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Abstract. This paper is related to the optimization of trusses based on the minimum compliance method. There
are two basic aims. First to show that the sizing problem of trusses can be cast as a second-order cone programming
(SOCP) problem. This is feasible even if we consider multiple load cases and the design has to be based on the worst-
case compliance. The benefit is that the problem can be solved easily using a standard software. The second aim is to
show that the optimal connectivity can be obtained if we apply a heuristic which is based on SOCP duality. This means
that we can simply consider a grouhd structure with some connections and after the solution of the sizing problem
we can add only members which reduce the compliance. In this way we solve a sequence of numerical optimization
problems. This is preferable than solving one sizing problem with all possible connections as this yields very large

numerical optimization problems.

1 INTRODUCTION

The optimal design of trusses is an important problem in the area of structural optimization. This is due to the
simplicity of designing with these structures and the ease in constructing mathematical models of them. Truss opti-
mization consists of finding the optimal nodal positions, connectivities and cross section areas. Of course the optimal
design of a structure is defined by the target, the most popular target being either the minimum weight of a rigid plastic
structure (under single loading) or the minimum compliance if the structure is made of elastic material. The reader
can find some aspects on the similarities and the differences of these problems in references [2, 7]. Another objective
function could be the minimization of the maximum stress.

This paper is concerned with minimum compliance methods. In general, the calculation of all the optimal param-
eters of a truss leads to non-linear problems which are very difficult to solve. A usual way to avoid including.two of
these parameters, the optimal positions of the nodes and connectivities, is to consider a dense grid of nodes with all pos-
sible connections (see Figure 1a) and solve the sizing optimization problem by mathematical programming techniques.
Although the arising optimization problem is still non-linear it can be treated in various ways. It can be considered
as a case of Mathematical Program with Complementary Constraints (MPCC) [5], or it can be solved by two level
optimization problems as e.g. in [3]. However the sizing problem does not have a typical form for which optimizers
are available. Moreover a dense grid where we consider all possible connections can result in a very large optimization
problem. Another issue is that if we consider multiple load cases and particularly the “worst-case” compliance, the
arising numerical optimization problem becomes even more complicated.

The first aim of this paper is to present an efficient formulation of the sizing problem as a case of second-order
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cone programming. This is advantageous because there are several efficient optimizers for this type of problem and

therefore engineers do not have to construct their own optimizer. Also the formulation is fairly general as it can include
the worst-case compliance. The second aim is to provide a heuristic so that we can avoid solving the problem with all
possible connections. On the contrary we can consider a simple ground structure (see Figure 1b) and after the solution
of the numerical problem add only the necessary members. The heuristic is based on SOCP duality and extends the
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3 THE MINIMUM COMPLIANCE PROBLEM IN TRUSS OPTIMIZATION
Consider now a truss structure with NE members and NU degrees of freedom. For a given volume of material, V,
our aim is to find the cross section areas of the bars such that the compliance will be the minimum. It would be more
convenient to use the member volumes &; as the unknowns instead of the cross sectional areas of the members. For the
sake of simplicity we shall consider that they are not bounded.
The sizing optimization problem for the minimum compliance method reads as:

min pTu
NE
st (Y EK)u=p
; 2N (9)
NE
Z &=V
i=1
where p € R and u € RV are the load and the displacement vector respectively. For each member
E .
K = z_éb,-b,?' (10)

t

where L;, E; are respectively the length and the Young’s modulus of the ith member. The column vector b; relates the
elongation of the member i with the nodal displacement vector u so that

e;=blu. 11)

We notice that (9) is a non-convex problem, and therefore, the solution is rather difficult. For this reason alternative
forms of this optimization problem have been presented (see e.g. [3, 2, 5]). Engineering structures are often subjected
to multiple loading cases. In this case we are interested in calculating the “worst-case” compliance. Considering m
load cases the problem reads:

min  max  (pW)Tul

uwé  j=l..m

NE . .
st (,;1 EKu) =pV) (12)

NE

Y.&=V

i=1
This problem is even more complicated than (9). Here we will use the principle of the complementary energy - which
gives the half of compliance - and also it will be shown that (12) - and consequantly (9) - can be formulated not only
as a convex optimization problem but as a case of SOCP.

4 SIZING OPTIMIZATION OF TRUSSES FOR THE WORST-CASE COMPLIANCE
We consider that the structure is subjected to arbitrarily varying loads within a load domain .Z. By applying the
principle of complementary energy the optimization problem reads:

NE 12 .2
: L7 g (1)
min max LA
tq €T =E; 2
s.t. Bq(r)=p(t), WteT
. ) ( (13)
Yé&=v
i=1
&>0

where ¢ is the pseudo-time parameter such that p(¢) € . and T is a set such that T = {¢ : p(¢) € £}. The vector
q(t) € RVE is the internal axial forces vector, and B € R¥U*VE | B = [by...byg] is the equilibrium matrix. The worst
compliance can be represented by a variable

NE 72 2
L 4i(2)
* —max ¥ =2 (14)
1T = E; 2¢;
or equivalently
NE
r*ZZr,-(t), vieT
i=1 (15)
s L) : :
ri(t) > L=, vreT, Vie{l,..,NE}.

E; 2§
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e Only the worst-case compliance is minimized. The other compliances do not necessarily correspond to the
minimum complementary energy for the calculated volumes and, therefore, the stresses would not correspond to

their respective load cases.

e In the case of specific finite load cases i.e. pj,...,py this problem corresponds to the worst compliance for a
load domain whose load vector is given by
N
p()= Y OpY +100)p" 25)
j=1

with 21}’:0 Yi(t)=1, v(t)>0and p(® =0 i.e. the load domain has the form of a hyper-triangle of N + 1 load
vertices. This case is also referred as alternating loading and this is the usual way that multiple load cases are
considered.

e Consider minimizing the compliance for each load load vector p{). The lowest compliance arises, say, for the
case j =k which gives a compliance IT* for £ = £*. If for this volume vector the compliance for the other
load cases is still lower than IT* the result for the single load case p(k) will be the same as for the worst-case

compliance.

5 A HEURISTIC FOR ADDING NEW MEMBERS
The dual problem of (24) - see duality betwen (7) and (8) - will have the form

NV P o
max ). (PN Tu 4vz
=1

J= N - .
st (y,60 6N e ®, vie{1,.. ,NE}, Vie{l,...NV}

B ul) +&) =, vje{l,...,NV}
0 +y =0, vie{l,...,NE}, Vje{l1,...,NV} 26
69 + 9! =0, Vie{l,...,NE}, VYje{1,...,NV}
NV
_qui(f).;.z:(), vie{l,...,NE}
e~
W
_Zw(1)=1
=1
where z € R and &) € RVE. The problem can be reduced to
NV » -
max Z(pU))Tu(J)._Z*
=]
st gl > YETu)2 vie{1,...,NE}, Vje{l,...,NV}
0~ . . en
¢ =17, vie {1,...,NE}
e
W
ZV-,*(J)_l
=]

Now say that we connect two nodes that are existing but unconnected. By connecting them we have a new optimization
problem and the question is whether this will lead to lower compliance. This will not occur if for the existing nodal
solutions the set defined by the constraints remains feasible. To make it clearer by adding a member the dimension of
the u and ¥*(/) variables will remain the same. Now if we form the vector b and we have the additional constraints

; b7 ()2
o>y L) (28)
21[/*(1)
N
Y o) =z 29)
j=1
Assuming that we give to u and ¥*() the same values then the problem will remain feasible if for ¢i(j ) = V%ﬁ

NV
Yo <z (30)
=1
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. single loading case alternate loading case
Grid NE T cPUm ] T |k [CPU® ]
13x13 14196 | 26 1.6 7.02887 | 23 8.6 1.79517
25x25 | 195000 | 34 | 427 6.77610 | 40 | 335.0 | 1.74816

Table 2: Results and statistics for all possible connections

Stage 13x13 grid 25x25 grid 37x37 grid
NE | It | CPU(s) 11 NE It | CPU(s) 11 NE It | CPU(s) I1
1 600 | 17 0.1 8.82001 | 2352 | 17 0.2 8.82000 | 5256 | 19 0.7 8.82000
2 888 | 18 0.1 7.10646 | 6158 | 24 0.9 6.80826 | 23562 | 30 53 6.79149
3 894 | 17 0.1 7.10645 | 6232 | 23 0.9 6.77617 | 24122 | 28 5.1 6.76105
4 898 | 18 0.1 7.02887 | 6234 | 24 0.9 6.77617 | 24144 | 28 5.1 6.76104
5 6236 | 25 0.9 6.77617 | 24146 | 28 5.1 6.76106
Table 3: Results and statistics for the single loading
Stage 13x13 grid 25%25 grid 37x37 gnd
NE | It | CPU(s) I1 NE | It | CPU(s) 11 NE It | CPU(s) II
1 600 | 20 0.4 2.07324 | 2352 | 23 2.2 2.06590 | 5256 | 24 6.6 2.06864
2 1018 | 17 0.5 1,80378 | 7766 | 28 13.3 1,75434 | 31836 | 30 | "106.4 | 1,74383
3 1034 | 16 0.5 1.79517 | 8296 | 25 13.5 1.74821 | 35312 | 35 | 139.1 1.73819
4 8312 | 26 12.3 1.74820 | 35358 | 33 | 144.1 | 1.73813
5 35362 | 34 | 149.2 | 1.73813
6 35364 | 34 | 153.0 | 1.73813

E.g. for the 13 x 13 grid we notice that just 1.50 sec is needed for the methodology that we propose and 8.60 sec if we

Table 4: Results and statistics for the alternate loading

solve the problem with all connections. The following general observations can be made:

7 CONCLUSIONS

In this paper it has been shown that the problem of truss optimization via worst-case compliance can be formulated
as an SOCP problem. This is advantageous because several SOCP software exist and therefore all that the engineer has
to do is to construct the elemental data and solve the arising optimization problem. Moreover the arising problems are
sparse and this endorses the use of the interior point method on which most of the modern algorithms are based. The
simplicity of the structure of SOCP allowed us to extend the work or Gilbert and Tyas [4] to the minimum compliance
problem. In this way the sizing problems are significantly reduced and we can handle structures with even finer grids

Most of the members are added after the first step.

Probably three steps are sufficient to get a very good approximation of the optimal compliance.

For the case of the 13x 13 grid, we notice that although very few members were added in the last stage and the
compliance was reduced by less than 0.5%, there is a clear difference between the quality of the solutions of
these last two stages. This means that little difference between the values of the compliances does not mean that

there will be strong similarity in the values of the design parameters (in our case the cross section areas).

The solution of problems with multiple loading takes significantly more time. This feature can be improved if
we customise the optimizer so that it can take advantage of the angular form of the matrix data. The optimiser
behaved very well. One exception is the case of the 37x37 grid (single loading case), where there was a slight

instability. However the error is limited to the last digit (the sixth) of the objective function.

and obtain accurate topologies.
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