one must have
C2 = �C8. Since srh = 0,Srh = 0, so the first row of Eq. (64) reduces to 2C7/r � C8r = 0, and as this must be true for all values of the
radius, one has C7 = C8 = 0, and hence C2 = 0. The second row of Eq. (63) reduces to C6 = C0, the third row reduces to
C4 = (1 � m)C0/2, while the fourth row is satisfied identically as Srh = 0. Finally, note that the term C5r does not contribute
to the stress; it represents the rigid body rotation about the origin, which is the eigenvector, multiples of which can always
be added to a principal vector. The stress components are then
rr ¼ �
E

ð1þ mÞ
C3

r2 þ
E

ð1� mÞ ðC1 þ C4 ln rÞ þ EC0

2ð1� mÞ ; ð75aÞ

rh ¼
E

ð1þ mÞ
C3

r2 þ
E

ð1� mÞ ðC1 þ C4 ln rÞ þ EC0ð2� mÞ
2ð1� mÞ ; ð75bÞ

srh ¼ 0: ð75cÞ
These are equivalent to the expressions given by Timoshenko and Goodier (1970), articles 28 and 29, derived from the axi-
symmetric Airy stress function2
U ¼ A0 ln r þ B0r2 ln r þ C0r2 þ D0; ð76Þ
which are
rr ¼ A0=r2 þ B0ð1þ 2 ln rÞ þ 2C 0; ð77aÞ
rh ¼ �A0=r2 þ B0ð3þ 2 ln rÞ þ 2C 0; ð77bÞ
srh ¼ 0; ð77cÞ
if one sets A
0
= �EC3/(1 + m), B

0
= EC0/4 = EC4/(2(1 � m)), and C

0
= (4EC1 + EC0 (1 + m))/(8(1 � m)). The various constants are eval-

uated from the requirements:

(a) radial stress rr = 0 on r = a, and r = b
(b) tensile force T ¼

R b
a rhdr ¼ 0, and bending moment M ¼ �

R b
a rhrdr.

The requirement that shearing stress srh should be zero on the boundary, and not constitute a shearing force on the beam
end, has already been satisfied. One finds
C0 ¼ �8Mðb2 � a2Þ=ED; ð76aÞ
C1 ¼ 4Mðb2 � a2 þ ð1� mÞðb2 ln b� a2 ln aÞÞ=ED; ð76bÞ
C3 ¼ 4Mð1þ mÞa2b2 lnðb=aÞ=ED; ð76cÞ
C4 ¼ �4Mð1� mÞðb2 � a2Þ=ED; ð76dÞ
where
D ¼ ðb2 � a2Þ2 � 4a2b2ðlnðb=aÞÞ2: ð78Þ
The principal vector becomes
~vð1Þ1 ¼

~ur

~uheSrheSh

26664
37775
ð1Þ

¼

C1r þ C3=r þ C4r ln r

0
0

EC3=ðð1þ mÞrÞ þ EðC1r þ C4r ln rÞ=ð1� mÞ þ EC0ð2� mÞr=ð2ð1� mÞÞ

26664
37775; ð79Þ
or in terms of n
rime has been added to these constants to distinguish them from those already employed.
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~vð1Þ1 ¼

~ur

~uheSrheSh

26664
37775
ð1Þ

1

¼

C1en þ C3e�n þ C4nen

0
0

EC3e�n=ð1þ mÞ þ EðC1en þ C4nenÞ=ð1� mÞ þ EC0ð2� mÞen=ð2ð1� mÞÞ

26664
37775; ð80Þ
and satisfies the relationship H00~vð1Þ1 ¼ ~vð0Þ1 .

7.3. Eigenvector associated with k = ±i: rigid body displacement

First, assume a rigid body displacement A in the x-direction, then ur = Asinh and uh = Acosh. Next, assume a rigid body dis-
placement B in the y-direction, then ur = Bcosh and uh = �Bsinh. An arbitrary rigid body displacement may therefore be writ-
ten as
ur

uh

� �
¼

A sin hþ B cos h

A cos h� B sin h

� �
: ð81Þ
Define a complex eigenvector as
~vð0Þ2 ¼ ~ur ~uh
eSrh

eSh

h iT
¼ ð�iAþ BÞ ðAþ iBÞ 0 0½ �T; ð82Þ
then the rigid body displacements defined by Eq. (80) are the real part of
v ¼ ~vð0Þ2 eih ¼

�iAþ B

Aþ iB
0
0

26664
37775eih ¼

A sin hþ B cos hþ ið�A cos hþ B sin hÞ
A cos h� B sin hþ iðA sin hþ B cos hÞ

0
0

26664
37775: ð83Þ
This eigenvector satisfies the relationship
H00~vð0Þ2 ¼ i~vð0Þ2 : ð84Þ
7.4. Principal vector associated with k = ±i: shearing force

The repeated roots k = ±i implies, from the characteristic Eq. (17), k = ±2 together with repeating k = 0, suggesting that the
expressions for the displacement components should take the form:
ur ¼ eihðð�iAþ BÞhþ C2 ln r þ C3r2 þ C4r�2 þ C5Þ; ð85aÞ
uh ¼ eihððAþ iBÞhþ C7 ln r þ C8r2 þ C9r�2 þ C10Þ; ð85bÞ
where the heih terms arises through coupling of the eigen- and principal vectors according to Eq. (68), while the ln r terms
arises from the repeating eigenvalue k = 0 according to Eq. (59); the former terms contribute to the stress components, but
not the displacement components within the principal vector which, in terms of n, are
~ur ¼ C2nþ C3e2n þ C4e�2n þ C5; ð86aÞ
~uh ¼ C7nþ C8e2n þ C9e�2n þ C10: ð86bÞ
From Eqs. (85), one may determine the modified stress components as
eSrh ¼
E

2ð1þ mÞ ðC7 � C10 þ iC5 � iAþ Bþ nðiC2 � C7Þ þ e2nðiC3 þ C8Þ þ e�2nðiC4 � 3C9ÞÞ; ð87aÞ

eSh ¼
E

ð1� m2Þ ðC5 þ iC10 þ Aþ iBþ mC2 þ nðC2 þ iC7Þ þ e2nðð1þ 2mÞC3 þ iC8Þ þ e�2nðð1� 2mÞC4 þ iC9ÞÞ: ð87bÞ
The first two rows of the equation
H00~vð1Þ2 ¼ i~vð1Þ2 þ ~vð0Þ2 ; ð88Þ
are satisfied identically; the third leads to the requirements C7 = iC2,C8 = �i (5 + m)C3/(1 � 3m),C9 = �iC4 and
(3 � m)(C10 � iC5) = (1 + m)(iA � B + iC2), and the fourth is then satisfied identically. The stress components become
rr ¼
Eeih

ð1þ mÞ
2ið1þ mÞC3r

1� 3m
þ ð3þ mÞC2 þ 2mðAþ iBÞ

ð3� mÞr � 2C4

r3

� �
; ð89aÞ

rh ¼
Eeih

ð1þ mÞ
6ð1þ mÞC3r

1� 3m
þ 2ðAþ iBÞ � C2ð1� mÞ

ð3� mÞr þ 2C4

r3

� �
; ð89bÞ
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srh ¼
Eeih

ð1þ mÞ
�2ið1þ mÞC3r

1� 3m
þ iC2ð1� mÞ þ 2ð�iAþ BÞ

ð3� mÞr þ 2iC4

r3

� �
: ð89cÞ
This is now applied to the curved beam, Fig. 4, subjected to a shearing force Q on the beam end h = 0. Take the imaginary
parts of Eqs. (89) to give
rr ¼
E

ð1þ mÞ
2ð1þ mÞC3r

1� 3m
þ ð3þ mÞC2 þ 2mA

ð3� mÞr � 2C4

r3

� �
sin hþ 2mEB

ð3� mÞr cos h; ð90aÞ

rh ¼
E

ð1þ mÞ
6ð1þ mÞC3r

1� 3m
þ 2A� C2ð1� mÞ

ð3� mÞr þ 2C4

r3

� �
sin hþ 2EB

ð3� mÞr cos h; ð90bÞ

srh ¼
E

ð1þ mÞ
�2ð1þ mÞC3r

1� 3m
þ C2ð1� mÞ � 2A

ð3� mÞr þ 2C4

r3

� �
cos hþ 2EB

ð3� mÞr sin h: ð90cÞ
The boundary condition rh = 0 on the end h = 0 leads to the requirement B = 0. The boundary condition rr = srh = 0 on either
r = a or r = b, leads to the requirement C2 = (1 � m)A/2. The above then reduce to
rr ¼ E
2C3r

1� 3m
þ A

2r
� 2C4

ð1þ mÞr3

� �
sin h; ð91aÞ

rh ¼ E
6C3r

1� 3m
þ A

2r
þ 2C4

ð1þ mÞr3

� �
sin h; ð91bÞ

srh ¼ �E
2C3r

1� 3m
þ A

2r
� 2C4

ð1þ mÞr3

� �
cos h: ð91cÞ
The constants are evaluated from the requirements Q ¼
R b

a srhdr on h = 0, and rr = srh = 0 on r = a and r = b, leading to
A ¼ �2ða2 þ b2ÞQ
ED

; ð92aÞ

C3 ¼
ð1� 3mÞQ

2ED
; ð92bÞ

C4 ¼ �
a2b2ð1þ mÞQ

2ED
; ð92cÞ
where D is now defined as
D ¼ a2 � b2 þ ða2 þ b2Þ lnðb=aÞ: ð93Þ
The stress components become
rr ¼
Q
D
ðr � ða2 þ b2Þ=r þ a2b2

=r3Þ sin h; ð94aÞ

rh ¼
Q
D
ð3r � ða2 þ b2Þ=r � a2b2

=r3Þ sin h; ð94bÞ

srh ¼ �
Q
D
ðr � ða2 þ b2Þ=r þ a2b2

=r3Þ cos h; ð94cÞ
which is in agreement with Timoshenko and Goodier (1970) and Massonnet (1962). The constants C5 and C10 have no effect
on the stress components, and are rigid body displacements, multiples of which can always be added to the principal vector.
Q

Q

Curved beam subject to shearing force on the end h = 0; the reaction on the end h = p/2, according to Eq. (94), is equivalent to a compressive force
at the origin by means of a fictitious lever.
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The principal vector can be written as
Fig. 6.
equilibr
~vð1Þ2 ¼

~ur

~uheSrheSh

26664
37775
ð1Þ

¼ Q
D

�ð1�mÞða2þb2Þn
E þ ð1�3mÞ

2E e2n � ð1þmÞa2b2

2E e�2n

�ið1�mÞða2þb2Þn
E � ið5þmÞ

2E e2n þ ið1þmÞa2b2

2E e�2n � ið1þmÞða2þb2Þ
E

�iðe2n � ða2 þ b2Þ þ a2b2e�2nÞ
3e2n � ða2 þ b2Þ � a2b2e�2n

2666664

3777775; ð95Þ
which satisfies Eq. (88).
For a curved beam forming one-quarter of a circle, the shearing stress srh is zero on the end h = p/2, while the force resul-

tant is
R b

a rhdr which evaluates as �Q, as demanded by force equilibrium; moreover, the bending moment about the origin is
M ¼ �

R b
a rrhdr which evaluates as zero. One may interpret the resultant on the end h = p/2 as consisting of a compressive

force of magnitude Q applied at the origin by means of a fictitious rigid lever, as depicted in Fig. 5. The solution for a tensile
force T applied on the beam centre-line at the end h = p/2 can then be found by replacing Q by �T, and superposing a pure
bending moment as described in Section 7.2, of magnitude M = T � (a + b)/2. Thus tension is described by a combination of
principal vectors from different eigen-spaces.
7.5. Jordan canonical form for the curved beam transmission modes

Now construct a 4 � 4 transformation matrix V consisting of the eigen- and principal vectors as
V ¼ ½ ~vð0Þ1

~vð1Þ1
~vð0Þ2

~vð1Þ2 �, and one finds H
00
V = VJ, where
J ¼

0 1 0 0
0 0 0 0
0 0 i 1
0 0 0 i

26664
37775; ð96Þ
is the JCF for the curved beam transmission modes; now, the unity elements on the superdiagonal couple the eigen- and
principal vector for the repeating zero, and the repeating imaginary unity eigenvalues, respectively. Much of the discussion
regarding the JCF for the wedge, Section 4.5, is equally applicable here. Strain energy arguments presented in Section 10.2
lead to the conclusion that the above, Eq. (96), is the only possible JCF – one cannot have degenerate decay modes.
8. Saint-Venant decay for the curved beam: radial evolution

One now requires a formulation describing radial evolution. Write s ¼ ~se�kh, then Eq. (55) becomes
d~s=dn ¼ H~s; ð97Þ
where
H ¼

�m mk ð1� m2Þ=E 0
k 1 0 2ð1þ mÞ=E

E �Ek m k

Ek �Ek2 mk �1

26664
37775: ð98Þ
S

S

A

A

0 1 

1
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R/c

(k
c/

R
)

R
e

Decay rates for the plane curved beam. The symbols A and S denote asymmetric and symmetric (with respect to the beam centre-line) self-
ated end-loads. The centre-line radius is R = (a + b)/2, beam semi-depth is c = (b � a)/2.
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The formal solution may be written as
~sðnÞ ¼ eHn~sð0Þ; ð99Þ
where the matrix exponential N ¼ eHn is calculated as the inverse Laplace transform of the resolvent matrix R ¼ ðsI�HÞ�1;
again this is readily accomplished using a symbolic computation package, such as MAPLE. The elements of matrix N are given
in Appendix B. One has traction-free boundary conditions on the inner and outer arcs, that is rr = srh = 0 on r = a and r = b, so
first write ~sðln aÞ ¼ eH ln a~sð0Þ, and rearrange as ~sð0Þ ¼ e�H ln a~sðln aÞ. Now substitute into Eq. (99) to give
~sðnÞ ¼ eHne�H ln a~sðln aÞ ¼ eHðn�ln aÞ~sðln aÞ: ð100Þ
The state vector on the traction-free inner arc becomes
~sðln aÞ ¼ ~urðln aÞ ~uhðln aÞ 0 0½ �T; ð101Þ
and Eq. (100) reduces to
~sðnÞ ¼

~urðnÞ
~uhðnÞeSrðnÞeSrhðnÞ

266664
377775 ¼

N11ðn� ln aÞ~urðln aÞ þ N12ðn� ln aÞ~uhðln aÞ
N21ðn� ln aÞ~urðln aÞ þ N22ðn� ln aÞ~uhðln aÞ
N31ðn� ln aÞ~urðln aÞ þ N32ðn� ln aÞ~uhðln aÞ
N41ðn� ln aÞ~urðln aÞ þ N42ðn� ln aÞ~uhðln aÞ

26664
37775: ð102Þ
Now require that the outer arc r = b (or n = lnb) be free of traction to give
N31ðlnðb=aÞÞ N32ðlnðb=aÞÞ
N41ðlnðb=aÞÞ N42ðlnðb=aÞÞ

� �
~urðln aÞ
~uhðln aÞ

� �
¼ 0; ð103Þ
since the displacement components are not zero on the inner arc, the determinant must be zero, leading to the
eigenequation
ð1� ðb=aÞ2Þ2k2 � 2ðb=aÞ2ð1� cosð2k lnðb=aÞÞÞ ¼ 0: ð104Þ
This eigenequation was derived first by Kitover (1952), and more recently by Stephen and Wang (1993) employing an
Airy stress function approach, where it was shown that Eq. (104) reduces to the well-known Papkovitch–Fadle eigenequation
for the plane-strain strip as R ?1. For example, self-equilibrated load on the end of the plane strain strip decays as e�kz,
where z is the axial coordinate; the two symmetric roots with smallest real part are kc = 2.1061 ± 1.1254i and
kc = 5.3563 ± 1.5516i, and the two asymmetric roots with smallest real part are kc = 3.7488 ± 1.3843i and
kc = 6.9500 ± 1.6761i. For the curved beam, it has been assumed that stress decay as e�kh and to facilitate comparison write
z = Rh, where z is now the centre-line arc length from the loaded end, to give decay as e�kz/R. Decay rates are shown in Fig. 6,
where it is seen that if the centre-line radius R = (a + b)/2 exceeds the curved beam depth 2c = (b � a), that is R/c > 2, the rates
of decay differ little from those of the straight strip. However as internal radius approaches zero (when R/c ? 1), so too does
the decay rate, implying that self-equilibrated loading does not decay at all. For example, consider a non-zero shearing stress
srh on an element located at the origin of an elastic quadrant: the complementary nature of shearing stress (srh = shr) de-
mands that the Saint-Venant decay rate should be zero.
9. The wedge paradox

As noted in Section 4.4, for the particular wedge angle 2a* satisfying the equation sin2a* = 2a*cos2a*, equal to approxi-
mately 257�, one has the eigenvalue k = �1 for the decay of self-equilibrated loading on the inner arc r = a; this repeats
the eigenvalue for the diffusion of a bending moment for all wedge angles, and the Carothers solution for a bending moment
breaks down for this particular angle when it describes a self-equilibrating field. This signals the breakdown of Saint-Ve-
nant’s principle: self-equilibrated load on the inner arc decays at the same rate as moment diffuses into a divergent area.
This repeating eigenvalue is an accidental degeneracy for this particular angle. From Eq. (17), k = �1 implies circumferential
roots k = 0,0, ± 2i, leading to constant, h, sin 2h and cos 2h terms, together with an lnr term coupling the Carothers eigenvec-
tor to the principal vector, according to Eq. (62). Moreover, for the wedge angle 2a* one has the eigenvalue k = 1 for the decay
of self-equilibrated loading on the outer arc r = b; since stress varies as rk�1, this implies a stress-field independent of radius,
and signals a further breakdown of Saint-Venants’s principle: self-equilibrated load on the outer arc does not decay as one
moves towards the inner arc. The concurrence of these ‘‘decay” eigenvalues k = ±1 for this angle implies, from Eq. (17), that
k = ±2i is also repeating, leading to hsin 2h and hcos 2h term. For asymmetric radial displacement and stress fields, the dis-
placement components then take the form
ur ¼ e�nðC3n sin 2hþ D1hþ C6 sin 2hþ C9h cos 2hÞ;

uh ¼ e�n C3n
1þ m

2
cos 2a� þ 1� m

2
cos 2h

� �
þ F2 þ C11 cos 2hþ C12h sin 2h

� �
;

ð105Þ
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and the modified stress components are calculated as
Sr ¼
Ee�n

ð1� m2Þ ðC3nðm2 � 1Þ sin 2hþ ðC3 þ ðm� 1ÞC6 � 2mC11 þ mC12Þ sin 2hþ ððm� 1ÞC9 þ 2mC12Þh cos 2hþ ðm� 1ÞD1hÞ;

Srh ¼
Ee�n

2ð1þ mÞ
ð1þ mÞC3nðcos 2h� cos 2a�Þ þ C3

1�m
2 cos 2hþ 1þm

2 cos 2a�
� �

þ
ðC9 þ 2C6 � 2C11Þ cos 2h� ðC9 þ C12Þ2h sin 2hþ D1 � 2F2

 !
:

ð106Þ
The principal vector then takes the form
�sð1Þ3 ¼

D1hþ C6 sin 2hþ C9h cos 2h

F2 þ C11 cos 2hþ C12h sin 2h
E

ð1�m2Þ ðD1hðm� 1Þ þ ðC3 þ ðm� 1ÞC6 � 2mC11 þ mC12Þ sin 2hþ ððm� 1ÞC9 þ 2mC12Þh cos 2hÞ
E

2ð1þmÞ ðD1 � 2F2 þ C3
1þm

2 cos 2a� þ ðC3
1�m

2 þ 2C6 þ C9 � 2C11Þ cos 2h� 2ðC9 þ C12Þh sin 2hÞ

266664
377775: ð107Þ
Now require that this vector should satisfy the relationship
H�sð1Þ3 ¼ ��sð1Þ3 þ �sð0Þ3 ; ð108Þ
where �sð0Þ3 , in accordance with the Carothers solution, is the generating eigenvector
�sð0Þ3 ¼ C3

sin 2h
1þm

2 cos 2a� þ 1�m
2 cos 2h

�E sin 2h

Eðcos 2h� cos 2a�Þ=2

26664
37775: ð109Þ
The first two rows are satisfied identically, while the third and fourth, respectively, yield
C3ð5� m2Þ
4

þ C6ð1� mÞ þ C9ð1� mÞ � 2C11 þ C12 ¼ 0; 2C12 þ ð1� mÞC9 ¼ 0; ð110Þ
and
C3ð1þ 4m� m2Þ
4

þ C6ð1� mÞ þ C9ð1� mÞ
2

� 2C11 þ 2C12 ¼ 0; D1 ¼
C3ð1þ mÞ cos 2a�

2
; ð111Þ
from these, one finds C9 = �C3 and C12 = C3(1 � m)/2. The expression for Sh becomes
Sh ¼
EC3e�n

4
ð2h cos 2a� � sin 2hÞ; ð112Þ
so the requirement that rh = 0 on h = ±a is satisfied for the critical wedge angle 2a* only, while the requirement srh = 0 on
h = ±a* leads to
F2 ¼ ð1þ mÞC3ð2a� sin 2a� þ cos 2a�Þ=4þ ðC6 � C11Þ cos 2a�: ð113Þ
The tensile force resultant is T ¼ r
R a�

�a� ðrr cos h� srh sin hÞdh, and this is equal to zero since the integrand is an odd function of
h. On the other hand, the requirement that the shearing force Q ¼ r

R a�

�a� ðrr sin hþ srh cos hÞdh is zero for the wedge angle 2a*

leads to
C3ð3� mÞð1þ mÞ � 12C6ð1� mÞ þ 8C11ð1� 2mÞ ¼ 0; ð114Þ
this, together with results from above, yields C6 = C11 = C3 (3 � m)/4. Finally, the requirement M ¼ r2
R a�

�a� srhdh leads to
C3 = �M/(Ea*2sin 2a*), and the stress components become
rr ¼ �Mðð1� 4 ln rÞ sin 2hþ 4h cos 2h� 2h cos 2a�Þ=ð4r2a�2 sin 2a�Þ; ð115aÞ
rh ¼ �Mð2h cos 2a� � sin 2hÞ=ð4r2a�2 sin 2a�Þ; ð115bÞ
srh ¼ �Mðð1� 2 ln rÞðcos 2a� � cos 2hÞ þ 2h sin 2h� 2a� sin 2a�Þ=ð4r2a�2 sin 2a�Þ: ð115cÞ
This is in agreement with the special solution derived by Ting (1985). Note that only the term 2a*sin 2a* within the above
expression for srh contributes to the moment; the other terms are, for this wedge angle, self-equilibrating. The displacement
components within the principal vector are
�ur ¼ �Mð2ð1þ mÞh cos 2a� þ ð3� mÞ sin 2h� 4h cos 2hÞ=ð4Ea�2 sin 2a�Þ;
�uh ¼ �Mðð1þ mÞð2a� sin 2a� þ cos 2a�Þ þ ð3� mÞ cos 2hþ 2ð1� mÞh sin 2hÞ=ð4Ea�2 sin 2a�Þ;

ð116Þ
and the principal vector �sð1Þ3 becomes
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�sð1Þ3 ¼

�ur

�uh

Sr

Srh

26664
37775
ð1Þ

¼ �M
4a�2 sin 2a�

f2ð1þ mÞh cos 2a� þ ð3� mÞ sin 2h� 4h cos 2hg=E
fð1þ mÞð2a� sin 2a� þ cos 2a�Þ þ ð3� mÞ cos 2hþ 2ð1� mÞh sin 2hg=E

�2h cos 2a� þ sin 2hþ 4h cos 2h

cos 2a� � cos 2hþ 2h sin 2h� 2a� sin 2a�

26664
37775: ð117Þ
Note that the stress components, Eqs. (115) may be determined also from the Airy stress function U = U1 + U2 where
U1 ¼
M

12a�2 sin 2a�
ð3 ln rð2h cos 2a� � sin 2hÞ þ 3h cos 2h� 4 sin 2hþ 5h cos 2a� þ 6a�h sin 2a�Þ ð118aÞ

U2 ¼
M

12a�2 sin 2a�
ðsin 2h� 2h cos 2a�Þ; ð118bÞ
and rr = oU/ror + o2U/r2oh2, rh = o2U/or2, srh = �o/or(oU/roh). The first of these stress functions, U1, was presented by Stern-
berg and Koiter (1958) in their treatment of the wedge paradox, while the second, U2, has as its primitive the original Car-
others stress function for the wedge.

For this critical wedge angle, the eigenvalue k = 1 also repeats, again an accidental degeneracy; the eigenvector is the rigid
body rotation �sð0Þ2 ¼ ½0 C0 0 0 �T according to Eq. (31), in which the stress components are zero. The principal vector �sð1Þ2 is
self-equilibrating, and is coupled to the eigenvector according to
H�sð1Þ2 ¼ �sð1Þ2 þ �sð0Þ2 : ð119Þ
For an asymmetric radial field, the displacement components take the form
ur ¼ ðC1hþ C2 sin 2hÞr ¼ ðC1hþ C2 sin 2hÞen; ð120aÞ
uh ¼ ðC0 ln r þ C3 cos 2hÞr ¼ ðC0nþ C3 cos 2hÞen: ð120bÞ
The principal vector takes the form
�sð1Þ2 ¼

�ur

�uh

Sr

Srh

26664
37775
ð1Þ

¼

C1hþ C2 sin 2h

C3 cos 2h
E

1�m2 ½C1ð1þ mÞhþ C2ð1þ mÞ sin 2h� 2mC3 sin 2h�
E

2ð1þmÞ ½C0 þ C1 þ 2C2 cos 2h�

266664
377775: ð121Þ
The first and second rows of matrix Eq. (119) are satisfied identically; from the third row one finds C2 = C3, and from the
fourth, C0 = �2C1/(1 � m). The shearing stress component becomes srh ¼ E

2ð1þmÞ ½C0ð1þ mÞ=2þ 2C2 cos 2h� and the requirement
srh = 0 on h = ±a* leads to C0 = �4C2cos2a*/(1 + m). The stress components becomes
rr ¼
EC2

ð1þ mÞ ½2h cos 2a� þ sin 2h�; ð122aÞ

rh ¼
EC2

ð1þ mÞ ½2h cos 2a� � sin 2h�; ð122bÞ

srh ¼
EC2

ð1þ mÞ ½cos 2h� cos 2a��; ð122cÞ
from which one notes that the circumferential stress is zero on h = ±a*, while the displacement components are
ur ¼ C2 2h cos 2a�
ð1� mÞ
ð1þ mÞ þ sin 2h

� �
r; ð123aÞ

uh ¼ C2 cos 2h� 4 cos 2a�

ð1þ mÞ ln r
� �

r: ð123bÞ
The principal vector becomes
�sð1Þ2 ¼

�ur

�uh

Sr

Srh

26664
37775
ð1Þ

¼ C2

2h cos 2a� ð1�mÞ
ð1þmÞ þ sin 2h

cos 2h
E

ð1þmÞ ½2h cos 2a� þ sin 2h�
E

ð1þmÞ ½cos 2h� cos 2a��

2666664

3777775: ð124Þ
The tensile force T ¼ r
R a�

�a� ðrr cos h� srh sin hÞdh is zero, as the integrand is odd. The moment M ¼ r2
R a�

�a� srhdh and the shear-
ing force Q ¼ r

R a�

�a� ðrr sin hþ srh cos hÞdh both reduce to zero for a = a*, confirming that the stress field is self-equilibrating.
Note that this stress field may also be derived from the Airy stress function
U ¼ �EC2r2

2ð1þ mÞ ðcos 2h� 2h cos 2a�Þ: ð125Þ
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10. Strain energy: restrictions on Jordan canonical form

Strain energy arguments can be employed to exclude the possibility of certain eigenvalues, and possible JCF’s. For a prismatic
rod, with x, and y and z as axial, and cross-sectional coordinates, respectively, Synge (1945) considered exponential displace-
ment solutions of the form ekxf(y,z). According to Synge, ‘‘A purely imaginary k implies a periodic distribution of displacement
and stress. Consider the energy in a length of cylinder equal to this period. It is equal to the work done by the terminal stress in passing
from the natural state to the strained state. But from the periodicity, this is zero. Hence the energy of a strained state is zero, which is
contrary to a basic postulate of elasticity. Hence there can be no purely imaginary eigenvalue k. It should be added that we cannot assert
this if (Poisson’s ratio) m is arbitrary. It is necessarily only true if strain energy is positive definite, i.e. if�1< m < 1/2”, indicating that
this ‘‘simple and ingenious argument” was originally put forward by Dougall (1913). More recently, and again for the prismatic
rod, Stephen (2004) has shown that only the repeating eigenvalue k = 0 can give rise to a non-trivial Jordan block; in turn, degen-
erate Saint-Venant decay modes cannot exist. Similar arguments are now extended to the wedge and the curved beam.

10.1. The wedge

For the wedge with traction-free flanks, the strain energy stored within an arc element (circumferential strip) is equal to
the work done on its surface, and may be written as
U ¼ ð1=2Þ
Z a

�a
�ðurrr þ uhsrhÞinnerrdhþ ð1=2Þ

Z a

�a
ðurrr þ uhsrhÞouterðr þ drÞdh; ð126Þ
where the first integrand pertains to the inner arc (generic radius r), for which the direction cosine nr = �1, and the second
pertains to the outer arc where nr = +1 and whose radius in now r + dr. Let �s be an eigenvector, then the vector of displace-
ment and stress components on the inner arc may be written as
sinner ¼

ur

uh

rr

srh

26664
37775

inner

¼

�urrk

�uhrk

�rrrk�1

�srhrk�1

26664
37775: ð127Þ
On the outer arc, one has
souter ¼ sinner þ ðosinner=orÞdr; ð128Þ
and one finds
souter ¼

ur

uh

rr

srh

26664
37775

outer

¼

�urðrk þ krk�1drÞ
�uhðrk þ krk�1drÞ

�rrðrk�1 þ ðk� 1Þrk�2drÞ
�srhðrk�1 þ ðk� 1Þrk�2drÞ

26664
37775: ð129Þ
Substituting into Eq. (126), and ignoring terms involving (d r)2 and higher, one finds
U ¼ kr2k�1dr
Z a

�a

�dT �pdh; ð130Þ
where the notation �d ¼ ½�ur �uh�T and �p ¼ ½�rr �srh�T has been employed. The following observations are made:

(a) The strain energy of an eigenvector associated with k = 0 is zero – this is a rigid body translation in some arbitrary
direction; on the other hand, a rigid body rotation has k = 1, but the corresponding �p ¼ 0 and the strain energy is also
zero.

(b) The strain energy stored within an arc element of thickness dr is independent of radius for k = 1/2; since stress varies
as rk�1, this pertains to the familiar inverse square root singularity at the tip of a crack within the discipline of LEFM.
Note that the area of each arc element depends linearly on the radius, so the strain energy density is inversely pro-
portional to the radius, leading to a theoretical infinite strain energy density at the crack tip.

Next, consider the implication of a principal vector coupled to an eigenvector for a repeating eigenvalue k. From Section
6.1, assuming the inclusion of an arbitrary multiple (b) of the generating eigenvector, we may write the vector of displace-
ment and stress components on the inner arc, from Eq. (61), as
sp
inner ¼

ur

uh

rr

srh

26664
37775

p

inner

¼

�urrk

�uhrk

Srrk�1

Srhrk�1

26664
37775
ð1Þ

þ ðbþ ln rÞ

�urrk

�uhrk

Srrk�1

Srhrk�1

26664
37775
ð0Þ

; ð131Þ
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again determine the state-vector on the outer arc using Eq. (128) as
sp
outer ¼

ur

uh

rr

srh

26664
37775

p

outer

¼

�urðrk þ krk�1drÞ
�uhðrk þ krk�1drÞ

Srðrk�1 þ ðk� 1Þrk�2drÞ
Srhðrk�1 þ ðk� 1Þrk�2drÞ

26664
37775
ð1Þ

þ

�urððbþ ln rÞrk þ ðkðbþ ln rÞ þ 1Þrk�1drÞ
�uhððbþ ln rÞrk þ ðkðbþ ln rÞ þ 1Þrk�1drÞ

Srððbþ ln rÞrk�1 þ ððk� 1Þðbþ ln rÞ þ 1Þrk�2drÞ
Srhððbþ ln rÞrk�1 þ ððk� 1Þðbþ ln rÞ þ 1Þrk�2drÞ

26664
37775
ð0Þ

: ð132Þ
The strain energy according to Eq. (126), again ignoring terms involving (d r)2 and higher, is
U ¼ r2k�1dr
Z a

�a
½k�dð1ÞT �pð1Þ þ ðkðbþ ln rÞ þ 1=2Þð�dð1ÞT �pð0Þ þ �dð0ÞT �pð1ÞÞ þ ðbþ ln rÞðkðbþ ln rÞ þ 1Þ�dð0ÞT �pð0Þ�dh: ð133Þ
When b is equal to zero, this reduces to
U ¼ r2k�1dr
Z a

�a
½k�dð1ÞT �pð1Þ þ ðk ln r þ 1=2Þð�dð1ÞT �pð0Þ þ �dð0ÞT �pð1ÞÞ þ ln rðk ln r þ 1Þ�dð0ÞT �pð0Þ�dh: ð134Þ
From Section 4.2, the principal vector for tension/shear has k = 0, while the coupled eigenvector has �pð0Þ ¼ 0, so Eq. (134)
reduces to
U ¼ r�1drð1=2Þ
Z a

�a

�dð0ÞT �pð1Þdh ¼ r�1drð1=2Þ
Z a

�a
�uð0ÞTr

�rð1Þr dh; ð135Þ
since �sð1Þrh ¼ 0, and is in the expected form.
If one now requires that the strain energy should be independent of b, one finds
Ab2 þ Bb ¼ 0; ð136Þ
where
A ¼ k
Z a

�a

�dð0ÞT �pð0Þdh; ð137aÞ

B ¼ k
Z a

�a
ð�dð1ÞT �pð0Þ þ �dð0ÞT �pð1ÞÞdhþ ð2k ln r þ 1Þ

Z a

�a

�dð0ÞT �pð0Þdh: ð137bÞ
Since b is quite arbitrary, one must have both A = B = 0; for A = 0, one must have either k = 0, or
R a
�a

�dð0ÞT �pð0Þdh ¼ 0, or per-
haps both. If one chooses k = 0, then the requirement that B = 0 leads to

R a
�a

�dð0ÞT �pð0Þdh ¼ 0. If one chooses k 6¼ 0, then one
must have

R a
�a

�dð0ÞT �pð0Þdh ¼ 0, and the requirement that B = 0, leads to
R a
�að�dð1ÞT �pð0Þ þ �dð0ÞT �pð1ÞÞdh ¼ 0. Thus one may conclude

that
 Z a

�a

�dð0ÞT �pð0Þdh ¼ 0; ð138Þ
always, and either
ðcÞ k ¼ 0; ð139Þ
or
ðdÞ k 6¼ 0 and
Z a

�a
ð�dð1ÞT �pð0Þ þ �dð0ÞT �pð1ÞÞdh ¼ 0: ð140Þ
Eq. (138) is satisfied for the rigid body displacement and rotation eigenvectors, as the stress components comprising �pð0Þ

within both are zero; it cannot be satisfied for a decay eigenmode as, from Eq. (130), the strain energy stored within the arc
element would have to be zero.

Case (c) is in accord with what was found in Section 4.5, where a principal vector describing a tensile/shearing force is
coupled to an eigenvector describing a rigid body displacement, both in arbitrary direction, with repeating eigenvalue k = 0.

Case (d) is also consistent with the repeating eigenvalue k = 1 leading to coupling of an eigen- and principal vector for the
critical wedge angle 2a*, Section 9. It has already been seen in Section 4.3 that the eigenvector describing a rigid body rota-
tion, for which k = 1, has zero stress components within the eigenvector, that is �pð0Þ ¼ 0; hence the first integral in Eq. (140)
would be zero, while the second reduces to
Z a

�a

�dð0ÞT �pð1Þdh ¼ 0: ð141Þ
Further, this possible principal vector, of which the stress component vector �pð1Þ is a part, cannot be associated with a
transmitting stress resultant: it has already been seen that tensile/shearing force is associated with the eigenvalue k = 0
and this has been dealt with above, while bending moment has been seen to be an eigenvector associated with k = �1. Hence
the stress components �pð1Þ can only be associated with a decay mode. Also note that the strain energy associated with a self-
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equilibrated load moving through some displacement will, in general, only be zero when that displacement is that of a rigid
body – indeed, a crucial step in Toupin’s (1965) proof of Saint-Venant’s principle is ‘‘the general proposition that any system of
self-equilibrated forces does no work in a rigid motion of the points of action.” One concludes, therefore, that Eq. (141) will only
be satisfied if the displacement vector �dð0Þ is part of the rigid body rotation eigenvector, with k = 1.

Case (d) is not consistent with the known repeating eigenvalue k = �1, so one may conclude that arbitrary multiples of the
generating eigenvector cannot be added to the principal vector in the special solution relating to the wedge paradox.

These arguments lead to the conclusion that k = �1, k = 0 and k = 1 are the only eigenvalues that can lead to a non-trivial
Jordan block for the radial evolution problem – one cannot have degenerate decay modes.
10.2. The curved beam

Now calculate the strain energy stored within an infinitesimal elastic sector, equal to the work done at its surface, as
U ¼ ð1=2Þ
Z b

a
�ðursrh þ uhrhÞhdr þ ð1=2Þ

Z b

a
ðursrh þ uhrhÞhþdhdr: ð142Þ
The first integral pertains to some generic cross-section h, where the direction cosine is nh = �1, while the second, on
h + dh, has the direction cosine nh = 1. Suppose that the state-vector on h is v ¼ ~vekh, then on cross-section h + dh one

has v + (ov/oh)dh = (1 + kdh)v. Writing ~v ¼ ~dT ~pT
h iT

, with ~d ¼ ~ur ~uh½ �T and ~p ¼ eSrh
eSh

h iT
, and ignoring terms in

(dh)2, one finds
U ¼ ke2khdh
Z b

a

~dT ~pr�1dr: ð143Þ
The following observations are made:
(a) the strain energy of an eigenvector associated with k = 0 is zero – this is a rigid body rotation; on the other hand, a rigid

body displacement has k = ±i, but the corresponding ~p ¼ 0, and the strain energy is also zero.
Next, consider the implication of a principal vector coupled to an eigenvector for a repeating eigenvalue k. From Section

6.2, assuming the inclusion of an arbitrary multiple (b) of the generating eigenvector, we may write the vector of displace-
ment and stress components on the generic cross-section h, from Eq. (70), as
vp
h ¼

ur

uh

srh

rh

26664
37775

p

¼

~ur

~uheSrhr�1eShr�1

26664
37775
ð1Þ

ekh þ ðbþ hÞ

~ur

~uheSrhr�1eShr�1

26664
37775
ð0Þ

ekh: ð144Þ
On the section h + dh one has vp
hþdh ¼ vp

h þ ðovp
h=ohÞdh which is
vp
hþdh ¼ ð1þ kdhÞ

ur

uh

srh

rh

26664
37775

p

¼

~ur

~uheSrhr�1eShr�1

26664
37775
ð1Þ

ekh þ ððbþ hÞð1þ k dhÞ þ dhÞ

~ur

~uheSrhr�1eShr�1

26664
37775
ð0Þ

ekh: ð145Þ
Ignoring terms in (dh)2 and higher, from Eq. (142) the strain energy becomes
U ¼ e2khdh
Z b

a
½k~dð1ÞT ~pð1Þ þ ðkðbþ hÞ þ 1=2Þð~dð1ÞT ~pð0Þ þ ~dð0ÞT ~pð1ÞÞ þ ðbþ hÞðkðbþ hÞ þ 1Þ~dð0ÞT ~pð0Þ�r�1dr: ð146Þ
Note that the integral in Eq. (146) is identical in structure to the equivalent Eq. (133) for the wedge, except that now k replaces k,
h replaces ln r, and consistent with the definition of the state vector for the curved beam, one has the additional r�1 term.

When b = 0, Eq. (146) reduces to
U ¼ e2khdh
Z b

a
ðk~dð1ÞT ~pð1Þ þ ðkhþ 1=2Þð~dð1ÞT ~pð0Þ þ ~dð0ÞT ~pð1ÞÞ þ ðhþ kh2Þ~dð0ÞT ~pð0ÞÞr�1dr: ð147Þ
This expression simplifies considerably for the case of the pure bending moment principal vector coupled to the eigenvector
describing rigid body rotation, for which k = 0, leading to
U ¼ ð1=2Þdh
Z b

a

~dð0ÞT ~pð1Þr�1dr ¼ ð1=2Þdh
Z b

a

~uð0Þh
~rð1Þh dr; ð148Þ
since ~pð0Þ ¼ 0, and ~sð1Þrh ¼ 0, and is in the form one might expect. On the other hand, the repeating eigenvalue k = ±i couples
the shearing force principal vector to the rigid body displacement eigenvector, and setting k = i, Eq. (147) reduces to
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Fig. 7. Curved beam element subject to shearing force.
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U ¼ e2ihdh
Z b

a
ði~dð1ÞT ~pð1Þ þ ðihþ 1=2Þ~dð0ÞT ~pð1ÞÞr�1dr; ð149Þ
since ~pð0Þ ¼ 0. Only the final term – that is ð1=2Þe2ihdh
R b

a
~dð0ÞT ~pð1Þr�1dr – is in the form that one might expect; however, the

stress vector ~pð1Þacting on an element, Fig. 7, is effectively self-equilibrating on a radial line extending over the generic cross-
section at h to the origin. Thus the work done in moving through arbitrary rigid body displacement ~dð0Þ is zero, andR b

a
~dð0ÞT ~pð1Þr�1dr ¼ 0. Rather, the strain energy reduces to U ¼ ie2ihdh

R b
a

~dð1ÞT ~pð1Þr�1dr.
The condition that the strain energy should be independent of b is Ab2 + Bb = 0, where
A ¼ k
Z b

a

~dð0ÞT ~pð0Þr�1dr; ð150aÞ

B ¼ k
Z b

a
ð~dð1ÞT ~pð0Þ þ ~dð0ÞT ~pð1ÞÞr�1dr þ ð2khþ 1Þ

Z b

a

~dð0ÞT ~pð0Þr�1dr: ð150bÞ
Again, one must have A = B = 0; for A = 0, one must have either k = 0, or
R b

a
~dð0ÞT ~pð0Þr�1dr ¼ 0, or perhaps both. If one

chooses k = 0, then the requirement that B = 0 leads to
R b

a
~dð0ÞT ~pð0Þr�1dr ¼ 0. If one chooses k 6¼ 0, then one must haveR b

a
~dð0ÞT ~pð0Þr�1dr ¼ 0, and the requirement that B = 0, leads to

R b
a ð~dð1ÞT ~pð0Þ þ ~dð0ÞT ~pð1ÞÞr�1dr ¼ 0. Thus one may conclude that
Z b

a

~dð0ÞT ~pð0Þr�1dr ¼ 0; ð151Þ
always, and either
ðbÞ k ¼ 0; ð152Þ
or
ðcÞ k 6¼ 0; and
Z b

a
ð~dð1ÞT ~pð0Þ þ ~dð0ÞT ~pð1ÞÞr�1dr ¼ 0: ð153Þ
Eq. (151) is satisfied for the rigid body displacement and rotation eigenvectors, as the stress components comprising ~pð0Þ

within both are zero; it cannot be satisfied for a decay eigenmode as, from Eq. (143), the strain energy stored within the ele-
ment would have to be zero.

Case (b) is in accord with what was found in Section 7, where a principal vector describing pure bending is coupled to an
eigenvector describing rotation about the origin, with repeating eigenvalue k = 0.

Case (c) is consistent with repeating eigenvalue k = ±i; the rigid body displacement has ~pð0Þ ¼ 0, and the integral in Eq.
(153) reduces to

R b
a

~dð0ÞT ~pð1Þr�1dr ¼ 0, which is true as noted above.
These arguments lead to the conclusion that k = 0 and k = ±i are the only eigenvalues that can lead to a non-trivial Jordan

block for the radial evolution problem – again, one cannot have degenerate decay modes.

11. Reciprocal theorem and symplectic orthogonality

Zhong and Williams (1993) have shown for the prismatic structure that the statement of orthogonality is equivalent to
the Betti–Maxwell reciprocal theorem, according to which the work done by stress components p1 acting through displace-
ment components d2 is equal to the work done by stress components p2 acting through displacement components d1. Here,
the orthogonality relationships are developed for both the wedge and the curved beam.
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11.1. The wedge

Adapting Eq. (126) one has
Z a

�a
�ður2rr1 þ uh2srh1Þinnerrdhþ

Z a

�a
ður2rr1 þ uh2srh1Þouterðr þ drÞdh

¼
Z a

�a
�ður1rr2 þ uh1srh2Þinnerrdhþ

Z a

�a
ður1rr2 þ uh1srh2Þouterðr þ drÞdh: ð154Þ
Substituting from Eqs. (127),(129), and ignoring terms in (dr)2 and higher, one finds
ðk1 þ k2Þrk1þk2�1dr
Z a

�a
ð�ur2 �rr1 þ �uh2�srh1 � �ur1 �rr2 � �uh1�srh2Þdh ¼ 0; ð155Þ
or
ðk1 þ k2Þrk1þk2�1dr
Z a

�a
ð�dT

2
�p1 � �dT

1
�p2Þdh ¼ 0; ð156Þ
where �dn ¼ ½ �urn �uhn �T and �pn ¼ ½ �rrn �srhn �T;n ¼ 1;2. For k1 6¼ �k2, the integral must be zero
Z a

�a
ð�dT

2
�p1 � �dT

1
�p2Þdh ¼ 0; ð157Þ
which may be written as
Z a

�a
�sT

2Jm�s1dh ¼ 0; ð158Þ
�sn ¼ ½ �dT
n

�pT
n �

T; Jm ¼
0 I
�I 0

� �
is known as the metric, and I is the 2 � 2 identity matrix. Eq. (158) is the statement of sym-

plectic orthogonality for the wedge.

11.2. The curved beam

Adapting Eq. (142) one has
Z b

a
�ður2srh1 þ uh2rh1Þhdr þ

Z b

a
ður2srh1 þ uh2rh1Þhþdhdr ¼

Z b

a
�ður1srh2 þ uh1rh2Þhdr þ

Z b

a
ður1srh2 þ uh1rh2Þhþdhdr:

ð159Þ
Ignoring terms in (dh)2, one finds
ðk1 þ k2Þeðk1þk2Þhdh
Z b

a
ð~ur2~srh1 þ ~uh2 ~rh1 � ~ur1~srh2 � ~uh1 ~rh2Þdr ¼ 0 ð160Þ
or
ðk1 þ k2Þeðk1þk2Þhdh
Z b

a
ð~dT

2
~p1 � ~dT

1
~p2Þr�1dr ¼ 0 ð161Þ
where ~dn ¼ ½ ~urn ~uhn �T and �pn ¼ ½ eSrhn
eShn �

T ¼ ½ r~srhn r~rhn �T;n ¼ 1;2. For k1 6¼ �k2, one must have
Z b

a

~vT
2Jm~v1r�1dr ¼ 0; ð162Þ
where ~vn ¼ ½ ~dT
n

~pT
n
�T. Eq. (162) is the statement of symplectic orthogonality for the curved beam.

12. Concluding remarks

In this paper, the linear elasticity of a plane stress sector has been considered from a state-space point of view using polar
coordinates; this geometry encompasses both the wedge and the curved beam. Since elasticity may be regarded as a classical
field of study, one might imagine that there are no new insights to be gleaned; indeed there seems little point in deriving
from a variational principle the governing equations, when these are already well-known, and need only be arranged into
the required form to describe evolution in the radial and circumferential directions. On the other hand, the approach treats
displacement and stress components on an equal footing, which obviates the need to employ strain compatibility equations.
For both the wedge and the curved beam, the approach unifies the treatment of the transmission and decay problems, and
benefits from the analytical machinery of an eigenproblem which provides a systematic means of dealing with the numerous
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multiple eigenvalues associated with the transmission modes – force, moment, often coupled to rigid body displacements
and rotation. The Saint-Venant decay problem associated with self-equilibrated loading is elegantly solved through use of
the matrix exponential of the system matrix, and is very straightforward with the use of a computer algebra package such
as MAPLE.

One of the insights provided by this approach is the nature of the so-called wedge paradox. Much previous research has
associated the paradox with the (fictional) notion of a moment applied at the apex of a wedge region – a moment clearly
requires a dimension, which does not exist. Physically, this difficulty can be circumvented by requiring that the moment
be applied over some small region close to the apex – either on an arc of small radius, or on the flanks. (A comparable dif-
ficulty applies to a force applied at the apex: since the cross-sectional area is effectively zero, the stress becomes infinite, and
this can also be circumvented by limiting the minimum inner radius such that the stress on the inner arc does not exceed the
elastic limit. However, since this symmetric solution does not display pathological behaviour for any particular angle, this
has not attracted such attention.) Nevertheless, authors have employed rather esoteric (to an engineer) techniques including
use of renormalisation group theory (Goldenfeld and Oono, 1991), and intermediate asymptotics (Barenblatt, 1996) to deal
with this singularity at the apex. In fact, the paradox is associated with accidental eigenvalue degeneracy for the particular
wedge angle 2a* � 257�, which signals the breakdown of Saint-Venant’s principle for self-equilibrated loading on the outer
arc, and the decay of self-equilibrated loading on the inner arc at the same rate as the diffusion of bending moment into a
divergent region; its resolution requires nothing other than a principal vector coupled to the decay eigenvector for a repeat-
ing eigenvalue.

One of the main advantages of this state-space approach is the ability to draw upon the extensive body of knowledge on
system theory, and it is likely that this will prove beneficial in the analysis of the control of dynamical problems for contin-
uum elastic structures.
Appendix A

The matrix exponential M ¼ eH0h in Eq. (42) has elements
M11 ¼ cos h cos khþ ð1� k� m� mkÞ sin h sin kh=2

M12 ¼ ð1� k=2� mk=2Þ sin h cos kh� ð1� mÞ cos h sin kh=2

M13 ¼ ð1þ mÞ½ð3� mþ kþ mkÞ sinðkþ 1Þhþ ð3� m� k� mkÞ sinðk� 1Þh�=4Ek

M14 ¼ ð1þ mÞð3� m� k� mkÞ½cosðk� 1Þh� cosðkþ 1Þh�=4Ek

M21 ¼ ð�1� k=2� mk=2Þ sin h cos khþ ð1� mÞ cos h sin kh=2

M22 ¼ cos h cos khþ ð1� mþ kþ mkÞ sin h sin kh=2

M23 ¼ ð1þ mÞð3� mþ kþ mkÞ½cosðkþ 1Þh� cosðk� 1Þh�=4Ek

M24 ¼ ð1þ mÞ½ð3� m� k� mkÞ sinðkþ 1Þhþ ð3� mþ kþ mkÞ sinðk� 1Þh�=4Ek

M31 ¼ Ek½ðk� 1Þ sinðk� 1Þh� ðkþ 1Þ sinðkþ 1Þh�=4

M32 ¼ Ekðk� 1Þ½cosðk� 1Þh� cosðkþ 1Þh�=4

M33 ¼ cos h cos khþ ð�1þ m� k� mkÞ sin h sin kh=2

M34 ¼ ð1� k=2� mk=2Þ sin h cos khþ ð1� mÞ cos h sin kh=2

M41 ¼ Ekðkþ 1Þ½cosðk� 1Þh� cosðkþ 1Þh�=4

M42 ¼ �Ek½ðkþ 1Þ sinðk� 1Þh� ðk� 1Þ sinðkþ 1Þh�=4

M43 ¼ ð�1� k=2� mk=2Þ sin h cos kh� ð1� mÞ cos h sin kh=2

M44 ¼ cos h cos khþ ð�1þ mþ kþ mkÞ sin h sin kh=2
Appendix B

The matrix exponential N ¼ eHn in Eq. (100) has elements
N11 ¼ ½kð1þ mÞðen � e�nÞ sin knþ 2ðð1� mÞen þ ð1þ mÞe�nÞ cos kn�=4

N12 ¼ ½kð1þ mÞðen � e�nÞ cos kn� 2ð1� mÞen sin kn�=4

N13 ¼ ð1þ mÞ½ð2ð1� mÞ � k2ð1þ mÞÞðen � e�nÞ cos knþ kð3� mÞðen þ e�nÞ sin kn�=ð4Eð1þ k2ÞÞ
N14 ¼ ð1þ mÞ½kð3� mÞðen � e�nÞ cos knþ ðk2ð1þ mÞðen � e�nÞ � 2ð1� mÞen � 4e�nÞ sin kn�=ð4Eð1þ k2ÞÞ
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N21 ¼ ½kð1þ mÞðen � e�nÞ cos knþ ð4en � 2ð1þ mÞe�nÞ sin kn�=4

N22 ¼ ½4en cos kn� kð1þ mÞðen � e�nÞ sin kn�=4

N23 ¼ ð1þ mÞ½�kð3� mÞðen � e�nÞ cos knþ ðk2ð1þ mÞðen � e�nÞ þ 2ð1� mÞe�n þ 4enÞ sin kn�=ð4Eð1þ k2ÞÞ
N24 ¼ ð1þ mÞ½ðk2ð1þ mÞ þ 4Þðen � e�nÞ cos knþ kð3� mÞðen þ e�nÞ sin kn�=ð4Eð1þ k2ÞÞ

N31 ¼ E½ð2þ k2Þðen � e�nÞ cos kn� kðen þ e�nÞ sin kn�=4

N32 ¼ �E½kðen � e�nÞ cos knþ ð2en þ k2ðen � e�nÞÞ sin kn�=4

N33 ¼ �E½2ðð1þ mÞen þ ð1� mÞe�nÞ cos kn� kðð1� mÞen þ ð1þ mÞe�nÞ sin kn�=4

N34 ¼ ½kð1þ mÞðen � e�nÞ cos kn� ð2ð1þ mÞen � 4e�nÞ sin kn�=4

N41 ¼ E½kðen � e�nÞ cos kn� ðk2ðen � e�nÞ � 2e�nÞ sin kn�=4

N42 ¼ �Ek½ðen þ e�nÞ sin knþ kðen � e�nÞ cos kn�=4

N43 ¼ ½kð1þ mÞðen � e�nÞ cos kn� 2ð1� mÞe�n sin kn�=4

N44 ¼ ½4e�n cos knþ kð1þ mÞð1� enÞ sin kn�=4
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