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Modelling the Human Cochlea
by Emery Mayon Ku

One of the salient features of the human cochlethésincredible dynamic range it
possesses—the loudest bearable sound is 10,00@i0@8 greater than the softest
detectable sound; this is in part due to an agreeess. More than twelve thousand hair-
like cells known as outer hair cells are believee@dxpand and contract in time to amplify
cochlear motions. However, the cochlea’s respanseore than just the sum of its parts:
the local properties of outer hair cells can hamexpected consequences for the global
behaviour of the system. One such consequente isxistence of otoacoustic emissions
(OAEs), sounds that (sometimes spontaneously!) ggate out of the cochlea to be
detected in the ear canal.

In this doctoral thesis, a classical, lumped-elemeodel is used to study the cochlea
and to simulate click-evoked and spontaneous OAH$e original parameter values
describing the microscopic structures of the caxldee re-tuned to match several key
features of the cochlear response in humans. rEgeiéncy domain model is also recast in
a formulation known as state space; this perméscticulation of linear instabilities given
random perturbations in the cochlea which are ptedito produce spontaneous OAEs.
The averaged stability results of an ensemble ofloely perturbed models have been
published in [(2008) ‘Statistics of instabilities ia state space model of the human
cochlea,” J. Acoust. Soc. Anmi24(2), 1068-1079]. These findings support one of the
prevailing theories of SOAE generation.

Nonlinear simulations of OAEs and the model's remgoto various stimuli are
performed in the time domain. Features observédemmodel include the saturation of the
forces generated by the OHCs, compression of amdgligrowth with increasing stimulus
level, harmonic and intermodulation distortion, iticycle oscillations that travel along the

cochlear membranes, and the mutual suppressiosanby linear instabilities.
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General Comments
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linear or nonlinear, but does not contain any dewia from standard, uniformly
varying parameters; if a model contains deviatifsaen normal parameter values,

the term ‘perturbed’ is applied.
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1 Introduction

Chapter 1

Introduction

1.1 The Human Cochlea

Of the various biological systems under study, thenan cochlea is a particularly
fascinating and challenging organ to model. Thehtsa represents the last mechanical
stage of hearing. It has great acoustical resglpower in time, frequency and intensity,
and exhibits a wealth of nonlinear phenomena. Maspects of its function are still not
well-understood, even though it has been examioetidndreds of years (e.g. Helmholtz,
1874); this is primarily due to the difficulties sasiated with direct mechanical
measurements of the cochlea. For instance, iterBions and motion are on extremely
small magnitudes.  This is further complicated itsy physical inaccessibility, being
located deep within the temporal bone.

The goal of this doctoral thesis is to add to tinelarstanding of how the human
cochlea operates by performing computer simulatadrits dynamics. What follows is an
introduction to the biology and observed featurésthe mammalian cochlea. Also
included is an overview of the sounds that can @gage out of the cochlea, known as
otoacoustic emissions (OAEs). OAEs represent apoitant epiphenomenon of the
cochlea as their analysis can reveal clues to eachHunction without requiring invasive

surgical techniques.
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1.1.1 Biology and measurements
The cochlea is a fluid-filled organ located in timmer ear. Its primary function is to

perform mechanical pre-processing of incoming aoalspressure waves and to convert
this energy into neural impulses that are senth#® duditory cortex. In addition to
amplifying input signals, the cochlea maps the oroinduced by the various frequency
components of a sound to different positions altmg cochlea. This spatial filtering
allows a large number of neuronal pathways, eath avlimited bandwidth, to relay much
of the information contained within the acoustisiginal to the brain. Figure 1.1 shows the
cochlea’s location relative to the outer and midzHes.

The middle ear bones, the malleus, the incus aadtdpes, perform an impedance
matching between the air in the outer ear and lind fn the cochlea; this is achieved
through the reduction in surface area between #rdrem and the stapes footplate, in
addition to the lever arm that arises due to thargeric arrangement of these bones. A

more in-depth discussion of the middle and outes ean be found in Appendix A.

Semicircular
Canals Eighth cranial nerve:
Vestibular Nerve

Cochlea

Tympanic
External  Membrane
Auditory  (Eardrum)
Meatus
\ (Ear Canal)

Oval
Window

Pinna
Middle Ear
Space

Figure 1.1: The cochlea in relation to the outed aniddle ears. Reproduced from
‘Hearing: an introduction to psychological and pbi@gical acoustics,” by S.A. Gelfand,
Copyright (1998), with permission from Marcel Dekke

Sound waves incident upon the eardrum induce matiaie middle ear bones,
which in turn cause the stapes footplate to proguessure waves in the cochlear fluid.
Figure 1.2 shows a simplified view of the scalae;stmambers, of an uncoiled cochlea. The
inward displacement of the stapes at the oval windesults in a near-instantaneous
outward displacement of equivalent volume at thaind window due to the

incompressibility of the cochlear fluid. This etjgaes the overall pressure in the scalae
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(Pickles, 2003). However, a slower travelling wai&V) is observed on the basilar
membrane (BM), a thin sheet of material in the éseh This TW propagates from base to
apex following a stimulus (von Békésy, 1949). Feyd.3 shows the instantaneous BM

and fluid motion associated with the TW in the aegbroduced by a tonal stimulus.

Side view of uncurled cochlea showing the three chambers.

Stapes at :
il W?ndovrv:G Scala Vestibuli (Perilymph)
Scala Media (Endolymph) )
Round : 2
\Window 0 Scala Tympani (Perilymph) \
\
B Wall Membranous
s kbl Wall Helicotrema

Top view of uncurled cochlea looking down on the cochlear
partition (basilar membrane).

Base [ Apex

Narrower Wider
Stiffer Less Stiff

Figure 1.2: Schematic representation of the uadaibchlea. Reproduced from ‘Hearing:
an introduction to psychological and physiologiaabustics,” by S.A. Gelfand, Copyright
(1998), with permission from Marcel Dekker.

travelling wave

cochlear partition

round
window
cochlear fluid at rest

Figure 1.3: Schematized illustration of the BMveting wave and fluid flow given
sinusoidal excitation at the stapes. Redrawn ditends in Neurosciences, 21, Nobili, R.,
Mammano, F. and Ashmore, J., ‘How well do we unded the cochlea?’ 159-167,
Copyright (1998), with permission from Elsevier.

The BM is stiff and narrow at the base of the ceatdnd broadens to become wider
and floppier at the apex, as schematized in FiguBe This variation in the BM’s
mechanical properties results in a natural or ‘passuning of the response of the cochlea;
higher frequencies resonate near the base, and foegeiencies near the apex. At a given
excitation frequency, speed of TW and its local @lamgth decrease as it approaches its
peak. This effect is similar to the behaviour oéan waves which get taller and narrower

as they encounter shallower waters. Mechanicgtigaking, a TW generated by a
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sinusoidal excitation travels quickly in the basdifffness-dominated region. It then slows
and reaches a peak at its resonant point whem@Nhienpedance is lowest; this location is
defined as the ‘characteristic place.” Apical loé ttharacteristic place, the impedance of
the BM is mass-dominated and the TW is extinguisiveth Békésy, 1949). This spatial
mapping of tones, sometimes referred to as ‘tongtap further enhanced by active
elements located in the organ of Corti (OC), acdetpecialized cells that sits on the BM.
Figure 1.4 shows a cross-section of the cochleathedhree scalae, while Figure 1.5

presents a detailed view of the OC.

Scala Vestibuli
(Perilymph)

Scala Media
(Endolymph)

Hair Cells

Internal  External - 1gctorial Membrane

Rods and Tunnel
of Corti

Intraganglionic

Scala Tympani
(Perilymph)

Figure 1.4: Cross-section of a single turn of ¢behlea. Reproduced from ‘Hearing: an
introduction to psychological and physiological astics,” by S.A. Gelfand, Copyright
(1998), with permission from Marcel Dekker.

TECTORIAL MEMBRANE

e

ta
(Basilar Membrane)

Figure 1.5: Detail view of the organ of Corti. jR@ted from Hearing Research, 22, Lim,
D.J., ‘Functional structure of the organ of Codireview,” 117-146, Copyright (1986),
with permission from Elsevier.
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The OC is critical to the function of the cochled@he travelling wave on the BM
propagates through the cochlea as a result ofah pwessure differences above and below
the cochlear partition (CP). The bending of the Biults in a shearing motion against a
gelatinous flap that sits above it, the tectorignmbrane (TM). Embedded in the TM are
hair-like cells known as stereocilia that protrume of the outer hair cells (OHCs). The
deflection of the stereocilia tip links mechanigadpens and closes ion channels which are
believed to be associated with the transductiomge®. This in turn induces the electro-
chemical expansion and contraction of the OHCs iphanomenon known as somatic
motility (Ashmore, 1987). The forces generatedttly OHCs are believed to actively
amplify the TW and sharpen its pattern of actiatgng the BM (Selliclet al, 1982). Of
course, such a cochlear amplifier (CA) requiresare of energy. Adjacent to the scala
media is the stria vascularis, which produces tbgitipely charged fluid that fills this
chamber. This liquid is known as endolymph, arekhibits a positive resting potential on
the order of +100 mV relative to the other chamlféelfand, 1998).

Although all research to date regarding the medsamf the OHCs has been
performedin vitro, the electromotility of these cells has been destrated in a number of
experiments (Brownelkt al, 1985). Figure 1.6 shows the change in intratallvoltage

given variations in pressure for both an inner ball (IHC) and an OHC.

mV mV
A |5F ° B 15—
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\Or ° [0} =
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Figure 1.6: Input-output functions of an IHC (Jeeind OHC (right) from the base of a
guinea pig cochlea. Intracellular voltage (veltia=is) is plot against stimulus pressure
(horizontal axis). Reprinted from the Journal biy§lology, 383, Cody, A.R. and Russell,
I.J., “The response of hair cells in the basal tirthe guinea pig cochlea to tones,” 551-
569, Copyright (1987), with permission from the Bibjogical Society.
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It is clear that the transduction characteristicénoer- and outer-hair cells are both non-
symmetrical and saturating, and thus nonlinearseRehers have fitted these responses to
Boltzmann functions with good agreement in the past. Kroset al, 1992). Note that in
later figures, the response of the Boltzmann famchias the shape of the IHC transduction
measurement, rather than the inverted shape fddH@ response shown in Figure 1.6.
Figure 1.7 shows the exposed stereocilia on themugyrface of a chinchilla’s organ
of Corti, with the TM removed. In contrast to OH@hich are believed to amplify the
TW motion, the IHCs are understood to act as senghich detect motion and encode this
information via the release of neurotransmitteffiere are approximately 30,000 sensory
neurones which carry this information to the cdntrarvous system (Pickles, 2003).
However, there are also a much smaller number fidrent’ nerve fibres which convey
instructions from the brain to the base of the kalts, particularly the OHCs. The exact
function of cochlear efferents is still unknownotigh they are likely to act as an adaptive

control signal pathway.

Figure 1.7: The upper surface of a chinchilla argaCorti. Stereocilia of inner and outer
hair cells are labelled as IH and OH. Also markeel Hensen'’s cells (H), Deiters’ cells
(D), outer and inner pillar cells (OP, IP), andenphalangeal cells (IPh). Reprinted from
Hearing Research, 22, Lim, D.J., ‘Functional suetof the organ of Corti: a review,’

117-146, Copyright (1986), with permission fromdslier.

The importance of the organ of Corti is underscondten it is physiologically
compromised. Cochlear damage may arise due toietywaf factors, such as acoustical

overstimulation or exposure to ototoxic substanceése presence of cochlear injury may

6
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in turn be manifest as a reduction in hearing $ertgior frequency discrimination. From
an engineering standpoint, the resolving capadslitof a healthy human cochlea are
remarkable.

The cochlea is able to discern minute changestengity, time and frequency. For
instance, the average human can detect a variaifvaquency of less than 1% across its
bandwidth, which spans approximately three decé@etfand, 1998). One of the most
salient features of the cochlea is the dynamiceanhgossesses; this is approximately 140
dB SPL—the loudest bearable sound is 10,000,00@stigreater in pressure amplitude
compared to the softest detectable sounds (Gelfh@@3). At the lower threshold of
human hearing, the cochlea can detect motion shatnaller than the width of a hydrogen
atom (Rhode, 1984). At the upper end of hearingnsities are sounds that are
comparable to those generated by a rifle firedasecrange.

The staggering dynamic range of the cochlea isart gue to the active process
within the cochlea, termed the cochlear amplif@A). At low amplitudes of motion, the
CA behaves linearly and provides approximately B5ofi amplification (Pickles, 2003).
If not for the contribution of the OHCs, sounds e order of 0 dB SPL would be
imperceptible. As stimulus levels increase, the B&gins to saturate. Thelative
contribution of the OHCs to the motion of the BMgbe to decrease, and thus the
effectivegain is also reduced. The magnitude of the BNdaase grows less than linearly
within this saturating range; this compressive beha is observed for excitation levels of
approximately 40-80 dB SPL presented at the ower(Rickles, 2003). Finally, at the
highest levels of tolerable pressure levels, beyapmroximately 90 dB SPL, the growth of
the BM motion again becomes approximately linearthas active contributions of the
OHCs are negligible. The variation of the growthBd1 motion for increasing stimulus
levels from linear> compressive> linear is illustrated in Figure 1.8.

Figure 1.9 illustrates the measured frequency mrespof the BM displacement at a
single point along the cochlea as a function of ékeernal sound pressure level. The
response is sharply tuned at low levels and braadeéth increasing amplitude. The
frequency of maximal response also appears to a@seneith increasing amplitudes. This
is often referred to as the ‘half-octave shift'thre literature, where the frequency of the
maximum BM vibration shifts downward by approximgtealf an octave with increasing
driving levels (Johnstonet al, 1986).
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It is important to note that many of the above obegons and measurements are

restricted to responses in the basal half of thenmalian cochlea. This is due to the
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inaccessibility of the middle turns. Recent reskauggests that the mechanics and active
components of the apex may operate in a manneistfiabdamentally different to that in
the base (e.g. Guinaat al, 2005).

1.1.2 the Dominant source of cochlear nonlinearity
There are many potential sources of nonlinearittheacochlea, ranging from the complex

mechanical and electrochemical process of OHC #itmon and activation to the variation
of BM stiffness with driving level (Patuzzi, 1996\What is of greatest relevance to the
cochlear modeller, however, is which of these madrities dominates the global system
response. As we have seen, the most fundameméhaear effect in the cochlea is the
compressive growth of the BM motion at moderateslev This is not an unintentional
consequence of cochlear mechanics; this compresdimns the IHCs to process a much
wider range of sounds than would otherwise be ptessi As it is the physiological
limitations of the amplification provided by OHChat give rise to this effect, the
saturation of this feedback force can be considéredprimary source of nonlinearity in
the cochlea.

The nonlinearity of the CA gives rise to an aburwaof nonlinear phenomena in the
cochlea. For instance, harmonic distortion inBiiv response to tones has been measured
in vivo by experimentalists (e.g. Cooper, 1998). atldition, the simultaneous application
of two tones can produce a variety of interactiswgh as the generation of new tones
(intermodulation distortion products), and suppi@s®r enhancement of the response of
one of the applied frequencies (Robles and Rugg2®01l). Some researchers have
attempted to model these features with the inclusioa saturating active feedback force
(e.g. Kanis and de Boer, 1994). This effectiveipits the amplitude of any motion
generated by the OHCs.

1.2 Otoacoustic Emissions

The existence of an active mechanism in the coohis first hypothesized by Thomas
Gold in 1948. He believed that an electromechauicion is necessary to counteract the
heavy viscous damping in the fluid-filled cochle@old (1948) went on to propose that a
perturbation may ‘bring an [active] element int@ ttegion of self-oscillation, when it is
normally so close to [instability].” Although theoncept of a CA is largely taken for
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granted today, it met a great deal of scepticisrarwfirst proposed. The field of cochlear
mechanics in the 1940s was very much dominatedhéydsearch of Georg von Békésy,
the scientist who discovered the existence of allpgenerated travelling wave in the
cochleae of human cadavers (von Beékésy, 1949; +24lI00). As von Békeésy's

experimental work dealt with preparations of deadhteae, it is unsurprising that his
conclusions regarding the mechanics of the orgame Wessive’ in nature. It would be

another three decades until Gold's ideas were amexed. In 1978, David Kemp

published findings of sounds measured in the eaaldhat had a cochlear origin (Kemp,
1978); thus, the field of otoacoustic emission (QA&Search was born.

A generally used definition of an OAE is any sotinalt is generated from within the
cochlea and externally measured (Hall, 2000). tRerpurposes of this work, an OAE is
defined as a variation in the pressure in the aaal; or at the base of the cochlea, that was
generated in the cochlea. It is traditional in literature to classify the emission type by
the stimulus. For instance, the self-oscillatingssion that was predicted by Gold (1948)
is now referred to as a spontaneous otoacoustissami (SOAE), whereas emissions that
are generated by a short click stimulus are tercle-evoked otoacoustic emissions
(CEOAES). This predominant system of nomenclatsi@dopted in this thesis for clarity
and in order to directly compare model results wlthically-measured data.

During the last ten years, there has been a moteinwihe literature toward a
consensus regarding the underlying causes of OAlerggon. Shera and Guinan (1999)
proposed that OAEs arise due to both linear reflacand nonlinear distortion. Cochlear
reflections are believed to arise as a result ddlsimperfections at fixed locations along
the BM, whereas distortion is thought to be a byepict of the (frequency-dependent,
place-shifting) nonlinear amplification process.he$e two very different mechanisms
have been contrasted as ‘place-fixed’ or ‘wavedixa the literature (Kemp, 1986). Itis
now generally accepted that all forms of evokedssins are a combination of both linear
and nonlinear mechanisms, though the dominanceaoh generation mechanism in
various circumstances is still being debated.

There is also evidence to suggest that all formSAEs are related and directly tied
to the sensitivity of hearing (Zwicker and Schloit§84; McFadden and Mishra, 1993;
Talmadge and Tubis, 1998; Shera and Guinan, 199®)eed, physiological insult can

reduce or remove the presence of all forms of OAES: this reason, evoked OAEs have

10
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been investigated extensively for their clinicaplgations. At the time of this writing,
both CEOAEs and distortion-product OAEs (DPOAEsEsnings are commonly used to
detect hearing defects (Hall, 2000). Neonates a@hdr children who are too young to
cooperate in conventional hearing tests are tdeteGEOAES in many Western countries.
All forms of emissions are averaged in time in ortle minimize any physiological or
environmental noise contamination present in tgaadi

What follows is a brief overview of the primaryasses of OAEs; detailed

discussions of SOAEs and CEOAEs are reserved éoreflevant chapters.

1.2.1 SOAEs

SOAEs are defined as low-amplitude, narrowband dsumat are emitted from the
cochlea without any stimuli. They are believed#a feature of a normally functioning
CA, as they are commonly found in an estimated eanig33% to 70% of all normally-
hearing ears (Penner and Zhang, 1997; Talmadgd., 1993). Furthermore, multiple
emissions (as many as 35) are common in individwéls SOAEs (Probst et al., 1991).

The time-averaged spectrum of a sample SOAE maasumtas given in Figure 1.10.

40

1895Hz

1025Hz 1dB SPL
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-40
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Frequency [Hz] 2500

Figure 1.10: Example of a SOAE measurement innaamu Adapted with permission from
the Journal of the Acoustical Society of Americ8, Brobst, R., Lonsbury-Martin, B.L.,
and Martin, G.K., ‘A review of otoacoustic emisssgr2027-2067, Copyright (1991).

Though advances in detection techniques have slaowalear rise in the measured
incidence of such emissions, the absence of SOAEs dot necessarily imply cochlear

dysfunction (Hall, 2000). The amplitude of spomans emissions are most commonly
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observed between -5 and 15 dB SPL in the ear c#malgh unusual cases have been
reported with emissions as loud as 55 dB SPL (Rrebsal, 1991; Hall, 2000).
Spontaneous emissions occur in a wide range otiémies, though most are detected in
the 1 — 2 kHz band. SOAE frequencies of up to Z ke regularly found, though many
studies do not measure lower or higher frequendies to equipment and noise floor
limitations.

Whereas the amplitude of an emission may vary witte, its frequency often
remains constant (within 1%) for years at a timeal(H2000). Another notable
characteristic of SOAEs is that there is a regwalserved (log-normalised) average
spacing between adjacent SOAE frequencies (DallmB985, 1986; Talmadge et al.,
1993; Braun, 1997). The implications of this &tite for understanding cochlear

mechanics are discussed in Chapter 4.

1.2.2 CEOAEs

Click-evoked emissions represent the cochlea’soresp to a short-duration, wide-band
stimulus. They are present in approximately 98%armally hearing adults, and thus are
well-suited to clinical applications (Prokesttal, 1991). The magnitude of the emission is
much lower than the stimulus level and it is dethgs well; for these reasons, CEOAEs
and other transiently-evoked OAEs (TEOAES) are sonas colloquially referred to as
‘Kemp’s echoégHall, 2000).

Although the electrical stimulus sent to a transduis a rectangular pulse of
typically 100us width, there is residual ringing within the eanal that lasts for 3-5 ms.
The duration of this transient can be exarcerbdtdte OAE probe is poorly fitted (Hall,
2000; Harte, 2004). This has been attributed tb bee response of the transducer and the
transient response of the middle and outer eaiiols techniques have been developed
to remove this stimulus artefact, as discussechiapter 5.

Figure 1.11 shows the CEOAE response of a healtmpy adult as displayed by
commercially available equipment and software. eé\bat the first four ms which include
the stimulus are displayed in a separate panelefteft) whereas the largest window
shows only the longer-latency result (the OAE); difeerence between the scales of these

two responses is on the order of a factor of 1000.
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Figure 1.11: Example of a typical CEOAE measurdmena normal-hearing human
subject obtained with commercially available equgmin Reprinted from Robinette, M.S.,
and Glattke, T.J., ‘Otoacoustic Emissions: Clinigablications,” Third Edition, Copyright

(2007), with permission from Thieme Medical Pubéish

The instantaneous frequency of the CEOAE shows iderable variation as a
function of time, with frequency varying inverselyth latency. This is believed to be due
to the connection between the dispersive charatteriof the cochlea and its tonotopic
mapping (Greenwood, 1990; Sisto and Moleti, 200®).has also been noted that the
frequency spectrum of the CEOAE is strongly depahda that of the click stimulus itself
(Zwicker and Schloth, 1984; etc). As shown in tipper-right panel of Figure 1.11, the
spectrum of the emission is concentrated in the2kBlz region; this is a typical feature of
many OAEs and is believed to be due to the bans-ljes transmission characteristics of
the middle ear (Kemp and Chum, 1980; Puria, 20@8etal, 2008).

As with other forms of evoked emissions, the amophkis of CEOAEs grow
proportionally at low levels (below 20-30 dB SPlidasaturate heavily beyond this point
(Kemp, 1979; Zwicker and Schloth, 1984; Probstl, 1986; Probset al, 1991). The
growth of CEOAE amplitudes above and beyond theraahg range of stimulus levels is
rarely reported, as prolonged exposure at theselslewsan cause permanent cochlear
damage. In addition, physiological protection nstbms may introduce noise or
otherwise skew the recorded signal (Hall, 2000)he Tatency of various frequency

13
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components of the CEOAE also appears to vary ielemsith stimulus level (Sisto and
Moleti, 2007). Representative simulations of CEQA#Ee presented in Chapter 5.

1.2.3 Otherwise-evoked OAEs

There are several other classes of evoked OAEsaiwtcommonly discussed in the
literature: tone-burst OAEs (TBOAESs), stimulus-neqcy OAEs (SFOAEs), and

distortion product OAEs (DPOAEs). TBOAEs are sanito CEOAEs given their

transient nature, though CEOAES are typically prefk clinically as they elicit a broader
cochlear response. SFOAEs are most apparent deleis of stimulation (e.g. Zwicker,

1990). However, SFOAEs are of limited clinical @wsethe time required to test for their
existence is much longer than other forms of OA#a|( 2000).

Distortion-product OAEs are generated when two Ifoore) tonal stimuli are
presented that are nearby in frequency (Prebsil, 1991). The nonlinear aspects of
cochlear mechanics result in the mechanical intdutaion of the two ‘primary’ tones
which can produce numerous ‘secondary’ frequenciese frequencies of the DPOAEs
depend on the relative spacing of the primaries,stihongest of which occur a2 f, in
humans, wherg is the lower frequency. Whereas SOAEs and TEO#&EdDelieved to be
primarily due to ‘place-fixed’ reflection mechanismDPOAEs at moderate levels are
more likely to depend on ‘wave-fixed’ distortionh@&a and Guinan, 1999).

1.3 Models of the Cochlea

Historically, the formulation of cochlear models shdbeen driven by experimental
measurements. For instance, von Békésy's measnotenoé travelling waves in dead
cochleae inspired passive models for many years.nélral tuning curves showed much
sharper responses than were present in the puthliBAefindings of the day, researchers
sought a neurological ‘second filter’ to explaire ttifferences (Hubbard and Mountain,
1996). It was not until Kemp’s discovery of OAE®cddes later coupled with
measurements of BM motiom vivo that researchers (fervently!) began to incorporate
active elements into their models. With recent aaes in computer processing
capabilities, scientists now have the tools to sateuthe behaviour of complex, nonlinear

systems that lack closed-form analytical solutio@hese numerical results may in turn

14



1 Introduction

shed light on the intricacies of cochlear mechaarus thereby suggest further informative
experiments.

This subsection gives a short overview of the widdety of cochlear models that
have been devised. Special attention is giverunopkd-element models, as the system
applied in this thesis falls in that category.

Soon after the findings of nonlinear BM activitydathe existence of OAEs were
published (Rhode, 1971; Rhode, 1974; Kemp, 19%%), first active cochlear models
began to appear (e.g. Kiet al, 1980). Initial mechanical models were formulaitedhe
frequency domain and assumed active un-damping steabasal to the characteristic
place, but included only a single degree of freedomepresent the dynamics of the CP.
This fixed the spatial distribution of undamping time model, and thus the pattern of
impedances was only valid for one frequency (Hutbb@nd Mountain, 1996). Later
formulations included a second degree of freedomepresent the TM above the BM
(Zwislocki and Kletsky, 1979; Allen, 1980; NeelycaKim, 1983, 1986). This allowed the
active response to be generalized over the eratirger of locations along the CP, and thus
the entire spectrum of audible frequencies (Neet/kim, 2007).

Early time domain simulations of cochlear modelsavased to demonstrate the
stability of active models and to begin to incogternonlinearities, though computational
limitations were restrictive (e.g. Diependasl al, 1987). Some later work in linear
frequency-domain modelling attempted to determihe tmpedance of the BM by
‘inversely’ analysing experimental measurements €igw 1991; de Boer, 1995). The
model of Zweig (1991) is a departure from mostyearbdels in that it assumes the BM
motion is like a negatively damped harmonic oswldhat is stabilised by a time-delayed
negative feedback force. Yet others sought tceefnodel predictions by adding more
degrees of freedom to the CP (Parthasasithl, 2000), expanding solutions into multiple
spatial dimensions (Kolston, 1999), or including-catled ‘feed-forward’ or ‘feed-
backward’ coupling between adjacent BM impedanGasgler and Sang, 1995; Fukazawa
and Tanaka, 1996; Xiet al, 2003).

As an alternative to traditional active elementenlmear limit cycle generators
(such as the Van der Pol oscillator) are also egiegd in the literature (Van Netten and
Duifhuis, 1983; Duifhuiset al, 1985; Wit, 1986; van Henget al, 1996). These are often

applied for their nonlinear characteristics whidaba striking resemblance to those of
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SOAEs. Still, another subset of researchers regtre TW as an epiphenomenon and
believes local resonance and or ‘fast’ compressgiaves in the fluid to be dominant in the
cochlea (Bell, 2001).

This bewilderingly long list of only the most-oféferenced models in the literature
betrays the many varied (and often contradictoigvg of how the cochlea functions.
However, it is important to remember that the vigliof any model is always restricted to
a particular set of conditions. One of the godlthts exploration is to simulate OAES in
humans given a mechanical representation of thbleac As such, a relatively simple
model that demonstrated a number of key featurethefcochlea was selected as the

starting point for the work presented in this teesi

1.3.1 the Neely and Kim (1986) model

The model of Neely and Kim (1986) is an active, patt-element representation of a cat
cochlea. It was published as a linear frequencyan formulation, though its mechanical
basis lends itself well to simulation in the timeathin. While its publication date is but a
few years shy of the birth date of the author,Nleely and Kim (1986) model nevertheless
exhibits a number of fundamental characteristiahefcochlea:

1. inclusion of an active element in the cochlear onoechanics that enhances the

amplitude of the TW
2. tonotopic tuning that is sharp when active and dnwhen passive

These key features also allow for the simulatio®&fEs when an appropriate middle ear
representation is included. In addition, the modebased upon the structure of the
biology; this lends the investigator the abilitydivectly simulate the effect of measured or
inferred changes in physiology by applying modificas to the relevant mechanical
parameters (or vice versa). For instance, the iiogtion provided by the active element
is controlled by a scalar which is related to OH@dtion. However, there is still some
degree of uncertainty regarding the effective meida properties of the cochlea; as such,
the parameters used here are inferred from knowracteristics of the TW. Research in
this area is still ongoing (e.g. Newburg and Moumta008).

Through the course of this research and deepesstigations of the literature, a
number of contradictions between simulation resaid experimental measurements have

become apparent. These discrepancies are listediscussed in Chapter 6.
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1.3.2 Causes of variations in feedback gain
In a biological mammalian cochlea, the amplificatgenerated by the OHCs can deviate

from its nominal linear value due to a variety gtemstances, some of which are listed
below:

a) Natural, uniform variations resulting in lower-thaverage auditory acuity

b) Static, place-fixed variations due to developmerdatiomness

c) Instantaneous, wave-fixed nonlinear saturation

d) Temporary or permanent cochlear pathology followmagse damage, exposure to
ototoxic substances, presbycusis (age-relatedrigelmss), etc.

e) Time-varying physiological factors
i.  Overstimulation recovery (Kemp and Brill, 2008)
ii.  Fatigue
iii.  Postural changes (de Kleiseal, 2000)
f) Externally applied voltages/currents
Items a-c) are addressed in this work, whereasadef)eft to future generations of cochlear

modellers.

1.4 Aims and Thesis Structure

One of the initial aims of this doctoral researcisvio simulate OAEs using an analytical,
physiologically-based model of the human auditoygtem. It was hoped that these
simulations would shed light on how the cochleeacfioms. Various investigations carried
out here have shown that perturbations in the lemdback gain along the BM can have
important consequences for the global performarfcth@® cochlea. In order to better
understand these effects, the mechanical paramaftehe Neely and Kim (1986) model
were updated for a human (Chapter 2) and the systas) recast in a state space
formulation (Chapter 3). The state space modeViges a straightforward method for
quickly and unambiguously analysing system stabilithich is critical to understanding
the formation of SOAEs (Chapter 4). In additidme state space formulation is inherently
based in the time domain, which allows for the danhan of transient phenomena such as
CEOAEs (Chapter 5).

The inclusion of a saturation nonlinearity in theedback loop allows for the
meaningful simulation of unstable cochleae and #ifect of increasing stimulus
amplitudes. Nonlinear simulations of unstable ¢esé are performed in Chapter 4, and
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the amplitude-dependence of the cochlear respandenes and clicks is simulated in

Chapters 3 and 5, respectively. The findings o$ ttesearch are summarized and
discussed in Chapter 6.

1.5 Contributions

The primary contributions of this work are as falk

1. Refinement of a frequency-domain model of cochteachanics such that it now

exhibits TW attributes pertinent to the generattdrOAEs in humans, similar to

experimentally measured and inferred values.

Co-development and implementation of a state sfiane-domain) formulation of
the refined cochlear model in MATLAB which includa$asal boundary condition

based on physiological measurements.

Application of the state space model to validate ohthe prevailing theories of
SOAE generation.

Time domain simulations of cochlear motion and ¢bmplete process of evoking

and measuring OAEs from the ear canal.

Comparison of time- and frequency-domain resporggesn static (linear) vs.

dynamic (nonlinear) variations in feedback gain.

Some of these findings were shared with the widadamic community through journal

papers and conference presentations:

Ku, E.M., Elliott, S.J. and Lineton, B. (2008). t&8stics of instabilities in a state
space model of the cochlea,” J. Acoust. Soc. Ag¥, 12), 1068-1079.

o this manuscript was selected for inclusion in thegést 15, 2008 issue of

the Virtual Journal of Biological Physics Research.

Elliott, S.J., Ku, E.M. and Lineton, B. (2007). ‘state space model for cochlear
mechanics,’ J. Acoust. Soc. Am., 122, (5), 27591277

Ku, E.M., Elliott, S.J. and Lineton, B. (2008). €fRodicity in the spectrum of
modelled spontaneous otoacoustic emissions,” Pr68. Int. Workshop on the

Mech. of Hearing, Keele University, U.K.
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= Elliott, S.J., Ku, E.M. and Lineton, B. (2008). iffe domain model of a nonlinear
inhomogeneous cochlea,” Proc™i@t. Workshop on the Mech. of Hearing, Keele
University, U.K.

= Ku, E.M,, Elliott, S.J. and Lineton, B. (2008).n4&tabilities in a state space model
of the human cochlea,” Proc. Int. Conf. Sound anigrdtion (ICSV15), Daejeon,
South Korea.

= Ku, E.M., Elliott, S.J. and Lineton, B. (2008). @Adelling threshold fine structure
and spontaneous otoacoustic emissions in the atieoc. Brit. Appl. Maths

Colloquium, Manchester, U.K.

= Ku, E.M,, Elliott, S.J. and Lineton, B. (2008). dBs the human cochlea work like
a laser?’ FESM Postgraduate Research Showcaséa®mutbon, U.K.

= Ku, E.M., Elliott, S.J. and Lineton, B. (2007). &delling random and noise-
induced changes in the parameters along the leridtlte cochlea and the effect on
hearing sensitivity,, BSA Short Papers Meeting orpé&rimental Studies of

Hearing and Deafness, London, U.K.

» Elliott, S.J., Ku, E. and Lineton, B. (2007). ‘Sereffects of spatial randomness
along the length of the cochlear on its performanteAcoust. Soc. Am. (153rd
Meeting Acoust. Soc. Am.), 121, 3192.

» Ku, E. and Elliott, S.J. (2007). ‘Comparing timentain simulations of different
nonlinear models of cochlear micromechanics,” AR@winter Research Meeting,
Denver, USA.

= Elliott, S.J., Ku, E. and Lineton, B. (2007). ‘Tis¢ability of a cochlear model
assessed using a state space formulation,” ARO Midw Research Meeting,
Denver, USA.

= Elliott, S.J. Ku, E. (2006). ‘Feedback controlalbration in the inner ear,” Proc.
International Symposium on Active Control of Souandd Vibration, Adelaide,

Australia.
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2 the Neely and Kim (1986) Model

Chapter 2

the Neely and Kim (1986) Model

In 1986, S. T. Neely and D. O. Kim published a meathtical model of a cat cochlea
which included a cochlear amplifier. As discussethe introduction, this was among the
first mature attempts in the field to explain theugply tuned cochlear response by adding
active feedback elements. Their formulation iseblagpon physical principles, anatomical
characteristics, and observed responses of theleeochThis physical interpretation is
required in order to directly compare simulatecposses with measurements. Through
the course of this 3-year investigation, Neely &idh’s (1986) framework has been
heavily studied, driven and tweaked. In order tooant for the physical differences
between the cat cochlea and a human cochlea, thygellrelement parameters describing
the variation of the cochlea’s mechanical propsréie a function of position have been re-
tuned.

This chapter is an in-depth examination of the Mesmhd Kim (1986) model,
beginning with an overview of the entire system #@sdinherent assumptions. This is
followed by a review of its passive formulation.helf mechanism for applying an active
feedback loop and its effect upon the passive sysehen considered. Finally, the local
motions of individual segments are coupled togettmerthe cochlear fluid to give a

simulation of the model’'s global behaviour.

2.1 Model Overview
The Neely and Kim (1986) model is an idealisatibthe cochlea. The motions of the BM

and TM are assumed to be linear, and the physkaacteristics of the CP are lumped

20



2 the Neely and Kim (1986) Model

into local masses, stiffnesses and dampers ascadarof longitudinal position. Though it
was originally formulated in the frequency domais,mechanical basis lends itself well to
simulation in the time domain (see Chapter 3). sTiepresentation of the cochlea can be
discussed in terms of itgnicromechanicsand its macromechanics The term
‘micromechanics’ refers to the dynamic behaviouraofadial slice of the cochlea at the
microscopic level (refer to Figure 1.4 for a reviefsthe physiology). In contrast, the term
‘macromechanics’ deals with the coupling betweea tficromechanical motion of the
system at various points along the cochlea, thumgirise to a solution for the global
response of the cochlea.

The micromechanical model of the cochlea is coneprisf two masses, three springs
and three dampers. This is illustrated in Figurk lZelow. The model can be loosely
interpreted as representing the anatomical featfresradial cross-section of the cochlea.
For instance, the BM and the TM of the organ oftCame modelled as masseas; @ndny,
respectively) which are coupled via the stiffnesthe OHC stereociliakg).

Figure 2.1: Neely & Kim’s (1986) micromechanical deb of the cochlea.

Note that this micromechanical model is not stradty coupled to adjacent slices of the
cochlea; this feature is sometimes referred tol@syitudinal coupling’ in the literature
(Robles and Ruggero, 2001).
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The input to the micromechanical system comes enftihm of a pressure applied
upon the BM,pg. This corresponds to a difference of pressurésdsn the fluid-filled
cavities of the cochlea above and below the CPe rékulting BM motion is detected by
the CA, which is schematised as a feedback loowdmt the two masses. The CA is
believed to activate when the ion-channel gatinghmaisms of the OHC stereocilia are
displaced due to the shearing motion of the TMtnedato the BM. This in turn stimulates
either hair bundle motility— the force due to tharhcell bundle, somatic motility— the
force due to the lengthwise contractions and expassof the OHCs, or both (Holley,
1996). The fine details of the electromechanicahgduction process in the OC and CA
are intentionally hidden in this model. A morealled investigation of how the CA is
modelled is given in section 2.3. One criticismtloé Neely and Kim (1986) model has
been that the active pressure source acting oBltheeacts against nothing (Hubbard and
Mountain, 1996). Neely and Kim (1986) state the active force ‘pushes against the
surrounding fluid;" however, this is not a very isktctory explanation. As such, this
represents a fundamental weakness of this model.

The micromechanical slices of the cochlea are asduro be structurally
independent, but the motions of nearby elementscatgpled to one another via the
cochlear fluid. A number of assumptions are ieherto this representation of the
cochlear macromechanics. First, the cochlear figidlefined as incompressible and
inviscid (lossless). The incompressibility of thiid disallows the existence of
compression waves, waves within the cochlear fiuhiich travel at a high velocity. These
compression waves are referred to as ‘fast’ wamethe literature (as opposed to the
relatively ‘slow’ waves of local pressure differenahich propagate along the CP). The
importance of ‘fast’ waves in the cochlea is di#ling debated in the cochlear modelling
community, though many of the salient featureshefd¢ochlea can be explained given only
‘slow’ TWs (Robles and Ruggero, 2001). In this wall TWs are assumed to be ‘slow’
waves unless otherwise stated.

Another simplifying assumption regards the geomefryhe cochlea. The human
cochlea is curled into a spiral that typically éoits two and a half turns (Pickles, 2003).
In the Neely and Kim (1986) model, the cochleanswiled and modelled as rectangular

box of length 35 mm, width 1 mm, and height 1 mhhis is shown below in Figure 2.2.
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2 the Neely and Kim (1986) Model

fluid *
a

BM Z
X
y

Figure 2.2: Schematic representation of Neely amd's<1-D macromechanical model of
the cochlea: illustration of the exaggerated motbunochlear segments due to sinusoidal
excitation at the stapes. Reprinted from HearirggeRrch, 145, Kolston, P.J., ‘The
importance of phase data and model dimensionatiticdchlear mechanics,” 25-36,
Copyright (2000), with permission from Elsevier.

Stapeg

The stapes footplate, the component of the middietleat is responsible for transmitting
sound waves into the cochlea, is located at théwwalow in the shaded face of Figure
2.2. The scala vestibuli and scala tympani, thelfilled tunnels above and below the
basilar membrane, are simply modelled as fluids$ test above the CP. Located at the
apex is the helicotrema, a passage that connextsvthscalae. This allows for fluid flow
from one chamber to the other.

Although the model has an assumed width, length lagight, it is possible to
reduce the mathematical analysis to a single dimergiven the following assumption.
As a tonally-generated TW propagates along the @&, wavelength decreases
monotonically until it approaches its frequencysanant location (beyond this location, it
is quickly extinguished). During most of the pregg of the TW, its wavelength is long
compared to the height- and width- dimensions efdbalae, hence the term, ‘long-wave
assumption.” The box model can thus be considér&d over this range by excluding the
vertical (z-axis) or transverse (y-axis) motiontleé fluid from the mathematical analysis
(de Boer, 1996). However, near and beyond the petie TW, this condition is violated;

the implications of this are discussed in Chapter 6

2.2 Passive Micromechanics

The micromechanical model of the cochlea consiéta two-degree-of-freedom system
(see Figure 2.1) which represents a discrete ratica of the cochlea. The top and bottom

fixed points refer to the rigid boundary of the kl®ar walls. The relative motion ofy
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2 the Neely and Kim (1986) Model

andm, corresponds to the shear displacement betweeBNhand the TM. The springs
and dampers in the model represent the biologittihesses and compliances of the
cochlea and the fluid surrounding the OC. The eslaf these elements are discussed in

the next section.

2.2.1 Variation of model parameters with longitudinal
position
The micromechanical framework of Neely & Kim’s moéd¢é the cochlea gives rise to
solutions for the motion of the BM and TM givenazal input pressure. The parameters
for the model stiffnesses and compliances that weitli position along the BM were
originally chosen to reflect the tonotopy of a cathlea. As discussed previously, these
values have been re-tuned to match certain chaistade of the human cochlea. It should
be noted that there have been three sets of pammesed through the course of this
investigation: 1) Neely and Kim’s (1986) paramefersthe cat cochlea; 2) a revised set of
parameters for the human cochlea, published ireKal (2008); and 3) a further refined
set of human parameters. The last set of valupeiented here, and all of the results in
the thesis are derived from this model. The datdighed in Elliottet al. (2007) and Kiet
al. (2008), included in Appendix C, are derived frogtssl) and 2), respectively.

The refined values are compared to the originaueslin Table 2.1. The
numbered-subscript quantities correspond to micobagical elements, whil@-subscript
quantities refer to the middle ear boundary and the longitudinal distance along the
cochleay is the micromechanical feedback gain, wlgjé, L andH are the BM to IHC
lever gain, the ratio of the maximum to the averagpical displacement of the BM across
one radial slice, the length of the cochlea, ardhisight of the fluid channel. Finally, is
the damping at the helicotrens, is the area of the stapes footplatés the density of the
cochlear fluid, andN is the number of elements in the model. The tianaof the values
of these revised parameters is plotted againstitlaaigal position along the cochlea in

Figure 2.3.
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Quantity Original Formula (SI) ‘ Revised Formula (SI) ‘ Units ‘
kl(X) ‘ 1 ) 1>< 1dCe-4OOx ‘ 1 ) 65X 16e-2791x+0.00373 ‘ N X m—3 |
a®®) | 200+150008%° | 9+9QQ(@y 1>3+0-00373 | Nxsxmi® |
my(x) | 3x10? | 4.5x10° | kgxm® |
ka(X) ‘ 7x10 440X ‘ 1.05x1 (g 307*+0.00373 ‘ Nxm™ |
Ca(X) ‘ 100 g22 ‘ 30gl/1x+0.00373 ‘ Nxsxmi |
my(x) | 5x10° | 7.20x10"+2.87x10°x | kgxm® |
k3(X) ‘ lxl(j}e—400X ‘ l.5xlde—2791x+0.00373 ‘ Nxm—3 |
C3(X) ‘ lOCB—BOX ‘ 6.&—59.3|x+0.00373 ‘ N><s><rri3 |
Ka(X) | 6.15x10e ™ | 9.23x10g? " 00BB | Nxm® |
C4(X) ‘ lOCB—BOX ‘ 33003—1440&0.00373 ‘ N><s><rri3 |

Y 1 | 1 [
g | 1 | 1 [
b \ 0.4 \ 0.4 \ - |
L \ 0.025 \ 0.035 \ m |
H \ 0.001 \ 0.001 \ m |
Km | 2.1x16 | 2.63x10 O Nxm® |
Cm \ 4000 \ 2.8x10 | Nxsxmi® |
Mm | 45%10° \ 2.96x10° | kgxmi® |
Ch | 0 \ 350 | Nxsxrit |
A | 1x10° | 3.2x10° om |
p \ 1000 \ 1000 | kgxm |
N | 251 | 500 | - |

Table 2.1: Model parameters for Neely and Kim’sg@Pcat cochlea (second column),
and the revised quantities for the human cochlged(tolumn).

Neely and Kim (1986) note that their values ‘wesglected to simulate the
biomechanics of a cat cochlea with considerationemito the physical structure,
frequency-to-place map, and frequency tuning cutypgal for a cat.’ Similarly, the
revised values were chosen such that the globpbnse of the model exhibits observed
and inferred TW properties of the human cochleahsas tonotopy, enhancement
characteristics, and TW wavelength as a functiorpasgition. These quantities of the

coupled cochlea are presented in section 2.4.
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Figure 2.3.a-c: Variation of model parameters \pidigition.

As with the original set of parameters, the stiéfheand damping parameters all
decrease exponentially as a function of positiamfithe base of the cochlea. However,
the mass of the TM now increases linearly from @/f& to 1.7 g/mi, whereas the mass of
the BM is still held constant. This modificatiorasvnecessary in order to increase the
amount of amplification toward the apex relative tte amplification provided by a
constant TM mass. In addition, the overall valokmany non-damping parameters were
reduced by almost a factor of 7 relative to theyioal Neely and Kim (1986) values in
order to shorten the wavelength of the TW. Theeslof the damping terms were reduced
to a lesser degree to maintain a plausible amduettive gain.

2.2.2 Micromechanical frequency response functions
Each micromechanical model represents the averagédn of that slice of the cochlea in

the radial direction. Neely and Kim defiteas the ratio of the average displacement
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2 the Neely and Kim (1986) Model

across the width of the CE,, to the maximum displacement over the width of BiM, &p,
so that

& (x)=b5,(%). 2.1)
As the input to the system is the local pressufferénce,pq, it is instructive to calculate

the BM velocity for a given pressure; the ratio aftput velocity to input pressure is

defined as mobility or admittance. The transferction of the BM admittancegb((—x)) , as
Py | X
given by Neely and Kim and derived in Appendix 8, i

& (%) _ 1

_ | (2.2)
Pa (%) g[ Z,(X+ Z( 9(2232(()()2)1}/22:((;)() H
where
ACEMATCRELE:
2,09=" 0 s o9+ s § @3)
2(9=4 ve(3

gis the BM to IHC lever gain and heres$o. Z; represents the mechanical impedance of
the organ of CortiZ, represents the mechanical impedance of the tattoembraneZ;
represents the coupling between the OC and the ard;Z, represents the impedance
associated with the active pressure source. Theyeenotes feedback gain, where 0
generates a passive response, ardl generates a baseline active response. The ter
‘baseline’ is used in this thesis to describe aivacpassive, linear or nonlinear model
without perturbations.

The FRF of the TM can be expressed as a functidgheoBM FRF. The solution

for the TM mobility, or admittance, is:

&(x) _1-[&(¥)/ p(W ][ 92( )]

|0d(><)= [Z,(X)+yz,(¥] (2.4)

where ¢, is the TM velocity.
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2 the Neely and Kim (1986) Model

2.2.3 Passive admittance
The two degree-of-freedom system that

micromechanical behaviour of the cochlea has twalemoof vibration.

simplify the analysis, the values of the dampertheasystem are first reduced by a factor

Neely & Kinseuto represent the

In order to

of 1000. For the lower-frequency mode, the motiohthe BM and the TM are in-phase.
For the higher-frequency mode, the motions of thesses are out-of-phase. This can
readily be observed by examining the near-undammpagnitudes and phases of the BM

and TM admittance for a micromechanical elemera single position along the cochlea,

as given in Figure 2.4.a, c.

X =20.48 mm X =20.48 mm
T O < 0ob)
a e
9 20 D 20/
E E
= 40 = 40
2 60 L .60} Do
oa) o e
k=3 -80 S, -80 Sea ]
2 = ~Undamped BM admittance 2 —— Damped BM admittance | <]
> -100{| ===~Undamped TM admittance by > -100f| ===Dpamped TM admittance ]
0.1 1 10 0.1 1 10
Frequency [kHz] Frequency [kHz]
c d
0.25 ) T 0.25% )
1 ~
) : 0 N
Q9 0 1 Q 0 ¥
S 1 S \ T
o 1 o \
= -0.25 e = .0.25} S
8- 1 8 ‘—-\
> I > =
0O .05 H O .05
|
-0.75 | ———— 0.75 | |
0.1 1 10 0.1 1 10

Frequency [kHz] Frequency [kHz]

Figure 2.4.a-d: Magnitudes and phases of the danmgetl near-undamped system
admittance ax = 20.48 mm.

With the damping present in the system (b and celsanthe sharpness of the peaks is
significantly reduced. This is particularly vistbht the higher resonant frequency. The
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2 the Neely and Kim (1986) Model

motion of the two masses remains close to 180 dsgia half a cycle) out-of-phase at
frequencies higher than that of the first resoipeatk.

2.2.4 Undamped natural frequencies
In order to better understand the model’s microraaidal response as a function of

position along the BM, it is useful to investigdle undamped natural frequencies of the
system. The resonant modes of this two degreeeefibm system are derived in

Appendix B, thus showing that:

2
T N CEeaT e
2m 2m, 2m 2m mm
This equation returns two positive solutionsddrwhich correspond to the solutions for

ando;.

A simplified solution which very closely approxitea the full analytical solution
can be found by simplifying the motion of the masae each mode, as shown in Figure
2.5.

a) K> b) ko

k
3 ks

m, I my

Figure 2.5.a-b: lllustration of the relative maguliés and directions of motion of the BM
(my) and the TM (rp) at the first (left panel) and second (right pamebdes of oscillation.

In the first mode of oscillation, the BM moves muebs than the TM. As such, the BM

can be considered stationary for the purposesisfetkercise. Furthermore, the value of
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2 the Neely and Kim (1986) Model

the springsk, andks in this model are very similar. Subsequently, ffeguency of the
first mode can be simplified to
@ = m (2.6)

m,
In the case of the second mode, the motion is dateihby the BM. In addition, the

stiffness ofk; is much greater thaky or ks. This suggests that the frequency of the second

<k 2.7
a5 o

The variation ofw; and; is plotted against position below in Figure 2.6eTresonant

mode can be approximated by

frequencies decrease exponentially as a functionpadition along the BM. The
approximate results of equations (2.6) and (2.&)iradistinguishable from the exact results
of equation (2.5) when plotted on the scale showigure 2.6.

100

=
= =)
T e

Frequency [kHz]

o
P

—— BM resonant frequencies
===TM resonant frequencies . . . )
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Position along the cochlea [mm]

0.01

Figure 2.6: Undamped, micromechanical BM and TMonesit modes as a function of
position along the BM.

2.3 Active Micromechanics

By definition, active amplification involves redag the effective or observed losses in a
system. An electrical circuit example of amplifica might consist of resistors and an
operational amplifier. The op-amp increases threect or voltage at the output, relative to
what could be supplied by the input source aldnea mechanical analogue of this system,
the electrical resistors would be represented aspdes. Thus, in the cochlea, it is
believed that the CA overcomes the damping presenthe fluid by mechanically

amplifying the motion of the TW as it propagatesng the BM. This ‘undamping’ allows
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2 the Neely and Kim (1986) Model

the IHCs (at the output stage of the mechanicaesysto detect a stronger signal (IHC
stereocilia motion due to fluid drag in the subtéei@l space) (Robles and Ruggero, 2001).
The analysis of a tonally driven system is oftemplex, literally. For instance, a
circuit may include energy storage elements suciasctors and capacitors, or in the
mechanical analogue, masses and springs. The mieahadmittance of such a system
will include real (dissipative) and imaginary (eggesstoring and releasing) components. In
a completely passive system, the real part of dsitiance will be positive across
frequency so that it only absorbs energy. Howewean active system, the real part of its
admittance will be reduced in a given frequencygemand may even be negative, thus
indicating that the system can supply energy. Wi@nt measurements of the admittance
of the mammalian cochlear partition are made, foisd that there are indeed frequency
bands with a negative-real parts suggesting aveagiiocess; this gives rise to the term

‘negative damping’ in the literature (de Boer, 1296

2.3.1 Active admittance
As discussed previously, the Neely and Kim micronaedical model is driven by an active

mechanism which represents the contribution ofailker hair cells. In their 1986 paper,
Neely and Kim state that the active impedantg,is ‘included to provide a frequency-
dependent phase shift’ between the active pressarece and the relative motion of the
BM and TM. This is given by

NEEZACIACE (2.8)
where Z consists of both real and imaginary compongntshe pressure generated by the
outer hair cells, and, is defined as the difference between the TM and@Mcities:

& =06 —&(X). (2.9)

The real component of ;Zorimarily serves to reduce the damping of the @Rile the
imaginary component provides a shift in frequerelgtive to the passive resonances. The
feedback function takes as its input the differemcdisplacements and velocities of the
BM and TM. The output ig, the pressure generated by the outer hair cdils; t
magnitude of this output is scaled by a unitlessngjty, y, which is nominally set to unity.

The active admittance of Neely and Kim’s BM is agai
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2 the Neely and Kim (1986) Model

Both the activey(= 1) and the passive € 0) admittance are plot as a function of position

(for a single frequency) in Figure 2.7. Similartgese quantities are plot as a function of
frequency (at a single position) in Figure 2.8. exgpected, the real part of the admittance
(b panels) is reduced in a particular region iqfiency and position along the cochlea.
However, at locations apical to the negative-dampragion, the active admittance
increases the damping for a 1 kHz stimulus. Inabepled cochlea, this would serve to
sharpen the response of the TW spatially by agtiatienuating BM motion beyond the
resonant location.
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Figure 2.7.a-d: Active BM admittance magnitude &ud phase (b) as a function of
position along the cochlea given a 1 kHz excitatidine real (b) and imaginary (d) parts
of the BM admittance are also presented. Actigpoasesy(= 1) are shown with a solid
line, whereas passive responses () are shown with a dashed line.

32



2 the Neely and Kim (1986) Model

-3
-45 ‘ 310
© -50f
e —_
T\g 55 g
= w
— '60’ E
S 65 ~
Q @
= -70t Z
> ]
om
> 75,/
o X = 20.48 mm
1 1 10 b1 1 10
Frequency [kHz] Frequency [kHz]
-3
05 5x 10
c)
0.4+
- 03[ g
o R
o L =
s % 3
>_§ 0.1r r-'%
o of %;
0.1}
081 1 10 b1 1 10
Frequency [kHz] Frequency [kHz]

Figure 2.8.a-d: Active BM admittance magnitude éamd phase (b) for the isolated
micromechanical model as a function of frequenca &ication 20.48 mm from the base.
The real (b) and imaginary (d) parts of the BM atknice are also presented. Active
responsesy(= 1) are shown with a solid line, whereas pass#gponsesy(= 0) are shown
with a dashed line.

2.3.2 Micromechanical stability analysis
If a linear system includes active feedback, thsréhe possibility that it may become

unstable such that its response grows without bourdhalyzing the stability of the
micromechanical model can provide insight into biedaviour of the coupled cochlea. It
has been theorised that the spontaneous emissgmuntl from the cochlea is indicative of
unstable oscillators in the cochlea (e.g. Duke aidicher, 2003). It should be noted,
however, that the stability of the individual miarechanical elements gives no guarantee
of the stability of the coupled cochlea, as exmdinn more detail in the next chapter.
Furthermore, though it is possible to determine fileguency response of an unstable

system, such a result does not have physical ggnde and may lead to the
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misinterpretation of calculations. Thus, it is essary to determine if isolated
micromechanical elements are stable or not.

According to classical control theory, a systent thaludes active feedback can be
classified in terms of its planGj, and its feedback mechanisht)( A Nyquist Diagram is
a plot of the product of these quantities on rea anaginary axes, which varies with

frequency. A general and isolated feedback loghawvn inFigure 2.9.

.................. o G -

A+

A

H

Figure 2.9: General diagram of a feedback loogainimg a micromechanical controller.
The dotted lines represent the system input anpubptaths.

For the Neely and Kim system, the pldatand feedback mechanishkh are derived in

Appendix Band are given by:

_ (%) :[ Z, J (2.10)
P(X) (Z2Z+Z2Z+ 22
and
H=-yZ,(x). (2.11)
The quantityGH is referred to as the open-loop transfer function:
GH = —yz{ Z; J (2.12)
22,+ 2,2+ ,Z,

The open-loop function can provide a means of deteng the closed-loop stability of an
active-feedback system; this is accomplished ugiegNyquist Stability Theory (Phillips
and Harbor, 2000). A Nyquist Diagram is a plotttkhows the real and imaginary
components ofcH as they vary with frequency; this is shown for theeromechanical

system in Figure 2.10.
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Figure 2.10: Plot of the open-loop transfer funttiGH, for the micromechanical
oscillators at several positions along the cochléa.‘x’ marks the -140 location. Only
positive frequencies from 20 Hz to 50 kHz are shéwovrclarity.

It is clear from Figure 2.10 that some locationsngl the cochlea operate quite close to
instability at a gain of = 1. In general, for a given gain, the systenob®ses more stable
as one examines positions further towards the apéxe cochlea. As a system becomes
more stable, its response is less strongly amglifie

Given the open-feedback loop of a system, it isigaht to say that the system is
unstable ifGH(jo) crosses the real axis at or below the -1+j0 pointthe Nyquist
Diagram. The maximum stable gain of a systemus th

-1

Vivax (2.13)

GH |;m1,|m{GH}=o '
In classical control theory, the closed-loop enleament provided by a feedback

controller is given by:

Enhancemerft dB=20log,, 1 . (2.14)
1+GH |,_ imferj=o

Equivalently, when equation (2.13) is combined wiii4),

Enhancemert dB=20log,, (M] (2.15)

ymax _l
Figure 2.11 displays the minimum gain values betbesisolated micromechanical system
is driven into instability as a function of positi@long the cochlea, in addition to the

predicted enhancement provided by the active mestmawithy = 1.
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Figure 2.11: Isolated enhancement giyenl (solid line, left axis) and minimum values of
gain, vy, that lead to instability for various position®ad) the cochlea (dashed line, right
axis).

The predicted values of gain that lead to instgbdan be tested by examining the
frequency response of a system with different gaidg a location of 20.48 mm, the
stability analysis predicts that the model will bee unstable at = 1.485. Figure 2.12
shows the admittance at this location given sewalales ofy above and below this value.
While the change in the magnitude of the calculadnhittance is almost imperceptible
when the gain is increased fron= 1.48 toy = 1.49, the sign of the phase flips suddenly

above the resonant frequency; this indicates Heasystem is unstable.
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Figure 2.12: Calculated admittance of an isolate@amechanical element as a function of
frequency aix = 20.48 mm for 3 values of The magnitude (a), phase (c), real (b) and
imaginary (d) parts of the BM admittance are alilgented. Active and stable responses (
= 1.48) are shown with a solid line, active andtable responses € 1.49) are shown with

a dotted line, and passive responges Q) are shown with a dashed line.
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2.4 Cochlear Macromechanics

Up until now, the motion of the cochlea has onlgribeonsidered at the microscopic level.
The conventional macromechanical model of the @zlolan be visualised as a series of
independent oscillators that are coupled througtflthd. This idea is illustrated in Figure

2.13.

d 1"
| ‘ll
T Lpame®

BM

Figure 2.13: Schematic of a 1D box model of coahieacromechanics: detail view of the
conceptual construction of the macromechanics. Blespans the entire width of the
cochlear duct, and segments are coupled only byflthd. Reprinted from Hearing
Research, 145, Kolston, P.J., ‘The importance @fsphdata and model dimensionality to
cochlear mechanics,” 25-36, Copyright (2000), vaignmission from Elsevier.

The absence of direct structural coupling betwden rmicromechanical elements is a
characteristic feature of ‘classical’ 1-D modelstloé cochlea (de Boer, 1996). A number
of scientists have made arguments for various famiengitudinal coupling’ through the
mechanical structures of the cochlea (e.g. Fukaz2@@2), though many of the salient
features of the cochlea can be generated in asicismodel where the micromechanics
are locally reacting. Greater attention is giverhis point in the discussion, Chapter 6.

The longwave approximation assumes that the enefgy pressure wave only
propagates in the longitudinat-) direction along the cochlea, and not in radia) or
vertical ¢-) directions. This permits the reduction of thrdey of the model to a single
dimension. As a result, a one-dimensional waveaggpu can be written in terms of the
differential pressure across the cochlear partifpgn

0% py (%, @)

ox*
wherexrwy is the wavenumber of the travelling wave. The evaumber is a quantity with

+ Ko, (X, W) py (X W) =0, (2.16)

units of inverse distance and is the spatial ansdayg frequency. For instance, a TW with
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a short wavelength would have a high wavenumbet, @3 a tone with a short period
would have a high frequency. The wavenumber etedlto the impedance of the cochlear
partition by

KTWZ(X,C{)) =ﬁ6){:pa)), (217)
cp\ /M

where H is the height of the fluid chamber, and the density of the cochlear fluid. A full
derivation of the wave equation in a cochlear tnaission line can be found, for example,

in de Boer (1991). A boundary condition is sethatbase of the cochlea:

op .
o= _
o Jaﬁust' (2.18)

where the stapes velocity () is specified. Similarly, the boundary conditian the
helicotrema is given in this model by:
py| _, =0. (2.19)

x=L -
It should be noted that in most 1-D formulations dascribed above, the apical boundary
condition is simply left as a pressure release.calt be modified to allow for a small
degree of damping to be added at the helicotreimg, teducing apical reflections at low

frequencies; this is described in Appendix C.2.

2.4.1 Numerical implementation of frequency domain
macromechanics
The macromechanical dynamics are modelled hereviolg the methodology outlined by

Neely and Kim (1986) and Neely (1981). The lengfththe cochleal() is divided intoN
elements, each of which has a lengthwhereA=L/(N-1). A finite difference method is
applied to adapt the spatially continuous wave tgoaand boundary conditions to
describe a discrete number of points. The wavatemu(2.16) can be rewritten using the

Taylor series expansion for the second derivatiye avith respect to:
pd(n+1)_2pd2(n)+ p:i(n_l)_ Z]Qp pd(n)ZO, (220)
A HZ,,(n)
wheren denotes which element of the 1D model is beinduatad. For instance, the

cochlear elements are representednby 2, 3, ...,N-1. The boundary condition at the
base, (2.18), can also be written using anothéefiaifference approximation:

Py (2) ~ Py (1)

A =-2jwou,. (2.21)

39



2 the Neely and Kim (1986) Model

At the apex, (2.19) is rewritten as

ps (N)=0. (2.22)
The wave equation and system boundary conditiondeaxpressed in matrix form:
(F-M)p,=q, (2.23)

wherebold font indicates the quantity is a matrik. is the tri-diagonaNxN element fluid-

coupling matrix,

A A 0
1 -2 1
1 Ce
F_F P : (2.24)
1 -2 1
_ O Az_
M is the diagonaNxN element mobility (admittance) matrix,
y. 0
Y_(2)
. cp
M = ZL—“’/’ | (2.25)
ch( N-1)
L 0 YH i
wherepgy is anNx1 matrix of local pressure differences,
I Py (1) ]
Pa ={ Pa(M) | (2.26)
| Pa(N) |
andq is theNx1 input matrix,
2jop, |
0
Q= | (2.27)
L 0 —
TheF andM matrices can be combined to yield a single trgdraal matrix T, such that
T=F-M, (2.28)
which, combined with equation (2.23), yields
Tpy =0 (2.29)
The distribution of pressure differences is thetamied by inverting :
p,=T7q. (2.30)
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2 the Neely and Kim (1986) Model

Note that the matrix-inversion is evaluated in MAAR. by applying the left-division
operator; this performs the inversion by Gausslanimation (Neely and Kim, 1986).
The BM velocity at any position can thus be cadted by taking the quotient of the

pressure difference at that location and the IG@&aimpedance,

. Py (% w)
X, W) = ———~. 2.31
&)= 5 ) (2:31)
The BM displacement is then found by integratinghe Laplace domain:
(0
& (% w) :%. (2.32)

2.4.2 Response of the coupled cochlea
This section presents some typical responses atdtipled cochlea to tonal stimuli. The

first plot, Figure 2.14, shows the pressure diffieee and BM velocity as a function of

position for generated by a 1 kHz excitation in Mead Kim’s coupled model.

190 ‘ ‘ ‘ ‘ ‘ ‘ 50 ‘
a) —_y=1 b)
__ 180 I
S y=0 \ 30
o 170t 1 )
3 \
8 160’ \ 10,
@ 150 \
L \ '10’
5 140 \‘ ﬁ
—5 130r 1
o0 \ 3 -30 \
120} \ v
110 f=1kHz ‘ Al ‘ 50 f=1kHz ‘ aug ‘
0 5 10 15 20 25 30 35 0O 5 10 15 20 25 30 35
Position along the cochlea [mm] Position along the cochlea [mm]

Opy [cycles]
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Position along the cochlea [mm] Position along the cochlea [mm]
Figure 2.14.a-d: Pressure (a, ¢) and BM velocitydjomagnitude (a, b) and phase (c, d)

given a 1kHz stimulus tone in the coupled cochleerg active (solid liney = 1) and
passive (dasheg,= 0) models.

41



2 the Neely and Kim (1986) Model

It is clear from both the pressure and the velo@gponse that the sharpness of the tuning
Is increased when the cochlea is active. The pbba#iee response is approximately the
same for both active and passive cases up untpeb& of the response, where the active
case lags behind the passive case by approximiaadfiya cycle. This behaviour is also
visible when the response is plotted as a funabiofrequency at a single location, as in
Figure 2.15.
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Figure 2.15.a-d: Pressure (a, ¢) and BM velocitydjlmagnitude (a, b) and phase (c, d) as
a function of frequency at the 1kHz characteriptace in the coupled cochlea given active
(solid line,y = 1) and passive (dasheds 0) models.

The gain in the magnitude of the response at angimeation along the mammalian
cochlea is one of the quantities that is commondasaredn vivo. According to Robles
and Ruggero (2001), the gain in BM motion provided the CA of a chinchilla is
approximately 45 dB at the base, and decrease2aalB toward the apex. Figure 2.16

plots the enhancement as a function of positiotfermodel used here. The enhancement
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2 the Neely and Kim (1986) Model

is defined as the quotient of the maximum activeoaity and the maximum passive

velocity at a given position along the cochleapasrfrequency.

L L
0 5 30 35

10 15 20 25
Position along the cochlea [mm]

Figure 2.16: Enhancement of TW motion in the codmlechlea.

Note the shape of Figure 2.16, in particular tharghise in enhancement near the base.
This is due to the widening region of active undargpof the TW with decreasing
frequency; at the very base, the TW is not stroaghplified because the spatial region of
active OHC contribution is small. This increasestnominal amount at approximately

= 3 mm, after which the other characteristics & thodel dominate the enhancement
curve. The shape of the enhancement curve is afitgiive agreement with published
physiological data, where it is approximately 45 atBhe base and decreases to ~20 dB at
the apex. The exact motion of the BM in the middfethe cochlea has not yet been
measured due to experimental restrictions; untithir advancements in measurement
techniques are made, it will be difficult to validdhe model in this region.

Numerous studies have, however, attempted to detertme exact relationship
between characteristic frequency (CIF)and distance from the basen the mammalian
cochlea. Greenwood published a review of relatedkvin 1990, and determined that a
previously derived equation of the form

F= A[lO”(S‘H) - k] , (2.33)
with parameters A = 165.4 Ha,= 0.06 mnit, andk = 0.88, gave reasonably good results
for humans. The frequency-to-place map of theeturmodel was tuned to approximate to

this equation, and is shown below in Figure 2.19.
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Figure 2.17: Frequency-to-place map of the model #re Greenwood function for a
human.

The model does a reasonable job of following thee@wood curve untik =~ 29 mm,
where the human tuning curve drops off in frequemoye quickly. It was found that this
effect could be replicated in the model by addingrger constant (position independent)
amount of damping toy(x), but this adversely affected other charactessticthe model
and was not applied in the final set of parameters.

Another feature that was deemed important herehasdalso been measured in a
variety of animals is the wavelength of the TWtafgeak. By definition,

2
Ref 7y (X.) ] :WZ,&))’

whereAtw is the wavelength of the TW which varies with bgibsition and frequency.

(2.34)

Combining equations (2.17) and (2.34) yields anresgion relating the wavelength to
cochlear partition impedance:
A(x,w) = Re[ %] 2. (2.35)

Figure 2.18.a-b shows the variation of the TW weargth as a function of both position
and frequency. As the tonally-generated TW profesgdown the cochlea, its wavelength
is long in the region where the impedance of thei§tiffness-dominated. As the local
stiffness decreases, so does the TW wavelengthenWhie wave approaches the resonant
position, the wavelength decreases sharply. Abho&igure 2.18.a shows that the

decrease ity continues apically beyond this point, the magrétodlthe TW is strongly
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2 the Neely and Kim (1986) Model

attenuated beyond this position; thus, the TW wevgth is only important from the base
up until several mm beyond the characteristic place

f=1kHz x = 1 kHz place (20.48 mm)
30

T T T T T .
NG —_—y=1 b) —_y=1
Q ==y=0 == y=0
s, k.
\\\ X

30

)\TW [mm]
)\TW [mm]

0‘10 L—") £0 £5 2‘0 2‘5 3‘0 35 O‘ﬁ
Position along the cochlea [mm]

i 10
Frequency [kHz]

Figure 2.18.a-b: Wavelength of the TW as a functiba) position for a 1 kHz tone, and b)
frequency at the 1 kHz characteristic place. Atlig’ denotes the wavelength at the
characteristic place (a) and frequency (b) whenl. The active case is shown as a solid
line, whereas the passive case is shown as a diséed

Similarly, Figure 2.18.b shows that the TW wavelénig long at frequencies lower than
the resonant frequency at a given location, asbtasal of those resonant places.

In order to calculate the wavelength of the TWtaipeak,A the CP impedance

peak’

of equation (2.35) must be evaluated at the chamatt location and frequency:

HZc (ch’wcf)
A =Re| | — ==/ : 2.36
pea(X) = Re \/ imp |7 (2.36)

where the subscrifff denotes characteristic frequency and place. iStp$otted in Figure
2.19.
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Figure 2.19: Wavelength of the TW at its peak &sation of position along the cochlea.
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The data of Figure 2.19 show that the peak wavé#teisgsmall at the base of the model
and increases roughly linearly toward the apex. isTtrend is consistent with
measurements and extrapolations made in other mntnaugh the exact characteristics
of the healthy human cochlear TW are as yet unmedsuvivo. However, the values of
Jpeakin this model are very close to the estimateshar® and Guinan (2003) based upon
their reverse-calculations from OAE data. Oneadhat Figure 2.19 does raise is that the

values of ) fall somewhat below 1 mm, the height of the coghlghannel, for much of

peak
the model. This presents a problem with the foatioh as the longwave assumption is
then violated; the implications of this predicamare discussed in Chapter 6.

The imaginary component of the TW wavenumber cawvige further information
about the system. By analysing the auditory neegponses of chinchillas and cats, Shera
(2007) empirically obtains TW wavenumber charast@s in all regions of
physiologically healthy cochleae. The real andgmary parts ofcry are referred to as
propagation and gain functions in the aforementom&nuscript. These quantities are
assigned the Greek lettatandy by Shera (2007), but as these are already resentbi
dissertation, they are simply referred to here has real and imaginary parts @tw,

D{KTW}, D{KTW} . Figure 2.20 illustrates how the propagation gaith functions vary as

a function of position at 8 characteristic frequeadn the model, similar to Figure 8 in
Shera (2007).

As previously discussed, the real part of the wawdrer is proportional to the
inverse of the TW wavelength. Thus, the valuethefsolid dark lines at the intersections
with the dotted vertical lines are equivalent tdig.a(X). As expected, the wavelength of
the TW reaches a minimum at the characteristicepfac most frequencies, though some
deviation from this trend is observed at lower tregcies which peak in the apex. In
addition, the magnitude of the real partxgfy is somewhat higher in Figure 2.20 than
Figure 8 of (Shera, 2007); this implies thal, is shorter in humans than in chinchillas.
However, when the feedback gain is set to zerorghkpart of the TW is much lower in
magnitude. This verifies thaty varies considerably in the model as a function. of

The imaginary part ofry is referred to as the ‘gain’ function in Sheraq2)) as it is
determines whether the amplitude of the TW is iasiegy or decreasing. This can be

related back to the expression faty in the model. The sign of the real part of the BM
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impedance, which is related to the damping, is @rtbpnal to the negative product of the
real and imaginary componentsxfy, as given in equation (19) of Shera (2007). Thus,

becauseD[KTW(a))]>Ofor all regions of the cochlear model, the postiowhere

O &rw (@) ]| >0 correspond to the region of negative damping. s Tain be seen when

comparing Figure 2.20 to the real part of the Bvhdtance, illustrated in Figure 2.7.b.

Characteristic frequency [kHz]

14 0.7 0.4 0.2

— 0Ky, V=1
12 — 0Ky ¥Y=1]
10 ===0(kp,), Y=0}

Real and Imaginary parts of Ko [1/mm]

141 184 22.8
Position along the cochlea [mm]

Figure 2.20: Real (dark lines) and imaginary (giags) components of the wavenumber
for the present model. Solid lines represent tiwa (y = 1) results, whereas dashed lines
represent the passive € 0) results. Dotted vertical lines mark the elaéeristic places
and frequencies of the stimuli in the coupled ceahl

Another important quantity that has important copsasces for OAE analysis, also
related to the wavenumber, is the group delay ®ftW,trw. The group delay, which is a
function of characteristic place and frequency gitieat the cochlea is a dispersive system,

is given by

(@ dRel k.
(00 ) = [ TS 237

(e.g. Moletiet al, 2005). Figure 2.21 displays the cochlear grdelay as a function of

position in the active and passive models. Thenkat is plot along the horizontal axis in

47



2 the Neely and Kim (1986) Model

order to facilitate comparisons between these dedayl the propagation of TWs in time

domain simulations, as shown in the next chapter.
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Figure 2.21: Distance to the characteristic pleca &unction of cochlear delay. The active
response is shown as a solid line, whereas thévpagsponse is shown as a dashed line.

The data shows that the group delay is longer whersystem is active compared to when
it is passive; this is consistent with physiolodicaneasured results (e.g. Recio and Rhode,
2000). Another feature of interest is how manyleycof phase change a tonal TW
experiences from the base to its characteristioepla

Figure 2.22 shows the total phase accumulated &yI'tW between the base and a
given characteristic place as a function of freqyethese results are generated by taking
the difference between the BM velocity’s phase #&ghe characteristic place and the

phase lead at the base.
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Figure 2.22: Total TW phase accumulation from thsebto the characteristic place as a
function of characteristic frequency.
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Finally, the variation of the model's responsecaculated as the number of
micromechanical elements in the cochlear modatgseased. Although it can be argued
that the cochlea is by nature longitudinally diserewing to the individual rows of OHCs,
the rows are typically ~pm apart (Pickles, 2003). This would require dimglthe human
cochlea up into approximately 7000 segments toter@a ‘accurate’ model by this
reasoning. It can be shown, however, that incngasihe number of points beyond a
certain limit has little practical value. Furthesra, atN = 500, the discretisation size is
less than one tenth of a millimetre; this represenspatial sampling rate that is more than
sufficient to meet the Nyquist criterion of thissggm, given the wavelength of the TW at
its peak. Figure 2.23 shows the cochlear respanseveral frequencies for three different

values of\N.
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===N = 1000
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Figure 2.23: Variation of cochlear response givevesal values of spatial discretisation
size.

At N = 250 points, the response exhibits atypical bighanat higher frequencies. The
magnitude and phase are indicative of spuriougcgidins in the cochlear model that lead
to system instability. AN = 500 points, the response is smooth. Doubhnggain to
1000 changes the response by less than 1 dB agietlle However, wittN = 250, the
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frequency response at 1 kHz looks normal. Thisemadl ambiguity regarding the

observed instability of the frequency domain madebne of the reasons why there is a
need for a formulation which can unambiguously deiee the stability of the fluid-

coupled cochlea, as opposed to just that of indalidnicromechanical elements.

This
matter is addressed in the following chapter.

50



3 State Space Formulation

Chapter 3

State Space Formulation

Many of the salient features of the biological deeh such as its wide dynamic range and
the compressive growth of BM motion at moderatenglis levels, are believed to be
partly due to the nonlinearity of the CA (Pickl@f03). This key feature is omitted in
many models because it greatly complicates anadygishnonlinear responses are also often
time-consuming to simulate. Toward the beginnihdhts investigation, a first attempt
was made to study the compressive behaviour otdlchlea by implementing Kanis and
de Boer’s (1993) quasi-linear model.

The quasi-linear approach seeks to approximateimeanl behaviour in a linear
frequency domain model of cochlear mechanics. Inutshell, this is accomplished
through an iterative process that evaluates treafiBM velocity and a compressed OHC
pressure in order to generate a quasi-linear CRdamuce; this then becomes the basis for
the next iteration of linear and compressed resutisl the responses converge. This
procedure has the advantage of computational spe®dall of the calculations are
performed in the frequency domain. However, thisthadology is still restricted to
analysing steady state responses to tonal stimwhile many interesting features of the
cochlea are only transiently expressed. Furthezntbie application of this framework to
the Neely and Kim (1986) model generated frequeasponses that seemed indicative of
reflections and instability. This revealed thedhéar a rigorous test of a model’s stability,
as instability in a frequency domain model invalegaits results.

While procedures exist to check the stability afgiuency-domain models, these

methods often involve calculating the system’s diertpy response at many different
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frequencies to examine its causality. It is difftcto formalise these tests for discretised
cochlear models as each individual segment mayugednany hundreds of frequency
responses. This is of particular concern givemn mioanerical effects, such as truncation in
the frequency domain, will also lead to the presemitsmall non-causal components. The
solution adopted in this investigation was to rée¢hs Neely and Kim model in a format
known as state space, which is capable of unambgiyaletermining the stability of the
model.

The state space model is introduced in Section Bslconstruction is described for
both isolated micromechanical elements in Sectio2, 3and the fluid-coupled
macromechanical system in Section 3.3. The stabdi both micro- and macro-
mechanical systems is discussed as the feedbackigyaicreased. The stability is also
studied for non-uniform distributions of feedbackirgin the coupled model. In Section
3.4, frequency domain simulations generated bystage space model are shown to match
the responses of the frequency domain formulatiinally, both linear and nonlinear time

domain simulations of cochlear responses to toreprasented in Section 3.5.

3.1 Formulation overview

The state space approach is inherently set initiieedomain. The dynamics of a system

are expressed as a set of coupled first-orderrdifteal equations and arranged in vector-

matrix form. In the following subsections, the straction of the state space formulation

of Neely and Kim’s (1986) discretised cochlear mad@resented. The standard form of

the state equations of a linear time-invariant @agalystem is given by
x(t) = Ax(t)+Bu(t)

y(t)=Cx(t)+Du(t)’
where bold letters represent vector-matrices (iBkilland Harbor, 2000). In these

(3.1)

equations,

x(t) is the (nx 1) vector of the states of amh-order system,

A is the (m x m) system matrix that contains the mechanics ofribdel,
B is the (n x r) input matrix that scales tli@nput(s) to the system,

u(t) is the ¢ x 1) input vector composed of the system inputfioms,

y(t) is the p x 1) output vector composed of the defipealitputs,
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C is the p x m) output matrix that selects the output state©iefmodel, and

D is the p x r) feed-through matrix that passes the input digdctthe output,
wherem, r and p areintegervalues that describe the dimensions of the vectdrioes.
Given this format, the stability of the state spagstem can be determined by calculating
the eigenvalues of the system matAx,as explained in greater detail below.

Subsection 3.2 shows how the cochlear micromecbaran be set in the standard
state space form. The stability of the micromedt®rsystem is then investigated in terms
of its poles and zeros, as generated by the gtatesnodel. Subsection 3.3 then describes
how the boundary conditions and fluid-coupling asst@d with the macromechanical
model are set in matrix form and combined withth# micromechanical models, thus

yielding the complete state space model of theleach

3.2 Isolated micromechanics

The Neely and Kim (1986) micromechanical model is axtive second-order system
which has two states associated with each degréeedom, a single input, and a single
output. Thus, for the isolated micromechanical elooh = 4,r = 1 andp =1. The four
state variables are chosen to be the velocity splatement of the BM and TM:
& =%(1)

&=%(1)
&=%(t)
&=x%(t)

The notation representing BM and TM motionxasand x, is adopted here to maintain

(3.2)

consistency with standard control theory conventidnexpressing states as Note,
however, that the overall vector of state variab@gs should not be confused with the
longitudinal spatial variable, which is not a function of time.When these four states are

vertically concatenated, the state matrix is formed

[ %(1)]
t

x,=| 5] (3.3)

% (1)

1 %(t),

where the subscript corresponds to the index number of the elemerthéncochlea.

When the time derivative of equation (3.3) is eas#ddl, the state matrix becomes
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%
1 (3.4)
(1)),

where % (t) and %, (t) represent the acceleration of the BM and the Tédpectively.

Solving the equations of micromechanical motiontfe BM and TM acceleration yields

Xl:i{pd(t)ﬂyy[g('><z(t)-X('))’f k( %(3- % ))]} 5)
m =% (1)(c+ &)= x()(k+ k)+%() o+ f ¥ K |
and

%= {5 (0(e+ &)= %Akt )+ () &+ o ¥ § (3.6)

m,
as derived in Appendix B.4. Recall that the micestranical parameters vary as a

function of position. This notation is supprestede for convenience. The standard state
space form can be rewritten to describe the micobvaeics of a given element in the
discrete model of the cochlea:

X, (t)=AX,(t)+B p,(t). (3.7)
When the components of equations (3.5) and (3é&¥aparated into the form of equation

(3.7), the micromechanical system matix, and input matrixB,, are defined as:

[ (ato-ore) (ktk-ok) c-yo  keyk |
my m m m
) 1 0 0 0
A, = S ks (ete)  (ktk)
, (3.8)
m, m, m m
0 0 1 0
L —in
and
1
m
B.=| 0 (3.9)
0
0 n

The output of the state space model is set aBtheelocity. Rewriting the second

line of equation (3.1) yields

&, (1)=% (1) =Cx,(t)+D,py(1), (3.10)
where
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C,=[b 0 0 (, (3.11)
and
D, =0. (3.12)
This completes the expression of the micromechlnicadel in state space form.
However, looking forward to the coupled systemijsitclear that the middle ear and
helicotrema elements must also be expressed instiwedard format in order to be
compatible with the rest of the model.
The equations of motion for the middle ear and lieécotrema, solved for the
acceleration of the element, are given by
£ ()= P ()=o)~ ki o )] (3.13

m

and

£, (t):m_lH[pN (1)~ (1)]. (3.14)
where &, (t) and &, (t) represent the displacement at the stapes anatnetita, angb(t)
andpn(t) represent the pressure at the stapes and hehtatr A small amount of damping
Is added to the helicotrema boundary in order tluce apical reflections. Following the

same procedure as outlined above, the state spaitees for the boundary elements can

be expressed as

X, (t) = Ax,(t)+B,p,(t), (3.15)
and
Xy () =A Xy (t)+B (py(t). (3.16)
where
xl(t)=[fm] (3.17)
$m
,
Xy (t) L{J, (3.18)
T Ky
Al{mn My |, (3.19)
1 0
<
A, =| my , (3.20)
1 O
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1
B,=| m, |, (3.21)
0
and
1
By=lm, |. (3.22)
0

3.2.1 Stability: poles and zeros

It is possible to determine the stability of a mlode state space form quickly and
unambiguously. A short digression back to the si@nfunction representation of the
micromechanical system will provide a more solidugrding for the discussion of how the
state space model accomplishes this. Rearrangidgewriting equation (2.2), the CP

admittance, in terms of the Laplace variaBlec +jo, gives
& (s) b(Z,(9)+ z(9)

Y, ()= = . (3.23)
p.(s) ofz(I[z(9+ 2( 3]+ 2(H 4 )sv X))

Equation (3.23) is a transfer function of the form

=N _ (s 2(s 2.(s 2)( s}
M= ™ = (= D= m)(s @ (824

where K is the real-valued gain of the system, and the erator, N(s), and the

denominatorD(s), have been factored such thatztseare the roots of the equation

N(s)=0, (3.25)
and defined to be the systemros and thep’s are the roots of the equation
D(s)=0, (3.26)

and defined to be the systgroles(Phillips and Harbor, 2000). The poles and zeffos o
system must come in pairs that are either purelaecomplex conjugates of each other.
Whens tends to any of or p;, the magnitude of the transfer function tends éoozor
infinity, respectively:
Isi[nz H(s)=0
im H (5) =0 (3.27)
The poles of a system are especiallg/nimportanhay tletermine the unforced response of

a systemy(t); this can be written as a sum of contributiomsrfrdifferent modes:
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y()=Y cer, (3.28)

where the coefficient€; are dictated by thle:linitial conditions of the syst(Levine, 1996).
Defining O{p} =0 and O{ p} =, it is apparent from equation (3.28) that the

envelope of the system response in time will eitteeistable and decay awayif< 0, or
unstable and grow exponentiallyaf > 0. However, poles may also be complex causing

the response to oscillate. Thus, poles may caugilto the unforced response of the

system in four ways which are illustrated in FigBr#.
AT~

X » (s} =0

«<—— stable region unstable region ——>»

Figure 3.1: lllustration of the effect of poles, nked as ‘x’s, upon the unforced system
response. The real axis is plotted horizontallg #e imaginary axis is plotted vertically.
Reprinted with permission (Hardt, 2008).

In summary, the positions of the system poles deter whether the system is stable or
not.

The poles of the state space model are readilyrrdated by calculating the
eigenvalues of the system matr¥, In addition, the zeros can also be determined by
solving

det 2 A Bl 3.29
e ol (3.29)
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for z, (Levine, 1996). Though the system poles dictageunforced response, the zeros
will have a significant impact upon the driven r@spe. The admittance of the Neely and
Kim (1986) micromechanical model has 4 poles az@r®s. Atx = 20.48 mm, there are
two complex conjugate poles @t = -856 £j5790 and two poles on the real axipat -
7000 andp, = -26620, whereas the zeros of this element’s tidnue are located at, = -
800 £j5000 andz; = 0. This is illustrated in Figure 3.2.

The transfer functionti(s) can be solved for ang but the solution fos = jo is of
primary interest as this represents the frequeasyanse of the system. The magnitude of

the frequency response, as rewritten from equdfdd), is

i)l = |_|in;1|(jw_zi)|. )
H (jw)|=K A7 Ga=p) (3.30)

Equation (3.30) is commonly interpreted geometiycalAs the driving frequencya) is
varied, the distances between thejs Ppoint on the imaginary axis and the poles andszero
in the complex s-plane also change. The produdhefdistances fronjw to thez’'s
divided by the product of the distances frgm to the p’s determines the relative
magnitude of the response at different frequenchgs.example is given in Figure 3.2 that
illustrates the distances from the poles and zefoNeely and Kim’s micromechanical
model (atx = 20.48 andy = 1) to several frequencies on the imaginary ax@ath the
passive and active stability and the magnitudehefadmittances are plot in Figure 3.3 to
motivate this discussion. Note that the positidnttee zero does not depend on the
feedback gain, and almost overlaps with a polbéénpassive system.

In Figure 3.2.a, the response is strongly dominatethe zero at the origin. As the
frequency is increased, the admittance beginsdw gvith distance away from the zero at
the origin and closer proximity to the poles. At $4000, the closest pole or zero is the
zero atz = -784 +j4192, which results in a local decrease in adnotann Figure 3.2.b,
the pole atp = -856 +)]5790 dominates, and a strong peak is generatedionBethis
frequency, the magnitude begins to decrease. gkt fiequencies, the fourth pole, located
at p = -26,620 40 and omitted from panels (a) and (b) for clariiggins to dominate as
the other three relatively closely-spaced poles zrds cancel each other out. Thus, a
frequency ofs = j5790*50 only ‘sees’ this single pole; just as proiy to a pole

reinforces the admittance, distance from it dintiesits magnitude.
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Figure 3.2.a-c: Poles and zeros of Neely and Kimisromechanical modekith y = 1.
Arrows indicate distances &) set to 3 frequencies. Light and black linesdrevn from
the zeros and poles, respectively. A heavy lineotks the dominant pole or zero in each
case. Note that the scale of panel (c) is zoomethpa factor of 50 relative to (a) and (b).
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g
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O Zeros
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Figure 3.3: Active (—) and passive (--) admittarefethe BM atx = 20.48 mm, as in
Figure 2.8.a. Also superimposed are the pole anal in this region. The zero is denoted
by a filled circle, whereas poles are plotted gsapxd (¥) given active and passive gair
Note that the axes of the poles and zeros haverogsied, as shown in Figure 3.4.

Figure 3.4 shows how Neely and Kim’s (1986) microhmmical pole positions
change as the feedback gapm,is varied fromy = 0 toy = 2, atx = 20.48 mm. As
predicted by Figure 2.11, this element is unstabje> 1.485.
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Figure 3.4.a-b: Plot of the zeros and poles ofrtiieromechanical admittance at 20.48
mm along the cochlea given variations in feedbaaik,gy. Results are shown in the a)
standard form, and b) the adopted ‘stability pfotmat.

The first thing to notice about Figure 3.4 is tha traditional method of showing
poles and zeros is the plot in the (a) panel witle, real axis set horizontally and the
imaginary axis set vertically. As the complex odways appear on the real axis or in

conjugate pairs, the negative frequencies can beahirom the diagram without any loss
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of information. Furthermore, the imaginary axisr@s units of frequency in radians per
second, which does not give much physical insigtd the system. For this reason, panel
(a) is flipped across the vertical axis, rotatedd®@@rees clockwise, and the units along the
imaginary axis are converted to kHz. This resushown in panel (b). This allows direct
comparison with frequency responses, as in FigLee Bo maintain the consistency of the
units between the axes, the real axis is expraasederse ms. From this point forward, a
plot of poles in the format of Figure 3.4.b is reéel to as a ‘stability plot,” as poles must
fall below the horizontak = 0, axis for the system to be stable.

The two pairs of poles correspond to the natuegjdencies of the passive system, as
described in section 2.2. For instance, the polethe real axis give rise to the heavily-
damped higher frequency peak of the BM admittamdesreas the lightly-damped lower
frequency peak of the TM admittance gives risehtodonjugate poles of Figure 3.4. At
= 0, a complex zero almost exactly overlaps wittomplex pole in Figure 3.4.b. Thus, at
near-passive gains, the effect of the pole is gffely masked by the zero. This is seen in
Figure 3.3, as there is no discernable changeeip#éssive admittance near the frequency
of this pole when the system is damped. A smailtian is visible in the underamped
response of Figure 2.4.a. At= 1 (where the pole is marked by an ‘x’), the paleves
steadily away from the zero and increases in freque Thus, the magnitude of the
response will still be small near the frequencytloé zero at non-passive gains, but
sharpened near the frequency of the complex plkeaccounts for the dip at 700 Hz and
the peak at 1 kHz of the active admittance. Rdball the position of the zero does not
depend on the feedback gain,yadoes not appear in the numerator of equation 3.23
the gain is further increased, the pole moves el@ser toward instability and reaches the
boundary of stability af = 1.485, which is consistent with Figure 2.11 &iglre 2.12.

As discussed previously, the magnitude of the feegy response will depend on the
quotient of the distances between jow and the zeros and poles. Increasing the gaineof t
system causes one or more poles to move towaridhdganary axis. When a pole falls on
the imaginary axisg{ = s = Hw), the denominator of the transfer function goeseim and
the response tends to infinity as shown in Figul® .2 However, when the gain is further
increased, the pole begins to move away from theginary axis and into the unstable
region wheres > 0; this causes an apparent reduction in the maggmof the frequency

response and a reversal of its sign. This frequelvsponse has, however, now lost
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physical validity as the true response in time setaard infinity. Calculating the pole
positions for a linear system is the most reliab&thod of determining its stability.

The positions of the poles can convey more infoionathan simply if the system is
stable or not. For instance, a second-order systam be described by its natural
frequencym,, and its damping ratid; the latter is a dimensionless quantity that dbssr
if and how a system oscillates following an initerturbation. Geometrically speakirdg,
is the ratio of the negative real component of k& po its distance from the origin. Thus,

the damping ratios of the poles of a systpr, o; +jw;, are

wherea is the angle formed between the negative-realdra#f of the s-plane and the pole

(3.31)

in question (Phillips and Harbor, 2000). Wher 1, the pole pair has two distinct real
solutions and the response is referred to as ownwydd; this response decays
exponentially. Whed = 1, the pole pair has two identical real solusi@md the response
is referred to as critically damped. When @ < 1, the two poles have both real and
imaginary parts which are complex conjugates oheaber, and the response is referred
to as underdamped; this response oscillates arayslesvay. Whel = 0, the pole pair
has only imaginary components which are complexjugates of each other and the
response is referred to as conditionally stableth&s unforced response rings at the
frequency of the poles and neither decays nor greistime.

In practice,( is useful as it allows for the comparison of tlesponse of various
poles at different frequencies. Lines that rad@mievard from the origin of the stability
plot indicate a constant damping ratio. This israglified in Figure 3.5 which
superimposes the poles from four separate microamécél models onto the same stability
plot. Figure 3.5 indicates that there are a pdirowerdamped poles and a pair of
underdamped in each micromechanical system. Asnberdamped poles have smadier
than the overdamped poles of each location, hisdscillating and decaying motion that
will dominate the unforced response. Panel (bwshthat the damping ratios of the
micromechanical system tend to decrease at positiat are closer to the base.

Figure 3.6.a-d shows all the poles of the 500 uplsalielements on a single stability
plot for the passive and the active cases. Althahg plot appears to show a continuous

line, there are actually many individual poles. e3& are distinctly visible at the higher
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frequencies. The upper ‘arm’ of underdamped pbks a near-constant damping ratio
when the system is passive, as shown in the Figé@. Whery is increased to 1, the

damping ratios of the underdamped poles begin tg. vd is fairly constant at higher

frequencies in Figure 3.6.b, but increases as Idre@guencies (positions near the apex) are
examined. This is due to the relatively strongentdabution of the damping parameters in
each element near the apex compared the lzasg, for example, has a constant term that
does not vary with position which makes it more dwnt near the apex, as the other
parameters are still decreasing exponentially.uféig.6 includes a single underdamped

pole near 1 kHz that corresponds to the middldeandary element.

20r 1r
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Figure 3.5.a-b: Plot of isolated, active micromatbal poles at four positions along the
cochlea. Two more poles at further negative rediles beyond the-axis limits are
omitted for clarity. Differently sized ‘x’s denotbe poles from different positions along
the cochlea. b) zoomed-in view of the four underded poles near the boundary of
stability; dashed lines indicate locations of cansf for the underdamped poles.
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Figure 3.6.a-b: Isolated micromechanical poles fugether at one gain given passive (a)
and active (b) models.
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3.3 Coupled macromechanics

In order to express Neely and Kim’s (1986) coupteatromechanical model in state space
form, it is necessary to return to the boundaryddmns and the wave equation that
underpin this system. The same procedure of discrg the equations presented for the
frequency domain model in section 2.4 is carrietl lmere with one notable difference:
these equations are now expressed as function® @@ boundary accelerations in order
to comply with the requirements of the state spBwenulation. Following this, the
macromechanics are again set in matrix form. Tlaeromechanical matrices are then
combined with the micromechanical matrices setatesspace form to generate a coupled
state space model of the cochlea.

Rewriting the one-dimensional wave equation of éqna(2.16) in terms of the
radially averaged acceleration of the cochleartuamtyields

azp(t)—%pép (t)=0, (3.32)

x>
where QO is the density of the cochlear fluids aHds the height of the canal above and

below the cochlear partition, which is assumedédocbnstant. Although botlp(t), the
pressure difference across the cochlear partitemg Ep (t) the radially-averaged

acceleration of the cochlear partition, are funwiofx, the dependence is suppressed here
for notational convenience.

Similarly, the boundary condition for the wave etipa at the basal end presented
in equation (2.18) can be written in terms of theederation at the stapes:

op(t)] .
w0 —20e0) 39)

where & (t) Is the acceleration of the stapes footplate. Thhstwo linearly superposing

components: the unloaded paft,(t), which is the acceleration due to an external
stimulus, andé.(t) , which is the acceleration due to the loadinghmy internal pressure

response in the cochlea at 0. Thus, equation (3.33) may be written as

DU 20, (1) = 208, f0). (334)

At the other end of the cochlea, the helicotremanidary condition can be written as
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ap(t) .1
— =2 +— Py, 3.35
I 3 o P (3.35)

x=L

where &, is the effective fluid acceleration at the helieata. This nonstandard

expression allows for a small amount of dampingeadded at the apex. The full details
and implications of this revision are discussedppendix C.2.

As in Chapter 2, finite difference approximatiorencbe applied to discretise the
spatial derivatives in equations (3.32), (3.34) €085):

Paa (1) -2 pnz(t)+ Pus (1) 2P (t)=0, (3.36)
A H
P, (t)g Y _, pEan(t) = 208 (1), (3.37)
and
H|A A N o
E{ﬁ pN—l(t) _(F_Fj Pn (t)} =2p8y, (3.38)
respectively. Equations (3.36) through (3.38) lbarwritten in matrix form (Neely, 1981):
Fp(t)-E(1)=a, (229

wherep(t) and%(t) are the vectors of pressure differences and el@haccelerations;

is the finite-difference matrix (also referred ® the ‘fluid-coupling’ matrix) and] is the

vector of source terms. When the matrices are redguh equation (3.39) in this case

becomes
o w N UNRE AT
! 2 L Pt) | | &) | O
0 1 -2 1
H .. . .. . o]
2002 : : : e R (340)
1 -2 1 0
1 -2 1 pN—l(t) gN—l(t) 0
0 & AR e & 0

In order to combine the macromechanics above \nilstate space representation of
the micromechanics presented in the previous stibsethe isolated elements must be
collected in the combined matrix equations:

x(t)=Ax(t)+Bp(t), (3.41)
and
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&, (t) =Cex(t), (3.42)
where the vectors are defined as
X =[x (t) X)) () x(t) ], (3.43)
EM)=[ &) &) - &al) &) ], (3.44)
and
)= n() m() - R A()] (3.45)

where the superscript T denotes the transposeeofriaitrix. The elemental matrices,

which are block diagonal, are defined as

_Al ; _
0 A,
A. =| : :
E AL 0| (3.46)
_Bl ; -
0 B,
Bg =| ! :
By O | (3.47)
0 By
and
C, 0
0 C,
C. =| : :
E
Cow O |° (3.48)
0 Cy

Solving the macromechanical equation (3.39) forpitesssure matrix, gives
p(t) =F7E(t) +F (), (3.49)
whereF? is the inverse of the fluid-coupling matri%, Note from equation (3.42) that
&, (t) is equal toC_x(t), so that
p(t) = F'Cox(t) + F'q(t). (3.50)
Substituting this result into equation (3.41) alowhe fluid-coupled cochlea with

distributed micromechanics and dynamic boundanditmms to be written in the general
state space form,

x(t) =Ax(t)+Bu(t), (3.51)

where
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A=[I-BFT A, (3.52)
B=[1-BFC.| B, (3.53)

and
u(t)=F™q(t). (3.54)

Off-diagonal terms are generated in the systemixp&r when the uncouplefle matrix is
multiplied by the quantity | -B = ‘JCET in equation (3.52); this effectively allows the

previously isolated micromechanical models to dffee dynamics of nearby elements.

3.3.1 Stability: uniform variation of y(x)

The stability of the coupled cochlea is only byedikamined in the following subsections.
Much greater attention is given to the underlyiagses and characteristics of instability in
the next chapter, which is concerned with spontas@onissions.

The poles of the coupled model are determined enettact same manner as those
of the isolated micromechanical model in state sphyg calculating the eigenvalues of the
system matrix,A. While simple to compute in state space, the @ much less
straightforward to calculate from the coupled freigqey domain model, hence the need for
this formulation. Conversely, the zeros of theestpace model, as given by (3.29), are
extremely time-consuming to determine when thesstaatrices are large and are omitted
from the discussion here. Figure 3.7 shows the@han pole positions as the feedback
gain is uniformly varied as a function of position.

Going from the passive model, shown panel (a),hto dctive model, shown in
panel (b), of Figure 3.7, shows an upward stretclrequencies of the upper ‘arm’ of
poles, from a maximum of approximately 16 kHz tokBz. As with the isolated system,
the upper arm of poles moves upward toward the deynof stability as the gain is
increased. However, the system now becomes uasaépk 1.06, which is less than the
lowest value of minimum unstable gain for the issdamicromechanical systeny €
1.18), as shown in Figure 2.11. As expected, {fstemn becomes more unstable and
further un-damped across a wider range of freqesnas the gain is further increased
(Figure 3.7.d); the coupled cochlear model is ¢yeanstable af = 1.20.
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Figure 3.7.a-d: Stability plots of the coupled stgppace model: g)= 0, system is stable;
b)y = 1, system is stable; ¢ 1.06, system is unstable;yd¥ 1.20, system is unstable.

3.3.2 Stability: step change in y(x)

It has been previously reported that non-smootiatrans in CP impedance as a function
of longitudinal position can result in instabilityAlthough such inhomogeneities could
result from variations in any of the physical paetens in the micromechanical model, the
feedback gain is perturbed here to illustrate fifeces on stability. A step change in the
feedback gain as a function of position representsimple spatial discontinuity; the
stability of the coupled model given a step chafmges y = 1 toy = 0.9 and vice versa at
approximately 11 mm is presented in Figure 3.8.a-d.

Figure 3.8 shows that the system is unstable fb0% step decrease in gain at 11
mm, but remains stable for a step increase in gesm y = 0.9 toy = 1, at the same

location. The lower panels, Figure 3.8.c-d, slemlarged versions of the upper graphs at
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approximately 4 kHz. Examining the upper arms a@kp in Figure 3.8.b, it is clear that
the poles at frequencies above 4 kHz (the CF ataiteion of the discontinuity in gain)
are more damped than those of the same regiorgird-8.8.a; this is consistent with the
distributions of gain in the two models. It is@isotable that there is a seemingly-regular
spacing between the poles that move toward ingtgkaks shown most clearly in panels (c)
and (d) of Figure 3.8.
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Figure 3.8.a-d: Stability of two coupled cochleavduls given step changesyina) y(x <
11 mm) = 1y(x > 11 mm) = 0.9, system is unstable; ang(&)< 11 mm) = 0.9y(x > 11
mm) = 1, system is stable. Panels c¢) and d) shoamed-in plots of a) and b),
respectively.

3.3.3 Stability: random variation of y(x)

In most biological systems, there will be a degoéalevelopmental randomness in the
structures (e.g. Lonsbury-Martet al, 1987). In the case of the cochlea, the regylanit
the geometric patterns of OHC stereocilia may beeirfect, as shown by Lonsbury-Martin
et al (1987) who studied cochleae of rhesus-monkeyBe quantitative variability that
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exists in a human cochlea is unknown, so a rangepasturbations are applied.
Inhomogeneities are applied to the smooth spatightton of feedback gain with band-
passed random waveforms exhibiting a Gaussianildision. A 5" order Butterworth
filter was chosen for its characteristically flatgsband (Lineton, 2001).

Figure 3.9.a-d shows the stability of two modebs;hewith a different distribution
of feedback gains; panels c-d show the upper armotds in detail. The low corner
wavenumber of the bandpass filter used to deterrtiserandom spatial variations was
fixed at 35 mm, the length of the cochlea, in ordeavoid introducing large DC shifts in
the gain. The high corner wavenumber was setddfarent value for each model, one
close to the spatial discretisation limit thus gatiag a ‘rough’ distribution, and one closer
to the low corner wavenumber thus generating a &hiaistribution. A more rigorous

definition of ‘rough’ and ‘smooth’ distributions istroduced in the next chapter.

20 T T T T 20 T
a) b)
0 ee o v
ET' L EE TR R Y IO N SR )
AN '
el .
i
208 ¢
. "
—
"o 1 1
= -40;
f=% =05 =05
b
0 . . 0
soft - 0 10 20 30 60 . . 0 10 20 30
- . Position along the cochlea [mm] 7 - Position along the cochlea [mm]
H
-801 -80
i
:
4 3
M) - -
1005 ———3% 10 15 20 25 W ——5 4 6 & 16 2 4 16 18 2
Frequency [kHz] Frequency [kHz]
1 : 1 : : :
c) -
.
~
¥ l"‘( A s .
WX wa A - Wt . .
. fs L R LA Somee® teus .
9 ‘ : .4'{ .0 ,‘. . * : M .
~ S . i .
— -* AN .
; .
[}
£-2 " . .
o P g
3! .
1.05 X lm
P . A 4 |
95 Aadhd
0 10 20 30 . 2% 10 20 30
Position along the cochlea [mm] e Position along the cochlea [mm]
.
-5 h Il L L L 58 " 1 L L L L L L L L
0 5 10 15 20 25 2 4 6 8 10 12 14 16 18 20
Frequency [kHz] Frequency [kHz]

Figure 3.9.a-dStability of two models given smooth (a, ¢) andglob, d) distributions
feedback gain. Panels (c) and (d) show a zoomedew of panels (a) and (|
respectively.
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While both rough and smooth perturbations of gaaveha 5% peak-to-peak
deviation fromy = 1, only the rough distribution generates indiigbin the model. Panel
(d) appears to show two distinct, linear trendpaies away from the origin—one with a
stable (positive) damping ratio and one with antafle (negative) damping ratio. These
characteristics are more easily interpreted givénamework of the underlying generation
mechanisms of instabilities in the cochlea, asgreexl in the following chapter.

3.4 Frequency domain responses

It is possible to generate frequency domain reggrieom the state space model, as
outlined below. This is not generally how frequgnesponses are computed as it is more
computationally intensive than simply using thegtrency domain model introduced in
Section 2.4. Nevertheless, it is a good check dmpare results between the two
formulations.

In order to find a frequency domain expression tfog states of the model, it is
necessary to take the Laplace transform of thergestte space equations given in (3.1):

sX(sg)=AX(9+BU( §

Y (s)=CX(9+DU(9 (3:59)
The first line is then solved for X(s):
X(s)=(¢-A)"BU (9, (3.56)
which can be substituted into the second line d&i§Byielding
Y(s)=[D+C(s-A)B U (9 (3.57)

where in this case the output is the BM veloeitd D =0. Taking the Laplace transform
of equation (3.54) gives
U(s)=F"Q(s). (3.58)

Similarly, to determine the pressure response m filequency domain, the Laplace
transform is taken of equation (3.50) to give

P(s) = F'CX(9+F™Q( 3, (3.59)
whereX(s) can be calculated as a functionQif) with equations (3.56) and (3.58). The
frequency response can then be obtained by settingo, provided the system is stable.

Figure 3.10 compares the BM velocity and pressufterdnce frequency response
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calculated within this framework against that oé thhequency domain formulation at a
stimulus frequency of 4 kHz, given a constant sapsocity of 1 m/s. The response of
the state space model matches that of the frequimmoain model as a function of position
up to the limit of the state space formulation’sidyic range; this limit is thought to be
due to the numerical issues associated with thersmwmn of the= matrix. In the case of the

BM velocity, shown in the (b) panel, the magnitude the response breaks down

approximately 260 dB below the peak of the response
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Figure 3.10: Response of the model calculated u$iagtate space formulation at 4 kHz
(solid) compared with the frequency domain formolatdashed). The (a) and (c) panels
show magnitude and phase of the pressure differalocg the BM, while the (b) and (d)
panels show the magnitude and phase of the BM iyloc

3.4.1 Input and output impedances
It is also useful to calculate the input and ouipytedances of the cochlea for comparison

against experimental measuremerds.is defined as the impedance looking in toward the
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cochlea from the middle ear, where&g: is defined as the impedance looking out toward
the middle ear from the cochlea.

In order to calculat&;, numerically, the middle ear is removed from thedeicand
the output pressure at the first element of thdleacPs: atx = 0 in the coupled cochlea) is

divided by the input volume velocitysiapes times the area of the stapes footplate,

R (3.60)

Z, =———.
ustapes* As
However, the Neely and Kim model does not accoontife mechanical stiffness of
the round window; this is believed to be respomsibl the unexpected phase leadZgf
otherwise observed at low frequencies, as shoviigare 3.11.b. In theory, inclusion of a

round window stiffness term should result in an éaignce that has the form:

Z, =2, + (3.61)
jw

Zoyt is simply the impedance of the middle ear,

Zout(jw): j&Mm+Cm+&. (362)
jw

An empirically derived stiffness &€, = 4*10° [N*m~] gives the correct phase shift at low
frequencies without significantly altering the magde ofZ;,.

The magnitude and phase 4f andZ, are plot side-by-side in Figure 3.11 with
physiologically measured data supplied by Profesamil Puria, as published in Puria
(2003). The magnitude and phase&Zgf fall within 1 standard deviation of measured data
for most of the frequency range of interest. Thagnitude ofZ, is on the same order as
that of measured data, and its phase responseagpgoa lag at lower driving frequencies

with the inclusion ok.y.
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Figure 3.11.a-d: Comparison &fi, (a, ¢) andZo.(c, d) magnitude (a, c) and phase (b, d).
The light, dashed line in the (a, b) panels sh@yswithout the added round window
stiffness kw = 4*10° [N*m~]). Experimentally measured values are plot aleity model
data in all panels (Puria, 2003).

One other characteristic of cochlear models thatldgen reported to have important
consequences on the stability of the system isnégnitude of the reflection coefficient at
the basal boundary (Shera and Zweig, 1991a). é@thection coefficient at the middle ear
boundary, as driven from within the cochlea, isrtked as the quotient of the forward- and
backward- travelling pressure waves, or equivayentbrward- and backward- wave
impedances. However, the definition of the forwardl backward components, or basis
waves, is critical to this analysis. Preliminarprw in this area has utilised the WKB
method to calculate an approximation of the lot¢eracteristic impedance of the cochlea
at the base (de Boer and Viergever, 1983; Viergewer de Boer, 1986), though other
work has suggested that applying Hankel functiomy itme more appropriate (Shera and
Zweig, 1991a-b). In addition, it should be possitd calculate the reflection coefficient
numerically as well. This is an important areamofrk that deserves further attention and

is discussed in Chapter 6.
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3.5 Time domain simulations

Time domain simulations can give greater insight ithe mechanics of the cochlea as a
wide variety of stimuli and analytical techniquesde applied. The transient activity of
the model is obscured when only steady state reggoare generated in the frequency
domain. Crucially, time domain simulations alsdowal for nonlinearities to be
incorporated into the model. The cost of theseaathges is the computationally intensive
nature of these simulations, relative to frequeth@yain simulations.

In this subsection, the time-domain response ofstlage space model is studied.
This is not an exhaustive study of all possibleudations that can be performed; rather, it
is an introduction to the time domain. Only tonedponses generated in baseline, stable
cochleae are considered here. However, both lirseat nonlinear responses are
calculated; the latter shows harmonic distortiomatierate driving levels. The simulation

of transient stimuli and unstable or otherwise ymed models is left for later chapters.

3.5.1 Linear responses
All time domain simulations are accomplished usM&TLAB’s ordinary differential

equation solverpde45 Internal to this function, the time step is atgd both forward and
backward until the solution settles within suppliedor tolerance limits. Absolute and
relative tolerances are typically set to'#Gnd 10'°, respectively, though these may be
adjusted upward and downward depending on the ardpliof the stimuli. For instance, a
0 dB signal would require an absolute error toleeanOO times smaller than a 40 dB
signal. The data is output at a given sampling sgiecified by the input time vector; this
Is set to 50 kHz to avoid any potential aliasinghathighest characteristic frequencies.

In order to reduce the amount of time requiredtdoal stimuli to reach steady state,
a half-Hanning window is applied to the first 10 ofsthe stapes acceleration that is the
input to the simulation. This reduces the ampétwd the initial impulse that propagates
through the cochlea due to the sudden onset ofotiee  Figure 3.12 shows the abruptly
applied stimulus (stapes acceleration, as genetateal 0 dB SPL 3 kHz tone suddenly
input to the ear canal, as detailed in AppendixtAg half-Hanning window function and
the windowed stimulus.

A time domain simulation of the 3 kHz stimulus tasteown in Figure 3.12 was set

to run for 100 ms. In order to extract the steat&ife magnitude and phase information,
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only the last 30 ms (90 cycles) of data are andlys€he envelope of the response was
extracted by evaluating the maximum values of BNbeigy as a function of position

across time. Qualitatively similar results werdécakated when the RMS amplitude as a
function of position was calculated; however, tivee fstructure of the response is better
resolved by taking the maximum value. The phas¢hefresponse was calculated by
evaluating the discrete Fourier transform (DFT)3akHz at each position along the

cochlea. This data is plot along with the freqyedomain result generated by the state

space model in Figure 3.13.
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Figure 3.12: The first 20 ms of stapes acceleratimt serves as an input to the time
domain simulation. The stapes acceleration (dptigtt) is scaled by a half-Hanning
window of duration 10 ms (dashed, thick). The lasit windowed stapes acceleration is
presented as a solid black line.

The time domain simulation required approximatelyh@rs to complete on a
desktop computer with a 3.4 GHz Pentium 4 processdr2 gigabytes of RAM when tight
absolute and relative error tolerances of’land 10" were set, respectively. In contrast,
the state space frequency domain simulation reduapproximately 18 seconds to
complete. For comparison, the frequency domain eha@scribed in Chapter 2 can
compute the response at a single frequency in appately 43 ms. The noise floor of the
frequency domain response is approximately 150 @éBvb that of the time domain

simulation in Figure 3.13.
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Figure 3.13: Magnitude and phase of a 3 kHz stisiubne plotted as a function of
position along the cochlea. Results are obtaimerh fa linear time domain simulation
(solid line) and a state space frequency domaiulsition (dashed).

However, frequency domain results cannot show treugon of the response in time.
The first 30 ms of the 3 kHz BM velocity responseng the cochlea are shown in Figure
3.14 as a mesh plot.

There appears to be no activity in the first 4 ms®of Figure 3.14; this is simply
due to the fact that the amplitude of the respasisruch smaller at this time frame when
compared to later time frames where the stimulusoidonger windowed. The positive
‘slope’ of the undulations on the mesh indicatest the TW is propagating forward with
increasing time. Note, however, how the slope besomuch less steep near the peak of
the response; this indicates that the TW is muolwel in the region of the peak, as

expected. Beyond this point spatially, the TWugcgly extinguished.
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Figure 3.14: The BM velocity in a linear cochleaeym a windowed 3 kHz stimulus tone at
0 dB SPL.

3.5.2 Nonlinear responses
The linear model simulates the cochlea’s respoadevi-level stimuli where the CA is

working at full strength. However, when the driyiamplitude is increased, the OHC
feedback force in the biological cochlea beginsdturate as it cannot accommodate the
increased output requirements. Thus, the actimriboition of the CA decreases relative
to the driving level; this effect is sometimes rede to as ‘self-suppression’ in the
literature (e.g. Kanis and de Boer, 1994). In otdemodel the nonlinear saturation of the
feedback force, a Boltzmann function is appliedhi® displacement input of the feedback
loop that determines the OHC force in the time domén effect, this acts as an automatic
gain controller.

There are several reasons why the Boltzmann fumet@s chosen for this task. Its
shape well-approximates the input-output (stimufpusssure to intracellular voltage)
characteristics of OHCs measured in isolatex vivo(Cody and Russell, 1987; Kret
al., 1992). However, the exact characteristics ef @HC response vivo are as yet
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unknown; hence, some degree of laxity in this aspéthe model can be allowed. The
key features of this function are that it saturaté increasing input amplitudes, and that
the saturation is non-symmetric. The latter charatic is required to account for the
presence of even-order components that have beasunegl in the harmonic distortion of
the BM response (Cooper, 1998).

The first order Boltzmann function is given as

o o
f(u)= =i :
1+pe™" 1+
whereu is the input displacement in units of distangesets the saturation point, also in

(3.63)

units of distancef is a dimensionless quantity that scales the asyroakenature of the
function; and affects the slope of the function. In order teehrise the function for small

input displacements, it is necessary to constrain

n= (1?;)2 | (3.64)

to yield a slope of 1 at small input displacemeatues,u. This was determined by
equating the derivative of the Boltzmann functioithwespect to the inputy, to unity
while evaluating ati = 0 and solving for,. Figure 3.15 illustrates the Boltzmann function
and its slope, given parameter values efl and3 = 3.
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Figure 3.15.a-b: Boltzmann function characterssta) output vs. input, b) slope of output
vs. input. Free parameter values are set as felldw 1 and = 3.
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While the saturation point of the Boltzmann funntid, is set to 1 in Figure 3.15 for
illustration purposes, it is varied as a functidnposition in the nonlinear cochlea. As
different positions along the cochlea are driventhwa constant pressure, each
micromechanical element will displace a differemtoaint. It is the relative displacement
between the BM and the TM that is passed througlhéosaturation function in the
nonlinear time domain simulation, and thifx) has considerable bearing upon the results
of the simulation. For example, d{x) is set to a constant value, the response atdbe b
will be much less saturated than locations moreadpthis is because the basal region is
much stiffer and thus the micromechanical elemdigiglace less for a given stimulus.

In order to generate a sensible distributiord(@), the maximum displacement at a
given location across frequency in the linear motiaé used as a template for locations
approximately 6 mmx x < 27 mm; below 6 mm and past 27 mm, the valu&(dfis fixed.
This distribution is normalised to the maximum \gland scaled by 1 nm. The final

distribution ofs(x) is shown in Figure 3.16.

3(x) [nm]

0 L—") £0 £5 2‘0 2‘5 3‘0 35
Position along the cochlea [mm]

Figure 3.16: Nonlinear saturation point as a fiomcof position,5(x).

As with the linear simulations of pure tones, tinetf10 ms of the stimulus is scaled
by a half-Hanning windowed. Again a 3 kHz toneaigplied, but now at varying
intensities, varying from 0 dB SPL to 90 dB SPL3rdB steps. Figure 3.17 shows the
mesh of the first 30 ms of BM velocity given a 48 8PL tone and a 90 dB SPL tone.
The most striking difference between Figure 3.51nd the linear simulation of Figure 3.14
is the appearance of a second region where thesTp¢aking and travelling slower than

adjacent regions centred at approximately 7 mm.
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Figure 3.17.a-b: Mesh of the first 30 ms of BM \a#y given a 3 kHz input tone at a) 45
dB SPL and b) 90 dB SPL in a nonlinear cochlea.
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In contrast, Figure 3.17.b shows a much wider apaKcitation pattern at a stimulus
level of 90 dB SPL, though a smaller peak is sidlble near the 3 kHz place. Figure 3.18
plots the modulus of the overall BM velocity respes at various positions along the
cochlea for excitation levels that vary from -2011@0 dB SPL on a single graph. These
calculations are made over the last 30 ms in am®G&imulation. Each curve represents
the maximum steady state BM velocity as a functibposition.
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Figure 3.18: Growth of the steady state BM respaugen increasing amplitudes at 3kHz
in 3 dB steps. Dashed vertical lines indicatelibst places at 1.5, 3.0, 6.0, 9.0 and 12.0
kHz.

By visual inspection, Figure 3.18 shows that trepomse basal to the 3 kHz place grows
linearly for much of the range, while the peak bk tresponse grows much more
compressively; this is consistent with the measuesgonses as described by Johnsatne

al. (1986), for example. There are also numerouggp#aat occur at seemingly-regular
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intervals along the cochlea. Vertical lines at thest places of multiples of the
fundamental tone indicate that these peaks arly likee to distortion.

Figure 3.19.a-d shows the normalised growth of sévelifferent harmonic
components of the BM response, as obtained by datie Fourier Series of the BM

velocity at each location.
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Figure 3.19.a-d: Normalised growth curve of a) th& kHz component, b) the 3 kHz
component, c¢) the 6 kHz component, and d) the 9 ¢dtaponent of the BM response as a
function of position along the cochlea.

It is important to remember that only a 3 kHz toisebeing applied; the various
components at 1.5, 6 and 9 components shown inrd=iguL9 seem to be a result of
harmonic distortion. The various harmonic compaser the BM response also grow at
different rates. Figure 3.20 plots the growthlefse components at several positions along

the cochlea.
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a) Magnitude at 3kHz place b) Magnitude at best place of each component
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Figure 3.20.a-c: Growth of distortion componentaagated a) at the 3 kHz place; b) near
(z~1 mm about) the best places of the distortieqdiencies; c) at the 6 kHz place.

Figure 3.20 shows that the nonlinear cochlear mba@sl compressed 120 dB of
stimulus intensities at the 3 kHz harmonic compome&io a much smaller dynamic range,
approximately 60 dB of BM motion. The 3 kHz levalrve appears to have corner
amplitudes of approximately 5 dB SPL and 70 dB 3/Pkre the BM response transitions
from linear growth to compressive growth, and tikack to linear growth. In order to
match the growth curve to commonly measured valuasimals where corner amplitudes
are approximately 30 and 90 dB SPL, as given bkI&sc(2003) for instance, the
saturation point along the entire cochlear modeilccde shifted up by a factor of 10.
However, it would be advisable to complete a motteaastive study of growth curves at
different frequencies (and thus locations along ¢behlea) before adjusting simulation

parameters as this is very recent work. It mayhag the growth curve of the model's
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fundamental response at more basal regions ofdbklea, where the experimental data
were obtained, matches the measured data.

Figure 3.20.a is comparable to Figure 4 of Coopél'898) paper regarding
harmonic distortion, where BM distortion componewtere measured in a live guinea-pig
cochlea. As with the data presented in that astitle growth of the distortion products is
strongly compressive. Thdé;Zomponent of Figure 3.20.a shows a marked decieate
absolute magnitude as the stimulus level is ine@ashich is not observed in Cooper
(1998). However, the decrease in tlig@mponent appears to start approximately at the
second corner amplitude of tifigcomponent, where the response becomes linear;again
this high-level region was not measured in Coof888).

In Figure 3.20.b, thefgand 3, components grow at a rate of approximately 2 dB/dB
at the best places of these frequencies, beformriag to show signs of compression at
approximately 30 and 50 dB SPL, respectively. FgB.20.c is directly comparable to
Figure 3A of Cooper (1998), which displays harmatéta of BM motion in a guinea pig
at a location whose best frequency is twice thewdtis frequencyf = 0.5ind. The
growth of the 3 kHz driving tone component is ngéiriear in Figure 3.20.c and the 8 kHz
driving tone is completely linear in 3A of Coopel908). The growth of thefs
component is qualitatively equivalent in both plasswell. However, the magnitude of the
2fp component in Figure 3.20.c exceeds that of theldorental between 25 and 60 dB
SPL, whereas it is always less than the fundamémtaA of Cooper (1998). The latter
effect may be due to the choice of fhparameter here, which shapes the vertical offiset o
the Boltzmann function, though further work is nesay in this area.

Based upon the simulations above, it seems plausitat Cooper was correct in
proposing that harmonic distortion is primardistorted amplificationand notamplified
distortion However, it is also possible that distortion g&ted at one site may propagate
to its best place and become amplified there. Bheven more likely in a cochlear model
that contains inhomogeneities in the CP impedarsca &unction of position, as these
perturbations could result in the reflection of igye Kemp’s (1978) nonlinear wave-fixed
theory also assumes that the TW itself modifiesciehlear mechanics in an amplitude-
dependent manner such that backward-travellingectdins could arise from this local

irregularity in the CP impedance.
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The simulation of nonlinear cochlear responseshentime domain is an area that
requires a considerable amount of further work. dissussed at the start of this chapter,
the most significant downside of such investigati@ the computational cost. The total
cpu time required for the thirty-one simulationsl®0 ms of data was approximately 490
hours. The total duration of a given simulatiormisomplicated function of applied error
tolerances and the relative magnitude of the matiothe cochlea, the latter of which is
dependent on driving amplitude and stability. tdew to calculate the model’s response at
a single position to a wide range of frequencied atimulus levels, as is sometimes
performed experimentally (see Figure 1 of Coop688), for example), many hundreds of
computer-hours would be the required.

In the next chapter, instabilities in the cochlesdel are studied in terms of their
generation mechanisms and characteristics. Futither domain simulations of unstable
cochleae continue to show that there is much greadenplexity in the response of
nonlinear models than is predicted by linear theory
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Chapter 4

Spontaneous Otoacoustic
Emissions

Calculating the stability of Neely and Kim’'s (198&equency domain model of the
cochlea was the primary motivation for reformulgtibin state space. However, with the
state space model came the ability to test not ibtie linear system was stable or not, but
to actually study the conditions that give risehe instabilities. The resultant frequencies
and characteristics of the instabilities also gngght into the system.

One of the initial tests of stability included petiing the feedback gain at various
locations with a step-discontinuity.  The instdleb that emerged from these
investigations appeared in an arc of poles, whHezenost unstable frequency was close to
the characteristic frequency (CF) at the locatibthe discontinuity. The frequencies of
the poles in the arc seemed to fall at regulamals; this was of particular interest, as it
has been reported that spontaneous otoacousticiensgSOAES) in a single individual
exist at regular intervals in mammals (Dallmayr8391986; Talmadget al, 1993;
Braun, 1997). Thus, in order to compare the msdelsponse with experimental results in
humans, it was decided that the parameters foryNeedl Kim’s (1986) model of a cat
cochlea would be revised to account for the charestics of a human cochlea.

Two sets of revised model parameters have been tosstlidy the distribution of
linear instabilities. The first replicated the ma@®mmonly observed spacing between
SOAE frequencies in humans, and seemed to supp@&tod the prevailing theories
regarding SOAE generation; these results were ghddi in Kuet al. (2008), which can be
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found in Appendix C.2. However, in order to matble variation of spacings between
adjacent human SOAEs as a function of frequencygeasribed by Shera (2003), a second
set of parameters was devised. The latter seta@npeters has formed the basis of the
results presented in this thesis.

This chapter begins by describing the findings @né=d in Kuet al. (2008). This
work was primarily an investigation into the genena mechanisms of instabilities in the
cochlea. Subsection 4.1 introduces various thedhiat have been proposed to explain the
formation and characteristics of SOAEs. Subsediighshows how the stability of the
model is affected given various perturbations i@ thicromechanical feedback gain as a
function of position. Some details of the resthiése differ from those presented in Ku
al. (2008) given the application of the newer set ofap®eters, though the underlying
conclusions are still valid. Findings from moreant investigations are presented in
subsection 4.3 in the form of nonlinear time donwmulations of unstable cochleae. The
results of these newer simulations are discussetthancontext of the linear theory of
SOAE generation.

4.1 Theories of SOAE generation

SOAEs are believed to be a feature of a normalhgtioning CA, as they are commonly
detected in an estimated range of 33% to 70% afi@inally-hearing ears (Talmadegé
al., 1993). Where SOAEs are detected, stimulus frecye distortion product- and
transient evoked- otoacoustic emissions (SFOAEARs and TEOAES) are also often
present. There is evidence to suggest that atismf OAEs are related and directly tied to
the sensitivity of hearing (Zwicker and Schloth,849 McFadden and Mishra, 1993;
Talmadge and Tubis, 1998; Shera and Guinan, 19898luik and Shera, 2007). Two
primary classes of cochlea-based theories regartheg production of SOAEs are
discussed below: a local-oscillator model, andsérithuted backscattering concept.

Gold (1948) first formed the basis of a local-datdr model of SOAE generation
when he proposed that a perturbation may ‘brindaative] element into the region of
self-oscillation, when it is normally so close tastability].” Evidence in the literature
suggests that SOAEs are associated with BM osoilat For example, Nuttait al.
(2004) measured a SOAE that had a counterpartantapeous mechanical vibration of

the BM at the same frequency in a guinea pig. Heurtvork performed by Martin and
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Hudspeth (2001) considered how locally unstablenelds of the CA may be responsible
for SOAEs. However, without careful tuning, a Iboacillator model fails to account for
the regular spacings between unstable frequenbgsreed in mammalian SOAES.

The strong peak in the distribution of log-normatisspacings between adjacent
SOAE frequencies, termed the preferred minimunaedist (PMD), has been demonstrated
by various studies (Dallmayr, 1985, 1986; Talmaepal, 1993; Braun, 1997). A similar
value is found in the average frequency spacingwdsn the spectral peaks of SFOAEs
and TEOAEs when measured in the ear canal (ZwiakdrSchloth, 1984; Shera, 2003).
The PMD corresponds to a frequency spacing of apittely 0.4 Bark, or a distance of
about 0.4 mm along the human cochlea (Dallmayr51%886). Most SOAEs occur in the
range of 0.5-6 kHz (Probgt al, 1991) and demonstrate the PMD, though Zweig and
Shera (1995) and Shera (2003) showed that the geve@acings of both SOAEs and the
spectral peaks of SFOAEs measured in the ear danadry somewhat with frequency.

Strube (1989) argued that a periodic variation @orrugation’ in the
micromechanical parameters was responsible foobiserved PMD in SF- and TE-OAE
measurements in the ear canal. This was said thebeesult of distributed backscattering
of the travelling wave (TW) similar to the phenormaarof Bragg reflection in a crystal. In
this theory, the period of the corrugation mustregpond to one-half of the wavelength of
the TW, thus generating constructive interferencpaaticular frequencies. Kemp (1979)
also proposed a theory of SOAE generation whiclirasd a distributed backscattering
mechanism; his theory required multiple interndletions of forward- and backward-
travelling waves between the middle ear boundary @m inhomogeneous region of the
cochlea.

Since Kemp (1979) first presented the idea, nunerauthors have made
contributions to the multiple-reflection theory (icker and Peisl, 1990; Zweig, 1991;
Shera and Zweig, 1993; Talmadge and Tubis, 199&igand Shera, 1995; Talmadge and
Tubis, 1998; Shera and Guinan, 1999; Shera, 20@8)era and Zweig (1993) proposed
that a spatially dense and random array of reflacsites exists along the entire cochlea
which acts in concert with the middle ear boundaryorm standing waves, which Shera
(2003) likens to a laser cavity. This concept Wl developed in Zweig and Shera

(1995). Though energy is reflected at all frequendy a perturbation along the cochlea,
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wavelets scattered from forward-travelling wavesttipeak in the region of the
inhomogeneity dominate the response, since theiamaelis highest there.

For an active standing wave resonance to develapisrmultiple-reflection theory,
the spatial distribution of inhomogeneities in tieen region must contain components at
the wavenumber that creates constructive interéerenth the incoming wave, just as with
Bragg scattering (Shera and Zweig, 1993; Zweig @hdra, 1995). Further requirements
include an active region between the middle earntaty and the reflection site to
overcome the viscous damping in the cochlea, afdVafrequency that undergoes an
integer number of cycles of round-trip phase chabg®veen the middle ear and the
cochlear reflection site; this naturally gives risghe PMD in SOAEs measured in the ear
canal. However, the existence of a spontaneouslati®n in the cochlea does not
guarantee its detection as an SOAE; it must alseaire sufficiently powerful to be
measurable in the ear canal after transmissiomgréthe middle ear.

An alternative theory suggests that irregular nedelr transmission characteristics
may be a cause of some OAEs (Nobitlial, 2003). However, the numerical accuracy of
these simulation results has been contested elsew(l®heraet al, 2003), and such
irregularities are not often reported. For thepomses of this investigation, a smooth
middle ear boundary is implemented and only cochkesed theories of SOAE generation
are discussed.

The goal of subsection 4.2 is to test whether ttegliptions of Zweig and Shera’s
(1995) multiple-reflection theory of SOAE generatiare observed in a mathematical
model of linear cochlear mechanics. Previous wuak relied upon phenomenological
methods (Zweig and Shera, 1995; Shera, 2003), dtipteutime domain simulations
(Talmadgeet al, 1998), to support this theory. In contrast,aesspace formulation of the
cochlea (Elliottet al, 2007) is used here that is capable of rapidly anambiguously
calculating the unstable frequencies in a giveredmmodel. This method is thus
especially well-suited to generating the large nemiif results from individual cochleae
necessary to ensure statistically significant data.

It should be noted that only the linear stabilifytlee cochlear model is considered in
subsection 4.2. In a biological cochlea, the atugé of an instability would eventually

stabilise due to the natural saturation of the lieedd force generated by the CA.
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Furthermore, it is possible that the number of S@AEedicted by the linear model could

change in a nonlinear model due to distortion @psession; this is tested in Section 4.3.

4.1.1 Theoretical predictions
According to Shera and Zweig (1993), the averagtadce between resonant positions of

SOAEs along the cochlea is

— 1
AXsope = E A (4- 1)

peak?

where A is the wavelength of the TW in its peak regionhisTis a departure from

peak
previous predictions in that the assumed distamteden SOAE characteristic places is
determined by the wavelength of the TW and notexi§is corrugation in the mechanical
parameters. The wavelength of the model's TW fametion of position and frequency is
given by equation (2.35); thus, the wavelength reg peak for a given location is
determined by substituting in the CF, as shown2h¥g).

Given that the frequency to place map in the caghlef mammals is roughly
exponential, the PMD between SOAE frequencies is

f/0F=20/A . (4.2)
wherel is the cochlear length scale, the distance ovéchwihe best frequency changes by
a factor ofe. It is also possible to define a log-normalispdcing between two adjacent
SOAE frequenciesf, and f,, as the ratio of their geometric mean divided bgirt
difference,
f /Af :@. (4.3)
| fa - fb|

The PMD in humans is approximately 15 when expikssderms off/Af, though
this value increases somewhat with SOAE frequeBtela, 2003). Figure 4.1 shows the
length scalel, and the wavelength of the TW at its pe&kas for the model used in this
thesis. Together, these quantities yield the ptedi/Af. The length scale generated by
this set of parameters is roughly the same asgiratrated by the parameters in &tual
(2008). Howeverdpeakis an increasing function of position along theldea in the new
model, whereagpeak~ 0.9 mm for all but the most apical regions of teehlea in the
model of Kuet al. (2008).

91



4 Spontaneous Otoacoustic Emissions

2r 10.5

Length scale, | [mm]
)\peak [mm]

0 5 1‘0 1‘5 20 25 C‘;O 33
Position along the Cochlea [mm]

N
[

b)

Predictedf/ A f

(4]
T

(=]

0 5 . _10 15 20 25 30 35
Position along the cochlea [mm]

Figure 4.1.a-b: The length scale and wavelengtih@fTW at its peak, shown in panel (a),
combine to yield the predictét\f, shown in panel (b).

4.2 Linear stability given perturbations in y(x)

It has been previously reported that deviationsmfra smoothly varying set of
micromechanical parameters can cause instabilityochlear models. It is believed that
the frequencies of cochlear instability represdm frequencies of potential SOAEs.
Elliott et al. (2007) demonstrated that these models are mositiserto abrupt changes in
the gain as a function of position. In the currgmestigation, greater consideration is
given to the nature of the inhomogeneities intreduand the resultant characteristics of
the unstable frequencies. The feedback gain amaidén of position along the cochlea,
v(X), has been chosen as the parameter to be pertuthearder to compare the relative
level of instability present in a cochlea, it istiructive to examine the number of unstable
frequencies present. However, to further quarttily magnitude of a cochlear model’s
instability, the concept of a pole’s damping raigoapplied, as reviewed in subsection
3.2.1.

The damping ratio of an unstable pole is usefulitaselates the frequency-
independent rate at which the system will becoms&talnte; the average value of many

poles can also be compared across different cachledels. This quantity is referred to
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as theundamping ratioin this paper, in the context of discussing uristagmles, and is
assigned the lowercase Greek letter final sigma:

¢=-¢ (4.4)
A step change in gain is employed as a startingtgor the discussion of cochlear

stability analysis. From there, sinusoidal spataliations and the band-limited random
spatial variations are applied as gain distribwgioit is important to note that the step- and
sinusoidal- distributions af(x) are introduced to understand the underlying meishas of

SOAE generation and should not be interpreted aatt@mpt to model what exists in a

healthy human cochlea.

4.2.1 Step changes in y(x)

A step change in gain gives rise to a discontinuitythe smooth variation of BM
impedance as a function of position along the aahlAn ideal step in space has a well-
distributed wavenumber spectrum, and thus shotilectevavelets across a wide range of
wavelengths. One additional consequence of vartheggain as a function of position,
v(X), is that the underlying properties of the TW affected. For instance, a higher gain
results in a shorteék,eae TO mMinimize this effect, a relatively small antpile step was
chosen with a £2.5% deviation from nominal gainesther side of the step. The stability
plot for the cochlear model with such a step impose the gain at 13.6 mm from the base

of the cochlea is shown in Figure 4.2.

1

T
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L

0.95
0 10 20 30

Position along the cochlea [mm]

¥(x)

0.5f

5 o | L L L
0 0.5 1 25 3 35

Frecqlijency EkHz]
Figure 4.2: Stability plot for a cochlea with thegped gain as a function of position inset:
y(X < 13.6 mm) = 1.025 angx > 13.6 mm) = 0.975. Note the frequency scale has be
shortened to clarify the locations of the unstaptdes. Vertical lines indicate the

frequencies of the instabilities: at 2.533 (dott&p59 (solid) and 2.784 kHz (dashed).
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Three distinct frequencies are found to be unstablhis cochlea, at 2.533, 2.659
and 2.784 kHz. These frequencies are all closeéhéo CF at the location of the
discontinuity, which is 2.640 kHz. According to iy and Shera (1995), only the
frequencies whose responses peak in this regionbeegme unstable since not enough
energy is reflected otherwise; this is seen in FEgli2 as only three frequencies near the
CF at the position of the discontinuity are unsablFurthermore, there is a range of
successively more stable poles that follow an aedihg away from the three unstable
poles, both higher and lower in frequency. Prediymahe TWs of these frequencies are
not reflected strongly enough by the discontintitgause instability.

The resultant spacings between the two pairs @fcadt unstable frequencid&f,
are approximately 20.5 for the pair lower in freqeyg and approximately 21.7 for the pair
higher in frequency. This is consistent with tlkpextations given a slightly lowervalue
apical of the discontinuity, and a slightly highewvalue basal to the discontinuity. To
better understand why only these specific frequeenbecome unstable, Figure 4.3 shows

the magnitudes and phases of the BM velocity resgmrat these frequencies when a

nominal value of gain is used throughout the car,h;}eéx) =1.
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Figure 4.3.ad: Magnitude (a, b) and phase (c, d) of BM veloday excitation at 2.52
(dotted), 2.659 (solid) and 2.784 kHz (dashed) migebaseline model with nominal g:
y(X) = 1. Panels (b) and (d) show expanded axesldoitycof interpretation. A vertial
line is drawn at the location of the discontinuitly Figure 4.2 in the zoomed- panels
Circles in the phase plot (d) indicate phase shofts3.5, -4.0 and4.5 cycles at th
location.

A vertical line through Figure 413 and Figure 4.8 denotes the location along the
cochlea of the discontinuity applied in Figure 4.Zhis line intersects with the phase
responses of the 2.533, 2.659, and 2.784 kHz atsnanes at -3.5, -4.0, and -4.5 cycles,
respectively, within an accuracy of 1%. This isgigtent with the ‘cochlear laser’ theory
of SOAE generation which states that the phaséseofinstable frequencies must undergo
an integer number of cycles of total phase charegjevden the reflection site and the
middle ear boundary in order to combine constretyivover successive reflections. For
the unstable frequencies shown above, the ‘rouptghase change would equal 7, 8, and
9 cycles. Re-examining Figure 4.2 in light of tfesture, the stable poles that follow the

same arc as the unstable poles must also represgquéncies that scatter wavelets which
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constructively combine, but perhaps are too weakviercome the damping basal to the
inhomogeneity.

The total number of poles of a cochlear model igedeent upon the number of
micromechanical elements; each additional elenr@raduces four more poles. However,
the multiple-reflection theory of SOAE generatiaegicts that the number of instabilities
created by a reflection site is dominated by thation of the TW phase and the magnitude
of the reflected wave. As such, only a finite n@mbf instabilities should appear near the
CF of the reflection site, regardless of the nunidfezlements used in the model. This is
tested in Figure 4.4 by applying the same spategh sliscontinuity iny(x) to several
cochlear models with different numbers of micronegcbal elements\.

10 20 30
Position along the cochlea [mm]

1.05
X 1
05 =
0

4
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2 §% « Poles with N =500
Sl o Poles with N = 600
oty Poles with N = 700
Pkt Poles with N = 800
284’ 1 15 3 5 3 35

Frequency [kHZz]

Figure 4.4: Stability plot for several cochlear ratsdwith varying values dfl, the numbe
of micromechanical elements. A stepped gain asetibn of positiorwas applied to ea
model and inset in the figurg{x < 13.6 mm) = 1.025 angx > 13.6 mm) = 0.975. No
the frequency scale has been shortened to claeffocations of the unstable poles.

Figure 4.4 shows the variation of the stabilityt@eN is increased from 400 to 800.
The same step discontinuity is applied, which tssuh three distinctly unstable
frequencies in each model, independenNof Note however that the positions of all the
poles do vary somewhat, tending toward greaterilgyalvith increasingN. The pole
positions converge aN is increased. Unfortunately, simulating modelsgoéater and
greater numbers of elements increases the compnahtioad dramatically. Furthermore,
the fundamental stability results do not vary aagréeal, as shown above; as such, a

compromise oN = 500 appears suitable for the purposes of thegtinvestigations.
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4.2.2 Sinusoidal variations in y(x)
A distribution of gain that is sinusoidal as a ftioc of position is of interest because its

wavenumber spectrum is concentrated close to deswgvenumber, just as a sinusoidal
waveform that is a function of time has a frequespgctrum that is concentrated close to a
single frequency. This set of simulations follothe theory outlined by Strube (1989),
which assumes uniform corrugations in gain alorgBM. A range of wavelengths were
chosen for the sinusoidal variation of gain as @cfion of position along the cochlea,
denotedisin. Asin is varied from approximately 1 mm down to 0.14 ntine, latter being the
spatial Nyquist limit of the model. A 14% peakgeak variation in amplitude about
nominal gain generated instabilities over this ispatnge.

Figure 4.5 shows a number of stability plots of eledasis, is varied. At the
longest wavelengths, panels (a) and (b) for ingatite upper arm of poles periodically
becomes unstable in frequency. This large-scal@gieity appears to correspond to the
spatial corrugation of the sinusoiddk). For instance, the characteristic places of 14.5
kHz and 16.9 kHz (the frequencies of the ‘bumpsFigure 4.5.a withisi, = 1 mm) are
almost exactly 1 mm apart on the model’'s frequenegtace map. However, there is also
a smaller-scale periodicity within the spacingsuoétable frequencies; the three unstable
poles between 14.3 kHz and 14.77 kHz in Figurea4for instance. This is likely due to
coherent reflection in these bands where the peékbhe corrugation act as individual
reflection sites, similar to the step-discontinuiggults.

As Agin decreases, these general trends become indistivadple, but both the number
of instabilities and their average undamping rategin to vary; this is summarised in
Figure 4.6. As expected, given the theories afl&tr(1989), Shera and Zweig (1993), and
Zweig and Shera (1995), the strongest instabildguored when the wavelength of the
sinusoid,Asin, Was approximately half the average peak wavelenbis value occurs at
0.32 mm in the model. In order to more fully ursland the results of Figure 4.6, the
same results as summarised in Figure 4.6 are pegséar the unstable poles within half-

octave bands in Figure 4.7 and Figure 4.8.
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Figure 4.5.a-h: Stability plots models with 8 diffat values ofi..

Note that the inset sinusoidal distributions ohgalie sampled more densely than the
discretisation size of the model for clarity.
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Figure 4.6.a-b: Average undamping ratio of the ab#ities (a) and total number of
unstable frequencies (b) given variations in tineisoidal wavelength of(x).

The results of Figure 4.7 and Figure 4.8 show thatsinusoidal wavelength that
causes the most instability within a given bandd$erio decrease with increasing
frequency. For instance, as shown in the bandethraping ratios of Figure 4.7, the
‘characteristic’ sinusoidal wavelength is 0.39 mor frequencies below 2 kHz, and
steadily decreases to 0.29 mm at the region o11h@ kHz band. The correspondiljg@ax
within these frequency ranges is approximatelyrorm8 and 0.6 mm, respectively, roughly
twice the characteristic sinusoidal wavelength;s tis consistent with the multiple-
reflection theory, as explained in (4.1). Sumnedianother way, the greatest instability is
generated within a given band of frequencies whenréflection sites are exactly aligned

to half the wavelength at its peak in that freqyerange:
1
A :EApeak(w) = max(¢(w)). (4.5)
This trend breaks down somewhat in the highestugaqy bands near the base of the

cochlea where the model is closest to instabilitys is also potentially due to spatial

aliasing ofisj, at small wavelengths.
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Figure 4.7.a-h: Average undamping ratio of thdabgities that fall within half-octave

bands a3, is varied. The sinusoidal wavelength that gemsrttie strongest instability in
each band is marked by a vertical line
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Figure 4.8.a-h: Total count of the instabilitiesttiiall within half-octave bands as, is
varied. The sinusoidal wavelength that generdiesstrongest instability in each band is
marked by a vertical line.
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Figure 4.8 shows that the sinusoidal wavelengthhat peak in the number of
instabilities also varies also with frequency, thése results are not as clean as Figure 4.8.
This is possibly due to the magnitude of the siruspplied, as lower amplitudes may
resolve more clearly the most sensitive portionghefcochlea. For example, the (a) and

(b) panels show results toward the apex with theekt levels of enhancement, and thus
are only sensitive whem, =}é)lpeak. Furthermore, there is no instability for the
frequency band wheffe< 2 kHz when the sinusoidal wavelength is appratety 0.2 mm.
This sinusoidal wavelength),,, = %ﬁpeak, may generate interference between adjacent

reflection sites and thus decrease the model'setendto instability. Again, this is not
visible in the higher frequency bands, though thipossibly due to the spatial Nyquist
limit of the model; sampling at higher spatial fuegcies may resolve this trend more

clearly.

4.2.3 Random variations in y(x)
Shera and Zweig's (1993) theory of SOAE generatssumes that the cochleae of

normal-hearing humans contain a dense but randoay af inhomogeneities. Each of
these place-fixed perturbations reflects energynfithe forward TW (Talmadget al,
1993; Shera and Zweig, 1993; Zweig and Shera, 199®)this section, the stability of
cochlear models with band-limited, spatially randamin distributions is used to
approximate what is postulated to exist in a hue@shlea. A 8 order Butterworth filter
was employed to band-limit gain distributions ie thavenumber domain (Lineton, 2001).
The low-wavenumber cut-off frequency is fixed a tength of the cochlea itself, in order
to prevent any DC shifts in the gain. The high-eraymber cut-off frequency is initially
set to 6.6 radians/mm and slowly increases, thusergéng cochlear models with
successively more densely spaced reflection sitéhe average filter bandwidths are
plotted below in terms of®2times inverse wavenumber; this quantity has urfitength
(mm) and is directly comparable to the wavelendtthe TW at its peak.

Figure 4.9 summarizes the results of stabilitystest four sets of two hundred

different cochlear models, each with unique, spigtrandom gain distributions.

102



4 Spontaneous Otoacoustic Emissions

Stability plot, Mean ¢ = 0.001 Average spectrum, Acut_oﬁ =0.78mm
3 . . ! 0
2 -10t \
-207
11

Magnitude [dB]

—/\/‘/\/\/—1 §

-1 -404
2 50 0o 1 2 3 4 8°
3 ‘ ‘ ‘ 60 (Ib) Posi}ionalong the cochlea [mm]
™0 5 10 15 20 T0.14 1 10 35
Frequency [kHZz] A [mm]
Histogram of unstable frequencies Histogram of normalised spacings
35 2 10
= ) (o) | 3 "l(d)
> (&) 8r
O 25 pul
o ©
4{3 2, Q:_. 6’
c (7]
LL_: 1.i— u_% at
:% 0.5¢ : <<>;:D 2
8.5‘ ‘ 1 2 ‘. g- N 10 20 < 02 3 ‘ 5 7 ‘ ‘16 éLO éO 50
Frequency of instability [kHz] fIAf
Stability plot, Mean ¢ = 0.004 Average spectrum, )\Cm_oﬁ = 0.48mm
3 . . : 0 v
—_ N
2 | -10¢ 1
k=k
o o 20
- I M o 30} 1
2 VP X g ) 11
() on)
s w5 AW g
Ctal. | =50 0 1 2 3 4 57
‘ (||:a9 6 (“b) Posi}ionalongthecochlea[mm]
10 15 20 -00.14 1 10 35
Frequency [kHz] A [mm]
Histogram of unstable frequencies Histogram of normalised spacings
35— o e 10 P ‘ ‘
= 4 (Il.c) | 3 (1.d)
-] o 8
O 25 =
° 8 o
— 2, 4
2 B
LL.D 1.? 1 LL% 4t
o [ 1T o
< JII|||I|I||||III|.I|I|||L NI— |
8.5 1 2 ] 5 N 10 20 < O2 3 5 7 10 20 30 50
Frequency of instability [kHZz] fIAf

Figure 4.9.1-IV.a-d: The collected results from 882cochlear models with randomly
generated gain distributions. Each Roman numarbtet has been filtered with a
different cut-off wavelength: (l.a-Qkyto = 0.78 mm, (ll.a-dRcut-orf = 0.48 mm, (lll.a-

d) Acut-of = 0.30 mm, (IV.a-dhcutof = 0.19 mm. A peak-to-peak amplitude of 15% was
applied to these gain distribution€aption continues on next page.
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(a) A characteristic stability plot taken from tbet. The average undamping ratio for that
single caseg, is given and superimposed (dotted line). (b)rAged inverse wavenumber
spectrum of the gain; the first 5 mm of a charastier gain distribution are inset. (c)
Averaged histogram of all unstable frequenciescpehlea sorted in logarithmic frequency
bins. (d) Averaged histogram of normalised spacifigf) per cochlea.
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The four Roman numeral sets of Figure 4.9(.I — Ngve increasing high-
wavenumber (decreasing low wavelength) cut-offs, ¢hn be thought of as increasing the
density of reflection sites in the cochlea. Whiaa gain is smoothly varying witkye.off =
0.78 mm, as given in the | set, very few unstaldguencies are generated except near the
base where the enhancement is the highest andprwos to instability. Whefcyt.of IS
decreased to 0.48 mm, as given in set Il, a sanfi number of instabilities appear at
frequencies less than 5 kHz. The bin where thet netability is generated continues to
increase in frequency as the cut-off wavelengtfutither decreased in Figure 4.9-I\.
This is consistent with the results shown in thevpous section.

When a given inverse wavenumber band becomes wealessed iny(x), the
corresponding region of the cochlea whetga is twice the wavelength of the
inhomogeneity becomes more prone to instabilitiiusl the upward spread of the unstable
frequencies with increasingly dense reflectionssite a direct result of the decreasing
values of/peak toward the base. A distribution ¢fx) is defined as ‘dense’ if its inverse
wavenumber spectrum is well represented at halijhgat the characteristic place of the
frequency range of interest. Conversely, a digtrdn ofy(X) is considered ‘sparse’ if this
condition is not met.

Another related trend concerns the spacings oltistable frequencies. In Figure
4.9.11.d, wherélcy.of = 0.48 mm, the peak in the spacing§.i$ ~ 15 because most of the
unstable frequencies fall within the region of % kHz. Here, the inverse wavenumber
spectra of the inhomogeneities contain compondrsilfil,eaxin the regiorx > ~20 mm
and are considered ‘dense’ for the frequencies tlems several kHz; however, it is still
‘sparse’ for higher frequencies. As the cut-offvel@ngth is decreased(x) becomes
‘dense’ for more regions of the cochlea. Thesdoregthen express their predicted
spacing as given in Figure 4.1.b; this shifts peakthe spacings histograms in the (d)
panels of Figure 4.9 toward successively highenesl It is possible to view this trend by
plotting all of the spacings of adjacent unstalbégjfiencies against the geometric average

of the two frequencies, as shown in Figure 4.10.
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houtoff = 0.78 mm
40 ‘ —

30, a) S 30}
20 o ] 20|
‘2-] 10L "2] 100
= 7 = 7|
5 5|
4 4
3l 3l
b5 07 4 P T R R R SR ¥
Frequency of instability [kHz] Frequency of instability [kHz]
hout-off = 0-3 mm Aeutos = 0-19 mm
40 : e 40 —
30/ C) 30| d)
20, 20|
‘2-] 10L "2] 100
= 7L = 7L
50 5|
4 4
3l 3l
050 55678 05 07 S5 4 567
Frequency of instability [kHz] Frequency of instability [kHz]

Figure 4.10.a-d: Plot of spacings between adjasestabilities given variougcy.orr @S a
function of frequency for the results collectedrigure 4.9. The darkened dots represent
spacings that fall within = 1 standard deviatiortteg mode within 15 log-spaced bands. A
trend line through the modes of each band is showanel (d).

Figure 4.10 shows that the spacings between itisibiare fairly widely spread
apart wheniqu.orf > approximately 0.48 mm, as suggested by Figukrea4.There are wide
spacings (low values dfAf) between instabilities at all frequencies in pafi®l When
Jeutoff = 0.30 mm, as in Figure 4.10.c, a strong trengistble throughout most of the
frequency range. This trend is fully realized wiiea distribution ofy(x) is ‘dense’ for all
regions of the cochlea, as in panel (d), and agpeamatch the predictions of Figure 4.1.b
when the CF for each position is calculated. Tdwslts of Figure 4.10.d qualitatively
agree very well with the statistics of clinicallyeasured SOAE spacings in humans, as
presented by Shera (2003). However, there doesaapp be a stronger bias in the linear
model’s results for very closely spaced instaledifii.e. larger values &Af, than in Figure
3 of (Shera, 2003); this is potentially reducedtbg nonlinear interaction of adjacent
SOAEs; this topic is discussed in the following seition.
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It should be noted that the reverse-transmissi@macheristics of the middle ear are
similar to those of a band-pass filter centredograximately 1 kHz, as shown for example
in Figure A.15 in Appendix A. This would in theorgduce the number of SOAEs
detected at frequencies far outside of the middrsgass-band. One would then expect
that the commonly observed PMD between SOAE fregesnin humans is somewhat
different from that observed here, as linear infteEs exist across a wide range of
frequencies in the model. This is further discdssethe end of this chapter.

One final plot that also summarises a large nunolbéinear stability simulations is
Figure 4.11, which shows the average undamping &tid number of instabilities in a
cochlear model when varying both the amplitudenefgerturbation in(x) and itSicyt-of:

0.012

(914 0.2 0.3 0.4 05 06 0708091

701 b) —¥—20% change in y(x)
——15%
——10%
—5.0%

¢ count
a
=)

Mean F
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Figure 4.11.a-b: Average undamping ratio (a) anthlmer of unstable frequencies per
cochlear model (b) given variationsify.ors and the peak-to-peak variationsy().

The mean unstable frequency count and the meammpidag ratio,g, vary directly with
the amplitude of the variation if(x). This result is consistent with the findingsEifiott

et al. (2007). The statistics of the spacings of inditéds are largely independent of the
exact form of the spatial variations, provided thewe a significant component at the
wavenumber corresponding to one Hglfa« Peak-to-peak variations #{x) as small as

1% can give rise to instabilities provided the mlsttion of feedback gain is ‘dense.’
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4.3 Nonlinear time domain simulations of
unstable cochleae

Zweig and Shera’s (1995) multiple-reflection theafy SOAE generation is capable of
explaining many of the characteristics of spontaseemissions in humans. It also
provides a framework for understanding what is olein the linear stability analyses of
the cochlear model. However, the phenomenon lieisry seeks to explain is nonlinear by
nature; it is somewhat surprising that a lineartiieof cochlear mechanics is able to
accurately predict so many of its attributes.

This subsection seeks to begin to reconcile thealirtheory of SOAE generation
with nonlinear simulations of the cochlea in thedidomain. In subsection 4.3.1, a step
change in gain is implemented to study the evatubd a single unstable pole in time.
Further complexity is added in subsection 4.3.2 retee small region of the cochlea is
perturbed by random, ‘dense’ inhomogeneitieg(k). This dense set of reflection sites
gives rise to multiple linearly unstable frequescighe nonlinear simulation of this system
in time shows how limit cycles can interact witheamother.

The nonlinear simulations in this subsection areedrby a 10Qus-long click at 40
dB SPL in the blocked ear canal. The click is cosgal of a well-distributed range of
frequency components that stimulates the entirdnleac model. This is necessary to
briefly excite the unstable modes of these modiisugh the primary goal of these
experiments is not to analyse the transients tteapebduced by this input. The details of
the click stimulus are presented in Appendix A, gr@lmodel’s response to clicks alone is
investigated in the following chapter. In additidhe term ‘steady state’ is used in this
chapter to describe responses that are examinéd>a000 ms after the onset of the
stimulus, by which time the transient has largedgal/ed away.

4.3.1 Step changes in y(x)
A step change in(X) is introduced which generates a single instabdit 1.2135 kHz, as

shown in Figure 4.12. When this system is stimdlaigth a click, a limit cycle is

generated close to the unstable frequency. Thadgtstate frequency of the nonlinear
limit cycle is 1.2140 kHz; this value is within @% of the linear prediction. The first 60
ms of the global response of this nonlinear mosidlustrated in Figure 4.13 which shows

how the initial wave following the click stimulusgpagates from the base to the apex.
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Figure 4.12.a-b: Stability plot of a model witfx < 18.9 mm) = 1y(x> 18.9 mm) = 0.97.
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Figure 4.13.a-b: Mesh of results from a nonlineastable cochlea, simulated in the time
domain. The stimulus applied was a 1@0click.
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When the transient wave reaches the step-discatytiatiapproximately 7 ms, backward
travelling waves are reflected from this site. Ttvevard TWs in this mesh have a positive
slope, whereas backward TWs have a negative slope.

Figure 4.14 plots the response of the BM at seMeraltions; positions are plotted
apically to basally in the three panels to fadditaomparison with the mesh plots. Figure
4.14.c shows the response of a point basal toltheacteristic place of the instability. At
this position, the transient click response reache®ak at approximately 2 ms. At the
characteristic place of the instability, as shownFigure 4.14.b, the transient reaches a
peak at approximately 6.5 ms. Finally, at a lawatapical of the best place, the initial
transient reaches a peak at approximately 15 ngyan in Figure 4.14.a. This increasing
delay in the transient illustrates that the cliskndeed propagating apically. Furthermore,
the delays basal to the discontinuity in feedbaaik @re consistent with the predictions of
Figure 2.21 where = 1.

One interesting feature of Figure 4.13 is that éhare initially time frames of
stronger and weaker activity near the locationh&f discontinuity. For instance, xat=
18.8 mm, there is a local maximum in the envelopthe response at approximately 21
ms, while there is a local minimum in the envel@behe response at approximately 28
ms. The peaks and dips in the envelope of theonsgpat the characteristic place of the
instability are due to the sloshing about of refélcenergy from the original stimulus. It
takes approximately 7 ms for the energy of thekctw propagate from the base to the
discontinuity iny(x) located atx = 18.8 mm. A portion of its energy is subsequently
reflected back toward the base during the next 7 Whken this backward TW encounters
the middle ear, it is again partly reflected baoWadrd the discontinuity. After another 7
ms, this initial wavelet, now twice-reflected, agaeaches the discontinuity. This explains
why the peaks in the envelope of the responsafaltid multiples of the cochlear delay to
the location of the discontinuity(x = 18.8 mm} 7 ms, 3(x = 18.8 mm)} 21 ms, etc.

While the transient response dies away, oscillatianthe unstable frequency add
coherently over successive reflections betweenbidme and the step-discontinuity, as
shown in Figure 4.14. Oscillations gradually eitito a fixed-amplitude limit cycle that
peaks close to its characteristic place, the respah which is plotted in Figure 4.14.b.
Low-level oscillations of these reflected TWs (a unstable frequency) are visible at the

location basal to the discontinuity in Figure 4clfort > 10 ms. However, at > 18.9
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mm, the response is quickly extinguished and naanas visible after the initial transient

in Figure 4.14.a.
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Figure 4.14.a-c: The first 60 ms of BM velocitythtee locations in the unstable cochlear
model shown in Figure 4.12: aF 28.2 mm; bx = 18.8 mm; ck = 9.4 mm.

The time-evolution of the frequency componentshim pressure at the base of the cochlea
is plotted in Figure 4.15 over several differemdiframes. There is a clear influence here
from the frequencies of the near-unstable poldkarstability plot, Figure 4.12.

Blunt peaks are visible in the pressure spectruniigbire 4.15.a at frequencies
corresponding to the near-unstable poles as welhassingle unstable frequency. The
levels of these peaks also seem well-correlatetl thié relative magnitudes of the real
parts of the poless;. This is consistent with the calculated lineangient response of a
system with damped modes. Such a linear systenidwociude spectral components at
each of the natural frequencies of the system. déeay of these components is
determined by the corresponding valuescpf For this nonlinear system, harmonic
distortion is visible at the second and third hamiog of the fundamentals. As later time
frames are examined, only the response at the riynemstable frequency and its
harmonics persist. Notice that the spectral regolof the panels improves as longer time
windows are analysed at later time frames. Thesnariation of several frequency

components in the pressure response is compafédure 4.16.
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Figure 4.15.a-d: Superimposed stability plots oe#ér system and the spectrum of the
pressure at the base of the nonlinear cochlea dowgntime windows: a) 18t < 110 ms;

b) 50<t <550 ms; c) 50& t < 1500 ms; d) 10068 t < 3000 ms. Unstable poles are plot
with dark X’s; stable poles are plot with light’s.
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Figure 4.16.a-c: Variation of the magnitudes ofimas frequency components of the
pressure at the base with time in an unstable eachlLinearly unstable and near-unstable
frequencies are shown in panels (a) and (b), réspgc while harmonic distortion
Every curvesists of 15 data points, where each
value represents the DFT of 200 ms of data witbverlap between adjacent windows.

frequencies are shown in panel (c).
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It is clear from Figure 4.16 that the magnitudetlod unstable frequency and its
harmonics remain relatively constant with time. wdoer, the near-unstable frequencies
decay away as predicted by linear stability analysthough the relative initial levels of
the near-unstable frequencies correlate well withot of their respective poles, the final
values of thd = 1.285 and 1.114 kHz components are somewhatiggrahan the other
three plotted frequencies. Nevertheless, all efrtear-unstable components are at least 90
dB below that of the primary unstable frequencthatend of the simulation.

The steady state magnitudes and phases of thergrend its first two harmonics

are plot as a function of position in Figure 4.17.
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Figure 4.17.a-b: The magnitude (a) and phase (bhhefBM velocity at the unstable
frequency and its first two harmonics calculate@ &snction of position. The fundamental
response is plotted as a solid line, whereas thear®l 3, components are plotted as a
dashed and dotted lines, respectively. A solidicadr line marks the location of the
maximum magnitude response of the fundamental, @asea dashed vertical line marks the
location of the maximum phase response of the foneddal.
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The magnitudes of the various components in Fidgui&.a indicate that thefp2and 3,
harmonics of the unstable frequency both have lowatima at their characteristic places
(at approximately 14 mm and 11.5 mm, respectivelpwever, the absolute maximum
peak of each frequency is close to the charadtendace of the fundamental. The
magnitudes of the BM harmonic distortion componeattshe base of the cochlea are
approximately 40 and 80 dB below the fundamentdfigure 4.17; this is confirmed by
the pressure response at the base in Figure 4.86x= 18.9 mm, however, the peaks of
the three frequencies fall within a range of onfydB. This shows that the fundamental
has been amplified less than the harmonics, perthagso self-suppression. The phases of
Figure 4.17.b can reveal further details of thepoese, as discussed at the end of this

chapter.

4.3.2 Random variation in y(x)
As illustrated in the simulations of a single ub$apole, a saturation nonlinearity in the

feedback loop is necessary to limit the amplitutihe oscillations of the linear instability.
The unstable frequency continued to ring indeflpitgfter the near-unstable frequencies
died away. In this subsection, further compleistgonsidered by examining the nonlinear
interaction of several linear instabilities in @chlear model.

Only a restricted region of the cochlea is pertdriagth a ‘dense’ distribution of
inhomogeneities, so that the interaction of ontglatively small number of unstable poles
can be observed. This is accomplished by windgvardistribution ofy(x) within the
range of 16.5 <« < 23.5 mm, as shown in Figure 4.18. A 3.5 mm-léfagining window
was generated and extended by filling its centita ®i5 mm of ones; zeros were padded
outside this range to extinguish the remainingatams in gain outside the window. The
stability of a cochlear model that incorporates thindowed-perturbed gain distribution is
presented in Figure 4.19. The perturbed polesi#ttin a range of ~0.7 to 1.5 kHz, which
corresponds to the characteristic frequencies witie spatial window function.
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Figure 4.18: A distribution of(x) is shown in thick grey. A 7-mm extended Hanning
window is applied, centred at= 19 mm. The resultant windowed distributiony(f) is
shown in thin black.
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Figure 4.19: Stability of a cochlear model giver thindowed-perturbed gain distribution
as presented in Figure 4.18.

Five distinct instabilities are generated by thiadewedy(x), located at = [0.979, 1.080,
1.145, 1.229, 1.296] kHz. The undamping ratioh&se poles is = [0.004, 0.009, 0.030,
0.020, 0.020], respectively. There are also a rarmobnear-unstable poles, located at
[0.800, 0.848, 0.923, 1.033, 1.359, 1.597] kHz.

A mesh of the first 60 ms of BM velocity is shownkigure 4.20; a 100s click was
the only stimulus. Figure 4.20 shows that the tggaBM activity is restricted to the
perturbed region after the initial transient decaygy; this is centred at =~ 19 mm.
Again, backward travelling waves are visible froppeoximately 8 ms onward from the

basal edge of the perturbed area.
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This response is further clarified in Figure 4.2hich shows the BM velocity at
locations basal to-, within-, and apical of thetpdyed region. As with the simulation of a
single unstable pole in the previous subsectioty mtations near the inhomogeneities
exhibit much activity after the initial stimulus yidecayed away. However, the activity in
this randomly perturbed region, as shown in Figi&l.b, is clearly more complicated
than the equivalent plot of the step-perturbed arsp, as previously given in Figure
4.14.b.
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Figure 4.20: Mesh of BM velocity in the first 60 na$ a nonlinear simulation of an
unstable cochlear model; the stability of this sgsis shown in Figure 4.19.
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Figure 4.21: The first 60 ms of BM velocity at tardifferent locations following a click
stimulus at the base: aF 9.47 mm; bx = 19 mm; cx = 28.55 mm.

The spectrum of the pressure at the base of theleadés calculated from the last
2000 ms of data in the 3000 ms-long simulatiorv@ichany contamination from the initial
stimulus. This is plotted simultaneously with th@bility plot of the system in Figure
4.22. Unless otherwise noted, a Blackman windosvlieen applied to all of the spectral
results in this section; this form was chosen tersharp attenuation of sidebands, though
other window functions with similarly sharp cut-ofharacteristics produced similar
results.

Figure 4.22 shows that there are more than 4ndisithable peaks in the spectrum
of the pressure at the base, with amplitudes rgn@iom near 0 dB SPL down to

approximately -105 dB SPL in this simulation.
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Figure 4.22: Simultaneous plot of linear systenbistg and the pressure spectrum at the
base of the cochlea for 1080 < 3000 ms. Unstable poles are plot with dackk;* stable
poles are plot with light<'s.
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The range of these frequency components extends @083 kHz all the way up to 3.7
kHz. This wide range of activity is the resulttok nonlinear interactions of only five
linearly unstable poles. The ‘new’ frequenciest theere not predicted by the linear
stability analysis can be attributed to both harim@nd intermodulation distortion. For
instance, the peak at 2.455 kHz and -48 dB SPLappe be the second harmonic of the
linearly unstable limit cycle at 1.227 kHz. Simija the lowest frequency peak at 0.084
kHz and -40 dB SPL appears to be a difference teselting from the limit cycles of the
two linearly unstable frequencies at 1.227 kHz ari3 kHz. What is also interesting
about Figure 4.22 is that only three of the fiveelirly unstable frequencies are expressed
in the last 2000 ms of the simulation. The limytle frequencies that do persist are all
within 0.1% of the linearly predicted unstable fneqcies.

In order to understand the time-evolution of theioss frequency components,
Figure 4.23 shows the spectrum of the pressureeabase, calculated over four different
time frames. Only a tight range of frequenciesrtba linearly unstable frequencies are
shown for clarity. In the earliest frame, showrpemnel (a), there are peaks at each fully-
unstable and near-unstable frequency as predigtelihéar stability analysis. As one
might intuitively expect from the response of linegstems, the magnitude of each peak is
directly related to the magnitude of the real mdrthe corresponding pole. As the time
window is shifted later in time and further awagrfr the initial stimulus, some of these
initial peaks begin to recede in amplitude. Almatt of the (linearly) near-unstable
frequencies have fallen to the noise floor by pddgl In addition, other distortion-related
frequencies begin to rise at later time frames @t w

The variation of the amplitudes of different coments of the pressure response is
charted as a function of time in Figure 4.24. ‘Eheeparate panels show the DFT
magnitudes of the linearly unstable, linearly neastable, and a number of predicted
distortion product frequencies.
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Figure 4.23.a-d: Simultaneous plot of linear syststability and the spectrum of the
pressure at the base of the cochlea given fourwmdows: a) 1<t <110 ms; b) 5&t <
550 ms; ¢) 506t < 1500 ms; d) 15068 t < 3000 ms. Unstable poles are plot with dark
‘X’s; stable poles are plot with light’s.

121



4 Spontaneous Otoacoustic Emissions

Linearly unstable frequencies

201

-20r

Magnitude of Pressure Component [dB SPL]

-60F
-80[1 e f, = 0.979 kHz .
S =108k | NI
aool|==m fp=1aasKkHZ| T T el . P
— f,=1.220 kHz g
—— {=1.296 kHz
-120 T L L L L |
0 500 1000 1500 2000 2500 3000
Time [ms]
Near-Unstable frequencies
201
by e f=0.8 kHz
== {=0.848 kHz
oF === £=0.923 kHz
— £=1.033 kHz
—— f=1.359 kHz
-20F 1. —o— {=1.597 kHz

-40r

-80

-1001

Magnitude of Pressure Component [dB SPL]

-120 1 1 1 1 1 ]
0 500 1000 1500 2000 2500 3000

Time [ms]

Distortion product frequencies
20

C) ...... 2f-f, = 0.813 kHz
== 2ff, = 1.311 kHz
===2f,f; = 1.061 kHz
—2ff,=1.313 kHz
20l ——2f,f, = 0.729 kHz
—e—2f f = 1.479 kHz

f, = 0.979 kHz

100~ fp=1.145 kHz

Magnitude of Pressure Component [dB SPL]

f, = 1.229 kHz

-120 1 1 1 1 1 ]
0 500 1000 1500 2000 2500 3000

Time [ms]

Figure 4.24.a-c: Variation of the magnitudes ofimas frequency components of the
pressure at the base with time in an unstable eachlLinearly unstable and near-unstable
frequencies are shown in panels (a) and (b), réspgc while distortion product
frequencies are shown in panel (c). Every curvasisbs of 15 data points, where each
value represents the DFT of 200 ms of data witbverlap between adjacent windows.
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Figure 4.24.b illustrates the expected transierttabeur of the stable modes, as the
magnitudes of the near-unstable frequencies fallatéevel to near the noise floor
approximately 500 ms after the initial stimulusheTinitial rate of decay appears to be
approximately -140 dB/s for each of the frequensiesnn.

The magnitude of the frequency components that wetermined to be unstable by
linear stability analysis are plotted in Figure4d&as a function of time. The responses of
f=1.229 kHz and = 0.979 kHz increase slightly in amplitude durthg first 500 ms, but
then reach reasonably constant levels of -0.8 artddB SPL, respectively. However, the
remaining three linearly unstable frequencies dewegy at various rates. For instanice,
1.296 kHz and = 1.080 kHz initially decay at approximately -1688/s and -70 dB/s,
while f = 1.145 kHz recedes much more slowly at approxeiyatlO dB/s. It is clear that
nonlinear suppression is taking place between tistable tones, contrary to the linear
analysis; the observations made here are disctisgbdr at the end of the chapter.

The magnitudes of a number of commonly observetbriisn products which result
from three assumed primaries are given in Figut.4. In addition to the most
commonly studied DPOAE, the cubic distortion pradg - f,), one other nearby DPOAE
(2f, - f;) is examined for to its proximity to the primaries general notation df andfy,
corresponding to the frequencies of the lower tame the higher tone, is adopted above to
avoid confusion with the notation for the selegpeisnaries. The primaries chosen are the
three linearly unstable frequencies that persisiplitude:f; = 0.979 kHzf, = 1.145 kHz
andf; = 1.229 kHz. The magnitudes of the distortiondmais at 2 - f3 and 23 - f; mirror
the growth of the two primaries & andfs, just as the magnitudes of the other four
distortion products show slow decay, in a mannemilar to f,. Note however that decay
rates of these distortion products are somewhatdesep than that df; this is perhaps
because the amplitude of the other primaries atdest

One of the salient features of SOAEs, however,hes distribution of spacings
between unstable frequencies. To examine the ¢ogralised spacings between adjacent
limit cycles of this nonlinear simulation, an arhity threshold was set at -65 dB below the
strongest instability to choose frequencies forlymm® The selected limit cycles and the
resultant/Af spacings are shown in Figure 4.25.
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Figure 4.25.a-b: The pressure spectrum in panetligolays a number of selected limit
cycles; these frequencies are used to computendestebetween the instabilities, as shown
in panel (b). Selected frequencies are indicatgedabstar ), and linearly unstable
frequencies and spacings are denoted by a ci@le (The frequency axis of panel (b)
represents the geometric mean of the two adjadmiit dycle frequencies. Dotted, dot-
dashed and dashed horizontal lines are drawh at[83, 2*83, 3*83] Hz, respectively.

The results of Figure 4.25 are plotted on a lifeaguency axis in order to emphasize the
spectrally periodic nature of the limit cycles. €Blk results are considered in subsection
4.4.2.

4.4 Discussion

The investigations presented in this chapter remtesn attempt to understand the
mechanisms that give rise to SOAEs. The approalobnthere assumes that an unstable
nonlinear system that saturates is capable of gangrlimit cycle oscillations similar to
SOAEs. Thus, the linear stability of the cochleadel was a natural starting point for

comparing theoretical predictions to simulations.
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4.4.1 Linear results
The findings of section 4.2, based on a linear moakmodel of the human cochlea, are

consistent with the multiple-reflection theory ov@g and Shera (1995). The state space
formulation is able to predict the frequencies atol a linear, active cochlear model will
become unstable. Direct measurements in animais slaown that spontaneous basilar
membrane oscillation is associated with SOAEs m é¢ar canal (Nuttaket al., 2004).
Consequently, comparisons are drawn in this papetwden measured SOAE
characteristics and the instabilities generatetthéncochlear model. However, it is worth
highlighting the similarities and differences beémemeasured data and these simulation
results.

This model predicts that instabilities exist albrag the cochlea and across a wide
range of frequencies, given a dense array of inlyggmeities in the cochlea. In contrast,
SOAEs in normal-hearing individuals are only roatindetected between 0.5 kHz to 6
kHz (Probstet al, 1991). Even if instabilities exist in all regealong the average human
cochlea, however, it is likely that only a subskthese will be detected in the ear canal. It
is believed that the inefficient reverse-transnoissiharacteristics of the middle ear hinder
the detection of SOAEs outside of its best transiility range, given its steep drop-off
above and below its ~1 kHz resonance of approximad®dB per decade. The limited
bandwidth of normally-detected SOAEs is also paddigtreduced by physiological noise
and the current limitations of sensor technologylust as improved measurement
techniques have revealed increasingly sharp a&Meenhancement through the years,
refinements in recording technique have exposeyl@eh prevalence of SOAEs in more
recent studies (Probst al, 1991; Penner and Zhang, 1997).

The average number of unstable frequencies showigure 4.11 for a ‘dense’ 5%
peak-to-peak variation in gain is similar to theximaum number of emissions detected in
a single ear, some in excess of 30 SOAEs (Talmatgg 1993). It has been shown that
the level and number of instabilities in the stgppace model depend on the amplitude of
the variations in BM impedance and the spatial iffens the inhomogeneities. For
instance, the current linear model predicts a ibigtion of unstable frequency spacings
that is similar to physiologically compiled dataseveral respects.

The spacings between linear instabilities in thiesdel can match the observed
variation in SOAE spacings with frequency as gibbgrShera (2003); however, this is only
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realised when the wavenumber distributiony@d) is ‘dense.” For instance, the spacing
results presented in Figure 4.9.1V.d and FigureD4l.lare consistent with the model
predictions shown in Figure 4.1.b. The peak ofrtbemalised spacings in Figure 4.9.IV.d
is located at a value diAf = 20, which is somewhat more closely spaced then t
commonly-observed PMD. However, the peakfisf ~ 15 in Figure 4.9.1.d which
represents the situation where the distributiony@d is ‘dense’ only for the lower
frequency regions of the cochlefgk € 5 kHz). This is consistent with the resultsttie
previous subsection given sinusoidal distributiohg(x) with longer wavelengths.

When the current understanding regarding hearingiaty, the various forms of
OAEs and pathology are combined, a convincing picttegarding the generation of
SOAEs begins to evolve. As many authors have ediout, SOAEs in humans appear to
be a natural by-product of the species’ sharplyedusense of hearing. Normal hearing
individuals that do not exhibit SOAEs typically lagan audiogram which underperforms
those with SOAEs by approximately 3 dB in the staddl-6 kHz range (McFadden and
Mishra, 1993). Pélanowt al. (2007) also reported that the high-frequency ayrdi of
normal-hearing children without SOAEs underperfaiméhose with SOAEs by
approximately 5 dB through the 10-16 kHz range.thia ‘laser-cochlea’ theory of OAE
generation, it is the portion of the cochlea bdeathe reflection site that is crucial to
sustaining the limit cycle oscillation. If the &&s in this region are not overcome by the
active enhancement provided by the outer hair cetisspontaneous emission can occur.
This is exemplified by the two stability plots given Figure 3.8; a step down in gain from
vy = 1 causes instability, but a step up in gainyte 1 at the same location maintains

stability.

4.4.2 Nonlinear results
The nonlinear results of this chapter demonstfzé @ great deal of complexity can arise

from just a few linear instabilities. The nonlingane domain simulations showed that
linear reflection initially dominates the resporiskbowing a click stimulus. For instance,

in both Figure 4.15.a and Figure 4.23.a, there lomt peaks in the basal pressure
spectrum at all frequencies where poles have meowdrd or beyond the boundary of
stability. As the response settles, the near-blestiiequencies decay away; however, in
the simulation of a model with a single instabilithe unstable frequency persists and
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stabilises into a limit cycle oscillation as shownFigure 4.16. As a result of the limit
cycle, harmonic distortion is also generatedfgd 3,, wherefy is the frequency of the
instability. The dynamics of the fundamental resg®are the simplest to describe so they
are discussed first.

It is instructive to consider a one-dimensional Kveard-travelling wave in a
homogeneous medium of unit amplitude that can henras

y(t) = cos(at + K7y X) , (4.6)

whereo is the angular frequencyis time,x is position, andcry is the wavenumber. The
wavenumber can be expressed as

271 _ 0@
K. = = —.
™AL, X
Thus, if the slope of the phase with respect tatjposis positive, then the TW is indeed

4.7)

backward-travelling. However, iBg/0x is negative, then (4.6) represents a forward-
travelling wave. Similarly, if thedg/dx is locally zero, then (4.6) ceases to become a
function of position and the wave no longer propegan this region. In addition, the

wave velocity, or phase speed, is related to theewamber by

w (4.8)

Crw = Py
The wave velocity of the TW can be calculated frdme variation of its phase with
position, as described by equations (4.7) and .(4.8)

Returning to the results presented in Section & direction of the dominant TW
can be determined, assuming the wavenumber is ciaslpwly in a given region. Figure
4.26 plots the wave velocity of the three frequenoynponents of the BM response in
Figure 4.17. A positive velocity in Figure 4.26dicates forward travel, whereas a
negative velocity indicates backward travel. Thame regions where the dominant TW is
forward-propagating, and regions where it is back@opagating. There are also
positions where the TW is ‘standing,” and beyon& ##n the TWs are extinguished. The
response of the TW at tHg appears to change directions once, whereasfghand 3,

TWs appear to change directions three and fivesjmespectively.
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Figure 4.26: Steady state wave velocity of thredtlicycle frequency components along
the nonlinear BM. The solid line represents timedrly unstable frequency, whereas the
dotted and dashed lines represent thea@d 3, harmonics. Negative velocities represent
backward TWs, while positive velocities represarivard TWs. A solid vertical line at
18.9 mm represents the location of the maximum B&ponse. The response is limited to
the first 23 mm as the TWs become evanescent beytbcation.

A more rigorous approach to decomposing the BMamse into forward- and backward-
TWs would involve applying an analytical approximat such as the WKB-method (e.g.
Zweig, 1991; Neely and Allen, 2008). However, sudethods were developed to
approximate linear systems. This topic is givathier consideration in Chapter 6.

The next few plots are presented to facilitate a@ihension of the results given in
Figure 4.17 and Figure 4.26, which showed the ntades, phases, and calculated wave
velocities of several frequency componentségfx). A step-change in(x) resulted in a
single linear instability, as described in givenFigure 4.12. Figure 4.27 shows only the
magnitude and phase of the fundamental componetiteoBM velocity for clarity. Both
the magnitude and the phase represent a supegpositiforward- and backward- TWSs.
As described in equations (4.6) and (4.7), the eslopthe TW phase with respect to
position along the cochlea indicates its dominargation of propagation. For instance,

the wave is ‘standing’ at the top of the phasewileredg/ox=0 at x = 17.75 mm, shown

by the dashed vertical line in Figure 4.27. Tlaevthen propagates ‘down’ the hill away
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in directions both basal and apical of this loaatioThus, the backward TW dominates

from the base of the cochlea to x = 17.75 mm.
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Figure 4.27.a-b: Steady state magnitude (a) andepfg of the BM response as a function
of position at the unstable frequency. A dashetioz line marks thedg/dx =0 location

atx = 17.75 mm, whereas a solid vertical line marksltdtation of maximum amplitude at
x = 18.9 mm. The region of negative damping, gigestimulus frequency of 1.214 kHz in
a baseline active cochlea, is shaded.

The wave speed is fastest near the base, as edpaotd decreases at more apical
locations. The propagating direction switches pthyuat x = 17.75 mm, after which it
reaches a constant forward velocity of 1.2 m/sluis extinguished, as shown in Figure
4.26. Note that the characteristic place of the Bf8ponse, shown by the solid vertical
line in Figure 4.27, is apical af= 17.75 mm. Furthermore, there is also a localimam
in the magnitude of each frequency component imiri€igl.17 just basal of= 17.75 mm.
Both of these peaks fall near the edges of thetivegdamping region, as shaded. These
observations suggest that both forward- and baadki&Vs are amplified in this scenario.
In order to better inform this discussion, the aahons describing the direction of TW
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propagation are overlaid upon a plot of the reat pathe BM admittance in a baseline
linear cochlea at the unstable frequency in Figu?8.
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Figure 4.28: Real part of the BM admittance asraction of position along the cochlea,
givenf = 1.214 kHz. The peaks in both magnitude and pbaBegure 4.27 are plot here as
solid and dashed vertical lines, respectively.

The forward TWs are amplified basal to the charatie place, and peak in the
region of the discontinuity. Backward TWs are tlgemerated as forward-going wavelets
reflect off of the perturbation; the backward TWagain amplified when heading toward
the base which generates the second peak:at6.5 mm. Note that there is precedence
for the amplification of backward TWs in a one-dmmnal model, as demonstrated by
Talmadgeet al (1998). However, the peak in the phase resposgeesents the only
position along the BM where the TW of the fundaraérd ‘standing,’” as the amplitudes of
forward- and backward- TWs are equal here. Trasltein a local peak in the magnitude
at x = 17.75 mm. The local minima near this positioe &kely due to destructive

interference of forward- and backward- TWs; these @nly visible near thég/ox=0

placebecause the TW amplitudes are similar in this megio

It is interesting to note that Neely and Allen (8D0ave reported a similar result in
the magnitude and phase characteristics of a badkinavelling pressure wave, as derived
from a WKB approximation of wave propagation. Thahow that the backward TW is

only supported when inhomogeneities (the stiffness a function of position was
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perturbed) are present along the BM. Furtherntbeepeak in the phase response is basal
of the peak in the magnitude response, just akenstmulations presented here. They
conclude that ‘the round trip delay of an SFOAE rbayless than the twice forward delay
to the characteristic place,” based upon the plpdste(Neely and Allen, 2008). 1t is,
however, difficult to envision this given the nornpeopagation of slow waves along the
BM.

A more likely interpretation is the one given abev@ie phase plot represents the
combined effect of forward and backward componeaits; given location, the positive or
negative slope of the phase results from the damhineamponent. In Figure 4.27, the
region betweendg/ox=0and the maximum magnitude is dominated by a forward
amplified wave which shifts the phase responseussndy/0x is now negative. Thus, the
round-trip delay is still twice the forward delayuyt this is no longer apparent from the
phase plot as the backward TWs are hiding ‘under’forward TWs in the overlap region
basal to the characteristic place. This is illgd in Figure 4.29, where the phases of
three TWs are shown. The linear baseline cochidashows forward travel; its reflected
response is plot by flipping its sign and DC-shifiit such that the backward TW phase
intersects with the forward TW phase at the locatid the discontinuity. When the
unstable cochlea’s phase is DC-shifted by -9 cy@es complete forward-and-backward
trip to the site of the discontinuity), there isogoagreement between the backward TW’s
phase and the reflected wave’'s phase. Note tghtdlisagreement near thig/ox=0
location; this is believed to be due to the rekivsimilar amplitudes of the forward- and

backward- TWs in this region, which may slightlyeat the phase results.
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Figure 4.29.a-b: Phase of 1.214 kHz TW (dash-dat) as reflected response at the
location of the discontinuity (dotted). The steatigte phase of the 1.214 kHz DFT in the
unstable cochlea is shifted by -9 cycles and psotiasolid line. A dashed vertical line
marks the dg/0x=0 location; a solid vertical line marks the locatiaf maximum

amplitude.

The dynamics of thefg and 3y harmonics, shown in Figure 4.30, are somewhat
more difficult to interpret as the directions oethWs appear to change multiple times.
The fact that the dominant TWs of the harmonicsi@dwdirections at the same location
basal of the strongest peak in the magnitude stigjgaisthere is distortion reflected off of
the discontinuity, which then becomes amplifieitsbest place. Thus, there appears to be
a combination of both distorted amplification amdpdified distortion taking place near the
negatively damped region of the fundamental. Ailsinpattern of activity also exists at
approximately 14 mm in Figure 4.30, near the charatic place of .
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Figure 4.30.a-b: Steady state magnitude (a) andepfid of the £ harmonic response of
the unstable frequency.

Basal tox = 13.25 mm, the fg component is dominated by a backward propagating
wave. In the region where 13.25«< 14.7 mm, the TW is forward propagating. In this
case, it is possible thatfp2distortion generated near the characteristic platehe
fundamental is propagating backward to the base thed reflecting forward to be
amplified at the § characteristic place. However, it seems also sitdel that the 13
distortion is being generated near its region @fatiee damping. This is analogous to the
appearance of a 6 kHzfg2distortion component near its characteristic @laten 3 kHz
sinusoidal stimulus is applied to a baseline madein Figure 3.18. Thefg3distortion
component has a third phase ‘hill' near its chaastic place; it is likely that the same
mechanism responsible for the second ‘hill’ thephase is at work there. The bottom line
Is that the exact nature of DP component generatimpagation and amplification in the
cochlea remains an open area of research.

There are many unexplained features of nonlineatesys with multiple linear

instabilities, such as that studied in Section24.3ls it possible, for instance, to predict
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which linear instabilities will become limit cyclescillations in the nonlinear simulation?
Of the five linearly unstable poles generated by wWindowed-perturbeg(x) given in
Figure 4.19, only three persisted as strong limpdles at the end of the simulation. The
lowest frequency instability also had the smalieglamping ratio and yet was the second-
strongest limit cycle. This is perhaps a physicenifestation of the phenomenon of
upward spread masking, where lower tones effegtimehsk the detection of a higher-
frequency tone. However, some adjacent linearstable poles resulted in limit cycles,
while others did not. The real parts of the BM #thnces of the three limit cycle

frequencies in a baseline linear cochlea are smpesed on one plot in Figure 4.31.
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Figure 4.31: Real part of the admittance of thieedrly unstable frequencies.

Figure 4.31 shows that there is significant ovetigtween the negative-damping
regions of the = 1.145 and 1.229 kHz tones, though neither tone resppd the other.
The two unstable poles at these frequencies hadhitffeest undamping ratios of the
instabilities, so perhaps this contributed to tiparsistence. It is likely that a combination
of regions of amplification overlap, linear undamgpiratios, and unstable frequency
distributions may all contribute to or detract fralee mutual suppression of adjacent
unstable poles. One of the primary features arest here is the spacings between limit
cycle oscillations.

Figure 4.25 shows that the spacings between tleetedl limit cycles are amazingly

consistent across frequency. Recall that the tlmear instabilities that persist at steady
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state are 0.166 and 0.084 kHz apart. Any neargymodulation distortion products will
also be at integer multiples of those distances fitee primaries. For instance, the nearest
distortion product frequencies of limit cycle ofatilons at 1.0 and 1.1 kHz would be at 0.9
and 1.2 kHz. This would result if spacings that fall at regular intervals, similarthat
shown in Figure 4.25.b. The validity of this liaereasoning is supported by reports in the
literature of measured SOAEs that appear to berdisaelt of cubic difference tones
generated by ‘primary’ SOAEs (Bures al, 1984; Whitehead, 1988).

Consider a large number of linearly unstable pdlest arise given a ‘dense’
distribution of inhomogeneities. Even if the odoaal linear instability is suppressed by a
neighbour, a distortion product is likely to be gmated nearby due to the next higher two
(or previous lower two) instabilities in frequencylhus, though linear reflection is no
longer the mechanism giving rise to all limit cyascillations in the cochlea, the local
PMD between their frequencies would still be expegls This phenomenon nevertheless
requires that a ‘dense’ distribution of inhomogéesibe present in the first place to fix the
regular underlying spacings between linear instas| as dictated bylpeax and the
frequency-to-place map. Thus, it would appear thatan spontaneous otoacoustic
emissions are amplitude-stabilized cochlear standiuaves and their intermodulation
distortion products.

The only flaw in such an argument deals with thegmitades of the distortion-
generated limit cycle oscillations, which are apjmmately 40 dB below that of the
primaries in the presented simulation. This wquuiitlthe distortion components below the
noise floor in all but the most sensitive recordiregimes. Nevertheless, the relative
amplitude of the two primary tones is known to hav&trong impact upon the level of the
distortion product (Hall, 2000). In addition, apiplg inhomogeneities to the entirety of the
model may more strongly reflect the distortion comgnts from different positions in the
cochlea. As such, there may be other factors ibanitng to the overall response that have
not yet been considered; further simulations maywshistortion-generated limit cycle
oscillations of higher magnitudes.

It should be noted that the pressure data presamtéds chapter was calculated only
at the base of the model. It is possible to detezrnthe limit cycle amplitude in the ear
canal by passing this signal through the two-petivork, as described in Appendix A.

However, so little is understood about the pregeereration mechanisms in the cochlea
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that this additional linear transform is left taute work. However, it is known that the
middle ear primarily acts as a band-pass filtethai pass region of approximately 0.5 — 2
kHz. At the peak near 1 kHz, the reverse pressaresfer function is approximately -30
dB SPL in magnitude. The stronger limit cycles eyated in this chapter’'s simulations
had magnitudes at approximately 0 dB SPL at the,bakich are clearly too low to be
measured in the ear canal. However, it is verypnto adjust the magnitudes of limit
cycles by revising the overall saturation poitin the Boltzmann nonlinearity. A higher
overall saturation point will simply shift up thest¢ady state) saturated response
accordingly. Furthermore, results in the previabspter also suggest that this value
(currently 1 nm) is too low.

There is a great deal of future research that eapursued following these results;
these ideas are discussed in Chapter 6. The rexitar takes a step back from the
boundary of stability to analyze the system’s resgeoto clicks. Both linear and nonlinear
simulations are performed, but all cochleae arblstéo simplify the interpretation of
results.
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Chapter 5

Click Evoked Otoacoustic
Emissions

Along with spontaneous emissions, the existengghgsiologically vulnerable and level-
dependent transient evoked otoacoustic emissioBOLAES) supports the notion that a
nonlinear, active mechanism is at work in the hurbachlea. To be consistent with the
rest of the thesis, a TEOAE is defined here asriati@n in pressure at the stapes or in the
ear canal that is generated in the cochlea.

As discussed previously, the mammalian cochleailoliges and amplifies the energy
of a signal’'s frequency components to various pmsst along the CP, according to its
frequency-to-place map. It is also understood tatiations from the smooth spatial
variation of the CA, or other mechanical propertdshe CP, can cause reflections of
forward-travelling waves in the cochlea. Thus, whe impulsive excitation is introduced
at the base of the cochlea, the various frequeanponents of the click reach maxima at
their characteristic places and are most strorgflgcted from these locations. However,
the group delay, or the time required for a TW &aadh its characteristic place, is
frequency-dependent. The round-trip travel timedavavelet to propagate from the base
to its characteristic place and back is thus reteto as the frequency-dependent TEOAE
latency. The highest frequency components retorthé stapes first because they peak
sooner in time and closer in longitudinal distaricen the base, relative to the lower
frequencies. This finding was first presented lenip (1978), who recorded TEOAES in

humans following both clicks and four cycle-longw¢sburst stimuli from the ear canal.
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Numerous investigations have since verified theselts (Hall, 2000; Sisto and Moleti,
2002).

There are a number of clinical methods of measufiBQAEs. These are broadly
classed as derived nonlinear (DNL) and linear aqgnes, both of which seek to eliminate
the linear stimulus and associated artefacts wiréserving the nonlinear OAE. In the
DNL paradigm, the difference is taken between #wwrded waveforms of two (or more)
clicks of varying stimulus amplitudes, typicallyd® or 9 dB apart. The response due to
the lower amplitude click is scaled up by the cgpanding increase in stimulus level for
the higher amplitude click; the difference is tliaken between these two quantities such
that the linear components of each are eliminatétese clicks are typically 10@s in
duration and are repeated every 12.5 to 30 ms.th@diological CA behaves linearly
when tonally excited up to approximately 30dB S&iy attempt to resolve a click-evoked
otoacoustic emission (CEOAE) using nonlinear cdatieh must operate at a higher level,
otherwise both the stimulus artefacts and the CE@MEbe lost when the difference of
the signals is calculated. For example, the UKnagal screening programme recommends
a stimulus level of 80-88 dB peak-equivalent SPRaI[H2000). The results of many such
periodic clicks are averaged in time in order jecenoise.

The linear paradigm of CEOAE measurement also exinoise by time-averaging
the signal recorded in the ear canal. In ordeetoove the stimulus artefact in the linear
paradigm, the difference between its short lateacgt the CEOAE’s longer latency is
exploited. The artefact, which is due to ringimgthe ear canal and the middle ear,
typically decays to negligible levels relative ke tCEOAE within 3 to 8 ms following the
onset of the click. Thus, up to the first 5 ms lofear time-averaged TEOAE
measurements are windowed out to remove the at$efag. Tognolat al, 1999). Both
linear and nonlinear approaches have advantagedramtbacks.

DNL methods greatly reduce the chance of mistakirgick artefact for a genuine
OAE. In addition, nonlinear methods are able sohee the highest frequency components
of CEOAEs which occur first in time following théiraulus. In contrast, linear methods
window out this section of the signal to eliminateanulus contamination; linear methods
can, however, maintain a higher signal-to-noiseéorgHow and Lutman, 2007).
Furthermore, at amplitudes where the CA is paytiatir fully-saturated, the cochlea

behaves differently from its low-level, linear resge. One would expect to see the
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greatest ratio of CEOAE level to stimulus amplitugleen the CA is linear, though the
noise due to physiological and environmental sairgeecludes these low-level
measurements in practice. One effect of increastingulus amplitudes is that the TEOAE
latency begins to decrease (e.g. Tognola et aR)19Bhis shift toward earlier latencies has
also been observed in the envelope of click-evd&edmotion in vivo (e.g. Recicet al,
1998).

Thankfully for the cochlear modeller, the myriad pfactical and philosophical
difficulties associated with clinical measurementl aanalysis can often be sidestepped.
The only noise associated with mathematical sirmmariatof the cochlea is due to errors
generated during the solving of the system’s omyirgifferential equations. This is
minimized by setting the relative and absolute retoterances of the ode solver to low
values, with 1§ and 10", respectively being used below. All of the trafial nonlinear
and linear methods of TEOAE isolation can be aplpire post-processing of simulation
results, in addition to some which would be impbigsin a clinical study. The component
of the pressure at the base that is due to theistsntan be isolated by exciting a baseline
cochlear model, a model with no inhomogeneitieghwine same input. This is then
linearly subtracted from the output of a model witihomogeneities, thus leaving the
CEOAE. This is defined as a ‘directly-determiné®D) CEOAE; this method can be
applied in both linear and nonlinear simulations.

The stimulus used for the following experimentsaisectangular pulse of volume
displacement simulated in the ear canal and ladfdfus. The output acceleration at the
stapes that is generated by a pulse in volumeatispient of 1*18° m® in the ear canal is
approximately equivalent to an RMS magnitude ofpatitacceleration at the ear drum
generated by a 0 dB peak SPL excitation lasting E)0Further details on the generation
of this stimulus and can be found in Appendix A.

This chapter is divided into results from lineadaronlinear simulations. The DD
method is applied to isolated CEOAEs in linear datians, and both DD- and DNL-
CEOAEs are calculated given nonlinear simulatiorighe linear section presents click
responses for the baseline model and a large sieihomogeneous but stable cochleae.
The CEOAE latencies of the perturbed models aréys@@ and compared with predicted
latencies. The nonlinear section presents cligparases of increasing amplitude for a

baseline model, and a model with the same perforbat the feedback gain as used in the
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linear analysis. Finally, models with perturbasan the scaling of the nonlinearity in the
CA as a function of position are also analysedctumparison. The latencies of CEOAEs

generated from models with perturbations are tmatyaed and discussed.

5.1 Linear Simulations

Linear simulations of clicks are informative in anmmber of ways. The response of a
healthy mammalian cochlea can be considered liamEeaw levels, less than approximately
30 dB SPL, and again at high levels above appraeina00 dB SPL, (Robles and
Ruggero, 2001). Thus, an active linear model nedpcsimilarly to the cochlea at low
levels, whereas a passive linear model respondgadynto the cochlea at high levels.
However, it is important to note that these sintiles should not be taken to suggest that a
linear model can encompass all of the properties wbnlinear cochlea, even given these
restrictions. For instance, at high levels of sietion, it is possible that the gain provided
by the OHCs is saturating in only one portion ¢ tochlea, or for only a short period of
time.

Nevertheless, many characteristics of the cochbea e captured with a linear
model, hence the persistence of such formulatiortbe literature (de Boer, 1996). One
such feature is the variation of SFOAE fine struetas measured in the ear canal within
small ranges of frequency, which is only visibld@at levels (e.g. Zwicker, 1990). It is
within this low-level, linear range that the gresitamount of reflection per unit input is
generated. Unfortunately, the click-reflected Oi8Eexceedingly quiet at low levels where
the cochlea is linear, and often falls below neosesholds when measured clinically. The
cochlear model, in contrast, generates very cleaunlts with much higher signal-to-noise
ratios. The results presented in this subsectierevall generated by a standard 180

click in volume displacement presented in the eaat

5.1.1 BM Responses

Figure 5.1(a-d) shows mesh plots of BM velocityadsinction of time and position in the
cochlea. The (a) and (c) panels represent baseloizvye and passive cochleae,
respectively. Panel (b) shows the response oflalestactive model with dense, 0.75%

peak-to-peak inhomogeneitiesyi(x). The stability of this model is shown in Figlse.
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Figure 5.1.d shows the difference of the randomparse (b) and the baseline response (a)
in the cochlea; only motion due to reflections remma

Backward travelling waves are visible in Figure.8.for t andx > TTW(X, t)‘y=1
plotted as a solid line in this panel. This is gteup delay, or predicted latency to each
characteristic place across frequency, as pres@ntedapter 2,

i)
o (10, ) = [ 28]

Note that the group delay at a given position igkr for the active cochlea, as shown in

dx. (2.37)

Figure 2.21. After a given wavelet peaks at itarahteristic place (somewhere along the

black line, depending on its frequency), it is eefed back toward the stapes and reaches

the stapes at approximately twice its forward d,el&g'/(X,t)‘y: When it reaches the

.
stapes, the impedance mismatch between the coahtethe middle ear causes a portion

of the wavelet’'s energy to be reflected back towtra@haracteristic place. A dash-dotted

black line shows37(X.t)| _

,4- Forward travelling waves are discernable aldme three

times group delay line. The wavelet, having nowrbeeflected twice, is again amplified

as it approaches its characteristic place for teeorsd time, along the dash-dotted

3T(X,t)‘y=l curve.
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Figure 5.1.a-d: Response of linear cochlear modaks to a 100us pulse of volume
displacement equivalent to 20 dB SPL: a) baselctevea model; b) active model with
inhomogeneities; c) baseline passive model; d)edifice between (b) and (a).
predicted group delay for an active baseline cachle overlaid in solid blador (a,b,d).
The predicted group delay for a passive baselicblea is overlaid in dashddack for (c).

Three times the group delay of the active cas&easlaid in dash-dotted black in (d).
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Figure 5.2: Stability plot for a cochlear model hvilense, random 0.75% peak-to-peak
inhomogeneities iy(x). This system is stable, and its linear clickpaesse is shown in
Figure 5.1.a-d.

In anticipation of the nonlinear responses preskmtethe following subsection,
Figure 5.3.a-d shows the displacement at a simggdipn along the BM when excited by a
pulse in volume displacement in the ear canal,giweiform variations iny(x). Thex-
scale is presented not in terms of time, but rativae scaled by the characteristic
frequency (cycles) at that location, as by She@®1B). This is done both to qualitatively
discern the amount of scaling symmetry that existthe model and also to facilitate
comparison between the two locations. Viszale of the data is normalised by maximum
displacement at eaghto enhance the visibility of the variations in thaveform.

There are two particularly notable differences lestw (a) and (b): the decay rate of
the envelope at higher gains, and the shape oWtweform in the passive cases. The
slower rate of decay in the envelope in (a) vsigltd be expected as (a) is more basal, and
thus more sharply tuned. The differences in tfapeh of the passive waveforms, and thus
the underlying slow responses of the active wave$orare somewhat surprising. The first
positive peak and second negative peak in the \massisponse of (b) is much more
compressed in normalised time than those of (d)is $uggests that basal points in this
model are relatively more heavily damped (for tlasgive case) than those in the middle

region of the model.
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Figure 5.3.a-d: (a) and (b) show normalised BM ldispment at 1.33 mm and 13.96 mm in
a baseline linear cochlea due to a standard clittk wariations in gain from fully activey(
= 1, bottom) to entirely passivey = 0, top). The relative scales of the maximum
displacements are plotted as error bars and skeadeors on the right. (c) and (d) plot the
locations of the peaks of the response given theegaogression from active to passive.
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Figure 5.3.a-d shows the locations of the positpeaks in the displacement
waveform asy(x) is varied. According to measurements made indbehleae of live
animals (e.g. Recio and Rhode, 2000), there is a-ingariance in the temporal fine
structure of BM responses with varying stimuluselevSimply put, the positions of the
peaks in the BM motion are level-independent, tiotige peak of the envelope shifts to
earlier times with increasing intensity. SheraO®0draws the conclusion that this result
suggests OHCs are tuned to the same frequencyeasathral response of the passive
cochlea at any given point. The Neely and Kim @)9®rmulation falls into the category
of cochlear models that Shera denotes<,” where the poles of the micromechanical
model move in frequency with changes in the feekllgman. Figure 8 of Shera (2001)
illustrates how the peaks of an impulse responseenwhen the active gain of such a
model is varied. The same trend of increasingiaés with decreasing gains is observed

in Figure 5.3.a-d.

5.1.2 CEOAEs

In this subsection, click evoked emissions are kted. The pressure at the base of a
linear perturbed cochlear model is calculated fihgy a click stimulus. The response at
the base is then transformed to obtain the resparthe ear canal.

Figure 5.4 shows both short and long latency wirgloWthe pressure at the stapes
and in the ear canal given (1) a baseline model, (i the perturbed model of Figure 5.2.
The (a) and (b) panels show the pressure at thestnd ear canal for the first 5 ms of the
response, whereas the (c¢) and (d) panels showathe data but for 3 mst< 30 ms. In
most methods of linear OAE extraction, the wavefasmvindowed as in (d), to remove
the response due to the stimulus (b) which decesay avithin several milliseconds. The
short latency plots (b) are qualitatively similar ¢linical measurements made by Harte
(2004). There is almost no discernable differebegveen the short latency plots I(a-b)
and ll(a-b), as the stimulus itself is so dominatiowever, whereas the long latency
response of the baseline cochlea, I(c-d), decaysy dw imperceptible levels within the
given time frame, the long latency response ofpurbed model, ll(c-d), shows a great

deal of activity due cochlear reflections.
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Figure 5.4.1-Il.a-d: (I) The response of the basekctive cochlea given a standard click at
20 dB SPL, compared with (1) the perturbed, stabtedel of Figure 5.2. Pressure at the
stapes (left panels) and the ear canal (right gaugglen short time windows (a and b) and
long time windows (c and d).

146



5 Click Evoked Otoacoustic Emissions

Visual inspection of Figure 5.4.1l.d suggests tihe&t instantaneous frequency of the
CEOAE is a decreasing function of time. Althoudpe ttochlear model studied in this
thesis is neither scaling symmetric, nor is ite fatructure response invariant with changes
in vy, the frequency-to-place map of the active basatmelel is quite similar to that of
Greenwood (1990) over much of the cochlea. Thus, @expected that reflections due to
inhomogeneities in the cochlear impedance as aitumof position would have dominant
latencies that are twice as long as the group detéythose frequencies in the cochlea,
when measured at the stapes. Thus, the first geggmably strongest) TEOAE latency
should be 2ty plus any time delay due to forward/reverse migddletransmission.

It would be interesting to analyse the time-vaoiatof the frequency spectrum of the
TEOAES using a short-time Fourier transform. Utdfoately, the limited window time of
decaying CEOAE activity restricts the resolutionfiaquency such that a spectrogram
generated by this method does not provide muchubigefformation in practice. The
latency of various frequency bands is, neverthelassommonly measured feature of
CEOAEs. In order to determine the OAE latency d&snation of frequency, the wavelet
transform is applied here using MATLAB’s continuowgavelet transform (CWT)
function,cwt .

Wavelet analysis is a commonly used method to aeter OAE latencies (e.g. Sisto
and Moleti, 2007). This is because wavelet analisiable to better resolve the time at
which certain frequencies are expressed in a wavefoompared to traditional short-time
Fourier analysis. The wavelet transform can besiclemed as a convolution of a signal

with a ‘mother wavelet’ which is scaled in timegmduce varying centre frequencies,

CWT( 3 t):i $ )%w(%} d (5.1)
wheres(t) is the signal being decomposeds the scale (anélogous to frequendyis the
position (in time),t is time, andy is the mother wavelet. A variety of mother watgle
have been successfully applied in OAE analysis. @ig et al, 1994). Empirical testing
has shown that the choice of mother wavelet doéstnangly impact the final results; the
Morlet wavelet, a Gaussian-scaled sinusoid, iseht®re,

W e (X) = €72 cog( 59 (5.2)
illustrated in Figure 5.5.
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Morlet Mother Wavelet

Amplitude

Figure 5.5: The Morlet mother wavelet.

The results of the wavelet analysis, applied to @%E data presented in Figure
5.4.1-1l.a-d, are shown in Figure 5.6.c-d. Latescare plot along the horizontal axis while
centre-frequencies are set decreasing along thicaleaxis in order; this unorthodox
format was chosen to emphasise the connection batwlee CEOAE latency and the
cochlear group delay. The stimulus artefact was femoved by applying the DD-method

of subtracting the stimulus response in the basefindel:

DD CEOAEt = %eﬂurbert_ p"ase"r‘est

DD CEOAEC = R)erturbecl - poaselir‘eec
The complete, DD CEOAE at the stapes and in thecaaal is shown in Figure 5.6.a-b.

(5.3)

ec

The CWT coefficients were computed as a function of timelil half-octave bands,
extending from 0.5 kHz to 16 kHz. The time at whibe maximum absolute value of the
band-averaged CWT coefficient occurred was takebetdhe latency in that frequency
range. The predicted latency and the band-averaggentcies agree very well for this case,
within 2% of all predictions.

The CEOAEs of 100 linear cochlear models with uaig@ndom inhomogeneities
were then computed. All of the inhomogeneitiesliadpare ‘dense,” and have high-
wavenumber cut-off wavelengths varying from appmoagely 0.2 mm to 0.15 mm. A
small peak-to-peak variation in gain of 0.75% wagpli@d, and all distributions of gain
were tested for stability before the simulationsreveun (unstable distributions were
rejected). Although there was greater variabilityhe calculated band-averaged latencies,

the results again matched up quite well with prgoins, as shown in Figure 5.7. The
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average latency in a given band never deviated thare5% from the predicted latency at
a particular frequency, and the predictions felthimi + one standard deviation of the

averages at all but one band for each set of sesult
s DD CEOAE, » DD CEOAE,,
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Figure 5.6.a-d: Directly determined CEOAE wavefoainthe stapes (a) and in the ear
canal (b). Panels (c) and (d) show the continweasgelet transform coefficients of (a)
and (b), with the predicted latency overlaid inddlg&—) and band-averaged cwt maxima
as white k).

The results for the lowest band, 0.5 kHz, are soha¢wkewed to earlier times due to the
simulation time window; a longer simulation timeoshd resolve this band more
accurately.

When compared to clinical measurements of CEOAéntaes (e.g. Moletet al,
2005), the average results from the linear modedrestimate the latency in every

frequency band. This is to be expected, howeWumerous studies have demonstrated
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that there is a statistically significant corredatibetween CEOAE latency and stimulus
level. This is well documented by Sisto and Mol@0b07). As the stimulus level is
increased, the latency decreases more or less omocally in each frequency band. As
CEOAE measurements are typically made in a strosafyrating amplitude range, it is no
surprise that measured latencies are shorter tieae tobserved in the linear model. This
trend is predicted by the revised Neely and Kim elpavhich shows monotonically

decreasingrw(w) with decreasing gain as shown in Figure 2.21.
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Figure 5.7.a-b: Predicted CEOAE latencies for ativacbaseline cochlea (solid line)
compared to calculated, band-averaged latencies &ionulated DD CEOAESs X's) in
perturbed cochleae. The response is comparec ataipes (a) and in the ear canal (b).
Gray (+) symbols represent +1 standard deviatiasuathe mean. This figure represents
the collected results of 100 linear models withquel, randomly varying(x).
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5.2 Nonlinear Simulations

The nonlinearity of the cochlea is one of its mesharkable features because this allows
mammals to perceive a much wider range of loudisetsss would otherwise be possible.
This subsection first presents the nonlinear medBM responses to clicks, which are
analogous to the linear results shown in Sectidn S he CEOAE of a single perturbed
model (the linear stability of which was preseniedrigure 5.2) is then examined as the
click amplitude is increased. At the end of thidsection, a simulation is carried out by
locating the inhomogeneities not in the micromedatangain as a function of position,
v(X), but in the nonlinear saturation point of theihgckelements as a function of position,
d(X). This shows how reflections may arise due to-simoothly varying parameters in the

nonlinearity, as well as linear quantities.

5.2.1 BM Responses

Figure 5.8 shows mesh plots for nonlinear time damanulations for clicks of increasing
amplitudes applied to the perturbed model presemdéigure 5.2. At 0 dB SPL, the
response of Figure 5.8.a-d is identical to thdtigtire 5.1, the linear case. As the stimulus
amplitude increases, the feedback force beginsatarate. Consequently, the CA’s
relative contribution to the motion of the BM ispguessed; this is comparable (but not
exactly equivalent) to reducing the feedback gairthie linear model. At the highest
stimulus levels, as in Figure 5.8, only the passeaponse is visible near the peak of the
TW; this is qualitatively similar to Figure 5.1.c.

The same trend of motion resembling active resmorsdefting toward passive
responses with increasing stimulus level is vislblally as well as globally. Figure 5.9
shows this pattern in the displacement at two lonatalong the BM. Again, as in Figure
5.3.a-d, the x-axis is plot in terms of time x Qydles) for easy cross-comparison. The
variation of the BM displacement waveform in (a)dafb) is quite similar for the
analogous linear simulation, shown in Figure 5I8.a- There are, however, subtle

differences.
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(a) BM Velocity [m/s], 0 dB SPL 510 (b) BM Velocity [m/s], 39 dB SPL ¢
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Figure 5.8.a-d: Nonlinear cochlear response of mpdesented in Figure 5.2 due to a
standard click at 4 stimulus levels: (a) 0 dB Sf1),39 dB SPL, (c) 78 dB SPL and (d)
117 dB SPL. The cochlear group delay is plottedaftbaseline active cochlea as a solid

line (a-c). The cochlear group delay is plottedddaseline passive cochlea as a dashed
line in (d).
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120

Input level [dB SPL]

Input level [dB SPL]

Eb [dB re: 1nm]

Figure 5.9.a-f: (a - b) show displacement at 1.38 and 13.96 mm in a baseline cochlea
due to a standard click with variations in stimulesel from 0 dB (bottom) to 120 dB SPL
(c - d) plot the locations of the peaksegithe same progression from linear to
saturating, and (e - f) plot the magnitude of tsplcement at the peak with timexCF.

(top).
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For instance, the oscillations in the fine struetuesponse at moderate stimulus levels
persist longer than a linear simulation with a nratkefeedback gain. Furthermore, panels
(c) and (d) show the peaks of the waveform movligihtly earlier in time with increasing
amplitude. This result is different from the argas linear simulations, shown in Figure
5.3.c-d. Panels (e) and (f) show the same dafa)aind (d), but instead of plotting the
results as a function of the driving amplitude, ytreme plotted as a function of the
magnitude of the displacement at the peaks of tineeform. This shows the saturation of
the BM responses relative to the temporal changései peak location.

Figure 5.10 shows the variation of RMS displacenasra function of stimulus level,
calculated over the first 30 cycles of the respatsseveral locations in an active baseline
model; the CF at each location was applied to deter the duration of one cycle. The
interpretation and speculation regarding theselteeate left to the discussion at the end of

this chapter.
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Figure 5.10.a-d: Nonlinear growth of the baselawive model: BM displacement at 4
positions along the BM. RMS values are calculategr the first 30 cycles at each
characteristic frequency wherr 1.
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5.2.2 CEOAEs

As discussed earlier, the latencies of CEOAE fraquecomponents are known to vary
inversely with stimulus level. This is predicted the linear model by the decreasing
cochlear group delay asis reduced. Similar results are expected in thdinear model
with effective reductions iry due to increasing stimulus levels. The resultsthis
subsection are generated from a nonlinear modél thé same perturbations y{x) used

in the model of Figure 5.2. A range of click anydies was applied, ranging from 0 dB to
120 dB SPL in 3 dB steps. The OAE data was isolaten the stimulus in two ways: 1)
directly-determined (DD) by subtracting the basetsgure of the perturbed nonlinear
model from the basal pressure of a baseline nanlim®del, as in equation (5.3); and also
2) via the derived nonlinear (DNL) subtraction nogth

am
DNL CEOAEI = F?Jerturbed( am@ st - pase”n( am'Q da SI* ampp
—6dB
] e (5.4)
DNL CEOAEC - RJerturbed( amg ec paselin( amQ da’ ec amp
—-6dB

The DD CEOAE is presented in Figure 5.11.a-b asation of stimulus level. The
results are amplitude-normalised by the maximunsgunee of each signal in order to more
clearly resolve variations in the waveform. Thevefarm changes little for stimulus
levels below approximately 36 dB SPL. From 36 dB72 dB SPL, an unusual pulse
comes into view at short latencies (1 m$ <5 ms), and lower frequency components
grow in amplitude at long latenciesX 25 ms). An abrupt transition in the shape @f th
waveform takes place between 84 dB and 96 dB SPerevithe highest amplitude
pressures move from the middle of the time winded5(ms) to an extremely short delay
(t<1ms).

To better expose the transition between the moeleaatd high-level waveforms,
Figure 5.12.a-b shows the normalised CEOAE at dugds of 78 dB to 96 dB SPL in 3
dB steps.
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(a) Variation of DD CEOAEst with stimulus level (b) Variation of DD CEOAEec with stimulus level
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Figure 5.11.a-b: Directly-determined, normalised G pressure response from the
nonlinear model at the stapes (a) and in the eaalch) due to a standard click at a wide
range of stimulus levels.

(a) Detail: variation of DD CEOAEst with stimulus level (b) Detail: variation of DD CEOAEec with stimulus level

| |
| | | | % 0.0009) | | | | | x0.0003
: — . v 96 WW\%VWW
|
|
|
|

96 -

©
o
3

Input level [dB SPL]
%
X
¢ o ¢ ¢
8
3
Relative, normalised maximum pressure

|
|
|
|
|
|

93*4‘
|
|
|
|
|
|
|
|
|
|

©
S

X
o
o
o
S
©

Input level [dB SPL]
S 3
) )
R
|
I
(
< :( o X
¢ o o ¢
o o
2 8
w [*2)
Relative, normalised maximum pressure

N ! [ N
| |
| . | | | .
! x 0.0025 ! ! ! % 0.0022
| [ |
81 | | | | | 81 | [ I I
| | | | | | | | | |
| | | | | | | | |
| | | | x00117 | ‘ ‘ | | %0.0038
78 T T T T 78 I |
| | | | | | | | |
1 1 1 1 1 1 1 1 1

20 25 30 0 5 10
Figure 5.12.a-b: Detailed view of the normalisededlly-determined CEOAE pressure
response at the stapes (a) and in the ear candliéblo a standard click between stimulus
levels of 78 to 96 dB SPL.
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The CEOAE at the stapes, Figure 5.12.a, showsdugta&hangeover in dominance from
the oscillations that exist at times > 1 ms (presloiy those due to reflections off of the
cochlear inhomogeneities) to oscillations that teaistimes < 1 ms. The origin of this

extremely short-time latency emission (ESLE) isy&$ unexplained, though present
findings seem to correspond to reports of measOweHSs in humans with extremely short
delays at high levels, as discussed at the entigfchapter. In this thesis, the acronym
ESLE is adopted to describe any significant sigrmmhponent that is observed in the 0-1
ms time frame; this can apply to either simulatiamsclinical measurements of OAEs

when the stimulus has been removed.

Variations in the latencies of cochlear reflectians more visible in the ear canal, as
shown in Figure 5.12.b. By visual inspection, thiative amplitude of the oscillations at
longer latencies decreases and those of shoresrcias increase. The waveform at 93 dB
SPL in panel (b) serves as a particularly gooddtpei’ In addition, the higher-frequency
oscillations at 5-10 ms at 78 dB SPL are replagelbwer-frequency oscillations over this
plotted amplitude range. In order to calculate @OAE latencies in each frequency
band, theCWT method was applied and the first 1 ms of eaclofsdata was discarded to
prevent contamination from the ESLE; if this window is not performed, the latency at
each frequency band jumps discontinuously from lioe@r-level latencies to times < 1
ms. Figure 5.13 shows the results of the CWT amafpr the OAE at the stapes (a, ¢) and
in the ear canal (b, d).

While it seems that latencies agree quite well vatitive cochlear group delay
predictions at linear stimulus levels, and do appeaeach the predicted shorter delay at
higher (passive) stimulus levels, the transitioguge abrupt in most bands. This is at first
rather confusing, as the plots of BM displacemaynea fairly well between the baseline
linear [Figure 5.3] and nonlinear [Figure 5.9] casd-urther consideration is given in the
discussion.

For comparison, the derived nonlinear (DNL) CEOABh® same data is plotted in
Figure 5.14.
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Figure 5.13.a-d: CWT-derived latencies in 11 freguyebands at all stimulus levels. A
solid line marks the predicted latency for an atpdaseline cochlea in (a) and (b), while a
dotted line marks the predicted latency for a pasbaseline cochlea. (c) and (d) plot the
same data, but also against stimulus level.
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(a) Variation of DNL CEOAEst with stimulus level (b) Variation of DNL CEOAEec with stimulus level
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Figure 5.14.a-d: Normalised derived nonlinear CEQ®R&Eponse at the stapes (a) and in
the ear canal (b) due to a standard click withatamns in stimulus level.

The growth of the DNL CEOAE agrees with expecteldaygour given the expected linear-
compressive-linear pattern of BM motion growth daraction of stimulus level. The DNL
CEOAE grows rapidly at low-to-moderate levels ahdnt dies away most rapidly in the
moderately saturating region of the CA, from 36 WB72 dB SPL. However, the finer
details are rather unexpected. There appears $orbe form of stimulus contamination at
each input level, even though the linear componesitshe waveform have been
eliminated. The ESLE begins to dominate the respat higher stimulus levels above 72
dB SPL; this is consistent with observations matiehe DD CEOAE waveform as a
function of stimulus level. The growth curves b&tDD and DNL CEOAESs are presented
in Appendix D.

5.2.3 Inhomogeneities in &(x)
It is well established in the literature that pkiice®d inhomogeneities can give rise to

backward-travelling reflections of TW, at leastrmodels of the cochlea. The source of
these inhomogeneities is potentially located inatigve process, and has been modelled as
a variation iny(x) by Elliott et al. (2007). This subsection presents another poteitae-
fixed inhomogeneity related to the gain; rathemtip&rturbing the gain as a function of
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position, the variation is located in the satumtpoint as a function of positior(X).
Physiologically, this might represent ion gatesliifierent sets of OHCs that do not open a
uniformly varying quantity.

A consequence of having a perturbatior(x) is that strong reflections should only
be detected in the range of moderately saturatingukis levels. At the lowest levels, one
would expect very small amounts of reflection asdhin should be 1 everywhere. At the
highest levels, the response of the cochlea iy &akurated (passive) and the saturation
point should have little or no impact on the resmon Figure 5.15.a-b illustrates the
perturbation applied té(x) relative to the baseline distribution. The peradion, shown
in (b), is the same distribution of ‘dense’ inhorangities applied te(x) in the system of

Figure 5.2, but has been scaled such that its mak-f-peak variation is now 30%.
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Figure 5.15.a-b: Perturbed saturation point as rection of position. (a) shows the
perturbed (solid) and baseline (dashed) saturgimnts as a function of position. (b)
shows the perturbation in isolation.

Figure 5.16 shows the amplitude-normalised CEOAEaaiinction of stimulus
amplitude. It is interesting to note that as tlmuslus level is increased, the frequencies

that are most strongly expressed vary from higlowo
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(a) Variation of §(x) DD CEOAE_ with stimulus level (b) Variation of §(x) DD CEOAE__ with stimulus level
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Figure 5.16.a-b: Directly-determined CEOAE in thaninear model at the stapes (a) and
ear canal (b) due to perturbation(r).
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5.3 Discussion

As this thesis is largely concerned with the eHeditthe variation of feedback gain in the
cochlea, it is worthwhile to step back and view siraulations that have been performed
with such a perspective. The micromechanical gaithe linear cochlea can be varied,
thus setting the base level of feedback at eacmeegof the BM. The gain can also vary
in nonlinear simulations, due to a number of causAs moderate (but non-saturating)
stimulus levels the non-symmetric Boltzmann functidecreases the gain for negative
relative displacements between the BM and the TMlent increases the gain for positive
relative displacements (see slope of the saturatomtinearity, Figure 3.15.b). This effect
has not been well-studied in this model, and furtlverk is needed in this area. As
stimulus levels increase, the active feedback nmeshmbegins to saturate, thus causing a
reduction in effective cochlear amplification. dddition, the saturation point as a function
of position,5(x), is critical in nonlinear simulations.

As seen in previous chapters, sharp variationsaim gan result in impedance
mismatches from one portion of the cochlea to thet,nthus generating reflections of
TWSs. This chapter is concerned with the resporigbencochlea to clicks, which are by
definition a transient stimulus. Except at theyvlewest stimulus levels, a linear model
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cannot be considered representative of what ocecuthe mammalian cochlea. The
nonlinear time domain simulation allowéx) to be varied dynamically which has a direct
impact on the motion of the cochlear partitionstis illustrated well by the comparison of
the linear and nonlinear BM displacement click ceses shown in Figure 5.3.a-b and
Figure 5.9.a-b.

One surprising difference between the linear andinear BM responses was the
paths of the peaks in time as the amplitude wae#ased, shown in Figure 5.3c-d and
Figure 5.9.c-f. The linear model showed that aucidn in gain produces peaks with
increasing latencies, whereas the nonlinear madalved an increase in stimulus level
results in peaks with (not always monotonicallyyréasing latencies. It is not clear what
would produce this effect, though it is likely tranplification of oscillations at moderate
levels was occurring at these later peaks in thdimear simulation which was not present
in the linear case. Such differences betweenitieal and nonlinear clicks simulations are
most visible at moderate levels (eyg= 0.74, Figure 5.3.a and 60 dB SPL, Figure 5.9.a).

In the nonlinear simulation, the locally activereknts saturate near the earliest part
of the response, where the amplitude is highestweyer, as the response begins to decay
away, the lower amplitude waves (of higher freqygraece amplified by the OHCs which
are now operating in a more linear range. Thigafis understandably absent when
examining the corresponding linear plot, Figure.&.$ = 0.66 for instance. The gain is
constant, and the higher-frequency oscillationsagesnvay much more quickly, whereas
they persist in the nonlinear simulation. Thisimilar to the results of Recit al (1998),
who measured the BM velocity of chinchilla cochlelae to clicks. When the magnitudes
of the response at various peaks in time wereqaapainst stimulus level, different peaks
exhibited different saturation characteristics: #eliest and latest peaks showed near-
linear growth, whereas the intermediate peaks stowerying amplitude-ranges of
compression.

When formulating the saturation point as a functidrposition,d(x), the rationale
behind the chosen distribution was that it wouldvalmost of the cochlea to begin to
saturate at approximately the same sound presswed. | Perhaps one unintentional
consequence of this design was the varying widththe saturating region of the click-
evoked BM displacement growth curves, as seen gurEi5.10. As a click wave of

moderate amplitude travels along the BM, the masabregions will necessarily be more
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saturated than those in the apex as energy initheis lost. At the most apical regions of
the model, it would seem that the range of compestimulus levels is greatest; as
energy is lost near the base, the OHCs in the midflthe cochlea maintain enhancement
of the TW. This, in conjunction with the non-symneform of the Boltzmann function,
may explain the greater-than-linear growth thatissble in Figure 5.10.d, at 28.69 mm.

One way of testing this hypothesis would be to @rarthe saturation characteristics
of the nonlinear cochlear model to pure tones atrsé frequencies, and thus characteristic
places from base to apex. If the widths of theirsdéing portion of the response were
identical to those of Figure 5.10, then some othgrlanation would be in order. This is
unlikely, however, as the form of the Boltzmannusation itself is identical at each
location; only the saturation point is varied aladhg BM. Such a response is due to the
global nature of cochlear mechanics, and it isialiff to extrapolate this coupled
behaviour from response of the micromechanical etémin isolation. Furthermore, these
are quantities which cannot be directly measuredhuman subjects; only OAEs and
measurements of BM motion in other mammals areladai for study and comparison
with model results.

The latencies of the linear CEOAEs generated is tthapter agree well with
expectations arising from the cochlear group detdythe model. The average calculated
latencies in the set of 100 perturbed cochlear tsaate within 5% of predicted latencies.
However, the peak-to-peak magnitudes of the siradl&EOAESs are 20-40 dB lower than
typically reported results in the literature; thisly be due to several factors. The overall
levels of BM displacement are lower in this mod#lrt is measured in mammals (Robles
and Ruggero, 2001); it may simply be that the matieluld be recalibrated. In addition,
the apical saturation point was set at 1 nm inrtbelinear model. This was chosen
because it seemed physiologically sensible andteesin the first signs of CA saturation
just below 40 dB SPL, a value which is consisteith wvineasurements in the cochleae of
other mammals. %6 was increased, the emitted CEOAE would also bédrign
amplitude. However, the most significant factolikely the magnitude of the perturbation
applied toy(x).

The inhomogeneities applied in this chapter welédainse’ and on the order of
0.75%. Increasing this value would undoubtedlyultesn stronger reflections. The

rationale behind keeping this a small amount wasdmtain stability. This also serves to
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reduce the number of internal reflections such thatould be more straightforward to
analyze the results and determine the CEOAE lag¢sras a function of frequency.

The most surprising results of this chapter condém nonlinear simulations of
CEOAEs. In particular, the rapid change in thef@f the CEOAE response over only a
15 dB change in stimulus level, as seen in Figui@,5wvas unexpected. The published
variation of CEOAE latencies with amplitude areitglly averaged over a large set of
results, as in Sisto and Moleti (2007). As sutls difficult to ascertain whether or not the
predicted sharp transition from longer latency hortger latency shown in the nonlinear
CEOAE simulation is normally observed in a singhelividual. A large set of varied
results from many more cochlear models would likblpaden the results, possibly
revealing a smoother transition from longer (lindatencies to shorter (passive) latencies
in all frequency regions. It is also possible thatturbations in the overall saturation level
and perhaps even different configurationsd@f) would result in smoother variation of
latencies when averaged over a large set of resuMsother unexpected result of the
nonlinear CEOAE simulations was the prominencenoésremely short latency emission
(ESLE) at high stimulus levels which was presermtietimes < 1 ms (see Figure 5.11).

Other researchers have observed phenomena sinulathd ESLE in these
simulations while measuring various OAEs at moderabd high- levels; a variety of
explanations for their source have been offerednliNearities in the transducer producing
the stimulus (Konrad-Martin and Keefe, 2005), distm in middle-ear transmission
possibly due to the acoustic reflex (Konrad-Maeimd Keefe, 2003; Guinaat al, 2003),
and ‘fast’ compression waves in the cochlear f(ildn, 2002) have all been proposed. As
none of these mechanisms are present in the pneseldl, they cannot be the cause of the
ESLE in these simulations. The most likely exptaomais the existence of a reflection or
distortion site located at or near the base ottiehlea (Brass and Kemp, 1993; Talmadge
et al, 2000; Konrad-Martin and Keefe, 2005). Howevels also possible that the source
of the ESLE in these simulations does not corredponthe source(s) of the ESLEs in
clinical measurements. For instance, there mag bember of sources in measurements
that combine to give rise to an ESLE. The simdapowth curves of the CEOAES in the
nonlinear model, calculated at different time framenay shed some light on this

discussion; these are included in Appendix E.

164



5 Click Evoked Otoacoustic Emissions

Finally, it should be noted that the simulationsyaerning perturbations 16(x)
should not be taken to suggest the author is pmgdkat this is a dominant property of
the cochlea. The fact that variations in ear cgmassure within a local band of
frequencies are most visible at low stimulus lewslggests that the reflection mechanism
is linear (e.g. Zwicker, 1990). Nevertheless,sitan interesting experiment to run as a
comparison to the CEOAES generated given inhomoges@ y(x). For instance, certain
low, medium, and high frequencies are expresse@ stoongly at high, moderate and low
stimulus levels, respectively, in Figure 5.16.a-bhis suggests that the cochlear model
saturates first at the base and then toward the& Bpeause the perturbations in this
simulation are present #(x).

The ability to apply various perturbations to tleeldear model and to compare the
resultant BM motion to ‘known’ or baseline respase of great use. The power of the
nonlinear time domain simulation of the cochlethat it allows the modeller to probe into
many areas of as-yet unexplored cochlear functidnis clear, however, that of the
nonlinearity as a function of position in the caghls yet another aspect of the model that

requires careful consideration and tuning.
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Chapter 6

Conclusions and Suggestions
for Further Work

This chapter summarizes the strengths and wealsads¢he state space model for
modelling measured and inferred features of thedmoochlea. As a result of this work,
numerous potential research directions have alsorbe apparent. These are discussed in

subsection 6.3.

6.1 Strengths of the state space model

The original Neely and Kim (1986) frequency domaimodel was among the first
mathematical representations of a mammalian co¢hbgancluded an active element and
a second degree of freedom in the micromechanicBhese attributes allow for
amplification of tonally excited TWs at differenbgitions along the cochlea. In addition,
the Neely and Kim (1986) formulation is based ophgsical interpretation of the CP’s
micromechanics that provides plausible resultser@tare many other such models in the
literature. Another well-referenced representatminthe cochlea is Zweig’s (1991)
delayed-stiffness model, for example. However,ittbusion of a delay in the system’s
dynamics leads to some analytical complicationdurAped parameter system, such as the
Neely and Kim (1986) model, is described by an mady differential equation which
generates a finite number of poles. In contrasyséem that includes a delay can generally
be described by a partial differential equation gederates an infinite number of poles
(Franklin et al, 1991). This is undesirable in the context afb tthesis because the

interpretation of results becomes less straightfodw
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One downside of the original Neely and Kim (1986)dal was that the nominal
feedback gain of the original formulation lead tonach higher enhancement of the BM
response than has been measuredivo (Hubbard and Mountain, 1996; Robles and
Ruggero, 2001). This and a number of other chariatics of the system were modified in
order to represent a human cochlea. By reforrmgatie model from a frequency domain
representation to a state space representatiailspitboecame possible to perform linear and
nonlinear time domain simulations. The respon$élseomodel that can be compared with

experimental data and observations are discussed.be

6.1.1 Cochlear responses
The revised parameters presented in this thesisalalee to account for the following

features observed in the mammalian cochlea:

e good fit to the human frequency-to-place map abailthe most apical locations;

*  BM enhancement curve that is approximately 45 dBhatbase and 20 dB at the
apex;

* basalward shift in the location of the peak of W given reductions in feedback
gain; equivalently stated, the maximum responsa aingle position along the
coupled cochlea shifts to lower frequencies givartuctions in feedback gain;

« variation of A,eax With position along the cochlea that is consisteith inverse
calculations made from clinically collected OAE aéBhera and Guinan, 2003);

e both harmonic and intermodulation distortion atisas positions along the
nonlinear time domain model of the cochlea, simitaiwhat is observed in the
biological cochlea;

e compressive growth rates of BM motion at moderagalyrating stimulus levels;

* a basal boundary condition that is similar to thgedance looking out of the
cochlea and into the middle ear.

Furthermore, the active portion of the cochlear ehasl approximately 2 mm wide for a
given frequency, basal to the characteristic plathis is a value that has support from
experimental inferences (Allen and Fahey, 1992).

One of the primary strengths of the state spaceemiadits ability to quickly and
unambiguously determine the stability of the lineawdel. This is important to validate

frequency responses of the linear system and alsdintplications for the study of SOAEs.
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6.1.2 SOAEs

The linear state space model exhibits features #nat consistent with the multiple-
reflection theory of Zweig and Shera (1995). Iisttiheory, the frequency-to-place map
and the variation of the wavelength of the TW atpeak dictate the spacings between
linear instabilities given a ‘dense’ set of refleatsites along the BM. The gain of the CA,
v(X), was chosen as the parameter to be perturbebisninvestigation. The spacings
between adjacent unstable frequencies were foundatch theoretical predictions only
when the inhomogeneities were ‘dense.” Howeverefeand less strongly undamped
instabilities were generated when ‘sparse’ pertisha iny(x) the same magnitude were
applied.

The ability to compare the linear stability of achtear model with its nonlinear limit
cycle behaviour is one of the strengths of this ehodith regard to SOAEs. The
investigations presented in Chapter 4 evaluategtassure at the base of the cochlea at
varying time frames both soon and long after thgainstimulus had begun to decay away.
In the nonlinear simulations of Section 4.3.1, ¢hwas only a single linear instability. The
steady state frequency of both the dominant BMllasicin and the pressure at the base
differed from that of the unstable pole by lessithaenth of a percent. Components of the
BM motion at the frequencies of the near-unstalolegwere initially observed, but fell
away into the noise floor within several hundredlisgconds. The f3 and 3, harmonic
components of the near- and fully-unstable freqigsnevere present so long as the
response at the primary tones remained strong; Vexwéehe magnitudes of the distortion
frequencies observed at the stapes were typic8llgrdl 80 dB below the primary signal,
respectively.

The magnitude and phase of the BM velocity as atfon of position along the
cochlear model of Section 4.3.1 were calculatedhatlimit cycle frequency. At the
fundamental frequency, there was a single positidrere the TW was ‘standing,” as
indicated bydg/dx=0. This was located slightly basal of the peakhia tesponse, in the

region of negative damping. This phase charatieiigdicated that the amplitudes of the
forward- and backward- TWs were balanced in thesarThe magnitude of the response
appeared to show that both the forward- and th&eveaa-TWs were amplified, similar to

simulation results produced by Talmadgeal (1998). In conclusion, the forward TW is
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amplified basal to the peak region, and its reitects also amplified when heading back
toward the stapes. This resulted in the divisibthe cochlea into two portions: one basal,
where the TW was dominated by backward propagatiod, one apical, where the TW
was dominated by forward propagation.

The global reflection theory of Shera and Zweigd@Pand Zweig and Shera (1995)
was developed to explain the commonly observedisgadetween SOAE frequencies.
This linear theory is well-supported by the stapifpredictions of the linear state space
model. However, the nonlinear model demonstrated timit cycles can interact to
suppress one another in Section 4.3.2. Only tbf¢lee five linearly unstable frequencies
were strongly expressed as limit cycles at the @nd 3000 ms simulation. Numerous
oscillations at other frequencies also appearedaasesult of both harmonic and
intermodulation distortion. Two of the linearlysiable limit cycles approached a steady
state amplitude within the first 200 ms of simwati However, most of the magnitudes of
these frequency components varied as a functioimet

The near-unstable frequency components decayin ateepest rates. This finding
is in good agreement with the experimental resofitSistoet al. (2001), who show the
presence of both ‘long-lasting’ OAEs and expondigtidecaying components of sharp
tuning in humans. However, whereas they conclid¢ the presence of both of these
responses suggests that ‘OAE dynamical properteesnainly determined... by the local
cochlear parameters, rather than by the overalhleac transmission,” the simulations
presented in Chapter 4 show that the global reflecof TWs can explain both
phenomena.

The distances between the frequencies of the aeltdichit cycle components were
very regular; this was primarily believed to be daoethe nature of the intermodulation
distortion generated by the ‘primary’ tones atlthearly unstable frequencies. There have
also been reports of measured SOAEs that are thét ref intermodulation distortion
(Burnset al, 1984; Whitehead, 1988). Whether the regular ingabetween simulated
limit cycle oscillations is detectable in the eanal after reverse-transmission through the
middle ear, and if it is still present locally wherany more linear instabilities are present,
is very much an open question. Such behaviourlse gualitatively similar to the

nonlinear effect of mode-locking in a self-excitggistem, such as a wind or string
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instrument (Fletcher and Rossing, 1998). We may aay learn that the appreciation of
tonality in music is very much connected with tlomimearities of the cochlea.

6.1.3 CEOAEs
In Chapter 5, CEOAEs were generated by sendingciitto densely perturbed cochlear

models. Commonly measured features of CEOAEs wemepared against simulation

results. Perhaps the most satisfying finding ef ithvestigation into CEOAESs concerned
the frequency-dependent latencies of the reflestiohinear model results matched the
predictions of the group delay of the model andemegry similar to the most commonly

measured delays in clinical measurements. Thisoou is perhaps attributed to the direct
relationship between the wavelength of the TW dadvavespeed, as given in equations
(4.7) and (4.8). Thus, working backwards from SO#acings as a function of frequency
to develop a distribution afea(X) also set the correct group delay in the cochieadel.

A more conventional finding was that the linear micagreed with other studies (e.g.
Sisto and Moleti, 2002; Sistet al, 2007) which show that the frequency-dependent
CEOAE latency is approximately twice the forwardvel time of the TW. However,
linear estimates of the delay were somewhat lotiger what is commonly reported in the
literature (Tognolat al., 1999).

In most clinical CEOAE experiments, it is necesdarget the level of the stimulus
clicks at a minimum of 60 dB SPL in order to aclei@n acceptable signal-to-noise ratio
(Hall, 2000). However, this amplitude is withiretBaturating region of the CA. As shown
by Figure 2.21, the cochlear group delay decreasdbe feedback gain is reduced; this is
analogous to the effect of increasing the stimldwel of the signal. Thus, it is expected
that CEOAE delays calculated in the linear modell Wwe longer than published
experimental data.

The nonlinear CEOAE simulation showed a decreasdaiency within each
frequency band was given increasing stimulus leveldowever, there were some
frequency bands that showed an abrupt decreabe ilatency with level. It is difficult to
gauge the generality of this single model. Therayed results of a larger number of
cochlear models may show a smoother transitioewdlidependent latencies more similar

to that reported in human data, as collected bip Sisd Moleti (2007) for example.
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The last finding of interest with regard to the mo@ar CEOAE simulations was the
discovery of an extremely short latency emissioSL(E), qualitatively comparable to
signals detected within several ms of a moderatagb level stimulus as reported in the
literature (e.g. Konrad-Martin and Keefe, 2005)The most likely explanation for the
ESLE in the simulated- and perhaps the measuredhisas the existence of a reflection or
distortion site located at or near the base otthehlea (Brass and Kemp, 1993; Talmadge
et al, 2000; Konrad-Martin and Keefe, 2005). Howewube growth curves of CEOAE
amplitudes, found in Appendix D, show that the EQJtBws linearly given perturbations
in y(xX) at high amplitudes. This would suggest thatstodiion explanation is unlikely;
such phenomena are typically compressive in natdtgough the ESLE waveform grows
linearly in the model with inhomogeneities #{x), it does not in the model with
perturbations irb(x). This suggests that slightly different mecharssmay be operating
here. This is still somewhat perplexing; one woakpect both forms of gain-based
perturbation to become suppressed at the highesisle Other nonlinear simulations not
presented in this thesis suggest that this effectot due to the particular distribution of

v(X) applied in Chapter 5.

6.2 Weaknesses of the state space model

Though it has been shown that the state space nedapable of exhibiting many of the
salient features of the human cochlea, there argriber of weaknesses that one should be

aware of. These are categorised and discusseden of decreasing prominence.

6.2.1 Cochlear responses
Perhaps the most significant shortcoming of thelfNaed Kim formulation is the manner

in which its CA is modelled. Early attempts to negent the micromechanics included an
active element that shifted the peak in the elememimittance in frequency by varying its
stiffness. This was implemented to describe thié-dwdave shift observed along the
tonotopy of the BM given quiet vs. loud sounds. wdwger, what early modellers did not
appreciate is that the location of the amplified Péak does not shift apically from the
passive TW peak as a result of variations in theramechanical tuning. Instead, the

amplification takes place at the local resonargusency of the CP.
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The shift in the location of the TW peak is a réxafl the amplification of the
forward TW, which increases in amplitude as it @ggtes through the negative damping
region. The TW then peaks approximately 1 to 2 apical of the negative damping
region. As Shera (2001b) shows, the intensity+ilavee of the fine time structure in BM
click responses is closely related to the tuninthefmicromechanics as the gain is linearly
varied. However, results presented in Chapterdavel that the temporal location of the
peaks in the fine structure of nonlinear BM clidsponses can vary non-monotonically,
unlike linear predictions. This appeared to benprily due to the fast recovery of the CA
on a cycle-by-cycle basis, depending on the ang#itof the stimulus. Unfortunately, this
behaviour is not observad vivo (Recio and Rhode, 2000; Robles and Ruggero, 2001),
and thus is likely just to be a feature of the entrmodel.

The active impedance of the Neely and Kim (1986§lehds also greatly simplified.
None of the more complex mechanics of the OHC akert into account, such as the
stiffness of the ion gates or any local fluid visitp. The magnitude of the model’s active
force will also grow without limit as the drivingequency increases, whereas it has been
shown that this is not the case in isolated OHK®g, 1996)

In summary, the current form of the CA in the stgp@ce formulation presents the
most serious drawback of the model with regardefwaducing measured phenomenon in
the mammalian cochlea. However, this fact shoutd be taken to suggest that
investigations performed with this model are cortglleinvalid or without worth. As
shown above, the state space model is capablehdfig®g a wide variety of features of
the human cochlea. A model is by definition a sifigation of a more complex system,
and is only capable of describing a subset of ritgpgrties. Thus, one could observe that
the state space model best represents the codhitsabaseline active state and at lightly
saturating levels in the nonlinear regime. Simafet outside of this range of operation
can still provide insights into the behaviour ot thiological cochlea, but care and
consideration must be taken when drawing conclssidn addition, there are yet further
enhancements that could potentially improve theiawy of the model’s response.

For instance, it is possible to reduce higher-disi@mal representations of the fluid
dynamics in the cochlea into a form usable by a heR® model (Mammano and Nobili,
1993). This is desirable because the long-wavenagsson is violated near the peak of the

TW, where the wavelength of the TW is on the samdemas the dimensions of the
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cochlear cross-section. This introduces the podisgilof a resonance in the transverse
direction, or a ‘short-wave’ mode. In the litenauthe matrix that describes the coupling
of motion from one position along the cochlea tother is called the Green’s function; the
equivalent quantity in the state space model isRfenatrix. The primary difference
between the 1-D and the 3-D Green’s functions isadded sharpening in the local
coupling at nearby locations. This can also sevvwaodify the phase near and beyond the
peak of the TW in such a way that is more simibamieasured responses (Kolston, 2000).

However, as discussed by Sheet al (2005), adding higher dimensional
approximations do not appreciably affect the funélatal relationships internal to the
model, such as the connection between TW groupydatal its wavelength. One
important effect of adding higher dimensionality ikat the reflections from the
inhomogeneities in the peak region are also enluaribes would make the system even
more prone to instability arising from inhomogeigstalong the CP, without modifying
the existing active element in the micromechanics.

A common criticism of early cochlear models, patiacly that of Neely and Kim
(1986), is that the active pressure generated &¥YDHHCs have nothing to react off of (e.qg.
Hubbard and Mountain, 1996). This represents iaws®ishortcoming in terms of relating
the model's response back to the local motion ef @P. A number of authors have
suggested that OHCs may react off of adjacent seggnuod the BM, thus producing a so-
called mechanical ‘feed-forward’ coupling (Kolstat al, 1989; Steelect al, 1993;
Geisler and Sang, 1995; Fukazawa, 2002).

One final comment on the cochlear response of twimear model concerns the
growth rates of the BM motion due to both transiant steady-state stimuli. While
compressive growth rates have been calculated derately saturating levels, a number
of results seem to show greater-than-linear groattmear-saturating levels. Thd, 2
growth curve shown in Figure 3.20 is in fact simt@the equivalent result in Figure 3A of
(Cooper, 1998); however, thefp2magnitude exceeds that of the fundamental in the
simulation presented in Chapter 3, whereas it admtsn Cooper’s (1998) experimental
measurement. In addition, the growth curves ofdiek-evoked BM response in Figure
5.10.d, and also those of the RMS CEOAE pressufppendix D, are again greater than

linear. This is in disagreement with numerous Qe BM measurements (e.g. Robles
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and Ruggero, 2001). The source of this mysterimsult may be the form of the
Boltzmann nonlinearity in the model.

The values of the Boltzmann function chosen toraséduthe input to the feedback
force give rise to a non-symmetrical input-outputve, as shown in Figure 3.15. Figure
3.15.b illustrates that the slope of the nonlirtgais unity at small input values. This
ensures a perfectly linear response at low stimiéusls, as shown by the BM responses
of Figure 3.18 and Figure 3.20. At moderate inlpwels, the slope of the nonlinearity
becomes non-symmetrical and actually exceeds @mitgositive inputs. This effectively
turns up the gain (for positive inputs) and may laxpthe greater-than-unity growth

curves mentioned above.

6.2.2 OAEs

Many aspects of the OAEs simulated by the moddhis thesis match experimentally
measured results (i.e. spacings between lineaahitisies and frequency-dependent
CEOAE latencies). However, the magnitudes of theuated OAEs are typically 20-40
dB lower than equivalent published results. Thisery straightforward to remedy in the
simulation of SOAEs, as generated by limit cycleiliaions in the nonlinear cochlea.
Increasing the saturation point of the nonlinearityhe CA by a factor of 10, for example,
would cause a corresponding +20 dB shift in themitades of the limit cycle oscillations.
This modification has support from the nonlineandations of BM growth curves due to
a 3 kHz tone, as shown in Figure 3.20.a. Thisréghows that the fundamental response
transitions from low-level (linear) to moderatedév (compressive) growth at
approximately 5 dB SPL; in experimental resultBd motion, this first ‘corner’ in the
growth curve is typically measured at ~30-40 dB $€hoper, 1998; Robles and Ruggero,
2001). Thus, by increasing the saturation poinalfgictor of 10 (or more), the ‘corner’ in
the growth curve would shift up and come morerie kvith experimental measurements.
The magnitudes of the linear results are somewtlwat rdifficult to correct. One
contributing factor to the offset may be the assdim@ut impedance of the cochlea when
calculating the stapes acceleration given a voldisglacement in the ear canal. This was
set at a flat value of 1.1*1® Acoustic Ohms early in the work, before the modeks
revised. Current calculations (see Figure 3.1ajsthat this is a slight overestimate of the

actual cochlear input impedance. However, thiseotion would be a minor improvement
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at best. Another potential solution is the inclusa$ a short-wave resonance, which would
necessarily magnify the response at the peak amlttie energy reflected at the peak.
However, this may also be a more basic shortcominige model parameters that could be

addressed in the future.

6.3 Suggestions for future work

Many potential areas of future work have becomeaspy through the course of this
doctoral investigation. This subsection is dividetb three areas: 1) further tuning and
study of the model; 2) further simulations of caarl phenomena; and 3) wider topics of
research.

6.3.1 Further study and tuning of the model

The most straightforward and pressing aspects eitbhdel that require study pertain to
the form of the saturation nonlinearity. Early hoe@ar simulations applied a simpler
hyperbolic-tangent function to saturate the feeldbfmrce (Elliott et al, 2007). A
drawback of the hyperbolic tangent function is tih& symmetrical, and thus is incapable
of generating the even-order harmonics that arenoomly measured in the BM motion
(Cooper, 1998). The Boltzmann function was appliedthe state space model here,
because of its similarity to measured input-outpigracteristics of OHCs in isolation
(Cody and Russel, 1987; Kres al, 1992); this followed the precedence of otherkwor
which has also relied upon the Boltzmann equatiodéescribe the saturation of the OHC
feedback force with increasing stimulus level (&lgbili and Mammano, 1996).

As noted above, the Boltzmann function is a desionpof the mechano-electrical
transduction characteristics of an OHC in isolatidtowever, the force generated by the
OHCs in the organ of Coriin vivois not well characterised. This discussion is ingoat
in the context of the Neely and Kim (1986) framekyas the details of the chemical and
mechanical OHC dynamics are hidden by represetiim@ctive element as an impedance.
This requires some tuning the Boltzmann functiorthi@ nonlinear state space model to
account for observed cochlear responses. A détsilaly of the effect of variations in the
saturation function upon the simulated nonlineachtear response has yet to be
performed. A logical starting point would be toabyse the response of an isolated

nonlinear micromechanical element. The variatibthe Boltzmann function parameters
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that control its asymmetry and slope would necdgsarange the model’s response. The
relative magnitudes of the fundamental and harmaumponents may also provide
important insight into how distortion propagatesthie coupled cochlea. Finally, tuning
the saturation point as a function of positidfx), may better match measured results.

Another aspect of the model that has not beeneddudithe power gain produced by
the CA. The enhancement of the TW is often catedlédecause it is directly observed by
experimentalists. However, it may turn out tha grower output of the individual hair
cells is not physiologically plausible, as in threggmal Neely and Kim (1986) formulation
(Hubbard and Mountain, 1996).

A more mundane but equally important area of tuning model concerns the
logistics of the time domain simulations. The pimn limiting factors of performing
extended simulations are computational time and ongr(both random-access memory
and read-only memory). Late in this Ph.D., it vdéscovered that fine-tuning the error
tolerances for each individual state can reduceulsition times by fourfold without
sacrificing the accuracy of the results. Additioe#orts in this area may yield further
reductions in computational load, perhaps alongliies of Diependaal’'s (1987) work
which applied a time-varying spatial discretisatiorap. Initial attempts to improve
efficiency by pre-compiling the MATLAB function i€ language have proved largely
unsuccessful; this is believed to be due to thepeaationally intense nature of the ODE
solver.

At the time of writing, the preferred method of nimy extended simulations is to
break up the simulation into smaller blocks of timtgpically 100 ms. This is
accomplished by setting the initial values of ttees of the new simulation to the values
of the states at the end of the previous simulatiorhis is necessary as the 32-bit
architectures and Microsoft Windows operating systeemployed by most computers
effectively limit the (virtual and real) RAM usagé MATLAB variables to approximately
1.2 GB. However, this has been overcome with theduction of 64-bit architectures
(and a version of MATLAB capable of using a 64dyistem) where the primary limitation

is the physical storage space available. (Mathw@®e8)
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6.3.2 Calculations and simulations
Most of the suggestions presented here concerndhknear response of the state space

model, as linear systems have been well-studiedcamdonly represent a very limited
range of cochlear phenomena. The most promisidgeaniting line of inquiry following
this work concerns the nonlinear interaction okdin instabilities, the initial results of
which were presented in Chapter 4.

Combining linear theories of cochlear function, tsues the coherent reflection
theory of Zweig and Shera (1995), with nonlineanwdation will likely reveal something
of the deeper character of the cochlea. The megiltChapter 4 showed that densely
perturbed cochlear models produce instabilitiedrequencies which share regions of
negative damping. However, in the presence ofratearby instabilities, the magnitude of
a linear instability’s undamping ratio does not essarily seem to map well to the
magnitude of the steady state nonlinear limit cydeillation. An interesting simulation to
run would be to count the number of limit cyclesedéable in the ear canal above the
experimental noise floor, and to compare this vaagainst the number of linear
instabilities. This area of work requires the stoflnonlinear suppression, where one tone
can affect the response of another.

Early in this Ph.D., the suppression charactessticVVan der Pol Oscillators were
briefly simulated. Some of these initial results acluded in Appendix E. It is hoped
that comparisons between the suppression of VaRdeoscillators and the suppression of
nonlinear limit cycle oscillations will offer son#ues as to the nature of the suppression
in the cochlea. It has also been demonstratecdulnerous experimentalists (e.g. Zwicker
and Schloth, 1984) that externally applied ex®tadi can frequency-lock, phase-
synchronize, suppress, or otherwise affect a SOAEhese phenomena would be
interesting to study in the nonlinear state spaodet) and could potentially be compared
against the results of Sistt al (2001) who studied the transient dynamics ofkelic
synchronised SOAEs. This would also tie in witl gimulation of CEOAESs generated in
the presence of instabilities, which has yet tsibaulated in the state space model.

The simulations of CEOAESs revealed a number of plaxed results, such as the
presence of an extremely short latency emissiohigiter stimulus intensities. Similar
results have been noted in the literature (Brasskamp, 1993; Talmadget al, 2000;
Ren, 2002; Guinaret al, 2003; Konrad-Martin and Keefe, 2003; Konrad-Marand
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Keefe, 2005), but no satisfactory generation meshas have been agreed upon. A
variety of different stimuli and variously-pertubenodels may help determine if the
ESLE is a nonlinearly distorted reflection of timput, or due to some other mechanism.
Further nonlinear simulations of CEOAEs are alsoessary to determine if the sharp
transition from long to short latencies with ingeg amplitude observed in the current
model persists when a large set of results is geeka

The dominant mechanism for the generation of SOadts CEOAES in this model
appears to be reflection; this is in accordancé whe taxonomy of OAEs described by
Shera and Guinan (1999). While the nonlinear stpee model clearly shows evidence
of distortion, a detailed study of DPOAEs and ottlistortion-related phenomena has not
yet been undertaken. Such simulations may revaakdfiner details of the wave-fixed
mode of DPOAE generation and propagation. In gaimon of this work, it would be
instructive to simulate SFOAEs in order to groulnel tesearch.

Lastly, a more rigorous approach to quantifying riésiéection in the cochlear model
due to inhomogeneities would help clarify result§.his could be accomplished by
decomposing the pressure and motion at each positio to forward- and backward- TW
components, perhaps using the WKB-method as appledweig (1991) or Neely and
Allen (2008). There are, however, difficulties ceming the underlying assumptions of

this method in a nonlinear system such as the eachl

6.3.3 Wider topics of research
Within the field of cochlear modelling, the NeelydaKim (1986) framework represents a

compromise between a completely phenomenologigaiesentation and an ultra-detailed
3D finite element model of the cochlea. The madeiot so complex that more detailed
investigations become prohibitively expensive inmg of computation time, and yet it
based in the physics of the cochlea. For thisore#sis well-suited to study the nonlinear
characteristics and interactions of TWs along tRe given the computational limits at this
time.

The propagation of a second TW mode along the Thhather area of study that is
becoming more widely studied in the field of coenlenechanics (Hubbard and Mountain,
1996). Whether longitudinal coupling through thid ih a model as reduced as the Neely
and Kim (1986) formulation would produce any worthik results is uncertain. However,
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6 Conclusions and Suggestions for Further Work

the system studied in this investigation and itsoess lumped element parameters do have
direct correlates to the physical structure ofif@dogy. An important area of future work
consists of further collaboration with experimeistal to determine physiologically
plausible parameters for cochlear models. It ®0 gbossible that simulations with
complex, three-dimensional finite element modelseblaon physiological measurements
(e.g. Meaud and Grosh, 2008) may suggest more ppat® parameters for simplified
models. This would be particularly useful if theagis to simulate a physical abnormality
in the cochlea, sensorineural hearing loss foams.

The author strongly believes that the mechanicaletlimg of cochlear pathology is
a crucially important research focus. The mammadiachlea is a fascinating system to
study, full of unexpected nonlinear phenomena amdpiexities. Although there is still a
great deal of basic research to be done on thsosgimrgan, it is important to be mindful
of the wider implications of its study. For instan more than 8% of the population of
many developed countries suffer from significamssgineural hearing loss. In addition,
approximately 90% of all hearing loss in adultslige to cochlear malfunction (Jesteadt,
1997). Thus, it is hoped that the work presentedhis doctoral thesis may begin to
provide some insight into the inner workings of tteehlea for any researchers interested
in studying the mechanisms of hearing loss in theré.
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Appendix A

Middle Ear and Ear Canal Model

The primary function of the middle ear, as showrrigure A.1, is to match the relatively

low impedance of the air in the ear canal to thatikely high impedance of the cochlear

fluid, thus ensuring efficient transfer of acouatienergy. However, the middle ear and

ear canal each add their own signature to the faknwand reverse-transmission of sounds;

these characteristics also impact the middle eandary impedance at the base of the

cochlea. In this appendix, the forward- and res«transmission characteristics of a

middle ear and ear canal model are illustratedha ¢ontext of frequency- and time-

domain simulations. In addition, the impedancetted middle ear and ear canal as

measured from the cochlea is modelled in a marugr that it can be easily incorporated

into the state space model.

Pinna

Semicircular
Canals Eighth cranial nerve:
Vestibular Nerve

Incus

Vestibule

Tympanic
External  Membrane
Auditory  (Eardrum)
Meatus
\ (Ear Canal)

Window

Middle Ear Round Eustachian Tube

Space Window

Figure A.1 The human auditory system. Note tigsre is not to scale. Reproduced from
‘Hearing: an introduction to psychological and pbi@gical acoustics,” by S.A. Gelfand,
Copyright (1998), with permission from Marcel Dekke
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A.1 Two-Port Networks

Frequency domain models of the middle ear and aaalcare often cast in the form of
two-port networks that describe the mechanics efstfstem (e.g. Kringlebotn, 1988). The
two transmission matrices for the middle and iresarcan be cascaded to produce a single
transmission matrix; this overall matrix then rektthe input acoustic pressure and
acoustic volume velocity at the stapéi(w) and Qs{(w), to give an output acoustic
pressure and acoustic volume velocity at the eaalc®.{w) and Qsdw). This is
illustrated in Figure A.2, and formalised in Eqoas (A.1-3). It should be noted that the
pressures and volume velocities at the stapes andamal and all transfer matrices are
functions of frequency unless otherwise noted;dkplicit notation of this is suppressed

for convenience here.

Qec Qed Qst
O—¢— | O ﬁ_—O
+

+ +
Ear Canal Middle Ear
P Two-Port Two-Port P
ec Network Ped Network st
O——— O —O

Figure A.2: Two-port network representations of ¢élae canal and middle ear, wh&and
Q are pressure and volume velocity, respectivelyhatear canalef), eardrum €d) and
stapesgy).

The behaviour of the middle ear is characterisednwine acoustic pressure and volume
velocity at the eardrum is expressed in terms efgtessure and volume velocity at the

{ Pedj| — {Tedsll Ted§2j||: st (A 1)
Qed Ted521 Tedslz Q S|

Note that the elements of the transmission matnisstnibe defined such that the volume

stapes:

velocities are all travelling in the same directitims allows multiple two-port models to

be readily cascaded as in a transmission line.

The output at the end of the ear canal is expregised the input at the eardrum:
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|: Pec:| — |:Tece(11 Teceﬂ2:||: P e(j (A 2)
Qec Tecele Teceﬁz Q e

The transfer matrices for the middle ear and oe#grcan be multiplied together to give a

single expression for the pressure and volume itglat the ear canal in terms of those at

the stapes:
|:Pecj|:{-recsll Tec§2:|{ st (A3)
Qec Tecle Tecszz Qs
A.1.1 Calculating input impedances in a two-port
network

In order to calculate the input impedance or admdée at a given terminal of the two-port
network, it is necessary to load the other termioflthe two-port network with an

impedance. This impedance is either added at tiygub terminal,Zy,, or at the input

terminal,Zjn.
Qout Qin
O—¢— —— ©
+ +
Two-Port
Pout Network Pin
O —O

Figure A.3: Two-port network representation giveload termination at the output port.

The general two-port transmission network is gilign

{Fﬂ {Tn Tﬂ F?n}
= . (A.4)
Qout T21 T22 Qin

When the expression fdt,: is divided by that foQ.y, the result is an expression that
relates the impedance seen at the output tern¥pal,given a loading impedance at the

input terminal Zin:

T,Z +T,
= 1Zn t T ’ (A.5)
T2 + Tpy
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where
P
z, =, (A.6)
Q

In order to produce the expressions at the inpatiteal as a function of those at the output

terminal, the inverse transmission matrix mustddewated:

r -1
_Qin T21 T22 Qout
where
T, Tol [Tn T
{ bE :{ ” 12}/(1-11* T Ty le) . (A.8)
T21 T22_ T21 Tll
If the transmission matrix is reciprocal, satisfyin
Teastr™ Teasez ™ Tear™ T ease™1 (A.9)

then the impedance seen at the input termifal,given a load impedance at the output
terminal,Z,, can be written as:

= T22zout + T12 . (AlO)
T21zout + T:Ll

A.1.2 Independent responses of the ear canal and

middle ear models
Ear canal model
The ear canal is modelled as a hollow cylinder wigid walls, closed at the eardrum and
open at the pinna, unless otherwise noted. Figuteallustrates the model, and Table A.1
presents the physical quantities of the model.eNloat the effective length of the ear canal

may shorten when an earplug-shielded probe isteds@nto the cavity.

A

P P
Qec Aec d ed
ec v Qed
I—ec

Figure A.4: Schematic illustration of the ear camaldel.

A
v

Accis the cross-sectional area of the ear cahialjts diameter, ante. is its length.

183



Appendix A

Quantity Formula [SI units]
Acc 3.85*10° [m?]
d 0.007 [m]
Lec 0.02 [m]
Table A.1: Physical characteristics of the ear tana

It is assumed in the model that propagation of daarplanar. However, above a
cut-off frequency,f;, the model is no longer valid as radial modes rbdgi affect the

response. This value is approximately given by

f = 0.586C%d , (A.11)

where ¢y is the speed of sound in air (Kinsler, 1982). Tdw-off frequency is
approximately 29 kHz, so the plane wave assumptaonbe considered valid across the
frequency range of interest, 20Hz — 20 kHz.

The two-port formulation that relates inputs ae teardrum to outputs at the
external opening of the ear canal can be visuakseoh Figure A.5, and can be given by

rewriting equation (A.2)

Qec Qed
O——20 —— ©
+ +

Ear Canal

Two-Port
Pec Rolug Network Ped
S —

Figure A.5: Two-port network representation of #ae canal.

|: Pecj| _|: 1 o“:-recedl Teceﬂz:||: Pej (A 12)
Qec ]7/ RpIug 1 Teced!l Teceﬂz Q el , .

whereRy g represents the loss due to the foam plug of an PrdBe at the ear canal; this
value is set to 2.2*T0Acoustic Ohms, which is approximately twice the relateristic

impedance of air In practice, this boundary modification reduties sharpness of the ear
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canal resonances. The general form for input iraped in a pipe is given by equation
(9.4) in Kinsler (1982). This is reproduced hebpef in terms of acoustic impedances

(rather than specific acoustic impedances, as givéme original text):

Z .
——" + jtan(kL
Zload - IOOCO/A ( )

: (A.13)
pC/ A De
PoCo/ A
which can be written as
Z,, cog kL) + j sin(kL) o,/ A
load = . ' (A14)
Z, jsin(kL) A p, + cog kL)
Thus, the elements of the transfer matrix for thiepoear are found to be
Tecedll = COS(kLec) Tecedlz = J *Sin(kLe() IOOCO/ Aec (A15)

Tecele = j*Sin(kLe() Aer,/pOCO TececQZ = COSG(Lec)
The use of a complex propagation constant accdontthe absorption of sound in the

thermal and viscous boundary layers in pipes:

k=% ja, (A.16)
G
given
a =2.89x 105£, (A.17)
d/2

wheref is the frequency of the driving tone, adds the diameter of the pipe (Kinsler,
1982).

Figure A.6 shows the input admittance of the eaataas seen from the eardrum
given a variety of boundary conditions at the exaéopening of the ear canal.
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Figure A.6.a-d: Ear canal admittance as seen fioeneardrum given blocked (solid),
lossy (dashed), flanged (dash-dot) and unblocketdd) terminations.

The blocked condition at the end of the ear camaligates the situation when an OAE is
measured with a hard earplug and probe that bloele&ér canal. Note that this admittance
is small at low frequencies and its resonanceswbicrespond to wavelengthsjof 2*L,
2/3*L, etc. wherd. is the length of the ear canal. Conversely, €s®mances for the open-
ended system are given by wavelengths of4*L,4/3*L, etc.

When OAEs are measured in practice, the ear i cgitaled with a foam earplug
which surrounds the receiver and transmitter. rifeoto simulate this condition, a lossy
load can be incorporated at the end of the eain aquation (A.12). Similarly, the
sharpness of the unblocked resonances is also agdwben the flanged boundary is
applied, similar to a real ear canal that opensimot the pinna. In contrast to the lossy
boundary, the flanged termination results in a pl&sft due to its imaginary component.

Middle ear model
The middle ear consists of three bones: the maliegsis, and stapes, as seen in

Figure A.7. As mentioned previously, the primampdtion of the middle-ear is to improve
the impedance matching between the air in the @a@al@nd the fluid in the cochlea. This

is accomplished through a reduction in the surfa@a from the tympanic membrane to
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the stapes, and also through the mechanical adyaofahe lever arm of the malleus and

incus. This results in an increase in efficientihe transfer of energy to the inner ear.

malleus e > incus
b2 .

twnpaMc?l

Eustachian

tube

Figure A.7: Human middle ear. Reproduced with pssian (Coleman, 2008).

There are many middle ear models that have beeantegpon in the literature, for
example O’Conner and Puria (2008), Pascal (1998)hgkebotn (1988) and Zwislocki
(1962). The model chosen here was proposed bygkbotn (1988), and can be
expressed in a two-port network formulation, whishillustrated in Figure A.8, and

defined in equation (A.1):

Qed Qst
C}——i:::——— ___]:::——<)
+ . +

Middle Ear

Two-Port P
Ped Network st
S 5

Figure A.8: Two-port network representation of thieldle ear.

{ Pedj| — {Tedsll Ted§2j||: st (A 1)
Qed Ted521 Tedslz Q S|

Figure A.9 andTable A.2illustrate and identify the internal impedancestlué model,

which includes separate models of the eardrum (&mgpmembrane), middle ear bones
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(malleus, incus and stapes), and the stapes foetpldhese are coupled together by

transformers representing the changes in areaconefey, as described below.

1:k1

Zy Z:

Figure A.9: Diagram of the middle ear impedanceth@émodel of Kringlebotn (1988).

The transformer ratios shown Figure A.9 correspond to the anatomical area of the
eardrum (k), the ratio of the effective lever arm of the reall divided by the lever arm of

the incus (K), and the inverse of the area of the stapes fatgtfk).

Expression for Impedance Mechanical Quantity being
Modelled
Za=Rytiwlyt+ (iwCy) antrum and mastoid cells
Zi = U(iwCy) tympanic cavity
Zg=iwlLd drum
Z:= R+ iowls+1/(inCy) suspension of the eardrum
Z =R+ 1(iwC) rim of the eardrum
Zn=Rm+ 1/(iwCy) coupling between the malleus and incuys
Zo=Ro+iwly+ 1/(iwCy) ossicles (malleus and incus)
Zi =R+ 1(iwC) coupling between the incus and stapes
Zg = iwlg+ L/(iwCg) stapes, stapedius tendon, oval window
Table A.2: List of middle ear impedances and phgigiciantities being modelled.

It should be noted that the stapes impedaig,is comprised of the inertial and
compliance terms listed &s andC; in the Kringlebotn paperR. is the impedance of the
cochlea in Kringlebotn’s paper, but is omitted imsttwo-port model as the goal is to
terminate this middle ear model with an impedamgeesenting the Neely and Kim (1986)
model of the cochlea.

The numerical quantities for the inertial, compden resistance terms, and

transformer ratios are given in Table A.3 (origing$ units) and Table A&l units):
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Inertial terms [dyn*s?cm’] | Compliance terms [cni/dyn] | Resistance terms [dyn*s/cim
L= 1*10° C, = 3.9*10° R, = 60
C = 0.4*10°
Lq = 7.5*10°
L= 66*10° C.=0.3*10° Rs= 20
C = 1.3*10° R =120
Cpn = 0.38*10° Ry = 120
L, = 22*10° C, = inf R, = 200
C; = 0.3*10° R, = 6000
Ly = 46*10° Cs = 0.56*10°
Transformer Ratios
k; = 0.6 [cnf] \ ko= 1.3 [unitless] | k= 31.25 [cn]
Table A.3: Parameters of the middle ear model is @gits as given in Kringlebotn
(1988).
Inertial terms [N*s %/m?] Compliance terms [n7/N] Resistance terms [N*s/rmj
La= 1*10° C,=3.9¥10" R, = 6*10°
C = 4*10™
Ly = 7.5*1C°
Ls= 6.6*10’ C.=3*10" Rs= 2*10°
C = 1.3*10" R = 1.2*10
Cun = 3.8%*10™ Rm = 1.2*10
0= 2.2%10° C, = inf R, = 2*10
C; = 5.6*10™ R = 6*10°
L = 4.6*10° Cq = 5.6*10%

Transformer Ratios

k; = 6*10° [m?]

\ ko = 1.3 [unitless]

K=3.125*10 [m]

(1988).

Table A.4: Parameters of the middle ear model iarfits as converted from Kringlebo

tn

Note that the value dR, has been increased by a factor of 10 to bettechmaieasured

results.

The network model of Figure A.10 can be simplifigdcombining the parallel and

series impedances at the eardrum into a single ZernSimilarly, Z,, Z,, Z and %; are

denoted?;, Z3, Z4, andZs, respectively:

189



Appendix A

Qs

B & e
O

Figure A.10 Simplified block diagram of the netwanodel of the middle ear.

A two port network model of the middle-ear candezived from the following

relationships:

T — I:)ed T — Ped
edstil — = edsti2 — Q
st 1Q,=0 stip,=0
(A.18)
T — Qed T — Qed
edsl — P edsp2 — Q
St 1Qy=0 st 1p,=0

The transmission matrix elements expressed in t&fntbe middle ear impedances and

transformer ratios are thus determined to be:

(Z,+2,)Z,+2,+2,) Z, (2.2,+2,2,42,2,)Z,+ Zs )+ (2 2,0 2,2) ],
TedstLl |: Z Z :|/k1k2k3 Teds\lz |: Z Z :| k1k2k3 (Alg)
Tove {(Z 2t )} /klkzka Mo =| B BIEI LS

It is possible to show this is a reciprocal netwaikce
T

* _ * —
edstll TedsQZ Ted521 Tedifz_l'

(A.20)

The calculated admittance of the middle ear twd-petwork as viewed from the
stapes when the eardrum is unblocked and blockslown in Figure A.11.a-b.
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Figure A.11.a-b: Input admittance of the middle asiseen from the stapes given blocked
(solid) and unblocked (dashed) conditions at thdrean.

A.2 Response of the combined middle ear
and ear canal models

The coupled response of the middle ear and eat taogort networks can be combined,

as shown in Figure A.2, to give the overall trarssiun matrix shown in Figure A.12:

Qec QS'[

C +— Combined — C
+ Ear Canal +
and
P.. Middle Ear Pst
Two-Port

Network )
O—— —O

Figure A.12: Two-port network representation of teenbined middle ear and ear canal.

This result has the transmission matrix shown uneéiqn (A.21):
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|: F)GC:| - |:T€‘CSll Tec§2:||: PSE| . (A.21)
Qec TecstZl TeCﬁZ Q St

A.2.1 Forward transfer function in frequency

In order to generate an appropriate stimulus asthpes, it is important to consider both

the input at the ear canal, and the input to taeestpace model. Previous work done by
Harte (2004) showed that the loading on a typicagar loudspeaker due to the ear canal
space is negligible. As a result, the volume dispinent of the probe can be considered
proportional to its input voltage. However, th@uh to the state space cochlea is a linear
acceleration, as the model is formulated in speeifioustic impedances. Thus, the desired
transfer function is the ratio of stapes accelerato volume displacement in the ear canal.
The two-port network is formulated in terms of vole velocities. The forward
volume velocity transfer function can be determin®dexpanding the second row of

equation (A.3). This gives

Qec = Tecsﬁl Pst+ TecQZQ s (A22)
Dividing both sides of this equation K); and inverting becomes
St — -1
% - (Tecsalz st+ Tecs‘zz) ' (A23)

whereZg is the input impedance of the cochlea. For thpses of Figure A.1Z is
taken as 1.1*1%Y acoustic ohms. Equation (A.23) is related toréwpiired transfer

function in the following manner:

a, _S,Q
[Q. A Qo

(A.24)

whereag; is the acceleration of the stapes footplate, tmb@}_[Qec represents the volume

displacement in the ear canAl; is the area of the stapes footplate ansd equal tojw.
Figure A.14 illustrates this transfer function whée ear canal is terminated with the lossy
impedance representing the foam earplug.
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Figure A.13: Magnitude (a) and phase (b) of thewvfod transfer function frequency
response: stapes acceleration given a volume d&pkent in the ear canal. The
impedance of the cochlea is taken to be 1.1%A@oustic Ohms.

A.2.2 Forward transfer function in time
In order to generate the stapes acceleration daetitoe-varying volume displacement in

the ear canal, it is necessary to convolve thetimplume displacement with the impulse

response of the transfer function:

t
ast(t):DQec(f) df}m hast/erc(t) (A.25)
Figure A.14 illustrates the acceleration at thepestadue to a 10Qs pulse in volume
displacement at the ear canal. The magnitude @fvtilume displacement pulse was
chosen to produce the same RMS stapes acceleratian 40 dB peak SPL pulse of
pressure of 10@s duration presented at the eardrum. This isnedeto as a ‘standard
click’ in this work. Although the magnitude of ths&tapes acceleration decays quite
rapidly, there are still some low-amplitude ostitias that ring on for some time.
When the amplitude of the click is greatly increhs¢he low-level residual
oscillations of the stimulus can affect the resgoimsthe cochlea. In order to force the
click response to zero after 10 ms without intradga sudden change in stimulus level,

the decreasing half of a 10 ms Hanning window igliag to the input after 5 ms have
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passed. This is only important at very high levatsthe magnitude of the response after 5
ms is less than 1% of the amplitude at the peak.

-3 -14
6% 10 %10

[y

——

as(

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [ms]

Figure A.14: Standard click input to the modelpsmacceleration (black, left vertical axis)
due to an ear canal volume displacement (grayt vigttical axis).

A.2.3 Reverse transfer function in frequency
The reverse transfer function is defined to ber#ti® of an output ear canal pressure due

to an input stapes pressure. In order to calcukasequantity, it is necessary to take the
inverse of the transfer matrix that relates thesgwee and volume velocity. Recall the
general solution of a two-by-two matrix when theedtion of the volume velocity is

accounted for:

T, T, [T, T
{ - 12} ={ * 12}/(1-11* T Ty T12) : (A-8)
T21 T22 T21 Tll

As the transfer matrix in equation (4.3) is recgal the forward transfer matrix

|: Pst:| — |:T60522 Tec§2j||: Pej , (A26)
Qst Techl TecSll Q €

where the elements of the matrix are given by equndA.8). By expanding the first line,

relationship is thus given as

we have
Pst = TechZ Pec+ Tec512 Q €' (A27)

Similarly to the previous transfer function caldida, both sides of the equation are
divided byP¢; and inverted to give

194



Appendix A

P _1
ﬁ = (TechZ +Tecs%ec) ’ (A28)

st

where Zg. is the impedance seen at the ear canal. As 8wy Ioature of the ear canal
boundary is already taken into account with therat (A.2), Zec is simply set to infinity.

The reverse pressure transfer function is shovigare A.15.

|P_/P_][dB]

ec st

1 1 10 25

I]PEC/PSt [cycles]

10 25

1
Frequency [kHz]

Figure A.15: Reverse pressure frequency respomessyre at the outer ear per unit input
pressure at the stapes.

A.2.4 Reverse transfer function in time
The pressure in the ear canal due to a time-vapiagsure at the stapes can be determined

by convolving the stapes pressure with the impukssponse of the reverse-pressure
transfer function:

ec

The reverse-pressure response given by aus0pulse of pressure at the stapes of unit
amplitude, as calculated by the convolution of ¢igna(A.29), is shown in Figure A.16.

Pc(t) = Pu(t) O hg, (1) (A.29)
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Figure A.16: Reverse pressure transfer functioesgure at the outer ear per unit input

pressure at the stapes.

A.3 Validation of the two-port model

There are a number of sources against which theptwiomodel of the middle and outer

ears can be validated. The most important of thesa comparison with measured

physiological data.

The results from Puria (20@8¢ chosen for this purpose as

measurements were taken with two-port modelling @misequences for OAEs in mind.

Figure A.17.a-bcompares forward and backward pressure gain thrabghtwo-port

network with measured results, where

and
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Figure A.17.a-b: Comparison of forward and reveyeessure gain functions: (a-d) two-
port results for forward pressure gaita/Pec (M1), and reverse pressure gafadPs: (M2),
and (A-D) five experimentally measured curves (8uf003). A value oFg = 1.1*10°
acoustic ohms was used to generate the two-pofbriaard pressure gain (M1).

Figure A.18.a-bllustrates the product of M1 and M2, thus genagathe round-trip

gain through the middle ear,

Gil =M1M2 (A.32)
It can be seen that all of the predicted resuhmfthe two-port model are in reasonably
good agreement with Puria’s (2003) measurements, inoterms of the magnitudes and

the phases.
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Figure A.18.a-b: Comparison of round-trip middle emin as produced by the two-port

model (a, b) and as experimentally measured (AyBPuria (2003). The dotted lines in (A)

represent click- and distortion product-otoacoustiussion levels measured by Smurzynski
and Kim (1992).

A.4 Reverse input admittance in state space

In order to integrate the frequency domain netwuddels of the middle ear and ear canal
into the existing state space model of the cochiea,boundary condition at the stapes
must be reformulated in state space. While thee sraightforward methods of
converting transfer function representations ofgitsl systems into state space, such as
that of the middle ear, there is no obvious analytethod of converting the existing two-
port model of the ear canal into state space. sbh&ion has been to simply fit the reverse

middle ear impedancé&{y) with a mass-spring-damper system, where

P
7 =T (A.33)
"Qy

The model parameters are listed below in Tableaohgside the parameters derived by
Puria (2003).
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Model parameters Puria (2003)
Mass (mg) 2.96 1.41
Damping (N*s/n) 2.79*10 3.20*10
Stiffness (N/m) 2.63*10 2.59*10
Table A.5: Lumped element parameters of the middleboundary.
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Figure A.19.a-b: Comparison of model and measuedrse middle ear impedance
frequency response (Puria, 2003).

A.5 Summary and Discussion

The combined transfer functions of the two-portwuek agree quite well with measured
results. Puria’s external measurements were madbe ear canal so presumably the
pressure microphone affected the apparent impedahdke ear canal. The two-port

results are close enough to average human measueethat they should provide a valid

approximation of a true middle-ear and ear canspparse given physiological variations
exist between individuals. In addition, the twatpeetwork’s round-trip middle ear gain

agrees qualitatively with the equivalent physiotadjly-based plot.

In summary, the forward- and reverse- transfer tione can be applied either in
time or in frequency to relate measurements amduditin the ear canal to outputs and
inputs in the cochlear model, respectively. Thdyopotential downside of this
implementation is that the input impedance of thehtea,Z., is assumed to be constant.
Puria’s (2003) experimental measurements showthigiguantity varies less than tenfold
within frequencies of 0.1 to 10 kHz in human cadaveHowever, this may change in a

situation where there are cochlear reflections pinapagate back to the stapes. This may
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represent a source of experimental error if orengtts to study stimulus-frequency OAEs
with this model. Nevertheless, the input impedaatehe cochlea should not change
appreciably during the brief input applied by acklistimulus, for instance. Thus, this
implementation of the middle and outer ears candmsidered valid for the investigations

presented in this thesis.
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Appendix B

Derivation of Neely and Kim
Quantities

In this appendix, a variety of quantities pertagito the Neely and Kim (1986)
formulation are derived. In section B.1, the raifdM and TM micromechanical motion
to a driving pressure is determined. Section Be3gnts the undamped natural frequencies
of the two micromechanical masses. Section B.3vshwow the stability criterion of an
isolated, active micromechanical element can foumdhally, Section B.4 arranges the
equations of motion for the micromechanical mode&iform suitable for the state space

model.

B.1 BM and TM admittance

The impedances of the micromechanical model asekiy Neely & Kim (1986) are:

Zl=%+q+sn@
Zz='%+9+sna

, (B.1)
2,=% e
Z4 = k% + C4
where '
S= W (B.2)

and Z; is the impedance associated with the organ of,cortthe TM, Z3 the coupling
between the organ of corti and the TM, @agrovides ‘a frequency-dependent phase-shift
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between Pa and_’ (Neely and Kim, 1986).¢_, the difference in the motion of the BM

and the TM is given by

&(x)= 9(x)&, (x) - &.(x) (B.3)
P,(x) is the active pressure generated by the OHCs:
P, (x)= =z, (x)¢.(x)- (B.4)
The equations of motion for the BM is
Py (1)~ P, (1) = 0,004, (1) + Z,(s (1) (©.5)
and the motion of the TM can be described by:
0=2Z,(x)é (x.t) = Z& (x.1). (B.6)

We start by taking (A.5) and replacifgx,t) with a substitution from (A.2):

&(xt)=9(x), (1) - & (x1)

%(é(x,t))zi(X,t): g(x)éb(xlt)-éc(x,t) (B.7)
0=2, (g4 1)~ (1)~ Z&,09)

0= ZZ(X)Q(X)gb(X't) —(z,+Z,)&(t,x) 68
£ (%)= Zz(?)zgz(f)i §X’t)

and then substitute solution from (B.7) into (B.3):

P.(x)=-1Z,(x) ZZ()(()zi(f)Z gx't) (B.9)

Next substitute solution from (B.7) into (B.4):

R0~ =920 ) 2, 2L

Then substitute (B.9) into (B.10) and solve for Bié velocity:

-y E L O gy 7 e (s 7B LI

} . (B.11)

(B.10)

y gy 20 o 20 )
(x=60x1) o0h 203 23Sy ey 2L

. Za X _yZ4 X
=4 =a(xd) o) 209+ 20 2P
This result agrees with equation (13) in Neely &8 paper (1986), where the
denominator of (A.10) is described as the ‘drivpmnt impedance of the CP’ in equation
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(12) which includes an added term b that is caadedut in (13). £,(x,t) is integrated by

dividing by s on both sides to retugy(x.t):

‘t)=  (x,t)
&(x.t) P/*g(x){zl(X)”Zz(x)(Mﬂ (B.12)

The transfer function of the BM receptance is glbgn—‘;bg t%
a \ X,
& (X, t) _ 1
R (x1) Z.(X)-yz,(R)]
00 ot 2020 305720
which can be rewritten as

&(xt) Z,(X+%(% . (B.19)
R(xt) st a(Q[2((2( 3+ 2( ¥+ 2 X 4 v 4 )}

The frequency response function of the TM can h@essed as a function of the BM

(B.13)

frequency response function. Summing (B.5) an@)(Bives

Py (x,t) = P.(x.t) = 92, (x)é, (x,t) + Z, (x)é, (x.t). (B.15)
Substitute in equation (B.8):

R () =[ vz (Q(&-&) = 0z (Y& x)+ 2( ¥ ( x)

‘ : (B.16)
& 0[Z(N+rz(R]= R(x)-& ()] o2 ¥—v & K
Thus, our solution for the TM admittance frequenegponse function is:
&(xt) _1-[&(x1)/R( xt][gz )-rz (3] ©17)

P(xt) [Z,(X)+yZ,(X]

B.2 Undamped natural frequencies

In order to better understand this model’s microma@ical response as a function of
position along the BM, it is useful to investigate undamped natural frequencies of the
system. To find resonances, pgt)=c;=C,= ¢;=0 and evaluate the equations of motion:

- _Mlxl_ K1X1+ K3(X2— X:I)

O: M1X1+ Xl( Kl+ K3)_ X2K3 , (818)

and
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0= szz + K2X2+ K3(X2— X:I)

0=M,%, + %, (K, + Ky) = X1Ke,
Set (1) and (2) in matrix form:

L et o M
0 M,[%]| | -K, K,+K,[x,| |0

Substitute sinusoidal solutions for and % back into (B.19) and (B.20):

(B.19)

x, = Asin(at+aq)
X, = A sin(at+a) (B.21)
which yields
- AM,sin(at + a)+ Asin(at + a)* (K, + K,) - Asin(at + a)K, =0
= Al- M, + K, +K,)- AK, =0 (B.22)
and
- afAM,sin(at +a)+ A sinlat +a)* (K, + K,) - Asin(at +a)K, =0
= Al-afM, +K, +K,)- AK, =0 (B.23)
The determinant of the coefficients of And A in equation (2.9) is called the
characteristic determinant:
K, +K, —aw'M -K
A w) = 1 3 1 3 :0
() K K,+ Ky M, (B.24)
Equating the characteristic determinant with zevegthe frequency equation:
a)4(M1M2)_ C()z(Kle + K3M2 + K2Ml + K3M1)+ (KlKZ + K1K3 + K2K3) = 0
= 6()4 _ CUZ Kl + K3 + I‘<2 + K3 + (K1K2 + K1K3 + K2K3) - 0 (825)
Ml MZ M1M2

Solving the frequency equation in terms3fgives the following result:

2
W Ko+ Ky, KoKy N Kit Ky Ko+ Ky | (KK, + KK + KK, (B.26)
2M, 2M, 2M, 2M, M,M,

This returns two positive solutions fef, which correspond to the solutions for the
resonant frequencies; andw,. This is applied in Chapter 2.
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B.3 Frequency domain stability criterion

The stability of a frequency domain model that eard active feedback can be determined

by isolating its system dynamics from its feedbfgiction.

A 4

G

A

H

Figure B.1: General diagram of micromechanical culer.

The quantities involved in the solution for theteys G and H are given in Table B.2:

CNu=éW LaM=rk)  [E
=Y _&(x

=1 (B.28)| G= PEXg (B.31)

y=ob(-EW=dl) |2 H=20 32

Table B.2: quantities involved in determining tlystem plan, and feedback blocl.

. is the difference in position between the BM amel TM:

&(x)=9(x)&,(x) - &(x) (B.33)
P,(x) is the active pressure generated by the OHCs.
P, (x) = ~12, (). () (5.30
Combine (B.33) and (B.34):
R(X)= —JZ4(X)[9(X)41(X) -4 (X)] (B.35)
Equations of motion are as follows:
Pt~ R )= 020960 9+ 200X 656

and for the second degree of freedom:
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0=2,(x)&(x) -2, () (B.37)
é(x)

The goal is to solve these equations to find thester function Gm. Begin

by solving (B.37¥or ft(x)

é(x)= Z—zci (x) (B.38)
Recall from (B.33) that |
& (x)= % (B.39)
Substitute (B.38) into (B.39):
(o) 5c(x)+§zfc(x) _ 50()()[“&}_ (8.40)
g(x) g(x) " 2z,

Set the inpuPy = 0 and rearrange terms in the first degree ofandB.36) with a
substitution from (B.40).

g(X
(B.41)
A [Zl X éj }
ZZ
Now expand terms:
Z,+27,+7,7,
-R)= o PR 842
2
Solve for G, recalling (B.31):
i 7,
Pa(x) 2Z2,+ 22+ 7,7, (B.43)
Multiply the solution forG by H to obtainGH:
GH=)Z, Z; (B.44)
ZIZZ + le3 + ZZZ3
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B.4 BM and TM equations of motion

The equations of motion for the BM and TM in Neahd Kim’s (1986) micromechanical
model can be derived by summing the forces actmgach mass. Figure 2.1 illustrates

Neely and Kim’s micromechanical model.

Figure 2.1: Neely & Kim’s (1986) micromechanical deb of the cochlea.

The forces acting on each mass are summarizegurd-B.2.

a) k. cé, P b) k& c,

| ] | |

Gt a at my

m 1 L :
V 1 1 H
mé, myé,
ké, cé P ke el

Figure B.2.a-b: Force diagram for the BM (a) anel M (b) in Neely and Kim’s (1986)
micromechanical model. A dotted line represents thertial forces due to the
accelerations of the masses.
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The equations of motion for the BM and the TM dmest
P = mé+ ot I, [+ ot I, (B.45)
and
0=[mé+cé+ké |- b+ K], (B.46)
respectively, wheref, =¢,—-¢,, and p, = —y[cjC + kfc] . Solving equations (B.45) and

(B.46) in terms of the accelerations of each masgrms the format required for a state

space formulation:

5b=%{ pa+y[ it ke &gt o) =&kt K)+EgrE K, (BAT)

and

éﬁ=%{—<ﬁ(c2+c3)-<i(kz+k3)+ébc3+fble}- (B.48)
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Appendix C

Journal Publications

C.1 Elliott et al. 2007

This journal paper concerns the formulation of @estspace representation for cochlear
mechanics, and specifically applied to the Neelg &m (1986) model of the cochlea.
The text was largely written by S.J. Elliott, bllt@de, associated simulations and figures

were developed by E.M. Ku.
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A state space model for cochlear mechanics

Stephen J. EIIioﬂ,a) Emery M. Ku, and Ben Lineton
Institute of Sound and Vibration Research, University of Southampton, Southampton, Hampshire SOI7 IBJ,
United Kingdom

{Received 14 March 2007; revised 14 August 2007 ; accepied 14 Avgust 2007)

The stability of a linear model of the active cochlea is difficult to determine from its calculated
frequency response alone. A state space model of the cochlea is presented, which includes a
discretized set of general micromechanical elements coupled via the cochlear fluid. The stability of
this time domain model can be easily determined in the linear case, and the same framework used
to simulate the time domain response of nonlinear models. Examples of stable and unstable behavior
are illustrated vsing the active micromechanical model of Neely and Kim. The stability of this active
cochlea is extremely sensitive to abrupt spatial inhomogeneitics, while smoother inhomogeneities
are less likely to cause instability. The model iz a convenient tool for investigating the presence of
instabilities due to random spatial inhomogeneities. The number of unstable poles is found to rise
sharply with the relative amplitude of the inhomogeneities vp to a few percent, but to be
significantly reduced if the spatial variation is smoothed. In a saturating nonlinear model, such
instabilitics generate limit cycles that are thought to produce spontaneous otoacoustic emissions. An
illustrative time domain simulation is presented, which shows how an unstable model evolves into

a lmit cycle, distributed along the cochlea. © 2007 Acoustical Society of America.

[DOI: 10.1121/1.2783125]

PACS number(s): 43.64 Kc, 43.64.Tb, 43.40.Vn, 43.64.Bt [BLM]

I. INTRODUCTION

It is important to develop mathematical models of co-
chlear mechanics to test our understanding of the physical
processes involved. Modeling accomplishes this by provid-
ing predictions of complex system responses, based on as-
sumptions regarding the underlying physical processes,
which can be compared with direct measurements. Linear
models of the cochlea, such as those presented by Zwislocka
(1950), Allen (1977), and Neecly and Kim (1986), as re-
viewed by de Boer (1996) for example, can provide predic-
tions of the distribution of motion along the cochlea at a
given frequency, or of its frequency response at a given po-
sitien. These medels include the macromechanical behavior
of the fluid coupling along the length of the cochlea, as well
as the micromechanical behavior of the individual parts of
the cochlear partition. Such models are the starting point for
more realistic nonlinear models. In order to produce nuineri-
cal results, the cochlear partition, which has mechanical pa-
rameters that vary continuously along its length, is often ap-
proximated by a discrete set of elements. This allows a finite
dimensional set of equations to be solved one frequency at a
time (Necly, 1981). The number of clements is generally
quite large, typically about 300, so that a single model gen-
erates many hundreds of individual frequency response func-
tions.

One disadvantage of such a frequency domain formula-
tion is that it can be difficult to determine whether the system
being modeled is stable or not. With an active micromechani-
cal element to represent the cochlear amplifier, energy can be

“Blectronic mail: sje@isvrecton.acuk

J.Acoust. Soc. Am. 122 (5), November 2007

0001-4966/2007/1 22(5)/2755/13/$23 .00

Pages: 2759-2771

supplied to the system at any point along the cochlea and so
the stability of the overall coupled model is not guaranteed.

The stability of cochlear models is important for several
reasons. For an unstable system, a frequency domain model
will still yield results. However, these results must be treated
with some care, since the assumption of a fixed amplitude
output for a sinuscidal input has been violated. Also, it may
net always be cbvious that the model iz unstable simply from
inspection of the predicted frequency response, possibly
leading to the misinterpretation of these results. This is par-
ticuladly true of cochlear models containing distributed inho-
mogeneitics (e.g., Zweig and Shera, 1993), where the pre-
dicted responses involve both anterograde and retrograde
traveling waves. In the current paper, this problem iz over-
come by the development of a state space model that allows
a rigorous approach to the study of model stability.

A second benefit of this model is that it facilitates the
study of spontaneous otoacoustic emissions (SOAEs). For
cexample, with this approach, it iz easy to determine unam-
biguously whether or not a given cochlear model will lead to
the generation of SOAEs; this in turm enables the examina-
tion of the conditions that lead to SOAE generation.

Twro aspects of the stability of cochlear models that have
been previously discussed in the literature are the stability of
a single isolated point on the basilar membrane, and the sta-
bility of the entire cochlear model after all points on the
bazilar membrane have been coupled together via fluid inter-
actions. Kanis and de Boer (1993, p. 3201) suggest that a
single isolated point on the basilar membrane will be un-
stable if the resistance (i.e., the real part of the driving point
impedance) is negative at any frequency. However, while a
negative resistance is a necessary condition for instability, it
is not sufficient. As pointed out by Zweig (1991, p. 1246), a

© 2007 Acoustical Society of America 2759
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FIG. 1. Equivalent mechanical system for Neely and Kim’s achive micro-
mechanical model.

system may have a megative resistance and still remain
stable, provided the real parts of all its poles are negative.

While it is relatively straightforward to determine the
stability of a single uncoupled point on the basilar mem-
brane, this task iz much more difficult when dealing with the
full cochlear model. As for the single point, the suggestion
by Kanis and de Boer (1993), and van Hengel (comment in
Shera and Zweig, 1993, p. 62) that instability will arise
whenever the resistance of the driving point is negative, is
not necessarily true. Koshigoe and Tubis (1983) suggested
using the Hilbert transform to check that causality (and
hence stability) was implied by the resulting frequency re-
sponses of the model. While this is a valid method of deter-
mining instability, it has the disadvantage that responses over
a wide range of frequencies must be obtained, and that (at
least in theory) the frequency response of every elemental
point in the model must be checked.

As an example of the frequency domain analysiz of an
unstable system, we consider the calculated response of a
single, isolated, active micromechanical element as de-
scribed by Neely and Kim (1986). Their micromechanical
clement is a two degree of freedom system, as illustrated in
Fg. 1, in which an active pressure, p,, acts on the lower
mass, which is propertional to the relative displacement of
the two masses. The admittance of this isolated element of
the cochlear partition can be written as

Yim) = Gl Z\(w) + Zylje)(Za(e)
~VZG oW (Do) + Z(je)] ™, (1

in which

K K
Zjw) =2+ C +jeM ), Z(jw)=—+C,+jwM,,
Jao Jw

K
Zljw)= =+ Cs
_}'(.U
and
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Magnitude of partition admittance

10 0 5 10 15 20 25 30 35 40
Frequency [kHz]

FIG. 2. Magnitude of the partifion admittance of an isclated micromechani-
cal element for feedback gains of =1 and 1.1,

K
Zo(jw) = ._4 +Cy,
jm

where b is the ratio of the maximum to average basilar mem-
brane (BM) displacement, g is the lever gain, the masses and
stiffnesses are all defimed mn Fig. 1, and ¥ is the gain of the
feedback loop used to model the cochlear amplifier.
Equaticn (1) corresponds to the frequency response of
the velocity of M| with respect to the pressure acting upon it,
and its magnitude iz plotted in Fig. 2 for the parameters
listed in Table I at x=3 mm, for feedback gains of y=1 and
y=1.1. Although the calculated frequency response for ¥
=1.1 is smoothly varying and apparently plausible, it has no
physical significance in isolation, since the system iz um-

TABLE I. Parameters of the micromechanical model of Neely and Kim
(1986} with corrections for original typographical ecrors and converted into

51 units.
Quantity Formmla (ST)
K lx) 1,110 400 N py?
C)lx) 2004+ 15 00079 N's"m?
M, 3'102 kg'm?
Rylx) 7410702 N 3
Cylx) 100e~20% N¥'m3
M, 531077 kg'm™
K(x) 1%108400% 1 m-3
Calx) 100279 N*s*'m=?
Ei(x) 6,15 1 0F =% N m*
Calx) 1007507 N " m
gamma 1
g 1
b 04
L 0.025 m
K, 2.1°10F N*m~™?
s 4000 N's"m—?
My 45107 kg'm?
o 1000 kg'm™?

Elliott &t af.: Btate space cochlear model
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FIG. 3. Positions of the peles of the transfer funcben for the micromechani-
cal element with feedback gains of y=1 and v=1.1, pletted: (a) using the
cenventicnal contral representation with positive and negative frequencies
plotted vertically; and (b) using the representation used for the cochlea
model described here, with frequency plotted horzentally.

stable for this value of feedback gain and zo the response to
any sinuseidal input would be exponentially diverging, and
ultimately infinite.

The stability of thiz single mput, single output system
can be determined by writing its transfer function as

Y (s) = (o gHZy(5) + L) Za(s) - ¥Zy(s) )
[Zy(s)+ Zy() ], (2)

and calculating the values of the complex Laplace transform
variable, s, for which ¥ ,(s) tends to infinity, i.c., the poles of
the system. Since the system has two degrees of freedom, it
has two pairs of poles, which are plotted in the complex s
plane for the system with feedback gains of y=1 and ¥
=1.1 in Fg. 3. The positions of these poles are plotted in two
ways in Figs. 3(a) and 3(b). Figure 3(a) shows the conven-
tional representation uzed by the contrel community, with the

J. Acoust. Soc. Am., Vol 122, No. 5, November 2007

real part of s (#) along the horizontal axis and both the
negative and positive components of the imaginary part of s
{w=2mf) along the horizontal axis. The poles appear in com-
plex conjugate pairs, so no additional information is gained
by plotting those with a negative imaginary part. To help
emphasize the physical significance of the poles, their imagi-
nary parts can be divided by 2, to give units of Hz, and the
frequency plotted along the horizontal axis, as in a conven-
tional frequency response, which is shown in Fig. 3(h).

Ome such pair of poles would give rise to a transient
response proportional to ¢ sin(2mf7). The real part of the
pole position, a, which is plotted on the vertical axis in Fig.
3(b), can thus be physically interpreted as the divergence rate
of the transient. If o is negative, the transient converges and
the system is stable, but if o becomes positive, the transient
diverges and the system is unstable.

The two poles with positive real parts that appear when
y=1.1 thus clearly indicate that this system iz unstable
(Franklin et al., 2005). Only the stability of the isolated mi-
cromechanical element iz being considered in this example.
When such an array of elements is coupled together in the
cochlea, it is not generally possible to express the overall
transfer function of the complete system analytically and
hence determine the position of the poles. Although the
phase of the calculated frequency response can give an indi-
cation of unstable behavior for this single mput single output
system, as can the cavsality of the inverse Fourier transform
of the frequency response, it is difficult to formalize such
tests for discretized cochlear models producing many hun-
dreds of individual frequency responses. This is of particular
concern given that numerical effects, such as truncation in
the frequency domain, will also lead to the presence of small
nencausal compenents.

The original motivation for developing a state space
meodel of cochlear dynamics is that its stability can be unam-
biguously determined by examining the cigenvalues of a
single matrix. These eigenvalues correspond to the system’s
poles, as described by Franklin et al (2005), for example,
and can be accurately calculated even for large matrices be-
cause of the wide availability of efficient numerical algo-
rithms in software such as MATLAB. In such a state space
model the dynamics of the underlying states of the system
are expressed in the time domain as a set of coupled first-
order differential equations (Furuta er al. 1988). Any msta-
bility of the system, including that of a hidden mode, is
guaranteed to be represented in such a model (Skogestad and
Postlethwaite, 1996). Several reliable software packages are
now available specifically for solving ordinary differential
equations cast in this form and for the direct time domain
simulation of state space models. The interpretation of these
models is also well established in the control engincering
community. State space models have been proposed previ-
ously to describe the dynamics of the cochlea by Monderer
and Lazar (1988), Stibler e al. (1998), and Lindgren and Li
(2003). In each of these cases, however, the cochlea model
was passive and so the stability of the model was not an
izsue.

A general framework for the state space description of a
discretized cochlea model is set out in Sec. 1. In Sec. I, the

Eliott at af.: State space cochlsar modsl 2761
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features of this model are illustrated vsing Neely and Kim’s
(1986) formulation of the cochlea’s micromechanical behav-
ior. It is shown that when this model is stable, the frequency
responses predicted vsing the state space model are identical
to those calculated using the conventional frequency domain
formulation for the parameters given by Neely and Kim.

In Sec. IV, the stability of this model is examined in
more detail, particularly for variations of the cochlear ampli-
fier’s feedback gain along the length of the cochlea. It is
shown that the stability of such a coupled cochlea iz ex-
tremely sensitive to even small abrupt changes in gain, while
the stability of the model is maintained for larger changes in
feedback gain that occur more smoothly along the length of
the cochlea.

The effect of random spatial inhomogeneities along the
length of the cochlea is examined in Sec. V, using simula-
tions of random gain perturbations having different magni-
twdes and length scales. It is shown that the number of un-
stable poles rises with the magnitude of the random
perturbation, but perturbations of much less than 1% can
easily produce many unstable poles. In a completely linear
systemn these unstable poles would cause exponentially diver-
gent oscillations. If the feedback forces in the micromechani-
cal model saturate at a particular level, however, the ampli-
tude of these oscillations will stabilize and the response
reaches a limit cycle.

This nonlinear behavior is explored in Sec. VI, in which
an example time domain simulation is presented, based on
the state space model. The response of the cochlear model is
computed when compressive nonlinearities are incorporated
into each micromechanical feedback loop. A simulation of
such a nonlinear cochlear model, which is unstable when
linear, is presented showing that the nonlinearity does indeed
limit the amplitude of the unstable behavior, resulting in a
limit cycle distributed along the length of the cochlea.

Il. GENERAL STATE SPACE FORMULATION

In this section, a state space formulation is developed for
model of a discretized cochlea as formulated by Neely
(1981), and as claborated upon by Neely and Kim (1986).
Adopting the long wavelength assumption, the starting point
is the differential equation describing one-dimensional wave
propagation along the cochlea (as discussed, for example, by
de Boer, 1996)

Fp) 2., .
2 EW(O—Q (3)

where p(r) is the wave form of the pressure difference across
the cochlear partition; w(¢) is the radially averaged transverse
acceleration of the cochlear partition, both of which are also
functions of x, although the dependence is suppressed for
notational convenience; p is the density of the cochlear flu-
ids; and /A is the height of the canal above and below the
cochlear partition, which iz assumed to be constant. The
boundary condition for the wave equation at the basal end
can be written as
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i, 4
Fluid coupling
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FIi3, 4. The discrete model of the cochlea including the micromechanical
meodels of the cochlear partition for slements 2 to N-1, the model of the
middls ear dynamics at element 1 and of the helicotrema at element N.

Somrce Micdleear |
dynamics

(0]

=2 2o, 4

=0

where W;s(r) is the acceleration of the stapes footplate. This
has two linearly superposing components: the unloaded part
Wgn(t), which is the acceleration due to an external excita-
tion, normally the pressure in the car camal, and ¥igg(F),
which is the acceleration due to the loading by the intemal
pressure response in the cochlea at x=0. Thus, Eq. (4) may
be written as

w9

P = 2piigpl(£) = 2pW 50(1). (5

=0

At the apical end of the cochlea, a pressure release boundary
condition at the helicotrema can be written as

p(r)|x=L:0' (6)

Using finite difference approximations for the spatial de-
rivatives in Eqs. (3), (5), and {6) as originally proposed by
Neely (1981), in which the cochlear length L is divided into
N sections of length A, the wave equation, Eq. (3), can be
approximated by

n— -2 n n+ 2 .
Pl 155)4'? L(O_Epwnmzo’ (7)

for n=2 to n=N-1, where p,(t) and w,(f) are the wave
forms of the pressure difference and acceleration of the co-
chlear partition of the rth element. The basal boundary con-
dition, Eq. (5), can also be approximated by

M— 20 52(8) = 209 50(4). ®

The apical boundary condition, Eq. (6), can be written as

1) =0. (9

This discrete model is illustrated in Fig. 4. Equations (7)-(9)
can be written in matrix form (Neely, 1981), as
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A A
-= = 0
H H
1 -2 1
0o 1 -2 1
H
2ph*
P 1 -2 1 o
1 -2
2pA2
0 o -=L
H
A0 Werls) Woolf)
p) 0 0
P S o IR ) PR (10)
Pua(t) Wy ()
G I T I A
which may also be written as
Fp(e)-w() =q, (1n

where p(f) and W(s) are the vectors of pressure differences
and cochlear partition accelerations; F 15 the fimite-difference
matrix; and q is the vector of source terms.

We now cast the dynamics of each micromechanical el-
ement on the cochlear partition, for n=2 to N -1, in the state
space form

%{0=Ax,(0)+B.p, ) (12)

w,(f) = Cx,(1) (13)

where x,(¢) is the vector of state variables associated with the
internal behavior of the nth micromechanical model.

Similarly, the state space equation describing the loading
propertics of the middle ear (located in our statc space sys-
tem at »=1) can be written as

(0= Ax () + B () (14)

Weplt) = Cx, (7). (15)

Although specific examples are given below for the forms of
these micromechanical state space equations, they are kept in
their most general form for now to illustrate the structure of
the formulation. All of these elemental, uncoupled, state
space models can be gathered together in the combined ma-
trix equations

£(5) = A () + Bzp(o) (16)
w(t) = Cax(2), (17)
where the vectors are defined as
<) =[x](0) x}(0) -+ xb,(0) xEO)], (19)
WI(6) = Dien() Wale) -+ vis(9) O], (19)
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P =[p1() p2(d) -+ pvoa(®) PO, (20)
and the ma_ltriccs, which are block diagonal, are defined as
A, 0
0 A,
Ap=| * P, (213
Ay, O
0 Ay
B, 0
0 B,
Be=| : P, (22)
By, O
0 By
cC, 0
0 ¢
Cz=| o (23)
Cy, O
L 0 Cy

The overall vector of state variables x(¢) should not be con-
fused with the longitudinal spatial variable x used n Eq. (3).

We now assume that the matrix F in Eq. (11) is invert-
ible, and express this equation for the fluid coupling within
the cochlea in the form

P =F () +F'q(7). (24)
Note from Eq. (17) that %(7) is equal to CgX(?), so that
P(1) =F"C&() + FHq(1). (25)

Substituting this into Eq. (16) allows an overall state space
equation for the coupled cochlear with distributed microme-
chanics and dynamic boundary conditions to be written in
the general state space form

%(5) = Ax(f) + Bu(s), (26)
where

A=[I-BgF 1Cz] tAp, (27)

B=[I-B:F'C; B, (28)

u=Flq. (29

The matrix A is called the system matrix, and it deter-
mines the transient response of the system. In particular the
cigenvalues of the matrix A are the poles of the system’s
transfer function and the real parts of all these eigenvalues
must be negative if the transient response is to decay away,
so that the system is stable.

1. A SPECIFIC EXAMPLE

In this section we demonstrate how the micromechanical
model and boundary conditions used by Neely and Kim
{1986) can be set in state space form, and reproduce some
illustrative frequency responses from their paper to demon-
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strate the equivalence of the state space formulation to the
conventional frequency domain formulation for a stable sys-
tem.

The Neely and Kim (1986) micromechanical model is
an active second-order system, which must have two state
variables associated with each degree of freedom. The four
state variables are chosen to be the displacements of the two
masses in Fig. 1, x(f) and x,(7), and their velocities, %(¢)
and %(7). The coupled differential equations describing the
dynamics of this micromechanical model, including the ac-
tive feedback loop, may be written in terms of x(#) and x,(7),
as

i = MLI{P(J') + g Caltale) — £1(0) + Kylxol8) —x1(1))]

—x (NC, + C) —x (K| + Ka) + 35(1) Gy

b= (O O DK K 1,0
2

+x1(0K}. (31)
These equations may be written in the form
(=A%, +B,p, 0, (32)

by defining the state variable vector for this nth microme-
chanical element to be x,, which is equal to [¥] x| % x, 7.
The pressure difference across the cochlear partition, p(f) in
Eq. (29), is p,(f) in this casc and A, and B,, arc defined as

+xo()Ka}, (30)
|
G C-gyC) KK -gvK) G -vG KK
My M, M, M,
1 0 0 0
A, = . (33)
&) < B (G +Cy) B (& + K)
M, My M, M,
0 0 1 0 n
1 T
B,-| —o000]. (34
L Ml n
|
The differential equation used by Neely and Kim (1986) to Xy =Wy, (40)
describe the middle ear dynamics can be written
.. . An=0 41
P =M () + Coige(t) + Kgwigl), (35) N “1)
where M, C,, and K, are the lumped mass, damper, and By=0. (42)

stiffness. Defining wz(7) and wsg(f) to be the two state vari-
ables for this medel, it can be written in the form

5(0=Ax (1) +Bp (), (36)
where
x1(2) = [ws(D) ws(0)T, (37)
-G K
A=l M, M | (38)
1 0
F ’
B, =| —0]. 3
=l (39)

The pressure release boundary conditions at the helicotrema
can also be represented in the state space form of Eq. (32),
where
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Provided the system is stable, the frequency response of a
system described by the state space equations

x(1) = Ax(r) + Buis), (43)

y(#) = Cx(r) + Du(s, (44

can be derived by assuming cach clement of X(¢) iz propor-
tional to e/, so that X(f) can be written as x(jem) and %(1) as
Jox(jw). The overall matrix of frequency responses can thus
be expressed as

y(jau) = [D+ Clwl - A) Bu(jo). (45)

Equation (44) is the general equation for any ocutput quantity,
y(#), as a function of the states, X(f) and input u(f). For the
case of interest here, the outputs are the BM displacements
along the length of the cochlea, which are already contained,
as X|,,, in the state vector of the micromechanical model, Eq.
(32). Thus in this case, the C matrix just selects the appro-
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FIG. 5. Distribution of BM displacement aleng the cochlea calculated from
the state space model for the parameters of Nesly and Kim (1986) at
1.6 KIz with feedback gain y=0 (dashed) and y=1 (sclid),

priate state variables and the D matrix is zero.

Equation (43) has been used with the formulation above
and the parameters given in Table I to calculate the BM
displacement at various frequencies as a function of position
along the modeled cochlea. An example response 1s shown in
Fig. 5, which iz equivalent to Fig. 4 in Neely and Kim
(1986).

The enhancement of the modeled active response can be
varied in the Neely and Kim model by changing the value of
the feedback gain, y. The maximumn overall enhancement in
the frequency response at each position along the cochlea is
plotted in Fig. 6 for the value y=1, originally used by Neely
and Kim. It can be seen that up to 90 dB enhancement is
produced with this level of feedback gain. It has been argued,
by Patazzi et ai. (1989), for cxample, that this degrec of
enhancement overestimates that measured in the cochlea.
Such a high degree of enhancement also indicates that the

]
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Enhancement of
BM velocity response [dB;
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2 R &2 o090
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FIG. 6. Enhancement of the peak response in the BM velocity due to the
cochlear amplifier for feedback gains of y=1 and ¢=0.85.
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madel iz very close to instability (Franklin et al, 2005). The
stability of such a model might thus be considered unrealis-
tically sensitive to perturbations in the model’s parameters to
be representative of the cochlea.

For these reasons, a value of feedback gain of y=0.85
has been chosen to be the benchmark for the perturbation
studies in this paper. The enhancement produced with this
value of feedback gain is also shown in Fig. 6, which indi-
cates that the maximum enhancement due to the cochlear
amplifier iz about 45 dB near the base and 20 dB near the
apex, which is similar to the measured difference in response
between live and dead cochlea (as reviewed, for example, by
Robles and Ruggero, 2001).

Analyzing the stability of the coupled state space formu-
lation of the cochlea is now readily accomplished by using
the state space system to calculate the cigenvalues of the
system matiix, A, as formulated in Eq. (43). Figure 7 shows
these ecigenvalues for the coupled system with feedback
gains of ¥=0, 0.83, 1.00, and 1.03. In this case, the number
of elements in the discretized cochlear model was set to 500,
as in the original Neely and Kim (1986) medel, which in-
cludes the elements that account for the boundary conditions
at each end. There are four poles per cochlear element, and
three additional poles for the model of the boundary condi-
tions, which makes a total of 1995 poles. Although indi-
vidual poles can be distinguished on the bottom right-hand
side of Fig. 7(b), the majority of the pcle positions are so
close together that they appear as a continuous line. Note that
the distribution of poles in the lower part of Fig. 7(a) extends
linearly below the range plotted, which was chosen to retain
the detail in the other plots.

The coupled system is stable (since there are no poles
with positive real parts) for both the passive model, with y
=0, and the active model with y=0.83 or y=1. As the model
becomes active, the distribution of the poles nearest the fre-
quency axis, which are the most lightly damped peles, moves
further towards the frequency axis, and are so even more
lightly damped. They are alse stretched out in frequency,
reflecting the increase in peak frequency for the active co-
chlea. When the gain in all the micromechanical clements is
increased to 1.03, however, a number of poles appear with
positive real parts, indicating that the system is unstable. As
well as providing a convenient tool for establishing stability
with uniform parameter distributions, the state space model
also allows the stability of the cochlear model with nonuni-
form parameter distributions to be readily calculated, as con-
sidered in the following section.

IV. EFFECT OF SPATIAL INHOMOGENEITIES

It has been previously reported that variations in the
physical parameters describing the basilar membrane along
its length can result in cochlear instability. Although such
spatial inhomogeneities could be present in any of the physi-
cal parameters in the micromechamcal model, we use varia-
tions in feedback gain to illustrate some of the effects such
inhomogeneities may have on the stability of the coupled
system.
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FIG. 7. Distribution of poles in the coupled cochlear model for various values of feedback gain in the micromechanical model, . Any pole with a positive
real part denotes an unstable system. The cochlear modeal is clearly stable when it is passive, ¥=0 {a), and also for feadback gains of 0.85 and 1 (b) and {e).

The cochlear model is unstable if the feedback gain is increased to 1.03 (d).

A. Step changes in gain

Sharp discontinuitics in the spatial distribution of gain
can result in instability, even if the magnitudes of the
changes are small. This 1s most evident when a step change
in gain is introduced. Figure 8(a) shows the pole positions of
a cochlea model with a 0.1% step reduction in gain at x
=5 mm. The wvariation of feedback gain () with position
along the cochlear is also shown for reference.

In thiz case, a single pair of poles has a positive real
part, indicating that the system is unstable. The frequency of
the poles with the positive real part is close to the character-
istic frequency of the position on the BM where the discon-
tinuity is located. A 0.1% step increase of gain at 5 mm
yiclds a similar result. The magnitude of the step change
required to destabilize the cochlear model varics when dis-
continuities are introduced at different positions along the
cochlea. The system’s stability is most sensitive to disconti-
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nuities at the basal end, as illustrated above, and discontinui-
ties of up to about 10% can be tolerated near the apical end,
before the system becomes unstable.

It is generally accepted that cochlear instability, stabi-
lized by nonlinearitics into a limit cycle, is the source of
spontancous otoacoustic emissions (Bialek and Wit, 1984;
Talmadge and Tubis, 1993; Nutall er al., 2004). One theory
regarding SOAEs suggests that they are not produced locally,
but rather are the result of global wave scattering and active
reinforcement of reflections by the active process, likening
the cochlea to a laser oscillator (Talmadge and Tubis, 1993;
Shera, 2003). A laser oscillator includes a resomant cavity
which encloses a gain medivm. The cochlear equivalent of a
laser’s resonant cavity exists between the region of a spatial
dizcontinuity and the middle ear boundary; within that area,
a minimum amount of energy must be reflected at each
boundary in order to sustain a limit cycle. Here the outer hair
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cells (OHCs) of the cochlea amplify waves traveling in cach
direction. While SOAEs are nomnally thought to be gener-
ated by random spatial perturbations in the dynamics of the
cochlea (Zweig and Shera, 1993; Shera, 2003), pathologi-
cally abrupt discontinuitics arc also recognized as generating
“atypical SOAEs” (Clack er al., 1984; Lonsbury-Martin and
Martin, 2001). Strictly speaking, it is oscillations of the BM
motion that are being predicted here rather than the SOAEs,
and moedeling the detailed relationship between these oscil-
lations and pressure in the external ear is the subject of cur-
rent research.

Though small discontinuitics in gain can drive the
coupled cochlea unstable, one extreme spatial discontinuity
in gain that does not generate instability is shown in Fig.
8{b), in which the cochlear amplifier gain is set to zero for all
positions basal of x=5 mm. Note that the poles in the lower
part of the graph continue below the plotted range, as in Fig.
7(a), and are very similar to those of the passive system i

J. Acoust. Soc. Am., Vol 122, No. & November 2007

this frequency range, as expected. In light of the aforemen-
tioned theory of SOAE production, the system shown in Fig.
8{b) would have a zero roundirip gain for any reflected
waves between the gain discontinuity and the middle ear of
the cochlea. Az a result, this would be predicted not to pre-
duce enough energy to overcome the losses in that region,
and consequently, no instability or SOAE would be pro-
duced; this is what is observed in the model here. Contrary to
this observation, Fukazawa and Tanaka (1996) found that a
similar gain distribution did result in system instability in
their time domain model. [t may be the feed-forward imple-
mentation of their cochlear meodel that produces this result.

B. Smooth variation in gain

Following the line of reasoning outlined above, it is pos-
sible that smeothly varying distributions of gain, associated
with the compression of the cochlear response by a low pass
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signal for example, might not reflect enough energy to sus-
tain limit cycle oscillations. Figure 8(c) shows the pole po-
sitions for a 2% dip in gain over a 1 mm region of the co-
chlea centered on x=5 mm. The spatial distribution in the
gain used in Fig. 8(c) is proportional to a quarter-sin®(x)
wave, and proves smooth enough to maintain stability. In
contrast, a quarter-sin(x) wave form dip of the same magni-
twde in the same position, whose edges are more abrupt than
the quarter-sin“(x) dip, does not maintain stability. With the
smooth quarter-sin’(x) variation, even step changes of 100%
in gain at the apical end of the cochlea do not destabilize the
systemn.

V. SPATIALLY RANDOM VARIATION IN GAIN

Multiple spentancous oscillations were observed in a
nonlincar hardware model of a section of the cochlea by
Zwicker (1986). Previous time domain simulations of active
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cochlear models have also produced internal oscillations that
arc believed to be representative of SOAEs (Fukazawa and
Tanaka, 1996; van Hengel er al., 1996; Talmadge and Tubis
1998). The active process has cither been modeled using a
feed-forward active force that is due to the incoming velocity
from the base (Fukazawa and Tanaka, 1996) or a negative
lincar damper (van Hengel ef af., 1996; Talmadge and Tubis
1998).

In this section, lincar systems with the Neely and Kim
micromechanical model having randomly varying gain val-
ues are tested for stability. An entirely random wave form
with a Gauvssian distribution was band-pass filtered at differ-
ent spatial frequencies in order to give smoothly or roughly
spatially varying gain distribution. The filter applied 1z a
fifth-order Butterworth filter, chosen for its characteristically
flat passband (Lincton, 2001). The lower boundary of the
filter is set at a spatial frequency given by the reciprocal of
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FIG. 10. The number of unstable peles in coupled cochlea models having
differsnt amplitides of eochlear amplifier gain variation with either smeoth
or rough distributions aleng its length, The bars denote the range of 40
simulations with different random gain distdbuticns and the circles denote
the average value.

the length of the cochlea. The upper spatial frequency bound-
ary of the filter is set within a range of 5-10% of the spatial
sample rate, which corresponds to wavelengths on the order
of several millimeters down to a fraction of 1 mm. Two up-
per spatial frequencics were used here: equivalent to wave-
lengths of 0.85 mm, which corresponds to a “rough” gain
function and 1.7 mm, which corresponds to a “smooth” spa-
tially varying gain function.

Figure 9 shows examples of randomly varying gain
functions and their comesponding pole distributions. It can
be seen that an increased magnitude of spatially varying gain
fluctuation will cause instability, although lower percentage
variations are required to cause the system to become un-
stable for rough spatially varying gains.

Different random gain variations will produce different
distributions of poles, but the average number of unstable
poles iz dependent on both the smoothness of the gain dis-
tribution and its magnitude. This behavior was investigated
in a series of simulations whose results are summarized in
Fig. 10. The range of the number of unstable poles obzerved
in 40 simulations is shown as a bar for different peak-to-peak
percentage variations in gain. The average number of un-
stable poles is also shown, and these points are connected to
illustrate the way in which the average number of unstable
poles increases with percent variation in gain for both the
rough and the smooth gain distributions. The system with the
rough gain distribution becomes unstable even for 0.5%
variations, whereas the system with the smooth gain distri-
bution is stable for variations of up to about 5%. The average
spacings between the poles when they are close to instability
also cluster around a fixed value, as predicted by the theory
of Zweig and Shera (1993), although the details of this be-
havior are still under investigation and will be the subject of
a future publication.

VI. NONLINEAR TIME DOMAIN SIMULATIONS

Although an eigenvalue analysis of the state matrix can
reveal whether a linear model is unstable, the exponentially

JoAcoust. Soc. Am., Wol. 122, No. 5, November 2007
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FIG, 11, Block diagram of the micremechanical model of Neely and Kim
(1986) with a saturating nonlinearity in the active force.

diverging response of such a linear unstable system in a real
cochlea would be limited by nonlincaritics. In order to ex-
plore the complex behavior due to such nenlinearities, it is
necessary to analyze the system in the time domain. Figure
11 shows the Neely and Kim micromechanical model with a
saturation function operating on the active force, which
might represent the nonlinearity of the outer hair cell re-
sponse. This saturation iz meodeled here as a tanh function,
which is linear for low-level excitation. It was noted in Sec.
I that if the feedback gain, y, was set to 1.1 in such an
izolated model, the linear system would be unstable. The
nonlinearity introduced in Fig. 11 will limit the amplitude of
such an instability, as illustrated in Fig. 12, which shows the
results of a time domain simulatien of such an isolated non-
linear micromechanical element that is linearly unstable. The
nonhnearity limits the amplitude of the oscillation, as pre-
dicted, so that in this case it settles down into a periedic limit
cycle.

The state space formulation provides a convenient tool
for such time domain analysis in the coupled cochlea model,
using, for example, ordinary differential equation (ODE)
solvers such as ode43 in MATLAB, which uses a Runge—Kutta

-5

T[me [ms]

FIG. 12, The results of a ime domain simulation of a single isclated non-
linear micromechanical element with 3=1.1, which is linearly unstable. The
amplitude of the oscillaion initially diverges exponentially, bt is then lm-
ited by the saturation function se that it settles into a periodic Hmit aycle.
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FIG. 13, BM velocity responses at different peeitions along the coupled cochlea as a result of a time domain simwlation with saturating cochlear amplifiers

and a distribution of feedback gains corresponding to Fig, 8(a).

algorithm with variable internal step size. This program has
been used to simulate Eq. (26) in the time domain with an
output sample rate of 100 kIz, which is necessary to avoid
aliasing at the higher characteristic frequencies. The error
tolerance in the ODE solver was set to le-10. Extremely
similar results were cobtained when the error tolerance was
set to le-11, although the computation time was considerably
greater in this case. The time domain simulations were ini-
tially validated against the frequency domain results by cal-
culating the “steady-state” response at all positions along the
cochlea to a 6 kHz tone after 100 ms of simulation. The
results were almost identical to the frequency domain results,
except where the response had fallen by about 200 dB at the
apical end, in which case the finite window of the time do-
main simulations caused some spurious results.

Time domain simulations have also been performed with
a nonlincar active model having a 0.1% step in the spatial
gain distribution at x=5 mm, as used in Fig. 8(a), which is
just sufficient to cause a single pair of poles to have positive
real parts and is thus linearly unstable. The nomlinearity is
incorporated into the simulation by replacing v in the A,
matrix for cach active micromechanical clement, Eq. (33),
with the instantaneous ratio of the input to output of the tanh
function for that clement. Figure 13 chows the evolution of
the BM response at a number of positions along the cochlea
for this gain distribution along the cochlea. In order to reduce
the simulation time before the nonlinear model reaches a
steady state, the cochlea iz mitially excited by a short pulse
at the bazal end. Thiz cauzes a transient that dies away within
2 ms for positions less than about 10 mm along the cochlea,

2770 J. Acoust. Soc Am., Vol 122, No. &, November 2007

but takes longer to die away at more apical positions because
of dispersion. This iz more clearly seen in the grey scale plet
shown in Fig. 14, which indicates the amplitude of the co-
chlear pressure as a function of time at all modeled positions
along the cochlea. The eriginal transient due to the impulsive
excitation corresponds to an arc starting at the origin and

25
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Position along the cochlea [mm]

o 1 2 & 4 & 7 8 9 10

L
Time [ms]

FIG. 14, Grey scale representation of the results of the time demain simu-
lation described In Fig. 13 at all pesitions aleng the cochlea. The grey scale
corresponds to the amplitude of the pressure (positive white, negative black)
at each position at sach Hme. An animation of this respense iz available
online (Ku, 2007),
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spreading out to 13 mm after about 3 ms. The strongest re-
sponse after this transient has died away, however, iz a single
oscillation centered at x=5 mm along the cochlea. The fre-
quency of this limit cycle is very similar to that of the imagi-
nary part of the unstable pole, which is itself very similar to
the characteristic frequency at the position of the step in
gain.

VIl. CONCLUSIONS

The main contribution of this paper is the formulation of
a general state space model of the coupled cochlea. The
prevalence of analytical and numerical tools for dynamic
systems cast in this time domain form then allows several
aspects of the behavior of cochlear models to be explored in
more detail than iz possible with an entirely frequency do-
main model.

Particular emphasis is placed on the assessment of sta-
bility for a linear model. The results of frequency domain
models cannot be trusted unless the system can be demon-
strated to be stable, and the pole positions derived from the
state space model provide a convenient way of establishing
whether such a coupled linear model is stable.

The stability of the cochlear model is illustrated using
the model of Neely and Kim (1986). In particular, the effect
of different distributions of micromechanical feedback gains
along the cochlea iz considered. It iz shown that abrupt
changes in feedback gain can cause instability even when the
magnitvde of the change is less than 0.1%. Smoother
changes in gain can be much larger in magnitude before the
stability of the model is compromised. The effect of various
spatially random variations of feedback gain on stability is
also investigated. It is found that there is a significant differ-
ence in the magnitude of such imhomogeneitics that cause
instability, depending on the smallest spatial wavelength of
the feedback gain distribution.

Finally, we illustrate the use of the state space formula-
tion to simulate the coupled system. Nonlinearities in the
micromechanical feedback loops are included in order to be-
gin to account for the finite active contribution of the OHCs.
The limit cycle oscillations that are generated when the lin-
carly unstable response is limited by the saturating nonlin-
carity are thought to be the source of SOAEs. The state space
formulation may also be a convenient tool to study other
forms of otoacoustic emission.
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Statistics of instabilities in a state space model of the human

cochlea
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A state space model of the human cochlea is used to test Zaveig and Shera’s [(1995) “The origin of
periodicity in the spectrum of evoked otoacoustic emissions,” J. Acoust. Soc. Am. 98({4), 2018-
2047 ] multiple-reflection theory of spontancous otoacoustic emission (SOAE) generation. The state
space formulation is especially well suited to this task as the unstable frequencies of an active model
can be rapidly and unambiguously determined. The cochlear model includes a human middle ear
boundary and matches human enhancement, tuning, and traveling wave characteristics. Linear
instabilities can arise across a wide bandwidth of frequencies in the model when the smooth spatial
variation of basilar membrane impedance is perturbed, though it is believed that only umstable
frequencies near the middle ear’s range of greatest transmissibility are detected az SOAEs in the ear
canal. The salient features of Zweig and Shera’s theory are observed in this active model given
several classes of perturbations in the distribution of feedback gain along the cochlea. Spatially
random gain variations are used to approximate what may exist in human cochleae. The statistics of
the unstable frequencies for random, spatially dense variations in gain are presented; the average
spacings of adjacent unstable frequencies agree with the preferred minimum distance observed in

human SOAE data. © 2008 Acoustical Society of America. [DOI: 10.1121/1.2939133]

PACS number(s): 43.64.Kc, 43.64.Jb, 43.40.Vn, 43.64 Bt [BLM]

I. INTRODUCTION

The existence of a cochlear amplifier {CA) was first pos-
tulated by Gold (1948), who argued an electromechanical
action is necessary to counteract the heavy viscous damping
in the flmd-filled cochlea. The discovery of spontancous
otoacoustic emissions (SOAEs) by Kemp (1979) has long
served as indirect evidence supporting the prezence of a CA.
It is now widely accepted that the outer hair cells situated in
the organ of Corti actively enhance the motion of the basilar
membrane (BM) (c.g., Dicpendaal ef af., 1987), which gives
rse to a mammal’s sharply tuned sense of hearing. However,
the precise mechanism underlying the generation of SOAEs
is still in debate.

SOAEs are believed to be a feature of a normally func-
tioning CA, as they are commeonly detected in an estimated
range of 33%—70% of all normally hearing ears (Talmadge
et al, 1993). Where SOAE:s are detected, stimulus
frequency-, distorion preduct- and transient evoked-
otoacoustic emissions (SFOAEs, DPOAEs, and TEODAE:s)
are often present. There iz evidence to suggest that all forms
of OAEs are related and directly tied to the sensitivity of
hearing (Zwicker and Schloth, 1984; McFadden and Mishra,
1993; Talmadge and Tubis, 1993; Shera and Guinan, 1999).
Twe primary classes of cochlea-based theories regarding the
production of SOAE:s are discussed below: a local-oscillator
model and a distributed backscattering concept.

Gold (1948) first formed the basis of a local-oscillator
model of SOAE generation when he proposed that a pertur-
bation may “bring an [active] element into the region of
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self-oscillation, when it is normally so close to [instability].”
Evidence in the literature suggests that SOAEs are associated
with BM oscillations. For example, Nuttall er al. (2004)
measured a SOAE that had a counterpart in spontaneous me-
chanical vibration of the BM at the same frequency. Further
work performed by Martin and Hudspeth (2001) considered
how locally unstable elements of the CA may be responsible
for SOAEs. However, without careful tuning, a local-
oscillator model fails to account for the regular spacings be-
tween unstable frequencies observed in mammalian SOAEs.

The strong peak in the distribution of spacings between
adjacent SOAE frequencies, termed the preferred minimum
distance (PMD), has been demonstrated by various studies
(Dallmayr, 1985, 1986; Talmadge er al., 1993; Braun, 1997).
A similar value is found in the average frequency spacings
between the spectral peaks of SFOAEs and TEOAEs when
measured in the ear canal (Zwicker and Schloth, 1984;
Shera, 2003). The PMD corresponds to a frequency spacing
of approximately 0.4 bark, or a distance of about 0.4 mm
along the human cochlea (Dallmayr, 1985, 1986). Most
SOAESs occur in the range of 0.5—6 kHz (Probst et al., 1990)
and demonstrate the PMD, though Zweig and Shera (1995)
and Shera (2003) showed that the average spacings of both
SOAEs and the spectral peaks of SFOAEs measured in the
ear canal vary somewhat with frequency.

Strube (1989) argued that a periodic variation or “corru-
gation” in the micromechanical parameters would also give
rise to the observed PMD in SFOAE and TEOAE measure-
ments in the ear canal. This was said to arise given distrib-
uted backscattering of the traveling wave (TW) similar to the
phenomenon of Bragg reflection in a crystal. In this theory,
the peried of the corrugation must correspond to one-half of
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the wavelength of the TW, thus generating comstructive in-
terference at particular frequencies. Kemp (1979) also pro-
posed a theory of SOAE generation which assumed a distrib-
uted backscattering mechanism; his theory required multiple
internal reflections of forward- and backward-traveling
waves between the middle ear boundary and an inhomoge-
ncous region of the cochlea.

Since Kemp (1979) first presented the idea, numerous
authors have made contrbutions to the multiple-reflection
theory (Zwicker and Peisl, 1990; Zweig, 1991; Shera and
Zweig, 1993; Talmadge and Tubis, 1993; Zweig and Shera,
1995; Allen et al., 1995; Talmadge et al., 1998; Shera and
Guinan, 1999; Shera, 2003). Shera and Zweig (1993) pro-
posed that a spatially dense and random array of reflection
sites exists along the entire cochlea which acts in concert
with the middle ear boundary to form standing waves, which
Shera (2003) likens to a laser cavity. This concept was fully
developed in Zweig and Shera (1995). Though energy is re-
flected at all frequencies by a perturbation along the cochlea,
wavelets scattered from forward-traveling waves that peak in
the region of the inhomogeneity dominate the response, since
the amplitude is highest there.

For an active standing wave resonance to develop in this
multiple-reflection theory, the spatial distabution of inhomo-
geneitics in the given region must contain components at the
wavenumber that creates constructive interference with the
incoming wave, just as with Bragg scattering (Shera and
Zweig, 1993; Zweig and Shera, 1995). Further requirements
include an active region between the middle ear boundary
and the reflection site to overcome the viscous damping in
the cochlea, and a TW frequency that undergoes an integer
number of cycles of round-trip phase change between the
middle ear and the cochlear reflection site; this naturally
gives rise to the PMD in SOAEs measured in the ear canal.
However, the existence of a spontancous oscillation in the
cochlea does not guarantee its detection as a SOAE; it must
also remain sufficiently powerful te be measurable in the ear
canal after transmission through the middle ear.

An alternative theory suggests that irregular middle ear
transmission characteristics may be a cause of some OAEs
(Nobili e al., 2003). However, the numerical accuracy of
these simulation results has been contested elsewhere (Shera
et al., 2003), and such irregularitics are not often reported.
For the purposes of this investigation, a smooth mddle ear
boundary is implemented and only cochlea-baszed theorics of
SOAE generation are discussed.

It should be noted that this paper considers only the
linear stability of the cochlear model. In a biological cochlea,
the amplitude of an instability would eventually stabilize due
to the natural saturation of the feedback force generated by
the CA. Furthermore, it is possible that the number of
SOAEs predicted by the linear model could change in a non-
linear model due to distortion or suppression, for example.

A. Aims and overview

The goal of this paper is to test whether the predictions
formalized by Zweig and Shera’s {1995) multiple-reflection
theory of SOAE generation are observed in a mathematical

J.Acoust. Soc. Am., Vol 124, No. 2, August 2008

model of linear cochlear mechanics. Previous work has re-
lied upon phenomenoclogical methods (Zweig and Shera,
1995; Shera, 2003), or multiple time-domain simulations
{Talmadge er al., 1998), to support this theory. In contrast, a
state space formulation of the cochlea (Elliott er ai., 2007) is
used here that is capable of rapidly and unambiguously cal-
culating the unstable frequencies in a given linear model.
This method is thus especially well suited to gencrating the
large number of results from individual cochleae necessary
to ensure statistically significant data.

Section Il presents the revisions necessary to adapt the
original model (Necly and Kim, 1986), on which the statc
space model of Elliott et al. (2007) was based, from repre-
senting a cat cochlea to representing a human cochlea. For
instance, a boundary approximating the human middle ear is
now included. The features of the model that are pertinent to
the “cochlear laser” theory, such as the wavelength of a TW
at its peak as a function of position, are examined. Sample
frequency responses and the stability of a base line cochlear
model are also bricfly described.

In Sec. ITI, the smoothly varying BM impedance along
the cochlea is perturbed with a variety of spatial inhomoge-
neities in the micromechanical feedback gain in order to in-
troduce reflection sites. The following inhomogeneities are
tested: a step change in gain; sinusoidal variations in gain;
and band-limited spatially random variations in gain are ap-
plied in order to simulate what may exist in human cochleae.
A large number of simulations from the last category are
performed. The spacings of adjacent unstable frequencies in
the randomly perturbed cochlear models are collected and
statistically analyzed at the end of this section.

1l. MODEL DESCRIPTION

Elliott er ai. (2007) used a state space formulation to
determine the stability of Neely and Kim’s (1986) discrete,
long wave model of the cat cochlea. The goal of the current
work is to be able to compare numerical simulations to hu-
man measurements; thus, revisions to the model were neces-
sary to account for the pertinent features of the human co-
chlea. The changes are described in this section: starting at
the middle ear boundary at the oval window, followed by the
micremechanical elements of the cochlea, and ending at the
helicotrema boundary at the apex. Hlustrative simulations
and the features of the model pertaining to stability are pre-
sented after the revisions.

Shera and Zweig (1990) pointed out the importance of
the middle ear boundary as the dominant source of reflec-
tions for retrograde TWs in the cochlea. As such, carcful
attention was given to creating a boundary condition in the
revised model that approximates the key features of physi-
ological measurements. The data of Puria (2003) was used as
a target when revising Neely and Kim’s (1986) mass-spring-
damper boundary.

Table I. lists the modified values of the micromechanical
elements vsed in this model, and Fig. 1. shows Z,, the im-
pedance looking out of the cochlea into the middle car’ for
both the state space model and Puria’s (2003) measurements.

Ku et af.: Statistics of instabilities 1069
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TABLEI Revised parameters of the micromechanical model, as dsscribed
in Ellictt et al. (2007), in SI units, where x is the longitudinal distance aleng
the cochlea.

Quantity Formmla (SI)

ey (x) 4,95 3 1 (P 30040 00275) 1y -3
c(x) 1+ 19700 ¢~ L780#0.00375) 7y g -3
m, 135% 102 kgm™2
fylx) 315 ¢ | (F e 358r40.003751 1g =3
cz(x) 113 o~ \TE(4000375) 1 o o3
ma 2.3x 107 kg m™
Eslx) 4,55 1073000379 1y 3
25lx) 72,5 ¢ 005 g -3
ky(x) 2,82 X 1 (P 32064000375 1y o3
e4lx) 9650 ¢ LEHH000T g 3

¥ 1

H 0,001 m

L 0035 m

A, 32%108 m?

ke 2.63% 108 Nm™?

cuE 28%10* Nem™
freap 296x 102 kgm™2

ch 210Nsm™

g 1.35% 1072 kg m™?

N 300

The micromechanical model and the significance of all
the quantities are described in Elliott e# ai. (2007). The val-
ues of the Neely and Kim's (1986) parameters have been
scaled in order te obtain a distribution of characteristic fre-
quencies that matches those of Greenwood (1990) over the
range of interest. Whereas Elliott et al. (2007) left the bound-
ary at the helicotremna as a pressure release, it is now revised
to include a small amount of damping. In order to incorpo-
rate the damped boundary into the state space model, it was
necessary to make a minor medification to the macrome-
chanical fluid-coupling matrix. The details of the new bound-
ary condition and the revised matrix are explained in the

| [Ohms]

out!

12

100 || m—State space Zom (b) B
= == Meagured Zom (Puris, 2003)
S0f1....... STD of measured Z

n

ob

ZZUUt [Degrees]

0.5 1I 2I
Frequency [kHz]
FIG. 1. Magnitude (a) and phase (b) of the impedance of the state space

middle ear boundary and measured impedance locking out of the cochlea,
Z, . (Puria, 2003).

1070 J. Acoust. Soc. Am., Yol 124, No. 2, August 2008

BM Displacement [dB]

5 % *(b)

10 15 20 a5
Position along the cochlea [mim]

FIG. 2. BM displacement magnitude () and phase (b) given the four stimu-
Tus tenes at f=16, 3.7, 0.9, and 0.2 kHz in the base line madsl [¥(x)=1].

Appendix. This change only affects simulations at low fre-
quencies by reducing the reflectivity of the helicotrema, thus
simplifying the interpretation of results.

The macromechanical formulation of the state space
model (Elliott er al, 2007) was based on work by Necly
{1981) and Neely and Kim (1986). This vses a finite differ-
ence approximation to discretize the spatial derivatives in the
wave equation and boundary conditions of the cochlea. The
local activity of the cochlear partition segments is related to
the fluid mechanics by

Ep(s) - () =q(s), (0

where p(f) and W(f) are the vectors of pressure differences
and cochlear partition accelerations, F 15 the finite-difference
matix, and q(f) is the vector of source terms. The cochlear
micromechanics of isolated partition segments are described
by individual matrices. When Eq. (1) is substituted into an
equation combining all the uncoupled elemental matrices,
the coupled model of the cochlea can be described by the
state space equations

x(1) = Ax(¢) + Bu(), (2)
and
yi{#) = Cx(¢) + Dui?), (3

where A is the system matrix, X(7) is the vector of statc
variables, B is the input matrix, u(f) is a vector of inputs
proportional to g(r), ¥(¢) is the output variable (BM displace-
ment in this case), C is the output matrix, and I} is an empty
feedthrough matrix.

Figure 2 illustrates typical BM displacement responses
to tonal stimuli. The phase lag of these responses at CF is
similar to measurements made in the middle of the squirrel
monkey cochlea (Robles and Ruggero, 2001).

The magnitude of the impedance mismatch between the
interface of the middle ear and the cochlea can now also be
determined. The nominal value of the cochlear model’s char-
acteristic impedance, Z_, has been determined to be 2
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FIG. 3. Magnitude (a) and phase (b) of the basal reflaction coefficient, R,
given the base line middle ear (sclid) and a largely resistive boundary (dot-
ted).

% 10" 8T acoustic ohms. The reflection coefficient due to the
middle car as viewed from the cochlea, R,, iz given by Shera
and Zweig (1990):

Ry= 2% (4)

Lo+ 2.
The magnitude and phase of the state space model’s reflec-
tion coefficient are plotted in Fig. 3 for the base line mmddle
car boundary, and also a resistance-dominated boundary
(Cop=8 X 10* Nsm™).

Figure 4 shows the stability plot of the base line co-
chlear model given a nmominal value of micromechanical
feedback gain at all positions, ¥{x)=1. The stability plot
shows the real () and imaginary (2mf) parts of cach of the
poles of the coupled system, which are calculated from the
eigenvalues of the system matrix, A, in Eq. (2). The imagi-
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10 15
Frequency [kHz]
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FIG. 4. A stability plet of the cochlear model given nominal gain, y(x)=1,
and base line middls ear beundary.
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in its peak region; (d) predicted spacing of SOAEs, Note that it was not
peesible to accurately calevlate the length scale near the base and apex,
hence the shortening of (b) and (d).

nary components of the poles are converted from rad/s to
kHz. For uniform values of feedback gain across the cochlea,
the system becomes unstable at 9{x)=1.14. This is indicated
by the existence of at least one pole with a positive diver-
gence rate, ofs)>0.

Shera (2003) argued that the CA is analogous to a laser’s
gain medium. One would expect a higher level of gain in the
CA to result in greater system instability, given the same
pattern of inhomogeneities in the cochlea. A higher value of
feedback gain, 4(x), results in greater active enhancement,
which is defined here as the ratio of the cochlea’s maximum
active [ ¥x)=1] BM velocity to its maximum passive [y{x)
=0] BM wvelocity across frequency at a given position, in dB.
In the current medel, the active enhancement is a function of
position in the cochlea that is greatest (approximately 45 dB)
near the base and gradually decreases toward the apex,
shown in Fig. 5(a). This trend was demonstrated by Robles
and Ruggero (2001), who made physiological measurements
in animals.

According to Shera and Zweig (1993), the average dis-
tance between resonant positions of SOAEs along the co-
chlea is

— 1
Axgoarg = E}\pcak, (5)

where Ay is the wavelength of the TW in its peak region.
Consequently, the predicted mommalized spacing between
SOAE frequencies is

FIAF = 20\ e, )

where [ is the cochlear length scale, the distance over which
the best frequency changes by a factor of e, shown for the
model in Fig. 5(b). The normalized spacing is defined as the
ratio of the geometric mean of two adjacent SOAE frequen-
cies, f, and f;, divided by their difference,
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IR
JIAf =0 (7)
lf‘a _fb‘
The PMD in humans is approximately 15 when expressed in
terms of £/ Af (Shera, 2003).

In order to calculate the wavelength of the TW for a
given position and frequency in the state space model, it is
necessary to return to the wave equation (de Boer, 1996):

Fplx,o

TELO | taplra =0, ®

ax
where p is the pressure across the BM and xpy is the wave
number of the TW, both functions of position and frequency.
The wave number is related to the cochlear partition imped-
ance, Z,, by the following:

- 2jwp

HZ (x,0) ! ©)

Krw(x,0) =
where p is the density of the fluid, and H is the height of the
scala vestibule and scala tympani above and below the co-
chlear partition. By definition,

2T
Re{iry) =, (10)
A
where Ay is the wavelength of the TW.

It is now possible to relate the wavelength of the TW in
its peak region to the cochlear partition impedance at a given
place, x, with characteristic frequency, oy,

ApemlX) = Rc[ .
e - 2jwugp

This is shown i Fig. 5(c), and is approximately 0.9 mm
across most of the cochlea and slowly increases mear the
apex, thus breaking scaling symmetry. This trend is also con-
sistent with physiological measurements made at the base
and apex in animals (Robles and Ruggero, 2001).

Given the cochlear length scale and the wavelength of
the TW at its peak as a function of position, the predicted
spacing between unstable frequencies, £/ Af, can now be cal-
culated as m Eq. (7). This result is shown in Fig. 5(d). The
model’s predicted SOAE spacing is approximately the mea-
sured PMD in humans (f/ Af==15) for most of the length of
the cochlea and decreases toward the apex.

ll. SPATIALLY VARYING GAIN

It has been previously reported that deviations from a
smoothly varying set of micromechanical parameters can
cause instability in cochlear models. It is believed that the
frequencies of cochlear instability represent the frequencies
of potential SOAE:. Elliott e al. (2007) demonstrated that
these models are most sensitive to rapid changes in the gain
as a function of position. In the current paper, greater con-
sideration iz given to the nature of the inhomogeneitics in-
troduced and the resultant characteristics of the unstable fre-
quencies. The feedback gain as a function of position along
the cochlea, $(x), has been chosen as the parameter to be
perturbed. In order to compare the relative level of instability
present in a cochlea, it is instructive to examine the number
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of unstable frequencies present. However, to further quantify
the magnitude of a cochlear model’s instability, the concept
of a pole’s damping ratio is reviewed.

A second-order system can be described by its damping
ratio, £, a dimensionless quantity that describes the rate at
which system oscillations decay following an initial pertur-
bation. This iz related to the poles of a system, s=o+jw, in
the following manner:

gzcos(af):\[%'wz, (12)

where & 15 the angle formed between the positive-real half-
axis of the s-plane and the pole in question. When poles with
nonzero imaginary components cross into the positive-real
half-plane [{(s)<<0], the response of a linear system will
diverge exponentially. The rate of this divergence is given by
et where ¢ is the time and w,, is the resonant frequency of
the pole in units of angular frequency. w, is determined by
calculating the imaginary component of the pole. The damp-
ing ratio of an unstable pole is vseful as it relates the rate at
which the system will become unstable; the average value of
many poles can also be compared across different cochlear
models. This quantity 1s referred to as the undamping ratio in
this paper, in the context of discussing unstable poles, and is
assigned as &

g=-1. (13)

A step change in gain is employed as a starting point for
the discussion of cochlear stability analysis. From there,
sinusoidal spatial variations and the band-limited random
spatial variations are applied as gain distributions. It is im-
portant to note that the step and sinuscidal distributions of
Wx) are introduced to understand the underlying mecha-
nizms of SOAE generation and should not be interpreted as
an attempt to model what necessarily exists in a human co-
chlea.

A. Step change in gain

A step change in gain gives rise to a discontinuity in the
variation of BM impedance as a function of position along
the cochlea. An ideal step in space has a well-distributed
wave number spectrum, and thus should reflect wavelets
across a wide range of wavelengths. One additional conse-
quence of varying the gain as a function of position, $x), is
that the underlying propertics of the TW are affected. For
instance, a higher gain results in a shorter A oq. To minimize
this effect, a relatively small amplitude step was chosen with
a+3% deviation from nominal gain on cither side of the
step. The stability plot for the cochlear model with such a
step imposed on the gain at 18.2 mm from the base of the
cochlea is shown in Fig. 6.

Three distinct frequencies are found to be unstable in
this cochlea, at 1.478, 1.577, and 1.669 kHz. These frequen-
cies are all close to the characteristic frequency at the loca-
tion of the discontinuity, which is 1.550 kHz. According to
Zweig and Shera (1995), only the frequencics whose re-
sponses peak in this region may become unstable since not
enough energy is reflected otherwise; this is seen in Fig. 6 as
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only three frequencies near the discontinuity’s characteristic
frequency are unstable. Furthermore, there is a range of suc-
cessively more stable poles that follow an arc leading away
from the three unstable poles, both higher and lower in fre-
quency. Presumably, the TWs of these frequencies are not
reflected strongly enough by the discontinuity to cause insta-
bility.

The resultant spacings between the two pairs of adjacent
unstable frequencics, f7 Af, arc approximately 15 for the pair
lower in frequency, and approximately 17 for the pair higher
in frequency. This is consistent with the expectations given a
slightly lower ¥ value apical of the discomtinuity, and a
slightly higher ¥ value bacsal to the discontinuity. To better
understand why only these specific frequencies become un-
stable, Fig. 7 shows the magnitudes and phases of the BM
velocity responses at these frequencies, for which a nominal
gain throughout the cochlea is used, $x)=1.

A vertical line through Fig. 7(b) and Fig. 7(d) denotes
the location along the cochlea of the discontinuity applied in
Fig. 6. This line intersects with the phase responses of the
1478, 1.577, and 1.667 kHz stimulus tones at —4, —4.5, and
-5 cycles, respectively, within an accuracy of 1%. This 1s
consistent with the “cochlear laser” theory of SOAE genera-
tion which requires that the phases of the unstable frequen-
cies must undergo an integer number of cycles of total phase
change between the reflection site and the middle ear bound-
ary in order to combine constructively over successive re-
flections. For the unstable frequencies shown above, the
“round-trip” phase change would equal 8, 9, and 10 cycles.
Reexamining Fig. 6 in light of this feature, the stable poles
that follow the same arc as the unstable poles must also
represent frequencies that scatter wavelets which construc-
tively combine, but perhaps are too weak to overcome the
damping basal to the inhomogeneity.

Shera and Zweig (1993) and Zweig and Shera’s (1993)
concept of SOAE generation assumes wave amplification
and multiple reflections between the middle ear boundary
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and the region of backscattering. A simple test of this theory
involves changing the middle ear boundary so that it is less
reflective.

Figure 8. shows the stability plot of a cochlear model
with the same step change introduced in Fig. 6, but with a
resistive boundary in the place of the human middle ear
boundary, as shown in Fig. 3. The imaginary parts of the
poles of Fig. 8 are almost identical to those of Fig. 6, but the
real parts of the poles affected by the discontinuity are more
stable. Whereas the base line model with a step change in
gain was unstable, the model with the revised boundary and
the same discontinuity is now stable.
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FIG. §. Stability plot of a cochlear model with stepped gain distribution
inset: p(x<182 mm)=1.03 and Hx=182 mm)=097. The base line

middle ear has been replaced with a resistive boundary, the reflection coef-
ficlent of which is shown in Fig. 2.
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B. Sinusoidal variations in gain

A distribution of gain that is sinusoidal as a function of
position is of interest because its wave number spectrum is
concentrated at a single wave number, just as a sinuseidal
wave form that is a function time has a frequency spectrum
that is concentrated at a single frequency. This set of simu-
lations follows the theory outlined by Strube (1989), which
assumes uniform corrugations in gain along the BM. A range
of wavelengths was chosen for the sinuscidal variation gain
as a function of position along the cochlea, varying from
1 mm down te 0.14 mm, the latter being the spatial Nyquist
limit of the model. A 10% peak-to-peak variation in ampli-
twde about nominal gain generated instabilities over most of
this spatial range, while maintaining stability for sinusoidal
wavelengths greater than approximately 0.95 mm.

Figure 9 summarizes the level of instability in these co-
chleac by plotting both the mean undamping ratio, £, and the
number of unstable frequencies as a function of the gain’s
sinusoidal wavelength. As expected, given the theories of
Strube (1989), Shera and Zweig (1993), and Zweig and
Shera (1995), the strongest instability occurred when the
wavelength of the sinusoid, Ay, was approximately half the
peak wavelength; this value occurs at 0.44 mm in the model.
In addition, there waz a region of greatly decreased instabil-
ity in the model, centered about a periodicity of approxi-
mately one-fourth peak wavelength. This is thought to be due
to destructive interference between the reflection sites, as the
backscattered wavelets are out of phase with each other
given this spatial periodicity.

The locally jagged aspect of the mean undamping ratio
curve in Fig. 9(a) at approximately 0.75 mm is duc to the
periodic introduction of “new” unstable poles with low-
undamping ratios that are generated as the wavelength of the
sinusoid is varied. The average undamping ratio peaks at
approximately 0.5 mm, which is slightly longer than half the
peak wavelength for most of the length of the cochlea in this
medel. It is of note that the maximum in the total number of
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unstable poles, shown in Fig. 9(b), is located at a sinusoidal
wavelength somewhat shorter than half the peak wavelength.
As the sinusocidal wavelength of the gain variations is short-
ened, the number of peaks in the gain (and thus reflection
sites) along the cochlea increases, creating more unstable
poles. Even for sinuseidal periods less than half the peak
wavelength, the rate at which vnstable poles are being gen-
erated per unit decrease in Ay, is still outpacing the rate at
which they are returning to stability; this explains the loca-
tion of the peak in Fig. 9(b).

C. Band-limited random gain distributions

Shera and Zweig’s (1993) theory of SOAE generation
assumes that the cochleac of normal-hearing humans contain
a densze but random array of inhomogeneitics. Each of these
place-fixed perturbations reflects energy from the forward
TW (Talmadge et al., 1993; Shera and Zweig, 1993; Zweig
and Shera, 1995). In this section, the stability of cochlear
models with band-limited, spatially random gain distribu-
tions iz used to approximate what is postulated to exist in a
human cochlea. A fifth order Butterworth filter was em-
ployed to band-limit gain distributions in the wave number
domain (Lineton, 2001). The low wave number cutoff fre-
quency was fixed at the length of the cochlea itself, in order
to prevent any dc shitts in the gain. The high wave number
cutoff frequency was initially set to 6.6 radians/mm and
slowly increased, thus generating cochlear models with suc-
cessively more densely spaced reflection sites. The average
filter bandwidths have been plotted below in terms of 27
times inverse wave number; this quantity has units of length
{mm) and is directly comparable to the wavelength of the
TW at its peak.

Figure 10 summarizes the results of simulations of 400
different cochleae, each with unique, spatially random gain
distributions. The (a) pancls show a typical stability plot
from each group. The averaged power spectrum of the gain
distributions is shown in the (b) panels, the two Roman nu-
meral sets (I and IT) having different high wave number (low
wavelength) cutoffs; the dashed vertical line represents half
the wavelength of the TW at its peak. A 5 mm sample of a
gain distribution at this cutoff wavelength is inset. The (c)
pancls show the histograms of the average number of un-
stable poles per cochlea, sorted into logarithmic frequency
bins. Figure 10(Ilc) demonstrates that a lower cutoff wave-
length, and thus a more rapid spatial variation in gain, is
necessary to gencrate instability at frequencies below 2 klz.
This is believed to be due to the lower level of enhancement
toward the apex of the cochlea and the lower magnitude of
the basal reflection coefficient in this frequency band.

The histogram of normalized spacings of adjacent un-
stable frequencies per cochlea is shown in the (d) panels. The
data for the {c) and (d) panels are presented for all instabili-
ties (gray, thick bars) and alse in a resticted range of
0.5-2 kHz (thim, black bars). This smaller range represents
the frequency bandwidth where the middle ear’s reverse-
pressure transfer fumction is most efficient (Puria, 2003), and
thus where one might expect the most SOAEs to be detected.
The results for Aqyer;=0.19 mm [Fig. 10(IId)] show a peak in
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the normalized spacing at f/Af==15 in the frequency range
of 0.5-2 kHz. These results are consistent with the Shera
and Zweig’s (1993) theory which assumes a dense array of
reflection sites, represented in these simulations by a low

cutoff wavelength.
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Figure 11 summarizes data from the above calculations,
while also presenting data from many other simulations
which have different cutoff wavelengths and peak-to-peak
variations in gain. The mean unstable frequency count and
the mean undamping ratio, £, vary directly with the ampli-
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tude of the variation in 1x). This result is consistent with the
findings of Elliott ef al. (2007). In contrast to the simusoidal
case (see Fig. 9), no distinct notch in either the average un-
damping ratio or the number of instabilitics iz apparent at a
cutoff wavelength of approximately one-quarter of the peak
wavelength. In the sinusoidal simulations, all of the spatial
spectral energy was concentrated at a particular wave num-
ber; thiz potentially generated strong, destructive interference
when the sinusoidal wavelength was one-quarter the peak
wavelength. The spectral energy in the random spatial varia-
tions in gain is comparatively much more diffuse, perhaps
reducing the amount of both constructive and destructive in-
terferences. The statistics of the spacings of instabilitics is
thus largely independent of the exact form of the spatial
variations, provided they have a significant component at the
wave number corresponding to one-half Ape;. Peak-to-peak
variations in ¥(x) as small as 0.5% can give rise to instabili-
ties, provided Ay 15 less than approximately 0.5 mm, near
the half peak wavelength.

IV. DISCUSSION

The findings of thiz paper, based on a numerical model
of the human cochlea, are consistent with the multiple-
reflection theory of Zweig and Shera {1995). The state space
formulation is able to predict the frequencies at which a lin-
ear, active cochlear model will become unstable. Elliott ef al.
{2007) presented a nonlinear time-domain simulation dem-
onstrating that an isolated unstable pole will evolve into a
limit cycle within the cochlea at the expected frequency. Di-
rect measurements in animals have shown that spontaneous
basilar membrane oscillation is associated with SOAEs in
the ear canal (Nuttall et al., 2004). Consequently, compari-
sons arc drawn in this paper between measured SOAE char-
acteristics and the instabilitics generated in the cochlear
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model. However, it is worth highlighting the similarities and
differences between measured data and these simulation re-
sults.

This model predicts that instabilitics exist all along the
cochlea and across a wide band of frequencies, given a dense
array of inhomogeneitics in the cochlea. In contrast, SOAEs
in normal-hearing individuals are only routinely detected be-
tween 0.5 kHz and 6 kHz (Probst ef al., 1991). Even if in-
stabilities exist in all regions along the average human co-
chlea, however, it is likely that only a subset of these will be
detected in the ear canal. It is believed that the inefficient
reverse-transmission characteristics of the middle ear hinder
the detection of SOAEs outside of its best transmissibility
range, given its steep drop-off below and above resconance,
of approximately —40 dB/decade. The limited bandwidth of
normally detected SOAEs is also potentially reduced by
physiological noise and the current limitations of sensor
technology. Just as improved measurement techniques have
revealed increasingly sharp active BM enhancement through
the years, refinements in recording technique have exposed a
higher prevalence of SOAEs in more recent studies (Probst
et al, 1991; Penner and Zhang, 1997).

The average number of unstable frequencies shown in
Fig. 11 for a 10% peak-to-peak variation in gain is similar to
the maximum number of emissions detected in a single ear,
some in excess of 30 SOAEs (Talmadge er al., 1993). It has
been shown that the level and number of instabilities in the
state space model depend on the amplitude of the variations
in BM impedance and the spatial density of the inhomoge-
neities. When nonlinear effects are incorporated inte time-
domain simulations, it is anticipated that the total number of
instabilitics may differ from those predicted by linear stabil-
ity analysis.

It has been demeonstrated by numerous experimentalists
(c.g., Zwicker and Schloth, 1984) that externally applicd
stimuli can frequency-lock, phase-synchronize, suppress, or
otherwise affect a SOAE. Some modelers have used Van der
Pol oscillators to account for these phenomena (Bialek and
Wit, 1984; Wit, 1986; van Hengel ef ai., 1996). Further work
is needed to examine the nonlinear interaction of limit cycles
and external stimuli in the state space model presented here.

The current linear model predicts a distribution of un-
stable frequency spacings that 1s similar to physiologically
compiled data in several respects. Although the current mod-
el’s results do not accurately match the observed variation in
SOAE spacings with frequency (Shera, 2003), the spacing
results presented in Fig. 10(I1d) are consistent with the pre-
dictions shown in Fig. 5(d). Furthermore, the peak in the
normalized spacings of Fig. 10(IId) is correctly located at the
PMD when sutficient spectral content is present in the inho-
mogeneitics at half the peak wavelength, as predicted by
Zweig and Shera (1995).

When the current understanding regarding hearing sen-
sitivity, the various forms of OAEs and pathology are com-
bined, a convincing picture regarding the generation of
SOAEs begins to emerge. As many authors have pointed out,
SOAEs in humans appear to be a natural by-product of the
species” sharply tuned sense of hearing. Normal hearing in-
dividuals that do not exhibit SOAEs typically have an audio-
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gram which underperforms those with SOAEs by approxi-
mately 3 dB in the standard 1 -6 kHz range (McFadden and
Mishra, 1993). Pélanova et al. (2007) also reported that the
high-frequency avdiogram of normal-hearing children with-
out SOAEs underperformed those with SOAEs by approxi-
mately 5 dB through the 10-16 kHz range. In the “laser-
cochlea” theory of OAE generation, it is the portion of the
cochlea bazal to the reflection site that is crucial to sustaining
the limit cycle oscillation. If the losses in this region are not
overcome by the active enhancement provided by the outer
hair cells, no spontancous emission can occur.

V. CONCLUSIONS

Simulations vsing the state space model of the human
cochlea show patterns of SOAE production that can be ex-
plained by Zweig and Shera’s (1993) theory. As demon-
strated by the step change in gain, only frequencies with a
TW that undergoes an integer round-trip phase change be-
tween the middle ear boundary and the inhomogeneity will
become unstable. Instabilities are detected along the entire
cochlea given spatially random changes in gain, but it is
believed that only a subset of these unstable frequencies be-
come measurable as SOAEs due to the middle ear’s ineffi-
cient reverse transmission characteristics. The spectral con-
tent of the inhomogencitics in the BM impedance alse has a
strong impact upon the level and frequency spacings of the
resultant instabilities.

A 10% variation in gain as a function of position gener-
ated the most instability in the model when a sinuscidal in-
homogeneity with a wavelength roughly equal to half the
wavelength of the TW at its peak was applied; instability was
climinated when the sinusoid’s wavelength was reduced to
roughly one-fourth the wavelength of the TW at its peak.
When random inhomogeneities are simulated, the expected
PMD between adjacent unstable frequencies is strongly ex-
pressed in the results only when there iz sufficient spectral
content at one-half the wavelength of the TW at its peak.

Nonlinear time-domain simulations, such as those intro-
duced in Elliott er al. (2007), are expected to provide a
method of explaining the more subtle interactions that exist
in human cochleae due to multiple instabilities and exter-
nally applied stimuli. However, it is clear that thic linear
model can provide a great deal of insight into the mecha-
msms vnderlying the generation of SOAEs as numerical re-
sults presented here are in good agreement with the theory of
Zweig and Shera (1995).
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APPENDIX: HELICOTREMA BOUNDARY CONDITION

The structure of the noncoupled micromechanical matri-
ces is identical to Elliott et al. (2007), except at the heli-
cotrema for which

J Acoust. Soc. Am., Vol 124, No. 2, August 2008

(1) = Apx(e) + Brpald),

where the boundary condition is now taken to be a mass-
damper system, so that

(Al

xilt) =[wpld) w7l (A2)
i
Ay=| Mg s (A3)
1 0
and
F r
By= M_H 0 (AD)

In order to incorporate this change into the macromechanical
formulation, it was necessary to insert an additional term in
the finite difference fluid-coupling matrix, F, such that it is
still invertible. The expanded matrices represented in Eq. (1)
of this work now become

A A
-= = 0
H H
1 -2 1
0 1 -2 1
H
2pA°
P 1 -2 1 0
1 -2 1
A (A Aﬁ)
0 - e
H H H
i) *"?_SR(’) Waal)
A1) Vil ) o)
X - = , (AS)
Prai() Wy ()
[ s | | | L©

where fi is the height of the channel, p is the density of the
fluid, and A is the length of a cochlear segment. The physical
meaning of this additional term in the fluid<coupling matrix
can be determined by relating this revised equation to the
boundary condition at the apex.

The last row in Eq. (AS5) represents the helicotrema
boundary condition and can be written as
H| A A AP r
A gP T\ g T e 2pWy,
where py_| and py are the pressures adjacent to and at the

helicotrema, and Wy represents the “effective” helicotrema
acceleration. Rewriting Eq. (A6) gives

(A6)

PN1—PN o1
————=1pyt ow.

A I (A7)

However, the physical boundary condition is defined as
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dp

@ | {A8)

=2pWy,
where Wiy is the true helicotrema acceleration. Using a finite
difference approximation in Eq. (A8) and expressing the ac-
celeration at the helicotrema as a velocity yields

Py1 PN

- (29)

A 2 Wy
The true admittance at the helicotrema iz the volume

velocity at the helicotrema divided by the local pressure:
AWy

N= g
Py

(AL0)

where A is the area of the helicotrema. Relating the approxi-
mated boundary condition in terms of the admittance gives

Pr-1 PN _, jwp

n T (AL1)

Yo n-
The effective velocity at the helicotrema can also be ex-

pressed in terms of an effective admittance at the heli-
cotrema, ¥}, [defined by the parameters in Eqs. (AL)-(A4)]:

Y’
W= %. (A12)

Substituting Egs. (A11) and (A12) back into Eq. (A7) results
in an equation that relates the true helicotrema admittance to
its effective value:

2jwp 2jwp_, 1
—VY =—VF + =P Al3
A NPx N NN HPN ( )
Simplifying Eq. (A13) reveals
Yy=¥Yu+——. Al4
NUOE T 2jwpH (a14)

The term A/2jwpH is equivalent to the admittance of an
acoustic mass of m=2pH/A. The acoustic mass of a short
tube of length L and arca 4 is 2pL/A. In this case, H=L
corresponds to the assumed length of the helicotrema open-
ing. The assigned value of 1 mm corresponds well with the
value quoted by Fletcher (1953). The added term in the finite
difference Auid-coupling matrix can be interpreted as an in-
ertial term in paralle]l with the effective helicotrema imped-
ance which is defined by the state space model in Eqs.
(A1)—(A4). It should be noted that the change to the heli-
cotrema boundary condition has a negligible effect on the
model’s response above approximately 200 Hz. Below this
frequency, the reflections from the apex are more strongly
attenuated than when using the pressure release boundary
condition presented in Elliott ef al. (2007).
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Growth Curves of CEOAEsS

The growth of the RMS CEOAE amplitude is compargdraifferent time windows in
this appendix. Figure D.1.a-d shows the growtkgatf the DNL- and DD- CEOAES in
short (a, b) and long (c, d) time windows. Thide&ived from the CEOAEs plotted in
Figure 5.11and Figure 5.14.

As the stimulus amplitude is increased from linEamoderately saturating levels,
the DD CEOAE increases at a rate that is sliglggslthan linear and the DNL CEOAE
rises at a slope greater than unity. These remdte sense, as the CA is only beginning
to saturate. At moderate levels, starting arounhdlB SPL, the amplitude of the directly-
determined CEOAE begins to level off and decreasgain this matches expectations: as
the CA reaches its heavily-saturating region, thariagions in y(x) due to the
inhomogeneities should become less significant tduthe near-passive behaviour of the
cochlea, thus reducing the level of reflectionshaiis contrary to predictions is the linear
rise in CEOAE amplitude at stimulus levels > 729IBL in the first ms (a, b), and > 96 dB
SPL in the latter 20 ms (c, d). This may be dueeftections resulting from the passive

mechanics of the cochlear model.
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Figure D.1.a-d: Growth curves of CEOAE amplitudg(an b) the first ms, and (c, d) the
last 20 ms. Response at the stapes is shown Iefthganels (a, ¢) and the response at the
ear canal is shown on the right panels (b, d).
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The variation of theé(x)-perturbed CEOAE amplitude with level is showrfFigure D.2.a-

b. These results are calculated from the resbltsvs in Figure 5.16. Whereas the DD
CEOAE amplitude increases at high levels in the ehedth the perturbation ig(x), the
equivalent plot here shows that the CEOAE amplitedehes a near-constant value when
the perturbation is located &tx). It is also significant that the slopes of tlievgth curves
are approximately 2 dB/dB for stimulus levels < i SPL for both the nonlinearly- and

directly-determined curves.
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Figure D.2.a-b: Growth curves of CEOAE amplitudeshort (a, b) and long (c, d) time
windows at the stapes (a, ¢) and the ear cand).(lRerturbations were applieddfx).

The fact that the ESLE grows linearly given peraiidns iny(x) at high amplitudes
suggests that a distortion explanation is unlikebych phenomena are typically
compressive in nature. Furthermore, that the E®&hizeform grows linearly in the model
with inhomogeneities in(x) but not in the model with perturbationsdx) suggests that

slightly different mechanisms may be operating hefdis is still somewhat perplexing;
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one would expect both forms of gain-based pertiobato become suppressed at the
highest levels. Clearly more simulations of noadéin CEOAEs should be run and ideally
compared with measurements of the ESLE. One signif complication is that, due to its
linear nature, traditional nonlinear methods ofmsius artefact cancellation also
necessarily remove this component. For this reasomglov et al. (1997) support use of
linear methods. Another difficulty of determinitite characteristics of the ESLE is that it
is dominated by high frequency components in thagleh which are difficult to discern
when transmitted through the middle ear.

The results presented here are further discussétiapter 6.
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Suppression of Van der Pol
Oscillator Simulations

This appendix describes some simulations of th@magsion of Van der Pol Oscillators
that were performed early in this Ph.D. Numerouth@rs have shown that the responses
of SOAEs to external tones are very similar to gatigely damped, driven Van der Pol
Oscillator (e.g., Murphy et al., 1995; van Dijk awt, 1990). This has encouraged some
authors to suggest that the response of SOAEsiedh canal can be directly related back
to the local activity of such resonators along BiM. As a result, a number of cochlear
models consisting of coupled Van der Pol Oscilatosive been proposée.g., Sisto and
Moleti, 1999). However, as discussed by Shera3pa0e success of the global standing
wave model of SOAE generation (and the supportimyilstions presented in this thesis)
suggest that OAEs are due to the response of kpatistributed reflection and distortion
sites throughout the cochlea.

The Van der Pol Oscillator nevertheless remainstanesting tool for studying the
suppression of SOAEs in the cochlea, becausalilesto encapsulate many features of the

global response in a much-simplified form.

E.1 the Van der Pol Equation

The normalised equation for a driven Van der Pdil@sor is given by:

X+ yQXIZ —1)>'<+ @ x= Acodayt) (E.1)
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wherex is the displacemenA is the driving amplitudey is the nonlinear damping term,
and o, and og are the natural and driven frequencies, respdgtivelThis equation
represents the standard formulation of a driven degree-of-freedom simple harmonic
oscillator, except that it includes a nonlinear garg term, i.e. the term proportional t&|x|
inside the brackets in equation (E.1).

The following sections are a brief outline of thiéeet of each parameter in the
equation; these ideas are further explored angtiddited in subsequent sections of this

report.

Damping Factor y
The viscous damping term in the Van der Pol eqonatonsists of a nonlinear

component and a linear component. The nonlinean tis always positive, and is
proportional to the square of the response. Wheiitear damping term is negative, as in
(E.1), the system injects energy into the motion tbké mass within a range of
displacements about the equilibrium position. h¥ tinear damping teriwas set positive
so that the damping term reaggxf+1), it would act as a normal viscous damper
dissipating energy (and no longer reaches a liggtecoscillation when not driven). In
order to simplify analysis, the linear and nonlineams have been combined into a single

coefficient,y. For the purposes of this investigation, the gaity was set to unity.

Driving Amplitude A
At zero and very low driving amplitudes, the systesaponds roughly as if it were

an unforced oscillator, slowly ramping up to itdural limit cycle. In contrast, at high
values ofA, the system behaves as a relaxation oscillatdms i€ to say that periods of
little motion are contrasted with short instancelsere the mass moves very quickly
between the positive and negative extremes ofisislatement. The values Afthat lie
between these two extremes are of greatest interest

As the driving amplitude is increased the (steadye$ response quickly changes.
Before a particular value of A, the steady-statepomse is dominated by the natural
frequency of the system; beyond this point, theesysoscillates at the driving frequency.
This phenomenon is known as quenching of the layite oscillation and the two regions

are separated by a pull-out amplitude.
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Driving Frequency Relative to Natural Frequency
Similar to the effect of increasing the driving dityale, the system response begins

to oscillate at the driving frequency wheag is close tav,. This phenomenon is known as
entrainment, or suppressigof the natural response). The range of frequeniciewhich
this is true, known as the basin of entrainmernegron of suppression (and is bounded by
the pull-out frequencies), varies with other fastsuch as driving amplitude.

Simulations of Limit Cycle Suppression
In order to investigate the steady-state suppressharacteristics of the Van der Pol

Oscillator, a set of calculations was performeddéermine the strength of the driven
frequency componeniyq, and that of the natural frequency component,as a function
of the input amplitude of the excitation at thevidrg frequency. This is plotted for two
values of the driving frequency relative to theumak frequency in Figure E.1. These
clearly show suppression of the natural frequeresponse as the excitation level is
increased, and compression of the driven respankiglaer levels. Note that, within the
range and resolution of these simulations, theuieaqy of the limit cycle is unaffected by
such suppression.

Figure E.1 shows a widening of the basin of entn&@nt as drivin@A is increased.
The boundary between moderate and high drivingl$egetermed the pull-out amplitude;
the value of this quantity is dependent upon a rermob factors. As the driving frequency
becomes more distant from the natural frequencythef oscillator, stronger driving

amplitudes will be required to achieve the samelle¥suppression.
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Figure E.l.a-b: lllustration of basin of entraimmhe A solid line shows the driven
frequency component, whereas a dashed line sh@nsatiral frequency component.

E.2 Discussion

There are a number of interesting shared feature®mparing the response of an active
cochlea to that of a Van der Pol Oscillator. Thessgude the ability to spontaneously
oscillate and reach a limit cycle oscillation, auppressiomand entrainmeraf this natural
response given an external tonal source acrossia dlattraction. Such phenomena have
been illustrated in this report. However, there also a number of features of cochlear
response that cannot be accounted for by a VaRaleDscillator in isolation.

The features of cochlear activity that cannot beusated by a Van der Pol Oscillator
in isolation include: an asymmetrical basin of adtion at frequencies close to the
oscillator's natural frequency; frequency ‘pushinghere the frequency of the SOAE
moves away from the suppresser frequency; andctufition in the limit cycle amplitude
and frequency over timeThe investigation of the basin of attractioha Van der Pol
Oscillator carried out in this report is largelystiécted to frequencies within £20% of the

natural frequency. Outside this frequency range, Yan der Pol Oscillator appears to
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possess asymmetrical properties. This is beli¢gdoe due to the nature of the energy-
injecting mechanism that drives a Van der Pol @xoif’s limit cycle oscillations.

In contrast, it is not surprising that the basinattfactionin a live cochlea is not
symmetrical. The mechanical properties of thelaasiembrane vary with position down
the cochlea; when the cochlear response is couptgher through the fluid, it is natural
that the suppression would not be symmetrical aldogtven characteristic place. The
variation of cochlear parameters may also be resplenfor the observed phenomenon of

downwards ‘pushing’ in frequency of an SOAE duamocexternal source.
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