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Abstract  

This study describes an application of a Daubechies wavelet function to analyze measured ship model data. The 

records of a self-propelled, flexible model of the S175 container ship moving in waves are analyzed by FFT and 

wavelet methods.  It is shown that the high frequency component of the recorded rigid body motions can be 

omitted without substantially affecting the main features of the data set relating to dynamic loads.  The 

decomposition of the bending moment time history into low and high frequency components allows the time of 

impact occurrence and its amplitude to be easily detected. Such quantities provide important information for the 

development of generic and realistic transient impact (e.g. slamming, green water) force models for ships 

travelling in waves. 

 

1 Introduction 

A ship in unrestricted service inevitably encounters severe sea states even when current improvements in 

weather routing systems are taken into account (ISSC VI.1, 2000). Non-linear effects on wave-induced loads, 

motions and structural responses are often significant for a ship travelling in moderate and severe waves. The 

slamming and green water impact loads are impulsive loads on local and global structures, inducing transient, 

high level, stresses on ship structures. Springing and whipping responses of ocean going vessels are usually 

observed in moderate and severe sea states.  They are low damping vibratory phenomena of the hull girder near 

the 2-node natural frequency of the global ship hull vibration and implied basically continuous and possibly 

caused by stem slamming in the moderate sea states (Storhaug et al, 2003). However, in the sagging condition 

higher peaks were detected following whipping response, which are determined directly by non-linear effects 

associated with transient bow flare slamming loads (Cusano et. al, 2003; Chen et al, 2001).  The green water 

problem is an extreme nonlinear wave-structure interaction occurring in rough sea states or by freak waves. 

Large value, impulsive green water impact loads are considered the cause of damage to ship structures, 

especially superstructure and ship equipment in the bow region (Stansberg and Karlsen, 2001; Faltinsen et al, 

2002).  

Full-scale measurements and model test investigations of slamming effects and green water impact on ship 

structures allow the determination of design loads and the verification of prediction methods of loads and 

responses.  In a holistic analysis of ship structures it is important to identify the different types of hydrodynamic 

loads contributing to the total bending moment, (i.e., ordinary wave loads and slamming force) in terms of 

magnitude, phase lag relative to the wave-induced peak and decay rate (Jensen and Mansour, 2003). The benefit 

of characterizing these contributions lies in estimation of their relative importance with respect to different vessel 

operational conditions.  This allows predictions of possible dangerous situations and to design, if necessary, 

structural modifications able to reduce global ship elastic responses (Ciappi et al, 2003). 

Plastic materials enable an entirely elastic ship model to be manufactured allowing for reasonable satisfaction 

of the similitude principle. In contrast to using a segmented model, the elastic model provides the means of 

measuring detailed structural response information over the whole hull of the ship, including bending moment, 

shearing force, torque at any cross section, etc. (Wu et al, 2003). The purpose of the S175 flexible model ship 

tests carried out in CSSRC is to study wave-induced loads and motion responses of the ship in severe waves, 

focusing on the non-linearity of the loads with respect to waveheight (Chen et al, 2001).   The wavelet analysis 

in the present study is based on data measured in these tests. 

Wavelets are a relatively new mathematical tool to analyze time series data, but in many respects, wavelets 

are a synthesis of older ideas producing new elegant mathematical results and efficient computational algorithms 

(Percival and Walden, 2000). In particular, a wavelet analysis, presents time and frequency localization of 

measured data, and is a suitable numerical tool to approximate data with sharp discontinuities or sharp 



 2 

variations. An interesting application of wavelets was presented by Newland (1993) to analyze the vibration 

records of a two-degree-of-freedom system, in which one response is a stationary random process to white noise 

excitation and the other a non-stationary response to an impulsive excitation. Patsias et al (2002 a, b) used image 

sequences and wavelets to extract natural frequencies, modal damping and mode shapes in a structural dynamics 

study.  Kwon et al (2001) analyzed the ringing phenomenon of a vertical circular cylinder in breaking waves by 

using continuous Morlet wavelet transforms (Percival and Walden, 2000). They showed that high frequency 

components (ringing) were generated at the onset of the breaking wave impact in the time domain, which is 

hardly detectable if one relies on traditional spectral analysis. 

In this paper, a brief description of a wavelet analysis procedure is presented adopting Daubechies wavelet 

functions (Daubechies, 1992). The measured data of a self-propelled, flexible model of the S175 container ship 

travelling in severe regular waves is analyzed by a Fourier analysis method and the proposed wavelet method. 

Non-linear heave and pitch motions, vertical accelerations, vertical bending moment data on several transverse 

sections of the ship are presented using the different methods. The numerical results show that Daubechies 

wavelet function series reconstructs the measured data in the time domain precisely, and decomposes time 

history records at several different frequency levels. By using a filtering technique in the wavelet analysis, it is 

demonstrated that the high frequency component of the recorded rigid body motion signals can be omitted 

without substantially affecting the main features of the data set.  This high frequency content is induced by local 

flexible responses arising at the point of installation of the measuring devices.  By decomposing the vertical 

bending moment time history into low frequency and high frequency components, impact occurrence is easily 

detected, and impact characteristics (i.e. maximum value, duration, decay behaviour, etc) exhibited by the fluid-

structure interaction system and transient force determined. This information can be used in the generation of 

empirical formulae to describe transient impact forces acting on ships travelling in severe waves. 

2 Basic formulas in wavelet analysis 

In contract to Unlike Fourier transform techniques utilizing only orthogonal sine and cosine functions, 

wavelet transforms have an infinite set of possible basis functions, (for example, Harr’s simple wavelets and 

Daubechies wavelets, etc), as discussed by Nievergelt (1999).  This provides choice when analyzing signals. In 

addition, sine and cosine functions extend over the whole time period, whereas wavelet functions grow and 

decay in limited time periods. This unique property allows the wavelet method to identity time and frequency 

localizations of signals. A compactly supported wavelet family consists of a scaling function )x(  with 

vanishing moment number N satisfy the conditions  
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where M1 and  M2 are integer constants. 

The family of Daubechies wavelets (Daubechies, 1992) is used in the present study. The scaling function (or 

father function, basic building block) )x(  for x<M1=0 or x>M2=2N-1 is determined by the recursive relation 
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N denotes the vanishing moment number defined in equation (1). 

In this two-scale dilation equation, the value of the scaling function( )x is evaluated by the weighted sum of 

the Daubechies scaling filters hk , if the initial values of )x( at integer points are known, where 

x D m m n In
n  2e j, ,  for all dyadic numbers. The wavelet function (or mother function) is estimated by the 

weighted sum of the wavelet filters gk , which is a function composed of the conjugate of h k1 , denoted by 

k1h  , if the initial values of )x( at integer points are known. That is,  
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The filters hk  satisfy the general relation,  
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and their values for the Daubechies wavelets family are usually determined by a spectral factorization method 

(Daubechies, 1992).  

Once the filter coefficients are known, the initial values of ( )x at integer points can be calculated by 

solving the following eigenvalue equations,  
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which arises from the recursive relation described in equation (2). 

The eigenvector, which corresponds to the eigenvalue of 1, is the set of the initial values of ( )x  normalized 

by the form 
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together with  ( ) , ( )0 0 2 1 0  N . The values of scaling function ( )x and wavelet function (x) at any 

dyadic number x D m m n In
n  2e j, ,  are determined from equations (2) and (3).  Figure 1 illustrates 

examples of the forms of Daubechies wavelet bases for different N values.  

Similar to a discrete Fourier transform method, the discrete wavelet transform requires an extension of the 

data series S0, S1, …, 
1n2

S


with a constant interval step into a periodic data set of 1n2  entries, i.e. S0, S1, …, 

S S Sn n n2 1 2 2 1 1  
, , ..., .  To require small edge effect due to this extension, a mirror extension or cubic spline 

extension method is usually adopted (Nievergelt, 1999).  In this study, a mirror extension method is adopted with 

symmetry slopes at the ends of data imposed.   The extended samples are determined from the relations 

                                          

S S j

S S S

S S S

n j n j

n

n n n

n

2 2 1

2 2 1 2 2

2 1 1 0 1

0 2 1

2

2

  

 

 

   

 

 

, ,

,

.

e j
                                                               (7) 

Once the family of wavelets is chosen and the data series S0, S1,…, S n2 1
, of constant interval step, extended 

into a periodic data set of 2
n+1

, the signals can be expressed approximately by the scaling function  
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Due to the periodic property of the extended signal series, the series of coefficients a a a n0 1 2 1 1
, ...,,  

are also a 

periodic data set.  Substituting equations (2) and (3) into equation (8), we find that the signal expression is 

replaced by an equivalent combination of 2n
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where  
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The coefficient a j

n1b g
measures the weighted average of the function 

~
( )f x  near the ‘jth ’ point of the data set 

on frequency level (n-1), and c j

n1b g
measures the weighted change in the function near the ‘jth’ point. 

Repetition of this procedure for the term including a m nj

n m


b g
, ,..,1  and accounting for the periodic 

behaviour of the extended series of samples, the signal expression takes the form  
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where 
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 Equation (10) represents a linear operation and provides the wavelet expression describing a series of data by 

a series of functions originally arising from basis scaling functions and wavelet functions by shifting and 

compressing the independent variable x.  At each frequency level (n-m) (m=1, 2, …, n+1), the basis functions 

are localized both in frequency (by compression in the form of 
x
m2

) and in space (or time) (by shifting a 

distance of N-1+j ). 

Wavelet decomposition is a similar process to a windowed Fourier transform, in the sense that the window is 

simply a wave base that is compactly supported within ( ) [ , ].
x

N j N N
m2

1 1       However, an advantage of 

wavelet transforms over a windowed Fourier transform is that the size of  windows vary between different 

frequency levels (Daubechies, 1992).  From equation (10), we can see that changes in the function 
~

( )f x at each 

frequency level are determined by the values of c m nj

n m
 

b g
( , , ..., ).1 2 1   A larger value of c j

n mb g
 at a higher 

level (n-m) implies signal discontinuities or transient oscillations at the location. 

 

3 Extreme wave load tests on a flexible ship model 

In general, an elastic ship model satisfies the geometric similarity of the hull form, hydrodynamic similarity, 

together with structural similarity with regard to the global vertical bending and shearing, and hence may be used 

to predict hull girder wave loads, motions and global structural responses (Wu et al, 2003).  As discussed by Lin 

et al.(1991), ideally the material chosen for this kind of model is characterized by the following properties: 

(a). The Young’s modulus of the material is less than that of steel by an order of 10
-2

 and its Poisson ratio value 

close to that of steel. 

(b). The material is isotropic with a comparatively large region of linear strain-stress relationship. 
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(c). Within the linear region, the material exhibits stable mechanical properties and no distinguishable creepage 

in normal conditions at atmospheric temperature. 

(d). The construction of the model (i.e. formalizing and adhering) is easily performed. 

As shown in Table 1, the mechanical properties of ABS702 material conforms closely to these requirements.  

For this reason, two flexible models were made of this material and tested in the wave basin of CSSRC (Lin et. 

al., 1991; Li, et. al, 1996). The same material was used for the present self-propelled flexible model of the S175 

container ship.  

Chen et al (2001) described in detail the flexible model manufacturing process. The principal particulars of 

the S175 flexible model are shown in Table 2. The thickness of the plastic plates for the hull is 2mm, and 4mm 

for bulkhead, keel and girder located on the deck. In total 21 transverse bulkheads at each station from 0 to 20 

were used to reinforce the transverse stiffness of the model and to locate ballast blocks. The weight and locations 

of the ballast blocks were suitably arranged to satisfy the similitude of the weight distribution along the length 

and the location of the centre of gravity of the ship. 

 

       Table 1 Mechanical properties of ABS702 

 

                      Table 2 Principal particulars of the S175 Container ship 

Items Prototype Model 

Lpp (Length between perpendiculars,  m)  175.00 3.6 

B (Beam, m) 25.40 0.523 

D (Depth, m) 15.40 0.317 

T (Draught, m) 9.50 0.195 

 (Displacement mass) 24742t 215.25kg 

Kyy ( Radius of longitudinal gyration) 0.236Lpp 0.236Lpp 

FG (Longitudinal center of gravity from forward 

perpendicular, m) 

90.0 1.851 

GM (Metacenter height, m) 1.0 0.021 

KM (Transverse metacenter above keel, m) 10.52 0.216 

EI (Bending rigidity at midship,  kgmm
2
) 2.28x10

18
 10.66x10

9
 

f (2-node frequency, Hz) 1.60 12.57 

 

The model was self-propelled able to travel with the carriage.  It was allowed to freely surge, heave, pitch 

and vibrate vertically. Sway, roll and yaw motions were restricted. The speed of the model was set for a 

prescribed propeller revolution rate of the ship and was measured by the speed of the towing carriage. 

Stresses and vertical bending moments were recorded at selected positions along the model, together with 

vertical accelerations at the FP, heave and pitch motions. The 2-node frequency and the structrual damping 

Item Value Temperature condition 

  Young’s Modulus 2.84 x 10
9
 N/m

2
 8

o 
-29

o 
C 

  Poisson ratio 0.343 8
o 
-29

o 
C 

  Density 1.09 g/cm
3
  

  Rate of water absorption 1.69% 25
o 
C 

  mxmymx E/EE   < 2.61% 8
o 
-29

o 
C 

  Linear region <2000  
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coefficients of the ship model floating in still water were also measured. The heave and pitch motions were 

measured by a 4-component motion measuring device. A servo needle type waveheight meter was firmly 

attached to the towing carriage with the probe positioned approximately 4.5m in front of the model’s centre of 

gravity. Vertical accelerations were measured by an accelerometer installed on the deck at the centreplane of 

Station 20. The bending moments were measured through strain gauges fixed on the starboard side-deck plate at 

longitudinal stations. The relation between the vertical bending moment and the value of strain was derived by a 

static calibration method assuming that the creepage of the material is small and can be neglected. The locations 

of these measurement points were: 

M1  near Station 15 (2.65m from AP); 

M2  at Station 12.5; 

M3  near Station 10 (1.85m from AP); 

M4  at Station 7.5; 

M5  near Station 5  (0.95m from AP). 

Model test experiments were undertaken in the towing tank of CSSRC to produce a sufficient length of 

record during each run. The experimental conditions (regular waves) are listed in Table 3.  A sampling frequency 

of 100 Hz was chosen for all the wave conditions to analyze the transient responses due to impacting loads. 

Figure 2 shows the measurement locations on the model and a typical model test setting. 

 

           Table 3 Experiment conditions 

Fn = 0.275 Head sea 

Case Wave Wave height(mm) Wave length ( /Lpp) 

1 regular 2aw=L/50=72 0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.5,2.0 

2 regular 2aw=L/40=90 0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,2.0 

3 regular 2aw=L/30=120 0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.8,2.0 

4 regular 2aw=L/20=180 1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.2 

 

To distinguish any asymmetry characteristics in the vertical bending moment measured in the model in 

dynamic tests, zero levels were recorded when the model was at rest in still water. Therefore, the bending 

moment results are measured relative to static bending moment in still water, and include the vertical steady state 

bending moment component due to forward speed of the ship model at Froude number Fn=0.275. The steady 

state bending moments along the ship length were measured in the still water condition separately, and 

subtracted from the relevant dynamic test results in the afterward data analysis.  

4 Test results and wavelet analysis 

The 2-node flexible mode frequency (9.4 Hz) and the structural damping ratio (0.067) of the model floating 

in still water were measured by an impulsive loading technique (Chen et al 2001). 

The non-dimensional expressions for the amplitude of vertical acceleration TZ , pitch  , heave Z and the 

vertical bending moment M are respectively given as: 

                                        
ga

ZL
C T
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
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a
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where L denotes ship length (Lpp), B, ship breadth, , fluid density, g, acceleration of gravity, k, wave number. 

A power of 2 sample points was chosen for the wavelet analysis, and 2048 (i.e. 2
n
, n=11) consequent points 

were selected from each record. This represents a duration of over 20 seconds for each wave condition.  

For the mathematical model described in section 2 and, in particular equation (10) is deemed successful, then 

it is expected that a wavelet reproduction form of equation (10) approximates closely to the original data without 

evident error at the ends of the truncated data set.  Figure 3 illustrates comparisons of the results near the end of 

the truncated data (t=20.48 second) between a mid-ship vertical bending moment measured records and 

reproduced data by the wavelet families defined by different vanishing moment N and different data extension 
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methods (i.e. mirror, cubic spline).  These comparisons demonstrate that there is no evident edge effect due to 

the extension of the dataset using mirror or cubic spline extension method, but the numerical approximation 

adopting a Daubechies wavelet family with vanishing moment N= 2 generally overestimates peak and trough 

regions. As clearly shown this weakness is overcome by employing a Daubechies wavelet family with vanishing 

moment N= 10, in which the relative error is less than 10
-3

. 

For the wavelet transform expressed in equation (10), to reproduce the test data a summation of all 

components at different frequency levels is required.  In the present study a set of 2048 sampling points is 

assumed and performed, the total number of levels is 12 (i.e. n+1, from Level –1 to Level 10). For example, for a  

midship bending moment record at wave condition /L=1.2, 2a/L=1/20, and the wave encounter period is 1.02 

(s), Figure 4 shows the time histories of bending moment at each of the 12 frequency levels. It illustrates the 

dominant components of the responses, the time-variation behaviour of each component, and each level 

component magnitude with time depending on frequency level (-1 to 10) characteristics. The variations observed 

at lower levels (i.e. –1 to +3) indicate a slower vibration behaviour. For example, the value at Level –1 describes 

the static component difference between sagging and hogging vertical bending moment, whilst components at 

Level 6 and Level 7 are dominated by the first harmonic and the second harmonic wave induced responses. The 

lower level frequency components exhibit steady variation with respect to time. However, for the higher level 

components, especially at Levels 8 and 9, an impulsive response behaviour is observed correlating with the 

impulsive excited interval of the encounter wave period.  To examine in detail the frequency properties of each 

level component, Figure 5 illustrates a discrete cosine Fourier transform of both the original signal and the 

derived wavelet component at each frequency level of the summation of several wavelet components.  For the 

vessel travelling in severe regular head waves, a typical response in the frequency domain of the mid-ship 

vertical bending moment is derived from the Fourier transform of the original data. It shows the dominant first 

harmonic component and higher harmonic components of not negligible values, especially responses relating to 

the second harmonic and 2-node natural frequency harmonic contributions. It is clear that the summation of 

components at Level 5 and Level 6 provides the main contribution to the whole response within the frequency 

region (0.5-1.5 Hz), whilst components at Levels 7, 8 and 9 contribute to the response in the frequency ranges 

(1.0-3.5Hz), (2.5-7.5Hz) and above 4.5Hz respectively. Frequency overlap of responses between adjacent levels 

exists, and therefore synthesis of several level components may be necessary to derive results for further 

analysis.  

 

4.1 Rigid body motion responses 

The original non-dimensional pitch and vertical acceleration records and their low and high frequency 

decomposition by the wavelet method are shown in Figure 6 for 2a/L=1/30 and /L=1.2. In this analysis, high 

frequency contributions are formed at frequency Level 9 and upward.  From the original recorded data, unusual 

high frequency oscillations are observed in the pitch motion response, which appear after the pitch response 

reaches the trough value within each wave period. The maximum amplitude of these oscillations exceeds one 

third of the average amplitude of the total response.  This problem appears in the pitch motion response records 

in nearly half of the wave conditions. 

To investigate whether these high frequency oscillations are realistic components of rigid body motion 

responses, measured vertical accelerations at the bow are used for comparison. The pitch motion contributes to 

the vertical acceleration response at the bow, and therefore, a large-scale, higher frequency oscillation of pitch 

motion, if it is real, should be observed by a similar or even more severe oscillation at the same instant in the 

acceleration response. However, the phenomenon is not observed in the acceleration test result shown in Figure 

6.  To check the frequency characteristics of the pitch and bow vertical acceleration responses, Figure 7 shows 

the cosine Fourier transformation of the vertical acceleration at the bow as well as the low and high components 

of pitch motion. Note that, the results of the Fourier transform of the higher level components of pitch are shifted 

downwards by 0.1 to ensure a clearer picture. The vertical acceleration is dominated by the first wave harmonic 

response together with the second harmonic and 2-node flexible frequency (8-9 Hz) responses. The peak at 18 

Hz in the FFT transform is the local deck vibration response, on which the accelerometer is installed. From these 

FFT transform results, the lower frequency level components of pitch response are principally formed from the 

first and second wave harmonic responses. The Fourier transform of the higher frequency level components 

cover evenly 4.5 to 25 Hz. A comparison between pitch and acceleration (i.e. time history and frequency 

transform results) show no evident relationship between the high frequency oscillation in the pitch record and the 

global impulsive responses in the vertical acceleration.  

Similarly, a high frequency oscillation phenomenon occurs in the measured heave response, shown in Figure 

8 for 2a/L=1/30 and /L=2.0. In this wave condition, the oscillations start when ship falls from its zenith 

locations.  Again, there is no obvious connection between these heave high frequency oscillations and vertical 
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acceleration responses at the bow.  It is also found that the occurrence of the unusual high frequency oscillations 

in pitch and heave records is not always observed for the same wave conditions. As an example, in the wave 

condition mentioned in Figure 6, no high frequency oscillation is observed in the heave motion record whereas 

occurrences are found in pitch motion records.   

These findings confirm that the unusual high frequency oscillations in pitch and heave measured data are 

caused by local ship hull impulsive vibrations, and can be removed using the wavelet analysis method by 

artificially setting the coefficients to be zero at high frequency levels in equation (10). That is, frequency levels 

less than 9 are only included and the resultant peak and trough values of heave and pitch excited at different 

wave conditions are shown in Figure 9. Components of frequency at Level 9 or at higher levels represent 

responses exhibiting frequencies higher than 4.5Hz. Therefore the mean shift and first three harmonic responses 

of rigid body motions are at least covered in wavelet treated data for /L>0.5. For /L=0.5, in which the 

encounter frequency equals 1.8Hz, components up to the second harmonic are included.  Analysis of all data 

shows that in wave states (/L<1.1 or /L>1.4), the non-dimensional rigid body motion responses behave in a 

reasonably linear manner.  However, in the wavelength region, 1.1/L1.4, green water on the deck was 

observed during the model tests, which causes reduction of peak values of the heave motion. The flare at the bow 

supplies additional buoyancy force and flare impact force during large motion excursions, reduce pitch peak 

values in these wave conditions.  If the average of the peak and trough amplitude is defined as the response 

amplitude, it is observed that these values of both heave and pitch motions reduce evidently, coinciding with the 

phenomena reported by Fonseca and Soares (2004) for a S175 model. With the exception of the evident 

discrepancy between the peak and trough values of rigid body motions in experimental test condition Case 4 

(2a/L=1/20) of Table 3, only slight differences are found for the other wave height conditions examined. 

4.2 Vertical bending moments 

Non-linear ship wave loads, such as vertical bending moment, are generally considered caused by large-

amplitude non-linear waves, the variable geometry of the ship’s hull as it plunges in and out of waves, as well as 

slamming, wave breaking and green water on deck (ISSC, 2000).  The sagging and hogging bending moment 

responses reflect these non-linear characteristics. Data analysis of the mean shift and higher order harmonic 

components in the frequency domain provide an alternative way of representing sagging-hogging responses 

(Watanabe et al, 1989; Fonseca and Soares 2004; Chen et al, 2001).  However, a time-history related 

information, such as the start of slamming, green water impact, decay behaviour of the impulsive structural 

responses associated with harmonics of frequency near the 2-node natural frequency of ship, are not easily 

derived. In such cases, a wavelet analysis is able to supply much information and demonstrates one of the 

benefits of this approach. 

A conventional FFT analysis of bending moment measured in a flexible model test shows that the first 

harmonic and 2-node flexible natural frequency components are nearly of the same order in magnitude when the 

model travels in severe waves. The recorded second and third harmonic components are one or two orders 

smaller (Chen et al, 2001). Taking these findings into account, the measured vertical bending moment results are 

divided into a lower frequency level component (<Level 8) and a higher frequency level component in the 

wavelet method. The lower frequency component includes the mean shift, the first and second harmonic 

responses, whereas the higher frequency level component contains the higher harmonic responses, especially 

responses near the 2-node flexible natural frequency.  Figure 10 shows a typical division in time domain of the 

original vertical bending moment sample recorded over a time into lower (<Level 8) and higher frequency 

(Level 8) components. 

By adopting a peak and trough counting method, average sagging and hogging response amplitudes over a 

period of 20.48 second are obtained from the original bending moment measured data and lower and higher 

wavelet components data.   Figure 11 shows the results for the amid-ship vertical bending moment in these three 

data cases allowing investigation of the asymmetry characteristics observed in the measured data. Compared to 

the rigid motion responses, the sagging and hogging asymmetry of the total measured bending is more evident 

for all the wave cases moments as shown in Figure 11 (a), especially in the wavelength region of /L=1.0-1.5. 

Figure 11(c) shows that the higher level frequency responses are almost sagging-hogging symmetric. Hence, 

Figure 11 (a) and (b) demonstrate the similar asymmetry behaviour and values at each corresponding wave 

condition are closely in agreement except in the wave height Case 4 (2a/L=1/20) and wavelength region  

/L=1.0-1.5.  Therefore asymmetry is essentially caused by the mean shift value, the first and second harmonic 

response.  It is also interesting to notice that the sagging and hogging values derived from the original measured 

data are not simply the summation of these corresponding values obtained by the lower and higher frequency 

level components.  In general the summation of these two hogging values is larger than the one obtained from 

the original measured data, and an opposite tendency is found for the sagging cases. Table 4 explains this 

phenomenon in detail and an explanation can be found from Figure 10. In particular is the impulsive vibration 
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starts when the hull girder is passing from hogging to sagging condition, and reaches the maximum value at the 

moment when sagging peak appears. In this worst severe wave condition during the test, the maximum 

amplitude of the higher level frequency component is even larger than the corresponding value of the lower level 

frequency component which is dominated by the mean shift and the first harmonic responses.  The main high 

frequency of vertical bending moment after impact is about 9.0 Hz, close to the 2-node wetted natural frequency 

of the model ship. After the appearance of a peak value, the high frequency level components of response exhibit 

a conventional damped free vibration behaviour. At the moment the hogging peak appears in the total response, 

the amplitude of the higher frequency level component reduces to about a quarter of the maximum value. The 

contribution of the higher frequency level components on the sagging and hogging values of the total bending 

moment is not negligible in wavelength region of /L=1.0-1.5, makes both sagging and hogging values and the 

asymmetry between them to increase.  

 

         Table 4 Sagging and hogging values of mid-ship vertical bending moments CM3 *100 (Case 3) 

/L Measured data Lower levels Higher levels 

Hogging Sagging Hogging Sagging Hogging Sagging 

0.6 1.167 -1.617 1.013 -1.427 0.3043 -0.3074 

0.7 1.290 -1.648 1.067 -1.478 0.3043 -0.3360 

0.8 1.397 -2.240 1.324 -1.852 0.3181 -0.3360 

0.9 1.305 -2.485 1.045 -1.931 0.3708 -0.3789 

1.0 1.267 -3.094 0.961 -2.282 0.6127 -0.6155 

1.1 1.143 -3.735 0.966 -2.827 0.5589 -0.6775 

1.2 1.816 -3.875 1.315 -2.847 0.4406 -0.4578 

1.3 1.357 -3.128 1.235 -2.667 0.7580 -0.5891 

1.4 1.457 -2.785 1.174 -2.426 0.4591 -0.6576 

1.5 1.278 -2.444 1.131 -2.310 0.2818 -0.4276 

1.8 0.800 -1.530 0.707 -1.411 0.2540 -0.3169 

2.0 0.684 -1.079 0.607 -0.992 0.0703 -0.1114 

   

In the rigid body response analysis, normally the unusual high impulsive oscillation in the pitch motion 

record was shown to be an unrealistic response. However there remains the possibility that it could indicate the 

occurrence of flare impact in severe seas.   Further studies were undertaken to assess the relative vertical motions 

between the incoming wave and a point located on the mean waterline surface at Station 19, and the start and 

cause of impulsive high frequency vibrations. A waveheight meter was installed 4.5m ahead of the centre of 

gravity of the ship model.  The shift in time between the measured incoming wave reaching the chosen point 

near the bow is numerically calculated from the wave phase velocity, ship’s forward speed and the distance 

between these two locations. Steady and unsteady disturbed wave profiles and surge motion are not included in 

the relative vertical motion calculation, therefore these derived data can only be used qualitatively to investigate 

the green water problem. 

Figure 12 shows the wavelet analysis division of high (Level 8) and low (<Level 8) frequency level 

components of the mid-ship vertical bending moment, the high level component of measured pitch motion data, 

the low frequency component of the relative vertical rigid body motion at Station 19 (shown as ‘zw’) and the 

incoming wave passing through this location (shown as ‘awave’).  The results for incident waves with 

wavelengths from /L=0.7 to 2.0 and wave height (2a/L=1/30) are presented. It is observed in Figure 12 that the 

impulse response components of the vertical bending moment generally occur twice within one wave period. 

One commences when the bow starts moving downwards, accompanied by a high frequency oscillation signal in 

the measured pitch record, whilst the other begins just after the wave peak passes through the bow area.  When 

these two events nearly coincide, as shown at wavelength /L=1.5, a single impulse excitation and a 2-node 

natural frequency free vibration response are evident.  In long waves, i.e. /L=2.0, the high frequency 

component in the bending moment response is comparatively small in comparison with the low frequency 

component consisting of the mean shift and first harmonic responses. However, with decreasing wavelength, 
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especially for an incident wave of approximately one ship length, the maximum amplitudes of the high 

frequency whipping response are of the same order of magnitude to the corresponding values of the low 

frequency components. For example, for /L=1.0, the ratio of these values is approximately 0.8, whereas for 

/L=1.2, this ratio reduces to 0.7 approximately. It is interesting to note that for /L=1.0-1.5, impulsive impacts 

occur about 30 degrees ahead of the wave-induced sagging peak of the bending moment, and decay to nearly one 

third of the maximum amplitude in the hog state. These dynamic variations, together with a negative mean shift 

in the bending moment mainly caused by the changing geometric properties of the instantaneous wetted hull 

surface, make sagging values of the total bending moment two times larger than hogging values. 

Of course, it is clear that the extent of the high frequency response contribution on the total bending moment 

also depends on the incident wave heights.  Figure 13 shows the same kinds of results for other three wave 

height cases when the wavelength is /L=1.2. Once again the ratios between the maximum amplitudes of the 

high frequency whipping response and that of the lower frequency components for those three cases are 0.4, 0.6, 

1.7. In the most severe wave case, i.e. 2a/L=1/20, the maximum value of the whipping response amplitude is 

even larger than the corresponding value of the lower frequency component and starts at the sagging peak of the 

bending moment.  The second impulsive responses following flare impact are detected in Case 4, nearly half a 

wave encounter period delayed. Referring to the relative vertical motion at the bow and the lower frequency 

component of the bending moment, these second impulsive responses of mid-ship vertical bending moment are 

identified as the response of green water impact.  The visual record also confirms the occurrences of severe 

green water on the deck during the model test at this severe wave condition.  If we use the variation between the 

maximum impulsive response amplitude and the higher frequency amplitude one period ahead as an indicator to 

measure the scale of the impacting forces in Figure 13 (c), it can be found that this factor for flare impact is 

about 0.032, whilst 0.0074 only for green water impact. Even though green water impact was considered to be 

one of the main sources for the damage on bow and deck structures of ships such as FPSO (Stansberg and 

Karlsen, 2001), from the present results it demonstrates that flare impact is possibly a more important event to 

hull girder strength in severe seas. 

Fig 14 illustrates bending moments at different longitudinal locations along the model. In the most severe 

wave condition, i.e. 2a/L=1/20 and /L=1.2, the maximum impulsive sag response value, caused by flare impact, 

is larger than the corresponding low frequency component value and occurs approximately 30 degrees ahead of 

the wave-induced sagging peak of the bending moment.  The second impulsive response is detected nearly half a 

wave encounter period afterwards. Relative vertical bow motion and a low frequency component in the bending 

moment record show that the second impulsive response in the mid-ship vertical bending moment is identified as 

caused by green water impact. The visual experimental records confirm the occurrence of severe green water on 

the deck during the tests at this severe wave condition. At the measuring point close to the bow, i.e. M1, the flare 

impact response and green water impact are even more evident. The variation between the maximum impulse 

response amplitude (sagging) and the high frequency amplitude (hogging) occurring a half period ahead, are 

adopted as indicators to measure the scale of the impact forces. It is found in Figure 13 (c) that for measurement 

M3 (amidships), the flare impact value is approximately 0.032, the green water impact value is 0.0074. By 

comparison, the amplitudes of the wave-induced sag and hog bending moments are 0.036 and 0.016 respectively. 

At measuring positions No.1, 2, and 4 these values are (0.018, 0.0056), (0.030, 0.0076), and (0.030, 0.0038) 

respectively. Green water effects have little influence on measured data at position No.5 (aft of amidships), but 

the flare impact value is approximately 0.014. Because vertical bending moments are measured by strain gauges 

glued to the deck, local deformations at the fixing point may magnify the contribution of green water impact on 

the measured total vertical bending moment. That is, the impulse exciting high frequency responses of the hull 

girder caused by the green water are possibly smaller than the measured value. 

5 Conclusions 

A wavelet analysis technique is developed to investigate non-linear wave-induced loads and motion 

responses using measurements on a S175 flexible model travelling in severe waves.  

Rigid body motions nearly obey a linear relationship, except for results analyzed in wavelength region 

1.1/L1.4.  However, asymmetry between peak and trough values of the responses and variations in the 

results measured for different wave heights are confirmed. The unrealistic high frequency oscillations in pitch 

and heave signals are found caused by the high frequency local deformation at the base of the motion 

measurement system and are removed systematically by the wavelet method. 

The low and high frequency time history components of the vertical bending moment were deduced through 

the wavelet analysis technique. The low frequency component contains steady responses, i.e. the mean shift and 

first harmonic responses, whereas the high frequency component represents the transient responses, consisting of 

higher harmonics relating to the 2-node wetted natural frequency of the flexible ship.  
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These high frequency responses behave as a freely decaying vibration excited by transient impact loads. 

Dynamic characteristics, i.e. start of impact, maximum value of whipping amplitude etc., are deduced from the 

wavelet-derived data. The phase lag relation between impact occurrence, sagging and hogging peak values are 

easily observed. In general, flare impact increases the sagging peak value, whereas green water impact magnifies 

the hogging peak value.  
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Figure 1  Scaling function and wavelet function bases for Daubechies wavelet family with vanishing numbers 
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Figure 2  Flexible model of S175 container ship and measurement locations 
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Figure 3  Comparison of the original measured data and reproductions derived by different wavelets families 

denoted by N values and extension methods (/L=1.2, 2a/L=1/20) 
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Figure 4  Decompositions of test data by wavelets (/L=1.2, 2a/L=1/20) 

 

 

 

 

 

 

 

 

 

 

 (a)  Original test data   

 

 

 

 

 

 

 

 

 

(b)  Lower level components 

 

 

 

 

 

 

 

 

(c)  Higher level components 

 Figure 5  Fourier transforms of the original signal and its wavelets components at difference frequency levels  

                     (/L=1.2, 2a/L=1/20) 
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(a) Original pitch motion record 

 

 

 

 

 

 

 

 

(b)  Wavelet split pitch motion components 

                                                     

 

 

 

 

 

 

 

(c)  Original vertical acceleration record 

 

 

 

 

 

 

 

 

 

 

(d)  Wavelet split vertical acceleration components 
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Figure 6  Decompositions of pitch and vertical acceleration at bow by wavelet analysis (/L=1.2, 2a/L=1/30) 

 

 

 

 

 

 

 

 

 

 

(a)  Fourier transform of wavelet split pitch motion components 

 

 

 

 

 

 

 

 

(b) Fourier transform of vertical acceleration at the bow 

Figure 7 Comparison between Fourier transforms of pitch and vertical acceleration at the bow                

(/L=2.0, 2a/L=1/50)          

(a) Original heave motion record 
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(b) Lower (<Level 8) and higher (Level 8) wavelet heave motion components 

 

(c) Fourier transform of wavelet split heave motion components  

Figure 8 Time history of heave response, wavelet decompositions and Fourier transform (/L=2.0, 2a/L=1/30) 

 

 

 

 

 

 

 

 

 

Figure 9   Peak and trough values of heave and pitch motions 

 

 

 

 

 

 

 

 

Figure 10  Original midship vertical bending moment (CM3*100) and its synthesis of the wavelets components        

(/L=1.3, 2a/L=1/20) 
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(a) Original measure data                                 (b)  Lower level frequency component 

 

 

 

 

 

 

 

 

 

 

(c)  Higher level frequency component 

Figure 11  Sagging and hogging vertical bending moments at amidship 
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Figure 12   Mid-ship vertical bending moment components for different wave lengths (2a/L=1/30, Cm*100) 

 

 

 

 

 

 

 

 

 

(a) Case 1 (2a/L=1/50) 

 

 

 

 

 

 

 

(b) Case 2 (2a/L=1/40) 
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(c)  Case 4 (2a/L=1/20) 

Figure 13  Mid-ship vertical bending moment components in different wave height (Cm*100, /L=1.2) 
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Figure 14 Vertical bending moment components along model locations (M1 - M5) for /L=1.2, 2a/L=1/20,  

                 (Cm *100) 

 

 

 


