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ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Near-Capacity MIMOs Using Iterative Detection
by
Mohammed El-Hajjar

In this thesis, Multiple-Input Multiple-Output (MIMO) techniques designed for transmis-
sion over narrowband Rayleigh fading channels are investigated. Specifically, in order to provide
a diversity gain while eliminating the complexity of MIMO channel estimation, a Differential
Space-Time Spreading (DSTS) scheme is designed that employs non-coherent detection. Addi-
tionally, in order to maximise the coding advantage of DST'S, it is combined with Sphere Packing
(SP) modulation. The related capacity analysis shows that the DSTS-SP scheme exhibits a
higher capacity than its counterpart dispensing with SP. Furthermore, in order to attain addi-
tional performance gains, the DSTS system invokes iterative detection, where the outer code
is constituted by a Recursive Systematic Convolutional (RSC) code, while the inner code is a
SP demapper in one of the prototype systems investigated, while the other scheme employs a
Unity Rate Code (URC) as its inner code in order to eliminate the error floor exhibited by the
system dispensing with URC. EXIT charts are used to analyse the convergence behaviour of
the iteratively detected schemes and a novel technique is proposed for computing the maximum
achievable rate of the system based on EXIT charts. Explicitly, the four-antenna-aided DST'S-
SP system employing no URC precoding attains a coding gain of 12 dB at a BER of 107> and
performs within 1.82 dB from the maximum achievable rate limit. By contrast, the URC aided

precoded system operates within 0.92 dB from the same limit.

On the other hand, in order to maximise the DSTS system’s throughput, an adaptive DSTS-
SP scheme is proposed that exploits the advantages of differential encoding, iterative decoding
as well as SP modulation. The achievable integrity and bit rate enhancements of the system
are determined by the following factors: the specific MIMO configuration used for transmitting

data from the four antennas, the spreading factor used and the RSC encoder’s code rate.

Additionally, multi-functional MIMO techniques are designed to provide diversity gains,
multiplexing gains and beamforming gains by combining the benefits of space-time codes, V-
BLAST and beamforming. First, a system employing N;=4 transmit Antenna Arrays (AA)

with L 44 number of elements per AA and N,=4 receive antennas is proposed, which is referred



to as a Layered Steered Space-Time Code (LSSTC). Three iteratively detected near-capacity
LSSTC-SP receiver structures are proposed, which differ in the number of inner iterations
employed between the inner decoder and the SP demapper as well as in the choice of the
outer code, which is either an RSC code or an Irregular Convolutional Code (IrCC). The three
systems are capable of operating within 0.9, 0.4 and 0.6 dB from the maximum achievable rate
limit of the system. A comparison between the three iteratively-detected schemes reveals that
a carefully designed two-stage iterative detection scheme is capable of operating sufficiently
close to capacity at a lower complexity, when compared to a three-stage system employing
a RSC or a two-stage system using an IrCC as an outer code. On the other hand, in order
to allow the LSSTC scheme to employ less receive antennas than transmit antennas, while
still accommodating multiple users, a Layered Steered Space-Time Spreading (LSSTS) scheme
is proposed that combines the benefits of space-time spreading, V-BLAST, beamforming and
generalised MC DS-CDMA. Furthermore, iteratively detected LSSTS schemes are presented and
an LLR post-processing technique is proposed in order to improve the attainable performance

of the iteratively detected LSSTS system.

Finally, a distributed turbo coding scheme is proposed that combines the benefits of turbo
coding and cooperative communication, where iterative detection is employed by exchanging
extrinsic information between the decoders of different single-antenna-aided users. Specifically,
the effect of the errors induced in the first phase of cooperation, where the two users exchange
their data, on the performance of the uplink in studied, while considering different fading

channel characteristics.
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Sh: The subset of the legitimate constellation set S that contains all symbols having b, = 1.
T The symbol duration.

Tsp{.}: The transfer function from SP to complex signals.
T,,'{.}: The inverse transfer function from complex signals to SP signal.
v The differentially encoded symbol at time instant t.

W The channel bandwidth.

Wom:  The Ljs-dimensional weight vector for the mth beamformer antenna array and the

nth receive antenna.

W: The diagonal transmit antenna array weight matrix.

Xy The modulated symbol at time instant ¢.

Yl The transmitted signal at time instance ¢ from transmit antenna i.
IT: The interleaver.

II-!:  The deinterleaver.

o2 The complex AWGN variance.

n: The bandwidth efficiency in [bits/sec/Hz].

Nmaz:  The maximum achievable bandwidth efficiency in [bits/sec/Hz|.

X2 The Chi-square distributed random variable having ¢ degrees of freedom.
A The carrier’s wavelength.
Unm: The nmth link direction of arrival.

XX



Chapter

Introduction

Since Shannon quantified the capacity of a wireless communications system in 1948 [23], the
researchers endeavoured to devise high-speed, high-quality wireless communication systems
exhibiting both high bit rate and a low error rate. The hostile wireless channel characteristics

make it challenging to simultaneously accomplish both objectives.

The demand for high-rate wireless communication systems driven by cellular mobile and
wireless multimedia services has been rapidly increasing worldwide. However, the available ra-
dio spectrum is limited and the associated bandwidth demands cannot be readily met without a
significant increase in the achievable spectral efficiency [24]. Furthermore, the system capacity
is interference limited and hence cannot be readily increased by simply increasing the trans-
mitted power. Therefore, against the explosive expansion of the Internet and the continued
dramatic increase in demand for high-speed multimedia wireless services, there is an urging
demand for flexible and bandwidth-efficient transceivers. Advances in coding made it feasible
to approach Shannon’s capacity limit in systems equipped with a single antenna [25-27], but
fortunately these capacity limits can be further extended with the aid of multiple antennas.
Hence, their employment in most future communication systems seems to be inevitable [28,29].
Multiple-Input Multiple-Output (MIMO) wireless communication systems have recently at-
tracted considerable attention as one of the most significant technical breakthroughs in modern

communications [30].

Recent advances in wireless communications have increased both the attainable throughput
and reliability of systems communicating over wireless channels. The main driving force be-
hind the advances in wireless communications is the promise of seamless global mobility and
ubiquitous accessibility, while meeting the following challenges [30]: supporting a high data
rate, maintaining the required quality of service, supporting high vehicular speeds, tolerating

the interference imposed by other users, while maintaining privacy and security. For exam-
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ple, the requirement of tetherless operation results in the use of batteries, which necessitates
the employment of power-efficient algorithms to extend the battery life. Another important
challenge is the co-channel interference caused by other users, which can be counteracted by
sophisticated transceiver designs. Additionally, the available bandwidth is limited, while there

is a demand for high data rates and low error rates.

Therefore, in this dissertation we present several wireless transceiver designs that satisfy the
data rate and performance expectations for transmission over wireless channels. We first design
a Differential Space-Time Spreading (DSTS) scheme that is capable of achieving a diversity
gain and hence resulting in an improved BER performance, while at the same time eliminating
the potentially high-complexity MIMO channel estimation. Additionally, we propose a near-
capacity DSTS scheme using iterative detection. Then we develop two different multi-functional
MIMO schemes that are capable of simultaneously providing a high throughput and a good
performance, which are capable of benefitting from employing a higher number of antennas
than the DSTS scheme. Finally, in order to mitigate the effects of large-scale shadow fading
on the performance of MIMO systems, we design a cooperative communication system that
is capable of providing substantial diversity-, throughput- as well as coding-gains, while using

single-antenna-aided mobile stations.

1.1 The Wireless Channel

The wireless channel imposes fundamental limitations on the attainable performance of wireless
communication systems [31]. The key characteristics of the wireless channel in contrast to
the Gaussian channel are small-scale fading and multi-path propagation [31], which is based
on the fact that there are many different paths between the transmitter and the receiver,
as exemplified in Figure 1.1. This results in the destination receiving different versions of
the same transmitted signal, where these received versions experience different path loss and
phase rotations [30]. The received versions of the transmitted signal randomly combine either
constructively or destructively at the receiver, resulting in substantial fluctuation of both the

amplitude and phase of the resultant received signal [27].

There are two general aspects characterising a wireless channel. The first is referred to
as large-scale fading that corresponds to the effect of the channel on the signal power over
large distances, which is directly related to the path loss and shadow fading. The other aspect
is the small-scale fading that is characteristic of the rapid fluctuation in the amplitude and
phase of the signal. The main mechanisms affecting the transmitted signal’s propagation can

generally be considered to be reflection, diffraction and scattering, as shown in Figure 1.1. The
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Reflection

Diffraction

Transmitter

Figure 1.1: An example of different paths in a wireless channel, (©) Jafarkhani [30], 2005.

direct path between the transmitter and receiver of Figure 1.1 is referred to as the Line Of
Sight (LOS) path, where the received signal propagating through the LOS path is typically the
strongest signal. The transmitted signal can also be reflected by objects that are larger than
its wavelength, before reaching the receiver. On the other hand, electromagnetic waves can
also be diffracted by the sharp edges of objects having irregular surfaces. Finally, as shown in
Figure 1.1, scattering results in several copies of the wave propagating in different directions.
These factors result in attenuation of the amplitude as well as of the phase of the signal, when
the received signals are superimposed at the receiver. Additionally, when the transmitter or
receiver is moving, the resultant channel becomes a time varying channel, where the amplitude
and phase attenuation fluctuate with time. Other factors that influence the small-scale fading
include the velocity of both the mobile as well as of the surrounding objects and the transmission

bandwidth of the signal [31].

1.2 Multiple-Input Multiple-Output Systems

A MIMO system employs IV, > 1 transmit antennas and NV, > 1 receive antennas. A wireless
system employing a MIMO scheme transmits the signals C;,,n = 1,2,..., N;, simultaneously
from the N, transmit antennas at time instant t. Each signal transmitted from each of the
N, antennas propagates through the wireless channel and arrives at each of the NN, receive
antennas. In a wireless system equipped with N, receive antennas, each received signal is con-
stituted by a linear superposition of the faded versions of the transmitted signal perturbed by
noise. Of particular interest is the specific propagation scenario, where the individual channels
between given pairs of transmit and receive antennas may be accurately modelled by indepen-
dent Rayleigh fading channels. As a result, the signal corresponding to every transmit antenna

has a distinct spatial signature, i.e. impulse response, at a receive antenna. The independent
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MIMO Techniques

» Colocated MIMO

> Diversity Techniques
> Receive Diversity
Maximum Ratio Combining (MRC)

Equal Gain Combining (EGC)
Selection Combining (SC)

L Space-Time Coding (STC)

STBC

STTC

Quasi-orthogonal STBC

Linear Dispersion Codes (LDC)
Differential Space-Time Coding Schemes

> Multiplexing Techniques

L» BLAST
I Multiple Access Techniques

L» SDMA
— Beamforming Techniques

—> Beamformers designed for SNR Gain
L» Beamformers designed for interference suppression

L» Multifunctional MIMO Techniques

L Combine diversity, multiplexing and beamforming

' Distributed MIMO

L Cooperative Communications

Figure 1.2: Classification of MIMO techniques.

Rayleigh fading model can be assumed in MIMO channels, where the antenna spacing is con-
siderably higher than the carrier’s wavelength. As a result, the signal corresponding to every

transmit antenna has a distinct spatial signature at a receive antenna.

The information-theoretic aspects of MIMO systems were considered by several authors [32—
34]. It was demonstrated that MIMO systems exhibit capacity gains in comparison to the
employment of a single antenna at both the transmitter and receiver. In [33,34], it was demon-
strated that the capacity of a MIMO system increases linearly with the number of transmit
antennas when communicating over an independent and identically distributed (i.i.d.) flat
Rayleigh fading channel, provided that the number of receive antennas is equal to or greater

than the number of transmit antennas. Explicitly, information theoretic studies [34] have shown
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that in contrast to the logarithmic Shannon-Hartley law [35], MIMO schemes increase the sys-
tems’ capacity linearly with the number of transmit antennas. Hence, when the extra power is
assigned to additional antennas, it may be argued that the capacity increases also linearly with

the transmit power.

The classification of different MIMO systems is summarised in Figure 1.2, which can be
classified as colocated MIMOs and distributed MIMOs. The colocated MIMO can be also cate-
gorised as diversity techniques, multiplexing techniques, multiple access methods, beamforming
as well as multi-functional MIMO techniques as shown in Figure 1.2. The concept of distributed

MIMOs is also often referred to as cooperative communications [36, 37].

1.2.1 Colocated MIMO Techniques

MIMO systems exhibit higher capacity than single-antenna-aided systems. Multiple antennas
can be used to provide diversity gains and hence a better BER performance or multiplexing
gains, in order to attain a higher throughput. Additionally, multiple antennas can be used at
the transmitter or receiver in order to attain a beamforming gain. On the other hand, multiple
antennas can be employed in order to attain diversity gains, multiplexing gains as well as
beamforming gains as shown in Figure 1.2. The terminology of colocated MIMOs refers to the
systems, where the multiple antennas are located at the same transmitter or receiver station.
In the sequel, we give an overview of the family of multiple antennas, when used for achieving

diversity, multiplexing or beamforming gains.

1.2.1.1 Diversity Techniques

Communication in the presence of channel fading has been one of the grand research challenges
in recent times. In a fading channel, the associated severe attenuation often result in decoding
errors. A natural way of overcoming this problem is to allow the receiver to have several
replicas of the same transmitted signal, while assuming that at least some of them are not
severely attenuated. This technique is referred to as diversity, where it is possible to attain
diversity gains by creating independently fading signal replicas in the time, frequency or spatial

domain.

Spatial diversity can be attained by employing multiple antennas at the transmitter or the
receiver. Multiple antennas can be used to transmit and receive the same information sequence
in order to achieve diversity and hence to obtain an improved BER performance. A simple
spatial diversity technique, which does not involve any loss of bandwidth, is constituted by the

employment of multiple antennas at the receiver. In case of narrowband frequency-flat fading,
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Year | Author(s) Contribution

1959 | Brennan [38] introduced and provided analysis for the three combining tech-
niques: selection combining, maximum ratio combining and equal
gain combining.

1991 | Wittneben [39] proposed a bandwidth-efficient transmit diversity technique,
where different base stations transmit the same signal.

1993 | Wittneben [40] proposed a modulation diversity scheme in a system equipped
with multiple transmit antennas.

Seshadri et al. [41] proposed a transmit diversity scheme that was inspired by the
delay diversity design of Wittneben [40].

1994 | Winters [42] proved that the diversity advantage of the scheme proposed
in [39] is equal to the number of transmit antennas.

1996 | Eng et al. [43] Compared several diversity combining techniques in a Rayleigh
fading transmission with coherent detection and proposed a new
second order selection combining technique.

1998 | Alamouti [44] discovered a transmit diversity scheme using two transmit anten-
nas with simple linear processing at the receiver.

Tarokh et al. [45] proposed a complete study of design criteria for maximum di-
versity and coding gains in addition to the design of space-time
trellis codes.

1999 | Tarokh et al. [46,47] generalised Alamouti’s diversity scheme [44] to more than two
transmit antennas.

Guey [48] derived the criterion for designing the maximum transmit diver-
sity gain.

2001 | Hochwald et al. [49] proposed the twin-antenna-aided space-time spreading scheme.

Jafarkhani et al. [50] designed rate-one STBC codes which are quasi-orthogonal and
provide partial diversity gain.

2002 | Hassibi et al. [51] proposed the LDCs that provide a flexible trade-off between
space-time coding and spatial multiplexing.

Stoica et al. [52] compared the performance of STBC when employing different
estimation/detection techniques and proposed a blind detection
scheme dispensing with the pilot symbols transmission for chan-
nel estimation.

Table 1.1: Major coherent spatial diversity techniques (Part 1).
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Year | Author(s) Contribution
2003 | Wang et al. [54] derived upper bounds for the rates of complex orthogonal STBCs.
Su et al. [55] introduced the concept of combining orthogonal STBC designs

with the principle of sphere packing.

2005 | Zhang et al. [56] derived the capacity and probability of error expressions for
PSK/PAM/QAM modulation with STBC for transmission over
Rayleigh-, Ricean- and Nakagami-fading channels.

2006 | Liew et al. [57] studied the performance of STTC and STBC in the context of

wideband channels using adaptive orthogonal frequency division
multiplex modulation.

2007 | Alamri et al. [58] modified the SP demapper of [55] for the sake of accepting the

a priori information passed to it from the channel decoder as
extrinsic information.

2008 | Luo et al. [59] combined orthogonal STBCs with delay diversity and designed

special symbol mappings for maximising the coding advantage.

Table 1.2: Major coherent spatial diversity techniques (Part 2).

the optimum combining strategy in terms of maximising the SNR at the combiner output
is Maximum Ratio Combining (MRC) [26, 38, 53]. Additionally, other combining techniques
have been proposed in the literature, as shown in Figure 1.2, including Equal Gain Combining
(EGC) [38] and Selection Combining (SC) [26]. All the three combining techniques are said to

achieve full diversity order, which is equal to the number of receive antennas [43].

On the other hand, the idea of transmit diversity corresponds to the transmission of the
same signal over multiple transmit antennas at the same time within the same bandwidth. The
first bandwidth-efficient transmit diversity scheme was proposed in [39] and it was shown that
the diversity advantage of this scheme is equal to the number of transmit antennas [30,42,60].
In [44] Alamouti discovered a witty transmit diversity technique using two transmit antennas,
whose key advantage was the employment of simple linear processing at the receiver, which is
based on Maximum-Likelihood (ML) detection. The decoding algorithm proposed in [44] can
be generalised to an arbitrary number of receive antennas using MRC, EGC or SC. Alamouti’s
achievement inspired Tarokh et al. [46,47] to generalise the transmit diversity scheme to more
than two transmit antennas, contriving the concept of Space-Time Block Codes (STBC). The
family of STBCs is capable of attaining the same diversity gain as Space-Time Trellis Codes
(STTC) [45,61] at lower decoding complexity, when employing the same number of transmit
antennas. However, a disadvantage of STBCs when compared to STTCs is that they provide

no coding gain [26], as documented for example in [57].
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Inspired by the philosophy of STBCs, Hochwald et al. [49] proposed the transmit diversity
concept known as Space-Time Spreading (STS) for the downlink of Wideband Code Division
Multiple Access (WCDMA) [25] that is capable of achieving the highest possible transmit diver-
sity gain. The STBC and STS designs contrived for higher number of transmit antennas results
in a reduction of the achievable transmission rate and hence in a reduction of the attainable
bandwidth efficiency. An alternative idea for constructing full-rate STBCs for complex modu-
lation schemes and more than two antennas was pursued in [30,50]. Here the strict constraint
of perfect orthogonality was relaxed in favour of a higher data rate. The resultant STBCs were

referred to as quasi-orthogonal STBCs [50].

The STBC and STS designs offer at best the same data rate as an uncoded single-antenna
system, but they provide an improved BER performance as compared to the family of single-
antenna-aided systems by providing diversity gains. In contrast to this, several high-rate space-
time transmission schemes having a normalised rate higher than one have been proposed in the
literature. For example, high-rate space-time codes that are linear in space and time, namely
the so-called Linear Dispersion Codes (LDC), were proposed in [51]. LDCs provide a flexible

trade-off between achieving space-time coding and spatial multiplexing.

Additionally, the concept of combining orthogonal transmit diversity designs with the prin-
ciple of Sphere Packing (SP) was introduced by Su et al. [55] in order to maximise the achievable
coding advantage, where it was demonstrated that the proposed SP aided STBC scheme was
capable of outperforming the conventional orthogonal design based STBC schemes of [44,46].
A further advance was proposed in [58], where the SP demapper of [55] was modified for the
sake of accepting the a prior: information passed to it from the channel decoder as extrinsic
information. The major coherent spatial diversity techniques are summarised in Tables 1.1

and 1.2.

A common feature of all the above-mentioned schemes is that they use coherent detection,
which assumes the availability of accurate Channel State Information (CSI) at the receiver. In
practice, the CSI of each link between each transmit and each receive antenna pair has to be
estimated at the receiver either blindly or using training symbols. However, channel estima-
tion invoked for all the antennas substantially increases both the cost and complexity of the
receiver. Furthermore, when the CSI fluctuates dramatically from burst to burst, an increased
number of training symbols has to be transmitted, potentially resulting in an undesirably high
transmission overhead and wastage of transmission power. Therefore, it is beneficial to develop
low-complexity techniques that do not require any channel information and thus are capable

of mitigating the complexity of MIMO-channel estimation.

A detection algorithm designed for Alamouti’s scheme [44] was proposed in [62], where the
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Year | Author(s) Contribution

1998 | Tarokh et al. [62] proposed a detection algorithm for the Alamouti scheme [44] dis-

pensing with channel estimation.

1999 | Tarokh et al. [63] proposed a differential encoding/decoding of Alamouti’s
scheme [44] with PSK constellations.

2000 | Hochwald et al. [64] proposed a differential modulation scheme for transmit diversity

based on unitary space-time codes.

Hughes [65] proposed a differential modulation scheme that is based on group

codes.

2001 | Jafarkhani et al. [66] proposed a differential detection scheme for the multiple antenna
STBC [46].

2002 | Schober et al. [67] proposed non-coherent receivers for differential space-time modu-
lation (DSTM) that can provide satisfactory performance in fast
fading unlike the conventional differential schemes that perform
poorly in fast fading.

2003 | Hwang et al. [68,69] extended the scheme of [66] to QAM constellations.

2004 | Nam et al. [70] extended the scheme of [68,69] to four transmit antennas and
QAM constellations.

2005 | Zhu et al. [71] proposed a differential modulation scheme based on quasi-
orthogonal STBCs, which when compared with that of [66] re-

sults in a lower BER and provides full diversity.

2007 | Song et al. [72] proposed a new class of quasi-orthogonal STBCs and presented

a simple differential decoding scheme for the proposed structures

that avoids signal constellation expansion.

Table 1.3: Major differential spatial diversity techniques.

channel encountered at time instant ¢ was estimated using the pair of symbols detected at time
instant t — 1. The algorithm, nonetheless, has to estimate the channel during the very first time
instant using training symbols and hence is not truly differential. Tarokh and Jafarkhani [63,73]
proposed a differential encoding and decoding algorithm for Alamouti’s scheme [44] using real-
valued phasor constellations and hence the transmitted signal can be demodulated both with
or without CSI at the receiver. The resultant differential decoding aided non-coherent receiver
performs within 3 dB from the coherent receiver assuming perfect channel knowledge at the
receiver. The differential scheme of [63] was restricted to complex-valued PSK modulation.
The twin-antenna-aided differential STBC scheme of [63] was extended to QAM constellations
in [68,69].

Differential STBC (DSTBC) schemes designed for multiple antennas were proposed in [66]
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for real-valued constellations. Afterwards, the authors of [68,70] developed a DSTBC scheme
that supports non-constant modulus constellations combined with four transmit antennas. This
extension, however, requires the knowledge of the received power in order to appropriately
normalise the received signal. The received power was estimated blindly using the received
differentially encoded signals without invoking any channel estimation techniques or transmit-
ting any pilot symbols. In [64], a differential modulation scheme was proposed for the sake of
attaining transmit diversity based on unitary space-time codes [74]. The proposed scheme can
be employed in conjunction with an arbitrary number of transmit antennas. Around the same
time, a similar differential scheme was also proposed in [65] based on the employment of group

codes.

Zhu et al. [71] proposed a differential modulation scheme based on quasi-orthogonal STBCs,
which were compared to that of [66] and resulted in a reduced BER as a benefit of providing
full diversity. Additionally, a new class of quasi-orthogonal STBCs was proposed in [72], which
presented a simple differential decoding scheme that avoids signal constellation expansion. The

major contributions on differential spatial diversity techniques are summarised in Table 1.3.

1.2.1.2 Multiplexing Techniques

STBC and STTC are capable of providing diversity gains for the sake of improving the achiev-
able system performance. However, this BER performance improvement is often achieved at
the expense of a rate loss since the STBC and STTC may result in a throughput loss compared
to single-antenna-aided systems. As a design alternative, a specific class of MIMO systems
was designed for improving the attainable spectral efficiency of the system by transmitting the
signals independently from each of the transmit antennas, hence resulting in a multiplexing

gain.

The basic principle of spatial multiplexing can be summarised as follows. The source bit
sequence at the transmitter side is split into /NV; sequences, which are modulated and then
transmitted simultaneously from the /N, transmit antennas using the same carrier frequency.
At the receiver side, interference cancellation is employed in order to separate the different
transmitted signals. In the case of narrowband frequency flat fading, there are several decoding
algorithms designed for interference cancellation at the receiver side of the spatial multiplexing
systems. The different receivers can be characterised by a tradeoff between the achievable
performance and the complexity imposed. A low-complexity receiver is constituted by the
Zero-Forcing (ZF) or the Minimum Mean Square Error (MMSE) technique [75,76]. However,
when we employ the ZF receiver, the attainable BER performance is typically poor in addition

to imposing the condition that the number of receive antennas should be at least equal to
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the number of transmit antennas. The optimum receiver is the Maximum Likelihood (ML)
receiver [35], which is capable of achieving full diversity gain, i.e. the same diversity order,
as the number of receive antennas. However, a major drawback of the ML receiver is its
complexity that grows exponentially with the number of transmit antennas and the number of
bits per symbol employed by the modulation scheme. Fortunately, the complexity of the ML
decoders can be reduced by employing sphere decoders [77-79] that are capable of achieving a

similar performance to the ML decoders at a fraction of their complexity.

In [80] Foschini proposed a multi-layer MIMO structure, known as the Diagonal Bell Labs
Layered Space-Time (D-BLAST) scheme!, which is in principle capable of approaching the sub-
stantial capacity of MIMO systems. The D-BLAST signal may be subjected to low-complexity
linear processing for decoding the received signals. However, the diagonal approach suffers from
a potentially high implementation complexity that led Wolniansky et al. to propose another
version of BLAST, which is known as Vertical BLAST (V-BLAST) [81]. In V-BLAST, each
transmit antenna simultaneously transmits independent data over the same carrier frequency
band. At the receiver side, provided that the number of receive antennas is higher than or
equal to the number of transmit antennas, a low complexity serial decoding algorithm may
be applied to detect the transmitted data. The V-BLAST transceiver is capable of providing
a substantial increase of a specific user’s effective bit-rate without the need for any increase
in the transmitted power or the system’s bandwidth. However, its impediment is that it was
not designed for exploiting transmit diversity. Furthermore, the decision errors of a particu-
lar antenna’s detector propagate to other bits of the multi-antenna symbol, when erroneously
cancelling the effects of the sliced bits from the composite signal. The V-BLAST detector first
selects the layer? with the largest SNR and estimates the transmitted bits of that layer, while
treating the other layers as interference. The detected symbol is then subtracted from the
received signal and then the layer with the second highest SNR is selected for decoding. The
procedure is repeated for all the layers. The BER performance of each layer is different and it
depends on the received SNR of each layer. The first decoded layer has the highest SNR, while

the layers detected later have a higher diversity order, since they suffer from less interference.

The BLAST detection algorithm is based on Successive Interference Cancellation (SIC),
which was originally proposed for multiuser detection in CDMA systems [88]. Several BLAST
detectors have been proposed in the literature for either reducing the complexity [89-94] or

for improving the attainable BER performance [85,95-100]. An alternative design approach

'The diagonal approach implies that the signal mapped to the consecutive antenna elements is delayed in time, which
has the potential of subjecting the delayed signal components of a space-time symbol to more independent fading, hence

leading to a potential diversity gain.
2The layer in the case of the V-BLAST corresponds to each of the transmit antennas.
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Year | Author(s) Contribution
1996 | Foschini et al. [80] studied the encoding and decoding of the diagonal BLAST struc-
ture.

1998 | Wolniansky et al. [81] | introduced the vertical BLAST architecture for reducing the im-
plementation complexity of the diagonal approach.

1999 | Golden et al. [82] provided the first real-time BLAST demonstrations.

2001 | Benjebbour et al. [83] | introduced the minimum mean square error receiver for V-
BLAST and introduced an ordering scheme for improving the
attainable performance.

2002 | Sellathurai et al. [84] | studied the combination of BLAST architecture with that of a

turbo code to improve its performance.

2003 | Wubben et al. [85] proposed a detector for improving the attainable performance of
V-BLAST.

2004 | Zhu et al. [86] proposed a complexity-reduction algorithm for BLAST detectors.

2005 | Huang et al. [87] proposed a new detection algorithm for BLAST based on the

concept of particle filtering and provided a near ML performance

at a reasonable complexity.

Table 1.4: Major spatial multiplexing techniques.

contrived for spatial multiplexing using less receive antennas than transmit antennas was pro-
posed in [101] based on group Maximum A Posteriori (MAP) detection. In [84,102] a spatial
multiplexing scheme referred to as Turbo-BLAST was proposed, which uses quasi-random in-
terleaving in conjunction with an iterative receiver structure, in order to separate the individual

layers. The major spatial multiplexing techniques are summarised in Table 1.4.

1.2.1.3 Beamforming Techniques

According to Sections 1.2.1.1 and 1.2.1.2, it becomes clear that multiple antennas can be used
for the sake of attaining either spatial diversity or spatial multiplexing gains. However, multiple
antennas can also be used in order to improve the Signal-to-Noise Ratio (SNR) at the receiver
or the Signal-to-Interference-plus-Noise Ratio (SINR) in a multi-user scenario. This can be
achieved by employing beamforming techniques [103,104]. Beamforming constitutes an effective
technique of reducing the multiple access interference, where the antenna gain is increased in

the direction of the desired user, whilst reducing the gain towards the interfering users.

In a wireless communications scenario the transmitted signals propagate via several paths

and hence are received from different directions/phases at the receiver. If the directions of the
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different propagation paths are known at the transmitter or the receiver, then beamforming
techniques can be employed in order to direct the received beam pattern in the direction of the
specified antenna or user [105,106]. Hence, significant SNR gains can be achieved in comparison
to a single antenna system. On the transmitter side, when the Direction of Arrival (DOA) of
the dominant paths at the receiver is known for the transmitter, then the transmit power
is concentrated in the direction of the target user, where less power is wasted in the other

directions.

On the other hand, beamforming can be used in order to reduce the co-channel interference
or multiuser interference. When using beamforming, each user adjusts his/her beam pattern to
ensure that there are nulls in the directions of the other users, while there is a high directivity

in the direction of the desired receiver [103,107]. Hence, the system attains an SINR gain.

1.2.1.4 Multi-functional MIMO Techniques

V-BLAST is capable of achieving full multiplexing gain, while STBC can achieve full antenna
diversity gain. Hence, it was proposed in [108] to combine the two techniques to provide
both antenna diversity and spectral efficiency gains. More specifically, it was proposed that
the antennas at the transmitter be partitioned into layers, where each layer uses STBC. At
the receiver side, successive group interference cancellation can be applied to each layer before
decoding the signals using ML STBC decoding. Therefore, by combining V-BLAST and STBC,
an improved transmit diversity gain can be achieved as compared to pure V-BLAST, while
ensuring that the overall bandwidth efficiency is higher than that of pure STBC due to the
independence of the signals transmitted by different STBC layers. Furthermore, the combined
array processing proposed in [108] was improved in [109] by optimising the decoding order of
the different antenna layers. An iterative decoding algorithm was proposed in [109] that results

in a full receive diversity gain for the combined V-BLAST STBC system.

In [113] the authors presented a transmission scheme referred to as Double Space-Time
Transmit Diversity (D-STTD), which consists of two STBC layers at the transmitter that is
equipped with four transmit antennas, while the receiver is equipped with two antennas. The
decoding of D-STTD presented in [113] is based on a linear decoding scheme presented in [123],
where the authors provided a broad overview of space-time coding and signal processing de-
signed for high data rate wireless communications. A two-user scheme was presented in [123],
where each user is equipped with a twin-antenna-aided STBC scheme transmitting at the same
carrier frequency and in the same time slot. A two-antenna-aided receiver was implemented
for the sake of decoding the two users’ data, while eliminating the interference imposed by the

users on each others’ data. An extension to the idea of combining interference cancellation with
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Year

Author(s)

Contribution

1998

Naguib et al. [110]

presented a multi-user scenario where each user employs STBC
and the receiver applies interference cancellation for eliminating
the co-channel interference and then uses ML decoding for the

STBC of each user.

1999

Tarokh et al. [108]

proposed to combine STBC with V-BLAST in order to provide

both antenna diversity and spectral efficiency gains.

2000

Huang et al. [111]

extended the idea of combining interference cancellation with

STBC to multiuser scenarios using CDMA.

2001

Stamoulis et al. [112]

proposed a simple decoder for the two-user system, where each
user employs STBC and showed how the decoder can be ex-
tended to more users and then extended the results for frequency-

selective channels.

2002

Onggosanusi et

al. [113]

presented the Double Space-Time Transmit Diversity scheme,
which consists of two STBC blocks at the transmitter that is
equipped with four antennas, while the receiver is equipped with

two antennas.

Jongren et al. [114]

combined conventional transmit beamforming with STBC assum-
ing that the transmitter has partial knowledge of the channel and
derived a performance criteria for improving the system perfor-

mance.

Huang et al. [115]

introduced a transmission scheme that can achieve transmit di-
versity and spatial separation and proposed a generalisation of

the V-BLAST detector for CDMA signals.

Soni et al. [116]

designed a hybrid downlink technique for achieving both transmit

diversity and transmit beamforming combined with DS-CDMA.

2003

Liu et al. [117]

combined the twin-antenna-aided Alamouti STBC with ideal
beamforming in order to show that the system can attain a better

performance while keeping full diversity and unity rate.

2004

Tao et al. [109]

improved the design of [108] by optimising the decoding order of
the different antenna layers. Also proposed an iterative decoder

than can achieve full diversity.

Zhu et al. [118]

compared the performance of two systems combining beamform-
ing with STBC, while using a single or two antenna arrays and
studied the effect of the DOA on the performance of the two

schemes.

Table 1.5: Major multi-functional MIMO techniques (Part 1).
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Year | Author(s) Contribution

2005 | Zhao et al. [119] compared the performance of the combined diversity and mul-
tiplexing systems while employing ZF, QR and MMSE group

interference cancellation techniques.

Lee et al. [120] proposed a computationally efficient ZF decoder for the double
space-time transmit diversity scheme [113] that achieves similar
performance to the conventional ZF decoder but with less com-

plexity.

2007 | Sellathurai et al. [121] | investigated the performance of multi-rate layered space-time
coded MIMO systems and proposed a framework where each of
the layers is encoded independently with different rates subject
to equal per-layer outage probabilities.

2008 | Ekbatani et al. [122] combined STBC and transmit beamforming while using limited-

rate channel state information at the transmitter. Also pro-
posed a combined coding, beamforming and spatial multiplexing
scheme over multiple-antenna multi-user channels that enables a

low-complexity joint interference cancellation.

Luo et al. [59] considered a new class of full-diversity STCs that consist of a
combination of delay transmit diversity with orthogonal STBCs

and specially designed symbol mappings.

Table 1.6: Major multi-functional MIMO techniques (Part 2).

STBC techniques was presented in [111,115], where the STBC and interference cancellation ar-
rangements were combined with CDMA for the sake of increasing the number of users supported
by the system. A zero-forcing decoder designed for the D-STTD was presented in [120] for the
sake of reducing the decoding complexity. Finally, the authors of [112,124] presented further
results that compare the performance of STBC versus D-STTD and extended the applicability
of the D-STTD scheme to more than two STBC layers.

Furthermore, in order to achieve additional performance gains, beamforming has been com-
bined with spatial diversity as well as spatial multiplexing techniques. STBC has been com-
bined with beamforming in order to attain a higher SNR gain in addition to the diversity
gain [114,117,118,125-127]. In [114], the authors combined conventional transmit beamform-
ing with STBC, assuming that the transmitter has partial knowledge of the channel and derived
a performance criterion for a frequency-flat fading channel. In addition, a particularly efficient
solution was developed in [114] for the specific case of independently fading channel coefficients.
More explicitly, the transmission scheme of [114] combines the benefits of conventional beam-

forming with those of orthogonal STBC. Furthermore, in [118] the performance of combined
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beamforming and STBC has been analysed as a function of the number of antenna array groups.
Explicitly, Zhu et al. [118] compared the performance of the system combining beamforming
with STBC, while using either a single or two antenna arrays and studied the effect of the DOA
on the attainable system performance. Finally, multiplexing techniques have been combined
with beamforming techniques in [128-130]. The major multi-functional MIMO techniques are

summarised in Tables 1.5 and 1.6.

1.2.2 Distributed MIMO Techniques

Wireless channels suffer from multipath propagation of the signals that results in channel fading,
as discussed in Section 1.1. Employing multiple transmit antennas is a beneficial method that
can be used for counteracting the effects of the channel fading by providing diversity gains.
Transmit diversity results in a significantly improved BER performance, when the different
transmit antennas are spatially located so that the paths arriving from each transmit antenna
to the destination experience independent fading, which can be achieved by having a distance
between the different antennas, which is significantly higher than the carrier’'s wavelength.
However, considering a handheld mobile phone, it is not a feasible option to position the
transmit antennas far enough in order to achieve independent fading. On the other hand, the
spatial fading correlation caused by insufficiently high antenna spacing at the transmitter or
receiver of a MIMO system results in a degradation of both the achievable capacity and the
BER performance of MIMO systems. The problem of correlation of the transmit signals can
be circumvented by introducing a new class of MIMOs also referred to as distributed MIMOs

or cooperative communications [36,37].

The basic idea behind cooperative communications can be traced back to the idea of the
relay channel which was introduced in 1971 by Van der Meulen [131]. Cover and El Gamal [132]
characterised the relay channel from an information theoretic point of view. In [134] Sendonaris
et al. generalised the conventional relay model, where there is one source, one relay and one
destination, to multiple nodes that transmit their own data as well as serve as relays for each
other. The scheme of [134] was referred to as “user cooperation diversity”. Sendonaris et al.
presented in [36,37] a simple user-cooperation methodology based on a Decode-and-Forward
(DF) signalling scheme using CDMA. In [135] the authors reported data rate gains and a
decreased sensitivity to channel variations, where it was concluded that cooperation effectively
mimics the multi-antenna scenario with the aid of single-antenna terminals. Dohler et al. [137]
introduced the concept of Virtual Antenna Arrays (VAA) that emulates Alamouti’s STBC for
single-antenna-aided cooperating users. Space-time coded cooperative diversity protocols for

exploiting spatial diversity in a cooperative scenario was proposed in [138].
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Year | Author(s) Contribution

1971 | Meulen [131] investigated a simple 3-node relay channel incorporating a trans-
mitter, a relay and a receiver using a time-sharing approach.

1979 | Cover et al. [132] characterised the relay channel from an information theoretic
point of view.

1983 | Willems [133] introduced a partially cooperative communications scenario
where the encoders are connected by communication links with fi-
nite capacities, which permit both encoders to communicate with
each other. The paper also established the capacity region of the
multiple access channel with partially cooperating encoders.

1998 | Sendonaris et al. [134] | generalised the relay model to multiple nodes that transmit their
own data as well as serve as relays for each other.

2001 | Laneman et al. [135] built upon the classical relay channel and exploited space diver-
sity available at distributed antennas through coordinated trans-
mission and processing by cooperating radios.

2002 | Hunter et al. [136] proposed a user cooperation scheme for wireless communications
in which the idea of cooperation was combined with the existing
channel coding methods.

Dohler et al. [137] introduced the concept of virtual antenna arrays that emulates
Alamouti’s STBC for single-antenna-aided cooperating users.

2003 | Sendonaris et al. [36, | presented a simple user-cooperation methodology based on a DF

37] signalling scheme using CDMA.

Laneman et al. [138] developed space-time coded cooperative diversity protocols for
exploiting spatial diversity in a cooperation scenario, which can
also be used for higher spectral efficiencies than repetition-based
schemes.

Valenti and Zhao [139, | proposed a turbo coding scheme in a relay network.

140]

2004 | Laneman et al. [141] developed and analysed cooperative diversity protocols and com-
pared the DF, AF, selection relaying and incremental relaying.

Nabar et al. [142] analysed the spatial diversity performance of various signalling
protocols.

Janani et al. [143] presented two extensions to the coded cooperation frame-
work [136]: increased the diversity of coded cooperation via ideas
borrowed from space-time codes and applied turbo codes in the
proposed relay framework.

Table 1.7:

Major distributed MIMO techniques (Part 1).




1.2.2. Distributed MIMO Techniques

Year

Author(s)

Contribution

2004

Stefanov et al. [144]

analysed the performance of channel codes that are capable of
achieving the full diversity provided by user cooperation in the

presence of noisy interuser channels.

2005

Azarian et al. [145]

proposed cooperative signalling protocols that can achieve the

diversity-multiplexing tradeoff.

Sneessens et al. [146]

proposed a soft decode-and-forward signalling strategy that can

outperform the conventional DF and AF.

Hu et al. [147]

proposed Slepian-Wolf cooperation that exploits distributed
source coding technologies in wireless cooperative communica-

tion.

Yu [148]

compared the AF and DF signalling schemes in practical scenar-

i0s.

2006

Hunter et al. [149,150]

developed the idea of coded cooperation [136] by computing BER
and FER bounds as well as the outage probability of coded co-

operation.

Li et al. [151]

employed soft information relaying in a BPSK modulated relay

system employing turbo coding.

Hu et al. [152]

proposed Wyner-Ziv cooperation as a generalisation of the
Slepian-Wolf cooperation [147] with a compress-and-forward sig-

nalling strategy.

Hest-Madsen [153]

derived upper and lower bounds for the capacity of four-node
ad hoc networks with two transmitters and two receivers using

cooperative diversity.

2007

Bui et al. [154]

proposed soft information relaying where the relay LLR values
are quantised, encoded and superimposedly modulated before be-

ing forwarded to the destination.

Khormuji et al. [155]

improved the performance of the conventional DF strategy by
employing constellation rearrangement in the source and the re-

lay.

Bao et al. [156]

combined the benefits of AF and DF and proposed a new sig-

nalling strategy referred to as decode-amplify-forward.

Xiao et al. [157]

introduced the concept of network coding in cooperative commu-

nications.

Table 1.8:

Major distributed MIMO techniques (Part 2).
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Year | Author(s) Contribution

2008 | Yue et al. [158] compared the multiplexed coding and superposition coding in the

coded cooperation system.

Zhang et al. [159] proposed a distributed space-frequency coded cooperation

scheme for communication over frequency-selective channels.

Wang et al. [160] introduced the complex field network coding approach that
can mitigate the throughput loss in the conventional signalling

schemes and attain full diversity gain.

Table 1.9: Major distributed MIMO techniques (Part 3).

Cooperative communications has been shown to offer significant performance gains in terms
of various performance metrics, including diversity gains [138,141,161] as well as multiplexing
gains [145]. Hunter et al. [136] proposed the novel philosophy of coded cooperation schemes,
which combine the idea of cooperation with the classic channel coding methods. Extension to
the framework of coded cooperation was presented in [143], where the diversity gain of coded
cooperation was increased with the aid of ideas borrowed from the area of space-time codes.
Additionally, a turbo coded scheme was proposed in [143] in the framework of cooperative
communications. Furthermore, the analysis of the performance benefits of channel codes in a
coded cooperation aided scenario was performed in [144]. Laneman et al. [141] developed and
analysed cooperative diversity protocols and compared the DF, Amplify-and-Forward (AF),

selection relaying and incremental relaying signalling strategies.

Recently, there has been substantial research interest in the idea of soft relaying, where
the relay passes soft information to the destination. In [146], it was argued that the DF
signalling loses soft information and hence, it was proposed to use soft DF signalling, where
all operations are performed using the Log-Likelihood Ratio (LLR) based representation of
soft information. It was shown in [146] that the soft DF philosophy outperforms the DF and
the AF signalling strategies. In [154] soft DF was also used, where the soft information was
quantised, encoded and superimposed before transmission to the destination. In [151] soft
information based relaying was employed in a turbo coding scheme, where the relay derives
parity checking BPSK symbol estimates for the received source information and forwards the
symbols to the destination. In [146,151, 154] soft information relaying has been used, where it
was shown that soft DF attains a better performance than hard DF. Furthermore, in [147,152]
distributed source coding techniques have been adopted for employment in wireless cooperative
communications in order to improve the attainable performance. The major distributed MIMO

techniques are summarised in Tables 1.7, 1.8 and 1.9.
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1.3 Iterative Detection Schemes and Their Convergence Analysis

The concept of concatenated codes has been proposed in [162]. However, at the time of its
conception it was deemed to have an excessive complexity and hence it failed to initiate imme-
diate research interest. It was not until the discovery of turbo codes [163] that efficient iterative
decoding of concatenated codes became a reality at a low complexity by employing simple con-
stituent codes. Since then, the appealing iterative decoding of concatenated codes has inspired
numerous researchers to extend the technique to other transmission schemes consisting of a

concatenation of two or more constituent decoding stages [164-180].

For example, in [171] iterative decoding was invoked for exchanging extrinsic information
between a soft-output symbol detector and an outer channel decoder in order to combat the
effect of Inter-Symbol Interference (ISI). In [172] iterative decoding was carried out by exchang-
ing information between an outer convolutional decoder and an inner Trellis Coded Modulation
(TCM) decoder. The authors of [173,174] presented a unified theory of Bit-Interleaved Coded
Modulation (BICM). On the other hand, the employment of the iterative detection principle
in [175] was considered for iterative soft demapping in the context of BICM, where a soft
demapper was used between the multilevel demodulator and the channel decoder. In addition,
iterative multiuser detection and channel decoding was proposed in [179] for CDMA schemes.
Finally, in [180] an iteratively detected scheme was proposed for the Rayleigh fading MIMO
channel, where an orthogonal STBC scheme was considered as the inner code combined with

an additional block code as the outer channel code.

It was shown in [198] that a recursive inner code is needed in order to maximise the in-
terleaver gain and to avoid the average BER floor, when employing iterative decoding. This
principle has been adopted by several authors designing serially concatenated schemes, where
unity-rate inner codes were employed for designing low complexity iterative detection aided
schemes suitable for bandwidth- and power-limited systems having stringent BER require-
ments [184,185,187,195,199].

Semi-analytical tools devised for analysing the convergence behaviour of iteratively decoded
systems have attracted considerable research attention [184,186,189-192,196,200,201]. In [186],
ten Brink proposed the employment of the so-called EXtrinsic Information Transfer (EXIT)
characteristics for describing the flow of extrinsic information between the soft-in soft-out con-
stituent decoders. The computation of EXIT charts was further simplified in [191] to a time
averaging, when the PDFs of the information communicated between the input and output of
the constituent decoders are both symmetric and consistent. A tutorial introduction to EXIT

charts can be found in [200]. The concept of EXIT chart analysis has been extended to three-
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Year | Author(s) Contribution

1966 | Forney [162] promoted concatenated codes.

1974 | Bahl et al. [181] invented the Maximum A-Posteriori (MAP) algorithm.

1993 | Berrou et al. [163] invented the turbo codes and showed that the iterative decoding
is an efficient way of improving the attainable performance.

1995 | Robertson et al. [182] | proposed the log-MAP algorithm that results in similar perfor-
mance to the MAP algorithm but with significantly lower com-
plexity.

Divsalar et al. [164] extended the turbo principle to multiple parallel concatenated
codes.

1996 | Benedetto et al. [165] | extended the turbo principle to serially concatenated block and
convolutional codes.

1997 | Benedetto et al. [172] | proposed an iterative detection scheme where iterations were car-
ried out between the outer convolutional code and an inner TCM
decoders.

Caire et al. [173,174] presented the BICM concept with its design rules.
Li et al. [176-178] presented the BICM with iterative detection scheme.
1998 | Benedetto et al. [166, | studied the design of multiple serially concatenated codes with
183] interleavers.
Brink et al. [175] introduced a soft demapper between the multilevel demodulator
and the channel decoder in an iteratively detected coded system.

1999 | Wang et al. [179] proposed iterative multiuser detection and channel decoding for
coded CDMA systems.

2000 | Divsalar et al. [184, | employed unity-rate inner codes for designing low-complexity it-

185] erative detection schemes suitable for bandwidth and power lim-
ited systems having stringent BER requirements.

ten Brink [186] proposed the employment of EXIT charts for analysing the con-
vergence behaviour of iteratively detected systems.

2001 | Lee [187] studied the effect of precoding on serially concatenated systems
with ISI channels.

ten Brink [188, 189 extended the employment of EXIT charts to three-stage parallel
concatenated codes.

EL Gamal et al. [190] | used SNR measures for studying the convergence behaviour of
iterative decoding.

Table 1.10: Major concatenated schemes and iterative detection (Part 1).
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Year | Author(s) Contribution
2002 | Tiichler et al. [191] simplified the computation of EXIT charts.
Tiichler et al. [192] compared several algorithms predicting the decoding convergence
of iterative decoding schemes.
Tiichler et al. [193] extended the EXIT chart analysis to three-stage serially concate-
nated systems.
2003 | Sezgin et al. [180] proposed an iterative detection scheme where a block code was
used as an outer code and STBC as an inner code.
2004 | Tiichler et al. [194] proposed a design procedure for creating systems exhibiting ben-
eficial decoding convergence depending on the block length.
2005 | Lifang et al. [195] showed that non-square QAM can be decomposed into parity-
check block encoder having a recursive nature and a memoryless
modulator. Iterative decoding was implemented with an outer
code for improving the system performance.
Brannstrom et | considered EXIT chart analysis for multiple concatenated codes
al. [196] using 3-dimensional charts and proposed a way for finding the
optimal activation order.
2008 | Maunder et al. [197] designed irregular variable length codes for the near-capacity de-
sign of joint source and channel coding aided systems.

Table 1.11: Major concatenated schemes and iterative detection (Part 2).

stage concatenated systems in [188,193,196]. The major contributions on iterative detection

and its convergence analysis are summarised in Tables 1.10 and 1.11.

1.4 Novel Contributions

This dissertation is based on the following publications and manuscript submissions [1-22],

where the main contributions can be summarised as follows:

e A Differential Space-Time Spreading (DSTS) scheme is proposed, which is advocated for

the sake of achieving a high transmit diversity gain in a multi-user system, while elimi-

nating the complexity of MIMO channel estimation. Additionally, the system is combined

with multi-dimensional Sphere Packing (SP) modulation, which is capable of maximising

the coding advantage of the transmission scheme by jointly designing and detecting the

sphere-packed DSTS symbols. The capacity of the DSTS-SP scheme is quantified ana-

lytically, where it is shown that the DSTS-SP system attains a higher capacity than its

counterpart dispensing with SP [1,7,8].
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e Iteratively detected DSTS-SP schemes are designed for near-capacity operation, where
EXIT charts are used for analysing the convergence behaviour of the iterative detection.
The outer code used in the iterative detection aided systems is a Recursive Systematic
Convolutional (RSC) code, while the inner code is SP mapper in the first system and a
Unity Rate Code (URC) in the second system, where the URC is capable of eliminating the
error floor present in the BER performance of the system dispensing with URC [1,5,11,17].

e An algorithm is devised for computing the maximum achievable rate of the DSTS system
using EXIT charts, where the maximum achievable rate obtained using EXIT charts

matches closely with the analytically computed capacity [1].

e An adaptive DSTS-SP scheme is proposed in order to maximise the system’s throughput.
The adaptive scheme exploits the advantages of differential encoding, iterative decoding
as well as SP modulation. The achievable integrity and bit rate enhancements of the
system are determined by the following factors: the specific transmission configuration
used for transmitting data from the four antennas, the spreading factor used and the RSC

encoder’s code rate [9)].

e The merits of V-BLAST, STC and beamforming are amalgamated in a Layered Steered
Space-Time Coded (LSSTC) multi-functional MIMO scheme for the sake of achieving
a multiplexing gain, a diversity gain as well as a beamforming gain. Additionally, the

capacity of the LSSTC-SP scheme is quantified analytically [2].

e Furthermore, in order to characterise the LSSTC scheme, three iteratively detected LSSTC-
SP receiver structures are proposed, where iterative detection is carried out between the
outer code’s decoder, the intermediate code’s decoder and the LSSTC-SP demapper. The
three systems are capable of operating within 0.9, 0.4 and 0.6 dB from the maximum
achievable rate limit of the system. A comparison between the three iteratively detected
schemes reveals that a carefully designed two-stage iterative detection aided scheme is
capable of operating sufficiently close to capacity at a lower complexity, when compared
to a three-stage system employing RSC or a two-stage system employing an Irregular
Convolutional Code (IrCC) as the outer code [4, 14].

e A multi-functional MIMO combining STS, V-BLAST and beamforming with generalised
MC DS-CDMA is proposed and referred to as Layered Steered Space-Time Spreading
(LSSTS). The LSSTS scheme is capable of achieving a spatial diversity gain, frequency
diversity gain, multiplexing gain as well as beamforming gain. The number of users sup-

ported can be extended by employing combined time- and frequency-domain spreading [6].



1.5. Outline of Thesis 24

1.5

A novel LLR post-processing technique is devised for improving the iteratively detected

LSSTS system’s performance [6].

Finally, ideas from cooperative communications and turbo coding are combined to form a
Distributed Turbo Code (DTC), where turbo coding is employed by exchanging extrinsic

information between the outer codes’ decoders in the two cooperating users’ handsets.

Outline of Thesis

This thesis is organised as follows.

Chapter 2: Differential Space-Time Spreading

The DSTS design is presented and combined with SP modulation. The chapter commences
with a review of the differential modulation concept in Section 2.2, where it is shown that
differential encoding requires no channel information for decoding and thus eliminates the
complexity of channel estimation at the expense of a 3 dB performance loss compared to
the coherently detected system assuming perfect channel knowledge at the receiver. In
Section 2.3, the encoding and decoding algorithms of the DSTS scheme are presented,
when combined with conventional modulation schemes, such as PSK and QAM, as well
as with sphere packing modulation. Afterwards, the capacity of the DSTS scheme em-
ploying N; = 2 transmit antennas is derived in Section 2.3.6, followed by the performance
characterisation of a twin-antenna-aided DSTS scheme in Section 2.3.7, demonstrating
that the DSTS scheme is capable of providing full diversity. Our results demonstrate that
DSTS-SP schemes are capable of outperforming DSTS schemes dispensing with SP.

The four-antenna-aided DSTS design is characterised in Section 2.4, where it is demon-
strated that the DSTS scheme can be combined with conventional real- and complex-
valued modulated constellations as well as with SP modulation. It is also shown that
the four-dimensional SP modulation scheme is constructed differently in the case of two
transmit antennas than when employing four transmit antennas. The capacity of the
four-antenna-aided DSTS-SP scheme is also derived for systems having different band-
width efficiency, while employing a variable number of receive antennas in Section 2.4.5.
Finally, Section 2.4.6 presents the simulation results obtained for the four-antenna-aided

DSTS scheme, when combined with conventional as well as SP modulation schemes.

Chapter 3: Iterative Detection of Channel-Coded DSTS Schemes
Two realisations of a novel iterative detection aided DSTS-SP scheme are presented,

namely an iteratively detected RSC-coded DSTS-SP scheme as well as an iteratively
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detected RSC-coded and URC precoded DSTS-SP arrangement. The iteratively detected
RSC-coded DSTS-SP scheme is described in detail in Section 3.2. Afterwards, the concept
of EXIT charts is introduced in Section 3.2.2 as a tool designed for studying the conver-
gence behaviour of iterative detection aided systems. Then, a novel technique devised for
computing the maximum achievable bandwidth efficiency of the system based on EXIT
charts is proposed in Section 3.2.3, followed by a discussion of the iteratively detected
RSC-coded DSTS-SP system’s performance.

In Section 3.3 an iteratively detected RSC-coded and URC-precoded DSTS-SP scheme
is proposed that is capable of eliminating the error floor exhibited by the system of Sec-
tion 3.2, which was hence capable of operating closer to the system’s achievable bandwidth
efficiency. In Section 3.3.1 we present an overview of the system, followed by a discussion

of the results in Section 3.3.2.

B Chapter 4: Adaptive DSTS-Assisted Iteratively-Detected SP Modulation
An adaptive DSTS aided system that exploits the advantages of differential encoding,
iterative decoding as well as SP modulation is presented. The adaptive DSTS-SP scheme
adapts the system parameters for the sake of achieving the highest possible bandwidth
efficiency, while maintaining a given target BER. The proposed adaptive DSTS-SP scheme
benefits from a substantial diversity gain, while using four transmit antennas without the
need for pilot-assisted channel estimation and coherent detection. The proposed scheme
reaches the target BER of 1073 at an SNR of about 5 dB and maintains it for SNRs in
excess of this value, while increasing the effective throughput. The system’s bandwidth
efficiency varies from 0.25 bits/sec/Hz to 16 bits/sec/Hz. The achievable integrity and
bit rate enhancements of the system are determined by the following factors: the spe-
cific transmission configuration used for transmitting data from the four antennas, the

spreading factor used and the RSC encoder’s code rate.

B Chapter 5: Layered Steered Space-Time Codes

A multi-functional MIMO scheme is proposed, that combines the benefits of V-BLAST,
STBC and beamforming. The proposed system is characterised by a multiplexing gain,
a diversity gain and a beamforming gain. The multi-functional MIMO scheme is referred
to as a Layered Steered Space-Time Code (LSSTC). In Section 5.2 the encoding and de-
coding processes of the LSSTC scheme are outlined, when combined with conventional as
well as SP modulation schemes. Then, in Section 5.3 the capacity of the proposed LSSTC
scheme is quantified, where the capacity limits for a system employing N, = 4 transmit
Antenna Arrays (AA), N, = 4 receive antennas and a variable number L4, of elements
per AA are presented.

On the other hand, in order to further enhance the attainable system performance, the
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LSSTC scheme is serially concatenated with both an outer code and a URC, where three
different receiver structures are presented by varying the iterative detection configuration
of the constituent decoders/demapper. In Section 5.4.1 we provide a brief description of
the iteratively detected two-stage RSC-coded LSSTC-SP scheme, where extrinsic infor-
mation is exchanged between the outer RSC decoder and the inner URC decoder, while
no iterations are carried out between the URC decoder and the SP demapper. In Sec-
tion 5.4.1.2, we employ the powerful technique of EXIT tunnel-area minimisation, for the
sake of achieving a near-capacity operation using IrCCs [191,194]. In Section 5.4.2 an
iteratively detected three-stage RSC-coded LSSTC scheme is presented, where extrinsic
information is exchanged between the three constituent decoders, namely the outer RSC
decoder, the inner URC decoder and the demapper. Finally, in Section 5.5 we discuss
our performance results and characterise the three proposed iteratively detected LSSTC

schemes.

B Chapter 6: Downlink LSSTS Aided Generalised MC DS-CDMA

A multi-functional multiuser MIMO scheme that combines the benefits of V-BLAST, of
STS, of generalised MC DS-CDMA as well as of beamforming is presented. The proposed
system is referred to as Layered Steered Space-Time Spreading (LSSTS) aided generalised
MC DS-CDMA, which benefits from a multiplexing gain, a spatial diversity gain, a fre-
quency diversity gain and a beamforming gain.

In Section 6.2 the proposed LSSTS scheme’s transmitter structure is characterised and
then the decoding process is illustrated. Afterwards, in order to increase the number of
users supported by the system, Frequency Domain (FD) spreading is applied in the gener-
alised MC DS-CDMA in addition to the Time Domain (TD) spreading action of the STS.
A user-grouping technique is employed that minimises the FD interference coefficient for
the users in the same TD group.

To further enhance the achievable system’s performance, the proposed MIMO scheme is
serially concatenated with an outer code combined with a URC, where three different iter-
atively detected systems are presented in Section 6.4. EXIT charts are used to study the
convergence behaviour of the proposed systems and in Section 6.4.1 we propose an LLR
post-processing technique for the soft output of the QPSK demapper in order to improve
the achievable system performance. In Section 6.5 we discuss our performance results
and characterise the three proposed iteratively detected schemes, while employing N,=4
transmit AAs, N,=2 receive antennas, L 44 number of elements per AA and V number of

subcarriers supporting K users.

B Chapter 7: Distributed Turbo Coding

A cooperative communication scheme referred to as Distributed Turbo Coding (DTC) is
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presented. In the proposed scheme, two users are cooperating, where each user’s trans-
mitter is constituted by an RSC code and an interleaver followed by a SP mapper. In
Section 7.2 we provide an overview of cooperative communications and the background of
the major cooperative signalling strategies including AF, DF and coded cooperation. In
Section 7.3 the DTC scheme is presented, where a two-phase cooperation scheme is pro-
posed. In the first phase, the two users exchange their data, while in the second phase the
two users simultaneously transmit their data to the base station. In Section 7.4 we char-
acterise the attainable system performance and study the effects of varying the inter-user

channel characteristics on the performance of the uplink DTC scheme.

B Chapter 8: Conclusions and Future Research
This chapter summarises the main findings of our research and suggests some future

research ideas.



Chapter

Differential Space-Time Spreading

2.1 Introduction

An effective and practical way of counteracting the effect of wireless channels is to provide
diversity, which can be achieved by employing space-time coding [28,30,44,46,202-208]. Space-
time coding employs multiple transmit antennas, where coding is performed in both the spatial
and temporal domains in order to introduce correlation between signals transmitted from the
multiple antennas in different time slots. The spatial-temporal correlation is imposed in order
to exploit the fact that the individual MIMO links are likely to experience independent fading
and hence to mitigate the effects of transmission errors at the receiver. Space-time coding can
achieve a substantial transmit diversity and power gain over its spatially uncoded counterpart
without bandwidth expansion. There are numerous well established coding structures, including
Space-Time Block Codes (STBC) [44,46], Space-Time Trellis Codes (STTC) [203] and Layered
Space-Time (LST) codes [80]. A central issue in designing all these schemes is the exploitation

of multi-path effects in order to achieve diversity performance gains [24].

In practice, the Channel State Information (CSI) of each link between each transmit and
each receive antenna pair has to be estimated at the coherent receiver either blindly or using
training symbols. In such a coherent system, it is assumed that the channel does not change
dramatically during a transmitted frame of data [30]. However, channel estimation invoked for
all the transmit and receive antennas substantially increases both the cost and complexity of the
receiver. Furthermore, when the CSI fluctuates dramatically from burst to burst, an increased
number of training symbols has to be transmitted, potentially resulting in an undesirably high

transmission overhead and wastage of transmission power.

Alternatively, it is beneficial to develop low-complexity techniques that do not require any

channel information at the receiver. For a single transmit antenna, it is well known that dif-

28
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ferential schemes, such as Differential Phase-Shift Keying (DPSK) [27], can be demodulated
without the use of channel estimates. Differential schemes have been widely used in practical
cellular mobile communication systems [24,27,35]. It is natural to consider extensions of differ-
ential schemes to MIMO systems. A detection algorithm designed for Alamouti’s scheme [44]
was proposed in [62], where the channel encountered at time instant ¢ was estimated using the
pair of symbols detected at time instant ¢ — 1. The algorithm, nonetheless, has to estimate
the channel during the very first time instant using training symbols and hence is not truly
differential. Tarokh et al. [63, 73] proposed a differential encoding and decoding technique for
Alamouti’s scheme [44] using real-valued phasor constellations and hence the transmitted sig-
nal can be demodulated both with or without CSI at the receiver. The resultant differential
decoding aided non-coherent receiver performs within 3 dB from the coherent receiver assum-
ing perfect knowledge of the channel impulse response (CIR) at the receiver. The complex
constellation was also restricted to Phase-Shift Keying (PSK) schemes, which was extended to
Quadrature Amplitude Modulation (QAM) constellations in [68,69]. This extension, however,
requires the knowledge of the channel power in order to appropriately normalise the received
signal. The channel power in [68,69] was estimated blindly using the received differentially
encoded signals without invoking any channel estimation techniques or transmitting any pilot
symbols. The proposed differential space-time block code was then extended to multiple anten-
nas [66] using a real-valued phasor constellation. Afterwards, the authors of [68, 70] developed
a Differential Space-Time Block Coding (DSTBC) scheme that supports non-constant modulus

constellations combined with four transmit antennas.

The novelty and rationale of this chapter can be summarised as follows:

1. Differential Space-Time Spreading (DSTS) is a MIMO-aided scheme, which is advocated
for the sake of achieving a high transmait diversity gain. This facilitates low-complezity
differential detection, rather than using a more complex receiver employing both channel
estimation [209] for all MIMO links and coherent detection. Moreover, the system benefits
from the multi-user support capability of the STS scheme. Furthermore, the high diversity
order of the system results in a Gaussian-like channel error distribution as a function of

time, i.e. the bit index, which improves the attainable system performance.

2. Additionally, the system is combined with multi-dimensional SP modulation [55,58], which
1s capable of maximising the coding advantage of the transmission scheme by jointly de-

signing and detecting the sphere-packed DSTS symbols.

3. We quantify the capacity of the DSTS-SP scheme for transmission over both Rayleigh as

well as Gaussian channels.

The rest of the chapter is organised as follows. First, differential encoding designed for a
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single transmit antenna is briefly described in Section 2.2. Then, the encoding and decoding
processes of the DSTS scheme employing two transmit antennas is carried out in Section 2.3 for
both conventional as well as for SP modulation. Section 2.3.6 presents the capacity analysis of
the sphere packing modulation aided DSTS (DSTS-SP) scheme employing two transmit anten-
nas and a variable number of receive antennas, while in Section 2.3.7 we present our comparative
study of the various twin-antenna-aided DSTS schemes. In Section 2.4 we demonstrate how a
four-antenna-aided DSTS scheme can be combined with conventional real- and complex-valued
as well as sphere packing modulation schemes and quantify the attainable capacity of the four-
antenna-aided DSTS-SP scheme. Our conclusions are presented in Section 2.5, followed by a

chapter summary in Section 2.6.

2.2 Differential Phase Shift Keying

Before presenting the details of DSTS designed for multiple transmit antennas, we review the
concept of differential encoding/decoding for a single transmit antenna. To be more precise,
the following section presents the details of Differential Phase Shift Keying (DPSK) modulation

and captures the main ideas behind it [27].

In DPSK modulation, the demodulator does not have to perform channel estimation. The
two consecutive transmitted symbols depend on each other and the demodulator detects the
transmitted data symbol by observing two successive symbols. It is assumed that the channel
has a phase response that is approximately constant for two symbol periods and this is approx-
imately valid for the case of slow fading channels. The information is essentially transmitted
by first providing a single dummy reference symbol, followed by differentially phase-modulated
symbols [24].

Let us assume that we transmit the modulated symbol v; at time instant ¢, when the CIR
between the transmitter and receiver is h; and that the noise sample is n, with a variance of

o2. Therefore, the received signal at time instant ¢ is:

Ty = ht - U+ Ny (21)

For DPSK modulation, the transmitted symbol v; at time instant t is obtained from v, =
Zy - v;_1, as shown in Figure 2.1, where x; is a non-differentially PSK modulated symbol and
v;_1 is the symbol transmitted at time instant ¢ — 1. To detect the signal transmitted at time
instant ¢, the receiver computes r; - r;_;, where * represents the complex conjugate operation.
Then the receiver finds the legitimate symbol of the QPSK constellation closest to 7, - r;_; as

the estimates of the transmitted symbol [30]. To further augment the rationale behind the
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Figure 2.1: Transmitter block diagram for DPSK modulation.

above scheme and taking into consideration the assumption that the channel encountered is a

slow fading one, i.e. that we have h; ~ h;_; = h, we arrive at:

re-riy = (he-vet+ng) - (heer vy + )’
= |h? v vf  Fhevnl bRl o0l (2.2)
= |h* 2| P+ N
= |n]* 2+ N,

where |v;_1|* = 1, N is a Gaussian noise process having a variance of 0% =~ 2 - h - o2 and the
path gain h is assumed to be constant during the modulation instants of ¢ — 1 and t. Therefore,

the optimal estimate of z; is given by:

Ty = arg min|r, - 17, — |h]* 22 (2.3)
Tt

Based on Equation (2.3), it becomes clear that the decoded output does not depend on
either earlier demodulation decisions or on the channel state information, rather it depends
only on the received symbols of two consecutive symbol periods. The noise power experienced
by the receiver of the differential decoding scheme is 0% ~ 2 - h - 02, which is about twice that
of the coherent scheme. Therefore, for the same transmission power, the received SNR of the
differential detection scheme is approximately half of that of the coherent detection scheme
using perfect channel knowledge at the receiver. This translates to a 3 dB SNR difference for
the performance of these two systems, i.e. the coherently detected system using perfect channel

knowledge at the receiver outperforms the differentially detected scheme by 3 dB.

2.3 DSTS Design Using Two Transmit Antennas

As widely recognised, coherent detection schemes require CSI, which is acquired by transmitting

training symbols. However, high-accuracy MIMO channel estimation imposes a high complexity
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Figure 2.2: The twin-antenna-aided DSTS system block diagram.

on the receiver. This renders differential encoding and decoding an attractive design alternative,

despite the associated FEj/Nj loss.

The transmitted and received DSTS symbols are encoded and decoded based on the differ-
ential relationship among subsequent symbols as illustrated in Section 2.2 for classic DPSK.
For the sake of simplicity, in what follows we consider having a single receive antenna, although

the extension to systems having more than one receive antenna is straightforward.

2.3.1 Twin-Antenna Aided DSTS Encoding Using Conventional Modulation

According to Figure 2.2, it becomes clear that the DSTS encoder can be divided into two main
stages. The differential encoding takes place before space-time spreading and the differentially
encoded symbols are then spread as exemplified in simple graphical terms in Figure 2.3 [25],

where 2 symbols are transmitted using 2 transmit antennas within 2 time slots.

The DSTS encoding algorithm operates as follows. At time instant ¢ = 0, the arbitrary
dummy reference symbols vi and v3 are passed to the STS encoder for transmission from
antennas one and two, respectively. The dummy symbols v} and v2 usually carry no information.
At time instants ¢ > 1, a block of 2B bits arrive at the mapper, where each set of B bits is
mapped to a symbol zF, k = 1,2, selected from a 28-ary constellation. Assume that v} and v?

are the differentially encoded symbols, then differential encoding of Figure 2.2 is carried out as

follows:
ol — (37% 'Utl—l + I? : Utzjl) (2.4)
;= .
V(i 2+ o ?)
V2 — (mi 'Ut2—1 - x? : Utljl) (2.5)

t
Vv P+ o)

where the superscript * represents the complex conjugate operation.
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Figure 2.3: Illustration of STS using two transmit antennas transmitting 2 bits within 27}, duration. v; =

vy = 1 were assumed and €; = [+14+1—-1-1+14+1—-1—1JandCy = [+1+1-1—-1—-1—-14+1+1].

The differentially encoded symbols are then spread with the aid of the spreading codes ¢
and €y to both transmit antennas, where ¢; and €, are generated from the same user-specific
spreading code € by ensuring that the two spreading codes ¢; and €3 become orthogonal using
the simple code-concatenation rule of Walsh-Hadamard codes, yielding longer codes and hence

a proportionately reduced per antenna throughput according to:

& = [ ¢ (2.6)
& = [ —d (2.7)

The differentially encoded data is then divided into two half-rate substreams and the two

consecutive symbols are then spread to both transmit antennas using the mapping of:

1

yi = (€1 v, +Ty-1v]) (2.8)

yt2 = ((_31 . Ut2 — (_32 . ’Utl*), (29)

Sl

which is exemplified in simple graphical terms in Figure 2.3.

2.3.2 Receiver and Maximum Likelihood Decoding

Assuming that the channel is modelled as a temporally correlated narrowband Rayleigh fading
channel, where the channel coefficients are spatially independent, associated with a normalised
Doppler frequency of fp = f;Ts = 0.01, where f; is the Doppler frequency and T is the
symbol duration. The complex Additive White Gaussian Noise (AWGN) of n = n; + jng

contaminates the received signal, where n; and ng are two independent zero-mean Gaussian
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. . . 2 . 2 . 2 . . . .
random variables having a variance of oy = o0, = o3, = No/2 per dimension, with Np/2

representing the double-sided noise power spectral density expressed in W /Hz.
The received signal at the output of the single receiver antenna can be represented as:
ry=hy -y, +hy -y +ny, (2.10)

where h; and hy denote the narrowband complex-valued CIRs corresponding to the first and
second transmit antennas respectively, where it is assumed that the channel coefficients remain
unchanged for two consecutive transmitted vectors y*, while n; is a complex-valued Gaussian
random variable with a covariance matrix of o2 -Igp, with SF representing the spreading factor

of the spreading codes ¢; and €, and Igp is the identity matrix of size SF x SF.
The received signal r; is then correlated with €, and €, according to the following operations:

1 1
d = el ry=—"<-h v+ —= hy-vi+c -y (2.11)

V2 V2

1 1
P = e ry=—— h-v¥—— hy-v+cl - n, (2.12)

V2 V2

where the superscript T represents the Hermitian or the conjugate transpose operation.

Following the received signal’s correlation with ¢; and €5, we arrive at two data symbols

that are then differentially decoded by using the received data of two consecutive time slots as

follows:
ji = di ) di1 + d?* ) d?—1
P ) SR P ot 213)
j? = di ) d?; - d?* ’ dtl—l
Ul al) - P o+ 2.14)
where N; and Ny are zero-mean complex-valued Gaussian random variables having variances
of o} = o}, = 0%, ® 2 X3y, - 02, With N, = 2 is the number of transmit antennas and
oy, = 3 ([h]? + |hal?) - /]vii[? + [vE ] representing a chi-squared distributed random

variable having 2/N; = 4 degrees of freedom.

We can observe from Equations (2.13) and (2.14) that the proposed method guarantees
achieving a diversity gain, since the two transmit antennas’ signals are independently faded ac-
cording to the values of h; and hy, while using a low-complexity decoding algorithm. Moreover,
since ¢; and Ty are derived by appropriately concatenating the user-specific code €, no extra
spreading codes are required for carrying out the STS operation and the two symbols of the

two transmit antennas are transmitted in two time slots.

The previous decoding operation has been carried out for the case of constant modulus

constellations such as PSK. Non-constant modulus constellations [27] can also be transmitted
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using the proposed DSTS scheme. According to Equations (2.13) and (2.14), the DSTS de-

coded signal has a multiplicative factor of x3y, = 1 - (|m|? + |ho|?) - (V/]vi1[? + vy [?) as

compared to the original transmitted symbols regardless of the effect of noise. Therefore, in
order to obtain the original transmitted multi-level constellation symbols, the multiplicative

factor must be compensated for by estimating the channel’s output power (|hi|? + |ho|?) as

well as the power of the previously transmitted symbols (y/[vf_;[?> + [v7_[?). The power of the
previously transmitted symbols can be estimated from that of the symbols received during the
previous time slot. Furthermore, to estimate the channel’s output power, the following simple

computation can be carried out:

S([hal® A+ [hel) - (Jvial* + 074 ) +w, (2.15)

N —

di_y - dyty +dfy - diy =

where w is a zero-mean complex-valued Gaussian random variable having a variance of o2 =~
2 - XgNt - 02, Therefore, using the estimate of the signal power of the previous transmitted
symbols, i.e. (Jvl(|*> + [v2]?), as well as the result of Equation (2.15), the channel’s power
transfer function of (|hy|*+|hz|?) can be calculated. Then the received signal can be normalised
by the channel’s power transfer function and the transmitted signal power estimates, before

the demodulation process takes place.

The above encoding/decoding operations have been carried out for the case of a single
receive antenna, but these arguments may be readily extended to an arbitrary number of
receive antennas, where the resultant signals are appropriately combined, before passing them

to the differential detector.

Therefore, to further augment the rationale behind the above arguments, we contrast the de-
coding processes of both the coherent and differentially encoded STS schemes, while employing

non-constant modulus constellations.

1. The coherently decoded signal can be represented as &; = %-(\h1|2+ |ha|?) - 24+ Neop, while
the differentially decoded signal is given by Equation (2.13) as &, = 5 - (|l|? + |ha|?) -
VI P+ 07 22+ Naigy-

2. The coherent decoder has to estimate the CIR and hence it has full knowledge of h; and
hs, which is required for normalising the decoded signal and estimating the transmitted
symbol x;. By contrast, the differential encoding aided receiver does not employ channel

estimation, although it is required to estimate (k1| 4 |ho|?) and (y/]vl,[? + [vZ]?) for

demodulating the non-constant modulus transmitted symbol z.

3. To elaborate a little further, the differential decoder does not employ any channel estima-

tion for quantifying (|hy[*4|ho|?). First, the differential decoder estimates (v/]vl_; > + [vi [?)
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Figure 2.4: The L legitimate two-dimensional complex vectors.

from the symbols received during the previous time slot and then employs Equation (2.15)

for estimating the channel’s output power by using the received signal only.

2.3.3 Design Using Sphere Packing Modulation!

The design concept of maximising the diversity product? [64,212] was generalised in [55] in
order to account for the effects of the temporal correlation exhibited by the fading channel. In
order to maximise the achievable coding advantage for DSTS signals that attain full diversity,
we construct a class of DSTS signals in conjunction with SP modulation [58,213], which is
referred to as DSTS-SP.

According to Equations (2.13) and (2.14), the DSTS-decoded symbols #! and 72 represent
scaled versions of the transmitted symbols 2! and 22 corrupted by the complex-valued AWGN.
Assuming that there are L legitimate SP-modulated signals, which the DSTS encoder can
choose from, this observation implies that the diversity product is determined by the Minimum
Euclidean Distance (MED) of the L number of the two-dimensional complex-valued vectors
(1, 22); € C2, 1 =0,...,L — 1. Therefore, in order to maximise the diversity product, the L
number of the two-dimensional complex vectors must be designed by ensuring that they have
the best MED in the two-dimensional complex-valued space C2, as illustrated in Figure 2.4.
If each of the L number of two-dimensional complex vectors is expressed using its real and

imaginary components, then we have

(21, x9); <= (a1 + jaz,as + jay);. (2.16)

' This section is based on the design of the sphere packing modulation of [210,211].
2The diversity product or coding advantage is defined as the estimated SNR gain over an uncoded system having

the same diversity order as the coded system [46].
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Figure 2.5: The L legitimate two-dimensional complex vectors represented by their real and imaginary com-

ponents.
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Figure 2.6: The L legitimate four-dimensional real-valued vectors.

Hence, each of these complex vectors can be represented as shown in Figure 2.5. It may be
directly observed from Figure 2.5 that the design problem can be readily transformed from the
two-dimensional complex-valued space C? to the four-dimensional real-valued Euclidean space
R* as portrayed in Figure 2.6. It was proposed in [55] to use SP for combining the individual
antennas signals into a joint design, since SP modulated symbols have the best known MED
in the 2(k + 1)-dimensional real-valued Euclidean space R2(**1) [213], which directly maximises

the diversity product.

To summarise, according to Section 2.3.1, z' and 2? represent independent conventional
PSK/QAM modulated symbols transmitted from the first and second transmit antenna and
no effort is made to jointly design a signal constellation for the various combinations of z?
and 22. By contrast, in the case of SP, these symbols are designed jointly, in order to further

increase the attainable Euclidean distance and hence the resultant diversity product or coding
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advantage, as suggested previously. Assuming that there are L legitimate vectors (z!, z%?),
l=0,1,...,L — 1, where L represents the number of sphere-packed modulated symbols, the
transmitter then has to choose the modulated signal from these L legitimate symbols to be
transmitted over the two DSTS antennas, where the twin-antenna-aided DSTS-SP bandwidth
efficiency is given by (log, L/2) bits-per-channel-use.

In contrast to the independent transmitted signal design of Section 2.3.1, the aim is to design

bl and 22 jointly, so that they have the best minimum Euclidean distance from all other

x
(L — 1) legitimate SP symbols, since this minimises the system’s SP symbol error probability.
Let (abt, a2, a?,al*), 1 = 0,1,..., L — 1, be legitimate phasor points of the four-dimensional
real-valued Euclidean space R*, hence the two time-slot’s complex-valued phasor points z!

and 22 may be written as

{$l’1,l’l’2} — Tsp(al,ljal,27al,3’al,4>

= {d"' +jd"? d? + ja'"}, (2.17)

where the SP-function T}, represents the mapping of the SP symbols (a"!, a"?, a*?, a%*) to the

complex-valued symbols z! and 22,1 =0,...,L — 1.

In the four-dimensional real-valued Euclidean space R*, the lattice D, is defined as a SP
having the best minimum Euclidean distance from all other (L — 1) legitimate constellation
points in R* [213]. More specifically, D, may be defined as a lattice that consists of all legitimate
sphere packed constellation points having integer coordinates (a*t, a'?, a3, a"*), 1 =0,..., L—1,
uniquely and unambiguously describing the L legitimate combinations of the two time-slots’

modulated DSTS symbols, but subjected to the SP constraint of [213]

at + a? + a4 aht = gy, 1=0,...,L—1, (2.18)

where k; may assume any even integer value. Alternatively, D, may be defined as the integer

span of the vectors uy, us, us and uy that form the rows of the following generator matrix [213]

[ | (900 0]
1100
2l (2.19)
us 1 010
uy 1 0 01

We may infer from the above definition in Equation (2.19) that D, contains the centres
(2,0,0,0), (1,1,0,0), (1,0,1,0) and (1,0,0,1). It also contains all linear combinations of these
points [213].

Assuming that S = {s' = [a"},a"? a"3,a!] € R : 0 <1 < L — 1} constitutes a set of L
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Figure 2.7: Transmission of two QPSK symbols using two-antenna-aided DSTS system.
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Figure 2.8: Transmission of sphere-packed symbols using two-antenna-aided DSTS system.

legitimate constellation points from the lattice D, having a total energy of

L_
(|al’1|2 4 |al,2|2 i |al’3|2 + |al’4|2) : (2.20)
0

—_

AN
Etotal -
=

and upon introducing the notation

_ 2L 1 02
Cl B Etotal (:E - )

2L
= E—(al’1+jal’2,al’3—|—jal’4), 1=0,1,...,L—1, (2.21)
total

we have a set of complex SP constellation symbols, {C;: 0 < < L—1}, whose diversity product
is determined by the MED of the set of L legitimate SP constellation points in S.

The following example illustrates how SP modulation is combined with the twin-antenna-

aided DSTS scheme as compared to the conventionally modulated DSTS system.

Example 2.3.1 Assume that there are L = 16 different legitimate signals (xb', 2b?), | =
0,1,...,15, that can be transmitted by the DSTS encoder. We will compare two modulation

schemes, namely conventional QPSK and SP modulation.

e Conventional QPSK Modulation:
There are four legitimate complex-valued QPSK symbols (Sy, S1, S2, S3) that can be used to
represent independently any of the z' and x5? symbols, | = 0,1,...,15. The transmission

scheme using two consecutive time slots is portrayed in Figure 2.7.

e Sphere Packing Modulation:
We need L = 16 SP phasor points (ab!, a"?, a'?, a"*) from the lattice Dy in order to jointly
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represent each pair of signals (x%', 2%%), 1 = 0,1,...,15 according to Equation (2.21) as

depicted in Figure 2.8.

2.3.4 Sphere Packing Constellation Construction®

Since the signal constructed from the sphere packing scheme of Equation (2.21) is multiplied

L

by a factor that is inversely proportional to v/ Fiota1, namely by Ef it is desirable to choose

tal’

a specific subset of L SP constellation points from the entire set of legitimate SP constellation
points hosted by D,, which results in the minimum total energy FEj,., while maintaining a
certain minimum FEuclidean distance amongst the SP symbols. Viewing this design trade-
off from a different perspective, if more than L SP points satisfy the minimum total energy
constraint, an exhaustive computer search is carried out for determining the optimum choice
of the L SP constellation points out of all possible points, which possess the highest MED,
hence minimising the SP-symbol error probability. The legitimate constellation points hosted
by D, are categorised into layers or shells based on their Euclidean norms or energy (i.e. the
distance from the origin) as seen in Table 2.1. For example, it was shown in [213] that the first
layer consists of 24 legitimate constellation points hosted by D, having an identical minimum
energy of Fia = 2. In simple terms, it may be readily verified that the SP symbol centred at
(0,0,0,0) has 24 minimum-distance or closest-neighbour SP symbols around it, centred at the
points (+/ — 1,4/ —1,0,0), where any choice of signs and any ordering of the coordinates is

legitimate [213].

Table 2.1 provides a summary of the constellation points hosted by the first 10 SP layers in
the four-dimensional lattice D4. In order to generate the full list of SP constellation points for
a specific layer, we have to apply all legitimate permutations and signs for the corresponding

constellation points given in Table 2.1.

2.3.5 Bandwidth Efficiency of the Twin-Antenna-Aided DSTS System

In the two-antenna-aided DSTS encoder, the data is serial-to-parallel converted to two sub-
streams. The new bit duration of each parallel substream, or equivalently the symbol dura-
tion becomes T,=2T), as illustrated in [25,49] and as exemplified in simple graphical terms
in Figure 2.3. According to Section 2.3.1, the DSTS transmitter using two transmit anten-
nas transmits two real- or complex-valued conventional modulated symbols in two time slots.
Therefore, the two transmit antenna DSTS code rate is 2/2 = 1 and then according to the

number of bits-per-symbol (BPS) B, the system’s bandwidth efficiency becomes equal to B

3This section is based on the design of the sphere packing modulation of [210,211].
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Layer Constellation Points Norm | Number of Combinations
0 0 0 0 0 0 1
1 +/-1|+/-1] 0 0 2 24
2 +/-2| 0 0 0 4 8

+/-1|+/-1]+/-1]+/-1 4 16
3 +/2|+/-1|+/-1| O 6 96
4 +/-2|+/2] 0 0 8 24
5 | +/2|+/2|+/1]+/1| 10 96
+/3|+/-1] 0 0 10 48
6 +/3|+/1|+/1]+/1| 12 64
+/2|+/2|+/2| 0 12 32
7| 4/3 /2| +/1] 0 14 192
8 | +/2|+/2|+/2]+/2| 16 16
+/-4|1 0 0 0 16 8
9 +/4|+/-1|+/-1| 0 18 96
+/-3|+/2|+4+/-2|+/-1 18 192
+/-3|+/3] 0 0 18 24
10 [+/4]|+/2] 0 0 20 48
+/-3|+/3|+/1]+/-1| 20 96

Table 2.1: The first 10 layers of the lattice Dy.

bits-per-channel-use. For example, in the case of QPSK we have B = 2 BPS, which results in
an effective system bandwidth efficiency of 2 bits-per-channel-use. Table 2.2 presents the band-
width efficiency of the twin-antenna-aided DSTS system for different conventional modulated

constellation sizes.

On the other hand, for two transmit antenna system using SP modulation, one SP symbol is
transmitted in two time slots. Therefore, the DSTS-SP code rate is 1/2 and then according to
the number of BPS By, the SP system’s bandwidth efficiency becomes equal to Bs,/2 bits-per-
channel-use. For example, in the case of SP with L = 16 constellation, we have By, = 4 BPS,
which results in an effective system’s bandwidth efficiency of 2 bits-per-channel-use, which
is identical to the system’s bandwidth efficiency of the QPSK modulated twin-antenna-aided
DSTS system. Table 2.3 presents the bandwidth efficiency of the twin-antenna-aided DSTS-SP

system for different constellation sizes.
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Modulation | BPS | Bandwidth Efficiency (bits-per-channel-use)
BPSK 1 1
QPSK 2 2
8PSK 3 3
16-QAM | 4 4
64-QAM 6 6

Table 2.2: Bandwidth efficiency of twin-antenna-aided DSTS systems for different conventional modulation

signal sets.

L | BPS | Bandwidth Efficiency (bits-per-channel-use)
4 2 1
8 3 1.5
16 4 2
32 ) 2.5
64 6 3
128 7 3.5
256 8 4
512 9 4.5
1024 | 10 )
2048 | 11 5.5
4096 | 12 6

Table 2.3: Bandwidth efficiency of twin-antenna-aided DSTS-SP systems for different SP signal set sizes L.

2.3.6 Capacity of the Two-Antenna-Aided DSTS-SP Scheme

The capacity of a single-input-single-output AWGN channel was quantified by Shannon in
1948 [23,214]. Since then, substantial research efforts have been invested in finding channel
codes that would produce an arbitrarily low probability of error. Shannon’s channel capacity
was only defined for continuous-input continuous-output memoryless channel (CCMC) [35],
where the channel input is continuous-amplitude discrete-time Gaussian-distributed signal and
the capacity is only restricted by either the signalling energy or the bandwidth [215]. By
contrast, in the context of discrete-amplitude QAM [27] and PSK [35] signals, we encounter a

discrete-input continuous-output memoryless channel (DCMC) [35].

With the Advent of MIMO systems, the MIMO channel capacity is of immediate interest.
Thus, the channel capacity of MIMO systems was found for CCMC in [24, 33, 34, 216] and
then Ng et al. [215] developed the DCMC channel capacity of the STBC-aided MIMO system

combined with multi-dimensional signal sets. In this section, we present the CCMC and DCMC
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capacities of the twin-antenna-aided DSTS system using multi-dimensional SP modulation and
employing N, receive antennas. The same analysis can be performed to generate the capacity

of the DSTS system employing two-dimensional conventional modulation schemes.

The complex-valued channel output symbols received during two consecutive DSTS time
slots at receive antenna r, r € [1,---, N,], are DSTS decoded in order to extract the estimates

Z! and 22 of the most likely transmitted symbols o' and 22 resulting in:

- 1
i = e (b a2 lob 2 4 [0 2t + Vo,

= Xon,, T+ Niy (2.22)
~ 1
o= 5 (el o) \lobaP o+ 2o+ Vo,

= Xongr T + Noy, (2.23)

where hq, and hy, denote the narrowband complex-valued CIRs corresponding to the first and

second transmit antennas and the rth receive antenna, respectively. NV; , and N, are zero-mean

2
n

complex-valued Gaussian random variables having variances of 03, = 0%, = 0%, ~ 2-X3y,, 0

and X3y, » = 3-(|h1s P+ hor [?)-V/Ivf1]? 4 |07 |? represents the chi-squared distributed random

variable having 2/N; = 4 degrees of freedom.

The received sphere-packed symbol s, at receive antenna r is then constructed from the

estimates i;r and iir using the inverse function of Ty, introduced in Equation (2.17) as

~ 1/~ 22
Sr = Tsp (xt,rvxt,r)v (224)
where we have s = [a! a? a® a'] € RY. Therefore, the received sphere-packed symbol §, at
receive antenna r can be written as
S = o, S N, (2.25)

where we have s = [a"! a'? a3 @] € S, 0 < | < L — 1. Furthermore, N, = [Ny, N,

N3, Ny, € R* is a four-dimensional real-valued Gaussian random variable having a covariance
' 2 T g2 e =92 g2 Tn —2.42 . DNo. — 4 g

matrix of oo -Ip = oy -Ip =2 X3y, 05 - Ip =2+ Xan, , - 35 - Ip, where we have D = 4, since

the SP symbol constellation S is four-dimensional.

Therefore, the received sphere packed symbol § can be written as

’.

Ny
5= Xn, s+ N (2.26)
r=1

The conditional probability of receiving a four-dimensional signal s, given that a four-

dimensional L-ary signal s' € S, 1 € [0,---, L — 1], was transmitted over the Rayleigh channel
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of Equation (2.26), is given by the following probability density function [35]:

' & (5,0d) — 3, 1) - ')’
r=1 X%Ntﬂ" [d] ' NO

3
Il

1
p(sls') = . = - exp (
P TN N Xl

1 L3 (@ — B[] - abd)?
= P - exp < Z N, .

T 2 d .
d=1 \/WNO Ziv:l X%Nt,r[d] —1 r=1 X, ]

™

)
I

Q

(2.27)

The channel capacity for the DSTS MIMO system employing D-dimensional L-ary SP sig-
nalling over the DCMC [35] can be derived from that of the discrete memoryless channel [217]

as
L-1 oo o0

C = max / . / p(3]s') - p (s
e P)sep(52) ; ), B pls)

D—fold

p (8ls') -
log — ds [bit/symbol], (2.28)
2<£5M$@m@)

where p(s') is the probability of occurrence for the transmitted SP symbol s' and p(s|s') is

expressed in Equation (2.27). The right-hand side of Equation (2.28) is maximised, when

1
T’

[ =0,...,L — 1, which leads to achieving the full capacity [217]. The right-hand side of
Equation (2.28) may be further simplified as follows [215]:

the transmitted SP symbols are equiprobably distributed, i.e. when we have p(s') =

log p(3ls)) g, (L3RGl
TS ) - p () =Y
L1
= log,(L) —log, Y _ exp(W;), (2.29)
k=0
where U, ;, is expressed as [215]:
—4 N, . 2 2
v R (=@ = ) ) (= Xl 0)
d=1 r=1 X%Nt,r[d] - No X%Nt,r [d] - No
L\ 2 . N\2
D=4 N» - (X%Nt,r[d] : (ahd - ak7d) + Nd,r) + (Nd,r)
= . (2.30)
d=1 r=1 X%Nt,r[d] ’ NO
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Now, substituting Equation (2.29) into Equation (2.28) and observing that we have p(s!) =
1, yields [215]

log, (L o o
Coone = gz( ) / / p(3s') ds
=0 (== e
D-fold
| Ll oo o L1
-7 / / p (8[s') log, Zexp(\lfhk) ds
=0 =% ) k=0
D-fold

L-1
log2 Z exp (\Ill,k)
k=0

= logz(L)—%Z_: E sl] [bit /sym], (2.31)
=0

where F[A|B] is the expectation of A conditioned on B. The expectation in Equation (2.31)
can be estimated using a sufficiently high number of A and N, realisations with the aid of

Monte Carlo simulations for r =1,..., N,.

The bandwidth efficiency 7pcye of the DCMC is computed by normalising the DCMC ca-
pacity Cpeme With respect to the product of W and T, where W is the bandwidth and T is
the signalling period of the finite-energy signalling waveform. Furthermore, it was reported
in [218][pp. 348-351] that the constellation dimension D is given by D = 2WT. Explicitly, the
bandwidth efficiency as a function of the capacity is given by [215,218,219]:

Noemc(SNR) = CDCI‘;/(;NR) = CDCI\S(/SQNR) [bits/sec/Hz). (2.32)

For multiple-antenna aided transmitter using /N, coherent detectors provided with perfect
knowledge of the channel coefficients at the receiver, the CCMC’s [35] bandwidth efficiency can

be formulated as follows [33]:

ncohcrcnt(SNR) — E

ccMC

[bits/sec/Hz], (2.33)

N,

. SNR
log, [ 1+ SN
gz( ;th, Nt)

where the expectation E[] is taken over x3y, .-

Figures 2.9, 2.10 and 2.11 show the DCMC capacity evaluated from Equation (2.31) for
the four-dimensional SP modulation assisted DSTS as well as STS schemes for L = 4, 16 and
64, when employing N, = 2 transmit antennas as well as N, = 1, 2 and 4 receive antennas,
respectively. The CCMC [35] capacity of the MIMO scheme was also plotted for comparison
in Figures 2.9, 2.10 and 2.11 based on [33].

Figures 2.12, 2.13 and 2.14 quantify and compare the achievable bandwidth efficiency of
both various SP modulated DSTS schemes and that of their identical-throughput conventionally
modulated DSTS counterparts. The specific modulation type employed by the various schemes
is outlined in Table 2.4. The figures explicitly illustrate that a higher bandwidth efficiency
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Figure 2.9: Capacity comparison of coherent and differential STS-SP based schemes evaluated from Equa-

tion (2.31) and using L = 4, 16 and 64, when employing N; = 2 transmit and N, = 1 receive
antenna for communicating over a correlated Rayleigh fading channel having a normalised Doppler

frequency of fp = 0.01.
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Figure 2.10: Capacity comparison of coherent and differential STS-SP based schemes evaluated from Equa-
tion (2.31) and using L = 4, 16 and 64, when employing N; = 2 transmit and N,. = 2 receive an-
tennas for communicating over a correlated Rayleigh fading channel having a normalised Doppler

frequency of fp = 0.01.
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Figure 2.11:

Figure 2.12:
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frequency of fp = 0.01.
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Figure 2.13:
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Bandwidth Efficiency | Conventional Modulation | Sphere Packing Modulation
1 BPSK L=4
2 QPSK L=16
3 8-PSK L=64
4 16-PSK L = 256

Table 2.4: Conventional and sphere packing modulation employed for different bandwidth efficiency rates.

may be attained, when employing SP modulation in conjunction with DSTS schemes having
N; = 2 transmit antennas as compared to an equivalent system employing conventional PSK

modulation.

2.3.7 Performance of the Two-Antenna-Aided DSTS System

In this section, the two-antenna-aided DSTS schemes of Sections 2.3.1 and 2.3.3 are considered.
Simulation results are provided for systems having different bandwidth efficiencies in conjunc-
tion with appropriate conventional and sphere packing modulation schemes, as outlined in
Table 2.4. Observe that two consecutive time slots are required for transmitting a single SP
symbol when using the two-antenna-aided system. By contrast, two conventionally modulated
symbols are transmitted during the same time period. Therefore, the bandwidth efficiency of
the sphere packing modulation scheme has to be twice as high as that of the conventional mod-
ulation scheme in order to compensate for the potential rate loss and to produce systems having
an identical overall bandwidth efficiency. This explains the specific choices of L in Table 2.4.
Our results are presented in terms of the Bit Error Ratio (BER) and Sphere Packing Symbol
Error Ratio (SP-SER) performance curves for various systems employing N, = 1,2,3, and 4
receive antennas for communication over a temporally correlated narrowband Rayleigh fading

channel having a normalised Doppler frequency of fp = 0.01.

Figures 2.15 and 2.16 compare the BER performance of both the differentially encoded as
well as of the coherently detected space-time spreading while using BPSK modulated signals,
two transmit antennas, a spreading factor of four in conjunction with one and four receive an-
tennas, respectively. The coherent STS results are generated for the idealised scenario, where
perfect channel knowledge is assumed at the receiver. As shown in Figures 2.15 and 2.16,
the error doubling induced by the differential decoding results in a 3 dB performance loss as
compared to coherent detection aided STS benefiting from perfect channel knowledge at the
receiver. Again, this is mainly due to the fact that according to Equation (2.13) differential
decoding results in doubling the noise power as compared to the coherently detected signals.

However, the differential encoding/decoding process eliminates the complexity of channel es-
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Figure 2.15: Comparison of the BER performance of coherent and differential space-time spreading, while
using a BPSK modulated signal, two transmit antennas, one receive antenna, a spreading factor

of 4 and a variable number of users.
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Figure 2.17: Comparison of the BER performance of coherent and differentially encoded non-coherent space-
time spreading, while using a BPSK modulated signal, two transmit antennas, one receive an-

tenna, a spreading factor of four for supporting a single user. The CSI in the coherent STS

is contaminated with AWGN in order to compare the performance, when there is a channel

estimation error.

timation required in coherent detection aided schemes, which is directly proportional to the
product of the number of transmit and receive antennas and also depends on the characteris-
tics of the channel. Additionally, it becomes clear from Figures 2.15 and 2.16 that the BER
performance of both the DSTS and STS schemes is independent of the number of users in the
system, which is a benefit of the fact that the spreading codes used are orthogonal and the

channel is frequency-flat faded.

Furthermore, in order to study the effect of channel estimation error on the performance of
the coherently detected STS signals, we contaminate the channel information at the receiver
side with noise. We add AWGN to the channel information at the receiver side to model the
effect of errors that may occur due to the channel estimation. Although the channel estimation
error typically does not obey a Gaussian distribution, this simplified investigation gives us an
insight concerning the effects of channel estimation errors on the system performance degrada-
tion of coherent systems. Figure 2.17 compares the BER performance of the DSTS and the STS
scheme, while using two transmit antennas, one receive antenna, BPSK modulation, a spread-
ing factor of four and a single user. As discussed previously, coherent systems assuming perfect
channel knowledge at the receiver outperform their differentially encoded, non-coherently de-
tected counterpart by about 3 dB. However, when we add noise to the CSI used by the coherent

STS scheme, we see that the performance degrades, as shown in Figure 2.17. More quantita-



2.3.7. Performance of the Two-Antenna-Aided DSTS System 52

3|  DSTS, (2Tx,1Rx)
10 SF=8, 4 users
5| ] BPSK
L1 X QP 1
2| © 160AM
10 ‘ ‘

8§ 10 12 14 16 18 20
Eo/No [dB]

Figure 2.18: Comparison of the BER performance of differential space-time spreading while using PSK and

0 2 4 6

QAM modulated signals, two transmit antennas, one receive antenna, a spreading factor of 4

and two users.

tively, Figure 2.17 shows that when the power of the channel estimation noise added to the
CSI is increased and hence the corresponding CSI SNR is 20 dB or less, the performance of the
coherent STS scheme tends to exhibit an error floor and its BER curve crosses the BER curve
of the DSTS scheme. Beyond this cross-over point the DSTS outperforms the STS. Therefore,
the DSTS constitutes a convenient and low-complexity design alternative to the coherent STS
scheme, since the DSTS scheme eliminates the complexity of channel estimation and also results

in a better performance when the channel estimation error is high.

On the other hand, Figure 2.18 compares the BER performance of the DSTS scheme using
BPSK, QPSK as well as 16-QAM signals. Moreover, a comparison between the BER per-
formance of both the differentially and coherently detected STS when using SP modulation is
provided in Figure 2.19. As for the conventional modulation schemes, the differentially decoded
system performs within 3 dB from the coherently detected one using perfect channel knowledge

at the receiver.

Furthermore, in order to understand the effects of varying the Doppler frequency on the per-
formance of the DSTS system, Figure 2.20 shows the attainable BER performance of the QPSK
modulated system using two transmit antennas, one receive antenna and a spreading factor of
four, while communicating over a temporally correlated narrowband Rayleigh fading channel
and varying the Doppler frequency. As shown in the figure, when the normalised Doppler fre-
quency increases from fp = 0.0001 to 0.01, the system’s performance remains similar. However,

as the Doppler frequency increases beyond 0.01, the achievable BER performance substantially
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Figure 2.21: Performance comparison of the SP-SER of DSTS in combination with conventional modulation

and sphere packing modulation for different bandwidth efficiency rates as outlined in Table 2.4
while employing two transmit antennas, one receive antenna, a spreading factor of four, two users

and communicating over a correlated Rayleigh fading channel associated with fp = 0.01.

degrades. This is predominantly due to the fact that increasing the Doppler frequency makes
the channel fast fading and thus the differential decoding scheme, which relies on the fact that

the subsequent symbols experience similar fading, performs poorly.

Figure 2.21 shows the SP-SER performance curves of the DSTS scheme in conjunction with
different conventional as well as SP modulations at various bandwidth efficiency values, as
outlined in Table 2.4. All systems employ two transmit antennas for communication over a
correlated Rayleigh fading channel associated with fp = 0.01. Moreover, the system uses a
spreading factor of four and here accommodates two users. It is evident from Figure 2.21 that for
a particular bandwidth efficiency, the two curves corresponding to the conventional modulation
and to the SP modulation schemes have the same asymptotic slope (i.e. diversity order). This
observation is based on the fact that the DSTS scheme is capable of achieving full diversity,
similar to Alamouti’s STBC scheme [44]. Accordingly, it is not expected that the asymptotic
slope of the performance curves would improve by merely employing new modulation schemes
without introducing another level of channel coding. The resultant BER performance curves are
shown in Figure 2.22. Notice that SP modulation attains a better SP-SER performance than the
conventionally modulated DSTS scheme and this is expected, since SP was specifically designed
for improving the DSTS-SP-SER as compared to conventional DSTS schemes. However, observe
in Figure 2.22 that the BER performances of SP modulation and conventional modulation are

identical for systems having a bandwidth efficiency of 2 bits-per-channel-use because it can
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while employing two transmit antennas, two receive antenna, a spreading factor of four, two

users and communicating over a correlated Rayleigh fading channel associated with fp = 0.01.
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Figure 2.26: Performance comparison of the BER of DSTS in combination with conventional modulation and

Figure 2.27:

sphere packing modulation for different bandwidth efficiency rates as outlined in Table 2.4 while

employing two transmit antennas, three receive antenna, a spreading factor of four, two users

and communicating over a correlated Rayleigh fading channel exhibiting fp = 0.01.
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Performance comparison of the SP-SER, of DSTS in combination with conventional modulation

and sphere packing modulation for different bandwidth efficiency rates as outlined in Table 2.4

while employing two transmit antennas, four receive antenna, a spreading factor of four, two

users and communicating over a correlated Rayleigh fading channel exhibiting fp = 0.01.
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Figure 2.28: Performance comparison of the BER of DSTS in combination with conventional modulation and
sphere packing modulation for different bandwidth efficiency rates as outlined in Table 2.4 while
employing two transmit antennas, four receive antenna, a spreading factor of four, two users and

communicating over a correlated Rayleigh fading channel exhibiting fp = 0.01.

be shown [58] that at this throughput they constitute specific manifestation of each other.
By contrast, the DSTS-SP BER performance recorded for 3 bits-per-channel-use is marginally
worse than that of the conventionally modulated DSTS schemes, as shown in Figure 2.22, which

demonstrates that the marginal advantage of conventional modulation over SP modulation
diminishes at high SNRs.

Figures 2.23 to 2.28 illustrate the beneficial effect of increasing the number of receive an-
tennas from two to four, respectively. Observe in Figures 2.24, 2.26 and 2.28 that the BER
performance of SP modulation improves in comparison to that of conventional modulation upon
increasing the number of receive antennas, especially for schemes having bandwidth efficien-
cies of 1 and 3 bits-per-channel-use. Observe, however, in Figures 2.21 to 2.28 that both the
BER and SP-SER performance curves of QPSK modulation as well as those of the identical-
throughput SP modulation having L=16 are identical. Again, this phenomenon is due to the
fact that QPSK modulation is a special case of the SP modulation constellation, when combined
with DSTS. More specifically, let us consider the DSTS signal, when x;; and ;5 are chosen
independently from the QPSK modulation constellation, then the 16 legitimate combined sig-
nals produced will be identical to the 16 legitimate signals constructed using Equation (2.21),

where (a;1, a2, 413, 414), | =0,...,15, correspond to the L=16 SP constellation points hosted
by D4.

Finally, the attainable coding gains of SP modulation over conventional modulation are
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1 BPS | 2 BPS | 3 BPS

1Rz | 0.20 dB | 0.0 dB | 0.70 dB
2Rx | 0.25dB | 0.0 dB | 0.90 dB
3Rz | 0.30dB | 0.0dB | 0.95 dB
4Rz | 0.30 dB | 0.0 dB | 1.00 dB

Table 2.5: Coding gains of SP modulation over conventional modulation at SP-SER of 10~ for the schemes
of Figures 2.21, 2.23, 2.25 and 2.27, when communicating over a correlated Rayleigh fading channel
associated with fp = 0.01.

summarised in Table 2.5 for the schemes characterised in Figures 2.21 to 2.28 at an SP-SER of

10~*, when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.

2.4 DSTS Design Using Four Transmit Antennas

In the following section, we present the design of the DST'S system using four transmit antennas
that can be implemented together with real- and complex-valued phasor constellations as well

as with SP modulation.

2.4.1 Design Using Real-Valued Constellations

A high level block diagram of the four-antenna-aided DSTS scheme in shown in Figure 2.29,
where the DSTS encoder is divided into two main stages. The differential encoding takes
place after which the differentially encoded symbol matrices are space-time spread. Moreover,
the basic principle of the four-antenna-aided STS is exemplified in simple graphical terms in
Figure 2.30, where a 8-chip orthogonal spreading code was used for spreading each bit of

duration T} to an interval of T, = 47.

The DSTS encoding and decoding algorithms operate as follows. At time instant ¢ = 0, the
arbitrary dummy reference real-valued symbols vy, v3, v3 and vg are transmitted from antennas
one, two, three and four, respectively. At time instants ¢ > 1, a block of 4B bits arrives at
the modulator of Figure 2.29, where each set of B bits is mapped to a real-valued modulated

symbol x¥, k =1,2,3, 4, selected from a 28-ary constellation.

Assuming vF to be the symbol transmitted from antenna k, k = 1,2, 3, 4, at time instant ¢,

differential encoding is carried out as follows:
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Figure 2.29: The four transmit antenna differential space-time spreading system block diagram.
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Figure 2.30: Illustration of STS using four transmit antennas transmitting 4 bits within 47; duration.
vi=vo=v3=v4=1 were assumed and ¢; = [+1+1+1+14+1+14+14+1],C =[+1+1-—
1-141+1-1-1],es=[+14+1+141-1-1-1—-1andes=[+14+41-1-1-1—-141+1].
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v ) —v )
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V= =ux; - + x; + x; + - . (2.34)
v3 v3 v —of —v?
t t—1 t—1 t—1 t—1
U? Ufﬂ _Ut371 Ut271 _Ut171

The vector Vy of Equation (2.34) is normalised by the magnitude of the previously computed
vector Vi_;1 before transmission in order to limit the peak power and hence the out-of-band

power emissions.

The differentially encoded symbols are then spread with the aid of the spreading codes ¢,
Co, C3 and €4, which are generated from the same user-specific spreading code € by ensuring

that they are orthogonal using the simple code-concatenation rule of Walsh-Hadamard codes,
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yielding longer codes and hence a proportionately reduced per antenna throughput according

to:

E ¢
€ —¢
E ¢
€ —¢

2.35
2.36

(2.35)
(2.36)
(2.37)
(2.38)

2.38

The differentially encoded data is then divided into four quarter-rate substreams and the

four consecutive symbols are then spread to the four transmit antennas as shown in Figures 2.29

and 2.30 using the mapping of:
Yt
1
yi

y;

1 —
Uy — C2
2 —
'Ut+C2
3 —
- Uy — C2

— 4 —
-V + Cg

2 —_
.Ut—csn
ol 4 Ga -
Uy C3
4 —
.fUt_l_cg.

'U?—Eg'

(2.39)
(2.40)
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(2.42)

Assuming the channel to be temporally correlated narrowband Rayleigh fading, the received

signal at the output of the single receive antenna can be represented as:

r,=hi-y, +he-y;+hs y, +hi-y! +ny,

(2.43)

where hy, hs, hy and hy denote the narrowband complex-valued CIRs corresponding to the four

transmit antennas, while n; is a complex-valued Gaussian random variable having a covariance

matrix of o2 - Igp, where SF' is the spreading factor of the per-antenna spreading code ¢y,

k=1,2,3,4.

The received signal r; is then correlated with €;, €5, €3 and ¢4 according to the following

operation: df = EL 1y, k€ [1,---,4]. After the correlation operation we arrive at four data

symbols represented by:

Qo= L
& - ——

1
di’:—?
&= -

hQ'U?"—

~hy v
\/Z 1

hg"l}zl‘l'

hg'U?‘l‘

1
—'hg"U?‘i‘

V4

1
hg"Ut —

vz
V4
V4

h4'U?+EJ{'Ht
hs - vf + hy v} + € -
hg'Utl— h4"l}t2+6§-

hg'Ut2+ h4"l}t1+61-

(2.44)
(2.45)
(2.46)

(2.47)
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To derive the decoder equations of the DSTS receiver, the received signals in Equations (2.44)-

(2.47) are rearranged in vectorial form as follows:

(tl’dt 1 tl’d ) ( )
(—dizy, diy di_y, —diy) (2.49)
R}, = (=d/,,—di_,.di_y,d} ) (2.50)
(=d}_y.d}y, —diy,dp ) (2.51)
(i, d?, d?, dy) . (2.52)

To decode the transmitted symbols z¥, k = 1,2,3,4, the decoder uses Equations (2.48)-
(2.52) and computes:

T = Re{R, R} =

(2.53)

where Re{-} denotes the real part of a complex number, x3 , Tepresents a chi-squared random
variable having 2/V; = 8 degrees of freedom and N} denotes the noise term having a variance
of X3y, - No/2. The receiver estimates z based on Equation (2.53) by employing a Maximum
Likelihood decoder.

According to Equation (2.53), the receiver only has to estimate "7, |h;]? in order to decode
non-constant modulus real-valued constellations, such as Pulse Amplitude Modulation (PAM).
In other words, the receiver does not have to estimate the individual CIR tap values of h;,
i =1,2,3,4, only 35 |h;|? and ,/Z?zl |vJ_,|2 has to be estimated in order to recover PAM
modulated information from the received signal of Equation (2.53). A simple channel power

estimator may be derived by computing the autocorrelation of the received signal as follows [68]:
4
E{d;-di} =) |hi|*+ o) . (2.54)

The power of the previously transmitted symbols 4 /2?:1 lv/_,|2 can be estimated from the
previous output of the decoder [68].

We can observe from Equation (2.53) that the proposed method guarantees achieving a full
diversity gain, while using a low-complexity decoding algorithm. Since ¢x, k& = 1,2, 3,4, are
derived by appropriately concatenating the user-specific code €, no extra spreading codes are
required for carrying out the STS operation and the four symbols of the four transmitters are

transmitted in four time slots.
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2.4.2 Design Using Complex-Valued Constellations

Quadrature Amplitude Modulated (QQAM) signals represented by complex-valued constellations
can also be transmitted using the proposed four-antenna-aided DSTS scheme. Accordingly, we
assume that at time instant ¢, a block of 4B bits arrives at the encoder, where each 2B bits
are modulated using an M-ary complex-valued constellation, so that we have 2B = log, M.
The modulator outputs the two complex symbols z}, and z2,, conveying the original 4B bits,
where the postscript c is used to denote complex symbols. Now xf. and x2, are mapped to z¥,

k=1,2,3,4, defined in the previous section as follows
(x;, 27,27, 2}) = (Re{x,. }, Im{x,. }, Re{xi.}, Im{x.}). (2.55)
k

Similarly to real-valued constellations, zy, k = 1,2,3,4, can be estimated using Equa-

tion (2.53), which is then used to recover the original complex symbols 7}, and 72, as follows:

(Tte: Tye) = (&7 + JT,, T + jiy)- (2.56)

2.4.3 Design Using Sphere Packing Modulation

According to Equation (2.53), the decoded signals represent scaled versions of z}, 7, 23 and z}

corrupted by the complex-valued AWGN. This observation implies that the diversity product of

the four-antenna-aided DSTS scheme is determined by the minimum Euclidean distance of all

legitimate vectors (zf, 22, 23, x}). The idea is to jointly design the legitimate four-component

vectors (z}, x2, x3, x}) so that they are represented by a single phasor point selected from a

sphere packing constellation corresponding to a four-dimensional real-valued lattice having the
best known minimum Euclidean distance in the four-dimensional real-valued space R*. For the

L1 0,2
) "T" )

sake of generalising our treatment, let us assume that there are L legitimate vectors (x
b3 ), 1=0,1,...,L — 1, where L represents the number of four-component sphere-packed
modulated symbols. The transmitter, then, has to choose the modulated signal from these L
legitimate symbols, which have to be differentially space-time spread and transmitted from the
four transmit antennas. The bandwidth efficiency of the four-antenna-aided DSTS-SP system
is (log, L)/4 bits-per-channel-use.

In contrast to the independent transmitted signal design of Section 2.4.1, the aim is to design

11 02 03
) )

bt b2 2b3 ) b jointly, so that they have the best minimum Euclidean distance from all other

(L — 1) legitimate SP symbols, since this minimises the system’s SP symbol error probability.

Let (a*', a2, a"?, a"*), 1 = 0,1,...,L — 1, be legitimate phasor points of the four-dimensional
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Figure 2.31: Transmission of four BPSK symbols using a four-antenna-aided DSTS scheme.
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real-valued Euclidean space R*. Hence, 2!, 22, 253, 2% may be written as

{le, $l’2, $l’3, $l’4} — Tsp(al’l, al,2’ al,3’ al,4)

= {al’l, ab? ab3, al’4}. (2.57)

Assuming that S = {s! = [a"!,a"? a3 a4 € R* : 0 <1 < L — 1} constitutes a set of L
legitimate constellation points from the lattice D4 having a total energy of

L—1
Etotal é Z<‘al,1|2 + |al,2‘2 + ‘al,3|2 + |al,4|2)7 (258)
=0

and upon introducing the notation

Cl — (le, $l’2, $l’3, $l,4)

= (a™', a"?, a3, a'?), 1=0,1,...,L —1, (2.59)

we have a set of constellation symbols, {C;: 0 < < L — 1}, leading to the design of DSTS
signals, whose diversity product is determined by the minimum Euclidean distance of the set

of L legitimate constellation points in S.

The following example illustrates how SP modulation is implemented in combination with
the four-antenna-aided DSTS scheme as compared to the conventionally modulated DSTS

scheme.

1,2 1,3 4
7z 7x )7

Example 2.4.1 Assume that there are L = 16 different legitimate symbols ("1, z
[ =0,1,...,15, that can be used by the encoder. We will compare three modulation schemes,

namely conventional BPSK, QPSK and SP modulation.

e Conventional BPSK Modulation:
There are two real-valued legitimate symbols (So, S1) that can be used to independently
represent any of the zb', 4%, o3 and 2, | = 0,1,...,15 symbols. The transmission

scheme processing the signals in four consecutive time slots is outlined in Figure 2.31.
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Figure 2.32: Transmission of two QPSK symbols using a four-antenna-aided DSTS scheme.
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Figure 2.33: Transmission of a SP symbol using a four-antenna-aided DSTS scheme.

e Conventional QPSK Modulation:
There are four complez-valued legitimate symbols (Sy, Sy, Se, S3) that can be used to
independently represent any of the zb', %2, 243 and 2, 1 = 0,1,...,15 symbols. The
transmission scheme processing the signals of four consecutive time slots is highlighted in
Figure 2.52.

e Sphere Packing Modulation:
We need L = 16 SP phasor points (ab!, a%?, a'®, a"*) from the lattice Dy in order to jointly
represent each signal (z%', 212 b3 284, 1 =0,1,...,15 according to Equation (2.59), as

depicted in Figure 2.33.

2.4.4 Bandwidth Efficiency of the Four-Antenna-Aided DSTS Scheme

In the four-antenna-aided DSTS encoder, the data is serial-to-parallel converted to four sub-
streams. The new bit duration of each parallel substream or equivalently the symbol duration
becomes T,=4T, as illustrated in Figure 2.30. According to Section 2.4.3, the DSTS transmit-
ter using four transmit antennas transmits one SP symbol in four time slots. Therefore, the
DSTS-SP code rate becomes 1/4 and then according to the number of BPS B;,, the DSTS-SP
system’s bandwidth efficiency becomes Bj,/4. For example, in the case of SP using L=16, we
have By,=4 BPS, which results in an effective bandwidth efficiency of 1 bit-per-channel use.
Table 2.6 presents the bandwidth efficiency of the four-antenna-aided DSTS system for different

SP modulated constellation sizes.

The effective bandwidth efficiency for the DSTS-SP system is different from that of conven-

tionally modulated DSTS schemes, which can be also categorised as real- and complex-valued.
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L | BPS | Bandwidth Efficiency (bits-per-channel-use)
2 0.5
8 3 0.75
16 4 1
32 ) 1.25
64 6 1.5
128 7 1.75
256 8 2
512 9 2.25
1024 10 2.5
2048 11 2.75
4096 | 12 3

Table 2.6: Bandwidth efficiency of four-antenna-aided DSTS-SP systems for different SP signal set sizes L.

Modulation | BPS | Bandwidth Efficiency (bits-per-channel-use)
BPSK 1 1
QPSK 2 1
8PSK 3 1.5
16-QAM 4 2
64-QAM 6 3

Table 2.7: Bandwidth efficiency of four-antenna-aided DSTS systems for different conventional modulation

signal sets.

For the case of real-valued modulation constellations, the DSTS system using four transmit
antennas transmits four symbols in four time slots, which gives an effective bandwidth effi-
ciency of B bits-per-channel-use. However, for complex-valued constellations such as QPSK
for example, the DSTS scheme transmits two complex-valued symbols, each conveying one bit
per inphase plus one bit per quadrature component in four time slots. This also results in an
effective system bandwidth efficiency of 1 bit-per-channel use, which is identical to that of the
four-antenna-aided DSTS-SP system in conjunction with L = 16. Table 2.7 presents the band-
width efficiency of the four-antenna-aided DSTS system for different conventional modulated

constellation sizes.

2.4.5 Capacity of the Four-Antenna-Aided DSTS-SP Scheme

According to Equation (2.53), the DSTS-SP decoded signal can be modelled as:

5 = Vo, 8+ N, (2.60)
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Figure 2.34: Capacity comparison of coherent and differential STS-SP based schemes using L = 4, 16 and

64, when employing N; = 4 transmit and N, = 1 receive antennas for communicating over a

correlated Rayleigh fading channel having a normalised Doppler frequency of fp = 0.01.
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Figure 2.35: Capacity comparison of coherent and differential STS-SP based schemes using L = 4, 16 and

64, when employing N; = 4 transmit and N, = 2 receive antennas for communicating over a

correlated Rayleigh fading channel having a normalised Doppler frequency of fp = 0.01.
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Figure 2.36: Capacity comparison of coherent and differential STS-SP based schemes using L = 4, 16 and

64, when employing Ny = 4 transmit and N, = 4 receive antennas for communicating over a

correlated Rayleigh fading channel having a normalised Doppler frequency of fp = 0.01.
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Figure 2.37: Bandwidth efficiency of DSTS based schemes employing SP modulation scheme for L = 4, 16 and

64, when employing N; = 4 transmit and N,, = 1, 2 and 4 receive antenna for communicating

over a correlated Rayleigh fading channel having a normalised Doppler frequency of fp = 0.01.
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where we have s' = [a"! a!? ¢"® a1 € S,0< 1< L—1, 3y, =1 iy [hir? - ,/2?:1 vl |2.
Therefore, the capacity of the four-antenna-aided DSTS-SP scheme can be derived using the

same method as that in Section 2.3.6 to arrive at Equation (2.31).

Figures 2.34, 2.35 and 2.36 show the DCMC capacity evaluated from Equation (2.31) for
the four-dimensional SP modulation assisted DSTS as well as STS schemes for L = 4, 16 and
64, when employing N; = 4 transmit antennas as well as N, = 1, 2 and 4 receive antennas,
respectively. The CCMC [35] capacity of the MIMO scheme was also plotted for comparison
in Figures 2.34, 2.35 and 2.36 based on [33].

Figure 2.37 compares the achievable bandwidth efficiency of various SP modulated DSTS
schemes, while employing N; = 4 transmit antennas and N, = 1, 2 and 4 receive antennas. The
figures explicitly illustrate that a higher bandwidth efficiency may be attained when employing
SP modulation in conjunction with DSTS schemes having N; = 4 transmit antennas, as the

the number N, of receive antennas increases.

2.4.6 Performance of the Four-Antenna-Aided DSTS Scheme

In this section, the four-antenna-aided DSTS scheme is considered. Simulation results are
provided for systems having different bandwidth efficiencies in conjunction with appropriate
real- and complex-valued conventional as well as SP modulation, when communicating over

a correlated narrowband Rayleigh fading channel having a normalised Doppler frequency of
fp =0.01.

Figure 2.38 compares the BER performance of both the differentially encoded and of the
coherently detected STS scheme, while using BPSK, four transmit antennas, one receive an-
tenna, a spreading factor of four and supporting two users. Again, coherent detection requires
channel state information at the receiver for decoding the received signal, however in this case
we assumed that the CIR is perfectly known at the receiver side. As shown in Figure 2.38,
differential encoding results in a 3 dB performance loss compared to coherent detection, when
assuming perfect channel knowledge. This is mainly due to the fact that differential decoding
results in doubling the noise power compared to that recorded for coherently detected signals.
However, using the differential encoding results in eliminating the complexity of channel esti-
mation required by coherent detection schemes, where in this case the receiver is expected to
estimate 4 X N, channel links. Furthermore, Figures 2.39 and 2.40 compare the BER perfor-
mance of the DSTS encoded BPSK and QPSK modulated signals, while using two and four
transmit antennas, one receive antenna, a spreading factor of four and supporting two users.

It transpires from the figure that increasing the diversity order of the system by increasing



2.4.6. Performance of the Four-Antenna-Aided DSTS Scheme 70

1 :
BPSK
(4Tx,1RX), SF=4
-1 [~
10 Tl —— Coherent STS
o~ --- Differential STS
10—2 L
x
L
= 3
107 ¢
10 ¢
5 \\‘
10 ‘ ‘ ‘
12 14 16 18

0 2 4 6 8 10

SNR [dB]

Figure 2.38: Comparison of the BER performance of coherent and differential space-time spreading, while
using a BPSK modulated signal, four transmit antennas, one receive antenna, a spreading factor

of four and supporting two users for communicating over a correlated Rayleigh fading channel

having a normalised Doppler frequency of fp = 0.01.
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Figure 2.39: Comparison of the BER performance of differential space-time spreading assisted BPSK modu-
lated signal while using two and four transmit antennas, one receive antenna, a spreading factor

of four and supporting two users for communicating over a correlated Rayleigh fading channel

having a normalised Doppler frequency of fp = 0.01.
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Figure 2.40: Comparison of the BER performance of differential space-time spreading aided QPSK modulated
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signal while using two and four transmit antennas, one receive antenna, a spreading factor of four
and supporting two users for communicating over a correlated Rayleigh fading channel having a

normalised Doppler frequency of fp = 0.01.

1
¢
10-1 Y
_2 i
Cl:lo
L
m -3 | DSTS, (4Tx,1Rx)
10 SF=8. 4 users
4| O BPSK
10 " A QPsK
0 8PSK
O 16QAM
10'5 ‘ ‘ ‘ ‘
0 5 10 15 20 25

SNR [dB]
Figure 2.41: Comparison of the BER performance of differential space-time spreading while using BPSK,
QPSK, 8PSK and 16QAM modulated signals, four transmit antennas, one receive antenna, a

spreading factor of four and supporting two users for communicating over a correlated Rayleigh

fading channel having a normalised Doppler frequency of fp = 0.01.
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the number of transmit antennas improves the attainable system performance. For the case
of BPSK modulation, the system performance improves by almost £,/Ny=10 dB at a BER of
107°. Figure 2.41 compares the BER performance of the DSTS system using BPSK, QPSK,
8PSK, as well as 16QAM signals.

Figure 2.42 shows the SP-SER performance curves of the DSTS scheme in conjunction
with different conventional as well as SP modulation schemes at various bandwidth efficiency
values, as outlined in Table 2.4. However, the figure does not show a comparison between the
BPSK modulated and the SP modulated signals using L. = 4, due to the fact that the two
systems have different bandwidth efficiencies, when combined with four-antenna-aided DSTS.
All systems employ four transmit antennas for communication over a correlated narrowband
Rayleigh fading channel associated with fp = 0.01. Moreover, the system uses a spreading
factor of four, while supporting two users. Figure 2.42 suggests that the SP-SER performance of
DSTS schemes may be improved by employing SP modulation. The resultant BER performance
curves are shown in Figure 2.43. The BER performances of SP modulation and conventional
modulation are identical for systems having a bandwidth efficiency of 1 BPS, but as suggested in
Figure 2.43 is different for the higher bandwidth efficiency schemes. As depicted in Figure 2.43,
the BER performance of the conventional modulation based four-antenna-aided DSTS scheme
is better than that of the SP aided system and this is due to the fact that SP modulation was
specifically designed for improving the SP-SER, rather than the BER and this explains the
advantage of SP modulation in Figure 2.42.

To elaborate a little further, Figures 2.44 to 2.49 illustrate the beneficial effect of increasing
the number of receive antennas from two to four respectively. Observe in Figures 2.45, 2.47
and 2.49 that as expected, the BER performance of SP modulation improves in comparison to
that of conventional modulation, when increasing the number of receive antennas, especially,
for schemes having a bandwidth efficiency of 1.5 bit-per-channel-use. Observe however in
Figures 2.43 to 2.48 that both the BER and SP-SER performance curves of QPSK modulation
as well as those of the identical-throughput SP modulation having L = 16 are identical. This
phenomenon is due to the fact that QPSK modulation is a special case of the sphere packing

modulation as discussed in Section 2.3.7.

Finally, the attainable coding gains of sphere packing modulation over conventional mod-
ulation are summarised in Table 2.8 for the schemes characterised in Figures 2.42 to 2.49 at
an SP-SER of 107*, when communicating over a correlated Rayleigh fading channel associated
with fp = 0.01.
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Figure 2.42:

Performance comparison of the SP-SER, of DSTS in combination with conventional modulation

and sphere packing modulation for different bandwidth efficiency values as outlined in Table 2.4

while employing four transmit antennas, one receive antenna, a spreading factor of four and two

users, when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.
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Figure 2.43: Performance comparison of the BER of DSTS in combination with conventional modulation and

sphere packing modulation for different bandwidth efficiency values as outlined in Table 2.4 while

employing four transmit antennas, one receive antenna, a spreading factor of four and two users,

when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.
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Figure 2.44:

Performance comparison of the SP-SER, of DSTS in combination with conventional modulation

and sphere packing modulation for different bandwidth efficiency values as outlined in Table 2.4

while employing four transmit antennas, two receive antennas, a spreading factor of four and two

users, when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.

2

10

DSTS, (4Tx,2Rx)
SF=4, 2 users

conventional

' O modulation

Sphere Packing
e modulation

:3:6'-'

-5

0

5 10
SNIR [dB]

15

20

Figure 2.45: Performance comparison of the BER of DSTS in combination with conventional modulation and

sphere packing modulation for different bandwidth efficiency values as outlined in Table 2.4 while

employing four transmit antennas, two receive antennas, a spreading factor of four and two users,

when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.
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and sphere packing modulation for different bandwidth efficiency values as outlined in Table 2.4

while employing four transmit antennas, three receive antennas, a spreading factor of four and two

users, when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.
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Figure 2.47: Performance comparison of the BER of DSTS in combination with conventional modulation

and sphere packing modulation for different bandwidth efficiency values as outlined in Table 2.4

while employing four transmit antennas, three receive antennas, a spreading factor of four and two

users, when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.
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Figure 2.48:

Performance comparison of the SP-SER, of DSTS in combination with conventional modulation

and sphere packing modulation for different bandwidth efficiency values as outlined in Table 2.4

while employing four transmit antennas, four receive antennas, a spreading factor of four and two

users, when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.
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Figure 2.49: Performance comparison of the BER of DSTS in combination with conventional modulation and

sphere packing modulation for different bandwidth efficiency values as outlined in Table 2.4 while

employing four transmit antennas, four receive antennas, a spreading factor of four and two users,

when communicating over a correlated Rayleigh fading channel associated with fp = 0.01.
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2 BPS | 3 BPS

1Rz | 0.0 dB | 0.00 dB
2Rx | 0.0 dB | 0.40 dB
3Rz | 0.0dB | 0.80 dB
4Rz | 0.0 dB | 0.85 dB

Table 2.8: Coding gains of sphere packing modulation over conventional modulation at SP-SER of 10~* for
the schemes of Figures 2.42, 2.44, 2.46 and 2.48, when communicating over a correlated Rayleigh

fading channel associated with fp = 0.01.

2.5 Chapter Conclusion

In this chapter, we introduced the concept of differential space-time spreading employing two
and four transmit antennas and demonstrated that the systems can be combined with conven-
tional real- and complex-valued constellations. Furthermore, in order to maximise the diversity
product, we combined the DSTS with sphere packing modulation, that has the best known
MED in the 2(k + 1)-dimensional real-valued Euclidean space R?*+1 [213]. The capacity anal-
ysis provided in Sections 2.3.6 and 2.4.5 demonstrated that the DSTS-SP design is capable
of attaining potential performance improvements over a conventionally modulated DSTS de-
sign. The simulation results presented in Sections 2.3.7 and 2.4.6 demonstrated that the DSTS
system is capable of providing a full diversity gain, while employing two and four transmit
antennas. Tables 2.5 and 2.8 summarise the coding gains of the SP modulation aided DSTS
schemes over conventional modulated DSTS schemes at an SP-SER of 1074, when communicat-
ing over a correlated narrowband Rayleigh fading channel and employing two and four transmit

antennas, respectively.

2.6 Chapter Summary

This chapter first reviewed the concept of differential encoding in Section 2.2. It was shown that
differential encoding requires no channel state information at the receiver and thus eliminates
the complexity of channel estimation at the expense of a 3 dB performance loss compared to the
coherently detected system assuming perfect channel knowledge at the receiver. In Section 2.3,
we outlined the encoding and decoding processes of the differential space-time spreading scheme,
when combined with conventional modulation, such as PSK and QAM. In Section 2.3.3, the
philosophy of DSTS using sphere packing modulation was introduced based on the fact that
the diversity product of the DSTS design is improved by maximising the MED of the DSTS
symbols, which is motivated by the fact that SP has the best known MED in the real-valued
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space. Section 2.3.4 discussed the problem of constructing a sphere packing constellation having
a particular size L. The constellation points were first chosen based on the minimum energy
criterion. Then, an exhaustive computer search was conducted for all the SP symbols having
the lowest possible energy, in order to find the specific set of L points having the best MED
from all the other constellation points satisfying the minimum energy criterion. The capacity
of DSTS-SP schemes employing N; = 2 transmit antennas was derived in Section 2.3.6 followed
by the performance characterisation of a twin-antenna-aided DSTS scheme in Section 2.3.7
demonstrating that the DSTS scheme is capable of providing full diversity. In addition to that,
the results demonstrated that DSTS-SP schemes are capable of outperforming DSTS schemes
that employ conventional modulation (PSK, QAM), when comparing the SP-SER performance.

The four-antenna-aided DSTS design was characterised in Section 2.4, where it was demon-
strated how the DSTS scheme can be combined with conventional real- and complex-valued con-
stellations as well as with SP modulation. It was also demonstrated that the four-dimensional
SP modulation scheme is constructed differently in the case of two transmit antennas than when
employing four transmit antennas. The capacity analysis of the four-antenna-aided DSTS-SP
scheme was also derived for different bandwidth efficiency systems, while employing a variable
number of receive antennas in Section 2.4.5. Finally, Section 2.4.6 presented the simulation
results obtained for the four-antenna-aided DSTS scheme when combined with conventional as

well as SP modulations.

Tables 2.5 and 2.8 summarise the coding gains of sphere packing modulation aided DSTS
schemes over conventional modulated DSTS schemes at an SP-SER of 1074, when communicat-
ing over a correlated narrowband Rayleigh fading channel and employing two and four transmit

antennas, respectively.

In the next chapter, we will demonstrate that further performance improvement can be at-
tained by the concatenation of these schemes with channel codes and performing iterative detec-
tion by exchanging extrinsic information between the different component decoders/demapper
at the receiver side. The convergence behaviour of the iteratively detected system will be

studied using Extrinsic Information Transfer (EXIT) charts.



Chapter

Iterative Detection of Channel-Coded
DSTS Schemes

3.1 Introduction

In Chapter 2, a Differential Space-Time Spreading (DSTS) scheme has been proposed for trans-
mission over temporally correlated narrowband Rayleigh fading channels using conventional
PSK and QAM modulations as well as Sphere Packing (SP) modulation scheme. The DSTS
arrangement is a Multiple-Input Multiple-Output (MIMO) scheme, that is capable of attain-
ing a full diversity gain as well as exploiting the combined advantages of differential encoding
and multi-user support capability of space-time spreading [49]. The performance of the DSTS
scheme can be enhanced by combining it with iterative detection aided schemes, where iterative
decoding is carried out by exchanging extrinsic information between the different constituent

decoders and demappers.

The turbo principle of [163] was extended to multiple parallel concatenated codes in [164],
to serially concatenated codes in [165] and to multiple serially concatenated codes in [166].
In [175], the employment of the turbo principle was considered for iterative soft demapping in
the context of multilevel modulation schemes combined with channel decoding, where a soft
symbol-to-bit demapper was used between the multilevel demodulator and the binary channel
decoder. The iterative soft demapping principle of [175] was extended to SP-aided STBC
schemes in [58], where the SP demapper of [55] was modified in [58] for the sake of accepting

the a priori information passed to it from the channel decoder as extrinsic information.

Furthermore, it was shown in [183] that a recursive inner code is needed in order to max-
imise the interleaver gain and to avoid the formation of a BER floor when employing iterative

decoding. In [185], unity-rate inner codes were employed for designing low complexity iterative

79
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detection aided schemes suitable for bandwidth and power limited systems having stringent

BER requirements.

Recently, studying the convergence behaviour of iterative decoding has attracted consider-
able research attention [58,184, 186,189,190, 192,200,220-223]. In [186], ten Brink proposed
the employment of the so-called Extrinsic Information Transfer (EXIT) characteristics between
a concatenated decoder’s output and input for describing the flow of extrinsic information

through the soft-in soft-out constituent decoders.

Motivated by the performance improvements reported in the previous chapter and in [55, 58,

224], the novelty and rationale of this chapter can be summarised as follows:

1. The bit-to-SP-symbol mapper is designed using an EXIT-chart based procedure, which
allows us to achieve diverse design objectives. For example, we can design a system
having the lowest possible turbo-cliff-SNR, but tolerating the formation of an error floor.
Alternatively, we can design a system having a low error floor, but exhibiting a slightly
higher turbo-cliff-SNR.

2. A unity-rate precoder is introduced, which is capable of completely eliminating the system’s
error-floor as well as operating at the lowest possible turbo-cliff SNR without significantly

increasing the associated complexity or interleaver delay.

3. We propose a novel technique for computing the mazximum achievable rate of the system
using EXIT charts and we show that the achievable rate obtained using EXIT charts closely

matches the capacity limits computed in Section 2.3.6.

4. As a benefit of the proposed solution, it will be demonstrated in Section 3.2.4 that the
iteratively detected twin-antenna-aided DSTS-SP scheme is capable of providing an E,/Ny
gain of at least 14.9 dB at a BER of 107> over the equivalent bandwidth efficiency uncoded
DSTS-SP scheme. Furthermore, the AGM-1 based iteratively detected twin-antenna-aided
DSTS-SP scheme is capable of performing within 2.3 dB from the maximum achievable
rate limit obtained using EXIT charts at BER=107".

5. A Unity-Rate Code (URC) is amalgamated with the iteratively detected four-antenna-
aided DSTS-SP system in order to eliminate the error floor and to operate as close as
possible to the system’s capacity. Explicitly, the system employing no URC precoding in
conjunction with AGM-1 attains a coding gain of 12 dB at a BER of 107° and performs
within 1.82 dB from the maximum achievable rate limit. By contrast, the URC precoded
system outperforms its non-precoded counterpart and operates within 0.92 dB from the

mazimum achievable rate limit obtained using EXIT charts.

The rest of the chapter is organised as follows. An overview of the iterative detection based
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DSTS scheme is presented in Section 3.2 for systems employing two and four transmit antennas
as well as conventional and sphere packing modulation schemes. In Section 3.2.2 we introduce
the EXIT chart analysis technique and illustrate how to generate the EXIT charts for visualising
the interaction of the inner as well as outer codes. Our performance results and discussions of
the iteratively detected DSTS scheme are presented in Section 3.2.4. In Section 3.3 unity-rate
inner code is combined with the iterative detection based system in order to eliminate the error
floor and perform as close as possible to the system’s capacity. Our conclusions are presented

in Section 3.4, followed by the chapter’s summary in Section 3.5.

3.2 Iterative Detection of RSC-Coded DSTS Schemes

A block diagram of the iterative-detection-aided DSTS system is shown in Figure 3.1, where the
transmitted source bit stream u is convolutionally encoded by a 1/2-rate Recursive Systematic
Convolutional (RSC) code and then interleaved by a random bit interleaver II. After bit
interleaving, the conventional mapper first maps B channel-coded bits b = by, ...,bg_1 € {0,1}
to a conventionally modulated PSK or QAM symbol x. On the contrary, the SP mapper
maps By, channel-coded bits b = by, ..., bp,,—1 € {0,1} to a sphere packing symbol st € 8,
1=0,1,...,L—1 as described in Chapter 2, such that we have s' = map,,(b), where B,,=log, L
and L represents the number of modulated symbols in the sphere-packed signalling alphabet,
as described in Chapter 2. Subsequently, we have a set of symbols that can be transmitted

using differential space-time spreading.

In this chapter, we consider transmission over a temporally correlated narrowband Rayleigh
fading channel, associated with a normalised Doppler frequency of fp = f;T, = 0.01, where fy4
is the Doppler frequency and T is the symbol duration, while the spatial channel coefficients
are independent. The complex AWGN of n = n;+ jng contaminates the received signal, where
ny and ng are two independent zero-mean Gaussian random variables having a variance of
ol = ‘772” =02 o

ot = Ny/2 per dimension, with Ny/2 representing the double-sided noise power
spectral density expressed in W/H z.

In the receiver, the soft-in soft-out RSC decoder iteratively exchange extrinsic information
with the soft demapper, as shown in Figure 3.1. The RSC decoder invokes the Bahl-Cocke-
Jelinek-Raviv (BCJR) algorithm [181] on the basis of bit-based trellis [225]. All BCJR calcu-
lations are performed in the logarithmic probability domain and using a lookup table for cor-
recting the Jacobian approximation in the Log Maximum Aposteriori Probability (Log-MAP)
algorithm [26, 182].

1Note that the notation Bp is used for the SP modulation to differentiate it from that for the conventional modulation,

as illustrated in Chapter 2.
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Figure 3.1: Iteratively-detected DSTS system block diagram.

The extrinsic soft information, represented in the form of Logarithmic Likelihood Ratios
(LLR) [226], is iteratively exchanged between the demapper and the RSC decoder for the sake
of assisting each other’s operation, as detailed in [227]. In Figure 3.1, L(-) denotes the LLRs of
the bits concerned, where the subscript ¢ indicates the inner demapper, while o corresponds to
outer RSC decoding. Additionally, the subscripts a, p and e denote the dedicated role of the

LLRs with a, p and e indicating a priori, a posteriori and extrinsic information, respectively.

As shown in Figures 3.1, the received and DSTS-decoded complex-valued symbols X are
demapped to their LLR representation for each of the channel-coded bits per symbol. The a
priori LLR values L; ,(b) of the demapper are subtracted from the a posteriori LLR values
L; ,(b) for the sake of generating the extrinsic LLR values L, .(b) and then the LLRs L; .(b) are
deinterleaved by a soft-bit deinterleaver, as seen in Figure 3.1. Next, the soft bits L,.(c) are
passed to the RSC decoder in order to compute the a posteriori LLR values L, ,(c) provided
by the Log-MAP algorithm [182] for all the channel-coded bits. During the last iteration,
only the LLR values L, ,(u) of the original uncoded systematic information bits are required,
which are passed to the hard decision decoder of Figure 3.1 in order to determine the estimated
transmitted source bits. As seen in Figure 3.1, the extrinsic information L, .(c), is generated by
subtracting the a priori information from the a posteriori information according to (L, ,(c) —
L,.(c)), which is then fed back to the demapper as the a priori information L;.(b) after
appropriately reordering them using the interleaver of Figure 3.1. The demapper of Figure 3.1
exploits the a priori information for the sake of providing improved a posterior: LLR values,
which are then passed to the channel decoder and then back to the demapper for further

iterations.
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3.2.1 Iterative Demapping?

For the sake of simplicity, we consider a system having a single receive antenna, although its
extension to several receive antennas is feasible. As discussed in Section 2.3.6, the received
channel output symbols are first DSTS-decoded and diversity-combined in order to extract the

estimates x of the most likely transmitted symbols x:
Ty = Xan, " Tt + N, (3.1)

where 3 N, Tepresents a chi-squared distributed random variable having 2NV; degrees of freedom,
as defined in Section 2.3.2 and Section 2.4.1. Furthermore, N; is the number of transmit

antennas and N is a zero-mean complex-valued Gaussian random variable having a variance of

UNN2 X2Nt =2 Xth No/2.

3.2.1.1 Conventional Modulation

The decoded symbol & can be written as

N

According to Equation(3.2), the conditional Probability Density Function (PDF) p(Z|z) of

receiving a symbol z, given that symbol x was transmitted is given by

io) = ! e [N —<f[d}—xsm[d]-x[d]>2> .
" [T /7 No 13w ld ' <d; Xan 1] - No B33

where D represents the dimension of the symbol constellation used. Hence, we have D=1 for

real-valued constellations and D=2 for complex-valued constellations.

The received symbol z carries B channel-coded and interleaved bits b = by, ...,bg_1 €
{0,1}. The LLR-value of bit by, for k =0,..., B — 1 can be written as [224]

S ey, PELE) - exp (S0 biLaby))
S ey D) - xp (L0 0 biLalby))

L(by|7) = La(by) + In , (3.4)

where Sy, and Sp. are subsets of the symbol constellation S, so that Sy, 2 {r eS:b =1}
and likewise, Sqy = {z € S : by = 0}. In other words, S; represents all symbols of the set S,
where we have b, € {0,1}, k =0,..., B—1. Using Equation (3.3), we can write Equation (3.4)

2Parts of this section are based on [210,211].
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as
L(br|z) = La(by)
p (&3, d )’
Seswep | (S R ) o)
+ In = -
p  —(&ld—xZy, d-xld)’
ers% exp (Zdzl XgNj[JZﬁ.NO )+Zg Oj;ék La(b))

= Lio+Lie. (3.5)

3.2.1.2 Sphere Packing Modulation

As detailed in Chapter 2, the mapping of the SP symbols to the DSTS scheme’s antennas is
different for two and four transmit antennas. A received sphere-packed symbol s is constructed
from the estimates T as

s="T,'(z"7%), (3.6)
for the case of two transmit antennas according to Equation (2.24). By contrast, for the case

of four-antenna-aided DSTS-SP, S is constructed from the estimates T as

5="T,' ("% &%, 1°), (3.7)

1

where s = {[a',a?, a3, a"] € R*}. However, for both two- and four-antenna-aided DSTS schemes,

the received sphere-packed symbol § can be written as
=3y, 'S +N, (3.8)

where we have s' € S, 0 <[ < L — 1, and N is a four-dimensional Gaussian random variable
having a covariance matrix of 0% - Iy & 2+ X3, - 02 - Ly, since the SP symbol constellation S is

four-dimensional.

The conditional probability of receiving a four-dimensional signal s, given that a four-
dimensional L-ary signal s' € S, 1 € [0,---, L — 1], was transmitted over the Rayleigh channel
of Equation (3.8) is given by Equation (2.27) and repeated here for convenience

p(sls’) = ! - exp (Z— - (@ _2X2Nt[d] <) ) : (3.9)

D=4 \/7r - No - X2y [d] ~ X3yl No

where D=4 is used, since a four-dimensional SP symbol constellation is employed.

The SP symbol § carries By, channel-coded bits b = by, ...,bg,,—1 € {0,1}. The LLR-value
of bit by for k =0,..., Bs, — 1 can be written as [224]

Zslesm p(§|Sl> " exXp <2JBSIE) J;kb L, (b )>
Zsles% p(§|Sl) 1exXp (Zf;%;;k bjLa(bj)>

L(by|8) = La(by,) + In , (3.10)
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where Sy, and S, are subsets of the symbol constellation S, so that Sy, 2 {Sl €S:b, =1}
and likewise, Sqy 2 {s' € S : b, = 0}. In other words, S;;, represents all symbols of the set S,

where we have b, € {0,1}, £k =0,...,

sp — 1. Using Equation (3.9), we can write Equation

(3.10) as
L(by|s) Lo ()
p=1 —(@—x2y, [d-a"4)’ Bap—1
Zsleslk exp d=1 ng\il[vé}.]vo ) + ZJ %];ﬁk (D))
In
D=1 —(ad—xZy, [d-ab4)” Bap—1
Sesn o | (25 B ) o+ bt
Li,a + Li,e- (311)

3.2.2 EXIT Chart Analysis

The concept of EXIT charts was proposed in [186,189] for predicting the convergence behaviour
of iterative decoders, where the evolution of the input/output mutual information exchange
between the inner and outer decoders in consecutive iterations was examined. The application of
EXIT charts is based on two main assumptions, which are realistic when using long interleavers,
namely that the a priori LLR values are fairly uncorrelated and that the Probability Density
Function (PDF) of the a priori LLR values is Gaussian distributed.

The following analysis will be presented for the sphere packing modulation case and the
same analysis can be extended for the conventional modulation with the difference of mapping

the constellation points to the transmit antennas as discussed in Chapter 2.

3.2.2.1 Transfer Characteristics of the Demapper

As seen in Figure 3.1, the inputs of the demapper are the DSTS-decoded and diversity-combined
data stream X and the a priori information L;,(b) generated by the outer channel decoder.
The demapper outputs the a posteriori LLR L; ,(b) then subtracts the a priori LLR and hence
produces the extrinsic LLR L; .(b). Based on the previously-mentioned two assumptions, the a
priori input L; ,(b) can be modelled by applying an independent zero-mean Gaussian random

variable having a variance of o2.

In conjunction with the outer channel coded and interleaved bits b € {0, 1} of Figure 3.1 or

equivalently d € {—1,+1}, the a priori input L; ,(b) can be written as [186]

l\D

Lia ll d as
9 +n

)

(3.12)



3.2.2. EXIT Chart Analysis 86

i here
Binary — b | SpPhe %
(_)—— Packin DSTS
Source Mappe? Encoder
Channel
(Un — Eb/No)
Set B - Liu(b)
Lia(b) [ 0a= J N Lig) T Lia = Zd+n, i
Sphere
I;..(b) Calculate A + | Packing _ DSTS
I(d; L; ) Li.(b) L., (b)| Demapper| X Decoder

Figure 3.2: Demapper’s transfer characteristics evaluation procedure block diagram.

since L; , is an LLR-value obeying the Gaussian distribution [226]. Accordingly, the conditional
PDF of the a priori input L, ,(b) is

pa(Cld) = ﬁ - exp (—ﬂ> . (3.13)

The mutual information I; ,(b) = I(b; L, ,(b)) or equivalently I; ,(b) = I(d; L; .(b)), 0 <
I; o < 1, between the outer coded and interleaved bit stream b and the a priori LLR values

L; .(b) is used to quantify the information content of the a priori knowledge [228]:

B roo 2 pa(Cld)
Lab) =5 Y / i) logy —ere = PSRt (314)

d=—1,41Y~

Using Equation (3.13), Equation (3.14) can be expressed as

2
2 2
202 J_ 202

Lio(o,) =1— 1 = exp (—w> -log,[1 + e~¢]dC. (3.15)

It was shown in [191] that the mutual information between the equiprobable bits d and
their respective LLRs L for symmetric and consistent® L-values always simplifies to

+o0o
I(d;L) = 1—/ p(Lld = +1) -log, [1 + e *] dL

[e.e]

I(d;L) = 1—Eji{log,[1+e "]} (3.16)

In order to quantify the information content of the extrinsic LLR values L; .(b) at the output
of the demapper, the mutual information /; .(b) = I(b; L; (b)) can be used, which is computed
as in (3.14) using the PDF p, of the extrinsic output.

3The LLR values are symmetric if their PDF is symmetric p(—¢/d = +1) = p(¢/d = —1). Additionally, all LLR
values with symmetric distributions satisfy the consistency condition [191] p(—¢/d) = e~ %p(¢/d).
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Figure 3.3: SP demapper extrinsic information transfer characteristics for different bits to SP symbol mappings
at Ep/No=6.5 dB for L=16, while using the twin-antenna-aided DSTS scheme for transmission

over temporally correlated Rayleigh fading channels.

Considering I; .(b) as a function of both I; ,(b) and the E,/N, value encountered, the

demapper’s extrinsic information transfer characteristic is defined as [186, 189]:

[i,e(b) = E([i,a(b)a Eb/NO) (317)

Figure 3.2 illustrates how the EXIT characteristic /; .(b) is calculated for a specific (I; ,(b),
Ey/Ny) input combination. First, the wireless channel noise variance o,, is computed according
to the specific E},/Ny value considered. Then, a specific value of I; ,(b) is selected to compute
04, where the EXIT curve has to be evaluated using o, = J~!(I;,). Afterwards, Equation (3.12)
is used to generate L; ,(b), as shown in Figure 3.2, which is applied as the a priori LLR input
of the demapper. Finally, the mutual information of /;.(b) = I(b; L;.(b)), 0 < I, .(b) < 1,
between the outer coded and interleaved bit stream b and the LLR values L; .(b) is calculated
with the aid of the PDF p,. of the extrinsic output L; .(b). This requires the determination of the
distribution p. by means of Monte Carlo simulations. However, according to [200] the mutual

information can be estimated using sufficiently large number of samples even for non-Gaussian
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Figure 3.4: Evaluation of the outer channel decoder transfer characteristics.

A

or unknown distributions, which may be expressed as [200]:

I(b; Lie(b)) = 1— Eq—y1{logy [1 +exp (= Lic(b))]}

Bsp

> "logy [1+ exp (=b(i) - L (b(i)))] (3.18)

SP =1

Q

1—

Figure 3.3 shows the extrinsic information transfer characteristics of the SP demapper in
conjunction with L=16 and various SP mapping schemes, while using the twin-antenna-aided
DSTS scheme for transmission over temporally correlated Rayleigh fading channels. As seen
Figure 3.3, Gray Mapping (GM) does not provide any iteration gain upon increasing the mu-
tual information at the input of the demapper. However, using a variety of different Anti-Gray
Mapping (AGM) schemes [58,224] results in different extrinsic information transfer character-
istics, as illustrated by the different slopes seen in Figure 3.3. Any mapping, which is different
from the classic Gray mapping, may be referred to as AGM. The nine different AGM map-
ping schemes characterised in Figure 3.3 are specifically selected from all the possible mapping
schemes for L=16 in order to demonstrate the different extrinsic information transfer charac-
teristics associated with different bit-to-symbol mappings. We tested the performance of all
legitimate AGM schemes in order to find the best performer. The GM and AGM schemes

considered in this thesis are listed in Appendix A.

3.2.2.2 Transfer Characteristics of the Outer Decoder

The relationship between the outer channel decoder LLR input L,,(c) and extrinsic output
L,.(c) can be described by the extrinsic transfer characteristic of the outer channel decoder.
According to Figure 3.1, the input of the outer channel decoder consists only of the a priori

input L, ,(c) provided by the SP demapper after appropriately reordering the corresponding
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Figure 3.5: Extrinsic information transfer characteristics of 1 /2-rate RSC codes having different constraint

lengths.

extrinsic LLR L, .(b). Therefore, the extrinsic information transfer characteristics of the outer

channel decoder is independent of the Ej,/Ny value and hence [, .(c) may be written as

Loe(c) =T, (Ioa(c)), (3.19)

where [, ,(c) = I(c; Lyq(c)), 0 < I,, <1, is the mutual information between the outer channel
coded bit stream ¢ and the a priori LLR values L, ,(c) and similarly I,.(c) = I(c; L,.(c)),
0 < I, <1, is the mutual information between the outer channel coded bit stream c and the
extrinsic LLR values L,.(c). The computational model of evaluating the EXIT characteristics
of the outer channel decoder is shown in Figure 3.4. As seen in the figure, the procedure
is similar to that of the sphere-packing demapper shown in Figure 3.2, except that its value
is independent of the Ej,/Ny value. Again, I,. = I(c;L,e(c)) can be computed either by
evaluating the histogram approximation of p, [186,189] and then applying Equation (3.14) or,
more conveniently, by the time averaging method [200] of Equation (3.18) as

I(c; Loe(c)) = 1— E{logy[l+exp(—Lo.)]}

> logy[1 + exp (—c(i) - Lo(c:))]. (3.20)

SP =1

Q

1—

B

The extrinsic transfer characteristics of various 1/2-rate Recursive Systematic Convolutional
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Figure 3.6: Extrinsic information transfer characteristics of 1/2-rate RSC codes with constraint length K'=3

and different generator polynomials.

(RSC) codes having different constraint lengths K are shown in Figure 3.5. The generator
polynomials employed are given in the figure’s legend in octal form, where G, is the feedback
polynomial and G is the feed-forward polynomial. Figure 3.5 demonstrates that for I,, > 0.5,
the set of RSC codes having higher constraint lengths converge faster upon increasing I, , than
the RSC codes having smaller constraint lengths. Furthermore, it is noticed that the extrinsic
characteristics of the RSC codes having constraint lengths of K=4 and K=5 are close to each

other and that they depend on the generator polynomial used.

Moreover, the extrinsic transfer characteristics of several 1/2-rate RSC codes having a con-
straint length of K=3 and variable generator polynomials are shown in Figure 3.6. All the
possible generator polynomials having a constraint length of K=3 are employed. Explicitly,
we have (G,,G) = (4,4) to (G,,G) = (7,7), where the generator polynomial is presented in
octal form. According to Figure 3.6, the code having a generator polynomial (G,,G) = (5,7)

converges faster than the other codes.

3.2.2.3 Extrinsic Information Transfer Chart

The exchange of extrinsic information in the system of Figure 3.1 can be visualised by plotting
the extrinsic information characteristics of the inner demapper and the outer RSC decoder in

EXIT chart [186,189]. The outer RSC decoder’s extrinsic output information /,.(c) becomes
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the demapper’s a priori input information I; ,(b), which is represented on the z-axis of the
EXIT chart. Similarly, on the y-axis we plot the demapper’s extrinsic output information
I; .(b), which becomes the outer RSC decoder’s a priori input information I, ,(c). The EXIT
curves presented in this section correspond to the system employing a 1/2-rate RSC code
having constraint length K'=3, denoted as RSC(2,1,3), in conjunction with an octal generator
polynomial (G,,G) = (7,5).

Figure 3.7 shows the EXIT chart of an iteratively detected RSC-coded DSTS-SP scheme
employing two transmit antennas and Anti-Gray mapping AGM-1 of Figure 3.3 when com-
municating over a temporally correlated Rayleigh fading channel having a normalised Doppler
frequency fp=0.01. Ideally, in order for the exchange of extrinsic information between the SP
demapper and the outer RSC decoder to converge at a specific E,/N, value, the EXIT curve
of the SP demapper at the Ej,/N, value of interest and the extrinsic transfer characteristics
curve of the outer RSC decoder should only intersect at the (1.0,1.0) point. If this condition
is satisfied, then a so-called convergence tunnel [186,189] appears on the EXIT chart. The
narrower the tunnel, the more iterations are required for reaching the (1.0,1.0) point and the
closer the performance is to the channel capacity. If however the two extrinsic transfer charac-
teristics intersect at a point close to the line at I, .(c) = 1.0 rather than at the (1.0, 1.0) point,
then a moderately low BER may be still achieved, although it will remain higher than the
schemes where the intersection is at the (1.0, 1.0) point. These types of tunnels are referred to
here as semi-convergent tunnels. Observe in Figure 3.7 that a semi-convergent tunnel exists
at E,/Noy=7.0 dB. This implies that according to the predictions of the EXIT chart seen in
Figure 3.7, the iterative decoding process is expected to converge at an Ej,/Ny value between
6.5 dB and 7.0 dB. These EXIT chart based convergence predictions are usually verified by the

actual iterative decoding trajectory, as will be discussed shortly in Section 3.2.4.

After analysing the EXIT chart of the DSTS-SP scheme employing two transmit antennas
and the optimum* SP Anti-Gray mapping AGM-1 of Figure 3.3, it is worth investigating the
effect of employing different constellations. Figure 3.8 shows the EXIT chart of the system
employing AGM-3 of Figure 3.3. As seen in the figure, a semi-convergent tunnel exists at an
Ey /Ny value of 6.0 dB, which is lower than that recorded for the optimum AGM mapping AGM-
1. However, the intersection between the EXIT curve of the SP demapper employing AGM-3 at
E},/No=6.0 dB and that of the outer RSC decoder is almost at /; .(b)=0.75, while the SP AGM-1
demapper’s extrinsic transfer characteristic and the outer RSC decoder’s extrinsic transfer curve
intersect at I; .(b)=0.85 for E,/Ny=7.0 dB. Therefore, the iterative detection of the DSTS-SP

4The optimum SP Anti-Gray Mapping is selected from Figure 3.3 as the mapping that results in the highest inter-
section point between the EXIT curve of the SP demapper and the EXIT curve of the outer RSC decoder at a specific
Ey/No value.
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Figure 3.7: EXIT chart of an iteratively detected RSC-coded DSTS-SP scheme employing two transmit anten-
nas and AGM-1 of Figure 3.3 in combination with the outer RSC(2,1,3) code, while communicating
over a temporally correlated Rayleigh fading channel exhibiting fp=0.01.
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Figure 3.8: EXIT chart of an iteratively detected RSC-coded DSTS-SP scheme employing two transmit anten-
nas and AGM-3 of Figure 3.3 in combination with the outer RSC(2,1,3) code, while communicating

over a temporally correlated Rayleigh fading channel associated with fp=0.01.
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Figure 3.9: EXIT chart of an iteratively detected RSC-coded DSTS-SP scheme employing two transmit anten-

nas and AGM-8 of Figure 3.3 in combination with the outer RSC(2,1,3) code, while communicating

over a temporally correlated Rayleigh fading channel associated with fp=0.01.

system employing AGM-3 converges at a lower Ej,/Ny than that of the AGM-1 aided system,
although the AGM-1 based system converges to a lower BER value. Their difference becomes
more explicit as we move towards higher index AGMs such as AGM-8 shown in Figure 3.9.
In Figure 3.9 a semi-convergent tunnel exists at F,/Ny=5.0 dB. However, the SP AGM-8
demapper’s EXIT curve and the outer RSC decoder’s EXIT curve intersect near I; .(b)=0.4 at
Ey/No=5.0 dB, i.e. the BER performance dramatically improves at Ej,/Ny=5.0 dB, but fails

to decay to an infinitesimally low BER value, as will be shown shortly in Section 3.2.4.

Figure 3.10 depicts the EXIT chart of the iteratively detected RSC-coded DSTS-QPSK
scheme employing two transmit antennas and Anti-Gray mapping in combination with outer
RSC code having constraint lengths K=3 when communicating over a correlated Rayleigh
fading channel having fp=0.01. Observe in Figure 3.10 that a semi-convergent tunnel exists
at E,/Np=5.0 dB, however the extrinsic transfer characteristic curve of the QPSK demapper
and that of the outer RSC decoder intersect at almost I; .(b)=0.55 at E,/Ny=5.0 dB, i.e. the
performance curve converges at Ej,/Ny=>5.0 dB but not to a very low BER value compared to
the DSTS-SP system employing AGM-1.

Finally, the EXIT chart of the iteratively detected RSC-coded DSTS-SP scheme employing

four transmit antennas and AGM-1 of Figure 3.3 in combination with outer RSC code having
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Figure 3.10: EXIT chart of an iteratively detected RSC-coded DSTS-QPSK scheme employing two trans-

mit antennas and Anti-Gray mapping in combination with the outer RSC(2,1,3) code, while

communicating over a temporally correlated Rayleigh fading channel associated with fp=0.01.
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Figure 3.11: EXIT chart of an iteratively detected RSC-coded DSTS-SP scheme employing four transmit
antennas and AGM-1 of Figure 3.3 in combination with the outer RSC(2,1,3) code, while com-

municating over a temporally correlated Rayleigh fading channel associated with fp=0.01.
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Figure 3.12: Comparison of the EXIT charts of an iteratively detected RSC-coded DSTS-SP scheme employing

two and four transmit antennas in conjunction with L=16 and AGM-1 together with the two-
antenna-aided DSTS-SP scheme employing L=4 and AGM.

constraint length K'=3 is shown in Figure 3.11. Observe in the figure that a semi-convergent
tunnel exists at Fj,/Ny=7.0 dB, which is similar to the behaviour of the system employing two
transmit antennas as characterised in Figure 3.7. However, note that the DSTS-SP schemes
employing two and four transmit antennas have different bandwidth efficiencies. Therefore,
we plot in Figure 3.12 the EXIT curves of the 1 bit-per-channel-use bandwidth efficiency two-
antenna-aided DSTS-SP scheme in conjunction with L=16 and AGM-1 together with the 0.5
bit-per-channel-use two-antenna-aided DSTS-SP scheme employing L=4 and AGM as well as
with the 0.5 bit-per-channel-use four-antenna-aided DSTS-SP scheme employing L=16 and
AGM-1. Figure 3.12 shows the EXIT curves of the demapper for E,/Ny=6.5 dB and 7.0 dB.
As shown in the figure, the four-antenna-aided system has a higher intersection point between
the SP AGM-1 demapper extrinsic transfer characteristics curve and the outer RSC decoder
extrinsic transfer characteristics curve compared to the equivalent-bandwidth-efficiency system
employing two transmit antennas as well as to the higher-bandwidth-efficiency system employ-

ing two transmit antennas.
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3.2.3 Maximum Achievable Bandwidth Efficiency

In Section 2.3.6 we derived the capacity and bandwidth efficiency of the DSTS-SP scheme. In
this section, a procedure for computing an upper limit on the maximum achievable bandwidth
efficiency of the system is proposed. It was argued in [194,229] that the maximum achievable
bandwidth efficiency of the system is equal to the area under the EXIT curve of the inner code
provided that the bit stream b has independently and uniformly distributed bits, the channel
is an erasure channel, the inner code is unity-rate and the MAP algorithm is used for decoding.
Assuming that the area under the EXIT curve of the inner decoder, i.e. the SP demapper in
this case, is represented by A;, the mazimum achievable rate for the outer code is given by
Rinaz=Ai(Ey/No) [194] at a specific Ej, /Ny value. In other words, if A; is calculated for different
Ey /Ny values, the maximum achievable bandwidth efficiency may be formulated as a function

of the Ej,/Ny value as follows

nmax(Eb/NO) - Bsp . RDSTS—SP . Rmaz
Bsp . RDSTS—SP . A,(Eb/NO) [bit/sec/Hz], (3.21)

Q

where B,,=log, (L) is the number of bits per SP symbol, Rpsrs_sp=1/2 for the N;=2 transmit
antennas case and Rpgrs_sp=1/4 for the N;=4 transmit antennas case. Additionally, F;/Ny

and Ej, /N, are related as follows

Ey/No = E,/Ny + 101log ( T i [dB], (3.22)

(Eb/No))
where R, is the original outer code rate used for generating the EXIT curve of the inner
decoder /demapper corresponding to the different A; values. A simple procedure may be used
to calculate the maximum achievable bandwidth efficiency of Equation (3.21) for E,/N, €

[Pmins Pmaz), assuming that R pitrary 1S an arbitrary rate and e is a small constant.

Algorithm 3.1  Maximum Achievable Bandwidth Efficiency using EXIT Charts:

Step 1:  Let R, = Rurpitrary-

Step 2: Let Ey/Ny = pmin dB.

Step 3: Calculate Nj.

Step 4: Let I, ,(b) =0.

Step 5: Activate the SP demapper.
Step 6: Save I;.(b) = T;(1; o(b), E}y/Ny).

Step 7: Let I, ,(b) = I; ,(b) + €.
If I; ,(b) < 1.0, go to Step 5.
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Figure 3.13: Comparison of the DCMC bandwidth efficiency and the maximum achievable rate obtained using
EXIT charts of the two-antenna-aided DSTS-SP in conjunction with L=16.

Step 8: Calculate A;(E,/Ny) = fol T (i, Ey/Ny) di.
Step 9: Calculate E},/N, using Equation (3.22).
Step 10: Save M. (Ey/Ny) of Equation (3.21).

Step 11: Let E,/Ny = E},/Ny + €.
If Ey/No < pmaz dB, go to Step 3.

Step 12: Output 7,4, (Fy/No) from Step 10.

Observe that pp, and pn. are adjusted accordingly in order to produce the desired range of
the resultant E,/Ny values. Furthermore, the output of Algorithm 3.1 is independent of the
specific choice of R,, since Equation (3.22) would always adjust the Ej,/N, values, regardless of
R,.

The MIMO channel capacity curves of the four-dimensional SP modulation assisted DSTS
scheme in conjunction with L=16 are shown in Figures 3.13 and 3.14 for two and four transmit
antennas respectively. The two figures portray both the DCMC bandwidth efficiency curve as
well as the maximum achievable rate of the system derived from the EXIT curves according
to Algorithm 3.1. Observe in Figures 3.13 and 3.14 that the maximum achievable rate of
the system derived from the EXIT curves is quite close to the DCMC bandwidth efficiency.
Note that the maximum achievable rate obtained from the EXIT charts and the bandwidth

efficiency limit calculated using Equation (2.32) were only proven to be equal for the family
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Figure 3.14: Comparison of the DCMC bandwidth efficiency and the maximum achievable rate obtained using
EXIT charts of the four-antenna-aided DSTS-SP in conjunction with L=16.

of binary erasure channels [229]. Nonetheless, similar experimentally verified trends have been
observed for both AWGN and Inter-Symbol-Interference (ISI) channels [191,194], when APP-
based decoders are used for all decoder blocks [229]. However, our DSTS decoder employs a
very simple decoding algorithm that utilises only two or four consecutively received symbols,
despite the fact that all the symbols are interdependent. Therefore, the decoder employed is
suboptimum and if a trellis based DSTS decoder -such as the MAP algorithm [181]- is employed,
then the maximum achievable rate obtained from the EXIT chart might match the capacity
limit computed. Nevertheless, the complexity of the MAP algorithm is high in return to a
modest gain of 0.35 dB observed in Figure 3.13 and the 0.2 dB gain seen in Figure 3.14.

At a bandwidth efficiency of n=1 bit/sec/Hz, the DCMC capacity limit of the two-antenna-
aided DSTS-SP scheme is E,/Ny ~ 4.85 dB. Furthermore, at a bandwidth efficiency of n=1
bit/sec/Hz, the maximum achievable rate of the same scheme derived from the EXIT curves
is Ep/No=5.2 dB. On the other hand, the DCMC capacity limit of the four-antenna-aided
DSTS-SP scheme is E,/Ny ~ 4.95 dB at a bandwidth efficiency of 0.5 bits/sec/Hz, while the
maximum achievable rate limit derived from the EXIT curves at the same bandwidth efficiency
is E,/Ny=5.18 dB.
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SP modulation L=16
Number of transmit antennas N; 2 and 4
Number of receive antennas N, 1
Channel Correlated Rayleigh fading
Normalised Doppler frequency 0.01
Outer channel code RSC(2,1,3)
Generator polynomial (Gr,G)=(7,5)8
Spreading code Walsh-Hadamard code
Spreading factor 8
Number of users 4

Table 3.1: Iteratively-detected RSC-coded DSTS-SP system parameters.

3.2.4 Results and Discussions

In this section, we consider a DSTS system employing two and four transmit antennas and
a single receive antenna in order to demonstrate the performance improvements achieved by
the proposed iteratively detected SP-aided system. All simulation parameters are listed in
Table 3.1.

As mentioned in Section 3.2.2.3, the EXIT chart based convergence predictions can be
verified by the actual iterative decoding trajectory. Figure 3.15 records the trajectory of the
iteratively detected RSC-coded DSTS-SP scheme in conjunction with two transmit antennas
and AGM-1 of Figure 3.3 in combination with the system parameters outlined in Table 3.1, while
operating at Ej,/Ny=7.0 dB and employing interleaver depth of D;,;=1, 000,000 bits. The steps
seen in the figure represent the actual extrinsic information transfer between the demapper and
the outer RSC channel decoder. Since a long interleaver is employed, the assumptions outlined
at the beginning of Section 3.2.2 are justified and hence the EXIT chart based convergence

prediction becomes accurate.

Moreover, Figures 3.16, 3.17 and 3.18 record the trajectory of the iteratively detected RSC-
coded DSTS-SP scheme in conjunction with two transmit antennas and AGM-1 of Figure 3.3 in
combination with the system parameters outlined in Table 3.1, while operating at £, /Ny=7.0 dB
associated with interleaver depths of D,,;=100,000 bits, D;,;=10,000 bits and D;,;=1,000
bits, respectively. The decoding trajectory in Figure 3.16 employs an interleaver depth of
D;,,;=100, 000 bits, as seen in the figure, the decoding trajectory is different from that observed
in Figure 3.15. In other words, the system employing a shorter interleaver requires more

iterations to reach the highest intersection point between the EXIT curves of the demapper
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Figure 3.15: Decoding trajectory of the iteratively detected 1/2-rate RSC-coded DSTS-SP scheme in conjunc-
tion with two transmit antennas and AGM-1 of Figure 3.3 employing the system parameters out-

lined in Table 3.1, while operating at Ej,/No=7.0 dB with an interleaver depth of D;,;=1, 000, 000
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Figure 3.16: Decoding trajectory of the iteratively detected 1/2-rate RSC-coded DSTS-SP scheme in conjunc-
tion with two transmit antennas and AGM-1 of Figure 3.3 employing the system parameters out-
lined in Table 3.1, while operating at Ej/Ny=7.0 dB with an interleaver depth of D;,;=100, 000
bits.
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Figure 3.18: Decoding trajectory of the iteratively detected 1/2-rate RSC-coded DSTS-SP scheme in con-
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Figure 3.20: Comparison of the BER performance versus the number of iterations for the iteratively detected
1/2-rate RSC-coded DSTS-SP scheme in conjunction with two transmit antennas and AGM-1 of
Figure 3.3, while employing the system parameters outlined in Table 3.1 for different interleaver
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and the outer RSC code, in addition to the fact that as I; ,(b) increases, the trajectory does not
match the EXIT curve of the RSC decoder and this might be due to the fact that in conjunction
with an interleaver depth of D;,,;=100, 000 bits, the LLR distribution is no longer Gaussian for
high I; ,(b) values.

On the other hand, the decoding trajectories shown in Figures 3.17 and 3.18 are different
from the EXIT chart prediction because shorter interleavers are used and thus the assumptions
at the beginning of Section 3.2.2 are not valid. The BER performance of the iteratively de-
tected RSC-coded DSTS-SP scheme in conjunction with two transmit antennas and AGM-1 in
combination with the system parameters outlined in Table 3.1 is shown in Figure 3.19 when
using /=10 iterations and varying the interleaver depth. As seen in the figure, upon increas-
ing the interleaver depth from D;,;=1, 000 bits to D;,;=10,000 bits, the system’s performance
dramatically improves. Upon further increasing the interleaver depth from D;,,;=10, 000 bits to
D;,,;=100, 000 bits, the attainable performance improves, but not as much as increasing it from
1,000 to 10,000 bits. Furthermore, increasing the interleaver depth beyond D;,;=200, 000 bits
does not significantly improve the achievable system performance. Additionally, observe that a
turbo cliff appears at Ej,/Ny=8.5 dB upon increasing the interleaver depth to D;,;=10, 000 bits,
while a turbo cliff occurs at Ej,/Ny=7.5 dB, when using an interleaver depth of D;,,=100, 000
bits. Additionally, the system employing an interleaver depth of D;,; > 200,000 bits converges
at E,/No=7.0 dB, as predicted by the EXIT curve of Figure 3.7. Furthermore, as the inter-
leaver depth increases, the system’s performance approaches the capacity limit, as shown in
Figure 3.19. However, due to the error floor observed for the BER curves in Figure 3.19, as
the Fj/Np increases, the system’s BER curve diverges from the capacity limit. Explicitly, the
system performs within 2.3 dB from the maximum achievable rate limit at BER=10"° and
within 3.3 dB from the same limit at BER=107°.

Figure 3.20 plots the BER performance of the iteratively detected RSC-coded DSTS-SP
scheme employing AGM-1 versus the number of iterations while using different interleaver
depths ranging from D;,,;=1, 000 bits to D,,;=800, 000 bits in combination with the system pa-
rameters outlined in Table 3.1, while operating at Ej,/Ny=7.0 dB. The plot investigates the BER
performance versus the complexity of the system quantified in terms of the number of itera-
tions. As shown in the figure, when using short interleavers, increasing the number of iterations
results in no significant BER performance improvement, which is the case for the interleavers
with depths of D;,,=1,000 bits and D,,;=10,000 bits. However, as the interleaver becomes
longer, the achievable system performance improves upon increasing the number of iterations.
Moreover, as the interleaver depth increases, the system requires less iterations to saturate,
as shown in Figure 3.20. For example, for the case of an interleaver depth of D,,;=800, 000

bits, it is shown in Figure 3.20 that after /=7 iterations, there is no more improvement in the
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Figure 3.21: Decoding trajectory of the iteratively detected 1/2-rate RSC-coded DSTS-SP scheme in conjunc-
tion with two transmit antennas and AGM-3 of Figure 3.3 employing the system parameters out-
lined in Table 3.1, while operating at Ej,/Ny=6.0 dB with an interleaver depth of D;,;=1, 000, 000
bits.

attainable system performance, while the system employing D;,;=400, 000 bits requires one

more iteration, before the system’s performance saturates according to Figure 3.20.

Figures 3.21 and 3.22 record the trajectories of the iteratively detected RSC coded DSTS-SP
schemes in conjunction with two transmit antennas and the system parameters outlined in Table
3.1 while employing AGM-3 and AGM-8, respectively. Figure 3.21 records the trajectory of
the system employing AGM-3 while operating at FEj,/Ny=6.0 dB, while Figure 3.22 records the
trajectory of the system employing AGM-8 while operating at E,/Ny=>5.5 dB, when considering
an interleaver depth of D;,;=1,000, 000 bits. The BER performance of the iteratively detected
1/2-rate RSC-coded DSTS-SP scheme recorded in conjunction with two transmit antennas
and different GM and AGM mapping schemes, while using the system parameters outlined in
Table 3.1 is shown in Figure 3.23, when applying /=10 iterations. Figure 3.23 also plots the
performance curves for the equivalent bandwidth efficiency of 1 bit-per-channel-use employing
uncoded DSTS in conjunction with SP L=4 and BPSK. Observe in Figure 3.23 that the GM
and AGM-8 based systems have a similar performance and this can be justified by referring to
the EXIT chart of Figure 3.3, where the EXIT curves of the GM and AGM-8 based systems
have similar slopes. More explicitly, the system employing AGM-8 outperforms that employing
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Figure 3.22: Decoding trajectory of the iteratively detected 1/2-rate RSC coded DSTS-SP scheme in conjunc-
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Figure 3.23: Performance comparison of different AGM- and GM-based iteratively detected RSC-coded two

transmit antennas DSTS-SP schemes in conjunction with L=16 against an identical bandwidth

efficiency of 1 bit-per-channel-use uncoded DSTS-SP scheme using L=4 and against the conven-

tional DSTS-BPSK scheme, when employing the system parameters outlined in Table 3.1 with
an interleaver depth of D;,;=1,000,000 bits after /=10 iterations.
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Figure 3.24: Performance comparison of AGM-1 and GM-based RSC-coded two transmit antennas DSTS-
SP schemes in conjunction with L=16 against an identical bandwidth efficiency of 1 bit-per-
channel-use uncoded DSTS-SP scheme using L=4 and against conventional DSTS-BPSK scheme,
when employing the system parameters outlined in Table 3.1 and using an interleaver depth of

D;,+=1,000, 000 bits for a variable number of iterations I.

GM by an E,/N, of 0.6 dB at BER=10"%, while the system employing AGM-3 outperforms
that employing GM by an E,/N, of 2.7 dB at BER=10"¢. Additionally, the AGM-1 aided
systems outperform the GM-based system by an Ej,/N, of 4.7 dB at BER=107°.

According to the EXIT chart predictions of Section 3.2.2.3, the system employing AGM
does not reach the I; .(b)=1.0 point and thus must have an error floor, which clearly appears in
Figure 3.23. Moreover, it is clear from the figure that the AGM-3 aided system converges at a
lower Ej, /Ny value as compared to the AGM-1 based system, which implies that at lower Ej, /Ny
values it is better to use AGM-3 rather than AGM-1. However, as the Ej /N, value increases,
the AGM-1 based system starts to outperform that employing AGM-3; therefore whether to
use AGM-1 or AGM-3 depends on the application or on the range of Ej,/N, values of interest
for the specific application considered. Furthermore, the performance results of Figure 3.23
match with the EXIT chart predictions of Section 3.2.2. In addition to that, it is obvious from
Figure 3.23 that at low Ej/Ny values, the system employing AGM-3 approaches the system
capacity more closely than the AGM-1 based system. However, as the E,/N; value increases,
the AGM-3 based system exhibits an error floor and thus moves away from the capacity limit
at lower BER values. On the other hand, the AGM-1 based system’s performance is closer to
the capacity limit than that of the AGM-3, AGM-8 or GM based systems’ performance at low

BER values, although there is an error floor.

Figure 3.24 compares the attainable performance of the proposed RSC-coded DSTS-SP
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Figure 3.25: Coding gain of the iteratively detected 1/2-rate RSC-coded two transmit antennas DSTS-SP
scheme against the number of iterations employed at a BER of 10~ when employing AGM-1,
AGM-3 and AGM-8 with an interleaver depth of D;,;=1, 000,000 bits.

scheme employing both AGM-1 and GM of the bits to the SP symbol, which are also con-
trasted to that of an identical bandwidth efficiency 1 bit-per-channel-use uncoded DSTS-SP
scheme using L=4 and a conventional DSTS-BPSK design transmitting two independent BPSK
symbols over the two antennas, when communicating over a correlated Rayleigh fading channel
and employing the system parameters of Table 3.1. In Figure 3.24, an interleaver depth of
D;,;=1,000, 000 bits was employed and a normalised Doppler frequency of fp=0.01 was used.
Observe in the figure that the two GM based DSTS-SP BER curves are exactly the same,
when /=0 as well as /=10 iterations were employed, which is evident from the flat curve of the
GM in Figure 3.3. By contrast, AGM-1 achieved a substantial performance improvement in
conjunction with iterative demapping and decoding. Explicitly, Figure 3.24 demonstrates that
a coding advantage of about 22.5 dB was achieved at a BER of 1079 after I=10 iterations by
the convolutional-coded AGM-based DSTS-SP system over both the uncoded DSTS-SP and
over the DSTS-BPSK schemes for transmission over the correlated Rayleigh fading channel
considered. Additionally, a coding advantage of approximately 4.7 dB was attained over the
RSC-coded GM-based DSTS-SP scheme. Finally, the AGM-1 based system performs within
2.3 dB from the maximum achievable rate limit at BER of 10~® and within 3.3 dB from the
same limit at BER of 107°.

The coding gain of the iteratively detected DSTS-SP systems employing AGM-1, AGM-3
and AGM-8 is monitored in Figures 3.25 against the number of iterations employed at BER

of 107° for an interleaver depth of D;,;=1,000,000 bits. The coding gain is measured versus
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Figure 3.26: Coding gain of the iteratively detected 1/2-rate RSC-coded two transmit antennas DSTS-SP
scheme against the number of iterations employed at a BER of 10™° when employing AGM-1
and varying the interleaver depth D;,; between 1,000 and 1,000,000 bits.

the performance of the uncoded equivalent bandwidth efficiency system employing DSTS-SP
in conjunction with L=4 and GM. Figure 3.25 shows that increasing the number of iterations
tends to attain a gradually eroding coding gain. Furthermore, it is observed that the coding
gain of the AGM-1 based system is higher than that employing AGM-3 at BER=10"° and this
is verified by the performance curves of Figure 3.23. Moreover, notice that when no iterations

are employed, the AGM-8 based system has a higher coding gain than the other two systems.

Figure 3.26 depicts the coding gain of the iteratively detected DSTS-SP systems employing
AGM-1 versus the number of iterations employed at BER of 107 for different interleaver
depths D;,;. It is becomes explicit from the figure that as the interleaver depth increases, the
coding gain increases and the system performance approaches the maximum achievable rate
limit. Moreover, increasing the interleaver depth beyond D;,,;=100, 000 bits results in a modest

improvement in the system’s performance.

A comparison between the performance of the SP aided and that of the equivalent bandwidth
efficiency conventionally modulated iteratively detected two-antenna-aided DSTS system is
shown in Figure 3.27. The proposed iteratively detected two-antenna-aided DSTS-SP scheme
provides an improved performance over an equivalent-throughput DSTS scheme dispensing with
SP modulation, as evidenced in Figure 3.27, demonstrating that the AGM-1 aided DSTS-SP
scheme using L=16 exhibits an Fj/N, gain of around 3.4 dB at a BER of 107 over the identical
bandwidth efficiency 1 bit-per-channel-use DSTS-QPSK scheme.

Figure 3.28 records the trajectory of the iteratively detected RSC-coded DSTS-SP scheme
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Figure 3.27: Performance comparison of an AGM-1 based iteratively detected RSC-coded two-antenna-aided

DSTS-SP scheme in conjunction with L=16 and the equivalent bandwidth efficiency of 1 bit-per-
channel-use AGM-based iteratively detected RSC-coded DSTS-QPSK scheme, while using an
interleaver depth of D;,;=1,000,000 bits for =10 iterations and using the system parameters

outlined in Table 3.1.

1.0

08

0.2

DSTS (4Tx,1Rx)
SPL=16
— AGM-1
Ey/Ng = 7.0dB
---- RSC(2,1,3)
D;+=100,000 bits
---------- Decoding Trajectory

0.0 ‘
0.0 0.2

0:4 016 0.8 10
I o,e(c)’ I i,a(b)

Figure 3.28: Decoding trajectory of the iteratively detected 1/2-rate RSC-coded DSTS-SP scheme in conjunc-

tion with four transmit antennas and AGM-1 of Figure 3.3 employing the system parameters out-

lined in Table 3.1, while operating at E;,/Ny=7.0 dB with an interleaver depth of D;,,;=100, 000

bits.
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Figure 3.29: Performance comparison of AGM-1 and GM-based RSC-coded four-antenna-aided DSTS-SP
scheme in conjunction with L=16 against an identical bandwidth efficiency of 1/2 bit-per-channel-
use uncoded DSTS-SP L=4 scheme when employing the system parameters outlined in Table 3.1

and using an interleaver depth of D;,;=1,000, 000 bits for a variable number of iterations I.
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Figure 3.30: Performance comparison of different AGM-based RSC-coded four-antenna-aided DSTS-SP
scheme in conjunction with L=16 and AGM-based RSC-coded DSTS-QPSK scheme, while using
an interleaver depth of D;,;=1, 000, 000 bits for /=10 iterations and using the system parameters
outlined in Table 3.1.
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Figure 3.31: Performance comparison of AGM-1 based RSC-coded four-antenna-aided DSTS-SP scheme in

conjunction with L=16 against an equivalent bandwidth efficiency two-antenna-aided DSTS-SP
scheme employing L=4, while using an interleaver depth of D;,;=1,000,000 bits after =10

iterations and using the system parameters outlined in Table 3.1.

in conjunction with four transmit antennas and AGM-1 in combination with the system pa-
rameters of Table 3.1 while operating at E,/Ny=7.0 dB with interleaver depth of D;,;=100, 000
bits. The decoding trajectories shown in Figures 3.28 matches with the EXIT chart prediction
of Figure 3.11

Figure 3.29 compares the attainable performance of the proposed RSC-coded four-antenna-
aided DSTS-SP scheme employing both AGM-1 and GM of the bits to the SP symbol, which
are also contrasted to that of an identical bandwidth efficiency 0.5 bit-per-channel-use uncoded
DSTS-SP scheme using L=4, when communicating over a correlated Rayleigh fading channel.
In Figure 3.29, an interleaver depth of D;,;=1, 000,000 bits was employed in conjunction with
the system parameters of Table 3.1. Observe in the figure that the two GM-based DSTS-SP
BER curves are exactly the same, regardless whether no iterations or /=10 iterations were em-
ployed similarly to the two transmit antennas case and as exemplified in Figure 3.3. By contrast,
the AGM-based system achieves a substantial performance improvement in conjunction with
iterative demapping and decoding. Explicitly, Figure 3.29 demonstrates that a coding advan-
tage of about 16.7 dB was achieved at a BER of 107% after /=10 iterations by the RSC-coded
AGM-1 based DSTS-SP system over the uncoded DSTS-SP scheme. Additionally, a coding
advantage of approximately 3 dB was attained over the 0.5 BPS-throughput RSC-coded GM-
based DSTS-SP scheme. Finally, after /=10 iterations, the AGM-1 based four-antenna-aided
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system performs within 1.82 dB from the maximum achievable rate limit at BER of 107 and

within 2.12 dB from the same limit at BER of 1076.

Furthermore, Figure 3.30 provides a performance comparison of the iteratively detected
RSC-coded four-antenna-aided DSTS scheme in conjunction with SP L=16 employing AGM-
1, AGM-3 and AGM-8 as well as the identical-bandwidth-efficiency QPSK-aided scheme. As
evidenced in Figure 3.30, the AGM-1 aided system outperforms the QPSK aided system by
3.2 dB at BER of 107% and the AGM-3 assisted system outperforms the QPSK-aided system
by 1.3 dB at the same BER. However, the QPSK-aided scheme outperforms its identical-
bandwidth-efficiency AGM-8 aided counterpart by almost 0.6 dB at BER of 107°.

Finally, Figure 3.31 compares the performance of the AGM-1 based RSC-coded DSTS-
SP scheme in conjuction with L=16, when employing four transmit antennas and that of
the AGM-based system employing two transmit antennas as well as SP in conjunction with
L=4, while using an interleaver depth of D;,;=1,000, 000 bits, /=10 iterations and the system
parameters outlined in Table 3.1. The four-antenna-aided system outperforms its two-antenna-

aided counterpart by approximately 3.2 dB at a BER of 107°.

3.2.5 Application: Soft-Bit Assisted Iterative AMR-WDB Source-Decoding and
Iterative Detection of Channel-Coded DSTS-SP System?®

The classic Shannonian source and channel coding separation theorem [214] has limited ap-
plicability in the context of finite-complexity, finite-delay lossy speech [230] and video [231]
codecs, where the different encoded bits exhibit different error sensitivity. These arguments are
particularly valid, when the limited-complexity limited-delay source encoders fail to remove all
the redundancy from the correlated speech or video source signal. Fortunately, this residual
redundancy may be beneficially exploited for error protection by intelligently exchanging soft

information amongst the various receiver components.

These powerful iterative decoding principles may be further enhanced by exploiting the
innovative concept of soft speech bits, which was developed by Vary and his team [232,233],
culminating in the formulation of iterative source and channel decoding (ISCD) [234]. More
explicitly, in ISCD the source and channel decoders iteratively exchange extrinsic information
for the sake of improving the overall system performance. As a further development, in [175]
the turbo principle [26] was employed for iterative soft demapping in multilevel modulation [27]
schemes combined with channel coding which resulted in an enhanced BER performance. Thus,

ISCD may be beneficially combined with iterative soft demapping in the context of multilevel

5This work has been made possible by collaboration with my colleague Noor Othman, who generously offered her

AMR-WB source-codec C++ code and her time for the numerous discussions.
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Figure 3.32: Block diagram of the DSTS-SP-RSC-AMRWB scheme.

modulation and amalgamated with a number of other sophisticated wireless transceiver com-
ponents. In the resultant multi-stage scheme, extrinsic information is exchanged amongst three
receiver components, namely the demapper, the channel decoder and the soft-input soft-output

source decoder in the spirit of [235].

Explicitly, we propose and investigate the jointly optimised ISCD scheme of Figure 3.32
invoking the Adaptive Multi-rate-Wideband (AMR-WB) speech codec [236], which is protected
by an RSC code. The resultant bit stream is transmitted using DSTS amalgamated with SP
modulation [7] over a temporally correlated narrowband Rayleigh fading channel. An efficient
iterative turbo-detection scheme is utilised for exchanging extrinsic information between the
constituent decoders. Figure 3.32 shows the schematic of the proposed arrangement, referred
to as DSTS-SP-RSC-AMRWB, where the extrinsic information gleaned is exchanged amongst
all three constituent decoders namely the SP demapper, the RSC decoder and the AMR-WB

decoder.

The AMR-WB speech encoder produces a frame of speech coded parameters, namely {vy,, va,,
“ ,Vir, o, Vs, }, where v, - denotes an encoded parameter, with £ € [1,---, K| denoting
the index of each parameter in the encoded speech frame and K, = 36, whilst 7 denotes the
time index referring to the current encoded frame index. Then, v, ; is quantised and mapped to
[c(1)1,r ¢(2)1,07, -+ (M) 57|, where M is the total number of bits as-

signed to the xkth parameter. Then, the outer interleaver II,,; permutes the bits of the sequence

the bit sequence ¢y ., =

c; yielding u of Figure 3.32. Afterwards, the interleaved bit stream u is RSC encoded to produce
the bit stream co which is then interleaved by the interleaver Il;, of Figure 3.32. After bit in-
. bp,—1 €{0,1} to
the L number of legitimate four-dimensional SP modulated symbols s’ € S. The SP modulated

terleaving, the SP mapper maps blocks of B, channel-coded bits b = by, . .

symbols x are then transmitted using the DSTS scheme of Section 2.3.3.

At the receiver side, as shown in Figure 3.32, the received complex-valued symbols are first
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Source coding AMR-WB
Bit rates (kbit/s) 15.85
Speech frame length (ms) 20
Sampling rate (kHz) 16
Channel coding RSC code
Code rate 1/2
Code memory K=T7
Code generator (G, G) (217,110)g
Modulation scheme Sphere Packing (L=16)
MIMO scheme DSTS
Number of transmitters, IVy 2
Number of receivers, N, 1
Spreading code Walsh-Hadamard Code
Spreading factor 8
Number of users 4
Channel Correlated Rayleigh fading
Normalised Doppler frequency 0.01
System bandwidth efficiency 1 bit-per-channel-use

Table 3.2: DSTS-SP-RSC-AMRWB system parameters.

decoded by the DSTS decoder in order to produce the received SP soft-symbols X. Then, it-
erative demapping/decoding is carried out between the SP demapper, the RSC Decoder and
the soft-input soft-output AMR-WB speech decoder, where extrinsic information is exchanged
between the three constituent demapper/decoders. In the speech decoder, the residual re-
dundancy® is exploited as a priori information in computing the extrinsic LLR values and
estimating the speech parameters. During the last iteration, speech parameter estimation is
carried out in the AMR-WB speech decoder in order to generate the transmitted source data

estimate s,.

In the following, we characterise the attainable performance of the proposed DSTS-SP-RSC-
AMRWB scheme using both the BER and the Segmental Signal to Noise Ratio (SegSNR) [230]
evaluated at the speech decoder’s output as a function of the channel SNR. All simulation
parameters are listed in Table 3.2. In our simulations we employed one inner iteration between
the SP demapper and the RSC decoder followed by one outer iteration between the RSC decoder
and the AMR-WB decoder. The system performance is compared versus a benchmark scheme

where no outer iterations are carried out between the AMR-WB decoder and the RSC decoder.

5For a detailed discussion about the residual redundancy, please refer to [11].
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Figure 3.33 depicts the BER performance of the DSTS-SP-RSC-AMRWRB scheme and that
of its corresponding DSTS-SP-RSC benchmark counterpart. It can be seen from Figure 3.32
that the DSTS-SP-RSC-AMRWB scheme outperforms the DSTS-SP-RSC benchmark scheme
by about 1 dB at BER=10"* after I,,,=4 system iterations, where we define a system itera-
tion cycle as having an inner iteration followed by a single outer iteration, which is referred to
as Iys. The AMR-WB-decoded scheme has a lower BER at its speech-decoded output than
its benchmark dispensing with speech decoding, because the extrinsic information exchange
between the AMR-WB decoder and the RSC decoder has the potential of improving the at-
tainable BER. Notice that the turbo effect of the BER figures seen in Section 3.2.4 is absent
in Figure 3.33. This is due to the fact that the system employs a short interleaver depth of
D;,,;=317 bits, which corresponds to a delay of 20 ms in speech transmission. This result is

similar to that using an interleaver depth of D;,;=1,000 bits in Figure 3.19.

Figure 3.34 depicts the speech SegSNR performance of the proposed DSTS-SP-RSC-AMRWB
scheme together with that of the benchmark scheme. In this context the residual redundancy
inherent in the encoded source is exploited twice, firstly during computing the extrinsic infor-
mation and secondly during the Markov-model-based parameter estimation [237]. It can be
seen from Figure 3.34 that the exploitation of the residual redundancy inherent in the encoded
source during the decoding process benefitting from zero-order Markov-model-based parame-
ter estimation performs approximately 0.5 dB better in terms of the required channel Ej,/Ny
value, than its corresponding hard speech decoding based counterpart, when allowing a SegSNR
degradation of 1.0 dB in comparison to the maximum attainable SegSNR maintained over per-
fectly error-free channels. Additionally, iteratively exchanging the soft-information amongst
the three receiver components of the amalgamated DSTS-SP-RSC-AMRWB scheme results in
a further E},/N, gain of about 2.6 dB after I,,,=4 system iterations, when tolerating a SegSNR
degradation of 1 dB.

3.3 Iterative Detection of RSC-Coded and Unity-Rate Precoded
Four-Antenna-Aided DSTS-SP System

As mentioned in Section 3.1, it was shown in [183] that a recursive inner code is needed in order
to maximise the interleaver gain and to avoid the formation of a BER floor, when employing
iterative decoding. In [185], unity-rate inner codes were employed for designing low complexity
iterative detection aided schemes suitable for bandwidth and power limited systems having
stringent BER requirements. In this section we consider an iteratively detected RSC-coded

and unity-rate precoded DSTS-SP scheme, where iterative detection is carried out between the
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Figure 3.35: The iteratively detected RSC-coded and URC precoded DSTS-SP system block diagram.

outer RSC decoder and the inner URC decoder.

3.3.1 System Overview

The schematic of the proposed DSTS system is shown in Figure 3.35, where the transmitted
source bits are convolutionally encoded and then interleaved by a random bit interleaver. A 1/2-
rate memory-2 RSC code was employed having a generator polynomial with octal representation
of (G,,G)=(7,5)s. After channel interleaving the symbols are precoded by a URC encoder. The
SP mapper of Figure 3.35 maps B, channel-coded and precoded bits b = by, ..., bp,,—1 € {0,1}

to a sphere packing symbol s' € S, 1 =0,1,...,L — 1, so that we have s

= map,,(b), where
B, = log, L and L represents the number of modulated symbols in the sphere-packed signalling
alphabet. Subsequently, each of the four components of a SP symbol is transmitted using DSTS

via four transmit antennas, as detailed in the Section 2.4.3.

In the following, we consider transmission over a temporally correlated narrowband Rayleigh
fading channel associated with a normalised Doppler frequency of fp=f;15,=0.01. The complex
AWGN of n = n;+jng contaminates the received signal, where n; and ng are two independent
zero-mean Gaussian random variables having a variance of af” = J%Q = Ny/2 per dimension

and Ny represents the double-sided noise power spectral density expressed in W/H z.

As shown in Figure 3.35, the received complex-valued symbols are first decoded by the DSTS
decoder to produce a received SP symbol X, which is fed into the SP demapper. The output
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of the demapper represents the LLR metric L),(b) passed from the SP demapper to the URC
decoder. As seen in Figure 3.35, the URC decoder processes the information forwarded by the
demapper in conjunction with the a priori information L, ,(uy) passed from the RSC decoder,
in order to generate the a posteriori probability. The a priori LLR values of the URC decoder
are subtracted from the a posteriori LLR values for the sake of generating the extrinsic LLR
values L; .(uy) and then the LLRs L, .(u2) are deinterleaved by a soft-bit deinterleaver, as seen
in Figure 3.35. Next, the soft bits L, ,(c) are passed to the RSC decoder of Figure 3.35 in order
to compute the a posteriori LLR values L, ,(c) for all the channel-coded bits c¢. During the last
iteration, only the LLR values L, ,(u;) of the original uncoded systematic information bits are
required, which are passed to the hard decision decoder of Figure 3.35 in order to determine the
estimated transmitted source bits. As seen in Figure 3.35, the extrinsic information L,.(c), is
generated by subtracting the a priori information from the a posteriori information according
to (Lop(c) — Loa(c)), which is then fed back to the URC decoder as the a priori information
L; .(uy) after appropriately reordering them using the interleaver of Figure 3.35. The URC
decoder of Figure 3.35 exploits the a priori information for the sake of providing improved a
posteriori LLR values, which are then passed to the 1/2-rate RSC decoder and then back to
the URC decoder for further iterations.

3.3.2 Results and Discussions

In this section, we consider a DSTS-SP scheme using four transmit antennas and a single receive
antenna in order to demonstrate the performance improvements achieved by the proposed

system of Figure 3.35. All simulation parameters are listed in Table 3.3.

Figure 3.36 depicts the EXIT chart for the iterative-detection aided channel-coded DSTS-
SP system employing L=16 and GM in conjunction with the 1/2-rate RSC outer code, URC
inner code and the system parameters outlined in Table 3.3 for different Ej/N, values. The
GM was used in this case because no iterations are invoked between the SP demapper and the
decoders and thus, in this case, it is better to use GM that results in a higher initial mutual
information and hence a higher starting point in the EXIT curve. Ideally, in order for the
exchange of extrinsic information between the URC decoder and the RSC decoder to converge
at a specific E,/Ny value, the EXIT curve of the URC decoder and that of the outer RSC
decoder should only intersect at a point near the I,.(c)=1.0 line. If this condition is satisfied,
then a so-called convergence tunnel [186,189] appears in the EXIT chart. It is plausible
that the narrower the tunnel, the more iterations are required for reaching the I, .(c)=1.0 line.
Observe from the figure that a convergence tunnel is formed at an £,/Ny of 6.5 dB. This implies

that according to the predictions of the EXIT chart seen in Figure 3.36, the iterative decoding
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Sphere Packing modulation L=16
Number of transmit antennas Ny 4
Number of receive antennas N, 1

Channel

Temporally correlated Rayleigh fading

Normalised Doppler frequency 0.01
Outer channel Code RSC (2,1, 3)
Generator (Gr,G)=(7,5)s
Precoder URC
Generator (Gr,G)=(3,2)s

Walsh-Hadamard Code
Spreading Factor 8

Spreading Code

Number of users 4

Table 3.3: RSC-coded and URC precoded DSTS-SP system parameters.

process is expected to converge at E,/Ny € [6.0,6.5] dB. The EXIT chart based convergence
predictions can be verified by the actual iterative decoding trajectory of Figure 3.37, where the
trajectory at E,/Ny=6.5 dB is recorded while using an interleaver depth of D;,;=1,000,000
bits. The steps seen in the figure represent the actual extrinsic information transfer between
the URC decoder and the outer RSC channel decoder. Since a long interleaver is employed, the
assumptions outlined at the beginning of Section 3.2.2 are justified and hence the EXIT chart

based convergence prediction becomes accurate.

Furthermore, a comparison between the convergence behaviour of the precoded and the
non-precoded systems has been shown in Figure 3.38 for E,/Ny=6.0 dB and E}/Ny=6.5 dB
as well as an interleaver depth of D;,;=1, 000,000 bits. The non-precoded system corresponds
to the iterative-detection aided system of Section 3.2. Observe in Figure 3.38 that the pre-
coded system’s EXIT curve emerges from a higher point than that of both the AGM-1 and
AGM-3 aided non-precoded systems. On the other hand, the precoded system’s EXIT curve
reaches the (1.0,1.0) point V E,/Ny, as compared to I,.(c)=0.9 for the AGM-1 based system
and I, .(c)=0.81 for the AGM-3 based system for Ej,/Ny=6.5 dB. Furthermore, note that the
precoded system has a convergence tunnel at an Ej, /Ny value, which is only slightly higher than
6.0 dB as compared to having a convergence tunnel at E,/Ny > 6.5 dB for the AGM-1 aided
non-precoded system and an £, /Ny=6.0 dB for the AGM-3 aided non-precoded system. Hence,
the precoded system converges at an Ej, /Ny value lower than that of the AGM-1 aided non-
precoded system, which is close to that of the AGM-3 based non-precoded system. However,
the precoded system reaches the point of (1.0,1.0) in the EXIT curve resulting in an infinites-
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Figure 3.38: Comparison of the convergence behaviour of both the precoded and non-precoded DSTS-SP
systems employing GM and AGM in conjunction with L=16, based on their EXIT characteristics
while using an interleaver depth of D;,;=1,000,000 bits and the system parameters outlined in
Table 3.3 and operating at Fj/Ng of 6 dB and 6.5 dB.

imally low BER. By contrast, the non-precoded systems do not reach the (1.0,1.0) point, as
shown in Figure 3.38, which results in achieving only a modest BER performance associated

with an error floor as Ej, /N, increases.

Figure 3.39 compares the attainable performance of the RSC-coded four-antenna-aided
DSTS-SP scheme employing GM of the bits to the SP symbol while using the URC pre-
coder together with the non-precoded system, which are also contrasted to that of an identical
bandwidth efficiency 0.5 bit-per-channel-use uncoded DSTS-SP scheme using L=4, when com-
municating over a temporally correlated Rayleigh fading channel and employing the system
parameters of Table 3.3. In Figure 3.39, an interleaver depth of D;,;=1, 000,000 bits was em-
ployed. Observe in the figure that the two GM-based non-precoded DSTS-SP BER curves are
exactly the same, regardless whether no iterations or /=10 decoding iterations were employed
similarly as discussed in Section 3.2.4. By contrast, the precoded DSTS-SP system employing
GM achieves a substantial performance improvement in conjunction with iterative demapping
and decoding. That is due to the fact that no iteration was employed between the demapper and
the decoder, while the iteration were employed between the RSC decoder and the URC decoder.
Explicitly, the figure demonstrates that a coding advantage of about 4.2 dB was achieved at a
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Figure 3.39: Performance comparison of URC-precoded and non-precoded GM-based RSC-coded four-
antenna-aided DSTS-SP schemes in conjunction with L=16 against an identical bandwidth effi-
ciency 1/2 bits-per-channel-use uncoded DSTS-SP in conjunction with L=4 when employing the
system parameters outlined in Table 3.3 and using an interleaver depth of D;,;=1, 000,000 bits

for a variable number of iterations.

BER of 107¢ after I=10 iterations by the RSC-coded and URC-precoded GM-based DSTS-SP
system over the non-precoded RSC-coded and GM-based DSTS-SP scheme.

Additionally, Figure 3.40 depicts our performance comparison between two iteratively de-
tected DSTS schemes, namely that of the non-precoded system employing AGM-1, AGM-3 and
AGM-8 constellation mapping as well as the performance of the precoded systems in conjunc-
tion with GM, while employing an interleaver depth of D;,;=1,000,000 bits, /=10 iterations
and using the system parameters of Table 3.3. The results of Figure 3.40 demonstrate that
the non-precoded system employing AGM-3 has approached the system capacity quite closely.
However, as the FE,/Ny value increases we notice in Figure 3.40 that the BER performance
reaches a point, where further BER improvements require a more substantial £j,/Ny increase
and this is justified by the EXIT chart predictions of Figure 3.38. Moreover, the non-precoded
system employing AGM-1 converges at Ej,/Ny=7.0 dB to a lower BER than the AGM-3 based
system. Similarly to the AGM-3 based result, the BER performance of the AGM-1 aided non-
precoded system converges to a low BER value at Ej,/Ny of 7.0 dB, after which the system’s
BER performance exhibits an error floor, as shown in Figure 3.40. Furthermore, Figure 3.40
demonstrates that the proposed precoded system converges at FEj,/Ny=6.1 dB and exhibits an
infinitesimally low BER, as suggested by the EXIT chart of Figure 3.37. More explicitly, the
URC precoded DSTS-SP scheme of Figure 3.40 using L=16 and GM exhibits an E,/N, gain
of 1.2 dB at a BER of 107% over the AGM-1 based non-precoded system and 3.1 dB at a BER
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of 1075 over the AGM-3 based non-precoded system. Finally, the iteratively detected RSC-
coded and URC-precoded DSTS-SP system employing L=16 in conjunction with GM performs
within 0.92 dB from the maximum achievable rate limit and within 1.3 dB from system ca-
pacity limit at BER=107%. By contrast, the non-precoded system employing AGM-1 performs
within 2.12 dB from the maximum achievable rate limit at the same BER and the non-precoded

system employing AGM-3 performs within 4.02 dB from the same limit at the same BER.

Finally, Figure 3.41 compares the coding gain achieved for the iteratively detected RSC-
coded four-antenna-aided DSTS-SP system when no-precoding is employed and that when URC
precoding is used. The figure plots the coding gain versus the number of trellis states, rather
than versus the number of iterations as in Figure 3.25, since the two systems compared in
Figure 3.41 have different number of trellis states, while that in Figure 3.25 employed the same
trellis structure. Observe in Figure 3.41 that the non-precoded system has a lower complexity
than the precoded one at a distance of 1.82 dB from the maximum achievable rate limit,
where the non-precoded system approaches an infinitesimally low BER. The precoded system
is capable of performing equally well in BER terms, while operating about 1 dB closer to the
maximum achievable rate limit than the non-precoded system. However, this is achieved at the

cost of almost doubling the complexity, as seen in Figure 3.41.

3.3.3 Application: Iteratively Detected Irregular Variable Length Coded and
Unity-Rate Precoded DSTS-SP Schemes’

The schematic of the iteratively detected Irregular Variable Length Coded (IrVLC) and Unity-
Rate Precoded DSTS-SP system is shown in Figure 3.42, where the VLC-encoded bits c; are
interleaved by a random bit interleaver and then the interleaved bit stream us, is encoded by
a URC encoder. After URC encoding, the DSTS-SP modulator maps Bs, number of coded
bits b = by, ...,bp,,—1 € {0,1} to a SP symbol x as discussed in Section 2.4.3. Subsequently,
we have a set of SP symbols that can be transmitted with the aid of DSTS within two time
slots using two transmit antennas. The schemes considered in this section differ from those in
Section 3.3.1 in their choice of the outer source codec. Specifically, we consider an IrVLC codec
and an equivalent-rate regular VLC-based benchmark scheme. We refer to these two schemes

as the Ir'VLC- and VLC-DSTS-SP arrangements, as appropriate.

The schemes considered are designed for facilitating the near-capacity transmission of source
symbol sequences over a correlated narrowband Rayleigh fading channel. We consider K=16-

ary source symbol values that have the probabilities of occurrence resulting from the Lloyd-Max

"This work has been made possible by collaboration with my colleague Robert G. Maunder, who generously offered

his IrVLC C++ code and his time for the numerous discussions.
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Figure 3.42: Schematic of the IrVLC- and VLC-DSTS-SP schemes. In the IrVLC-DSTS-SP scheme we have
N=15 different irregularly encoded protection classes, whilst N=1 in the VLC-DSTS-SP scheme.

(LM) quantisation [238] of independent Gaussian distributed source samples. More explicitly,
we consider the 4-bit LM quantisation of a Gaussian source. Note that these occurrence proba-
bilities vary by more than an order of magnitude between 0.0082 and 0.1019. These probabilities
correspond to entropy or average informations values between 3.29 bits and 6.93 bits, motivating

the application of VLC and giving an overall source entropy of £=3.77 bits/VLC-symbol.

In the transmitter shown in Figure 3.42, the source symbol frame u; comprises J=15, 000

4-bit source symbols having the K=16-ary values {uy;}7_, € [1...K]. These 4-bit source

N
n=1»

opted for N=15 in the case of the IrVLC-DSTS-SP scheme and N=1 in the case of the VLC-

DSTS-SP scheme. The number of symbols in the source symbol frame u; that are decomposed

symbols are decomposed into N number of different protection classes {u} where we

into the source symbol frame component u7 is specified as J", where we have J! = J in the
case of the VLC-DSTS-SP scheme. By contrast, in the case of the [rVLC-DSTS-SP scheme,
the specific values of {J"}»_, may be chosen in order to shape the EXIT curve of the IrVLC

n=1

codec, so that it does not cross the EXIT curve of the precoder.

Each of the N number of source symbol frame components {uf}_; is VLC-encoded using

the corresponding codebook from the set of N number of VLC codebooks {VLC"}Y_, having

n=1
a range of coding rates {R"}"_, € [0,1]. The specific source symbols having the value of
k € [1... K] and encoded by the specific VLC codebook VLC" are represented by the codeword
VLC™* which has a length of I"* bits. The J” number of VLC codewords that represent the

J™ number of source symbols in the source symbol frame component uj} are concatenated to

. . . s .
provide the transmission frame component ¢} = {VLC™"1.i" 3-]::1.
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Owing to the variable length of the VLC codewords, the number of bits comprised by each
transmission frame component ¢} will typically vary from frame to frame. In order to facilitate
the VLC decoding of each transmission frame component cf, it is necessary to explicitly convey
its length I™ = Z;}::l I™“5m o the receiver with the aid of side information. Furthermore, this
highly error sensitive side information must be reliably protected against transmission errors.
This may be achieved using a low rate block code or repetition code, for example. For the sake
of avoiding obfuscating details, this is not explicitly shown in Figure 3.42.

N

In the transmitter of Figure 3.42, the N number of transmission frame components {c}}_;

are concatenated. As shown in Figure 3.42, the resultant transmission frame c; has a length
of 25:1 I" bits. Following interleaving II, the transmission frame us is precoded [185] by the

URC and then interleaved again before being SP modulated for transmission using DSTS.

In the receiver, the URC-decoder and the VLC-decoder iteratively exchange extrinsic in-
formation, as shown in Figure 3.42. In parallel to the formation of the bit-based transmission
frame c; from N number of components, the a priori LLRs L, ,(c;) are decomposed into N
number of components, as shown in Figure 3.42. Each of the N number of VLC decoding
processes is provided with the a priori LLR sub-frame L, ,(c}) and in response it generates
the a posteriori LLR sub-frame L, ,(c}), n € [1...N]. These a posteriori LLR sub-frames are

concatenated in order to provide the a posteriori LLR frame L, ,(c;), as shown in Figure 3.42.

During the final decoding iteration, N number of bit-based MAP VLC sequence estimation
processes are invoked instead of soft-in soft-out VLC decoding, as shown in Figure 3.42. In
this case, each transmission frame component c} is estimated from the corresponding a priori
LLR frame component L,,(c}). The resultant transmission frame component estimates ¢}
may be concatenated to provide the transmission frame estimate ¢;. Additionally, the trans-
mission frame component estimates ¢} may be VLC decoded to provide the source symbol

frame component estimates uf.

3.3.3.1 IrVLC Design Using EXIT Chart Analysis

The IrVLC-DSTS-SP scheme employs N=15 component VLC codebooks {VLC"}_, having
approximately equally spaced coding rates in the range [0.26,0.95]. In each case, we employ
a Variable Length Error Correcting (VLEC) codebook [239] that is tailored to the source
symbol values’ probabilities of occurrence and having the maximum minimum free distance
that can be achieved at the particular coding rate considered. By contrast, in the VLC-DSTS-
SP scheme, we employ just N=1 VLC codebook, which is identical to the VLC codebook VLC™
of the IrVLC-DSTS-SP scheme, having a coding rate of R=0.5, as shown in Figure 3.43. Note
that this coding rate results in an average interleaver length of J - E/R=113,100 bits and a
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Figure 3.43: VLC EXIT curves and URC-precoded DSTS-SP EXIT curves.

bandwidth efficiency of 1 bit-per-channel-use, if we ignore the negligible overhead of conveying
the side information and assume ideal Nyquist filtering having a zero excess bandwidth. We
note furthermore that for the proposed DSTS-SP system, this bandwidth efficiency is associated

with an Ej,/Ny maximum achievable rate bound of 5.2 dB as described in Section 3.2.3.

Figure 3.43 shows the EXIT curves that characterise the VLC decoding of the VLC code-
books together with the precoder’s EXIT curves recorded for £, /Ny values of 5.5 and 6.0 dB.
Figure 3.43 also shows the EXIT curve of the IrVLC scheme. This is obtained as the appro-
priately weighted superposition of the N=15 unequal protection component VLC codebooks’
EXIT curves, where the weight applied to the EXIT curve of the component VLC codebook
VLC* is related to the number of source symbols that it is employed for encoding J™ [191].
Using the approach of [191], the values of {J"}»_| given in Figure 3.43 were designed for en-
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Figure 3.44: Decoding trajectory of the iteratively detected IrVLC-DSTS-SP scheme operating at
E,/Ny=5.5 dB and E;/Ny=6.0 dB.

suring that the IrVLC coding rate matches that of our regular VLC scheme, namely VLC,
and so that the IrVLC EXIT curve does not cross the precoder’s EXIT curve at an Ej,/Ny
value of 5.5 dB. We note that only four out of the N=15 VLC components were chosen by the
proposed EXIT-chart matching procedure for encoding a non-zero number of source symbols.
As shown in Figure 3.43, the presence of the resultant open EXIT chart tunnel implies that an
infinitesimally low Symbol Error Ratio (SER) may be achieved by the IrVLC-DSTS-SP scheme
for E,/Ny values in excess of 5.5 dB, which is just 0.3 dB from the maximum achievable rate
bound of 5.2 dB. By contrast, no open EXIT chart tunnel is maintained for £, /N, values below
6.0 dB in the case of the VLC-DSTS-SP benchmark scheme. This value of E,/Ny is 0.8 dB
from the DSTS-SP capacity bound, representing a discrepancy that is 2.67 times that of the
IrVLC-DSTS-SP scheme.

3.3.3.2 Performance Results

We consider a SP modulation scheme associated with L=16 in conjunction with GM for as-
signing the source bits to the SP symbols, while employing twin-antenna-aided DSTS system
and a single receiver antenna in order to demonstrate the performance improvements achieved

by the proposed system.
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Figure 3.45: Performance comparison of the IRVLC- and VLC-DSTS-SP systems while employing an average

interleaver length of 113100 bits and 40 iterations.

Figure 3.44 shows the EXIT curve of the IrVLC scheme employed as well as the EXIT curves
of the precoded DSTS-SP system together with the decoding trajectories at both Ej /Ny values
of 5.5 dB and 6.0 dB. The system communicates over a correlated narrowband Rayleigh fading
channel associated with a normalised Doppler frequency of fp=0.01 and employs a random
interleaver having an average depth of D;,;=113,100 bits. The decoding trajectory recorded
for E,/Ny=6.0 dB and shown in Figure 3.44 is the one we obtained from simulations, where the
system did not converge below an Ej, /N, value of 6.0 dB, although the EXIT curve of Figure 3.43
predicted an open tunnel at E,/Ny of 5.5 dB. The EXIT-chart predictions are accurate, if we
employ a specially designed interleaver that is capable of removing the correlation of the data
imposed by both the correlated channel employed as well as by the differential encoding that

introduces more correlation to the data. Figure 3.44 also shows the decoding trajectory at
Ey/No=5.5 dB. However, this trajectory was generated by simulating the effect of a random
interleaver capable of eliminating the correlation, i.e. by generating uncorrelated LLRs at the
input of the precoder’s decoder. Therefore, the EXIT curve predictions can be fulfilled, if we
succeed in designing an interleaver having a reasonable length that can be used for eliminating
the correlation imposed by the DSTS scheme and by the channel employed. The performance
of the IrVLC-aided system did not match with the EXIT chart prediction of Figure 3.43, while
the performance of the system employing the RSC as an outer code did match with the EXIT

chart prediction of the system. This might be due to the fact that the IrVLC scheme is more
sensitive to the correlation exhibited by the data than the RSC code.



3.4. Chapter Conclusion 130

Figure 3.45 compares the attainable performance of the IrVLC-aided and of the VLC-aided
DSTS-SP systems, when communicating over a correlated narrowband Rayleigh fading channel
with a normalised Doppler frequency of fp=0.01. The EXIT analysis of Figure 3.43 predicted
a difference of 0.5 dB between the performance of the two systems. In Figure 3.45 we present
the corresponding BER curves having the same FEj, /N, difference as the EXIT curve prediction,
however with a shift of 0.5 dB from the prediction. In other words, as mentioned in the previous
paragraph, owing to the employment of an interleaver that is incapable of eliminating the effect
of correlation, the IrVLC-aided system converges at FEj,/Ny=6.0 dB and the VLC-aided system
at Fj,/No=6.5 dB. The BER curves presented in Figure 3.44 were recorded after 40 decoding

iterations between the VLC decoder and the precoder’s decoder, as shown in Figure 3.42.

3.4 Chapter Conclusion

In this chapter, we proposed a novel system that exploits the advantages of both iterative detec-
tion [224] as well as those of the DSTS schemes employing two and four transmit antennas [7,8].
The proposed DSTS scheme benefits from a substantial diversity gain without the need for any
CSI. Moreover, our investigations demonstrated that significant performance improvements
may be achieved, when the Anti-Gray mapping DSTS-SP is combined with outer channel de-
coding and iterative detection exchanging extrinsic information between the decoder and the
demapper, as compared to the Gray-Mapping based systems. Subsequently, EXIT charts were
used to search for bit-to-symbol mapping schemes that converge at lower Ej,/N, values. Sev-
eral DSTS-SP mapping schemes covering a wide range of extrinsic transfer characteristics were
investigated. When using an appropriate bits-to-symbol mapping scheme and 10 detection it-
erations, gains of about 19.5 dB were obtained by the convolutional coded twin-antenna-aided
DSTS-SP schemes over the identical-throughput uncoded DSTS-SP benchmark scheme dis-
cussed in Chapter 2. Furthermore, the AGM-1 based iteratively detected twin-antenna-aided
DSTS-SP scheme is capable of performing within 2.3 dB from the maximum achievable rate
limit obtained using EXIT charts at BER=1075.

Additionally, the chapter characterised the benefits of precoding, when concatenated with
the outer channel code, suggesting that an Ej /N, gain of at least 1.2 dB can be obtained over
the uncoded system at a BER of 107%, depending on the mapping scheme used. Explicitly,
the four-antenna-aided DSTS-SP system employing no URC precoding attains a coding gain
of 12 dB at a BER of 10~° and performs within 1.82 dB from the maximum achievable rate
limit. By contrast, the URC precoded system outperforms its non-precoded counterpart and

operates within 0.92 dB from the maximum achievable rate limit obtained using EXIT charts.
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DSTS (2Tx,1Rx)
No URC precoding

Coding Gain

Distance from maximum

achievable rate limit

SP L=16, GM
SP L=16, AGM-1
SP L=16, AGM-3
SP L=16, GM-8
QPSK, AGM

14.9 dB
19.5 dB
17.75 dB
15.9 dB
16.1 dB

6.9 dB
2.3 dB
4.05 dB
5.9 dB
5.7 dB

DSTS (4Tx,1Rx)
No URC precoding

Coding Gain

Distance from maximum

achievable rate limit

SP L=16, GM
SP L=16, AGM-1
SP L=16, AGM-3
SP L=16, GM-8
QPSK, AGM

9.5 dB
12 dB
10.9 dB
8.9 dB
9.2 dB

4.32 dB
1.82 dB
2.92 dB
4.92 dB
4.62 dB

DSTS (4Tx,1Rx)
URC precoding

Coding Gain

Distance from maximum

achievable rate limit

SP L=16, GM

12.9 dB

0.92 dB

Table 3.4: Iteratively-detected RSC-coded DSTS system coding gain and distance from maximum achievable
rate limit at BER=1075.

3.5 Chapter Summary

In this chapter, two realisations of a novel iterative-detection aided DSTS-SP scheme were
presented, namely an iteratively detected RSC-coded DSTS-SP scheme as well as an iteratively
detected RSC-coded and URC precoded DSTS-SP arrangement. The iteratively detected RSC-
coded DSTS-SP scheme was described in Section 3.2. In Section 3.2.1, we showed how the
DSTS-SP demapper was modified for exploiting the a priori knowledge provided by the channel

decoder, which is essential for the employment of iterative detection.

The concept of EXIT chart was introduced in Section 3.2.2 as a tool designed for studying
iterative detection aided schemes. We proposed 9 different anti-Gray mapping (AGM) schemes
in Figure 3.3 that were specifically selected from all the possible mapping schemes for L=16, in
order to create the different extrinsic information transfer characteristics associated with dif-
ferent bit-to-SP-symbol mapping schemes. Both the Gray mapping as well as the various AGM
mapping schemes considered in this chapter are detailed in Appendix A. In Section 3.2.2.2, we
explained the procedure of computing the EXIT characteristics of an outer decoder in a seri-

ally concatenated scheme. Then, we proposed a novel technique for computing the maximum
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DSTS (2Tx,1Rx) | Coding Gain || Distance from maximum
No URC precoding achievable rate limit

SP L=16, GM 17.8 dB 8 dB

SP L=16, AGM-1 22.5 dB 3.3dB

SP L=16, AGM-3 | 20.5 dB 5.3 dB

SP L=16, GM-8 18.4 dB 7.4 dB

QPSK, AGM 19 dB 6.8 dB

DSTS (4Tx,1Rx) | Coding Gain || Distance from maximum
No URC precoding achievable rate limit

SP L=16, GM 13.7 dB 5.12 dB

SP L=16, AGM-1 16.7 dB 2.12 dB

SP L=16, AGM-3 14.8 dB 4.02 dB

SP L=16, GM-8 12.9 dB 5.92 dB

QPSK, AGM 13.5 dB 5.32 dB

DSTS (4Tx,1Rx) | Coding Gain || Distance from maximum
URC precoding achievable rate limit

SP L=16, GM 17.9 dB 0.92 dB

Table 3.5: Iteratively-detected RSC-coded DSTS system coding gain and distance from maximum achievable
rate limit at BER=1075.

achievable bandwidth efficiency of the system based on the EXIT charts in Section 3.2.3, fol-
lowed by a discussion of the system’s performance. Section 3.2.5 presented an application of the
iteratively detected RSC-coded DSTS-SP system, where an Adaptive Multi-Rate WideBand
(AMR-WB) source codec was employed by the system in order to demonstrate the attainable

performance improvements.

In Section 3.3 we proposed an iteratively detected RSC-coded and URC-precoded DSTS-SP
scheme that is capable of eliminating the error floor exhibited by the previous system, which
hence performed closer to the system’s achievable capacity. In Section 3.3.1 we presented an
overview of the system operation, followed by a discussion of the results in Section 3.3.2. In
Section 3.3.3 we presented an application of the proposed URC-precoded DSTS-SP system,
while employing Irregular Variable Length Codes (IrVLC) as our outer code for the sake of

achieving a near-capacity performance.

Finally, Tables 3.4 and 3.5 present the coding gains as well as the distance from the maximum
achievable rate limit for the iteratively detected RSC-coded DSTS system, while employing SP
as well as QPSK modulation schemes. The tables present the results for both the two- and
four-antenna-aided DSTS scheme, when both systems optionally employ URC precoding.
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The next chapter will consider the design of adaptive iteratively detected DSTS-SP schemes
designed for attaining the highest possible system throughput, while maintaining a specific

quality of service exemplified in terms of the attainable BER.



Chapter

Adaptive Differential
Space-Time-Spreading-Assisted
Iteratively-Detected Sphere Packing
Modulation

4.1 Introduction

Mobile radio signals are subject to propagation path loss as well as small-scale fading and large-
scale fading. Due to the nature of the fading channel, transmission errors occur in bursts, when
the channel exhibits deep fades or when there is a sudden surge of multiple access interference or
inter-symbol interference [25]. In mobile communication systems, power control techniques [240]
are used to mitigate the effects of path loss and slow fading. However, in order to counteract
the problem of fast fading and co-channel interference, agile power control algorithms are
required [25,241]. On the other hand, adaptive-rate transmission [242,243] can be used to
overcome these problems due to the time-variant fluctuations of the channel’s quality or for
mitigating the effects of shadow fading, when for example all the transmit diversity antennas
experience correlated fading, as exemplified by the effects of large-bodied vehicles. In adaptive-
rate transmission the information rate is varied according to the channel’s quality rather than

according to the users’ requirements.

In recent years, the concept of intelligent multi-mode multimedia transceivers has emerged
in the context of wireless systems [242]. The fundamental limitation of wireless systems is
constituted by the time- and frequency-domain channel fading, that is exemplified in terms

of the signal-to-interference-plus-noise ratio fluctuations experienced by wireless modems [242,

134
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244]. Furthermore, the continued increase in demand for all types of wireless services including
voice, data and multimedia increases the need for higher data rates. Therefore, no fixed mode
transceiver may be expected to provide an attractive performance at a reasonable complexity
and interleaver delay. Hence, advanced adaptive MIMO techniques, coded modulation as well
as adaptive modulation and coding arrangements have to be invoked, which are capable of

near-instantaneous High Speed Downlink Packet Access (HSDPA) style reconfiguration.

Adaptive modulation and coding techniques that track the time-varying characteristics of
wireless channels can be used to significantly increase the data rate, reliability and spectrum
efficiency of wireless communication systems. In recent years various adaptive coding and mod-
ulation arrangements have been proposed [25,245,246]. A whole range of different transmission
parameters can be adapted, including the transmission power [247], the system bandwidth [248],
the modulation scheme [245,249], the spreading factor (SF) of DS-CDMA systems [250] in ad-
dition to the code rate or interleaver length of channel coded systems. The fundamental goal
of near-instantaneous adaptation is to ensure that the most efficient mode is used in the face
of rapidly-fluctuating time-variant channel conditions based on appropriate activation criteria.
As a benefit, near-instantaneous adaptive systems are capable of achieving a higher effective
throughput compared to their non-adaptive counterparts. When the channel quality is low,
a lower information rate is chosen in order to reduce the number of errors. Conversely, when
the channel quality is high, a higher information rate is used to increase the throughput of the

system [242].

In [251], various multi-rate systems were compared, including variable SF based, multi-code
and adaptive modulation aided schemes. According to the multi-code philosophy, the SF is kept
constant for all users, but multiple spreading codes are assigned to users having higher bit-rate
requirements. Multiple data rates can also be supported by a variable SF scheme, where the
chip rate is kept fixed but the data rate is varied by varying the SF of different users. Hence, the
lower the SF, the higher the data rate. Moreover, in [251] multilevel modulation schemes were
investigated, where higher-rate users were assigned higher order modulation modes transmitting
several bits per symbol. However, it was concluded that the performance experienced by users
requiring higher rates was significantly worse than those requiring lower rates. Furthermore,
the employment of L-ary orthogonal modulation supporting variable rate transmission was

investigated in [252].

The transmission rate of each user can be adapted according to the channel quality in or-
der to mitigate the effects of channel quality fluctuations. The performance of two different
methods of combating the channel variations was analysed in [253]. More specifically, these

two methods were based on either the adaptation of the transmission power in order to com-
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pensate for the channel quality variations or on the switching of the information rate in order
to suit the prevalent channel conditions. In [254], the authors investigated an adaptive packet
transmission-based CDMA scheme, where the transmission rate is modified by varying both
the channel code rate and the processing gain of the CDMA user, employing the carrier-to-

interference-plus-noise-ratio as the channel quality parameter.

In this chapter, we also propose to vary the information rate in accordance with the chan-
nel quality. The instantaneous channel quality can be estimated at the receiver and the chosen
information rate can then be communicated to the transmitter via explicit signalling in a closed
loop scheme. Conwversely, in an open loop scheme, by assuming reciprocity in the uplink and the
downlink channel of Time Division Duplex (TDD) systems, the information rate for the down-
link transmission is chosen according to the channel quality estimate related to the uplink and
vice versa. Fxplicitly, in this chapter we investigate a novel adaptive DSTS-SP aided technique
for supporting a wide range of bit rates, where the transmission of data from the four antennas
s adapted by activating two different transmission schemes according to the near-instantaneous
channel SNR conditions. Moreover, the transmission bit rate is adjusted with the aid of using
a Variable Spreading Factor (VSF). More explicitly, given a fized bandwidth and a fized chip
rate, the system enables a user to benefit from a higher bit rate while using a lower SF when the
instantaneous SNR is sufficiently high. Furthermore, an iteratively-detected variable-rate RSC
code is employed for further enhancing the system’s attainable BER performance, where the
code rate may be increased for the sake of increasing the achievable system throughput as the
channel quality improves. As a further benefit, the proposed system exploits the implementation
advantages of low-complexity differential encoding/decoding, although this is achieved at the cost
of the typical SNR degradation of differential encoding. Therefore, the achievable integrity and

bit rate enhancements of the system are determined by the following factors:

e The specific transmission configuration used for transmitting data from the four antennas.
e The spreading factor used.

o The RSC encoder’s code rate.

This chapter is organised as follows. In Section 4.2, a brief system overview is presented. In
Section 4.3 the adaptive DSTS-SP scheme varying the transmission configuration of the four
antennas is detailed, followed by Section 4.4 that justifies the purpose of adapting the SF used.
The iteratively detected variable code rate DSTS-SP system is discussed in Section 4.5. In
Section 4.6, we quantify the performance of the proposed system and finally we conclude our

findings in Section 4.7.
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Figure 4.1: The proposed adaptive differential space-time spreading assisted iteratively detected SP aided

system model.

4.2 System Overview

The adaptive DSTS system considered in this chapter employs four transmit antennas and
a single receive antenna. A block diagram of the proposed system is shown in Figure 4.1,
where four-dimensional SP modulation and real-valued orthogonal spreading were employed. A
suitable transmission mode is selected according to the near-instantaneous channel conditions,
which is quantified by the Signal-to-Noise Ratio (SNR) in our case. A low complexity technique
of determining the channel conditions to be expected at the receiver in the context of TDD
is that of exploiting the correlation between the fading envelope of the UpLink (UL) and
the DownLink (DL), since the UL and the DL slots are transmitted at the same frequency
and hence are likely to fade coincidentally, unless frequency-selective fading is encountered.
Therefore, when transmitting a frame, transmitter A estimates the SNR of receiver B at the
other end of the link based on the SNR estimate of receiver A and selects the most appropriate
transmission mode accordingly. The proposed adaptive transceiver assumes the availability of
a reliable modem-mode signalling link between the transmitter and the receiver, such as the

control channel of the HSDPA system.

As shown in Figure 4.1, the transmitted source bits have two different paths to follow. In
the upper path shown in the figure, the transmitted source bits are convolutionally encoded
and then interleaved by a random bit interleaver. A variable rate RSC code is employed,
where the code rate is varied between R:% and R:% depending on the near-instantaneous

channel conditions. Moreover, when the channel SNR is sufficiently high for the target system
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performance to be met without channel coding, the transmitted source bits are not channel
coded at all. After deciding on whether to invoke channel coding or not, the SP mapper maps
B, number of bits b = by,...,bp,,—1 € {0,1} to a SP symbol s' € S, 1 =0,1,...,L—1, so

that we have s!

= map,,(b), where B, = log, L and L represents the number of modulated
symbols in the SP signalling alphabet, as described in Chapter 2. Subsequently, each of the four
components of a SP symbol is then transmitted using DSTS via four transmit antennas in two
or four consecutive time slots, depending on the channel conditions, as detailed in Section 4.3.
Furthermore, a VSF is employed by each user so that the system’s effective bit rate can be
enhanced along with any improvement in the channel conditions. Therefore, creating signalling
modes that enable reliable communication even in poor channel conditions renders the system
robust. By contrast, under good channel conditions the spectrally efficient modes are activated,

in order to increase the effective throughput.

In this treatise, we consider transmissions over a correlated narrowband Rayleigh fading
channel, associated with a normalised Doppler frequency of fp = f;1s = 0.01, where f; is
the Doppler frequency and Ty is the symbol duration. The complex AWGN of n = n; + jng
contaminates the received signal, where n; and ng are two independent zero-mean Gaussian

2

random variables having a variance of o} = 0. = o5, = Ny/2 per dimension with No/2

representing the noise power spectral density expressed in W/H z.

At the receiver side of Figure 4.1, the DSTS decoder decodes the received signal according
to the received modem-mode side information or in other words according to the information
fed back from the receiver to the transmitter before the transmission of the specific frame.
More explicitly, the receiver has to decide whether the data was channel coded and what code
rate was used for encoding. If no channel coding was employed, then the received signal will
be directly demodulated by the SP demapper of Figure 4.1. By contrast, if channel coding
was employed, then the decoder has to decide which code-rate was employed. As shown in
Figure 4.1, the received complex-valued symbols are demapped to their Log-Likelihood Ratio
(LLR) representation for each of the By, channel-coded bits per SP symbol. The a priori LLR
values of the demodulator are subtracted from the a posteriori LLR values for the sake of
generating the extrinsic LLR values L;.(b) and then the extrinsic LLRs are deinterleaved by
a soft-bit deinterleaver, again as seen in Figure 4.1. Next, the soft bits L, ,(c) are passed to
the convolutional decoder in order to compute the a posteriori LLR values for all the channel-
coded bits. During the last iteration, only the LLR values of the original uncoded systematic
information bits are required, which are passed to the hard decision decoder of Figure 4.1 in

order to determine the transmitted source bits.
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Figure 4.2: The proposed adaptive DSTS-assisted SP-aided system model.
4.3 Adaptive DSTS-Assisted Sphere Packing Modulation

The main philosophy of the proposed adaptive DSTS-SP scheme is that of the system’s through-
put maximisation while maintaining the required Quality of Service (QoS), namely the target
BER performance. The scheme considered in this chapter consists of N;=4 transmit antennas
and N,=1 receive antenna, although its extension to /N, > 1 antennas is straightforward. The
transmitter schematic of the kth user and the receiver schematic of the reference user are shown

in Figure 4.2, where SP modulation and real-valued spreading were employed.

The proposed adaptive system switches between two DSTS schemes depending on the chan-
nel’s SNR. When a low channel quality is encountered and thus the short-term BER is higher
than the required target BER, a high-diversity four-antenna-aided scheme is employed by the
transceiver. However, as the channel quality improves and the system’s BER performance
becomes better than the target BER, then a lower-diversity higher-throughput twin-layer four-

antenna-aided DSTS-SP configuration is used.

In the four-antenna-aided DSTS encoder, the data is serial-to-parallel converted to four
substreams. The new bit duration of each parallel substream, which is referred to as the symbol
duration, becomes Ty=4T}, as illustrated in Section 2.4 and in [25,49]. The four-antenna-aided
DSTS transmitter conveys one SP symbol in four time slots. Therefore, the DSTS-SP signalling
rate becomes 1/4 and the effective throughput quantified in terms of the symbol rate is related
to the number of bits-per-symbol By, as Bg,/4. However, this fixed-mode four-antenna-aided

DSTS-SP system is unable to maximise the throughput as a function of the channel SNR
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Figure 4.3: Illustration of STS using four transmit antennas transmitting 4 bits within 47, duration.
vi=ve=v3=v4=1 were assumed and ¢; = [+1+1+14+1+1+14+1+1],C = [+1+1—
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quality. For example, at a high SNR value, the system provides a lower BER than the target
BER value, which imposes a low effective throughput. Thus, an intelligent high-efficiency DSTS
system must be capable of monitoring the near-instantaneous channel quality and of adapting
the DSTS scheme’s mode of operation. When the channel SNR encountered is low and hence
the resultant BER is higher than the target BER, a low-throughput DSTS transmitter mode
is activated, which exhibits a high diversity gain. By contrast, when the channel quality is
high, and hence the resultant BER is lower than the target BER, then a high-throughput

DSTS-assisted transmitter mode having a lower transmit diversity gain is activated.

4.3.1 Single Layer Four-Antenna-Aided DSTS-SP System

The high-diversity four-antenna-aided DSTS-SP mode of operation acts as described in Sec-
tion 2.4.3. At time instant t=0, the arbitrary reference symbols v}, v2, v3 and v§ are transmitted
from the four antennas. At time instants ¢ > 1, a block of Bj, bits arrives at the SP mapper of
Figure 4.2, where the By, bits are mapped to a real-valued four dimensional SP symbol selected
from the set S={s! = [a11, @12, a13,a;4] € R*: 0 <1 < L —1}, where L is the number of legiti-

mate SP constellation points having a total energy of E £ S (a2 age|® + lars|? 4+ |aga)?).

The differentially encoded symbols are then spread with the aid of the spreading codes ¢,
Co, C3 and €4, which are generated from the same user-specific spreading code € by ensuring
that they are orthogonal using the simple code-concatenation rule of Walsh-Hadamard codes,

yielding longer codes and hence a proportionately reduced per antenna throughput.

The differentially encoded data is then divided into four quarter-rate substreams and the
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four consecutive differentially encoded symbols are then spread to the four transmit antennas

using the mapping of:

yi = %(61-vtl—ég-vf—ég-vf—é4-vf) (4.1)
y? = %((_:1-Uf+62-vg+(_:3~vf—é4-vf) (4.2)
y? = %(61-vf—é2~vf+ég~v§+é4-vf) (4.3)
yio— %(61-vf‘+62-vf—63-vf—l—64-vtl), (4.4)

where €, €9, €3 and ¢4 are four STS-related orthogonal codes having a period of 47;,. The
transmitted signal’s waveform corresponding to the four transmission antennas are shown in
Figure 4.3, which shows that four real-valued symbols are jointly transmitted within a time
duration of 47}, with the aid of four transmit antennas. Hence, this scheme transmits one SP
symbol during the interval of 47, and hence the effective transmission rate becomes R,=1 x
1/(4T,)=1/(4T5).

4.3.2 Twin Layer Four-Antenna-Aided DSTS-SP System

Again, in its most robust but lowest-throughput mode, the above scheme transmits one SP
symbol in 47, duration and hence the effective transmission rate becomes 1/(47;). By con-
trast, when the channel quality improves, the transmitter divides the four antennas into two
groups of two antennas each for the sake of increasing the effective throughput by creating
two independent second-order DSTS-aided subchannels. In this case, at time instants t > 1,
a block of 2B, bits arrives at the SP mapper of Figure 4.2, where each of the B, bits is
mapped to a four-dimensional SP symbol selected from the set S = {s' = [a;1, a2, 13, a1 4]
ER*: 0L<I<L-— 1}. The four components of the four-dimensional SP symbol are com-
bined according to Equation (2.21), where we have {z}, 27} = {au + jago, ar3 + jalA} and
{2}, 2}y = {as + jare, ar + jars}
In this mode, the differential encoding is carried out as follows:

1_ (93% 'Utl—l +x?'vt2j1)

vy =
VIvi 2 + o, [?
2 _ (1'% 'Uf—l - 1’? ’ 'Utljl)
v, =

Vv P+ i P

3 _ (- vy + oy - vfy)

\/|U?—1‘2 + |Uf—1‘2

4 (‘T? : Uf—1 - xt4 : 'U?jl)

VI P+ o]
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Figure 4.4: Illustration of STS using twin layer four transmit antennas transmitting 4 bits within 27} duration.

v1=ve=v3=v,=1 and vs=vs=v7=vg=—1 were assumed and € = [+1 + 1] and ¢’ = [+1 — 1].

The differentially encoded symbols are then spread with the aid of the spreading codes ¢,
Co, C3 and T4 to the transmit antennas. In this case, each user is assigned two spreading codes

C, ¢’. The spreading codes used in this second-order diversity scenario are generated as follows:

¢l = [ ¢
¢ = [ -¢
¢ =@ ¢
¢ = @ -a (4.6)

where €y, Co, €3 and ¢4 are the four DSTS-related orthogonal codes having a period of 27;. The
DSTS operation and the resultant transmitted waveforms from the four antennas are shown in
Figure 4.4. Figure 4.4 shows that the first and second antennas transmit jointly one SP symbol
within a time duration of 27}, while the third and fourth antennas jointly transmit another SP
symbol within the same 27}, duration. However, the operation of the first and second antennas

is independent of that of the third and fourth antennas.

The differentially encoded data is then spread to the transmit antennas and transmitted
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using the mapping of:

yi = % (€1 - v + € 0f) (4.7)
yi = % (€1 -v; — T2 v)") (4.8)
v, = % (5 v} + Ty v) (4.9)
yi = L (€5 v —Ca-v)"). (4.10)

V4

The signal at the output of the single receiver antenna can be represented as:

rt:hl-y§+h2-yf+h3-yf+h4-yf+nt. (4.11)

The received signal r; is then correlated with ¢, €3, €3 and ¢4 according to Section 2.3.2.
Differential decoding is carried out by using the received data of two consecutive time slots in
a similar fashion to Equation (2.13) in order to arrive at % - S22l ,/2?21 ]2 xF 4+ Ny

Based on the above, the twin-layer four-antenna-aided DSTS scheme transmits two SP
symbols in 27, duration. Specifically, the first and second antennas transmit one SP symbol
in the same fashion as Section 2.3 with the aid of ¢; and €5 in two time slots, while the third
and fourth transmit antennas transmit another SP symbol in the same time period with the
aid of €3 and €4. Thus, this scheme transmits two SP symbols in 27}, duration resulting in an
effective transmission rate of 2 x 1/2T,=1/T,, which is effectively four times that of the single
layer four-antenna-aided DSTS-SP system. In other words, the twin-layer scheme transmits
four SP symbols in 47}, time duration compared to a single SP symbol in the single layer DSTS

scheme of Section 4.3.1.

4.4 Variable Spreading Factor Based Adaptive Rate DSTS

In this section we discuss the employment of Variable Spreading Factor (VSF) codes in adaptive
rate DSTS-SP systems, where the chip rate is kept constant and hence so is the bandwidth, while
the effective bit rate is varied by varying the spreading factor over the course of transmission.
For example, when stipulating a constant chip rate, the number of bits transmitted using a SF

of 4 is half of that when employing SF=2.

When the channel quality is high, a low SF can be used in order to increase the throughput
and conversely, when the channel conditions are hostile, a high SF is employed for maintaining
the target BER performance [25]. To elaborate further, Figure 4.5 shows the BER performance
of the DSTS-SP system versus the SNR in conjunction with different spreading factors. Fig-
ure 4.5 illustrates that using orthogonal VSFs does not affect the BER versus SNR=FE, /N,
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performance, where E is the spread symbol’s energy. Hence, no performance gain is attained
when comparing the adaptive-rate scheme to a fixed-rate one [25]. However, Figure 4.6 demon-
strates that plotting the BER curves versus the chip SNR (CSNR) defined as Es/Ny/SF results
in SF dependent BER performance. Therefore, it can be concluded that upon accommodating
the channel quality fluctuations using VSFs, the spread symbol’s SNR is varied accordingly for
the sake of maintaining a constant CSNR according to the expression SNR = CSNR x SF [25].
For example, when the channel quality is high and hence a low SF is used, the transmitter power
-which is proportional to the SNR at a given fixed Ny value- is also reduced. Therefore, the
CSNR is always maintained at the specific value associated with the highest SF. In other words,
the VSF regime accommodates the channel quality variations by adapting the SF according to
the near-instantaneous channel quality without increasing the transmitted power above that
associated with the highest SF [25]. When the SF is decreased, the SNR is proportionately

decreased.

4.5 Variable Code Rate Iteratively Detected DSTS-SP System

As already discussed in Chapter 2, the detected DSTS signals can be represented by Equa-
tion (2.22), where a received SP symbol § is constructed from the estimates a;, @z, as and ay.
In Chapter 3 we presented a detailed account of how iterative detection is carried out. The
SP symbol § carries By, channel-coded bits b = b, ...,bp,,—1 € {0,1}, and the corresponding

LLRs of the bits can be computed in a similar manner to that discussed in Chapter 3.

Naturally, the code rate of the RSC code employed affects both the system’s performance as
well as the throughput. More specifically, as the RSC code rate increases, the system’s effective
throughput increases at the expense of degrading the system’s performance. Therefore, when
the channel SNR is low and hence the resultant BER is higher than the target BER, a powerful
low throughput low-rate RSC code is activated. By contrast, when the channel quality is
high and hence the resultant BER is lower than the target BER, a higher throughput scheme

corresponding to a higher-rate RSC code is activated.

4.6 Results and Discussions

We consider SP modulation associated with L=16 and DSTS employing four transmit antennas
and a single receive antenna in order to demonstrate the performance improvements achieved
by the proposed adaptive system. All simulation parameters are listed in Table 4.1, where
BE represents the bandwidth efficiency of the system in bits/sec/Hz. The target BER of the

system is selected to be 1073,
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SP Modulation L=16
Number of Tx Antennas 4
Number of Rx Antennas 1
Channel Correlated Rayleigh Fading
with fp=0.01

Mode 1 Four Tx antennas DSTS-SP system
SF=32, RSC code-rate=1/4, BE=0.25

Mode 2 Four Tx antennas DSTS-SP system
SF=32, RSC code-rate=1/2, BE=0.5

Mode 3 Two Groups of two Tx antennas DSTS-SP
system,SF=16, RSC code-rate=1/6,BE=4/3

Mode 4 Two Groups of two Tx antennas DSTS-SP
system,SF=16, RSC code-rate=1/4,BE=2

Mode 5 Two Groups of two Tx antennas DSTS-SP
system,SF=16, RSC code-rate=1/2,BE=4

Mode 6 Two Groups of two Tx antennas DSTS-SP
system,SF=8, No channel coding, BE=16

Table 4.1: Proposed adaptive system parameters.

Figure 4.7 plots the BER as well as the bandwidth efficiency performance of the proposed
adaptive iteratively detected DSTS-SP system. Due to employing time-variant modes, the
performance results are plotted versus SNR on the z-axis. The SNR can be converted to Ej, /Ny
value upon dividing the SNR by the bandwidth efficiency of the system. The performance of
the adaptive system is evaluated by analysing the BER and the bandwidth efficiency expressed
in bits/sec/Hz. The BER curve of the adaptive DSTS-SP system, which can be read by
referring to the y-axis on the left of the figure, is plotted along with those of the non-adaptive
modes. The system employs an interleaver depth ranging between 48,000 bits and 16,000
bits depending on the code rate of the RSC code employed. Moreover, six iterative detection
iterations are employed in conjunction with the system parameters outlined in Table 4.1. The
BER performance reaches the target BER around SNR =5 dB and it does not exceed the target
BER for higher SNRs, while switching between the different transmission modes.

The y-axis at the right of Figure 4.8 plots the achievable effective bandwidth efficiency of
the proposed adaptive iteratively detected DSTS-SP system, while employing an interleaver
depth ranging from 48, 000 bits to 16,000 bits depending on the transmission mode employed.
Six iterative detection iterations and the system parameters outlined in Table 4.1 were invoked.
Depending on the channel quality quantified in terms of the channel SNR, the transmitter
activates one of the transmission modes outlined in Table 4.1. The bandwidth efficiency of the
system varies from 0.25 bits/sec/Hz for the minimum-throughput mode to 16 bits/sec/Hz for
the highest-throughput mode. For example, if we calculate the bandwidth efficiency of mode 1,
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employing the L=16 SP modulation scheme using SF=32 and an RSC code rate of 1/4 yields
4-1/4-1/4=0.25 bit/sec/Hz, since each SP symbol is transmitted in four time slots. Similarly,
for the highest-throughput mode using the L=16 SP modulation scheme, SF=8 and no channel
coding, we arrive at 2-4 -4 -1/2=16 bit/sec/Hz, since two SP symbols are transmitted in two

time slot.

Finally, Figure 4.8 portrays the mode selection probability of the proposed adaptive itera-
tively detected DSTS-SP system. It is clear from the figure that as the average SNR increases,

the higher-throughput systems are employed more often.

4.7 Chapter Conclusion and Summary

In this chapter we proposed a novel adaptive DSTS system that exploits the advantages of
differential encoding, iterative demapping as well as SP modulation, while adapting the sys-
tem parameters for the sake of achieving the highest possible bandwidth efficiency as well as
maintaining a given target BER. The proposed adaptive DSTS-SP scheme benefits from a sub-
stantial diversity gain, while using four transmit antennas without the need for pilot-assisted
channel envelope estimation and coherent detection. The proposed scheme reaches the target
BER of 1073 at an SNR of about 5 dB and maintains it for SNRs in excess of this value,
while increasing the effective throughput. The system’s bandwidth efficiency varies from 0.25
bits/sec/Hz to 16 bits/sec/Hz.

Furthermore, in the presence of large-scale shadow fading, MIMO systems perform poorly,
since the diversity gain that is based on the fact that the spatial channels fade independently,
decreases in the presence of shadow fading. Therefore, the adaptive MIMO scheme presented

constitutes a feasible design alternative in the presence of shadow fading.



Chapter

Layered Steered Space-Time Codes

5.1 Introduction

Time-varying multi-path fading imposes a fundamental limitation on wireless transmissions,
which can be counteracted by employing Multiple-Input Multiple-Output (MIMO) schemes [26].
More explicitly, information theoretic studies of [33,34] have revealed that a MIMO system
attains a higher capacity than a single-input single-output system. In [81], Wolniansky et
al. proposed the multi-layer MIMO structure known as the Vertical Bell Labs Layered Space-
Time (V-BLAST) scheme, whose transceiver is capable of providing a tremendous increase of a
specific user’s effective bandwidth efficiency without the need for any increase in the transmitted

power or in the system’s bandwidth.

On the other hand, Space-Time Block Codes (STBC) [44,46] constitute a powerful transmit
diversity scheme, which uses low-complexity linear processing at the receiver and is capable
of achieving the maximum possible diversity gain. Since the V-BLAST structure is capable
of achieving the maximum multiplexing gain, while the STBC scheme attains the maximum
antenna diversity gain, it was proposed in [108] to combine the benefits of these two tech-
niques for the sake of providing both antenna diversity as well as bandwidth efficiency gains.
This hybrid scheme was improved in [109] by optimising the decoding order of the different
antenna layers. Furthermore, beamforming [103] constitutes an effective technique of reducing
the multiple-access interference, where the antenna gain is increased in the direction of the de-
sired user whilst reducing the gain towards the interfering users. In order to achieve additional
performance gains, beamforming has also been combined with STBC to attain a higher SNR
gain [114].

The concept of combining orthogonal transmit diversity designs with the principle of Sphere

Packing (SP) was introduced by Su et al. [55] in order to maximise the achievable coding ad-

149
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vantage, where it was demonstrated that the proposed SP aided STBC scheme was capable of
outperforming the conventional orthogonal design based STBC schemes of [44,46]. A further
advance was proposed in [58], where the SP demapper of [55] was modified for the sake of ac-

cepting the a priori information passed to it from the channel decoder as extrinsic information.

In [175], the employment of the iterative detection principle [163] was considered for iter-
ative soft demapping in the context of multilevel modulation schemes combined with channel
decoding, where a soft symbol-to-bit demapper was used between the multilevel demodulator
and the binary channel decoder. It was also demonstrated in [183] that a recursive inner code
is needed in order to maximise the interleaver gain and to avoid the formation of a BER floor,
when employing iterative decoding. In [185], unity-rate inner codes were employed for designing
low complexity iteratively detected schemes suitable for bandwidth and power limited systems

having stringent BER requirements.

Recently, studying the convergence behaviour of iterative decoding has attracted consider-
able attention. In [186], ten Brink proposed the employment of the so-called Extrinsic Infor-
mation Transfer (EXIT) characteristics between a concatenated decoder’s output and input for
describing the flow of extrinsic information through the soft-in soft-out constituent decoders.
The concept of EXIT chart analysis has been extended to three-stage concatenated systems
in [188,193,196].

The novelty and rationale of the proposed system can be summarised as follows:

1. We amalgamate the merits of V-BLAST, STC and beamforming for the sake of achieving a
multiplexing gain, a diversity gain as well as a beamforming gain. The resultant scheme is
referred to here as a Layered Steered Space-Time Code (LSSTC). Additionally, the system
is combined with multi-dimensional SP modulation, which is capable of mazximising the
coding advantage of the transmission scheme by jointly designing and detecting the sphere-

packed space-time symbols.

2. We quantify the capacity of the LSSTC-SP scheme for transmission over both Rayleigh
as well as Gaussian channels. Furthermore, we propose a novel technique for quantifying

the maximum achievable rate of the system using EXIT charts.

3. We propose three near-capacity iteratively detected LSSTC-SP receiver structures, where
iterative detection is carried out between an outer code’s Decoder I, an intermediate code’s
Decoder I and an LSSTC-SP demapper. The three proposed schemes differ in the num-
ber of inner iterations employed between Decoder II and the SP demapper, as well as in
the choice of the outer code which is either a reqular Recursive Systematic Convolutional
(RSC) code or an Irregular Convolutional Code (IrCC) [191,194]. On the other hand,
the intermediate code employed is a Unity-Rate Code (URC), which is capable of com-
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pletely eliminating the system’s error-floor as well as of operating at the lowest possible
turbo-cliff SNR without significantly increasing either the associated complexity or the in-
terleaver delay. Furthermore, a comparison between the three iteratively-detected schemes
reveals that a carefully designed two-stage' iterative detection scheme is capable of oper-
ating sufficiently close to capacity at a lower complexity, when compared to a three-stage?

system employing RSC or a two-stage system employing IrCC as an outer code.

The rest of the chapter is organised as follows. In Section 5.2 we present the encoding
and decoding algorithms of the novel LSSTC scheme and demonstrate how the scheme can
be combined with conventional modulation as well as with multi-dimensional sphere packing
modulation. In Section 5.3 we quantify the capacity of the LSSTC scheme, followed by a dis-
cussion about the iterative detection schemes invoked and the two-dimensional (2D) as well
as three-dimensional (3D) EXIT charts employed in Section 5.4. The procedure of comput-
ing the maximum achievable rate of the LSSTC-SP scheme using EXIT charts is detailed in
Section 5.4.3. The attainable performance of the proposed schemes is studied comparatively
in Section 5.5, followed by our conclusions in Section 5.6. In Section 5.7 we provide a chapter

summary discussing both the main contributions and the organisation of this chapter.

5.2 Layered Steered Space-Time Codes

5.2.1 Layered Steered Space-Time Codes Using Conventional Modulation

A block diagram of the proposed LSSTC scheme is illustrated in Figure 5.1. The antenna
architecture employed in Figure 5.1 has N; transmit Antenna Arrays (AA) spaced sufficiently
far apart in order to experience independent fading and hence to achieve transmit diversity.
The L 44 number of elements of each of the AAs are spaced at a distance of d = \/2 for the sake
of achieving a beamforming gain, where \ represents the carrier’s wavelength. Furthermore,
the receiver is equipped with N, > N, antennas. According to Figure 5.1, a block of B input
information symbols is serial-to-parallel converted to K groups of symbol streams of length
By, By, -+, Bk, where By + By + --- + Bxg = B. Each group of By, symbols, k € [1, K], is
then encoded by a component space-time code STC,, associated with m;, transmit AAs, where

my+me+ -+ mrg = Ny

In this chapter, we consider transmissions over a temporally correlated narrowband Rayleigh

LA two-stage system employs iterations between the outer code’s decoder and the intermediate code’s decoder, but

no iterations are employed between the intermediate code’s decoder and the SP demapper.
2A three-stage system employs iterations between the SP demapper and the intermediate code’s decoder, which we

refer to as inner iterations, as well as between the outer code’s decoder and the intermediate code’s decoder, which are

referred to as outer iterations.
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Figure 5.1: Layered steered space-time code system block diagram.
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fading channel associated with a normalised Doppler frequency of fp = f;7s = 0.01, with fy
being the Doppler frequency and 7T the symbol duration, while the spatial channel coefficients
are independent. The complex Additive White Gaussian Noise (AWGN) of n = n; + jng
contaminates the received signal, where n; and ng are two independent zero-mean Gaussian

random variables having a variance of Ny/2 per dimension.

The L 44-dimensional Spatial-Temporal (ST) Channel Impulse Response (CIR) vector span-
ning the mth transmitter AA, m € [1,---, Ny, and the nth receiver antenna, n € [1,---, N,],

can be expressed as

Dy () = @0 (£)0(t — 7k) = [apmo(t), - -, anm(LAA_l)(t)}T 5t — 1), (5.1)

where 7, is the signal’s delay and @, () is the CIR with respect to the mnth link and the
Ith element of the mth AA. Based on the assumption that the array elements are separated by

half a wavelength, we have

where a,,,(t) is a Rayleigh faded envelope,

dy = [1, exp(j[msin(Vpm)]); - - -, exp(G[(Laa — 1) sin(tnm)])]* (5.3)
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and ¥y, is the nmth link’s Direction Of Arrival (DOA). As for the AA specific DOA, we
consider a scenario where the distance between the transmitter and the receiver is significantly
higher than that between the AAs and thus we can assume that the signals arrive at the different
AAs in parallel, i.e. the DOA at the different AAs is the same.

The received baseband data matrix Y can be expressed as
Y =HWX+N, (5.4)

where X represents the transmitted symbols matrix, H is an (N, x N;) matrix whose entries
of h,,, are defined in Equation (5.1) and N denotes the AWGN matrix whose entries have
a variance of Ny/2 per dimension. Furthermore, W is a diagonal AA weight matrix, whose
diagonal entry w,,, is the L 44-dimensional weight vector for the mth beamformer AA and the
nth receive antenna. In this scenario, the MRC criterion based transmit beamformer, which
constitutes an effective solution to maximising the antenna gain, is the optimum beamformer.
Let

Wi = df (5.5)

nm’

where the superscript T represents the Hermitian of the matrix. Then the received signal can

be expressed as
Y = LHX + N, (5.6)

where H is an (N, x ;) matrix, whose entries are «,,,. Moreover, Y can be written as

K
Y =LY Hix;+N, (5.7)
k=1
where x;, represents the component STC used at layer k, with k € [1,---, K].

The most beneficial decoding order of the STC layers is determined on the basis of detecting
the highest-power layer first for the sake of a high correct detection probability. For simplicity,
let us consider the case of K = 2 STBC layers and that layer 1 is detected first, which allows
us to eliminate the interference caused by the signal of layer 2. However, the proposed concept
is applicable to arbitrary STCs and to an arbitrary number of layers K. For this reason, the
decoder of layer 1 has to compute a matrix Q, so that we have Q - ﬁg = 0. Therefore, the
decoder computes an orthonormal basis for the left null space of ﬁg and assigns the vectors of
the basis to the rows of Q. Multiplying Q by Y suppresses the interference of layer 2 originally
imposed on layer 1 and generates a signal which can be decoded using maximum likelihood
STBC detection. Then, the decoder subtracts the remodulated contribution of the decoded
symbols of layer 1 from the composite twin-layer received signal Y. Finally, the decoder applies

direct STBC decoding to the second layer, since the interference imposed by the first layer has
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Figure 5.2: BER performance of a QPSK modulated N; x N, = 4 x 4 LSSTC system for variable number

L 44 of elements per AA.

been eliminated. This group-interference cancellation procedure can be generalised to any N,

and K values.

We consider a system employing N; X N, = 4 X 4 antennas and K = 2 layers in order to
demonstrate the performance improvements achieved by a DownLink (DL) scheme, where a BS
employing NV; = 4 transmit antennas is communicating with a laptop receiver employing N, = 4
back-plane antennas. The system employs QPSK modulation and considers transmission over
a temporally correlated Rayleigh fading channel. Additionally, we assume that the channel
state information is perfectly known at the receiver. We also assume that the transmitter
has full knowledge of the DOA without any estimation or estimation errors. Figure 5.2 shows
the DL BS beamforming gain achieved upon increasing the number of beam-steering elements
Ly in the AA, while maintaining the same total number of AAs. As shown in Figure 5.2,
when the number of beam-steering elements L 44 increases, the achievable BER performance

substantially improves.

5.2.2 Layered Steered Space-Time Codes Using Sphere Packing Modulation

According to the previous discussion, it becomes clear that the decoded signal represents a
scaled version of the transmitted signal corrupted by noise. This observation implies that the
diversity product of the LSSTC scheme is determined by the minimum Euclidean distance of all
legitimate transmitted vectors. Hence, in order to maximise the achievable coding advantage,

it was proposed in [55] to use SP schemes that maximise the minimum Euclidean distance
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of the transmitted signal vectors. Our idea is to jointly design the legitimate mg-component
complex-valued vectors (z',2?,- - ™) transmitted from layer k, k € [0,--- , K], so that they
are represented by a single phasor point selected from a SP constellation corresponding to a
2my-dimensional real-valued lattice having the best known minimum Euclidean distance in the

2my-dimensional real-valued space R*™*,

In what follows we assume that each layer is constituted by a twin-AA STBC scheme, i.e. we
have my, = 2, V k € [0, K|, which means that the SP design required is 2m;=4-dimensional. To
summarise, according to the previous discussion, ! and 22 represent independent conventional
PSK modulated symbols transmitted from the first and second transmit AA and no effort is
made to jointly design a signal constellation for the various combinations of z! and z2. By
contrast, in the case of SP, these symbols are designed jointly in order to further increase
the attainable coding advantage. Assuming that there are L legitimate vectors (z!!, 2%2),
[ =0,1,...,L — 1, where L represents the number of sphere-packed modulated symbols, the
transmitter then has to choose the modulated signal from these L legitimate symbols to be

transmitted over the two AAs in layer k € [1,--- | K].

In the four-dimensional real-valued Euclidean space R*, the lattice D, is defined as a SP
constellation having the best minimum FEuclidean distance from all other (L — 1) legitimate
4-component constellation points in R* [213]. More specifically, D, may be defined as a lattice

that consists of all legitimate sphere-packed constellation points having integer coordinates [a’!

ab? ab3 al*] subjected to the SP constraint of

at +a"? + a4+ Mt =k, (5.8)
where £ is an even integer [213]. Assuming that S = {s! = [a"!,a"?,a!3 a4 e R*: 0 <1 <

L — 1} constitutes a set of L legitimate constellation points from the lattice D, having a total

energy of
=
Eroral = Z(|al,l|2 + |al,2|2 + |al,3|2 + |al,4|2)’ (59)
1=0
upon introducing the notation
Cl — {$l,17xl,2} — Tsp(al’l,al’2,al’3,al’4) — {al,l —i—jal’2,al’3 —i—jal’4}, (51(])

we have a set of constellation symbols, {C;: 0 <[ < L — 1}, leading to the design of LSSTC
signals, whose diversity product is determined by the minimum Euclidean distance of the set

of L legitimate constellation points in S.

Figure 5.3 depicts the BER performance of the SP modulated LSSTC scheme in conjunction
with GM and L = 16, while employing N; = 4, N, = 4 and a variable number L 44 of elements

per AA. The results in Figure 5.3 corresponds to the scenario, where the channel is assumed
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Figure 5.3: BER performance of the SP modulated N; x N,, = 4 x4 LSSTC system in conjunction with L = 16

for variable number L 44 of elements per AA.

to be perfectly known at the receiver. Figure 5.3 shows the DL BS beamforming gain achieved
by increasing the number of beam-steering elements L 44 in the AA for the system employing
N; x N, = 4 x 4 antennas and K = 2 layers, while maintaining the same total number of
AAs. As shown in Figure 5.3, when the number of beam-steering elements L 4,4 increases, the

achievable BER performance substantially improves.

5.3 Capacity of Layered Steered Space-Time Codes

Upon using the decoding order of (1,2,--- K), group k will have a diversity order of my X
(N, — Ny +mq +mg+ -+ my) = my X Ny. Thus, the LSSTC decoded signal of layer k,

assuming perfect interference cancellation, can be described as

Ny my Nyk
Fr=LY Y A=Y s Tk + A, (5.11)
r=1 t=1 r=1

where Xgmkr = LY ™ «a, represents a Chi-squared distributed random variable having 2my,
degrees of freedom and Ay, is the AWGN after decoding, which has a variance of x3,, , - No/2
per dimension.

The received sphere-packed symbol §; at layer k is then constructed from the estimates 7},
and Z7 using the inverse function of Ty, introduced in Equation (5.10) as §, = T, (&}, 1}),

where we have § = [a' a* @® '] € R*. Therefore, the received sphere-packed symbol §; can be
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written as
Nrk

= Z XomyrSk + Ay, (5.12)

r=1
where we have A, = [Akl Apo Ass Ak4] € R*, which is a four-dimensional real-valued Gaussian

random variable having a covariance matrix of

0%, Io=0a, - Ip = X3, - No/2-Ip, (5.13)

where we have D = 4, since the SP symbol constellation S is four-dimensional.

Let S = (81,82, ,8k)7, S = (51,89, - ,sk)T and note that in conjunction with K groups
there are M = (L)X number of possible SP phasor combinations, where SP in conjunction with
L is used for transmission. Thus, the achievable capacity of the MIMO system proposed for
transmission over the Discrete-Input Continuous-Output Memoryless Channel (DCMC) can be

derived from that of the discrete memoryless channel as [215,217]:

C = p(S[S:)
DCMC maf(sM Z / / (S| (S:)
D- fold
-
S PASIS) - p(S))

where p(S;) is the probability of occurrence for the transmitted symbol vector S;. Furthermore,

) -dS [bit/sym], (5.14)

since the components of the vectors S and S are independent, we have
8|8 Hp Sk|Sk (515)

Furthermore, according to Equation (5.12), the conditional probability p(Sk|si) of receiving

a four-dimensional signal s at layer k is given by the following PDF":

o 1 s [(SRA = (5l — B ] seld))”
p( k| k) B 5::14 \/WNO ZT i X2mkr[d] P (Z Z_: X%mkr[d] - Ny ) .

(5.16)

Moreover, Cpopye in Equation (5.14) is maximised, when the transmitted symbols are

equiprobably distributed, i.e. for p(S;) = ﬁ [215]. Hence, we can write

log, ( p(SlS:) ) ~ log, ( P(SIS:) )
Zyzl p(S|Sy) - p(Sy) % ) sz)\i1p(5|5v)
= logy(M) — log, <Z p(ﬁ@) — logy(M)  log, <Z I %)

= log,(M) —log, (Z H exp (\Ifkm)> : (5.17)
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where the term Wy ,,; is given by

N (L Gel sk ld)” (54l — (sl

\I]sz N d=1 r=1 X%mkr[d] ' NO " X%mkr[d] ’ NO )
= (xémw[d] (skald] = spold]) + A [d]>2 (Ai [d])2
==t Gl Mo N

(5.18)

Finally, Equation (5.14) can be simplified to

log, (ZHexp(\pk,m)> |si] [bit /sym], (5.19)

v=1 k=1

| MK
Cpomc = logy(M) — MZHE

i=1 k=1

where E[A|B] is the expectation of A conditioned on B.

On the other hand, the Continuous-Input Continuous-Output Memoryless Channel (CCMC)
capacity of the proposed LSSTC scheme can be expressed as [215,217]:

K N'rk
D SNR
Cocye =Y E 5 108 (1 +> X%mk,th>
r=1

k=1

[bit /sym]. (5.20)

Finally, the bandwidth efficiency is related to the capacity according to [215]

n = D£/2 [bits/sec/Hz]. (5.21)

Figure 5.4 shows the DCMC capacity evaluated from Equation (5.19) for the QPSK assisted
LSSTC, when employing N; = 4 transmit antennas, NV, = 4 receive antennas as well as L4 = 1,
2, 3 and 4 elements per transmit AA. The CCMC [35] capacity of the same multi-functional
MIMO scheme was also plotted for comparison in Figures 5.4 based on Equation (5.20). Fur-
thermore, Figure 5.5 compares the achievable bandwidth efficiency of the QPSK modulated
LSSTC scheme in conjunction with N; X N, = 4 x 4 while varying the number of elements L 44
per AA. Figure 5.5 depicts that as the number of elements per AA increases the achievable
bandwidth efficiency improves. Figure 5.5 also compares the achievable CCMC bandwidth

efficiency for various L 44 values.

On the other hand, Figure 5.6 shows the DCMC capacity evaluated from Equation (5.19)
for the LSSTC-SP scheme in conjunction with L = 16, when employing N; = 4 transmit
antennas, N, = 4 receive antennas and a variable number of elements per AA La4. The
CCMC [35] capacity of the same multi-functional MIMO scheme was also plotted for comparison
in Figures 5.6 based on Equation (5.20). Furthermore, Figure 5.7 compares the achievable
bandwidth efficiency of the LSSTC-SP scheme in conjunction with L = 16, N; x N, = 4 x 4,
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while varying the number of elements L4 per AA. Figure 5.7 demonstrates that as the number
of elements per AA increases, the achievable bandwidth efficiency improves. Figure 5.7 also

compares the achievable CCMC bandwidth efficiency for various L 44 values.

Finally, Figure 5.8 compares the attainable bandwidth efficiency of the LSSTC multi-
functional MIMO scheme, when QPSK and SP in conjunction with L = 16 are employed.
As seen in Figure 5.8, when L44 = 1 was employed, the SP assisted system had a slightly
higher bandwidth efficiency than the QPSK aided system. On the other hand, Figure 5.8
demonstrates that increasing the number of elements per AA to Ly4 = 4 results in improv-
ing the bandwidth efficiency of the SP aided system compared to that of its QPSK assisted

counterpart.

5.4 Iterative Detection and EXIT Chart Analysis

The block diagram of the LSSTC-aided iteratively detected SP modulation is shown in Fig-
ure 5.9. The transmitted source bits u; are encoded by the outer channel Encoder I having a
rate of R;. The outer channel encoded bits c; are then interleaved by a random bit interleaver
I1;, where the randomly permuted bits uy are fed through the URC Encoder II. The encoded
bits ¢y at the output of the URC encoder are interleaved by a second random bit interleaver Il5,
producing the permuted bit stream b. After bit interleaving, the SP mapper maps blocks of B;,

channel-coded bits b = by, ..., bp,,—1 € {0,1} to the L number of legitimate four-dimensional
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Figure 5.9: Block diagram of the layered steered space-time code employing SP modulation in conjunction

with a unity-rate precoder and an outer code.

SP modulated symbols s' € S. The SP modulated symbols s are then transmitted using the
LSSTC transmitter of Section 5.2.

At the receiver side, as shown in Figure 5.9, the received complex-valued symbols are first
decoded by the LSSTC-SP decoder in order to produce the received SP soft-symbols s. Then,
iterative demapping/decoding is carried out between the SP demapper, the soft-in soft-out URC
Decoder II and the soft-in soft-out Decoder I, where extrinsic information can be exchanged

between the three constituent demapper/decoder modules.

More specifically, L.,(-) in Figure 5.9 represents the a priori information, expressed in
terms of the log-likelihood ratios (LLRs) of the corresponding bits, whereas L..(-) represents
the extrinsic LLRs of the corresponding bits. The iterative process is performed for a number
of consecutive iterations. During the last iteration, only the LLR values L;,(uy) of the original
data information bits u; are required, which are passed to a hard decision decoder in order to

determine the estimated transmitted source bits u;, as shown in Figure 5.9.

In this chapter we present three iterative-detection-aided SP assisted LSSTC schemes. The
first and second systems, referred to as System 1 and System 2 respectively, employ no iterations
between the URC Decoder II and the SP demapper of Figure 5.9, i.e. no inner iterations.
However, the two systems differ in the choice of the outer Encoder I, namely while System 1
employs a regular RSC code, System 2 uses an [rCC [191,194]. Finally, System 3 invokes three-
stage iterative detection exchanging extrinsic information between the SP demapper, the URC
Decoder II and the outer RSC Decoder I. In what follows, all the results presented characterise
an LSSTC-SP scheme using (N; X N,) = (4 x 4) and L4 = 4 elements per AA in conjunction

with the system parameters outlined in Table 5.1.

5.4.1 Two-Stage Iterative Detection Scheme

In this section, System 1 and System 2 are described, where the exchange of extrinsic informa-

tion is carried out between the outer Decoder I and the URC Decoder II only, i.e. no iterations
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Sphere Packing Modulation L=16
Number of Transmitter AAs NV, 4
Number of Elements per AA L 44 4
Number of Receiver Antennas NN, 4

Channel

Correlated Rayleigh Fading

Normalised Doppler frequency 0.01
Encoder I
System 1 RSC(2,1,3),
(G, G) = (7,5)s
System 2 Half-rate [rCC
System 3 RSC(2,1,2),
(G, G) = (3,2)s
Encoder II Unity-rate code
Generator (G, G) =(3,2)s

Interleaver depth D;,;

180,000 bits

Table 5.1: LSSTC aided iterative detection system parameters.

are carried out between the URC Decoder II and the SP demapper. As seen in Figure 5.10,
the URC Decoder II processes the information forwarded by the SP demapper in conjunction
with the a priori information L;r,(uz) in order to generate the a posteriori probability. The a
priorit LLR values of the URC decoder are subtracted from the a posteriori LLR values for the
sake of generating the extrinsic LLR values L .(us), as seen in Figure 5.10. Next, the soft bits
Ly .(cy) are passed to the outer Decoder I of Figure 5.10 in order to compute the a posteriori
LLR values for all the channel-coded bits. As seen in Figure 5.10, the extrinsic information
L;.(cy) is then fed back to the URC Decoder II as the a priori information Lj;,(us) after
appropriately reordering them using the interleaver II; of Figure 5.10. The soft-in soft-out
Decoder 1II of Figure 5.10 exploits the a priori information for the sake of providing improved
extrinsic LLR values, which are then passed to the outer Decoder I and then back to the

Decoder 1I for further iterations.

5.4.1.1 2D EXIT Charts

As discussed in Chapter 3, the main objective of employing EXIT charts [186,189] is to pre-
dict the convergence behaviour of the iterative decoding process by examining the evolution
of the input/output Mutual Information (MI) exchange between the constituent decoders in

consecutive iterations.

Let I 4(x), 0 < I ,(z) <1, denote the MI between the a priori LLRs L. ,(z) as well as the
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Figure 5.10: Block diagram of the layered steered space-time code employing SP modulation in conjunction
with a unity-rate precoder and an outer code. The receiver employs iterative detection between

the outer code’s decoder and the precoder’s decoder.

corresponding bits x and let I .(z), 0 < I .(x) < 1, denote the MI between the extrinsic LLRs
L. .(x) and the corresponding bits .

In the two-stage iterative detector of System 1 and System 2 of Figure 5.10, the EXIT
characteristics of Decoders I and II can be described by the following two EXIT functions [186,
196]:

Ire(c1) = Tre [I1a(cy)] (5.22)
Iire(ug) = T, Lira(ug), Ey/No| . (5.23)

Figure 5.11 shows the EXIT chart of System 1 employing an iteratively detected RSC-coded
LSSTC-SP system in conjunction with L = 16 and Gray mapping (GM), where iterations are
carried out between the outer 1/2-rate RSC code and the inner URC decoders, while no iter-
ations are invoked between the URC decoder and the SP demapper. The system employs a
1/2-rate memory-2 RSC code, denoted as RSC(2,1,3), in conjunction with an octal generator
polynomial of (G,,G) = (7,5)s, where G, is the feedback polynomial. Encoder II is a simple
URC scheme, described by the pair of octal generator polynomials (G,,G) = (3,2)s. Fur-
thermore, the EXIT chart of Figure 5.11 was generated for the LSSTC-SP system employing
(Ny, N,.) = (4,4) using Laa = 4 elements per AA in conjunction with the system parameters
of Table 5.1. The GM was used in this case, because no iterations are invoked between the SP
demapper and the decoders, hence it is better to use GM that results in a higher initial mutual
information and hence a higher starting point for the EXIT curve. Observe from Figure 5.11
that an open convergence tunnel is formed around E,/Ny = —8.5 dB. This implies that accord-
ing to the predictions of the EXIT chart seen in Figure 5.11, the iterative decoding process is
expected to converge at E,/Ny = —8.5 dB. The EXIT chart based convergence predictions can
be verified by the Monte-Carlo simulation based iterative decoding trajectory of Figure 5.12,
where the trajectory was recorded at E,/Ny = —8.5 dB, while using an interleaver depth of
D;,; = 180,000 bits and the rest of the system parameters outlined in Table 5.1. The steps seen
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Figure 5.11: EXIT chart of a RSC-coded and URC-precoded LSSTC-SP System 1 employing GM in conjunc-

tion with L = 16 and the system parameters outlined in Table 5.1.

in the figure represent the actual extrinsic information exchange between the URC’s decoder

and the outer RSC channel decoder.

5.4.1.2 EXIT Tunnel-Area Minimisation for Near-Capacity Operation Using IrCCs

It is a well-understood property of the conventional 2D EXIT charts that a narrow but marginally
open EXIT-tunnel represents a near-capacity performance [194]. Therefore, we invoke IrCCs
for the sake of appropriately shaping the EXIT curves by minimising the area within the EXIT-
tunnel using the procedure of [191,194].

Let A; and A; be the areas under the EXIT-curve of Decoder I and its inverse, respectively.
Similarly, the area Aj; is defined as that under the EXIT-curve of the URC Decoder II. It was
observed in [191,255] that for the APP-based outer Decoder I, the area A; may be approx-
imated by A; ~ R;, where the equality A; = R; was later shown in [229] for the family of
Binary Erasure Channels (BECs). The area property of A; ~ R; implies that the lowest SNR
convergence threshold occurs, when we have A;; = R; + €, where € is an infinitesimally small

number, provided that the following convergence constraints hold [194]:

T1125(0) >0, Trray(1) =1, Trpa,(i) > ngl (1), Vi €[0,1). (5.24)
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Figure 5.12: Decoding trajectory of the iteratively detected RSC-coded and URC-precoded LSSTC-SP Sys-
tem 1 employing GM in conjunction with L = 16 and the system parameters outlined in Table

5.1 while operating at Fj/Ny = —8.5 dB.

Observe in Figure 5.12, however, that there is a wide tunnel between the EXIT curve Ty, (1)
and the EXIT curve TIfcl1 (7) of the outer 1/2-rate RSC code at E,/Ny = —8.5 dB, especially
when ¢ < 0.2 and ¢ > 0.6. This implies that the BER curve is farther from the achievable capac-
ity than necessary. More quantitatively, the area under the EXIT curve 17y ., (7) is A =~ 0.5625
at /Ny = —8.5 dB, which is larger than the outer code rate of Ry = 0.50. Therefore, accord-
ing to Figure 5.12 and to the area property of A; ~ R;, a lower E},/Ny convergence threshold
may be attained, provided that the constraints outlined in Equation (5.24) are satisfied. In
other words, the EXIT curve T I_cll(l) of the outer code should match the EXIT curve Tjy,, (i) of
Figure 5.12 more closely. Hence we will invoke IrCCs as outer codes that exhibit flexible EXIT
characteristics, which can be optimised for more closely matching the EXIT curve 17y, (i) of

Figure 5.12, converting the near-capacity code optimisation to a simple curve-fitting problem.

An IrCC scheme constituted by a set of P = 17 subcodes was constructed in [194] from

a systematic 1/2-rate memory-4 mother code defined by the octally represented generator
polynomials (G,,G) = (31,27)s. Each of the P = 17 subcodes have a different code rate
" Vi € [1,17], where puncturing was employed to obtain the rates of R} > 0.5 and the

code rates of RY < 0.5 were created by adding more generators and by puncturing. The two



5.4.1. Two-Stage Iterative Detection Scheme 167

1.0

0.8 r

0.6

l.a(C1)

0.4

0.2

\l

0.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

li.e(C1)
Figure 5.13: EXIT functions of the seventeen subcodes used in the IrCC.

additional generators employed in [194] are defined by the octally represented polynomials of
G1 = (35)s and Gy = (35)s, where the resultant P = 17 subcodes have coding rates spanning
the range of [0.1,0.9]. Each of the P = 17 subcodes encodes a specific fraction of the uncoded
bits determined by the weighting coefficient «;, i = 1, ..., P. Assuming an overall average code

rate of R; = 0.5, the following conditions must be satisfied:
P P
 ai=1, Ri=> a;R;, and a; €[0,1], Vi (5.25)
i=1 i=1

The EXIT function Ty, (I14(c1)) corresponding to the IrCC may be constructed from the
EXIT functions of the P = 17 subcodes, T} (I1q(c1)), i = 1,..., P. More specifically, the
EXIT function Tj ., (I1.4(c1)) of the IrCC is the weighted superposition of the P = 17 EXIT
functions T} . (I1a(c1)), i =1,..., P, as follows [194]

P
Tre(Ina(cr) = > aiTy o (Ina(er)). (5.26)

i=1
Figure 5.13 shows the EXIT functions of the P = 17 subcodes used in [194]. Hence the
coeflicients «; are optimised with the aid of the iterative algorithm of [191], so that the EXIT
curve of the resultant IrCC closely matches the EXIT curve T}y ,,(7) at the specific E,/N value,
where we have A;; ~ 0.50. It is observed that A;; ~ 0.501 at E,/Ny = —9.4 dB. However,
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Figure 5.14: EXIT chart of a IrCC-coded and URC-precoded LSSTC-SP System 2 employing GM in conjunc-

tion with L = 16 and the system parameters outlined in Table 5.1.

observe in Figure 5.14 that we have an open tunnel at E,/Ny = —9.2 dB, indicating that this
Ey /Ny value is close to the lowest attainable convergence threshold, when employing a 1/2-rate
outer code. Figure 5.14 also shows the EXIT curve of the resultant IrCC, where the optimised

weighting coefficients are as follows:

lag, g, ..., 0q6,017) = [0, 0, 0, 0, 0, 0, 0.571927, 0.167114, 0,
0, 0, 0.0194083, 0.170044, 0, 0, 0, 0.0715566]. (5.27)

Figure 5.14 shows the EXIT chart of System 2 employing an iterative-detection aided IrCC-
coded LSSTC-SP system using GM, where the iterations are carried out between the outer
1/2-rate IrCC code and the inner URC decoders, while no iterations are invoked between the
URC decoder and the SP demapper. The system parameters of Table 5.1 are used for producing
the EXIT curves of Figure 5.14. Observe from Figure 5.14 that an open convergence tunnel is
formed around Ej /Ny = —9.2 dB. This implies that according to the predictions of the EXIT
chart of Figure 5.14, the iterative decoding process is expected to converge at E,/Ny = —9.2 dB.
However, observe in Figure 5.14 that the open tunnel at Ej,/Ny = —9.2 dB is quite narrow and
thus it requires a large number of iterations to converge at Ej/Ny = —9.2 dB. This issue will

be discussed further in the complexity analysis in Section 5.5.
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Figure 5.15: Block diagram of the layered steered space-time code employing SP modulation in conjunction
with a unity-rate precoder and an outer code. The receiver employs iterative detection between
the three constituent decoders, namely between the outer code decoder, the precoder’s decoder

and the SP demapper.

5.4.2 Three-Stage Iterative Detection Scheme

As shown in Figure 5.15, the received complex-valued symbols are first decoded by the LSSTC
decoder in order to produce the received SP soft-symbols s, where each SP symbol represents
a block of By, coded bits as described in Section 5.2.2. Then, iterative demapping/decoding
is carried out between the SP demapper, soft-in soft-out URC Decoder II and soft-in soft-
out outer Decoder I, where extrinsic information is exchanged between the three constituent
demapper/decoders. The iterative process is performed for a number of consecutive iterations.
During the last iteration, only the LLR values L;,(u;) of the original uncoded systematic
information bits u; are required, which are passed to a hard decision decoder in order to

determine the estimated transmitted source bits u; as shown in Figure 5.15.

5.4.2.1 3D EXIT Charts

In this section System 3 is described, where iterative detection is employed by exchanging
extrinsic information between the SP demapper, the URC Decoder II and the outer Decoder 1.
As seen from Figure 5.15, the input of Decoder II is constituted by the a priori input L ,(c2)
and the a priori input Lir,(uy) after appropriately ordering the data provided by the SP
demapper and Decoder I, respectively. Therefore, the EXIT characteristics of Decoder II can
be described by the following two EXIT functions [186, 196]:

In,e(cz)
[H,e(u2)

Trreo L11,0(02), I11a(c2)]
TH,u2 [[H,a(llz)> Ill,a(C2)] )

which are illustrated by the 3D surfaces drawn in dotted lines in Figures 5.16 and 5.17, re-
spectively. On the other hand, the EXIT characteristics of the SP demapper as well as those
of Decoder I are each dependent on a single a priori input, namely on Ly, (b) and L; ,(c1),

respectively, both of which are provided by the URC Decoder II after appropriately ordering the
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Figure 5.16: 3D EXIT chart of the URC Decoder II and the SP demapper at E,/Ny = —8.8 dB.

bits, as seen in Figure 5.15. The EXIT characteristics of the SP demapper are also dependent
on the Ej,/Ny value. Consequently, the corresponding EXIT functions for the SP demapper

and Decoder I, respectively, may be written as

Inge(b) = Tarp[Iara(b), Eb/No, (5.30)
I1c(c1) = Tre [I14(c1)], (5.31)

which are illustrated by the 3D surfaces drawn in solid lines in Figures 5.16 and 5.17, respec-

tively.

Equations (5.28)-(5.31) can be represented with the aid of two 3D EXIT charts. More specif-
ically, the 3D EXIT chart of Figure 5.16 is used to plot Equation (5.28) and Equation (5.30),
which describe the EXIT relation between the SP demapper and Decoder II. Similarly, the
3D EXIT chart of Figure 5.17 can be used to describe the EXIT relation between Decoder 11
and Decoder I by plotting Equation (5.29) and Equation (5.31). Furthermore, for the sake of
comparison we plot the 3D EXIT curves of the QPSK modulated LSSTC scheme employing a
3-stage iterative detection aided receiver and the same system parameters as the SP system of
Figures 5.16 and 5.17. Figure 5.18 describes the EXIT relation between the QPSK demapper
and the URC Decoder II, while Figure 5.19 describes the EXIT relation between Decoder II
and Decoder I together with the EXIT projection from Figure 5.18.
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Figure 5.17: 3D EXIT chart of the URC Decoder II and the RSC Decoder I with projection from Figure 5.16.
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Figure 5.18: 3D EXIT chart of the URC Decoder II and the QPSK demapper at E,/Ng = —7.8 dB.
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Figure 5.19: 3D EXIT chart of the URC Decoder II and the RSC Decoder I with projection from Figure 5.18.

5.4.2.2 2D EXIT Chart Projection

As observed in Figures 5.16 and 5.17, it is cumbersome to interpret the 3D EXIT charts.
Hence in this section we derive their unique and unambiguous 2D representations, which may

be interpreted more readily.

The intersection of the surfaces in Figure 5.16, shown as a thick solid line, portrays the
achievable performance when exchanging mutual information between the SP demapper and
the URC Decoder II for different fixed values of I;7,(uy) spanning the range of [0,1]. Each
[I1r.0(v2), Irra(c2), Irre(c2)] point belonging to the intersection line of Figure 5.16 uniquely
specifies a 3D point [I;74(02), Ir1a(c2), I11e(uz)] in Figure 5.17, according to the EXIT func-
tion of Equation (5.29). Therefore, the line corresponding to the [I1;,(u2), I1a(c2), I1e(c2)]
points along the thick line of Figure 5.16 is projected to the solid line shown in Figure 5.17.
The 2D projection of the solid line in Figure 5.17 at I;;,(ca) = 0 onto the plane spanned by
the lines [I17 4(u2), I1(u2)] and [I1(c1), I 4(cq)] is shown in Figure 5.20 at E},/Ny = —8.8 dB
for all possible SP AGM schemes of Appendix A. This projected EXIT curve may be written
as

I11e(ug) = T77 ., [l11.4(02), By /No] - (5.32)

Observe in Figure 5.20 the variety of curves that result from using different mapping schemes
in the 3-stage iterative-detection-aided system. Figure 5.20 shows the 2-D EXIT projection at
Ey/No = —8.8 dB. As seen in the figure, an open tunnel exists at E,/Ny = —8.8 dB for
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Figure 5.20: 2D projection of the EXIT charts of the three-stage RSC-coded LSSTC-SP System 3, when

employing all possible anti-Gray mapping aided SP in conjunction with L = 16, while using an
interleaver length of D;,; = 180,000 bits and the system parameters outlined in Table 5.1 at
E,/Ny=-8.8 dB.

the system employing AGM-6, while an open tunnel exists for the other mapping schemes at
different Ej, /Ny values higher than —8.8 dB. Therefore, according to the EXIT chart prediction,
the system employing AGM-6 exhibits an open tunnel at Ej,/Ny; = —8.8 dB and thus it is
expected that the system employing AGM-6 exhibits an infinitesimally low BER at E,/Ny of
—8.8 dB.

The intersection of the surfaces in Figure 5.16, shown as a thick solid line, portrays the best
achievable performance, when exchanging mutual information between the SP demapper and
the URC Decoder II for different fixed values of I;; ,(us) spanning the range of [0, 1]. The best
achievable performance is the one corresponding to the AGM-6 assisted system, as portrayed
in Figure 5.20. Therefore, the line corresponding to the [Ij;,(u2), I11.4(c2), I11.(c2)] points
along the thick line of Figure 5.16 is projected to the solid line shown in Figure 5.17, while the
2D projection of the solid line in Figure 5.17 at I;;,(ca) = 0 onto the plane spanned by the
lines [I174(02), I11.(u2)] and [Ire(c1), I14(cq)] is shown in Figure 5.21 at E,/Ny = —8.8 dB.
Figure 5.21 shows the 2D-projected EXIT curve of the combined SP demapper and the URC
Decoder 1T at E,/Ny = —8.8 dB, when employing the best possible Anti-Gray Mapping scheme,
namely AGM-6. Figure 5.21 records the 2D-projected EXIT curves for a variable number of
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Figure 5.21: 2D projection of the EXIT charts of the three-stage RSC-coded LSSTC-SP scheme, when em-

ploying the best possible anti-Gray mapping AGM-6 aided SP in conjunction with L = 16,
while using an interleaver depth of D;,; = 180,000 bits and the system parameters outlined in
Table 5.1.

inner iterations between the SP demapper and Decoder II. As observed from Figure 5.21, when
no inner iterations are employed, the system becomes essentially a two-stage arrangement
employing AGM instead of GM for System 1 and System 2. According to Figure 5.21, when
no inner iterations are carried out, the system requires F,/Ny > —8.8 dB for maintaining an
open tunnel. However, observe that when 1, 2 and 20 inner iterations are carried out, the open
EXIT tunnel is formed at E,/Ny = —8.8 dB. Therefore, in our further investigations we use a
single inner iteration that produces the same result and imposes the lowest complexity. This
implies that according to the predictions of the 2D EXIT chart seen in Figure 5.21, the iterative
decoding process is expected to converge to the (1.0, 1.0) point and hence an infinitesimally low
BER may be attained beyond £, /Ny = —8.8 dB. This expectation is confirmed by the decoding
trajectory of Figure 5.22, which was recorded for an interleaver depth of D;,, = 180,000 bits

in conjunction with the system parameters outlined in Table 5.1.

Figure 5.23 shows the 2D-projected EXIT curve of the combined QPSK demapper and the
URC Decoder 11 at E,/Ny = —7.8 dB, when employing the AGM scheme [256]. Figure 5.23
records the 2D-projected EXIT curves for a single inner iteration between the QPSK demapper
and Decoder II. Observe in Figure 5.23 that no open tunnel exists between the EXIT projection

and the outer code’s EXIT curve at an Ej,/Ny below —7.8 dB. Therefore, a comparison between
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Figure 5.22: Decoding trajectory of the iteratively detected three-stage RSC-coded and URC-precoded
LSSTC-SP System 3 employing GM in conjunction with L = 16 and the system parameters
outlined in Table 5.1, while operating at E;/Ny = —8.8 dB.

1.0
LSSTC (4Tx,4Rx) /
Laa=4 /
QPSK AGM
0.8 [ ,//' 4
~ ////
— e
L 06t .
(U— 4
=
N 2,
=
0 0.4 1 .
0.2 —— EXIT projection ]
: E/Ny=-841t0-7.6dB
/l steps of 0.2dB
/ ---- RSC(2,1,2)
1 (G.G)=(3.2)s

0.0
00 01 02 03 04 05 06 07 08 09 1.0

l,e(C1), lia(u2)
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employing the AGM aided QPSK in conjunction with an interleaver depth of D;,; = 180,000

bits and the system parameters outlined in Table 5.1.
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Figure 5.23 and Figure 5.21 shows the flexibility that the multi-dimensional modulation scheme
has in the choice of the mapping schemes compared to the two-dimensional QPSK scheme.
Hence, according to the predictions of the 2D EXIT chart seen in Figure 5.23, the iterative
decoding process is expected to converge to the (1.0, 1.0) point and hence an infinitesimally low
BER may be attained beyond FE;,/Ny = —7.8 dB.

5.4.3 Maximum Achievable Bandwidth Efficiency

The MIMO channel’s bandwidth efficiency curves recorded for the four-dimensional SP modu-
lation assisted LSSTC scheme in conjunction with (N; X N,) = (4 x 4) and Las = 4 elements
per AA are shown in Figure 5.24, portraying both the DCMC and CCMC bandwidth efficiency
curves as well as the maximum achievable rate of the system derived from the EXIT curves
according to the algorithm of Section 3.2.3. Observe the discrepancy between the two band-
width efficiency curves shown in Figure 5.24 that are calculated using Equation (5.21) and
Equation (3.21), which is due to the fact that Equation (5.21) was computed for the case where
perfect interference cancellation is considered at the receiver. Therefore, Equation (5.21) con-
stitutes an upper bound on the system’s bandwidth efficiency, while Equation (3.21) constitutes
a tighter bound on the maximum achievable bandwidth efficiency of the system considered in

this chapter.

Similarly, we plot in Figure 5.25 the MIMO channel’s bandwidth efficiency curves recorded
for the QPSK modulation assisted LSSTC scheme in conjunction with (N; x N,) = (4 x 4)
and Las = 4 elements per AA. Figure 5.25 portrays both the DCMC and CCMC bandwidth
efficiency curves as well as the maximum achievable rate of the system derived from the EXIT

curves according to the algorithm of Section 3.2.3.

Figure 5.24 shows that at a bandwidth efficiency of 7 = 2 bits/sec/Hz, which is the band-
width efficiency of the system employing the parameters of Table 5.1, the DCMC bandwidth
efficiency limit seen for the LSSTC-SP scheme in Figure 5.25 is about E,/Ny = —10.15 dB,
while the maximum achievable rate limit obtained using EXIT charts is at Fj,/Ny = —9.45 dB.

Figure 5.25 shows that at a bandwidth efficiency of n = 2 bits/sec/Hz the DCMC bandwidth
efficiency limit seen for the LSSTC-SP scheme in Figure 5.25 is about Ej,/Ny = —10 dB, while
the maximum achievable rate limit obtained using EXIT charts is at Ej,/Ny = —9.34 dB.
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Figure 5.24: Bandwidth efficiency of the four-AAs aided LSSTC-SP system in conjunction with L = 16 em-
ploying four elements per AA for both DCMC and CCMC together with the maximum achievable
rate obtained using EXIT charts.
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Figure 5.25: Bandwidth efficiency of the four-AAs aided LSSTC-QPSK system in conjunction with four ele-
ments per AA for both DCMC and CCMC together with the maximum achievable rate obtained
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Figure 5.26: Performance comparison of the proposed LSSTC-SP aided System 1 employing iterative detection
between a 1/2-rate RSC decoder and a URC decoder employing Gray mapping aided SP in
conjunction with L = 16, while using an interleaver length of D,;,; = 180,000 bits and the

system parameters outlined in Table 5.1 for a variable number of iterations.

5.5 Results and Discussion

In this section, we consider a LSSTC system associated with the system parameters outlined
in Table 5.1 in order to demonstrate the performance improvements achieved by the proposed
system. We employ SP in conjunction with L = 16 and QPSK modulation and hence the
overall bandwidth efficiency of the system is 2 bits/sec/Hz. The results presented in this
section correspond to the scenario where the channel is perfectly known at the receiver. We
also assume that the transmitter has full knowledge of the DOA without any estimation or

estimation errors.

Figure 5.26 compares the performance of the proposed System 1 employing the LSSTC-SP
scheme in conjunction with L = 16 and GM together with the system parameters of Table 5.1
for different number of iterations against that of an uncoded LSSTC-SP scheme using L = 4,
which has an identical bandwidth efficiency of 2 bits/sec/Hz. Figure 5.26 shows the performance
of the iteratively detected RSC-coded LSSTC-SP scheme, when employing an interleaver depth
of D;,; = 180,000 bits and while communicating over a temporally correlated Rayleigh fading
channel associated with a normalised Doppler frequency of fp = 0.01. Explicitly, Figure 5.26
demonstrates that a coding advantage of about 16.5 dB was achieved at a BER of 1076 after 17
iterations by System 1 over the equivalent-throughput uncoded LSSTC-SP scheme employing
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Figure 5.27: Performance comparison of the proposed LSSTC-SP aided System 2 employing iterative detection
between a 1/2-rate IrCC decoder and a URC decoder employing Gray mapping aided SP in
conjunction with L = 16, while using an interleaver length of D,,; = 180,000 bits and the

system parameters outlined in Table 5.1 for a variable number of iterations.

L = 4. Furthermore, Figure 5.26 demonstrates that the BER performance closely matches the
EXIT chart based prediction of Figure 5.12, where the system approaches an infinitesimally
low BER at Ej,/Ny = —8.5 dB after 17 iterations. Finally, according to Figure 5.26, System 1
performs within 0.9 dB from the maximum achievable rate limit of Figure 5.24 obtained using
the EXIT chart and within 1.65 dB from the LSSTC-SP system’s bandwidth efficiency limit.

On the other hand, Figure 5.27 compares the performance of the proposed System 2 em-
ploying the LSSTC-SP scheme in conjunction with L = 16 and GM, together with the system
parameters of Table 5.1 for different number of iterations, where the system has a bandwidth
efficiency of 2 bits/sec/Hz. The system of Figure 5.27 employs the IrCC of Figure 5.14 as an
outer code and iterative detection is carried out between the IrCC decoder and the unity rate
code’s decoder. Furthermore, the system employs an interleaver depth of D;,; = 180,000 bits
and communicates over a temporally correlated Rayleigh fading channel associated with a nor-
malised Doppler frequency of fp = 0.01. Explicitly, Figure 5.27 demonstrates that the system
approaches an infinitesimally low BER at E,/Ny = —9.0 dB after 100 iterations. However,
according to the EXIT chart of Figure 5.14, it is predicted that the system’s BER performance
converges at Fj,/Ny = —9.2 dB. This is mainly due to the fact that the convergence tunnel in
the EXIT chart of Figure 5.14 is quite narrow and the system requires more than 100 iterations

for matching the EXIT chart prediction of maintaining an infinitesimally low BER at an E},/Ny
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Figure 5.28: Performance comparison of the proposed LSSTC-SP aided System 3 employing three-stage itera-
tive detection between a 1/2-rate RSC decoder, a URC decoder as well as SP demapper employing
AGM aided SP in conjunction with L = 16, while using an interleaver depth of D;,; = 180,000

bits and the system parameters outlined in Table 5.1 for a variable number of iterations.

value of —9.2 dB. Finally, according to Figure 5.27, System 2 performs within 0.4 dB from the
maximum achievable rate limit obtained using the EXIT chart of Figure 5.24 and within 1.1 dB
from the LSSTC-SP system’s bandwidth efficiency limit.

Figure 5.28 compares the attainable performance of the proposed System 3 employing the
LSSTC-SP scheme in conjunction with L = 16 and AGM-6 and the system parameters of
Table 5.1 recorded for different number of iterations. In Figure 5.28, an interleaver depth of
D;,s=180, 000 bits was employed for communication over a temporally correlated Rayleigh fad-
ing channel associated with a normalised Doppler frequency of 0.01. Figure 5.28 demonstrates
that the BER performance closely matches the EXIT chart based prediction of Figure 5.22,
where the system approaches an infinitesimally low BER at E,/Ny = —8.8 dB after 46 itera-
tions. Finally, according to Figure 5.28, System 3 performs within 0.6 dB from the maximum
achievable rate limit obtained using the EXIT chart of Figure 5.24 and within 1.35 dB from
the LSSTC-SP system’s bandwidth efficiency limit.

Furthermore, Figure 5.29 compares the attainable performance of the iteratively detected
RSC-coded LSSTC scheme employing QPSK modulation in conjunction with the system pa-
rameters of Table 5.1 for different number of iterations. Figure 5.29 shows the BER curve for

the three-stage system, where the decoder employs iterative detection exchanging extrinsic in-
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Figure 5.29: Performance comparison of the proposed LSSTC-QPSK aided System 3 employing iterative
detection between a 1/2-rate RSC decoder, a URC decoder as well as QPSK demapper employing
AGM aided QPSK, while using an interleaver depth of D;,; = 180,000 bits and the system

parameters outlined in Table 5.1 for a variable number of iterations.

formation between the three constituent decoders/demapper, namely the QPSK demapper, the
URC Decoder II and the RSC Decoder I. Figure 5.29 demonstrates that the BER performance
closely matches the EXIT chart based prediction of Figure 5.23, where the system approaches
an infinitesimally low BER at E,/Ny = —7.8 dB after 38 iterations. Finally, according to Fig-
ure 5.29, the proposed QPSK modulated system performs within 1.54 dB from the maximum
achievable rate limit obtained using the EXIT chart of Figure 5.24 and within 2.2 dB from the

system’s bandwidth efficiency limit.

A comparison between the three proposed SP modulated systems and the QPSK modulated
three-stage iteratively detected system is presented in Figure 5.30. Figure 5.30 compares the
maximum achievable performance of the proposed iterative detection aided LSSTC schemes,
while employing an interleaver depth of D;,; = 180,000 bits and the system parameters of
Table 5.1. Observe that the performance of System 1 as well as that of the SP modulated and
QPSK modulated System 3 matches the EXIT chart predictions of Figures 5.12, 5.22 and 5.23
after I = 17, I = 46 and I = 38 iterations, respectively. Explicitly, the SP modulated System
3 converges at E,/Ny of —8.8 dB, as predicted by the EXIT chart of Figure 5.22, while the
QPSK modulated System 3 converges at Ej,/Ny of —7.8 dB, as predicted by the EXIT chart of
Figure 5.23. Hence, the SP modulated System 3 performs within 0.6 dB from the maximum
achievable rate limit obtained using the EXIT charts, while the QPSK modulated System
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Figure 5.30: Performance comparison of the three proposed LSSTC-SP aided systems employing two-stage
iteration between an outer code and a URC decoders, as well as three-stage iterative system
between an outer RSC, intermediate URC decoders and an SP demapper. The figure also plots
the BER performance of the three-stage system employing QPSK.

3 performs within 1.54 dB from the maximum achievable rate limit obtained using the EXIT
charts. However, System 2 does not closely match the EXIT-chart based convergence prediction
at E,/Nyg = —9.2 dB even after I = 100 iterations, when employing an interleaver depth of
Djny = 180,000 bits. This is due to the fact that at E,/Ny = —9.2 dB, the EXIT-tunnel of
Figure 5.14 is narrow and thus requires a large number of iterations, which is significantly higher
than I = 100. Thus, using the system parameters outlined in Table 5.1 and / = 100 decoding
iterations, System 2 converges at Fj,/Ny = —9.0 dB, which is 0.4 dB from the maximum
achievable rate obtained using the EXIT chart. Finally, System 1 performs within 0.9 dB from

the maximum achievable rate limit.

Finally, Figure 5.31 shows the coding gain achieved at a BER of 107° for each system
versus the detection complexity expressed in terms of the number of trellis states. Figure 5.31
demonstrates that System 1 employing the two-stage iteratively-detected system in conjunction
with the RSC(2,1,3) code has the lowest complexity at a distance of 0.9 dB from the maximum
achievable rate limit, where System 1 converges and hence approaches an infinitesimally low
BER. System 3 is capable of performing equally well in BER terms, while operating 0.3 dB closer
to the maximum achievable rate limit than System 1. However, this is achieved at the cost of
almost doubling the complexity, as seen in Figure 5.31. On the other hand, in order to operate

as close as E,/Ny = 0.2 dB from the maximum achievable rate limit, System 2 using IrCCs
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Figure 5.31: Comparison of the coding gain at a BER of 10~ versus the complexity in terms of the number
of trellis states of the three proposed LSSTC-SP aided systems while employing the system

parameters in Table 5.1.

has to be employed in order to further reduce the EXIT tunnel’s area. However, to match the
EXIT chart predictions of Figure 5.14, the system requires a large number of iterations between
Decoder I and Decoder II. When employing as many as 100 decoding iterations, System 2
becomes capable of performing within 0.4 dB from the maximum achievable rate limit, although
this is achieved at the cost of a complexity that is 20 times that required for operating within
0.9 dB from the maximum achievable rate limit using System 1 and 10 times that necessitated
by operating within 0.6 dB from the maximum achievable rate limit, when employing System
3. Note that the coding gain seen in Figure 5.31 for System 2 does not saturate and thus,
provided that a higher number of iterations is affordable, a higher coding gain can be attained,

as expected from the EXIT chart of Figure 5.14.

5.6 Chapter Conclusion

In this chapter, we proposed a novel multi-functional MIMO scheme that combines the benefits
of STC, V-BLAST as well as beamforming. The system is also combined with multi-dimensional
SP modulation facilitating the joint design of the AA’s space-time signals and hence maximising
the coding advantage of the transmission scheme. We also quantified the capacity of the

LSSTC-SP scheme and computed an upper limit on the achievable bandwidth efficiency of
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the system, which is based on EXIT charts. Furthermore, we proposed three near-capacity
iteratively-detected LSSTC-SP schemes, where iterative detection is carried out between an
outer code decoder, an intermediate code decoder and an LSSTC-SP demapper. The three
proposed schemes differ in the number of inner iterations employed between Decoder IT and
the SP demapper, as well as in the choice of the outer code, which is either a regular RSC
code or an IrCC. On the other hand, the intermediate code employed is a URC, which is
capable of completely eliminating the system’s error-floor as well as operating at the lowest
possible turbo-cliff SNR without significantly increasing the associated complexity or interleaver
delay. Explicitly, the system can operate within 0.9 dB, 0.6 dB and 0.4 dB from the maximum
achievable rate limit. However, to operate within 0.6 dB from the maximum achievable rate
limit, the system imposes twice the complexity compared to a system operating within 0.9 dB
from this limit. On the other hand, to operate as close as 0.4 dB from the maximum achievable
rate limit, the system imposes 20 times higher complexity as the one operating within 0.9 dB
from the maximum achievable rate limit. The proposed design principles are applicable to an

arbitrary number of antennas and diverse antenna configurations as well as modem schemes.

5.7 Chapter Summary

In this chapter, we proposed a multi-functional Multiple-Input Multiple-Output (MIMO) scheme,
that combines the benefits of Vertical Bell Labs Layered Space-Time (V-BLAST) codes, of
space-time codes as well as of beamforming. Thus, the proposed system benefits from the
multiplexing gain of V-BLAST, from the diversity gain of space-time codes and from the SNR
gain of the beamformer. This multi-functional MIMO scheme was referred to as a Layered
Steered Space-Time Code (LSSTC). To further enhance the attainable system performance
and to maximise the coding advantage of the proposed transmission scheme, the system was

also combined with multi-dimensional SP modulation.

In Section 5.3 we quantified the capacity of the proposed multi-functional MIMO scheme
and presented the capacity limits for a system employing N; = 4 transmit antennas, N, = 4
receive antennas and a variable number L 44 of elements per AA. Furthermore, in Section 5.4.3
we derived an upper bound of the achievable bandwidth efficiency for the system based on the

EXIT charts obtained for the iteratively detected system.

To further enhance the achievable system performance, the proposed MIMO scheme was
serially concatenated with an outer code combined with a URC, where three different receiver
structures were presented by varying the iterative detection configuration of the constituent
decoders/demapper as outlined in Table 5.1. In Section 5.4.1 we provided a brief description of
the iteratively detected two-stage RSC-coded LSSTC-SP scheme, where extrinsic information

was exchanged between the outer RSC decoder and the inner URC decoder, while no iterations
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were carried out between the URC decoder and the SP demapper. The schematic of the
system is shown in Figure 5.10. The convergence behaviour of the iterative-detection-aided
system was analysed using EXtrinsic Information Transfer (EXIT) charts in Section 5.4.1.1.
In Section 5.4.1.2, we employed the powerful technique of EXIT tunnel-area minimisation
for near-capacity operation. More specifically, we exploited the well-understood properties
of conventional 2D EXIT charts that a narrow but nonetheless open EXIT-tunnel represents
a near-capacity performance. Consequently, we invoked IrCCs for the sake of appropriately
shaping the EXIT curves by minimising the area within the EXIT-tunnel using the procedure
of [191,194].

In Section 5.4.2 we presented a three-stage iteratively detected RSC-coded LSSTC scheme,
where extrinsic information was exchanged between the three constituent demapper/decoders,
namely the outer RSC decoder, the inner URC decoder as well as the demapper. 3D EXIT
charts were presented in Section 5.4.2.1, followed by Section 5.4.2.2 where the simplified 2D
projections of the 3D EXIT charts were provided. In Figure 5.20 we portrayed the wide choice
of the SP mapping schemes available and demonstrated that the system employing AGM-6
provided the best achievable performance amongst all possible mapping schemes. By contrast,

QPSK modulation has only a single AGM scheme, which was characterised in Figure 5.23.

In Section 5.5 we discussed our performance results and characterised the three proposed
iteratively detected LSSTC schemes, while employing the system parameters outlined in Ta-
ble 5.1. Explicitly, the SP aided system can operate within 0.9 dB, 0.6 dB and 0.4 dB from the
maximum achievable rate limit. However, when operating within 0.6 dB from the maximum
achievable rate limit, the system imposes twice the complexity compared to a system operating
within 0.9 dB from this limit. On the other hand, to operate as close as 0.4 dB from the
maximum achievable rate limit, the system imposes a 20 times higher complexity as the one
operating within 0.9 dB from the same limit. The proposed design principles are applicable to
an arbitrary number of antennas and diverse antenna configurations as well as modem schemes.
By contrast, the QPSK modulated iteratively detected three-stage system is capable of operat-
ing within 1.54 dB from the maximum achievable rate limit and thus the SP modulated system

outperforms its QPSK aided counterpart by about 1 dB at a BER of 107°.



Chapter 6

Downlink Layered Steered Space-Time

Spreading Aided Generalised
MultiCarrier Direct Sequence Code

Division Multiple Access

6.1 Introduction

In Chapter 5 we presented a multi-functional Multiple Input Multiple Output (MIMO) scheme
that combines the benefits of space-time codes, of the Vertical Bell Labs Layered Space Time
(V-BLAST) scheme as well as of beamforming. In other words, the Layered Steered Space-
Time Code (LSSTC) of Chapter 5 benefits from a spatial diversity gain, multiplexing gain as
well as beamforming gain. The correct decoding of the LSSTC of Chapter 5 requires that the
number of receive antennas is higher than or equal to the number of transmit antennas. This
condition makes the LSSTC scheme less practical, especially when we consider the DownLink
(DL) scheme of a Base Station (BS) communicating with a Mobile Station (MS). The LSSTC
scheme can however be conveniently applied for communicating between two BSs or between a
BS and a laptop. To make the multi-functional MIMO presented in Chapter 5 more practical,
we present in this chapter a multi-functional MIMO scheme employing four DL transmit and
two receive antennas, which constitutes a rank-deficient scheme, where the channel matrix is
non-invertible. However, we use linear decoding to decode the twin-antenna-based received
signal. The proposed multi-functional MIMO combines the benefits of Space-Time Spreading
(STS), V-BLAST, generalised MultiCarrier Direct Sequence Code Division Multiple Access
(MC DS-CDMA) as well as beamforming. Therefore, the proposed scheme benefits from a

186
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spatial diversity gain, a frequency diversity gain, a multiplexing gain as well as beamforming

gain.

Alamouti [44] discovered a witty transmit diversity scheme using two transmit antennas,
which was generalised by Tarokh et al. [46,47] to an arbitrary number of transmit antennas,
defining the concept of Space-Time Block Codes (STBC). Inspired by the philosophy of STBCs,
Hochwald et al. [49] proposed the transmit diversity concept known as Space-Time Spreading
(STS) for the downlink of Wideband Code Division Multiple Access (WCDMA) [25] that is

capable of achieving the highest possible transmit diversity gain.

In [113] the authors presented a transmission scheme referred to as Double Space-Time
Transmit Diversity (D-STTD), which consists of two Space-Time Block Code (STBC) layers
at the transmitter that is equipped with four transmit antennas, while the receiver is equipped
with two antennas. The decoding of D-STTD presented in [113] is based on a linear decoding
scheme presented in [123], where the authors presented a broad overview of space-time coding
and signal processing designed for high data rate wireless communications. In [123] a two-user
scheme was presented, where each user is equipped with a two-antenna-aided STBC block trans-
mitting at the same carrier frequency and in the same time slot. A two-antenna-aided receiver
was implemented for the sake of decoding the users’ data, while eliminating the interference
imposed by the users on each others’ data. A zero-forcing decoder designed for the D-STTD
was presented in [120] for the sake of reducing the decoding complexity. Finally, [112,124]
present further results that compare the performance of STBC versus D-STTD and extends
the applicability of the scheme to more than two STBC layers.

On the other hand, beamforming [103] constitutes an effective technique of reducing the
multiple-access interference, where the antenna gain is increased in the direction of the desired
user whilst reducing the gain towards the interfering users. Several attempts have been made
to design hybrid MIMO schemes combining STBC with beamforming [114,116-118, 125, 257].
In order to achieve additional performance gains, beamforming has also been combined with
STBC to attain a higher SNR gain [114]. In [257] eigen-beamforming was combined with STBC
while allocating the transmitted power equally between the different antenna elements. On the
other hand, ideal beamforming was combined with STBCs in [125] for the sake of demonstrating

the performance gains attained by such a combination.

Additionally, MultiCarrier Code Division Multiple Access (MC CDMA) [25,258] is based
on a combination of code division and multicarrier or Orthogonal Frequency Division Multi-
plexing (OFDM) techniques [258]. In [259] a generalised MC DS-CDMA scheme was proposed
that includes the subclasses of both multi-tone [260] and orthogonal MC DS-CDMA [261] as
special cases. Additionally, in [3,12,262] STS has been combined with beamforming and with
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generalised MC DS-CDMA for the sake of combining the benefits of spatial diversity, frequency

diversity as well as beamforming gain.

Furthermore, in [175], the employment of the iterative decoding principle [163] was consid-
ered for iterative soft demapping in the context of multilevel modulation schemes combined
with channel decoding. It was also demonstrated in [183] that a recursive inner code is needed
in order to maximise the interleaver gain and to avoid the formation of a BER floor, when
employing iterative decoding. In [185], unity-rate inner codes were employed for designing low
complexity iterative detection aided schemes suitable for bandwidth and power limited systems
having stringent BER requirements. In [186], Brink proposed the employment of the so-called
EXtrinsic Information Transfer (EXIT) characteristics between a concatenated decoder’s in-
put and output for describing the flow of extrinsic information through the soft-in soft-out

constituent decoders.

In a nutshell, in this chapter we propose a system that combines the benefits STS, V-BLAST,
beamforming as well as generalised MC DS-CDMA. The proposed system is referred to as
Layered Steered Space-Time Spreading (LSSTS) aided generalised MC DS-CDMA. The system
is characterised by the spatial diversity gain of the STS, the multiplexing gain of the V-BLAST,
the frequency diversity gain of the generalised MC' DS-CDMA as well as beamforming gain. In
the generalised MC DS-CDMA scheme considered in this chapter, the subcarrier frequencies are
arranged in a way that guarantees that the same S'TS signal is spread to and hence transmitted by
the specific V- number of subcarriers having the maximum possible frequency separation, so that
they experience independent fading and achieve the maximum attainable frequency diversity.

Therefore, the novelty and rationale of the proposed system can be summarised as follows:

1. We amalgamate the merits of V-BLAST, STS, beamforming and generalised MC DS-
CDMA for the sake of achieving a multiplering gain, a spatial and frequency diversity
gain as well as beamforming gain. We propose a transmission scheme equipped with four
transmit and two receive antennas and employ a low-complexity linear receiver to decode

the received signal.

2. We demonstrate that the number of users supported is substantially increased by invoking
combined spreading in both the Time Domain (TD) and the Frequency Domain (FD).
We also use a user-grouping technique for minimising the Multi-User Interference (MUI)
imposed, when employing TD and FD spreading in the LSSTS-aided generalised MC' DS-
CDMA downlink scheme.

3. We propose three iteratively detected LSSTS schemes, where iterative detection is carried
out by exchanging extrinsic information between two serially concatenated channel codes.

We use EXIT charts to analyse the convergence behaviour of the proposed iterative detec-
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tion aided schemes and propose a novel Logarithm Likelihood Ratio (LLR) post-processing
technique for improving the iteratively detected systems’ performance. The three itera-
tive detection aided schemes differ in the way the channel coding is implemented in the

different STS layers. The overall code-rate of Systems 1-3 is identical.

(a) In the first scheme, referred to as System 1, a single outer and a single inner channel

code s used to encode the bits transmitted.

(b) In the second scheme, namely System 2, a single outer code is implemented, whose
output is split into two substreams each of which are encoded using a separate inner

code.

(c) By contrast, in the third proposed scheme referred to as System 3, the input data bit
stream 1s first split into two different substreams, where a pair of different outer as

well as inner codes are implemented in the different substreams.

We will show that the three systems exhibit a similar complexity quantified in terms of the
total number of trellis states encountered, which determines the number of Add-Compare-
Select (ACS) arithmetic operations. Similarly, we will demonstrate that provided we em-
ploy sufficiently long interleavers, the three systems attain a similar BER performance. By
contrast, when shorter interleavers are employed, System 1 performs better than System
2, which in turn performs better than System 3. This is due to the fact that the interleaver
depth of System 2 and System 3 is lower than that of System 1 since the bit stream is
split into two substreams in System 2 and System 3, which constrains the interleaver to
be shorter and hence the correlation in the extrinsic information becomes higher, which

eventually decays the BER performance.

The rest of the chapter is organised as follows. In Section 6.2 we present the encoding and
decoding algorithms of the LSSTS aided generalised MC DS-CDMA scheme and demonstrate
how the scheme benefits from the diversity gain, the multiplexing gain and the beamforming
gain. In Section 6.3 we present how the TD and FD spreading can be combined in order
to increase the number of users supported by the system and we introduce the user-grouping
technique for reducing the MUI. Iterative detection of the proposed system is discussed in
Section 6.4, where we introduce the LLR post-processing technique followed by a comparison of
the attainable performance of the proposed schemes in Section 6.5. We present our conclusions
in Section 6.6 followed by a brief chapter summary discussing both the main contributions and

the organisation of this chapter in Section 6.7.
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6.2 Layered Steered Space-Time Spreading Aided Generalised MC
DS-CDMA

In this section we describe the proposed Layered Steered Space-Time Spreading (LSSTS) aided
generalised MC DS-CDMA scheme designed for achieving spatial diversity gain, frequency di-
versity gain, multiplexing gain as well as beamforming gain. The antenna architecture employed
in Figure 6.1 for the proposed scheme is equipped with N;=4 transmit Antenna Arrays (AA)
spaced sufficiently far apart in order to experience independent fading. The L44 number of
elements of each of the AAs are spaced at a distance of half the wavelength for the sake of
achieving beamforming. Furthermore, the receiver is equipped with N,=2 antennas. The sys-
tem can support K users transmitting at the same time and using the same carrier frequencies,
while they can be differentiated by the user-specific spreading code €, where k € [1, K]. Addi-
tionally, in the generalised MC DS-CDMA considered, the subcarrier frequencies are arranged
in a way that guarantees that the same STS signal is spread to and hence transmitted by the
specific V number of subcarriers having the maximum possible frequency separation, so that

they experience independent fading and achieve the maximum attainable frequency diversity.

6.2.1 Transmitter Model

The system considered employs the generalised MC DS-CDMA scheme of [259] using UV
number of subcarriers. The transmitter schematic of the kth user is shown in Figure 6.1,
where a block of UN; data symbols x is Serial-to-Parallel (S/P) converted to U parallel sub-
blocks. Afterwards, each set of IV; symbols is S/P converted to G=2 groups, where each group
is encoded using the N;;=2 antenna-aided Space-Time Spreading (STS) procedure of [49],
where the transmitted signal is spread to Ny, transmit antennas with the aid of the orthogonal

spreading codes of {€x1,Ck2, - ,Crng}, k=1,2, ..., K.

The spreading codes €1 and €y 2 are generated from the same user-specific spreading code ¢,
by ensuring that the two spreading codes €;,; and € » become orthogonal using the simple code-
concatenation rule of Walsh-Hadamard codes, yielding longer codes and hence a proportionately

reduced per-antenna throughput according to:

S o= [& &l (6.1)

Sho = [cp —cih (6.2)

The discrete symbol duration of the orthogonal STS codes is Ny, N,, where N, represents
the kth user’'s TD spreading factor. Each of the U sub-blocks is then divided into two half-

rate substreams and the two consecutive symbols in each substream are then spread to both
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Figure 6.1: The k; user’s LSSTS aided Generalised MC DS-CDMA transmitter system model.
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transmit antennas using the mapping of:
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which is exemplified in simple graphical terms in Figure 2.3.

The UN; outputs of the UG number of STS blocks modulate a group of subcarrier fre-
quencies {fu1, fuz2s .-, fuv}. Since each of the U sub-blocks is spread to and hence conveyed
with the aid of V subcarriers, a total of UV number of subcarriers are required in the MC
DS-CDMA system considered. The UV number of subcarrier signals are superimposed on each
other in order to form the complex modulated signal. The subcarrier frequencies are arranged
in a way that guarantees that the same STS signal is spread to and hence transmitted by the
specific V' subcarriers having the maximum possible frequency separation, so that they expe-
rience independent fading and achieve the maximum attainable frequency diversity. Finally,
according to the kth user’s channel information, the UV N; signals of the kth user are weighted
by the transmit weight vector ng,)n determined for the wvth subcarrier of the kth user, which

is generated for the nth AA.

The kyy, user’s transmitted signal can be written as follows:

Vei = ZZ P (W © o) (6.7
Veo = ZZ T (Vi © o) sk (63
Ye3 = uzi;;: ;ﬁAﬁ(W5U’3®[2Ne)~Sk,u3 (6.9)
Yia = uzi;g: ;[ZgANj\Qg( 5@,4®I2Ne)'sk,u4> (6.10)

where ® represents the Hadamard product, Py/V represents the transmitted power of each
subcarrier, the factor L4 in the denominator is due to beamforming and the factor N; Ny, in
the denominator suggests that the STS scheme using N; transmit antennas and Ny, orthogonal

spreading codes distributes its power proportionally in space and time.

The bandwidth efficiency of the proposed system can be formulated as follows. Assum-
ing that the system employs a modulation scheme transmitting B bits-per-symbol, then the
bandwidth efficiency of the LSSTS aided Generalised MC DS-CDMA is given by 2U B bits-per-

channel-use.
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6.2.2 Receiver Model

Let us assume that there are N; number of transmit AAs at the Base Station (BS), which are
located sufficiently far apart from each other, having an antenna-spacing of about 10\, where
A represents the carriers wavelength. The channel impulse response vector hy, ., spanning
the nth transmit antenna array, n € [1, Ny|, and the mth receive antenna, m € [1, N,], while

employing the uvth subcarrier can be expressed as:

k _ k k k T
huv nmo [huv nm0> huv nmly - - huv nm( LAA—I)]
_ k
- auv,nm
_ k k k T
- [a'uv,nm07 auv,nml’ s ’a'uv,nm(LAA—l)} ) (611)

where @y nmi i the CIR with respect to the nmth link, wvth subcarrier and the /th element
of the nth AA. Based on the assumption that the array elements are separated by half a

wavelength, we can simplify a” according to

uv,nm

a” = af -df (6.12)

uv,nm uv,nm

= by [LexpGilmsin(@h,)]), . exp(il(Laa — Dmsin(lh, )],

where a,,,, is a Rayleigh faded envelope,
dt,, = [1exp(j[msin(ef,,)]). .. exp([(Laa — Dmsin(el, )], (6.13)

and ¥y, is the nmth link’s Direction Of Arrival (DOA). As for the AA specific DOA, we
consider a scenario where the distance between the transmitter and the receiver is significantly

higher than that between the A As and thus we can assume that the signals arrive at the different
AAs in parallel, i.e. the DOA at the different AAs is the same.

Assuming that the K users’ data expressed in the form of Equations (6.7)-(6.10) are trans-
mitted synchronously over a dispersive Rayleigh fading channel characterised by the CIR of
Equation (6.11), the complex-valued received signal of user 1 over the two receive antennas can

be expressed as

U
Z hyy11 ® [2N6)T Vit T (Ruyy21 ® IzNe)T * Yk uv2
u=1 v

uv,31 & I ) yk uv3 + (huv,41 ® ]2NE)T : yk,uv4) + ng, (614>

>—‘N>—‘

I
I
|| M<

_|_
=

u Vv
Z Z uv,12 ® ]2NE)T *Yiwol + (huv,22 & I2N6>T Vi w2

k=1 u=1 v=1
+ (huwwse ® Ion.)"  Yiws + (Dupao @ Dy,)" - Yk,uu4) + ny. (6.15)

S
I
= 1[M)=

In Equations (6.7)-(6.10), w represents the weight vector of the desired user derived

U/l) nm

from the nmth antenna link and the uvth subcarrier, which is generated by the MRC beam-
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former [242] with the aid of channel state information. Let wl,  =dll  then the k=1st user’s

uv,nm nm?

received signal for the uvth subcarrier can be simplified to

1
Zuv,l = LAA [auv,llyl,uvl + Cy,21Y1,uv2 + Qy,31Y1,uv3 + O5uv,41y1,uv4] + Ny, 1, (616)

1
Zuv,2 = LAA [auv,12y1,uv1 + Q0,22 Y1, uv2 + Cy,32Y1,uv3 + auv,42y1,uv4] + Nyy 2. (617>

The two received signals z,, 1 and z,, 2, corresponding to the first and second receive anten-
nas, respectively, are then correlated with €, ; and € » of Equations (6.1) and (6.2) according

to the following operations:

1 _ & 1
Tuval = €11 Zyy (6.18)
2P, 1
- VLaii N.N Laa [0t 11%1 01 + Qup 211 02 + Oy 3101 03 + Q4121 4]
AA IVtiVtg
+ecl,-n
1,1 uv,1
1 _ & 1
Tuv,12 = €12 Zyy1 (619)
2P, 1
* * * "
— VLAA NN LAA [_Oéuv,llxl’uz + auv,21x1,u1 — O‘uv,31x17u4 —+ Oguv741x17u3]
tiVtg
+cl,-n
1,2 uv,1
1 _ af 1
Tuwv2lt = €11 Zyy2 (620)
2P 1
- Vs NN Lga [up12%1,u1 + 0w 22102 + Qup 3201 03 + Oy 4201 4]
AA tVtdVtg
+ecl,-n
1,1 uv,2
1 _ af 1
Tw,22 = €12 Zyyo (6.21)
2P 1

* * * *
= LAA [_O‘uv,12x1,u2 + O‘uv,22x1,u1 - O‘uv,32x17u4 + O‘uv,42x17u3]

VLaa NNy

al
+C172 * nuv72.

The received and despread signals of Equations (6.18)-(6.21) can be written in a matrix

form as follows:
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1
Tuv,ll
1x
r
1 uv,12
r,, = ) (6.22)
ruv721
1x
L Tuv,22 i
_ - - - o -
Q11 Oyw,21 Q31 Oy 4l T1ul Ci1
* * * * =1 *
_ [2P1Laa 1 Quw2l “Qual Xupar "zt || Tlu2 n (C1o M)
o =1
4 Ntth Qup,12 Q22 Oy 32 Qup a2 T1,u3 Cy1 -2
* * * * =t *
| Qw22 T2 Yuwaz w32 || Tlud | i (Cl,z ‘1y) i

Therefore, the received and despread signal matrix r can be written as':

r=H.-X+N. (6.23)

The channel matrix H can be represented as:

H, H
H=| ' ?], (6.24)
Gi Gy

Q11 Q21 Q31 Q41 Qw12 Q22
where H; = [ , Hy = , G = and

¢ * * * * *
Qupo1 Oy 11 Qupar —Oyy 31 Cyp,22 Xy 12

Q32 Ay, 42
Gy = [ )

O‘Zv,42 _O‘ZU,32
Additionally, the transmitted symbol matrix can be written as X = [
x u € u
[ 1’1] and Xy = [ 1’3].
xT,uZ xT,uél
Hence, the received and despread signal can be represented as:
r H, H X N
r = 1 = 1 2 . ! + ! . (625)
Iy Gl G2 X2 N2

The decoding is carried out in two steps, first the interference cancellation is performed

according to [113,123] followed by the STS decoding procedure of [49]. The interference can-

! , where X; =
X

cellation employed completely eliminates the interference of the two layers on each other as

follows. The received and despread signal matrix r is multiplied by a matrix Q yielding:

el o el x N, | '

In the following analysis we remove the subscript uv for simplicity of notation.
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According to Equation (6.26) the modified received signal T1 depends only on signals trans-
mitted from the first STS layer and the modified received signal s depends only on signals

transmitted from the second STS layer. It was shown in [123] that a solution for Q is given by:

I ~G,Gy*
Q= R (6.27)
_HLH; L

where I, is the identity matrix of dimension 2 x 2.
Hence, H and G can be expressed as

H=H, - G,G;'H, (6.28)
G =G, - HH['G,. (6.29)

An important observation is that the matrices H and G have the same structure as that
of the channel matrix H;. Hence, the above process will transform the decoding of the LSSTS
signal into two separate problems that can be solved by the simple decoding process of ST'S [49].

Finally, after combining the k=1st user’s identical replicas of the same signal transmitted
by spreading over V number of subcarriers, the decision variables corresponding to the symbols

transmitted in the uth sub-block can be expressed as

\%4
gl,u = Zgl,uv- (630)
v=1

The decoded signal can be expressed as

|4

_ 2P Ly 1 S
= uw w . 6.31
7 \/ - Ntth;(m 1l? o+ G ?) 2 47 (6.31)

Therefore, according to Equation (6.31) the decoded signal has a diversity order of 2V. More
explicitly, second order spatial diversity is attained from the STS operation and a diversity order
of V' is achieved as a benefit of spreading by the generalised MC DS-CDMA scheme, where
the subcarrier frequencies are arranged in a way that guarantees that the same STS signal is
spread to and hence transmitted by the specific V' number of subcarriers having the maximum

possible frequency separation, so that they experience as independent fading as possible.

We consider a system employing BPSK modulation, L4 number of elements per AA, V
number of subcarriers and a TD spreading factor of N,=32 for the sake of demonstrating the
performance improvements achieved by the proposed system. The transmitter is equipped with
N;=4 AAs, while the receiver has N,=2 antennas. We assume the availability of perfect channel
knowledge both at the receiver and at the beamformer. The resultant per-user throughput is

2 bits-per-channel-use. Figure 6.2 portrays the benefits of the different components employed
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Figure 6.2: BER performance of the proposed system in Figure 6.1 employing N;=4 AAs and N,=2 antennas
in conjunction with a varying number of L4 elements per AA as well as a varying number
of subcarriers V', while employing K=32 users and a spreading factor N.=32. The per-user

throughput is 2 bits-per-channel-use.

in the system, namely the MC DS-CDMA, the beamforming, the STS and the V-BLAST
components. When a single carrier is employed, i.e. we have V' =1, and Lss = 1 element
per AA, the system’s performance is identical to that of the STS scheme of [49]. Therefore,
the system has a diversity order of two, while the bandwidth efficiency of the proposed system
is twice that of the STS scheme of [49]. Additionally, Figure 6.2 shows the beamforming
gain achieved upon increasing the number of beam-steering elements L, in the AA, while
maintaining the same total number of AAs. As shown in the figure, when the number of
beam-steering elements L 44 increases, the achievable BER performance substantially improves.
Furthermore, to increase the achievable diversity order, the system employs V' > 1 number of
subcarriers, as shown in Figure 6.2. Hence, the proposed system has a diversity order of 2V due
to the employment of LSSTS aided generalised MC DS-CDMA and the throughput becomes
twice that of a system employing only a single STS block, which is a benefit of the V-BLAST
structure. Figure 6.2 quantifies the advantages of increasing both L4 and V in the proposed
system, where increasing L 44 increases the SNR gain of the system while increasing V' improves

the attainable diversity order.
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6.3 Increasing the Number of Users by Employing Time and Fre-

quency Domain Spreading

In the previous section, the DS spreading used by the generalised MC DS-CDMA system was
carried out in the Time-Domain (TD) only based on orthogonal Walsh-Hadamard codes. It
was proposed in [259,263-265] to employ spreading in the Frequency-Domain (FD) for the
MC-CDMA schemes for the sake of exploiting the attainable diversity gain in the FD. In the
generalised MC DS-CDMA scheme considered, the transmitted data stream can be spread in
both the TD and FD in order to support more users or to achieve the maximum attainable
frequency diversity gain [266]. When FD spreading is employed, the FD spreading is applied
after STS TD spreading in Figure 6.1 by multiplying the data symbols of the V' subcarriers
by the V' number of chip values of a spreading code invoked for spreading the data in the FD
across the V number of subcarriers. Hence, the spreading factor of the FD spreading code is
equal to the number of subcarriers V. The resultant bandwidth in this case is identical to that
when the TD-only spreading is considered. Therefore, in this case the system benefits from TD
as well as FD spreading, which allows increasing the number of users, as it will be described in

Section 6.3.1.

At the receiver side, the received signal is first despread in the TD and then despread by
the FD spreading code of length V. Furthermore, the number of users supported by employing
generalised MC DS-CDMA using both TD and FD spreading is equal to N.- V. In other words,
the N, users spread in the TD will have a unique spreading code in the FD and the users having
a different FD spreading code can share the same TD spreading code. Hence, the complexity
of implementing separate TD and FD Multi-User Detectors (MUD) for short spreading codes
is expected to be significantly lower than that of a single TD MUD designed for long codes, as
exemplified by comparing a 64-chip TD-only scheme to that using 8-chip TD and 8-chip FD
spreading. The total number of users supported becomes V - K. =V - N, which is V' times

the number of users supported by the scheme employing TD-only spreading.

6.3.1 Transmitter Model

The transmitter schematic of the proposed system employing TD and FD spreading is shown
in Figure 6.1, which has been presented as the system model in Section 6.2 in conjunction
with TD-only spreading. The transmitter model is the same as in figure 6.1, except that
the V-depth FD repetition scheme in Figure 6.1 is replaced by the V-depth FD spreading
arrangement of Figure 6.3. Let us assume that the kth user’s FD spreading code can be
represented as €, = {c,[1],¢[2], -, ¢, [V]}. Additionally, the TD spreading code is denoted

by € as in Section 6.2.1.
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Figure 6.3: The first STS block of Figure 6.1 employing TD and FD spreading.

As shown in Figure 6.1 and as discussed in Section 6.2, the data stream of duration 7} is S/P
converted to U parallel sub-streams. Afterwards, each set of IV; symbols is S/P converted to
G=2 groups, where each group is encoded using the N;;=2 antenna-aided STS procedure using
the spreading code €, as described in Equations (6.3)-(6.6). Afterwards, when employing TD
and FD spreading, instead of using data repetition over V subcarriers as shown in Figure 6.1,
the U number of sub-blocks generated after the TD spreading are now further spread across the
FD using the previously introduced FD spreading codes ¢/, as depicted in Figure 6.3. When
employing TD-only spreading, the number of users K,,,, that can be supported by the system
is equal to the spreading factor of the TD spreading code used, i.e. K,,0=N.. On the other
hand, the total number of orthogonal codes that can be used for the FD spreading is equal
to V. This implies that if V' number of users share the same TD spreading code, they can be
distinguished by their FD spreading codes. Hence, employing TD and FD spreading increases
the number of users to V' - K42, as compared to IC,,., for the system employing TD-only

spreading.

The TD and FD orthogonal spreading codes can be assigned as follows. If the number of
users is still less than KC,,.., the users will be assigned different TD spreading codes, while
sharing the same FD spreading code. The resultant scheme in this case is equivalent to that
described in Section 6.2. When the number of users is in the range of v - K, < K <
(v+1) - Koz, where v = 1,2, -+ |V — 1, then the same TD orthogonal spreading code will

be assigned to v users, where these users sharing the same TD code will be assigned different
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FD orthogonal spreading codes. Hence, the users sharing the same TD spreading code can be

distinguished by their corresponding FD spreading code.

Since the subcarrier signals are transmitted over independently fading channels, the orthog-
onality of the FD spreading codes cannot be retained in frequency-selective fading channels.
Hence, Multi-User Interference (MUI) is inevitably introduced, which degrades the attainable

BER performance, when the number of users sharing the same TD spreading code increases.

When employing TD and FD spreading, the kth user’s transmitted signals can be expressed

as

U v
2P, 1, ,
" Ion, ) - SkunCi[V]; 6.32
Yk, Z Z VLas NN, (Wavn ® Ion,) - SkunCy[V] (6.32)

where n € [1, Ny] represents the number of transmit antenna, Py/V represents the transmitted
power of each subcarrier, the factor L, in the denominator is due to beamforming and the
factor N;V;, in the denominator suggests that the ST'S scheme using /V; transmit antennas and

N4 orthogonal spreading codes distributes its power proportionally in space and time.

6.3.2 Receiver Model

Let us assume that there are 1 < K’ < V number of users sharing the same TD spreading code
but are distinguished by their FD spreading codes. Then, when the K'/C,,,, number of users’
signals are transmitted over frequency selective fading channels, the complex-valued received

signal of user 1 can be expressed as

K'Kmaz U V. Nt

Z = Y D DY Buwm @ Iy,)”  Yewon + D (6.33)

k=1 u=1 v=1 n=1
K’ \4

2P, Kmaz U Ne
- VLAANtNt 2 ZZZ Aupnm * W uvn)®[2Ne SkunCl[V] + Ny

u=1 v=1 n=1

—

Since orthogonal multicarrier signals and orthogonal TD STS spreading codes are used
for the synchronous downlink transmission over per-subcarrier Rayleigh flat-fading, there is
no interference between the users employing different TD spreading codes or using different
subcarrier signals. The receiver in this case performs two main operations. The first operation
consists mainly of multicarrier demodulation followed by STS decoding, which is similar to the
decoding process of Section 6.2.2. The first part of the decoding operation provides V' number
of outputs corresponding to the V' number of subcarriers conveying the same data. The second
operation in this case corresponds to FD despreading of the V' number of subcarrier outputs

by the FD orthogonal spreading code.
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Following the multicarrier demodulation and the TD despreading operations of Equation (6.33),

the k=1st user’s data mapped to the uvth subcarrier can be expressed as

Tiv,mg = J{ Zzlwm (634)
2 : 2P T 1 1
= * W I u * W I u
VLAA Ntth [( Ay, 1m uv, 1m) ® 2N, €k,ul + ( Ayv.2m uv,2m) ® 2N €ku2

+ (agv,3m ' thw 3m) ® I2Neek u3 T ( Ay dm Wiv,4m) ® I2Ne€k7U4} ' C;c [U]

=t
+C1,g * Nyw,m,

where ey, ,; may assume the values of xy 41, Tk u2, Thus, Trua Or their conjugates as compared
to Equations (6.18)-(6.21).

In Equation (6.34), w
nmth antenna link and the uvth subcarrier, which is generated by the MRC beamformer [242]

W, m TeDresents the weight vector of the desired user derived from the

with the aid of channel state information. Let w] = dlf  where d!  is defined in Equa-

uv,nmm nm?

tion (6.13), then Equation (6.34) can be simplified to

. oP, 1 ,
Tm;’mg = LAA (auv,lmek,ul + Dy, 2m €k, u2 + oy, 3mEk,u3 + auv,4m€k,u4> * Cg [U]
VLga NeNyg
K/
E : kt 1
+ (auv lmdlm dlmek ul + Ay 2md 2m dzmek,u2
k=2

kt 1 kt 1 /
+Oém,,3md3m ’ d3mek,U3 + auv,4md4m ' d4m€k7U4> " Cg, [U]:|

T (6.35)

By employing the decoding scheme of Section 6.2.2 and after despreading the V' number of

decision variables with the aid of the V-chip FD spreading code €, we arrive at

v
Laa Z (|52uu,1|2 + |&uv,2|2) r+Chi| + 1, (6.36)
v=1

8
I

~ 2P 1 {
VL aa NNy

where i represents a V-dimensional interference vector and 7 represents the noise term after

STS demodulation and FD despreading.

We observe from Equation (6.36) that MUT is inevitably introduced, since the orthogonality
of the FD spreading codes cannot be retained over frequency-selective fading channels. Observe
that the desired user’s signal is not interfered by the signals of the users employing different
orthogonal TD spreading codes, when assuming synchronous downlink transmission as well as
flat-fading of the individual subcarriers. The users sharing the same TD spreading code and

employing different FD spreading codes interfere with each other. Therefore, the MUI can be
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Figure 6.4: Block diagram of the user grouping technique (©) Hu et al. [262], 2006.

reduced, if we carefully select the (K’ — 1) potentially interfering users, namely those which
have the lowest FD interference coefficient with respect to the desired user, from the entire set
of all the K'K, 4. users [3,262]. More explicitly, when selecting the specific users for the sake
of sharing the same TD spreading code with the desired user, it must be ensured that their FD
interference remains low and hence they remain distinguishable. The user grouping technique

will be discussed in the following section.

6.3.3 User Grouping Technique

As mentioned in the previous section, some MUI is inevitably imposed, when communicating
over frequency-selective fading channels. However, the MUI can be reduced, if the (K’—1) users
are carefully grouped, so that the specific-users, having the lowest FD interference coefficient
with respect to the desired user, share the same TD spreading code with the desired user. More
explicitly, the users sharing the same TD spreading code are carefully selected from the entire
set of all the K'/C,,q, users. The user grouping algorithm [3,262] used is suboptimal, yet its

performance improvements justify its employment, as we will show in Figure 6.5.

The above-mentioned interference coeflicient can be defined as plk:dkdﬂ, which can be
evaluated before transmission ensues, based on the assumption that the users’ DOAs are per-
fectly known at the beamformer [3,262]. The user grouping technique can be represented by

the block diagram of Figure 6.4 and operates as follows.

In the absence of any prior knowledge, the initial value of py, is set to 0, where p;;, represents a

threshold interference coefficient. The users having an FD interference coefficient of py,x, < pn
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Figure 6.5: BER performance of the proposed system in conjunction with a varying number of users, where
both TD and FD spreading as well as user grouping were employed to improve the achievable
system performance, while suppressing the MUIL. The per-user throughput is 2 bits-per-channel-

use.

are deemed to be the users interfering with each other. Furthermore, when the k;th user
shares the same TD spreading code with the koth user, they belong to the same TD group
and are differentiated by their FD spreading codes. The algorithm aims for ensuring that
the users sharing the same TD sequence have the lowest possible FD interference coefficient.
The selection procedure will continue, until all the users have been grouped. However, if the
threshold value p;, was set too low, some users cannot be allocated to any of the TD user
groups owing to imposing an FD interference coefficient lower than py,. In this scenario, pyy, is
increased by a given step size of 0 < u < Laa. Based on the increased threshold value, another
user allocation attempt is initiated. The process continues until all the users are grouped.
Following this user-grouping procedure, the effect of the interfering signals imposed on the
desired user’s signal becomes less pronounced. Therefore, the achievable BER performance is
improved. Additionally, when a new user joins or leaves the communication system, then the

user grouping has to be updated [3,262].

In Figure 6.5 we plot the BER performance of the proposed DL LSSTS aided generalised
MC DS-CDMA system using N;=4 transmit AAs, N,=2 receive antennas, V=4 subcarriers,
Las=4 elements per AA and a TD spreading factor N,=32. The system also employs BPSK
modulation for K=1, 32 and 64 users. We assume having perfect channel knowledge at both
the receiver and at the beamformer. The resultant per-user throughput is 2 bits-per-channel-

use. Figure 6.5 shows that the performance of the system supporting K=32 users is identical
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to that of the system serving a single user, since no interference is encountered by the K=32
users employing different orthogonal 32-chip Walsh codes as their TD DS spreading in the
synchronous DL. Let us now consider TD and FD spreading, which is employed for the sake of
supporting K=64 users. Consequently, MUI is inevitably introduced among the users sharing
the same TD spreading code. This becomes clear in Figure 6.5 for the case of K=64 users when
no user grouping was employed, since the performance of the system supporting K=64 users
is significantly worse than that supporting a single user or even K=32 users. However, when
user grouping is employed by the LSSTS system for the sake of reducing the MUI imposed,
the performance of the system supporting K=64 users substantially improves. Consequently,
as a benefit of the user grouping technique, the BER performance of the 64-user system is only

slightly inferior in comparison to that serving a single user.

6.4 Iterative Detection and EXIT Chart Analysis

In this section we design an iteratively detected receiver for the proposed system using iterative
detection of serially concatenated Recursive Systematic Convolutional (RSC) codes and Unity
Rate Codes (URC) combined with the QPSK assisted LSSTS aided generalised MC DS-CDMA
scheme. We present three different transceiver structures referred to as System 1, System 2

and System 3, as shown in Figures 6.6, 6.7 and 6.8, respectively.

In the structure of System 1 seen in Figure 6.6 the transmitted source bits u; are encoded
by the outer RSC code’s Encoder I having a rate of R;=1/2. The outer channel encoded bits ¢,
are then interleaved by a random bit interleaver II;, where the randomly permuted bits u, are
fed through the URC Encoder II. The encoded bits cy at the output of the URC encoder are
interleaved by a second random bit interleaver I, producing the permuted bit stream b. The
interleaver I, is used in order to mitigate the correlation in the soft data sequence Ly (b). After
bit interleaving, the QPSK modulator maps blocks of B channel-coded bits to their legitimate

symbols, which are then transmitted using the transmitter structure of Figure 6.1.

At the receiver side, the soft-in soft-out RSC decoder iteratively exchanges extrinsic informa-
tion with the URC decoder, as shown in Figure 6.6. The extrinsic soft information, represented
in the form of Logarithmic Likelihood Ratios (LLR) [226], is iteratively exchanged between the
URC and the RSC decoders for the sake of assisting each other’s operation, as detailed in [227].
In Figure 6.6, L(-) denotes the LLRs of the bits concerned, where the subscript I indicates the
RSC decoder, while I corresponds to inner URC decoder. Additionally, the subscripts a, p
and e denote the dedicated role of the LLRs, with a, p and e indicating a priori, a posteriori

and extrinsic information, respectively. Furthermore, the LLR Lj;(b) denotes the soft output
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Figure 6.6: Block diagram of the proposed DL System 1 employing QPSK modulation in series with a unity-

rate precoder and an outer RSC code.

of the QPSK demapper.

As shown in Figure 6.6, the received and decoded complex-valued symbol stream X is then
fed into the QPSK demapper. The output of the demapper represents the LLR metric Ly, (b)
passed from the QPSK demapper to the URC decoder. As seen in Figure 6.6, the URC
decoder processes the information forwarded by the demapper in conjunction with the a priori
information in order to generate the a posteriori probability. The a priori LLR values of
the URC decoder are subtracted from the a posteriori LLR values for the sake of generating
the extrinsic LLR values Ly .(u2) and then the LLRs L (uy) are deinterleaved by a soft-bit
deinterleaver, as seen in Figure 6.6. Next, the soft bits L; ,(c;) are passed to the RSC decoder of
Figure 6.6 in order to compute the a posteriori LLR values Ly ,(c1) provided by the Log-MAP
algorithm [182] for all the channel-coded bits ¢;. During the last iteration, only the LLR values
L;,(uy) of the original uncoded systematic information bits are required, which are passed to
the hard decision decoder of Figure 6.6 in order to determine the estimated transmitted source
bits. As seen in Figure 6.6, the extrinsic information L; .(cy), is fed back to the URC decoder
as the a priori information L; ,(us2) after appropriately reordering them using the interleaver
of Figure 6.6. The URC decoder exploits the a priori information for the sake of providing
improved a posteriori LLR values, which are then passed to the 1/2-rate RSC decoder and
then back to the URC decoder for further iterations.

In the structure of Figure 6.7 denoted as System 2, the transmitted source bits u; are
encoded by the outer RSC code’s Encoder 1 having a rate of R;=1/2. The outer channel
encoded bits c; are then S/P converted to two parallel streams c1; and c¢12. Each bit stream is
then interleaved by a random bit interleaver, where the interleaved bits in each stream are then
encoded by a corresponding URC encoder. Note that the URC encoders in each stream are
identical. The URC encoded bits in each stream are then interleaved by random bit interleavers
to be then mapped to QPSK symbols and transmitted using steered STS. Similarly to the URC
encoders, the QPSK modulators I and II are identical. The two STS blocks transmit different
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Figure 6.7: Block diagram of the proposed DL System 2 employing an RSC code in series with two parallel
branches corresponding to a URC encoder in series with a QPSK mapper transmitting through
two steered STS blocks.

data at the same time and employ the same subcarriers for the generalised MC DS-CDMA as

described in Section 6.2.

At the receiver side, the decoding process of Section 6.2.2 is employed, where the decoded
symbols are passed to their corresponding branch as shown in Figure 6.7. In each branch,
the decoded symbols are passed to the QPSK demapper to produce the corresponding LLR
Lysi(b;), i = 1,2, values. The demapper’s soft output is deinterleaved by a soft bit deinterleaver
and passed to the URC decoders as a prior: information. The URC decoder utilises the
LLR information passed to it from the demapper as well as the RSC decoder to produce
the extrinsic LLR values L;.(u;), i = 2,3. The extrinsic output of the URC decoders is
deinterleaved and then Parallel-to-Serial (P/S) converted to be passed to the RSC decoder as a
priori information. The RSC decoder utilises the information passed from the URC decoders
to produce the extrinsic LLR L .(ci). The extrinsic output of the RSC decoder is then S/P
converted to be passed to the URC decoders of each branch, which in turn exploits the a priori
information for the sake of providing improved a posteriori LLR values, which are then passed

to the 1/2-rate RSC decoder and then back to the URC decoders for further iterations.

Finally, in the structure of Figure 6.8 referred to as System 3, the transmitted source bits
u; are first S/P converted to two parallel substreams u;; and ujs. Each substream is encoded
by the outer RSC code’s Encoder having a rate of R;=1/2. The outer channel encoded bits
c of each bit stream are then interleaved by a random bit interleaver, where the interleaved
bits in each stream are then encoded by a corresponding URC encoder. The URC encoded
bits in each stream are then interleaved by random bit interleavers to be finally mapped to

QPSK symbols and transmitted using steered STS. Note that the RSC encoders I and II are
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Figure 6.8: Block diagram of the proposed DL System 3 employing two parallel branches of RSC encoder in
series with a URC encoder and transmitting through a QPSK aided steered STS.

identical, the URC encoders III and IV are identical as well as the QPSK modulators I and II

are identical.

At the receiver side of System 3 seen in Figure 6.8, the decoding process of Section 6.2.2
is employed, where the decoded symbols are passed to their corresponding branch, as shown
in Figure 6.8. Each branch then applies iterative detection exchanging extrinsic information
between the corresponding RSC and URC decoders, as shown in Figure 6.8. The output
Ly, (uy1) and Ly ,(ug2) of the RSC decoders is then P/S converted to produce a single stream

L(uy), which is passed to the hard-decision decoder of Figure 6.8.

6.4.1 EXIT Charts and LLR Post-processing

As discussed in Chapter 3, the main objective of employing EXIT charts [186,189] is to predict
the convergence behaviour of the iterative decoding process by examining the evolution of the
input/output Mutual Information (MI) exchange between the constituent decoders in consec-
utive iterations. Again, the application of EXIT charts is based on two main assumptions,
which are realistic when using high interleaver depths, namely that the a prior: LLR values

are uncorrelated and that they satisfy the consistency condition.

Let I 4(x), 0 < I ,(z) <1, denote the MI between the a priori LLRs L. ,(z) as well as the
corresponding bits x and let I .(z), 0 < I .(x) < 1, denote the MI between the extrinsic LLRs
L. .(x) and the corresponding bits .

Figure 6.9 shows the EXIT chart of System 1 depicted in Figure 6.6 employing an iteratively
detected RSC-coded and URC precoded LSSTS system in conjunction with Gray Mapping
(GM) aided QPSK modulation, where iterations are carried out between the outer 1/2-rate RSC



6.4.1. EXIT Charts and LLR Post-processing

208

Modulation Scheme

QPSK

Mapping Gray Mapping
Number of Transmitter AAs V; 4
Number of Elements per AA Laa
Number of Receiver Antennas N, 2
Number of Subcarriers V' 4
TD Spreading Factor N, 4
FD Spreading Factor V
Number of Users K
Outer Encoder RSC(2,1,3),

Generator

(Gm G) = (77 5)8

Inner Encoder

Generator

Unity-rate code
(Gm G) = (37 2)8

Interleaver Depth

Dint bits

Table 6.1: System parameters.
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Figure 6.9: EXIT chart of a RSC-coded and URC-precoded proposed System 1 of Figure 6.6 employing GM

aided QPSK in conjunction with N;=4, N,.=2, V=4, Lya=4, K=1 user, E,/Ny = —2 dB and the

remaining system parameters outlined in Table 6.1.
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code and the inner URC decoders, while no iterations are invoked between the URC decoder
and the QPSK demapper. The system employs a 1/2-rate memory-2 RSC code, denoted as
RSC(2,1,3), in conjunction with an octal generator polynomial of (G, G)=(7,5)s, where G, is
the feedback polynomial and G is the feedforward polynomial. Encoder II is a URC encoder,
described by the pair of octal generator polynomials (G,, G)=(3,2)s. Furthermore, the EXIT
chart of Figure 6.9 was generated for the system employing N;=4 transmit AAs and N,=2
antennas, while using Las=4 elements per AA in conjunction with V=4 subcarriers and the

system parameters outlined in Table 6.1.

Observe in Figure 6.9 that there are several EXIT curves for the URC decoder for the same
Ey /Ny value. Let us first consider the dark line marked by the legend “no LLR limits”. This
EXIT curve corresponds to the URC decoder of Figure 6.6, which has a recursive encoder
at the transmitter and hence it is expected that the EXIT curve of the URC decoder will
reach the (1.0,1.0) point of perfect convergence in the EXIT curve while using sufficiently long
interleavers, as discussed in Section 3.2.4. However, the EXIT curve of the proposed System
1 characterised in Figure 6.9 shows that the EXIT curves of the URC decoder do not reach
the (1.0,1.0) point. As a first step in circumventing this problem, we attempted to limit the
maximum and minimum of the LLR values L,;(b) for the sake of avoiding the problem of
numerical overflow in the computer’s memory. Limiting the LLR values allowed the URC
EXIT curve to reach the (1.0,1.0) point, as shown in Figure 6.9 by the dotted line associated
with the legend “LLR limit=10". On the other hand, for the sake of testing the accuracy of the
URC EXIT curve, while imposing a limit on the LLR values, we generated artificial Gaussian
distributed and uncorrelated LLRs Ly, (b), that satisfy the consistency condition. The resultant
EXIT curve in this case is represented by the dotted line having the legend “artificial LLRs
generation”. The artificial LLRs are generated assuming the transmitted bits are known at the
receiver and it is used as a benchmark for testing the accuracy of our results. As shown in
Figure 6.9, the curves corresponding to the case where the LLR’s dynamic range is limited and
where the artificial LLRs are generated are quite different. Therefore, limiting the LLR values

does not solve the problem.

In order to understand this problem, let us return to the basics of the LLR and mutual
information. The soft information pertaining to bits is typically represented using the LLRs
within the receiver. Here, the particular LLR Ly (b;) in the frame Ly, (b) that pertains to the
bit b; from the frame b is specified according to

L(b;) = log (%) : (6.37)
where P(b;) € [0,1] is the probability that the bit b; has the logical value 0 or 1 within the

transmitter. Note that the logarithmic domain is employed since it provides symmetry resulting
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Figure 6.10: Gaussian distributed LLRs Lj;(b) corresponding to logical zero- and one-valued bits b for various

mutual informations I.

in LLRs having a positive or negative sign, when there is a higher confidence in a logical one- or
a logical zero-valued bit, respectively. Furthermore, the level of this confidence increases with

the LLR’s magnitude.

On the other hand, as described in [267], the mutual information between an LLR frame
L(b) and the corresponding bit stream b depends on the distribution of the LLR values.
More specifically, if the distribution of the LLR values that correspond to logical zero-valued
bits is equal to that of the LLR values pertaining to logical one-valued bits, then the mutual
information will be zero. In this case, the LLR values are unreliable and the hard decision

based on the LLR values will result in an error rate of 50%.

As the reliability of the LLR values increases, the LLR distributions corresponding to the
bits 1 and bits 0 will move apart, as shown in Figure 6.10. As the MI I increases, the two
LLR distributions will move apart and will overlap only at the tails of the distributions, giving
a higher mutual information value. This results in a high confidence in the hard decoding
based on the LLR values and a reduced probability of bit errors at the receiver. In Figure 6.10
the LLRs can be seen to have Gaussian distributions, although other distributions may be

encountered in practice, depending on the transmission channel employed.

Observe in Figure 6.10 that the LLR abscissa value along the x-axis can be calculated by
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Figure 6.11: Logarithm of the probabilities in Figure 6.10 versus the corresponding QPSK demapper LLR

output Lps(b) for the DSTS system of Chapter 2.

P(b=1)
P(b=0)

erty has been tested for the LLR Lj;(b) in the iteratively detected DSTS system of Section 3.3

computing log ( >, where P(b) can be computed from the y-axis of the figure. This prop-

and for the proposed System 1 of Figure 6.6. For the DSTS system, we have shown that this

property is true when we plotted the log (1]3522(1);) versus Lys(b) in Figure 6.11. As shown in

P(bi=1)
P(b;=0)

Figure 6.11, the result is a diagonal line, which means that Ly, (b;) = log ( ) as expected.

The same experiment has been carried out for the proposed System 1 of Figure 6.6. We

plotted the log (1};83;

result should be identical to Figure 6.11, where we have a diagonal line. However, we observe

) versus Ly (b) and the result is shown in Figure 6.12. Theoretically, the

in Figure 6.12 that the result is a non-linear function. The reason for this behaviour is the fact
that the input x of the QPSK demapper is not Gaussian distributed, although we calculate the
LLR values Lj;(b) assuming that the input data stream X is Gaussian distributed. A trivial
solution to this problem is to try to find the probability distribution of the LSSTS decoder’s
output X and compute the LLRs in the QPSK demapper using the correct PDF. However, it is
not straightforward to find a mathematical formula to model the PDF of Xx. On the other hand,
it is possible to compute the LLRs based on the histogram of the received and decoded data X.
However, computing the histogram for every received frame is a complex and time-consuming

process.

By considering the specific relationship between the probabilities and LLR values seen in
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Figure 6.12: Logarithm of the probabilities in Figure 6.10 versus the corresponding QPSK demapper LLR

output Lys(b) for the proposed System 1 shown in Figure 6.6.

Figure 6.12 we can find a relationship that can transform the result of Figure 6.12 into that
seen in Figure 6.11. The y-axis of Figure 6.12 is the correct LLR value and hence we have to
transform the x-axis LLR value into its corresponding y-axis value. An empirical transformation
of the Ly(b) LLR values has been computed for the sake of correcting the relationship between
the LLR values and their corresponding probabilities. The transformation is applied to the LLR
values at the output of the QPSK demapper and hence it is referred to as LLR post-processing.
The empirical transformation can be expressed as:

L (b)

LLRou - )
" 125 (logy(V) + 1) — 0.75[ £ — 1]

(6.38)

where LLR,,; represents the LLR passed from the QPSK demapper to the deinterleaver Il of
Figure 6.6 after the transformation of the LLRs. This transformation is referred to as LLR
post-processing, since it is applied at the receiver side after computing the LLRs in the QPSK

demapper.

Figure 6.9 also shows the EXIT curve of the inner URC decoder after the LLR post-
processing technique was employed. As shown in Figure 6.9, the EXIT curve of the system where
the post-processing is employed is similar to that where the artificial LLRs were considered.
Hence, the proposed LLR post-processing technique solves the problem of the non-Gaussian
decoded data passed from the MIMO decoder to the QPSK demapper and at the same time

eliminates the complexity of the histogram estimation for every received frame.
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Figure 6.13: EXIT chart of the RSC-coded and URC-precoded System 1 of Figure 6.6 employing an interleaver
depth of D;,;=160,000 bits, V=4 subcarriers, L 441=4 elements per AA, N.=4, K=1 user in

conjunction with the system parameters outlined in Table 6.1.

Observe from Figure 6.13 that an open EXIT chart convergence tunnel is formed around
Ey/No=—3 dB for System 1 employing V=4 subcarriers, L41=4 elements per AA, N.=4 and
supporting K'=1 user, while using the remaining system parameters outlined in Table 6.1. This
implies that according to the predictions of the EXIT chart seen in Figure 6.13, the iterative
decoding process is expected to converge at an Ej /Ny of at least —3 dB. The EXIT chart based
convergence predictions can be verified by the Monte-Carlo simulation based iterative decoding
trajectory of Figure 6.14, where the trajectory was recorded at Ej,/Ny=—2.8 dB, while using
an interleaver depth of D;,,;=160, 000 bits, V=4 subcarriers, L =4 elements per AA, N.=4,
K=1 user in conjunction with the system parameters outlined in Table 6.1. The steps seen
in Figure 6.14 represent the actual extrinsic information exchange between the URC’s decoder

and the outer RSC channel decoder.

On the other hand, increasing the number of users beyond the TD spreading factor N, and
employing both TD as well as FD spreading combined with the user grouping technique of
Section 6.3.3 degrades the system’s performance, as shown in Figure 6.5. The TD and FD
spreading as well as the user grouping technique have been applied to System 1 of Figure 6.6.
Iterative detection has been carried out by exchanging extrinsic information between the RSC

decoder and the URC decoder at the receiver side in addition to the LLR post-processing
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Figure 6.14: Decoding trajectory of the iteratively detected RSC-coded and URC-precoded System 1 seen

in Figure 6.6 employing an interleaver depth of D;,;=160,000 bits, V=4 subcarriers, L44=4

elements per AA, N.=4 and K=1 user, while operating at F},/No=—2.8 dB in conjunction with

the system parameters outlined in Table 6.1.

10
system 1
V=4 /
Laa=4 /
0.8 + Ne=4 2
>
O 06+ ol 1
cq- - /...
’?‘l /’.l,:_f.'../-.....
3 ’,—"A’-T"'”
204 —= St 1
—_ r- : URC
Ey/No=-2.8 dB
. — K=1user
---- K=Busers
0.2 : user grouping |
------ RSC (2,1,3)
(Gr!G):(7!5)8
0.0 ‘ ‘ : :
0.0 0.2 0.4 0.6 0.8 10

1), e(C0)i 11 a(U2)

Figure 6.15: EXIT chart of a RSC-coded and URC-precoded System 1 of Figure 6.6 employing an interleaver
depth of D,,;=160, 000 bits, V=4 subcarriers, L 4 4=4 elements per AA, N.=4 and K=1, 8 users

in conjunction with the system parameters outlined in Table 6.1.



6.4.1. EXIT Charts and LLR Post-processing 215

1.0
System 2 |
V=4 [
Lan=4 ]
N=4 :
08 K=1 user !
So6!
= 7 -
3 _— .
204 _—_. L
— URC
Ey/Ng=-2.8 dB
02 ¢
o RSC(2,1,3)
(GrvG)=(715)8
--- Decoding Trajectory
0.0 ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 10

l1,e(C1) 11 a(Uo)

Figure 6.16: Decoding trajectory of the iteratively detected System 2 of Figure 6.7 employing an interleaver
depth of D;,;=160,000 bits, V=4 subcarriers, L 44=4 elements per AA, N.=4 and K=1 user,
while operating at E,/No=—2.8 dB in conjunction with the system parameters outlined in Ta-
ble 6.1. The inner decoders EXIT curve was generated for one branch of the system seen in
Figure 6.7.

technique, which was applied for the sake of correcting the LLR output of the QPSK demapper.
The resultant EXIT chart is shown in Figure 6.15, where a comparison between the EXIT curves
of the URC decoder is offered for both K=1 and K=8 users. Figure 6.15 portrays the EXIT
chart of a system employing N;=4 transmit AAs, N,=2 receive antennas, V=4 subcarriers,
Ls=4 elements per AA, N,=4 and the system parameters outlined in Table 6.1. As shown
in Figure 6.15, it is expected that the single-user system outperforms the overloaded eight-user
system by Ej,/Ny of about 0.2 dB.

Figure 6.16 shows the EXIT chart of the iteratively detected System 2 of Figure 6.7. The
EXIT curve of the inner URC decoder was recorded for one of the two substreams seen in
Figure 6.7. The EXIT curve of the two substreams is identical, since the interference cancella-
tion scheme of Section 6.2.2 completely eliminates the interference imposed by one of the STS
layers on the other. The EXIT chart of Figure 6.16 was recorded for the system employing V=4
subcarriers, L 44=4 elements per AA, N.=4, K=1 user and the remaining system parameters
outlined in Table 6.1. The EXIT chart based convergence predictions can be verified by the
Monte-Carlo simulation based iterative decoding trajectory of Figure 6.16, where the trajec-

tory was recorded at E,/Ny=—2.8 dB, while using an interleaver depth of D;,;=160, 000 bits.
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Figure 6.17: Decoding trajectory of the iteratively detected System 3 of Figure 6.8 employing an interleaver
depth of D;,;=160,000 bits, V=4 subcarriers, L 44=4 elements per AA, N.=4 and K=1 user,
while operating at E,/No=—2.8 dB in conjunction with the system parameters outlined in Ta-

ble 6.1. The inner and outer EXIT curve was generated for one branch of the system in Figure 6.8.

The steps seen in Figure 6.16 represent the actual extrinsic information exchange between the
URCs’ decoders and the outer RSC channel decoder.

On the other hand, Figure 6.17 shows the EXIT chart of the iteratively detected System 3
of Figure 6.8. The EXIT curves of the inner URC decoder as well as the outer RSC code’s
decoder were recorded for one of the two substreams seen in Figure 6.8. Again, the EXIT curve
of the two substreams is identical since the interference cancellation scheme of Section 6.2.2
completely cancels the interference imposed by one of the STS layers on the other. The EXIT
chart of Figure 6.17 was recorded for the system employing V=4 subcarriers, L 44=4 elements
per AA, N.=4, K=1 user and the system parameters outlined in Table 6.1. The EXIT chart
based convergence predictions can be verified by the Monte-Carlo simulation based iterative
decoding trajectory of Figure 6.17, where the trajectory was recorded at Ej,/Ny=—2.8 dB, while
using an interleaver depth of D;,,;=160,000 bits.

As observed in Figures 6.14, 6.16 and 6.17, the three systems, namely System 1, System
2 and System 3 may be expected to have a similar BER performance based on these EXIT
chart predictions. This is due to the fact that the interference cancellation operation of the
proposed system outlined in Section 6.2.2 completely eliminates any interference imposed by

one of the STS layers on the other layer. Therefore, the iteratively detected Systems 1-3, have
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Figure 6.18: Performance comparison of the GM-based RSC-coded and URC precoded System 1 of Figure 6.6
in conjunction with V=4 subcarriers, L s4=4 elements per AA, N.=4 and K=1 user and the

system parameters outlined in Table 6.1, when using an interleaver depth of D;,;=160,000 bits
for a variable number of iterations.

similar BER performances according to our EXIT chart prediction provided that we employ

sufficiently long interleavers which are capable of eliminating the correlation of the extrinsic
information.

6.5 Results and Discussions

In this section, we consider a LSSTS system associated with N;=4 transmit AAs, N, =2 receive
antennas, V=4 subcarriers, L 44=4 elements per AA, N,=4 and the system parameters outlined
in Table 6.1 in order to demonstrate the performance improvements achieved by the proposed
systems, namely System 1, System 2 and System 3. We employ Gray Mapping (GM) aided
QPSK modulation. Additionally, perfect channel knowledge is assumed at both the receiver as

well as at the transmit beamformer.

Figure 6.18 compares the BER performance of the proposed System 1 supporting K=1 user
in conjunction with GM aided QPSK for different number of iterations. Figure 6.18 portrays
the performance of the iteratively detected RSC-coded and URC precoded System 1, when
employing an interleaver depth of D;,;=160,000 bits. Figure 6.18 demonstrates that the BER
performance closely matches the EXIT chart based prediction of Figure 6.14, where the system
approaches an infinitesimally low BER at E,/Ny=—2.8 dB after 10 iterations. On the other
hand, Figure 6.19 compares the BER performance of the iterative detection aided System 1,
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Figure 6.19: Performance comparison of the GM-based RSC-coded and URC precoded System 1 of Figure 6.6
in conjunction with V=4 subcarriers, L 44=4 elements per AA, N.=4 and 10 iterations and the

system parameters outlined in Table 6.1, when using an interleaver depth of D;,;=160,000 bits
for K=1 and K=8 users.

while employing V=4 subcarriers, L 44=4 elements per AA, N.=4 and 10 decoding iterations
in conjunction with GM aided QPSK for K=1 and K=8 users. The system of Figure 6.19
employs TD and FD spreading for the sake of increasing the number of users to K'=8, which is
twice the TD spreading factor, i.e. twice the number of users supported by employing TD-only
spreading, in addition to applying the user grouping technique of Section 6.3.3. Furthermore,
we employ the LLR post-processing technique of Equation (6.38) for the sake of correcting
the LLR output of the QPSK demapper. According to the EXIT chart predictions seen in
Figure 6.15, the system employing K'=1 and K=8 users has an Ej,/N, requirement difference
of about 0.2 dB. According to Figure 6.19, when the system employs an interleaver depth of
D;,,;=160, 000 bits and 10 decoding iterations, the system supporting a single user outperforms

that supporting K'=8 users by about 0.45 dB at a BER of 107°.

As discussed previously, according to the EXIT chart prediction of Figures 6.14, 6.16
and 6.17 the BER performance of Systems 1-3 is identical, when employing a long interleaver
as well as a sufficient number of decoding iterations. Observe from Figures 6.6, 6.7 and 6.8
that the interleaver depth for System 2 and System 3 is half of that for System 1 when con-
sidering the same frame length for the input data bit stream u;. This is due to the fact that
the input bit stream in System 2 and System 3 are split into two parallel equal length bit
streams. In what follows we refer to the interleaver II; depth of System 1 in Figure 6.6 as D;,;

and it is equal to the RSC code rate R times the input bit stream frame length. Hence the



6.5. Results and Discussions

219
1
— noiter
......... 1|ter
1| — 2iter
10 e = 4 iter
\ --- 10iter
!
-2 i \ \
& x
L P
m '
10° i
o
System2 ! ‘l
4| V=4 b
10 Laa=4 | |‘
Ne= .
5 K=1 user \ ll . 1
10 ‘ e ‘ N ‘ ‘ ‘ ‘
5 4 3 -2 -1 O 1 2 3 4 5

E/No [dB]
Figure 6.20: Performance comparison of the GM-based RSC-coded and URC precoded System 2 of Figure 6.7

in conjunction with V=4 subcarriers, L 4 4=4 elements per AA, N.=4, K=1 user and the system

parameters outlined in Table 6.1, when using an interleaver depth of D;,;=160,000 bits for a
variable number of iterations.
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Figure 6.21: Performance comparison of the GM-based RSC-coded and URC precoded System 3 of Figure 6.8

in conjunction with V=4 subcarriers, L, 4=4 elements per AA, N.=4 and K=1 user and the

system parameters outlined in Table 6.1, when using an interleaver depth of D;,;=160,000 bits
for a variable number of iterations.
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interleaver II; depth of System 2 and System 3 in Figures 6.7 and 6.8 is D;,;/2. Figure 6.20
compares the BER performance of the proposed System 2 employing V=4 subcarriers, Lss=4
elements per AA, N.=4 and supporting K=1 user in conjunction with GM aided QPSK for
different number of iterations. The figure shows the performance of the iteratively detected
RSC-coded and URC precoded System 2, when employing a bit sequence u; having a length
of 80,000 bits, i.e. D;,;=160,000 bits. This means that the interleaver II; of Figure 6.7 has
a depth of 80,000 bits. Figure 6.20 demonstrates that the BER performance closely matches
the EXIT chart based predictions of Figure 6.16, where the system approaches a BER below
1075 at Ej/Ny in excess of —2.8 dB after 10 iterations. Similarly, we plot in Figure 6.21 the
BER performance comparison of the proposed System 3 employing V=4 subcarriers, Ljs=4
elements per AA, N.=4 and K=1 user in conjunction with GM aided QPSK for different num-
ber of iterations and employing an interleaver II; of Figure 6.8 having depth of 80,000 bits,
i.e. D;;;=160,000 bits. Figure 6.21 demonstrates that the BER performance closely matches
the EXIT chart based predictions of Figure 6.17, where the system performance approaches a
BER below 107" at Ej,/Ny in excess of —2.8 dB after 10 iterations.

To comment briefly on the associated complexity, for an interleaver depth of D;,; and after
I number of iterations, System 1 encounters (I + 1)(4D;,; — 16) number of trellis states, while
System 2 invokes (I + 1)(4D;,; — 17) number of trellis states. On the other hand, System 3 has
(I + 1)(4D;ne — 32) trellis states. Hence, for the system parameters of Table 6.1 employed in
the above investigations, i.e. for D;,;=160, 000 bits and /=10 iterations, System 1 encounters
a total of 7,039, 824 trellis states, System 2 employs 7,039, 813 trellis states and finally System
3 requires 7,039,648 trellis states. Therefore, we may conclude that the three systems also
have a similar complexity, although System 3 is the least complex in terms of the number
of trellis states used throughout the iterative decoding process, which determines the number
of Add-Compare-Select (ACS) arithmetic operations. Note that System 2 employs one more
mapper and URC encoder and decoder blocks than System 1, while System 3 employs one more
mapper, one URC encoder/decoder as well as an extra RSC encoder/decoder in comparison to

System 1.

We have shown that while employing a high interleaver depth D;,; = 160,000 bits, Systems
1-3 have both a similar performance and a similar complexity, although Systems 2 and 3 use
more encoder and decoder components than System 1. On the other hand, splitting the bit
stream into two parallel substreams in Systems 2 and 3 implies that their interleaver depth
becomes lower than that of System 1, while considering the same number of input bits. Hence,
in what follows we study the effect of the interleaver depth on the achievable performance of

the three systems.
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Figure 6.22: Performance comparison of GM-based RSC-coded and URC precoded Systems 1, 2 and 3 in

conjunction with V=4 subcarriers, L44=4 elements per AA, N.=4 and K=1 user and the

system parameters outlined in Table 6.1, when varying the interleaver depth for 10 decoding

iterations.
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Figure 6.22 shows the BER performance comparison of Systems 1-3 while employing different
interleaver depths D;,; varying between 80,000 bits and 2,000 bits. Figure 6.22 compares
the achievable BER performance of the proposed systems employing V=4 subcarriers, Las=4
elements per AA, N.=4 and supporting K=1 user in conjunction with GM aided QPSK after
I=10 decoding iterations. Observe in Figures 6.18-6.21 and in Figures 6.22 (a) and (b) that
when long interleavers are employed, i.e. when the interleaver Depth is D;,;=160, 000 bits,
80, 000 bits and 40, 000 bits, the three systems have a similar BER performance. However, when
we employ shorter interleavers, we can observe from Figure 6.22 that the BER performance of
System 3 becomes inferior to that of System 2, which in turn performs worse than System 1.
This is due to the fact that the interleaver depth of Systems 2 and 3 is half of that of System
1, which implies that the extrinsic information remains more correlated and hence prevents
the decoding trajectory from reaching the (1.0,1.0) point of perfect convergence, as discussed
in Section 3.2.4. Observe also in Figure 6.22 that the performance of System 3 is lower than
that of System 2 and this is due to the fact that the trellis of the RSC decoder in System
2 is longer than that of System 3 and hence a high LLR value will improve the attainable
performance right across the entire trellis in System 2, while it will only benefit one of the two

RSC constituent trellises in System 3.

Therefore, we may conclude that although Systems 1-3, have a similar overall complexity
in terms of the number of their trellis states encountered, the BER performance of the three
systems remains similar only when an interleaver depth of D;,; > 40,000 bits is employed.
By contrast, if we employ shorter interleavers, we can observe from Figure 6.22 that the BER
performance of System 1 degrades to a lesser extent in comparison to System 2, which in turn

performs better than System 3, as portrayed in Figure 6.22.

6.6 Chapter Conclusion

In this chapter, we proposed a novel multi-functional downlink MIMO scheme that combines the
benefits of STC, V-BLAST, generalised MC DS-CDMA as well as beamforming. The system
proposed in this chapter differs from that of Chapter 5 in terms of the decoding procedure that
allows the receiver of this chapter to have less receive antennas than the number of transmit
antenna arrays. Hence, the system proposed in this chapter can be applied where relatively
small handsets are used at the receiver. The proposed system employing N,=4 transmit antenna
arrays has a per-user throughput that is twice that of a system employing only a single STS
block, which was the case in [49]. On the other hand, employing generalised MC DS-CDMA and
assuming that the subcarrier frequencies are arranged in a way that guarantees that the same

STS signal is spread to and hence transmitted by the specific V' number of subcarriers having the
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maximum possible frequency separation, the diversity order of the system employing V' number
of subcarriers increases V' fold compared to that employing a single subcarrier. Additionally,
in order to increase the number of users so that the system can support more than N, number
of users, where N, is the TD spreading factor, TD and FD spreading was employed. We
also employed a user-grouping technique for the sake of minimising the multiuser interference
imposed by the users sharing the same TD spreading code on each other. In order to improve
the performance of the proposed system, we presented three iterative detection aided structures

of Figure 6.6, 6.7 and 6.8.

The three iterative detection aided systems ultimately resulted in a similar BER perfor-
mance and also had a similar complexity provided that we employ an interleaver depth of
Dy = 40,000 bits. Explicitly, after 10 decoding iterations and employing an interleaver depth
of Dy = 160,000 bits, the three systems attained a BER below 1075 at Ej, /Ny values in excess
of —2.8 dB. On the other hand, System 1 of Figure 6.6 had 7,039, 824 trellis states, System 2
of Figure 6.7 employed 7,039,813 number of trellis states and finally System 3 of Figure 6.8
required 7,039, 648 trellis states, when considering D;,;=160, 000 bits and /=10 decoding iter-
ations. On the other hand, if we employ interleavers having a depth shorter than 40,000 bits,
we can observe from Figure 6.22 that System 1 performs better than Systems 2 and 3, since the
interleaver depth of Systems 2 and 3 is half that employed in System 1. Finally, the single-user
iteratively detected System 1 employing N.=4 and V=4 outperformed the K =8-user system
by an Ej/N, of about 0.45 dB at a BER of 107°.

6.7 Chapter Summary

In this chapter, we proposed a multi-functional multiuser MIMO scheme that combined the
benefits of V-BLAST, of space-time codes, of generalised MC DS-CDMA and of beamforming.
Thus, the proposed system benefits from the multiplexing gain of V-BLAST, from the spatial
diversity gain of space-time codes, from the frequency diversity gain of the generalised MC
DS-CDMA and from the SNR gain of the beamformer. This multi-functional MIMO scheme
was referred to as LSSTS aided generalised MC DS-CDMA.

In Section 6.2 we introduced the proposed MIMO scheme, where we illustrated how the
transmitter of the different users was constructed. Then, we outlined the decoding process that
takes place at the receiver side, where two-stage decoding was employed. First, the interference
cancellation was carried out, where the interference imposed by one of the STS blocks on the
other was perfectly cancelled by the interference cancellation technique employed. Afterwards,

STS decoding was carried out in the same way as proposed in [49]. In order to increase the
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number of users supported by the system, FD spreading was applied in the generalised MC
DS-CDMA in addition to the TD spreading of the STS. In this case, the users can share the
same TD spreading code and then they are distinguished by their FD spreading code. This
results in the users sharing the same TD spreading code imposing multiuser interference on
each other. Hence, we employed a user grouping technique that minimises the FD interference
coefficient for the users in the same TD group. The user grouping technique was described in
Section 6.3.3.

To further enhance the achievable system performance, the proposed MIMO scheme was
serially concatenated with an outer code combined with a URC, where three different iteratively
detected systems were presented, referred to as System 1, System 2 and System 3. System 1,
shown in Figure 6.6 employed the serial concatenation of an RSC encoder and a URC encoder
with the proposed QPSK modulated LSSTS scheme. At the receiver side, iterative detection
was carried out between the RSC decoder and the URC decoder. Additionally, in the structure
of Figure 6.7 denoted as System 2, the transmitted source bits were encoded by the outer
RSC code’s encoder. The outer channel encoded bits were then S/P converted to two parallel
streams. FEach bit stream was then encoded by a corresponding URC encoder followed by a
QPSK modulator in each substream. The data in each stream was then transmitted using
SSTS. At the receiver side of System 2, iterative detection was carried out between the RSC
decoder and the two URC decoders, where the LLRs were S/P converted from the RSC decoder
to the URC decoders and they were then P/S converted, when passed from the URC decoders to
the RSC decoder. Finally, in the structure of Figure 6.8 denoted as System 3, the transmitted
source bits were first S/P converted to two parallel substreams, where each substream was
encoded by the outer RSC code’s Encoder followed by the URC encoder. The URC encoded
bits in each stream were then mapped to QPSK symbols and transmitted using SSTS. At the
receiver side of System 3 seen in Figure 6.8, the decoding process of Section 6.2.2 was employed,
where the decoded symbols were passed to their corresponding branch as shown in Figure 6.8.
Each branch then applied iterative detection exchanging extrinsic information between the
corresponding RSC and URC decoders, as shown in Figure 6.8. The extrinsic output of the
RSC decoders was then P/S converted to produce an LLR stream, which was passed to the

hard-decision decoder of Figure 6.8.

We used EXIT charts in order to study the convergence behaviour of the proposed systems
and in Section 6.4.1 we proposed an LLR post-processing scheme for the soft output of the
QPSK demapper, in order to improve the achievable system performance. In Section 6.5 we
discussed our performance results and characterised the three proposed iteratively detected
schemes, while employing N;=4 transmit AAs, N,=2 receive antennas, L44 number of ele-

ments per AA, V number of subcarriers and K users. We demonstrated that the three pro-
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posed systems attain a BER lower than 107° at Ej/Ny in excess of —2.8 dB, while employing
D;,,;=160, 000 bits and /=10 iterations. Finally, for the system employing N.=4 and V=4, the
single user iteratively detected System 1 outperformed the eight-users system by an FEj/Ny of
about 0.45 dB at a BER of 1077,



Chapter

Distributed Turbo Coding

7.1 Introduction

As discussed in Chapter 1, wireless channels suffer from multipath propagation of signals, that
results in a variation in the received signal strength. During severe fading of a specific prop-
agation path, the received signal cannot be correctly decoded, unless some less attenuated
multipath versions of it are available at the decoder side. This can be arranged by introducing
transmit diversity for example, as discussed in Chapter 1. In conventional MIMO systems con-
stituted by colocated MIMO elements, transmit diversity is generated by transmitting different
versions of the signal from different antennas located at the same BS or MS. Transmit diversity
results in a significantly improved BER performance, when the different transmit antennas are
positioned sufficiently far apart to ensure that the signal from each antenna to the destination

experience independent fading.

The antenna spacing in colocated MIMOs is assumed to be sufficiently large so that the
assumption of statistical independence of the different paths from the different antennas is
justified. However, satisfying the assumption of a sufficient high antenna spacing may be im-
practical for shirt-pocket-sized wireless devices, which are typically limited in size and hardware
complexity to a single transmit antenna. On the other hand, spatial fading correlations caused
by insufficient antenna spacing at the transmitter or receiver of a MIMO system result in a
degraded capacity as well as BER performance for MIMO systems, as shown in Figure 7.1 for
a twin-antenna-aided STBC system [44]. Spatial correlation is typically introduced as a result
of large-scale shadow fading that affects the transmission links between the different transmit
and receive antennas [31]. Figure 7.1 compares the BER performance of a single-transmit and
single-receive antenna system with that of a twin-antenna-aided STBC system affected by the

large-scale shadow fading. As shown in Figure 7.1, the performance of MIMO systems degrades
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Figure 7.1: Effect of large-scale shadow fading on the performance of twin-antenna-aided STBC system.

as the variance of the shadow fading increases and the single-antenna aided system succeed in

outperforming a MIMO system, when the shadow fading variance is higher than 5 dB.

Hence, we can surmise that transmit diversity methods are not readily applicable to compact
wireless communicators owing to the size as well as complexity constraints that limit the use of
multiple transmit antennas. For example, in wireless mobile systems the size of the mobile unit
is a limiting factor in incorporating several antennas that are sufficiently far apart for attaining
statistically uncorrelated fading between the different transmit and receive antennas. Recently,
cooperative communication techniques [36,37,268] were proposed for eliminating correlation
amongst the diversity paths by cooperatively activating the single antenna of several MSs,
hence effectively creating a distributed MIMO scheme. In other words, single-antenna aided
users support each other by “sharing their antennas” and thus generate a virtual multi-antenna
environment [137]. Again, in cooperative communications it is possible to guarantee that the
cooperating users are sufficiently far apart, in order to attain independent fading. Since the
signals transmitted from different users undergo independent fading, spatial diversity can be

achieved by the concerted action of the cooperating partners’ antennas.

In this chapter we design a Distributed Turbo Coding (DTC) scheme, where two users
cooperate in a two-phase cooperation scheme. During the first phase of cooperation, each user
sends his/her own data to the other user, followed by the second phase where both users transmit
their own data as well as the data of the other user after interleaving and channel coding. The
two users employ multidimensional Sphere Packing (SP) modulation and then transmit their

data simultaneously. The receiver applies interference cancellation for the sake of eliminating
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the interference imposed by one user’s data on the other. We employ SP modulation for the
sake of attaining further iteration gains, as described in Chapter 3. The data transmitted from
the second user’s transmitter is an interleaved version of the bit stream transmitted from the
first user’s transmitter. Hence, at the receiver side, the interference canceller outputs two data
streams corresponding to the data transmitted from the first and the second users’ transmitters,
respectively. Afterwards, iterative detection is employed between the SP demapper and the
channel decoder in each data stream (or decoding branch) as well as between the two channel
decoders of the two branches, hence forming a distributed turbo code. Additionally, we study the
effects of different Inter-User Channel (IUC) characteristics on the attainable BER performance
of the proposed DTC' system, where we compare the attainable BER performance, when the IUC
1s perfect, Gaussian, Ricean and Rayleigh faded.

The rest of the chapter is organised as follows. In Section 7.2 we present an overview
of cooperative communications, followed by the description of the proposed DTC system in
Section 7.3. In Section 7.4 we characterise the DTC aided system with the aid of simulation
results, while considering different [UC characteristics. We conclude in Section 7.5 and present

a brief chapter summary in Section 7.6.

7.2 Background of Cooperative Communications

In this section we present a brief literature overview of cooperative communications and intro-

duce the basic ideas behind the concept of user cooperation.

The basic idea behind cooperative communications can be traced back to the idea of the
relay channel, which was introduced in 1971 by Van der Meulen [131]. Cover and El Gamal
characterised the relay channel from an information theoretic point of view in [132]. The relay
model is comprised of three components: a source transmitting data, a destination receiving
the data from the source and a relay receiving the data from the source and then transmitting
it to the destination. Cooperative communications may be interpreted as a generalisation of
the relay channel, where the source and the relay transmit their own data as well as the other’s
data, which results in the destination receiving multiple copies of the same data from both the
source as well as from the relays, hence benefitting from a spatial diversity gain and eventually
from an improved BER performance for the two users. Cooperative techniques benefit from
the broadcast nature of wireless signals, where the signal transmitted from a specific user to a

specific destination can be “overheard” by neighbouring users.

In [134] Sendonaris et al. generalised the relay model to multiple nodes that transmit their

own data as well as serve as relays for each other. The scheme proposed in [134] was referred



7.2.1. Amplify-and-Forward 229

¢

to as “user cooperation diversity”, where the authors examined the achievable rate regions and
outage probabilities for this particular scheme. In [36,37] Sendonaris et al. presented a simple
user-cooperation methodology based on a Decode-and-Forward (DF) signalling scheme using
Code Division Multiple Access (CDMA). The orthogonality of the different spreading codes
of the different users makes it possible for the intended receiver to distinguish between the
information transmitted from different cooperating users. In [135] the authors reported the
gains achieved in terms of an improved data rate and reduced sensitivity to channel variations,
where it was concluded that cooperation effectively mimics a multi-antenna scenario with the

aid of single-antenna terminals.

Cooperative communications has been shown to offer significant performance gains in terms
of various performance metrics including diversity gains [138,141,161] as well as multiplexing
gains [145]. In the following sections we review the main-stream cooperative methods used for

signalling the data between the different users and the destination.

7.2.1 Amplify-and-Forward

Each user receives a noise-contaminated version of the other users’ signals. In the case of an
Amplify-and-Forward (AF) signalling strategy [135], the relay simply amplifies the noisy version
of the signal without improving its SNR and retransmits it to the destination. The destination
then combines the information sent by the source as well as the relay and makes a final decision
on the transmitted bits [269]. Although the relay amplifies the noise in addition to amplifying
the desired signal, the destination still observes two independently faded version of the signal,

thus benefitting from a diversity gain as compared to non-cooperative schemes.

AF was first proposed and analysed by Laneman et al. in [135], where the authors have
shown that in the case of two-user cooperation, AF is capable of achieving a diversity order
of two. In the scheme of [135], it was assumed that the destination has perfect knowledge of
the IUC so that optimal decoding can be performed, where the IUC knowledge was assumed
to be acquired by exchanging this IUC information between the nodes with the aid of side-
information signalling or by blind estimation [269]. More elaborate AF algorithms and more

general linear relaying schemes have been considered in [142,270].

7.2.2 Decode-and-Forward

In the Decode-and-Forward (DF) signalling scheme the relay decodes the partners’ signals and
then re-encodes the detected bits before their retransmission [269]. The destination combines
the signal received from both the source as well as the relay, hence creating spatial diversity.

A witty low-complexity DF signalling strategy can be found in [36,37], where two users were
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paired to cooperate with each other using CDMA. Each signalling period is divided into three
time slots, where in the first and second time slots each user transmits his/her own data. Each
user’s data is broadcast and hence can be detected by the other user. In the second time slot,
each user detects the other user’s data. In the third time slot, both users transmit a linear
combination of their own second time slot data and the partners’ second time slot data, each
multiplied by the appropriate spreading code. The allocation of transmitted power for the
three time slots is determined by the average power constraint of each user. Explicitly, when
the IUC has a high SNR, more power can be allocated to cooperation. Otherwise, less power
is assigned for cooperation. The advantage of this signalling regime is its appealing simplicity
and adaptability to channel variations. Additionally, it is required that the destination has
acquired the knowledge of the Channel Impulse Response (CIR) of the IUC for the sake of
optimal decoding [269].

In order to avoid the problem of error propagation, selection DF was proposed by Laneman et
al. in [141], where the relay detects the signal from the source and only forwards the signal when
the instantaneous SNR for the IUC is below a certain threshold. Otherwise, the source continues
its transmission to the destination in the form of repetition or more powerful codes [269]. If
the measured SNR falls below the threshold, the relay transmits what it receives from the
source using either AF or DF, in order to attain a diversity gain. Another signalling strategy
is referred to as incremental relaying [141], which can be viewed as an extension to incremental
redundancy or Hybrid Automatic-Repeat-reQuest (HARQ). In this case, the relay retransmits
in case the destination provides a negative acknowledgement in an attempt to attain a diversity

gain.

7.2.3 Coded Cooperation

Coded cooperation [136,149] combines the concept of cooperative communications with channel
coding. Coded cooperation maintains the same information rate, code rate, bandwidth as
well as transmit power as a comparable non-cooperative system. The basic idea is that each
user attempts to transmit incremental redundancy for his/her partner. Whenever the IUC is
not favourable, the users automatically revert to a non-cooperative mode [269]. The key to
the efficiency of coded cooperation is that all this is managed automatically with the aid of

sophisticated code design, with no feedback between the users [269].

Each user encodes his/her data bits using a Cyclic Redundancy Check (CRC) followed by a
specific code from a family of Rate Compatible Punctured Convolutional (RCPC) codes [136].
Each user’s encoded codeword is divided into two segments containing N; and N, bits, where

N1+ Ny = N and N is the total codeword length of the encoded sequence. In the first time slot,
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each user transmits his/her own first set of IV bits, where the encoded codeword is punctured
to N7 bits and hence the N; bits transmitted constitute a valid or legitimate codeword. The
remaining Ny bits are the punctured bits. Each user then attempts to decode the transmission
of the other user. If this attempt is deemed to be successful based on the CRC code, the user
computes and transmits the Ny bits of the other user in the second time slot. Otherwise, the
user transmits his/her own N, bits. Thus, each user always transmits a total of N = Ny + N,

bits per source block over the two time slots [136,269].

The users act independently in the second time slot, with no knowledge of whether their own
first frame was correctly decoded. As a result, there are four possible cases for the transmission
of the second frame: both users cooperate, neither user cooperates, user 1 cooperates and user
2 does not or vice versa. It was suggested in [143] that the destination successively decodes
according to all possibilities and checks the CRC code’s success for each case. If the CRC fails
for all possibilities, then the destination will select the specific codeword with the lowest path

metric from the Viterbi algorithm.

Additionally, it was proposed in [138] to use distributed space-time codes for the relay
channel, demonstrating its benefits from an information theoretic point of view. In [143] Janani
et al. proposed space-time cooperation in addition to implementing turbo coding by exchanging
extrinsic information between the data received from the source and the relay. Furthermore,
a method designed for achieving cooperative diversity using rate compatible punctured codes
was proposed in [136,149]. In [139,140], it was proposed to employ distributed turbo codes by
exchanging extrinsic information between the data received from the source and that received
from the relay, where the relay applies interleaving for the data received from the source and

then uses an appropriate channel code before retransmission.

7.3 Distributed Turbo Coding

In this section we propose a specific DTC scheme based on the system architecture shown in
Figure 7.2, where the users u; and us cooperate in a two-phase cooperation scenario. The
difference between our proposed system and those presented in [136, 139,140, 143,149 is that
the two users in our design transmit their own data in addition to the other user’s data, while
the systems in [136, 139, 140, 143, 149] have a single active user and a relay transmitting the
data of the active user only. Additionally, in our proposed system we study the effect of the
IUC characteristics on the attainable performance of the proposed DTC system. As shown in
Figure 7.2 two users cooperate in order to communicate with a Base Station (BS). This way the
users achieve a diversity gain in case the two users transmit in a space-time coded manner or

attain a multiplexing gain, if they transmit in a BLAST-like scheme. In the proposed scheme,



7.3. Distributed Turbo Coding 232

Figure 7.2: Distributed turbo coding system model.

the two users cooperate in two phases, where they exchange their data in the first cooperation
phase and then they both transmit simultaneously their own data as well as the data of the

other user in the second phase of cooperation.

The proposed system operates in a half-duplex mode, where none of the transceivers can
transmit and receive at the same time. The transceivers operate in a Time Division Duplex
(TDD) mode, where different transmitters transmit in different time slots. As shown in Fig-
ure 7.2, in time slot ¢; user 1 transmits his/her data to user 2. Similarly, in time slot ¢, user
2 shares his/her data with user 1. Hence, the first two time slots, i.e. time slots t; and s,
comprise the first phase of cooperation. In the second phase of cooperation, i.e. in time slot t3,
the two users transmit their data simultaneously to the BS after appropriate interleaving and

channel coding.

A more detailed block diagram of the proposed scheme is shown in Figure 7.3. In time slot #;,
user 1 transmits his/her data bit stream a; to user 2, where the received and decoded estimate
of a; is denoted by a;. Hence, the DF signalling strategy is used in the proposed DTC scheme.
Similarly, user 2 transmits his/her data bit stream as to user 1, where the received and decoded
bit stream in denoted by as. There are several scenarios for the inter-user communication, i.e.
for the phase-one cooperation. The simplest phase-one cooperation, where each user transmits
the source bits directly without any channel coding and the other user applies hard decision
decoding of the received signal. Another possible scenario is, where each user encodes his/her
data using a channel code of a specific code rate and then the receiver decodes the received
stream by passing it through the modulated symbol to channel-coded bits demapper as well as
the channel decoder and may employ iterative detection by exchanging extrinsic information

between the demapper and the channel decoder.

After inter-user communication phase was concluded during time slots ¢; and t,, the two

users now have both their own data as well as an estimate of the data of the other user.
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Figure 7.3: Block diagram of the two users’ transmitters and the BS receiver.

Both users concatenate their own data with the estimate of the other user’s data, as shown
in Figure 7.3 and detailed as follows. The first user appends the estimate of the second user’s
data as with his/her own data a; and then encodes the resultant bit stream b; by a Recursive
Systematic Convolutional (RSC) code. The channel coded bit stream c; is interleaved by the
random bit interleaver 1I; of Figure 7.3 and then the interleaved bits b, are modulated by the
SP Mapper I of Figure 7.3. Similarly, user 2 appends his/her own data a, to the estimate of
the user 1 data a; and then interleaves the resultant bit frame by by the bit interleaver Il
of Figure 7.3. The interleaved bit stream bg is channel coded by a RSC code and then the
encoded bit stream cs is interleaved. Finally, the interleaved bit stream by is modulated by the
SP Mapper II of Figure 7.3.

The two users simultaneously transmit their SP modulated symbol streams x; and x5 as-
suming that there is perfect synchronisation between the two users’ MSs. The two users’ MSs
normalise their transmit power so that the transmit power in the two phases of cooperation is

equivalent to the case when there is no cooperation.

At the BS, low-complexity Zero Forcing (ZF) Interference Cancellation (IC) is applied,
as described in [81]. The IC decoder outputs the two streams of decoded data X; and Xj
corresponding to the data transmitted by user 1 and user 2, respectively, as shown in Figure 7.3.

After the IC stage, estimates of the transmitted data streams x; and X, are passed to the SP
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demappers of Figure 7.3. The SP demappers I and II of Figure 7.3 utilise the data received
from the IC together with the a priori information Ly .(bs) and Lyrr.(bs) passed to them
from the RSC decoders for the sake of providing the improved extrinsic information Ly .(by)
and Lysyr.(bs), which is then passed to the RSC decoders as the a priori information Ly ,(c;)
and Ly .(cq). Afterwards, iterative detection is carried out by exchanging extrinsic information
between the two RSC decoders of the two branches. The two RSC decoders employ iterative
detection for the sake of providing improved extrinsic information to the SP demappers of
Figure 7.3. The iterations employed between the two RSC decoders is similar in its concept to
that employed in classic turbo codes [26,271], which motivates the terminology of distributed

turbo coding.

Figure 7.4 shows the EXIT chart of the proposed DTC system. In Figure 7.4 we plot the
EXIT curve of the inner SP demappers in conjunction with L=16 and the Anti-Gray Mapping
AGM-1 listed in Appendix A. The EXIT curves of the inner SP demappers seen in Figure 7.4
are shown for Ej, /Ny between 0 dB and 6 dB in steps of 0.5 dB. Figure 7.4 also shows the inverted
EXIT curve of the outer DTC. The outer codes applied are 1/2-rate memory-2 RSC codes in
conjunction with an octal generator polynomial of (G,, G) = (7,5)s, where G is the feedforward
polynomial and G, is the feedback polynomial. We plot two curves corresponding to the outer
DTC in Figure 7.4, where one, represented by the dashed-dotted line evolving mostly above
the dashed curve, corresponds to two iterations between the two outer RSC codes’ decoders,
while the other curve marked by the dashed line corresponds to six iterations between the two
RSC codes’ decoders. In this case, in the first phase of cooperation, each user modulates the
source bits and transmits the QPSK modulated symbols to the other user without incorporating
any channel coding. Additionally, the EXIT curves are plotted for the system where the ITUC
is considered to be perfect. As shown in Figure 7.4, an open convergence tunnel is formed
around E,/Ny=3.0 dB. This implies that according to the predictions of the EXIT chart seen
in Figure 7.4, the iterative decoding process is expected to converge for E,/Ny > 3.0 dB. On
the other hand, observe in Figure 7.4 that the point of intersection between the EXIT curves
of the inner and the outer codes approaches the 1.0 mutual information points of the x-axis,
as the number of outer iterations or distributed turbo coding iterations increases from I,,,=2
to 6. Hence, it is expected that employing I,,,=6 outer iterations between the RSC decoders
will result in a better performance than the system employing two decoding iterations between

the outer RSC codes.

On the other hand, Figure 7.5 shows the EXIT curve of the benchmark scheme, where two
users cooperate by transmitting their own data simultaneously without transmitting the other
user’s data. In other words, each user encodes his/her own bit stream by an outer RSC code

and then the encoded bit stream in interleaved by a random bit interleaver. Afterwards, the
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Figure 7.4: EXIT chart of the DTC system, where cooperation is employed between two users employing
1/2-rate RSC codes while uplink communication is performed over a narrowband Rayleigh fading

channel.

interleaved bit stream is modulated by a SP mapper and then transmitted from the users’
single-antenna-aided MS. At the receiver side, IC is employed in order to eliminate the in-
terference imposed by each of the users’ data on the other user’s data. Iterative detection is
then carried out between the outer RSC decoder and the inner SP demapper in each branch
and no iterations are employed between the two outer RSC codes’ decoders, since the data
in the two branches of Figure 7.3 in this case are different. Figure 7.5 shows the EXIT chart
of the benchmark scheme in conjunction with an inner SP demapper employing L=16 and
AGM-1 of Appendix A for E,/Ny between 0 dB and 6 dB in steps of 0.5 dB. The outer code in
this case is a 1/2-rate memory-2 RSC code in conjunction with an octal generator polynomial
of (G,,G) = (7,5)s. As shown in Figure 7.5, an open convergence tunnel is formed around
Ey/No=4.0 dB. This implies that according to the predictions of the EXIT chart seen in Fig-
ure 7.5, the iterative decoding process is expected to converge at E,/Ny > 4.0 dB. Additionally,
a comparison between Figure 7.4 and Figure 7.5 shows that the benchmark scheme exhibits
a higher error floor as compared to an error floor at low BER values for the proposed DTC

scheme.
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Figure 7.5: EXIT chart of the benchmark scheme where iterative detection is carried out between the outer
RSC decoder and the inner SP demapper of each user without employing any iteration between
the RSC decoders of the two users. In this case, each user transmits his/her own data only and

hence there is no inter-user communication involved.

7.4 Results and Discussions

In this section, we consider the achievable performance of the proposed DTC system, where two
users cooperate in order to simultaneously transmit their data and then apply the ZF IC at the
receiver for the sake of eliminating the interference imposed by each of the users’ data on the
other user’s data. Fach user’s MS is equipped with a single antenna and each applies a 1/2-rate
memory-2 RSC code for coding the bits, which are then mapped to symbols using a SP mapper
in conjunction with L=16 and AGM-1. In this section, we consider uplink transmissions over
a narrowband uncorrelated Rayleigh fading channel, where coherent detection is applied at the
receiver side. It is also assumed that the receiver has perfect knowledge of the uplink channel

impulse response.

The proposed DTC scheme corresponds to a cooperation between two users, where each
user is equipped with a single-antenna terminal. The system operates in a TDD mode, where
the two users exchange their data in two time slots and then they transmit their joint data
to the BS. Each user encodes his/her bit stream by an outer RSC code and then maps the
encoded bits to SP symbols using an SP mapper. At the BS, ZF IC is applied, where the
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decoder outputs two data streams corresponding to the data received from user 1 and user 2.
The decoded symbols are demapped to soft LLR values by the SP demappers of Figure 7.3.
The SP demapper of each branch exchanges soft information with the RSC decoder in the same
branch after appropriate interleaving and deinterleaving. Afterwards, the RSC decoders of the
two branches exchange extrinsic information in order to provide improved information for the
SP demappers, which in turn pass extrinsic information to the RSC decoders. As shown in
Figure 7.4, in order to arrive as low an error floor as possible, it is required to employ I,,;=6
outer iterations between the two RSC decoders. Hence, in what follows, we refer to an iteration
as a system iteration I,,,, where the SP demappers exchange extrinsic information with the
RSC decoders once in an inner iteration, followed by I,,,=6 outer decoding iterations between
the two parallel RSC decoders, before passing the improved extrinsic information back to the

SP demappers.

The benchmark scheme for our proposed system is also a cooperative scheme exchanging
extrinsic information between single-antenna-aided users. However, in the benchmark scheme,
the two users do not exchange their information, rather each user transmits his/her own data
after channel coding, interleaving and then SP mapping. The two users transmit their data
simultaneously and then ZF IC is applied at the receiver, where each user’s data is passed to a
separate branch of iterative detection between the SP demapper and the outer RSC decoder.
In this case, no iterative detection is carried out by exchanging extrinsic information between

the two RSC decoders, since the two branches have different data.

The bandwidth efficiency of the proposed DTC scheme can be analysed as follows. During
the first time slot ¢y, user 1 transmits his/her data to user 2, followed by time slot ¢, where user
2 transmits his/her data to user 1. Afterwards, during the second phase of cooperation, each
user has to transmit the data of the two users, which requires two time slots. Hence, a total of
four time slots are required for the transmission of the two users’ data to the BS. By contrast,
the benchmark scheme requires only a single time slot for the transmission of the same amount
of data to the BS by the two users. Hence, the proposed scheme has a factor of four lower
throughput compared to the benchmarker, but as a benefit, the proposed scheme attains a
better BER performance according to the EXIT chart predictions of Figure 7.4 and 7.5, which

will be demonstrated in Figure 7.7.

Figure 7.6 shows the BER performance of a V-BLAST system having colocated MIMO
elements, where the transmitter has two antennas and the receiver is also equipped with two
antennas, while communicating over narrowband Rayleigh fading channels also affected by
large-scale shadow fading. The source bits are encoded by a 1/2-rate RSC code and then in-

terleaved by a random bit interleaver, where the interleaved bits are mapped to SP symbols
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Figure 7.6: BER performance of a V-BLAST scheme employing two transmit and two receive antennas in
conjunction with iterative detection between an outer RSC decoder and a SP demapper at the

receiver side. The figure shows the effect of shadow fading on the attainable performance.

before transmission. At the receiver side, iterative detection is carried out by exchanging ex-
trinsic information between the outer RSC code and the SP demapper. Figure 7.6 shows the
effect of shadow fading on the attainable performance of MIMO scheme having colocated ele-
ments, where the shadow fading imposes correlation on the impulse response of the channels
between the two transmit antennas and the receive antennas. In Figure 7.6 the RSC code
used is a 1/2-rate memory-2 code with an octal generator polynomial of (G, G)=(5,7)s and
the BER curves correspond to I;,,.,=3 decoding iterations between the SP demapper and the
RSC decoder. As shown in Figure 7.6, when the shadow fading standard deviation increases,
the attainable BER performance degrades. Therefore, distributed MIMO or cooperative com-
munications represent an intelligent way of retaining the gains of the MIMO systems having
independently fading colocated elements without being affected by the shadow fading, while

relying on single-antenna-aided MSs.

Figure 7.7 compares the attainable BER performance of both the proposed DTC scheme and
of the benchmark scheme, while considering uplink transmissions over a narrowband Rayleigh
fading channel. In this case, the IUC is considered to be perfect, i.e. the data exchanged between
the two users is perfectly recovered without any errors. In Figure 7.7 an interleaver depth of
D;,,;=80, 000 bits was employed and SP modulation in conjunction with L=16 and AGM-1 is
used. Observe in Figure 7.7 that the benchmark scheme suffers from a fairly pronounced error
floor and that no iteration gain may be obtained after employing more than one inner iteration

between the SP demapper and the RSC decoder in each branch. This result confirms the EXIT
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Figure 7.7: BER performance comparison of the proposed distributed turbo coded system and the benchmark

scheme in conjunction with an interleaver depth of D,,;=80,000 bits for a variable number of

system iterations I, where two users are cooperating and communication over an narrowband
uplink Rayleigh fading channel. The IUC in this case is considered to be perfect.

chart predictions of Figure 7.5, where the EXIT curves of the inner and outer codes intersect
for E,/Ny=6.0 dB at a point different from the 1.0 point on the z-axis indicating the lack
of convergence to an infinitesimally low BER. On the other hand, observe in Figure 7.7 that
the attainable BER performance of the proposed DTC aided system exhibits no error floor.
This can be explained from the EXIT chart of Figure 7.4, where the EXIT curves of the inner
and outer codes intersect at the 1.0 point on the x-axis, when there is an open tunnel. The
1.0 point on the x-axis corresponds to the case, where the outer decoder has perfect extrinsic
information available at its output. This means that for the E,/Ny values where there is an
open tunnel, the EXIT curves of the inner and outer codes intersect at the 1.0 point of perfect
convergence, i.e. at the point where the outer decoder has perfect extrinsic information at its
output, which results in an infinitesimally low BER. Again, for the proposed DTC scheme, a
system iteration I, is constituted by a single inner iteration between the SP demapper and
the RSC decoder of each branch, followed by [,,.,=6 iterations between the two RSC decoders

in the two branches. Explicitly, the proposed DTC system outperforms its benchmark scheme
by Ej,/No of about 25 dB at a BER of 107" after employing I5,s=5 system iterations.

Figure 7.8 shows the attainable BER performance of the proposed DTC scheme, while

considering uplink transmission over a narrowband Rayleigh fading channel, where the TUC
considered is a Line-Of-Sight (LOS) AWGN channel, i.e. Gaussian noise is added to the re-

ceived data without any amplitude or phase attenuation. In Figure 7.8 an interleaver depth of
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Figure 7.8: Comparison of the attainable BER performance of the proposed distributed turbo coding scheme,

while considering a AWGN IUC for variable IUC SNR values. The figure corresponds to Is,s=4

iterations in conjunction with an interleaver depth of D;,;=80, 000 bits.

D;,;=80, 000 bits was employed and SP modulation in conjunction with L=16 and AGM-1 is
used. Figure 7.8 also shows the BER performance of the DTC system, when a perfect IUC is
considered. The BER curves seen in Figure 7.8 correspond to the system where I;,;=4 system
iterations are employed. The notation SNR+10 dB in Figure 7.8 means that the IUC SNR is
10 dB higher than the uplink channel SNR, where SNR represents the uplink channel SNR.
Observe in Figure 7.8 that the attainable BER performance of the DTC system, when the
IUC is constituted by an AWGN channel having a 10 dB higher SNR than that of the uplink
channel, is equivalent to that of the system considering a perfect IUC. However, when the ITUC
SNR is 5 dB higher than the uplink channel SNR, an error floor is formed in Figure 7.8. This
is due to the fact that the iterative detection at the receiver side assumes that the data in the
two RSC decoders is identical, while the inter-user communication induces errors in the data
available at the users’ terminals, and hence results in a discrepancy in the data transmitted

from the two users’ terminals, which results in the error floor of Figure 7.8.

Figure 7.9 shows the attainable BER performance of the proposed DTC scheme, while
considering uplink transmission over a narrowband Rayleigh fading channel, when the TUC
considered is a Ricean channel. In Figure 7.9 an interleaver depth of D,,;=80,000 bits was
employed and SP modulation in conjunction with L=16 and AGM-1 is used. Figure 7.9 also
shows the BER performance of the DTC aided system, when a perfect ITUC is considered.
The BER curves in Figure 7.9 correspond to the system where I;,,=4 system iterations are

employed. Observe in Figure 7.9 that the attainable BER performance of the DTC assisted
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Figure 7.9: Comparison of the attainable BER performance of the proposed distributed turbo coding scheme,
while considering a Ricean IUC for a variable IUC SNR having different Ricean K-factor. The fig-

ure corresponds to I, s=4 iterations in conjunction with an interleaver depth of D;;,,;=80, 000 bits.

system is equivalent to that of the system considering a perfect IUC, when the Ricean K-factor
is 10 dB and the IUC SNR is 30 dB higher than the uplink channel SNR. However, when the
IUC SNR becomes less than 20 dB higher than the uplink channel SNR, the BER performance
degrades, where an error floor is formed. As the Ricean K-factor increases to 13 dB, no error
floor is formed in the BER curve even for an IUC SNR of 10 dB higher than the uplink channel
SNR. On the other hand, in Figure 7.10 a Rayleigh faded IUC is considered for the DTC aided
system. Observe in Figure 7.10 that an error floor is formed for all IUC SNR values, even when
the ITUC SNR goes as high as 50 dB above the uplink channel SNR. This is due to the fact
that transmission over Rayleigh fading channels imposes errors in the data received by the two
users from each other and hence this means that there will be a difference between the data

transmitted from the two users, which affects the turbo detection process at the receiver side.

Figures 7.7-7.10 show the BER performance of the proposed DTC aided system, while
considering different IUC characteristics. Explicitly, Figure 7.8 shows the BER performance
of the uplink transmission, while the IUC is considered to be AWGN with variable IUC SNR
values. Figure 7.9 shows the same BER performance, while the IUC is Ricean with a variable
Ricean K-factor and a variable IUC SNR. Additionally, in Figure 7.10 we show the uplink
BER performance of the DTC scheme, while considering a Rayleigh TUC with variable TUC
SNR values. Observe in the figures that an error floor is formed at a specific [IUC SNR value,
depending on the different IUC characteristics. To understand this phenomenon further, in

Figure 7.11 we plot the BER performance of a single-input single-output QPSK modulated
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Figure 7.11: Attainable BER performance of a single-input single-output QPSK modulated system, while

0

considering inter-user transmission over AWGN channel, Rayleigh channel and Ricean channel

with a variable Ricean K-factor.
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Figure 7.12: Comparison of the attainable BER performance of the proposed distributed turbo coding scheme,

while considering a Rayleigh IUC for variable IUC SNR values as well as employing RSC channel

coding for inter-user communications. The figure corresponds to Is,s=4 iterations in conjunction
with an interleaver depth of D;,;=80,000 bits.

system, while considering inter-user transmissions over AWGN, Rayleigh as well as Ricean
channels. Observe in Figures 7.8-7.10 that an error floor is formed for the uplink transmission of
the proposed DTC scheme, when transmission over the IUC induces error in the data exchanged
between the two users. It can be shown that for the proposed DTC scheme to attain a reasonable

BER performance with no error floor, the inter-user BER should be less than 1076.

The previous results outlined in Figure 7.7-7.10 show that the proposed DTC scheme attains
a good BER performance without any error floor, provided that the inter-user communications
can maintain a BER below 107¢. Observe in the BER results of Figures 7.10 that an error
floor in formed for inter-user transmission over a Rayleigh IUC for all ITUC SNR values. All
the previous results correspond to the system, where no channel coding was employed in the
inter-user communication, i.e. each user maps the source bits to QPSK symbols and transmits
them to the other user. In order to improve the performance of the inter-user communication,
especially when the IUC is Rayleigh faded, each user can benefit from the RSC code it is
equipped with and then encode the data bits, before mapping the encoded bits to QPSK
symbols for transmission. This improves the BER performance of the IUC and allows the
attainable BER performance of the DTC uplink scheme to improve, as shown in Figure 7.12
when compared to Figure 7.10. In Figure 7.12 the two users employ a 1/2-rate RSC code for
the exchange of their data. Observe in Figure 7.12 that the DTC uplink scheme attains a BER
performance with no error floor, when the IUC SNR is 15 dB higher than the uplink channel
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SNR, while for the uncoded inter-user communications scenario, an error floor was formed even

when the inter-user Rayleigh channel had an SNR 50 dB higher than the uplink channel SNR.

7.5 Chapter Conclusion

In this chapter, we proposed a distributed turbo coding scheme, where two users cooperate in
order to improve their attainable BER performance. Each user’s single-antenna aided trans-
mitter is constituted by a RSC code, an interleaver and a SP mapper. In the first phase of
cooperation, the two users exchange their data by transmission over the inter-user channel.
Each user then has his/her own data as well as the other user’s data. In the second phase
of cooperation, each user concatenates his/her own data and the other user’s data. The first
user applies RSC channel coding to the resultant data bit stream and then the channel coded
bits are interleaved by a random bit interleaver. The interleaved bits are then mapped to 4-bit
symbols by a SP mapper, where the symbols are transmitted from a single antenna. The second
user applies the same procedure, but interleaves the data bit stream before channel encoding.
The receiver applies the zero forcing interference cancellation algorithm of [81] and outputs
two data streams that are passed to two branches, where each branch has a SP demapper,
deinterleaver and a RSC decoder. Iterative detection is carried out by exchanging extrinsic in-
formation between the SP demappers and the RSC decoders in each branch as well as between

the two RSC decoders of the two branches, thus forming a turbo code.

The proposed DTC scheme is benchmarked against another cooperative scheme, where the
two users do not exchange their data. In the benchmark scheme, each user encodes his/her own
data bits by an RSC encoder, interleaves the coded bits and then the interleaved bits are mapped
to SP symbols for transmission from a single antenna. In the benchmark scheme, the iterative
detection is carried out by exchanging extrinsic information between the SP demapper and the
RSC decoder of each branch without employing any iterations between the RSC decoders of

the two branches.

The proposed DTC scheme attained a throughput that is four times less than that of the
benchmark scheme. However, the proposed scheme attained an Ej/Ny gain of about 25 dB at
BER of 107, when compared to the benchmark scheme, while considering perfect IUC and
employing I,,s=5 system iterations in conjunction with an interleaver depth of D;,;=80,000
bits, where a system iteration corresponds to a single inner iteration between the SP demapper
and the RSC decoder of each branch, followed by I,,:.,=6 iterations between the RSC decoders

of the two branches.

Additionally, a study of the inter-user channel characteristics effects on the performance
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of the proposed uplink DTC scheme was conducted. First, in phase one of the cooperation,
each user transmits his/her own data to the other user by mapping the source bits to QPSK
symbols and then transmit them through a single antenna. When the users exchange their data
over an AWGN channel with ITUC SNR being 10 dB higher than the uplink channel SNR, the
attainable BER performance of the DTC scheme is similar to that when the inter-user channel
is assumed to be perfect. Furthermore, while considering a Rayleigh faded inter-user channel,
an error floor is formed for the attainable BER performance of the proposed scheme even for
IUC SNR as high as 50 dB higher than the uplink channel SNR. It was shown in Figure 7.11
that in order to eliminate the error floor in the BER performance of the proposed scheme, the
BER performance of the inter-user channel is required to be less than 107¢. Hence, in order
to improve the attainable system performance, it is suggested to use channel coding, while the

users are exchanging their data during the first phase of cooperation.

7.6 Chapter Summary

In this chapter, we proposed a novel cooperative communication scheme referred to as dis-
tributed turbo coding. In the proposed scheme, two users are cooperating, where each user’s
transmitter constitutes of a RSC code then an interleaver followed by a SP mapper. The
two users exchange their data in the first phase of cooperation followed by the second phase,
which is the uplink transmission of the combined data from the two users’ antennas, protected
by channel coding and interleaving. The second user interleaves the data bits before channel
coding, so that at the receiver side iterative detection can be applied by exchanging extrinsic
information between the two channel decoders after appropriately arranging the bits in the

required order by interleaving and deinterleaving.

In Section 7.2 we provided an overview of cooperative communications, elaborating on the
major cooperative signalling schemes, including Amplify-and-Forward, Decode-and-Forward
and coded cooperation. In Section 7.3 we presented our distributed turbo coding scheme,
where we proposed a two-phase cooperation scheme. In the first phase, the two users exchange
their data, while in the second phase they simultaneously transmit their data to the base
station. In Section 7.4 we presented our performance results and compared the proposed
scheme to a benchmark scheme employing no exchange of the users’ data, i.e. each user only
transmits his/her own data. In Section 7.4 we studied the effect of varying the inter-user channel
characteristics on the performance of the uplink DTC scheme, where we showed that the inter-
user channel BER should not be higher than 107% in order to avoid the formation of an error
floor in the uplink. In Section 7.4 it was shown that an error floor is formed when the inter-user
channel considered is Rayleigh-faded even if the ITUC SNR is as high as 50 dB higher than the
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uplink channel SNR, as shown in Figure 7.10. In order to improve the system performance,
it was shown in Figure 7.12 that the attainable BER performance can be improved when the
users exchange their data over a Rayleigh channel, if the users employ channel coding in the

first phase of cooperation.

In Section 7.4, we have shown that the data exchanged between the two users in the first
phase of cooperation requires the IUC BER to be lower than 107% in order to eliminate any
error floor in the uplink performance of the DTC aided system. We tackled this problem by
using channel coding in the first phase of cooperation, where each user’s data is channel coded
and then interleaved before mapping the bits to QPSK symbols for transmission. Observe in
Figure 7.12 that using channel coding in the first phase of cooperation does not entirely elimi-
nate the error floor for IUC SNR being 10 dB higher than the uplink channel SNR. Therefore,
another solution has to be devised in order to improve the attainable performance, when there

are errors in the data exchanged between the users in the first phase of cooperation.

In the proposed scheme, DF signalling was used in the first phase of cooperation, where hard
decision was performed on the received data. In [146], it was argued that the DF signalling
loses the benefit of soft information. Hence, in [146] the employment of soft DF signalling was
proposed, where all operations are performed in a soft-input soft-output fashion. It was shown
in [146] that the soft DF outperforms the hard-decoded DF and the AF signalling schemes.
In [154] soft DF was used, where the soft information was quantised, encoded and transmitted
using superimposed modulation to the destination. The scheme proposed in [154] is a practical
method devised for encoding the soft information without the need for reducing the system’s
throughput or without increasing the system’s bandwidth. In [146, 151, 154] soft information
has been used in diverse systems, where there are errors in the first phase of cooperation and
it was shown that soft DF attains a better performance than hard DF. Therefore, a potential
improvement of our proposed system is to employ soft DF, where the MAP decoder used at

the BS has to be modified in order to decode the data received from the two users.



Chapter

Conclusions and Future Research

8.1 Conclusions

In this treatise, we characterised a suite of Multiple-Input Multiple-Output (MIMO) transceivers
operating in narrowband Rayleigh fading channels, where iterative detection has been employed

in order to achieve a near-capacity performance for the proposed transceivers.

More specifically, we reported the following major findings:

e In Chapter 2, a Differential Space-Time Spreading (DSTS) scheme was proposed, which
is advocated for the sake of achieving a high transmit diversity gain, while eliminating
the potentially high complexity of MIMO channel estimation. Additionally, the system
was combined with multi-dimensional Sphere Packing (SP) modulation, which is capable
of maximising the coding advantage of the transmission scheme by jointly designing and
detecting the sphere-packed DSTS symbols. We also quantified the capacity of the DSTS-

SP scheme for transmission over both Rayleigh as well as Gaussian channels.

e Iteratively detected DSTS-SP schemes were proposed in Chapter 3, where EXIT charts
were used in order to analyse the attainable convergence behaviour. A unity-rate precoder
was introduced, which is capable of completely eliminating the system’s error-floor that
was formed in the systems, where the SP demapper was used as an inner code. It was
demonstrated that the URC precoded system outperforms its non-precoded counterpart
and operates within 0.92 dB from the maximum achievable rate limit obtained using EXIT

charts.

e An algorithm devised for computing the maximum achievable rate of the iteratively de-
tected system using EXIT charts was proposed in Chapter 3, where it was shown that the
maximum achievable rate obtained using EXIT charts matches closely with the analytical

capacity limits.

247
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e Furthermore, in order to maximise the DSTS-SP system’s throughput in Chapter 4, we
proposed an adaptive scheme that is capable of adapting the transmission configura-
tion, the spreading factor as well as the RSC encoder’s code rate according to the near-

instantaneous channel quality.

e In Chapter 5 we amalgamated the merits of V-BLAST, STC and beamforming for the
sake of achieving a multiplexing gain, a diversity gain as well as a beamforming gain.
We then analytically quantified the capacity of the LSSTC-SP scheme. Furthermore,
in order to characterise the system, three near-capacity iteratively detected LSSTC-SP
receiver structures were proposed, where iterative detection was carried out by exchanging
extrinsic information between an outer code’s decoder, an intermediate code’s decoder
and an LSSTC-SP demapper. Our comparison between the three iteratively-detected
schemes revealed that a carefully designed two-stage iterative detection scheme is capable
of operating sufficiently close to capacity at a lower complexity, when compared to a
three-stage system employing RSC or a two-stage system employing an IrCC as an outer

code.

e On the other hand, in order to allow the receiver of the system in Chapter 5 to accommo-
date less receiver antennas than the number of transmit antennas and still provide a good
performance, in Chapter 6 we amalgamated the merits of V-BLAST, STC, beamforming
as well as generalised MC DS-CDMA for the sake of achieving a multiplexing gain, a spa-
tial and frequency diversity gain as well as beamforming gain. We demonstrated that the
number of users supported can be substantially increased by invoking combined spreading
in both the Time Domain (TD) and the Frequency Domain (FD). We also used a user-
grouping technique for minimising the multi-user interference imposed, when employing
TD and FD spreading.

e In Section 6.4 We proposed three iteratively detected LSSTS schemes, where iterative
detection was carried out by exchanging extrinsic information between two serially con-
catenated channel codes’” decoders. We used EXIT charts to analyse the convergence
behaviour of the proposed iterative detection aided schemes and proposed a novel Log-
arithm Likelihood Ratio (LLR) post-processing technique for improving the iteratively

detected systems’ performance.

e Finally, in Chapter 7 we designed a Distributed Turbo Coding (DTC) scheme that com-
bines cooperative communications with the concept of turbo coding, where turbo coding

is employed between the decoders of the cooperating users.
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In the following we will summarise the main findings of our investigations presented in this

treatise. Additionally, a range of ideas concerning our future research is presented in Section 8.2.

8.1.1 Differential Space-Time Spreading

DSTS employing either two or four transmit antennas was proposed in Chapter 2 as a non-
coherent MIMO scheme that eliminates the potentially high complexity of MIMO channel
estimation at the expense of a 3 dB performance loss compared to the corresponding coherently
detected system using perfect channel knowledge at the receiver. DSTS is capable of providing
transmit diversity gains, while at the same time supporting multiple users employing different
spreading codes. DSTS was designed to work with real- as well as complex-valued conventional
modulation schemes including BPSK, QPSK and 16-QAM. Additionally, DSTS was combined
with multidimensional SP modulation in order to attain a higher coding gain, since SP has
the best known Minimum Euclidean Distance (MED) in the 2(k + 1)-dimensional real-valued
Euclidean space R?*+1) [213].

In Section 2.3, we outlined both the encoding and decoding algorithms of the twin-antenna-
aided DSTS scheme, when combined with conventional modulation. Afterwards, in Section 2.3.3,
the philosophy of DSTS using SP modulation, referred to as DSTS-SP, was introduced based on
the fact that the diversity product of the DSTS design is improved by maximising the MED of
the DSTS symbols [210]. This was motivated by the fact that SP has the best known MED in
the real-valued space. Additionally, the capacity of the DSTS scheme employing V; = 2 trans-
mit antennas was derived in Section 2.3.6, where it was shown that the DSTS-SP scheme attains
a higher bandwidth efficiency than that of the conventional DSTS scheme dispensing with SP.
The performance characterisation of a twin-antenna-aided DSTS scheme was provided in Sec-
tion 2.3.7, demonstrating that the DSTS scheme is capable of providing both a full diversity
gain and a multi-user capability. In addition to that, the results demonstrated that DSTS-SP
schemes are capable of outperforming DSTS schemes that employ conventional modulation, as
shown in Table 8.1, which summarises the coding gains of DSTS-SP over conventional modu-
lated DSTS schemes at a SP Symbol Error Rate (SP-SER) of 107*, when communicating over
a correlated narrowband Rayleigh fading channel. Observe in Figure 8.1 that there is no gain
for the DSTS-SP system over the conventional DSTS system for the 2 BPS case. This is due
to the fact that the QPSK modulation is a special case of the SP modulation, as discussed in

Section 2.3.7.

The four-antenna-aided DSTS design was characterised in Section 2.4, where it was demon-
strated that the DSTS scheme can be combined with both conventional real- and complex-

valued modulated constellations as well as with SP modulation. It was also shown that the
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1 BPS | 2 BPS | 3 BPS

1Rz | 0.20 dB | 0.0 dB | 0.70 dB
2Rx | 0.25dB | 0.0 dB | 0.90 dB
3Rz | 0.30dB | 0.0dB | 0.95 dB
4Rz | 0.30 dB | 0.0 dB | 1.00 dB

Table 8.1: Coding gains of SP modulation over conventional modulation at SP-SER of 10~ for the schemes
of Figures 2.21, 2.23, 2.25 and 2.27, when employing twin-antenna-aided DSTS and communicating

over a correlated Rayleigh fading channel associated with fp = 0.01.

four-dimensional SP modulation scheme is constructed differently in the case of two transmit
antennas than when employing four transmit antennas. The capacity analysis of the four-
antenna-aided DSTS-SP scheme was also derived for systems having a different bandwidth
efficiency, while employing a variable number of receive antennas in Section 2.4.5. Finally, in
Section 2.4.6 we presented the simulation results obtained for the four-antenna-aided DSTS

scheme, when combined with both conventional as well as SP modulation.

Further performance improvements can be attained by the DSTS system, when combined
with channel coding and employing iterative detection at the receiver by exchanging extrinsic
information between the constituent decoders/demappers. In Chapter 3, two realisations of a
novel iterative-detection aided DSTS-SP scheme were presented, namely an iteratively detected
Recursive Systematic Convolutional (RSC) coded DSTS-SP scheme as well as an iteratively
detected RSC-coded and Unity Rate Code (URC) based precoded DSTS-SP arrangement. The
iteratively detected RSC-coded DSTS-SP scheme was described in Section 3.2. In Section 3.2.1
we showed how the DSTS-SP demapper was modified for exploiting the a priori knowledge

provided by the channel decoder, which is essential for the employment of iterative detection.

The concept of EXIT charts was introduced in Section 3.2.2 as a semi-analytical tool for
analysing the convergence behaviour of iterative detection aided schemes. We have used several
different Anti-Gray Mapping (AGM) schemes, whose EXIT curves are shown in Figure 8.1,
which were specifically selected from all the possible mapping schemes for L = 16. Both the
Gray Mapping (GM) as well as the various AGM schemes considered in Figure 8.1 are detailed
in Appendix A. We have analysed different iteratively detected schemes using EXIT charts
and shown how EXIT charts allow us to satisfy diverse design objectives. For example, we can
design a system having the lowest possible turbo-cliff-SNR, but tolerating the formation of an
error floor. Alternatively, we can design a system having no error floor, but having a slightly
higher turbo-cliff-SNR. To elaborate further, the BER performance of the iteratively detected
1/2-rate RSC-coded DSTS-SP scheme recorded in conjunction with two transmit antennas and

different GM and AGM mapping schemes is shown in Figure 8.2, when applying /=10 iterations.
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at Ep/No = 6.5 dB for L = 16, while considering transmissions using the twin-antenna-aided DSTS

scheme.
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Figure 8.2: Performance comparison of different AGM- and GM-based iteratively detected RSC-coded two
transmit antennas DSTS-SP schemes in conjunction with . = 16 against an identical spectral
efficiency of 1 bit-per-channel-use uncoded DSTS-SP scheme using L = 4 and against the conven-
tional DSTS-BPSK scheme, when employing an interleaver depth of D;,; = 1,000,000 bits after

I = 10 iterations.
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Figure 8.3: Comparison of the BER performance versus the number of iterations for the iteratively detected
1/2-rate RSC-coded DSTS-SP scheme in conjunction with two transmit antennas and AGM-1 of
Figure 8.1, while employing different interleaver depths recorded at Ej,/Ny of 7.0 dB.

Observe in Figure 8.2 that the GM and AGM-8 based systems have a similar performance and
this can be justified by referring to the EXIT chart of Figure 8.1, where the EXIT curves of the
GM and AGM-8 based systems have similar slopes. On the other hand, observe in Figure 8.2
that the AGM-3 based system exhibits a turbo cliff at an Ej,/Ny value lower than the AGM-
1 based system, while the AGM-1 aided system attains a lower error floor than its AGM-3

counterpart.

On the other hand, in order to show the effects of the interleaver depth on the performance
of iteratively detected schemes, Figure 8.3 compares the BER performance of the iteratively
detected RSC-coded DSTS-SP scheme employing AGM-1 versus the number of iterations, while
using different interleaver depths ranging from D;,;=1,000 bits to D,,;=800, 000 bits and op-
erating at Fj/Ny=7.0 dB. The plot investigates the BER performance versus the complexity
of the system quantified in terms of the number of iterations. As shown in the figure, when
using short interleavers, increasing the number of iterations results in no significant BER per-
formance improvement, which is the case for the interleavers with depths of D;,;=1,000 bits
and D;,;=10,000 bits. However, as the interleaver becomes longer, i.e. as the correlation of
the extrinsic LLRs is reduced, the achievable system performance improves upon increasing
the number of iterations. Moreover, as the interleaver depth increases, the system requires less
iterations to achieve its best attainable performance, as shown in Figure 8.3. For example, for

the case of an interleaver depth of D;,;=800,000 bits, it is shown in Figure 8.3 that after /=7
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Figure 8.4: Comparison of the convergence behaviour of both the precoded and non-precoded DSTS-SP sys-

tems employing GM and AGM in conjunction with I = 16, based on their EXIT characteristics
while operating at Ey/Ny of 6 dB and 6.5 dB.

iterations, there is no more improvement in the attainable system performance, while the sys-
tem employing D;,,;=400, 000 bits requires one more iteration, before the system’s performance

saturates.

We also proposed a novel technique for computing the maximum achievable bandwidth
efficiency of the system based on EXIT charts in Section 3.2.3, where it was shown that the
maximum achievable bandwidth efficiency based on EXIT charts closely matches with the
analytical calculation carried out in Chapter 2 for the bandwidth efficiency of the DSTS-SP

system.

In order to eliminate the error floor exhibited by the iteratively detected system discussed
previously, in Section 3.3 we proposed an iteratively detected RSC-coded and URC-precoded
DSTS-SP scheme, which performed closer to the system’s achievable rate. This is due to the fact
that the URC has a recursive encoder and hence, when applying a sufficiently long interleaver,
the EXIT chart of the URC decoder is capable of reaching the point of perfect convergence
at (1.0,1.0). Figure 8.4 compares the EXIT chart of the iteratively detected four-antenna-
aided DSTS-SP scheme, while applying the non-precoded AGM-1 and AGM-3 SP as well as
the precoded GM-aided SP modulation schemes. As shown in Figure 8.4, the non-precoded
scheme’s inner decoder EXIT curves do not reach the point of perfect convergence at (1.0, 1.0)

and hence an error floor will be formed, where there is no error floor in the BER of the precoded



8.1.1. Differential Space-Time Spreading

254

DSTS (2Tx,1Rx)
No URC precoding

Coding Gain

Distance from maximum

achievable rate limit

SP L=16, GM
SP L=16, AGM-1
SP L=16, AGM-3
SP L=16, GM-8
QPSK, AGM

14.9 dB
19.5 dB
17.75 dB
15.9 dB
16.1 dB

6.9 dB
2.3 dB
4.05 dB
5.9 dB
5.7 dB

DSTS (4Tx,1Rx)
No URC precoding

Coding Gain

Distance from maximum

achievable rate limit

SP L=16, GM
SP L=16, AGM-1
SP L=16, AGM-3
SP L=16, GM-8
QPSK, AGM

9.5 dB
12 dB
10.9 dB
8.9 dB
9.2 dB

4.32 dB
1.82 dB
2.92 dB
4.92 dB
4.62 dB

DSTS (4Tx,1Rx)
URC precoding

Coding Gain

Distance from maximum

achievable rate limit

SP L=16, GM

12.9 dB

0.92 dB

Table 8.2: Iteratively-detected RSC-coded DSTS system coding gain and distance from maximum achievable
rate limit at BER=10"°, when employing an interleaver depth of D;,;=1, 000, 000 bits.

system, since the EXIT curve of the URC decoder reaches the point of perfect convergence at
(1.0, 1.0).

Explicitly, when using an appropriate bits-to-symbol mapping scheme and 10 turbo detec-
tion iterations, gains of about 19.5 dB were obtained by the RSC-coded twin-antenna-aided
DSTS-SP schemes over the identical-throughput uncoded DSTS-SP benchmark scheme de-
scribed in Chapter 2. Furthermore, the AGM-1 based iteratively detected twin-antenna-aided
DSTS-SP scheme is capable of performing within 2.3 dB from the maximum achievable rate
limit obtained using EXIT charts at BER=10"°, when employing an interleaver depth of
D;,;=1,000,000 bits. Additionally, Chapter 3 characterised the benefits of precoding, when
concatenated with the outer channel code, suggesting that an Ej,/N; gain of at least 1.2 dB
can be obtained over the non-precoded system at a BER of 107°, depending on the mapping
scheme used. Explicitly, the four-antenna-aided DSTS-SP system employing no URC precod-
ing attains a coding gain of 12 dB at a BER of 10~ and performs within 1.82 dB from the
maximum achievable rate limit, when employing an interleaver depth of D;,;=1,000,000 bits.
By contrast, the URC aided precoded system outperforms its non-precoded counterpart and

operates within 0.92 dB from the maximum achievable rate limit obtained using EXIT charts,
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DSTS (2Tx,1Rx) | Coding Gain || Distance from maximum
No URC precoding achievable rate limit

SP L=16, GM 17.8 dB 8 dB

SP L=16, AGM-1 22.5 dB 3.3dB

SP L=16, AGM-3 20.5 dB 5.3 dB

SP L=16, GM-8 18.4 dB 7.4 dB

QPSK, AGM 19 dB 6.8 dB

DSTS (4Tx,1Rx) | Coding Gain || Distance from maximum
No URC precoding achievable rate limit

SP L=16, GM 13.7 dB 5.12 dB

SP L=16, AGM-1 16.7 dB 2.12 dB

SP L=16, AGM-3 14.8 dB 4.02 dB

SP L=16, GM-8 12.9 dB 5.92 dB

QPSK, AGM 13.5 dB 5.32 dB

DSTS (4Tx,1Rx) | Coding Gain || Distance from maximum
URC precoding achievable rate limit

SP L=16, GM 17.9 dB 0.92 dB

Table 8.3: Iteratively-detected RSC-coded DSTS system coding gain and distance from maximum achievable
rate limit at BER=10"%, when employing an interleaver depth of D;,;=1, 000, 000 bits.

when employing an interleaver depth of D;,;=1,000, 000 bits.

Finally, Tables 8.2 and 8.3 present the coding gains as well as the distance from the maximum
achievable rate limit for the iteratively detected RSC-coded DSTS system, while employing SP
as well as QPSK modulation schemes. The coding gain is measured against the performance
of the identical-throughput uncoded DSTS-SP system. The tables present the results for both
the two- and four-antenna-aided DSTS scheme, when both systems optionally employ URC
precoding at BER=10"° and 10~%, while employing an interleaver depth of D;,;=1, 000, 000 bits.

On the other hand, in order to maximise the throughput of the DSTS-SP scheme, while
maintaining a certain target Quality of Service (QoS), an adaptive DSTS-SP system was pro-
posed in Chapter 4. The proposed adaptive DSTS-SP system exploits the advantages of dif-
ferential encoding, iterative decoding as well as SP modulation, while adapting the system
parameters for the sake of achieving the highest possible spectral efficiency, as well as main-
taining a given target BER. The proposed adaptive DSTS-SP scheme benefits from a substantial
diversity gain, while using four transmit antennas without the need for pilot-assisted channel
estimation and coherent detection. The proposed scheme reaches the target BER of 1072 at

an SNR of about 5 dB and maintains it for SNRs in excess of this value, while increasing
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the effective throughput. The system’s bandwidth efficiency varies from 0.25 bits/sec/Hz to
16 bits/sec/Hz.

The achievable integrity and bit rate enhancements of the adaptive DSTS-SP system are de-
termined by the following factors: the specific transmission configuration used for transmitting

data from the four antennas, the spreading factor used and the RSC encoder’s code rate.

8.1.2 Multi-functional MIMO

In Chapter 5, we proposed a multi-functional Multiple-Input Multiple-Output (MIMO) scheme
that combines the benefits of the Vertical Bell Labs Layered Space-Time (V-BLAST) scheme,
of space-time codes as well as of beamforming. Thus, the proposed system benefits from the
multiplexing gain of the V-BLAST, from the diversity gain of the space-time codes and from the
SNR gain of beamforming. The multi-functional MIMO scheme was referred to as a Layered
Steered Space-Time Code (LSSTC). To further enhance the attainable system performance
and to maximise the coding advantage of the proposed transmission scheme, the system was

combined with multidimensional SP modulation.

Figure 8.5 compares the attainable BER performances of a single input single output system,
of a twin-antenna aided STBC system and of a four transmit four receive antenna aided LSSTC
system. The multiplexing gain of the LSSTC scheme is exemplified by the fact that the LSSTC
system used in Figure 8.5 has a throughput that is twice that of a system employing a twin-
antenna aided STBC scheme. Additionally, observe in Figure 8.5 that the LSSTC scheme
attains a diversity gain that is exemplified in terms of the gain attained by the LSSTC scheme
over a single-antenna-aided system as well as over the twin-antenna aided STBC scheme. On
the other hand, notice that an increased SNR gain is obtained by the LSSTC scheme, when
more beamforming elements per Antenna Array (AA) are used. Therefore, Figure 8.5 shows
the diversity gain as well as the beamforming gain of the proposed LSSTC scheme and the
multiplexing gain is exemplified by the fact that the LSSTC’s throughput is higher than that

of a twin-antenna aided STBC scheme.

In Section 5.3 we quantified the capacity of the proposed LSSTC scheme and presented the
capacity limits for a system employing N, = 4 transmit AAs, N, = 4 receive antennas and
a variable number L44 of elements per AA. Furthermore, in Section 5.4.3 we quantified an
upper bound for the achievable bandwidth efficiency of the system based on the EXIT charts
obtained for the iteratively detected system. It was shown that there is a discrepancy between
the maximum achievable rate limit obtained using EXIT chart and the analytical bandwidth
efficiency. This is due to the fact that the capacity of the LSSTC scheme was analysed for the

case where perfect interference cancellation was assumed, while the proposed system employed
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Figure 8.5: Comparison of the attainable BER performance of a QPSK modulated N; x N, =4 x 4 LSSTC
system for variable L 44 values, with that of the twin-antenna aided STBC scheme and the single

transmit single receive antenna aided scheme.

a low-complexity, but error-prone zero forcing interference cancellation scheme.

In order to further enhance the achievable system performance, the proposed LSSTC scheme
was serially concatenated with both an outer code and a URC, where three different receiver
structures were created by varying the iterative detection configuration of the constituent de-
coders/demapper. As a benchmark scheme, we proposed a two-stage iteratively detected RSC-
coded LSSTC-SP scheme, where extrinsic information was exchanged between the outer RSC
decoder and the inner URC decoder, while no iterations were carried out between the URC
decoder and the GM-based SP demapper. This system was referred to as System 1. The

convergence behaviour of the iterative-detection-aided system was analysed using EXIT charts.

In Section 5.4.1.2, we employed the powerful technique of EXIT tunnel-area minimisation
for near-capacity operation. More specifically, we exploited the well-understood properties
of EXIT charts that a narrow but nonetheless open EXIT-tunnel represents a near-capacity
performance. Consequently, we invoked Irregular Convolutional Codes (IrCC) for the sake of
appropriately shaping the EXIT curves by minimising the area within the EXIT-tunnel using
the procedure of [191,194]. The IrCC aided system was referred to as System 2.

In Section 5.4.2 we presented a three-stage iteratively detected RSC-coded LSSTC scheme,
where extrinsic information was exchanged between the three constituent decoders/demapper,
namely the outer RSC decoder, the inner URC decoder as well as the SP demapper. The

three-stage system was referred to as System 3.

Explicitly, the SP aided LSSTC system, employing N;=4 transmit antennas, N,=4 receive
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Figure 8.6: Performance comparison of the three proposed LSSTC-SP aided systems employing two-stage

iteration between an outer code and a URC decoder, as well as that of the three-stage iterative

information exchange between an outer RSC decoder, an intermediate URC decoder and an SP

demapper.
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Figure 8.7: Comparison of the coding gain at a BER of 10~° versus the complexity in million trellis states of
the three proposed LSSTC-SP aided systems.
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LSSTC (4Tx,4Rx) Coding Gain || Distance from maximum
Las=4 achievable rate limit
System 1 14.5 dB 0.9 dB

System 2 15.0 dB 0.4 dB

SP-aided System 3 14.8 dB 0.6 dB

QPSK-aided System 3 | 13.1 dB 1.6 dB

Table 8.4: Iteratively-detected LSSTC system coding gain and distance from maximum achievable rate limit
at BER=10"% in conjunction with N,=4 transmit AAs, N,=4 receive antennas, L 44=4 elements
per AA and D;,;=180, 000 bits.

antennas and L,4=4 elements per AA, is capable of operating within 0.9 dB, 0.6 dB and
0.4 dB from the maximum achievable rate limit, as shown in Figure 8.6. However, to operate
within 0.6 dB from the maximum achievable rate limit, the system imposes twice the complexity
compared to a system operating within 0.9 dB from this limit. On the other hand, to operate as
close as 0.4 dB from the maximum achievable rate limit, the system imposes a 20 times higher
complexity as the one operating within 0.9 dB from the maximum achievable rate limit. By
contrast, the QPSK modulated three-stage iteratively detected system is capable of operating
within 1.54 dB from the maximum achievable rate limit and thus the SP modulated system
outperforms its QPSK aided counterpart by about 1 dB at a BER of 107. The proposed design
principles are applicable to an arbitrary number of antennas and diverse antenna configurations
as well as to various modem schemes. The complexity of the proposed schemes is compared in
Figure 8.7, where the coding gain attained by the different schemes at a BER of 107 has been
plotted versus the corresponding complexity expressed in terms of the number of trellis states,

which is directly proportional to the number of Add-Compare-Select (ACS) operations.

Finally, Table 8.4 presents the coding gains as well as the distance from the maximum
achievable rate limit for the proposed iteratively detected systems, namely the SP-aided Systems
1-3 and the QPSK-aided System 3. The table presents the results for the LSSTC system at
BER=1075, while employing an interleaver depth of D;,;=180, 000 bits.

The LSSTC scheme of Chapter 5 is characterised by a diversity gain, a multiplexing gain as
well as a beamforming gain. However, a drawback of the design is that it requires the number of
receive antennas to be at least the same as the number of transmit AAs. Therefore, for a system
employing four transmit AAs, the receiver requires four antennas for correct decoding, which
implies that the LSSTC scheme cannot be used in a downlink transmission from a base station
to a shirt-pocket-sized mobile phone due to the size limitation of implementing four antennas.
The LSSTC scheme can however be conveniently applied for communicating between two BSs

or between a BS and a laptop. In order to make the LSSTC scheme more practical, in Chapter 6
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Figure 8.8: Comparison of the attainable BER performance of a QPSK modulated LSSTS assisted generalised
MC DS-CDMA and LSSTC systems with that of the twin-antenna aided STBC scheme and the

single transmit single receive antenna aided scheme.

we presented a multi-functional MIMO scheme employing four DL transmit and two receive
antennas. The proposed multi-functional MIMO scheme of Chapter 6 combines the benefits
of Space-Time Spreading (STS), V-BLAST, generalised MultiCarrier Direct Sequence Code
Division Multiple Access (MC DS-CDMA) as well as beamforming. The proposed scheme of
Chapter 6 is referred to as Layered Steered Space-Time Spreading (LSSTS). The LSSTS scheme
benefits from a spatial diversity gain, a frequency diversity gain, a multiplexing gain as well as

a beamforming gain.

Figure 8.8 compares the attainable BER performance of LSSTS assisted generalised MC
DS-CDMA with that of the LSSTC scheme. The figure also shows the BER performance of the
twin-antenna aided STS and the single-input single-output benchmark systems. The LSSTS
scheme employs four transmit AAs and two receive antennas, while the LSSTC scheme of
Figure 8.8 employs four transmit AAs and four receive antennas. Observe in Figure 8.8 that
the BER performance of the LSSTS scheme is identical to that of the STBC scheme, when a
single subcarrier is used. This means that the LSSTS scheme attains a spatial diversity gain
of 2, while attaining a multiplexing gain that is twice that of a twin-antenna aided STBC
scheme. Additionally, increasing the number of subcarriers V' improves the attainable BER
performance as shown in Figure 8.8 for the LSSTS scheme. Hence, the LSSTS scheme is also
capable of attaining frequency diversity gain, when the subcarrier frequencies are arranged
in a way that guarantees that the same STS signal is spread to and hence transmitted by
the specific V' subcarriers having the maximum possible frequency separation, so that they

experience independent fading. On the other hand, comparing the BER performance of the
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Figure 8.9: EXIT chart of a RSC-coded and URC-precoded proposed System 1 of Figure 6.6 employing GM
aided QPSK in conjunction with Ny=4, N,=2, V=4, Loa=4, K=1 user and E,/Ny = —2 dB.

LSSTS scheme employing V=1 subcarrier with that of the LSSTC scheme shows that the
LSSTC scheme attains a better BER performance. This is due to the fact that the LSSTC
scheme employs more receive antennas than the LSSTS scheme and hence the LSSTC scheme

is capable of attaining a higher spatial diversity gain.

In Section 6.3 we demonstrated that the number of users supported by the LSSTS scheme
can be substantially increased by invoking combined spreading in both the Time Domain (TD)
and the Frequency Domain (FD). We also used a novel user-grouping technique for minimising
the multi-user interference imposed, when employing both TD and FD spreading in the LSSTS-
aided generalised MC DS-CDMA downlink scheme.

Furthermore, in order to further improve the attainable performance of the LSSTS assisted
generalised MC DS-CDMA, we proposed three iteratively detected LSSTS schemes, where
iterative detection was carried out by exchanging extrinsic information between two serially
concatenated channel codes. We used EXIT charts to analyse the convergence behaviour of the
proposed iterative detection aided schemes and proposed a novel Logarithm Likelihood Ratio

(LLR) post-processing technique for improving the iteratively detected systems’ performance.

In order to elaborate a little further on the LLR post-processing technique, observe in

Figure 8.9 that there are several EXIT curves for the URC decoder at the same Ej,/N, value.
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Let us first consider the dark line marked by the legend “no LLR limits”. This EXIT curve
corresponds to a URC decoder, which has a recursive encoder at the transmitter and hence it
is expected that the EXIT curve of the URC decoder will indeed reach the (1.0,1.0) point of
perfect convergence in the EXIT curve, as discussed in [1]. However, Figure 8.9 also shows that
the EXIT curve of the URC decoder does not reach the (1.0, 1.0) point. Limiting the maximum
and minimum of the LLR values allowed the URC EXIT curve to reach the (1.0,1.0) point, as
shown in Figure 8.9 by the dotted line associated with the legend “LLR limit=10".

On the other hand, for the sake of testing the accuracy of the URC EXIT curve, while
imposing a limit on the LLR values, we generated artificial Gaussian distributed and uncor-
related LLRs, where the resultant EXIT curve is represented by the dotted line having the
legend “artificial LLR generation”. As shown in Figure 8.9, the curves corresponding to the
case where the LLRs” dynamic range is limited and where the artificial LLRs are generated are
quite different. Therefore, limiting the LLR values did not solve the problem. The reason for
this behaviour is the fact that the output of the LSSTS decoder that is passed to the QPSK
demapper is not Gaussian distributed, although the LLR values in the demapper are calculated
assuming Gaussian distribution. Therefore, in order to eliminate the complexity of computing
an analytical formula for the Probability Density Functions (PDF) of the LSSTS decoded data
or computing the LLRs based on the histogram of the data, we devised LLR post-processing
technique of Section 6.4.1 as a transformation for the output LLR of the demapper. Figure 8.9
shows that the system employing the LLR post-processing technique attains a similar EXIT

curve to the case where artificial LLRs were generated.

The three iterative detection aided LSSTS schemes differed in the way the channel coding
was implemented in the different STS layers, while the overall code-rate of three systems was

kept identical.

1. In the first scheme, referred to as System 1, a single outer and a single inner channel code

was used to encode the bits transmitted.

2. In the second scheme, namely System 2, a single outer code was implemented, whose
output was split into two substreams, each of which were encoded using a separate inner

code.

3. By contrast, in the third proposed scheme referred to as System 3, the input data bit
stream was first split into two different substreams, where a pair of different outer as well

as inner codes were implemented in the different substreams.

It was shown in Chapter 6 that the three systems exhibit a similar complexity quantified in

terms of the total number of trellis states encountered, which determines the number of Add-
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Compare-Select (ACS) arithmetic operations. Similarly, we demonstrated that, provided we
employed sufficiently long interleavers, the three systems attained a similar BER performance.
By contrast, when shorter interleavers were employed, System 1 performed better than System
2, which in turn performed better than System 3. This is due to the fact that the interleaver
depth of System 2 and System 3 is lower than that of System 1, since the bit stream is split into
two substreams in System 2 and System 3, which constrains the interleaver to be shorter and
hence the correlation in the extrinsic information becomes higher, which eventually degrades

the BER performance.

8.1.3 Distributed Turbo Coding

The MIMO schemes presented in Sections 8.1.1 and 8.1.2 are considered to be colocated MIMOs,
i.e. the multiple antennas at the transmitter and receiver are connected physically to the same
station. Additionally, in order to attain a diversity gain, it is required that the channel impulse
response between the different transmit antennas and the receive antenna be uncorrelated or
statistically independent. This is possible if the antenna spacing is sufficiently large so that
the assumption of statistical independence of the different paths from the different antennas is
justified. However, the assumption of sufficient antenna spacing may be impractical for shirt-
pocket-sized wireless devices, which are typically limited in size and hardware complexity to a

single transmit antenna.

On the other hand, spatial fading correlations caused by insufficient antenna spacing at the
transmitter or receiver of a MIMO system results in degradation in the capacity as well as
the BER performance of MIMO systems as shown in Figure 8.10 for a twin-antenna STBC
system [44]. Correlation is likely to be introduced as a result of large-scale shadow fading
that affects the transmission links between the different transmit and receive antennas [31].
Figure 8.10 compares the BER performance of a single-transmit and single-receive antenna
system with that of a twin-antenna aided STBC system affected by the large-scale shadow
fading. As shown in Figure 8.10, the performance of MIMO systems degrades, as the shadow
fading effects increase and the single-antenna aided system performs better than a MIMO

system, when the shadow fading variance is higher than 5 dB.

Cooperative communications were recently introduced for attaining spatial diversity, where
it is typically possible to guarantee the spatial separation of the transmit antennas. This is due
to the fact that the different antennas belong to different mobile stations, which are assumed to
be far enough to attain statistically independent fading from the different antennas. Therefore,
since the signals transmitted from different users undergo independent fading, spatial diversity

can be achieved with the aid of the cooperating partners’ antennas.
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Figure 8.10: Effect of large-scale shadow fading on the performance of STBC systems.

In Chapter 7 we proposed a Distributed Turbo Coding (DTC) scheme, where two users
cooperate by appropriately sending their own data coupled with the other user’s data after
interleaving and channel coding. Cooperation in the proposed DTC scheme is carried out in
two phases. During the first phase of cooperation, the two users exchange their data in two time
slots. Hence, after the first phase of cooperation the two users have their own data as well as the
data of the other user. Then, during the second phase of cooperation, each user employs channel
coding and interleaving before mapping the bits to multidimensional SP symbols that are then
simultaneously transmitted from the two users’ antennas. At the receiver side, interference
cancellation is applied to the received data, where two branches of decoded data are output
from the interference canceller. Afterwards, iterative detection is carried out both between the
demapper and the channel code’s decoder in each branch as well as between the channel codes’

decoders in the two branches.

The proposed DTC is compared against a benchmark scheme, where no exchange of data
is carried out between the two users. By contrast, each user transmits his/her own data after
channel coding and interleaving. At the receiver side, interference cancellation is performed on
the received signal and then iterative detection is carried out between the demapper and the

channel code’s decoder in each branch of the decoded signal.

The DTC scheme has a four times lower throughput than the benchmark scheme. However,
the DTC scheme is capable of attaining an Fj, /Ny gain of more than 25 dB at a BER of 107°
over the benchmark scheme due to the fact that the benchmark scheme has an error floor, while

the DTC scheme does not.

Additionally, in Section 7.4 we studied the effect of errors induced in the data exchanged
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between the different users in the first phase of cooperation on the performance of the uplink
transmission in the second phase of cooperation. We considered transmission over AWGN,
Rayleigh and Ricean inter-user channels and studied the effects of transmission over the different
channels on the performance of the DTC scheme. It was shown in Section 7.4 that an error rate
higher than 1079 in the inter-user communication results in an error floor in the attainable BER
performance of the cooperative uplink transmission. Therefore, it was proposed to consider soft
data relaying in the DTC scheme and this will be further discussed in Section 8.2 in terms of

our future work ideas.

8.2 Future Work

The research presented in this thesis can be extended in several ways. In this section we present

some ideas of our proposed future work and briefly elaborate on each idea.

8.2.1 Differential Multi-functional MIMO

As discussed in Chapter 2, the channel estimation complexity increases with the product of
the number of transmit and receive antennas. Additionally, channel estimation errors degrade
the performance of the MIMO systems when coherent detection is employed. A solution for
eliminating the complexity of MIMO channel estimation is to employ non-coherent detection

dispensing with channel estimation.

The multi-functional MIMOs presented in Chapters 5 and 6 use coherent detection, while
assuming perfect channel knowledge at the receiver. However, channel estimation, which is a
complex process, includes channel estimation errors that degrades the attainable BER perfor-
mance of the system. Figure 8.11 compares the attainable BER performance of the LSSTC
scheme of Chapter 5 both when considering perfect channel knowledge and when modelling
the channel estimation error as Gaussian noise imposed on the channel impulse response at the
receiver side. Observe that as the noise variance increases, i.e. as the channel estimation error
increases, the BER performance degrades and an error floor is formed. Therefore, an attractive
way of eliminating the potentially high-complexity channel estimation as well as the perfor-
mance degradation due to channel estimation errors is to design non-coherent receivers that do
not require any channel knowledge. Differential schemes, such as DSTS, employ non-coherent
detectors at the expense of 3 dB performance degradation compared to the coherent scheme

using perfect channel knowledge.

Therefore, as a further extension to the multi-functional MIMO schemes of Chapters 5 and 6,

we can design differential multi-functional MIMO schemes that do not require any channel
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Figure 8.11: Effect of channel estimation error on the performance of the LSSTC scheme of Chapter 5. Gaus-
sian noise was added to the channel impulse response at the receiver for the sake of inducing

errors in the channel knowledge.

knowledge. Additionally, it is expected that the differential scheme will have a 3 dB performance
degradation when compared to the coherent scheme assuming perfect channel knowledge at the
receiver. However, when channel estimation is employed, differential detection eliminates the
complexity of channel estimation and we may even attain a better BER performance than that

of the coherent scheme, when the channel estimation is not reliable.

8.2.2 Multi-functional Cooperative Communication Systems

MIMO systems require more than one transmit antenna, but satisfying this need may be im-
practical for shirt-pocket-sized wireless devices, which are typically limited in both size and
hardware complexity to a single transmit antenna. Furthermore, as most wireless systems
support multiple users, user cooperation [36,37,268] can be employed, where users support
each other by “sharing their antennas” and thus generate a virtual multiple antenna environ-
ment [137]. Since the signals transmitted from different users undergo independent fading,

spatial diversity can be achieved with the aid of the cooperating partners’ antennas.

Several cooperative communication schemes have been proposed in the literature [10,36,37,
135,137,138, 141,145,161, 268], where cooperative communications have been shown to offer
significant performance gains in terms of various performance metrics, including diversity gains
as well as multiplexing gains. Hence, a potential research idea is to investigate the design
of cooperative communication schemes that are characterised by diversity gain, multiplexing

gain as well as beamforming gain. In other words, we are proposing to design multi-functional
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cooperative communication schemes. An uplink scheme can be implemented, where each Mobile
Station (MS) may be equipped with a single antenna or a single antenna array. Users can be
combined in a way that the nearest users can transmit in a Space-Time Code (STC) manner,
where the channels from the different MSs to the uplink receiver are assumed to be statistically
independent. Additionally, different groups of users employing STC may transmit their data
at the same time and using the same carrier frequency, like V-BLAST, in order to increase the

attainable throughput of the system.

On the other hand, the user cooperation is usually implemented as two-phase cooperation.
The first phase corresponds to the phase, where the users exchange their data so that they can
assists each other in the second phase of cooperation, where the users communicate with the
base station. Hence, the total throughput of the system depends on the number of time-slots
as well as on the way the different users exchange their data. Additionally, the performance of
the system depends on the signalling scheme used by the different users for relaying the data
of the other users. Therefore, the multi-functional cooperative communication scheme can be
designed and studied in the context of completely different signalling schemes, evaluating their

effect on the attainable BER performance as well as on the attainable throughput.

On the other hand, instead of considering a cooperative uplink scheme, where the different
users communicate with a BS, it is possible to consider an ad-hoc network, where the different
users cooperate with other users. In this case, the receiving users can also cooperate in order
to reliably decode their received signals and hence each receiving user can decode his/her own
data. The receivers have to exchange their received signals as well as the CIRs of the channels
between the transmitting users and each receiving user. This can be carried out in a single
time slot for each receiving user using CDMA spreading, where each receiving user transmits

at the same time its received signal with the CIRs from the transmitting users.

8.2.3 Soft Relaying and Power Optimisation in Distributed Turbo Coding

In Chapter 7 we proposed a Distributed Turbo Coding (DTC) scheme that combines the con-
cepts of cooperative communications and turbo coding. In the proposed scheme, we considered
equal power allocation for the two phases of cooperation as well as for the two users. However,
in a practical scenario, the two cooperating users must be closer to each other than to the Base
Station (BS). Hence, power can be allocated more efficiently so that less power can be allocated
for the first phase of cooperation and more power can be allocated to the second phase, while
keeping the total transmit power in the two phases of cooperation constant. Additionally, the
transmit power can be optimally shared between the two users so that the user with the better

channel conditions can transmit more power.
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Half-rate channel coding has been used in the first phase of communication in the DTC
scheme of Chapter 7 in order to improve the attainable BER performance of the uplink trans-
mission. The results presented in Chapter 7 were considered for the system, where the 1/2-rate
codes were employed in the two phases of cooperation. This means that the system is wast-
ing the available bandwidth. Hence, it is possible to distribute the code rate between the
two phases of cooperation so that the system utilises the available bandwidth as efficiently
as possible, while providing a good BER performance. Additionally, iterative detection can
be carried out during the phase-one of cooperation, where the number of iterations can be
adapted depending on the Inter-User Channel (IUC) SNR. In other words, when the IUC SNR
is high enough, no iterations may be applied and then as the [UC SNR decreases, the number
of decoding iterations can be increased in order to maintain a good BER performance in the
first phase of cooperation, which eventually affects the performance of the transmission in the

second phase of cooperation.

On the other hand, soft relaying has been proposed as a method for combining the main
advantages of both Amplify-and-Forward (AF) and Decode-and-Forward (DF) signalling strate-
gies. In [146] soft DF has been shown to outperform the DF and AF signalling, where it was
argued that the DF signalling loses soft information and hence all operations were performed
in a LLR domain. A more detailed study on the soft DF was carried out in [154], where it was
shown how the soft information can be quantised, encoded and then modulated using super-
imposed modulation in order to maintain the system’s throughput and bandwidth constant.
Soft information relaying has also been used in [151] in order to pass soft information from the
relay to the BS using BPSK modulation. Furthermore, in [147,152] distributed source coding
techniques have been adopted for employment in wireless cooperative communications in order
to improve the inter-user performance. Therefore, based on the performance improvements
reported in the literature while using soft information relaying and based on the fact that the
performance of the DTC scheme of Chapter 7 is highly dependent on the inter-user channel
characteristics, it is of potential research interest to investigate the effect of using soft infor-
mation relaying. In other words, in the DTC scheme the two users transmit soft estimates
of the other users’ data instead of performing hard decoding and losing the advantage of soft

information.
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Gray and Anti-Gray Mapping Schemes
for Sphere Packing Modulation of Size
L =16

In this appendix, Gray mapping and the 9 different Anti-Gray mapping schemes introduced
in Chapter 3 for DSTS-SP signals of size L = 16 are described in detail. More specifically,

for all mapping schemes, constellation points of the lattice D, are given for each integer index

[ =0,1,...,15. Observe that all mapping schemes use the same 16 constellation points. The
normalisation factor of these constellation points is Eth - = 1 as described in Equation (2.21).

The constellation points corresponding to each mapping scheme are given in Tables A.1 to A.10.
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APPENDIX A. MAPPING SCHEMES FOR SP OF SIZE L = 16

Points from Dy

Points from Dy

Integer Index || a1 | a2 | az | a4 Integer Index || a1 | a2 | a3 | aq
0 -1]-1] 0 0 8 -1 0 0 | -1
1 0O |-1]-1] 0 9 0 0 | -1|-1
2 0O |-1|+1| 0 10 0 0 | +1| -1
3 +1] -1 0 0 11 +11 0 0 | -1
4 -1] 0 0 | +1 12 -1]|+1| O 0
5 0 0 | -1]|+1 13 0O |+1|-1] O
6 0 0 | +1]|+1 14 O |+1|+1] O
7 +11 0 0 | +1 15 +1]+1| 0 0
Table A.1: Gray mapping.
Points from Dy Points from Dy
Integer Index || a1 | a2 | ag | ag Integer Index || a1 | a2 | a3 | ag
0 +1|-1| 0 0 8 -1 0 0 | -1
1 0O |-1|-1] 0 9 0 0 | -1|-1
2 0O |-1|+1| 0 10 0 0 | +1| -1
3 -1]-1] 0 0 11 +11 0 0 | -1
4 -1] 0 0 | +1 12 -1]|+1| O 0
5 0 0 | -1]|+1 13 0O |+1|-1] O
6 0 0 | +1]|+1 14 O |+1|+1] O
7 +11 0 0 | +1 15 +1]+1| 0 0

Table A.2: Anti-Gray mapping AGM-1.
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APPENDIX A. MAPPING SCHEMES FOR SP OF SIZE L = 16

Points from Dy

Points from Dy

Integer Index || a1 | a2 | az | a4 Integer Index || a1 | a2 | a3 | aq
0 +1|+1| 0 0 8 -1 0 0 | -1
1 0O |-1]-1] 0 9 0 0 | -1|-1
2 0O |-1|+1| 0 10 0 0 | +1| -1
3 +1] -1 0 0 11 +11 0 0 | -1
4 -1] 0 0 | +1 12 -1]|+1| O 0
5 0 0 |—-1]+1 13 0O |+1|-1] O
6 0 0 | +1]|+1 14 O |+1|+1] O
7 +11 0 0 | +1 15 —1(-1] 0 0

Table A.3: Anti-Gray mapping AGM-2.

Points from Dy

Points from Dy

Integer Index || a1 | a2 | ag | ag Integer Index || a1 | a2 | a3 | ag
0 +11 0 0 | -1 8 0O |-1|-1] 0
1 +11 0 0 | +1 9 0 0 | -1|+1
2 110 0 | -1 10 —1(-1] 0 0
3 0 0 | +1]|+1 11 110 0 | +1
4 0O |-1|+1| O 12 0 0 |—-1]-1
5 +1] -1 0 0 13 0O |+1|-1] O
6 0 0 | +1| -1 14 +1]+1| 0 0
7 O |+1|+1| O 15 -1]+1]| 0 0

Table A.4: Anti-Gray mapping AGM-3.
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APPENDIX A. MAPPING SCHEMES FOR SP OF SIZE L = 16

Points from Dy

Points from Dy

Integer Index || a1 | a2 | az | a4 Integer Index || a1 | a2 | a3 | aq
0 0 0 |—-1]+1 8 +1|-1| 0 0
1 0 0 | -1|-1 9 0 0 | +1| -1
2 -1|+1]| O 0 10 -1] 0 0 | +1
3 -1 0 0 | -1 11 —1(-1] 0 0
4 +1| 0 0 | +1 12 0O |—-1]|-1|20
5 +1|+1| 0 0 13 +1| 0 0 | -1
6 0O |+1|-1| 0 14 0O |-1|+1] O
7 O |+1|+1| O 15 0 0 | +1 | +1

Table A.5: Anti-Gray mapping AGM-4.

Points from Dy

Points from Dy

Integer Index || a1 | a2 | ag | ag Integer Index || a1 | a2 | a3 | ag
0 O |+1|+1| 0 8 -1 0 0 | +1
1 0 0 | +1| -1 9 —1(-1] 0 0
2 110 0 | -1 10 0 0 | —-1|+1
3 -1|+1]| O 0 11 0O |—-1|-1|20
4 0O |-1|+1| O 12 +1 -1 0 0
5 +1|+1| 0 0 13 0 0 |—-1]-1
6 0 0 | +1]|+1 14 +11 0 0 | +1
7 +11 0 0 | -1 15 O |+1|-1] O

Table A.6: Anti-Gray mapping AGM-5.
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APPENDIX A. MAPPING SCHEMES FOR SP OF SIZE L = 16

Points from Dy

Points from Dy

Integer Index || a1 | a2 | az | a4 Integer Index || a1 | a2 | a3 | aq
0 -1 0 0 | +1 8 0 0 | +1]+1
1 0O |-1]-1] 0 9 -1 0 0 | -1
2 0 0 | +1| -1 10 0O |-1|+1] O
3 0O |+1|-1| 0 11 O |+1|+1] O
4 0 0 | -1]+1 12 —1(—-1] 0 0
5 +1|-1| 0 0 13 -1]+1| 0 0
6 +1|+1| 0 0 14 +11 0 0 | +1
7 +11 0 0 | -1 15 0 0 | —-1]-1

Table A.7: Anti-Gray mapping AGM-6

Points from Dy

Points from Dy

Integer Index || a1 | az | a3 | a4 Integer Index || a1 | a2 | ag | a4
0 —-1|-1] 0 | O 8 0 |0]-1]-1
1 -1(4+1] 0 (O 9 0 |0 —-1]|+1
2 +1]-1]1 0 (0 10 0 |0]+1|-1
3 +1|+1| 0 | O 11 0|0 ]+1|+1
4 0O |—-1|-1]0 12 —1(10|( 0 |-1
5 0O |-1|+1]0 13 -1]10 1] 0 | +1
6 0O [|+1|-1]0 14 +170 | 0 | -1
7 O |+1|+1]|0 15 +110 | 0 |+1

Table A.8: Anti-Gray mapping AGM-7.
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APPENDIX A. MAPPING SCHEMES FOR SP OF SIZE L = 16

Points from Dy

Points from Dy

Integer Index || a1 | a2 | az | a4 Integer Index || a1 | a2 | a3 | aq
0 0O |-1|-1| 0 8 O |+1|+1] O
1 —1(-1] 0 0 9 +1]+1| 0 0
2 110 0 | -1 10 +11 0 0 | +1
3 0 0 | —-1]-1 11 0 0 | +1 | +1
4 0O |—-1|+1| O 12 0O |+1|-1] O
5 -1|+1]| O 0 13 +1|-1| 0 0
6 -1 0 0 | +1 14 +11 0 0 | -1
7 0 0 | —-1|+1 15 0 0 | +1| -1

Table A.9: Anti-Gray mapping AGM-8.

Points from Dy

Points from Dy

Integer Index || a1 | a2 | ag | ag Integer Index || a1 | a2 | a3 | ag
0 +1|+1| 0 0 8 0O |+1|-1] O
1 +11 0 0 | -1 9 0 0 | +1 | +1
2 +11 0 0 | +1 10 0 0 | +1| -1
3 -1|+1]| O 0 11 0O |—-1|-1|20
4 O |+1|+1| 0 12 +1 -1 0 0
5 0 0 |—-1]+1 13 110 0 | -1
6 0 0 | —-1]-1 14 -1 0 0 | +1
7 0O |-1|+1| 0 15 —1(-1] 0 0

Table A.10: Anti-Gray mapping AGM-9.
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Glossary

AA

ACS

AF

AGM

AMR-WB

AWGN

BCJR

BER

BICM

BPS

BPSK

BS

CCMC

CDMA

CIR

CRC

CSI

CSNR

Antenna Array
Add-Compare-Select Arithmetic Operation
Amplify-and-Forward

Anti-Gray Mapping

Adaptive MultiRate Wideband
Additive White Gaussian Noise
Bahl-Cocke-Jelinek-Raviv

Bit Error Ratio

Bit Interleaved Coded Modulation
Bits Per Modulated Symbol
Binary Phase Shift Keying

Base Station

Continuous-Input Continuous-Output Memoryless Channel

Code Division Multiple Access
Channel Impulse Response
Cyclic Redundancy Check
Channel State Information

Chip Signal-to-Noise Ratio
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Glossary

D-STTD
DCMC
DF

DL

DOA
DPSK
DSTBC
DSTS
DSTS-SP
DTC
EXIT

FD

GM
HARQ

HSDPA

IC
IrCC
IrVLC
ISCD
ISI
IucC
LLR
LM

LSSTC
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Double Space-Time Transmit Diversity
Discrete-Input Continuous-Output Memoryless Channel
Decode-and-Forward

DownLink

Direction Of Arrival

Differential Phase Shift Keying
Differential Space-Time Block Codes
Differential Space-Time Spreading
Differential Space-Time Spreading using Sphere Packing Modulation
Distributed Turbo Code

Extrinsic Information Transfer
Frequency Domain

Gray Mapping

Hybrid Automatic-Repeat-reQuest
High Speed Downlink Packet Access
Independent and Identically Distributed
Interference Cancellation

Irregular Convolutional Code

Irregular Variable Length Code
I[terative Source and Channel Decoding
InterSymbol Interference

Inter-User Channel

Logarithmic Likelihood Ratio
Lloyd-Max

Layered Steered Space-Time Codes



Glossary

LSSTS

LST

MAP

MC CDMA
MC DS-CDMA
MED

MI

MIMO

ML

MS

MUD

MUI
OFDM

P/S

PAM

PDF

PSK

QAM

QPSK
RCPC
RSC
S/P
SF

SI1C

277

Layered Steered Space-Time Spreading
Layered Space-Time

Maximum A Posteriori

Multi-Carrier Code Division Multiple Access
Multi-Carrier Direct Sequence Code Division Multiple Access
Minimum Euclidean Distance

Mutual Information

Multiple-Input Multiple-Output

Maximum Likelihood

Mobile Station

Multi-User Detection

Multi-User Interference

Orthogonal Frequency Division Multiplexing
Parallel-to-Serial Conversion

Pulse Amplitude Modulation

Probability Density Function

Phase Shift Keying

Quadrature Amplitude Modulation

Quality of Service

Quadrature Phase Shift Keying

Rate Compatible Punctured Convolutional
Recursive Systematic Convolutional
Serial-to-Parallel Conversion

Spreading Factor

Successive Interference Cancellation



Glossary

SINR
SNR

SpP
SP-SER
ST

STBC
STC

STS
STTC
TCM

TD

TDD

UL

URC
V-BLAST
VAA
VSF
WCDMA

ZF

Signal to Interference plus Noise Ratio
Signal to Noise Ratio

Sphere Packing

Sphere Packing Symbol Error Ratio
Space-Time

Space-Time Block Coding

Space-Time Coding

Space-Time Spreading

Space-Time Trellis Codes

Trellis Coded Modulation

Time Domain

Time Division Duplex

UpLink

Unity Rate Code

Vertical Bell Labs Layered Space-Time
Virtual Antenna Array

Variable Spreading Factor

Wideband Code Division Multiple Access

Zero Forcing
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