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Abstract 
 
A planar model of a lifting surface descending into its own wake is constructed with the aim 
of demonstrating some underlying mechanisms of the ‘vortex ring’ state that may be entered 
by a rotary wing aircraft during a vertical descent. The model uses line vortices that are 
periodically released from a point in space and then allowed to evolve in a constrained 
manner. For low descent velocities the model reproduces a hover state, where the wake 
vortices move downwards relative to the lifting plane. A critical descent speed is reached 
after which the model produces a quasi-periodic shedding of vortex agglomerations. This 
state is reached via a Hopf bifurcation of the steady state and persists until another critical 
descent velocity after which a steady windmill brake state is possible, in which vortices travel 
upwards in a regular manner. Unconstrained simulations reveal a more chaotic vortex pattern, 
but frequency analysis reveals an underlying structure similar to that shown for the 
constrained model. Besides offering a qualitative understanding of possible mechanisms of 
vortex ring state, the analysis suggests some dimensionless parameters that collapse the 
model data. 
 
Keywords: vortex ring state, helicopter wake



 2 

1. Introduction 
 
Under normal flight conditions the vorticity shed from each blade of a helicopter coalesces 
into a single tightly wound vortex, which then descends with a helical structure under the 
rotor. These vortices can sometimes be observed in flight photographs, when conditions are 
right for condensation to occur in the vortex cores (e.g. Fig 2.2 in Leishman [2]). A similar 
vortex pattern occurs when a helicopter descends rapidly in the windmill brake state, except 
that in this case vortices are shed in helices upwards from the rotor plane. In between these 
two regular states there exists a flight regime in which the helicopter descends into its own 
wake vortices. This flight condition is usually known as vortex ring state (VRS) and, 
although known since the early days of helicopter flight, has recently been the subject of 
research following its possible implication in crashes of the V-22 Osprey tilt-rotor aircraft 
 
Recent experiments and numerical simulations have furthered the understanding of vortex 
ring state. Stack et al [6] conducted experiments in a towing tank and were able to measure 
the long time response of the rotor wake. For descent angles of 50° and 60° they observed a 
high-amplitude periodic variation of rotor thrust coefficient, which they note as a classic 
vortex ring state. For vertical descent (90°) they observed a significant (factor of three) drop 
in thrust coefficient over a similar range of descent velocities, but with an aperiodic time 
history. For cases with a clear periodic response, the oscillation periods were in the range of 
20 to 50 rotor revolutions, equivalent to 60 to 150 blade tip passages for their three-bladed 
rotor, which operated in hover at a thrust coefficient of 0.01TC ≈ . The periodic state was 

observed to involve the formation of rings of increasing strength above the rotor plane, 
disrupting the flow past the blades. The vortex then detached and convected below the rotor 
plane forming an unsteady wake. Entry to VRS state was found at a normalised descent 
velocity of 1.05µ = ( * *

hW wµ = , with dimensional descent velocity *W , hover-induced 

velocity * * * *2h zw T Aρ= , thrust *
zT , density *ρ  and rotor area *A ). Exit from VRS 

occurred in the range 1.8 2.0µ< <  depending on horizontal velocity. 
 
Simple momentum theory breaks down in the vortex ring state, although we note that an 
extended momentum theory has been used by Newman et al [5] to obtain a more limited 
objective of an empirical model for the onset boundary of VRS. Attempts to model the full 
VRS phenomenon are mainly focused on vortex methods. Leishman et al [3,4] report in detail 
on the application of three-dimensional vortex filament methods. The time duration of such 
computations is limited by cost, but they offer an invaluable insight into the mechanisms of 
entry into vortex ring state. For descent velocities 0.6µ =  and 0.7µ =  they observe a 
transition to vortex ring state. In ‘incipient’ VRS at 0.6µ =  they observe the accumulation of 
individual tip vortices into a large vortex above the rotor plane, whereas in the full developed 
VRS at 0.7µ =  this vortex develops and disrupts the flow in the rotor plane. The process is 
seen as essentially one of repeated accumulations of large rings followed by breakdown and 
convection away from the rotor. In a closely related study, Brown et al [1] compared two 
different numerical methods and observed similar physics using a vorticity transport model 
compared to the free-vortex method of Leishman et al.  
 
The intention of this short contribution is to propose a simple vortex dynamical model that 
seems to capture the physics responsible for the development of a particular quasi-periodic 
state within certain bounds of the descent velocity. The model illustrates several key 
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parameters and scalings that should be useful in future experimental and numerical work and 
may be a basis for less empirical approaches to predict the onset of vortex ring state. 
 
2. Model problem 
 
The model problem may be introduced most easily by considering an analogous problem in 
which a series of fixed wing aircraft fly into the wake left behind by the previous aircraft. The 
first aircraft releases a pair of equal and opposite circulation vortices from its wing tips, 
which then descend according to their mutual induction. Each successive aircraft adds a 
further pair of vortices into the flowfield and each vortex moves under the influence of all 
other vortices in the flow. We first simplify this process by introducing a constraint, namely 
that the vortices are confined for all time to the spanwise plane from which they originated; 
later this constraint will be dropped for comparison purposes.  
 
In dimensional variables (denoted with an asterisk) line vortices are released with circulation 

*±Γ  (positive for clockwise rotation) at 0z∗ =  and spanwise locations 2y b∗ ∗= ∓ , where b∗  
is the full wingspan. These vortices move according to their mutual induction and after a time 
delay T ∗  a new pair of vortices are released at 0z∗ =  and 2y b∗ ∗= ∓ . The situation is 

sketched on Figure 1, which also serves to define the distance ijr∗  between the i’th vortex on 

the right and the j’th vortex on the left. For completeness a relative descent velocity W ∗  is 
shown on the figure. After some time we have n vortex pairs and the velocity of the i’th 
vortex from the right-hand wing tip is given by a sum over all the vortices from the left hand 
wing tip. Note that there is no permitted self-induced velocity of the right hand column on 
any of the vortices in that column. Resolving only the vertical displacement, we have 
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where ( )22 *2 *
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We now normalise the problem by using the span b∗  and the time increment between 
successive vortex releases T ∗  as repeating variables, leading to the governing equation 
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is a dimensionless descent velocity and  
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T
D

b

∗ ∗

∗

Γ=         (4) 

is a loading parameter proportional to the distance travelled by a vortex under its self 
induction before the next vortex is released. The original four dimensional parameters of the 
problem (b∗ , *Γ , T ∗  and W ∗ ) have been reduced to two dimensionless parameters W and D. 
The correspondence with helicopter parameters is discussed later.  
 
Using second order Runge-Kutta time advancement, the vortex locations are advanced 
according to  
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where N substeps of size 1/h N=  may be used during the time between the release of each 
new vortex pair. 
 
An unconstrained model problem can also be defined. Here, the vortices are allowed to move 
in the spanwise direction. Following a similar derivation the equations of motion are: 

( ) ( ) ( ) ( )
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The first summation on the right hand side accounts for the vortices produced at 0.5y =  and 
the second for vortices released at 0.5y = − . The y and z locations are updated for all vortices 
using the same second order Runge-Kutta method as for the constrained problem. The 
parameter ε is included as a simple core model and acts to prevent large induced velocities as 
vortices come close to each other. 
 
Although the model has been developed above as a planar model, the prime application is to 
a rotorcraft and we will mainly use rotor terminology to describe the results. Thus, the plane 
where the vortices are injected is termed the rotor plane and we refer to hover, vortex ring 
and windmill brake states. Corrections to the planar model to extend the results to helicopters 
are discussed in Section 4. 
 
3. Results 
 
The governing equation involves two parameters W and D. Keeping 0.1D =  fixed and 
increasing W leads to the sequence shown on Figure 2 after the release of 1000 vortex pairs 
and using 20N =  substeps. In each figure a thick solid line shows the location of the rotor 
plane and we mark the location of each vortex, even though the left-hand column of vortices 
are simply mirror images of the right hand column. From left to right we firstly have 0.0W =  
modelling the hover state. Increasing the descent speed to 0.7W =  gives the second picture 
in which the vortices still descend regularly, but whose spacing is reduced. The next three 
pictures show results for 0.9W = , 1.1W =  and 1.3W = , all of which are unsteady and are 
classed as being in the vortex ring state. The vortices ejected downwards below the rotor 
plane are clustered together. At 0.9W =  all the vortices move downwards, while at 1.1W =  
and 1.3W =  some vortices escape upwards. The last image is for 1.5W =  where we see that 
the windmill brake state has been reached, in which all vortices move upwards relative to the 
rotor in an organised manner. The pattern continues for all higher descent velocities, with the 
only change being that the vortex spacing increases. 
 
Time traces for the same values of W are shown on figure 3, where we plot the time history of 

tw , the total velocity at the wing tip (z=0, y=0.5). Note that to better distinguish the curves 
the dimensionless descent velocity has been added in each case. For D=0.1, unsteady results 
are obtained for 0.86 1.40W≤ ≤ . After an initial transient, the hover ( 0.0W = ), slow descent 
( 0.7W = ) and windmill brake states ( 1.5W = ) all reach a steady state.  The intermediate 
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vortex ring state cases all exhibit periodic or quasi-periodic variation of tip induced velocity. 
The signal at 0.9W =  is periodic, while the higher two cases show evidence for subharmonic 
activity, although there is clearly a dominant frequency in each case. Chaotic motion was not 
seen for any value of W.  
 
The basic mechanism for the cyclic variation is the steady build-up of circulation above the 
rotor plane, fed by new vortices with each rotor passage. This is illustrated clearly on Figure 
4 which shows trajectories of all vortices up to 250n = for a case 1.1W =  and 0.1D = . 
Approximately the first 50 vortices that are released are lost upwards relative to the rotor. 
However as the total circulation in the system increases as more vortices are released, there is 
eventually (by about 70n = ) enough self-induced downward motion to prevent vortices 
moving upwards and they accumulate near the rotor plane. Eventually the circulation near the 
rotor plane builds to a sufficient strength for the vortex to begin moving downwards under its 
self-induced velocity. It continues to accumulate new vortices, and hence accelerates 
downwards, eventually being ejected from the rotor plane. After this release of circulation, 
new vortices then start to travel slowly upwards above the rotor plane typically extending up 
to 25% of span above the rotor plane, and the cycle repeats. At this value of W there are 
occasionally vortices which escape upwards during the cycle. It can be seen that the release 
of vortex agglomerations downwards is quasi-periodic, with an ejection velocity such that 
they cover one wing span in about five vortex releases, with this velocity increasing with 
increasing D. 
 
To study parametric influences, calculations have been run with up to 2500 vortex pairs for 

0.01D =  (with 2500n = and 2N = ), 0.1D =  (with 1000n = and 20N = ) and 1.0D = (with 
400n = and 200N = ) with appropriate scalings chosen to best collapse the data. The effect 

of the numerical parameter N is discussed later. The amplitude of the oscillations is measured 
as the peak-to-peak induced velocity variation pw , averaged over 20 periods (note that fewer 

vortices are required at high values of D since the periods are short. A normalized amplitude 
is defined as 

*
*

*

p
p

w T
A w

D
= =

Γ
.      (7) 

The amplitude variation over the unsteady range of descent parameter W is shown on Figure 
5. The unsteady range is similar for all D. Amplitudes are small as the lower threshold of W is 
crossed. A plateau is seen for0.95 1.2W< < , before a further rise towards 1.4W = , after 
which the windmill brake state is found. It should be noted that all these calculations start 
from a clean initial condition with no vortices in the flow. For these conditions 1.4W >  
always leads to a clean windmill state. In a helicopter configuration without forward flight, 
this upper boundary will be hysteretic: approaching it from below (helicopter accelerating 
downwards) will lead to the helicopter overtaking its previously-shed tip vortices, leading to 
unsteadiness well above this threshold. Approaching it from above (helicopter decelerating 
from a windmill state) will lead to a sudden onset of the unsteadiness. 
 
The unsteadiness is harmonic in nature and the dominant frequency, f, can be easily extracted 
from the signal. A non-dimensional frequency (or Strouhal number, St) which collapses the 
data is  

* * * *

*St
Wf W f b T

D
= =

Γ
     (8) 



 6 

This is plotted on figure 6; a typical Strouhal number St 0.136 0.017= ± is seen over the full 
range of unsteady values of W, with little dependence on the parameter D. The obvious 

alternative definition of a dimensionless frequency St f D=  appears less relevant. 
 
The change from a stable to a periodic state as a single parameter (W in this case) is varied 
may often be characterized as a Hopf bifurcation. Figure 7 shows the amplitude variation 
near the onset of the periodic state. The amplitude data for 0.1D =  fit a square root 

behaviour 1.06 0.8545A A= − , confirming that this is indeed an example of a Hopf 
bifurcation. 
 
The only numerical parameter in the problem is the number of substeps per introduction of a 
new vortex pair. For large numbers of substeps there is convergence for all cases. For the 
results shown previously we have taken 2,20,200N =  for 0.01,0.1,1.0D =  respectively. 
Increasing N in proportion to D keeps the effective local timestep the same in each case. 
Table 1 shows some comparisons of amplitude and Strouhal number for halving and doubling 
the number of substeps at 0.1D = . With 20N =  and averaging over 20 periods, Strouhal 
numbers have typically converged to better than 1% and amplitudes to better than 2%.  
 
Table 1. Effect of number of substeps N on amplitude A and Strouhal number St at 0.1D = , 

1.0W = . 
N A St 
10 0.3247 0.1473 
20 0.3271 0.1465 
40 0.3264 0.1465 

  
 
An unconstrained model was given in Section 2, in which the vortices are allowed to move in 
the y-z plane according to normal vortex dynamics, with a vortex core parameter ε. Examples 
of unconstrained computations with 0.01ε =  and 0.1D =  are shown on Figure 8 for two 
descent velocities 0.3W =  (left hand plot) and 1.1W =  (right hand plot). In each case the 
number of substeps was chosen as 20N = . In each case the flow is more chaotic than in the 
constrained problem. At 0.3W =  we can see that the initial motion of the vortices is smooth 
but the wake becomes unstable and chaotic quite quickly. Since this instability occurs away 
from the rotor plane the variations of tip induced velocity are small, with 0.006A ≈ . At the 
higher descent velocity of 1.1W =  this amplitude increases to 0.2A ≈ . The flow is chaotic, 
but the instantaneous picture does provide some indication that large agglomerations of 
vortices are being shed downwards. A power spectrum of the tip velocity at 1.1W =  is shown 
on Figure 9, comparing the constrained and unconstrained cases. In the constrained model 
there is evidence for first and second harmonics as well as the first subharmonic. For the 
constrained model the spectrum is broadband with a maximum at 0.167St = , which is close 
to the peak for the constrained model. This indicates that the constrained model is useful for 
extracting the mechanism of the dominant model from the otherwise noisy signal from the 
unconstrained model. 
 
The unconstrained model has a similar upper bound on the unstable region, with the windmill 
state emerging for descent velocities 1.4W > . The lower bound is less clear, as a wake-
breakup instability (cf. Leishman et al [4]) is present, resulting in some unsteadiness even for 
low values of W and a gradual ramping up of this amplitude as the VRS is approached.  
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4. Discussion 
 
The unconstrained model given at the end of Section 2 can be classed as a standard vortex 
dynamics treatment of the plane problem of a wing descending into the wake vortices of a 
succession of aircraft. Results from this model are complex, even in two dimensions, as 
shown in the previous section. The attraction of the constrained model is its simplicity and 
ability to demonstrate the key underlying dynamics, for example the periodic state of 
shedding of vortex agglomerations, which are otherwise buried in a complex time signal. The 
succession of flow states that emerge from the constrained model with increasing descent 
velocity, namely hover state, Hopf bifurcation to periodic shedding, and hysteretic transition 
to the windmill state, provide a different perspective on the vortex ring state seen in 
helicopter flight, emphasising unsteady aspects of the problem.  
 
An even simpler discrete algorithm may be derived if we consider explicit Euler time 
advance and choose 1N = . This simplified treatment still exhibits the main physical features 
presented in the previous section. Although numerical integration errors are now inseparable 
from the physical response, the quantitative effect of this is small for 0.1D < . Pseudo code 
for this case is given in Figure 10, illustrating the simplicity of the algorithm. Experience has 
shown that animations are the best way to visualize the response.  
 
A connection to standard helicopter terminology is possible if we take the rotor radius *R  to 
be * / 2b . The time between tip vortex injections is ( )* *2 bT Nπ= Ω , where *Ω  is the angular 

rotation rate (rad/s) and bN  is the number of blades. Assuming a constant circulation 

(Leishman [2] Section 3.3) we have 
*2 *

* 2 T

b

R C

N

π ΩΓ =          (9) 

where ( )* * *4 *2
T ZC F Rρ π= Ω  is a thrust coefficient based on the vertical force *

ZF ). Hence we 

can connect the parameter D with a helicopter thrust coefficient by 
2

2 T
b

D C
N

π=        (10) 

With a typical values of 0.01 0.05TC< <  and two blades (for equivalence with the planar 

wing model) we have 0.025 0.123D< < , which is within the range of values for which 
results have been given in the previous section. 
 
The descent velocity, normalised by the hover-induced downwash is defined by 

*

*
h

W

w
µ = ,       (11) 

with the hover-induced velocity given by 

* * *

2
T

h

C
w R= Ω .      (12) 

With a little rearrangement we have  
2Wµ =        (13) 

Two corrections are needed to make a direct comparison with helicopter results. Firstly, the 
induced velocity constant 1 2π in (2) for planar vortices needs to be changed for 
axisymmetric rings (e.g. to 0.291 for a concentrated Helmholz vortex ring); the effect of this 
is to increase the predicted cµ (the subscript c is used to denote the critical bifurcation value). 
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Secondly, account needs to be taken of the change in aerodynamic effectiveness of the rotor; 
for example a factor of three reduction in thrust coefficient (and hence the model circulation 

*Γ ) was seen by Stack et al. [6].  The combination of effects with the magnitudes given 
(approximately a factor of two increase for axisymmetric rings and factor of three reduction 

in aerodynamic efficiency) would be a slight reduction (by a factor of 1.5) in the predicted 

cµ  for VRS onset, down to 0.98cµ = . This compares with 0.6cµ = to 0.7cµ =  seen by 

Leishman et al [2,4] and 1.05cµ =  seen by Stack et al. We note that the aerodynamic 

efficiency effect is large, and could be included via a blade element model, with associated 
assumptions about the low Reynolds number and stalling behaviour of rotor blades. The 
detail of such a refinement necessarily involves additional empiricism; the main point to note 
is that the predicted values ofcµ from the simple constrained model are of similar order to the 

experimental data, indicating that the right physical phenomena have been captured. 
 Finally, it is noted that simple momentum theory is valid for the windmill brake state 

for 2µ >  [2]. Using (13), this is equivalent to 2W > , which is thus in close correspondence 
with the numerical result 1.40W > . 
 
5. Conclusions 
 
It has been shown how a simple vortex model with constrained motion is capable of 
reproducing some physical phenomena associated with the descent of a rotorcraft. At a 
critical descent speed there is a Hopf bifurcation from a steady hover state into a periodic 
solution. The mechanism involves a steady build-up of circulation above the rotor plane 
followed by ejection downwards of large agglomerations of vortices. A Strouhal number is 
defined and is shown to be able to collapse the frequency data. At high values of descent 
velocity there is a return to a windmill brake state where all vortices travel upwards relative 
to the rotor. The model offers a rational basis for predicting the onset of vortex ring state and 
identifies some important physics contained within a more complex line vortex and vortex 
filament simulations, but hidden by the presence of other complexities such as wake roll-up 
of vortices.  
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Figure 1. Schematic of the vortex arrangement in hover or slow descent. 
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Rotor plane

Figure 2. Transition from hover (left) to vortex ring (middle) to windmill (right). 
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Figure 3.Time variation of tip induced velocity tw , covering the rage of descent velocities 

from hover ( 0.0W = ) to windmill brake state ( 1.5W = ). For clarity the curves are shifted by 

plotting tw W+ . 
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Figure 4. Vortex trajectories up to 250N =  1.1W = 0.1D =  showing the clustering of 

vortices above the rotor plane before ejection downwards. 
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Figure 5. Normalised peak-to-peak amplitude pw  as a function of normalised descent 

velocity for loading parameter values D=0.01, 0.1 and 1.0 
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Figure 6. Strouhal number as a function of normalised descent velocity for loading parameter 

values D=0.01, 0.1 and 1.0. 
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Figure 7. Amplitude variation near the onset of oscillations, with the square root behaviour 

confirming the presence of a Hopf bifurcation. 
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Figure 8. Unconstrained model showing two configuration, both for D=0.1 (a) W=0.3 

showing the wake breakup, but low unsteadiness in the rotor plane (amplitude A=0.006) and 

(b) W=1.1 in highly unsteady (A=0.2) vortex ring state. 
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Figure 9. Spectrum of tip induced velocity from constrained (dashed line) and unconstrained 

(solid line) model at W=1.1, D=0.1.  

 

 

for n=1:nmax 
z(n)=0. 
for i=1:n 

w(i)=0. 
for j=1:n 

w(i)=w(i)-1./(1.+(z(i)-z(j))^2) 
end 

end 
for i=1:n 

z(i)=z(i)+W*sqrt(D)+D*w(i)/(2.*pi) 
end 

end 
 
Figure 10. Pseudo code of a simple dynamical system representing the helicopter in descent. 
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