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Efficient designing of the turbine blades is critical to the performance of an aircraft engine.
An area of significant research interest is the capture of manufacturing uncertainty in the
shapes of these turbine blades. The available data used for estimation of this manufacturing
uncertainty inevitably contains the effects of measurement error/noise. In the present work,
we propose the application of Principal Component Analysis (PCA) for de-noising the
measurement data and quantifying the underlying manufacturing uncertainty. Once the
PCA is performed, a method for dimensionality reduction has been proposed which utilizes
prior information available on the variance of measurement error for different
measurement types. Numerical studies indicate that approximately 82% of the variation in
the measurements from their design values is accounted for by the manufacturing
uncertainty, while the remaining 18% variation is filtered out as measurement error.
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I. Introduction

URBINE blades are critical to the performance of an aircraft engine. Identification and quantification of the

various types of manufacturing uncertainties in the process of turbine blade manufacture has become a field
of research that is claiming increased attention from leading aircraft engine manufacturing companies. “With the
introduction of new market paradigms like Power By The Hour and TotalCare contracts, the engine manufacturers
have undertaken the responsibility for providing overall lifetime support to the engine, from the time the engine is
delivered to the customer until the engine goes out of service”!'). Therefore, characterization and quantification of
these manufacturing uncertainties is an important issue in the aircraft engine manufacturing industry due to the
effect of these uncertainties on the overall efficiency, performance and life of the engine. At present, not much
literature is available on the kind of manufacturing uncertainties that can arise in the final shape of the turbine
blades.

In the present work, we consider cooled intermediate pressure (IP) turbine blades which thus have both external
and internal design features. In the discussions that follow, knowledge of the sources of manufacturing uncertainties
is based on first-hand experience at the Precision Casting Facility (PCF), Rolls Royce plc., Derby. Regular
discussions have also been held with manufacturing and design engineers.

Manufacturing of IP turbine blades involves processes such as casting, grinding and polishing, all of which can
contribute to shape variation in the blade from its design value. Casting in itself is a very complicated process
involving a series of steps and procedures, e.g. designing and manufacturing the moulds, pouring in the hot molten
metal, cooling of the casts, and, extraction of blades from moulds. In addition, certain less controllable parameters
like temperature, pressure and humidity of the surroundings also add to these uncertainties. Therefore, identification
of the nature and sources of manufacturing uncertainty and then the quantification of this manufacturing uncertainty
is a significant task. Various experimental methods and techniques, both destructive and non-destructive, are
available for quantification of this uncertainty.

One of the destructive techniques is slicing up the sample blades and making internal and external measurements
on the blade slices. However, the implementation of this technique depends on the number of blades available for
cutting up into slices which may be very expensive to the high cost of production of each blade. Besides, the
technology and procedure used for cutting up the blades has to be carefully selected in order to obtain slices with
smooth cut-up surfaces that could be used for precise measurements. Also, the dimensions measured for comparison
with the design values need to be selected and registered with great care.

One form of a non-destructive technique is to experimentally obtain 3-D scans of the blades and then compare
these scans with the designed blade shapes. This process involves highly powered X-ray micro-Computed
Tomography (CT) scanners for the high density nickel alloy blades. Such high-powered micro-CT scanners are not
easily available and obtaining 3-D scans on the turbine blades with good resolution is a very expensive and time-
consuming process. Another non-destructive technique is physically making measurements on the surfaces of the
manufactured blades and comparing these measurements with the design values. This is a complicated process due
to the complex shape of the blade. Moreover, it gives us no idea of the internal shape variations in the blade,
especially for the air-cooled and film-cooled blades which have cooling passages inside them.

Another non-destructive technique, which is being used successfully during the manufacturing process, is
making ultrasonic measurements on the blade. This technique uses ultrasonic beams to measure the wall thickness of
the blade at various cross-sections and at various points across these cross-sections to record the final shape of the
manufactured blade. Besides ultrasonic measurements of wall thicknesses, the other non-destructive evaluation
techniques that are currently in use for this purpose are impulse-video-thermography ', X-ray tomography '°' and
eddy current technique ). Ultrasonic wall thickness measurement data can easily be corrupted by errors introduced
during the measurement process. Various factors are responsible for introducing measurement errors in the blade
thickness measurements e.g. error in calibration of the ultrasonic device, error in orientation of the blade when the
objective is to align it perpendicular to the ultrasonic head, error due to the measured surface being out of view,
human error, etc. Therefore, it becomes desirable to filter out any error/noise from the measured data to get the final
shape of the blade that would represent the actual manufactured blade.

Principal Component Analysis (PCA) is one of the statistical techniques widely employed in de-noising
measurement data. PCA is used in various fields like electrocardiogram (ECG) data compression in biomedicine *,
electrical impedance tomography (EIT) in imaging techniques ' , face recognition " ''! | gene expression analysis
in bioinformatics "%, oceanography "> !, climatology "', geophysics ' '"1, geology "*!, astronomy !"* **, shape
prediction of femoral heads from partial information “!, reconstruction of human body shapes from range scans in
Computer Graphics **! etc. Lately, more complicated forms of PCA have been developed and demonstrated on
varying sets of data. Smidl and Quinn **' proposed Bayesian principal component analysis and demonstrated the
advantages of orthogonal variational PCA (OVPCA) on scintigraphic dynamic image sequence of kidneys. Tipping
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and Bishop ! demonstrated the advantages of Probabilistic Principal Component Analysis (PPCA) by applying the
technique on a set of Tobamovirus data (a genus that contains viruses that infect plants). Hagan, Roble, Russell and
Milynczak "' made use of Complex Principal Component Analysis (CPCA) on satellite data for planetary wave and
tidal analysis in the middle atmosphere.

The objective of this paper is to demonstrate the application of PCA in separation of measurement variability
from measured turbine blade thickness data to obtain the expected actual thicknesses of the manufactured blades that
include the effects of manufacturing uncertainty. This paper also proposes an approach to dimensionality reduction
after PCA has been performed on the blade thickness data. The proposed approach to dimensionality reduction finds
application only when prior information on the measurement error is available. The variance of the measurement
error at each measurement position is used as the threshold for cut-off to decide upon the number of principal
components (PCs) to be retained.

The flow of discussion in this paper is as follows. In Section II we give an introduction to PCA in terms of its
mathematical formulation. In Section III, various techniques that may be used for dimensionality analysis are
presented and the proposed approach to dimensionality reduction has been discussed in detail. Section IV discusses
the application of PCA and the dimensionality reduction techniques to the measured turbine blade data. Section V
discusses the concluding remarks and is followed by acknowledgements and references.

II. Introduction to PCA

Principal Component Analysis is a non-parametric method of extracting relevant information from complicated
datasets **!. “It is a way of identifying patterns in data, and expressing the data in such a way as to highlight their
similarities and differences” "', Let X be an m x n matrix, where m is the number of measurement types and  is the
number of samples. Let Y be another m x n matrix related by a linear transformation P. If X is the original recorded
dataset and Y is a re-representation of that dataset, we can apply a linear transformation to X such that,

PX=Y. 1)
Equation (1) represents a change of basis such that P is a matrix that transforms X into Y. The goal of PCA is to find

YY', is

the orthonormal matrix P where Y = PX such that the covariance matrix of Y, namely Cy =
n—1

diagonalized. The rows of P are the principal components of X. We begin by rewriting CY in terms of our variable

of choice P.
1 1
Cy = PX)PX)" =——pxx"'P’ =—pxx"p?, 2)
n—1 n—1 n—1
Cy, =——PAP", 3)
n—1
where, A=xx". 4)

In equation (4), A is a symmetric matrix which is diagonalized by an orthogonal matrix of its eigenvectors such
that:

A=VDV", )

where D is a diagonal matrix and V is a matrix of eigenvectors of A arranged as columns.

The matrix A has r < m orthonormal eigenvectors where r is the rank of the matrix. The rank of A is less than m
when A is degenerate or all data occupy a sub-space of dimension r<m. Maintaining the constraint of
orthogonality, this situation can be remedied by selecting (m — r) additional orthonormal vectors to “fill up” the
matrix V. These additional vectors do not affect the final solution because the variances associated with these
directions are zero.
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We select the matrix P to be a matrix where each row p; is an eigenvector of xx". By employing this

selection, P = vt Substituting into equation (5), we find A = P'DP. Also, we know that the inverse of an

R . T -1 . .
orthogonal matrix is its transpose, i.e., for our case P =P . Evaluating Cy from these two relations, we get:

1 1

pAPT = pe pPP" = ®PHDPP") = ®P HpPP™), (©6)

n—1 n—1 n—1 n—1

Cy =

Cy = D. 7

From equation (7), it is evident that the choice of P diagonalizes C . For a more elaborate description of the

theoretical and computational aspects of PCA, the reader is referred to the works by Smith, Jolliffe, Mandel and
others 11+ 12:24271

III. Dimensionality Reduction

Once the PCA has been performed, the next issue is choosing the number of Principal Components (PCs) to be
retained in order to account for most of the variation in X *”**!. Numerous techniques for dimensionality reduction
are available in the literature *” * ), Many readymade packages in MATLAB are also available which perform
dimensionality reduction for a given dataset *’. Some of the techniques which are proposed in the literature are, — 1)
selecting a cumulative percentage of total variation such that the selected PCs contribute say 80% or 90% of the total
variation *”), 2) Kaiser’s rule which retains only those PCs whose variances exceed 1 *”, 3) Scree Graph ' *" and
the Log-Eigenvalue Diagram "', 4) Bayesian Model selection *® etc. A detailed description of these techniques can
be found in the works from Jollife *”' and Minka *. Other dimensionality reduction techniques for which
readymade packages are available in MATLAB are Correlation dimension estimator, Nearest neighbour estimator,
Maximum likelihood estimator, Eigenvalue-based estimator, Packing numbers estimator and Geodesic minimum
spanning tree (GMST) estimator. Further information on these techniques is available in An Introduction to
Dimensionality Reduction Using Matlab by Maaten *°". This paper discusses essential details of the two techniques,
namely, Cumulative Percentage of Total Variation and The Scree Graph, since they have been used for validating
the results obtained from the application of the proposed dimensionality reduction technique to the measurement
dataset.

A. Cumulative Percentage of Total Variation

Let us assume that the number of PCs to be retained after PCA has been performed is represented by d. This
technique proposes a criterion for dimensionality reduction such that a cumulative percentage of the total variation
accounted for by the first d PCs is calculated. The number d is selected such that it accounts for anything between
70% to 90% of the total variation, depending upon the details of the particular dataset being analysed. The
cumulative percentage of the total variation accounted for by the first d PCs may be mathematically represented as
below:

d m
Cumulative percentage = 1002 ev, /> ev i 8)
k=1 k=1

where, eV, represents the k™ eigenvalue *7.

B. The Scree Graph

The scree graph proposes dimensionality reduction through a graphical observation of the ev, vs. k plot. The

dimensionality d is selected equal to the value of k such that the slopes of lines joining the plotted points are ‘steep’
to the left of k and ‘shallow’ to the right of k *7),

C. Dimensionality reduction using prior information on Measurement Error
The techniques discussed above are very useful when there is no prior knowledge of the noise that needs to be
filtered out of the measurement data. However, if we have information available on the noise that is to be removed
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from the target input matrix X, it is more desirable to use this knowledge for aiding the selection of minimum
number of PCs that should be retained.

Due to the availability of data on the measurement error introduced for various measurement types, in the
present work, we use this information as the threshold for cut-off when selecting the number of PCs to be retained.
Here, information on the measurement error is available in the form of repeated trials of the same experiment on the
same sample by o different operators, where each operator repeats each trial on the same sample ¢ times. This is
done for ¢ different randomly selected samples. The measurement noise information is converted into a data matrix
N such that each row is populated with the measurements taken on the same measurement position and each column
contains the measurements from a particular trial. For each sample, N can be represented as a m x p matrix where m

represents the number of measurement types and p = o x t. The variance of each row of N (say n,, where i is the
number of rows) can be represented as the sum of the variance of actual value of the measurement type (say a, ) and

variance due to the measurement error (say e;),

oZm)=02@)+0’(e,). ©)

The actual value of the same measurement type for repeated measurements on the same sample is constant.

Thus, 0'2 (a;) = 0. Substituting this in equation (9) we get,

oZm)=c’,). (10)

Therefore, the variance of each row in the data matrix N represents the variance of the measurement error. Similarly,
these variances can be calculated for g different samples. The variances calculated for each of these samples for m
different measurement types could be consolidated into one m x g variance matrix. The mean of each row of the
variance matrix would finally result in m different values, one each for m different measurement types, which may
then be used as the threshold for cut-off while selecting the number of PCs to be retained.

IV. Numerical Studies

Wall thickness measurements were taken through ultrasonic measurement devices on a set of 1050 randomly
selected IP air-cooled turbine blades. This measurement data was made available by the Precision Casting Facility
(PCF), Rolls Royce plc., Derby. The thicknesses were measured across three cross-sections (Tip, Mid and Root of
the blade) and each section was measured at 6 different locations (pressure side Leading Edge (LE), pressure side
center, pressure side Trailing Edge (TE), suction side Trailing Edge, suction side center and suction side Leading
Edge). Fig. 1 shows the measurement locations across a
typical cross-section. The locations 1-6 marked in Fig. 1
were selected such that the minimum thicknesses across each
section were recorded. Minimum thicknesses across each

section of the blade become important during fatigue failure 3
tests, and lifing and stress analysis. 9

Out of this 1050 blade dataset, data for 77 blades 1 \
manufactured on the same day was identified and separated k
to nullify the uncertainty effects introduced due to changes in \

the surrounding temperature and humidity levels. These two 2

datasets comprising 77 blades and 1050 blades respectively, \
were analysed in order to observe and compare the relative 4
drifts in thickness values from one measurement location to

another for the 18 different measurement locations. This 6 /

deviation from nominal was plotted for the two datasets in \
the form of scatter plots across the 3 cross-sections (Tip, Mid
and Root) such that: 3
Deviation from nominal = Fig. 1 Measurement locations across typical
Nominal Thickness — Measured Thickness. (11) cross-section.
5
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The resultant scatter plots obtained at the Tip-section for the 77 and 1050 blade datasets are shown in Fig. 2 and Fig.
3 respectively. Similar plots were also constructed for the Mid and Root-sections. It was observed that for both the
datasets, the drifts in mean measurement values from nominal thicknesses across the six measurement locations at
Tip-section followed a similar trend. This is apparent from a comparison of Fig. 2 with Fig. 3. Similar trends were
also observed for the Mid and Root-sections. This lead to the conclusion that the variation in surrounding
temperature and humidity levels did not affect the relative deviation from nominal in blade wall thickness values at
the eighteen measurement locations. The entire 1050 blade data could therefore be used directly for a further
statistical analysis of the manufacturing uncertainty and measurement variability.

Deviation from nominal thickness
T
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Deviation from nominal thickness
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o
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Measurement location Measurement location
Fig. 2 Deviation from nominal vs. measurement Fig. 3 Deviation from nominal vs. measurement
location at TIP section for 77 blade dataset. location at TIP section for 1050 blade dataset.

The measurement data on the 1050 blades was represented in the form of a matrix X where m = 18 and n =1050
such that rows 1-6 represented the measurements taken on the Tip-section, rows 7-12 represented the measurements
taken on the Mid-section and rows 13-18 represented the measurements taken on the Root-section. A PCA was
performed on this input data matrix X. The resultant plot of the eigenvalues versus number of modes obtained from
the application of PCA to the measurement dataset is shown in Fig. 4.

Applying the Scree Graph method of dimensionality reduction to the plot in Fig. 4, it is observed that for k = 5
the slopes of the lines formed by plotting the points to the left of k are steeper relative to the slopes on the right of k.
Hence, for the present case, the value of d may be taken equal to 5. The point k = 3 may also be considered, however
it is observed that the slope of the line joining kK = 4 and k = 5 becomes steeper again, hence d = 5 seems to be a
better choice in this case.
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Fig. 4 Plot of Eigenvalues vs. Principal Component Fig. 5 Plot of mean variance vs. measurement
number for the 1050 blade dataset. location on the blade.
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Now, looking at the Cumulative Percentage of Total Variation method of dimensionality reduction and keeping
80% of the total variation as the threshold for cut-off, it is observed that:

a) for k = 3, cumulative percentage = 74.56%.

b) for k =4, cumulative percentage = 82.02%.

¢) for k=5, cumulative percentage = 85.66%.

Observing the values of the cumulative energy content for each of the cases above, k = 4 seems to be the closest
possible match to our threshold criterion. Hence, this methodology results in a dimensionality, d = 4.

The dimensionality analysis using the already existing dimensionality reduction techniques shows that most of
the variance is accounted for by the first d = 4/d = 5 modes and the remaining 18 — d modes may be representing
random error/noise. This suggests that by using PCA, the shape of the manufactured blades may be reconstructed
using the first d modes and the remaining 18 — d modes would result in the measurement variability.

Following this analysis, the technique proposed for dimensionality reduction using prior information available
on the measurement error, as discussed in section III, was applied on the measurement dataset. Information on
measurement error was made available to us by a specially designed experiment conducted at PCF, Rolls Royce
plc., Derby. Ultrasonic wall thickness measurements were made for a randomly selected sample of 11 IP turbine
blades, such that each set of 18 measurements were repeated on the same blade by three randomly selected
operators, with each operator repeating the 18 set of measurements four times on the same blade. Since the operators
were randomly selected, this data included human error in the measurements. These measurements were taken on
different days and at different times of the day thus including the effects of any changes in the day to day
temperature, pressure and humidity levels of the surroundings. The random selection of the 11 blades accounted for
any other indistinguishable random errors being introduced into the blade shape during the manufacturing process.
With this set of 12 trials each on 11 blades, and 18 measurements being taken on each blade, the variances in
measurements at the 18 measurement locations were calculated for each blade separately using equation (10). The
overall mean of the variances at each location for the 11 blades was then calculated as explained in Section III. The
resultant plot of the mean variances vs. measurement location is shown in Fig. 5.

It can be observed in Fig. 5 that the values of variance are maximum at positions 11, 12 and 13 which denote the
Mid suction-side center, Mid suction-side LE and Root pressure-side LE, possibly due to the large curvature at these
positions. Also, it was observed that the measurement variability at the Tip and Root-sections was lower than that at
the Mid-section. A possible reason for this could be difficulty in holding the Mid-section perpendicular to the
ultrasonic beam head due to non-firm clamping of the blade. Non-firm clamping increases the possibility of left and
right deviations of the blade from the markings on the Mid-section across which measurements are to be taken. A
point worth noticing is that the magnitude of the variances across the 18 measurement locations is relatively very
small as compared to the magnitude of the actual wall thickness measurements, which are approximately 10-20
times of the maximum value of standard deviation observed for these variances. This may indicate that the
measurement variability being introduced by the operators is relatively very small and the operators are well trained.

These values of measurement error variances at the 18 measurement locations were used as threshold for cut-off
while deciding upon the number of PCs that were to be retained for reconstruction of the manufactured blades. The
value of number of PCs (k) was varied between 1-18 such that if the variance of the reconstruction error was less
than the threshold value, the k& was reduced and if the variance of the reconstruction error was more than the
threshold value, the k was increased. For the present case, the reconstruction error is defined as:

Reconstruction Error = Original Blade thickness — Reconstructed Blade Thickness. (12)

This comparison becomes easier when plotted. The plot obtained from PCA which shows a continuous decrease in
variance of reconstruction error as the number of PCs are increased is shown in Fig. 6. The solid line represents the
variances used for dimensionality reduction. The dashed lines represent the variances plotted for reconstruction error
as k increases from 1 to 18. It is observed clearly that the variance in reconstruction error at each measurement
position decays with increase in k till it finally becomes zero when k = 18. This implies that it is possible to
reconstruct the entire input data matrix without losing any information when the number of PCs is selected equal to
the number of measurement types. A closer look at the plot in Fig. 6 revealed that the variance plot obtained for k =
4 resulted in the best possible match to the threshold criterion. The variance plot obtained for k = 4 has been clearly
highlighted in Fig. 6 with a bold dashed line. Hence, the proposed dimensionality reduction criterion resulted in a
dimensionality, d = 4. It is observed that this value of dimensionality matches perfectly with the results obtained
form the application of Cumulative Percentage of Total Variation technique and is very close to the results observed
from the Scree Graph technique. It may be concluded therefore, that the proposed dimensionality reduction criterion
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is capturing approximately 82% of the variation as manufacturing uncertainty and filtering out the remaining 18%
variation as measurement variability.

Variance

2 6 8 10 12 14 16 18
Measurement Location

Fig. 6 Variance vs. measurement location plotted for PCA.

The expected values of manufactured thicknesses at the 18 measurement positions were then reconstructed using
d = 4. These thickness may be used for lifing, stress or thermal analysis of the probable manufactured blade shapes.
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Fig. 8 Expected measurement error vs.
measurement location (Tip).

Fig. 7 Expected manufactured thicknesses
vs. measurement location (Tip).

The plot obtained for the expected manufactured thicknesses at the Tip-section is shown in Fig. 7. Fig. 8 shows
the plot of probable values of measurement error vs. measurement location at Tip-section. Similar plots were also
obtained for the Mid and Root-sections. Observing the drift in means from nominal of the expected manufactured
thicknesses in Fig. 7, it was concluded that the blade thicknesses were influenced by a systematic manufacturing
uncertainty. This was also confirmed in the plots obtained for the Mid and Root-sections. Also, it was observed that
manufacturing location 1 was most accurate with the mean value of manufactured thicknesses equal to the nominal,
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while there was an in increase in thicknesses at all the other location number 2-6. The relative increase in thickness
seemed to be least at the Root, increased at the Mid-section and was maximum at the Tip of the blade. This increase
in wall thickness values from Root to Tip could probably be accounted for by the process in which the molten metal
is poured into the casts from base to top, Tip first, followed by Mid and then the Root-section. This is done to ensure
that the blade structure is monocrystalline. There is a possibility that the hydrostatic pressure exerted by the high
density molten Nickel alloy results in slight increase in the wall thicknesses at the sections located at the bottom of
the cast while setting. Also it is highly probable that the ceramic core at such high temperatures of the molten metal
becomes semi-plastic in nature, resulting in unexpected deformations in the blade core affecting the wall
thicknesses. However, an important point worth noticing is that almost all of the manufactured thickness values are
within the specified tolerance limits.

V. Conclusions

In this paper, we presented an application of PCA in de-noising measurement data on aircraft engine turbine
blades. This paper also proposes an approach to dimensionality reduction given prior knowledge of the random
error/noise. Comparison of the results obtained from the proposed dimensionality reduction technique with the
standard dimensionality reduction techniques proves that for the present case, this approach works successfully in
conjunction with PCA for de-noising data. In addition, the variance plot obtained from the repeated measurements
while using this approach may provide some extra information on the measurement variability of various
measurement types. The values of the manufactured thicknesses obtained from the PCA analysis are representative
of the plausible manufactured blade shapes and may be used for life calculations and stress analysis.

From a detailed statistical analysis of the measurements made on a randomly selected sample of 1050 IP turbine
blades, we were able to draw the following conclusions:

e The variation in surrounding temperature and humidity levels with passage of time does not appear to affect the
relative drifting trends in blade wall thicknesses from design values from one measurement location to another.

e The magnitude of measurement variability is maximum at the Mid-section suction-side center, Mid-section
suction-side LE and Root-section pressure-side LE positions possibly due to the large curvature at these
positions.

e The measurement variability is lower at the Tip and Root-sections as compared to the Mid-section. A relatively
firmer hold on the blade at the Tip and Root-sections due to the presence of shroud and firtree could possibly
account for this. It is possible that there is a larger left and right misalignment of the blade at the Mid-section
when it is placed perpendicular to the ultrasonic head.

e The magnitude of variance in measurements due to measurement variability is relatively small as compared to
the magnitude of the actual wall thickness measurements. This may indicate that the measurement variability
being introduced by the operators is relatively small and the operators are well trained.

e Approximately 82% of the variation in the measurement data is captured as manufacturing uncertainty and the
remaining 18% variation is filtered out as measurement variability.

e There exists a systematic manufacturing uncertainty in the manufactured turbine blades. The measurements at
pressure surface leading edge are most accurate, but all the other measurement locations spread across the
pressure and suction surfaces show a slight increase in thickness values from the design values. This relative
increase in thicknesses appears to be least at the Root, increases at the Mid-section and is maximum at the Tip of
the blade. This variation in thickness could possibly be accounted for by the process in which the molten metal is
poured into the casts from base to top to ensure that the blade structure is monocrystalline. There is a possibility
that the hydrostatic pressure from the high density molten Nickel alloy, combined with flexibility in the core
material at casting temperature, results in slight increase in the wall thicknesses at the sections located at the
bottom of the cast while setting.

e Almost all the manufactured thickness values are within the specified tolerance limits.
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