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Abstract

A planar model of a lifting surface descending into itsievake is constructed with the aim
of demonstrating some underlying mechanisms of the ‘voingkstate that may be entered
by a rotary wing aircraft during a vertical descent. firwaelel uses line vortices that are
periodically released from a point in space and themvalll to evolve in a constrained
manner. For low descent velocities the model reprodubesex state, where the wake
vortices move downwards relative to the lifting planecriical descent speed is reached
after which the model produces a quasi-periodic sheddingrt#xvagglomerations. This
state is reached via a Hopf bifurcation of the steadg sitad persists until another critical
descent velocity after which a steady windmill braletests possible, in which vortices travel
upwards in a regular manner. Unconstrained simulatiormt@more chaotic vortex pattern,
but frequency analysis reveals an underlying structure sitnildnat shown for the
constrained model. Besides offering a qualitative undetstgrof possible mechanisms of
vortex ring state, the analysis suggests some dimeas®phrameters that collapse the
model data.
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1. Introduction

Under normal flight conditions the vorticity shed freech blade of a helicopter coalesces
into a single tightly wound vortex, which then descendk a helical structure under the
rotor. These vortices can sometimes be observedyit fihotographs, when conditions are
right for condensation to occur in the vortex coreg. (Eig 2.2 in Leishman [2]). A similar
vortex pattern occurs when a helicopter descends yapitthe windmill brake state, except
that in this case vortices are shed in helices upweasdsthe rotor plane. In between these
two regular states there exists a flight regime in wthehhelicopter descends into its own
wake vortices. This flight condition is usually knownvastex ring state (VRS) and,
although known since the early days of helicopter flight recently been the subject of
research following its possible implication in crasbethe V-22 Osprey tilt-rotor aircraft

Recent experiments and numerical simulations have fiediée understanding of vortex
ring state. Stack et al [6] conducted experiments in angptank and were able to measure
the long time response of the rotor wake. For descgmesnf 50° and 60° they observed a
high-amplitude periodic variation of rotor thrust coeéiat, which they note as a classic
vortex ring state. For vertical descent (90°) they oleskavsignificant (factor of three) drop
in thrust coefficient over a similar range of descssbcities, but with an aperiodic time
history. For cases with a clear periodic responsepshélation periods were in the range of
20 to 50 rotor revolutions, equivalent to 60 to 150 blade tip pasdar their three-bladed
rotor, which operated in hover at a thrust coefficifn€Cp= 0.01. The periodic state was

observed to involve the formation of rings of increasingngith above the rotor plane,
disrupting the flow past the blades. The vortex then tethand convected below the rotor
plane forming an unsteady wake. Entry to VRS statefaand at a normalised descent

velocity ofg =1.05( ¢ =W"/w, , with dimensional descent velocity” , hover-induced

velocity W, =(T, /20 A , thrustT,, densityp” and rotor area\’). Exit from VRS
occurred in the range.8< i < 2.C depending on horizontal velocity.

Simple momentum theory breaks down in the vorteg state, although we note that an
extended momentum theory has been used by Newnaf5¢to obtain a more limited
objective of an empirical model for the onset baamydf VRS. Attempts to model the full
VRS phenomenon are mainly focused on vortex methagishman et al [3,4] report in detail
on the application of three-dimensional vortexrfient methods. The time duration of such
computations is limited by cost, but they offeriavaluable insight into the mechanisms of
entry into vortex ring state. For descent velositie= 0.6 and ¢ =0.7 they observe a

transition to vortex ring state. In ‘incipient’ VR& ¢ = 0.6 they observe the accumulation of

individual tip vortices into a large vortex above trotor plane, whereas in the full developed
VRS at 7 =0.7 this vortex develops and disrupts the flow inttbir plane. The process is

seen as essentially one of repeated accumulatfdasge rings followed by breakdown and
convection away from the rotor. In a closely rafaséudy, Brown et al [1] compared two
different numerical methods and observed similgss using a vorticity transport model
compared to the free-vortex method of Leishman. et a

The intention of this short contribution is to posp a simple vortex dynamical model that
seems to capture the physics responsible for thelafment of a particular quasi-periodic
state within certain bounds of the descent velodibe model illustrates several key



parameters and scalings that should be usefutimdwexperimental and numerical work and
may be a basis for less empirical approaches ttighrie onset of vortex ring state.

2. Model problem

The model problem may be introduced most easilgdnsidering an analogous problem in
which a series of fixed wing aircraft fly into tixake left behind by the previous aircraft. The
first aircraft releases a pair of equal and oppasitculation vortices from its wing tips,

which then descend according to their mutual indacttach successive aircraft adds a
further pair of vortices into the flowfield and éaeortex moves under the influence of all
other vortices in the flow. We first simplify thigocess by introducing a constraint, namely
that the vortices are confined for all time to spanwise plane from which they originated,;
later this constraint will be dropped for companigurposes.

In dimensional variables (denoted with an astelisk) vortices are released with circulation
+["" (positive for clockwise rotation) a” =0 and spanwise locationg’ = xb"/2, whereb"

is the full wingspan. These vortices move accordintpeir mutual induction and after a time
delay T" a new pair of vortices are releasedzat 0 and y” = xb"/2. The situation is

sketched on Figure 1, which also serves to defiealistance;’ between théth vortex on

the right and th@th vortex on the left. For completeness a relatlescent velocityV" is
shown on the figure. After some time we haweortex pairs and the velocity of thinh

vortex from the right-hand wing tip is given byansover all the vortices from the left hand
wing tip. Note that there is no permitted self-indd velocity of the right hand column on
any of the vortices in that column. Resolving othlg vertical displacement, we have

w3 b 1)

* * 2
wherer;” =b™ +(zi —sz) :
We now normalise the problem by using the spaand the time increment between

successive vortex releas€s as repeating variables, leading to the governinggon

w =W -2 [1+(7-7)'] @

w [T
W—W\/:* (3

is a dimensionless descent velocity and

e

o (4)
is a loading parameter proportional to the distareeelled by a vortex under its self
induction before the next vortex is released. Titigiral four dimensional parameters of the
problem ©°,", T” andW") have been reduced to two dimensionless paramatarsiD.
The correspondence with helicopter parametersudsed later.

where

D=

Using second order Runge-Kutta time advancemeatydrtex locations are advanced
according to



2% =7 +hw
Zik+1 — Zik + h\/\/,k%

whereN substeps of siz&@=1/N may be used during the time between the releasaabf
new vortex pair.

(5)

An unconstrained model problem can also be defiHede, the vortices are allowed to move
in the spanwise direction. Following a similar gation the equations of motion are:

=1 (Zi —zj)2+(yi —y,-)2+€ =1 (Zi —zj)2+(yi +y,-)2+€

(6)

W =WVB+ 2 ) Yy DAL
2 (z-z) +(v-y) +e F(a-z) +(v+y) +e
The first summation on the right hand side accofortghe vortices produced gt=0.5 and
the second for vortices releasedyat —0.5. They andz locations are updated for all vortices

using the same second order Runge-Kutta methaar &isef constrained problem. The
parametek is included as a simple core model and acts teeptdarge induced velocities as
vortices come close to each other.

Although the model has been developed above amampinodel, the prime application is to
a rotorcraft and we will mainly use rotor termingjoto describe the results. Thus, the plane
where the vortices are injected is termed the nome and we refer to hover, vortex ring
and windmill brake states. Corrections to the planadel to extend the results to helicopters
are discussed in Section 4.

3. Reaults

The governing equation involves two parameWmsndD. Keeping D =0.1 fixed and
increasing W leads to the sequence shown on FRjafeer the release of 1000 vortex pairs
and usingN = 20 substeps. In each figure a thick solid line shtiveslocation of the rotor
plane and we mark the location of each vortex, ¢hengh the left-hand column of vortices
are simply mirror images of the right hand coluarom left to right we firstly hav&Vv =0.0
modelling the hover state. Increasing the desqesedtoW =0.7 gives the second picture
in which the vortices still descend regularly, fadiiose spacing is reduced. The next three
pictures show results fa/ =0.9, W =1.1 andW =1.3, all of which are unsteady and are
classed as being in the vortex ring state. Thacastejected downwards below the rotor
plane are clustered together.\At=0.9 all the vortices move downwards, whileVet=1.1
andW =1.3 some vortices escape upwards. The last image Wfe1.5 where we see that
the windmill brake state has been reached, in walicortices move upwards relative to the
rotor in an organised manner. The pattern contifreall higher descent velocities, with the
only change being that the vortex spacing increases

Time traces for the same values/éfire shown on figure 3, where we plot the timeadnisof
w,, the total velocity at the wing tiz£0, y=0.5). Note that to better distinguish the curves
the dimensionless descent velocity has been addeach case. F&=0.1, unsteady results
are obtained fo0.86<W < 1.4C. After an initial transient, the hoveW=0.0), slow descent
(W =0.7) and windmill brake state$\( =1.5) all reach a steady state. The intermediate



vortex ring state cases all exhibit periodic orghgeeriodic variation of tip induced velocity.
The signal aWW = 0.9 is periodic, while the higher two cases show evigefor subharmonic
activity, although there is clearly a dominant fregcy in each case. Chaotic motion was not
seen for any value o¥.

The basic mechanism for the cyclic variation issteady build-up of circulation above the
rotor plane, fed by new vortices with each rotasgaaye. This is illustrated clearly on Figure
4 which shows trajectories of all vortices uprte 250for a caseN =1.1and D =0.1.
Approximately the first 50 vortices that are relsare lost upwards relative to the rotor.
However as the total circulation in the systemeases as more vortices are released, there is
eventually (by abouh =70) enough self-induced downward motion to prevemtises

moving upwards and they accumulate near the rdémep Eventually the circulation near the
rotor plane builds to a sufficient strength for tleetex to begin moving downwards under its
self-induced velocity. It continues to accumulaggvrvortices, and hence accelerates
downwards, eventually being ejected from the rptane. After this release of circulation,
new vortices then start to travel slowly upwards\atbthe rotor plane typically extending up
to 25% of span above the rotor plane, and the aggleats. At this value &Y there are
occasionally vortices which escape upwards duliegccle. It can be seen that the release
of vortex agglomerations downwards is quasi-peciodith an ejection velocity such that
they cover one wing span in about five vortex redsawith this velocity increasing with
increasingD.

To study parametric influences, calculations haaentbrun with up to 2500 vortex pairs for

D =0.01 (with n=2500and N =2), D =0.1 (with n=1000and N =20) and D =1.0(with
n=400and N = 200) with appropriate scalings chosen to best colldpsalata. The effect

of the numerical parametbris discussed later. The amplitude of the osadilfaiis measured
as the peak-to-peak induced velocity variatign averaged over 20 periods (note that fewer

vortices are required at high valuedo$ince the periods are short. A normalized ampaitud

is defined as
w \ /T*
A:TE) = Wp F . (7)

The amplitude variation over the unsteady ranggestent paramet#&Y is shown on Figure
5. The unsteady range is similar for@llAmplitudes are small as the lower thresholi\as
crossed. A plateau is seen @095<W < 1.Z, before a further rise towardfg =1.4, after
which the windmill brake state is found. It shobll noted that all these calculations start
from a clean initial condition with no vorticestime flow. For these condition& >1.4

always leads to a clean windmill state. In a h@lieo configuration without forward flight,
this upper boundary will be hysteretic: approachirfigpm below (helicopter accelerating
downwards) will lead to the helicopter overtakitgpreviously-shed tip vortices, leading to
unsteadiness well above this threshold. Approackifigm above (helicopter decelerating
from a windmill state) will lead to a sudden onskthe unsteadiness.

The unsteadiness is harmonic in nature and therdorhfrequencyf, can be easily extracted
from the signal. A non-dimensional frequency (ao8hal number, St) which collapses the
data is
WE_ W fbT
= = - 8
NCR ©

St



This is plotted on figure 6; a typical Strouhal menSt= 0.136t 0.01is seen over the full
range of unsteady values\& with little dependence on the paramddefThe obvious

alternative definition of a dimensionless frequety f/ JD appears less relevant.

The change from a stable to a periodic state agyeparametenW/ in this case) is varied
may often be characterized as a Hopf bifurcatiaguie 7 shows the amplitude variation
near the onset of the periodic state. The amplitledea forD = 0.1 fit a square root

behaviourA =1.06J A—- 0.854¢, confirming that this is indeed an example of aHo
bifurcation.

The only numerical parameter in the problem isrtliber of substeps per introduction of a
new vortex pair. For large numbers of substepstleeconvergence for all cases. For the
results shown previously we have takidre 2,20, 20( for D =0.01,0.1,1.( respectively.
Increasing\N in proportion toD keeps the effective local timestep the same in easé.

Table 1 shows some comparisons of amplitude arliSat number for halving and doubling
the number of substeps Bt=0.1. With N =20 and averaging over 20 periods, Strouhal
numbers have typically converged to better tharab®hamplitudes to better than 2%.

Table 1. Effect of number of substdp®n amplitudeA and Strouhal number St Bt=0.1,
W =1.0.

N A St

10 0.3247 0.1473
20 0.3271 0.1465
40 0.3264 0.1465

An unconstrained model was given in Section 2, lictv the vortices are allowed to move in
they-z plane according to normal vortex dynamics, witloetex core parameter Examples
of unconstrained computations with=0.01 and D = 0.1 are shown on Figure 8 for two
descent velocitiesV = 0.3 (left hand plot) andV =1.1 (right hand plot). In each case the
number of substeps was choseri\as 20. In each case the flow is more chaotic than in the
constrained problem. AV =0.3 we can see that the initial motion of the vortisesmooth
but the wake becomes unstable and chaotic quitkiguBince this instability occurs away
from the rotor plane the variations of tip indusedbcity are small, witlA= 0.006. At the
higher descent velocity & =1.1 this amplitude increases Ac= 0.2. The flow is chaotic,

but the instantaneous picture does provide someaition that large agglomerations of
vortices are being shed downwards. A power spectriutime tip velocity atV =1.1 is shown
on Figure 9, comparing the constrained and uncainsiil cases. In the constrained model
there is evidence for first and second harmoniagedkas the first subharmonic. For the
constrained model the spectrum is broadband witlc@mum a& =0.167, which is close

to the peak for the constrained model. This inéisdhat the constrained model is useful for
extracting the mechanism of the dominant model ftioenotherwise noisy signal from the
unconstrained model.

The unconstrained model has a similar upper bouartth® unstable region, with the windmill
state emerging for descent velociti®s>1.4. The lower bound is less clear, as a wake-
breakup instability (cf. Leishman et al [4]) is pe@t, resulting in some unsteadiness even for
low values oW and a gradual ramping up of this amplitude asARS8 is approached.



4. Discussion

The unconstrained model given at the end of Se&ioan be classed as a standard vortex
dynamics treatment of the plane problem of a wiegcdnding into the wake vortices of a
succession of aircraft. Results from this modelcam@plex, even in two dimensions, as
shown in the previous section. The attraction efdabnstrained model is its simplicity and
ability to demonstrate the key underlying dynamiosexample the periodic state of
shedding of vortex agglomerations, which are otiswuried in a complex time signal. The
succession of flow states that emerge from thetcained model with increasing descent
velocity, namely hover state, Hopf bifurcation &ripdic shedding, and hysteretic transition
to the windmill state, provide a different perspezbn the vortex ring state seen in
helicopter flight, emphasising unsteady aspecth@problem.

An even simpler discrete algorithm may be derifede consider explicit Euler time
advance and choose =1. This simplified treatment still exhibits the maihysical features
presented in the previous section. Although nuraénitegration errors are now inseparable
from the physical response, the quantitative efbéc¢his is small forD <0.1. Pseudo code
for this case is given in Figure 10, illustratitng tsimplicity of the algorithm. Experience has
shown that animations are the best way to visu#iieeesponse.

A connection to standard helicopter terminologpassible if we take the rotor radils to
be b'/2. The time between tip vortex injectionsTis= 2ﬂ/(NbQ* ) whereQ’ is the angular

rotation rate (rad/s) antl, is the number of blades. Assuming a constant leiticun
(Leishman [2] Section 3.3) we have
N
o 2TRPQ'C ©)
Nb
whereC, = Fz*/(p* mR* Q? ) is a thrust coefficient based on the vertical éofF¢’ ). Hence we

can connect the parameter D with a helicopter tlrosfficient by
772
= 10
Nz G (10)

With a typical values 00.01<C; < 0.0f and two blades (for equivalence with the planar

wing model) we hav®.025< D < 0.12, which is within the range of values for which
results have been given in the previous section.

The descent velocity, normalised by the hover-iedudownwash is defined by
w’
= 11
W, (11)
with the hover-induced velocity given by

e G w2

With a little rearrangement we have

1=W-/2 (13)
Two corrections are needed to make a direct cosgamvith helicopter results. Firstly, the
induced velocity constard{ 277in (2) for planar vortices needs to be changed for
axisymmetric rings (e.g. to 0.291 for a concenttaielmholz vortex ring); the effect of this
is to increase the predictgd (the subscript is used to denote the critical bifurcation value).



Secondly, account needs to be taken of the chaingerodynamic effectiveness of the rotor;
for example a factor of three reduction in thrustféicient (and hence the model circulation
") was seen by Stack et al. [6]. The combinatioaffects with the magnitudes given
(approximately a factor of two increase for axisyatrc rings and factor of three reduction

in aerodynamic efficiency) would be a slight reduct(by a factor of/1.5) in the predicted
M. for VRS onset, down tg, = 0.98. This compares with, =0.6to 1, =0.7 seen by

Leishman et al [2,4] angl, =1.05 seen by Stack et al. We note that the aerodynamic

efficiency effect is large, and could be includéal & blade element model, with associated
assumptions about the low Reynolds number andngtddehaviour of rotor blades. The
detail of such a refinement necessarily involveditazhal empiricism; the main point to note
is that the predicted valuesgffrom the simple constrained model are of similatenito the

experimental data, indicating that the right phgbsghenomena have been captured.
Finally, it is noted that simple momentum theayalid for the windmill brake state

for ©>2 [2]. Using (13), this is equivalent\m>\/§ , Which is thus in close correspondence
with the numerical resultv >1.40.

5. Conclusions

It has been shown how a simple vortex model withst@ined motion is capable of
reproducing some physical phenomena associatedhetiescent of a rotorcraft. At a
critical descent speed there is a Hopf bifurcafiom a steady hover state into a periodic
solution. The mechanism involves a steady buildugirculation above the rotor plane
followed by ejection downwards of large agglomemasi of vortices. A Strouhal number is
defined and is shown to be able to collapse thguiacy data. At high values of descent
velocity there is a return to a windmill brake stathere all vortices travel upwards relative
to the rotor. The model offers a rational basispiadicting the onset of vortex ring state and
identifies some important physics contained witdnimore complex line vortex and vortex
filament simulations, but hidden by the presencetbér complexities such as wake roll-up
of vortices.
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Figure 1. Schematic of the vortex arrangement irehor slow descent.
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Figure 2. Transition from hover (left) to vortergi (middle) to windmill (right).
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Figure 3.Time variation of tip induced velocity, covering the rage of descent velocities

from hover YV =0.0) to windmill brake stateW =1.5). For clarity the curves are shifted by
plotting w, +W .

Figure 4. Vortex trajectories up td =250 W =1.1D =0.1 showing the clustering of

vortices above the rotor plane before ejection deavds.
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Figure 5. Normalised peak-to-peak amplitude as a function of normalised descent

velocity for loading parameter valuBs0.01, 0.1 and 1.0
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Figure 6. Strouhal number as a function of norredlidescent velocity for loading parameter
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confirming the presence of a Hopf bifurcation.
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Figure 9. Spectrum of tip induced velocity from stvained (dashed line) and unconstrained
(solid line) model avw=1.1,D=0.1.

f or

end

n=1: nmax
z(n)=0.
for i=1:n
w( i) =0.
for j=1:n
wii)=w(i)-1./(1. +(z(i)-z(j))"2)
end
end
for i=1:n

z(i)=z(i)+Wsqrt (D) +DWi)/ (2. *pi)
end

Figure 10. Pseudo code of a simple dynamical sysépnesenting the helicopter in descent.
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