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A nonlinear interaction model is used to study sources of sound in jets. The model
uses quadratic interactions of instability modes, which are obtained by solving the linear
parabolized stability equations. Source terms involving nonlinear interactions are evalu-
ated and a linear wave equation is solved with direct injection of the source terms. Thus
the complete method solves only linear partial differential equations, coupled by nonlinear
source terms. It allows the contribution of each modal interaction to be studied separately,
giving a breakdown of the radiation pattern of each interaction. The method is demon-
strated using a fixed base flow matched to the experiment of Stromberg et al. (J. Fluid
Mech. 72(2), 1980). The squared streamwise velocity quadrupole is the largest source term
for axisymmetric mode interactions, while for helical-helical mode interactions both the
squared radial and squared azimuthal velocities are the main contributing sources, despite
a strong cancelation effect between them. Results are also presented for an alternative im-
plementation, in which the base flow is allowed to vary according to the Reynolds stresses
of the developing instability modes. This model demonstrates sound production during
mode growth and subsequent saturation.

I. Introduction

Subsonic and supersonic jets are known to have significantly different mechanisms of generation of sound.
In supersonic jets, the primary flow instability is able to radiate sound effectively, while subsonic jet noise is
less tractable to theory (Tam & Morris, 1980; Tam & Burton, 1984). There is a body of experimental work
that suggests that instability modes (solutions of the compressible Orr-Sommerfeld equation for example)
are still present in subsonic jets and may still be contributing to the overall sound radiation, albeit not in as
obvious a way as at high speeds. The recent work of Suzuki & Colonius (2006) has shown that instability
waves are present, even in turbulent jets at Reynolds numbers up to 10°. The role of instability waves is
naturally clearest in work at lower Reynolds numbers. Laufer & Yen (1983) located the source of sound with
the nonlinear saturation of instability waves and noted that, while the near field pressure varied linearly
with disturbance amplitude, the acoustic far field had a quadratic dependence. Stromberg et al. (1980)
made experiments at jet Mach number M = 0.9 and Re = 3600 based on the jet diameter and also suggested
a nonlinear mechanism of noise generation. The Stromberg et al. experiment is attractive for analysis and
simulation, not least because the authors included velocity profiles from the region near the nozzle exit. This
case was the subject of a direct numerical simulation study by Freund (2001) in which good agreement was
found with the experiment.

A widely-used model for sound generation in shear flows is the Lilley-Goldstein equation (Lilley 1974;
Goldstein 2001), which extends Lighthill’s approach (Lighthill 1952; Morfey & Wright 2007) to be applicable
to disturbances on a parallel shear flow. Retaining only the highest order source terms, the Lilley-Goldstein
equation can be written in cylindrical polar co-ordinates with radial direction r and axial direction z as
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where D = 9/0t+V .9/dz, m is the wave variable and the parallel shear flow is defined by the axial velocity
V.(r), density p(r) and sound speed ¢(r). At highest order for approximately isothermal jets the source
terms are given by

g=0 f=-V-(aqq). (2)

The quadratic source term will later be written as a product of instability modes.

The Lilley-Goldstein formulation is applicable to parallel shear flows and for a growing round jet it is
not clear a priori which axial location to use in fixing the parallel flow; results are certainly sensitive to this
choice, as shown later. If the base flow terms are dropped completely from (1) we recover a simpler form of
the equation as

1 0%n

¢t ot?
where ¢y and pg are respectively the sound speed and density of the quiescent fluid into which the sound
radiates. Here, the left hand side is a standard second order wave equation and the right hand side contains
the source terms involving the products of velocity fluctuations that are the most important sources in jets
in the absence of strong temperature variations.

The present work is a continuation of a line of research into the relevance of nonlinear mode interactions
to sound radiation that we have been pursuing recently. In Sandham et al. (2006a) a model problem was
used to show how products of linear instability modes could be used as source terms, leading to potentially
useful predictions of the main characteristics of the sound field. Any quadratic mode interaction can be split
into a term involving the sum of the wavenumbers (or frequencies in the spatial case) and a term involving
the differences. In a companion paper Sandham et al. (2006b) showed that wave packets based on growing
and decaying envelope functions are inefficient at radiating sound for low Mach numbers, for slow saturation
time scales and for high frequencies, hence interactions involving the summed wavenumbers will be less
effective radiators than those involving difference wavenumbers. This was confirmed for the plane jet model
problem, where the difference in wavenumber of two instability modes gave the longer wavelength of the
radiated sound field compared to the primary instability wavelength, in accordance with numerical solutions
of the compressible Navier-Stokes equations. Figure 1 sketches how this idea is applied to the single stream
round jet considered in this paper. The potential core disappears where the annular mixing layers merge.
Two spatially-developing unstable waves inside the jet with different frequencies f; and fo may interact via
the source term in (1) to give effective sound radiation with frequency f1 — fa.

— V21 = poV.(V. (1)), 3)

Radiation at

Ni-f

Figure 1. Schematic of the round jet problem, showing how interactions between instability waves within the
jet can drive a difference mode in the acoustic field.

Sandham and Salgado (2008) extended the method to spatially-developing waves, and calculations were
made using the stability eigenvalues as forcing on the surface of a cylinder. The method was shown to give
the Strouhal number of the jet as St = 0.45 and of the sound field as St = 0.19, in good agreement with the
experiments of Stromberg et al (1980), which gave 0.44 and 0.20 respectively. In the present contribution
we make use of the complete mode shapes by injecting the interaction terms separately into a wave equation
solver. This method allows us to find the most important source terms as well as the most important stability
mode interactions. We also consider how the specification of a fixed base flow may be avoided, by using the
Reynolds stresses of the stability mode interactions to determine the base flow growth in the downstream
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direction. This latter part of the work continues a line of research explored initially by Morris et al. (1989),
where stability theory was used to explain certain features of compressible mixing layers.

II. Formulation

A. Nonlinear interaction model

In cylindrical co-ordinates with z the streamwise direction, r the radial direction and 6 the azimuthal
direction, we consider the interaction of two spatially-developing instability modes with different (real)
frequencies w and azimuthal wavenumbers n, and an evolution given by

w = ,&jkei(nkQ—WJt)ef(Ujk-‘riOéjk)dz + c.c. (4)

and
U, = almez(an—wlt) ef (Oim+iaim)dz +ee. (5)

Here c.c. denotes complex conjugate, 4(r) is a complex eigenfunction and the complex wavenumber has been
split into a real part @ and an imaginary part —o, both of which may vary in the z direction. Subscripts j
and k relate the frequency and azimuthal wavenumber of the first mode, while subscripts | and m relate to
the respective properties of the second mode. By direct multiplication, it is possible to write down explicitly
the source terms for the wave equation, for example

GQU'kUz N A ; s N A _ ; (s —
s = gkl Ay OO g AT el (oment] 4 e e, (6)
where * denotes complex conjugate and AT and A~ are sum and difference mode amplitudes, given by
At = 1051+ Ot + (i + )] ef oo FilegrFaim))dz (7)
and . )
At = 041+ Oim + (g — cu )] e nFomm Tl om)ldz, (8)

It can be seen that in both cases the growth rates ¢ add, while the wavenumbers can either add or subtract.
A basic radiation pattern for any mode interaction can be found by solving a wave equation forced by (6),
as was done by Sandham & Salgado (2008).

B. Parabolized Stability Equations

The mode properties a, o and @ are found by solving the parabolized stability equations (PSE). The PSE
method (Herbert, 1997) is an efficient way of generating mode shapes and wavenumbers in convectively
unstable flows. With PSE it is also straightforward to incorporate non-parallel and disturbance evolution
effects that would not be included in the simpler linear stability approach based on parallel flow. The PSE
system of equations can be written in concise notation as

do -

M = (K - 1)) (9)
where K, L and M are matrices and ngS is a vector of mode shapes (p, 0y, g, 0, T) The matrix L contains
derivatives in the r direction which are computed using a sixth order compact difference scheme on a stretched
mesh, extending to r = L, in the radial direction. The contents of the matrices can be found for example in
Hein (2005). PSE has recently been applied to jet noise by Cheung et al. (2007). Linear PSE was found to
be able to predict noise from supersonic jets, while nonlinear PSE, together with an acoustic analogy was
needed for subsonic jet noise. In the present work, by contrast, we use only linear PSE and compute the
nonlinear interaction terms separately.

The solution starts at z = 0 with a solution for gZ;, o and « from the compressible Orr-Sommerfeld equation
for a given w. The Orr-Sommerfeld problem was solved with the same compact finite difference scheme in r
and used a direct matrix eigenvalue method to find all the eigenvalues and eigenvectors, from which the most
unstable mode was selected. After premultiplying by M1, equation (7) is advanced in z using first order
backward differences. Following the standard PSE implementation, at each step the wavenumber o — io is
adjusted iteratively so that

Lo . 84
/0 (b*a—frdr =0. (10)
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C. Base flow velocity profiles

An analytic velocity profile was matched to the available experimental data of Stromberg et al.(1980). The
profile gives the axial velocity V, at any z and r location using

V.=05 [tanh (T) — tanh (r ; aﬂ : (11)

with empirically-determined coefficients

a = 0.59 + 0.09 tanh(v/z — 2.9) (12)

and
394242+ 0.11z%

)=
1000 + 23
Examples of the resulting velocity profiles are shown on Figure 2. Profiles of the radial component of velocity
V', are computed using the steady continuity equation. The jet is swirl-free, so Vi = 0. For this base flow
the pressure is assumed to be uniform and the temperature is approximated by means of a Crocco-Busemann
relation

(13)

— —1 — —
T:1+7TM2VZ(1—VZ), (14)

taking the jet temperature equal to the ambient temperature. The jet Reynolds number was set to Re = 3600
and the jet Mach number to M = 0.9 to match the conditions of Stromberg et al. and Freund (2001).

The PSE calculations continued downstream to z = 20. The box size was chosen to be L, = 30 with 80
points in 7 and 81 points in z. A strong stretching of the grid was used in the radial direction to concentrate
points in the jet shear layer.

z=0

- — —z=4
0.8 — — =8 |

z=12
0.6 |

>N
0.4 R
0.2 |
N

1 15 2

Figure 2. Profiles of the streamwise velocity V. at various z locations.

D. Acoustic source terms

Initially we consider solutions of equation (3), i.e. the simplified second order wave equation. Later we will
make some comparisons with results found by solving the full form of equation (1), but with a simplified
forcing scheme. For computational convenience the wave equation is split into a set of first order equations
and are solved in the time domain using a standard fourth order Runge-Kutta method.

The source terms in the divergence term V - f in (1) can be decomposed into nine terms, defined in
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cylindrical polar co-ordinates as

192 (TUTUT) 1 8%(ru,ve) 102 (Turvz)
Sr= e ST ETew . Se= T
1 ({92(7'7.Lg?)r) 1 82(u9v9) 1 O(ugve) 1 az(uﬂvz)
Sor =13 gpor T o —ooor . ST g
1 0%(ru,v,.) 1 0% (u,vg) 0?(u,v,)
S = T ozor S20 = 7 oz S = =g (15)

Other source terms are present in df,./0z but, for reasons discussed later, these are not considered in the
present paper. The source terms are computed from the PSE modes, including derivatives of mode shapes,
and are then interpolated onto a fine grid for solution of the wave equation. The wave equation is Fourier
transformed in the azimuthal direction to reduce it to a two-dimensional problem for each specified azimuthal
difference mode. Since the initial aim was only to study the jet near sound field, solutions were computed
using simple second order central differences on a grid with 401 x 301 grid points in the streamwise and radial
directions respectively and were run to a specified time in a computational domain twice as large as shown
in the figures, such that disturbances had no time to reflect (however weakly) from the boundaries and affect
the computed solution. No filtering or dissipation was applied and for stability reasons, in contrast to the
PSE calculations, only a weak grid stretching in the radial direction could be used. Boundary conditions
are applied at the origin separately for axisymmetric and azimuthal disturbances according to the analysis
of Lewis & Bellan (1990). Thus boundary conditions are specified as d7/9r = 0 on r = 0 for An =0 or as
m =0 for An # 0, where An is the difference azimuthal wavenumber.

ITI. Results for a fixed base flow

A. Axisymmetric mode interactions using simple wave equation

To begin the discussion of results from the interaction model, we consider axisymmetric (ny = 0,n, = 0)
mode interactions and take as an example the interaction between w; = 3.4 and w; = 2.2, giving a difference
mode Strouhal number of 0.19. This interaction is close to the maximum |A~| found by Sandham & Salgado
(2008). Figure 3(a) shows the sound field resulting from forcing separately with Sy, S;., S, and S,,. The
same contour levels are used in each case and it should be noted that, since the base flow for the linear
stability analysis is fixed, it is not possible to say anything about the absolute levels of sound radiation. It
can be seen that the largest sound is produced by the S, and S,, quadrupoles. Taking the source origin
as (r =0,z = 5) the S, quadrupole radiates preferentially at an angle of 60° to the downstream direction,
while the S,, quadrupole radiates predominantly in the downstream direction. The cross terms involving
products of radial and longitudinal velocity are small in comparison. It should be noted that S,., # 5., due
to the different frequencies involved in the interactions.

In figure 3(b) we show the source distributions corresponding to the sound radiation patterns shown on
figure 3(a), taking a reference time of ¢ = 0. The same contour levels are chosen in each case, but to show
the structure more clearly the S, source has been divided by a factor of four, while the S,, source has
been multiplied by a factor of two. This immediately demonstrates the perils of trying to correlate source
strength with sound radiation; the S,, quadupole has the weakest source field but radiates the strongest
sound. The structure of the source is evidently more important in determining the radiation characteristic
than the amplitude.

For the same case, we can solve for the sum modes, giving a Strouhal number of 0.89. Results are shown
on Figure 4, using the same contour levels for comparison with the difference modes shown on figure 3(a).
Clearly the higher frequencies radiate much less effectively than low frequencies and only the source region
is visible on this plot. In most of the discussion that follows we will only be referring to difference mode
interactions and focusing on the low-Strouhal number (St ~ 0.2) range of sound radiation. The relevance,
if any, of the stability modes to higher frequency sound remains to be explored; it is possible that higher
harmonics of individual modes (i.e. the nonlinear structure of the rolled up vortices) or indeed the fine scale
structure of turbulence, may be more important than the summed instability mode interaction terms.
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Figure 3. Solution of wave equation driven by the difference mode interaction of axisymmetric modes: (a)
pressure field 7 arising from each source term as shown in the sub-figure title, and (b) the corresponding source
field. Note that the S,, source term has been divided by a factor of 4 and the S,, term has been multiplied
by a factor of 2 so that the structure can be more clearly seen (otherwise contour levels in the sub-figures are

the same).

Figure 4.

Pressure contours from solution of wave equation driven by the interaction of the sum of two
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B. Helical mode interactions

In the M = 0.9 jet helical modes are at least as important as axisymmetric instability modes. According
to stability theory the n = 1 mode grows to amplitudes comparable to those found for n = 0 while higher
helical modes are less unstable. Stromberg et al (1980) found that at St = 0.44 (the spectral peak found by
a hot wire inside the jet) both n = 0 and n = 1 components were present, while at St = 0.22 (the spectral
peak of the sound radiation) the flow was predominantly axisymmetric (with no significant phase change
around the jet azimuth).

Figures 5 and 6 show respectively the (0,1) and (1,0) mode interactions that lead to An = 1 radiation
from the jet. All the non-zero sources are shown using the same contour levels as used for Figure 3(a). The
frequencies of the modes were chosen as w; = 3.2 and w; = 1.8 (for maximum |A~|) giving a difference
mode St = 0.22. Again due to the different frequencies there is no symmetry between the (0,1) and (1,0)
interactions. The largest radiation comes from the S,y quadrupole, but the sound production is lower than
for the axisymmetric (0,0) interaction. The relative amplitude of the radiation is frequency dependent and
has not been fully explored since, according to the model, very small difference frequencies give rise to very
high radiation levels, which are not believed to be physical. Nevertheless, using the largest |A~| for each
mode pair gives a result that agrees with the experimental finding that the sound is mainly axisymmetric
for this jet configuration.

Axisymmetric sound radiation also arises from the (1,1) interaction shown on Figure 7. Here we take
wj = 3.0 and w; = 1.8 (for maximum |A~|) giving a difference mode St = 0.19. In this case extremely large
levels of radiation are seen to arise from the S, and Spy quadrupoles when considered separately. However
these two sound fields are close to being in anti-phase and when the sum of the two is plotted in the last
sub-figure (lower right) it can be seen that the overall radiation is at a much lower level (and the overall
sound radiation is slightly lower than that observed for the (0,0) interaction).
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Figure 5. Pressure contours from the (0-1) interaction of a axisymmetric mode (at higher frequency) with a
helical mode (at lower frequency).
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Figure 6. Pressure contours from the (1-0) interaction of a helical mode (at higher frequency) with an
axisymmetric mode (at lower frequency).
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Figure 7. Pressure contours from the (1-1) difference interaction of two helical modes. The lower right hand
sub-figure shows S, + Sgy and illustrates the large cancelation that is occurring between these components.
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p=1, (b) V. and p taken at zp = 5.0 and (c) V. and p taken at zo = 15.0.

C. Comparison with Lilley-Goldstein formulation

The Lilley-Goldstein equation (1) represents potentially a more realistic description of the sound radiation
since it separates sources from propagation effects, albeit only for a parallel shear flow. The method is
dependent on the location zg chosen for analysis. Moreover the Lilley-Goldstein equation suffers from a
well-known problem of instability when time-domain calculations are attempted, as in the present study. In
agreement with Cheung et al.(2007), we are only able to obtain stable solutions when the base profile location
is chosen to be sufficiently far downstream that the particular frequency under consideration is stable.

An alternative method of solving equation (1) is possible, at least for the S, source term, based on the
jump relations for the Lilley-Goldstein equation. In this approach (see Appendix B of Sandham et al., 2006)
equation (1) is integrated across a shear layer, leading to relations between the jumps in p and dp/dy and
the source terms f and ¢ defined by equation (2). The jump relations are given by

Ap = 5f, (16)

r__(9fs Dq
Ap —p<ax Dt>, (17)
where Ap and Ap’ are the jumps in pressure and pressure derivative and source terms are concentrated
according to f = f(5 (y — yo) where yq is the location of the inflection point in the shear layer. The basic idea
is then to solve the problem for y > yg and y < yg in a coupled manner with boundary conditions applied at
yo and hence avoiding an inflection point in the field of computation (and so hoping to avoid the instability
in the Lilley-Goldstein equation).

For the present round jet configuration some results of this approach are shown in Figure 8. The S,,
source has been concentrated on r = ry, where 7y is the location of the inflection point at the particular

and
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streamwise location zy chosen for study, by computing

. 1 L
. = — »d 18
i /Orf , (18)

To

and the computation is carried out applying a boundary condition for Op/9r. Figure 8(a) shows the results of
using this approach, but setting V. = 0 and » = 1 throughout, effectively solving equation (3) by a different
approach. Figure 8(a) compares favourably with the S, driven acoustic field on figure 3(a), showing that
the method preserves the important properties of the source. Figures 8(b) and 8(c) use velocity and density
profiles at zg = 5 and zg = 15 respectively. These calculations were run to a longer time and in a larger
domain than those presented earlier, to check for any instability in the method. No instability is found
and it appears that with this method any zg can be chosen and gives stable results. Figure 8(b) shows a
strong near field response for zp = 5 and stronger radiation in the downstream arc compared to figure 8(a).
With zp = 15 (figure 8(c)) there is more evidence of refraction, with the peak sound radiation at 20° to the
downstream direction (based on a source origin at z = 7).

Attempts to apply the same method to the other sources have so far been frustrated by the difficulty of
devising an appropriate form of (18) for sources that are not very coherent in space and by the appearance of
an unconstrained algebraic growth of the near field when forcing is applied via a pressure boundary condition,
as required by equation (16) for several source terms.

IV. Results for a variable base flow

Up until now all the PSE results have been based on the fixed base flow given by equations (11-14). An
alternative approach is possible in which nonlinear interactions of PSE modes are used to update the mean
flow. In the current implementation the boundary layer equations are solved by a downstream marching
procedure alongside the PSE. As well as viscous stresses there are Reynolds stress terms due to mode
interactions, for example the self-interaction of a PSE mode at a particular frequency will give a difference
frequency of zero and hence a mean flow modification. This means that the shear layer will thicken as a
result of each mode growth. Eventually the mean flow grows sufficiently for the mode to saturate. This
type of calculation was demonstrated first by Morris et al (1990) for a spatially developing mixing layer. In
that work eigensolutions of the Orr-Sommerfeld equation were used to provide the growth rate of similarity
profiles for velocity and temperature. A valuable result was to provide a theoretical underpinning for the
known qualitative connection between mixing layer spreading rate and the growth rate of the most unstable
instability mode. Follow up work by Viswanathan & Morris (1992) extended the approach to axisymmetric
shear layers, while Liou & Morris relaxed the requirement for prescribed shape functions.

We employ a method in which the profiles defined by equations (11-14) are used as a template for the flow.
For each step downstream the boundary layer equations are solved to give a provisional updated streamwise
velocity profile V*(r). The parameters § and a that give a minimum least squares error to the provisional
profile are then found and these parameters define the profile V(r) at the new streamwise location. This
method has been found to be more robust than when the provisional profile is used by itself. In particular,
unstable narrow shear layers that might cause the simulation to terminate are prevented from developing.

Figure 9 shows the result from a calculation where two axisymmetric modes with frequencies of 3.4 and
2.2 are computed with PSE and the mean flow evolves by both laminar spreading and the action of the
Reynolds stresses. The modes were normalized at z = 0 with their integrated intensity ¢? and then applied
with an amplitude of 107* at z = 0. No attempt was made to fix the relative phases. Figure 9(a) shows
0 from the simulation, compared with the prescribed 0 used in earlier calculations and Figure 9(b) shows
the corresponding n-factors. Initially the flow spreads according to laminar diffusion. The higher frequency
mode grows most strongly at z = 3 and reaches a maximum amplitude at z = 3.5. It then decays, but in the
process has doubled the shear layer thickness. The second maximum in § occurs at z = 8 corresponding to
the axial location where the lower frequency mode saturates. Thereafter the shear layer thickness decreases
slowly since there are no lower frequencies present that could lead to further growth.

The sound produced by the interaction is shown on figure 10 with contours of 7 computed from a solution
of the second order wave equation (3) for comparison with figure 3(a). The radiation pattern due to the
four sources is similar. The strongest radiation again comes from S, followed by S, and only very weak
radiation from S,., and S.,.. There are visible differences however, notably the additional lobe of radiation
in the S, source at 90° to the jet axis.
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Figure 9. Growth rate of jet: (a) § obtained from PSE, driven with two frequencies, compared with the
empirical relation (11-13), (b) growth (N—) factors for each mode

Figure 10. Contours of pressure from solution of wave equation driven by the difference mode interaction of
axisymmetric modes for the variable base flow case. Source terms are injected for S,,, Sr., S.r and S.. as
shown in the sub-figure titles.
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V. Conclusions

A nonlinear interaction model has been used to investigate the radiation patterns resulting from nonlinear
interactions between instability modes. For any frequency and azimuthal wavenumber combination the
radiated sound resulting from up to nine possible source components can be extracted. It is found that
difference mode interactions are more important than sum modes. Particularly important difference-mode
sources are S,, and S, from axisymmetric interactions and the combination of S, and Sgg for the interaction
between two helical modes.

The effect of the wave equation was studied by comparing results from the simple second-order acoustic
wave equation with results from the Lilley-Goldstein third-order system for the S, source. The higher-order
wave equation leads to more radiation into the forward arc. The results with the Lilley-Goldstein equation
are sensitive to the choice of mean flow.

A modified approach, where the mean flow is determined by the growing instabilities (via the Reynolds
stresses) was compared with the approach of a prescribed base flow for a case with two axisymmetric modes.
The method appears to be realistic in capturing the growth, saturation and decay of instability modes and
the corresponding mean flow modifications. The radiation pattern is similar to that computed with the fixed
base flow. Overall the simplified mode interaction approach appears to provide useful insight into sound
generation mechanisms.
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