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Modelling the Human Cochlea 

by Emery Mayon Ku 

One of the salient features of the human cochlea is the incredible dynamic range it 

possesses—the loudest bearable sound is 10,000,000 times greater than the softest 

detectable sound; this is in part due to an active process.  More than twelve thousand hair-

like cells known as outer hair cells are believed to expand and contract in time to amplify 

cochlear motions.  However, the cochlea’s response is more than just the sum of its parts: 

the local properties of outer hair cells can have unexpected consequences for the global 

behaviour of the system.  One such consequence is the existence of otoacoustic emissions 

(OAEs), sounds that (sometimes spontaneously!) propagate out of the cochlea to be 

detected in the ear canal. 

In this doctoral thesis, a classical, lumped-element model is used to study the cochlea 

and to simulate click-evoked and spontaneous OAEs.  The original parameter values 

describing the microscopic structures of the cochlea are re-tuned to match several key 

features of the cochlear response in humans.  The frequency domain model is also recast in 

a formulation known as state space; this permits the calculation of linear instabilities given 

random perturbations in the cochlea which are predicted to produce spontaneous OAEs.  

The averaged stability results of an ensemble of randomly perturbed models have been 

published in [(2008) ‘Statistics of instabilities in a state space model of the human 

cochlea,’ J. Acoust. Soc. Am. 124(2), 1068-1079].  These findings support one of the 

prevailing theories of SOAE generation. 

Nonlinear simulations of OAEs and the model’s response to various stimuli are 

performed in the time domain.  Features observed in the model include the saturation of the 

forces generated by the OHCs, compression of amplitude growth with increasing stimulus 

level, harmonic and intermodulation distortion, limit cycle oscillations that travel along the 

cochlear membranes, and the mutual suppression of nearby linear instabilities. 
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General Comments 

• The term ‘measurement’ is used in this thesis to refer to any experimental 

measurements performed on live or dead subjects, whereas the term ‘simulation’ 

refers to any results generated by numerical simulation.  

• The term ‘baseline’ is used to describe a cochlear model that is active, passive, 

linear or nonlinear, but does not contain any deviations from standard, uniformly 

varying parameters; if a model contains deviations from normal parameter values, 

the term ‘perturbed’ is applied. 

• Matrices are presented in upper case, bold typeface; vectors are presented in lower 

case, bold typeface. 

• 
.

and 
..

indicate the first and second derivatives of a variable with respect to time. 

• The notation of a given variable’s dependency on x, ω or t is occasionally 

suppressed for convenience. 

• Quantities are often expressed in millimetres and milliseconds as these units are 

generally better-suited to the spatial- and temporal- scales of the cochlea and its 

activity. 
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Chapter 1 
 

1 Introduction 
 
 
 

1.1   The Human Cochlea 
Of the various biological systems under study, the human cochlea is a particularly 

fascinating and challenging organ to model.  The cochlea represents the last mechanical 

stage of hearing.  It has great acoustical resolving power in time, frequency and intensity, 

and exhibits a wealth of nonlinear phenomena.  Many aspects of its function are still not 

well-understood, even though it has been examined for hundreds of years (e.g. Helmholtz, 

1874); this is primarily due to the difficulties associated with direct mechanical 

measurements of the cochlea.  For instance, its dimensions and motion are on extremely 

small magnitudes.   This is further complicated by its physical inaccessibility, being 

located deep within the temporal bone. 

The goal of this doctoral thesis is to add to the understanding of how the human 

cochlea operates by performing computer simulations of its dynamics.  What follows is an 

introduction to the biology and observed features of the mammalian cochlea.  Also 

included is an overview of the sounds that can propagate out of the cochlea, known as 

otoacoustic emissions (OAEs).  OAEs represent an important epiphenomenon of the 

cochlea as their analysis can reveal clues to cochlear function without requiring invasive 

surgical techniques. 
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1.1.1   Biology and measurements 
The cochlea is a fluid-filled organ located in the inner ear.  Its primary function is to 

perform mechanical pre-processing of incoming acoustical pressure waves and to convert 

this energy into neural impulses that are sent to the auditory cortex.  In addition to 

amplifying input signals, the cochlea maps the motion induced by the various frequency 

components of a sound to different positions along the cochlea.  This spatial filtering 

allows a large number of neuronal pathways, each with a limited bandwidth, to relay much 

of the information contained within the acoustical signal to the brain.  Figure 1.1 shows the 

cochlea’s location relative to the outer and middle ears. 

The middle ear bones, the malleus, the incus and the stapes, perform an impedance 

matching between the air in the outer ear and the fluid in the cochlea; this is achieved 

through the reduction in surface area between the eardrum and the stapes footplate, in 

addition to the lever arm that arises due to the geometric arrangement of these bones.  A 

more in-depth discussion of the middle and outer ears can be found in Appendix A. 

 

Figure 1.1:  The cochlea in relation to the outer and middle ears.  Reproduced from 
‘Hearing: an introduction to psychological and physiological acoustics,’ by S.A. Gelfand, 
Copyright (1998), with permission from Marcel Dekker. 

 
Sound waves incident upon the eardrum induce motion in the middle ear bones, 

which in turn cause the stapes footplate to produce pressure waves in the cochlear fluid.  

Figure 1.2 shows a simplified view of the scalae, or chambers, of an uncoiled cochlea.  The 

inward displacement of the stapes at the oval window results in a near-instantaneous 

outward displacement of equivalent volume at the round window due to the 

incompressibility of the cochlear fluid.  This equalizes the overall pressure in the scalae 
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(Pickles, 2003).  However, a slower travelling wave (TW) is observed on the basilar 

membrane (BM), a thin sheet of material in the cochlea.  This TW propagates from base to 

apex following a stimulus (von Békésy, 1949).  Figure 1.3 shows the instantaneous BM 

and fluid motion associated with the TW in the scalae produced by a tonal stimulus. 

 

Figure 1.2:  Schematic representation of the uncoiled cochlea.  Reproduced from ‘Hearing: 
an introduction to psychological and physiological acoustics,’ by S.A. Gelfand, Copyright 
(1998), with permission from Marcel Dekker. 

 

 

Figure 1.3:  Schematized illustration of the BM travelling wave and fluid flow given 
sinusoidal excitation at the stapes. Redrawn after Trends in Neurosciences, 21, Nobili, R., 
Mammano, F. and Ashmore, J., ‘How well do we understand the cochlea?’ 159-167, 
Copyright (1998), with permission from Elsevier. 

 
The BM is stiff and narrow at the base of the cochlea and broadens to become wider 

and floppier at the apex, as schematized in Figure 1.2.  This variation in the BM’s 

mechanical properties results in a natural or ‘passive’ tuning of the response of the cochlea; 

higher frequencies resonate near the base, and lower frequencies near the apex.  At a given 

excitation frequency, speed of TW and its local wavelength decrease as it approaches its 

peak.  This effect is similar to the behaviour of ocean waves which get taller and narrower 

as they encounter shallower waters.  Mechanically speaking, a TW generated by a 
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sinusoidal excitation travels quickly in the basal, stiffness-dominated region.  It then slows 

and reaches a peak at its resonant point where the BM impedance is lowest; this location is 

defined as the ‘characteristic place.’  Apical of the characteristic place, the impedance of 

the BM is mass-dominated and the TW is extinguished (von Békésy, 1949).  This spatial 

mapping of tones, sometimes referred to as ‘tonotopy,’ is further enhanced by active 

elements located in the organ of Corti (OC), a set of specialized cells that sits on the BM.  

Figure 1.4 shows a cross-section of the cochlea and the three scalae, while Figure 1.5 

presents a detailed view of the OC. 

 

Figure 1.4:  Cross-section of a single turn of the cochlea.  Reproduced from ‘Hearing: an 
introduction to psychological and physiological acoustics,’ by S.A. Gelfand, Copyright 
(1998), with permission from Marcel Dekker. 

 

 

Figure 1.5:  Detail view of the organ of Corti.  Reprinted from Hearing Research, 22, Lim, 
D.J., ‘Functional structure of the organ of Corti: a review,’ 117-146, Copyright (1986), 
with permission from Elsevier. 
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The OC is critical to the function of the cochlea.  The travelling wave on the BM 

propagates through the cochlea as a result of a local pressure differences above and below 

the cochlear partition (CP).  The bending of the BM results in a shearing motion against a 

gelatinous flap that sits above it, the tectorial membrane (TM).  Embedded in the TM are 

hair-like cells known as stereocilia that protrude out of the outer hair cells (OHCs).  The 

deflection of the stereocilia tip links mechanically opens and closes ion channels which are 

believed to be associated with the transduction process.  This in turn induces the electro-

chemical expansion and contraction of the OHCs in a phenomenon known as somatic 

motility (Ashmore, 1987).  The forces generated by the OHCs are believed to actively 

amplify the TW and sharpen its pattern of activity along the BM (Sellick et al., 1982).  Of 

course, such a cochlear amplifier (CA) requires a source of energy.  Adjacent to the scala 

media is the stria vascularis, which produces the positively charged fluid that fills this 

chamber.  This liquid is known as endolymph, and it exhibits a positive resting potential on 

the order of +100 mV relative to the other chambers (Gelfand, 1998). 

Although all research to date regarding the mechanics of the OHCs has been 

performed in vitro, the electromotility of these cells has been demonstrated in a number of 

experiments (Brownell et al., 1985).  Figure 1.6 shows the change in intracellular voltage 

given variations in pressure for both an inner hair cell (IHC) and an OHC. 

 

Figure 1.6:  Input-output functions of an IHC (left) and OHC (right) from the base of a 
guinea pig cochlea.  Intracellular voltage (vertical axis) is plot against stimulus pressure 
(horizontal axis).  Reprinted from the Journal of Physiology, 383, Cody, A.R. and Russell, 
I.J., ‘The response of hair cells in the basal turn of the guinea pig cochlea to tones,’ 551-
569, Copyright (1987), with permission from the Physiological Society. 



1 Introduction 

  

 
6 

 
It is clear that the transduction characteristics of inner- and outer-hair cells are both non-

symmetrical and saturating, and thus nonlinear.  Researchers have fitted these responses to 

Boltzmann functions with good agreement in the past (e.g. Kros et al., 1992).  Note that in 

later figures, the response of the Boltzmann function has the shape of the IHC transduction 

measurement, rather than the inverted shape for the OHC response shown in Figure 1.6. 

Figure 1.7 shows the exposed stereocilia on the upper surface of a chinchilla’s organ 

of Corti, with the TM removed.  In contrast to OHCs which are believed to amplify the 

TW motion, the IHCs are understood to act as sensors which detect motion and encode this 

information via the release of neurotransmitters.  There are approximately 30,000 sensory 

neurones which carry this information to the central nervous system (Pickles, 2003).  

However, there are also a much smaller number of ‘efferent’ nerve fibres which convey 

instructions from the brain to the base of the hair cells, particularly the OHCs.  The exact 

function of cochlear efferents is still unknown, though they are likely to act as an adaptive 

control signal pathway. 

 

Figure 1.7:  The upper surface of a chinchilla organ of Corti.  Stereocilia of inner and outer 
hair cells are labelled as IH and OH.  Also marked are Hensen’s cells (H), Deiters’ cells 
(D), outer and inner pillar cells (OP, IP), and inner phalangeal cells (IPh).  Reprinted from 
Hearing Research, 22, Lim, D.J., ‘Functional structure of the organ of Corti: a review,’ 
117-146, Copyright (1986), with permission from Elsevier.  

 
The importance of the organ of Corti is underscored when it is physiologically 

compromised.  Cochlear damage may arise due to a variety of factors, such as acoustical 

overstimulation or exposure to ototoxic substances.  The presence of cochlear injury may 
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in turn be manifest as a reduction in hearing sensitivity or frequency discrimination.  From 

an engineering standpoint, the resolving capabilities of a healthy human cochlea are 

remarkable. 

The cochlea is able to discern minute changes in intensity, time and frequency.  For 

instance, the average human can detect a variation in frequency of less than 1% across its 

bandwidth, which spans approximately three decades (Gelfand, 1998).  One of the most 

salient features of the cochlea is the dynamic range it possesses; this is approximately 140 

dB SPL—the loudest bearable sound is 10,000,000 times greater in pressure amplitude 

compared to the softest detectable sounds (Gelfand, 1998).  At the lower threshold of 

human hearing, the cochlea can detect motion that is smaller than the width of a hydrogen 

atom (Rhode, 1984).  At the upper end of hearing intensities are sounds that are 

comparable to those generated by a rifle fired at close range. 

The staggering dynamic range of the cochlea is in part due to the active process 

within the cochlea, termed the cochlear amplifier (CA).  At low amplitudes of motion, the 

CA behaves linearly and provides approximately 45 dB of amplification (Pickles, 2003).  

If not for the contribution of the OHCs, sounds on the order of 0 dB SPL would be 

imperceptible.  As stimulus levels increase, the CA begins to saturate.  The relative 

contribution of the OHCs to the motion of the BM begins to decrease, and thus the 

effective gain is also reduced.  The magnitude of the BM response grows less than linearly 

within this saturating range; this compressive behaviour is observed for excitation levels of 

approximately 40-80 dB SPL presented at the outer ear (Pickles, 2003).  Finally, at the 

highest levels of tolerable pressure levels, beyond approximately 90 dB SPL, the growth of 

the BM motion again becomes approximately linear as the active contributions of the 

OHCs are negligible.  The variation of the growth of BM motion for increasing stimulus 

levels from linear � compressive � linear is illustrated in Figure 1.8.  

Figure 1.9 illustrates the measured frequency response of the BM displacement at a 

single point along the cochlea as a function of the external sound pressure level.  The 

response is sharply tuned at low levels and broadens with increasing amplitude.  The 

frequency of maximal response also appears to decrease with increasing amplitudes.  This 

is often referred to as the ‘half-octave shift’ in the literature, where the frequency of the 

maximum BM vibration shifts downward by approximately half an octave with increasing 

driving levels (Johnstone et al., 1986). 
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Figure 1.8:  Nonlinear growth and compression of the BM response.  Redrawn after 
Pickles, J.O., ‘An Introduction to the Physiology of Hearing,’ Second Edition, Copyright 
(1988), with permission from Elsevier. 

 

 

Figure 1.9:  Variation in the amplitude of the BM response with level. Reprinted from 
Pickles, J.O., ‘An Introduction to the Physiology of Hearing,’ Second Edition, Copyright 
(1988), with permission from Elsevier. 

 
It is important to note that many of the above observations and measurements are 

restricted to responses in the basal half of the mammalian cochlea.  This is due to the 
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inaccessibility of the middle turns.  Recent research suggests that the mechanics and active 

components of the apex may operate in a manner that is fundamentally different to that in 

the base (e.g. Guinan et al., 2005). 

1.1.2   the Dominant source of cochlear nonlinearity 
There are many potential sources of nonlinearity in the cochlea, ranging from the complex 

mechanical and electrochemical process of OHC stimulation and activation to the variation 

of BM stiffness with driving level (Patuzzi, 1996).  What is of greatest relevance to the 

cochlear modeller, however, is which of these nonlinearities dominates the global system 

response.  As we have seen, the most fundamental nonlinear effect in the cochlea is the 

compressive growth of the BM motion at moderate levels.  This is not an unintentional 

consequence of cochlear mechanics; this compression allows the IHCs to process a much 

wider range of sounds than would otherwise be possible.  As it is the physiological 

limitations of the amplification provided by OHCs that give rise to this effect, the 

saturation of this feedback force can be considered the primary source of nonlinearity in 

the cochlea. 

The nonlinearity of the CA gives rise to an abundance of nonlinear phenomena in the 

cochlea.  For instance, harmonic distortion in the BM response to tones has been measured 

in vivo by experimentalists (e.g. Cooper, 1998).  In addition, the simultaneous application 

of two tones can produce a variety of interactions, such as the generation of new tones 

(intermodulation distortion products), and suppression or enhancement of the response of 

one of the applied frequencies (Robles and Ruggero, 2001).  Some researchers have 

attempted to model these features with the inclusion of a saturating active feedback force 

(e.g. Kanis and de Boer, 1994).  This effectively limits the amplitude of any motion 

generated by the OHCs. 

1.2   Otoacoustic Emissions 
The existence of an active mechanism in the cochlea was first hypothesized by Thomas 

Gold in 1948.  He believed that an electromechanical action is necessary to counteract the 

heavy viscous damping in the fluid-filled cochlea.  Gold (1948) went on to propose that a 

perturbation may ‘bring an [active] element into the region of self-oscillation, when it is 

normally so close to [instability].’  Although the concept of a CA is largely taken for 
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granted today, it met a great deal of scepticism when first proposed.  The field of cochlear 

mechanics in the 1940s was very much dominated by the research of Georg von Békésy, 

the scientist who discovered the existence of a tonally-generated travelling wave in the 

cochleae of human cadavers (von Békésy, 1949; Hall, 2000).  As von Békésy’s 

experimental work dealt with preparations of dead cochleae, it is unsurprising that his 

conclusions regarding the mechanics of the organ were ‘passive’ in nature.  It would be 

another three decades until Gold’s ideas were re-examined.  In 1978, David Kemp 

published findings of sounds measured in the ear canal that had a cochlear origin (Kemp, 

1978); thus, the field of otoacoustic emission (OAE) research was born. 

A generally used definition of an OAE is any sound that is generated from within the 

cochlea and externally measured (Hall, 2000).  For the purposes of this work, an OAE is 

defined as a variation in the pressure in the ear canal, or at the base of the cochlea, that was 

generated in the cochlea.  It is traditional in the literature to classify the emission type by 

the stimulus.  For instance, the self-oscillating emission that was predicted by Gold (1948) 

is now referred to as a spontaneous otoacoustic emission (SOAE), whereas emissions that 

are generated by a short click stimulus are termed click-evoked otoacoustic emissions 

(CEOAEs).  This predominant system of nomenclature is adopted in this thesis for clarity 

and in order to directly compare model results with clinically-measured data. 

During the last ten years, there has been a move within the literature toward a 

consensus regarding the underlying causes of OAE generation.  Shera and Guinan (1999) 

proposed that OAEs arise due to both linear reflection and nonlinear distortion.  Cochlear 

reflections are believed to arise as a result of small imperfections at fixed locations along 

the BM, whereas distortion is thought to be a by-product of the (frequency-dependent, 

place-shifting) nonlinear amplification process.  These two very different mechanisms 

have been contrasted as ‘place-fixed’ or ‘wave-fixed’ in the literature (Kemp, 1986).  It is 

now generally accepted that all forms of evoked emissions are a combination of both linear 

and nonlinear mechanisms, though the dominance of each generation mechanism in 

various circumstances is still being debated. 

There is also evidence to suggest that all forms of OAEs are related and directly tied 

to the sensitivity of hearing (Zwicker and Schloth, 1984; McFadden and Mishra, 1993; 

Talmadge and Tubis, 1998; Shera and Guinan, 1999).  Indeed, physiological insult can 

reduce or remove the presence of all forms of OAEs.  For this reason, evoked OAEs have 
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been investigated extensively for their clinical applications.  At the time of this writing, 

both CEOAEs and distortion-product OAEs (DPOAEs) screenings are commonly used to 

detect hearing defects (Hall, 2000).  Neonates and other children who are too young to 

cooperate in conventional hearing tests are tested for CEOAEs in many Western countries.  

All forms of emissions are averaged in time in order to minimize any physiological or 

environmental noise contamination present in the signal. 

  What follows is a brief overview of the primary classes of OAEs; detailed 

discussions of SOAEs and CEOAEs are reserved for the relevant chapters. 

1.2.1   SOAEs 
SOAEs are defined as low-amplitude, narrowband sounds that are emitted from the 

cochlea without any stimuli.  They are believed to be a feature of a normally functioning 

CA, as they are commonly found in an estimated range of 33% to 70% of all normally-

hearing ears (Penner and Zhang, 1997; Talmadge et al., 1993).  Furthermore, multiple 

emissions (as many as 35) are common in individuals with SOAEs (Probst et al., 1991).  

The time-averaged spectrum of a sample SOAE measurement is given in Figure 1.10. 

 

Figure 1.10:  Example of a SOAE measurement in a human. Adapted with permission from 
the Journal of the Acoustical Society of America, 89, Probst, R., Lonsbury-Martin, B.L., 
and Martin, G.K., ‘A review of otoacoustic emissions,’ 2027-2067, Copyright (1991). 

 
Though advances in detection techniques have shown a clear rise in the measured 

incidence of such emissions, the absence of SOAEs does not necessarily imply cochlear 

dysfunction (Hall, 2000).  The amplitude of spontaneous emissions are most commonly 



1 Introduction 

  

 
12 

observed between -5 and 15 dB SPL in the ear canal, though unusual cases have been 

reported with emissions as loud as 55 dB SPL (Probst et al., 1991; Hall, 2000).  

Spontaneous emissions occur in a wide range of frequencies, though most are detected in 

the 1 – 2 kHz band.  SOAE frequencies of up to 7 kHz are regularly found, though many 

studies do not measure lower or higher frequencies due to equipment and noise floor 

limitations. 

Whereas the amplitude of an emission may vary with time, its frequency often 

remains constant (within 1%) for years at a time (Hall, 2000).  Another notable 

characteristic of SOAEs is that there is a regularly-observed (log-normalised) average 

spacing between adjacent SOAE frequencies (Dallmayr, 1985, 1986; Talmadge et al., 

1993; Braun, 1997).  The implications of this attribute for understanding cochlear 

mechanics are discussed in Chapter 4. 

1.2.2   CEOAEs 
Click-evoked emissions represent the cochlea’s response to a short-duration, wide-band 

stimulus.  They are present in approximately 98% of normally hearing adults, and thus are 

well-suited to clinical applications (Probst et al., 1991).  The magnitude of the emission is 

much lower than the stimulus level and it is delayed as well; for these reasons, CEOAEs 

and other transiently-evoked OAEs (TEOAEs) are sometimes colloquially referred to as 

‘Kemp’s echoes’ (Hall, 2000). 

Although the electrical stimulus sent to a transducer is a rectangular pulse of 

typically 100 µs width, there is residual ringing within the ear canal that lasts for 3-5 ms.  

The duration of this transient can be exarcerbated if the OAE probe is poorly fitted (Hall, 

2000; Harte, 2004).  This has been attributed to both the response of the transducer and the 

transient response of the middle and outer ears.  Various techniques have been developed 

to remove this stimulus artefact, as discussed in Chapter 5. 

Figure 1.11 shows the CEOAE response of a healthy young adult as displayed by 

commercially available equipment and software.  Note that the first four ms which include 

the stimulus are displayed in a separate panel (upper-left) whereas the largest window 

shows only the longer-latency result (the OAE); the difference between the scales of these 

two responses is on the order of a factor of 1000. 
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Figure 1.11:  Example of a typical CEOAE measurement in a normal-hearing human 
subject obtained with commercially available equipment.  Reprinted from Robinette, M.S., 
and Glattke, T.J., ‘Otoacoustic Emissions: Clinical Applications,’ Third Edition, Copyright 
(2007), with permission from Thieme Medical Publishers. 

 
The instantaneous frequency of the CEOAE shows considerable variation as a 

function of time, with frequency varying inversely with latency.  This is believed to be due 

to the connection between the dispersive characteristics of the cochlea and its tonotopic 

mapping (Greenwood, 1990; Sisto and Moleti, 2002).  It has also been noted that the 

frequency spectrum of the CEOAE is strongly dependent on that of the click stimulus itself 

(Zwicker and Schloth, 1984; etc).  As shown in the upper-right panel of Figure 1.11, the 

spectrum of the emission is concentrated in the 0.5-2 kHz region; this is a typical feature of 

many OAEs and is believed to be due to the band pass-like transmission characteristics of 

the middle ear (Kemp and Chum, 1980; Puria, 2003; Ku et al., 2008). 

As with other forms of evoked emissions, the amplitudes of CEOAEs grow 

proportionally at low levels (below 20-30 dB SPL) and saturate heavily beyond this point 

(Kemp, 1979; Zwicker and Schloth, 1984; Probst et al., 1986; Probst et al., 1991).  The 

growth of CEOAE amplitudes above and beyond the saturating range of stimulus levels is 

rarely reported, as prolonged exposure at these levels can cause permanent cochlear 

damage.  In addition, physiological protection mechanisms may introduce noise or 

otherwise skew the recorded signal (Hall, 2000).  The latency of various frequency 
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components of the CEOAE also appears to vary inversely with stimulus level (Sisto and 

Moleti, 2007).  Representative simulations of CEOAEs are presented in Chapter 5. 

1.2.3   Otherwise-evoked OAEs 
There are several other classes of evoked OAEs that are commonly discussed in the 

literature: tone-burst OAEs (TBOAEs), stimulus-frequency OAEs (SFOAEs), and 

distortion product OAEs (DPOAEs).  TBOAEs are similar to CEOAEs given their 

transient nature, though CEOAEs are typically preferred clinically as they elicit a broader 

cochlear response.  SFOAEs are most apparent at low levels of stimulation (e.g. Zwicker, 

1990).  However, SFOAEs are of limited clinical use as the time required to test for their 

existence is much longer than other forms of OAEs (Hall, 2000). 

Distortion-product OAEs are generated when two (or more) tonal stimuli are 

presented that are nearby in frequency (Probst et al., 1991).  The nonlinear aspects of 

cochlear mechanics result in the mechanical intermodulation of the two ‘primary’ tones 

which can produce numerous ‘secondary’ frequencies.  The frequencies of the DPOAEs 

depend on the relative spacing of the primaries, the strongest of which occur at 2f1 - f2 in 

humans, where f1 is the lower frequency.  Whereas SOAEs and TEOAEs are believed to be 

primarily due to ‘place-fixed’ reflection mechanisms, DPOAEs at moderate levels are 

more likely to depend on ‘wave-fixed’ distortion (Shera and Guinan, 1999). 

1.3   Models of the Cochlea 
Historically, the formulation of cochlear models has been driven by experimental 

measurements.  For instance, von Békésy’s measurements of travelling waves in dead 

cochleae inspired passive models for many years.  As neural tuning curves showed much 

sharper responses than were present in the published TW findings of the day, researchers 

sought a neurological ‘second filter’ to explain the differences (Hubbard and Mountain, 

1996).  It was not until Kemp’s discovery of OAEs decades later coupled with 

measurements of BM motion in vivo that researchers (fervently!) began to incorporate 

active elements into their models.  With recent advances in computer processing 

capabilities, scientists now have the tools to simulate the behaviour of complex, nonlinear 

systems that lack closed-form analytical solutions.  These numerical results may in turn 
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shed light on the intricacies of cochlear mechanics and thereby suggest further informative 

experiments.   

This subsection gives a short overview of the wide variety of cochlear models that 

have been devised.  Special attention is given to lumped-element models, as the system 

applied in this thesis falls in that category. 

Soon after the findings of nonlinear BM activity and the existence of OAEs were 

published (Rhode, 1971; Rhode, 1974; Kemp, 1979), the first active cochlear models 

began to appear (e.g. Kim et al., 1980).  Initial mechanical models were formulated in the 

frequency domain and assumed active un-damping at a site basal to the characteristic 

place, but included only a single degree of freedom to represent the dynamics of the CP.  

This fixed the spatial distribution of undamping in the model, and thus the pattern of 

impedances was only valid for one frequency (Hubbard and Mountain, 1996).  Later 

formulations included a second degree of freedom to represent the TM above the BM 

(Zwislocki and Kletsky, 1979; Allen, 1980; Neely and Kim, 1983, 1986).  This allowed the 

active response to be generalized over the entire range of locations along the CP, and thus 

the entire spectrum of audible frequencies (Neely and Kim, 2007). 

Early time domain simulations of cochlear models were used to demonstrate the 

stability of active models and to begin to incorporate nonlinearities, though computational 

limitations were restrictive (e.g. Diependaal et al., 1987).  Some later work in linear 

frequency-domain modelling attempted to determine the impedance of the BM by 

‘inversely’ analysing experimental measurements (Zweig, 1991; de Boer, 1995).  The 

model of Zweig (1991) is a departure from most early models in that it assumes the BM 

motion is like a negatively damped harmonic oscillator that is stabilised by a time-delayed 

negative feedback force.  Yet others sought to refine model predictions by adding more 

degrees of freedom to the CP (Parthasarathi et al., 2000), expanding solutions into multiple 

spatial dimensions (Kolston, 1999), or including so-called ‘feed-forward’ or ‘feed-

backward’ coupling between adjacent BM impedances (Geisler and Sang, 1995; Fukazawa 

and Tanaka, 1996; Xin et al., 2003). 

As an alternative to traditional active elements, nonlinear limit cycle generators 

(such as the Van der Pol oscillator) are also referenced in the literature (Van Netten and 

Duifhuis, 1983; Duifhuis et al., 1985; Wit, 1986; van Hengel et al., 1996).  These are often 

applied for their nonlinear characteristics which bear a striking resemblance to those of 
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SOAEs.  Still, another subset of researchers regards the TW as an epiphenomenon and 

believes local resonance and or ‘fast’ compression waves in the fluid to be dominant in the 

cochlea (Bell, 2001). 

This bewilderingly long list of only the most-oft-referenced models in the literature 

betrays the many varied (and often contradictory) views of how the cochlea functions.  

However, it is important to remember that the validity of any model is always restricted to 

a particular set of conditions.  One of the goals of this exploration is to simulate OAEs in 

humans given a mechanical representation of the cochlea.  As such, a relatively simple 

model that demonstrated a number of key features of the cochlea was selected as the 

starting point for the work presented in this thesis. 

1.3.1   the Neely and Kim (1986) model 
The model of Neely and Kim (1986) is an active, lumped-element representation of a cat 

cochlea.  It was published as a linear frequency-domain formulation, though its mechanical 

basis lends itself well to simulation in the time-domain.  While its publication date is but a 

few years shy of the birth date of the author, the Neely and Kim (1986) model nevertheless 

exhibits a number of fundamental characteristics of the cochlea: 

1. inclusion of an active element in the cochlear micromechanics that enhances the 
amplitude of the TW 

2. tonotopic tuning that is sharp when active and broad when passive 

These key features also allow for the simulation of OAEs when an appropriate middle ear 

representation is included.  In addition, the model is based upon the structure of the 

biology; this lends the investigator the ability to directly simulate the effect of measured or 

inferred changes in physiology by applying modifications to the relevant mechanical 

parameters (or vice versa).  For instance, the amplification provided by the active element 

is controlled by a scalar which is related to OHC function.  However, there is still some 

degree of uncertainty regarding the effective mechanical properties of the cochlea; as such, 

the parameters used here are inferred from known characteristics of the TW.  Research in 

this area is still ongoing (e.g. Newburg and Mountain, 2008). 

Through the course of this research and deeper investigations of the literature, a 

number of contradictions between simulation results and experimental measurements have 

become apparent.  These discrepancies are listed and discussed in Chapter 6. 
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1.3.2   Causes of variations in feedback gain 
In a biological mammalian cochlea, the amplification generated by the OHCs can deviate 

from its nominal linear value due to a variety of circumstances, some of which are listed 

below: 

a) Natural, uniform variations resulting in lower-than average auditory acuity 

b) Static, place-fixed variations due to developmental randomness 

c) Instantaneous, wave-fixed nonlinear saturation 

d) Temporary or permanent cochlear pathology following noise damage, exposure to 
ototoxic substances, presbycusis (age-related hearing loss), etc. 

e) Time-varying physiological factors  

i. Overstimulation recovery (Kemp and Brill, 2008) 

ii.  Fatigue 

iii.  Postural changes (de Kleine et al., 2000) 

f) Externally applied voltages/currents 

Items a-c) are addressed in this work, whereas d-f) are left to future generations of cochlear 

modellers. 

1.4   Aims and Thesis Structure 
One of the initial aims of this doctoral research was to simulate OAEs using an analytical, 

physiologically-based model of the human auditory system.  It was hoped that these 

simulations would shed light on how the cochlea functions.  Various investigations carried 

out here have shown that perturbations in the local feedback gain along the BM can have 

important consequences for the global performance of the cochlea.  In order to better 

understand these effects, the mechanical parameters of the Neely and Kim (1986) model 

were updated for a human (Chapter 2) and the system was recast in a state space 

formulation (Chapter 3).  The state space model provides a straightforward method for 

quickly and unambiguously analysing system stability, which is critical to understanding 

the formation of SOAEs (Chapter 4).  In addition, the state space formulation is inherently 

based in the time domain, which allows for the simulation of transient phenomena such as 

CEOAEs (Chapter 5). 

The inclusion of a saturation nonlinearity in the feedback loop allows for the 

meaningful simulation of unstable cochleae and the effect of increasing stimulus 

amplitudes.  Nonlinear simulations of unstable cochleae are performed in Chapter 4, and 
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the amplitude-dependence of the cochlear response to tones and clicks is simulated in 

Chapters 3 and 5, respectively.  The findings of this research are summarized and 

discussed in Chapter 6. 

1.5   Contributions 
The primary contributions of this work are as follows: 

1. Refinement of a frequency-domain model of cochlear mechanics such that it now 

exhibits TW attributes pertinent to the generation of OAEs in humans, similar to 

experimentally measured and inferred values. 

2. Co-development and implementation of a state space (time-domain) formulation of 

the refined cochlear model in MATLAB which includes a basal boundary condition 

based on physiological measurements. 

3. Application of the state space model to validate one of the prevailing theories of 

SOAE generation. 

4. Time domain simulations of cochlear motion and the complete process of evoking 

and measuring OAEs from the ear canal. 

5. Comparison of time- and frequency-domain responses given static (linear) vs. 

dynamic (nonlinear) variations in feedback gain. 

Some of these findings were shared with the wider academic community through journal 

papers and conference presentations: 

• Ku, E.M., Elliott, S.J. and Lineton, B. (2008).  ‘Statistics of instabilities in a state 

space model of the cochlea,’ J. Acoust. Soc. Am., 124, (2), 1068-1079. 

o this manuscript was selected for inclusion in the August 15, 2008 issue of 

the Virtual Journal of Biological Physics Research. 

• Elliott, S.J., Ku, E.M. and Lineton, B. (2007). ‘A state space model for cochlear 

mechanics,’ J. Acoust. Soc. Am., 122, (5), 2759-2771. 

� Ku, E.M., Elliott, S.J. and Lineton, B. (2008).  ‘Periodicity in the spectrum of 

modelled spontaneous otoacoustic emissions,’ Proc. 10th Int. Workshop on the 

Mech. of Hearing, Keele University, U.K. 
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� Elliott, S.J., Ku, E.M. and Lineton, B. (2008).  ‘Time domain model of a nonlinear 

inhomogeneous cochlea,’ Proc. 10th Int. Workshop on the Mech. of Hearing, Keele 

University, U.K. 

� Ku, E.M., Elliott, S.J. and Lineton, B. (2008).  ‘Instabilities in a state space model 

of the human cochlea,’ Proc. Int. Conf. Sound and Vibration (ICSV15), Daejeon, 

South Korea. 

� Ku, E.M., Elliott, S.J. and Lineton, B. (2008).  ‘Modelling threshold fine structure 

and spontaneous otoacoustic emissions in the cochlea,’ Proc. Brit. Appl. Maths 

Colloquium, Manchester, U.K. 

� Ku, E.M., Elliott, S.J. and Lineton, B. (2008).  ‘Does the human cochlea work like 

a laser?’ FESM Postgraduate Research Showcase, Southampton, U.K. 

� Ku, E.M., Elliott, S.J. and Lineton, B. (2007).  ‘Modelling random and noise-

induced changes in the parameters along the length of the cochlea and the effect on 

hearing sensitivity,’ BSA Short Papers Meeting on Experimental Studies of 

Hearing and Deafness, London, U.K. 

� Elliott, S.J., Ku, E. and Lineton, B. (2007).  ‘Some effects of spatial randomness 

along the length of the cochlear on its performance,’ J. Acoust. Soc. Am. (153rd 

Meeting Acoust. Soc. Am.), 121, 3192. 

� Ku, E. and Elliott, S.J. (2007).  ‘Comparing time domain simulations of different 

nonlinear models of cochlear micromechanics,’ ARO Midwinter Research Meeting, 

Denver, USA. 

� Elliott, S.J., Ku, E. and Lineton, B. (2007).  ‘The stability of a cochlear model 

assessed using a state space formulation,’ ARO Midwinter Research Meeting, 

Denver, USA. 

� Elliott, S.J. Ku, E. (2006).  ‘Feedback control of vibration in the inner ear,’ Proc. 

International Symposium on Active Control of Sound and Vibration, Adelaide, 

Australia. 
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Chapter 2 
 

2 the Neely and Kim (1986) Model 
 
 
 
In 1986, S. T. Neely and D. O. Kim published a mathematical model of a cat cochlea 

which included a cochlear amplifier.  As discussed in the introduction, this was among the 

first mature attempts in the field to explain the sharply tuned cochlear response by adding 

active feedback elements.  Their formulation is based upon physical principles, anatomical 

characteristics, and observed responses of the cochlea.  This physical interpretation is 

required in order to directly compare simulated responses with measurements.  Through 

the course of this 3-year investigation, Neely and Kim’s (1986) framework has been 

heavily studied, driven and tweaked.  In order to account for the physical differences 

between the cat cochlea and a human cochlea, the lumped-element parameters describing 

the variation of the cochlea’s mechanical properties as a function of position have been re-

tuned. 

This chapter is an in-depth examination of the Neely and Kim (1986) model, 

beginning with an overview of the entire system and its inherent assumptions.  This is 

followed by a review of its passive formulation.  The mechanism for applying an active 

feedback loop and its effect upon the passive system is then considered.  Finally, the local 

motions of individual segments are coupled together by the cochlear fluid to give a 

simulation of the model’s global behaviour. 

2.1   Model Overview 
The Neely and Kim (1986) model is an idealisation of the cochlea.  The motions of the BM 

and TM are assumed to be linear, and the physical characteristics of the CP are lumped 
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into local masses, stiffnesses and dampers as a function of longitudinal position.  Though it 

was originally formulated in the frequency domain, its mechanical basis lends itself well to 

simulation in the time domain (see Chapter 3).  This representation of the cochlea can be 

discussed in terms of its micromechanics and its macromechanics.  The term 

‘micromechanics’ refers to the dynamic behaviour of a radial slice of the cochlea at the 

microscopic level (refer to Figure 1.4 for a review of the physiology).  In contrast, the term 

‘macromechanics’ deals with the coupling between the micromechanical motion of the 

system at various points along the cochlea, thus giving rise to a solution for the global 

response of the cochlea. 

The micromechanical model of the cochlea is comprised of two masses, three springs 

and three dampers.  This is illustrated in Figure 2.1 below.  The model can be loosely 

interpreted as representing the anatomical features of a radial cross-section of the cochlea.  

For instance, the BM and the TM of the organ of Corti are modelled as masses (m1 and m2, 

respectively) which are coupled via the stiffness of the OHC stereocilia (k3). 

 

 

Figure 2.1: Neely & Kim’s (1986) micromechanical model of the cochlea. 

 
Note that this micromechanical model is not structurally coupled to adjacent slices of the 

cochlea; this feature is sometimes referred to as ‘longitudinal coupling’ in the literature 

(Robles and Ruggero, 2001). 
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The input to the micromechanical system comes in the form of a pressure applied 

upon the BM, pd.  This corresponds to a difference of pressures between the fluid-filled 

cavities of the cochlea above and below the CP.  The resulting BM motion is detected by 

the CA, which is schematised as a feedback loop between the two masses.  The CA is 

believed to activate when the ion-channel gating mechanisms of the OHC stereocilia are 

displaced due to the shearing motion of the TM relative to the BM.  This in turn stimulates 

either hair bundle motility— the force due to the hair cell bundle, somatic motility— the 

force due to the lengthwise contractions and expansions of the OHCs, or both (Holley, 

1996).  The fine details of the electromechanical transduction process in the OC and CA 

are intentionally hidden in this model.  A more detailed investigation of how the CA is 

modelled is given in section 2.3.  One criticism of the Neely and Kim (1986) model has 

been that the active pressure source acting on the BM reacts against nothing (Hubbard and 

Mountain, 1996).  Neely and Kim (1986) state that the active force ‘pushes against the 

surrounding fluid;’ however, this is not a very satisfactory explanation.  As such, this 

represents a fundamental weakness of this model. 

The micromechanical slices of the cochlea are assumed to be structurally 

independent, but the motions of nearby elements are coupled to one another via the 

cochlear fluid.   A number of assumptions are inherent to this representation of the 

cochlear macromechanics.  First, the cochlear fluid is defined as incompressible and 

inviscid (lossless).  The incompressibility of the fluid disallows the existence of 

compression waves, waves within the cochlear fluid which travel at a high velocity.  These 

compression waves are referred to as ‘fast’ waves in the literature (as opposed to the 

relatively ‘slow’ waves of local pressure difference which propagate along the CP).  The 

importance of ‘fast’ waves in the cochlea is still being debated in the cochlear modelling 

community, though many of the salient features of the cochlea can be explained given only 

‘slow’ TWs (Robles and Ruggero, 2001).  In this work, all TWs are assumed to be ‘slow’ 

waves unless otherwise stated. 

Another simplifying assumption regards the geometry of the cochlea.  The human 

cochlea is curled into a spiral that typically exhibits two and a half turns (Pickles, 2003).  

In the Neely and Kim (1986) model, the cochlea is uncurled and modelled as rectangular 

box of length 35 mm, width 1 mm, and height 1 mm.  This is shown below in Figure 2.2. 
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Figure 2.2: Schematic representation of Neely and Kim’s 1-D macromechanical model of 
the cochlea: illustration of the exaggerated motion of cochlear segments due to sinusoidal 
excitation at the stapes.  Reprinted from Hearing Research, 145, Kolston, P.J., ‘The 
importance of phase data and model dimensionality to cochlear mechanics,’ 25-36, 
Copyright (2000), with permission from Elsevier.  

The stapes footplate, the component of the middle ear that is responsible for transmitting 

sound waves into the cochlea, is located at the oval window in the shaded face of Figure 

2.2.  The scala vestibuli and scala tympani, the fluid-filled tunnels above and below the 

basilar membrane, are simply modelled as fluids that rest above the CP.  Located at the 

apex is the helicotrema, a passage that connects the two scalae.  This allows for fluid flow 

from one chamber to the other. 

 Although the model has an assumed width, length and height, it is possible to 

reduce the mathematical analysis to a single dimension given the following assumption.  

As a tonally-generated TW propagates along the CP, its wavelength decreases 

monotonically until it approaches its frequency’s resonant location (beyond this location, it 

is quickly extinguished).  During most of the progress of the TW, its wavelength is long 

compared to the height- and width- dimensions of the scalae, hence the term, ‘long-wave 

assumption.’  The box model can thus be considered ‘1-D’ over this range by excluding the 

vertical (z-axis) or transverse (y-axis) motion of the fluid from the mathematical analysis 

(de Boer, 1996).  However, near and beyond the peak of the TW, this condition is violated; 

the implications of this are discussed in Chapter 6. 

2.2   Passive Micromechanics 
The micromechanical model of the cochlea consists of a two-degree-of-freedom system 

(see Figure 2.1) which represents a discrete radial slice of the cochlea.  The top and bottom 

fixed points refer to the rigid boundary of the cochlear walls.  The relative motion of m1 
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and m2 corresponds to the shear displacement between the BM and the TM.  The springs 

and dampers in the model represent the biological stiffnesses and compliances of the 

cochlea and the fluid surrounding the OC.  The values of these elements are discussed in 

the next section. 

2.2.1   Variation of model parameters with longitudinal 
position 

The micromechanical framework of Neely & Kim’s model of the cochlea gives rise to 

solutions for the motion of the BM and TM given a local input pressure.  The parameters 

for the model stiffnesses and compliances that vary with position along the BM were 

originally chosen to reflect the tonotopy of a cat cochlea.  As discussed previously, these 

values have been re-tuned to match certain characteristics of the human cochlea.  It should 

be noted that there have been three sets of parameters used through the course of this 

investigation: 1) Neely and Kim’s (1986) parameters for the cat cochlea; 2) a revised set of 

parameters for the human cochlea, published in Ku et al. (2008); and 3) a further refined 

set of human parameters.  The last set of values is presented here, and all of the results in 

the thesis are derived from this model.  The data published in Elliott et al. (2007) and Ku et 

al. (2008), included in Appendix C, are derived from sets 1) and 2), respectively. 

The refined values are compared to the original values in Table 2.1.  The 

numbered-subscript quantities correspond to micromechanical elements, while m-subscript 

quantities refer to the middle ear boundary and x is the longitudinal distance along the 

cochlea. γ is the micromechanical feedback gain, while g, b, L and H are the BM to IHC 

lever gain, the ratio of the maximum to the average vertical displacement of the BM across 

one radial slice, the length of the cochlea, and the height of the fluid channel.  Finally, ch is 

the damping at the helicotrema, As is the area of the stapes footplate, ρ is the density of the 

cochlear fluid, and N is the number of elements in the model.  The variation of the values 

of these revised parameters is plotted against longitudinal position along the cochlea in 

Figure 2.3. 
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Quantity Original Formula (SI) Revised Formula (SI) Units 

k1(x) 1.1×1010e-400x  1.65×109e-279(x+0.00373) N×m-3 

c1(x) 200+15000 e-200x  9+9990e-153(x+0.00373) N×s×m-3 

m1(x) 3×10-2  4.5×10-3 kg×m-2 

k2(x) 7×107e-440x  1.05×107e-307(x+0.00373) N×m-3 

c2(x) 100 e-220x  30e-171(x+0.00373) N×s×m-3 

m2(x) 5×10-3  7.20×10-4 +2.87×10-2x kg×m-2 

k3(x) 1×108e-400x  1.5×107e-279(x+0.00373) N×m-3 

c3(x) 100e-80x  6.6e-59.3(x+0.00373) N×s×m-3 

k4(x) 6.15×109e-400x  9.23×108e-279(x+0.00373) N×m-3 

c4(x) 100e-80x  3300e-144(x+0.00373) N×s×m-3 

γ 1 1 -- 

g 1 1 -- 

b 0.4 0.4 -- 

L 0.025  0.035 m 

H 0.001  0.001 m 

km 2.1×106  2.63×108 N×m-3 

cm 4000  2.8×104 N×s×m-3 

mm 45×10-2  2.96×10-2 kg×m-2 

ch 0 350 N×s×m-3 

As 1×10-6  3.2×10-6 m2 

ρ 1000  1000 kg×m-3 

N 251 500 -- 

Table 2.1: Model parameters for Neely and Kim’s (1986) cat cochlea (second column), 
and the revised quantities for the human cochlea (third column). 

 Neely and Kim (1986) note that their values ‘were selected to simulate the 

biomechanics of a cat cochlea with consideration given to the physical structure, 

frequency-to-place map, and frequency tuning curves typical for a cat.’  Similarly, the 

revised values were chosen such that the global response of the model exhibits observed 

and inferred TW properties of the human cochlea such as tonotopy, enhancement 

characteristics, and TW wavelength as a function of position.  These quantities of the 

coupled cochlea are presented in section 2.4. 
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Figure 2.3.a-c: Variation of model parameters with position. 

As with the original set of parameters, the stiffness and damping parameters all 

decrease exponentially as a function of position from the base of the cochlea.  However, 

the mass of the TM now increases linearly from 0.72 g/m2 to 1.7 g/m2, whereas the mass of 

the BM is still held constant.  This modification was necessary in order to increase the 

amount of amplification toward the apex relative to the amplification provided by a 

constant TM mass.  In addition, the overall values of many non-damping parameters were 

reduced by almost a factor of 7 relative to the original Neely and Kim (1986) values in 

order to shorten the wavelength of the TW.  The values of the damping terms were reduced 

to a lesser degree to maintain a plausible amount of active gain. 

2.2.2   Micromechanical frequency response functions 
Each micromechanical model represents the averaged motion of that slice of the cochlea in 

the radial direction.  Neely and Kim define b as the ratio of the average displacement 
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across the width of the CP, ξp, to the maximum displacement over the width of the BM, ξb, 

so that  

 ( ) ( )p bx b xξ ξ= . (2.1) 

As the input to the system is the local pressure difference, pd, it is instructive to calculate 

the BM velocity for a given pressure; the ratio of output velocity to input pressure is 

defined as mobility or admittance.  The transfer function of the BM admittance 
( )
( )

b

d

x

p x

ξɺ
 , as 

given by Neely and Kim and derived in Appendix B, is 
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( )

( ) ( ) ( ) ( )
( ) ( )

3 4
1 2

2 3

1b

d

x

p x Z x Z x
g Z x Z x

Z x Z x

ξ
γ

=
  −

+   +   

ɺ
, (2.2) 

where  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
1 1 1

2
2 2 2

3
3 3

4
4 4

k x
Z x c x sm xs

k x
Z x c x sm xs

k x
Z x c xs

k x
Z x c xs

= + +

= + +

= +

= +

, (2.3) 

g is the BM to IHC lever gain and here, s ≡ jω.  Z1 represents the mechanical impedance of 

the organ of Corti; Z2 represents the mechanical impedance of the tectorial membrane; Z3 

represents the coupling between the OC and the TM; and Z4 represents the impedance 

associated with the active pressure source.  The term γ denotes feedback gain, where γ = 0 

generates a passive response, and γ = 1 generates a baseline active response.  The term 

‘baseline’ is used in this thesis to describe an active, passive, linear or nonlinear model 

without perturbations. 

The FRF of the TM can be expressed as a function of the BM FRF.  The solution 

for the TM mobility, or admittance, is: 

 
( )
( )

( ) ( ) ( )
( ) ( )

1

2 4

1 b dt

d

x p x gZ xx

p x Z x Z x

ξξ
γ

   −   =
 + 

ɺɺ

, (2.4) 

where tξɺ  is the TM velocity. 
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2.2.3   Passive admittance 
The two degree-of-freedom system that Neely & Kim use to represent the 

micromechanical behaviour of the cochlea has two modes of vibration.  In order to 

simplify the analysis, the values of the dampers in the system are first reduced by a factor 

of 1000.  For the lower-frequency mode, the motions of the BM and the TM are in-phase.  

For the higher-frequency mode, the motions of the masses are out-of-phase.  This can 

readily be observed by examining the near-undamped magnitudes and phases of the BM 

and TM admittance for a micromechanical element at a single position along the cochlea, 

as given in Figure 2.4.a, c. 
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Figure 2.4.a-d: Magnitudes and phases of the damped and near-undamped system 
admittance at x = 20.48 mm. 

With the damping present in the system (b and d panels), the sharpness of the peaks is 

significantly reduced.  This is particularly visible at the higher resonant frequency.  The 
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motion of the two masses remains close to 180 degrees (or half a cycle) out-of-phase at 

frequencies higher than that of the first resonant peak. 

2.2.4   Undamped natural frequencies 
In order to better understand the model’s micromechanical response as a function of 

position along the BM, it is useful to investigate the undamped natural frequencies of the 

system.  The resonant modes of this two degree-of-freedom system are derived in 

Appendix B, thus showing that: 

 ( )2

1 2 1 3 2 32 1 3 2 3 1 3 2 3

1 2 1 2 1 22 2 2 2

k k k k k kk k k k k k k k

m m m m m m
ω

+ +   + + + += + ± + −   
   

. (2.5) 

This equation returns two positive solutions for ω
2 which correspond to the solutions for ω1 

and ω2. 

 A simplified solution which very closely approximates the full analytical solution 

can be found by simplifying the motion of the masses at each mode, as shown in Figure 

2.5. 

 

  

Figure 2.5.a-b: Illustration of the relative magnitudes and directions of motion of the BM 
(m1) and the TM (m2) at the first (left panel) and second (right panel) modes of oscillation. 

In the first mode of oscillation, the BM moves much less than the TM.  As such, the BM 

can be considered stationary for the purposes of this exercise.  Furthermore, the value of 

k1 
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k3 
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the springs k2 and k3 in this model are very similar.  Subsequently, the frequency of the 

first mode can be simplified to 

 2 3
1

2

k k

m
ω +≈ . (2.6) 

In the case of the second mode, the motion is dominated by the BM.  In addition, the 

stiffness of k1 is much greater than k2 or k3.  This suggests that the frequency of the second 

mode can be approximated by  

 1
2

1

k

m
ω ≈ . (2.7) 

The variation of ω1 and ω2 is plotted against position below in Figure 2.6. The resonant 

frequencies decrease exponentially as a function of position along the BM.  The 

approximate results of equations (2.6) and (2.7) are indistinguishable from the exact results 

of equation (2.5) when plotted on the scale shown in Figure 2.6. 
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Figure 2.6: Undamped, micromechanical BM and TM resonant modes as a function of 
position along the BM. 

2.3   Active Micromechanics 
By definition, active amplification involves reducing the effective or observed losses in a 

system.  An electrical circuit example of amplification might consist of resistors and an 

operational amplifier.  The op-amp increases the current or voltage at the output, relative to 

what could be supplied by the input source alone.  In a mechanical analogue of this system, 

the electrical resistors would be represented as dampers.  Thus, in the cochlea, it is 

believed that the CA overcomes the damping present in the fluid by mechanically 

amplifying the motion of the TW as it propagates along the BM.  This ‘undamping’ allows 



2 the Neely and Kim (1986) Model 

  

 
31 

the IHCs (at the output stage of the mechanical system) to detect a stronger signal (IHC 

stereocilia motion due to fluid drag in the sub-tectorial space) (Robles and Ruggero, 2001). 

 The analysis of a tonally driven system is often complex, literally.  For instance, a 

circuit may include energy storage elements such as inductors and capacitors, or in the 

mechanical analogue, masses and springs.  The mechanical admittance of such a system 

will include real (dissipative) and imaginary (energy storing and releasing) components.  In 

a completely passive system, the real part of its admittance will be positive across 

frequency so that it only absorbs energy.  However, in an active system, the real part of its 

admittance will be reduced in a given frequency range and may even be negative, thus 

indicating that the system can supply energy.  When point measurements of the admittance 

of the mammalian cochlear partition are made, it is found that there are indeed frequency 

bands with a negative-real parts suggesting an active process; this gives rise to the term 

‘negative damping’ in the literature (de Boer, 1996). 

2.3.1   Active admittance 
As discussed previously, the Neely and Kim micromechanical model is driven by an active 

mechanism which represents the contribution of the outer hair cells.  In their 1986 paper, 

Neely and Kim state that the active impedance, Z4, is ‘included to provide a frequency-

dependent phase shift’ between the active pressure source and the relative motion of the 

BM and TM.  This is given by 

 ( ) ( ) ( )4a cp x Z x xγ ξ= − ɺ , (2.8) 

where Z4 consists of both real and imaginary components, pa, the pressure generated by the 

outer hair cells, and cξɺ  is defined as the difference between the TM and BM velocities: 

 ( )c b tg xξ ξ ξ= −ɺ ɺ ɺ . (2.9) 

The real component of Z4 primarily serves to reduce the damping of the CP, while the 

imaginary component provides a shift in frequency relative to the passive resonances.  The 

feedback function takes as its input the difference in displacements and velocities of the 

BM and TM.  The output is pa, the pressure generated by the outer hair cells; the 

magnitude of this output is scaled by a unitless quantity, γ, which is nominally set to unity. 

The active admittance of Neely and Kim’s BM is again 
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( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1

3 4
1 2

2 3

,

,
b

d

x Z x Z x
g Z x Z x

p x Z x Z x

ξ ω γ
ω

−
   − = +    +     

ɺ

.  (2.2) 

Both the active (γ = 1) and the passive (γ = 0) admittance are plot as a function of position 

(for a single frequency) in Figure 2.7.  Similarly, these quantities are plot as a function of 

frequency (at a single position) in Figure 2.8.  As expected, the real part of the admittance 

(b panels) is reduced in a particular region in frequency and position along the cochlea.  

However, at locations apical to the negative-damping region, the active admittance 

increases the damping for a 1 kHz stimulus.  In the coupled cochlea, this would serve to 

sharpen the response of the TW spatially by actively attenuating BM motion beyond the 

resonant location. 
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Figure 2.7.a-d: Active BM admittance magnitude (a) and phase (b) as a function of 
position along the cochlea given a 1 kHz excitation.  The real (b) and imaginary (d) parts 
of the BM admittance are also presented.  Active responses (γ = 1) are shown with a solid 
line, whereas passive responses (γ = 0) are shown with a dashed line. 

 



2 the Neely and Kim (1986) Model 

  

 
33 

0.1 1 10
-80

-75

-70

-65

-60

-55

-50

-45

Frequency [kHz]

|Y
B

M
| [

dB
 r

e:
 1

 (
m

/s
)/

P
a]

 

 

a)

x = 20.48 mm
γ = 1
γ = 0

0.1 1 10
-2

-1

0

1

2

3
x 10

-3

Frequency [kHz]

ℜ
{Y

B
M

} 
[(

m
/s

)/
P

a]

b)

0.1 1 10
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Frequency [kHz]

∠
Y

B
M

 [c
yc

le
s]

c)

0.1 1 10
-2

-1

0

1

2

3

4

5
x 10

-3

Frequency [kHz]

ℑ
{Y

B
M

} 
[(

m
/s

)/
P

a]

d)

 

Figure 2.8.a-d: Active BM admittance magnitude (a) and phase (b) for the isolated 
micromechanical model as a function of frequency at a location 20.48 mm from the base.  
The real (b) and imaginary (d) parts of the BM admittance are also presented.  Active 
responses (γ = 1) are shown with a solid line, whereas passive responses (γ = 0) are shown 
with a dashed line. 

2.3.2   Micromechanical stability analysis 
If a linear system includes active feedback, there is the possibility that it may become 

unstable such that its response grows without bound.  Analyzing the stability of the 

micromechanical model can provide insight into the behaviour of the coupled cochlea.  It 

has been theorised that the spontaneous emission of sound from the cochlea is indicative of 

unstable oscillators in the cochlea (e.g. Duke and Jülicher, 2003).  It should be noted, 

however, that the stability of the individual micromechanical elements gives no guarantee 

of the stability of the coupled cochlea, as explained in more detail in the next chapter.  

Furthermore, though it is possible to determine the frequency response of an unstable 

system, such a result does not have physical significance and may lead to the 
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misinterpretation of calculations.  Thus, it is necessary to determine if isolated 

micromechanical elements are stable or not. 

According to classical control theory, a system that includes active feedback can be 

classified in terms of its plant (G), and its feedback mechanism (H).  A Nyquist Diagram is 

a plot of the product of these quantities on real and imaginary axes, which varies with 

frequency.  A general and isolated feedback loop is shown in Figure 2.9. 

 

Figure 2.9:  General diagram of a feedback loop containing a micromechanical controller.  
The dotted lines represent the system input and output paths. 

For the Neely and Kim system, the plant G and feedback mechanism H are derived in 

Appendix B and are given by: 

 
( )
( )

2

1 2 1 3 2 3

c

a

x Z
G

p x Z Z Z Z Z Z

ξ  
= =  + + 

ɺ

, (2.10) 

and 
 ( )4H Z xγ= − . (2.11) 

The quantity GH is referred to as the open-loop transfer function: 

 2
4

1 2 1 3 2 3

Z
GH Z

Z Z Z Z Z Z
γ

 
= −  + + 

. (2.12) 

The open-loop function can provide a means of determining the closed-loop stability of an 

active-feedback system; this is accomplished using the Nyquist Stability Theory (Phillips 

and Harbor, 2000).  A Nyquist Diagram is a plot that shows the real and imaginary 

components of GH as they vary with frequency; this is shown for the micromechanical 

system in Figure 2.10.  
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Figure 2.10: Plot of the open-loop transfer function, GH, for the micromechanical 
oscillators at several positions along the cochlea.  An ‘x’ marks the -1+j0 location.  Only 
positive frequencies from 20 Hz to 50 kHz are shown for clarity. 

It is clear from Figure 2.10 that some locations along the cochlea operate quite close to 

instability at a gain of γ = 1.  In general, for a given gain, the system becomes more stable 

as one examines positions further towards the apex of the cochlea.  As a system becomes 

more stable, its response is less strongly amplified. 

Given the open-feedback loop of a system, it is sufficient to say that the system is 

unstable if GH(jω) crosses the real axis at or below the -1+j0 point on the Nyquist 

Diagram.  The maximum stable gain of a system is thus 

 
{ }

max

1,Im 0

1

| GHGH γ

γ
= =

−= . (2.13) 

In classical control theory, the closed-loop enhancement provided by a feedback 

controller is given by: 

 
{ }

10

1,Im 0

1
( ) 20 log

1 | GH

Enhancement dB
GH γ = =

 
 =
 + 

. (2.14) 

Equivalently, when equation (2.13) is combined with (2.14), 

 max
10

max

( ) 20 log
1

Enhancement dB
γ

γ
 

=  − 
. (2.15) 

Figure 2.11 displays the minimum gain values before the isolated micromechanical system 

is driven into instability as a function of position along the cochlea, in addition to the 

predicted enhancement provided by the active mechanism with γ = 1. 



2 the Neely and Kim (1986) Model 

  

 
36 

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

Position along the cochlea [mm]

Is
ol

at
ed

 B
M

 e
nh

an
ce

m
en

t [
dB

]

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
in

im
um

 u
ns

ta
bl

e 
γ

 

Figure 2.11: Isolated enhancement given γ = 1 (solid line, left axis) and minimum values of 
gain, γ, that lead to instability for various positions along the cochlea (dashed line, right 
axis). 

 
The predicted values of gain that lead to instability can be tested by examining the 

frequency response of a system with different gains.  At a location of 20.48 mm, the 

stability analysis predicts that the model will become unstable at γ = 1.485.  Figure 2.12 

shows the admittance at this location given several values of γ above and below this value.  

While the change in the magnitude of the calculated admittance is almost imperceptible 

when the gain is increased from γ = 1.48 to γ = 1.49, the sign of the phase flips suddenly 

above the resonant frequency; this indicates that the system is unstable. 
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Figure 2.12: Calculated admittance of an isolated micromechanical element as a function of 
frequency at x = 20.48 mm for 3 values of γ.  The magnitude (a), phase (c), real (b) and 
imaginary (d) parts of the BM admittance are all presented.  Active and stable responses (γ 
= 1.48) are shown with a solid line, active and unstable responses (γ = 1.49) are shown with 
a dotted line, and passive responses (γ = 0) are shown with a dashed line. 
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2.4   Cochlear Macromechanics 
Up until now, the motion of the cochlea has only been considered at the microscopic level.  

The conventional macromechanical model of the cochlea can be visualised as a series of 

independent oscillators that are coupled through the fluid.  This idea is illustrated in Figure 

2.13. 

 

Figure 2.13: Schematic of a 1D box model of cochlear macromechanics: detail view of the 
conceptual construction of the macromechanics.  The BM spans the entire width of the 
cochlear duct, and segments are coupled only by the fluid. Reprinted from Hearing 
Research, 145, Kolston, P.J., ‘The importance of phase data and model dimensionality to 
cochlear mechanics,’ 25-36, Copyright (2000), with permission from Elsevier. 

The absence of direct structural coupling between the micromechanical elements is a 

characteristic feature of ‘classical’ 1-D models of the cochlea (de Boer, 1996).  A number 

of scientists have made arguments for various forms of ‘longitudinal coupling’ through the 

mechanical structures of the cochlea (e.g. Fukazawa, 2002), though many of the salient 

features of the cochlea can be generated in a ‘classical’ model where the micromechanics 

are locally reacting.  Greater attention is given to this point in the discussion, Chapter 6. 

The longwave approximation assumes that the energy of a pressure wave only 

propagates in the longitudinal (x-) direction along the cochlea, and not in radial (y-) or 

vertical (z-) directions.  This permits the reduction of the order of the model to a single 

dimension.  As a result, a one-dimensional wave equation can be written in terms of the 

differential pressure across the cochlear partition, pd: 

 
2

2
TW2

( , )
( , ) ( , ) 0d

d

p x
x p x

x

ω κ ω ω∂ + =
∂

, (2.16) 

where κTW is the wavenumber of the travelling wave.  The wavenumber is a quantity with 

units of inverse distance and is the spatial analogue of frequency.  For instance, a TW with 
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a short wavelength would have a high wavenumber, just as a tone with a short period 

would have a high frequency.  The wavenumber is related to the impedance of the cochlear 

partition by 

 ( )2
TW

2
,

( , )cp

j
x

HZ x

ωρκ ω
ω

−= , (2.17) 

where H is the height of the fluid chamber, and ρ is the density of the cochlear fluid.  A full 

derivation of the wave equation in a cochlear transmission line can be found, for example, 

in de Boer (1991).  A boundary condition is set at the base of the cochlea: 

 
0

2 st
x

p
j u

x
ωρ

=

∂ = −
∂ ,

 (2.18) 

where the stapes velocity (stu ) is specified.  Similarly, the boundary condition at the 

helicotrema is given in this model by: 

 0d x L
p

=
= . (2.19) 

It should be noted that in most 1-D formulations, as described above, the apical boundary 

condition is simply left as a pressure release.  It can be modified to allow for a small 

degree of damping to be added at the helicotrema, thus reducing apical reflections at low 

frequencies; this is described in Appendix C.2. 

2.4.1   Numerical implementation of frequency domain 
macromechanics 

The macromechanical dynamics are modelled here following the methodology outlined by 

Neely and Kim (1986) and Neely (1981).  The length of the cochlea (L) is divided into N 

elements, each of which has a length ∆, where ∆=L/(N-1).  A finite difference method is 

applied to adapt the spatially continuous wave equation and boundary conditions to 

describe a discrete number of points.  The wave equation (2.16) can be rewritten using the 

Taylor series expansion for the second derivative of pd with respect to x: 

 
2

( 1) 2 ( ) ( 1) 2
( ) 0

( )
d d d

d
cp

p n p n p n j
p n

HZ n

ωρ+ − + − − =
∆

, (2.20) 

where n denotes which element of the 1D model is being evaluated.  For instance, the 

cochlear elements are represented by n = 2, 3, …, N-1.  The boundary condition at the 

base, (2.18), can also be written using another finite difference approximation: 

 
( ) ( )2 1

2d d
st

p p
j uωρ

−
= −

∆
. (2.21) 
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At the apex, (2.19) is rewritten as 

 ( ) 0dp N = . (2.22) 

The wave equation and system boundary conditions can be expressed in matrix form: 

 ( )− =dF M p q , (2.23) 

where bold font indicates the quantity is a matrix.  F is the tri-diagonal N×N element fluid-

coupling matrix,  

 2

2

0

1 2 1
1

1 2 1

0

−∆ ∆ 
 − 
 =

∆  − 
 ∆ 

F ⋱ ⋱ ⋱ ; (2.24) 

M  is the diagonal N×N element mobility (admittance) matrix,  
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where pd is an N×1 matrix of local pressure differences,  
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 
 
  

dp

⋮

⋮

; (2.26) 

and q is the N×1 input matrix, 

 

2

0

0

stj uωρ− 
 
 
 =
 
 
  

q ⋮

⋮

. (2.27) 

The F and M  matrices can be combined to yield a single tri-diagonal matrix T, such that 

 −T = F M , (2.28) 
which, combined with equation (2.23), yields 

 =dTp q . (2.29) 

The distribution of pressure differences is then obtained by inverting T: 

 −= 1
dp T q . (2.30) 



2 the Neely and Kim (1986) Model 

  

 
41 

Note that the matrix-inversion is evaluated in MATLAB by applying the left-division 

operator; this performs the inversion by Gaussian elimination (Neely and Kim, 1986). 

 The BM velocity at any position can thus be calculated by taking the quotient of the 

pressure difference at that location and the local CP impedance,  

 ( ) ( )
( )

,
,

,
d

b
cp

p x
x

Z x

ω
ξ ω

ω
=ɺ . (2.31) 

The BM displacement is then found by integrating in the Laplace domain: 

 ( ) ( ),
, b

b

x
x

s

ξ ω
ξ ω =

ɺ

. (2.32) 

2.4.2   Response of the coupled cochlea 
This section presents some typical responses of the coupled cochlea to tonal stimuli.  The 

first plot, Figure 2.14, shows the pressure difference and BM velocity as a function of 

position for generated by a 1 kHz excitation in Neely and Kim’s coupled model. 
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Figure 2.14.a-d: Pressure (a, c) and BM velocity (b, d) magnitude (a, b) and phase (c, d) 
given a 1kHz stimulus tone in the coupled cochlea given active (solid line, γ = 1) and 
passive (dashed, γ = 0) models.  
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It is clear from both the pressure and the velocity response that the sharpness of the tuning 

is increased when the cochlea is active.  The phase of the response is approximately the 

same for both active and passive cases up until the peak of the response, where the active 

case lags behind the passive case by approximately half a cycle.  This behaviour is also 

visible when the response is plotted as a function of frequency at a single location, as in 

Figure 2.15. 
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Figure 2.15.a-d: Pressure (a, c) and BM velocity (b, d) magnitude (a, b) and phase (c, d) as 
a function of frequency at the 1kHz characteristic place in the coupled cochlea given active 
(solid line, γ = 1) and passive (dashed, γ = 0) models. 

The gain in the magnitude of the response at a given location along the mammalian 

cochlea is one of the quantities that is commonly measured in vivo.  According to Robles 

and Ruggero (2001), the gain in BM motion provided by the CA of a chinchilla is 

approximately 45 dB at the base, and decreases to ~20 dB toward the apex.  Figure 2.16 

plots the enhancement as a function of position for the model used here.  The enhancement 
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is defined as the quotient of the maximum active velocity and the maximum passive 

velocity at a given position along the cochlea, across frequency. 
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Figure 2.16: Enhancement of TW motion in the coupled cochlea. 

Note the shape of Figure 2.16, in particular the sharp rise in enhancement near the base.  

This is due to the widening region of active undamping of the TW with decreasing 

frequency; at the very base, the TW is not strongly amplified because the spatial region of 

active OHC contribution is small.  This increases to a nominal amount at approximately x 

= 3 mm, after which the other characteristics of the model dominate the enhancement 

curve.  The shape of the enhancement curve is in qualitative agreement with published 

physiological data, where it is approximately 45 dB at the base and decreases to ~20 dB at 

the apex.  The exact motion of the BM in the middle of the cochlea has not yet been 

measured due to experimental restrictions; until further advancements in measurement 

techniques are made, it will be difficult to validate the model in this region. 

Numerous studies have, however, attempted to determine the exact relationship 

between characteristic frequency (CF), F, and distance from the base, x, in the mammalian 

cochlea.  Greenwood published a review of related work in 1990, and determined that a 

previously derived equation of the form 

 ( )3510 xF A kα − = −  , (2.33) 

with parameters A = 165.4 Hz, α = 0.06 mm-1, and k = 0.88, gave reasonably good results 

for humans.  The frequency-to-place map of the current model was tuned to approximate to 

this equation, and is shown below in Figure 2.19. 
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Figure 2.17: Frequency-to-place map of the model and the Greenwood function for a 
human. 

 
The model does a reasonable job of following the Greenwood curve until x ≈ 29 mm, 

where the human tuning curve drops off in frequency more quickly.  It was found that this 

effect could be replicated in the model by adding a larger constant (position independent) 

amount of damping to c1(x), but this adversely affected other characteristics of the model 

and was not applied in the final set of parameters. 

Another feature that was deemed important here and has also been measured in a 

variety of animals is the wavelength of the TW at its peak.  By definition, 

 ( )TW
TW

2
Re ,

( , )
x

x

πκ ω
λ ω

  =  , (2.34) 

where λTW is the wavelength of the TW which varies with both position and frequency.  

Combining equations (2.17) and (2.34) yields an expression relating the wavelength to 

cochlear partition impedance: 

 ( ) ( ),
, Re 2

2
cpHZ x

x
j

ω
λ ω π

ωρ

 
 =

−  

. (2.35) 

Figure 2.18.a-b shows the variation of the TW wavelength as a function of both position 

and frequency.  As the tonally-generated TW propagates down the cochlea, its wavelength 

is long in the region where the impedance of the CP is stiffness-dominated.  As the local 

stiffness decreases, so does the TW wavelength.  When the wave approaches the resonant 

position, the wavelength decreases sharply.  Although Figure 2.18.a shows that the 

decrease in λTW continues apically beyond this point, the magnitude of the TW is strongly 
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attenuated beyond this position; thus, the TW wavelength is only important from the base 

up until several mm beyond the characteristic place. 
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Figure 2.18.a-b: Wavelength of the TW as a function of a) position for a 1 kHz tone, and b) 
frequency at the 1 kHz characteristic place.  A light ‘x’ denotes the wavelength at the 
characteristic place (a) and frequency (b) when γ = 1. The active case is shown as a solid 
line, whereas the passive case is shown as a dashed line. 

Similarly, Figure 2.18.b shows that the TW wavelength is long at frequencies lower than 

the resonant frequency at a given location, as it is basal of those resonant places. 

In order to calculate the wavelength of the TW at its peak, 
peakλ , the CP impedance 

of equation (2.35) must be evaluated at the characteristic location and frequency: 

 ( ) ( ),
Re 2

2
cp cf cf

peak
cf

HZ x
x

j

ω
λ π

ω ρ

 
 =
 −
 

, (2.36) 

where the subscript cf denotes characteristic frequency and place.  This is plotted in Figure 

2.19. 
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Figure 2.19: Wavelength of the TW at its peak as a function of position along the cochlea. 
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The data of Figure 2.19 show that the peak wavelength is small at the base of the model 

and increases roughly linearly toward the apex.  This trend is consistent with 

measurements and extrapolations made in other mammals, though the exact characteristics 

of the healthy human cochlear TW are as yet unmeasured in vivo.  However, the values of 

λpeak in this model are very close to the estimates of Shera and Guinan (2003) based upon 

their reverse-calculations from OAE data.  One issue that Figure 2.19 does raise is that the 

values of 
peakλ  fall somewhat below 1 mm, the height of the cochlear channel, for much of 

the model.  This presents a problem with the formulation as the longwave assumption is 

then violated; the implications of this predicament are discussed in Chapter 6. 

The imaginary component of the TW wavenumber can provide further information 

about the system.  By analysing the auditory nerve responses of chinchillas and cats, Shera 

(2007) empirically obtains TW wavenumber characteristics in all regions of 

physiologically healthy cochleae.  The real and imaginary parts of κTW are referred to as 

propagation and gain functions in the aforementioned manuscript.  These quantities are 

assigned the Greek letters κ and γ by Shera (2007), but as these are already reserved in this 

dissertation, they are simply referred to here as the real and imaginary parts of κTW, 

{ } { }TW TW,κ κℜ ℑ .  Figure 2.20 illustrates how the propagation and gain functions vary as 

a function of position at 8 characteristic frequencies in the model, similar to Figure 8 in 

Shera (2007). 

As previously discussed, the real part of the wavenumber is proportional to the 

inverse of the TW wavelength.  Thus, the values of the solid dark lines at the intersections 

with the dotted vertical lines are equivalent to 2π/λpeak(x).  As expected, the wavelength of 

the TW reaches a minimum at the characteristic place for most frequencies, though some 

deviation from this trend is observed at lower frequencies which peak in the apex.  In 

addition, the magnitude of the real part of κTW is somewhat higher in Figure 2.20 than 

Figure 8 of (Shera, 2007); this implies that λTW is shorter in humans than in chinchillas.  

However, when the feedback gain is set to zero, the real part of the TW is much lower in 

magnitude.  This verifies that λTW varies considerably in the model as a function of γ. 

The imaginary part of κTW is referred to as the ‘gain’ function in Shera (2007), as it is 

determines whether the amplitude of the TW is increasing or decreasing.  This can be 

related back to the expression for κTW in the model.  The sign of the real part of the BM 
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impedance, which is related to the damping, is proportional to the negative product of the 

real and imaginary components of κTW, as given in equation (19) of Shera (2007).  Thus, 

because ( )TW 0κ ω ℜ >  for all regions of the cochlear model, the positions where 

( )TW 0κ ω ℑ >   correspond to the region of negative damping.  This can be seen when 

comparing Figure 2.20 to the real part of the BM admittance, illustrated in Figure 2.7.b. 
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Figure 2.20: Real (dark lines) and imaginary (gray lines) components of the wavenumber 
for the present model.  Solid lines represent the active (γ  = 1) results, whereas dashed lines 
represent the passive (γ = 0) results.  Dotted vertical lines mark the characteristic places 
and frequencies of the stimuli in the coupled cochlea. 

 
Another important quantity that has important consequences for OAE analysis, also 

related to the wavenumber, is the group delay of the TW, τTW.  The group delay, which is a 

function of characteristic place and frequency given that the cochlea is a dispersive system, 

is given by 

 ( ) ( )( ) TW
TW 0

Re
,

cfx

cf cfx dx
ω κ

τ ω
ω

∂
=

∂∫ , (2.37) 

(e.g. Moleti et al., 2005).  Figure 2.21 displays the cochlear group delay as a function of 

position in the active and passive models.  The latency is plot along the horizontal axis in 
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order to facilitate comparisons between these delays and the propagation of TWs in time 

domain simulations, as shown in the next chapter.   
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Figure 2.21: Distance to the characteristic place as a function of cochlear delay.  The active 
response is shown as a solid line, whereas the passive response is shown as a dashed line. 

The data shows that the group delay is longer when the system is active compared to when 

it is passive; this is consistent with physiologically measured results (e.g. Recio and Rhode, 

2000).  Another feature of interest is how many cycles of phase change a tonal TW 

experiences from the base to its characteristic place. 

Figure 2.22 shows the total phase accumulated by the TW between the base and a 

given characteristic place as a function of frequency; these results are generated by taking 

the difference between the BM velocity’s phase lag at the characteristic place and the 

phase lead at the base. 
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Figure 2.22: Total TW phase accumulation from the base to the characteristic place as a 
function of characteristic frequency. 
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 Finally, the variation of the model’s response is calculated as the number of 

micromechanical elements in the cochlear model is increased.  Although it can be argued 

that the cochlea is by nature longitudinally discrete, owing to the individual rows of OHCs, 

the rows are typically ~5 µm apart (Pickles, 2003).  This would require dividing the human 

cochlea up into approximately 7000 segments to create an ‘accurate’ model by this 

reasoning.  It can be shown, however, that increasing the number of points beyond a 

certain limit has little practical value.  Furthermore, at N = 500, the discretisation size is 

less than one tenth of a millimetre; this represents a spatial sampling rate that is more than 

sufficient to meet the Nyquist criterion of this system, given the wavelength of the TW at 

its peak.  Figure 2.23 shows the cochlear response at several frequencies for three different 

values of N. 
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Figure 2.23: Variation of cochlear response given several values of spatial discretisation 
size. 

At N = 250 points, the response exhibits atypical behaviour at higher frequencies.  The 

magnitude and phase are indicative of spurious reflections in the cochlear model that lead 

to system instability.  At N = 500 points, the response is smooth.  Doubling N again to 

1000 changes the response by less than 1 dB at the peak.  However, with N = 250, the 
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frequency response at 1 kHz looks normal.  This potential ambiguity regarding the 

observed instability of the frequency domain model is one of the reasons why there is a 

need for a formulation which can unambiguously determine the stability of the fluid-

coupled cochlea, as opposed to just that of individual micromechanical elements.  This 

matter is addressed in the following chapter. 
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Chapter 3 
 

3 State Space Formulation 
 
 
 
Many of the salient features of the biological cochlea, such as its wide dynamic range and 

the compressive growth of BM motion at moderate stimulus levels, are believed to be 

partly due to the nonlinearity of the CA (Pickles, 2003).  This key feature is omitted in 

many models because it greatly complicates analysis and nonlinear responses are also often 

time-consuming to simulate.  Toward the beginning of this investigation, a first attempt 

was made to study the compressive behaviour of the cochlea by implementing Kanis and 

de Boer’s (1993) quasi-linear model. 

The quasi-linear approach seeks to approximate nonlinear behaviour in a linear 

frequency domain model of cochlear mechanics.  In a nutshell, this is accomplished 

through an iterative process that evaluates the linear BM velocity and a compressed OHC 

pressure in order to generate a quasi-linear CP impedance; this then becomes the basis for 

the next iteration of linear and compressed results until the responses converge.  This 

procedure has the advantage of computational speed, as all of the calculations are 

performed in the frequency domain.  However, this methodology is still restricted to 

analysing steady state responses to tonal stimuli, while many interesting features of the 

cochlea are only transiently expressed.  Furthermore, the application of this framework to 

the Neely and Kim (1986) model generated frequency responses that seemed indicative of 

reflections and instability.  This revealed the need for a rigorous test of a model’s stability, 

as instability in a frequency domain model invalidates its results. 

While procedures exist to check the stability of frequency-domain models, these 

methods often involve calculating the system’s frequency response at many different 
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frequencies to examine its causality.  It is difficult to formalise these tests for discretised 

cochlear models as each individual segment may produce many hundreds of frequency 

responses.  This is of particular concern given that numerical effects, such as truncation in 

the frequency domain, will also lead to the presence of small non-causal components. The 

solution adopted in this investigation was to recast the Neely and Kim model in a format 

known as state space, which is capable of unambiguously determining the stability of the 

model. 

The state space model is introduced in Section 3.1.  Its construction is described for 

both isolated micromechanical elements in Section 3.2, and the fluid-coupled 

macromechanical system in Section 3.3.  The stability of both micro- and macro-

mechanical systems is discussed as the feedback gain is increased.  The stability is also 

studied for non-uniform distributions of feedback gain in the coupled model.  In Section 

3.4, frequency domain simulations generated by the state space model are shown to match 

the responses of the frequency domain formulation.  Finally, both linear and nonlinear time 

domain simulations of cochlear responses to tones are presented in Section 3.5. 

3.1   Formulation overview 
The state space approach is inherently set in the time-domain.  The dynamics of a system 

are expressed as a set of coupled first-order differential equations and arranged in vector-

matrix form.  In the following subsections, the construction of the state space formulation 

of Neely and Kim’s (1986) discretised cochlear model is presented.  The standard form of 

the state equations of a linear time-invariant analog system is given by 

 
( ) ( ) ( )
( ) ( ) ( )
t t t

t t t

= +

= +

x Ax Bu

y Cx Du

ɺ
, (3.1) 

where bold letters represent vector-matrices (Phillips and Harbor, 2000).  In these 

equations, 

( )tx  is the (m × 1) vector of the states of an mth-order system, 

A is the (m × m) system matrix that contains the mechanics of the model, 

B is the (m × r) input matrix that scales the r input(s) to the system, 

( )tu  is the (r × 1) input vector composed of the system input functions, 

( )ty  is the (p × 1) output vector composed of the defined p outputs, 
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C is the (p × m) output matrix that selects the output states of the model, and 

D is the (p × r) feed-through matrix that passes the input directly to the output, 

where m, r and p are integer values that describe the dimensions of the vector-matrices.  

Given this format, the stability of the state space system can be determined by calculating 

the eigenvalues of the system matrix, A, as explained in greater detail below. 

Subsection 3.2 shows how the cochlear micromechanics can be set in the standard 

state space form.  The stability of the micromechanical system is then investigated in terms 

of its poles and zeros, as generated by the state space model.  Subsection 3.3 then describes 

how the boundary conditions and fluid-coupling associated with the macromechanical 

model are set in matrix form and combined with all the micromechanical models, thus 

yielding the complete state space model of the cochlea. 

3.2   Isolated micromechanics 
The Neely and Kim (1986) micromechanical model is an active second-order system 

which has two states associated with each degree of freedom, a single input, and a single 

output.  Thus, for the isolated micromechanical model, m = 4, r = 1 and p =1.  The four 

state variables are chosen to be the velocity and displacement of the BM and TM: 

 

( )
( )
( )
( )

1

1

2

2

p

p

t

t

x t

x t

x t

x t

ξ

ξ

ξ
ξ

=

=

=

=

ɺ ɺ

ɺ ɺ
. (3.2) 

The notation representing BM and TM motion as x1 and x2 is adopted here to maintain 

consistency with standard control theory convention of expressing states as xi.  Note, 

however, that the overall vector of state variables x(t) should not be confused with the 

longitudinal spatial variable x, which is not a function of time.  When these four states are 

vertically concatenated, the state matrix is formed: 

 

( )
( )
( )
( )

1

1

2

2

n

n

x t

x t

x t

x t

 
 
 =
 
 
  

x

ɺ

ɺ
, (3.3) 

where the subscript n corresponds to the index number of the element in the cochlea.  

When the time derivative of equation (3.3) is evaluated, the state matrix becomes 
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( )
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( )
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n

n

x t

x t

x t

x t

 
 
 =
 
 
  

x

ɺɺ

ɺ
ɺ

ɺɺ

ɺ

, (3.4) 

where ( )1x tɺɺ  and ( )2x tɺɺ  represent the acceleration of the BM and the TM, respectively.  

Solving the equations of micromechanical motion for the BM and TM acceleration yields 

 
( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )

4 2 1 4 2 1

1
1 1 1 3 1 1 3 2 3 2 3

1 dp t g c x t x t k x t x t
x

m x t c c x t k k x t c x t k

γ  + − + −  =  
− + − + + +  

ɺ ɺ
ɺɺ

ɺ ɺ
, (3.5) 

and 

 ( ) ( ) ( )( ) ( ) ( ){ }2 2 2 3 2 2 3 1 3 1 3
2

1
x x t c c x t k k x t c x t k

m
= − + − + + +ɺɺ ɺ ɺ , (3.6) 

as derived in Appendix B.4.  Recall that the micromechanical parameters vary as a 

function of position.  This notation is suppressed here for convenience.  The standard state 

space form can be rewritten to describe the micromechanics of a given element in the 

discrete model of the cochlea: 

 ( ) ( ) ( )n n n n nt t p t= +x A x Bɺ . (3.7) 

When the components of equations (3.5) and (3.6) are separated into the form of equation 

(3.7), the micromechanical system matrix, An, and input matrix, Bn, are defined as: 

 

( ) ( )

( ) ( )

1 3 4 1 3 4 3 4 3 4

1 1 1 1

2 3 2 33 3

2 2 2 2

1 0 0 0

0 0 1 0
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m m m m
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− −
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− −

 
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  

A
, (3.8) 

and 

 
1

1

0

0

0

n

n

m
 
 
 
 =
 
 
  

B . (3.9) 

 The output of the state space model is set as the BM velocity.  Rewriting the second 

line of equation (3.1) yields 

 ( ) ( ) ( ) ( )1n np n n n dt x t t p tξ = = +C x Dɺ ɺ , (3.10) 

where 
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 [ ]0 0 0n b=C , (3.11) 

and 

 0n =D . (3.12) 

This completes the expression of the micromechanical model in state space form.  

However, looking forward to the coupled system, it is clear that the middle ear and 

helicotrema elements must also be expressed in the standard format in order to be 

compatible with the rest of the model. 

The equations of motion for the middle ear and the helicotrema, solved for the 

acceleration of the element, are given by 

 ( ) ( ) ( ) ( )1

1
m m m m m

m

t p t c t k t
m

ξ ξ ξ = − − 
ɺɺ ɺ  (3.13) 

and 

 ( ) ( ) ( )1
H N st H

H

t p t c t
m

ξ ξ = − 
ɺɺ ɺ , (3.14) 

where ( )m tξ  and ( )H tξ  represent the displacement at the stapes and helicotrema, and p1(t) 

and pN(t) represent the pressure at the stapes and helicotrema.  A small amount of damping 

is added to the helicotrema boundary in order to reduce apical reflections.  Following the 

same procedure as outlined above, the state space matrices for the boundary elements can 

be expressed as 

 ( ) ( ) ( )1 1 1 1 1t t p t= +x A x Bɺ , (3.15) 

and 
 ( ) ( ) ( )N N N N Nt t p t= +x A x Bɺ , (3.16) 

where 

 ( )1
m

m

t
ξ
ξ
 

=  
 

x
ɺ

, (3.17) 

 ( ) H
N

H

t
ξ
ξ
 

=  
 

x
ɺ

, (3.18) 

 1

1 0

m m

m m

c k

m m

− − 
 =
 
  

A , (3.19) 

 
0

1 0

H

HN

c

m

− 
 =
 
  

A , (3.20) 
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 1

1

0
mm

 
 =
 
  

B , (3.21) 

and 

 

1

0
HN m

 
 =
 
  

B . (3.22) 

3.2.1   Stability: poles and zeros 
It is possible to determine the stability of a model in state space form quickly and 

unambiguously.  A short digression back to the transfer function representation of the 

micromechanical system will provide a more solid grounding for the discussion of how the 

state space model accomplishes this.  Rearranging and rewriting equation (2.2), the CP 

admittance, in terms of the Laplace variable, s = σ + jω, gives 

 ( ) ( )
( )

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ){ }

2 3

1 2 3 2 3 4

b
p

d

b Z s Z ss
Y s

p s g Z s Z s Z s Z s Z s Z s

ξ
γ

+
= =

   + + −   

ɺ
. (3.23) 

Equation (3.23) is a transfer function of the form 

 ( ) ( )
( )

( )( ) ( )( )
( )( ) ( )( )

1 2 1

1 2 1

...

...
m m

m m

N s s z s z s z s z
H s K

D s s p s p s p s p
−

−

− − − −
= =

− − − −
, (3.24) 

where K is the real-valued gain of the system, and the numerator, N(s), and the 

denominator, D(s), have been factored such that the zi’s are the roots of the equation 

 ( ) 0N s = , (3.25) 

and defined to be the system zeros, and the pi’s are the roots of the equation 

 ( ) 0D s = , (3.26) 

and defined to be the system poles (Phillips and Harbor, 2000).  The poles and zeros of a 

system must come in pairs that are either purely real or complex conjugates of each other.  

When s tends to any of zi or pi, the magnitude of the transfer function tends to zero or 

infinity, respectively: 

 
( )
( )

lim 0

lim
i

i

s z

s p

H s

H s

→

→

=

= ∞
. (3.27) 

The poles of a system are especially important as they determine the unforced response of 

a system, y(t); this can be written as a sum of contributions from different modes: 
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 ( )
1

i

n
p t

i
i

y t C e
=

=∑ , (3.28) 

where the coefficients Ci are dictated by the initial conditions of the system (Levine, 1996). 

Defining { }i ip σℜ =  and { }i ip ωℑ = , it is apparent from equation (3.28) that the 

envelope of the system response in time will either be stable and decay away if σi < 0, or 

unstable and grow exponentially if σi > 0.  However, poles may also be complex causing 

the response to oscillate.  Thus, poles may contribute to the unforced response of the 

system in four ways which are illustrated in Figure 3.1. 

 

Figure 3.1: Illustration of the effect of poles, marked as ‘x’s, upon the unforced system 
response.  The real axis is plotted horizontally and the imaginary axis is plotted vertically. 
Reprinted with permission (Hardt, 2008). 

 
In summary, the positions of the system poles determine whether the system is stable or 

not. 

The poles of the state space model are readily determined by calculating the 

eigenvalues of the system matrix, A.  In addition, the zeros can also be determined by 

solving  

 det 0i − − 
= − − 

z I A B

C D
 (3.29) 

= ω 

= σ 
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for zi, (Levine, 1996).  Though the system poles dictate the unforced response, the zeros 

will have a significant impact upon the driven response.  The admittance of the Neely and 

Kim (1986) micromechanical model has 4 poles and 3 zeros.  At x = 20.48 mm, there are 

two complex conjugate poles at p1,2 = -856 ± j5790 and two poles on the real axis at p3 = -

7000 and p4 = -26620, whereas the zeros of this element’s admittance are located at z1,2 = -

800 ± j5000 and z3 = 0.  This is illustrated in Figure 3.2. 

The transfer function, H(s) can be solved for any s, but the solution for s = jω is of 

primary interest as this represents the frequency response of the system.  The magnitude of 

the frequency response, as rewritten from equation (3.24), is  

 ( ) ( )
( )

1

1

m

ii
m

ii

j z
H j K

j p

ω
ω

ω
=

=

−
=

−
∏
∏

. (3.30) 

Equation (3.30) is commonly interpreted geometrically.  As the driving frequency (ω) is 

varied, the distances between the s = jω point on the imaginary axis and the poles and zeros 

in the complex s-plane also change.  The product of the distances from jω to the zi’s 

divided by the product of the distances from jω to the pi’s determines the relative 

magnitude of the response at different frequencies.  An example is given in Figure 3.2 that 

illustrates the distances from the poles and zeros of Neely and Kim’s micromechanical 

model (at x = 20.48 and γ = 1) to several frequencies on the imaginary axis.  Both the 

passive and active stability and the magnitude of the admittances are plot in Figure 3.3 to 

motivate this discussion.  Note that the position of the zero does not depend on the 

feedback gain, and almost overlaps with a pole in the passive system. 

In Figure 3.2.a, the response is strongly dominated by the zero at the origin.  As the 

frequency is increased, the admittance begins to grow with distance away from the zero at 

the origin and closer proximity to the poles.  At s = j4000, the closest pole or zero is the 

zero at z = -784 + j4192, which results in a local decrease in admittance.  In Figure 3.2.b, 

the pole at p = -856 + j5790 dominates, and a strong peak is generated.  Beyond this 

frequency, the magnitude begins to decrease.  At high frequencies, the fourth pole, located 

at p = -26,620 + j0 and omitted from panels (a) and (b) for clarity, begins to dominate as 

the other three relatively closely-spaced poles and zeros cancel each other out.  Thus, a 

frequency of s = j5790*50 only ‘sees’ this single pole; just as proximity to a pole 

reinforces the admittance, distance from it diminishes its magnitude. 
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a) x = 20.48 mm

Poles at γ = 1
Zeros
s = j1000
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b) x = 20.48 mm

Poles at γ = 1
Zeros
s = j5790
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c) x = 20.48 mm

Poles at γ = 1
Zeros
s = j5790*50

 

Figure 3.2.a-c: Poles and zeros of Neely and Kim’s micromechanical model with γ = 1.  
Arrows indicate distances to s, set to 3 frequencies.  Light and black lines are drawn from 
the zeros and poles, respectively.  A heavy line denotes the dominant pole or zero in each 
case.  Note that the scale of panel (c) is zoomed out by a factor of 50 relative to (a) and (b). 
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x = 20.48 mm

γ = 1
γ = 0
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Poles, γ = 1
Poles, γ = 0
Zeros

 

Figure 3.3: Active (—) and passive (--) admittance of the BM at x = 20.48 mm, as in 
Figure 2.8.a.  Also superimposed are the pole and zero in this region.  The zero is denoted 
by a filled circle, whereas poles are plotted as (×) and (▼) given active and passive gains.  
Note that the axes of the poles and zeros have been rotated, as shown in Figure 3.4. 

 
Figure 3.4 shows how Neely and Kim’s (1986) micromechanical pole positions 

change as the feedback gain, γ, is varied from γ = 0 to γ = 2, at x = 20.48 mm.  As 

predicted by Figure 2.11, this element is unstable at γ > 1.485. 
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a) x = 20.48 mm

Poles at γ = 2.0
Poles at γ = 1.485
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b) x = 20.48 mm

Poles at γ = 2.0
Poles at γ = 1.485
Poles at γ = 1
γ = 0
Zeros

 

Figure 3.4.a-b: Plot of the zeros and poles of the micromechanical admittance at 20.48 
mm along the cochlea given variations in feedback gain, γ.  Results are shown in the a) 
standard form, and b) the adopted ‘stability plot’ format. 

 
The first thing to notice about Figure 3.4 is that the traditional method of showing 

poles and zeros is the plot in the (a) panel with, the real axis set horizontally and the 

imaginary axis set vertically.  As the complex poles always appear on the real axis or in 

conjugate pairs, the negative frequencies can be omitted from the diagram without any loss 
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of information.  Furthermore, the imaginary axis carries units of frequency in radians per 

second, which does not give much physical insight into the system.  For this reason, panel 

(a) is flipped across the vertical axis, rotated 90 degrees clockwise, and the units along the 

imaginary axis are converted to kHz.  This result is shown in panel (b).  This allows direct 

comparison with frequency responses, as in Figure 3.3.  To maintain the consistency of the 

units between the axes, the real axis is expressed in inverse ms.  From this point forward, a 

plot of poles in the format of Figure 3.4.b is referred to as a ‘stability plot,’ as poles must 

fall below the horizontal, σ = 0, axis for the system to be stable. 

The two pairs of poles correspond to the natural frequencies of the passive system, as 

described in section 2.2.  For instance, the poles on the real axis give rise to the heavily-

damped higher frequency peak of the BM admittance, whereas the lightly-damped lower 

frequency peak of the TM admittance gives rise to the conjugate poles of Figure 3.4.  At γ 

= 0, a complex zero almost exactly overlaps with a complex pole in Figure 3.4.b.  Thus, at 

near-passive gains, the effect of the pole is effectively masked by the zero.  This is seen in 

Figure 3.3, as there is no discernable change in the passive admittance near the frequency 

of this pole when the system is damped.  A small variation is visible in the underamped 

response of Figure 2.4.a.  At γ = 1 (where the pole is marked by an ‘x’), the pole moves 

steadily away from the zero and increases in frequency.  Thus, the magnitude of the 

response will still be small near the frequency of the zero at non-passive gains, but 

sharpened near the frequency of the complex pole; this accounts for the dip at 700 Hz and 

the peak at 1 kHz of the active admittance.  Recall that the position of the zero does not 

depend on the feedback gain, as γ does not appear in the numerator of equation (3.23).  As 

the gain is further increased, the pole moves even closer toward instability and reaches the 

boundary of stability at γ = 1.485, which is consistent with Figure 2.11 and Figure 2.12. 

As discussed previously, the magnitude of the frequency response will depend on the 

quotient of the distances between s = jω and the zeros and poles.  Increasing the gain of the 

system causes one or more poles to move toward the imaginary axis.  When a pole falls on 

the imaginary axis (pi = s = ±jω), the denominator of the transfer function goes to zero and 

the response tends to infinity as shown in Figure 2.12.  However, when the gain is further 

increased, the pole begins to move away from the imaginary axis and into the unstable 

region where σ > 0; this causes an apparent reduction in the magnitude of the frequency 

response and a reversal of its sign.  This frequency response has, however, now lost 
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physical validity as the true response in time tends toward infinity.  Calculating the pole 

positions for a linear system is the most reliable method of determining its stability. 

The positions of the poles can convey more information than simply if the system is 

stable or not.  For instance, a second-order system can be described by its natural 

frequency, ωn, and its damping ratio, ζ; the latter is a dimensionless quantity that describes 

if and how a system oscillates following an initial perturbation.  Geometrically speaking, ζ 

is the ratio of the negative real component of a pole to its distance from the origin.  Thus, 

the damping ratios of the poles of a system, pi = σi + jωi, are 

 ( )
2 2

cos
σζ α

σ ω
−= =

+
, (3.31) 

where α is the angle formed between the negative-real half-axis of the s-plane and the pole 

in question (Phillips and Harbor, 2000).  When ζ > 1, the pole pair has two distinct real 

solutions and the response is referred to as overdamped; this response decays 

exponentially.  When ζ = 1, the pole pair has two identical real solutions and the response 

is referred to as critically damped.  When 0 < ζ < 1, the two poles have both real and 

imaginary parts which are complex conjugates of each other, and the response is referred 

to as underdamped; this response oscillates and decays away.  When ζ = 0, the pole pair 

has only imaginary components which are complex conjugates of each other and the 

response is referred to as conditionally stable, as the unforced response rings at the 

frequency of the poles and neither decays nor grows with time. 

In practice, ζ is useful as it allows for the comparison of the response of various 

poles at different frequencies.  Lines that radiate outward from the origin of the stability 

plot indicate a constant damping ratio.  This is exemplified in Figure 3.5 which 

superimposes the poles from four separate micromechanical models onto the same stability 

plot.  Figure 3.5 indicates that there are a pair of overdamped poles and a pair of 

underdamped in each micromechanical system.  As the underdamped poles have smaller σi 

than the overdamped poles of each location, it is this oscillating and decaying motion that 

will dominate the unforced response.  Panel (b) shows that the damping ratios of the 

micromechanical system tend to decrease at positions that are closer to the base. 

Figure 3.6.a-d shows all the poles of the 500 uncoupled elements on a single stability 

plot for the passive and the active cases.  Although the plot appears to show a continuous 

line, there are actually many individual poles.  These are distinctly visible at the higher 
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frequencies.  The upper ‘arm’ of underdamped poles has a near-constant damping ratio 

when the system is passive, as shown in the Figure 3.6.a.  When γ is increased to 1, the 

damping ratios of the underdamped poles begin to vary.  ζ is fairly constant at higher 

frequencies in Figure 3.6.b, but increases as lower frequencies (positions near the apex) are 

examined.  This is due to the relatively stronger contribution of the damping parameters in 

each element near the apex compared the base.  c1(x), for example, has a constant term that 

does not vary with position which makes it more dominant near the apex, as the other 

parameters are still decreasing exponentially.  Figure 3.6 includes a single underdamped 

pole near 1 kHz that corresponds to the middle ear boundary element. 
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a) γ = 1
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b) γ = 1

ζ = 0.035
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Figure 3.5.a-b: Plot of isolated, active micromechanical poles at four positions along the 
cochlea.  Two more poles at further negative real values beyond the σ-axis limits are 
omitted for clarity.  Differently sized ‘x’s denote the poles from different positions along 
the cochlea.  b) zoomed-in view of the four underdamped poles near the boundary of 
stability; dashed lines indicate locations of constant ζ for the underdamped poles. 
 

 

Figure 3.6.a-b: Isolated micromechanical poles plot together at one gain given passive (a) 
and active (b) models. 
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3.3   Coupled macromechanics 
In order to express Neely and Kim’s (1986) coupled macromechanical model in state space 

form, it is necessary to return to the boundary conditions and the wave equation that 

underpin this system.  The same procedure of discretising the equations presented for the 

frequency domain model in section 2.4 is carried out here with one notable difference: 

these equations are now expressed as functions of CP and boundary accelerations in order 

to comply with the requirements of the state space formulation.  Following this, the 

macromechanics are again set in matrix form.  The macromechanical matrices are then 

combined with the micromechanical matrices set in state space form to generate a coupled 

state space model of the cochlea. 

Rewriting the one-dimensional wave equation of equation (2.16) in terms of the 

radially averaged acceleration of the cochlear partition yields 

 
( ) ( )

2

2

2
0p

p t
t

x H

ρ ξ
∂

− =
∂

ɺɺ , (3.32) 

where ρ  is the density of the cochlear fluids and H is the height of the canal above and 

below the cochlear partition, which is assumed to be constant.  Although both ( )p t , the 

pressure difference across the cochlear partition, and ( )p tξɺɺ , the radially-averaged 

acceleration of the cochlear partition, are functions of x, the dependence is suppressed here 

for notational convenience. 

Similarly, the boundary condition for the wave equation at the basal end presented 

in equation (2.18) can be written in terms of the acceleration at the stapes: 

 
( ) ( )

0

2 st

x

p t
t

x
ρξ

=

∂
=

∂
ɺɺ , (3.33) 

where ( )st tξɺɺ  is the acceleration of the stapes footplate.  This has two linearly superposing 

components: the unloaded part ( )SO tξɺɺ , which is the acceleration due to an external 

stimulus, and ( )SR tξɺɺ , which is the acceleration due to the loading by the internal pressure 

response in the cochlea at  x = 0.  Thus, equation (3.33) may be written as 

 
( ) ( ) ( )

0

2 2SR SO

x

p t
t t

x
ρξ ρξ

=

∂
− =

∂
ɺɺ ɺɺ . (3.34) 

At the other end of the cochlea, the helicotrema boundary condition can be written as 
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( ) ' 1

2 N N

x L

p t
p

x H
ρξ

=

∂
= +

∂
ɺɺ , (3.35) 

where Nξ ′ɺɺ  is the effective fluid acceleration at the helicotrema. This nonstandard 

expression allows for a small amount of damping to be added at the apex.  The full details 

and implications of this revision are discussed in Appendix C.2. 

As in Chapter 2, finite difference approximations can be applied to discretise the 

spatial derivatives in equations (3.32), (3.34) and (3.35): 

 
( ) ( ) ( ) ( )1 1

2

2 2
0n n n

n

p t p t p t
t

H

ρ ξ− +− +
− =

∆
ɺɺ , (3.36) 

 
( ) ( ) ( ) ( )2 1 2 2SR SO

p t p t
t tρξ ρξ

−
− =

∆
ɺɺ ɺɺ , (3.37) 

and 

 ( ) ( )
2

12 2
2N N N

H
p t p t

H H H
ρξ−

  ∆ ∆ ∆− − =  ∆   

ɺɺ , (3.38) 

respectively.  Equations (3.36) through (3.38) can be written in matrix form (Neely, 1981): 

 ( ) ( )t t− =Fp ξ qɺɺ , (3.39) 

where ( )tp  and ( )tξɺɺ  are the vectors of pressure differences and elemental accelerations, F 

is the finite-difference matrix (also referred to as the ‘fluid-coupling’ matrix) and q is the 

vector of source terms.  When the matrices are expanded, equation (3.39) in this case 

becomes 
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(3.40)

 

In order to combine the macromechanics above with the state space representation of 

the micromechanics presented in the previous subsection, the isolated elements must be 

collected in the combined matrix equations: 

 ( ) ( ) ( )E Et t t= +x A x B pɺ , (3.41) 

and 
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 ( ) ( )Ep t t=ξ C xɺ , (3.42) 

where the vectors are defined as 

 ( ) ( ) ( ) ( ) ( )T T T T T
1 2 1N Nt t t t t− =  x x x x x⋯ , (3.43) 

 ( ) ( ) ( ) ( ) ( )T
1 2 1p N Nt t t t tξ ξ ξ ξ− =  ξɺ ɺ ɺ ɺ ɺ⋯ , (3.44) 

and 

 ( ) ( ) ( ) ( ) ( )T
1 2 1N Nt p t p t p t p t− =  p ⋯ , (3.45) 

where the superscript T denotes the transpose of the matrix.  The elemental matrices, 

which are block diagonal, are defined as 

 

1

2

1

0
0

0
0

E

N

N

−

=

 
 
 
 
 

A
A

A
A

A

⋯

⋮ ⋱ ⋮

⋯

, (3.46) 

 

1

2

1

0
0

0
0

E

N

N

−

=

 
 
 
 
 

B
B

B
B

B

⋯

⋮ ⋱ ⋮

⋯

, (3.47) 

and 
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. (3.48) 

Solving the macromechanical equation (3.39) for the pressure matrix, p, gives 

 1 1( ) ( ) ( )t t t− −= +p F ξ F qɺɺ , (3.49) 

where F-1 is the inverse of the fluid-coupling matrix, F.  Note from equation (3.42) that 

( )p tξɺɺ  is equal to ( )E tC xɺ , so that 

 1 1( ) ( ) ( ).Et t t− −= +p F C x F qɺ  (3.50) 

Substituting this result into equation (3.41) allows the fluid-coupled cochlea with 

distributed micromechanics and dynamic boundary conditions to be written in the general 

state space form, 

  ( ) ( ) ( )t t t= +x Ax Buɺ , (3.51) 

where 
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11

E E E

−− = − A I B F C A , (3.52) 

 
11

E E E

−− = − B I B F C B , (3.53) 

and 
 ( ) ( )t t−= 1u F q . (3.54) 

Off-diagonal terms are generated in the system matrix, A, when the uncoupled AE matrix is 

multiplied by the quantity 
11

E E

−− − I B F C  in equation (3.52); this effectively allows the 

previously isolated micromechanical models to affect the dynamics of nearby elements. 

3.3.1   Stability: uniform variation of γ(x) 
The stability of the coupled cochlea is only briefly examined in the following subsections.  

Much greater attention is given to the underlying causes and characteristics of instability in 

the next chapter, which is concerned with spontaneous emissions. 

The poles of the coupled model are determined in the exact same manner as those 

of the isolated micromechanical model in state space: by calculating the eigenvalues of the 

system matrix, A.  While simple to compute in state space, the poles are much less 

straightforward to calculate from the coupled frequency domain model, hence the need for 

this formulation.  Conversely, the zeros of the state space model, as given by (3.29), are 

extremely time-consuming to determine when the state matrices are large and are omitted 

from the discussion here.  Figure 3.7 shows the change in pole positions as the feedback 

gain is uniformly varied as a function of position.   

Going from the passive model, shown panel (a), to the active model, shown in 

panel (b), of Figure 3.7, shows an upward stretch in frequencies of the upper ‘arm’ of 

poles, from a maximum of approximately 16 kHz to 20 kHz.  As with the isolated system, 

the upper arm of poles moves upward toward the boundary of stability as the gain is 

increased.  However, the system now becomes unstable at γ = 1.06, which is less than the 

lowest value of minimum unstable gain for the isolated micromechanical system (γ = 

1.18), as shown in Figure 2.11.  As expected, the system becomes more unstable and 

further un-damped across a wider range of frequencies as the gain is further increased 

(Figure 3.7.d); the coupled cochlear model is clearly unstable at γ = 1.20. 
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Figure 3.7.a-d: Stability plots of the coupled state space model: a) γ = 0, system is stable; 

b) γ = 1, system is stable; c) γ = 1.06, system is unstable; d) γ = 1.20, system is unstable. 

 

3.3.2   Stability: step change in γ(x) 
It has been previously reported that non-smooth variations in CP impedance as a function 

of longitudinal position can result in instability.  Although such inhomogeneities could 

result from variations in any of the physical parameters in the micromechanical model, the 

feedback gain is perturbed here to illustrate the effects on stability.  A step change in the 

feedback gain as a function of position represents a simple spatial discontinuity; the 

stability of the coupled model given a step change from γ = 1 to γ = 0.9 and vice versa at 

approximately 11 mm is presented in Figure 3.8.a-d. 

Figure 3.8 shows that the system is unstable for a 10% step decrease in gain at 11 

mm, but remains stable for a step increase in gain, from γ = 0.9 to γ = 1, at the same 

location.    The lower panels, Figure 3.8.c-d, show enlarged versions of the upper graphs at 
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approximately 4 kHz.  Examining the upper arms of poles in Figure 3.8.b, it is clear that 

the poles at frequencies above 4 kHz (the CF at the location of the discontinuity in gain) 

are more damped than those of the same region in Figure 3.8.a; this is consistent with the 

distributions of gain in the two models.  It is also notable that there is a seemingly-regular 

spacing between the poles that move toward instability, as shown most clearly in panels (c) 

and (d) of Figure 3.8. 
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Figure 3.8.a-d: Stability of two coupled cochlear models given step changes in γ. a) γ(x ≤ 
11 mm) = 1, γ(x > 11 mm) = 0.9, system is unstable; and b) γ(x ≤ 11 mm) = 0.9, γ(x > 11 
mm) = 1, system is stable.  Panels c) and d) show zoomed-in plots of a) and b), 
respectively. 

3.3.3   Stability: random variation of γ(x) 
In most biological systems, there will be a degree of developmental randomness in the 

structures (e.g. Lonsbury-Martin et al., 1987).  In the case of the cochlea, the regularity in 

the geometric patterns of OHC stereocilia may be imperfect, as shown by Lonsbury-Martin 

et al. (1987) who studied cochleae of rhesus-monkeys.  The quantitative variability that 
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exists in a human cochlea is unknown, so a range of perturbations are applied.  

Inhomogeneities are applied to the smooth spatial variation of feedback gain with band-

passed random waveforms exhibiting a Gaussian distribution.  A 5th order Butterworth 

filter was chosen for its characteristically flat passband (Lineton, 2001). 

Figure 3.9.a-d shows the stability of two models, each with a different distribution 

of feedback gains; panels c-d show the upper arm of poles in detail.  The low corner 

wavenumber of the bandpass filter used to determine the random spatial variations was 

fixed at 35 mm, the length of the cochlea, in order to avoid introducing large DC shifts in 

the gain.  The high corner wavenumber was set to a different value for each model, one 

close to the spatial discretisation limit thus generating a ‘rough’ distribution, and one closer 

to the low corner wavenumber thus generating a ‘smooth’ distribution.  A more rigorous 

definition of ‘rough’ and ‘smooth’ distributions is introduced in the next chapter. 

 

Figure 3.9.a-d: Stability of two models given smooth (a, c) and rough (b, d) distributions of 
feedback gain.  Panels (c) and (d) show a zoomed-in view of panels (a) and (b), 
respectively. 
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While both rough and smooth perturbations of gain have a ±5% peak-to-peak 

deviation from γ = 1, only the rough distribution generates instability in the model.  Panel 

(d) appears to show two distinct, linear trends of poles away from the origin—one with a 

stable (positive) damping ratio and one with an unstable (negative) damping ratio.  These 

characteristics are more easily interpreted given a framework of the underlying generation 

mechanisms of instabilities in the cochlea, as presented in the following chapter. 

3.4   Frequency domain responses 
It is possible to generate frequency domain responses from the state space model, as 

outlined below.  This is not generally how frequency responses are computed as it is more 

computationally intensive than simply using the frequency domain model introduced in 

Section 2.4.  Nevertheless, it is a good check to compare results between the two 

formulations. 

In order to find a frequency domain expression for the states of the model, it is 

necessary to take the Laplace transform of the general state space equations given in (3.1): 

 
( ) ( ) ( )

( ) ( ) ( )
s s s s

s s s

= +

= +

X AX BU

Y CX DU
. (3.55) 

The first line is then solved for X(s): 

 ( ) ( ) ( )1
s s s

−= −X I A BU , (3.56) 

which can be substituted into the second line of (3.55) yielding 

 ( ) ( ) ( )s s s = + − Y D C I A B U
,
 (3.57) 

where in this case the output is the BM velocity
 
and 0=D .  Taking the Laplace transform 

of equation (3.54) gives 

 ( ) ( )s s−= 1U F Q . (3.58) 

Similarly, to determine the pressure response in the frequency domain, the Laplace 

transform is taken of equation (3.50) to give 

 1 1( ) ( ) ( )s s s s− −= +P F C X F Q , (3.59) 

where X(s) can be calculated as a function of Q(s) with equations (3.56) and (3.58).  The 

frequency response can then be obtained by setting s = jω, provided the system is stable.  

Figure 3.10 compares the BM velocity and pressure difference frequency response 
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calculated within this framework against that of the frequency domain formulation at a 

stimulus frequency of 4 kHz, given a constant stapes velocity of 1 m/s.  The response of 

the state space model matches that of the frequency domain model as a function of position 

up to the limit of the state space formulation’s dynamic range; this limit is thought to be 

due to the numerical issues associated with the inversion of the F matrix.  In the case of the 

BM velocity, shown in the (b) panel, the magnitude of the response breaks down 

approximately 260 dB below the peak of the response. 
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Figure 3.10: Response of the model calculated using the state space formulation at 4 kHz 
(solid) compared with the frequency domain formulation (dashed).  The (a) and (c) panels 
show magnitude and phase of the pressure difference along the BM, while the (b) and (d) 
panels show the magnitude and phase of the BM velocity. 

3.4.1   Input and output impedances 
It is also useful to calculate the input and output impedances of the cochlea for comparison 

against experimental measurements.  Zin is defined as the impedance looking in toward the 
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cochlea from the middle ear, whereas Zout is defined as the impedance looking out toward 

the middle ear from the cochlea. 

In order to calculate Zin numerically, the middle ear is removed from the model and 

the output pressure at the first element of the cochlea (Pst at x = 0 in the coupled cochlea) is 

divided by the input volume velocity, ustapes, times the area of the stapes footplate, As: 

 in *
st

stapes s

P
Z

u A
= . (3.60) 

However, the Neely and Kim model does not account for the mechanical stiffness of 

the round window; this is believed to be responsible for the unexpected phase lead of Zin 

otherwise observed at low frequencies, as shown in Figure 3.11.b.  In theory, inclusion of a 

round window stiffness term should result in an impedance that has the form: 

 in
rw

in

k
Z Z

jω
′ = + . (3.61) 

Zout is simply the impedance of the middle ear, 

 ( ) m
out m m

K
Z j j M C

j
ω ω

ω
= + + . (3.62) 

An empirically derived stiffness of Krw = 4*109 [N*m -3] gives the correct phase shift at low 

frequencies without significantly altering the magnitude of Zin.  

The magnitude and phase of Zin and Zout are plot side-by-side in Figure 3.11 with 

physiologically measured data supplied by Professor Sunil Puria, as published in Puria 

(2003).  The magnitude and phase of Zout fall within 1 standard deviation of measured data 

for most of the frequency range of interest.  The magnitude of Zin is on the same order as 

that of measured data, and its phase response approaches a lag at lower driving frequencies 

with the inclusion of krw. 
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Figure 3.11.a-d: Comparison of Z’ in (a, c) and Zout (c, d) magnitude (a, c) and phase (b, d).  
The light, dashed line in the (a, b) panels shows Zin without the added round window 
stiffness (krw = 4*108 [N*m -3]).  Experimentally measured values are plot along with model 
data in all panels (Puria, 2003). 

 
One other characteristic of cochlear models that has been reported to have important 

consequences on the stability of the system is the magnitude of the reflection coefficient at 

the basal boundary (Shera and Zweig, 1991a).  The reflection coefficient at the middle ear 

boundary, as driven from within the cochlea, is defined as the quotient of the forward- and 

backward- travelling pressure waves, or equivalently, forward- and backward- wave 

impedances.  However, the definition of the forward and backward components, or basis 

waves, is critical to this analysis.  Preliminary work in this area has utilised the WKB 

method to calculate an approximation of the local characteristic impedance of the cochlea 

at the base (de Boer and Viergever, 1983; Viergever and de Boer, 1986), though other 

work has suggested that applying Hankel functions may be more appropriate (Shera and 

Zweig, 1991a-b).  In addition, it should be possible to calculate the reflection coefficient 

numerically as well.  This is an important area of work that deserves further attention and 

is discussed in Chapter 6. 
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3.5   Time domain simulations 
Time domain simulations can give greater insight into the mechanics of the cochlea as a 

wide variety of stimuli and analytical techniques can be applied.  The transient activity of 

the model is obscured when only steady state responses are generated in the frequency 

domain.  Crucially, time domain simulations also allow for nonlinearities to be 

incorporated into the model.  The cost of these advantages is the computationally intensive 

nature of these simulations, relative to frequency domain simulations. 

In this subsection, the time-domain response of the state space model is studied.  

This is not an exhaustive study of all possible simulations that can be performed; rather, it 

is an introduction to the time domain.  Only tonal responses generated in baseline, stable 

cochleae are considered here.  However, both linear and nonlinear responses are 

calculated; the latter shows harmonic distortion at moderate driving levels.  The simulation 

of transient stimuli and unstable or otherwise perturbed models is left for later chapters. 

3.5.1   Linear responses 
All time domain simulations are accomplished using MATLAB’s ordinary differential 

equation solver, ode45.  Internal to this function, the time step is adjusted both forward and 

backward until the solution settles within supplied error tolerance limits.  Absolute and 

relative tolerances are typically set to 10-12 and 10-10, respectively, though these may be 

adjusted upward and downward depending on the amplitude of the stimuli.  For instance, a 

0 dB signal would require an absolute error tolerance 100 times smaller than a 40 dB 

signal.  The data is output at a given sampling rate specified by the input time vector; this 

is set to 50 kHz to avoid any potential aliasing at the highest characteristic frequencies. 

In order to reduce the amount of time required for tonal stimuli to reach steady state, 

a half-Hanning window is applied to the first 10 ms of the stapes acceleration that is the 

input to the simulation.  This reduces the amplitude of the initial impulse that propagates 

through the cochlea due to the sudden onset of the tone.  Figure 3.12 shows the abruptly 

applied stimulus (stapes acceleration, as generated by a 0 dB SPL 3 kHz tone suddenly 

input to the ear canal, as detailed in Appendix A), the half-Hanning window function and 

the windowed stimulus. 

A time domain simulation of the 3 kHz stimulus tone shown in Figure 3.12 was set 

to run for 100 ms.  In order to extract the steady-state magnitude and phase information, 
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only the last 30 ms (90 cycles) of data are analysed.  The envelope of the response was 

extracted by evaluating the maximum values of BM velocity as a function of position 

across time.  Qualitatively similar results were calculated when the RMS amplitude as a 

function of position was calculated; however, the fine structure of the response is better 

resolved by taking the maximum value.  The phase of the response was calculated by 

evaluating the discrete Fourier transform (DFT) at 3 kHz at each position along the 

cochlea.  This data is plot along with the frequency domain result generated by the state 

space model in Figure 3.13. 
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Figure 3.12: The first 20 ms of stapes acceleration that serves as an input to the time 
domain simulation.  The stapes acceleration (dotted, light) is scaled by a half-Hanning 
window of duration 10 ms (dashed, thick).  The resultant windowed stapes acceleration is 
presented as a solid black line. 

 
The time domain simulation required approximately 8 hours to complete on a 

desktop computer with a 3.4 GHz Pentium 4 processor and 2 gigabytes of RAM when tight 

absolute and relative error tolerances of 10-15 and 10-13 were set, respectively. In contrast, 

the state space frequency domain simulation required approximately 18 seconds to 

complete.  For comparison, the frequency domain model described in Chapter 2 can 

compute the response at a single frequency in approximately 43 ms.  The noise floor of the 

frequency domain response is approximately 150 dB below that of the time domain 

simulation in Figure 3.13. 
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Figure 3.13:  Magnitude and phase of a 3 kHz stimulus tone plotted as a function of 
position along the cochlea.  Results are obtained from a linear time domain simulation 
(solid line) and a state space frequency domain simulation (dashed). 

 
However, frequency domain results cannot show the evolution of the response in time.  

The first 30 ms of the 3 kHz BM velocity response along the cochlea are shown in Figure 

3.14 as a mesh plot. 

There appears to be no activity in the first 4 ms or so of Figure 3.14; this is simply 

due to the fact that the amplitude of the response is much smaller at this time frame when 

compared to later time frames where the stimulus is no longer windowed.  The positive 

‘slope’ of the undulations on the mesh indicates that the TW is propagating forward with 

increasing time.  Note, however, how the slope becomes much less steep near the peak of 

the response; this indicates that the TW is much slower in the region of the peak, as 

expected.  Beyond this point spatially, the TW is quickly extinguished. 
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Figure 3.14:  The BM velocity in a linear cochlea given a windowed 3 kHz stimulus tone at 
0 dB SPL. 

3.5.2   Nonlinear responses 
The linear model simulates the cochlea’s response to low-level stimuli where the CA is 

working at full strength.  However, when the driving amplitude is increased, the OHC 

feedback force in the biological cochlea begins to saturate as it cannot accommodate the 

increased output requirements.  Thus, the active contribution of the CA decreases relative 

to the driving level; this effect is sometimes referred to as ‘self-suppression’ in the 

literature (e.g. Kanis and de Boer, 1994).  In order to model the nonlinear saturation of the 

feedback force, a Boltzmann function is applied to the displacement input of the feedback 

loop that determines the OHC force in the time domain.  In effect, this acts as an automatic 

gain controller. 

There are several reasons why the Boltzmann function was chosen for this task.  Its 

shape well-approximates the input-output (stimulus pressure to intracellular voltage) 

characteristics of OHCs measured in isolation, ex vivo (Cody and Russell, 1987; Kros et 

al., 1992).  However, the exact characteristics of the OHC response in vivo are as yet 
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unknown; hence, some degree of laxity in this aspect of the model can be allowed.  The 

key features of this function are that it saturates with increasing input amplitudes, and that 

the saturation is non-symmetric.  The latter characteristic is required to account for the 

presence of even-order components that have been measured in the harmonic distortion of 

the BM response (Cooper, 1998). 

The first order Boltzmann function is given as 

 ( )
1 1u

f u
e η

δ δ
β β−= −

+ +
, (3.63) 

where u is the input displacement in units of distance; δ sets the saturation point, also in 

units of distance; β is a dimensionless quantity that scales the asymmetrical nature of the 

function; and η affects the slope of the function.  In order to linearise the function for small 

input displacements, u, it is necessary to constrain 

 
( )2
1

δβη
β

=
+

, (3.64) 

to yield a slope of 1 at small input displacement values, u.  This was determined by 

equating the derivative of the Boltzmann function with respect to the input, u, to unity 

while evaluating at u = 0 and solving for η.  Figure 3.15 illustrates the Boltzmann function 

and its slope, given parameter values of δ = 1 and β = 3. 
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Figure 3.15.a-b:  Boltzmann function characteristics: a) output vs. input, b) slope of output 
vs. input.  Free parameter values are set as follows: δ = 1 and β = 3. 
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While the saturation point of the Boltzmann function, δ, is set to 1 in Figure 3.15 for 

illustration purposes, it is varied as a function of position in the nonlinear cochlea.  As 

different positions along the cochlea are driven with a constant pressure, each 

micromechanical element will displace a different amount.  It is the relative displacement 

between the BM and the TM that is passed through to the saturation function in the 

nonlinear time domain simulation, and thus δ(x) has considerable bearing upon the results 

of the simulation.  For example, if δ(x) is set to a constant value, the response at the base 

will be much less saturated than locations more apical; this is because the basal region is 

much stiffer and thus the micromechanical elements displace less for a given stimulus. 

In order to generate a sensible distribution of δ(x), the maximum displacement at a 

given location across frequency in the linear model was used as a template for locations 

approximately 6 mm ≤ x ≤ 27 mm; below 6 mm and past 27 mm, the value of δ(x) is fixed.  

This distribution is normalised to the maximum value, and scaled by 1 nm.  The final 

distribution of δ(x) is shown in Figure 3.16. 
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Figure 3.16:  Nonlinear saturation point as a function of position, δ(x). 

 
As with the linear simulations of pure tones, the first 10 ms of the stimulus is scaled 

by a half-Hanning windowed.  Again a 3 kHz tone is applied, but now at varying 

intensities, varying from 0 dB SPL to 90 dB SPL in 3 dB steps.  Figure 3.17 shows the 

mesh of the first 30 ms of BM velocity given a 45 dB SPL tone and a 90 dB SPL tone.  

The most striking difference between Figure 3.17.a and the linear simulation of Figure 3.14 

is the appearance of a second region where the TW is peaking and travelling slower than 

adjacent regions centred at approximately 7 mm.   
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Figure 3.17.a-b: Mesh of the first 30 ms of BM velocity given a 3 kHz input tone at a) 45 
dB SPL and b) 90 dB SPL in a nonlinear cochlea. 
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In contrast, Figure 3.17.b shows a much wider spatial excitation pattern at a stimulus 

level of 90 dB SPL, though a smaller peak is still visible near the 3 kHz place. Figure 3.18 

plots the modulus of the overall BM velocity responses at various positions along the 

cochlea for excitation levels that vary from -20 to 100 dB SPL on a single graph.  These 

calculations are made over the last 30 ms in a 100 ms simulation.  Each curve represents 

the maximum steady state BM velocity as a function of position. 
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Figure 3.18: Growth of the steady state BM response given increasing amplitudes at 3kHz 
in 3 dB steps.  Dashed vertical lines indicate the best places at 1.5, 3.0, 6.0, 9.0 and 12.0 
kHz. 

 
By visual inspection, Figure 3.18 shows that the response basal to the 3 kHz place grows 

linearly for much of the range, while the peak of the response grows much more 

compressively; this is consistent with the measured responses as described by Johnstone et 

al. (1986), for example.  There are also numerous peaks that occur at seemingly-regular 
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intervals along the cochlea.  Vertical lines at the best places of multiples of the 

fundamental tone indicate that these peaks are likely due to distortion. 

Figure 3.19.a-d shows the normalised growth of several different harmonic 

components of the BM response, as obtained by taking the Fourier Series of the BM 

velocity at each location. 
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b) -20 ≤ Amplitude ≤ 100 dB SPL
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c) -20 ≤ Amplitude ≤ 100 dB SPL
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d) -20 ≤ Amplitude ≤ 100 dB SPL
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Figure 3.19.a-d:  Normalised growth curve of a) the 1.5 kHz component, b) the 3 kHz 
component, c) the 6 kHz component, and d) the 9 kHz component of the BM response as a 
function of position along the cochlea. 

 
It is important to remember that only a 3 kHz tone is being applied; the various 

components at 1.5, 6 and 9 components shown in Figure 3.19 seem to be a result of 

harmonic distortion.  The various harmonic components of the BM response also grow at 

different rates.  Figure 3.20 plots the growth of these components at several positions along 

the cochlea. 
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Figure 3.20.a-c: Growth of distortion components generated a) at the 3 kHz place; b) near 
(±~1 mm about) the best places of the distortion frequencies; c) at the 6 kHz place. 

 
Figure 3.20 shows that the nonlinear cochlear model has compressed 120 dB of 

stimulus intensities at the 3 kHz harmonic component into a much smaller dynamic range, 

approximately 60 dB of BM motion.  The 3 kHz level curve appears to have corner 

amplitudes of approximately 5 dB SPL and 70 dB SPL where the BM response transitions 

from linear growth to compressive growth, and then back to linear growth.  In order to 

match the growth curve to commonly measured values in animals where corner amplitudes 

are approximately 30 and 90 dB SPL, as given by Pickles (2003) for instance, the 

saturation point along the entire cochlear model could be shifted up by a factor of 10.  

However, it would be advisable to complete a more exhaustive study of growth curves at 

different frequencies (and thus locations along the cochlea) before adjusting simulation 

parameters as this is very recent work.  It may be that the growth curve of the model’s 
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fundamental response at more basal regions of the cochlea, where the experimental data 

were obtained, matches the measured data. 

Figure 3.20.a is comparable to Figure 4 of Cooper’s (1998) paper regarding 

harmonic distortion, where BM distortion components were measured in a live guinea-pig 

cochlea.  As with the data presented in that article, the growth of the distortion products is 

strongly compressive.  The 2f0 component of Figure 3.20.a shows a marked decrease in its 

absolute magnitude as the stimulus level is increased which is not observed in Cooper 

(1998).  However, the decrease in the 2f0 component appears to start approximately at the 

second corner amplitude of the f0 component, where the response becomes linear again; 

this high-level region was not measured in Cooper (1998). 

In Figure 3.20.b, the 2f0 and 3f0 components grow at a rate of approximately 2 dB/dB 

at the best places of these frequencies, before beginning to show signs of compression at 

approximately 30 and 50 dB SPL, respectively.  Figure 3.20.c is directly comparable to 

Figure 3A of Cooper (1998), which displays harmonic data of BM motion in a guinea pig 

at a location whose best frequency is twice the stimulus frequency (fcf = 0.5ftone).  The 

growth of the 3 kHz driving tone component is nearly linear in Figure 3.20.c and the 8 kHz 

driving tone is completely linear in 3A of Cooper (1998).  The growth of the 3f0 

component is qualitatively equivalent in both plots as well.  However, the magnitude of the 

2f0 component in Figure 3.20.c exceeds that of the fundamental between 25 and 60 dB 

SPL, whereas it is always less than the fundamental in 3A of Cooper (1998).  The latter 

effect may be due to the choice of the β parameter here, which shapes the vertical offset of 

the Boltzmann function, though further work is necessary in this area. 

Based upon the simulations above, it seems plausible that Cooper was correct in 

proposing that harmonic distortion is primarily distorted amplification, and not amplified 

distortion.  However, it is also possible that distortion generated at one site may propagate 

to its best place and become amplified there.  This is even more likely in a cochlear model 

that contains inhomogeneities in the CP impedance as a function of position, as these 

perturbations could result in the reflection of energy.  Kemp’s (1978) nonlinear wave-fixed 

theory also assumes that the TW itself modifies the cochlear mechanics in an amplitude-

dependent manner such that backward-travelling reflections could arise from this local 

irregularity in the CP impedance. 
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The simulation of nonlinear cochlear responses in the time domain is an area that 

requires a considerable amount of further work.  As discussed at the start of this chapter, 

the most significant downside of such investigations is the computational cost.  The total 

cpu time required for the thirty-one simulations of 100 ms of data was approximately 490 

hours.  The total duration of a given simulation is a complicated function of applied error 

tolerances and the relative magnitude of the motion in the cochlea, the latter of which is 

dependent on driving amplitude and stability.  In order to calculate the model’s response at 

a single position to a wide range of frequencies and stimulus levels, as is sometimes 

performed experimentally (see Figure 1 of Cooper (1998), for example), many hundreds of 

computer-hours would be the required. 

In the next chapter, instabilities in the cochlear model are studied in terms of their 

generation mechanisms and characteristics.  Further time domain simulations of unstable 

cochleae continue to show that there is much greater complexity in the response of 

nonlinear models than is predicted by linear theory. 
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Chapter 4 
 

4 Spontaneous Otoacoustic 
Emissions 
 
 
 
Calculating the stability of Neely and Kim’s (1986) frequency domain model of the 

cochlea was the primary motivation for reformulating it in state space.  However, with the 

state space model came the ability to test not only if the linear system was stable or not, but 

to actually study the conditions that give rise to the instabilities.  The resultant frequencies 

and characteristics of the instabilities also give insight into the system. 

One of the initial tests of stability included perturbing the feedback gain at various 

locations with a step-discontinuity.  The instabilities that emerged from these 

investigations appeared in an arc of poles, where the most unstable frequency was close to 

the characteristic frequency (CF) at the location of the discontinuity.  The frequencies of 

the poles in the arc seemed to fall at regular intervals; this was of particular interest, as it 

has been reported that spontaneous otoacoustic emissions (SOAEs) in a single individual 

exist at regular intervals in mammals (Dallmayr, 1985, 1986; Talmadge et al., 1993; 

Braun, 1997).  Thus, in order to compare the model’s response with experimental results in 

humans, it was decided that the parameters for Neely and Kim’s (1986) model of a cat 

cochlea would be revised to account for the characteristics of a human cochlea.   

Two sets of revised model parameters have been used to study the distribution of 

linear instabilities.  The first replicated the most commonly observed spacing between 

SOAE frequencies in humans, and seemed to support one of the prevailing theories 

regarding SOAE generation; these results were published in Ku et al. (2008), which can be 
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found in Appendix C.2.  However, in order to match the variation of spacings between 

adjacent human SOAEs as a function of frequency, as described by Shera (2003), a second 

set of parameters was devised.  The latter set of parameters has formed the basis of the 

results presented in this thesis. 

This chapter begins by describing the findings presented in Ku et al. (2008).  This 

work was primarily an investigation into the generation mechanisms of instabilities in the 

cochlea.  Subsection 4.1 introduces various theories that have been proposed to explain the 

formation and characteristics of SOAEs.  Subsection 4.2 shows how the stability of the 

model is affected given various perturbations in the micromechanical feedback gain as a 

function of position.  Some details of the results here differ from those presented in Ku et 

al. (2008) given the application of the newer set of parameters, though the underlying 

conclusions are still valid.  Findings from more recent investigations are presented in 

subsection 4.3 in the form of nonlinear time domain simulations of unstable cochleae.  The 

results of these newer simulations are discussed in the context of the linear theory of 

SOAE generation. 

4.1   Theories of SOAE generation 
SOAEs are believed to be a feature of a normally functioning CA, as they are commonly 

detected in an estimated range of 33% to 70% of all normally-hearing ears (Talmadge et 

al., 1993).  Where SOAEs are detected, stimulus frequency-, distortion product- and 

transient evoked- otoacoustic emissions (SFOAEs, DPOAEs and TEOAEs) are also often 

present.  There is evidence to suggest that all forms of OAEs are related and directly tied to 

the sensitivity of hearing (Zwicker and Schloth, 1984; McFadden and Mishra, 1993; 

Talmadge and Tubis, 1998; Shera and Guinan, 1999; Kalluri and Shera, 2007).  Two 

primary classes of cochlea-based theories regarding the production of SOAEs are 

discussed below: a local-oscillator model, and a distributed backscattering concept. 

Gold (1948) first formed the basis of a local-oscillator model of SOAE generation 

when he proposed that a perturbation may ‘bring an [active] element into the region of 

self-oscillation, when it is normally so close to [instability].’  Evidence in the literature 

suggests that SOAEs are associated with BM oscillations.  For example, Nuttall et al. 

(2004) measured a SOAE that had a counterpart in spontaneous mechanical vibration of 

the BM at the same frequency in a guinea pig.  Further work performed by Martin and 
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Hudspeth (2001) considered how locally unstable elements of the CA may be responsible 

for SOAEs.  However, without careful tuning, a local-oscillator model fails to account for 

the regular spacings between unstable frequencies observed in mammalian SOAEs. 

The strong peak in the distribution of log-normalised spacings between adjacent 

SOAE frequencies, termed the preferred minimum distance (PMD), has been demonstrated 

by various studies (Dallmayr, 1985, 1986; Talmadge et al., 1993; Braun, 1997).  A similar 

value is found in the average frequency spacings between the spectral peaks of SFOAEs 

and TEOAEs when measured in the ear canal (Zwicker and Schloth, 1984; Shera, 2003).  

The PMD corresponds to a frequency spacing of approximately 0.4 Bark, or a distance of 

about 0.4 mm along the human cochlea (Dallmayr, 1985, 1986).  Most SOAEs occur in the 

range of 0.5-6 kHz (Probst et al., 1991) and demonstrate the PMD, though Zweig and 

Shera (1995) and Shera (2003) showed that the average spacings of both SOAEs and the 

spectral peaks of SFOAEs measured in the ear canal do vary somewhat with frequency. 

Strube (1989) argued that a periodic variation or ‘corrugation’ in the 

micromechanical parameters was responsible for the observed PMD in SF- and TE-OAE 

measurements in the ear canal.  This was said to be the result of distributed backscattering 

of the travelling wave (TW) similar to the phenomenon of Bragg reflection in a crystal.  In 

this theory, the period of the corrugation must correspond to one-half of the wavelength of 

the TW, thus generating constructive interference at particular frequencies.  Kemp (1979) 

also proposed a theory of SOAE generation which assumed a distributed backscattering 

mechanism; his theory required multiple internal reflections of forward- and backward-

travelling waves between the middle ear boundary and an inhomogeneous region of the 

cochlea. 

Since Kemp (1979) first presented the idea, numerous authors have made 

contributions to the multiple-reflection theory (Zwicker and Peisl, 1990; Zweig, 1991; 

Shera and Zweig, 1993; Talmadge and Tubis, 1993; Zweig and Shera, 1995; Talmadge and 

Tubis, 1998; Shera and Guinan, 1999; Shera, 2003).  Shera and Zweig (1993) proposed 

that a spatially dense and random array of reflection sites exists along the entire cochlea 

which acts in concert with the middle ear boundary to form standing waves, which Shera 

(2003) likens to a laser cavity.  This concept was fully developed in Zweig and Shera 

(1995).  Though energy is reflected at all frequencies by a perturbation along the cochlea, 
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wavelets scattered from forward-travelling waves that peak in the region of the 

inhomogeneity dominate the response, since the amplitude is highest there. 

For an active standing wave resonance to develop in this multiple-reflection theory, 

the spatial distribution of inhomogeneities in the given region must contain components at 

the wavenumber that creates constructive interference with the incoming wave, just as with 

Bragg scattering (Shera and Zweig, 1993; Zweig and Shera, 1995).  Further requirements 

include an active region between the middle ear boundary and the reflection site to 

overcome the viscous damping in the cochlea, and a TW frequency that undergoes an 

integer number of cycles of round-trip phase change between the middle ear and the 

cochlear reflection site; this naturally gives rise to the PMD in SOAEs measured in the ear 

canal.  However, the existence of a spontaneous oscillation in the cochlea does not 

guarantee its detection as an SOAE; it must also remain sufficiently powerful to be 

measurable in the ear canal after transmission through the middle ear. 

An alternative theory suggests that irregular middle ear transmission characteristics 

may be a cause of some OAEs (Nobili et al., 2003).  However, the numerical accuracy of 

these simulation results has been contested elsewhere (Shera et al., 2003), and such 

irregularities are not often reported.  For the purposes of this investigation, a smooth 

middle ear boundary is implemented and only cochlea-based theories of SOAE generation 

are discussed. 

The goal of subsection 4.2 is to test whether the predictions of Zweig and Shera’s 

(1995) multiple-reflection theory of SOAE generation are observed in a mathematical 

model of linear cochlear mechanics.  Previous work has relied upon phenomenological 

methods (Zweig and Shera, 1995; Shera, 2003), or multiple time domain simulations 

(Talmadge et al., 1998), to support this theory.  In contrast, a state space formulation of the 

cochlea (Elliott et al., 2007) is used here that is capable of rapidly and unambiguously 

calculating the unstable frequencies in a given linear model.  This method is thus 

especially well-suited to generating the large number of results from individual cochleae 

necessary to ensure statistically significant data. 

It should be noted that only the linear stability of the cochlear model is considered in 

subsection 4.2.  In a biological cochlea, the amplitude of an instability would eventually 

stabilise due to the natural saturation of the feedback force generated by the CA.  
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Furthermore, it is possible that the number of SOAEs predicted by the linear model could 

change in a nonlinear model due to distortion or suppression; this is tested in Section 4.3. 

4.1.1   Theoretical predictions 
According to Shera and Zweig (1993), the average distance between resonant positions of 

SOAEs along the cochlea is 

 
1

2
SOAE peakx λ∆ ≈ , (4.1) 

where peakλ  is the wavelength of the TW in its peak region.  This is a departure from 

previous predictions in that the assumed distance between SOAE characteristic places is 

determined by the wavelength of the TW and not a specific corrugation in the mechanical 

parameters.  The wavelength of the model’s TW as a function of position and frequency is 

given by equation (2.35); thus, the wavelength at the peak for a given location is 

determined by substituting in the CF, as shown by (2.36). 

Given that the frequency to place map in the cochleae of mammals is roughly 

exponential, the PMD between SOAE frequencies is 

 2 peakf f l λ∆ ≈ , (4.2) 

where l is the cochlear length scale, the distance over which the best frequency changes by 

a factor of e.  It is also possible to define a log-normalised spacing between two adjacent 

SOAE frequencies, fa and fb, as the ratio of their geometric mean divided by their 

difference, 

 a b

a b

f f
f f

f f
∆ =

−
. (4.3) 

The PMD in humans is approximately 15 when expressed in terms of f/∆f, though 

this value increases somewhat with SOAE frequency (Shera, 2003).  Figure 4.1 shows the 

length scale, l, and the wavelength of the TW at its peak, λpeak, for the model used in this 

thesis.  Together, these quantities yield the predicted f/∆f.  The length scale generated by 

this set of parameters is roughly the same as that generated by the parameters in Ku et al. 

(2008).  However, λpeak is an increasing function of position along the cochlea in the new 

model, whereas λpeak ≈ 0.9 mm for all but the most apical regions of the cochlea in the 

model of Ku et al. (2008). 



4 Spontaneous Otoacoustic Emissions 

  

 
92 

0 5 10 15 20 25 30 35
0

2

4

6

8

Le
ng

th
 s

ca
le

, l
 [m

m
]

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Position along the Cochlea [mm]

λ pe
ak

 [m
m

]

a)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Position along the cochlea [mm]

P
re

di
ct

ed
 f 

/ ∆
 f

b)

 

 

Figure 4.1.a-b: The length scale and wavelength of the TW at its peak, shown in panel (a), 
combine to yield the predicted f/∆f, shown in panel (b). 

4.2   Linear stability given perturbations in γ(x) 
It has been previously reported that deviations from a smoothly varying set of 

micromechanical parameters can cause instability in cochlear models.  It is believed that 

the frequencies of cochlear instability represent the frequencies of potential SOAEs.  

Elliott et al. (2007) demonstrated that these models are most sensitive to abrupt changes in 

the gain as a function of position.  In the current investigation, greater consideration is 

given to the nature of the inhomogeneities introduced and the resultant characteristics of 

the unstable frequencies.  The feedback gain as a function of position along the cochlea, 

γ(x), has been chosen as the parameter to be perturbed.  In order to compare the relative 

level of instability present in a cochlea, it is instructive to examine the number of unstable 

frequencies present.  However, to further quantify the magnitude of a cochlear model’s 

instability, the concept of a pole’s damping ratio is applied, as reviewed in subsection 

3.2.1. 

The damping ratio of an unstable pole is useful as it relates the frequency-

independent rate at which the system will become unstable; the average value of many 

poles can also be compared across different cochlear models.  This quantity is referred to 
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as the undamping ratio in this paper, in the context of discussing unstable poles, and is 

assigned the lowercase Greek letter final sigma: 

 ς ζ= −  (4.4) 
A step change in gain is employed as a starting point for the discussion of cochlear 

stability analysis.  From there, sinusoidal spatial variations and the band-limited random 

spatial variations are applied as gain distributions.  It is important to note that the step- and 

sinusoidal- distributions of γ(x) are introduced to understand the underlying mechanisms of 

SOAE generation and should not be interpreted as an attempt to model what exists in a 

healthy human cochlea. 

4.2.1   Step changes in γ(x) 
A step change in gain gives rise to a discontinuity in the smooth variation of BM 

impedance as a function of position along the cochlea.  An ideal step in space has a well-

distributed wavenumber spectrum, and thus should reflect wavelets across a wide range of 

wavelengths.  One additional consequence of varying the gain as a function of position, 

γ(x), is that the underlying properties of the TW are affected.  For instance, a higher gain 

results in a shorter λpeak.  To minimize this effect, a relatively small amplitude step was 

chosen with a ±2.5% deviation from nominal gain on either side of the step.  The stability 

plot for the cochlear model with such a step imposed on the gain at 13.6 mm from the base 

of the cochlea is shown in Figure 4.2. 
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Figure 4.2: Stability plot for a cochlea with the stepped gain as a function of position inset: 
γ(x < 13.6 mm) = 1.025 and γ(x ≥ 13.6 mm) = 0.975.  Note the frequency scale has been 
shortened to clarify the locations of the unstable poles.  Vertical lines indicate the 
frequencies of the instabilities: at 2.533 (dotted), 2.659 (solid) and 2.784 kHz (dashed). 
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Three distinct frequencies are found to be unstable in this cochlea, at 2.533, 2.659 

and 2.784 kHz.  These frequencies are all close to the CF at the location of the 

discontinuity, which is 2.640 kHz.  According to Zweig and Shera (1995), only the 

frequencies whose responses peak in this region may become unstable since not enough 

energy is reflected otherwise; this is seen in Figure 4.2 as only three frequencies near the 

CF at the position of the discontinuity are unstable.  Furthermore, there is a range of 

successively more stable poles that follow an arc leading away from the three unstable 

poles, both higher and lower in frequency.  Presumably, the TWs of these frequencies are 

not reflected strongly enough by the discontinuity to cause instability. 

The resultant spacings between the two pairs of adjacent unstable frequencies, f/∆f, 

are approximately 20.5 for the pair lower in frequency, and approximately 21.7 for the pair 

higher in frequency.  This is consistent with the expectations given a slightly lower γ value 

apical of the discontinuity, and a slightly higher γ value basal to the discontinuity.  To 

better understand why only these specific frequencies become unstable, Figure 4.3 shows 

the magnitudes and phases of the BM velocity responses at these frequencies when a 

nominal value of gain is used throughout the cochlea, ( )γ 1x = . 
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Figure 4.3.a-d: Magnitude (a, b) and phase (c, d) of BM velocity for excitation at 2.533 
(dotted), 2.659 (solid) and 2.784 kHz (dashed) given a baseline model with nominal gain, 
γ(x) = 1.  Panels (b) and (d) show expanded axes for clarity of interpretation.  A vertical 
line is drawn at the location of the discontinuity of Figure 4.2 in the zoomed-in panels.  
Circles in the phase plot (d) indicate phase shifts of -3.5, -4.0 and -4.5 cycles at this 
location. 

 
A vertical line through Figure 4.3.b and Figure 4.3.d denotes the location along the 

cochlea of the discontinuity applied in Figure 4.2.  This line intersects with the phase 

responses of the 2.533, 2.659, and 2.784 kHz stimulus tones at -3.5, -4.0, and -4.5 cycles, 

respectively, within an accuracy of 1%.  This is consistent with the ‘cochlear laser’ theory 

of SOAE generation which states that the phases of the unstable frequencies must undergo 

an integer number of cycles of total phase change between the reflection site and the 

middle ear boundary in order to combine constructively over successive reflections.  For 

the unstable frequencies shown above, the ‘round-trip’ phase change would equal 7, 8, and 

9 cycles.  Re-examining Figure 4.2 in light of this feature, the stable poles that follow the 

same arc as the unstable poles must also represent frequencies that scatter wavelets which 
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constructively combine, but perhaps are too weak to overcome the damping basal to the 

inhomogeneity. 

The total number of poles of a cochlear model is dependent upon the number of 

micromechanical elements; each additional element introduces four more poles.  However, 

the multiple-reflection theory of SOAE generation predicts that the number of instabilities 

created by a reflection site is dominated by the rotation of the TW phase and the magnitude 

of the reflected wave.  As such, only a finite number of instabilities should appear near the 

CF of the reflection site, regardless of the number of elements used in the model.  This is 

tested in Figure 4.4 by applying the same spatial step discontinuity in γ(x) to several 

cochlear models with different numbers of micromechanical elements, N. 

 

 

Figure 4.4: Stability plot for several cochlear models with varying values of N, the number 
of micromechanical elements.  A stepped gain as a function of position was applied to each 
model and inset in the figure: γ(x < 13.6 mm) = 1.025 and γ(x ≥ 13.6 mm) = 0.975.  Note 
the frequency scale has been shortened to clarify the locations of the unstable poles. 

 
Figure 4.4 shows the variation of the stability plot as N is increased from 400 to 800.  

The same step discontinuity is applied, which results in three distinctly unstable 

frequencies in each model, independent of N.  Note however that the positions of all the 

poles do vary somewhat, tending toward greater stability with increasing N.  The pole 

positions converge as N is increased.  Unfortunately, simulating models of greater and 

greater numbers of elements increases the computational load dramatically. Furthermore, 

the fundamental stability results do not vary a great deal, as shown above; as such, a 

compromise of N = 500 appears suitable for the purposes of the current investigations. 
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4.2.2   Sinusoidal variations in γ(x) 
A distribution of gain that is sinusoidal as a function of position is of interest because its 

wavenumber spectrum is concentrated close to a single wavenumber, just as a sinusoidal 

waveform that is a function of time has a frequency spectrum that is concentrated close to a 

single frequency.  This set of simulations follows the theory outlined by Strube (1989), 

which assumes uniform corrugations in gain along the BM.  A range of wavelengths were 

chosen for the sinusoidal variation of gain as a function of position along the cochlea, 

denoted λsin.  λsin is varied from approximately 1 mm down to 0.14 mm, the latter being the 

spatial Nyquist limit of the model.  A 14% peak-to-peak variation in amplitude about 

nominal gain generated instabilities over this spatial range. 

Figure 4.5 shows a number of stability plots of models as λsin is varied.  At the 

longest wavelengths, panels (a) and (b) for instance, the upper arm of poles periodically 

becomes unstable in frequency.  This large-scale periodicity appears to correspond to the 

spatial corrugation of the sinusoidal γ(x).  For instance, the characteristic places of 14.5 

kHz and 16.9 kHz (the frequencies of the ‘bumps’ in Figure 4.5.a with λsin = 1 mm) are 

almost exactly 1 mm apart on the model’s frequency-to-place map.  However, there is also 

a smaller-scale periodicity within the spacings of unstable frequencies; the three unstable 

poles between 14.3 kHz and 14.77 kHz in Figure 4.5.a, for instance.  This is likely due to 

coherent reflection in these bands where the peaks of the corrugation act as individual 

reflection sites, similar to the step-discontinuity results. 

As λsin decreases, these general trends become indistinguishable, but both the number 

of instabilities and their average undamping ratios begin to vary; this is summarised in 

Figure 4.6.  As expected, given the theories of Strube (1989), Shera and Zweig (1993), and 

Zweig and Shera (1995), the strongest instability occurred when the wavelength of the 

sinusoid, λsin, was approximately half the average peak wavelength; this value occurs at 

0.32 mm in the model.  In order to more fully understand the results of Figure 4.6, the 

same results as summarised in Figure 4.6 are presented for the unstable poles within half-

octave bands in Figure 4.7 and Figure 4.8.   
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Figure 4.5.a-h: Stability plots models with 8 different values of λsin. 

Note that the inset sinusoidal distributions of gain are sampled more densely than the 
discretisation size of the model for clarity. 
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Figure 4.6.a-b: Average undamping ratio of the instabilities (a) and total number of 
unstable frequencies (b) given variations in the sinusoidal wavelength of γ(x). 

 
The results of Figure 4.7 and Figure 4.8 show that the sinusoidal wavelength that 

causes the most instability within a given band tends to decrease with increasing 

frequency.  For instance, as shown in the banded undamping ratios of Figure 4.7, the 

‘characteristic’ sinusoidal wavelength is 0.39 mm for frequencies below 2 kHz, and 

steadily decreases to 0.29 mm at the region of the 11.3 kHz band.  The corresponding λpeak 

within these frequency ranges is approximately 0.8 mm and 0.6 mm, respectively, roughly 

twice the characteristic sinusoidal wavelength; this is consistent with the multiple-

reflection theory, as explained in (4.1).  Summarized another way, the greatest instability is 

generated within a given band of frequencies when the reflection sites are exactly aligned 

to half the wavelength at its peak in that frequency range: 

 ( ) ( )( )sin

1
max

2 peakλ λ ω ς ω= ⇒ . (4.5) 

This trend breaks down somewhat in the highest frequency bands near the base of the 

cochlea where the model is closest to instability; this is also potentially due to spatial 

aliasing of λsin at small wavelengths. 
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Figure 4.7.a-h:  Average undamping ratio of the instabilities that fall within half-octave 
bands as λsin is varied.  The sinusoidal wavelength that generates the strongest instability in 
each band is marked by a vertical line 
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Figure 4.8.a-h: Total count of the instabilities that fall within half-octave bands as λsin is 
varied.  The sinusoidal wavelength that generates the strongest instability in each band is 
marked by a vertical line. 
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Figure 4.8 shows that the sinusoidal wavelength at the peak in the number of 

instabilities also varies also with frequency, but these results are not as clean as Figure 4.8.  

This is possibly due to the magnitude of the sinusoid applied, as lower amplitudes may 

resolve more clearly the most sensitive portions of the cochlea.  For example, the (a) and 

(b) panels show results toward the apex with the lowest levels of enhancement, and thus 

are only sensitive when sin
1
2 peakλ λ= .  Furthermore, there is no instability for the 

frequency band where f < 2 kHz when the sinusoidal wavelength is approximately 0.2 mm.  

This sinusoidal wavelength, sin
1
4 peakλ λ= , may generate interference between adjacent 

reflection sites and thus decrease the model’s tendency to instability.  Again, this is not 

visible in the higher frequency bands, though this is possibly due to the spatial Nyquist 

limit of the model; sampling at higher spatial frequencies may resolve this trend more 

clearly. 

4.2.3   Random variations in γ(x) 
Shera and Zweig’s (1993) theory of SOAE generation assumes that the cochleae of 

normal-hearing humans contain a dense but random array of inhomogeneities.  Each of 

these place-fixed perturbations reflects energy from the forward TW (Talmadge et al., 

1993; Shera and Zweig, 1993; Zweig and Shera, 1995).  In this section, the stability of 

cochlear models with band-limited, spatially random gain distributions is used to 

approximate what is postulated to exist in a human cochlea.  A 5th order Butterworth filter 

was employed to band-limit gain distributions in the wavenumber domain (Lineton, 2001).  

The low-wavenumber cut-off frequency is fixed at the length of the cochlea itself, in order 

to prevent any DC shifts in the gain.  The high-wavenumber cut-off frequency is initially 

set to 6.6 radians/mm and slowly increases, thus generating cochlear models with 

successively more densely spaced reflection sites.  The average filter bandwidths are 

plotted below in terms of 2π times inverse wavenumber; this quantity has units of length 

(mm) and is directly comparable to the wavelength of the TW at its peak. 

Figure 4.9 summarizes the results of stability tests of four sets of two hundred 

different cochlear models, each with unique, spatially random gain distributions. 
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Figure 4.9.I-IV.a-d: The collected results from 4×200 cochlear models with randomly 
generated gain distributions.  Each Roman numeral subset has been filtered with a 
different cut-off wavelength: (I.a-d) λcut-off = 0.78 mm, (II.a-d) λcut-off = 0.48 mm, (III.a-
d) λcut-off = 0.30 mm, (IV.a-d) λcut-off = 0.19 mm. A peak-to-peak amplitude of 15% was 
applied to these gain distributions.  Caption continues on next page. 
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 (a) A characteristic stability plot taken from the set.  The average undamping ratio for that 
single case, ς, is given and superimposed (dotted line).  (b) Averaged inverse wavenumber 
spectrum of the gain; the first 5 mm of a characteristic gain distribution are inset. (c) 
Averaged histogram of all unstable frequencies per cochlea sorted in logarithmic frequency 
bins.  (d) Averaged histogram of normalised spacings (f/∆f) per cochlea. 
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The four Roman numeral sets of Figure 4.9(.I – IV) have increasing high-

wavenumber (decreasing low wavelength) cut-offs; this can be thought of as increasing the 

density of reflection sites in the cochlea.  When the gain is smoothly varying with λcut-off = 

0.78 mm, as given in the I set, very few unstable frequencies are generated except near the 

base where the enhancement is the highest and most prone to instability.  When λcut-off is 

decreased to 0.48 mm, as given in set II, a significant number of instabilities appear at 

frequencies less than 5 kHz.  The bin where the most instability is generated continues to 

increase in frequency as the cut-off wavelength is further decreased in Figure 4.9.III-IV.  

This is consistent with the results shown in the previous section. 

When a given inverse wavenumber band becomes well-expressed in γ(x), the 

corresponding region of the cochlea where λpeak is twice the wavelength of the 

inhomogeneity becomes more prone to instability.  Thus, the upward spread of the unstable 

frequencies with increasingly dense reflection sites is a direct result of the decreasing 

values of λpeak toward the base.  A distribution of γ(x) is defined as ‘dense’ if its inverse 

wavenumber spectrum is well represented at half the λpeak at the characteristic place of the 

frequency range of interest.  Conversely, a distribution of γ(x) is considered ‘sparse’ if this 

condition is not met. 

Another related trend concerns the spacings of the unstable frequencies.  In Figure 

4.9.II.d, where λcut-off = 0.48 mm, the peak in the spacings is f/∆f ≈ 15 because most of the 

unstable frequencies fall within the region of 0.5 to 5 kHz.  Here, the inverse wavenumber 

spectra of the inhomogeneities contain components at half λpeak in the region x > ~20 mm 

and are considered ‘dense’ for the frequencies less than several kHz; however, it is still 

‘sparse’ for higher frequencies.  As the cut-off wavelength is decreased, γ(x) becomes 

‘dense’ for more regions of the cochlea.  These regions then express their predicted 

spacing as given in Figure 4.1.b; this shifts peaks in the spacings histograms in the (d) 

panels of Figure 4.9 toward successively higher values.  It is possible to view this trend by 

plotting all of the spacings of adjacent unstable frequencies against the geometric average 

of the two frequencies, as shown in Figure 4.10. 
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Figure 4.10.a-d: Plot of spacings between adjacent instabilities given various λcut-off as a 
function of frequency for the results collected in Figure 4.9.  The darkened dots represent 
spacings that fall within ± 1 standard deviation of the mode within 15 log-spaced bands.  A 
trend line through the modes of each band is shown in panel (d). 

 
Figure 4.10 shows that the spacings between instabilities are fairly widely spread 

apart when λcut-off > approximately 0.48 mm, as suggested by Figure 4.1.a.  There are wide 

spacings (low values of f/∆f) between instabilities at all frequencies in panel (b).  When 

λcut-off = 0.30 mm, as in Figure 4.10.c, a strong trend is visible throughout most of the 

frequency range.  This trend is fully realized when the distribution of γ(x) is ‘dense’ for all 

regions of the cochlea, as in panel (d), and appears to match the predictions of Figure 4.1.b 

when the CF for each position is calculated.   The results of Figure 4.10.d qualitatively 

agree very well with the statistics of clinically measured SOAE spacings in humans, as 

presented by Shera (2003).  However, there does appear to be a stronger bias in the linear 

model’s results for very closely spaced instabilities, i.e. larger values of f/∆f, than in Figure 

3 of (Shera, 2003); this is potentially reduced by the nonlinear interaction of adjacent 

SOAEs; this topic is discussed in the following subsection. 
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It should be noted that the reverse-transmission characteristics of the middle ear are 

similar to those of a band-pass filter centred at approximately 1 kHz, as shown for example 

in Figure A.15 in Appendix A.  This would in theory reduce the number of SOAEs 

detected at frequencies far outside of the middle ear’s pass-band.  One would then expect 

that the commonly observed PMD between SOAE frequencies in humans is somewhat 

different from that observed here, as linear instabilities exist across a wide range of 

frequencies in the model.  This is further discussed at the end of this chapter. 

One final plot that also summarises a large number of linear stability simulations is 

Figure 4.11, which shows the average undamping ratio and number of instabilities in a 

cochlear model when varying both the amplitude of the perturbation in γ(x) and its λcut-off. 
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Figure 4.11.a-b: Average undamping ratio (a) and number of unstable frequencies per 
cochlear model (b) given variations in λcut-off and the peak-to-peak variations in γ(x). 

 
The mean unstable frequency count and the mean undamping ratio, ς, vary directly with 

the amplitude of the variation in γ(x).  This result is consistent with the findings of Elliott 

et al. (2007).  The statistics of the spacings of instabilities are largely independent of the 

exact form of the spatial variations, provided they have a significant component at the 

wavenumber corresponding to one half λpeak.  Peak-to-peak variations in γ(x) as small as 

1% can give rise to instabilities provided the distribution of feedback gain is ‘dense.’ 
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4.3   Nonlinear time domain simulations of 
unstable cochleae 

Zweig and Shera’s (1995) multiple-reflection theory of SOAE generation is capable of 

explaining many of the characteristics of spontaneous emissions in humans.  It also 

provides a framework for understanding what is observed in the linear stability analyses of 

the cochlear model.  However, the phenomenon this theory seeks to explain is nonlinear by 

nature; it is somewhat surprising that a linear theory of cochlear mechanics is able to 

accurately predict so many of its attributes. 

This subsection seeks to begin to reconcile the linear theory of SOAE generation 

with nonlinear simulations of the cochlea in the time domain.  In subsection 4.3.1, a step 

change in gain is implemented to study the evolution of a single unstable pole in time.  

Further complexity is added in subsection 4.3.2 where a small region of the cochlea is 

perturbed by random, ‘dense’ inhomogeneities in γ(x).  This dense set of reflection sites 

gives rise to multiple linearly unstable frequencies; the nonlinear simulation of this system 

in time shows how limit cycles can interact with one another. 

The nonlinear simulations in this subsection are driven by a 100 µs-long click at 40 

dB SPL in the blocked ear canal.  The click is composed of a well-distributed range of 

frequency components that stimulates the entire cochlear model.  This is necessary to 

briefly excite the unstable modes of these models, though the primary goal of these 

experiments is not to analyse the transients that are produced by this input.  The details of 

the click stimulus are presented in Appendix A, and the model’s response to clicks alone is 

investigated in the following chapter.  In addition, the term ‘steady state’ is used in this 

chapter to describe responses that are examined at t > 1000 ms after the onset of the 

stimulus, by which time the transient has largely decayed away. 

4.3.1   Step changes in γ(x) 
A step change in γ(x) is introduced which generates a single instability at 1.2135 kHz, as 

shown in Figure 4.12. When this system is stimulated with a click, a limit cycle is 

generated close to the unstable frequency.  The steady state frequency of the nonlinear 

limit cycle is 1.2140 kHz; this value is within 0.04% of the linear prediction.  The first 60 

ms of the global response of this nonlinear model is illustrated in Figure 4.13 which shows 

how the initial wave following the click stimulus propagates from the base to the apex. 
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Figure 4.12.a-b: Stability plot of a model with γ(x < 18.9 mm) = 1, γ(x ≥ 18.9 mm) = 0.97. 

 

 

 

Figure 4.13.a-b: Mesh of results from a nonlinear unstable cochlea, simulated in the time 
domain.  The stimulus applied was a 100 µs click. 
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When the transient wave reaches the step-discontinuity at approximately 7 ms, backward 

travelling waves are reflected from this site.  The forward TWs in this mesh have a positive 

slope, whereas backward TWs have a negative slope. 

Figure 4.14 plots the response of the BM at several locations; positions are plotted 

apically to basally in the three panels to facilitate comparison with the mesh plots.  Figure 

4.14.c shows the response of a point basal to the characteristic place of the instability.  At 

this position, the transient click response reaches a peak at approximately 2 ms.  At the 

characteristic place of the instability, as shown in Figure 4.14.b, the transient reaches a 

peak at approximately 6.5 ms.  Finally, at a location apical of the best place, the initial 

transient reaches a peak at approximately 15 ms, as given in Figure 4.14.a.  This increasing 

delay in the transient illustrates that the click is indeed propagating apically.  Furthermore, 

the delays basal to the discontinuity in feedback gain are consistent with the predictions of 

Figure 2.21 where γ = 1. 

One interesting feature of Figure 4.13 is that there are initially time frames of 

stronger and weaker activity near the location of the discontinuity.  For instance, at x = 

18.8 mm, there is a local maximum in the envelope of the response at approximately 21 

ms, while there is a local minimum in the envelope of the response at approximately 28 

ms.  The peaks and dips in the envelope of the response at the characteristic place of the 

instability are due to the sloshing about of reflected energy from the original stimulus.  It 

takes approximately 7 ms for the energy of the click to propagate from the base to the 

discontinuity in γ(x) located at x = 18.8 mm.  A portion of its energy is subsequently 

reflected back toward the base during the next 7 ms.  When this backward TW encounters 

the middle ear, it is again partly reflected back toward the discontinuity.  After another 7 

ms, this initial wavelet, now twice-reflected, again reaches the discontinuity.  This explains 

why the peaks in the envelope of the response fall at odd multiples of the cochlear delay to 

the location of the discontinuity: τ(x = 18.8 mm) ≈ 7 ms, 3τ(x = 18.8 mm) ≈ 21 ms, etc. 

While the transient response dies away, oscillations at the unstable frequency add 

coherently over successive reflections between the base and the step-discontinuity, as 

shown in Figure 4.14.  Oscillations gradually settle into a fixed-amplitude limit cycle that 

peaks close to its characteristic place, the response of which is plotted in Figure 4.14.b.  

Low-level oscillations of these reflected TWs (at the unstable frequency) are visible at the 

location basal to the discontinuity in Figure 4.14.c for t > 10 ms.  However, at x > 18.9 
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mm, the response is quickly extinguished and no motion is visible after the initial transient 

in Figure 4.14.a. 
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Figure 4.14.a-c: The first 60 ms of BM velocity at three locations in the unstable cochlear 
model shown in Figure 4.12: a) x = 28.2 mm; b) x = 18.8 mm; c) x = 9.4 mm. 

 
The time-evolution of the frequency components in the pressure at the base of the cochlea 

is plotted in Figure 4.15 over several different time frames.  There is a clear influence here 

from the frequencies of the near-unstable poles in the stability plot, Figure 4.12. 

Blunt peaks are visible in the pressure spectrum of Figure 4.15.a at frequencies 

corresponding to the near-unstable poles as well as the single unstable frequency.  The 

levels of these peaks also seem well-correlated with the relative magnitudes of the real 

parts of the poles, σi.  This is consistent with the calculated linear transient response of a 

system with damped modes.  Such a linear system would include spectral components at 

each of the natural frequencies of the system.  The decay of these components is 

determined by the corresponding values of σi.  For this nonlinear system, harmonic 

distortion is visible at the second and third harmonics of the fundamentals.  As later time 

frames are examined, only the response at the linearly unstable frequency and its 

harmonics persist.  Notice that the spectral resolution of the panels improves as longer time 

windows are analysed at later time frames.  The time-variation of several frequency 

components in the pressure response is compared in Figure 4.16. 
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Figure 4.15.a-d: Superimposed stability plots of linear system and the spectrum of the 
pressure at the base of the nonlinear cochlea given four time windows: a) 10 ≤ t ≤ 110 ms; 
b) 50 ≤ t ≤ 550 ms; c) 500 ≤ t ≤ 1500 ms; d) 1000 ≤ t ≤ 3000 ms.  Unstable poles are plot 
with dark ‘x’s; stable poles are plot with light ‘x’s. 
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 f0 = 1.214 kHz
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b)  f = 1.067 kHz
 f = 1.141 kHz
 f = 1.285 kHz
 f = 1.356 kHz
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c) 2f0 = 2.427

3f0 = 3.641

 

 

Figure 4.16.a-c: Variation of the magnitudes of various frequency components of the 
pressure at the base with time in an unstable cochlea.  Linearly unstable and near-unstable 
frequencies are shown in panels (a) and (b), respectively, while harmonic distortion 
frequencies are shown in panel (c).  Every curve consists of 15 data points, where each 
value represents the DFT of 200 ms of data with no overlap between adjacent windows. 
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It is clear from Figure 4.16 that the magnitude of the unstable frequency and its 

harmonics remain relatively constant with time.  However, the near-unstable frequencies 

decay away as predicted by linear stability analysis.  Though the relative initial levels of 

the near-unstable frequencies correlate well with the σi of their respective poles, the final 

values of the f = 1.285 and 1.114 kHz components are somewhat stronger than the other 

three plotted frequencies.  Nevertheless, all of the near-unstable components are at least 90 

dB below that of the primary unstable frequency at the end of the simulation. 

The steady state magnitudes and phases of the primary and its first two harmonics 

are plot as a function of position in Figure 4.17. 
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Figure 4.17.a-b: The magnitude (a) and phase (b) of the BM velocity at the unstable 
frequency and its first two harmonics calculated as a function of position.  The fundamental 
response is plotted as a solid line, whereas the 2f0 and 3f0 components are plotted as a 
dashed and dotted lines, respectively.  A solid vertical line marks the location of the 
maximum magnitude response of the fundamental, whereas a dashed vertical line marks the 
location of the maximum phase response of the fundamental. 
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The magnitudes of the various components in Figure 4.17.a indicate that the 2f0 and 3f0 

harmonics of the unstable frequency both have local maxima at their characteristic places 

(at approximately 14 mm and 11.5 mm, respectively).  However, the absolute maximum 

peak of each frequency is close to the characteristic place of the fundamental.  The 

magnitudes of the BM harmonic distortion components at the base of the cochlea are 

approximately 40 and 80 dB below the fundamental in Figure 4.17; this is confirmed by 

the pressure response at the base in Figure 4.16.c.  At x = 18.9 mm, however, the peaks of 

the three frequencies fall within a range of only 27 dB.  This shows that the fundamental 

has been amplified less than the harmonics, perhaps due to self-suppression.  The phases of 

Figure 4.17.b can reveal further details of the response, as discussed at the end of this 

chapter. 

4.3.2   Random variation in γ(x) 
As illustrated in the simulations of a single unstable pole, a saturation nonlinearity in the 

feedback loop is necessary to limit the amplitude of the oscillations of the linear instability.  

The unstable frequency continued to ring indefinitely after the near-unstable frequencies 

died away.  In this subsection, further complexity is considered by examining the nonlinear 

interaction of several linear instabilities in the cochlear model. 

Only a restricted region of the cochlea is perturbed with a ‘dense’ distribution of 

inhomogeneities, so that the interaction of only a relatively small number of unstable poles 

can be observed.   This is accomplished by windowing a distribution of γ(x) within the 

range of 16.5 < x < 23.5 mm, as shown in Figure 4.18.  A 3.5 mm-long Hanning window 

was generated and extended by filling its centre with 3.5 mm of ones; zeros were padded 

outside this range to extinguish the remaining variations in gain outside the window.  The 

stability of a cochlear model that incorporates this windowed-perturbed gain distribution is 

presented in Figure 4.19.  The perturbed poles fall within a range of ~0.7 to 1.5 kHz, which 

corresponds to the characteristic frequencies within the spatial window function. 
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Figure 4.18: A distribution of γ(x) is shown in thick grey.  A 7-mm extended Hanning 
window is applied, centred at x = 19 mm.  The resultant windowed distribution of γ(x) is 
shown in thin black. 
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Figure 4.19: Stability of a cochlear model given the windowed-perturbed gain distribution 
as presented in Figure 4.18. 

 
Five distinct instabilities are generated by this windowed γ(x), located at f = [0.979, 1.080, 

1.145, 1.229, 1.296] kHz.  The undamping ratio of these poles is ς = [0.004, 0.009, 0.030, 

0.020, 0.020], respectively.  There are also a number of near-unstable poles, located at f = 

[0.800, 0.848, 0.923, 1.033, 1.359, 1.597] kHz. 

A mesh of the first 60 ms of BM velocity is shown in Figure 4.20; a 100 µs click was 

the only stimulus.  Figure 4.20 shows that the greatest BM activity is restricted to the 

perturbed region after the initial transient decays away; this is centred at x ≈ 19 mm.  

Again, backward travelling waves are visible from approximately 8 ms onward from the 

basal edge of the perturbed area. 
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This response is further clarified in Figure 4.21, which shows the BM velocity at 

locations basal to-, within-, and apical of the perturbed region.  As with the simulation of a 

single unstable pole in the previous subsection, only locations near the inhomogeneities 

exhibit much activity after the initial stimulus has decayed away.  However, the activity in 

this randomly perturbed region, as shown in Figure 4.21.b, is clearly more complicated 

than the equivalent plot of the step-perturbed response, as previously given in Figure 

4.14.b. 

 

 

Figure 4.20: Mesh of BM velocity in the first 60 ms of a nonlinear simulation of an 
unstable cochlear model; the stability of this system is shown in Figure 4.19. 
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Figure 4.21: The first 60 ms of BM velocity at three different locations following a click 
stimulus at the base: a) x = 9.47 mm; b) x = 19 mm; c) x = 28.55 mm. 

 
The spectrum of the pressure at the base of the cochlea is calculated from the last 

2000 ms of data in the 3000 ms-long simulation to avoid any contamination from the initial 

stimulus.  This is plotted simultaneously with the stability plot of the system in Figure 

4.22.  Unless otherwise noted, a Blackman window has been applied to all of the spectral 

results in this section; this form was chosen for its sharp attenuation of sidebands, though 

other window functions with similarly sharp cut-off characteristics produced similar 

results. 

Figure 4.22 shows that there are more than 40 distinguishable peaks in the spectrum 

of the pressure at the base, with amplitudes ranging from near 0 dB SPL down to 

approximately -105 dB SPL in this simulation. 
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Figure 4.22: Simultaneous plot of linear system stability and the pressure spectrum at the 
base of the cochlea for 1000 ≤ t ≤ 3000 ms.  Unstable poles are plot with dark ‘x’s; stable 
poles are plot with light ‘x’s. 
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The range of these frequency components extends from 0.083 kHz all the way up to 3.7 

kHz.  This wide range of activity is the result of the nonlinear interactions of only five 

linearly unstable poles.  The ‘new’ frequencies that were not predicted by the linear 

stability analysis can be attributed to both harmonic and intermodulation distortion.  For 

instance, the peak at 2.455 kHz and -48 dB SPL appears to be the second harmonic of the 

linearly unstable limit cycle at 1.227 kHz.  Similarly, the lowest frequency peak at 0.084 

kHz and -40 dB SPL appears to be a difference tone resulting from the limit cycles of the 

two linearly unstable frequencies at 1.227 kHz and 1.143 kHz.  What is also interesting 

about Figure 4.22 is that only three of the five linearly unstable frequencies are expressed 

in the last 2000 ms of the simulation.  The limit cycle frequencies that do persist are all 

within 0.1% of the linearly predicted unstable frequencies. 

In order to understand the time-evolution of the various frequency components, 

Figure 4.23 shows the spectrum of the pressure at the base, calculated over four different 

time frames.  Only a tight range of frequencies near the linearly unstable frequencies are 

shown for clarity.  In the earliest frame, shown in panel (a), there are peaks at each fully-

unstable and near-unstable frequency as predicted by linear stability analysis.  As one 

might intuitively expect from the response of linear systems, the magnitude of each peak is 

directly related to the magnitude of the real part of the corresponding pole.  As the time 

window is shifted later in time and further away from the initial stimulus, some of these 

initial peaks begin to recede in amplitude.  Almost all of the (linearly) near-unstable 

frequencies have fallen to the noise floor by panel (d).  In addition, other distortion-related 

frequencies begin to rise at later time frames as well. 

The variation of the amplitudes of different components of the pressure response is 

charted as a function of time in Figure 4.24.  Three separate panels show the DFT 

magnitudes of the linearly unstable, linearly near-unstable, and a number of predicted 

distortion product frequencies. 
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Figure 4.23.a-d: Simultaneous plot of linear system stability and the spectrum of the 
pressure at the base of the cochlea given four time windows: a) 10 ≤ t ≤ 110 ms; b) 50 ≤ t ≤ 
550 ms; c) 500 ≤ t ≤ 1500 ms; d) 1500 ≤ t ≤ 3000 ms.  Unstable poles are plot with dark 
‘x’s; stable poles are plot with light ‘x’s. 
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Figure 4.24.a-c: Variation of the magnitudes of various frequency components of the 
pressure at the base with time in an unstable cochlea.  Linearly unstable and near-unstable 
frequencies are shown in panels (a) and (b), respectively, while distortion product 
frequencies are shown in panel (c).  Every curve consists of 15 data points, where each 
value represents the DFT of 200 ms of data with no overlap between adjacent windows. 
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Figure 4.24.b illustrates the expected transient behaviour of the stable modes, as the 

magnitudes of the near-unstable frequencies fall to a level to near the noise floor 

approximately 500 ms after the initial stimulus.  The initial rate of decay appears to be 

approximately -140 dB/s for each of the frequencies shown. 

The magnitude of the frequency components that were determined to be unstable by 

linear stability analysis are plotted in Figure 4.24.a as a function of time.  The responses of 

f = 1.229 kHz and f = 0.979 kHz increase slightly in amplitude during the first 500 ms, but 

then reach reasonably constant levels of -0.8 and -3.5 dB SPL, respectively.  However, the 

remaining three linearly unstable frequencies decay away at various rates. For instance, f = 

1.296 kHz and f = 1.080 kHz initially decay at approximately -100 dB/s and -70 dB/s, 

while f = 1.145 kHz recedes much more slowly at approximately -10 dB/s.  It is clear that 

nonlinear suppression is taking place between the unstable tones, contrary to the linear 

analysis; the observations made here are discussed further at the end of the chapter. 

The magnitudes of a number of commonly observed distortion products which result 

from three assumed primaries are given in Figure 4.24.c.  In addition to the most 

commonly studied DPOAE, the cubic distortion product (2fl - fh), one other nearby DPOAE 

(2fh - fl) is examined for to its proximity to the primaries.  A general notation of fl and fh, 

corresponding to the frequencies of the lower tone and the higher tone, is adopted above to 

avoid confusion with the notation for the selected primaries.  The primaries chosen are the 

three linearly unstable frequencies that persist in amplitude: f1 = 0.979 kHz, f2 = 1.145 kHz 

and f3 = 1.229 kHz.  The magnitudes of the distortion products at 2f1 - f3 and 2f3 - f1 mirror 

the growth of the two primaries at f1 and f3, just as the magnitudes of the other four 

distortion products show slow decay, in a manner similar to f2.  Note however that decay 

rates of these distortion products are somewhat less steep than that of f2; this is perhaps 

because the amplitude of the other primaries are stable. 

One of the salient features of SOAEs, however, is the distribution of spacings 

between unstable frequencies.  To examine the log-normalised spacings between adjacent 

limit cycles of this nonlinear simulation, an arbitrary threshold was set at -65 dB below the 

strongest instability to choose frequencies for analysis.  The selected limit cycles and the 

resultant f/∆f spacings are shown in Figure 4.25. 
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Figure 4.25.a-b: The pressure spectrum in panel (a) displays a number of selected limit 
cycles; these frequencies are used to compute distances between the instabilities, as shown 
in panel (b).  Selected frequencies are indicated by a star (�), and linearly unstable 
frequencies and spacings are denoted by a circle (Ο).  The frequency axis of panel (b) 
represents the geometric mean of the two adjacent limit cycle frequencies.  Dotted, dot-
dashed and dashed horizontal lines are drawn at ∆f  = [83, 2*83, 3*83] Hz, respectively. 

 
The results of Figure 4.25 are plotted on a linear frequency axis in order to emphasize the 

spectrally periodic nature of the limit cycles.  These results are considered in subsection 

4.4.2. 

4.4   Discussion 
The investigations presented in this chapter represent an attempt to understand the 

mechanisms that give rise to SOAEs.  The approach taken here assumes that an unstable 

nonlinear system that saturates is capable of generating limit cycle oscillations similar to 

SOAEs.  Thus, the linear stability of the cochlear model was a natural starting point for 

comparing theoretical predictions to simulations. 
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4.4.1   Linear results 
The findings of section 4.2, based on a linear numerical model of the human cochlea, are 

consistent with the multiple-reflection theory of Zweig and Shera (1995).  The state space 

formulation is able to predict the frequencies at which a linear, active cochlear model will 

become unstable.  Direct measurements in animals have shown that spontaneous basilar 

membrane oscillation is associated with SOAEs in the ear canal (Nuttall et al., 2004).  

Consequently, comparisons are drawn in this paper between measured SOAE 

characteristics and the instabilities generated in the cochlear model.  However, it is worth 

highlighting the similarities and differences between measured data and these simulation 

results. 

This model predicts that instabilities exist all along the cochlea and across a wide 

range of frequencies, given a dense array of inhomogeneities in the cochlea.  In contrast, 

SOAEs in normal-hearing individuals are only routinely detected between 0.5 kHz to 6 

kHz (Probst et al., 1991).  Even if instabilities exist in all regions along the average human 

cochlea, however, it is likely that only a subset of these will be detected in the ear canal.  It 

is believed that the inefficient reverse-transmission characteristics of the middle ear hinder 

the detection of SOAEs outside of its best transmissibility range, given its steep drop-off 

above and below its ~1 kHz resonance of approximately -40dB per decade.   The limited 

bandwidth of normally-detected SOAEs is also potentially reduced by physiological noise 

and the current limitations of sensor technology.  Just as improved measurement 

techniques have revealed increasingly sharp active BM enhancement through the years, 

refinements in recording technique have exposed a higher prevalence of SOAEs in more 

recent studies (Probst et al., 1991; Penner and Zhang, 1997). 

The average number of unstable frequencies shown in Figure 4.11 for a ‘dense’ 5% 

peak-to-peak variation in gain is similar to the maximum number of emissions detected in 

a single ear, some in excess of 30 SOAEs (Talmadge et al., 1993).  It has been shown that 

the level and number of instabilities in the state space model depend on the amplitude of 

the variations in BM impedance and the spatial density of the inhomogeneities.  For 

instance, the current linear model predicts a distribution of unstable frequency spacings 

that is similar to physiologically compiled data in several respects. 

The spacings between linear instabilities in this model can match the observed 

variation in SOAE spacings with frequency as given by Shera (2003); however, this is only 
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realised when the wavenumber distribution of γ(x) is ‘dense.’  For instance, the spacing 

results presented in Figure 4.9.IV.d and Figure 4.10.d are consistent with the model 

predictions shown in Figure 4.1.b.  The peak of the normalised spacings in Figure 4.9.IV.d 

is located at a value of f/∆f = 20, which is somewhat more closely spaced than the 

commonly-observed PMD.  However, the peak in f/∆f ≈ 15 in Figure 4.9.I.d which 

represents the situation where the distribution of γ(x) is ‘dense’ only for the lower 

frequency regions of the cochlea (fcf < 5 kHz).  This is consistent with the results in the 

previous subsection given sinusoidal distributions of γ(x) with longer wavelengths. 

When the current understanding regarding hearing sensitivity, the various forms of 

OAEs and pathology are combined, a convincing picture regarding the generation of 

SOAEs begins to evolve.  As many authors have pointed out, SOAEs in humans appear to 

be a natural by-product of the species’ sharply tuned sense of hearing.  Normal hearing 

individuals that do not exhibit SOAEs typically have an audiogram which underperforms 

those with SOAEs by approximately 3 dB in the standard 1-6 kHz range (McFadden and 

Mishra, 1993).  Pélanová et al. (2007) also reported that the high-frequency audiogram of 

normal-hearing children without SOAEs underperformed those with SOAEs by 

approximately 5 dB through the 10-16 kHz range.  In the ‘laser-cochlea’ theory of OAE 

generation, it is the portion of the cochlea basal to the reflection site that is crucial to 

sustaining the limit cycle oscillation.  If the losses in this region are not overcome by the 

active enhancement provided by the outer hair cells, no spontaneous emission can occur.  

This is exemplified by the two stability plots given in Figure 3.8; a step down in gain from 

γ = 1 causes instability, but a step up in gain to γ = 1 at the same location maintains 

stability. 

4.4.2   Nonlinear results 
The nonlinear results of this chapter demonstrate that a great deal of complexity can arise 

from just a few linear instabilities.  The nonlinear time domain simulations showed that 

linear reflection initially dominates the response following a click stimulus.  For instance, 

in both Figure 4.15.a and Figure 4.23.a, there are blunt peaks in the basal pressure 

spectrum at all frequencies where poles have moved toward or beyond the boundary of 

stability.  As the response settles, the near-unstable frequencies decay away; however, in 

the simulation of a model with a single instability, the unstable frequency persists and 
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stabilises into a limit cycle oscillation as shown in Figure 4.16.  As a result of the limit 

cycle, harmonic distortion is also generated at 2f0 and 3f0, where f0 is the frequency of the 

instability.  The dynamics of the fundamental response are the simplest to describe so they 

are discussed first. 

It is instructive to consider a one-dimensional backward-travelling wave in a 

homogeneous medium of unit amplitude that can be written as 

 ( ) ( )TWcosy t t xω κ= + , (4.6) 

where ω is the angular frequency, t is time, x is position, and κTW is the wavenumber.  The 

wavenumber can be expressed as 

 
TW

TW

2

x

π φκ
λ

∂= =
∂

. (4.7) 

Thus, if the slope of the phase with respect to position is positive, then the TW is indeed 

backward-travelling.  However, if xφ∂ ∂  is negative, then (4.6) represents a forward-

travelling wave.  Similarly, if the xφ∂ ∂  is locally zero, then (4.6) ceases to become a 

function of position and the wave no longer propagates in this region.  In addition, the 

wave velocity, or phase speed, is related to the wavenumber by 

 
TW

TW

c
ω

κ
= . (4.8) 

The wave velocity of the TW can be calculated from the variation of its phase with 

position, as described by equations (4.7) and (4.8). 

Returning to the results presented in Section 4.3, the direction of the dominant TW 

can be determined, assuming the wavenumber is changing slowly in a given region.  Figure 

4.26 plots the wave velocity of the three frequency components of the BM response in 

Figure 4.17.  A positive velocity in Figure 4.26 indicates forward travel, whereas a 

negative velocity indicates backward travel.  There are regions where the dominant TW is 

forward-propagating, and regions where it is backward-propagating.  There are also 

positions where the TW is ‘standing,’ and beyond ~25 mm the TWs are extinguished.  The 

response of the TW at the f0 appears to change directions once, whereas the 2f0 and 3f0 

TWs appear to change directions three and five times, respectively. 
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Figure 4.26: Steady state wave velocity of three limit cycle frequency components along 
the nonlinear BM.  The solid line represents the linearly unstable frequency, whereas the 
dotted and dashed lines represent the 2f0 and 3f0 harmonics. Negative velocities represent 
backward TWs, while positive velocities represent forward TWs.  A solid vertical line at 
18.9 mm represents the location of the maximum BM response.  The response is limited to 
the first 23 mm as the TWs become evanescent beyond this location. 

 

A more rigorous approach to decomposing the BM response into forward- and backward- 

TWs would involve applying an analytical approximation, such as the WKB-method (e.g. 

Zweig, 1991; Neely and Allen, 2008).  However, such methods were developed to 

approximate linear systems.  This topic is given further consideration in Chapter 6. 

The next few plots are presented to facilitate comprehension of the results given in 

Figure 4.17 and Figure 4.26, which showed the magnitudes, phases, and calculated wave 

velocities of several frequency components of ( )b xξɺ .  A step-change in γ(x) resulted in a 

single linear instability, as described in given in Figure 4.12.  Figure 4.27 shows only the 

magnitude and phase of the fundamental component of the BM velocity for clarity. Both 

the magnitude and the phase represent a superposition of forward- and backward- TWs.  

As described in equations (4.6) and (4.7), the slope of the TW phase with respect to 

position along the cochlea indicates its dominant direction of propagation.  For instance, 

the wave is ‘standing’ at the top of the phase hill where 0xφ∂ ∂ =  at x = 17.75 mm, shown 

by the dashed vertical line in Figure 4.27.   The wave then propagates ‘down’ the hill away 
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in directions both basal and apical of this location.  Thus, the backward TW dominates 

from the base of the cochlea to x = 17.75 mm. 
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Figure 4.27.a-b: Steady state magnitude (a) and phase (b) of the BM response as a function 
of position at the unstable frequency.  A dashed vertical line marks the 0xφ∂ ∂ =  location 
at x = 17.75 mm, whereas a solid vertical line marks the location of maximum amplitude at 
x = 18.9 mm.  The region of negative damping, given a stimulus frequency of 1.214 kHz in 
a baseline active cochlea, is shaded. 

 
The wave speed is fastest near the base, as expected, and decreases at more apical 

locations.  The propagating direction switches abruptly at x = 17.75 mm, after which it 

reaches a constant forward velocity of 1.2 m/s until it is extinguished, as shown in Figure 

4.26.  Note that the characteristic place of the BM response, shown by the solid vertical 

line in Figure 4.27, is apical of x = 17.75 mm.  Furthermore, there is also a local maximum 

in the magnitude of each frequency component in Figure 4.17 just basal of x = 17.75 mm.  

Both of these peaks fall near the edges of the negative damping region, as shaded.  These 

observations suggest that both forward- and backward-TWs are amplified in this scenario.  

In order to better inform this discussion, the annotations describing the direction of TW 
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propagation are overlaid upon a plot of the real part of the BM admittance in a baseline 

linear cochlea at the unstable frequency in Figure 4.28. 
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Figure 4.28: Real part of the BM admittance as a function of position along the cochlea, 
given f = 1.214 kHz. The peaks in both magnitude and phase of Figure 4.27 are plot here as 
solid and dashed vertical lines, respectively. 

 
The forward TWs are amplified basal to the characteristic place, and peak in the 

region of the discontinuity.  Backward TWs are then generated as forward-going wavelets 

reflect off of the perturbation; the backward TW is again amplified when heading toward 

the base which generates the second peak at x ≈ 16.5 mm.  Note that there is precedence 

for the amplification of backward TWs in a one-dimensional model, as demonstrated by 

Talmadge et al. (1998).  However, the peak in the phase response represents the only 

position along the BM where the TW of the fundamental is ‘standing,’ as the amplitudes of 

forward- and backward- TWs are equal here.  This results in a local peak in the magnitude 

at x = 17.75 mm.  The local minima near this position are likely due to destructive 

interference of forward- and backward- TWs; these are only visible near the 0xφ∂ ∂ =  

place because the TW amplitudes are similar in this region. 

It is interesting to note that Neely and Allen (2008) have reported a similar result in 

the magnitude and phase characteristics of a backward travelling pressure wave, as derived 

from a WKB approximation of wave propagation.  They show that the backward TW is 

only supported when inhomogeneities (the stiffness as a function of position was 
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perturbed) are present along the BM.  Furthermore, the peak in the phase response is basal 

of the peak in the magnitude response, just as in the simulations presented here.  They 

conclude that ‘the round trip delay of an SFOAE may be less than the twice forward delay 

to the characteristic place,’ based upon the phase plot (Neely and Allen, 2008).  It is, 

however, difficult to envision this given the normal propagation of slow waves along the 

BM.   

A more likely interpretation is the one given above—the phase plot represents the 

combined effect of forward and backward components; at a given location, the positive or 

negative slope of the phase results from the dominant component.  In Figure 4.27, the 

region between 0xφ∂ ∂ = and the maximum magnitude is dominated by a forward-

amplified wave which shifts the phase response because xφ∂ ∂  is now negative.  Thus, the 

round-trip delay is still twice the forward delay, but this is no longer apparent from the 

phase plot as the backward TWs are hiding ‘under’ the forward TWs in the overlap region 

basal to the characteristic place.  This is illustrated in Figure 4.29, where the phases of 

three TWs are shown.  The linear baseline cochlea only shows forward travel; its reflected 

response is plot by flipping its sign and DC-shifting it such that the backward TW phase 

intersects with the forward TW phase at the location of the discontinuity.  When the 

unstable cochlea’s phase is DC-shifted by -9 cycles (one complete forward-and-backward 

trip to the site of the discontinuity), there is good agreement between the backward TW’s 

phase and the reflected wave’s phase.  Note the slight disagreement near the 0xφ∂ ∂ =  

location; this is believed to be due to the relatively similar amplitudes of the forward- and 

backward- TWs in this region, which may slightly affect the phase results. 
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Figure 4.29.a-b: Phase of 1.214 kHz TW (dash-dot) and its reflected response at the 
location of the discontinuity (dotted).  The steady state phase of the 1.214 kHz DFT in the 
unstable cochlea is shifted by -9 cycles and plot as a solid line.  A dashed vertical line 
marks the 0xφ∂ ∂ =  location; a solid vertical line marks the location of maximum 
amplitude. 

 
The dynamics of the 2f0 and 3f0 harmonics, shown in Figure 4.30, are somewhat 

more difficult to interpret as the directions of the TWs appear to change multiple times.  

The fact that the dominant TWs of the harmonics switch directions at the same location 

basal of the strongest peak in the magnitude suggest that there is distortion reflected off of 

the discontinuity, which then becomes amplified at its best place.  Thus, there appears to be 

a combination of both distorted amplification and amplified distortion taking place near the 

negatively damped region of the fundamental.  A similar pattern of activity also exists at 

approximately 14 mm in Figure 4.30, near the characteristic place of 2f0. 
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Figure 4.30.a-b: Steady state magnitude (a) and phase (b) of the 2f0 harmonic response of 
the unstable frequency.   

 
Basal to x = 13.25 mm, the 2f0 component is dominated by a backward propagating 

wave.  In the region where 13.25 < x < 14.7 mm, the TW is forward propagating.  In this 

case, it is possible that 2f0 distortion generated near the characteristic place of the 

fundamental is propagating backward to the base and then reflecting forward to be 

amplified at the 2f0 characteristic place.  However, it seems also plausible that the 2f0 

distortion is being generated near its region of negative damping.  This is analogous to the 

appearance of a 6 kHz (2f0) distortion component near its characteristic place when 3 kHz 

sinusoidal stimulus is applied to a baseline model as in Figure 3.18.  The 3f0 distortion 

component has a third phase ‘hill’ near its characteristic place; it is likely that the same 

mechanism responsible for the second ‘hill’ the 2f0 phase is at work there.  The bottom line 

is that the exact nature of DP component generation, propagation and amplification in the 

cochlea remains an open area of research. 

There are many unexplained features of nonlinear systems with multiple linear 

instabilities, such as that studied in Section 4.3.2.  Is it possible, for instance, to predict 
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which linear instabilities will become limit cycle oscillations in the nonlinear simulation?  

Of the five linearly unstable poles generated by the windowed-perturbed γ(x) given in 

Figure 4.19, only three persisted as strong limit cycles at the end of the simulation.  The 

lowest frequency instability also had the smallest undamping ratio and yet was the second-

strongest limit cycle.  This is perhaps a physical manifestation of the phenomenon of 

upward spread masking, where lower tones effectively mask the detection of a higher-

frequency tone.  However, some adjacent linearly unstable poles resulted in limit cycles, 

while others did not.  The real parts of the BM admittances of the three limit cycle 

frequencies in a baseline linear cochlea are superimposed on one plot in Figure 4.31. 
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Figure 4.31: Real part of the admittance of three linearly unstable frequencies. 

 
Figure 4.31 shows that there is significant overlap between the negative-damping 

regions of the f = 1.145 and 1.229 kHz tones, though neither tone suppressed the other.  

The two unstable poles at these frequencies had the highest undamping ratios of the 

instabilities, so perhaps this contributed to their persistence.  It is likely that a combination 

of regions of amplification overlap, linear undamping ratios, and unstable frequency 

distributions may all contribute to or detract from the mutual suppression of adjacent 

unstable poles.  One of the primary features of interest here is the spacings between limit 

cycle oscillations. 

Figure 4.25 shows that the spacings between the selected limit cycles are amazingly 

consistent across frequency.  Recall that the three linear instabilities that persist at steady 
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state are 0.166 and 0.084 kHz apart.  Any nearby intermodulation distortion products will 

also be at integer multiples of those distances from the primaries.  For instance, the nearest 

distortion product frequencies of limit cycle oscillations at 1.0 and 1.1 kHz would be at 0.9 

and 1.2 kHz.  This would result in ∆f spacings that fall at regular intervals, similar to that 

shown in Figure 4.25.b.  The validity of this line of reasoning is supported by reports in the 

literature of measured SOAEs that appear to be the result of cubic difference tones 

generated by ‘primary’ SOAEs (Burns et al., 1984; Whitehead, 1988). 

Consider a large number of linearly unstable poles that arise given a ‘dense’ 

distribution of inhomogeneities.  Even if the occasional linear instability is suppressed by a 

neighbour, a distortion product is likely to be generated nearby due to the next higher two 

(or previous lower two) instabilities in frequency.  Thus, though linear reflection is no 

longer the mechanism giving rise to all limit cycle oscillations in the cochlea, the local 

PMD between their frequencies would still be expressed.  This phenomenon nevertheless 

requires that a ‘dense’ distribution of inhomogeneities be present in the first place to fix the 

regular underlying spacings between linear instabilities, as dictated by λpeak and the 

frequency-to-place map.  Thus, it would appear that human spontaneous otoacoustic 

emissions are amplitude-stabilized cochlear standing waves and their intermodulation 

distortion products. 

The only flaw in such an argument deals with the magnitudes of the distortion-

generated limit cycle oscillations, which are approximately 40 dB below that of the 

primaries in the presented simulation.  This would put the distortion components below the 

noise floor in all but the most sensitive recording regimes.  Nevertheless, the relative 

amplitude of the two primary tones is known to have a strong impact upon the level of the 

distortion product (Hall, 2000).  In addition, applying inhomogeneities to the entirety of the 

model may more strongly reflect the distortion components from different positions in the 

cochlea.  As such, there may be other factors contributing to the overall response that have 

not yet been considered; further simulations may show distortion-generated limit cycle 

oscillations of higher magnitudes. 

It should be noted that the pressure data presented in this chapter was calculated only 

at the base of the model.  It is possible to determine the limit cycle amplitude in the ear 

canal by passing this signal through the two-port network, as described in Appendix A.  

However, so little is understood about the precise generation mechanisms in the cochlea 
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that this additional linear transform is left to future work.  However, it is known that the 

middle ear primarily acts as a band-pass filter, with a pass region of approximately 0.5 – 2 

kHz.  At the peak near 1 kHz, the reverse pressure transfer function is approximately -30 

dB SPL in magnitude.  The stronger limit cycles generated in this chapter’s simulations 

had magnitudes at approximately 0 dB SPL at the base, which are clearly too low to be 

measured in the ear canal.  However, it is very simple to adjust the magnitudes of limit 

cycles by revising the overall saturation point, δ, in the Boltzmann nonlinearity.  A higher 

overall saturation point will simply shift up the (steady state) saturated response 

accordingly.  Furthermore, results in the previous chapter also suggest that this value 

(currently 1 nm) is too low. 

There is a great deal of future research that can be pursued following these results; 

these ideas are discussed in Chapter 6.  The next chapter takes a step back from the 

boundary of stability to analyze the system’s response to clicks.  Both linear and nonlinear 

simulations are performed, but all cochleae are stable to simplify the interpretation of 

results. 
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Chapter 5 
 

5 Click Evoked Otoacoustic 
Emissions 
 
 
 
Along with spontaneous emissions, the existence of physiologically vulnerable and level-

dependent transient evoked otoacoustic emissions (TEOAEs) supports the notion that a 

nonlinear, active mechanism is at work in the human cochlea.  To be consistent with the 

rest of the thesis, a TEOAE is defined here as a variation in pressure at the stapes or in the 

ear canal that is generated in the cochlea. 

As discussed previously, the mammalian cochlea distributes and amplifies the energy 

of a signal’s frequency components to various positions along the CP, according to its 

frequency-to-place map.  It is also understood that deviations from the smooth spatial 

variation of the CA, or other mechanical properties of the CP, can cause reflections of 

forward-travelling waves in the cochlea.  Thus, when an impulsive excitation is introduced 

at the base of the cochlea, the various frequency components of the click reach maxima at 

their characteristic places and are most strongly reflected from these locations.  However, 

the group delay, or the time required for a TW to reach its characteristic place, is 

frequency-dependent.  The round-trip travel time for a wavelet to propagate from the base 

to its characteristic place and back is thus referred to as the frequency-dependent TEOAE 

latency.  The highest frequency components return to the stapes first because they peak 

sooner in time and closer in longitudinal distance from the base, relative to the lower 

frequencies.  This finding was first presented by Kemp (1978), who recorded TEOAEs in 

humans following both clicks and four cycle-long tone-burst stimuli from the ear canal.  
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Numerous investigations have since verified these results (Hall, 2000; Sisto and Moleti, 

2002). 

There are a number of clinical methods of measuring TEOAEs.  These are broadly 

classed as derived nonlinear (DNL) and linear approaches, both of which seek to eliminate 

the linear stimulus and associated artefacts while preserving the nonlinear OAE.  In the 

DNL paradigm, the difference is taken between the recorded waveforms of two (or more) 

clicks of varying stimulus amplitudes, typically 6 dB or 9 dB apart.  The response due to 

the lower amplitude click is scaled up by the corresponding increase in stimulus level for 

the higher amplitude click; the difference is then taken between these two quantities such 

that the linear components of each are eliminated.  These clicks are typically 100 µs in 

duration and are repeated every 12.5 to 30 ms.  As the biological CA behaves linearly 

when tonally excited up to approximately 30dB SPL, any attempt to resolve a click-evoked 

otoacoustic emission (CEOAE) using nonlinear cancellation must operate at a higher level, 

otherwise both the stimulus artefacts and the CEOAE will be lost when the difference of 

the signals is calculated.  For example, the UK neonatal screening programme recommends 

a stimulus level of 80-88 dB peak-equivalent SPL (Hall, 2000).  The results of many such 

periodic clicks are averaged in time in order to reject noise. 

The linear paradigm of CEOAE measurement also reduces noise by time-averaging 

the signal recorded in the ear canal.  In order to remove the stimulus artefact in the linear 

paradigm, the difference between its short latency and the CEOAE’s longer latency is 

exploited.  The artefact, which is due to ringing in the ear canal and the middle ear, 

typically decays to negligible levels relative to the CEOAE within 3 to 8 ms following the 

onset of the click.  Thus, up to the first 5 ms of linear time-averaged TEOAE 

measurements are windowed out to remove the artefacts (e.g. Tognola et al., 1999).  Both 

linear and nonlinear approaches have advantages and drawbacks. 

DNL methods greatly reduce the chance of mistaking a click artefact for a genuine 

OAE.  In addition, nonlinear methods are able to resolve the highest frequency components 

of CEOAEs which occur first in time following the stimulus.  In contrast, linear methods 

window out this section of the signal to eliminate stimulus contamination; linear methods 

can, however, maintain a higher signal-to-noise ratio (How and Lutman, 2007).  

Furthermore, at amplitudes where the CA is partially- or fully-saturated, the cochlea 

behaves differently from its low-level, linear response.  One would expect to see the 
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greatest ratio of CEOAE level to stimulus amplitude when the CA is linear, though the 

noise due to physiological and environmental sources precludes these low-level 

measurements in practice.  One effect of increasing stimulus amplitudes is that the TEOAE 

latency begins to decrease (e.g. Tognola et al, 1999).  This shift toward earlier latencies has 

also been observed in the envelope of click-evoked BM motion in vivo (e.g. Recio et al., 

1998). 

Thankfully for the cochlear modeller, the myriad of practical and philosophical 

difficulties associated with clinical measurement and analysis can often be sidestepped.  

The only noise associated with mathematical simulations of the cochlea is due to errors 

generated during the solving of the system’s ordinary differential equations.  This is 

minimized by setting the relative and absolute error tolerances of the ode solver to low 

values, with 10-8 and 10-17, respectively being used below.  All of the traditional nonlinear 

and linear methods of TEOAE isolation can be applied in post-processing of simulation 

results, in addition to some which would be impossible in a clinical study.  The component 

of the pressure at the base that is due to the stimulus can be isolated by exciting a baseline 

cochlear model, a model with no inhomogeneities, with the same input.  This is then 

linearly subtracted from the output of a model with inhomogeneities, thus leaving the 

CEOAE.  This is defined as a ‘directly-determined’ (DD) CEOAE; this method can be 

applied in both linear and nonlinear simulations. 

The stimulus used for the following experiments is a rectangular pulse of volume 

displacement simulated in the ear canal and lasting 100 µs.  The output acceleration at the 

stapes that is generated by a pulse in volume displacement of 1*10-16 m3 in the ear canal is 

approximately equivalent to an RMS magnitude of output acceleration at the ear drum 

generated by a 0 dB peak SPL excitation lasting 100 µs.  Further details on the generation 

of this stimulus and can be found in Appendix A. 

This chapter is divided into results from linear and nonlinear simulations.  The DD 

method is applied to isolated CEOAEs in linear simulations, and both DD- and DNL-

CEOAEs are calculated given nonlinear simulations.  The linear section presents click 

responses for the baseline model and a large set of inhomogeneous but stable cochleae.  

The CEOAE latencies of the perturbed models are analysed and compared with predicted 

latencies.  The nonlinear section presents click responses of increasing amplitude for a 

baseline model, and a model with the same perturbation in the feedback gain as used in the 
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linear analysis.  Finally, models with perturbations in the scaling of the nonlinearity in the 

CA as a function of position are also analysed for comparison.  The latencies of CEOAEs 

generated from models with perturbations are then analysed and discussed. 

5.1   Linear Simulations 
Linear simulations of clicks are informative in a number of ways.  The response of a 

healthy mammalian cochlea can be considered linear at low levels, less than approximately 

30 dB SPL, and again at high levels above approximately 100 dB SPL, (Robles and 

Ruggero, 2001).  Thus, an active linear model responds similarly to the cochlea at low 

levels, whereas a passive linear model responds similarly to the cochlea at high levels.  

However, it is important to note that these similarities should not be taken to suggest that a 

linear model can encompass all of the properties of a nonlinear cochlea, even given these 

restrictions.  For instance, at high levels of stimulation, it is possible that the gain provided 

by the OHCs is saturating in only one portion of the cochlea, or for only a short period of 

time. 

Nevertheless, many characteristics of the cochlea can be captured with a linear 

model, hence the persistence of such formulations in the literature (de Boer, 1996).  One 

such feature is the variation of SFOAE fine structure as measured in the ear canal within 

small ranges of frequency, which is only visible at low levels (e.g. Zwicker, 1990).  It is 

within this low-level, linear range that the greatest amount of reflection per unit input is 

generated.  Unfortunately, the click-reflected OAE is exceedingly quiet at low levels where 

the cochlea is linear, and often falls below noise thresholds when measured clinically.  The 

cochlear model, in contrast, generates very clean results with much higher signal-to-noise 

ratios.  The results presented in this subsection were all generated by a standard 100 µs 

click in volume displacement presented in the ear canal. 

5.1.1   BM Responses 
Figure 5.1(a-d) shows mesh plots of BM velocity as a function of time and position in the 

cochlea.  The (a) and (c) panels represent baseline active and passive cochleae, 

respectively.  Panel (b) shows the response of a stable active model with dense, 0.75% 

peak-to-peak inhomogeneities in γ(x).  The stability of this model is shown in Figure 5.2.  
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Figure 5.1.d shows the difference of the random response (b) and the baseline response (a) 

in the cochlea; only motion due to reflections remains. 

Backward travelling waves are visible in Figure 5.1.d for t and x > ( )TW 1
,x t

γ
τ

=
, 

plotted as a solid line in this panel.  This is the group delay, or predicted latency to each 

characteristic place across frequency, as presented in Chapter 2, 

 ( ) ( )TW
TW 0

Re
,

cfx

cf cfx dx
κ

τ ω
ω

∂
=

∂∫ . (2.37) 

Note that the group delay at a given position is longer for the active cochlea, as shown in 

Figure 2.21.  After a given wavelet peaks at its characteristic place (somewhere along the 

black line, depending on its frequency), it is reflected back toward the stapes and reaches 

the stapes at approximately twice its forward delay, ( )
1

2 ,x t
γ

τ
= .  When it reaches the 

stapes, the impedance mismatch between the cochlea and the middle ear causes a portion 

of the wavelet’s energy to be reflected back toward its characteristic place.  A dash-dotted 

black line shows ( )
1

3 ,x t
γ

τ
= .  Forward travelling waves are discernable along the three 

times group delay line.  The wavelet, having now been reflected twice, is again amplified 

as it approaches its characteristic place for the second time, along the dash-dotted 

( )
1

3 ,x t
γ

τ
=  curve. 
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Figure 5.1.a-d: Response of linear cochlear models due to a 100 µs pulse of volume 
displacement equivalent to 20 dB SPL: a) baseline active model; b) active model with 
inhomogeneities; c) baseline passive model; d) difference between (b) and (a).  The 
predicted group delay for an active baseline cochlea are overlaid in solid black for (a,b,d).  
The predicted group delay for a passive baseline cochlea is overlaid in dashed black for (c).  
Three times the group delay of the active case is overlaid in dash-dotted black in (d). 
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Figure 5.2: Stability plot for a cochlear model with dense, random 0.75% peak-to-peak 
inhomogeneities in γ(x).  This system is stable, and its linear click response is shown in 
Figure 5.1.a-d. 

 
In anticipation of the nonlinear responses presented in the following subsection, 

Figure 5.3.a-d shows the displacement at a single position along the BM when excited by a 

pulse in volume displacement in the ear canal, given uniform variations in γ(x).  The x-

scale is presented not in terms of time, but rather time scaled by the characteristic 

frequency (cycles) at that location, as by Shera (2001b).  This is done both to qualitatively 

discern the amount of scaling symmetry that exists in the model and also to facilitate 

comparison between the two locations.  The y-scale of the data is normalised by maximum 

displacement at each γ to enhance the visibility of the variations in the waveform. 

There are two particularly notable differences between (a) and (b): the decay rate of 

the envelope at higher gains, and the shape of the waveform in the passive cases.  The 

slower rate of decay in the envelope in (a) vs. (b) is to be expected as (a) is more basal, and 

thus more sharply tuned.  The differences in the shapes of the passive waveforms, and thus 

the underlying slow responses of the active waveforms, are somewhat surprising.  The first 

positive peak and second negative peak in the passive response of (b) is much more 

compressed in normalised time than those of (a).  This suggests that basal points in this 

model are relatively more heavily damped (for the passive case) than those in the middle 

region of the model. 
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Figure 5.3.a-d: (a) and (b) show normalised BM displacement at 1.33 mm and 13.96 mm in 
a baseline linear cochlea due to a standard click with variations in gain from fully active (γ 
= 1, bottom) to entirely passive (γ = 0, top).  The relative scales of the maximum 
displacements are plotted as error bars and scalar factors on the right.  (c) and (d) plot the 
locations of the peaks of the response given the same progression from active to passive. 
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Figure 5.3.a-d shows the locations of the positive peaks in the displacement 

waveform as γ(x) is varied.  According to measurements made in the cochleae of live 

animals (e.g. Recio and Rhode, 2000), there is a near-invariance in the temporal fine 

structure of BM responses with varying stimulus level.  Simply put, the positions of the 

peaks in the BM motion are level-independent, though the peak of the envelope shifts to 

earlier times with increasing intensity.  Shera (2001) draws the conclusion that this result 

suggests OHCs are tuned to the same frequency as the natural response of the passive 

cochlea at any given point.  The Neely and Kim (1986) formulation falls into the category 

of cochlear models that Shera denotes ‘M<,’ where the poles of the micromechanical 

model move in frequency with changes in the feedback gain.  Figure 8 of Shera (2001) 

illustrates how the peaks of an impulse response move when the active gain of such a 

model is varied.  The same trend of increasing latencies with decreasing gains is observed 

in Figure 5.3.a-d. 

5.1.2   CEOAEs 
In this subsection, click evoked emissions are simulated.  The pressure at the base of a 

linear perturbed cochlear model is calculated following a click stimulus.  The response at 

the base is then transformed to obtain the response in the ear canal. 

Figure 5.4 shows both short and long latency windows of the pressure at the stapes 

and in the ear canal given (I) a baseline model, and (II) the perturbed model of Figure 5.2.  

The (a) and (b) panels show the pressure at the stapes and ear canal for the first 5 ms of the 

response, whereas the (c) and (d) panels show the same data but for 3 ms < t < 30 ms.  In 

most methods of linear OAE extraction, the waveform is windowed as in (d), to remove 

the response due to the stimulus (b) which decays away within several milliseconds.  The 

short latency plots (b) are qualitatively similar to clinical measurements made by Harte 

(2004).  There is almost no discernable difference between the short latency plots I(a-b) 

and II(a-b), as the stimulus itself is so dominant.  However, whereas the long latency 

response of the baseline cochlea, I(c-d), decays away to imperceptible levels within the 

given time frame, the long latency response of the perturbed model, II(c-d), shows a great 

deal of activity due cochlear reflections. 
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Figure 5.4.I-II.a-d: (I) The response of the baseline active cochlea given a standard click at 
20 dB SPL, compared with (II) the perturbed, stable model of Figure 5.2.  Pressure at the 
stapes (left panels) and the ear canal (right panels) given short time windows (a and b) and 
long time windows (c and d). 



5 Click Evoked Otoacoustic Emissions 

 

 
147 

Visual inspection of Figure 5.4.II.d suggests that the instantaneous frequency of the 

CEOAE is a decreasing function of time.  Although the cochlear model studied in this 

thesis is neither scaling symmetric, nor is its fine structure response invariant with changes 

in γ, the frequency-to-place map of the active baseline model is quite similar to that of 

Greenwood (1990) over much of the cochlea.  Thus, it is expected that reflections due to 

inhomogeneities in the cochlear impedance as a function of position would have dominant 

latencies that are twice as long as the group delays of those frequencies in the cochlea, 

when measured at the stapes.  Thus, the first (and presumably strongest) TEOAE latency 

should be 2*τTW plus any time delay due to forward/reverse middle ear transmission. 

It would be interesting to analyse the time-variation of the frequency spectrum of the 

TEOAEs using a short-time Fourier transform.  Unfortunately, the limited window time of 

decaying CEOAE activity restricts the resolution in frequency such that a spectrogram 

generated by this method does not provide much useful information in practice.  The 

latency of various frequency bands is, nevertheless, a commonly measured feature of 

CEOAEs.  In order to determine the OAE latency as a function of frequency, the wavelet 

transform is applied here using MATLAB’s continuous wavelet transform (CWT) 

function, cwt. 

Wavelet analysis is a commonly used method to determine OAE latencies (e.g. Sisto 

and Moleti, 2007).  This is because wavelet analysis is able to better resolve the time at 

which certain frequencies are expressed in a waveform, compared to traditional short-time 

Fourier analysis.  The wavelet transform can be considered as a convolution of a signal 

with a ‘mother wavelet’ which is scaled in time to produce varying centre frequencies, 

 ( ) ( ) 1
,

R

t b
CWT a b s t dt

aa

− = Ψ 
 

∫
,
 (5.1) 

where s(t) is the signal being decomposed, a is the scale (analogous to frequency), b is the 

position (in time), t is time, and ψ is the mother wavelet.  A variety of mother wavelets 

have been successfully applied in OAE analysis (e.g. Wit et al, 1994).  Empirical testing 

has shown that the choice of mother wavelet does not strongly impact the final results; the 

Morlet wavelet, a Gaussian-scaled sinusoid, is chosen here, 

 ( ) ( )2 2 cos 5x
morlet x e x−Ψ =

,
 (5.2) 

illustrated in Figure 5.5. 
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Figure 5.5: The Morlet mother wavelet. 

 
The results of the wavelet analysis, applied to the OAE data presented in Figure 

5.4.I-II.a-d, are shown in Figure 5.6.c-d.  Latencies are plot along the horizontal axis while 

centre-frequencies are set decreasing along the vertical axis in order; this unorthodox 

format was chosen to emphasise the connection between the CEOAE latency and the 

cochlear group delay.  The stimulus artefact was first removed by applying the DD-method 

of subtracting the stimulus response in the baseline model: 

 
st perturbed baselinest st

ec perturbed baselineec ec

DD CEOAE p p

DD CEOAE p p

= −

= −
. (5.3) 

The complete, DD CEOAE at the stapes and in the ear canal is shown in Figure 5.6.a-b.  

The CWT coefficients were computed as a function of time in 11 half-octave bands, 

extending from 0.5 kHz to 16 kHz.  The time at which the maximum absolute value of the 

band-averaged CWT coefficient occurred was taken to be the latency in that frequency 

range.  The predicted latency and the band-averaged latencies agree very well for this case, 

within 2% of all predictions. 

The CEOAEs of 100 linear cochlear models with unique, random inhomogeneities 

were then computed.  All of the inhomogeneities applied are ‘dense,’ and have high-

wavenumber cut-off wavelengths varying from approximately 0.2 mm to 0.15 mm.  A 

small peak-to-peak variation in gain of 0.75% was applied, and all distributions of gain 

were tested for stability before the simulations were run (unstable distributions were 

rejected).  Although there was greater variability in the calculated band-averaged latencies, 

the results again matched up quite well with predictions, as shown in Figure 5.7.  The 
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average latency in a given band never deviated more than 5% from the predicted latency at 

a particular frequency, and the predictions fell within ± one standard deviation of the 

averages at all but one band for each set of results.  

 

Figure 5.6.a-d: Directly determined CEOAE waveform at the stapes (a) and in the ear 
canal (b).  Panels (c) and (d) show the continuous wavelet transform coefficients of (a) 
and (b), with the predicted latency overlaid in black (—) and band-averaged cwt maxima 
as white (×). 

The results for the lowest band, 0.5 kHz, are somewhat skewed to earlier times due to the 

simulation time window; a longer simulation time should resolve this band more 

accurately. 

When compared to clinical measurements of CEOAE latencies (e.g. Moleti et al, 

2005), the average results from the linear model overestimate the latency in every 

frequency band.  This is to be expected, however.  Numerous studies have demonstrated 
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that there is a statistically significant correlation between CEOAE latency and stimulus 

level.  This is well documented by Sisto and Moleti (2007).  As the stimulus level is 

increased, the latency decreases more or less monotonically in each frequency band.  As 

CEOAE measurements are typically made in a strongly saturating amplitude range, it is no 

surprise that measured latencies are shorter than those observed in the linear model.  This 

trend is predicted by the revised Neely and Kim model, which shows monotonically 

decreasing τTW(ω) with decreasing gain as shown in Figure 2.21. 
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Figure 5.7.a-b: Predicted CEOAE latencies for an active baseline cochlea (solid line) 
compared to calculated, band-averaged latencies from simulated DD CEOAEs (‘x’s) in 
perturbed cochleae.  The response is compared at the stapes (a) and in the ear canal (b).  
Gray (+) symbols represent ±1 standard deviation about the mean.  This figure represents 
the collected results of 100 linear models with unique, randomly varying γ(x). 
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5.2   Nonlinear Simulations 
The nonlinearity of the cochlea is one of its most remarkable features because this allows 

mammals to perceive a much wider range of loudnesses than would otherwise be possible.  

This subsection first presents the nonlinear model’s BM responses to clicks, which are 

analogous to the linear results shown in Section 5.1.  The CEOAE of a single perturbed 

model (the linear stability of which was presented in Figure 5.2) is then examined as the 

click amplitude is increased.  At the end of this subsection, a simulation is carried out by 

locating the inhomogeneities not in the micromechanical gain as a function of position, 

γ(x), but in the nonlinear saturation point of the active elements as a function of position, 

δ(x).  This shows how reflections may arise due to non-smoothly varying parameters in the 

nonlinearity, as well as linear quantities. 

5.2.1   BM Responses 
Figure 5.8 shows mesh plots for nonlinear time domain simulations for clicks of increasing 

amplitudes applied to the perturbed model presented in Figure 5.2.  At 0 dB SPL, the 

response of Figure 5.8.a-d is identical to that of Figure 5.1, the linear case.  As the stimulus 

amplitude increases, the feedback force begins to saturate.  Consequently, the CA’s 

relative contribution to the motion of the BM is suppressed; this is comparable (but not 

exactly equivalent) to reducing the feedback gain in the linear model.  At the highest 

stimulus levels, as in Figure 5.8, only the passive response is visible near the peak of the 

TW; this is qualitatively similar to Figure 5.1.c. 

The same trend of motion resembling active responses shifting toward passive 

responses with increasing stimulus level is visible locally as well as globally.  Figure 5.9 

shows this pattern in the displacement at two locations along the BM.  Again, as in Figure 

5.3.a-d, the x-axis is plot in terms of time × CF (cycles) for easy cross-comparison.  The 

variation of the BM displacement waveform in (a) and (b) is quite similar for the 

analogous linear simulation, shown in Figure 5.3.a-b.  There are, however, subtle 

differences. 
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Figure 5.8.a-d: Nonlinear cochlear response of model presented in Figure 5.2 due to a 
standard click at 4 stimulus levels: (a) 0 dB SPL, (b) 39 dB SPL, (c) 78 dB SPL and (d) 
117 dB SPL.  The cochlear group delay is plotted for a baseline active cochlea as a solid 
line (a-c).  The cochlear group delay is plotted for a baseline passive cochlea as a dashed 
line in (d). 
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(d) Temporal location of peaks at 13.96mm
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(e) Temporal location and Amplitude of peaks at 1.33mm
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Figure 5.9.a-f: (a - b) show displacement at 1.33 mm and 13.96 mm in a baseline cochlea 
due to a standard click with variations in stimulus level from 0 dB (bottom) to 120 dB SPL 
(top).  (c - d) plot the locations of the peaks given the same progression from linear to 
saturating, and (e - f) plot the magnitude of the displacement at the peak with time×CF. 
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For instance, the oscillations in the fine structure response at moderate stimulus levels 

persist longer than a linear simulation with a moderate feedback gain.  Furthermore, panels 

(c) and (d) show the peaks of the waveform moving slightly earlier in time with increasing 

amplitude.  This result is different from the analogous linear simulations, shown in Figure 

5.3.c-d.  Panels (e) and (f) show the same data of (c) and (d), but instead of plotting the 

results as a function of the driving amplitude, they are plotted as a function of the 

magnitude of the displacement at the peaks of the waveform.  This shows the saturation of 

the BM responses relative to the temporal changes in the peak location. 

Figure 5.10 shows the variation of RMS displacement as a function of stimulus level, 

calculated over the first 30 cycles of the response at several locations in an active baseline 

model; the CF at each location was applied to determine the duration of one cycle.  The 

interpretation and speculation regarding these results are left to the discussion at the end of 

this chapter. 
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Figure 5.10.a-d:  Nonlinear growth of the baseline active model: BM displacement at 4 
positions along the BM.  RMS values are calculated over the first 30 cycles at each 
characteristic frequency when γ = 1. 
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5.2.2   CEOAEs 
As discussed earlier, the latencies of CEOAE frequency components are known to vary 

inversely with stimulus level.  This is predicted in the linear model by the decreasing 

cochlear group delay as γ is reduced.  Similar results are expected in the nonlinear model 

with effective reductions in γ due to increasing stimulus levels.  The results in this 

subsection are generated from a nonlinear model with the same perturbations in γ(x) used 

in the model of Figure 5.2.  A range of click amplitudes was applied, ranging from 0 dB to 

120 dB SPL in 3 dB steps.  The OAE data was isolated from the stimulus in two ways: 1) 

directly-determined (DD) by subtracting the basal pressure of the perturbed nonlinear 

model from the basal pressure of a baseline nonlinear model, as in equation (5.3); and also 

2) via the derived nonlinear (DNL) subtraction method, 

 

( ) ( )

( ) ( )

6
6

6
6

*

*

i
st perturbed i baseline i dBst st

i dB

i
ec perturbed i baseline i dBec ec

i dB

amp
DNL CEOAE p amp p amp

amp

amp
DNL CEOAE p amp p amp

amp

−
−

−
−

= −

= −
. (5.4) 

The DD CEOAE is presented in Figure 5.11.a-b as a function of stimulus level.  The 

results are amplitude-normalised by the maximum pressure of each signal in order to more 

clearly resolve variations in the waveform.  The waveform changes little for stimulus 

levels below approximately 36 dB SPL.  From 36 dB to 72 dB SPL, an unusual pulse 

comes into view at short latencies (1 ms < t < 5 ms), and lower frequency components 

grow in amplitude at long latencies (t > 25 ms).  An abrupt transition in the shape of the 

waveform takes place between 84 dB and 96 dB SPL where the highest amplitude 

pressures move from the middle of the time window (~15 ms) to an extremely short delay 

(t < 1 ms). 

To better expose the transition between the moderate- and high-level waveforms, 

Figure 5.12.a-b shows the normalised CEOAE at amplitudes of 78 dB to 96 dB SPL in 3 

dB steps.   
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Figure 5.11.a-b: Directly-determined, normalised CEOAE pressure response from the 
nonlinear model at the stapes (a) and in the ear canal (b) due to a standard click at a wide 
range of stimulus levels. 
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Figure 5.12.a-b: Detailed view of the normalised directly-determined CEOAE pressure 
response at the stapes (a) and in the ear canal (b) due to a standard click between stimulus 
levels of 78 to 96 dB SPL. 
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The CEOAE at the stapes, Figure 5.12.a, shows a gradual changeover in dominance from 

the oscillations that exist at times > 1 ms (presumably those due to reflections off of the 

cochlear inhomogeneities) to oscillations that exist at times < 1 ms.  The origin of this 

extremely short-time latency emission (ESLE) is as yet unexplained, though present 

findings seem to correspond to reports of measured OAEs in humans with extremely short 

delays at high levels, as discussed at the end of this chapter.  In this thesis, the acronym 

ESLE is adopted to describe any significant signal component that is observed in the 0-1 

ms time frame; this can apply to either simulations or clinical measurements of OAEs 

when the stimulus has been removed. 

Variations in the latencies of cochlear reflections are more visible in the ear canal, as 

shown in Figure 5.12.b.  By visual inspection, the relative amplitude of the oscillations at 

longer latencies decreases and those of shorter latencies increase.  The waveform at 93 dB 

SPL in panel (b) serves as a particularly good ‘bridge.’  In addition, the higher-frequency 

oscillations at 5-10 ms at 78 dB SPL are replaced by lower-frequency oscillations over this 

plotted amplitude range.  In order to calculate the CEOAE latencies in each frequency 

band, the CWT method was applied and the first 1 ms of each set of data was discarded to 

prevent contamination from the ESLE; if this windowing is not performed, the latency at 

each frequency band jumps discontinuously from low/linear-level latencies to times < 1 

ms.  Figure 5.13 shows the results of the CWT analysis for the OAE at the stapes (a, c) and 

in the ear canal (b, d). 

While it seems that latencies agree quite well with active cochlear group delay 

predictions at linear stimulus levels, and do appear to reach the predicted shorter delay at 

higher (passive) stimulus levels, the transition is quite abrupt in most bands.  This is at first 

rather confusing, as the plots of BM displacement agree fairly well between the baseline 

linear [Figure 5.3] and nonlinear [Figure 5.9] cases.  Further consideration is given in the 

discussion. 

For comparison, the derived nonlinear (DNL) CEOAE of the same data is plotted in 

Figure 5.14. 
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Figure 5.13.a-d: CWT-derived latencies in 11 frequency bands at all stimulus levels.  A 
solid line marks the predicted latency for an active baseline cochlea in (a) and (b), while a 
dotted line marks the predicted latency for a passive baseline cochlea.  (c) and (d) plot the 
same data, but also against stimulus level. 
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Figure 5.14.a-d: Normalised derived nonlinear CEOAE response at the stapes (a) and in 
the ear canal (b) due to a standard click with variations in stimulus level. 

 
The growth of the DNL CEOAE agrees with expected behaviour given the expected linear-

compressive-linear pattern of BM motion growth as a function of stimulus level.  The DNL 

CEOAE grows rapidly at low-to-moderate levels and then dies away most rapidly in the 

moderately saturating region of the CA, from 36 dB to 72 dB SPL.  However, the finer 

details are rather unexpected.  There appears to be some form of stimulus contamination at 

each input level, even though the linear components of the waveform have been 

eliminated.  The ESLE begins to dominate the response at higher stimulus levels above 72 

dB SPL; this is consistent with observations made of the DD CEOAE waveform as a 

function of stimulus level.  The growth curves of the DD and DNL CEOAEs are presented 

in Appendix D. 

5.2.3   Inhomogeneities in δ(x) 
It is well established in the literature that place-fixed inhomogeneities can give rise to 

backward-travelling reflections of TW, at least in models of the cochlea.  The source of 

these inhomogeneities is potentially located in the active process, and has been modelled as 

a variation in γ(x) by Elliott et al. (2007).  This subsection presents another potential place-

fixed inhomogeneity related to the gain; rather than perturbing the gain as a function of 
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position, the variation is located in the saturating point as a function of position, δ(x).  

Physiologically, this might represent ion gates in different sets of OHCs that do not open a 

uniformly varying quantity. 

A consequence of having a perturbation in δ(x) is that strong reflections should only 

be detected in the range of moderately saturating stimulus levels.  At the lowest levels, one 

would expect very small amounts of reflection as the gain should be 1 everywhere.  At the 

highest levels, the response of the cochlea is fully saturated (passive) and the saturation 

point should have little or no impact on the response.  Figure 5.15.a-b illustrates the 

perturbation applied to δ(x) relative to the baseline distribution.  The perturbation, shown 

in (b), is the same distribution of ‘dense’ inhomogeneities applied to γ(x) in the system of 

Figure 5.2, but has been scaled such that its new peak-to-peak variation is now 30%. 
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Figure 5.15.a-b: Perturbed saturation point as a function of position.  (a) shows the 
perturbed (solid) and baseline (dashed) saturation points as a function of position.  (b) 
shows the perturbation in isolation. 

 
Figure 5.16 shows the amplitude-normalised CEOAE as a function of stimulus 

amplitude.  It is interesting to note that as the stimulus level is increased, the frequencies 

that are most strongly expressed vary from high to low. 
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Figure 5.16.a-b: Directly-determined CEOAE in the nonlinear model at the stapes (a) and 
ear canal (b) due to perturbations in δ(x). 

5.3   Discussion 
As this thesis is largely concerned with the effects of the variation of feedback gain in the 

cochlea, it is worthwhile to step back and view the simulations that have been performed 

with such a perspective.  The micromechanical gain in the linear cochlea can be varied, 

thus setting the base level of feedback at each segment of the BM.  The gain can also vary 

in nonlinear simulations, due to a number of causes.  At moderate (but non-saturating) 

stimulus levels the non-symmetric Boltzmann function decreases the gain for negative 

relative displacements between the BM and the TM, while it increases the gain for positive 

relative displacements (see slope of the saturation nonlinearity, Figure 3.15.b).  This effect 

has not been well-studied in this model, and further work is needed in this area.  As 

stimulus levels increase, the active feedback mechanism begins to saturate, thus causing a 

reduction in effective cochlear amplification.  In addition, the saturation point as a function 

of position, δ(x), is critical in nonlinear simulations. 

As seen in previous chapters, sharp variations in gain can result in impedance 

mismatches from one portion of the cochlea to the next, thus generating reflections of 

TWs.  This chapter is concerned with the response of the cochlea to clicks, which are by 

definition a transient stimulus.  Except at the very lowest stimulus levels, a linear model 
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cannot be considered representative of what occurs in the mammalian cochlea.  The 

nonlinear time domain simulation allows γ(x) to be varied dynamically which has a direct 

impact on the motion of the cochlear partition; this is illustrated well by the comparison of 

the linear and nonlinear BM displacement click responses shown in Figure 5.3.a-b and 

Figure 5.9.a-b. 

One surprising difference between the linear and nonlinear BM responses was the 

paths of the peaks in time as the amplitude was increased, shown in Figure 5.3c-d and 

Figure 5.9.c-f.  The linear model showed that a reduction in gain produces peaks with 

increasing latencies, whereas the nonlinear model showed an increase in stimulus level 

results in peaks with (not always monotonically) decreasing latencies.  It is not clear what 

would produce this effect, though it is likely that amplification of oscillations at moderate 

levels was occurring at these later peaks in the nonlinear simulation which was not present 

in the linear case.  Such differences between the linear and nonlinear clicks simulations are 

most visible at moderate levels (e.g. γ = 0.74, Figure 5.3.a and 60 dB SPL, Figure 5.9.a). 

In the nonlinear simulation, the locally active elements saturate near the earliest part 

of the response, where the amplitude is highest.  However, as the response begins to decay 

away, the lower amplitude waves (of higher frequency) are amplified by the OHCs which 

are now operating in a more linear range.  This effect is understandably absent when 

examining the corresponding linear plot, Figure 5.3.a, γ = 0.66 for instance.  The gain is 

constant, and the higher-frequency oscillations decay away much more quickly, whereas 

they persist in the nonlinear simulation.  This is similar to the results of Recio et al. (1998), 

who measured the BM velocity of chinchilla cochleae due to clicks.  When the magnitudes 

of the response at various peaks in time were plotted against stimulus level, different peaks 

exhibited different saturation characteristics: the earliest and latest peaks showed near-

linear growth, whereas the intermediate peaks showed varying amplitude-ranges of 

compression. 

When formulating the saturation point as a function of position, δ(x), the rationale 

behind the chosen distribution was that it would allow most of the cochlea to begin to 

saturate at approximately the same sound pressure level.  Perhaps one unintentional 

consequence of this design was the varying widths of the saturating region of the click-

evoked BM displacement growth curves, as seen in Figure 5.10.  As a click wave of 

moderate amplitude travels along the BM, the more basal regions will necessarily be more 
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saturated than those in the apex as energy in the click is lost.  At the most apical regions of 

the model, it would seem that the range of compressed stimulus levels is greatest; as 

energy is lost near the base, the OHCs in the middle of the cochlea maintain enhancement 

of the TW.  This, in conjunction with the non-symmetric form of the Boltzmann function, 

may explain the greater-than-linear growth that is visible in Figure 5.10.d, at 28.69 mm. 

One way of testing this hypothesis would be to examine the saturation characteristics 

of the nonlinear cochlear model to pure tones at several frequencies, and thus characteristic 

places from base to apex.  If the widths of the saturating portion of the response were 

identical to those of Figure 5.10, then some other explanation would be in order.  This is 

unlikely, however, as the form of the Boltzmann saturation itself is identical at each 

location; only the saturation point is varied along the BM.  Such a response is due to the 

global nature of cochlear mechanics, and it is difficult to extrapolate this coupled 

behaviour from response of the micromechanical elements in isolation.  Furthermore, these 

are quantities which cannot be directly measured in human subjects; only OAEs and 

measurements of BM motion in other mammals are available for study and comparison 

with model results.   

The latencies of the linear CEOAEs generated in this chapter agree well with 

expectations arising from the cochlear group delays of the model.  The average calculated 

latencies in the set of 100 perturbed cochlear models are within ±5% of predicted latencies.   

However, the peak-to-peak magnitudes of the simulated CEOAEs are 20-40 dB lower than 

typically reported results in the literature; this may be due to several factors.   The overall 

levels of BM displacement are lower in this model than is measured in mammals (Robles 

and Ruggero, 2001); it may simply be that the model should be recalibrated.  In addition, 

the apical saturation point was set at 1 nm in the nonlinear model.  This was chosen 

because it seemed physiologically sensible and resulted in the first signs of CA saturation 

just below 40 dB SPL, a value which is consistent with measurements in the cochleae of 

other mammals.  If δ was increased, the emitted CEOAE would also be higher in 

amplitude.  However, the most significant factor is likely the magnitude of the perturbation 

applied to γ(x). 

The inhomogeneities applied in this chapter were all ‘dense’ and on the order of 

0.75%.  Increasing this value would undoubtedly result in stronger reflections.  The 

rationale behind keeping this a small amount was to maintain stability.  This also serves to 
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reduce the number of internal reflections such that it would be more straightforward to 

analyze the results and determine the CEOAE latencies as a function of frequency. 

The most surprising results of this chapter concern the nonlinear simulations of 

CEOAEs.  In particular, the rapid change in the form of the CEOAE response over only a 

15 dB change in stimulus level, as seen in Figure 5.12, was unexpected.  The published 

variation of CEOAE latencies with amplitude are typically averaged over a large set of 

results, as in Sisto and Moleti (2007).  As such, it is difficult to ascertain whether or not the 

predicted sharp transition from longer latency to shorter latency shown in the nonlinear 

CEOAE simulation is normally observed in a single individual.  A large set of varied 

results from many more cochlear models would likely broaden the results, possibly 

revealing a smoother transition from longer (linear) latencies to shorter (passive) latencies 

in all frequency regions.  It is also possible that perturbations in the overall saturation level 

and perhaps even different configurations of δ(x) would result in smoother variation of 

latencies when averaged over a large set of results.  Another unexpected result of the 

nonlinear CEOAE simulations was the prominence of an extremely short latency emission 

(ESLE) at high stimulus levels which was presented at times < 1 ms (see Figure 5.11). 

Other researchers have observed phenomena similar to the ESLE in these 

simulations while measuring various OAEs at moderate- to high- levels; a variety of 

explanations for their source have been offered.  Nonlinearities in the transducer producing 

the stimulus (Konrad-Martin and Keefe, 2005), distortion in middle-ear transmission 

possibly due to the acoustic reflex (Konrad-Martin and Keefe, 2003; Guinan et al., 2003), 

and ‘fast’ compression waves in the cochlear fluid (Ren, 2002) have all been proposed.  As 

none of these mechanisms are present in the present model, they cannot be the cause of the 

ESLE in these simulations.  The most likely explanation is the existence of a reflection or 

distortion site located at or near the base of the cochlea (Brass and Kemp, 1993; Talmadge 

et al., 2000; Konrad-Martin and Keefe, 2005).  However, it is also possible that the source 

of the ESLE in these simulations does not correspond to the source(s) of the ESLEs in 

clinical measurements.  For instance, there may be a number of sources in measurements 

that combine to give rise to an ESLE.  The simulated growth curves of the CEOAEs in the 

nonlinear model, calculated at different time frames, may shed some light on this 

discussion; these are included in Appendix E. 
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Finally, it should be noted that the simulations concerning perturbations in δ(x) 

should not be taken to suggest the author is proposing that this is a dominant property of 

the cochlea.  The fact that variations in ear canal pressure within a local band of 

frequencies are most visible at low stimulus levels suggests that the reflection mechanism 

is linear (e.g. Zwicker, 1990).  Nevertheless, it is an interesting experiment to run as a 

comparison to the CEOAEs generated given inhomogeneities in γ(x).  For instance, certain 

low, medium, and high frequencies are expressed more strongly at high, moderate and low 

stimulus levels, respectively, in Figure 5.16.a-b.  This suggests that the cochlear model 

saturates first at the base and then toward the apex because the perturbations in this 

simulation are present in δ(x). 

The ability to apply various perturbations to the cochlear model and to compare the 

resultant BM motion to ‘known’ or baseline responses is of great use.  The power of the 

nonlinear time domain simulation of the cochlea is that it allows the modeller to probe into 

many areas of as-yet unexplored cochlear function.  It is clear, however, that of the 

nonlinearity as a function of position in the cochlea is yet another aspect of the model that 

requires careful consideration and tuning. 
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Chapter 6 
 

6 Conclusions and Suggestions 
for Further Work 
 
 
 
This chapter summarizes the strengths and weaknesses of the state space model for 

modelling measured and inferred features of the human cochlea.  As a result of this work, 

numerous potential research directions have also become apparent.  These are discussed in 

subsection 6.3. 

6.1   Strengths of the state space model 
The original Neely and Kim (1986) frequency domain model was among the first 

mathematical representations of a mammalian cochlea that included an active element and 

a second degree of freedom in the micromechanics.  These attributes allow for 

amplification of tonally excited TWs at different positions along the cochlea.  In addition, 

the Neely and Kim (1986) formulation is based on a physical interpretation of the CP’s 

micromechanics that provides plausible results.  There are many other such models in the 

literature.  Another well-referenced representation of the cochlea is Zweig’s (1991) 

delayed-stiffness model, for example.  However, the inclusion of a delay in the system’s 

dynamics leads to some analytical complications.  A lumped parameter system, such as the 

Neely and Kim (1986) model, is described by an ordinary differential equation which 

generates a finite number of poles.  In contrast, a system that includes a delay can generally 

be described by a partial differential equation and generates an infinite number of poles 

(Franklin et al., 1991).  This is undesirable in the context of this thesis because the 

interpretation of results becomes less straightforward. 
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One downside of the original Neely and Kim (1986) model was that the nominal 

feedback gain of the original formulation lead to a much higher enhancement of the BM 

response than has been measured in vivo (Hubbard and Mountain, 1996; Robles and 

Ruggero, 2001).  This and a number of other characteristics of the system were modified in 

order to represent a human cochlea.  By reformulating the model from a frequency domain 

representation to a state space representation, it also became possible to perform linear and 

nonlinear time domain simulations.  The responses of the model that can be compared with 

experimental data and observations are discussed below. 

6.1.1   Cochlear responses 
The revised parameters presented in this thesis are able to account for the following 

features observed in the mammalian cochlea: 

• good fit to the human frequency-to-place map at all but the most apical locations; 

• BM enhancement curve that is approximately 45 dB at the base and 20 dB at the 

apex; 

• basalward shift in the location of the peak of the TW given reductions in feedback 

gain; equivalently stated, the maximum response at a single position along the 

coupled cochlea shifts to lower frequencies given reductions in feedback gain; 

• variation of λpeak with position along the cochlea that is consistent with inverse 

calculations made from clinically collected OAE data (Shera and Guinan, 2003); 

• both harmonic and intermodulation distortion at various positions along the 

nonlinear time domain model of the cochlea, similar to what is observed in the 

biological cochlea; 

• compressive growth rates of BM motion at moderately saturating stimulus levels; 

• a basal boundary condition that is similar to the impedance looking out of the 

cochlea and into the middle ear. 

Furthermore, the active portion of the cochlear model is approximately 2 mm wide for a 

given frequency, basal to the characteristic place.  This is a value that has support from 

experimental inferences (Allen and Fahey, 1992). 

One of the primary strengths of the state space model is its ability to quickly and 

unambiguously determine the stability of the linear model.  This is important to validate 

frequency responses of the linear system and also has implications for the study of SOAEs. 
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6.1.2   SOAEs 
The linear state space model exhibits features that are consistent with the multiple-

reflection theory of Zweig and Shera (1995).  In this theory, the frequency-to-place map 

and the variation of the wavelength of the TW at its peak dictate the spacings between 

linear instabilities given a ‘dense’ set of reflection sites along the BM.  The gain of the CA, 

γ(x), was chosen as the parameter to be perturbed in this investigation.  The spacings 

between adjacent unstable frequencies were found to match theoretical predictions only 

when the inhomogeneities were ‘dense.’  However, fewer and less strongly undamped 

instabilities were generated when ‘sparse’ perturbations in γ(x) the same magnitude were 

applied. 

The ability to compare the linear stability of a cochlear model with its nonlinear limit 

cycle behaviour is one of the strengths of this model with regard to SOAEs.  The 

investigations presented in Chapter 4 evaluated the pressure at the base of the cochlea at 

varying time frames both soon and long after the initial stimulus had begun to decay away.  

In the nonlinear simulations of Section 4.3.1, there was only a single linear instability.  The 

steady state frequency of both the dominant BM oscillation and the pressure at the base 

differed from that of the unstable pole by less than a tenth of a percent.  Components of the 

BM motion at the frequencies of the near-unstable poles were initially observed, but fell 

away into the noise floor within several hundred milliseconds.  The 2f0 and 3f0 harmonic 

components of the near- and fully-unstable frequencies were present so long as the 

response at the primary tones remained strong; however, the magnitudes of the distortion 

frequencies observed at the stapes were typically 40 and 80 dB below the primary signal, 

respectively. 

The magnitude and phase of the BM velocity as a function of position along the 

cochlear model of Section 4.3.1 were calculated at the limit cycle frequency.  At the 

fundamental frequency, there was a single position where the TW was ‘standing,’ as 

indicated by 0xφ∂ ∂ = .  This was located slightly basal of the peak in the response, in the 

region of negative damping.  This phase characteristic indicated that the amplitudes of the 

forward- and backward- TWs were balanced in this area.  The magnitude of the response 

appeared to show that both the forward- and the backward-TWs were amplified, similar to 

simulation results produced by Talmadge et al. (1998).  In conclusion, the forward TW is 
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amplified basal to the peak region, and its reflection is also amplified when heading back 

toward the stapes.  This resulted in the division of the cochlea into two portions: one basal, 

where the TW was dominated by backward propagation, and one apical, where the TW 

was dominated by forward propagation. 

The global reflection theory of Shera and Zweig (1993) and Zweig and Shera (1995) 

was developed to explain the commonly observed spacings between SOAE frequencies.  

This linear theory is well-supported by the stability predictions of the linear state space 

model.  However, the nonlinear model demonstrated that limit cycles can interact to 

suppress one another in Section 4.3.2.  Only three of the five linearly unstable frequencies 

were strongly expressed as limit cycles at the end of a 3000 ms simulation.  Numerous 

oscillations at other frequencies also appeared as a result of both harmonic and 

intermodulation distortion.  Two of the linearly unstable limit cycles approached a steady 

state amplitude within the first 200 ms of simulation.  However, most of the magnitudes of 

these frequency components varied as a function of time. 

 The near-unstable frequency components decayed at the steepest rates. This finding 

is in good agreement with the experimental results of Sisto et al. (2001), who show the 

presence of both ‘long-lasting’ OAEs and exponentially decaying components of sharp 

tuning in humans.  However, whereas they conclude that the presence of both of these 

responses suggests that ‘OAE dynamical properties are mainly determined… by the local 

cochlear parameters, rather than by the overall cochlear transmission,’ the simulations 

presented in Chapter 4 show that the global reflection of TWs can explain both 

phenomena. 

The distances between the frequencies of the detected limit cycle components were 

very regular; this was primarily believed to be due to the nature of the intermodulation 

distortion generated by the ‘primary’ tones at the linearly unstable frequencies.  There have 

also been reports of measured SOAEs that are the result of intermodulation distortion 

(Burns et al., 1984; Whitehead, 1988).  Whether the regular spacing between simulated 

limit cycle oscillations is detectable in the ear canal after reverse-transmission through the 

middle ear, and if it is still present locally when many more linear instabilities are present, 

is very much an open question.  Such behaviour is also qualitatively similar to the 

nonlinear effect of mode-locking in a self-excited system, such as a wind or string 
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instrument (Fletcher and Rossing, 1998).  We may one day learn that the appreciation of 

tonality in music is very much connected with the nonlinearities of the cochlea. 

6.1.3   CEOAEs 
In Chapter 5, CEOAEs were generated by sending clicks into densely perturbed cochlear 

models.  Commonly measured features of CEOAEs were compared against simulation 

results.  Perhaps the most satisfying finding of the investigation into CEOAEs concerned 

the frequency-dependent latencies of the reflections.  Linear model results matched the 

predictions of the group delay of the model and were very similar to the most commonly 

measured delays in clinical measurements.  This outcome is perhaps attributed to the direct 

relationship between the wavelength of the TW and its wavespeed, as given in equations 

(4.7) and (4.8).  Thus, working backwards from SOAE spacings as a function of frequency 

to develop a distribution of λpeak(x) also set the correct group delay in the cochlear model.   

A more conventional finding was that the linear model agreed with other studies (e.g. 

Sisto and Moleti, 2002; Sisto et al., 2007) which show that the frequency-dependent 

CEOAE latency is approximately twice the forward travel time of the TW.  However, 

linear estimates of the delay were somewhat longer than what is commonly reported in the 

literature (Tognola et al., 1999). 

In most clinical CEOAE experiments, it is necessary to set the level of the stimulus 

clicks at a minimum of 60 dB SPL in order to achieve an acceptable signal-to-noise ratio 

(Hall, 2000).  However, this amplitude is within the saturating region of the CA.  As shown 

by Figure 2.21, the cochlear group delay decreases as the feedback gain is reduced; this is 

analogous to the effect of increasing the stimulus level of the signal.  Thus, it is expected 

that CEOAE delays calculated in the linear model will be longer than published 

experimental data. 

The nonlinear CEOAE simulation showed a decrease in latency within each 

frequency band was given increasing stimulus levels.  However, there were some 

frequency bands that showed an abrupt decrease in the latency with level.  It is difficult to 

gauge the generality of this single model.  The averaged results of a larger number of 

cochlear models may show a smoother transition of level-dependent latencies more similar 

to that reported in human data, as collected by Sisto and Moleti (2007) for example. 
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The last finding of interest with regard to the nonlinear CEOAE simulations was the 

discovery of an extremely short latency emission (ESLE), qualitatively comparable to 

signals detected within several ms of a moderate-to-high level stimulus as reported in the 

literature (e.g. Konrad-Martin and Keefe, 2005).   The most likely explanation for the 

ESLE in the simulated- and perhaps the measured- results is the existence of a reflection or 

distortion site located at or near the base of the cochlea (Brass and Kemp, 1993; Talmadge 

et al., 2000; Konrad-Martin and Keefe, 2005).  However, the growth curves of CEOAE 

amplitudes, found in Appendix D, show that the ESLE grows linearly given perturbations 

in γ(x) at high amplitudes.  This would suggest that a distortion explanation is unlikely; 

such phenomena are typically compressive in nature.  Although the ESLE waveform grows 

linearly in the model with inhomogeneities in γ(x), it does not in the model with 

perturbations in δ(x).  This suggests that slightly different mechanisms may be operating 

here.  This is still somewhat perplexing; one would expect both forms of gain-based 

perturbation to become suppressed at the highest levels.  Other nonlinear simulations not 

presented in this thesis suggest that this effect is not due to the particular distribution of 

γ(x) applied in Chapter 5. 

6.2   Weaknesses of the state space model 
Though it has been shown that the state space model is capable of exhibiting many of the 

salient features of the human cochlea, there are a number of weaknesses that one should be 

aware of.  These are categorised and discussed in order of decreasing prominence. 

6.2.1   Cochlear responses 
Perhaps the most significant shortcoming of the Neely and Kim formulation is the manner 

in which its CA is modelled.  Early attempts to represent the micromechanics included an 

active element that shifted the peak in the element’s admittance in frequency by varying its 

stiffness.  This was implemented to describe the half-octave shift observed along the 

tonotopy of the BM given quiet vs. loud sounds.  However, what early modellers did not 

appreciate is that the location of the amplified TW peak does not shift apically from the 

passive TW peak as a result of variations in the micromechanical tuning.  Instead, the 

amplification takes place at the local resonant frequency of the CP. 
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The shift in the location of the TW peak is a result of the amplification of the 

forward TW, which increases in amplitude as it propagates through the negative damping 

region.  The TW then peaks approximately 1 to 2 mm apical of the negative damping 

region.  As Shera (2001b) shows, the intensity-invariance of the fine time structure in BM 

click responses is closely related to the tuning of the micromechanics as the gain is linearly 

varied.  However, results presented in Chapter 5 showed that the temporal location of the 

peaks in the fine structure of nonlinear BM click responses can vary non-monotonically, 

unlike linear predictions.  This appeared to be primarily due to the fast recovery of the CA 

on a cycle-by-cycle basis, depending on the amplitude of the stimulus.  Unfortunately, this 

behaviour is not observed in vivo (Recio and Rhode, 2000; Robles and Ruggero, 2001), 

and thus is likely just to be a feature of the current model. 

The active impedance of the Neely and Kim (1986) model is also greatly simplified.  

None of the more complex mechanics of the OHC are taken into account, such as the 

stiffness of the ion gates or any local fluid viscosity.  The magnitude of the model’s active 

force will also grow without limit as the driving frequency increases, whereas it has been 

shown that this is not the case in isolated OHCs. (Kros, 1996) 

In summary, the current form of the CA in the state space formulation presents the 

most serious drawback of the model with regard to reproducing measured phenomenon in 

the mammalian cochlea.  However, this fact should not be taken to suggest that 

investigations performed with this model are completely invalid or without worth.  As 

shown above, the state space model is capable of exhibiting a wide variety of features of 

the human cochlea. A model is by definition a simplification of a more complex system, 

and is only capable of describing a subset of its properties.  Thus, one could observe that 

the state space model best represents the cochlea at its baseline active state and at lightly 

saturating levels in the nonlinear regime.  Simulations outside of this range of operation 

can still provide insights into the behaviour of the biological cochlea, but care and 

consideration must be taken when drawing conclusions.  In addition, there are yet further 

enhancements that could potentially improve the accuracy of the model’s response. 

For instance, it is possible to reduce higher-dimensional representations of the fluid 

dynamics in the cochlea into a form usable by a 1-D box model (Mammano and Nobili, 

1993).  This is desirable because the long-wave assumption is violated near the peak of the 

TW, where the wavelength of the TW is on the same order as the dimensions of the 
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cochlear cross-section.  This introduces the possibility of a resonance in the transverse 

direction, or a ‘short-wave’ mode.  In the literature, the matrix that describes the coupling 

of motion from one position along the cochlea to another is called the Green’s function; the 

equivalent quantity in the state space model is the F-1 matrix.  The primary difference 

between the 1-D and the 3-D Green’s functions is an added sharpening in the local 

coupling at nearby locations.  This can also serve to modify the phase near and beyond the 

peak of the TW in such a way that is more similar to measured responses (Kolston, 2000). 

However, as discussed by Shera et al. (2005), adding higher dimensional 

approximations do not appreciably affect the fundamental relationships internal to the 

model, such as the connection between TW group delay and its wavelength.  One 

important effect of adding higher dimensionality is that the reflections from the 

inhomogeneities in the peak region are also enhanced; this would make the system even 

more prone to instability arising from inhomogeneities along the CP, without modifying 

the existing active element in the micromechanics. 

A common criticism of early cochlear models, particularly that of Neely and Kim 

(1986), is that the active pressure generated by the OHCs have nothing to react off of (e.g. 

Hubbard and Mountain, 1996).  This represents a serious shortcoming in terms of relating 

the model’s response back to the local motion of the CP.  A number of authors have 

suggested that OHCs may react off of adjacent segments of the BM, thus producing a so-

called mechanical ‘feed-forward’ coupling (Kolston et al., 1989; Steele et al., 1993; 

Geisler and Sang, 1995; Fukazawa, 2002).   

One final comment on the cochlear response of the nonlinear model concerns the 

growth rates of the BM motion due to both transient and steady-state stimuli.  While 

compressive growth rates have been calculated at moderately saturating levels, a number 

of results seem to show greater-than-linear growth at near-saturating levels.  The 2f0 

growth curve shown in Figure 3.20 is in fact similar to the equivalent result in Figure 3A of 

(Cooper, 1998); however, the 2f0 magnitude exceeds that of the fundamental in the 

simulation presented in Chapter 3, whereas it does not in Cooper’s (1998) experimental 

measurement.  In addition, the growth curves of the click-evoked BM response in Figure 

5.10.d, and also those of the RMS CEOAE pressure in Appendix D, are again greater than 

linear.  This is in disagreement with numerous OAE and BM measurements (e.g. Robles 
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and Ruggero, 2001).  The source of this mysterious result may be the form of the 

Boltzmann nonlinearity in the model. 

The values of the Boltzmann function chosen to saturate the input to the feedback 

force give rise to a non-symmetrical input-output curve, as shown in Figure 3.15.  Figure 

3.15.b illustrates that the slope of the nonlinearity is unity at small input values.  This 

ensures a perfectly linear response at low stimulus levels, as shown by the BM responses 

of Figure 3.18 and Figure 3.20.  At moderate input levels, the slope of the nonlinearity 

becomes non-symmetrical and actually exceeds unity for positive inputs.  This effectively 

turns up the gain (for positive inputs) and may explain the greater-than-unity growth 

curves mentioned above. 

6.2.2   OAEs 
Many aspects of the OAEs simulated by the model in this thesis match experimentally 

measured results (i.e. spacings between linear instabilities and frequency-dependent 

CEOAE latencies).  However, the magnitudes of the simulated OAEs are typically 20-40 

dB lower than equivalent published results.  This is very straightforward to remedy in the 

simulation of SOAEs, as generated by limit cycle oscillations in the nonlinear cochlea.  

Increasing the saturation point of the nonlinearity in the CA by a factor of 10, for example, 

would cause a corresponding +20 dB shift in the magnitudes of the limit cycle oscillations.  

This modification has support from the nonlinear simulations of BM growth curves due to 

a 3 kHz tone, as shown in Figure 3.20.a.  This figure shows that the fundamental response 

transitions from low-level (linear) to moderate-level (compressive) growth at 

approximately 5 dB SPL; in experimental results of BM motion, this first ‘corner’ in the 

growth curve is typically measured at ~30-40 dB SPL (Cooper, 1998; Robles and Ruggero, 

2001).  Thus, by increasing the saturation point by a factor of 10 (or more), the ‘corner’ in 

the growth curve would shift up and come more in line with experimental measurements. 

The magnitudes of the linear results are somewhat more difficult to correct.  One 

contributing factor to the offset may be the assumed input impedance of the cochlea when 

calculating the stapes acceleration given a volume displacement in the ear canal.  This was 

set at a flat value of 1.1*1010 Acoustic Ohms early in the work, before the model was 

revised.  Current calculations (see Figure 3.11) show that this is a slight overestimate of the 

actual cochlear input impedance.  However, this correction would be a minor improvement 
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at best. Another potential solution is the inclusion of a short-wave resonance, which would 

necessarily magnify the response at the peak and thus the energy reflected at the peak.  

However, this may also be a more basic shortcoming of the model parameters that could be 

addressed in the future. 

6.3   Suggestions for future work 
Many potential areas of future work have become apparent through the course of this 

doctoral investigation.  This subsection is divided into three areas: 1) further tuning and 

study of the model; 2) further simulations of cochlear phenomena; and 3) wider topics of 

research. 

6.3.1   Further study and tuning of the model 
The most straightforward and pressing aspects of the model that require study pertain to 

the form of the saturation nonlinearity.  Early nonlinear simulations applied a simpler 

hyperbolic-tangent function to saturate the feedback force (Elliott et al., 2007).  A 

drawback of the hyperbolic tangent function is that it is symmetrical, and thus is incapable 

of generating the even-order harmonics that are commonly measured in the BM motion 

(Cooper, 1998).  The Boltzmann function was applied to the state space model here, 

because of its similarity to measured input-output characteristics of OHCs in isolation 

(Cody and Russel, 1987; Kros et al., 1992); this followed the precedence of other work 

which has also relied upon the Boltzmann equation to describe the saturation of the OHC 

feedback force with increasing stimulus level (e.g. Nobili and Mammano, 1996). 

As noted above, the Boltzmann function is a description of the mechano-electrical 

transduction characteristics of an OHC in isolation.  However, the force generated by the 

OHCs in the organ of Corti in vivo is not well characterised.  This discussion is important 

in the context of the Neely and Kim (1986) framework, as the details of the chemical and 

mechanical OHC dynamics are hidden by representing the active element as an impedance.  

This requires some tuning the Boltzmann function in the nonlinear state space model to 

account for observed cochlear responses.  A detailed study of the effect of variations in the 

saturation function upon the simulated nonlinear cochlear response has yet to be 

performed.  A logical starting point would be to analyse the response of an isolated 

nonlinear micromechanical element.  The variation of the Boltzmann function parameters 
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that control its asymmetry and slope would necessarily change the model’s response.  The 

relative magnitudes of the fundamental and harmonic components may also provide 

important insight into how distortion propagates in the coupled cochlea.  Finally, tuning 

the saturation point as a function of position, δ(x), may better match measured results. 

Another aspect of the model that has not been studied is the power gain produced by 

the CA.  The enhancement of the TW is often calculated because it is directly observed by 

experimentalists.  However, it may turn out that the power output of the individual hair 

cells is not physiologically plausible, as in the original Neely and Kim (1986) formulation 

(Hubbard and Mountain, 1996).   

A more mundane but equally important area of tuning the model concerns the 

logistics of the time domain simulations.  The primary limiting factors of performing 

extended simulations are computational time and memory (both random-access memory 

and read-only memory).  Late in this Ph.D., it was discovered that fine-tuning the error 

tolerances for each individual state can reduce simulation times by fourfold without 

sacrificing the accuracy of the results.  Additional efforts in this area may yield further 

reductions in computational load, perhaps along the lines of Diependaal’s (1987) work 

which applied a time-varying spatial discretisation map.  Initial attempts to improve 

efficiency by pre-compiling the MATLAB function in C language have proved largely 

unsuccessful; this is believed to be due to the computationally intense nature of the ODE 

solver. 

At the time of writing, the preferred method of running extended simulations is to 

break up the simulation into smaller blocks of time, typically 100 ms.  This is 

accomplished by setting the initial values of the states of the new simulation to the values 

of the states at the end of the previous simulation.  This is necessary as the 32-bit 

architectures and Microsoft Windows operating systems employed by most computers 

effectively limit the (virtual and real) RAM usage of MATLAB variables to approximately 

1.2 GB.  However, this has been overcome with the introduction of 64-bit architectures 

(and a version of MATLAB capable of using a 64-bit system) where the primary limitation 

is the physical storage space available. (Mathworks, 2008) 
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6.3.2   Calculations and simulations 
Most of the suggestions presented here concern the nonlinear response of the state space 

model, as linear systems have been well-studied and can only represent a very limited 

range of cochlear phenomena.  The most promising and exciting line of inquiry following 

this work concerns the nonlinear interaction of linear instabilities, the initial results of 

which were presented in Chapter 4. 

Combining linear theories of cochlear function, such as the coherent reflection 

theory of Zweig and Shera (1995), with nonlinear simulation will likely reveal something 

of the deeper character of the cochlea.  The results of Chapter 4 showed that densely 

perturbed cochlear models produce instabilities at frequencies which share regions of 

negative damping.  However, in the presence of other nearby instabilities, the magnitude of 

a linear instability’s undamping ratio does not necessarily seem to map well to the 

magnitude of the steady state nonlinear limit cycle oscillation.  An interesting simulation to 

run would be to count the number of limit cycles detectable in the ear canal above the 

experimental noise floor, and to compare this value against the number of linear 

instabilities.  This area of work requires the study of nonlinear suppression, where one tone 

can affect the response of another. 

Early in this Ph.D., the suppression characteristics of Van der Pol Oscillators were 

briefly simulated.  Some of these initial results are included in Appendix E.  It is hoped 

that comparisons between the suppression of Van der Pol oscillators and the suppression of 

nonlinear limit cycle oscillations will offer some clues as to the nature of the suppression 

in the cochlea.  It has also been demonstrated by numerous experimentalists (e.g. Zwicker 

and Schloth, 1984) that externally applied excitations can frequency-lock, phase-

synchronize, suppress, or otherwise affect a SOAE.  These phenomena would be 

interesting to study in the nonlinear state space model, and could potentially be compared 

against the results of Sisto et al. (2001) who studied the transient dynamics of click-

synchronised SOAEs.  This would also tie in with the simulation of CEOAEs generated in 

the presence of instabilities, which has yet to be simulated in the state space model. 

The simulations of CEOAEs revealed a number of unexplained results, such as the 

presence of an extremely short latency emission at higher stimulus intensities.  Similar 

results have been noted in the literature (Brass and Kemp, 1993; Talmadge et al., 2000; 

Ren, 2002; Guinan et al., 2003; Konrad-Martin and Keefe, 2003; Konrad-Martin and 
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Keefe, 2005), but no satisfactory generation mechanisms have been agreed upon.  A 

variety of different stimuli and variously-perturbed models may help determine if the 

ESLE is a nonlinearly distorted reflection of the input, or due to some other mechanism.  

Further nonlinear simulations of CEOAEs are also necessary to determine if the sharp 

transition from long to short latencies with increasing amplitude observed in the current 

model persists when a large set of results is averaged. 

The dominant mechanism for the generation of SOAEs and CEOAEs in this model 

appears to be reflection; this is in accordance with the taxonomy of OAEs described by 

Shera and Guinan (1999).  While the nonlinear state space model clearly shows evidence 

of distortion, a detailed study of DPOAEs and other distortion-related phenomena has not 

yet been undertaken.  Such simulations may reveal some finer details of the wave-fixed 

mode of DPOAE generation and propagation.  In anticipation of this work, it would be 

instructive to simulate SFOAEs in order to ground the research. 

Lastly, a more rigorous approach to quantifying the reflection in the cochlear model 

due to inhomogeneities would help clarify results.  This could be accomplished by 

decomposing the pressure and motion at each position into to forward- and backward- TW 

components, perhaps using the WKB-method as applied by Zweig (1991) or Neely and 

Allen (2008).  There are, however, difficulties concerning the underlying assumptions of 

this method in a nonlinear system such as the cochlea. 

6.3.3   Wider topics of research 
Within the field of cochlear modelling, the Neely and Kim (1986) framework represents a 

compromise between a completely phenomenological representation and an ultra-detailed 

3D finite element model of the cochlea.  The model is not so complex that more detailed 

investigations become prohibitively expensive in terms of computation time, and yet it 

based in the physics of the cochlea.  For this reason it is well-suited to study the nonlinear 

characteristics and interactions of TWs along the CP, given the computational limits at this 

time. 

The propagation of a second TW mode along the TM is another area of study that is 

becoming more widely studied in the field of cochlear mechanics (Hubbard and Mountain, 

1996).  Whether longitudinal coupling through the TM in a model as reduced as the Neely 

and Kim (1986) formulation would produce any worthwhile results is uncertain.  However, 
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the system studied in this investigation and its various lumped element parameters do have 

direct correlates to the physical structure of the biology.  An important area of future work 

consists of further collaboration with experimentalists to determine physiologically 

plausible parameters for cochlear models.  It is also possible that simulations with 

complex, three-dimensional finite element models based on physiological measurements 

(e.g. Meaud and Grosh, 2008) may suggest more appropriate parameters for simplified 

models.  This would be particularly useful if the goal is to simulate a physical abnormality 

in the cochlea, sensorineural hearing loss for instance. 

The author strongly believes that the mechanical modelling of cochlear pathology is 

a crucially important research focus.  The mammalian cochlea is a fascinating system to 

study, full of unexpected nonlinear phenomena and complexities.  Although there is still a 

great deal of basic research to be done on this sensory organ, it is important to be mindful 

of the wider implications of its study.  For instance, more than 8% of the population of 

many developed countries suffer from significant sensorineural hearing loss.  In addition, 

approximately 90% of all hearing loss in adults is due to cochlear malfunction (Jesteadt, 

1997).  Thus, it is hoped that the work presented in this doctoral thesis may begin to 

provide some insight into the inner workings of the cochlea for any researchers interested 

in studying the mechanisms of hearing loss in the future. 
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Appendix A 
 

A Middle Ear and Ear Canal Model 
 
 
 
The primary function of the middle ear, as shown in Figure A.1, is to match the relatively 

low impedance of the air in the ear canal to the relatively high impedance of the cochlear 

fluid, thus ensuring efficient transfer of acoustical energy.  However, the middle ear and 

ear canal each add their own signature to the forward- and reverse-transmission of sounds; 

these characteristics also impact the middle ear boundary impedance at the base of the 

cochlea.  In this appendix, the forward- and reverse-transmission characteristics of a 

middle ear and ear canal model are illustrated in the context of frequency- and time-

domain simulations.  In addition, the impedance of the middle ear and ear canal as 

measured from the cochlea is modelled in a manner such that it can be easily incorporated 

into the state space model. 

 

Figure A.1  The human auditory system.  Note this figure is not to scale. Reproduced from 
‘Hearing: an introduction to psychological and physiological acoustics,’ by S.A. Gelfand, 
Copyright (1998), with permission from Marcel Dekker. 
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A.1   Two-Port Networks 
Frequency domain models of the middle ear and ear canal are often cast in the form of 

two-port networks that describe the mechanics of the system (e.g. Kringlebotn, 1988).  The 

two transmission matrices for the middle and inner ear can be cascaded to produce a single 

transmission matrix; this overall matrix then relates the input acoustic pressure and 

acoustic volume velocity at the stapes, Pst(ω) and Qst(ω), to give an output acoustic 

pressure and acoustic volume velocity at the ear canal, Pec(ω) and Qec(ω).  This is 

illustrated in Figure A.2, and formalised in Equations (A.1-3).  It should be noted that the 

pressures and volume velocities at the stapes and ear canal and all transfer matrices are 

functions of frequency unless otherwise noted; the explicit notation of this is suppressed 

for convenience here. 

 

Figure A.2: Two-port network representations of the ear canal and middle ear, where P and 
Q are pressure and volume velocity, respectively, at the ear canal (ec), eardrum (ed) and 
stapes (st). 

The behaviour of the middle ear is characterised when the acoustic pressure and volume 

velocity at the eardrum is expressed in terms of the pressure and volume velocity at the 

stapes: 

 11 12

21 22
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ed edst edst st

P T T P
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     
=     

     
. (A.1) 

Note that the elements of the transmission matrix must be defined such that the volume 

velocities are all travelling in the same direction; this allows multiple two-port models to 

be readily cascaded as in a transmission line. 

The output at the end of the ear canal is expressed given the input at the eardrum: 
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 11 12

21 22

ec eced eced ed

ec eced eced ed

P T T P

Q T T Q

     
=     

     
. (A.2) 

The transfer matrices for the middle ear and outer ear can be multiplied together to give a 

single expression for the pressure and volume velocity at the ear canal in terms of those at 

the stapes: 

 11 12

21 22

ec ecst ecst st

ec ecst ecst st

P T T P

Q T T Q

     
=     

     
. (A.3) 

A.1.1 Calculating input impedances in a two-port 
network 

In order to calculate the input impedance or admittance at a given terminal of the two-port 

network, it is necessary to load the other terminal of the two-port network with an 

impedance.  This impedance is either added at the output terminal, Zout, or at the input 

terminal, Zin. 

 

Figure A.3: Two-port network representation given a load termination at the output port. 

The general two-port transmission network is given by, 

 11 12

21 22

out in

out in

P PT T

Q QT T

    
=    
    

. (A.4) 

When the expression for Pout is divided by that for Qout, the result is an expression that 

relates the impedance seen at the output terminal, Zout, given a loading impedance at the 

input terminal, Zin: 
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, (A.5) 
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where 

 in
in

in

P
Z

Q
= . (A.6) 

In order to produce the expressions at the input terminal as a function of those at the output 

terminal, the inverse transmission matrix must be calculated: 

 
1

11 12

21 22

in out

in out

P PT T

Q QT T

−
    

=    
    

, (A.7) 

where 

 ( )
1

11 12 22 12
11 22 21 12

21 22 21 11

* *
T T T T

T T T T
T T T T

−
   

= −   
   

. (A.8) 

If the transmission matrix is reciprocal, satisfying 

 11 22 21 12* * 1edst edst edst edstT T T T− = , (A.9) 

then the impedance seen at the input terminal, Zin, given a load impedance at the output 

terminal, Zout, can be written as: 

 22 12

21 11

out
in

out

T Z T
Z

T Z T

+=
+

. (A.10) 

A.1.2 Independent responses of the ear canal and 
middle ear models 

Ear canal model 

The ear canal is modelled as a hollow cylinder with rigid walls, closed at the eardrum and 

open at the pinna, unless otherwise noted.  Figure A.4 illustrates the model, and Table A.1 

presents the physical quantities of the model.  Note that the effective length of the ear canal 

may shorten when an earplug-shielded probe is inserted into the cavity. 

 
Figure A.4: Schematic illustration of the ear canal model. 

 
Aec is the cross-sectional area of the ear canal, d is its diameter, and Lec is its length. 
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Quantity Formula [SI units] 

Aec 3.85*10-5 [m2] 
d 0.007 [m] 

Lec 0.02 [m] 

Table A.1: Physical characteristics of the ear canal. 

 
It is assumed in the model that propagation of sound is planar.  However, above a 

cut-off frequency, fc, the model is no longer valid as radial modes begin to affect the 

response.  This value is approximately given by 

 00.586 2c
cf d= , (A.11) 

where c0 is the speed of sound in air (Kinsler, 1982).  The cut-off frequency is 

approximately 29 kHz, so the plane wave assumption can be considered valid across the 

frequency range of interest, 20Hz – 20 kHz. 

 The two-port formulation that relates inputs at the eardrum to outputs at the 

external opening of the ear canal can be visualised as in Figure A.5, and can be given by 

rewriting equation (A.2): 

 

 

Figure A.5: Two-port network representation of the ear canal. 
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, (A.12) 

where Rplug represents the loss due to the foam plug of an OAE probe at the ear canal; this 

value is set to 2.2*107 Acoustic Ohms, which is approximately twice the characteristic 

impedance of air.  In practice, this boundary modification reduces the sharpness of the ear 
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canal resonances.  The general form for input impedance in a pipe is given by equation 

(9.4) in Kinsler (1982).  This is reproduced here, but in terms of acoustic impedances 

(rather than specific acoustic impedances, as given in the original text): 

 
( )

0 0

0 0

0 0

tan

1

in

load

in

Z
j kL

Z c A
Zc A j
c A

ρ
ρ

ρ

+
=

+
, (A.13) 

which can be written as 

 
( ) ( )
( ) ( )

0 0

0 0

cos sin

sin cos
in

load
in

Z kL j kL c A
Z

Z j kL A c kL

ρ
ρ

+
=

+
. (A.14) 

Thus, the elements of the transfer matrix for the outer ear are found to be 

 
11

21 0 0

cos( )

*sin( )
eced ec

eced ec ec

T kL

T j kL A cρ
=
=

     
12 0 0

22

*sin( )

cos( )
eced ec ec

eced ec

T j kL c A

T kL

ρ=
=

. (A.15) 

The use of a complex propagation constant accounts for the absorption of sound in the 

thermal and viscous boundary layers in pipes: 

 
0

k j
c

ω α= − , (A.16) 

given 

 52.89 10
/ 2

f

d
α −= × , (A.17) 

where f is the frequency of the driving tone, and d is the diameter of the pipe (Kinsler, 

1982). 

Figure A.6 shows the input admittance of the ear canal, as seen from the eardrum 

given a variety of boundary conditions at the external opening of the ear canal. 
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Figure A.6.a-d: Ear canal admittance as seen from the eardrum given blocked (solid), 
lossy (dashed), flanged (dash-dot) and unblocked (dotted) terminations. 

 
The blocked condition at the end of the ear canal simulates the situation when an OAE is 

measured with a hard earplug and probe that block the ear canal.  Note that this admittance 

is small at low frequencies and its resonances which correspond to wavelengths of λ = 2*L, 

2/3*L, etc. where L is the length of the ear canal.  Conversely, the resonances for the open-

ended system are given by wavelengths of λ = 4*L,4/3*L, etc. 

When OAEs are measured in practice, the ear is often sealed with a foam earplug 

which surrounds the receiver and transmitter.  In order to simulate this condition, a lossy 

load can be incorporated at the end of the ear, as in equation (A.12).  Similarly, the 

sharpness of the unblocked resonances is also reduced when the flanged boundary is 

applied, similar to a real ear canal that opens out into the pinna.  In contrast to the lossy 

boundary, the flanged termination results in a phase shift due to its imaginary component. 

 

Middle ear model 
The middle ear consists of three bones: the malleus, incus, and stapes, as seen in 

Figure A.7.  As mentioned previously, the primary function of the middle-ear is to improve 

the impedance matching between the air in the ear canal and the fluid in the cochlea.  This 

is accomplished through a reduction in the surface area from the tympanic membrane to 
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the stapes, and also through the mechanical advantage of the lever arm of the malleus and 

incus.  This results in an increase in efficiency of the transfer of energy to the inner ear.   

 

Figure A.7: Human middle ear.  Reproduced with permission (Coleman, 2008). 

 
There are many middle ear models that have been reported on in the literature, for 

example O’Conner and Puria (2008), Pascal (1998), Kringlebotn (1988) and Zwislocki 

(1962).  The model chosen here was proposed by Kringlebotn (1988), and can be 

expressed in a two-port network formulation, which is illustrated in Figure A.8, and 

defined in equation (A.1): 

 

Figure A.8: Two-port network representation of the middle ear. 
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. (A.1) 

Figure A.9 and Table A.2 illustrate and identify the internal impedances of the model, 

which includes separate models of the eardrum (tympanic membrane), middle ear bones 
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(malleus, incus and stapes), and the stapes footplate.  These are coupled together by 

transformers representing the changes in area or geometry, as described below. 
 

 

Figure A.9: Diagram of the middle ear impedances in the model of Kringlebotn (1988). 

 
The transformer ratios shown in Figure A.9 correspond to the anatomical area of the 

eardrum (k1), the ratio of the effective lever arm of the malleus divided by the lever arm of 

the incus (k2), and the inverse of the area of the stapes footplate (k3). 

 
Expression for Impedance Mechanical Quantity being 

Modelled 
Za = Ra + iωLa + 1/(iωCa) antrum and mastoid cells 

Zt  = 1/(iωCt) tympanic cavity 
Zd = iωLd drum 

Zs =  Rs+ iωLs +1/(iωCs) suspension of the eardrum 
Zr = Rr + 1/(iωCr)  rim of the eardrum 

Zm = Rm + 1/(iωCm) coupling between the malleus and incus 
Zo = Ro + iωLo + 1/(iωCo) ossicles (malleus and incus) 

Z i = Ri + 1/(iωCi) coupling between the incus and stapes 
Zst = iωLst + 1/(iωCst) stapes, stapedius tendon, oval window 

Table A.2: List of middle ear impedances and physical quantities being modelled. 

 

It should be noted that the stapes impedance, Zst, is comprised of the inertial and 

compliance terms listed as Lc and Cc in the Kringlebotn paper.  Rc is the impedance of the 

cochlea in Kringlebotn’s paper, but is omitted in this two-port model as the goal is to 

terminate this middle ear model with an impedance representing the Neely and Kim (1986) 

model of the cochlea. 

The numerical quantities for the inertial, compliance, resistance terms, and 

transformer ratios are given in Table A.3 (original cgs units) and Table A.4 (SI units): 
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Inertial terms [dyn*s 2/cm5] Compliance terms [cm5/dyn] Resistance terms [dyn*s/cm5] 

La = 1*10-3 Ca = 3.9*10-6 Ra = 60 
 Ct = 0.4*10-6  

Ld = 7.5*10-3   
Ls = 66*10-3 Cs = 0.3*10-6 Rs = 20 

 Cr = 1.3*10-6 Rr = 120 
 Cm = 0.38*10-6 Rm = 120 

Lo = 22*10-3 Co = inf Ro = 200 
 Ci = 0.3*10-6 Ri = 6000 

Lst = 46*10-3 Cst = 0.56*10-6  

Transformer Ratios 
k1 = 0.6 [cm2] k2 = 1.3 [unitless] k3 = 31.25 [cm-2] 

Table A.3: Parameters of the middle ear model in cgs units as given in Kringlebotn 
(1988). 

 
 

Inertial terms [N*s 2/m5] Compliance terms [m5/N] Resistance terms [N*s/m5] 

La = 1*102 Ca = 3.9*10-11 Ra = 6*106 
 Ct = 4*10-12  

Ld = 7.5*102   
Ls = 6.6*103 Cs = 3*10-12 Rs = 2*106 

 Cr = 1.3*10-11 Rr = 1.2*107 
 Cm = 3.8*10-12 Rm = 1.2*107 

Lo = 2.2*103 Co = inf Ro = 2*107 
 Ci = 5.6*10-12 Ri = 6*108 

Lst = 4.6*103 Cst = 5.6*10-12  

Transformer Ratios 
k1 = 6*10-5 [m2] k2 = 1.3 [unitless] k3 = 3.125*105 [m-2] 

Table A.4: Parameters of the middle ear model in SI units as converted from Kringlebotn 
(1988). 

 

Note that the value of Ro has been increased by a factor of 10 to better match measured 

results. 

The network model of Figure A.10 can be simplified by combining the parallel and 

series impedances at the eardrum into a single term Z1.  Similarly, Zm, Zo, Zi and Zst are 

denoted Z2, Z3, Z4, and Z5, respectively: 
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Figure A.10 Simplified block diagram of the network model of the middle ear. 

 A two port network model of the middle-ear can be derived from the following 

relationships:  
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. (A.18) 

The transmission matrix elements expressed in terms of the middle ear impedances and 

transformer ratios are thus determined to be: 
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.  (A.19) 

It is possible to show this is a reciprocal network, since 

 11 22 21 12* * 1edst edst edst TedstT T T− = . (A.20) 

The calculated admittance of the middle ear two-port network as viewed from the 

stapes when the eardrum is unblocked and blocked is shown in Figure A.11.a-b. 
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Figure A.11.a-b: Input admittance of the middle ear as seen from the stapes given blocked 
(solid) and unblocked (dashed) conditions at the eardrum. 

A.2   Response of the combined middle ear 
and ear canal models 

The coupled response of the middle ear and ear canal two-port networks can be combined, 

as shown in Figure A.2, to give the overall transmission matrix shown in Figure A.12: 

 

Figure A.12: Two-port network representation of the combined middle ear and ear canal. 

 
This result has the transmission matrix shown in equation (A.21): 
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 11 12
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. (A.21) 

A.2.1 Forward transfer function in frequency 
In order to generate an appropriate stimulus at the stapes, it is important to consider both 

the input at the ear canal, and the input to the state space model.  Previous work done by 

Harte (2004) showed that the loading on a typical in-ear loudspeaker due to the ear canal 

space is negligible.  As a result, the volume displacement of the probe can be considered 

proportional to its input voltage.  However, the input to the state space cochlea is a linear 

acceleration, as the model is formulated in specific acoustic impedances.  Thus, the desired 

transfer function is the ratio of stapes acceleration to volume displacement in the ear canal. 

The two-port network is formulated in terms of volume velocities.  The forward 

volume velocity transfer function can be determined by expanding the second row of 

equation (A.3).  This gives 

 21 22ec ecst st ecst stQ T P T Q= + . (A.22) 

Dividing both sides of this equation by Qst and inverting becomes 

 ( ) 1

21 22
st

ecst st ecst
ec

Q
T Z T

Q

−= + , (A.23) 

where Zst is the input impedance of the cochlea.  For the purposes of Figure A.13, Zst is 

taken as 1.1*1010 acoustic ohms.  Equation (A.23) is related to the required transfer 

function in the following manner: 

 
2

*st st

st ecec

a Qs

A QQ
=

∫ ,

 (A.24) 

where ast is the acceleration of the stapes footplate, the symbol ecQ∫  represents the volume 

displacement in the ear canal, Ast is the area of the stapes footplate and s is equal to jω.  

Figure A.14 illustrates this transfer function when the ear canal is terminated with the lossy 

impedance representing the foam earplug. 
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Figure A.13: Magnitude (a) and phase (b) of the forward transfer function frequency 
response: stapes acceleration given a volume displacement in the ear canal.  The 
impedance of the cochlea is taken to be 1.1*1010 Acoustic Ohms. 

A.2.2 Forward transfer function in time 
In order to generate the stapes acceleration due to a time-varying volume displacement in 

the ear canal, it is necessary to convolve the input volume displacement with the impulse 

response of the transfer function: 

 ( ) ( ) ( )
st ec

t

st ec a Q
a t Q t dt h t

 
′ ′= ⊗  ∫ 

∫  (A.25) 

Figure A.14 illustrates the acceleration at the stapes due to a 100 µs pulse in volume 

displacement at the ear canal.  The magnitude of the volume displacement pulse was 

chosen to produce the same RMS stapes acceleration as a 40 dB peak SPL pulse of 

pressure of 100 µs duration presented at the eardrum.  This is referred to as a ‘standard 

click’ in this work.  Although the magnitude of the stapes acceleration decays quite 

rapidly, there are still some low-amplitude oscillations that ring on for some time. 

When the amplitude of the click is greatly increased, the low-level residual 

oscillations of the stimulus can affect the response in the cochlea.  In order to force the 

click response to zero after 10 ms without introducing a sudden change in stimulus level, 

the decreasing half of a 10 ms Hanning window is applied to the input after 5 ms have 
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passed.  This is only important at very high levels, as the magnitude of the response after 5 

ms is less than 1% of the amplitude at the peak. 
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Figure A.14: Standard click input to the model: stapes acceleration (black, left vertical axis) 
due to an ear canal volume displacement (gray, right vertical axis). 

A.2.3 Reverse transfer function in frequency 
The reverse transfer function is defined to be the ratio of an output ear canal pressure due 

to an input stapes pressure.  In order to calculate this quantity, it is necessary to take the 

inverse of the transfer matrix that relates the pressure and volume velocity.  Recall the 

general solution of a two-by-two matrix when the direction of the volume velocity is 

accounted for: 
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11 12 22 12
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   
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. (A.8) 

As the transfer matrix in equation (4.3) is reciprocal, the forward transfer matrix 

relationship is thus given as 
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     
, (A.26) 

where the elements of the matrix are given by equation (A.8).  By expanding the first line, 

we have 

 22 12st ecst ec ecst ecP T P T Q= + . (A.27) 

Similarly to the previous transfer function calculation, both sides of the equation are 

divided by Pec and inverted to give 
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1

12
22

ec ecst
ecst

ecst

P TT ZP

−
 = + 
 

, (A.28) 

where Zec is the impedance seen at the ear canal.  As the lossy nature of the ear canal 

boundary is already taken into account with the matrix in (A.2), Zec is simply set to infinity.  

The reverse pressure transfer function is shown in Figure A.15. 
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Figure A.15: Reverse pressure frequency response: pressure at the outer ear per unit input 
pressure at the stapes. 

A.2.4 Reverse transfer function in time 
The pressure in the ear canal due to a time-varying pressure at the stapes can be determined 

by convolving the stapes pressure with the impulse response of the reverse-pressure 

transfer function: 

 ( ) ( ) ( )
ec stec st P PP t P t h t= ⊗

.
 (A.29) 

The reverse-pressure response given by a 100 µs pulse of pressure at the stapes of unit 

amplitude, as calculated by the convolution of equation (A.29), is shown in Figure A.16. 
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Figure A.16: Reverse pressure transfer function: pressure at the outer ear per unit input 
pressure at the stapes. 

A.3   Validation of the two-port model 
There are a number of sources against which the two-port model of the middle and outer 

ears can be validated.  The most important of these is a comparison with measured 

physiological data.  The results from Puria (2003) are chosen for this purpose as 

measurements were taken with two-port modelling and consequences for OAEs in mind.  

Figure A.17.a-b compares forward and backward pressure gain through the two-port 

network with measured results, where 

 M1 st

ec

P

P
= , (A.30) 

and 

 M2 ec

st

P

P
= . (A.31) 
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Figure A.17.a-b: Comparison of forward and reverse pressure gain functions: (a-d) two-
port results for forward pressure gain, Pst/Pec (M1), and reverse pressure gain, Pec/Pst (M2); 
and (A-D) five experimentally measured curves (Puria, 2003).  A value of Zst = 1.1*1010 
acoustic ohms was used to generate the two-port (a) forward pressure gain (M1). 

 
Figure A.18.a-b illustrates the product of M1 and M2, thus generating the round-trip 

gain through the middle ear, 

 M1 M2RT
MEG = ⋅ . (A.32) 

It can be seen that all of the predicted results from the two-port model are in reasonably 

good agreement with Puria’s (2003) measurements, both in terms of the magnitudes and 

the phases. 
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Figure A.18.a-b: Comparison of round-trip middle ear gain as produced by the two-port 
model (a, b) and as experimentally measured (A, B) by Puria (2003).  The dotted lines in (A) 
represent click- and distortion product-otoacoustic emission levels measured by Smurzynski 
and Kim (1992). 

A.4   Reverse input admittance in state space 
In order to integrate the frequency domain network models of the middle ear and ear canal 

into the existing state space model of the cochlea, the boundary condition at the stapes 

must be reformulated in state space.  While there are straightforward methods of 

converting transfer function representations of physical systems into state space, such as 

that of the middle ear, there is no obvious analytic method of converting the existing two-

port model of the ear canal into state space.  The solution has been to simply fit the reverse 

middle ear impedance (Zout) with a mass-spring-damper system, where 

 ed
out

st

P
Z

Q
= . (A.33) 

The model parameters are listed below in Table A.5 alongside the parameters derived by 

Puria (2003). 
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 Model parameters Puria (2003) 
Mass (mg) 2.96 1.41 
Damping (N*s/m3) 2.79*104 3.20*104 
Stiffness (N/m3) 2.63*108 2.59*108 

Table A.5: Lumped element parameters of the middle ear boundary. 
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Figure A.19.a-b: Comparison of model and measured reverse middle ear impedance 
frequency response (Puria, 2003). 

 

A.5   Summary and Discussion 
The combined transfer functions of the two-port network agree quite well with measured 

results.  Puria’s external measurements were made in the ear canal so presumably the 

pressure microphone affected the apparent impedance of the ear canal.  The two-port 

results are close enough to average human measurements that they should provide a valid 

approximation of a true middle-ear and ear canal response given physiological variations 

exist between individuals.  In addition, the two-port network’s round-trip middle ear gain 

agrees qualitatively with the equivalent physiologically-based plot. 

In summary, the forward- and reverse- transfer functions can be applied either in 

time or in frequency to relate measurements and stimuli in the ear canal to outputs and 

inputs in the cochlear model, respectively.  The only potential downside of this 

implementation is that the input impedance of the cochlea, Zc, is assumed to be constant.  

Puria’s (2003) experimental measurements show that this quantity varies less than tenfold 

within frequencies of 0.1 to 10 kHz in human cadavers.  However, this may change in a 

situation where there are cochlear reflections that propagate back to the stapes.  This may 
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represent a source of experimental error if one attempts to study stimulus-frequency OAEs 

with this model.  Nevertheless, the input impedance of the cochlea should not change 

appreciably during the brief input applied by a click stimulus, for instance.  Thus, this 

implementation of the middle and outer ears can be considered valid for the investigations 

presented in this thesis. 
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Appendix B 
 

B Derivation of Neely and Kim 
Quantities 
 
 
 
In this appendix, a variety of quantities pertaining to the Neely and Kim (1986) 

formulation are derived.  In section B.1, the ratio of BM and TM micromechanical motion 

to a driving pressure is determined.  Section B.2 presents the undamped natural frequencies 

of the two micromechanical masses.  Section B.3 shows how the stability criterion of an 

isolated, active micromechanical element can found.  Finally, Section B.4 arranges the 

equations of motion for the micromechanical model in a form suitable for the state space 

model. 

B.1   BM and TM admittance 
The impedances of the micromechanical model as defined by Neely & Kim (1986) are: 

 

1
1 1 1

2
2 2 2

3
3 3

4
4 4

kZ c sms
kZ c sms
kZ cs
kZ cs

= + +

= + +

= +

= +

, (B.1) 

where 

 s jω= , (B.2) 

and Z1 is the impedance associated with the organ of corti, Z2 the TM, Z3 the coupling 

between the organ of corti and the TM, and Z4 provides ‘a frequency-dependent phase-shift 
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between Pa and cξ ’ (Neely and Kim, 1986).  cξ , the difference in the motion of the BM 

and the TM is given by 

 ( ) ( ) ( ) ( )xxxgx tbc ξξξ −= .  (B.3) 

( )xPa  is the active pressure generated by the OHCs: 

 ( ) ( ) ( )xxZxP ca ξγ ɺ
4−= .  (B.4) 

The equations of motion for the BM is 

 ( ) ( ) ( ) ( ) ( ) ( )txxZtxxgZtxPtxP cbad ,,,, 31 ξξ ɺɺ +=− , (B.5) 
and the motion of the TM can be described by: 

 ( ) ( ) ( )txZtxxZ ct ,,0 32 ξξ ɺɺ −= . (B.6) 
We start by taking (A.5) and replacing ( )txt ,ξɺ  with a substitution from (A.2): 

 
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )txtxxgtxtx
dt

d

txtxxgtx

cbtt

cbt

,,,,

,,,

ξξξξ

ξξξ

ɺɺɺ −==

−=
  (B.7) 

 

 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )32

2

322

32

,
,

,,0

,,,0

ZZ

txxgxZ
xt

xtZZtxxgxZ

xtZtxtxxgxZ

b
c

cb

ccb

+
=

+−=

−−=

ξξ

ξξ
ξξξ

ɺ
ɺ

ɺɺ

ɺɺɺ

  (B.8) 

and then substitute solution from (B.7) into (B.3): 

 
( ) ( ) ( ) ( ) ( )

( )32

2
4

,
ZZ

txxgxZ
xZxP b

a +
−= ξγ

ɺ

. 
 (B.9) 

Next substitute solution from (B.7) into (B.4): 

  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )32

2
31

,
,,,

ZZ

txxgxZ
xZtxxgZtxPtxP b

bad +
+=− ξξ

ɺ
ɺ

. (B.10) 
Then substitute (B.9) into (B.10) and solve for the BM velocity: 
 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2
4 1 3

2 3 2 3

2 2
1 3 4

2 3 2 3

3 4
1 2

2 3

, ,
, ,

, ,

, ,

b b
d b

d b

b d

Z x g x x t Z x g x x t
P x t Z x g x Z x x t Z x

Z Z Z Z

Z x g x Z x g x
P x t x t g x Z x Z x Z x

Z x Z x Z x Z x

Z x Z x
x t P x t g x Z x Z x

Z x Z x

ξ ξ
γ ξ

ξ γ

γ
ξ

 
− − = +  + + 

 
= + − 

+ +  

  −
⇒ = +   +   

ɺ ɺ
ɺ

ɺ

ɺ

. (B.11) 

 
This result agrees with equation (13) in Neely & Kim’s paper (1986), where the 

denominator of (A.10) is described as the ‘driving-point impedance of the CP’ in equation 
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(12) which includes an added term b that is cancelled out in (13).  ( )txb ,ξɺ  is integrated by 

dividing by s on both sides to return ( )txb ,ξ : 

 

 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) 
















+
−+

=

xZxZ

xZxZ
xZxZxgs

txPtx d
b

32

43
21*

,,
γ

ξ

  (B.12) 
 

The transfer function of the BM receptance is given by ( )
( )txP

tx

d

b

,
,ξ : 

 
( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

3 4
1 2

2 3

, 1

,
*

b

d

x t

P x t Z x Z x
s g x Z x Z x

Z x Z x

ξ
γ

=
  −

+   +   

, (B.13) 

which can be rewritten as 

 
( )
( )

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

2 3

1 2 3 2 3 4

,

, *
b

d

x t Z x Z x

P x t s g x Z x Z x Z x Z x Z x Z x

ξ
γ

+
=

 + + − 

. (B.14) 

The frequency response function of the TM can be expressed as a function of the BM 

frequency response function.  Summing (B.5) and (B.6) gives 

 ( ) ( ) ( ) ( ) ( ) ( )txxZtxxgZtxPtxP tbad ,,,, 21 ξξ ɺɺ +=− . (B.15) 

Substitute in equation (B.8): 

 
( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

4 1 2

2 4 1 4

, , ,

, , ,

d b t b t

t d b

P x t Z x gZ x x t Z x x t

x t Z x Z x P x t x t gZ x Z x

γ ξ ξ ξ ξ

ξ γ ξ γ

 − − − = + 

   + = − −   

ɺ ɺ ɺ ɺ

ɺ ɺ
.  (B.16) 

Thus, our solution for the TM admittance frequency response function is: 

 
( )
( )

( ) ( ) ( ) ( )
( ) ( )

1 4

2 4

1 , ,,

,
b dt

d

x t P x t gZ x Z xx t

P x t Z x Z x

ξ γξ
γ

   − −  =
 + 

ɺɺ

.  (B.17) 

B.2   Undamped natural frequencies 
In order to better understand this model’s micromechanical response as a function of 

position along the BM, it is useful to investigate the undamped natural frequencies of the 

system.  To find resonances, set pa(t)=c1=c2= c3=0 and evaluate the equations of motion: 

 
1 1 1 1 3 2 1

1 1 1 1 3 2 3

0 ( )

0 ( )

M x K x K x x

M x x K K x K

= − − + −
= + + −

ɺɺ

ɺɺ
, (B.18) 

and 
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2 2 2 2 3 2 1

2 2 2 2 3 1 3

0 ( )

0 ( )

M x K x K x x

M x x K K x K

= + + −
= + + −

ɺɺ

ɺɺ
, (B.19) 

Set (1) and (2) in matrix form: 
 

M

M

x

x

K K K

K K K

x

x
1

2

1

2

1 3 3

3 2 3

1

2

0

0

0

0


















 +

+ −
− +


















 =










ɺɺ

ɺɺ
.  (B.20) 

 
Substitute sinusoidal solutions for x1 and x2 back into (B.19) and (B.20): 
 

 

( )
( )

x A t

x A t

1 1

2 2

= +

= +

sin

sin

ω α
ω α   (B.21) 

which yields 

 
( ) ( ) ( ) ( )

( ) 0

0sin*sinsin

32311
2

1

3231111
2

=−++−⇒

=+−++++−

KAKKMA

KtAKKtAtMA

ω
αωαωαωω

  (B.22) 

and 

 
( ) ( ) ( ) ( )

( ) 0

0sin*sinsin

31322
2

2

3132222
2

=−++−⇒

=+−++++−

KAKKMA

KtAKKtAtMA

ω
αωαωαωω

.  (B.23) 

The determinant of the coefficients of A1 and A2 in equation (2.9) is called the 

characteristic determinant: 

 ( ) 0
2

2
323

31
2

31 =
−+−

−−+
=∆

MKKK

KMKK

ω
ω

ω
.
  (B.24) 

Equating the characteristic determinant with zero gives the frequency equation: 
 

 

( ) ( ) ( )
( )

0

0

21

323121
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32

1

3124

32312113122321
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21
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.

 (B.25) 

Solving the frequency equation in terms of ω
2 gives the following result: 

 ( )
21

323121

2

2

32

1

31

2

32

1

312

2222 MM

KKKKKK

M

KK

M

KK

M

KK

M

KK ++−






 +++±






 +++=ω
.

(B.26) 

This returns two positive solutions for ω2, which correspond to the solutions for the 

resonant frequencies, ω1 and ω2.  This is applied in Chapter 2. 
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B.3   Frequency domain stability criterion 
The stability of a frequency domain model that contains active feedback can be determined 

by isolating its system dynamics from its feedback function. 

  

Figure B.1: General diagram of micromechanical controller. 

 
The quantities involved in the solution for the system G and H are given in Table B.2: 
 

Hyu *=  (B.27) ( ) ( )[ ] ( )xPxZxu ac =−= 4* γξɺ  (B.30) 

u

y
G =  

 
(B.28) 

( )
( )xP

x
G

a

cξɺ=  
 
(B.31) 

( ) ( ) ( )xxxgy ctb ξξξ ɺɺɺ =−=  (B.29) ( )xZH 4γ−=  (B.32) 

Table B.2: quantities involved in determining the system plant G, and feedback block, H. 

 

cξ  is the difference in position between the BM and the TM: 

 ( ) ( ) ( ) ( )xxxgx tbc ξξξ −=  (B.33) 

( )xPa  is the active pressure generated by the OHCs. 

 ( ) ( ) ( )xxZxP ca ξγ ɺ
4−=   (B.34) 

Combine (B.33) and (B.34): 

 
( ) ( ) ( ) ( ) ( )[ ]xxxgxZxP tba ξξγ ɺɺ −−= 4   (B.35) 

Equations of motion are as follows: 

 
( ) ( ) ( ) ( ) ( ) ( )xtxZxtxgZxtPxtP cbad ,,,, 31 ξξ ɺɺ +=−

,  (B.36) 

and for the second degree of freedom: 

G 

H 

y u 
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( ) ( ) ( )xZxxZ ct ξξ ɺɺ

320 −=
. (B.37) 

The goal is to solve these equations to find the transfer function G, 
( )
( )xP

x

a

cξɺ
.  Begin 

by solving (B.37) for ( )xtξɺ : 

 ( ) ( )x
Z

Z
x ct ξξ ɺɺ

2

3=
.
 (B.38) 

Recall from (B.33) that 

 ( ) ( ) ( )
( )xg

xx
x tc

b

ξξξ
ɺɺ

ɺ += .  (B.39) 

Substitute (B.38) into (B.39): 
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ɺ
.  (B.40) 

Set the input Pd = 0 and rearrange terms in the first degree of motion (B.36) with a 

substitution from (B.40). 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )







+







+=−

+















+=−

xZ
Z

Z
xZxxtP

xtxZ
Z

Z

xg

x
xgZxtP

ca

c
c

a

3
2

3
1

3
2

3
1

1,

,1,0

ξ

ξξ

ɺ

ɺ
ɺ

.

  (B.41) 

Now expand terms: 

 ( ) ( ) 






 ++=−
2

323121,
Z

ZZZZZZ
xxtP ca ξɺ

.
  (B.42) 

Solve for G, recalling (B.31): 

 
( )
( ) 









++
−==

323121
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  (B.43) 

Multiply the solution for G by H to obtain GH: 

 

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




++
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323121
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Z
ZGH γ

.

  (B.44) 
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B.4   BM and TM equations of motion 
The equations of motion for the BM and TM in Neely and Kim’s (1986) micromechanical 

model can be derived by summing the forces acting on each mass.  Figure 2.1 illustrates 

Neely and Kim’s micromechanical model. 

 

 

Figure 2.1: Neely & Kim’s (1986) micromechanical model of the cochlea. 

 
The forces acting on each mass are summarized in Figure B.2. 

 

Figure B.2.a-b: Force diagram for the BM (a) and the TM (b) in Neely and Kim’s (1986) 
micromechanical model.  A dotted line represents the inertial forces due to the 
accelerations of the masses. 
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The equations of motion for the BM and the TM are thus 

 1 1 1 3 3d a b b b c cp p m c k c kξ ξ ξ ξ ξ   − = + + + +   
ɺɺ ɺ ɺ ,  (B.45) 

and 

 2 2 2 3 30 t t t c cm c k c kξ ξ ξ ξ ξ   = + + − +   
ɺɺ ɺ ɺ ,  (B.46) 

respectively, where c b tξ ξ ξ= − , and 4 4a c cp c kγ ξ ξ = − + 
ɺ .  Solving equations (B.45) and 

(B.46) in terms of the accelerations of each mass returns the format required for a state 

space formulation: 

 ( ) ( ){ }4 4 1 3 1 3 3 3
1

1
b d c c b b t tp c k c c k k c k

m
ξ γ ξ ξ ξ ξ ξ ξ = + + − + − + + + 
ɺɺ ɺ ɺ ɺ , (B.47) 

and 

 ( ) ( ){ }2 3 2 3 3 3
2

1
t t t b bc c k k c k

m
ξ ξ ξ ξ ξ= − + − + + +ɺɺ ɺ ɺ . (B.48) 
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Appendix C 
 

C Journal Publications 
 
 
 

C.1   Elliott et al. 2007 
This journal paper concerns the formulation of a state space representation for cochlear 

mechanics, and specifically applied to the Neely and Kim (1986) model of the cochlea.  

The text was largely written by S.J. Elliott, but all code, associated simulations and figures 

were developed by E.M. Ku. 
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C.2   Ku et al. 2008 
The text, figures and simulations presented in this journal paper were developed by E.M. 

Ku.  Guidance and editorial assistance were provided by S.J. Elliott and B. Lineton. 
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Appendix D 
 

D Growth Curves of CEOAEs 
 
 
 
The growth of the RMS CEOAE amplitude is compared over different time windows in 

this appendix.  Figure D.1.a-d shows the growth rates of the DNL- and DD- CEOAEs in 

short (a, b) and long (c, d) time windows.  This is derived from the CEOAEs plotted in 

Figure 5.11and Figure 5.14. 

As the stimulus amplitude is increased from linear to moderately saturating levels, 

the DD CEOAE increases at a rate that is slightly less than linear and the DNL CEOAE 

rises at a slope greater than unity.  These results make sense, as the CA is only beginning 

to saturate.  At moderate levels, starting around 40 dB SPL, the amplitude of the directly-

determined CEOAE begins to level off and decrease.  Again this matches expectations: as 

the CA reaches its heavily-saturating region, the variations in γ(x) due to the 

inhomogeneities should become less significant due to the near-passive behaviour of the 

cochlea, thus reducing the level of reflections.  What is contrary to predictions is the linear 

rise in CEOAE amplitude at stimulus levels > 72 dB SPL in the first ms (a, b), and > 96 dB 

SPL in the latter 20 ms (c, d).  This may be due to reflections resulting from the passive 

mechanics of the cochlear model. 
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Figure D.1.a-d: Growth curves of CEOAE amplitude in (a, b) the first ms, and (c, d) the 
last 20 ms.  Response at the stapes is shown in the left panels (a, c) and the response at the 
ear canal is shown on the right panels (b, d). 
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The variation of the δ(x)-perturbed CEOAE amplitude with level is shown in Figure D.2.a-

b.  These results are calculated from the results shown in Figure 5.16.  Whereas the DD 

CEOAE amplitude increases at high levels in the model with the perturbation in γ(x), the 

equivalent plot here shows that the CEOAE amplitude reaches a near-constant value when 

the perturbation is located in δ(x).  It is also significant that the slopes of the growth curves 

are approximately 2 dB/dB for stimulus levels < ~60 dB SPL for both the nonlinearly- and 

directly-determined curves. 

 

0 20 40 60 80 100 120
-120

-100

-80

-60

-40

-20

0

20

40

60

80

C
E

O
A

E
 a

m
pl

itu
de

 [
dB

 S
P

L]

Input level [dB SPL]

0ms to 1ms

(a) δ(x) OAE
ST

 

 

Directly-derived CEOAE
NL-derived CEOAE
1 dB/dB slope

0 20 40 60 80 100 120
-120

-100

-80

-60

-40

-20

0

20

40

60

80

C
E

O
A

E
 a

m
pl

itu
de

 [
dB

 S
P

L]

Input level [dB SPL]

0ms to 1ms

(b) δ(x) OAE
EC

 

 

Directly-derived CEOAE
NL-derived CEOAE
1 dB/dB slope

0 20 40 60 80 100 120
-120

-100

-80

-60

-40

-20

0

20

40

60

80

C
E

O
A

E
 a

m
pl

itu
de

 [
dB

 S
P

L]

Input level [dB SPL]

10ms to 30ms

(c) δ(x) OAE
ST

 

 

Directly-derived CEOAE
NL-derived CEOAE
1 dB/dB slope

0 20 40 60 80 100 120
-120

-100

-80

-60

-40

-20

0

20

40

60

80

C
E

O
A

E
 a

m
pl

itu
de

 [
dB

 S
P

L]

Input level [dB SPL]

10ms to 30ms

(d) δ(x) OAE
EC

 

 

Directly-derived CEOAE
NL-derived CEOAE
1 dB/dB slope

 

Figure D.2.a-b: Growth curves of CEOAE amplitude in short (a, b) and long (c, d) time 
windows at the stapes (a, c) and the ear canal (b, d).  Perturbations were applied in δ(x). 

 
The fact that the ESLE grows linearly given perturbations in γ(x) at high amplitudes 

suggests that a distortion explanation is unlikely; such phenomena are typically 

compressive in nature.  Furthermore, that the ESLE waveform grows linearly in the model 

with inhomogeneities in γ(x) but not in the model with perturbations in δ(x) suggests that 

slightly different mechanisms may be operating here.  This is still somewhat perplexing; 
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one would expect both forms of gain-based perturbation to become suppressed at the 

highest levels.  Clearly more simulations of nonlinear CEOAEs should be run and ideally 

compared with measurements of the ESLE.  One significant complication is that, due to its 

linear nature, traditional nonlinear methods of stimulus artefact cancellation also 

necessarily remove this component.  For this reason, Kruglov et al. (1997) support use of 

linear methods.  Another difficulty of determining the characteristics of the ESLE is that it 

is dominated by high frequency components in this model which are difficult to discern 

when transmitted through the middle ear. 

The results presented here are further discussed in Chapter 6. 
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Appendix E 
 

E Suppression of Van der Pol 
Oscillator Simulations 
 
 
 
This appendix describes some simulations of the suppression of Van der Pol Oscillators 

that were performed early in this Ph.D.  Numerous authors have shown that the responses 

of SOAEs to external tones are very similar to a negatively damped, driven Van der Pol 

Oscillator (e.g., Murphy et al., 1995; van Dijk and Wit, 1990).  This has encouraged some 

authors to suggest that the response of SOAEs in the ear canal can be directly related back 

to the local activity of such resonators along the BM.  As a result, a number of cochlear 

models consisting of coupled Van der Pol Oscillators have been proposed (e.g., Sisto and 

Moleti, 1999).  However, as discussed by Shera (2003), the success of the global standing 

wave model of SOAE generation (and the supporting simulations presented in this thesis) 

suggest that OAEs are due to the response of spatially distributed reflection and distortion 

sites throughout the cochlea. 

The Van der Pol Oscillator nevertheless remains an interesting tool for studying the 

suppression of SOAEs in the cochlea, because it is able to encapsulate many features of the 

global response in a much-simplified form. 

E.1   the Van der Pol Equation 
The normalised equation for a driven Van der Pol Oscillator is given by: 

 ( ) ( )tAxxxx dn ωωγ cos1 22 =+−+ ɺɺɺ
,
  (E.1) 
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where x is the displacement, A is the driving amplitude, γ is the nonlinear damping term, 

and ωn and ωd are the natural and driven frequencies, respectively.  This equation 

represents the standard formulation of a driven one degree-of-freedom simple harmonic 

oscillator, except that it includes a nonlinear damping term, i.e. the term proportional to |x|2 

inside the brackets in equation (E.1). 

The following sections are a brief outline of the effect of each parameter in the 

equation; these ideas are further explored and illustrated in subsequent sections of this 

report. 

Damping Factor γ 
The viscous damping term in the Van der Pol equation consists of a nonlinear 

component and a linear component.  The nonlinear term is always positive, and is 

proportional to the square of the response.  When the linear damping term is negative, as in 

(E.1), the system injects energy into the motion of the mass within a range of 

displacements about the equilibrium position.  If the linear damping term was set positive 

so that the damping term reads γ(|x|2+1), it would act as a normal viscous damper 

dissipating energy (and no longer reaches a limit cycle oscillation when not driven).  In 

order to simplify analysis, the linear and nonlinear terms have been combined into a single 

coefficient, γ.  For the purposes of this investigation, the value of γ was set to unity. 

Driving Amplitude A 
At zero and very low driving amplitudes, the system responds roughly as if it were 

an unforced oscillator, slowly ramping up to its natural limit cycle.  In contrast, at high 

values of A, the system behaves as a relaxation oscillator.  This is to say that periods of 

little motion are contrasted with short instances where the mass moves very quickly 

between the positive and negative extremes of its displacement.  The values of A that lie 

between these two extremes are of greatest interest. 

As the driving amplitude is increased the (steady-state) response quickly changes.  

Before a particular value of A, the steady-state response is dominated by the natural 

frequency of the system; beyond this point, the system oscillates at the driving frequency.  

This phenomenon is known as quenching of the limit cycle oscillation and the two regions 

are separated by a pull-out amplitude. 
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Driving Frequency Relative to Natural Frequency 
Similar to the effect of increasing the driving amplitude, the system response begins 

to oscillate at the driving frequency when ωd is close to ωn.  This phenomenon is known as 

entrainment, or suppression (of the natural response).  The range of frequencies for which 

this is true, known as the basin of entrainment or region of suppression (and is bounded by 

the pull-out frequencies), varies with other factors such as driving amplitude. 

Simulations of Limit Cycle Suppression 
In order to investigate the steady-state suppression characteristics of the Van der Pol 

Oscillator, a set of calculations was performed to determine the strength of the driven 

frequency component, ωd, and that of the natural frequency component, ωn, as a function 

of the input amplitude of the excitation at the driving frequency.  This is plotted for two 

values of the driving frequency relative to the natural frequency in Figure E.1.   These 

clearly show suppression of the natural frequency response as the excitation level is 

increased, and compression of the driven response at higher levels.  Note that, within the 

range and resolution of these simulations, the frequency of the limit cycle is unaffected by 

such suppression. 

Figure E.1 shows a widening of the basin of entrainment as driving A is increased.  

The boundary between moderate and high driving levels is termed the pull-out amplitude; 

the value of this quantity is dependent upon a number of factors.  As the driving frequency 

becomes more distant from the natural frequency of the oscillator, stronger driving 

amplitudes will be required to achieve the same level of suppression. 
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Figure E.1.a-b:  Illustration of basin of entrainment.  A solid line shows the driven 
frequency component, whereas a dashed line shows the natural frequency component. 

 

E.2   Discussion 
There are a number of interesting shared features in comparing the response of an active 

cochlea to that of a Van der Pol Oscillator.  These include the ability to spontaneously 

oscillate and reach a limit cycle oscillation, and suppression and entrainment of this natural 

response given an external tonal source across a basin of attraction.  Such phenomena have 

been illustrated in this report.  However, there are also a number of features of cochlear 

response that cannot be accounted for by a Van der Pol Oscillator in isolation. 

The features of cochlear activity that cannot be simulated by a Van der Pol Oscillator 

in isolation include: an asymmetrical basin of attraction at frequencies close to the 

oscillator’s natural frequency; frequency ‘pushing,’ where the frequency of the SOAE 

moves away from the suppresser frequency; and a fluctuation in the limit cycle amplitude 

and frequency over time.  The investigation of the basin of attraction of a Van der Pol 

Oscillator carried out in this report is largely restricted to frequencies within ±20% of the 

natural frequency.  Outside this frequency range, the Van der Pol Oscillator appears to 
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possess asymmetrical properties.  This is believed to be due to the nature of the energy-

injecting mechanism that drives a Van der Pol Oscillator’s limit cycle oscillations. 

In contrast, it is not surprising that the basin of attraction in a live cochlea is not 

symmetrical.  The mechanical properties of the basilar membrane vary with position down 

the cochlea; when the cochlear response is coupled together through the fluid, it is natural 

that the suppression would not be symmetrical about a given characteristic place.  The 

variation of cochlear parameters may also be responsible for the observed phenomenon of 

downwards ‘pushing’ in frequency of an SOAE due to an external source. 
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