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Assessing Bettors’ Ability to Process Dynamic
Information: Policy Implications

Johnnie E. V. Johnson,* Raymond O’Brien,{ and Ming-Chien Sung{

Regulation is often employed to encourage the provision of readily interpretable, explicit
information to betting markets in an effort to promote their efficiency. This approach is
supported by a considerable volume of laboratory-based research which suggests that individuals
make poor judgments in the face of implicit, dynamic information. This article investigates to
what extent horserace bettors, who have strong incentives to make good probability judgments,
require the regulator’s protection from such hostile information environments. In particular, we
examine the accuracy of the subjective probabilities of bettors concerning 16,344 horses in 1671
races. We find that bettors are skilled in adopting effective heuristics to simplify their dynamic
information environment and, even in the face of restricted information, develop well-calibrated
judgments using outcome feedback. A number of factors that help bettors to achieve good
calibration are identified and the implications for market regulation are discussed.

JEL Classification: G13, G14, G17

1. Introduction

Success in many areas of human endeavor stems from the ability to convert rapidly

changing information into accurate probability judgments. Dynamic information environments

are often subject to sporadic adjustments resulting from structural instabilities (e.g., in the

business world, from announcements concerning impending acquisitions or innovations). There

is a wealth of laboratory-based evidence that individuals base their forecasts on human

judgment rather than statistical methods when faced by such dynamic information (e.g.,

Dalrymple 1987; Taranto 1989). These forecasts are often based on heuristics, which result in

systematically biased judgments (Kahneman et al. 1982; Timmermans 1993; Baranski and

Petrusic 1995). These problems are exacerbated if the information remains implicit (e.g.,

rumor). Consequently, in an effort to counteract the adverse impact these effects might have on

market efficiency, regulators attempt to ensure that market participants receive information in

a timely, explicit, and consistent fashion. While the need for information to promote market
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efficiency is not under dispute, there is growing evidence that individuals may not require

explicit information. For example, Remus et al. (1996, p. 23) indicate that ‘‘humans have the

ability to detect and react to structural instability that characterizes many business forecasting

tasks’’ and there is evidence that judgmental forecasters can develop well-calibrated subjective

probability judgments under appropriate conditions (e.g., Johnson and Bruce 2001).

In summary, there are conflicting views concerning decision makers’ ability to handle

structurally unstable, implicit information. However, much of the evidence that questions the

reliability of individuals’ probability judgments has been derived from the laboratory.

Consequently, this article examines to what extent and in what manner individuals’ probability

judgments in a real-world betting market account for dynamic, often implicit, information. The

aim is to provide betting market regulators with evidence to help them decide which

information is necessary to promote market efficiency and how it needs to be disseminated.

This may help avoid the pitfalls of an over-regulated, stifled market whilst allowing for an

adequate flow of appropriate information.

The remainder of the article is organized as follows. Section 2 reviews the literature

addressing probability judgments in dynamic information environments and outlines the

article’s research questions. Section 3 describes the data, explains the methodological

advantages of the chosen setting, and describes the procedures used to explore the research

questions. Section 4 presents the results, which are discussed in section 5. Some concluding

remarks follow in section 6.

2. Probability Judgments in Dynamic Environments

Existing Literature

Complexity exacerbates the difficult task of processing data and increases when the

information required for judgments remains uncertain and changes through time. Under such

conditions, individuals often rely on their own judgments rather than on statistical forecasts

(e.g., Kleinmutz 1990; Sanders and Manrodt 1994). These judgments are often less accurate

than forecasts based on simple statistical models (e.g., Mocan and Azad 1995; Remus et al.

1995) because the latter forecasts act as a form of task information feedback, which can

improve judgments even more than outcome feedback (Balzer et al. 1994; Remus et al. 1996;

Sanders, 1997).

Individuals’ assessment of dynamic information can be hindered by their limited cognitive

capacity (Hogarth 1987). This capacity is challenged by increased complexity, arising, for

example, from implicit information. Under such conditions individuals increasingly rely on

heuristics (Bolger and Harvey 1993), which can result in systematic biases (Kahneman et al.

1982; Fildes 1991; Cohen 1993; Harvey et al. 1994) and a reduction in decision quality

(Malhotra 1982; Ford et al. 1989; Timmermans 1993) and probability judgment accuracy

(Baranski and Petrusic 1994, 1995; Suantek et al. 1996). Furthermore, poor calibration is

exacerbated if the information is uncertain or changing (Griffin and Tversky 1992; Chinander

and Schweitzer 2003). The assessment of dynamic information is also hindered by the tendency

to desire consistent information (Soll 1999). This leads to dissonant information being

discounted (Harries et al. 2004), which reduces the ability to react to structural shifts.
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From the previous discussion it is clear that there are a number of factors that can reduce

an individual’s ability to effectively handle dynamic information. However, research suggests

that these findings may arise from the artificial nature of some experimental calibration studies

(Gigerenzer et al. 1991; Ayton and Wright 1994). The excellent calibration observed in some

naturalistic settings appears to support this view (Murphy and Brown 1985; Keren 1991;

Johnson and Bruce 2001). There is also evidence that certain factors can support probability

judgments under dynamic, naturalistic information conditions. For example, individuals alter

behavior based on outcome information (Kopelman 1986; Jones et al. 1997) and they tend to

make judgments based on the most recent evidence in a sequence of contradictory evidence

(Ashton and Kennedy 2002). ‘‘Recency’’ may foster appropriate reaction to structural shifts in

an evolving information set. In addition, it has been proposed that evolution has equipped

individuals to process probabilistic information from frequencies observed in a natural

environment (Gigerenzer 2000; Hoffrage et al. 2002). In summary, there is mixed evidence

concerning individuals’ ability to handle dynamic information.

Can individuals make full use of dynamic information even if this is not made explicit? The

answer to this question may affect how policy makers frame their regulations concerning the

provision of information to market participants.

Regulation Policy and Research Questions

The British Horseracing Authority (BHA), the official regulatory authority governing

U.K. horse racing, administers the rules of racing. For example, they ensure that racetracks

adhere to a set of common standards, including the minimum levels of information they must

provide to the betting public (e.g., explanations required of trainers if their horses perform

unexpectedly badly, etc.). The BHA is mindful of the need to develop regulations that ensure

the sport is run effectively and efficiently and in the best interests of a range of stakeholders

(e.g., racehorse and racetrack owners, and the betting public). This is achieved by maintaining a

balance between sufficient and overly restrictive regulation (which may stifle or reduce the

attraction of the sport and the betting market on which it depends).

Racetrack operators can cause structural shifts in the information provided to bettors

(which they require to make accurate probability judgments). For example, racetrack operators

can alter the ground conditions between races (e.g., through harrowing or rolling tracks with

artificial surfaces). This could, for example, change the advantage of a particular post position

(hereafter PP: the barrier position from which a horse starts a race). Previous laboratory-based

research, discussed above, suggests that bettors are unlikely to make good probability

judgments in the face of such structural shifts, particularly if the information remains implicit

or is only allowed to leak out in the form of rumor. If regulators believe that bettors will not

effectively process implicit, dynamic information created by such management changes, they

might require racetrack operators to minimize the degree to which they engage in these

practices and/or to announce their actions in advance. Consequently, to assist the regulators in

making such judgments, two key research questions are addressed: To what extent bettors,

when faced by a dynamic and implicit information set, (i) account for the full information

content of evolving data in their probability judgments, and (ii) form good probability

judgments based on heuristics that employ a linear model of current information or a historical

model that accounts for the full complexity of information from previous trading periods.
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3. Methodology

This section explains why the horserace betting market is an ideal setting for studying the

manner in which dynamic information is used in forming probability judgments and introduces

the dataset and procedures that will be used to address the research questions.

Characteristics of the U.K. Horserace Betting Markets

In discussing the characteristics of the U.K. horserace bookmaker betting market, the

following topics will be addressed: (i) the manner in which subjective probability judgments are

revealed in betting markets, (ii) the similarities between decisions made in betting markets and

those made in other environments, (iii) how the availability of an unequivocal outcome to a

horserace facilitates the analysis of the manner in which information is used by bettors, and (iv)

the nature of the particular dynamic information set that is used in this study.

Revelation of Probability Judgments in Betting Markets

Bettors in U.K. bookmaker horserace betting markets purchase assets (place bets), the

returns to which depend upon the result of the horserace to which the particular market relates.

‘‘In its simplest formulation, the market for bets in an n-horse race corresponds to a market for

contingent claims with n states in which the ith state corresponds to the outcome in which the

ith horse wins the race’’ (Shin 1993, p. 1142). The odds of horse i in race j (Oij) are determined

initially by bookmakers’ perceptions of the probability of each horse winning. They then adjust

the odds as new information becomes available, much of which arrives in the form of bets

placed on each horse. Bettors have an incentive to continue to place money on a given horse

until its odds are proportional to the market’s best estimate of that horse’s chance of winning

the race (Figlewski 1979). In state-contingent claim terms, the purchase price of a claim on

horse i in race j is given by the fraction of one pound denoted by 1/(1 + Oij). This claim will pay

one pound if the horse wins but nothing if it loses. Consequently, in line with Figlewski’s (1979)

argument, we assume that the market’s subjective probability is given by

ps
ij~

1
�

1zOij

� �
Xnj

i~1

1
�

1zOij

� �

where nj is the number of horses in race j. In a bookmaker market the final market odds

combine the views of those who determine horses’ chances of success using some private

information (for example, owners, trainers, etc.) and those who use largely publicly available

information (i.e., the wider betting public and the bookmakers themselves).

Betting Markets: Similarities to Other Decision Environments

The appeal of betting markets as settings for empirical enquiry into various aspects of

decision making is well-established (Hong and Chiu 1988; Law and Peel 2002; Paton et al.

2009). They share many features in common with wider financial markets (Snyder 1978) and

they provide a means of examining decisions made in a natural environment that involves
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multi-events, multi-cues and informational turbulence, the conditions that exist in many

naturalistic environments (Orasanu and Connolly 1993).

The Advantages of an Unequivocal Outcome

Sauer (1998) observes that betting markets offer an opportunity to understand economic

behavior that might prove difficult in more complicated financial markets. The main reason for

this is that betting markets generate an unequivocal outcome (a winner) within a finite time

frame. Consequently, there is a point in time at which all uncertainty in the market is resolved,

providing an objective benchmark against which to measure the quality of the probability

judgments, revealed as odds. More specifically, the subjective probabilities inherent in odds and

associated with particular information features (for example, a horse’s PP) can be compared

with the objective probability of success (as revealed, ex post, by race outcomes). This provides

a basis for assessing the degree to which information (for example, PP) is discounted in odds. In

addition, there is a large pool of markets (races) of essentially similar type available for

analysis.

The Nature of the Dynamic Information Set

This article explores the extent to which bettors employ dynamic and often implicit

information relating to ‘‘PP bias’’ in their probability judgments. The nature of PP bias

information and why this might be regarded as a dynamic information set is now explained.

Horses running in flat races of less than two miles in the United Kingdom are required to

begin their races from ‘‘starting stalls,’’ which are devices that ensure that all horses are released

to start the race at the same moment in time. Each horse is randomly allocated a PP, and these

are announced the day before the race. The PP determines where in relation to the inside of the

racetrack the horse will start the race and where the horse is often forced, due to the position of

other runners, to run much of the race. Due to track configuration (e.g., short oval racetracks

with sharp bends) or other racetrack topography (e.g., faster ground on the outside of the

track), certain PPs may be advantageous. Most racing publications agree that PP needs to be

considered carefully when assessing a horse’s chances. For example, Cotton (1990, p. 113), in

an influential book on horserace betting, advises ‘‘… make no mistake, post-position can be the

most important component in the outcome of many flat races.’’ Similarly, Beyer (1983, p. 42)

observes: ‘‘while most biases are due to the idiosyncrasies in the racing surface, many tracks

have shapes that influence the results. At tracks less than a mile in circumference, the sharp

turns and short straight almost always work to the advantage of the front runners and horses

on the inside.’’

Data from a U.K. racetrack (Wolverhampton), which has a configuration similar to that

referred to by Beyer (1983), is employed in this study. Wolverhampton is a small oval circuit of

only one mile circumference with tight bends and a short run in of 380 yards. It is surfaced with

‘‘fiber-sand,’’ a mixture of sand bound together loosely by synthetic fibers. Racing commenced

there in December 1993, and the dataset for the current study contains races run between 1995

and 2000. Races run earlier than this period were not chosen because bettors had little available

evidence on which to base their views of the PP bias and expert advice concerning the bias in

racing publications was not available to bettors. Races run after 2000 were not examined
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because major changes occurred in U.K. horserace betting at this time (e.g., the introduction of

Betfair). These changes are likely to have significantly changed market ecology and the

composition of market participants in such a way as to alter the degree to which data is

discounted in odds.

During the period of analysis the racetrack managers engaged in various practices to try to

eliminate PP bias. There are a number of reasons why they may have sought to eliminate PP

bias, including that the bias may deter owners and trainers of better horses from entering races

for fear that their prospects may be unduly influenced by the random PP draw. In addition,

jockeys may engage in dangerous riding tactics in an attempt to offset the effects of a poor PP,

and bettors, particularly informed bettors, may be deterred if they believe that PP bias unduly

complicates the analysis of a horse’s prospects.

Wolverhampton’s racetrack managers used a variety of measures to eliminate the PP

bias, including altering the drainage system, resurfacing the track and changing the

harrowing (mechanical raking to prevent compaction of the surface), and watering and

‘‘luting’’ (mechanical raking to distribute sand evenly across the track) practices at different

meetings—even after particular races at the same meeting. No record was kept of the precise

timing of these track management changes, and the changes concerning harrowing and luting

practices were never announced to the public. Although experienced racegoers may have

observed some of these practices, the majority of the betting public (who, in the United

Kingdom, bet in betting offices away from the racetrack) would not be explicitly aware of

these changing practices. They could only discern changing PP bias by their analysis of past

results. Interviews with the Clerk of the Course (who has overall responsibility for

management of the racetrack) confirmed that he believed that these practices did have a

significant effect on the PP bias. The changing nature of comments in racing publications

concerning the PP bias at Wolverhampton during this period corroborates his view. These

comments range from ‘‘high numbers had a marked advantage in the early stages on the new

fiber-sand course, but the effect seems to be diminishing’’ (Raceform, 1995, p. xvi) to ‘‘high

numbers have a definite advantage’’ (Superform—Races and Racehorses, 1996, p. 1511) and

later ‘‘high numbers have the moderate advantage’’ (Superform—Races and Racehorses,

2000, p. 1716).

In summary, PP data in horserace betting markets is likely to represent a sporadically

changing (e.g., when new track management practices are introduced), evolving (jockeys may

alter their riding tactics over a period to try to compensate for the bias), and often implicit (e.g.,

when bettors are not made aware of the changes) information set.

Data and Procedures

This section describes the data and the procedures employed in this study: First, a model is

introduced that is designed to capture the extent to which PP bias influences a horse’s chance of

success. This is used to evaluate the information content of PP bias. Second, a procedure is

outlined that facilitates measurement of the extent to which the information contained in PP

bias is accounted for in bettors’ probability judgments. Third, we discuss how the model of PP

bias is used to confirm that the bias changed. Finally, procedures are introduced for testing the

extent to which bettors’ probability judgments incorporated simplified models of PP bias based

on current year or historical PP bias.
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Data

The dataset employed in this study contains details of the PP, the final declared odds from

the bookmaking market, and the finishing positions for each of 16,344 runners in 1671 races

run at Wolverhampton racetrack between January 1995 and August 2000. The races were run

over distances from 5 to 16.21 furlongs (1100 to 3566.2 yards), with a mean of 8.46 furlongs

(1860.1 yards), the majority of races (1527) being run at distances of less than 12 furlongs (2640

yards). The number of runners in each race varied from 2 (1 race) to 13 (254 races), with a mean

of 9.8, most races involving more than eight runners (1329 races).

Post-Position Bias Model

In developing a model to account for Wolverhampton’s PP bias, we consulted a number of

racing publications that provide statistics and advice to bettors concerning this topic. While

there were clear differences from year to year, most agreed that horses with a ‘‘high’’ PP (i.e.,

starting stalls position furthest from the centre of the track) had an advantage. This advantage

is counterintuitive when simply considering the configuration of the Wolverhampton track (a

small oval circuit) as horses with low PPs are most likely to run on the inside of the track,

reducing the total distance they must run. Discussions with the Clerk of the Course and with

horseracing experts from a leading racing publication (Raceform) helped to identify possible

physical reasons for the PP bias. The racetrack is cambered, two degrees on the straights and

four degrees on the bends, and, consequently, sand can migrate towards the centre of the track,

making the ground there soft compared to the relatively firm ground towards the outside of the

track, causing horses running nearer the center of the track to run more slowly. The consensus

was that loose material migrates to the inside rail during very dry weather and/or cold weather.

During very dry weather the lack of moisture in the sand means it easily migrates when kicked

up by horses. To prevent the track from freezing in cold conditions it is mechanically deep-

raked (harrowed) between races and this process can cause loose material to migrate to the

inside (this process can occur between race meetings under ‘‘normal’’ weather conditions). In

addition, during wet conditions, water drains from the outside towards the inside of the track,

carrying loose material to the center of the track. This causes the inside rail area of the track to

become more water-logged than that up the slope, again causing horses on the inside to run

slower than those running wide on the track. Consequently, whatever the weather conditions, it

is generally believed that Wolverhampton racetrack’s topology causes the inside rail (‘‘low PP’’)

to have the least favorable underfoot conditions. This disadvantage accrues, despite the shorter

distance traveled by a horse on the inside rail and the disadvantage experienced by those

running on the outside of having to run up a greater slope on each bend (there is a two-degree

difference in gradient between the slope and the bend). Betton (1994, p. 512) estimates that such

a climb is likely to cause a 20% ‘‘reduction in horse’s pulling ability,’’ without equivalent

compensation in muscular energy when running down the slope into the straight. The Clerk of

the Course also indicated that in the first few years of running at Wolverhampton harrowing

was only performed across 80% of the racetrack, from the inside rail outwards. Consequently,

it is possible that the fiber-sand surface towards the outside became more compacted, resulting

in faster underfoot conditions.

In developing a PP bias model, we define the following variables: bj 5 the number of bends

in a particular race j, r 5 the radius of a bend in yards, Dj 5 the official distance of the race in

912 Johnson, O’Brien, and Sung



yards (measured around inside rail), w 5 the average effective width of a racing horse in yards,

and mij + 1 5 horse i’s PP in race j. Jockeys may maneuver their horses during a race to occupy

positions relative to the inside rail that are different from their initial post positions. However,

this can be difficult because moving to the outside rail will involve exertion of energy to move

up the camber and moving closer to the rail often requires exertion of energy to get in front of

other horses. Consequently, when developing the model it is assumed that horses remain

throughout the race in the position relative to the inside of the track determined by their PP.

Then the distance traveled around bends by horse i in race j is given by bj p (r + mij w) and the

distance traveled on straights is given by Dj 2 bj p r. We assume that the average speed of a

horse running over a distance of D on the inside rail is f(D) S1, where S1 5 the average speed of

a horse running on the inside rail over a distance of 1100 yards (the shortest distance race) and

f(D) is a function which determines the reduction in average speed of a horse running on the

inside rail over a distance of more than 1100 yards (i.e., f [1100] 5 1). To simplify the model, it

is assumed that horses can run at the same average speed around bends as on the straight. It is

also assumed that due to changes in the composition of the track surface, horses run slower/

faster the further they are from the inside rail and that there is a differential effect on straights

(cf. around bends) and at different race distances, captured by g(mij, Dj) and h(mij, Dj). These

functions determine the increase/reduction in average speed of horse i running in PP (i.e., mij +
1) on straights and bends, respectively, over a distance of more than 1100 yards compared to a

horse running on the inside rail over 1100 yards. Consequently, the average speed of a horse

drawn mij + 1 running on straights at distance Dj is g(mij, Dj) ? f(Dj) ? S1, and running round

bends is h(mij, Dj) ? f(Dj) ? S1.

To estimate the form of f(D), curve fit facilities in SPSSX were used to determine the

relationship between the published record speeds at each distance at Wolverhampton divided

by the record speed at 1100 yards (i.e., S1) and the race distance D. The relationship appeared

to be approximately linear with the following form: f(D) 5 1.0317 2 0.00004D (R2 5 0.96).

In estimating the functional forms of g(m, D) and h(m, D), the properties these might be

expected to exhibit were considered: They should be capable of giving a number greater than/

less than 1 when the average speed of a horse drawn at position m + 1 over distance D is faster/

slower than a horse drawn on the inside rail (m 5 0) in a 1100 yard race, and, in addition, they

should allow g(0, 1100) 5 h(0,1100) 5 1. Moreover, it is expected that the effect of differential

speed should be most marked near the inside rail (i.e., when m approaches zero) and for the

marginal effect to decline as m increases. Consequently, a simple form of these functions might

be g(m, D) 5 1/(1 + a
ffiffiffiffi
m
p

) and h(m, D) 5 1/(1 + b
ffiffiffiffi
m
p

). When exploring changes in the PP

advantage from year to year, it will be useful to assess to what extent the bias varies with race

distance and, consequently, functions of the following form, which have these properties, will

then be adopted: g(m, D) 5 1/(1 + amD/x) and h(m, D) 5 1/(1 + bmD/y) where a, b, x and y are to

be estimated.

The time it takes for a horse i drawn mij + 1, to complete a race j is, therefore, proportional

to the distance traveled on straight track divided by its average speed on straight track plus the

distance traveled on bends divided by its average speed on bends. This is given, as follows:

Dj{bjpr
� �

1zam
Dj=x

ij

� �

1:0317{0:00004Dj

� �
S1

z
bjp rzmijw
� �

1zbm
Dj=y

ij

� �

1:0317{0:00004Dj

� �
S1

: ð1Þ
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Clearly, the winner of race j will be the horse with the minimum value of this function, and

because S1 is a constant, this is equivalent to identifying the horse with the maximum value of

the following function:

{ Djzbjpmijw
� �

1:0317{0:00004Dj

� �{
Dj{bjpr
� �

am
Dj=x
ij

� �

1:0317{0:00004Dj

� �{
bjp(rzmijw) bm

Dj=y
ij

� �

(1:0317{0:00004Dj)
: ð2Þ

Hereafter, the first element in this function will be referred to as the ‘‘distance factor,’’ the

second element as the ‘‘straights factor,’’ and the third element as the ‘‘bends factor.’’

The aim is to use the sample data to estimate the optimal values for a, b, x, and y. To

achieve this, a ‘‘winningness’’ index Wij of horse i in race j is defined as function (2) given above

(f2(a, b, x, y)), plus an independent error term eij as follows:

Wij~f2 a, b, x, yð Þzeij : ð3Þ

Wij is defined such that the horse that is observed to win a particular race has the largest

winningness index of all runners in that race. Consequently, the probability of horse h winning

race j (phj) is given as follows:

phj~Pr(WhjwWij , i~1, 2, :::: nj, i=h), ð4Þ

where nj 5 number of runners in race j. Consequently,

phj~Pr(f2 a, b, x, yð Þhjzehjwf2 a, b, x, yð Þijzeij, i~1, 2 :::: nj, i=h): ð5Þ

The Wij cannot be observed directly. However, whether horse i wins race j can be observed and

a win/lose variable tij is defined such that

tij~1 if Wij~Max W1j, W2j, . . . , Wnjj

� �
; tij~0 otherwise:

Consequently, the probability of horse h winning race j can be represented as follows:

phj~Pr thj~1 f2 a, b, x, yð Þij , i~1, 2 :::::, nj

���
� �

: ð6Þ

McFadden (1974) demonstrates that if the error terms eij in Equation 5 are assumed to be

independent (and this seems likely as PP for each race is allocated by a random device) and

distributed according to the double exponential distribution, this produces the conditional

logit (CL) function. Consequently, the probability of horse i winning race j is given as

follows:

pij~
exp f2 a, b, x, yð Þij
� �

Xnj

i~1

exp f2 a, b, x, yð Þij
� � , ð7Þ

where a and b are parameters that measure the importance of PP in determining the

likelihood of horse i winning race j (for the distance run on straight track and on bends,

respectively). The parameters a, b, x, and y are estimated by maximizing the joint probability

of observing the results of all J races in the sample. Consequently, the value of the following
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log-likelihood (LL) function is maximized:

LL~
XJ

j~1

Xnj

i~1

tij ln pij : ð8Þ

Thus, we assume the outcomes of races are independent events and following McFadden

(1974) we assume that the random components ehj of the winningness indices for different

horses are independent.

Modeling Bettors’ Subjective Probability Judgments

To measure the extent to which bettors use the information content of PP bias in their

judgments revealed in the prevailing market odds, two CL functions are estimated. The first

incorporates simply the log of the probability implied by the final market odds, ps
ij :

pij~
exp l ln (ps

ij)
� �

Xnj

i~1

l ln (ps
ij)

� � : ð9Þ

The second incorporates both ps
ij and a function similar to that derived above to account for PP

bias (i.e., f2(a, b, x, y)):

pij~
exp f2 a, b, x, yð ÞijzQ ln (ps

ij)
� �

Xnj

i~1

exp f2 a, b, x, yð ÞijzQ ln (ps
ij)

� � : ð10Þ

As discussed above, the parameters, a, b, x, y, Q and l are estimated by maximizing the

appropriate likelihood functions.

The maximum likelihood (LL) value of the model represented by Equation 10 is compared

with the maximum LL of the model represented by Equation 9 using a likelihood ratio (LR)

test. If the test detects a significant difference, this will imply that some of the information

concerning PP bias is not accounted for in bettors’ decisions.

Modeling the Changing Nature of Post-Position Bias through Time

In order to confirm that PP bias at Wolverhampton racetrack changes through time, three

procedures are employed:

First, for each of the six years (1995–2000), CL models represented by Equation 7 are

estimated. The degree to which PP bias explains winning probabilities is then determined using

the pseudo-R2 (Hauser 1978). Clearly, large differences in R2 from year to year would suggest

that the degree to which PP affects winning probabilities also changes substantially.

Second, the values of the parameters a, b, x, and y in the CL models developed for each of

the six years are compared. Large differences in the size, sign, and significance of these

parameters would suggest that the influence of the different elements of PP bias captured by (2)

changes over time (e.g., distances traveled around bends).

Third, the sum of the information content of each of the individual year’s models is

compared with the information content of a combined model for all six years (1995–2000); the
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information content of each year k’s model being measured by its maximum LL value, Lk, and

the combined model’s information content being measured by its maximum LL value, Lc. If the

parameters are time-invariant, the quantity 22(Lc 2
P

k Lk) is distributed x2
n, where n is the

difference between the total number of parameters estimated in the individual year’s models

and the number of parameters estimated in the combined model. If this LL ratio test is

significant, it suggests that if the coefficients of the various parameters are allowed to change

from year to year, the separate annual models better explain the PP bias than a combined

model for 1995–2000 (Windmeijer 1995).

Finally, in order to explore the extent to which bettors account for the changing PP bias

over the period, LR tests, similar to those discussed in ‘‘Modeling Bettors’ Subjective

Probability Judgments’’ are conducted for each of the years. Significant differences in the LR

values of these models in a given year will suggest that bettors do not fully account for PP bias

in their betting decisions in that particular year.

Simplified Models of Post-Position Bias

As will be shown below, bettors do not fully discount all information concerning PP bias.

Consequently, we examine the nature of the PP bias information that bettors do take into

account when making their betting decisions. In particular, we explore two heuristics or

simplified models they may adopt: (i) an historical CL model of PP bias that incorporates

probabilities derived from a comprehensive model of PP bias effects from the previous year, t 2

1, and (ii) a simple model that accounts for linear PP effects using the current year’s data.

When forming subjective probability estimates of a horse’s chance of winning, it is

conceivable that bettors rely on data concerning PP bias from the previous year. This is the

information that appears in annual racing publications designed to aid horse selection. To examine

the extent to which individuals incorporate a comprehensive model of PP bias effects from year t 2

1 when making their betting decisions in year t, the maximum LL values of two alternative CL

models are compared. The first simply incorporates odds probabilities (i.e., the model represented

by Eqn. 9, estimated using current year [t] data). The second is represented as follows:

pij~
exp (t ln (ps

ij)zu ln (pt{1
ij ))

Xnj

i

exp (t ln (ps
ijzu ln (pt{1

ij )))
� � : ð11Þ

The pt{1
ij values are estimated from a CL model incorporating PP bias effects from year t 2 1 as

follows:

pt{1
ij ~

exp f2 a, b, x, yð Þt{1
ij

� �

Xnj

i~1

exp f2 a, b, x, yð Þt{1
ij

� � , ð12Þ

where the parameters a, b, x, and y are fixed and take the values obtained by estimating the CL

model indicated in Equation 7, estimated using year t 2 1 data. If it can be shown that a model

which simply incorporates odds probabilities contains as much information as a model that

incorporates odds probabilities and probabilities based on PP bias observed in the previous year,

this will then suggest that bettors’ subjective judgments, revealed in the odds, fully account for the

historical model of PP bias.
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Rather than rely on a historical model of PP bias, bettors may use a simplified (linear)

model of current data to capture PP bias effects. In order to explore this possibility, we first

established (from the R2 statistic) the degree to which the following model (which simply

incorporates linear PP bias effects) explains horses’ winning probabilities:

pij~
exp (dmij)

Xnj

i~1

exp (dmij)

: ð13Þ

To test whether the linear model of PP bias (13) explains variation in winning probabilities

of horses as well as the more comprehensive model of PP bias (7), the LL of the two models are

compared using an encompassing test (Mizon and Richard 1986) for non-nested models. In this

application, we fit the obvious combined model, which includes both the linear (13) and the

comprehensive model (7). If the parameters peculiar to (13) are insignificant, one accepts the

hypothesis that (7) ‘‘encompasses’’ (13), and vice versa. There are four possible outcomes, only

two of which are clear cut, being (7) encompasses (13) and vice versa.

In addition, to test whether bettors fully incorporate such a linear model of PP bias when

making their betting decisions, a comparison is made using a LR test of the amount of

information contained in two CL models. The first incorporates the log of the probabilities

implied by final odds and a linear function of PP of the following form:

pij~
exp dmijzl ln ps

ij

� �� �

Xnj

i~1

exp dmijzl ln ps
ij

� �� � ð14Þ

The second, represented by Equation 9, simply incorporates the log of the probabilities implied

by odds. If there is a significant difference between the maximum likelihoods of these two

models, then this will imply that linear PP bias effects are not fully incorporated into

individuals’ betting decisions.

4. Results

For all the models estimated across the whole period (1995–2000), it is found that g(mij,

Dj) and h(mij, Dj) are reasonably well-approximated by allowing the mean index function of mij

to equal 0.5. As races run at Wolverhampton are an average length of 1760 yards, this implies

that x and y 5 3520. Consequently, throughout the rest of this section it is only when

examining changes in the PP bias from year to year that the more complex forms of g(mij, Dj)

and h(mij, Dj) are invoked and parameters x and y are then estimated by maximizing the LL

with respect to x and y using a grid search.

Post-Position Bias Model

The first set of results are obtained by estimating two CL models using data for the period

1995–2000; the first (9) simply incorporates odds probabilities, and the second (10) incorporates

odds probabilities together with PP bias factors. The results are given in Table 1 and indicate that

the LRs of both models are significant at the 1% level, suggesting that they both incorporate a
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significant amount of information useful in predicting winning probabilities. The standard errors

indicate that the PP bias factors in (10) are not significant at the 5% level, but this may be because

the factors are correlated and/or because the LL is not approximated by a quadratic function

closely enough for asymptotic theory to be entirely reliable in this case. However, there is sufficient

evidence from a LR test comparing models (9) and (10) to suggest that the model incorporating the

three PP factors and the subjective probabilities of bettors (revealed as odds) contains significantly

more valuable information for predicting winners than the model that simply incorporates the

subjective probabilities of bettors (LR 5 19.16, x2
2 [0.01] 5 9.21). This suggests that bettors do not

fully account for PP bias in their probability judgments.

The results of estimating the PP bias model (7) are also presented in Table 1. These

indicate that the model’s LR is highly significant (LR 5 1098.26, x2
2 [0.01] 5 9.21) and the

pseudo-R2 statistic suggests that the model accounts for an estimated 12.80 ‘‘empirical percent

explained uncertainty’’ (Hauser 1978) of the variation in winning probabilities. This confirms

that PP bias has an important influence on race outcome. In order to determine the degree to

which PP bias is accounted for in bettors’ decisions, the R2 of model (9) is subtracted from the

R2 of model (10). The result, 0.21%, represents the explanatory power of PP bias not accounted

for in the bettors’ decisions. It was indicated above that PP alone accounts for 12.80% of the

variation in winning probabilities and, consequently (12.80 2 0.21)/12.80 5 98.36% of the

explanatory power of PP is accounted for in bettors’ subjective probability judgments.

Changing Nature of Post-Position Bias through Time

The results of estimating the PP bias model (7) for each of the years between 1995 and

2000 are presented in Table 2. The model LR statistics demonstrate that in each year PP bias

Table 1. Comparison of Models Incorporating (a) Odds Probabilities, (b) Odds Probabilities
and Post-Position Bias Factors, and (c) Post-Position Bias Factors for 1995–2000

Variable

Odds Probabilities

Model (9)

Post-Position Bias Factors +
Odds Probabilities Model (10)

Post-Position Bias

Factors Model (7)

Parameter

Estimate t-Value

Parameter

Estimate t-Value

Parameter

Estimate t-Value

Distance factora – 1.0 (fixed) – 1.0 (fixed)
Straights factora – 21.2036 21.19 21.6864 21.76
Bends factora – 0.5237 0.56 0.9599 1.07
ln(ps

ij) 1.1843 31.40** 1.1841 31.34**

Model statistics

Restricted LL 24286.03 24286.03 24286.03
Unrestricted LL 23147.91 23138.33 23736.90
Model LRb 2276.24** 5424.60** 1098.26**
Critical value

(x2
n [0.01])

6.64 (n 5 1) 11.35 (n 5 3) 9.21 (n 5 2)

Pseudo-R2 0.2655 0.2676 0.1280
N 1671 1671 1671

a These factors are divided by 10,000 to enable the model to converge.
b The LR statistic 5 22(LLo 2 LLm), where LLo and LLm are the maximums of the likelihood function where the

parameters are constrained to equal zero (restricted LL) and where there are no restrictions on the parameters

(unrestricted LL), respectively. This statistic is distributed x2
n, where n is the number of parameters estimated in the

unrestricted model.

** p , 0.01.
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explains a significant amount of the variation in winning probabilities. However, the R2

statistics show that the degree to which the model explains variation of winning probabilities

changes substantially from year to year, even though the number of races remains fairly

constant; the percentage changes in the fraction explained (i.e., R2) being 226.44% (1996/5), +
26.34% (1997/6), + 4.46% (1998/7), 212.61% (1999/8), + 3.37% (2000/1999). The parameter

estimation procedure for model (7) is by grid search. Consequently, the standard errors and t-

values are conditional on the grid values of the power to which m is raised in the factors

designed to capture information concerning the distance traveled on the straights (‘‘straights

factor’’) and the distance traveled on the bends (‘‘bends factor’’). In addition, unconditional

standard errors for all parameters are determined by evaluating the analytic Hessian at the

relevant points. It is found that the size and significance, using conditional and unconditional

standard errors, of all the parameters vary substantially from year to year. In particular, the

sign of the bends factor changed four times from 1995–2000. These differences in the size,

significance, and sign of the parameters suggest that the influence of the different elements of

PP bias captured by model (7) have a changing influence over time. This is confirmed by a LR

test that demonstrates that the maximum LL obtained when estimating model (7) for all six

Table 2. Estimated Parameter Values of Annual PP Bias Models (7)a

Year LR x2(4)b
Pseudo

R2
N

(races)

Parameter Estimatesc

Straights Factord Bends Factord Index Valuee x Index Valuee y

(t-Value)f (t-Value)f – –

[t-Value]f [t-Value]f [t-Value]g [t-Value]g

1995 225.34++ 0.1471 299 21.9916** 0.26D29 3520** 50**
(24.72) (1.25) – –

[222.72] [0.23] [44.70] [5.38]
1996 152.04++ 0.1082 272 20.7865 20.14D29 16,520 320

(20.52) (21.09) – –
[20.44] [20.04] [0.23] [0.02]

1997 193.88++ 0.1367 275 21.4186 0.2103 2520 1520
(22.69) (2.57) – –
[20.95] [0.44] [1.84] [1.77]

1998 214.10++ 0.1428 290 22.2480 3.0110 2490** 31,070
(22.03) (1.68) – –
[20.81] [0.67] [2.37] [1.50]

1999 192.58++ 0.1248 298 21.6314** 20.25D210 14,510** 330**
(21.16) (23.03) – –

[213.33] [20.29] [5.94] [7.93]
2000 158.08++ 0.1290 237 20.0090 0.0009 3520 50*

(21.39) (1.34) – –
[20.21] [0.17] [1.45] [1.90]

a The standard errors of all the parameters are estimated using minus the Hessian matrix evaluated at the maximum of

the likelihood.
b The critical value of x2

4(0.01) 5 13.28.
c The distance factor (D) remains fixed (51) in all annual models.
d These factors are divided by 10,000 to enable the model to converge.
e To obtain these estimates, the LL was maximized with respect to x and y using a grid search.
f t-values (conditional) and [unconditional] on the estimated x and y values.
g Measures the number of standard errors 1/x or 1/y is from zero; this will not have (even asymptotically) a standard t

distribution as the model is not identified at zero.

** Unconditional t-values: ** p , 0.01, * p , 0.05.
++ p , 0.01.
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years combined is less (i.e., more negative) than the sum of the maximum LLs obtained from

estimating the model for each year separately (LR 5 36.62, x2
20[0.05] 5 31.41). This result

clearly demonstrates that if the coefficients of the parameters in the PP bias model are allowed

to change from year to year, then the separate annual models better explain winning

probabilities than a combined model for 1995–2000.

Taken together, these results confirm that PP bias changes substantially over the period

1995–2000 and that these changes are not uniform.

Accounting for Changes in Post-Position Bias

The extent to which the changes in PP bias are accounted for in individuals’ probability

judgments is explored by estimating models for each of the years 1995–2000, incorporating (i)

odds and PP bias factors (10) and (ii) odds probabilities (9) and the results are displayed in

Tables 3 and 4, respectively. LR tests that compare the maximum LL values of models (10) and

(9) for each year from 1995–2000 yield the following values: 27.50, 2.72, 6.9, 11.72, 12.28, and

0.36. These results indicate a significant difference in the amount of information concerning

winning probabilities captured by models (10) and (9) at the 1% level in 1995 and, additionally,

at the 5% level (x2
4 [0.05] 5 9.49) in 1998 and 1999. This suggests that bettors fully incorporated

information concerning PP bias in their betting decisions in 1996, 1997, and 2000, and also, to a

large extent, account for PP bias in 1998 and 1999. As was noted above, the parameter values in

the comprehensive models incorporating PP bias (7) change from year to year. Consequently, it

appears that bettors, in the majority of years, are able to adjust the model of PP bias that they

employ to account for current circumstances.

The proportion of variation in winning probabilities explained by PP bias that is not

captured in odds probabilities each year is determined by subtracting the R2 of the odds-only

model (9) from the R2 of the odds and PP bias model (10) and dividing the result by the R2 of

the PP bias model (7). This procedure yields the following values for each year from 1995–

2000, respectively: 0.1217, 0.0120, 0.0307, 0.0357, 0.0560, and 0.0047. These results indicate

that other than in 1995 and 1999 (when 12.17% and 5.60% of variation in winning

probabilities explained by PP bias were not accounted for in odds) more than 96% of the

variation in winning probabilities explained by PP bias was accounted for in individuals’

betting decisions.

In Table 4, features of the PP bias model (7), including whether the straights or bends

factors are significant, the R2 value of the model, and the annual change in the R2 are compared

with the degree to which PP bias is accounted for in bettors’ decisions. These results indicate

little obvious correlation between R2 values associated with the PP bias model in year t or t 2 1

and the degree to which bettors account for PP bias. For example, in 1995 (when odds do not

fully account for PP bias), the R2 value of the PP bias model is at its highest level; in 1999

(again, when odds do not fully account for PP bias), the PP bias model has the second-lowest

R2 value. Similarly, there appear to be no obvious associations between changes in the R2 value

of the PP bias model and the degree to which PP bias is accounted for in odds. However, in

those years when neither the straights factor nor the bends factor is significant in the PP bias

model, bettors largely account for PP bias in their decisions. Consequently, it is in the years

when only one of these factors is significant that bettors do not fully account for PP bias in their

decisions.
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Historical Model of Post-Position Bias

The results of estimating CL models based on an historical model of PP bias (12) for each

year 1996–2000 are given in Table 5. The standard errors imply the historical bias factors in

each of the annual models are not significant at 5% using a Wald test, but this may be because,

once again, the LL is not approximated by a quadratic function closely enough for asymptotic

theory to be entirely reliable in this case. However, there is sufficient evidence from the model

LR tests to conclude that these historical PP bias models account for a significant amount of

variation in winning probability and the R2 values range between 0.1078 and 0.1372.

Models for each year incorporating (i) historical model probabilities and odds

probabilities (11) and (ii) odds probabilities (9) are estimated and the results are also displayed

in Table 5. LR tests comparing these models (i.e., Eqns. 9 and 11) suggest that information

Table 3. Estimated Parameter Values of Annual Models Incorporating PP Bias Factors and
Odds Probabilities (10)a

Year

Model LR

x2(5)b Pseudo-R2

ln(Odds Probs)

Parameter Estimatesc

Index

Valuee x

Index

Valuee y

Straights

Factord Bends Factord

(t-Value)f (t-Value)f (t-Value)f – –

[t-Value]f [t-Value]f [t-Value]f [t-Value]g [t-Value]g

1995 447.82++ 0.2917 1.2477** 21.9044** 0.15D28 3320** 50
(13.47) (24.81) (1.35) – –
[12.13]h [21.25]h [0.02]h [2.55]h [0.48]h

1996 337.72++ 0.2411 1.1611** 21.2508 20.22D29 19,520 320
(12.49) (20.52) (20.45) – –
[12.49] [20.64] [20.58] [0.27] [0.02]

1997 330.80++ 0.2335 1.0148** 21.7943 0.1255 3520 1520
(11.01) (22.26) (2.18) – –
[11.01] [21.18] [0.35] [1.53] [0.94]

1998 418.36++ 0.2810 1.1791** 23.0449 5.3475 2760** 4040
(12.88) (22.62) (2.23) – –
[12.88] [21.01] [1.06] [2.93] [1.74]

1999 453.22++ 0.2957 1.2632** 21.0777 20.14D210 10,520 320
(14.20) (20.84) (23.21) – –
[14.20] [20.43] [20.06] [0.38] [0.05]

2000 354.80++ 0.2915 1.2671** 20.3381 0.16D29 10,420 340
(12.48) (20.25) (0.54) – –
[12.42]h [20.15]h [0.01]h [0.09]h [0.18]h

a The standard errors of all the parameters are estimated using minus the Hessian matrix evaluated at the maximum of

the likelihood.
b The critical value of x2

5 (0.01) 5 15.09.
c The distance factor (D) remains fixed (51) in all annual models.
d These factors are divided by 10,000 to enable the model to converge.
e To obtain these estimates, the LL was maximized with respect to x and y using a grid search.
f t-values (conditional) and [unconditional] on the estimated x and y values.
g Measures the number of standard errors 1/x or 1/y is from zero; this will not have (even asymptotically) a standard t

distribution as the model is not identified at zero.
h Standard errors estimated using OPG (outer product of gradient) method, where the analytic Hessian was not positive

definite.

* Unconditional t-values: p , 0.05.

** Unconditional t-values: p , 0.01.
++ p , 0.01.
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from the historical models is fully accounted for in bettors’ probability judgments in each of the

five years (LR 5 0.5, 0.72, 2.90, 3.38, and 0.12 for 1996–2000, respectively; x2
4[0.05] 5 9.49).

This result is confirmed by comparing the R2 values of the two models in each year. The

percentage of variation in winning probabilities explained by the historical model that is

accounted for in odds varies between 98.39% and 100%.

A comparison of the results of estimating models incorporating (i) current-year PP bias

factors (7), given in Table 2, and (ii) historical PP bias factors (12), displayed in Table 5,

suggests that model (7) contains more information than model (12) (LR 5 1.08, 8.70, 8.72, 7.1,

and 2.32 for 1996–2000, respectively) in most years, even though a formal LR test cannot be

performed as the models are not nested. The R2 value for model (7) is greater than the R2 value

for the corresponding year of the historical model (12) for each of the years 1995–2000.

Consequently, a sign test suggests that a model incorporating current PP bias factors (7)

explains a significantly (at the 5% level) greater proportion of winning probability than a model

based on historical PP bias factors (12).

Linear Model of Post-Position Bias

The results of estimating a linear model of PP bias (13) for the whole period 1995–2000

and for each of the individual years are given in Table 6. The LR statistics of these models

suggest that the simplified model of PP bias accounts for a significant proportion of the

variation in winning probabilities of horses throughout the period; the R2 values of these

models ranging from 0.1086 to 0.1438. However, an encompassing test confirms that the more

comprehensive model of PP bias (7) for the whole period accounts for a significantly greater

proportion of variation in winning probabilities of horses than the linear model (13) LR of

nested model (involving parameters in the comprehensive and linear models) versus

comprehensive model 5 3.42 (x2
1[0.05] 5 3.84), implying that the comprehensive model

encompasses the linear model; LR of nested model (involving parameters in the comprehensive

and linear models) versus linear model 5 6.65 (x2
1[0.05] 5 3.84), implying that the linear model

does not encompass the comprehensive model.

Table 4. Estimated Parameter Values and Goodness of Fit Statistics of Annual Models
Incorporating Odds Probabilities (9)

Year

Parameter Estimate:

Ln(Odds Probs)

(t-Value)

Model LR

x2(1)a
Statistics:

Pseudo-R2

Proportion of

PP Bias Not

Accounted for

in Odds

Pseudo-R2

of PP

Model (7)

Change in

R2 from

Previous Year S B

1995 1.2335** (13.46) 420.32** 0.2738 0.1217+ 0.1471 Y N
1996 1.1556** (12.45) 335.00** 0.2398 0.0120 0.1082 226.44 N N
1997 1.0233** (11.11) 323.90** 0.2293 0.0307 0.1367 +26.34 N N
1998 1.1707** (12.88) 406.64** 0.2730 0.0357++ 0.1428 +4.46 N N
1999 1.2518** (14.19) 440.96** 0.2882 0.0560+ 0.1248 212.61 Y N
2000 1.2668** (12.49) 354.08** 0.2909 0.0047 0.1290 +3.37 N N

S: Straights factor significant at 5%; B: Bends factor significant at 5%.
a The critical value of x2

1(0.01) 5 6.64.
++,+ Indicate for LR test results comparing the maximum LL values of models incorporating (a) odds and PP bias factors

(10) with (b) odds probabilities (9): p , 0.05 (+), and p , 0.01 (++).

** p , 0.01.
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An assessment of the degree to which individuals account for this linear model of PP is

obtained by comparing the results of estimating CL models incorporating (i) probabilities

implied by final odds and a linear function of PP (14), the results of which are also given in

Table 6, and (ii) probabilities implied by odds alone (9), the results of which are given in

Table 1 for 1995–2000 combined and in Table 4 for each of the individual years. Comparing

the maximum LLs of models (14) and (9) yields the following results for the whole period and

for each year from 1995–2000, respectively: LR 5 14.54, 23.00, 1.66, 0.32, 1.74, 1.56, and

0.80; x2
1(0.05) 5 3.84. It appears that while for all six years combined the simple linear effect

of PP bias is not fully accounted for in bettors’ decisions, this largely arises because the linear

effect is not accounted for in 1995. From 1996 onwards the linear PP effect is fully

discounted in odds.

In a similar manner to that discussed above, the proportion of variation in winning

probabilities explained by the linear PP bias effect not captured in odds probabilities each year

is determined by subtracting the R2 of the odds only model (9) from the R2 of the odds and

linear PP bias model (14) and dividing the result by the R2 of the linear PP bias model (13). This

procedure yields the following values for each year from 1995–2000, respectively: 0.1024,

0.0081, 0.0008, 0.0065, 0.0058, and 0.0030. In 1995, over 10% of the variation in winning

probabilities explained by a linear PP bias model was not captured within odds, but in

subsequent years, bettors’ decisions account for over 99% of this variation, with a trend to

capture more of the information in later years.

5. Discussion

Three key findings emerge from the results: First, bettors are skilled in effectively

accounting for changing PP bias information in their betting decisions, even though the

changes in track management practices that influence the bias are not announced. Second,

bettors appear to learn through experience to account for this dynamic information. Third,

bettors adopt effective simplification strategies to cope with the complexity of dynamic

information. Each of these findings is now explored in turn.

Effective Use of Sporadically Changing Information

Throughout the period 1995–2000, PP bias accounted for an average of 12.80% of the

variation in winning probabilities and 98.36% of this variation was accounted for in bettors’

decisions. In three out of the six years examined, bettors’ probability judgments fully accounted

for a comprehensive model of PP bias using current year’s data, and they largely accounted for

it in two further years. They achieved this despite substantial changes from year to year in the

degree to which the comprehensive model of PP bias explained winning probabilities, and the

sign, size, and significance of factors designed to capture information concerning differential PP

advantages attributable to the distance traveled on straights and bends, respectively. In

addition, bettors were able to adjust their own PP bias models despite the fact that many of the

racetrack management procedures responsible for the changing PP bias were not announced to

the public. These results are in line with studies conducted by Canfield, Fauman, and Ziemba

(1987) and Betton (1994).
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Bettors’ ability to utilize the changing information set in their probability judgments may

result from a number of factors shown to be associated with good calibration. First, bettors

have a strong motivation to make accurate probability judgments as their own financial

resources and often their peer group esteem depend on the outcome of their decisions (Saunders

and Turner 1987). Previous research confirms the premise that judgments improve when

incentives are provided (Beach et al. 1987; Ashton 1992; Waller et al. 1999).

Second, experience and domain-specific knowledge have been shown to be associated with

accurate probability judgments (e.g., Joyce and Biddle 1981; Smith and Kida 1991). Most

individuals who bet with bookmakers are familiar with the betting task (Johnson and Bruce

2001) and undertake considerable research to assess the factors that may influence race

outcome (Neal 1998). In addition, experienced horserace bettors often act in a cognitively

sophisticated manner, incorporating data in a complex cognitive model (Ceci and Liker 1986).

They also have the advantage that those who frequently make probability judgments are often

better calibrated (Ferrell 1994).

Third, it has been suggested that the accuracy of probability judgments is often better in

natural rather than laboratory settings (Beach et al. 1987; Bazerman 1994; Ferrell 1994), and

earlier research has demonstrated that betting behavior differs significantly between laboratory

and real world environments (Anderson and Brown 1984).

Two further factors may help to explain bettors’ apparent ability to account for the

dynamic and often implicit PP information: ‘‘recency’’ and the predictive nature of the task.

Recency can cause biases in some contexts, but it may help individuals to adjust more rapidly to

structural shifts which can occur in dynamic information sets (e.g., Ashton and Kennedy 2002).

In addition, bettors’ probability judgments are predictions, and calibration associated with

prediction has been shown to be more accurate than that related to an individual’s perception

of their memory accuracy (Wright and Ayton 1988).

In summary, there are a number of factors associated with the judgment task, the task

environment, and the nature of experienced bettors that are favorable to accurate probability

judgments. The results reported here suggest that under these favorable conditions bettors are

skilled in accounting for a dynamic information set even when alterations in the underlying

mechanisms that cause these changes are not made public.

Learning to Cope with Sporadically Changing Information

The results of the current study may provide evidence that bettors learn, through outcome

feedback, to cope with changing information. Outcome feedback often has a positive effect on

the accuracy of probability judgments because it allows decision makers to learn which cues are

important (McClelland and Bolger 1994; Koehler 1996). This particularly occurs in real world

environments where individuals learn through observation to identify what data is redundant

and unreliable and what cognitive models are most applicable (McClelland and Bolger 1994).

Practice with homogeneous tasks also improves probability judgments, particularly where

forecasting is performed on a repetitive and sequential basis (Lock 1987) because this allows

individuals to learn judgment relevant cues (McClelland and Bolger 1994). Similarly, violations

of rational choice are often reduced where judgments and feedback occur regularly (Keren

1991). There is a high degree of uniformity between betting markets and bettors can engage

repeatedly in a similar task, allowing them to become familiar with the processes and outcomes
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of the market. This enables them to develop an effective basis for interpreting dynamic market

information. Goodwin and Wright (1992, p. 215) observe that ‘‘performance-demonstrated

expertise in probability judgments is underpinned by practice and regular performance

feedback’’ and horserace betting markets provide bettors with just these conditions. Outcome

feedback per se is not sufficient for good probability judgments, as is evidenced by poor

calibration observed amongst physicians who receive delayed and non-uniform feedback

(Bennett 1980). However, bettors receive uniform and immediate outcome feedback that is

unambiguous.

We find that bettors’ judgments fully account for a comprehensive model of PP bias based

on the previous year’s results and that bettors account for a large proportion of the current year

PP bias in their probability judgments. However, there are three years—1995, 1998, and 1999—

when a significant amount of current-year PP bias is not accounted for in their judgments.

Bettors’ inability to fully account for the bias in 1995 may have resulted from a lack of outcome

feedback, as the racetrack had only been operating for one year. In addition, research suggests

that individuals tend to discount evidence that runs counter to existing perceptions (Harries et

al. 2004). Consequently, it is likely that in the first year of racetrack operation (1994) bettors,

based on the configuration of the track, would have expected horses with PP close to the inside

to have a natural advantage. This expectation may have been reinforced by horseracing

publications, as a common view of racing journalists is that small tracks with tight bends, like

Wolverhampton, will exhibit such a bias. Beyer (1983), for example, observes that horses with

an inside PP on such tracks invariably have an advantage. However, one leading racing

publication, Raceform (1995, p. xxxiii), reporting on the Wolverhampton results in 1994 states:

‘‘high numbers have a marked advantage on the new fiber-sand course.’’ Consequently, the first

year’s results did not conform to the cognitive model derived from horserace publications and

their own observation of the track configuration. Under these circumstances, it is likely that

some of the outcome feedback would have been ignored when forming judgments in the

following year (1995). Further outcome feedback in 1995 may have helped to develop a new

cognitive model that accounted for the outside PP having an advantage. A comprehensive

model of PP bias was then fully accounted for in bettors’ probability judgments in 1996 and

1997. Despite this, bettors did not fully account for current year’s PP bias in 1998 and 1999

when they already had four years of outcome feedback. However, in 1998 and 1999 they did

fully account for the PP bias observed from the previous year (see section 4.4). In addition, the

degree to which they accounted for variation in winning probabilities explained by current year

PP bias in 1999 was significantly greater than in 1995 (93.99% cf. 87.83%). These results suggest

that outcome feedback may have been employed to improve performance in these later years.

In fact, in 2000, bettors’ probability judgments again fully accounted for information regarding

current year PP bias derived from a comprehensive current-year model of the phenomenon.

Simplification Strategies to Handle Sporadically Changing Information

The results suggest that the simplified linear model of PP bias does not capture all the

information contained in a comprehensive model of PP over the whole period 1995–2000.

However, the linear approximation of the PP bias appears to be a reasonable model for bettors

to employ because it captures 12.76% of the variation in winning probabilities over the period

1995–2000 compared with 12.80% for the comprehensive model. In addition, we find that
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bettors account for 90% of the variation in winning probabilities explained by a linear PP bias

model in their probability judgments in 1995, then 99.2%, 99.9%, 99.35%, 99.4%, and 99.7%,

respectively, in subsequent years. The general trend to incorporate more of the changing

information captured by this linear model over time suggests that bettors may employ a linear

model of PP as an input to their cognitive model of this phenomenon. It should also be noted

that the values of the model parameters change each year. Consequently, it appears that bettors

are able to adapt the linear model they employ to meet current circumstances. This also lends

some support to the notion that bettors learn to improve the model they employ through

outcome feedback.

Subsequent to 1995, bettors’ probability judgments fully incorporate (at a 1% level of

significance) a comprehensive model of current year’s PP bias. In addition, a model

incorporating current year’s PP bias ([7], see Table 2) explains more of the variation in

winning probabilities in each of the years 1996–2000 than an historical model of PP ([12], see

Table 5). These results suggest that bettors do not simply mimic the previous year’s PP bias in

their betting decisions; rather, they appear to learn to adapt the model to the bias experienced

in the current year.

It has been observed that individuals operating in familiar task domains can become

attuned to these environments. Under these circumstances individuals are capable of adopting

simple, efficient heuristics that capture the features that are essential to good decision making

(Gigerenzer 2004). In particular, it is argued that evolution equips individuals to handle

information in the form of frequencies in the natural environments in which they make

decisions (Gigerenzer 1996, 2000). This research evidence is largely based on supplied

frequencies rather than those acquired through outcome feedback. Edgell et al. (2004, p. 213)

found that ‘‘experience with the environment is not always sufficient for good performance.’’

Consequently, it may well be that bettors acquire their understanding of PP bias from ‘‘natural

sampling’’: observation of the winning frequencies of certain PP, together with more codified

win frequency information and narrative accounts of the bias from racing publications. In fact,

because several racing publications provide a similar account of the PP bias at Wolverhampton,

it is likely that this information is afforded greater scrutiny than if it came from a single source

(Harkins and Petty 1987). Finally, it is possible that explanations for PP bias given in racing

publications provide more understanding of the reasons for the bias, and it has been shown that

cognitive information feedback of this sort can assist learning more than simple outcome

feedback (Remus et al. 1996).

6. Conclusion

The principal aims of this article were to identify to what extent and in what manner

bettors’ probability judgments account for dynamic, implicit information. The results offer an

interesting insight into individuals’ information-processing abilities. They suggest that at least

some groups of decision makers, operating in certain domains, are skilled in accounting for

dynamic information in their probability judgments. In particular, the results indicate that

U.K. horserace bettors are able to adopt efficient heuristics to cope with dynamic information,

which is subject to structural shifts and where the underlying causal mechanisms (e.g., changing

racetrack management practices) are not formally made known to them. Under these
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conditions bettors appear to learn to adapt the models they employ to capture the evolving

information. It is suggested that a number of factors contributed towards creating a favorable

setting for the effective utilization of a dynamic information set. These include: strong

incentives, the decision makers’ experience in the task domain, the nature of the task (e.g.,

prediction), and the nature of the task environment (i.e., a naturalistic setting). In addition, it is

argued that the unequivocal and uniform nature of outcome feedback together with cognitive

information feedback may have assisted the bettors in learning to adapt their cognitive models

as the information set evolved. This research examined bettors’ skill in adapting to dynamic PP

information over a five-year period. It is possible that outcome feedback over a longer period

may enable bettors to develop even more sophisticated coping mechanisms. The continuing

dynamic nature of PP bias at Wolverhampton since 2000 will provide an ideal setting for such

research.

The results reported here should provide some comfort for regulators that bettors are

able to adapt their decision-making behavior to cope with even hostile information

environments. Specifically, in relation to bettors’ ability to detect and react to PP biases,

there appears no immediate need for additional regulation to force racetrack operators to

disclose more information concerning their track management practices. More generally, the

results may question the need for further restrictive regulation in horseracing concerning

information disclosure, which various commentators have called for, relating to such factors

as the body weight of horses, sectional timing in races, and scientific measurement of the

‘‘going.’’

The ability to make appropriate probability judgments in the face of dynamic information

is vital in many areas of human activity. The results reported here suggest that individuals

under certain conditions may have this ability, but it is not clear whether these results are

transferable to other decision domains or to other groups of decision makers. Further research

in other domains is clearly needed. However, the quest to isolate those factors that can improve

probability judgments in dynamic environments is clearly an important one. While the current

study does not permit the isolation and manipulation of the factors that it is suggested may

have enhanced performance in this study, there is scope for subsequent laboratory studies to

shed further light on their respective influences. Such work could have important implications

for regulators who are seeking to develop a careful balance between restrictive regulation that

forces the disclosure of detailed information and a light touch that allows free markets to

flourish.
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