PROCEEDINGS

—— OF—— /! Proc. R. Soc. A (2009) 465, 239-255
THE ROYAL / doi:10.1098/rspa.2008.0276
SOCIETY < Published online 8 October 2008

Elastic waves in Timoshenko beams:
the ‘lost and found’ of an eigenmode
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This paper considers propagating waves in elastic bars in the spirit of asymptotic analysis
and shows that the inclusion of shear deformation amounts to singular perturbation in
the Euler-Bernoulli (EB) field equation. We show that Timoshenko, in his classic work of
1921, incorrectly treated the problem as one of regular perturbation and missed out
one physically meaningful ‘branch’ of the dispersion curve (spectrum), which is
mainly shear-wise polarized. Singular perturbation leads to: (i) Timoshenko’s solution
Wiy ~ wip[l+ O(€k%)] and (ii) a singular solution wfy ~ (1/2¢%) + O(k*)?; €, w* and k*
are the non-dimensional slenderness, frequency and wavenumber, respectively. Asymptotic
formulae for dispersion, standing waves and the density of modes are given in terms of e.
The second spectrum—in the light of the debate on its existence, or not—is discussed.
A previously proposed Lagrangian is shown to be inadmissible in the context. We point
out that Lagrangian densities that lead to the same equation(s) of motion may not be
equivalent for field problems: careful consideration to the kinetic boundary conditions is
important. A Hamiltonian formulation is presented—the conclusions regarding the
validity (or not) of Lagrangian densities are confirmed via the constants of motion.

Keywords: flexural elastic waves; singular perturbation; Lagrangian mechanics;
Hamiltonian; Timoshenko beam

1. Introduction and field equations

Elastic waves in thin structures play a central role in many problems in
engineering and physics as diverse as those involving geodynamics, piezo-
electricity, ultrasonics of crystals, nanomechanics, aeronautics and a host of
other structural dynamics problems. Of the various wave types, flexural or
bending waves associated with the motion of material points transverse to the
propagation direction is of great importance because thin structures are
relatively soft in flexure than in axial deformation. In particular, wave motion
in beams, plates and shells is of great interest in the area of elastodynamics. The
impact of Stephen Timoshenko’s work in the area is undisputed (over a thousand
citations in the last 25 years). His seminal paper (Timoshenko 1921) effected a
major advancement to the theory following the works of Euler, Bernoulli and
Rayleigh. Euler and Bernoulli (EB) assumed that cross sections normal to the
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axis of an elastic beam remain plane and normal during motion. This amounts to
neglecting shear deformation (e.g. Landau & Lifshitz 1989). This model becomes
increasingly inaccurate and predicts an infinite wave speed for an infinitesimal
wavelength. Rayleigh (1877) refined the EB model by including the kinetic
energy due to the rotation of the cross section. This achieves a finite wave
speed; however, the predictions are quantitatively inaccurate for progressively
short waves.

Timoshenko recognized the deficiency of the EB model and introduced a
correction in his 1921 paper, now regarded a classic in the field. The genius of his
work lies in identifying shear of the cross section with respect to the axis as the
most important degree of freedom missing in the EB model while still allowing
that cross sections remain approximately plane during motion. Inclusion of shear
increases the range of applicability of one-dimensional models substantially.
Interestingly, Timoshenko incorrectly treated the problem as one of regular
perturbation (surprisingly unnoticed so far), but was fortunate in retaining a
family of roots that results in the improvement of the EB theory. He was unlikely
to be aware of any formal notions of singular perturbation because the subject
was still in its infancy. Prandtl’s boundary-layer solution in fluid mechanics
(Prandtl 1904; more formally Blasius 1908) is perhaps the first known case of
singular perturbation. The WKBJ method (Jeffreys 1924; Brillouin 1926;
Kramers 1926; Wentzel 1926) appeared in 1924-1926. Formal developments in
the singular perturbation theory came much later.

Since Timoshenko’s original motivation was to improve the theory of Euler—
Bernoulli-Rayleigh, the family of roots discussed in the 1921 paper has been studied
in great details. By contrast, a second set of roots that appears as a consequence of
the modified deformation kinematics has received relatively little attention.
Levinson & Cook (1982), Stephen (1982, 2006), Chervyakov & Nesterenko (1993),
Nesterenko (1993), Chan et al. (2002) and Stephen & Puchegger (2006) should be
credited for studies on the second set of roots (sometimes known as the ‘second
spectrum’). Trabucho & Viano (1990) used asymptotic analysis in the context of
Timoshenko beams but for a different purpose: to determine the shear coefficient.
Indeed, Huang (1961) provided the complete solution of the frequency equation and
the normal modes for standing waves in beams of finite extent under various
support conditions (a minor typographical error was recently corrected by Smith
(2008)). However, the debate on the existence and the validity of the second set of
roots has continued. Smith (2008) found that their finite-element calculations for a
thin cylinder do not match with those predicted by the Timoshenko theory. Since
Smith (2008) used a thin cylinder as a ‘beam’, it may be that the discrepancy is due
to the shell modes contributing to the response and thus theirs is perhaps a case of
unfair comparison.

The Timoshenko model assumes a displacement field in the z-, y- and
z-directions as (Dym & Shames 1972)

Ul(iL’, Y, 2, t) = “Z¢($7 t)a Uy = Oa Uz = ’LU(:E, t), (11)
where w is the transverse displacement; Y =w,(z, t)—B(z, t) is the rotation of the
cross section due to bending only, where § is the shear angle of the cross section

and subscript after a comma denotes differentiation; z is the propagation
direction; z is the transverse direction; y is the direction perpendicular to the
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plane of the motion; and t is time. Now, €,,= —2¢,, and €,=1/2(w,,—y) are the
only non-zero components of the strain tensor. The Lagrangian L= T — U=
(1/2) [ pt;i; dV —(1/2) [ €50, AV is a volume integral simplified as

!
I =% J [{p1d* + i} —{ E1y2 +xGA(w,, —yP}ds. (12)
0

Here, T'is the kinetic energy; U is the strain energy; p is the density; Fis Young’s
modulus; [ is the second moment of the cross-sectional area; G is the shear
modulus; A is the cross-sectional area; « is the Timoshenko shear coefficient; and
a dot indicates d/d¢. Applying Hamilton’s principle, 6ft? Ldt=0 (6 means the
variation of ), a pair of coupled field equations in the variables w and ¥,

pAW —KkGA(Wyee —Y,z) =0 pIy —EIY, .. —k GA(w,, —¢) =0 (1.3)
is obtained. The boundary conditions (BC) are given by
w,—¢ =0 or éw=0 and y,=0 or oy =0. (1.4)

Either w or ¥ can be eliminated from (1.3) to get a fourth-order field equation in
space and time,

ET + pA —I1+E + ﬁ =0 (15)
W ppge T PAW,y — P <G W, gzt <C Wit = Y. .

Although (1.5) ‘follows’ from equations (1.3), it is not a complete description of
the motion resulting from (1.1) and (1.2). The BC involving ¥ and y,, cannot be
expressed, for example, in terms of w and its gradients. However, both (1.3) and
(1.5) lead to the same dispersion relation—both correctly produce the two
branches of the dispersion curves.

In this paper, we trace the origin of the second spectrum and show how this
‘branch’ of the solution, which is singularly perturbed, is lost due to an incorrect
use of the asymptotic analysis. In the literature, this branch is often suggested to
be associated with the so-called ‘ghost field’ of a higher order Lagrangian (e.g.
Nesterenko 1993). Correct asymptotic analysis is presented here to obtain
dispersion relations, propagation modes and the density of standing waves. It is
shown that the second spectrum is singularly perturbed; hence, it has no
resemblance with the EB spectrum. The first spectrum is regularly perturbed
and differs from the EB spectrum by a term of the order of the square of
wavenumber times the radius of gyration. The doubts raised about the physical
meaningfulness of the second spectrum in the literature are critically examined.
We also show that the Lagrangian proposed by Nesterenko (1993) and
Chervyakov & Nesterenko (1993) is not admissible; hence, clarifying why some
conclusions based on this Lagrangian are questionable. A Hamiltonian
description of the Timoshenko continuum is presented, and it is shown that
the constant of motion is incompatible with the ‘Ostrogradski Hamiltonian’
presented elsewhere—the latter being associated with the Lagrangian of
Chervyakov & Nesterenko (1993) and Nesterenko (1993). A Lagrangian density,
contrived to produce the EB field equation but unacceptable for the context of
EB mechanics, is presented—thus illustrating an important point about the
variationally derived BC.
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2. Asymptotic analysis of the dispersion relation
and the propagation modes

Equation (1.3) can be non-dimensionalized as

e’wa;*x* “lpm* = 630w7?*t* ’ E'LU,;* "W + 620’1}051:*1‘* = 64U¢7t*t* (21)
and the two BC (1.4) at each end of the 2"-domain become
woe—y =0 or 6w =0 and ¢, =0 or oy =0. (2.2)

Here, w'=w/r, £*=1/l, £ =t/T, e=r/l, =E/kG, etc. where r=/I/A is the
radius of gyration of the cross section; T'=+/pl*/Er? is the characteristic time;
and [ is a characteristic length in the z-direction (arbitrary; can be taken as
the natural length for finite-sized bars). An asterisk in the superscript
denotes the corresponding non-dimensional quantity (¥ does not need non-
dimensionalization). Eliminating y from (2.1), a fourth-order field equation in
space and time (the non-dimensional version of equation (1.5)) is obtained as

* * 2 * 4 * —
Wz g* g* 2+ +w7t*t* —€ (1 + U)wmf“x*t*t* +e OW,prpryrgr = 0. (23)

The EB equation corresponds to e==¢ =0, which is true when the characteristic
length in the propagation direction is infinitely greater than the cross-sectional
dimensions and that shear stiffness is much greater than elongational stiffness,
i.e. kG> E. Equation (2.1) or (2.3) is singularly perturbed over the parameter
€ because the small term is associated with the highest temporal derivative in
the field equations. Seeking a travelling-wave solution [w*,y|(z*,t*)=[W,¥]
exp{i(k*z* —w"t*)} of equation (2.1) and demanding that the determinant of the
coefficient matrix must vanish, we obtain the dispersion relation D(k", w*) as

ploi =1+ u(l+o)dr+ a® =0, (2.4)

where p=¢% 1=(w*)% and a=(k*)?. Owing to the non-dimensionalization, k*= kI
and ek"=rk. Therefore, ek <1 means that the wavelength is much longer than
the radius of gyration of the cross section.

Inclusion of shear deformation and rotary inertia was a major step forward in
the one-dimensional theory. However, the procedure of ignoring the highest order
term from (2.3) or (2.4) as employed by Timoshenko (and others; e.g. Dym &
Shames 1972, §87.7 and 7.12), amounts to seeking a regular expansion
A= Ay + pA; + p?Ay + - This is inadmissible because the term O(e*), associated
with the highest order term A% singularly perturbs the algebraic equation (2.4).
Therefore, we must include singular terms such as A=4_,u""+--4 n>0 in the
expansion for A (see Nayfeh 1993 or Bender & Orszag 1999). To remove the
singularity, we must equate the dominant terms. This leads to n=2 in the
present case; hence, A=A_,u~2+--- is appropriate. Alternatively, A=21"/ u?
transforms the singularly perturbed problem (2.4) to a regularly perturbed one in
the new variable A’ as

oA? = —pa(l + o)X + au® = 0. (2.5)

Retaining terms up to O(u)= O(€®) in the regular expansion of A’, we obtain the
following asymptotic expansion for the two roots of A (subscripts inside
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parentheses indicate the two roots):

Ay =d—d1+ao)pu+- )
and ( y (2.6)
1 a(l + 0') 92 9
A@) =,u2a+ P +3a"(1 +o)u +---
Since A = wi; 2 a=k?and p=¢% the asymptotic dispersion relation is given by
(¥) (¥
2742 )
k
Wiy =k*2{1—6 (1 +a)+~-]
and > (2.7)
1 2 1.2 4 1.x4
= 1 ek (1+0) €%k cr_l_m7
() 62\/3 2 2

for ek*<<1. The first root “’?1) corresponds to the frequency identified by
Timoshenko and it improves the parabolic EB dispersion relation wjp = k*2. For
many practical materials and cross-sectional shapes, ¢ =4. The shear correction
is then given by @imomenko = @hs[l — (5/2)€2k*2 + O(&k™)).

The second root is a result of singular perturbation and shows a cut-on® at
w*=1/(y/a) =1/(2¢%). In physical units, wey.on=/KCy/T, Where c, is the
distortional wave speed v/ G/p. The next dominant term is = (5/4)e’k*%. With the
choice of k=n%/12, the cut-on frequency is exactly equal to the cut-on frequency
of the second antisymmetric mode of the Rayleigh-Lamb frequency equation
(Graf 1975). Below the cut-on, the wave is evanescent and does not propagate.

The two dispersion curves associated with equation (2.1) are presented in
figure la,b. The lower branch (labelled ‘Timoshenko: first spectrum’) is an
improvement on the EB theory (the parabola labelled ‘EB’). The second branch
with a cut-on frequency corresponds to the second spectrum of Timoshenko
equations (labelled) and must be associated with the thickness-shear mode for
long waves (see the discussion following equations (2.10) and (2.11)). A one-
dimensional thickness-shear theory is easy to develop by setting w=0 in equation
(1.1). The Lagrangian then becomes

l
Lis = || [{o10"} ~{BIv2 +xGA)) ] ds (29)
0

where the subscript TS means thickness shear. The process of taking the
variation leads to the field equation

pIy—EIY, .. + kGAY = 0. (2.9)

The corresponding dispersion curve corresponding to this one-dimensional theory
is obtained as the hyperbola €'ow* —€e?gk*> =1 (labelled ‘one-dimensional TS’).
The second spectrum and the one-dimensional TS branches are very close
(figure 1a); the difference is due to the extra flexural degree of freedom granted to
the Timoshenko model. The long-wave asymptotes are labelled LWA1 and LWA2
for the first and the second spectra. Note that they diverge with increasing ek".

1 Some authors use the term ‘cut-off’, instead.
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Figure 1. Dispersion curves and their asymptotes. (a) Propagating waves on the real wavenumber versus
real frequency plane. (b) Evanescent waves on the imaginary wavenumber versus real frequency plane.

The EB model affords only one degree of freedom (transverse displacement) per
cross section. The Timoshenko model, by contrast, is described by two coupled
partial differential equations (PDEs); hence, there are two valid branches of the
dispersion curve. The extra degree of freedom reduces the frequency (given a
wavenumber) according to Rayleigh’s well-known theorem (the lowest eigenvalue
of a constrained system is greater than or equal to the lowest eigenvalue of the
unconstrained system). Hence, the Timoshenko bending branch is lower than both
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the EB and the one-dimensional thickness-shear branches (both are ‘constrained’
models: the constraints being ‘no-shear’ and ‘no-flexure’, respectively). When
extra flexibility is introduced, each new degree of freedom provides a new branch of
the dispersion relation (less accurate with respect to a three-dimensional theory
than the already existing branches) and the existing branches progresswely
improve with each extra degree of freedom.? The second spectrum, therefore, is a
bonus due to the extra cross-sectional freedom, but it must not be expected to be
as accurate as the bending branch—it is still good enough for many practical
situations. Note that the relatively poor accuracy of the second spectrum with
respect to detailed theories cannot be a measure of its physical meaningfulness
(contrary to the suggestion of Stephen (2006) and Stephen & Puchegger (2006)).

Small changes in the equations of motion lead to small changes in the response
when the solution of a differential equation is regularly perturbed. When it is
singularly perturbed, the response will be significantly different (hence, not
‘perturbed’ in the ordinary sense of the word). The branch representing the first
spectrum is regularly perturbed over the EB dispersion curve for long waves. As
opposed to this, the branch corresponding to the second spectrum has no
resemblance with the EB solution because it is singularly perturbed (e.g. at zero
wavenumber, the EB branch and the first spectrum pass through the origin,
whereas the second spectrum has a cut-on frequency). The small difference
between the second spectrum and the one-dimensional thickness-shear branches
is attributed to the lack of small coupling between the shear deformation and the
transverse deflection, which is missing in the latter.

The evanescent waves can be obtained by settmg k*-—~>1k* The resultmg
wavenumber—frequency relationship is an ellipse e*gw*? + € a(lk*) =1 on the imagi-
nary wavenumber-real frequency plane for the thickness-shear model (2.9)—a quarter
of which is shown in figure 16 and labelled ‘tmckness-shear The EB dispersion
relation on this plane continues to be a parabola (ik*)*= (w*)?. This curve is plotted in
figure 1b using the label EB. The two branches of the dispersion curves of Timoshenko’s
equations are plotted using solid lines. Note that the agreement is quite good up to
the value of [iek"| approximately equal to 0.2 (i.e. wavelength five times the radius of
gyration). Interestingly, the branches of the Timoshenko equations merge and
become complex (conjugate pair) for shorter evanescent waves (only the real part of
the frequency is shown). The complete spectrum (i.e. a complex wavenumber for a
prescribed real frequency) can be calculated by transformlng a lambda-matrix
problem of the form [k2A2+ kA, + Ag(w)]u=0that arises out of (1.3) to astandard
eigenvalue problem in a space of double the dimension (as in Bhaskar 2003)—the
matrices Ay, A; and A, contain coefficients of the terms in equation (1.3). A complex
wavenumber can result for the case of material damping (owing to a first derivative
term that leads to an imaginary term in the Fourier domain), as well as for evanescent
waves (spatially damped waves) even in the absence of material damping (real w
can lead to complex & solutions for a lambda-matrix problem).

To understand the propagation eigenmodes, the eigenvectors of equation (1.3)
are analytically obtained as

(W, %) 12 = [1, ie(k* ~Eowly /k)} (2.10)

2The ‘exact’ dispersion curve, of course, has an infinite number of branches when the cross section
is treated as a continuum.
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where “’?1,2) are given by (2.7). The imaginary amplitude ratio means that w and

¥ are out of phase by /2. The asymptotic expansions of the propagation modes

for long waves
Way : Wy =1 : i[(ek") —o(ek”)® + O( k)]

and (2.11)
Wey : W =1: —i $+a(ek*) + O(e3k*3)],

show that the dominant behaviour of the first mode is W) : Wy=1 : iek”

(which is identical to the propagation mode of the EB model for which ¥ = w,;). The
second dispersion branch has the dominant behaviour Wy : Wy =iek™ : 1,
which is mainly shear-wise polarized as k"= 0. These motions of the cross section
are shown at the left end of figure 1a. The motion associated with long-wave
propagation is in agreement with the normal modes presented by Downs (1976) and
Chan et al. (2002). The mode of cross-sectional motion associated with the two
propagation modes for long waves (transverse deflection without shear for the first
spectrum and shear without transverse deflection for the second spectrum) has been
observed theoretically by Chan et al. (2002). They should also be credited for
providing experimental evidence for the second spectrum within a limited range of
frequency. Although a direct comparison is not easy because the results of Chan
et al. (2002) are for beams of finite extent as they do not measure the dispersion
relation, the normal modes M3-M6 in their fig. 4 and table 3 correspond to the
standing-wave counterpart of the second spectrum.

The type of motion changes with wavenumber and shear and transverse
motions get mixed. Stephen (1982) found this changing behaviour in the second
spectrum strange and having a ‘split personality’. Changing character of motion
on the travelling-wave dispersion diagram is a norm rather than exception (see
Bhaskar (2003) for this perfectly normal behaviour along dispersion curves).
Indeed, the split personality description is as much valid for the first spectrum as
it is for the second spectrum: both branches cease to be pure shear or pure
bending branches for a non-zero wavenumber. The changing character of the
propagation mode along a dispersion curve is not uncommon (although Stephen
(1982) finds this unusual). The reason is that the mode shapes for the travelling-
wave problem is an eigenvector of a parameter-dependent eigenproblem—the
wavenumber usually playing the role of the parameter on which the eigenvalues
and the eigenvectors depend. This is unlike the case of standing waves (normal
modes) viewpoint where the mode shape is fixed (and hence its character) given a
mode number (or a natural frequency). The more interesting case is when the
character of the normal modes changes sharply with the wavenumber—it is
suggested by Bhaskar (2003) that this is due to eigencurve veering on the
wavenumber—frequency plane. This will be studied in its generality in a future
paper. Further discussion is beyond the scope of the present paper.

For infinitesimally short waves, w‘(‘l) ~e o7 2k* sowehave Wy :¥y=1:0,
which represents transverse motion without cross-sectional rotation. The second
branch becomes w’(“z) ~ e 1k, for large K, which implies W + Wg=1: —3iek",
which is transverse motion of the axis and tilt of the cross section thrice
(but opposite in sense) of what EB kinematics (1.1) dictates. Of course, no
continuum model is valid in this limit of short waves.
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(a) Standing waves and the density of modes

The accurate mode count (or the density of modes) is often more important
than the accuracy of the individual modes (as in statistical energy analysis
(SEA); Hodges & Woodhouse 1986) for studying the high-frequency dynamics of
complex structures. Consider the frequency equation of standing waves in a beam
of finite length with supported ends (Timoshenko 1921),

(nm)* — w1 + €1 + o) (nw)?] + fowit. (2.12)

Seeking expansions on the lines of equation (2.7), we have two sets of natural
frequencies as

Wh1) = (nm)?[1—En*n*(1 +0)/2 + -] }

2.13

Wi (2) = (€/0) M1+ En’r*(1 +0)/2—e'n'nta/2 + ). (2.13)
Timoshenko’s solution is identical to w}, ;) and shows an improvement over EB
values wip = na?, but the second set was lost by Timoshenko (1921) owing to
incorrectly treating the problem as one of regular perturbation.

Equation (2.12) is quadratic in n? for a specified value of w}, = w*, say. If we
treat w* as a continuous variable, for w* <w?, n2<0 but n?>0; for w* > w},
niQ > 0; at the cut-on frequency w}, ny==0. Therefore, for frequency parameter
w* < w}, there is only one valid mode, as expected. The cumulative mode count
N(w%) = n; for w* < w; and N(wi)= n; + n, for w* > w;. The subscripts ‘<’ or
‘>’ denote values less than or greater than the cut-on frequency. After using
properties of the sum and the product of the roots of a quadratic, the cumulative
mode count is given by

L[l 2,
N(w%) =~—{——e w“(1+0) +w*\/1 +et(o —1) /4}
’1’ 2 (2.14)
1/2
Nw3i) = —7;{62(1 + 0)w*? + 2w (low*® — 1)1/2} / .

Are the frequencies from the second set too high to be practically important?
To examine this, the mode number at the cut-on frequency is obtained as (Int is
the greatest integer function)

N, = N(w) = Int[,/a +o) /a/(we)]. (2.15)

For slenderness e=1:15, the mode count at cut-on N.=5.3; hence, the first
mode in the wj series lies between the fifth and the sixth in the ] series—
certainly, a moderate frequency range for many practical applications.

The cumulative mode count is shown in figure 2. Smooth curves depict
equation (2.14); ‘staircasing’ refers to the numerically computed modes
(a little dot appears where a mode from the second series is encountered).
Both curves show a break at the cut-on frequency where the second spectrum
starts contributing to the total mode count. The cut-on is at a smaller
frequency for shorter beams (greater ¢), indicating increased importance of
the second spectrum. This is particularly relevant when the excitation is
in the thickness-shear mode (as in piezoelectric applications). Omitting the
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Figure 2. Cumulative mode count as a function of frequency.

second spectrum will lead to incorrect mode count and the response (e.g.
while using contour integrals in the complex wavenumber plane; Graf 1975) in
many circumstances.

3. The physical meaningfulness of the second spectrum
and the equivalence of Lagrangians

The second spectrum seems to have largely gone unnoticed owing to
Timoshenko’s early treatment of the field equations. Levinson & Cook (1982),
Stephen (1982) and Nesterenko (1993) did realize the mathematical existence of
these roots (clues coming from the quadratic equation (2.5)) but were unsure of
their physical meaning. Since (i) the first root in equation (2.7) can be obtained
by incorrectly treating the problem as one of regular perturbation while the
second root cannot be, (ii) the second spectrum is less accurate with respect to
three-dimensional theories, (iii) the so-called Ostrogradsky energy is negative
(Nesterenko 1993), and (iv) only those frequencies ‘which turn into frequencies
of the EB equation’ should be regarded as physical (Nesterenko 1993) when € and
o approach zero, the second spectrum has been rejected (Levinson & Cook
1982; Stephen 1982, 2006; Chervyakov & Nesterenko 1993; Nesterenko 1993;
Stephen & Puchegger 2006) as being non-physical and a mathematical artefact of
the correction to the EB field equation. There are several fallacies in these
objections which will be discussed in the following.

The four times differentiation with respect to time in equation (1.5) is
misleading in that the inherent Lagrangian for the problem may be of higher
order. The fallacy is in assuming a complete equivalence of the coupled
field equations (1.3) and a single fourth-order equation (1.5) (such as the
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Pais—Uhlenbeck oscillator; Nesterenko 2007). The Lagrangian density (Lagran-
gian per unit length) intrinsic to the equations of Timoshenko (1.3) and (1.4) in
the non-dimensional form is (subscript T refers to Timoshenko and EB refers to
EB when required)

eg*'l’ = g"i‘(w,:* 7‘1’7#" w;;* a‘//a l//m*)
1 - -1 -
=§ [w;z*z +¢at*2——6 1¢af2—0' 16 4(6’[[),} -W)Z] (31)

Although the choice of Lagrangians is not unique (e.g. Lagrangians related via,
but not limited to, gauge invariance property L'=L+dF/dt¢ describe the same
circumstances of motion, dF/dt being the total time derivative of any function
that depends on the generalized coordinates and time; Konopinski 1969; Lemos
1981), the need for a higher order Lagrangian seems artificial in the present
context. Chervyakov & Nesterenko (1993) and Nesterenko (1993) proposed a
Lagrangian density (presented here in the non-dimensional form)

p* . p* * * *
gT - o?T(wat" y Wyprgr ywam*z*)

= % [w,‘;*z — Wt —ow it + E(1+ o)W W] (3.2)
This Lagrangian does produce field equation (2.3) that is_ 1ncomplete (see the
remark following equation (1.5)). The BC obtained from #7 are unacceptable.
Since #71 leads to neither equations (1.3) nor the BC (1.4), it is inadmissible.

While constructing Lagrangians (often as a correction to another Lagrangian),
it is possible in some contexts that the modified Lagrangian leads to physically
unacceptable modes (known as ghost fields; e.g. Nesterenko 1989; Simon 1990).
The case of the Timoshenko model in elastodynamics, however, is unambiguous:
there are no ghost modes and both modes of propagation are physically
meaningful. These conclusions can be easily generalized to flexural waves in
plates and shells because Mindlin’s equations (e.g. Dym & Shames 1972, §7.12)
are generalization of Timoshenko’s for the plate problem.

Equation (1.5) is sometimes regarded as the governing field equation for the
Timoshenko model. Interestingly, it is often presented without any BC. The BC
obtained from the ‘higher order Lagrangian’ are clearly incorrect and,
surprisingly, remain unquestioned (e.g. by Stephen 2008). The physics of
Timoshenko beams lacks four BC involving the field variable w (and its
gradients) alone as demanded by (1.5). The correct BC involve a mix of wand ¥
(and their gradients). There is no known Lagrangian that directly produces
equation (1.5) together with the correct BC. Indeed, any attempt to construct a
Lagrangian involving w alone is doomed to failure because ¥ cannot be
eliminated from the BC (1.4). Perhaps the only reason why the fourth-order PDE
(1.5) is given any consideration is because it appears as a correction on EB
equation—the latter is obtained by suppressing the last two terms. These two
terms are not introduced as ad hoc correction factors while developing
Timoshenko model—the basis is the kinematics of equation (1.1) followed by
the application of the variational principle.

Stephen (2008) did not question the validity of the Lagrangian density (3.2).
Instead, he showed that the fourth-order time differentiation in (2.3) is analogous
to a coupled oscillator problem being described by a single ordinary differential
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equation (ODE) of the fourth order (instead of a pair of ODEs, each being a
second order)—thus misplacing the focus of the issue. The fourth-order ODE
can be reproduced by a Lagrangian having higher order time derivative.
However, (i) we cannot assign the three initial conditions to the fourth-order
ODE at will, they need to be ‘borrowed’ from the initial conditions associated
with the pair of ODEs,® and (ii) not only the variations are required to be
co-terminus, but also their first and the second time derivatives are required to
be co-terminus.*

The issue of the order of the spatial differentiation is more subtle owing to the
conditions at the boundary. There are only four possible combinations of
physically meaningful BC consistent with (3.1): (i) éw" =0 and éy=0 for a fixed
(cantilevered) end, (ii) 6w*=0 and ¥,,» = 0 for a supported end, (iii) w,;» —¢=0
and ¥, =0 for a free end, and (iv) w,s—y¢ =0 and 6y=0 for a non-rotating
sliding end. The fourth BC is theoretically possible but is rarely encountered
in engineering practice. If there are other mechanical elements (such as a mass
or a spring) that involve energy terms, then the Lagrangian must be
modified accordingly. By contrast, the BC consistent with (3.2) are of dubious
physical meaning.

The choice of the Lagrangian as the difference between the kinetic energy and
the potential energy is common in classical mechanics but it is not limited to this.
For conservative systems with finite degrees of freedom, all Lagrangians that
produce the same equations of motion (ODEs) are equivalent because they
predict identical causal responses. For field problems (represented by PDEs), the
reproduction of the same field equations alone is not sufficient for the equivalence
of Lagrangian densities. This point does not seem to have been recognized in the
literature. In addition to the field equations, we require that the set of
variationally consistent BC must also be identical if two Lagrangian densities
were to be equivalent. To illustrate this, consider the following Lagrangian
density (associated with EB beams):

* 1 * *
agEB = E (w,t*Q - w,z*x*Q). (33)
Applying Hamilton’s principle & ft? fol Fip dz* dt* =0, we obtain

t
t*

o]dt*=0.

¢y rl
- L* L (W, F W, o g o )OW* Az dt* +J [(wyie g OW) g — (W, e Ow 50 )

1 1

(3.4)

3For example, the generalized coordinate gy can be ‘eliminated’ from the pair of ODEs §; + ¢, —
=0 and §— ¢ +vg=0 to obtain §;+ (1+7v)§, + (v —1)¢ =0, but one is not free to
prescribe arbitrary initial conditions g,(0) = g, @ (0) = vy, 4,(0) = ayg, t¢,(0) = jip to the fourth-
order ODE at will (in the way evolution equations admit arbitrarily prescribable initial state from
where the future states unfold). The constraints §;(0) + ¢ (0) = ¢(0) and £¢;(0) + §;(0) = ¢(0) on
the initial conditions need to be additionally respected.

4To derive the fourth-order ODE variationally from a higher order Lagrangian, one additionally
requires 6¢;(0) = 8§, (0) = 0. Traditionally, Hamilton’s principle demands co-terminus variations of
the generalized coordinates ¢, and ¢, only, i.e. ¢, =0dg,=0.
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Since the variation dw" is arbitrary, we obtain the governing equation of motion
wa?*t* +w7;”x*z*:c* = 07 (35)

and the BC as either 6w"=0 (kinematic BC) or w, =0 (kinetic BC), and
0w, (kinematic BC) or w,,=0 (kinetic BC). The two kinetic BC can be
physically interpreted as the absence of shear force or bending moment when the
ends are not restrained in transverse motion or rotation, respectively. Now
consider a hypothetical Lagrangian density (note the extra two terms)

~ % 1 * * *
gEB = 5 (w:t*2 - w7a:“‘z”‘2) + 0 W, g +a2w7:;*z* . (36)

Carrying out the variations, we have

t5 1l
* * % 1%
“‘J JO (w,t*t* +U),z*z*l-*x*)6'w dz dt

f

t
+ Jt* [(w7;*x*x* +a1)5w*l(1) - (w’::*x* —a2)6wa;‘* I(l)] dt* = 0. (37)
1
This leads to the same field equation as (3.5) but the BC are now dw*=0
(kinematic BC) or w,% . +a; =0 (kinetic BC), and éw,; (kinematic BC) or
w,% .« —ay = 0 (kinetic BC). The two Lagrangian densities (3.3) and (3.6) are not
equivalent because the response predicted would, in general, be different due to
different kinetic BC.

One may argue that once having derived the correct field equation(s) (say,
from (3.7)), one could use physically meaningful BC (not necessarily the one(s)
resulting from the Lagrangian that produced the field equation(s) in the first
place). This argument is unacceptable because the field equations and the BC
come as a ‘single package’ as a result of variational process. Having taken a
Lagrangian for granted, we must accept all the consequences that arise out of it
and not selectively discard the ones regarding the BC. In many situations, the
BC can be derived satisfactorily only by demanding variational consistency with
the Lagrangian (e.g. the Kirchhoff-shear BC at the free edge of a plate).

Analogous to discrete problems, the canonical momentum density and the
Hamiltonian density corresponding to Fgg are given by

0L%n
TEB — EE:
It*

and H'gp = TEpW,p —LEB (3.8)

and similar expressions for 7gg and Hep (tilde for quantities associated with
LPEB). We obtain the expressions for momentum density corresponding to the
Lagrangians (3.3) and (3.6) as mgg= Tgg= w,}- . The corresponding non-
dimensional Hamiltonian densities are

* 1 *
r}fEB = 5 (wat*2 +wa;gx*)

and (3.9)

X *2 *2 * *
H'gp = (wvt“ +wsz*1"‘) X Wy T Qg Wygr g

N =
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While there is no requirement that the Hamiltonian be identical with the total
mechanical energy (the choice of the Hamiltonian as the total energy may be seen
as a mere convention in mechanics) it is a conserved quantity (e.g. the total
energy plus an arbitrary constant is also a conserved quantity) and, therefore is
a constant of motion. The two Hamiltonians corresponding to L5g and g are
the constants of motion given by

1
H]):EJB = J ‘%EB d(l?* = E* and
0
3.10
L 1 (3.10)
iy = | #in do' = B = | (i +equi )i
0 0

where E™ is the total (non-dimensional) mechanical energy. Carrying out
integrations, we have

Hig = B — oq[w* (1, %) —w*(0, t*)] — ap[w, i (1, ) —w,p (0, ¢%)]. (3.11)

Therefore, the Lagrangian density (3.6) requires the quantity Hgp to be
conserved This is not only unphysmal it is also 1ncons1stent with the
conservation of Hpp. We conclude again that #gp and Prp are not equivalent
Lagrangian densities and that the latter is a bogus choice for describing the EB
beam dynamics.

There is a further interesting implication of the above discussions to
computational mechanics. Methods such as the finite-element method,
Rayleigh-Ritz method, boundary-element method, etc. are often formulated
variationally by expressing the Lagrangian in terms of free parameters
(generalized coordinates of the discretized problem) and applying the variational
principle leading to ODEs. Consider Rayleigh’s method applied to a fixed-free
cantilever beam subjected to a non-dimensional tip force F*(¢) using, for
example, a one-term displacement representation w*(z*, t*) = ¢(¢*)z*2. Only the
kinematic BC at the root of the beam (2"=0) need to be satisfied. The
Lagrangians corresponding to (3.3) and (3.6) for a beam of unit length are then
Lig=(1/2)[(¢,3 /3) —4¢’] and Lep= Lip+ (o + 2ay)q, respectively. The
variation of the work done by the non-conservative forces is 0 W, = F*dq.
Applying either Hamilton’s principle or Lagrange’s equations, we obtain the
‘discretized’ equation of motion as

%‘Lt*t" +4¢g=F" and é‘q,m* +4q+ (@) +205) = F7, (3.12)
arising out of ¥z and_ =?EB, respectively. They are clearly inconsistent. This
further illustrates that %" is inadmissible in the context of the EB theory despite
correctly producing the field equation (3.5). One could further construct realistic
computational examples (such as in finite elements) and show that the element
stiffness matrices arising out of such inadmissible Lagrangians are different from
the desired ones. It is therefore reasonable to demand that, given a discretization
(i.e. a discretization method and an expansion of the field variable in a chosen
basis), the discretized equations arising from all equivalent Lagrangian densities
must be equivalent.
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Returning to the original context of Timoshenko beams, #7 and P are not
equivalent Lagrangian densities because they lead to different kinetic BC—those
arising out of the latter cannot be associated with the Timoshenko model. Hence,
we propose that two Lagrangian densities be called equivalent if, and only if, they
produce the same field equation(s) as well as the same complete set of possible BC.
The Hamiltonian density corresponding to P71 is obtained by calculating the
canonical momentum density fields (two of them) as

9L% 9%
a’ll],:* a\//,t*

The Hamiltonian density for the Timoshenko deformation field is then given by

=Y. (3.13)

*
Ty = =w, and mw, =

[ CUT +¢vt +e ‘//mc +o~ (Eww _¢)2]7
(3.14)

* * * 1
HT =Ty Wy YWY, — L7 = 3

which is always positive (and equals the total energy density owing to the choice
of the Lagrangian density). This is in disagreement with the Ostrogradski
Hamiltonian (which is a function of w" and its spatio-temporal derivatives but
independent of ¥; as in Stephen (2008)) based on Nesterenko’s Lagrangian. The
two are incompatible—i.e. both of them cannot be constants of motion. The
‘conjugate momenta’ calculated by Stephen (2008; they should be momenta
density for field problems really) are also incompatible with equation (3.13). The
conclusion is that S’T is not appropriate for Timoshenko’s field equations and
that it has led to some unacceptable implications in the literature.

4. Conclusions

It was shown that the wave propagation problem associated with- transverse
motion of bars including shear deformation is singularly perturbed. It was further
shown that using regular expansion for the singularly perturbed problem (as in
Timoshenko’s paper and elsewhere in the literature) leads to the loss of one
branch of the dispersion curves (also known as the second spectrum)—often
debated if it is physical or not. The first spectrum is corrected (with respect to
the EB theory) by a term of the order of ¢2k*?, whereas the singularly perturbed
branch (the second spectrum) is new and has the leading term of the order of ¢ %
¢ being the ratio of the radius of gyration and the characteristic length in the
propagation direction.

It has been argued here that the single field equation, which is the fourth order
in space and time, frequently used to represent Timoshenko dynamics is
inappropriate in the context because: (i) it is incomplete and (ii) it lacks four
physically meaningful BC.

The second spectrum is associated with thickness-shear motion (in agreement
with Downs (1976) and Chan et al. (2002)) and it must not be disregarded
contrary to suggestions by some authors. This propagation mode shows a cut-on
frequency below which it is evanescent—the cut-on frequency being equal to the
cut-on frequency of the second antisymmetric mode of the Raylelgh-Lamb
frequency equation for the choice of the Timoshenko shear coefficient k=7 2/12.
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An easy to develop model of thickness-shear motion having one degree of
freedom per cross section shows good agreement with the second spectrum
of Timoshenko equations, well up to wavelengths about five times the radius of
gyration for propagating waves as well as evanescent waves.

The relatively poorer accuracy of the second spectrum (when compared with
that of the first spectrum) is explained by the use of Rayleigh’s theorem for
systems with constraints. It was shown that the density of modes changes non-
smoothly at the cut-on frequency. Ignoring the second spectrum would lead to
significant inaccuracies while using methods such as the SEA.

A Hamiltonian formulation of the Timoshenko deformation field was
presented, and it was shown that the Hamiltonian density (and its spatial
integral: the Hamiltonian) are well-behaved positive quantities. It was shown
that a previously proposed Lagrangian is inadmissible to describe the dynamics
of Timoshenko beams. An example was presented to show that Lagrangians
leading to the same field equation but different BC lead to intrinsically different
constants of motion—hence, they are inequivalent. Finally, the Hamiltonian
density of Timoshenko dynamics is found to be in disagreement with the
previously proposed Ostrogradski Hamiltonian—the latter being based on an
unacceptable Lagrangian.

I thank several of my colleagues for their useful comments.

References

Bender, C. M. & Orszag, S. A. 1999 Advanced mathematical methods for scientists and engineers.
Berlin, Germany: Springer.

Bhaskar, A. 2003 Waveguide modes in elastic rods. Proc. R. Soc. A 459, 175-194. (doi:10.1098/
rspa.2002.1013)

Blasius, P. R. H. 1908 Grenzschichten in Flussigkeiten mit kleiner Reibung. Z. Math. Phys. 56,
1-37.

Brillouin, L. 1926 La mechanique ondulatoire de Schrodinger: une methode generale de resolution
par approximations successives. Comptes Rendus 183, 24-26.

Chan, K. T., Wang, X. Q., So, R. M. C. & Reid, S. R. 2002 Superposed standing waves in a
Timoshenko beam. Proc. R. Soc. A 458, 83-108. (doi:10.1098/rspa.2001.0855)

Chervyakov, A. M. & Nesterenko, V. V. 1993 Is it possible to assign physical meaning to field
theory with higher derivatives? Phys. Rev. D 48, 5811-5817. (doi:10.1103/PhysRevD.48.5811)

Downs, B. 1976 Transverse vibrations of a uniform, simply supported beam without transverse
displacement. ASME J. Appl. Mech. 43, 671-673.

Dym, C. L. & Shames, I. H. 1972 Solid mechanics: a variational approach. New York, NY: McGraw Hill.

Graf, K. F. 1975 Wave motion in elastic solids. New York, NY: Dover.

Hodges, C. H. & Woodhouse, J. 1986 Theories of noise and vibration transmission in complex
structures. Rep. Prog. Phys. 49, 107-170. (doi:10.1088/0034-4885/49/2/001)

Huang, T. C. 1961 The effect of rotary intertia and of shear deformation shear deformation on the
frequency and normal mode equations of uniform beams with simple end conditions. ASME
J. Appl. Mech. 28, 579-584.

Jeffreys, H. 1924 On certain approximate solutions of linear differential equations of second order.
Proc. Lond. Math. Soc. 23, 428—436. (doi:10.1112/plms/s2-23.1.428)

Konopinski, E. J. 1969 Classical descriptions of motion. San Fransisco, CA: W.H. Freeman and Co.

Kramers, H. A. 1926 Wellenmechanik und halbzahlige Quantiseirung. Z. Phys. 39, 828-840.
(doi:10.1007/BF01451751)

Proc. R. Soc. A (2009)



Elastic waves in Timoshenko beams 255

Landau, L. D. & Lifshitz, E. M. 1989 Course on theoretical physics: theory of elasticity. Oxford,
UK: Pergamon.

Lemos, N. A. 1981 Physical consequences of the choice of the Lagrangian. Phys. Rev. D 24,
1036-1039. (doi:10.1103/PhysRevD.24.1036)

Levinson, M. & Cook, D. W. 1982 On the two frequency spectra of Timoshenko beams. J. Sound
Vib. 84, 319-326. (doi:10.1016/0022-460X(82)90480-1)

Nayfeh, A. H. 1993 Introduction to perturbation techniques. New York, NY: Wiley Classics.

Nesterenko, V. V. 1989 Singular Lagrangians with higher derivatives. J. Phys. A Math. Gen. 22,
1673-1687. (doi:10.1088/0305-4470/22/10/021)

Nesterenko, V. V. 1993 A theory of transverse vibration of the Timoshenko beam. PMM J. Appl.
Math. Mech. 57, 669-677. (doi:10.1016/0021-8928(93)90036-L)

Nesterenko, V. V. 2007 Instability of classical dynamics in theories with higher derivatives. Phys.
Rev. D 75, 087 703. (doi:10.1103/PhysRevD.75.087703)

Prandtl, L. 1904 In Verhadlungen des dritten internationalen Mathematiker-Kongress (Heidelburg),
p. 484.

Rayleigh, L. 1877 The theory of sound, vol. 1, p. 186. New York, NY: Dover. (1945 Re-issue).

Simon, J. Z. 1990 Higher-derivative Lagrangians, nonlocality, problems, and solutions. Phys. Rev.
D 41, 3720-3733. (doi:10.1103/PhysRevD.41.3720)

Smith, R. W. M. 2008 Graphical representation of Timoshenko beam modes for clamped-clamped
boundary conditions at high frequency: beyond transverse deflection. Wave Motion 45, 785-794.
(doi:10.1016/j.wavemoti.2008.01.002)

Stephen, N. G. 1982 The second frequency spectrum of Timoshenko beams. J. Sound Vib. 80,
578-582. (doi:10.1016/0022-460X(82)90501-6)

Stephen, N. G. 2006 The second spectrum of Timoshenko beam theory: further assessment.
J. Sound Vib. 292, 372-389. (doi:10.1016/j.jsv.2005.08.003)

Stephen, N. G. 2008 On the Ostrogradski instabilty for higher-order theories and the pseudo-
mechanical energy. J. Sound Vib. 310, 729-739. (doi:10.1016/j.jsv.2007.04.019)

Stephen, N. G. & Puchegger, S. 2006 On the valid frequency range of Timoshenko beam theory.
J. Sound Vib. 297, 1082-1087. (doi:10.1016/3.jsv.2006.04.020)

Timoshenko, S. P. 1921 On the correction of shear of the differential equation for transverse
vibration of prismatic bars. Philos. Mag. 41, 744.

Trabucho, L. & Viano, J. M. 1990 A new approach of Timoshenko’s beam theory by asymptotic
expansion method. Math. Mod. Num. Anal. 24, 651-680.

Wentzel, G. 1926 Eine Verallgemeinerung der Quantenbedingungen fur die Zwecke der
Wellenmechanik. Z. Phys. 38, 518-529. (doi:10.1007/BF01397171)

Proc. R. Soc. A (2009)



