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Efficient designing of the turbine blades is critical to the performance of an aircraft engine. 

An area of significant research interest is the capture of manufacturing uncertainty in the 

shapes of these turbine blades. The available data used for estimation of this manufacturing 

uncertainty inevitably contains the effects of measurement error/noise. In the present work, 
we propose the application of Principal Component Analysis (PCA) for de-noising the 

measurement data and quantifying the underlying manufacturing uncertainty. Once the 

PCA is performed, a method for dimensionality reduction has been proposed which utilizes 

prior information available on the variance of measurement error for different 

measurement types. Numerical studies indicate that approximately 82% of the variation in 

the measurements from their design values is accounted for by the manufacturing 

uncertainty, while the remaining 18% variation is filtered out as measurement error. 

Nomenclature 

   C = covariance matrix 

   m = number of measurement locations 

   n  = number of samples 
   V = matrix of eigenvectors 

   D = diagonal matrix 

   σ  = standard deviation 

   p  = total number of repeated trials 

   q  =  number of samples for repeated measurements 

   o  =   number of operators 

         t  =   number of repeated measurements by each operator 

   r   =  rank of a matrix 
   e  = measurement error matrix 

   a  = measurement location true thickness value matrix 

   k  = number of principal components 

   d  =  dimensionality obtained from PCA 

 

         Subscripts and Superscripts 
   T  = matrix transpose 

    i  = row number 
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I. Introduction 

URBINE blades are critical to the performance of an aircraft engine. Identification and quantification of the 

various types of manufacturing uncertainties in the process of turbine blade manufacture has become a field 

of research that is claiming increased attention from leading aircraft engine manufacturing companies. “With the 

introduction of new market paradigms like Power By The Hour and TotalCare contracts, the engine manufacturers 

have undertaken the responsibility for providing overall lifetime support to the engine, from the time the engine is 

delivered to the customer until the engine goes out of service”[1-3]. Therefore, characterization and quantification of 
these manufacturing uncertainties is an important issue in the aircraft engine manufacturing industry due to the 

effect of these uncertainties on the overall efficiency, performance and life of the engine. At present, not much 

literature is available on the kind of manufacturing uncertainties that can arise in the final shape of the turbine 

blades.  

In the present work, we consider cooled intermediate pressure (IP) turbine blades which thus have both external 

and internal design features. In the discussions that follow, knowledge of the sources of manufacturing uncertainties 

is based on first-hand experience at the Precision Casting Facility (PCF), Rolls Royce plc., Derby. Regular 

discussions have also been held with manufacturing and design engineers.  
Manufacturing of IP turbine blades involves processes such as casting, grinding and polishing, all of which can 

contribute to shape variation in the blade from its design value. Casting in itself is a very complicated process 

involving a series of steps and procedures, e.g. designing and manufacturing the moulds, pouring in the hot molten 

metal, cooling of the casts, and, extraction of blades from moulds. In addition, certain less controllable parameters 

like temperature, pressure and humidity of the surroundings also add to these uncertainties. Therefore, identification 

of the nature and sources of manufacturing uncertainty and then the quantification of this manufacturing uncertainty 

is a significant task. Various experimental methods and techniques, both destructive and non-destructive, are 

available for quantification of this uncertainty.  
One of the destructive techniques is slicing up the sample blades and making internal and external measurements 

on the blade slices. However, the implementation of this technique depends on the number of blades available for 

cutting up into slices which may be very expensive to the high cost of production of each blade. Besides, the 

technology and procedure used for cutting up the blades has to be carefully selected in order to obtain slices with 

smooth cut-up surfaces that could be used for precise measurements. Also, the dimensions measured for comparison 

with the design values need to be selected and registered with great care.  

One form of a non-destructive technique is to experimentally obtain 3-D scans of the blades and then compare 

these scans with the designed blade shapes. This process involves highly powered X-ray micro-Computed 
Tomography (CT) scanners for the high density nickel alloy blades. Such high-powered micro-CT scanners are not 

easily available and obtaining 3-D scans on the turbine blades with good resolution is a very expensive and time-

consuming process. Another non-destructive technique is physically making measurements on the surfaces of the 

manufactured blades and comparing these measurements with the design values. This is a complicated process due 

to the complex shape of the blade. Moreover, it gives us no idea of the internal shape variations in the blade, 

especially for the air-cooled and film-cooled blades which have cooling passages inside them.  

Another non-destructive technique, which is being used successfully during the manufacturing process, is 

making ultrasonic measurements on the blade. This technique uses ultrasonic beams to measure the wall thickness of 
the blade at various cross-sections and at various points across these cross-sections to record the final shape of the 

manufactured blade. Besides ultrasonic measurements of wall thicknesses, the other non-destructive evaluation 

techniques that are currently in use for this purpose are impulse-video-thermography [5], X-ray tomography [6] and 

eddy current technique [7]. Ultrasonic wall thickness measurement data can easily be corrupted by errors introduced 

during the measurement process. Various factors are responsible for introducing measurement errors in the blade 

thickness measurements e.g. error in calibration of the ultrasonic device, error in orientation of the blade when the 

objective is to align it perpendicular to the ultrasonic head, error due to the measured surface being out of view, 

human error, etc. Therefore, it becomes desirable to filter out any error/noise from the measured data to get the final 
shape of the blade that would represent the actual manufactured blade. 

Principal Component Analysis (PCA) is one of the statistical techniques widely employed in de-noising 

measurement data. PCA is used in various fields like electrocardiogram (ECG) data compression in biomedicine [8], 

electrical impedance tomography (EIT) in imaging techniques [9] , face recognition [10, 11] , gene expression analysis 

in bioinformatics [12], oceanography [13, 14], climatology [15], geophysics [16, 17], geology [18], astronomy [19, 20], shape 

prediction of femoral heads from partial information [21], reconstruction of human body shapes from range scans in 

Computer Graphics [22] etc. Lately, more complicated forms of PCA have been developed and demonstrated on 

varying sets of data. Smidl and Quinn [23] proposed Bayesian principal component analysis and demonstrated the 
advantages of orthogonal variational PCA (OVPCA) on scintigraphic dynamic image sequence of kidneys. Tipping 
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and Bishop [4] demonstrated the advantages of Probabilistic Principal Component Analysis (PPCA) by applying the 

technique on a set of Tobamovirus data (a genus that contains viruses that infect plants). Hagan, Roble, Russell and 

Mlynczak [17] made use of Complex Principal Component Analysis (CPCA) on satellite data for planetary wave and 

tidal analysis in the middle atmosphere.  
The objective of this paper is to demonstrate the application of PCA in separation of measurement variability 

from measured turbine blade thickness data to obtain the expected actual thicknesses of the manufactured blades that 

include the effects of manufacturing uncertainty. This paper also proposes an approach to dimensionality reduction 

after PCA has been performed on the blade thickness data. The proposed approach to dimensionality reduction finds 

application only when prior information on the measurement error is available. The variance of the measurement 

error at each measurement position is used as the threshold for cut-off to decide upon the number of principal 

components (PCs) to be retained.  

The flow of discussion in this paper is as follows. In Section II we give an introduction to PCA in terms of its 
mathematical formulation. In Section III, various techniques that may be used for dimensionality analysis are 

presented and the proposed approach to dimensionality reduction has been discussed in detail. Section IV discusses 

the application of PCA and the dimensionality reduction techniques to the measured turbine blade data. Section V 

discusses the concluding remarks and is followed by acknowledgements and references. 

 

II. Introduction to PCA 

Principal Component Analysis is a non-parametric method of extracting relevant information from complicated 

datasets [24]. “It is a way of identifying patterns in data, and expressing the data in such a way as to highlight their 

similarities and differences” [11]. Let X be an m x n matrix, where m is the number of measurement types and n is the 

number of samples. Let Y be another m x n matrix related by a linear transformation P. If X is the original recorded 

dataset and Y is a re-representation of that dataset, we can apply a linear transformation to X such that, 
 

                                                                                       PX = Y.                                                                                  (1)                                                                               

 

Equation (1) represents a change of basis such that P is a matrix that transforms X into Y. The goal of PCA is to find 

the orthonormal matrix P where Y = PX such that the covariance matrix of Y, namely 
T
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diagonalized. The rows of P are the principal components of X. We begin by rewriting YC  in terms of our variable 
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where,                                                                           
T

XXA ≡ .                                                                (4) 
 

In equation (4), A is a symmetric matrix which is diagonalized by an orthogonal matrix of its eigenvectors such 

that:                     

                                                                                   
T

VDVA = ,                (5) 

 

where D is a diagonal matrix and V is a matrix of eigenvectors of A arranged as columns. 

The matrix A has mr ≤  orthonormal eigenvectors where r is the rank of the matrix. The rank of A is less than m 

when A is degenerate or all data occupy a sub-space of dimension mr ≤ . Maintaining the constraint of 

orthogonality, this situation can be remedied by selecting (m – r) additional orthonormal vectors to “fill up” the 

matrix V. These additional vectors do not affect the final solution because the variances associated with these 

directions are zero. 
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We select the matrix P to be a matrix where each row ip  is an eigenvector of 
T

XX . By employing this 

selection, 
T

VP ≡ . Substituting into equation (5), we find DPPA
T

= . Also, we know that the inverse of an 

orthogonal matrix is its transpose, i.e., for our case 
1T

PP
−

= . Evaluating YC  from these two relations, we get: 
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From equation (7), it is evident that the choice of P diagonalizes YC . For a more elaborate description of the 

theoretical and computational aspects of PCA, the reader is referred to the works by Smith, Jolliffe, Mandel and 
others [11, 12, 24-27]. 

 

III. Dimensionality Reduction 

Once the PCA has been performed, the next issue is choosing the number of Principal Components (PCs) to be 

retained in order to account for most of the variation in X [27, 28]. Numerous techniques for dimensionality reduction 

are available in the literature [27, 29, 30]. Many readymade packages in MATLAB are also available which perform 

dimensionality reduction for a given dataset [30]. Some of the techniques which are proposed in the literature are, – 1) 

selecting a cumulative percentage of total variation such that the selected PCs contribute say 80% or 90% of the total 

variation [27], 2) Kaiser’s rule which retains only those PCs whose variances exceed 1 [27], 3) Scree Graph [12, 27]
 and 

the Log-Eigenvalue Diagram [27], 4) Bayesian Model selection 
[28] etc. A detailed description of these techniques can 

be found in the works from Jollife [27] and Minka [28]. Other dimensionality reduction techniques for which 

readymade packages are available in MATLAB are Correlation dimension estimator, Nearest neighbour estimator, 

Maximum likelihood estimator, Eigenvalue-based estimator, Packing numbers estimator and Geodesic minimum 

spanning tree (GMST) estimator. Further information on these techniques is available in An Introduction to 

Dimensionality Reduction Using Matlab by Maaten [30]. This paper discusses essential details of the two techniques, 

namely, Cumulative Percentage of Total Variation and The Scree Graph, since they have been used for validating 

the results obtained from the application of the proposed dimensionality reduction technique to the measurement 

dataset.  
 

A. Cumulative Percentage of Total Variation 
Let us assume that the number of PCs to be retained after PCA has been performed is represented by d. This 

technique proposes a criterion for dimensionality reduction such that a cumulative percentage of the total variation 

accounted for by the first d PCs is calculated. The number d is selected such that it accounts for anything between 

70% to 90% of the total variation, depending upon the details of the particular dataset being analysed. The 

cumulative percentage of the total variation accounted for by the first d PCs may be mathematically represented as 

below: 

                                              Cumulative percentage = ∑∑
==

m

k
k

d

k
k evev /

11

100 ,                                                     (8) 

where, kev  represents the kth eigenvalue [27].  

 

B. The Scree Graph 

The scree graph proposes dimensionality reduction through a graphical observation of the kev vs. k plot. The 

dimensionality d is selected equal to the value of k such that the slopes of lines joining the plotted points are ‘steep’ 

to the left of k and ‘shallow’ to the right of k 
[27].   

 

C. Dimensionality reduction using prior information on Measurement Error 
The techniques discussed above are very useful when there is no prior knowledge of the noise that needs to be 

filtered out of the measurement data. However, if we have information available on the noise that is to be removed 
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from the target input matrix X, it is more desirable to use this knowledge for aiding the selection of minimum 

number of PCs that should be retained.  

Due to the availability of data on the measurement error introduced for various measurement types, in the 

present work, we use this information as the threshold for cut-off when selecting the number of PCs to be retained. 
Here, information on the measurement error is available in the form of repeated trials of the same experiment on the 

same sample by o different operators, where each operator repeats each trial on the same sample t times. This is 

done for q different randomly selected samples. The measurement noise information is converted into a data matrix 

N such that each row is populated with the measurements taken on the same measurement position and each column 

contains the measurements from a particular trial. For each sample, N can be represented as a m x p matrix where m 

represents the number of measurement types and  p = o x  t. The variance of each row of N (say in , where i is the 

number of rows) can be represented as the sum of the variance of actual value of the measurement type (say ia ) and  

variance due to the measurement error (say ie ), 

                                                                   )(
2

)(
2

)(
2

iii ean σσσ += .                                                                    (9)  

                                             

The actual value of the same measurement type for repeated measurements on the same sample is constant. 

Thus, 0)(
2

=iaσ . Substituting this in equation (9) we get, 

                                                                          )(
2

)(
2

ii en σσ = .                                                                           (10) 

 

Therefore, the variance of each row in the data matrix N represents the variance of the measurement error. Similarly, 

these variances can be calculated for q different samples. The variances calculated for each of these samples for m 

different measurement types could be consolidated into one m x q variance matrix. The mean of each row of the 

variance matrix would finally result in m different values, one each for m different measurement types, which may 
then be used as the threshold for cut-off while selecting the number of PCs to be retained. 

 

IV. Numerical Studies 

Wall thickness measurements were taken through ultrasonic measurement devices on a set of 1050 randomly 

selected IP air-cooled turbine blades. This measurement data was made available by the Precision Casting Facility 

(PCF), Rolls Royce plc., Derby. The thicknesses were measured across three cross-sections (Tip, Mid and Root of 

the blade) and each section was measured at 6 different locations (pressure side Leading Edge (LE), pressure side 

center, pressure side Trailing Edge (TE), suction side Trailing Edge, suction side center and suction side Leading 

Edge). Fig. 1 shows the measurement locations across a 

typical cross-section. The locations 1-6 marked in Fig. 1 

were selected such that the minimum thicknesses across each 
section were recorded. Minimum thicknesses across each 

section of the blade become important during fatigue failure 

tests, and lifing and stress analysis. 

Out of this 1050 blade dataset, data for 77 blades 

manufactured on the same day was identified and separated 

to nullify the uncertainty effects introduced due to changes in 

the surrounding temperature and humidity levels. These two 

datasets comprising 77 blades and 1050 blades respectively, 
were analysed in order to observe and compare the relative 

drifts in thickness values from one measurement location to 

another for the 18 different measurement locations. This 

deviation from nominal was plotted for the two datasets in 

the form of scatter plots across the 3 cross-sections (Tip, Mid 

and Root) such that: 

 

Deviation from nominal =                                                                Fig. 1 Measurement locations across typical  
                    Nominal Thickness – Measured Thickness.   (11)                  cross-section. 
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The resultant scatter plots obtained at the Tip-section for the 77 and 1050 blade datasets are shown in Fig. 2 and Fig. 

3 respectively. Similar plots were also constructed for the Mid and Root-sections. It was observed that for both the 

datasets, the drifts in mean measurement values from nominal thicknesses across the six measurement locations at 

Tip-section followed a similar trend. This is apparent from a comparison of Fig. 2 with Fig. 3. Similar trends were 
also observed for the Mid and Root-sections. This lead to the conclusion that the variation in surrounding 

temperature and humidity levels did not affect the relative deviation from nominal in blade wall thickness values at 

the eighteen measurement locations. The entire 1050 blade data could therefore be used directly for a further 

statistical analysis of the manufacturing uncertainty and measurement variability.                                     

 

                
     Fig. 2 Deviation from nominal vs. measurement                Fig. 3 Deviation from nominal vs. measurement  

             location at TIP section for 77 blade dataset.                   location at TIP section for 1050 blade dataset.                                         

    
The measurement data on the 1050 blades was represented in the form of a matrix X where m = 18 and n =1050 

such that rows 1-6 represented the measurements taken on the Tip-section, rows 7-12 represented the measurements 

taken on the Mid-section and rows 13-18 represented the measurements taken on the Root-section. A PCA was 

performed on this input data matrix X. The resultant plot of the eigenvalues versus number of modes obtained from 
the application of PCA to the measurement dataset is shown in Fig. 4.  

Applying the Scree Graph method of dimensionality reduction to the plot in Fig. 4, it is observed that for k = 5 

the slopes of the lines formed by plotting the points to the left of k are steeper relative to the slopes on the right of k. 

Hence, for the present case, the value of d may be taken equal to 5. The point k = 3 may also be considered, however 

it is observed that the slope of the line joining k = 4 and k = 5 becomes steeper again, hence d = 5 seems to be a 

better choice in this case. 

 

         
 Fig. 4 Plot of Eigenvalues vs. Principal Component                Fig. 5 Plot of mean variance vs. measurement  
            number for the 1050 blade dataset.                                           location on the blade. 
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Now, looking at the Cumulative Percentage of Total Variation method of dimensionality reduction and keeping 

80% of the total variation as the threshold for cut-off, it is observed that: 

a) for k = 3, cumulative percentage = 74.56%. 
b) for k = 4, cumulative percentage = 82.02%. 

c) for k = 5, cumulative percentage = 85.66%. 

Observing the values of the cumulative energy content for each of the cases above, k = 4 seems to be the closest 

possible match to our threshold criterion. Hence, this methodology results in a dimensionality, d = 4.  

 The dimensionality analysis using the already existing dimensionality reduction techniques shows that most of 

the variance is accounted for by the first d = 4/d = 5 modes and the remaining 18 – d modes may be representing 

random error/noise. This suggests that by using PCA, the shape of the manufactured blades may be reconstructed 

using the first d modes and the remaining 18 – d modes would result in the measurement variability.  
Following this analysis, the technique proposed for dimensionality reduction using prior information available 

on the measurement error, as discussed in section III, was applied on the measurement dataset. Information on 

measurement error was made available to us by a specially designed experiment conducted at PCF, Rolls Royce 

plc., Derby. Ultrasonic wall thickness measurements were made for a randomly selected sample of 11 IP turbine 

blades, such that each set of 18 measurements were repeated on the same blade by three randomly selected 

operators, with each operator repeating the 18 set of measurements four times on the same blade. Since the operators 

were randomly selected, this data included human error in the measurements. These measurements were taken on 

different days and at different times of the day thus including the effects of any changes in the day to day 
temperature, pressure and humidity levels of the surroundings. The random selection of the 11 blades accounted for 

any other indistinguishable random errors being introduced into the blade shape during the manufacturing process. 

With this set of 12 trials each on 11 blades, and 18 measurements being taken on each blade, the variances in 

measurements at the 18 measurement locations were calculated for each blade separately using equation (10). The 

overall mean of the variances at each location for the 11 blades was then calculated as explained in Section III. The 

resultant plot of the mean variances vs. measurement location is shown in Fig. 5. 

It can be observed in Fig. 5 that the values of variance are maximum at positions 11, 12 and 13 which denote the 

Mid suction-side center, Mid suction-side LE and Root pressure-side LE, possibly due to the large curvature at these 
positions. Also, it was observed that the measurement variability at the Tip and Root-sections was lower than that at 

the Mid-section. A possible reason for this could be difficulty in holding the Mid-section perpendicular to the 

ultrasonic beam head due to non-firm clamping of the blade. Non-firm clamping increases the possibility of left and 

right deviations of the blade from the markings on the Mid-section across which measurements are to be taken. A 

point worth noticing is that the magnitude of the variances across the 18 measurement locations is relatively very 

small as compared to the magnitude of the actual wall thickness measurements, which are approximately 10-20 

times of the maximum value of standard deviation observed for these variances. This may indicate that the 

measurement variability being introduced by the operators is relatively very small and the operators are well trained.  
These values of measurement error variances at the 18 measurement locations were used as threshold for cut-off 

while deciding upon the number of PCs that were to be retained for reconstruction of the manufactured blades. The 

value of number of PCs (k) was varied between 1-18 such that if the variance of the reconstruction error was less 

than the threshold value, the k was reduced and if the variance of the reconstruction error was more than the 

threshold value, the k was increased. For the present case, the reconstruction error is defined as: 

 

                  Reconstruction Error = Original Blade thickness – Reconstructed Blade Thickness.                       (12) 

 
This comparison becomes easier when plotted. The plot obtained from PCA which shows a continuous decrease in 

variance of reconstruction error as the number of PCs are increased is shown in Fig. 6. The solid line represents the 

variances used for dimensionality reduction. The dashed lines represent the variances plotted for reconstruction error 

as k increases from 1 to 18. It is observed clearly that the variance in reconstruction error at each measurement 

position decays with increase in k till it finally becomes zero when k = 18. This implies that it is possible to 

reconstruct the entire input data matrix without losing any information when the number of PCs is selected equal to 

the number of measurement types. A closer look at the plot in Fig. 6 revealed that the variance plot obtained for k = 

4 resulted in the best possible match to the threshold criterion. The variance plot obtained for k = 4 has been clearly 
highlighted in Fig. 6 with a bold dashed line. Hence, the proposed dimensionality reduction criterion resulted in a 

dimensionality, d = 4. It is observed that this value of dimensionality matches perfectly with the results obtained 

form the application of Cumulative Percentage of Total Variation technique and is very close to the results observed 

from the Scree Graph technique. It may be concluded therefore, that the proposed dimensionality reduction criterion 
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is capturing approximately 82% of the variation as manufacturing uncertainty and filtering out the remaining 18% 

variation as measurement variability.  

  

                             
 

                                     Fig. 6 Variance vs. measurement location plotted for PCA. 

 
The expected values of manufactured thicknesses at the 18 measurement positions were then reconstructed using 

d = 4. These thickness may be used for lifing, stress or thermal analysis of the probable manufactured blade shapes.  

 

         
       Fig. 7 Expected manufactured thicknesses                           Fig. 8 Expected measurement error vs. 

                  vs. measurement location (Tip).                                             measurement location (Tip). 

 
 The plot obtained for the expected manufactured thicknesses at the Tip-section is shown in Fig. 7. Fig. 8 shows 

the plot of probable values of measurement error vs. measurement location at Tip-section. Similar plots were also 

obtained for the Mid and Root-sections. Observing the drift in means from nominal of the expected manufactured 

thicknesses in Fig. 7, it was concluded that the blade thicknesses were influenced by a systematic manufacturing 

uncertainty. This was also confirmed in the plots obtained for the Mid and Root-sections. Also, it was observed that 
manufacturing location 1 was most accurate with the mean value of manufactured thicknesses equal to the nominal, 
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while there was an in increase in thicknesses at all the other location number 2-6.  The relative increase in thickness 

seemed to be least at the Root, increased at the Mid-section and was maximum at the Tip of the blade. This increase 

in wall thickness values from Root to Tip could probably be accounted for by the process in which the molten metal 

is poured into the casts from base to top, Tip first, followed by Mid and then the Root-section. This is done to ensure 
that the blade structure is monocrystalline. There is a possibility that the hydrostatic pressure exerted by the high 

density molten Nickel alloy results in slight increase in the wall thicknesses at the sections located at the bottom of 

the cast while setting. Also it is highly probable that the ceramic core at such high temperatures of the molten metal 

becomes semi-plastic in nature, resulting in unexpected deformations in the blade core affecting the wall 

thicknesses. However, an important point worth noticing is that almost all of the manufactured thickness values are 

within the specified tolerance limits.  

 

V. Conclusions 

In this paper, we presented an application of PCA in de-noising measurement data on aircraft engine turbine 

blades. This paper also proposes an approach to dimensionality reduction given prior knowledge of the random 

error/noise. Comparison of the results obtained from the proposed dimensionality reduction technique with the 
standard dimensionality reduction techniques proves that for the present case, this approach works successfully in 

conjunction with PCA for de-noising data. In addition, the variance plot obtained from the repeated measurements 

while using this approach may provide some extra information on the measurement variability of various 

measurement types. The values of the manufactured thicknesses obtained from the PCA analysis are representative 

of the plausible manufactured blade shapes and may be used for life calculations and stress analysis. 

From a detailed statistical analysis of the measurements made on a randomly selected sample of 1050 IP turbine 

blades, we were able to draw the following conclusions: 

• The variation in surrounding temperature and humidity levels with passage of time does not appear to affect the 
relative drifting trends in blade wall thicknesses from design values from one measurement location to another.  

• The magnitude of measurement variability is maximum at the Mid-section suction-side center, Mid-section 

suction-side LE and Root-section pressure-side LE positions possibly due to the large curvature at these 

positions.  

• The measurement variability is lower at the Tip and Root-sections as compared to the Mid-section. A relatively 

firmer hold on the blade at the Tip and Root-sections due to the presence of shroud and firtree could possibly 

account for this. It is possible that there is a larger left and right misalignment of the blade at the Mid-section 

when it is placed perpendicular to the ultrasonic head. 

• The magnitude of variance in measurements due to measurement variability is relatively small as compared to 

the magnitude of the actual wall thickness measurements. This may indicate that the measurement variability 

being introduced by the operators is relatively small and the operators are well trained. 

• Approximately 82% of the variation in the measurement data is captured as manufacturing uncertainty and the 

remaining 18% variation is filtered out as measurement variability.  

• There exists a systematic manufacturing uncertainty in the manufactured turbine blades. The measurements at 

pressure surface leading edge are most accurate, but all the other measurement locations spread across the 

pressure and suction surfaces show a slight increase in thickness values from the design values. This relative 
increase in thicknesses appears to be least at the Root, increases at the Mid-section and is maximum at the Tip of 

the blade. This variation in thickness could possibly be accounted for by the process in which the molten metal is 

poured into the casts from base to top to ensure that the blade structure is monocrystalline. There is a possibility 

that the hydrostatic pressure from the high density molten Nickel alloy, combined with flexibility in the core 

material at casting temperature, results in slight increase in the wall thicknesses at the sections located at the 

bottom of the cast while setting. 

• Almost all the manufactured thickness values are within the specified tolerance limits.  
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