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Abstract

We introduce a hybrid model for the evaluation of jet noise. The model uses the informa-

tion from a solution of the Reynolds-averaged Navier–Stokes equations (RANS). It evaluates

the jet-noise power spectral density (PSD) in the quiescent region outside the turbulent jet.

It includes the following components:

1. A propagation model based on the high- and low-frequency approximations of the Lilley-

analogy Green’s function. The high-frequency approximation is determined by combining

a moving-medium Lighthill analogy and ray acoustics. The low-frequency model is made

by using a flow-factor approach on each component of the source two-point CPSD. We

use available analytical expressions of flow factors evaluated in the low-frequency limit.

2. A fixed-frame source model based on the source terms of the Goldstein (2001) expres-

sion for the Lilley analogy. Both the applied-stress and applied-force equivalent acoustic

sources are retained. The used acoustic analogy allows for expressing the 2-point co-

variance of the applied-stress source by using 2-point velocimetry measurements in a

turbulent jet. Specifically the applied-stress source can be put in correspondence to

the unit-density Reynolds-stress statistics. Available measurements of the unit-density

Reynolds-stress 2-point statistics are here used to derive an analytical model for the

applied-stress 2-point correlation coefficient. Also the applied-force 2-point statistics, re-

quired for modelling noise source mechanisms at the presence of density inhomogeneities

in the flow, is expressed on the basis of the unit-density Reynolds-stress 2-point statis-

tics. Numerical methods are used to derive the frequency–wavenumber expression for a

volumetric source-strength tensor.

3. A jet-flow prediction by using a commercial RANS solver and a set of connection relations

expressing source-model parameters starting from the RANS solution. The RANS sys-

tem includes Reynolds Stress modelling (RSM) closure equations. Turbulence anisotropy

is then incorporated in the flow-statistics estimation. The proposed connection relations

introduce a set of empirical parameters which are evaluated by matching model compo-

nents to both velocimetry and acoustics measurements.

Modelled far-field jet-noise 1/3-octave spectra are compared to corresponding measurements

for isothermal, unheated and hot jets.
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Chapter 1

Introduction

This work introduces a statistical model for the estimation of jet noise, based on the acoustic

analogy applied to a statistically-described region of unsteady flow. The flow statistics are

assumed time-stationary, but spatially inhomogeneous. The term “jet noise” refers here to the

aerodynamic sound produced by the turbulent mixing of unbounded shear flows. Jet noise has

been studied since the advent of turbojet propulsion in aeronautics, when it became part of

our life as one of the dominant components of aircraft noise. Following over half a century of

aeroacoustic research and development of propulsion systems, jet noise lost part of its impact

as an aircraft-noise source.a It still represents the main source of noise during take-off. Its

importance as a component of environmental noise pollution in areas near airports means that

research on jet noise estimation, control and reduction is still a very active subject in the

aeroacoustic community.

The sound-production mechanism associated with turbulent jet flows was first put on a

theoretical basis by Lighthill.1 In his ground-breaking work Lighthill rearranged the fluid-

mechanics conservation equations in order to obtain a wave equation forced by non-linear

terms in the flow variables. The assumption that the forcing terms are not affected by the

acoustic field leads to an acoustic analogy in which flow non-linearities become the equivalent

forcing terms of the linear differential equation that represents the acoustic radiation. In this

way the sound generated by the flow can be scaled on the basis of the flow statistics.

Similarly, the model introduced here establishes a relation between the statistics of a given

unbounded subsonic turbulent flow and the corresponding sound production. The model

contains two main components

- An acoustic analogy that includes the mean-flow effect in the radiation operator and

allows for analytical derivation of the Green function

aThe advent of turbofan engines as aircraft propulsion system in the 1970s meant a reduction of jet-noise
emissions and a relative amplification of other noise sources such as fan-generated noise, which had begun to
be reduced by design changes (e. g. blade–vane numbers and axial spacing) as well as by the introduction of
inlet liners.
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- A model for the acoustic-source statistics that is compatible with available measurements

of the relevant two-point flow statistics

The model uses two complementary acoustic analogies in order to define a field of equivalent

acoustic sources associated with the prescribed stationary turbulence-statistics field. These

acoustic analogies can be identified as the high-frequency and the low-frequency limits of

the Lilley2 analogy as formulated by Goldstein3 (Lilley–Goldstein analogy). Both the applied-

stress and the applied-force equivalent acoustic sources identified by Goldstein3 are considered.

The acoustic-pressure power spectral density (PSD) in the quiescent region surrounding the jet

is derived by defining a volumetric source strength, by combining it with the appropriate Green

functionb and by performing spatial integration across the turbulent region. The source mod-

elling that defines the volumetric source strength is based on published two-point-anemometry

measurements; the source strength is derived as follows.

1. The two-point correlation associated with both the applied-stress and the applied-force

equivalent sources is defined on the basis of the Reynolds-stress two-point statistics. A

closure scaling hypothesis is applied in order to represent the applied-force term on the

basis of the Reynolds-stress two-point correlation.

2. A suitable model for the Reynolds-stress two-point correlation coefficient is defined. The

model assumes an exponential decay in terms of a space–time distance. The frequency-

independent parameters associated with the model are assumed to be scalable from

the local value of the time-averaged flow statistics; the decay shape is assumed to be

universal for jet-type flows. The model shows agreement with the Harper-Bourne4,5

two-point anemometry measurements for the Reynolds-stress component in the axial

direction.

3. A model for the Reynolds-stress two-point cross power spectral density (CPSD) is ob-

tained by applying a numerical Fourier transform to the two-point correlation function.

The resulting two-point CPSD is phase shifted, according to source–observer radiation

parameters, and integrated across the local region of coherence to give the contribution

per unit source volume to the far-field pressure PSD.

The spatial distribution of time-stationary statistics associated with the jet flow is estimated

by performing a solution of the Reynolds-averaged Navier–Stokes equations (RANS).c The

bThis is different between the high- and low-frequency analogies.
cThis approach is not new; it has been widely adopted since the early nineties, when the aeroacoustic research

community found in the RANS numerical solvers a way to consistently estimate the statistics associated with
turbulent jets. The work by Khavaran, Krejsa and Kim6 used the solution of steady RANS with the two-
equation k-ε closure. Following the work in Ref. [6], many other research programmes used this two-step hybrid
approach for noise computation, combining RANS flow-statistics prediction and the acoustic analogy. Bailly
Lafon and Candel7 compare various acoustic-analogy approaches in combination with a RANS–k-ε solution for
the flow. The two-equation closures used in the early works allow for describing the energetic content of the
turbulent field; more complex closures enable a more detailed description. In the present work, the Reynolds-
stress transport equation closure allows for anisotropy in the description of the turbulent-field statistics. This
is a note of originality, compared to RANS-based jet noise models that are known to the author; see the review
proposed in Chapter 2.
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RANS solution outputs an incomplete description of the jet-flow statistics required by the

acoustic-source model. This implies the definition of closure relations connecting the RANS

solution to the acoustic-source two-point statistics. These closure relations introduce a set

of universald empirical parameters which needs to be estimated in order to perform noise

predictions.

The present thesis is divided into 6 chapters and 9 appendices. A brief review of jet-noise

models based on a RANS solution is presented in Chapter 2. The theory for aerodynamic-

sound generation and radiation, according to the low- and high-frequency asymptotes of the

Lilley–Goldstein analogy, is introduced in Chapter 3. A review of the derivation of the perfect-

gas Lilley–Goldstein equation is presented in Appendix B. The high-frequency model uses a

solution for the convective wave equation; this solution is derived in Appendix C by using

a moving-source solution of the stationary-medium wave equation.e The source modelling

procedure, as described in points 1 to 3 above, is detailed in Chapter 4. The application of

the model to jet-noise prediction is described in Chapter 5, where a description of the RANS

solution is given and the volumetric acoustic-source strength is defined on the basis of the

RANS output. The 90-degree 1/3-octave spectral predictions associated with the model low-

frequency and high-frequency solutions are broken down into their corresponding applied-stress

(quadrupole) and applied-force (dipole) contributions. The modelled spectral contributions are

compared to corresponding noise measurements.f A preliminary comparison between modelled

far-field jet-noise spectral contributions and corresponding measurements at rear-arc polar

angles has been performed. The comparison is limited to one isothermal single-stream jet and

is presented in Appendix I.

dThese parameters are universal in the sense that they do not change by changing nozzle geometry, nozzle-
exit velocity and temperature, presence of co-flowing stream etc. The set of parameters is fixed once a given
turbulence closure is defined (closure model and corresponding empirical parameters) for the RANS solution;
it does not depend on the RANS-solution boundary conditions.

eThe derivation makes use of the invariance of the wave equation to Lorentz-type transformations. A Lorentz
transformation is applied in order to reduce the moving-source free-field Green problem to a stationary-source
standard free-field Green problem. The solution is given for the free acoustic field of monopole, dipole and
quadrupole sources moving at uniform speed. For multipole sources, it includes the near-field terms. The
approach is alternative to the Garrick-triangle method introduced in Ref. [8] and normally used in aeroacoustics
when dealing with moving sources.

fThe noise measurements are far-field jet noise measurements acquired in dedicated anechoic facilities. The
subsonic-jet data acquired by Tanna Dean and Burrin9 are used in conjunction with data measured at the
QinetiQ Noise Test Facility (NTF) in Pyestock. The NTF measurements include single-stream data acquired
in 1983 on a 86 mm convergent nozzle, as described in Ref. [10]; these data were delivered by QinetiQ to
the EU jet-noise programme JEAN and made available to the ISVR as JEAN partner. The NTF data also
include coaxial-jet measurements acquired in 2000 for the ISVR as part of a jet-noise programme funded by the
United Kingdom Engineering and Physical Sciences Research Council (EPSRC); Airbus UK partly funded the
programme by sponsoring the experimental-data acquisition.
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Chapter 2

A review of RANS-based jet-noise

models

The principal subject of the present chapter is a literature review regarding published research

on hybrida jet-noise models which base the turbulent-flow prediction on a RANS solution. The

reviewed jet-noise models include the following components:

i Estimation of the flow time-stationary statistics. This is done by solving the Reynolds

averaged Navier–Stokes (RANS) equations. The system of RANS equations will depend

on the particular turbulence-model hypotheses and the associated closure strategy.b

ii Estimation of the two-point cross power spectral density (CPSD) associated with the

equivalent acoustic sources. This is done by defining the equivalent acoustic sources

model and assuming a shape function for the corresponding two-point statistics. The

equivalent-source mean-product values and the parameters associated with the two-point

statistics shape function are then to be expressed on the basis of the RANS-solution flow.

The incomplete flow-statistics description offered by the RANS solution requires defining

a further set of empirical closure relations connecting the source-statistics to the RANS

solution. These closure relations, referred to as connection relations, introduce a set of

empirical parameters. The value of these empirical parameters is defined on the basis of

a calibration procedure that matches model components to experimental data.

iii Acoustic radiation from source region to an observer outside the turbulent region. Here

aBy using the same terminology as in Colonius and Lele,11 with hybrid jet-noise models we indicate those
models that estimate turbulent-mixing noise by integrating across a relevant spatial region of unsteady flow the
noise contributions associated with appropriately modelled equivalent acoustic sources. Hybrid models combine
a flow-prediction model to an acoustic model to generate an estimate of the noise contribution associated with a
given flow volume. Models that directly address the compressible fluid dynamics and simulate the pressure-field
signal at a given location are referred to as direct models, Ref. [11].

bAlthough the reviewed works assume isotropic turbulence and adopt a k-ε two-equation closure RANS
system, subtle differences occur in the choice of the turbulence-closure parameters and, in one case, an extra
turbulent scalar is introduced and modelled.
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the solution of the Green problem is used to derive a propagation factor that, if applied

to the source two-point CPSD, outputs the unit-volume contribution to the observer-

region acoustic-pressure PSD. The Green problem is solved by assuming a stationary

base flow between the source and the observer; the solution is found either numerically

or by using asymptotic approximations yielding to analytical solutions.

The reviewed models are analysed in a systematic way; the above 3 points are put in evidence

for each model. The model derived in the present thesis is then compared to the reviewed mod-

els in order to underline possible analogies and points of originality. The original components

of the model are then briefly stated.

2.1 Review

Hybrid models for jet-noise estimation process the information associated with a turbulent-jet

flow field. The use of a RANS solution to determine the flow-statistics field has been widely

adopted since the 1990s. Khavaran, Krejsa and Kim6 used the solution of steady RANS with

the two-equation k-ε closure; their work, based on the work of Mani, Balsa and Gliebe,12

describes the first version of the prediction scheme referred to as the MGBK model.a The

MGBK model is based on the Lilley2 acoustic analogy, with the forcing terms is the form

given by Goldstein.13 The applied-force equivalent source is not considered in the model

which is based on the Goldstein13 applied-stress source u′⊗u′ (u′ is the fluctuating part of the

velocity). We refer to this source as the unit-density Reynolds stress. The Lilley-analogy Green

function is solved for point sources moving at a given convection velocity uC , directed as the jet

axis. This implies that the acoustic-radiation operator of the model incorporates the source-

convection effect and operates on a modified two-point CPSD of the equivalent source. In the

MGBK model, the source modified two-point CPSD does not explicitly contain the convection

effect. It is derived from a model of the equivalent-source two-point correlation, which is

expressed in the moving frame.b The two-point correlation of the unit-density Reynolds stress

is modelled as a combination of opportune components of the turbulent-velocity correlations.

For the generic ij, kl component, it is given as follows:

[u′iu
′
j ]A [u′ku

′
l]B = [u′i]A [u′k]B [u′j ]A [u′l]B

+[u′i]A [u′l]B [u′j ]A [u′k]B

+[u′i]A [u′j ]B [u′k]A [u′l]B

(2.1)

aThis prediction scheme introduced a RANS-solution flow- and turbulence-field prediction in the jet noise
model by Mani, Balsa and Gliebe12 (MGB). The MGB model used an extension of Reichardt’s theory in
order to predict spatial distributions for the mean velocity, temperature and axial turbulence intensity in both
single-stream and coaxial round jets.

bThis is an inertial reference frame moving at the convection velocity of a given source region.
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Here we used the notation [x]A = x (yA, tA) and [x]B = x (yB , tB), where y indicates a space

location in the fixedc reference frame, t denotes times and subscripts A and B are used to

distinguish quantities measured at different points. Khavaran, Krejsa and Kim14 justify ex-

pression (2.1) as a consequence of the isotropic turbulence model of Batchelor.15 Through

the hypothesis (2.1), referred to below as quasi-normality hypothesis, the modelling effort is

transferred from the unit-density-Reynolds-stress to the velocity two-point covariance func-

tion. The velocity moving-frame two-point covariance is assumed to be a separable function

of time and space separations. It is factorised as the product of mean-square value and corre-

lation coefficient. The mean-square value is assumed to be proportional to the local value of

the turbulent kinetic energy and the two-point correlation coefficient is given as follows:

ĉi,j =

((
f (ξ) +

ξ

2
f ′ (ξ)

)
δij −

ξiξj
2ξ

f ′ (ξ)
)

g (τ) (2.2)

Here τ denotes the time separation tB − tA and ξ is the space-separation modulus in the

moving frame (ξ = η− τuC , with η = yB −yA) and f′ is the derivative of f with respect to ξ.

The decay trend of the functions f and g is assumed Gaussian and controlled by moving-frame

length and time scales lm and τm:

f (ξ) = exp

(
−
(

ξ

lm (y)

)2
)

g (τ) = exp

(
−
(

τ

τm (y)

)2
)

(2.3)

As previously stated, the moving-frame equivalent-source two-point correlation coefficient

model (2.2) does not explicitly contain a convection effect. The connection relations express

the local value of the moving-axis length and time scales as follows:

τm (y) = Cτ
k

ε
lm (y) = Cl

√
k3

ε
(2.4)

where k and ε respectively denote the turbulent kinetic energy and the turbulent dissipation

rate. We refer to expressions (2.4) as the traditional connection relations for time and length

scales. The mean-square value of the acoustic source is assumed proportional to the squared

turbulent kinetic energy. The acoustic-pressure PSD is modelled for observers in the fixed

frame, this implies a source–observer Doppler shift. The radiation from a given source region is

modelled by using an high-frequency approximation of the Lilley analogy. The high-frequency

approximation was developed by Balsa16 for axisymmetric base flows. For supersonic acoustic

Mach numbers, singularities occur both in the sound-transmission factor and in the Doppler

factor relating the source and observer frequencies. The singularities occur at the zeroes

of D = 1 − M cos (ϑ) and Dc = 1 − Mc cos (ϑ), where M (y) = u (y) /c∞ is the acoustic

Mach number, Mc (y) = uc (y) /c∞ is the convection Mach number and ϑ is the downstream

cThis is the reference frame where the flow statistics can be assumed as time-stationary. In general we can
assume that this frame is fixed to the time-invariant boundary conditions associated with the experiment. In
jet-flow experiments this reference frame is the reference frame fixed to the nozzle.
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source–observer polar angle. We refer to this singularity as the critical-layer singularity. The

critical-layer singularity is removed by using modified factors

D =

√
(1−M cos (ϑ))2 + (h (y))2 Dc =

√
(1−Mc cos (ϑ))2 + (h (y))2 (2.5)

Where the real function h (y) and the convection Mach number are assumed to depend on the

local value of flow-field statistics through the following connection relations.

h (y) = Ch

√
k

c∞
Mc = 0.5MJ + CMM (y) (2.6)

Here MJ is the nozzle-exit Mach number and M is the local mean-flow Mach number. The

calibration procedure used to define the connection-relation parameters is not specified in

Ref. [14]; presumably the parameters are set by using a best-match criterion between noise

prediction and available jet-noise spectral measurements.

The components associated with the MGBK model are summarised as follows:

i RANS equations with k-ε closure

ii Lilley-analogy applied-stress sources, as in Goldstein13 (unit-density Reynolds stress)

Moving-frame modelling for the equivalent-source statistics

Unit-density Reynolds-stress two-point correlation function derived as a combination of

turbulent-velocity covariance functions (quasi-normality hypothesis)

Turbulent velocity two-point covariance with separable-variable function (Gaussian for

both space and time separations)

Traditional connection relations for time and length scales, see expressions (2.4)

Modified source-convection factor to remove the critical-layer singularity

Connection-relation empirical parameters chosen by best matching model predictions

and jet-noise measurements

iii High-frequency asymptotic solution of the Lilley-operator Green function with axisym-

metric base flow, as derived by Balsa16

Tam and Auriault17 proposed a hybrid model for “fine-scale turbulence” jet noise.d The prin-

cipal originality included in the work by Tam and Auriault17 is an equivalent-source definition

that deviates from the traditional acoustic-analogy procedure introduced by Lighthill.1 Tam

and Auriault17 linearised the Euler equations around the mean-flow solution and neglected

the second-order terms in the fluctuation variable. The linearised Euler equations were used

to derive the sound propagation from a given source region. A source term was then added,

dThe concept of fine-scale turbulence noise has been introduced by Tam, Golebiowski and Seiner18 after a
study of far-field noise spectra measured on round single-stream jets. The jet-noise spectra were interpreted as
a sum of two components. These components were associated with two distinct source mechanisms: one with
large-scale coherent flow structures and the other with small-scale flow structures. The large-scale structure
noise was assumed to dominate the jet-noise spectra recorded at low polar angles, while the fine-scale structures
were assumed the dominant noise component in the sideline and upstream directions.
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forcing the momentum-conservation equation. Obtained following similar reasoning as in the

gas kinetic theory, the source was an equivalent pressure which was assumed as a result of

fine-scale velocity fluctuations; it was taken to scale with the mean turbulent kinetic energy

k. We indicate this source with the symbol qT and we refer to it as the Tam–Auriault source.

The radiation solution was obtained by solving the adjoint Green-function problem on the

LEE. The mean flow was taken axisymmetric, transversely sheared, and 1-D; this reduced the

problem to the axisymmetric Lilley-analogy Green problem. The propagation factor derived

by Tam and Auriault17 acts on the two-point CPSD of the material derivative of the Tam–

Auriault source; the centre of the source-statistics modelling in Ref [17] is thus the derivation

of a model for [
DqT
Dt

]

A

[
DqT
Dt

]

B

Such model was derived by fitting a suitable analytical function for the two-point correlation

coefficient and assuming that the mean-square value associated with the Lagrangian derivative

of qT is proportional to the mean-square value of qT divided by a squared time scale. It is

given as

[
DqT
Dt

]

A

[
DqT
Dt

]

B

= CqT
q2
T (y)

τ2
T

exp

(
− |η1|
ūτT
− ln(2)

l2T

(
(η1 − ūτ)2 + η2

2 + η2
3

))
(2.7)

Here τT denotes the correlation-coefficient 1/e-decay time for zero space separation in the

moving frame;e lT is the transverse-space-separation length scale. The 2-point correlation

coefficient in expression (2.7) was compared to the two-point correlation coefficient of the

velocity covariance in a low-Mach-number jet, as published by Davies, Fisher and Barratt.19

We note that in general the velocity two-point covariance and the two-point correlation of

qT (or its Lagrangian derivative) are different functions; the “reasonably good agreement”

(in the time-separation domain) between the correlation coefficient in (2.7) and the velocity

measurements by Davies, Fisher and Barratt19 was anyway considered sufficient by Tam and

Auriault17 to ensure “the right” functional characteristics for model (2.7). The time and length

scales (τT and lT ) in expression (2.7) were related to the RANS solution by the traditional

connection relations, analogous to (2.4). Note that the model only uses 3 empirical parameters:

2 for the time and length scales and a further one represents the fraction of turbulent kinetic

energy associated with the acoustic source. The RANS solution was in this case determined

by using a two-equation k-ε closure, with non-standard closure empirical parameters. These

non-standard turbulence-closure parameters were identified by Thies and Tam20 and allow to

generate a mean-flow solution for the jet in closer agreement with jet-flow measurements. The

model described in Ref. [17] can be summarised as follow:

i RANS equations with k-ε closure, with closure empirical parameters as described by

eHere the convection velocity is assumed equal to the mean velocity and directed in axial direction. Trans-
forming equation (2.7) into moving-frame coordinates (η1 = ξ1 + ūτ, η2 = ξ2, η3 = ξ3) shows that τT is the
1/e-decay time of the correlation coefficient at space-separation modulus ξ = 0.
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Thies and Tam20

ii Tam–Auriault source model for fine-scale turbulent mixing

Source two-point correlation model in the fixed frame with non-separable function of

time and space separations, see (2.7)

Source two-point correlation coefficient in agreement with velocity two-point correlation

coefficient measured by Davies, Fisher and Barratt19

Traditional connection relations

Connection-relation parameters determined by best match to suitablef acoustic measure-

ments

iii Adjoint Green function of the Euler equations linearised around an axisymmetric, trans-

versely sheared, 1-D mean flow (equivalent to axisymmetric-flow Lilley-analogy Green

function)

Morris and Farassat21 introduced an acoustic analogy based on the Linearised Euler equations

(LEE). A pressure-related variable πM = γ−1ln (p/p∞), the flow velocity and the speed of

sound were used as independent variables for the mass- and momentum-conservation equations.

The Euler equations were linearised around the mean value of the independent variables to

yield a set of four scalar equations for the fluctuations of πM and the velocity fluctuations. Note

that the mean-velocity field is in this case considered as a transversely sheared, 1-D flow. Non-

linear terms were moved to the right-hand side and considered as equivalent acoustic sources.

This resulted in the identification of a dilatation-rate source and an applied-force source. The

described acoustic analogy, which we refer to as Morris–Farassat analogy, has been used in the

RANS-based jet-noise predictions introduced by Morris and Boluriaan22 and further developed

by Raizada and Morris.23 In developing these acoustic-analogy hybrid techniques, two distinct

source-modelling approaches were used. Morris and Boluriaan22 used a fixed frame time- and

space-separation model for the two-point correlation coefficient of both the dilatation-rate and

the applied-force sources. They also proposed a frequency/space-separation model, based on

the Harper-Bourne5 model for the space-separation shape of the normalised 2-point CPSD of

the turbulent velocity.g This model is given as follows:

sM =
q2Cτ l̃1

ū


1 +

(
2πfCτ l̃1

ū

)2



exp


−

√√√√
(
η1

l̃1

)2

+

((
η2

l̃2

)2

+

(
η3

l̃3

)2
)2

 exp

(
j 2πf

η1

ū

)
(2.8)

Here the mean-square value of the equivalent acoustic sources is indicated by q2; in Ref. [22] it is

appropriately specified for the dilatation-rate and the applied-force sources. In expression (2.8),

the quantities l̃i (i=1, 2, 3) represent the 1/e-decay scales of the normalised two-point CPSD,

fOnly noise spectra where the “fine-scale” source is dominant.
gWith normalised two-point CPSD function we refer to the two-point CPSD divided by the zero-separation

CPSD. The latter function is also referred to as autospectrum.
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which is the second factor in expression (2.8); these length scales are frequency-dependent,

as measured by Harper-Bourne.4 The analytical expression used in Ref. [22] to represent the

frequency dependence of the length scales l̃i is

1− exp (−τσf)

τσf

Note that this function tends to 1 at low frequency and decays as 1/f at high frequency. The

time scale τσ regulates the transition between low- and high-frequency trends. It is expressed

as a function of the local turbulent-velocity length scale (l = Clk
3/2/ε) by means of a further

calibration parameter and the nozzle-exit velocity uJ :

τσ =
Csl

uJ

The calibration parameter Cs is constant for the jet and, together with the parameters Cl, Cτ

and A,h is part of the set of connection-relation calibration parameters. The second factor in

expression (2.8) is the shape of the source autospectrum; this would be corresponding to an

exponential-decay autocorrelation coefficient if the pseudo time scale Cτ l̃1/ū was not frequency

dependent.i Morris and Boluriaan22 verified that, at 90-degree polar angle, the CPSD model

(2.8) yields predicted-noise spectral shapes in closer agreement with corresponding jet-noise

measurements, compared to the CPSD model based on the alternative time-domain formu-

lation also presented in Ref. [22]. As a consequence, the frequency-domain model (2.8) was

later used in the development of the RANS-based model, presented by Raizada and Morris.23

The radiation model used by Morris and Boluriaan22 was obtained by using low- and high-

frequency asymptotic approximations of the Lilley-type operator associated with the Morris–

Farassat analogy.j Raizada and Morris23 further developed the radiation model by adding the

numerical adjoint Green function of the LEE to the asymptotic solutionsk used in Ref. [22].

The final jet-noise model, described by Raizada and Morris,23 contains the following principal

components.

i RANS equations with k-ε closure, closure parameters as in Thies and Tam20

ii Applied-force and dilatation-rate sources of the Morris–Farassat acoustic analogy

hThe parameters Cl and A are respectively part of traditional connection relation for the length scales, see
(2.4), and part of the scaling factor between the source and the turbulent kinetic energy k. Less clear is the
origin of the parameter Cτ which is possibly associated with a connection relation of traditional type, see (2.4),
for the time scales.

iMorris and Boluriaan stated that in their analysis the autocorrelation was modelled with an exponential
form; this statement is contradicted by the form chosen for the autospectrum.

jThe LEE system proposed by Morris and Farassat21 can be rearranged into a third-order equation for the
Lilley analogy. The equation differs from the classical equation, having a different linear operator. The high-
frequency solution was obtained by applying to the problem-specific Lilley-type operator the procedure indicated
by Balsa.16 The low-frequency solution was determined by following the steps indicated by Goldstein.24,25, 26

kNote that in Ref. [23] the procedures adopted by Balsa16 and Goldstein24 were applied to derive high-
frequency asymptotic solutions. The procedure used by Dowling Ffowcs-Williams and Goldstein27 was used
to derive the low-frequency solution. The use of new or alternative forms of asymptotic approximations is a
further development of the propagation model in Ref. [22].
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Common normalised CPSD model for dilatation-rate and components of applied-force

sources; different source components assumed as uncorrelated

Source modelling in the fixed frame and in the frequency/space-separation domain

Source CPSD factorised into autospectrum (zero space separation) and normalised CPSD,

following the approach indicated by Harper-Bourne5

Original source autospectrum, frequency-domain modification of exponential-decay au-

tocorrelation

Analytical model suggested by Harper-Bourne4 for the normalised CPSD factor

iii Numerical derivation of the adjoint Green function associated with the Morris–Farassat

analogy with 1-D, transversely-sheared and axisymmetric base flow

Also asymptotic approximations of the Lilley-analogy (derived from the Morris–Farassat

analogy) Green function

A prediction scheme based on the Lilley acoustic analogy was introduced and is under de-

velopment at the NASA Glenn research centre. The prediction scheme, named JeNo, was

derived from a development of the MGBK method.l The version 1.0 of the JeNo prediction

scheme, described by Khavaran, Bridges and Georgiadis,28 upgraded the improved MGBK

scheme by using a rigorous Lilley-analogy Green function,m where the MGBK method used

the high-frequency asymptotic approximation proposed by Balsa.31 JeNo 1.0 implemented

the Lilley analogy with the source terms introduced by Goldstein13 and only retained the

applied-stress contribution; Khavaran, Bridges and Georgiadis28 showed the similarity be-

tween the source terms and the sources in the Lilley–Goldstein analogy (Ref. [3]). A more

recent implementation of the prediction scheme, referred to as JeNo,v1 by Bridges, Khavaran

and Hunter,33 was described by Khavaran and Kenzakowski;34 here the principal upgrade is

the introduction of the enthalpy-fluctuation source term.n The added enthalpy noise source

together with an upgraded turbulence modelling in the RANS-solution procedure were used to

lThe MGBK scheme was subject to a number of improvement steps, starting from the early version by
Khavaran, Krejsa and Kim14 which is described at the beginning of the present chapter. The principal modifi-
cations regard the source modelling, where a separable-variable model such as (2.2) was used, but the original
Gaussian trends of f(ξ) and g(τ ), see expressions (2.3), were substituted by the exponential-decay trends

f (ξ) = exp

„
− ξ

lm (y)

«
g (τ ) = exp

„
− |τ |
τm (y)

«

The change, justified with an improved matching between model and experimental measurements of the velocity
two-point correlation coefficient, led to improved spectral shapes for the jet noise predictions. For further
information regarding these developments, the reader is addressed to the works by Khavaran29 and by Khavaran,
Bridges and Freund.30

mIn JeNo 1.0, the Green function for the Lilley equation is evaluated by following the adjoint Green function
procedure indicated by Tam and Auriault.32 The singularity appearing at supersonic acoustic Mach number,
referred to as critical-layer instability, is removed by means of a modified Doppler factor which is used in
proximity of the critical-layer region.

nKhavaran and Kenzakowski34 used a source description which is derived from the Goldstein35 generalised
acoustic analogy. Using the parallel-flow assumption and neglecting the divergence of the Favre-averaged
Reynolds stress plus the density fluctuations in the applied-stress sources reduce the applied-stress source to
the same form as introduced by Goldstein13 (the same form as in the version described in Ref. [28]). The more
recent implementation, Ref. [34], added 5 terms to the equivalent-source term in the earlier implementation;
compare eq. (25) on page 9 of Ref. [34] to eq. (4) on page 6 of Ref. [28].
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improve noise predictions for hot jets. The spectral characteristics of the equivalent acoustic

sources in JeNo,v1 were determined by modelling the two-point order-4 velocity correlation

and the two-point enthalpy–velocity correlation. Both these models were related to the mov-

ing reference frame and do not include the convection effect. The models are based on the

two-point velocity correlations; while turbulence quasi-normality was invoked for the order-

4 velocity correlations, the velocity–enthalpy correlations were modelled by separating the

velocity terms from the enthalpy terms through the following factorisation

[uih0]A [ujh0]B = [ui]A [uj ]B [h0]A [h0]B (2.9)

where h0 indicates the stagnation enthalpy. The absence of experimental data regarding the

stagnation-enthalpy two-point correlation required a first-approximation closure assumption

for the corresponding two-point correlation coefficient. This was assumed to follow a decay

trend similar to the velocity correlation coefficient. The velocity and stagnation-enthalpy two-

point correlation coefficients are given by (2.2) which, assuming exponential decay trends for

both the time- and space-separation trends (see note l on page 11), can be expressed as follows:

ĉi,j =

((
1 +

π

2lm
ξ

)
δij −

πξiξj
2lmξ

)
exp

(
−πξ
lm
− |τ |
τm

)
(2.10)

Additional turbulent modelling was added in the definition of the RANS equations which, to-

gether with mean-flow and isotropic-turbulence variables, contain the stagnation-temperature

fluctuation among the variables. The stagnation-temperature fluctuations were used in order

to scale the enthalpy-noise term.

The principal components of the JeNo,v1 code can be summarised as follows.

i RANS equations with k-ε closure

Additional turbulence modelling for direct output of stagnation-temperature fluctuations

ii Applied-stress and enthalpy-fluctuation sources of the Goldstein35 analogy

Enthalpy-noise source scaled by stagnation-temperature fluctuations

Source modelling as in the improved MGBK method, with exponential trends for both

the space- and time-separation shape functions

iii Numerical derivation of the adjoint Green function associated with the Lilley analogy,

with axisymmetric base flow

Critical layer instability removed by adopting modified Doppler factors

A further model based on the MGBK approach was introduced by Self and Azarpeyvand.36,37

The model contains the main components as the early-version MGBK model described by

Khavaran, Krejsa and Kim6 (reviewed at the beginning of the present chapter). Self and

Azarpeyvand36,37 introduced a connection relation for the time scale τm, see time-separation
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trend f in (2.3). This time-scale connection relation is given as follows:

τm = C1


Cτ

k

ε

(
lm
dJ

)2

3 exp


3

2
C2

(
2π
lK
lm

)4

3


−

√
πC2

ν

ε
erfi


3

2
C2 (2πlK lm)

2

3





 (2.11)

Compare to the corresponding traditional relation for τm in (2.4). In expression (2.11) lm de-

notes the moving frame length scale, as in (2.4), ν is the kinematic viscosity and lK = (ν3/ε)1/4

is the Kolmogorov length scale. The function erfi is the imaginary error function. Self and

Azarpeyvand36,37 stated that expression (2.11) is related to a wave-number model of the tur-

bulence spectrum, but they did not clearly explain the relation. Note that further empirical

parameters C1 and C2 are introduced in the connection relation (2.11), compared to the tra-

ditional relation (2.4). This increases the empiricism of the model by Self and Azarpeyvand

and extends its prediction range in comparison with the original MGBK model. Presumably,

as in the MGBK method, the connection-relation empirical parameters were set by matching

far-field model predictions to corresponding jet-noise measurements. We note that, where one

bases the definition of the model empirical parameters by simply comparing far-field noise

predictions and corresponding experimental data, arbitrarily enlarging the prediction range

of the model (by adding further degrees of freedom) implies narrowing the error between

predictions and measurements. With zero probability, such arbitrary degree of freedom will

improve the physical basis of the model. The prediction method would then better fit the

parameter-calibration jet-noise measurements, but not necessarily do the same with measure-

ments outside the range associated with this specific set of experimental data. A consequent

criticism to the connection relation (2.11) is that Self and Azarpeyvand36,37 did not support

it with jet-flow experimental data.o

The principal components of the model proposed by Self and Azarpeyvand36,37 are the same

as in the MGBK model (see page 7), with the following exception:

ii Original connection relation expressing the moving-frame time scale for the acoustic-

source two-point correlation

Goldstein and Leib38 presented a hybrid model based on the generalised acoustic analogy

introduced by Goldstein.35 In Ref. [38], a parallel base flow assumption is made in order to

reduce the model to a Lilley-type acoustic analogy and to determine the far-field acoustic

radiation by using a Lilley-analogy Green function. For mean flows including regions at su-

personic acoustic Mach number, the Lilley-analogy Green function presents a singularity for

sources in the so-called critical layer. Goldstein and Leib38 removed the critical-layer instabil-

ity by adopting a matched asymptotic expansion in the proximity of the critical layer region.p

oAs it will be introduced below, a development on the time-scale connection relation was also proposed
by Goldstein and Leib.38 In this case the connection relation was supported by experimental data and the
hypothesis of turbulence quasi normality.

pAs explained in Ref. [38] the critical layer instability is due to the parallel-base-flow assumption and a
corresponding unphysical amplification. The relaxation of the parallel-flow hypothesis allows for removing the
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In Ref. [38], the modelling of the source two-point cross covariance is restricted to the applied-

stress source only. The two-point covariance of the applied-stress sources is associated with the

Reynolds-stress two-point covariance.q The Reynolds-stress two-point correlation coefficient

is modelled in the moving reference frame; here it is assumed to follow a trend which is not

separable between space and time. The decaying trend is represented as an infinite series of

terms; this series is then truncated to the first two terms in order to get the predictions. The

truncated moving-frame two-point correlation coefficient is assumed to follow the trend

cij,kl = C0,0

(
1− C1,0ξ̃

2
1/X

)
exp

(
−X +

√
α̃gξ⊥

)
(2.12)

where X =
√
τ̃2 + ξ̃2

1 + ξ̃2
⊥ + αg ξ̃⊥. Here, as above, ξ denotes a moving-frame space separation

vector; the tilde is used to indicate the following non dimensional quantities: ξ̃1 = ξ1/m1,

ξ̃⊥ = ξ⊥/m⊥, τ̃1 = τ/τm. The parameters C1,0 and αg are empirical parameters; the length

and time scales m1, m⊥ and τm are to be determined through the connection relations. The

parameter C0,0 is assumed proportional to (ρ̄k2)2. The source model introduces a set of

empirical parameters plus time and length scales. The length scales are expressed through

the traditional connection relation, see equation (2.4) for the length scale lm. A different

connection relation is used for the time scales. This is expressed as

τm = Cτ
k

ε
F

(
k|∇ū|
ε

)
(2.13)

where F is an empirical function deduced from two-point measurements of the velocity field.

The latter was evaluated by expressing the ratio between measured autocorrelation time scales,

Ref. [39], and the value Cτk/ε.
r The source-model empirical parameters are chosen by matching

the Reynolds-stress two-point covariance model to the turbulent-velocity two-point cross co-

variance measurements performed by Bridges and Podboy;39 turbulence quasi-normality must

be assumed in this case. A notable characteristic of the model proposed by Goldstein and

Leib38 is that the connection-relation parameters associated with different two-point CPSD

components can be different.s

instability. The evaluation of the Green function was performed by using two sets of linearised flow equation
that respectively assume the mean flow as strictly parallel and slowly diverging. In Ref. [38], the parallel-flow
solution, i. e. the Lilley solution, is used at subsonic acoustic Mach number and, in general, in the region of
non-singularity of the parallel-flow Green function. The Green function for slowly-diverging parallel flow is used
near the critical layer. A matching procedure is used between the parallel-flow and the slowly-diverging-flow
solutions in order to get a continuous acoustic-radiation operator.

qNote the difference with the present thesis, where the applied-stress source is associated with the unit-
density Reynolds-stress. According to the generalised acoustic analogy proposed by Goldstein,35 the applied-
stress equivalent source also depends on the local density and can be approximated as:

ρu′⊗u′ − ρu′⊗u′

rNote that the modelled quantity refers to the Reynolds-stress two point correlation, but the measurements
refer to the velocity field.

sThe modelled far-field jet noise is expressed, in Ref. [38], as a combination of six different two-point CPSD
components. The 12,12 component dominates the SPL 1/3-octave spectra at low downstream polar angles. The
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The principal components of the model introduced by Goldstein and Leib38 can be summarised

as follows.

i RANS with k-ε closure

ii Applied-stress source in the Goldstein35 acoustic analogy

Non-separable cross covariance model in the moving frame

Direct model of Reynolds-stress two-point statistics, based on turbulent-velocity two-

point measurements (quasi-normality hypothesis)

Length scales and mean-square value expressed through traditional connection laws

Original connection relation for time scales, based on turbulent-velocity experimental

measurements by Bridges and Podboy39

Connection-relation empirical parameters set by matching Reynolds-stress two-point

covariance model and turbulent-velocity two-point cross covariance measurement by

Bridges and Podboy39 (quasi-normality hypothesis)

Empirical parameters associated with different two-point CPSD components can be dif-

ferent

iii Matched asymptotic expansion for the Linearised Euler Equations with axisymmetric,

slowly-diverging (quasi 1-D and transversely sheared) mean flow

2.2 Present model

The list of RANS-based jet-noise models considered in the present chapter is not complete; it

gives anyway an overview of the state of the art associated with this type of jet-noise models.

The principal objective of the present thesis is to derive a RANS-based jet-noise model that

efficiently uses the information from two-point measurements in turbulent-jet flows. Limited

to subsonic conditions, the model incorporates the effect of heating on turbulent mixing noise.

The principal components of the model can be outlined as follows:

i RANS with Reynolds-stress modelling (RSM) closure (allows for turbulence anisotropy)

ii Applied-stress and applied-force sources in the Lilley–Goldstein3 acoustic analogy

Source modelling related to the unit-density Reynolds-stress two-point statistics for both

sources (closure hypothesis for applied-force source)

Non-separable unit-density Reynolds-stress cross covariance model in the fixed frame of

reference

Direct model of unit-density Reynolds-stress two-point statistics, based on corresponding

two-point measurements by Harper-Bourne4,5,42

source model for the 12,12 component presents different connection-relation parameters, compared to the other
components. This choice assigns different spectral characteristics to the downstream and sideline components
of the predicted noise.
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Zero-space-separation time scale expressed by adaptinga the traditional connection rela-

tion (2.4)

Connection relations for length scales and mean-square values which incorporate the

RANS-solution anisotropy

Detailed description of calibration procedure for connection-relation empirical parame-

ters

Time- and length-scale parameters defined by matching model components and

corresponding measurements by Harper-Bourne4

Applied-stress- and applied-force-source scaling parameters defined by matching

modelled 90-degree 1/3-octave spectra and corresponding measurements

iii Asymptotic approximations of the Lilley–Goldstein3 analogy (high-frequency solution

by geometric acoustics, Ref. [41], and low-frequency solution by flow-factor approach,

Ref. [40])

A comparison of the present model to the reviewed RANS-based models show that the model

includes an original sequence of components. Some of the model components are original,

these can be enumerated as follows:

1. Use of a RANS solution including turbulence anisotropy

2. Closure hypothesis to scale the applied-force source on the basis of the static-temperature

gradient and the unit-density Reynolds stress

3. Direct modelling of the unit-density Reynolds-stress two-point covariance, based on time-

separation and frequency-domain trends of corresponding flow measurements

4. Connection relations including turbulence anisotropy for the unit-density Reynolds-stress

mean-square value and length scales

5. Detailed description of the calibration procedure, characterised by matching the model-

components to both velocimetry and jet-noise measurements

6. Asymptotic approximations in the high- and low-frequency limits of the Lilley-analogy

Green functionb

aThe present work uses the traditional connection relation, which is normally associated with moving-frame
decay times, to define a fixed-frame time scale.

bBoth approximations contain elements of originality. The high-frequency solution is a development of the
geometric-acoustics approach used by Morfey, Szewczyk and Tester,41 where the model for the radiation in the
neighbourhood of the source region is the original contribution, defined by using a moving-medium solution of
a Lighthill-type analogy. The low-frequency solution has not been developed as part of the thesis work; it has
been derived by Morfey as low-frequency limit of the Lilley-analogy flow factor, Ref. [40]. Its use in the present
thesis and the coupling to the high-frequency model (for the derivation of the zero-flow solution) constitute
further elements of originality.
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Chapter 3

Theory for aerodynamic-sound

generation and radiation

The sound-production mechanisms associated with unbounded turbulent flows have been

put on a rational basis by Lighthill.1 In his ground-breaking work Lighthill rearranged the

continuum-mechanics conservation equations in order to obtain a wave equation forced by non-

linear terms (the so-called acoustic analogy). A model based on similar reasoning is introduced

in this chapter. The model establishes a relation between the statistics of a given unbounded

subsonic turbulent flow and the corresponding sound production. The model utilises two

complementary acoustic analogies in order to define a field of equivalent acoustic sources asso-

ciated with the prescribed stationary turbulence-statistics field. The acoustic analogies can be

identified as the high-frequency and the low-frequency limits of the Lilley2 parallel shear-flow

analogy for an ideal fluid, as formulated by Goldstein3 (Lilley–Goldstein analogy).

- The high-frequency approach combines a Lighthill-type analogy and geometric acoustics.

The Lighthill-type analogy is expressed in a moving local medium corresponding to

a given location in the turbulent flow. The geometric-acoustics relations are used to

connect the acoustic-pressure field in the local medium and the acoustic pressure in the

quiescent medium surrounding the turbulent region.

- The low-frequency approach uses a very-low-frequency approximation (Morfey) to the

low-frequency asymptotic Green function for the Lilley–Goldstein analogy. The latter is

given by Morfey, Tester and Powles.43

The equivalent-source fields associated with the two acoustic analogies are the nonlinear forcing

terms of the Lilley–Goldstein analogy (see Appendix B). A threshold value for the equivalent

source fielda is used to cut out a connected Euclidean-space domain in which the aerodynamic

aFor practical reasons an indicator of the equivalent source intensity is used for this purpose. The form of the
Lilley–Goldstein equivalent sources identifies the turbulent-kinetic-energy time average as a principal scaling
factor for the sound source generation. The threshold value is then set for the turbulent kinetic energy.
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sound is generated. This domain is called the source region. The acoustic-field statistics are

modelled in the quiescentb medium surrounding the source region. The far-field acoustic-

pressure statistics are derived by dividing the source region into a number of subregions.

Each subregion is characterised by a spatial dimension that guarantees small variations of

the equivalent-acoustic-source statistics across its interior, plus small variations of the mean

flow. The far-field contribution from each subregion is treated separately by filtering out the

equivalent-source field outside the given subregion and using an appropriate Green function;

it is evaluated as follows:

- A volumetric source strength is defined as a space integral across separation of the

equivalent-source two-point cross power spectral density (CPSD) tensor. The volumetric

source strength is evaluated by assuming a uniform acoustic medium; the latter is in

motion relative to the sources for the high-frequency model and is quiescent for the low-

frequency model. The phase of the two-point CPSD is shifted according to the source–

observer time-delay difference, depending on the separation between the two sources.

- The subregion-specific high-frequency and low-frequency Green functions are used to

evaluate the contribution to the far-field radiation at prescribed observer locations.

The total noise at the observer location is derived in the high-frequency and low-frequency

limits by adding the contributions from all the subregions.

3.1 High-frequency sound generation and radiation

The high-frequency approach defines a Lighthill-type analogy corresponding to each source

subregion. The analogy is referred to as local-medium Lighthill analogy. It is used to define the

sound-production mechanism in the subregion. The equivalent sound sources in the subregion

local flow differ from the standard Lighthill-analogy sources in that the mean-flow velocity

does not appear in the forcing terms. The equivalent sources are identical to the forcing

terms of the Lilley–Goldstein3 analogy. The acoustic-pressure power spectral density (PSD) is

calculated in the subregion by assuming that the equivalent sources radiate into a uniformly

moving medium, this being the medium characterised by the local mean velocity and speed

of sound. The geometric-acoustics conservation equations introduced by Blokhintzev44 are

finally used to relate the acoustic-variable PSD in the source subregion to the corresponding

acoustic-pressure PSD in the far field outside the source-region.

3.1.1 Local-medium Lighthill analogy

Provided the acoustic wavelength and the characteristic dimension of the source-coherence

region are small compared to the scales of the mean flow, and assuming that the acoustic

bThe model only considers the situation associated with zero velocity for the space surrounding the source
region. This limitation can be removed to extend the model to the case of a uniform co-flow.
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energy radiated by the source is not scattered back, the radiation problem in the vicinity

of any acoustic-source subregion can be viewed as a free-field problem in a locally-uniform

medium that is moving at the local mean velocity ū and is characterised by the local speed

of sound c̄. The Goldstein3 conservation equations for mass (B.6) and momentum (B.7) are

formulated in a fixeda reference frame. A Galilean transformation is used to refer the same

equations to the reference frame that is rigidly connected to the local medium. Assuming the

fluid is a perfect gas, the local-medium expression of the mass and momentum conservation

equations with viscous stresses and heat conduction neglected is given as follows:

mass
∂p

1
γ

∂t
+ div

(
p

1
γu′
)

= 0 (3.1)

momentum
∂p

1
γ u′

∂t
+ div

(
p

1
γ u′⊗u′

)
+ c2∇p

1
γ = 0 (3.2)

Here u′ is the fluctuating velocity and u′⊗u′ is the unit-density Reynolds-stress tensor; c

denotes the speed of sound, p is the thermodynamic pressure and γ indicates the specific-heat

ratio of the perfect gas. The Lighthill-analogy operation

∂

∂t
(mass)− c̄2∇2p

1
γ − div(momentum) + c̄2∇2p

1
γ

results in the inhomogeneous wave equation

∂2p
1
γ

∂t2
− c̄2∇2p

1
γ = div

(
div
(
p

1
γ u′⊗u′

)
+
(
c2 − c̄2

)
∇p

1
γ

)
(3.3)

Here the overbar indicates the time average. Dividing equation (3.3) by c̄2p
1
γ
∞ allows the

acoustic-analogy equation to be written in terms of the Goldstein3 variable, see expression

(B.15) on page 95.

πG =
p

1
γ − p

1
γ
∞

p
1
γ
∞

(3.4)

The resulting local-medium Lighthill analogy is expressed as follows:

1

c̄2
∂2πG
∂t2

−∇2πG = − 1

c̄2
div(div(Q))− 1

c̄2
div(d) (3.5)

We note that the analogy equation (3.5) is expressed in the same form as (C.34). The terms

on the right-hand side of equation (3.5) constitute the equivalent acoustic-source field. The

applied-stress term – referred to by Goldstein3 as a velocity quadrupole, see (B.19) in Appendix

aThe essential feature of the fixed frame (meaning fixed with respect to the nozzle, in the case of jet flows)
is that an observer in this frame sees time-invariant boundary conditions for the flow. The flow variables
are statistically stationary in this reference frame; an observer connected to the reference frame records a
statistically stationary signal for the flow variable. The jet-noise reference frames are described in section A.1.
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B – is a quadrupole-order source that is expressed as follows:

Q = − (πG + 1) u′⊗u′ (3.6)

The applied-force term – referred to by Goldstein3 as a temperature dipole, compare to equa-

tion (B.20) in Appendix B – is expressed as follows:

d = −
(
c2 − c̄2

)
∇πG (3.7)

By using the momentum-conservation equationb (3.2), equation (3.7) can be expressed as

d = (πG + 1)
T − T̄
T

Du

Dt
(3.8)

Here the quantity (T − T̄ ) = T ′ represents the static-temperature fluctuation relative to the

local medium, and the differential operator acting on u is the convective time derivative.

3.1.2 Acoustic-field statistics for the local-medium acoustic sources

The radiation in the vicinity of the acoustic subregion is calculated by assuming that the

equivalent source in this region is given by two overlapping random fields of quadrupole-order

sources Q and dipole-order sources d, as given by expressions (3.6) and (3.8). Since Q and d

are related to the local flow variables, we can assume that they are statistically stationary in

the fixed frame. A connection needs to be established between the source statistics associated

with Q and d at a given fixed-frame location S, and the statistics of the corresponding acoustic

variable πG at an observer location R that does not move with respect to the fixed frame.

Note that the acoustic medium is in uniform motion with velocity ū relative to S and R.

The acoustic-radiation problem can be solved either by considering the moving-medium wave

equation or by using the moving-source solution of the standard wave equation. The schematic

in Fig. 3.1 represents the analogy between a problem of radiation in a uniformly moving

medium and the radiation by a moving source in a quiescent medium. The emission-time

coordinates are time invariant, since there is no relative motion between source and observer.c

bThe inviscid momentum-conservation equation (3.2) written in the form

p
1
γ
Du

Dt
+ c2∇p 1

γ = 0

and divided by p
1
γ
∞ can be used to express the gradient of πG in terms of the acceleration and the speed of

sound.

∇πG = − p
1
γ

c2p
1
γ
∞

Du

Dt
= −πG + 1

c2
Du

Dt

Considering the perfect-gas relation between the speed of sound and the static temperature yields the applied-
force expression on the right-hand side of (3.8).

cOne implication of this fact is that there is no frequency Doppler shift between the signal emitted by the
source and the signal recorded by the observer.
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Figure 3.1: Schematic representation of wave propagation with relative motion between
medium and acoustic source. The observer is in a position R that is rigidly connected to
the source in S. In (a), the problem is seen from a reference frame connected to the source;
here the medium moves, convecting the wavefronts. The point C indicates the centre of the
convected wavefront that is at the observer position. In (b), the reference frame is connected
to the medium; the observer and the source move at the same speed −ūê1. This diagram
indicates the current position of source and observer by S and R. SE and RE represent the
source and observer positions at the time of emission of the wavefront that is at R. The
emission-time distance rE and polar angle ϑE are in this case dictated by the speed of sound
c̄ and by the medium/source velocity ū; thus they are time invariant. The source–observer
wavenormal-direction angle ϑW is shown in diagram (a).

The general solution for the moving-source acoustic problem, derived in Appendix C for dipole-

order and quadrupole-order acoustic sources, is used to solve the fixed-frame radiation problem

in the presence of a moving acoustic medium. This is done by specialising the general solution

to the local medium 



v→ −ū

c→ c̄

and by introducing the specific expression for the source terms forcing the wave equation.

The local-medium acoustic-far-field component associated with a dipole of strength −d/c̄2 is

obtained by specialising expression (C.41). This yields

π
(1)
G (x|w, t) =

D2
−ū

4πc̄3rE
ḋ (w, t− rE/c̄) · r̂E (3.9)

Similarly, by specialising expression (C.48), one obtains the following for a quadrupole-order

source of strength −Q/c̄2

π
(2)
G (x|w, t) = − D3

−ū
4πc̄4rE

Q̈ (w, t− rE/c̄) · R̂E (3.10)

Here the second-order tensor R̂E defines the emission-time source–observer direction tensor

r̂E ⊗ r̂E . In expressions (3.9) and (3.10) the vectors x and w respectively indicate the observer
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position (R in Fig. 3.1) and the source position (S in Fig. 3.1), measured from the origin

of a fixed-frame reference system; rE denotes the emission-time source–observer separation

vector (
−→CR or

−−→SER in Fig. 3.1) D−ū indicates the Doppler factor (C.25) specialised to the

local medium; it is expressed as follows:

D−ū =
1

1 +
ū · rE
c̄rE

=
1

1 +
ū

c̄
cosϑE

=
1

1− ū

c̄
cosϑW

where ϑW indicates the moving-medium source–observer wavenormal direction, as indicated

in Fig. 3.1.

The volume integral across the local-medium acoustic-source region of expressions (3.9) and

(3.10) gives the instantaneous Goldstein variable recorded at the local-medium far-field ob-

server location.

πG (x, t) =

∫∫

w

∫(
D3
−ū

4πc̄4rE
Q̈ (w, t− rE/c̄) · R̂E −

D2
−ū

4πc̄3rE
ḋ (w, t− rE/c̄) · r̂E

)
d

3
w (3.11)

Expression (3.11) can be used to estimate the local-medium power spectral density (PSD) for

the acoustic variable. This is done by applying to the acoustic-subregion medium and to the

specific source distribution the procedure indicated in Appendix D for a general distribution

of dipole-order and quadrupole-order sources embedded in a uniform moving medium. By

assuming that the hypotheses enumerated in section D.4 are satisfied, it is possible to express

the acoustic-variable power spectral density (PSD) as follows:

sπGπG (x,0, f) =

∫∫

y

∫
π2D6

−ūf
4

c̄8r2
E

∫∫

η

∫
sQQ (y,η, f) exp (j 2πfη · r̂E/c̄) d3η ·

(
R̂E ⊗R̂E

)
d3y

+

∫∫

y

∫
D4
−ūf

2

4c̄6r2
E

∫∫

η

∫
sdd (y,η, f) exp (j 2πfη · r̂E/c̄) d3η · (r̂E ⊗ r̂E) d3y

(3.12)

Here y denotes the reference position associated with the two-point statistics of the source.

It is the middle point between the source pair used to estimate the two-point statistics. The

separation vector between the source pair is indicated by η. The source statistics are repre-

sented in (3.12) by the two-point cross-power spectral density (CPSD) functions sQQ and sdd,

which are fourth-order and second-order tensors respectively. The mixed quadrupole–dipole

terms sQd and sdQ are assumed not to contribute, due to the symmetry hypothesis (D.16), see

Appendix D. A consequence of the symmetry hypothesis (D.16) is that y can be considered

as the centroid of the zero-time-separation source-coherence volumes in the local medium.
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3.1.3 Propagation to a far-field observer outside the source region

The propagation of the pressure field out through the non-uniform flow to the ambient medium

surrounding the source region is assumed to be such that the pressure-field statistics obey

the geometric acoustics conservation laws.d This is equivalent to assuming that the acoustic

wavelength can be considered as a small parameter if compared to the scales of variation of

the mean flow.e The ambient fluid far from the source region is assumed to be a quiescent

medium with speed of sound c∞. The propagation starts from the subregion i characterised

by medium velocity ū(i) and speed of sound c̄(i), see Fig. 3.2. The phase-trace matching in the

direction parallel to the flow gives a relation between a prescribed quiescent-medium observer

position x∞ and the corresponding ray-direction imagef x(i) in the local medium. The angles

defining the wavenormal direction from the mean-flow direction (see Fig. 3.2 where the angles

are called ϑ∞ for the far-field observer and ϑ
(i)
W for the local-medium of subregion i) are related

as follows:

ū(i) +
c̄(i)

cos
(
ϑ

(i)
W

) =
c∞

cos (ϑ∞)
(3.13)

The local-medium wavenormal-direction polar angle ϑW (Fig. 3.1) is related to the local-

medium emission-time polar angle as ϑW = π−ϑE. If we assume axisymmetry for the problem,

then as shown by Morfey and Tester45 it is possible to state the Blokhintzev44 invariant as

follows:

s
(i)
p′p′ (x∞,0, f) = s

(i)
p′p′ (x,0, f)

ρ∞(
ρ̄D4
−ū
)(i)

Here a common distance r = r
(i)
E has been assumed for both the far-field observer and the cor-

responding wavenormal-direction local-medium image x
(i)
W . Note that we assume a spherical-

spreading relation between the acoustic intensities in the subregion i and at location x(i); this

implies that we assume small Fresnel corrections inside the subregion, or small source-coherence

dimension compared to the acoustic-subregion dimension. The relation (B.16) between the

dWe follow the same procedure as in Appendix 1 of Morfey, Szewczyk and Tester41 (section titled Radiation
outside the shear layer: acoustic-mean flow interaction effects). Note that here the target is the mean-flow effect on
a specific acoustic-source region. The localisation of the procedure indicated in Ref. [41] allows for predictions
that are not necessarily limited to the region outside the cone of silence. In the present case there is not a
global cone of silence associated with the whole source region, there are instead N cones of silence: one for each
source subregion, depending on the local acoustic-medium velocity and speed of sound.

eIndicating the acoustic wavelength with λ:

∇ū · λêi⊗ êj � ū

∇c̄ · λêi � c̄

fThe wavenormal-radiation image x
(i)
W is the virtual image of x∞ that is located at distance |x∞−y| ' r and

in the wavenormal direction ϑ
(i)
W from the acoustic-source subregion i. The corresponding ray-direction image

is indicated from x
(i)
W by the vector connecting the source subregion at reception time to the same subregion at

emission time. See Fig. 3.2; compare Fig. 3.1 (a), where point y is denoted by S and x(i) by R.
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Figure 3.2: High-frequency contribution from the acoustic subregion i to an observer in the
quiescent medium outside the source region. The axial section of the acoustic-source region
is the area inside the continuous black line, where both the mean velocity ū and the mean
speed of sound c̄ are assumed to vary with position, forming an axisymmetric base flow.
The diagram reports observer position x∞ in the quiescent medium outside the source region
and the corresponding local-medium ray-path image x(i) as seen from any coherence-volume
centroid y internal to the acoustic subregion i. The solid black line denotes the wavenormal-
direction source–observer path. A magnified view of the source region in proximity of the
subregion i is shown in (a), where the axial section of subregion i is the area enclosed by
the black line. In (b), a further magnification shows sections of the source-coherence volume
(area inside the red curve) and of the corresponding source–observer ray tube. Compare with

Fig. 3.1 (a) where y is denoted by S and x(i) is R; note that the separation vector x(i) − x
(i)
W

is equivalent to
−→SC in Fig. 3.1 (a).

variable πG and the acoustic pressure p′ can be introduced to yield

s
(i)
p′p′ (x∞,0, f) = γ2p2

∞s(i)
πGπG

(x,0, f)
ρ∞(

ρ̄D4
−ū
)(i) (3.14)

The contribution s
(i)
πGπG to the acoustic-variable PSD in the local acoustic medium, due to

acoustic radiation from the given source subregion i can be evaluated by extending to the

whole subregion volume the y integral of expression (3.12). This can be done by extending the
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y integral in (3.12) to the whole acoustic-source region and by applying spatial windowing:

s
(i)
πGπG

(
x(i),0, f

)
=

π2f4

(
D6
−ū

c̄8r2
E

R̂E ⊗R̂E

)(i)

·
∫∫

y

∫
H(i)(y)

∫∫

η

∫
sQQ (y,η, f) exp (j 2πfη · r̂E/c̄) d

3
ηd

3
y

+
f2

4

(
D4
−ū

c̄6r2
E

r̂E ⊗ r̂E

)(i)

·
∫∫

y

∫
H(i)(y)

∫∫

η

∫
sdd (y,η, f) exp (j 2πfη · r̂E/c̄) d3ηd3y

(3.15)

The function H(i)(y) in (3.15) is a distribution that is zero if the coherence-volume centroid

y is outside the given ith acoustic-source subregion. The function H(i)(y) is equal to one if

y is inside the subregion i.g Note that we assume constant Green-function parameters rE ,

D−ū and c̄, for the acoustic-source subregion i. Regarding r, we limit attention to observer

positions in the geometric far field of the whole source; in this case the subregion value of rE

and D−ū is set by the local-medium ū and c̄.h

The contribution to the acoustic-variable PSD due to a given acoustic-source subregion is

defined by introducing expression (3.15) into (3.14). The sum across the whole acoustic-source

field of all the contributions associated with the subregions yields the high-frequency-model

contribution to the acoustic field at the observer position x∞.

s
(HF )
p′p′ (x∞,0, f) =

∑

i

s
(i)
p′p′ (x∞,0, f) (3.16)

3.2 Low-frequency flow factor for the Lilley–Goldstein analogy

The low-frequency solution assumes, as previously, that the acoustic-source subregion is em-

bedded in an axisymmetric time-invariant flow, but the geometric acoustics approximation

is not used. The acoustic radiation is in this case described by the axisymmetric-base-flow

Lilley–Goldstein analogy. Solutions of the Lilley–Goldstein equation3 in the form (B.23) have

been developed by Morfey, Tester and Powles.43 The acoustic variable is in this case given by

π̃G = ρ̄c̄2πG = p′ + ◦
((
p′
)2)

The far-field acoustic radiation from a given location in the jet is expressed in terms of a

multiplying factor relating the zero-flow solution to the solution including the base flow. The

gThe function H(i)(y) can be represented by a Heaviside unit-step function H(n) as in Ffowcs Williams and
Hawkings46 where n is a local coordinate normal to the surface enclosing the acoustic-source subregion. The
coordinate n is negative outside the acoustic-source subregion, is zero on the boundary surface, and is positive
inside the acoustic-source subregion.

hFor receiver locations in the geometric near field of the whole source region, one also needs to determine
the acoustic-subregion–observer ray path; assuming a fixed observer, this will depend on the acoustic-subregion
centroid position and on the mean-flow distribution.
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multiplying factor, called flow factor, is the ratio between the far-field acoustic-pressure PSD

derived as solution of equation (B.23) and the acoustic-pressure PSD associated with a zero-

flow Lilley–Goldstein analogy. The zero-flow Lilley–Goldstein analogy can be derived by as-

suming that the base flow (B.8) is given as follows





ū = 0

c̄ = c∞
(3.17)

Note that we retain the condition p̄ = p∞ that is respected by the generalised Pridmore-Brown

base flow (B.8), used in the derivation of the Lilley-Goldstein equation.a Introducing the zero-

flow hypothesis (3.17) in (B.23) yields the following field equation for the acoustic variable π̃G:

1

c2∞

∂2π̃G
∂t2

−∇2π̃G = −ρ∞div(div(Q) + d) (3.18)

A division of both sides of equation (3.18) by γp∞ yields equation (3.5) specialised to the case

c̄ = c∞. The solution procedure introduced for the high-frequency solution in section 3.1 can

therefore be used to derive the zero-flow contribution associated with the given acoustic-source

subregion. The zero-flow PSD corresponding to the variable π̃G is related to the Goldstein-

variable PSD by

s0
π̃Gπ̃G =

(
ρ∞c

2
∞
)2

s0
πGπG

and inserting the zero-flow equivalent of (3.15) gives the zero-flow PSD in the far field as

s
0 (i)
π̃Gπ̃G

(x,0, f) =

π2ρ2
∞f

4

c4∞r2

(
R̂⊗R̂

)
·
∫∫

y

∫
H(i)(y)

∫∫

η

∫
sQQ (y,η, f) exp (j 2πfη · r̂/c∞) d

3
ηd

3
y

+
ρ2
∞f

2

4c2∞r2
(r̂⊗ r̂) ·

∫∫

y

∫
H(i)(y)

∫∫

η

∫
sdd (y,η, f) exp (j 2πfη · r̂/c∞) d3ηd3y

(3.19)

Provided the typical mean-flow dimension in the cross-stream directionb is small compared to

the acoustic wavelength, the flow factor corresponding to a given acoustic-source subregion

can be expressed as a function of the mean-flow variables in that subregion and their ambient

values, and does not depend on the mean-flow profile details outside the subregion.c The flow

factor will differ for different components of the acoustic-source cross-correlation function. It

can be introduced in expression (3.19) as a linear operator that only depends on the position

of the subregion; for axisymmetric parallel base flows, the flow factor is a function of R(i) (the

subregion radial coordinate) only. The acoustic-subregion contribution including the flow can

aGiven that the fluid is a perfect gas, the base-flow assumption (3.17) also implies ρ̄ = ρ∞.
bFor example, the vorticity thickness of the jet shear layer.
cIn this respect the situation resembles the high-frequency analogy of section 3.1.
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therefore be represented in the far field as follows:

s
(i)
π̃Gπ̃G

(x,0, f) =

π2ρ2
∞f

4

c4∞r2

(
R̂⊗R̂

)
· F(i)

QQ ·
∫∫

y

∫
H(i)(y)

∫∫

η

∫
sQQ (y,η, f) exp (j 2πfη · r̂/c∞) d

3
ηd

3
y

+
ρ2
∞f

2

4c∞2r2
(r̂⊗ r̂) · F(i)

dd ·
∫∫

y

∫
H(i)(y)

∫∫

η

∫
sdd (y,η, f) exp (j 2πfη · r̂/c∞) d

3
ηd

3
y

(3.20)

For the applied-stress-source PSD the low-frequency flow factor is an eighth-order tensor field

FQQ = F̄ijklδ
m
i δ

n
j δ

o
kδ
p
l γ̂γγi⊗γ̂γγj ⊗γ̂γγk⊗γ̂γγl⊗γ̂γγm⊗γ̂γγn⊗γ̂γγo⊗γ̂γγp (3.21)

For the applied-force-source PSD contribution it is a fourth-order tensor field

Fdd = F̄ijδ
k
i δ
l
jγ̂γγi⊗γ̂γγj ⊗γ̂γγk⊗γ̂γγl (3.22)

The symbol δji in expressions (3.21) and (3.22) indicates the Kronecker delta that implies

a contraction between directions i and j. Components of the flow-factor tensors have been

developed by Morfey Tester and Powles43 according to the jet-noise cylindrical-coordinate

basis, starting from the low-frequency approximate solution in Ref. [40]. The result has been

further developed by Morfey to yield simplified flow-factor expressions valid at low Helmholtz

number (dJ << λ), as reported in Appendix E. The sum of the contributions (3.20) across

the whole source-region volume yields the low-frequency component of the acoustic-pressure

field at a given observer location in the quiescent medium surrounding the source:

s
(LF )
p′p′ (x∞,0, f) =

∑

i

s
(i)
π̃Gπ̃G

(x∞,0, f) (3.23)

3.3 Conclusions

Two expressions for the power spectrum of the far-field aerodynamic-sound radiation associ-

ated with a free turbulent shear flow have been derived, one from a high-frequency acoustic

analogy and one from a low-frequency approximation of the Lilley–Goldstein analogy.3 In

both expressions the acoustic-source region is divided into a number of finite-volume acoustic

subregions, each subregion guaranteeing quasi-uniform equivalent-source and flow statistics.

The far-field acoustic-pressure autocorrelation is then expressed as sum of contributions from

all the subregions.

The contribution of each subregion to the acoustic-pressure autocorrelation is approximated

(according to frequency) by one of the two expressions mentioned above: a high-frequency

term (3.14) and a low-frequency term (3.20). The low-frequency and the high-frequency con-
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tributions correspond to the Lilley–Goldstein3 acoustic analogy contributions in the limit of

very small and very large flow-length-scale/wavelength ratio and with the assumption of ax-

isymmetric base flow. One important feature of these Lilley-analogy approximations is that

they can be evaluated locally depending on the subregion value of the base-flow variables and

their local gradients; this greatly simplifies the solution for the Green function compared to

the full Lilley-analogy solution procedure.a

In the high-frequency case, a local-medium Lighthill-type analogy has been introduced in

order to define an equivalent-acoustic-source distribution based on the fluctuating part of

the flow variables. This analogy defines equivalent acoustic sources that are identical to the

velocity quadrupole and the temperature dipole, as defined by Goldstein,3 by removing the

effect of a uniform motion of the medium from the standard-Lighthill-analogy forcing terms.

The use of a Lilley-type source field simplifies the determination of the acoustic-source two-

point statistics, as mean-velocity terms are not included in the instantaneous quadrupole-

source expression (3.6). Note that the two-point CPSD terms between applied-stress and

applied-force sources are omitted in the PSD expressions (3.15) and (3.20), due to a symmetry

hypothesis (D.16) on the source-field correlation function.

An integral across the source region of the acoustic-subregion contributions in the low-

frequency (3.23) and the high-frequency (3.16) limits yields the corresponding components

of the acoustic-pressure PSD. Note that the components need in principle to be frequency

filtered in order to satisfy the respective hypotheses regarding the wavelength/flow-scale ratio.

aThe determination of the general Green function for the Lilley analogy includes the integration of an
ordinary differential equation in the radial variable. The base-flow radial distribution in the source–observer
path is required as input for the determination of this solution.
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Chapter 4

Modelling the statistics of the

aerodynamic-sound sources

A theory defining the acoustic emission associated with a statistically-stationary turbulent

shear flow has been described in Chapter 3. The acoustic-pressure PSD at a given far-field lo-

cation in the quiescent medium surrounding the turbulent region is given in the high-frequency

and the low-frequency limits respectively by expressions (3.16) and (3.23). The acoustic-

pressure PSD is derived by defining a volumetric source strength and by performing spatial

integration across the turbulent region. The volumetric source strength, defined as the inner

integral over separation in expressions (3.15) and (3.20), is a local tensor quantity whose in-

tegral over the source region determines the power spectrum of the far-field radiation. The

complete expression for the PSD is represented as a dot product between tensors.

The volumetric source strength tensor on the right-hand side of (3.15) and (3.20) is the

volume integral across space separation of the phase-shifted two-point CPSD of the equivalent

source field. Provided the acoustic-radiation parameters (speed of sound c and source–observer

direction r̂) are properly evaluated for the different frequency limits, the volumetric source

strength tensor in the high-frequency limit has the same expression as in the low-frequency

limit. It is expressed as

∫∫

η

∫
sQQ (y,η, f) exp (j 2πfη · r̂/c) d

3
η (4.1)

for the applied-stress equivalent source field. It is given by

∫∫

η

∫
sdd (y,η, f) exp (j 2πfη · r̂/c) d

3
η (4.2)

for the applied-force source field that arises in non-isothermal flows. The functions sQQ and sdd
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in (4.1) and (4.2) respectively indicate the two-point CPSD for the applied-stress equivalent

sources Q (3.6) and for the applied-force equivalent sources d (3.8). These are defined as the

Fourier transform with respect to τ of the two-point covariance functions

cQ′Q′ (y,η, τ)=
(
Q (y − η/2, t) −Q (y − η/2)

)
⊗
(
Q (y + η/2, t + τ)−Q (y + η/2)

)
(4.3)

and

cd′d′ (y,η, τ)=
(
d (y − η/2, t)− d (y − η/2)

)
⊗
(
d (y + η/2, t+ τ)− d (y + η/2)

)
(4.4)

where the overbar indicates the time average.

The evaluation of the volume integrals (4.1) and (4.2) is the principal objective in this chap-

ter. This evaluation implies the generation of models for cQQ and cdd. Experimental data

in which the two-point statistics of the acoustic-source terms (3.6) and (3.8) are measured

directly are not available to the author. Models for cQQ and cdd can however be based on

the available experimental data for the two-point statistics of the fluctuating-velocity field;

in particular, the statistics of u′⊗u′ − u′⊗u′ (referred to below as the fluctuating Reynolds

stress tensor). While a relation between the applied-stress source and the Reynolds-stress

tensor appears clear in expression (3.6), a source-scaling hypothesis needs to be formulated

to find a relation between the applied-force source and the fluctuating velocity. The relations

between the equivalent-source correlation functions and the fluctuating-Reynolds-stress corre-

lation functions are discussed in section 4.1, where the acoustic-source correlation function is

related to the fluctuating-Reynolds-stress two-point statistics for both equivalent source terms.

The fluctuating-Reynolds-stress two-point statistics need to be modelled to close the problem.

Parallel to some previous jet-noise source-correlation models, an analytical model for the

fluctuating-Reynolds-stress two-point cross-correlation coefficient is introduced.a The model,

described in section 4.2, is based on the hot-wire measurements of Harper-Bourne4,5 on a low-

Reynolds-number single-stream jet. A review of the Harper-Bourne data is given in section

4.2.1. The analytical model to match the two-point correlation coefficient is introduced in

section 4.2.2. A qualitative description of the phenomena involved in a turbulent flow is

presented in section 4.2.3, where the extent to which our analytical model covers the various

characteristics generally seen in turbulence measurements is investigated.

The final simplified model for the Reynolds-stress two-point correlation function to be used in

the characterisation of the acoustic-source is defined in section 4.3. This model is adapted from

the Reynolds-stress two-point correlation function that best fits the Harper-Bourne data. In

section 4.4 the model for the equivalent-source two-point correlation is then integrated across

aAnalytical models for the two-point correlation coefficient have been widely used in the past. The most
popular two-point-correlation-coefficient model is a separable-variable Gaussian-decay model that we have dated
back to Ribner.47 Recent developments include a separable-variable exponential-Gaussian model introduced
by Morris and Boluriaan.22 The model adopted in this thesis is compared, together with the Gaussian and
exponential-Gaussian models, in Ref. [42] with the measurements of Harper-Bourne.4,5, 42
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the separation space to yield an explicit model for the tensors (4.1) and (4.2).

4.1 Relating the equivalent acoustic sources to available mea-

surements

As was shown in Chapter 3, the aeroacoustic sources associated with the theory of noise

generation are given by applied-stress and applied-force equivalent sources. At high frequency

these correspond to a local-medium Lighthill analogy (section 3.1.1); more generally they

correspond to a Lilley–Goldstein3 analogy (Appendix B). The applied-stress forcing term is

given by expression (3.6) and the applied-force source is given by expression (3.8). For a

subsonic turbulent flow in the form of a free shear layer, the factor (πG + 1) appearing in

both the applied-stress and the applied-force source expressions is close to unity.a Neglecting

the contribution of (πG + 1) allows for expressing the equivalent-acoustic-source two-point

correlation as follows.

- The fluctuating-Reynolds-stress two-point statistics can be used to define the applied-

stress two-point statistics

cQ′Q′ (y,η, τ) ' cS′S′ (y,η, τ) (4.5)

where S′ is the fluctuating Reynolds stress S′ = u′⊗u′ − u′⊗u′.

- The applied-force term requires a model for the two-point correlation function of the

product between the ratio T ′/T and the velocity-field Lagrangian derivative,

d ' T ′

T

Du

Dt
(4.6)

Here T is the static absolute temperature of the gas, and T ′ is its fluctuating component.

While a model for the fluctuating-Reynolds-stress two-point correlation function can rely on

existing published data, no experimental data are available to the author to base a model for

the two-point correlation function associated with d. This problem is addressed in section

4.1.1.

aAs shown by expression (B.16), the Goldstein variable πG is closely related to the pressure fluctuations.
The term (πG + 1) is therefore close to unity for those flows for which

p′ � p

The type of flows we are studying are shock-wave free and unbounded. The thermodynamic pressure p∞ is of
the same order of magnitude as the sea-level atmospheric pressure. In these cases the property p′ � p holds.
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4.1.1 Scaling hypotheses for the applied-force equivalent source

In order to represent the applied-force two-point correlation function in terms of published or

readily available measured quantities, we need to make assumptions regarding the nature of

the temperature fluctuations and regarding the two-point correlation function associated with

(4.6). If we assume that the temperature fluctuations are controlled by convection, we can

state that the static-temperature convective time derivative is negligible.

DT

Dt
' DT ′

Dt
+∇T̄ · u′ ' 0 (4.7)

Note that here we are assuming that ∇T̄ is orthogonal to the local mean velocity. The hy-

pothesis (4.7) states a relation between the material derivative of the temperature fluctuations

and the velocity fluctuations:
DT ′

Dt
' −∇T̄ · u′ (4.8)

If we also assume that T ′ is a small fraction of the absolute temperature T , expression (4.6)

for the applied-force source term may be written as follows:

d ' 1

T̄
T ′
Du

Dt

=
1

T̄

(
d(1) + d(2)

)
, (4.9)

where

d(1) =

(
D

Dt
+∇ū·

)(
T ′u′

)
(4.10)

and

d(2) = −u′
DT ′

Dt
'
(
u′⊗u′

)
· ∇T̄ , (4.11)

using the convective hypothesis (4.8) and assuming the mean-velocity gradient to be orthogonal

to the mean-velocity direction. Equation (4.9) identifies the applied-force source as consisting

of two components:

1. A term d(1) given by the convective derivative plus the mean-velocity gradient operating

on the product between temperature fluctuations and velocity fluctuations.

2. A term d(2) given by the scaled projection of the unit-density Reynolds-stress tensor

along the direction of the time-averaged static-temperature gradient. Here the scaling

factor is given by the modulus of the time-averaged static-temperature gradient.
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Based on equation (4.9), the two-point correlation function for the applied-force source is

approximated as follows:

cdd '
1

T̄ 2
cd(1)d(1) +

1

T̄ 2
cd(1)d(2) +

1

T̄ 2
cd(2)d(1) +

1

T̄ 2
cd(2)d(2)

Although the first three terms in the correlation function are unknown to the author in terms

of published/available experimental data, the fourth term can be derived from the Reynolds-

stress correlation function. We also note that the fourth term has a non-zero time average for

the component along the mean-temperature-gradient direction. The main closure hypothesis

we need to make is that the behaviour of all the τ -dependentb terms involved in the applied-

force-source correlation function is similar. In other words it is possible to define a constant

κd such that

cd′d′ '
κd

T̄ 2
c(d(2))

′
(d(2))

′ ' κd

( |∇T̄ |
T̄

)2 [
S′ · θ̂

]
y−η/2,t

⊗
[
S′ · θ̂

]
y+η/2,t+τ

(4.12)

Here θ̂ indicates the direction of the mean-static-temperature gradient

θ̂ =
∇T̄
|∇T̄ |

Recall that S′ denotes the Reynolds-stress fluctuation S′ = u′⊗u′ − u′⊗u′. We note that the

scaling law (4.12) for the applied-force two-point correlation function has been obtained by

showing a link between the instantaneous values of the Reynolds stress and d. We underline

that the link holds provided the static-temperature fluctuations are of purely-convective nature

and the mean-flow gradients are orthogonal to the mean velocity. We also note that expression

(4.12) yields the same whole-jet behaviourc as the scaling law (A31) for the dipole source in

Morfey, Szewczyk and Tester.41

4.2 A modified-distance model for the Reynolds-stress two-

point correlation

As seen in section 4.1, the fluctuating-Reynolds-stress correlation function is the basis for the

aerodynamic-noise theory in this work. We express the fluctuating-Reynolds-stress two-point

bWe only need the correlation function associated with the fluctuating part of the equivalent acoustic field.
This is explained in more detail in Appendix D.

cExpression (4.12) is local in the sense that it is associated with a specific small region within the turbulent
flow. The use of global scaling parameters for the flow, like characteristic dimension and velocity can be used
to define a global scaling law that is valid in an average sense for the whole flow.
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correlation function in cylindrical-coordinate components at the locationa y:

cS′S′ (y,η, τ) = cij,klγ̂γγi⊗γ̂γγj ⊗γ̂γγk ⊗γ̂γγl (4.13)

Here γ̂γγi (i=1,2,3) are the unit basis vectors for the jet-noise cylindrical coordinate system (see

section A.3 of Appendix A). The components cij,kl associated with the two-point correlation

function can be modelled by introducing the corresponding two-point correlation coefficient

function

ĉij,kl (y,η, τ) =
cij,kl (y,η, τ)

cij,kl (y,0, 0)

and by identifying a model representing ĉij,kl. The model for ĉij,kl is constructed by intro-

ducing an analytical function that fits the main features of available experimental data on

turbulent jets. The available experimental data for the Reynolds-stress two-point correlation

are described in section 4.2.1. The analytical model to fit the data is introduced in section

4.2.2.

4.2.1 The Harper-Bourne experimental data

Very few experimental data are available for the Reynolds-stress two-point correlation in tur-

bulent jets. Harper-Bourne4,5 has published a limited set of measurements corresponding to

an isothermal axisymmetric-nozzle single-stream air jet. The nozzle-exit diameter was 50.8

mm, and the nozzle-exit velocity was 60 m s−1. The data were acquired by using hot-wire

anemometers. The published measurements referb to a single location in the jet turbulent

field; the measurement point is indicated from the nozzle-exit-section centre by the vector

y(m) = 4dJγ̂γγ1 + 0.5dJ γ̂γγ2

where dJ indicates the nozzle-exit diameter. The location y(m) corresponds to a point on the

nozzle lip line 4 diameters downstream the nozzle exit. Harper-Bourne measured the two-point

aAs explained in Appendix A (section A.3), we define a cylindrical-coordinate basis which is function of
the given location around the symmetry axis. Note that, given the middle-point convention for the two-point
correlation around a generic reference point y, the basis for the correlation tensor is a function of y only.
This means that the azimuthal separations are orthogonal to the plane defined by the symmetry axis and the
reference point y.

bWe note that the correlation function measured by Harper-Bourne does not adopt the same convention
that is adopted in this work for the reference point. While the convention used in the present work is

cS′S′ (y,η, τ ) = S′ (y − η/2, t) S′ (y + η/2, t+ τ )

the experimental data are measured by using the fixed position of a hot wire as reference position as follows:

cS′S′ (y,η, τ ) = S′ (y, t) S′ (y + η, t+ τ )

The approximation we are accepting is that the two conventions above coincide. In effect this is equivalent to
assuming small variations for cS′S′ (y,η, τ ) for displacements of the reference position y within the correlation
volume.
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(a) The axial separation η1 varies between 0
and 46 mm according to labels (labels are in
inches). The transverse separation is zero.

(b) The radial separation η2 varies between 0 and
6 mm according to labels. The azimuthal separa-
tion is zero. The axial separation is held constant
at η1 = 5.08 mm.

Figure 4.1: Measured two-point correlation coefficient ĉ11,11 as function of time separation τ
at the reference location y(m). Each curve in the diagrams corresponds to a distinct spatial
separation between the hot-wire anemometers. The diagrams have been provided by Harper-
Bourne; (a) and (b) respectively correspond to Fig. (7) and (8) (space–time correlations for
u2

1 fluctuations) in Ref. [5]. Note that the axial separation associated with the two-point
correlations in (b) has been deduced from the correspondence between the peak time delays
for the curve at η1 = 5.08 mm in (a) and the curve at zero radial separation in (b); according
to that, the vertical scale given in (a) can be extended to (b).

correlation coefficientc associated with the Reynolds-stress fluctuation S ′11 = u′1u
′
1 − u′1u′1:

ĉ11,11

(
y(m),η, τ

)
=
c11,11

(
y(m),η, τ

)

c11,11

(
y(m),0, 0

) (4.14)

The measured two-point correlation coefficient is shown in Fig. 4.1, where diagrams showing

the ĉ11,11 dependence on the time delay τ are given at different spatial separations η. The

measurements show a pronounced convection effect for the diagrams in Fig. 4.1 (a) where the

separation η varies along the mean-flow direction. The convection effect implies that the max-

imum of the correlation coefficient moves towards greater time delays as the space separation

increases. For space separations in transverse directions (e. g. Fig. 4.1 (b) for radial separations

and Harper-Bourne5 for azimuthal separations) the correlation-maximum time delay does not

sensibly change for increasing space separations.d A further characteristic that emerges from

the observation of the two-point-correlation-coefficient diagrams is a maximum-broadening

effect that is seen as the space-separation modulus η increases.e We note that the maximum-

cThe normalised cross-correlation function defined by (4.14) is not the standard two-point correlation coef-
ficient. See the table on p. 139, note (b). The difference is due to the spatial inhomogeneity of the jet-flow
statistics.

dHarper-Bourne4 noted a small convection effect in the two-point correlation time-delay functions for in-
creasing radial separation, and no convection effect in the corresponding functions at increasing azimuthal
separations. We observe that in both cases, although the convection effect is present, it is much smaller than
the convection effect observed in the flow direction.

eWe indicate with ζmax the peak-region curvature of the time-delay function representing the two-point
correlation coefficient at constant spatial separation. The term maximum-broadening is used to indicate the
reduction of ζmax and the corresponding broadening of the peak region.
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Figure 4.2: Frequency-domain Harper-Bourne measurements of the 11 fluctuating-Reynolds-
stress component, as function of the nozzle-exit jet Strouhal number.

broadening is a universal effect in the two-point-correlation measurements associated with the

fluctuating velocityf in turbulent jets. Harper-Bourne measured the frequency-domain charac-

teristics of the fluctuating-Reynolds-stress two-point-correlation-function component c11,11 by

applying analogue frequency filtering to the hot-wire signals. The 1/3-octave auto spectrumg

is presented in Fig. 4.2 (a). The autospectrum measurement corresponds to the normalised

autocorrelation-function Fourier transform

s11,11

(
y(m),0, f

)
/u4
J

integrated across 1/3-octave frequency bands. Note that the high-frequency end of Fig. 4.2

(a) is not well defined by the data; a viscous cut-off is to be expected, at a Strouhal number

dependent on Reynolds number.

The Fourier transform of the two-point correlation coefficient, normalised by its value at zero

space separation, is indicated as follows:

σ11,11

(
y(m),η, f

)
=
ŝ11,11

(
y(m),η, f

)

ŝ11,11

(
y(m),0, f

) (4.15)

See page 139 for a table of relevant notation. Note that σ11,11 is equivalent to the 11, 11

component of the fluctuating-Reynolds-stress two-point CPSD tensor, normalised by its zero-

separation value (the 11, 11 component of the single-point CPSD tensor). Fig. 4.2 (b) shows the

measured 1/e-decay length scales of σ11,11

(
y(m),η, f

)
, normalised by the nozzle-exit diameter

fThe effect is observed in the two-point cross-correlation coefficient for both the Reynolds-stress fluctuations
(ĉij,kl) and the velocity fluctuations (ĉi,j).

gThe data have been provided by Harper-Bourne. The measured spectrum has been published in Bassetti,
Morfey and Harper-Bourne.42
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(Harper-Bourne,4 data taken from the top diagrams in Fig. 9). Symbols l̃1, l̃2, l̃3 denote

the 1/e-decay length scales of σ11,11

(
y(m),η, f

)
. This definition implies that at the spatial

separations

l̃1γ̂γγ1, l̃2γ̂γγ2, l̃3γ̂γγ3

the amplitude |σ11,11| has fallen to the value 1/e = exp(−1).

4.2.2 An analytical function to fit the two-point correlation coefficient

The two-point correlation coefficient ĉ11,11 defined in section 4.2.1, corresponding to the 11

component of the fluctuating Reynolds stress, is modelled by adopting the following function:

ĉ (y,η, τ) = exp (−δc) (4.16)

Here δ is a modified space-time distance defined as

δ =

√√√√√√



τ − η1

Uc
τd




2

+

( |η1|
l1

)a
+

(
η⊥
l⊥

)b
(4.17)

The model is isotropic in the transverse plane as radial and azimuthal separations are expressed

by a transverse separation

η⊥ =
√
η2

2 + η2
3

The reference-position dependence of (4.17) is implicit in the 1/e-decay parameters τd, l1, l⊥,

which are functions of the spatial position y in the flow. Also the phase-shift parameter Uc

depends on y. Function (4.16) has been derived in three steps of progressive refinement trying

to follow the characteristics of the Harper-Bourne measurements.

1. The convection effect and the maximum-broadening associated with the Harper-Bourne

measurements (Fig. 4.1) can be approximately matched by adopting an exponential-

decay function whose argument is given by a simple space–time non-dimensional distance,

corresponding to a=b=2 and c=1 in (4.16):

exp


−

√√√√√√



τ − η1

Uc
τd




2

+

(
η1

l1

)2

+

(
η⊥
l⊥

)2


 (4.18)

The function (4.18) incorporates the convection effect as a time-delay shift that is pro-

portional to the space separation in the flow direction. We note that this is equivalent to

adding a phase shift to the frequency-domain model of the correlation-coefficient Fourier
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transform,h as in Harper-Bourne.4 The quasi isotropy of the Harper-Bourne measure-

ments for space separations varying transversely to the flow direction is present in the

space-time distance model (4.18). The Fourier transform of expression (4.18) shows

similar trends as the corresponding frequency-domain measurements.

2. The more general decay function (4.16) contains additional parameters a and b. These

have been added to improve the matching between the frequency-domain measurements

in Fig. 4.2 (b), and the corresponding result obtained by applying a digital Fourier

transform to the modified-distance model (4.16). This first generalisation of the space–

time distance model allows for anisotropy between the decay behaviours associated with

time separations and space separations. Provided a and b assume different values, decay-

shape anisotropy is also introduced between axial and transverse separations. i

3. A further degree of generalisation has been added with the parameter c that allows

for adjusting the high-frequency roll-off slope associated with the time-delay Fourier

transform of the model.j

The degree to which the function (4.16) follows the Harper-Bourne measurements is shown

in the time-separation domain in Fig. 4.3 (to be compared against the corresponding mea-

surements in Fig. 4.1) and in the frequency domain in Fig. 4.4, where we indicate with ŝ the

Fourier transform of model (4.16). The values a = 1.8, b = 2.8, and c = 1 are used for the

model. The parameter Uc is fixed to the value 38.5 m/s (0.64uJ ). The 1/e-decay parameters

are set as follows: τd = 0.2 10−3 s, l1 = 0.0269 m (0.53dJ ), l⊥ = 0.0035 m (0.07dJ ).

4.2.3 Phenomena controlling the turbulent-energy spectrum

In this section we give a qualitative description of a turbulent flow. We argue that model (4.16)

is limited to the phenomena where viscous dissipation can be considered as a small parameter.

We also argue that, if it was to be used for modelling the fluctuating-velocity correlation,

the parameter c in model (4.16) should be set to a value near to 0.8 in order to confirm the

theoretical/experimental slope associated with the intermediate range of frequencies in the

turbulent-velocity PSD.

hFor a given space separation and at varying time delay, the function (4.18) reaches a maximum for

τmax =
η1

Uc

The Fourier transform in τ is complex, as can be seen by operating the time shift τ → τ ′ = τ − τmax. Noting
that the function (4.18) is an even function of τ ′, the Fourier transform is given by a complex solution whose
phase is given by −2πfτmax.

iThe term decay shape indicates the normalised decay function that is followed by the correlation as the
given separation increases. Decay-shape anisotropy here means that a further degree of directional dependence
can be added to model (4.18). The model in (4.18) already allows for decay-length anisotropy as the values l1,
l⊥ are arbitrary and potentially different.

jThis parameter enlarges the family of functions included by (4.16) to the point that for the choice (a, b, c) =
(2, 2, 2) we get a separable-variable function. The choice (a, b, c) = (2, 2, 2) yields a Gaussian shape for the zero-
space-separation ĉ11,11; this is in evident contrast with Fig. 4.1 (a), zero-space-separation curve. The value of
c must be close to 1 to achieve a behaviour for (4.16) that is close to the Harper-Bourne measurements.
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Figure 4.3: Modelled two-point correlation coefficient ĉ11,11 = ĉ
(
y(m),η, τ

)
at constant space

separations and varying time separation. The parameters in model (4.16) are set to the
following values: τd = 0.24dJ/uJ , Uc = 0.64uJ , l1 = 0.53dJ , l⊥ = 0.07dJ . Also, a = 1.8, b = 2.8
and c = 1.

We can think of a developed turbulence flow as a chaotic ensemble of 3-D vortical structures

that are generated at random instants at locations where the instantaneous velocity field is

unstable. The vortical structures will grow up to the dimension of the local 3-D sheared flow

and dissipate. The dissipation of a given structure is supposed not to happen as a direct

consequence of viscosity; an energy transfer to smaller flow structures is assumed to happen

through the energy cascade process.k The energy cascade operates an erosion of the flow

structures offering at a given instant a view of the flow with the presence of a wide range

of flow-structure sizes. Structures in the energy cascade process define a size range going

from the largest flow dimension, defined by the typical geometries of the flow boundaries,

down to a smallest-size limit. The smallest sizes in the flow are controlled by the viscous

effect. At this size the work of the viscous forces becomes effective and the fluctuating kinetic

energy is converted into heat. The range of eddy scales intermediate between the largest

scales (comparable with the shear-layer thickness) and the viscous-dissipation scales is called

the inertial subrange. The viscous-effect size range is called the viscous range. This picture of

the phenomena involved in the turbulent-energy spectrum falls within the generic description

given by Richardson and used by Kolmogorov49 to derive the theoretical basis supporting

the constant-slope decay corresponding to the inertial subrange of flow structures. We note

that model (4.16) can be used to partially represent the picture of the turbulent-energy power

spectrum. Model (4.16) covers the energy-production and the inertial-subrange frequency

kThe given vortical structure interacts with similar structures to form a flow pattern that is unstable. The
instability results in the formation of further vortical structures at a smaller scale than the initial ones. A
smaller-scale flow pattern is in this way generated, from which further instabilities leading to even smaller
scales and so on. This break-down process transfers the fluctuating kinetic energy from large structures to
progressively smaller structures. A more detailed qualitative description of the process is given in Ref. [48].
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Figure 4.4: Frequency-domain behaviour of model (4.16) compared to the corresponding
Harper-Bourne measurements. The model parameters are as in Fig. 4.3.

regions only.l Including the dissipation range is not justified by the measurements available

in Ref. [4, 5], and would imply a Reynolds-number dependence of the model. Setting the

exponent c to the value 4/5 yields a high-frequency roll-off slope that is equal to the roll-off

slope corresponding to the turbulent-kinetic-energy inertial subrange spectrum.m

4.3 A simplified model for the acoustic-source correlation func-

tion

As was argued in section 4.1, the acoustic-source statistics can with a few assumptions be

related to the fluctuating Reynolds-stress correlation function. An initial description of the

acoustic source can be made by assuming that the acoustic-source two-point correlation is

simply proportional to the Reynolds-stress two-point correlation. The implication of this

approach is that a good model of the Reynolds-stress two-point correlation at a given spatial

location also represents the source model for the acoustic radiation from the same point. This

approach has been followed in Ref. [42] where a model of type (4.16) was adopted with values for

a, b and c that ensured a good fit to the Harper-Bourne measurements. However, the resulting

frequency-proportional band width (FPBW) acoustic-source spectrum at the Harper-Bourne

lThe model (4.16) does not represent a dissipation-range frequency region, as a constant high-frequency roll
off characterises the function ŝ (y,0, f). The high-frequency slope variation typical of the turbulent-kinetic-
energy spectral measurements, and explained as effect of viscosity, is not present.

mThis inertial-range slope has been evaluated numerically by applying DFT to model (4.16). The estimated
value is typical in the PSD measurements of turbulent energy. The measurements refer to the second-order
statistical moments of the fluctuating velocity and not the fourth-order moments as in the Harper-Bourne
measurements. Kolmogorov49 provided the theoretical foundations to base statistical theories that lead to the
same result for the inertial-range slope.
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measurement location showed a growing high-frequency trend. This is in contrast with the

high-frequency decay observed in jet-noise acoustic measurements. A modification of model

(4.16), obtained by changing the values (a, b, c) from those that optimise the fit to the Harper-

Bourne measurements, yields a decaying high-frequency slope. We note that access to a more

extensive set of Reynolds-stress measurements represents the only way to properly resolve the

choice of the best set of coefficients a, b and c. Specifically we need measurements of the

two-point Reynolds-stress statistics at a number of different space locations in a given jet and

we need to repeat the measurements for different jets, in order to establish if the two-point

correlation coefficient can be modelled by adopting a simple modified-distance model as in

(4.16). A further interesting point to define is the existence of a time-separation interval where

the fluctuating-Reynolds-stress autocorrelation coefficient is negative;a once this is defined, an

oscillating function can be added to model (4.16). As in Ref. [50],b we assume a simplified

model for the two-point correlation coefficient in order to easily evaluate the effect of changing

the decay shape of the two-point CPSD modulus with increasing space separations. The

simplified model is derived from model (4.16) by fixing the value of the exponents a and b to

a common value al, and by assuming that the exponent c is 1.

ĉ0(y,η, τ) = exp


−

√√√√√√



τ − η1

Uc
τd




2

+
ηal1

lal1

+
ηal2

lal2

+
ηal3

lal3


 (4.19)

We note that this model allows for a straightforward addition of a possible anisotropy in

the transverse plane. For this reason the radial and azimuthal separations appear separately

in (4.19), each with their corresponding 1/e-decay length.c A frequency-domain comparison

between model (4.19) and the corresponding Harper-Bourne measurement is shown in Fig. 4.5

as function of the reduced frequency Srτ = fτd.
d Note that changing the parameter al does

aNote that the Harper-Bourne4,5 measurements do not clearly identify a negative-coefficient time-delay
interval; this might be due to the level of noise-to-signal ratio associated with the measurements and a small
value for the negative parts of the correlation coefficient; in other words, the correlation has already decayed
below the noise level before the first zero of the autocorrelation.

bThe work in Bassetti and Morfey50 suggests a solution by assuming that the true frequency dependence
of the l̃1 scale deviates from the measurements in Refs. [4, 5]. The frequency dependence measured for l̃⊥ is
extended to l̃1 by adopting the values (a, b, c)=(2.7, 2.7, 1) in model (4.16). This yields a physical high-frequency
decay for the FPBW acoustic-source power spectrum in the high-frequency solution (3.16) of the modelled 1/3-
octave spectra. Note that the low-frequency component (3.23) in Ref. [50] is affected by a mistaken choice of
the Reynolds-stress autospectrum; the mistaken spectrum is characterised by a high-frequency decay that is
greater than the one associated with model (4.16) and c=1.

cThis complication of the model is not numerically challenging, within the present framework, as long as the
decay-shape function is the same for each type of spatial separation. In this case all the space variables behave
isotropically in the stretched-separation space

η̂i =
ηi
li

(no summation)

dNote that assuming that the Reynolds-stress two-point correlation coefficient follows model (4.19) is equiv-
alent to saying that the autospectrum and the 1/e-decay lengths l̃i collapse on corresponding characteristic
curves, if expressed as functions of fτd and appropriately scaled. A note regarding the Strouhal scaling of
model (4.19) is given in Appendix G.
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not alter the normalised autospectrum ŝ0(y,0, f) derived by Fourier transforming model (4.19).

The value assigned to al affects the high-frequency trends of the 1/e-decay lengths l̃i associated

with the normalised two-point CPSD σ0(y,η, f), as derived by Fourier transforming model

(4.19) and normalising by its zero-separation value ŝ0(y,0, f). For al = 2.0, the high-frequency

roll-off of the modelled l̃i is close to the axial-separation Harper-Bourne measurements, points

• in Fig. 4.5 (b); it is close to the transverse-separation Harper-Bourne measurements (points

×+ and × in Fig. 4.5) for al = 2.7.

We assume that the whole set of components of the fluctuating-Reynolds-stress correlation

function can be related to the same two-point correlation coefficient. This yields the following

assumption for the fluctuating-applied-stress two-point correlation tensor:

cQ′Q′ ' cS′S′ ' q̄ij,kl (y) ĉ0(y,η, τ) γ̂γγi⊗γ̂γγj ⊗γ̂γγk ⊗γ̂γγl (4.20)

Here q̄ij,kl (y) = cij,kl (y,0, 0) denotes the component of the fluctuating-Reynolds-stress mean-

product tensor; it is given as follows:

q̄ij,kl (y) =
(
u′iu
′
j − u′iu′j

)(
u′ku

′
l − u′ku′l

)
(4.21)

Similarly, the applied-force two-point covariance tensor is defined as follows:

cd′d′ ' κd

( |∇T̄ (y)|
T̄ (y)

)2

∆i,j (y) ĉ0(y,η, τ) γ̂γγi⊗γ̂γγj (4.22)

(compare (4.12)). Here the components ∆i,j (y) are given by the following combination be-
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tween the components q̄ij,kl and the components of the static-temperature-gradient unit vector

θ̂:

∆i,j = θ̂2
1q̄1i,1j + θ̂1θ̂2 (q̄1i,2j + q̄2i,1j) +

θ̂2
2q̄2i,2j + θ̂1θ̂3 (q̄1i,3j + q̄3i,1j) +

θ̂2
3q̄3i,3j + θ̂2θ̂3 (q̄2i,3j + q̄3i,2j)

(4.23)

For a parallel flow, the orthogonality between θ̂ and the mean velocity implies θ̂1 = 0;e in this

case we have

∆i,j = θ̂2
2 q̄2i,2j + θ̂2

3 q̄3i,3j + θ̂2θ̂3 (q̄2i,3j + q̄3i,2j) (4.24)

We note that in the case of axisymmetric parallel flow the mean static-temperature gradient

is in the radial direction; in this case expression (4.23) reduces to

∆i,j = q̄2i,2j (4.25)

4.4 The volume integral across space separation

In this section we evaluate the volumetric source strength in the frequency domain, using the

simplified source models (4.20) and (4.22) and with the cross-correlation coefficient for each

ij, kl fluctuating-Reynolds-stress combination approximated by (4.19). It is therefore necessary

to calculate the volume integral of the acoustic-source phase-shifted two-point CPSD as in

expressions (4.1) and (4.2). Noting that the cylindrical-coordinate unit vectors do not change

orientation under varying separation,a the expressions for the applied-stress source and for the

applied-force source are

q̄ij,kl (y,0, 0) γ̂γγi⊗γ̂γγj ⊗γ̂γγk ⊗γ̂γγl

∫∫

η

∫
ŝ0(y,η, f) exp (j 2πfη · r̂/c) d3η (4.26)

and

κd

( |∇T̄ (y)|
T̄ (y)

)2

∆i,j (y) γ̂γγi⊗γ̂γγj

∫∫

η

∫
ŝ0(y,η, f) exp (j 2πfη · r̂/c) d3η (4.27)

Expressions (4.26) and (4.27) both contain the spatial integral

∫∫

η

∫
ŝ0(y,η, f) exp (j 2πα · η) d3η (4.28)

eRecall that equation (4.7) has been derived under the hypothesis of orthogonality between the mean-
temperature gradient and the mean velocity.

aThe middle-point definition for the two-point correlation function means that the azimuthal separations are
given by moving in the direction orthogonal to the plane defined by the reference point y and the symmetry
axis. The azimuthal extent of the coherent source region is assumed small.
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a collapse on a characteristic curve. The characteristic curves are shown in (b) for different
values of al.

where α is the repetency vector

α =
f r̂

c

The integral can be reduced to a 1-D integral by decomposing the Fourier transform of (4.19)

as follows:

ŝ0(y,η, f) = ŝ0(y,0, f) σ0(y,η, f) (4.29)

Here the first factor represents the normalised spectrum of the fluctuating Reynolds-stress

components at point y, and function σ0(y,η, f) represents the separation dependence of the

two-point CPSD. The 1/e-decay length scales l̃i associated with the modulus of σ0are shown in

Fig. 4.5 (b), where the corresponding Reynolds-stress quantities as measured by Harper-Bourne

are also shown. Note that the parameter al in model (4.19) affects the frequency dependence

of l̃i: a steeper high-frequency decay corresponds to decreasing values of al. The numerical

evaluationb of |σ0(y,η, f) | is reported in Fig. 4.6 (a) at different frequencies and for varying

spatial separation. An important characteristic of |σ0(y,η, f) | is reported in Fig. 4.6 (b)

where the diagrams representing the modulus decay are shown as a function of the normalised

separation: the decay shape does not change with change of frequency. The σ0 function also

exhibits spatial isotropyc for the modulus decay shape with respect to the separation direction,

bThe numerical evaluation has been performed by applying a DFT to sequences given by the sampling
of (4.19) at different time separations and space separations. For a given spatial separation a sequence of
samples is taken at time separations that resolve the range of variability of (4.19). The sequence is then
processed by adopting standard Fast Fourier Transform routines. The processed data are considered up to a
maximum frequency guaranteeing a negligible aliasing effect. The accuracy of the routines has been tested
against analytical solutions in Ref. [42].

cThe exponents a and b in (4.16) have a common value al in (4.19). This implies isotropy when considering
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if the separation coordinates are suitably scaled at each frequency by introducing the new

variable

η → η̃(f) =
ηi

l̃1
γ̂γγ1 +

η2

l̃2
γ̂γγ2 +

η3

l̃3
γ̂γγ3

This property allows for representing σ0 as an implicit function of frequency. Here l̃i(f) (i=

1, 2, 3) denote the amplitudes of the separations ηi at which |σ0(x,η, f) | has decayed to the

value 1/e. Note that l̃i(f) is not the same as li in (4.19). The expression for the fluctuating-

Reynolds-stress normalised two-point CPSD reads:

σ0(x,η, f) = |σ0(x, η̃(f)) | exp (−j 2πfη1/Uc) (4.30)

Introducing the change of variable η → η̃ into the space-separation integral (4.28) yields

ŝ0(y,0, f) l̃1 l̃2 l̃3

∫∫

η̃

∫
|σ0(x, η̃) | exp (j 2πα̃ · η̃) d

3
η̃ (4.31)

Here α̃ is a modified-repetency vector depending on the initial phase shift (dictated by the

acoustic-radiation parameters c and r̂), the phase of σ0 and the 1/e-decay lengths of |σ0 |:

α̃ =

(
f l̃i
c
r̂iγ̂γγi −

f l̃1
Uc
γ̂γγ1

)
(4.32)

The integral (4.31) can be reduced to a 1-D integral by carrying out the space integration in

a polar spherical-coordinate system having the polar axis directed along α̃. After solving the

integral across azimuth and polar angle, the resulting 1-D integral is given as

ŝ0(y,0, f) l̃1 l̃2 l̃3
2

α̃

∞∫

0

|σ0(x, η̃) |η̃ sin (2πα̃η̃) dη̃ (4.33)

Here α̃ is the modulus of the non-dimensional modified-repetency vector α̃,

α̃ =
f

c

√√√√
(

l̃1
Uc/c

+ l̃1r̂1

)2

+
(
l̃2r̂2

)2
+
(
l̃3r̂3

)2
(4.34)

The integral in (4.33) converges, for the values of parameter al considered in model (4.19).

This allows one to define a positive-valued real function Cf of a generic non-negative real

variable ξ as follows.

Cf (ξ) =
2

ξ

∞∫

0

|σ0(x, η̃) |η̃ sin (2πξη̃) dη̃ (4.35)

model (4.19) in the stretched space ηi/li. The isotropy of σ0 is a consequence of the direct proportionality
between l̃i(f) and li; see Appendix G.
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Figure 4.7: Cancellation-factor function (4.35) as function of a general scalar ξ, for a number
of values of the parameter al in (4.19).

The function Cf (ξ) is shown in Fig.4.7. The integral term (4.33) can be expressed in terms of

Cf (α̃) as follows:

ŝ0(y,0, f) l̃1 (y, f) l̃2 (y, f) l̃3 (y, f) Cf (α̃) (4.36)

Expression (4.36) allows us to break down the space-separation integral in the volumetric

source-strength expressions (4.26) and (4.27) into 5 scalar factors. Each of the 5 scalar factors

can be modelled separately on the basis of the time-invariant parameters τd, Uc, li in (4.19).

The result (4.36) can be input into (4.26) and (4.27) to yield tensor expressions for the

acoustic-source volumetric strength. The tensor is given as

q̄ij,kl (y,0, 0) ŝ0(y,0, f) l̃1 (y, f) l̃2 (y, f) l̃3 (y, f) Cf (α̃) γ̂γγi
⊗γ̂γγj

⊗γ̂γγk
⊗γ̂γγl (4.37)

for the applied-stress sources and

κd

( |∇T̄ (y)|
T̄ (y)

)2

∆i,j (y) ŝ0(y,0, f) l̃1 (y, f) l̃2 (y, f) l̃3 (y, f) Cf (α̃) γ̂γγi
⊗γ̂γγj (4.38)

for the applied-force source. Expressions (4.37) and (4.38) need to be input to the high-

frequency and low-frequency expressions (3.15) and (3.20). The appropriate sound speed c and

unit radiation vector r̂ are to be specified differently for the different frequency limits. These

radiation parameters are confined to the argument α̃, expression (4.34), of the cancellation-

factor function Cf , defined by (4.35).
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4.5 Concluding remarks

On the way to expressions (4.37) and (4.38), which represent the main closure ingredient

for the aerodynamic noise model, a number of useful results have been found in the present

chapter.

1. The instantaneous local strength of the equivalent acoustic sources has been related

to the local value of the unit-density Reynolds stress. Provided the local pressure

fluctuations are much smaller than the mean pressure, the instantaneous value of the

applied-stress equivalent acoustic source equals the unit-density Reynolds stress. Under

the hypothesis of purely convective static-temperature fluctuations and assuming small

static-temperature fluctuations compared to the time-averaged absolute static tempera-

ture, a relation between the instantaneous value of one of the terms of the applied-force

source and the scaled projection of the unit-density Reynolds stress has been identi-

fied in expression (4.11). The instantaneous applied-force source also involves a further

fluctuating term (4.10) given by the Lagrangian time derivative plus the mean-velocity

gradient operating on the product of fluctuating static temperature times fluctuating-

velocity vector. In the absence of data from simulations or measurements, this second

term is assumed to scale in the same way as the first.

2. It follows that the two-point correlation function associated with the fluctuating part of

the applied-stress and the applied-force equivalent acoustic sources is directly related to

the two-point correlation function of the fluctuating Reynolds stress. For the applied-

force source this requires a further scaling hypothesis implying the full characterisation

of its two-point correlation function by means of the source-strength instantaneous com-

ponent (4.11) given by the scaled projection of the unit-density Reynolds stress.

3. An analytical model (4.16) for the fluctuating Reynolds-stress two-point correlation coef-

ficient has been introduced. The model is based on a modified space–time distance (4.17)

in a stretched separation space. It includes a convection effect in the axial direction, given

by a time-separation shift that varies linearly with the space-separation axial component.

The model closely follows the corresponding Harper-Bourne4,5,42 measurements both in

the time-separation domain and in the frequency domain. This model shows that the

frequency-domain behaviour of the Harper-Bourne data can be reproduced by a simple

constant-parameter model. The modified-distance model departs from the traditional

way of modelling the acoustic-source correlation function via a Gaussian-decay model of

the two-point correlation coefficient, which can be dated back to Ribner.47 This model

also constitutes an alternative interpretation for velocity-covariance measurements; in

this area the Ribner47 model was adopted by Chu51 and is used in the work by Ker-

hervé, Fitzpatrick and Jordan.52

4. A model (4.19) for the acoustic-source two-point correlation coefficient is derived as a

simplification of model (4.16). Model (4.19) retains the time-separation dependence of
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model (4.16), but spatial-decay shape isotropy is assumed. Note that model (4.19) is

used to represent the correlation coefficient for all ij, kl combinations of the fluctuating

Reynolds-stress components. The shape isotropy for the space-separation decay of model

(4.19) is used in order to reduce the integral across separation space to a 1-D integral

that can be evaluated numerically. A cancellation function (4.35) can in this way be

tabulated and directly accessed; this greatly reduces the numerical effort for the local

evaluation of the acoustic-source volumetric strength.

Further experimental/DNS data on turbulent flows would greatly improve the modelling in

this chapter. A DNS analysis of the term (4.10) in the applied-force expression could be used

to test the applied-force scaling hypothesis in section 4.1.1 and in point 2 above. Specifically

an evaluation of the two-point correlation function associated with the fluctuating part of

term (4.10) is required in order to properly characterise the fluctuating-applied-force two-

point correlation for flows involving moderatea temperature fluctuations where one needs the

two-point correlation associated with the fluctuations of the term:

T ′

T

Du

Dt
' 1

T̄

((
D

Dt
+∇ū·

)(
T ′u′

)
+
(
u′⊗u′

)
· ∇T̄

)

An important source of additional information would here be given by the two-point statistics

of the term T ′u′; a similar approach as in Appendix D could be used to scale the terms

involving time derivatives of T ′u′. Not considering the cross-term covariance functions, this

would leave a single statistical function to be modelled by means of a closure hypothesis: the

two-point covariance of ∇ (T ′u′) · u.

Note that the model is based entirely on turbulent-jet experimental data taken at a single

location (the end of the potential core, on the nozzle-lip line) in one isothermal single-stream

round jet. The source modelling for the aerodynamic sound theory developed in this work is to

date very approximate, but the methodology can be used to derive a better model once more

data become available. The availability of a solid experimental data base to use as a basis

for modelling the two-point correlation of the fluctuating Reynolds-stress field in turbulent

jets would greatly improve the source model. The generality and universality of two-point

correlation-coefficient models such as (4.16) need to be experimentally assessed for different

turbulent jets and at various spatial locations.

aFor flows including temperature fluctuations of the same order as the local time-averaged static temperature,
one requires the evaluation of the two-point correlation associated with the fluctuations of the term:

T ′

T

Du

Dt
' 1

T

„„
D

Dt
+∇ū·

«`
T ′u′

´
+
`
u′⊗u′

´
· ∇T̄

«

Here we only assumed convective static-temperature fluctuations.
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Chapter 5

Application to jet-noise prediction

The aerodynamic-noise theory developed in Chapters 3 and 4 is applied in this chapter to

the prediction of jet noise. A solver for the compressible Reynolds-averaged Navier–Stokes

equations (RANS) is used to generate fields for the Favre-averaged flow variables, including

components of the unit-density Reynolds stress. A description of the RANS solution and the

corresponding output variables is given in section 5.1. The RANS solution is used to model

the two-point Reynolds-stress statistics. The relations connecting the RANS solution at a

given space location to the statistical quantities required by the acoustic model are described

in section 5.2. These connection relations involve a set of adjustable parameters. The set

of parameters is constant for a given RANS-solution strategy; it needs to be determined via

a calibration procedure which is described in section 5.3. The 90-degree 1/3-octave spectral

predictions associated with the low-frequency (3.23) and the high-frequency (3.16) solutions

are broken down into the corresponding applied-stress (quadrupole) and applied-force (dipole)

contributions. The four spectral contributions are compared to model-scale noise measure-

ments on heated and unheated jets in section 5.4.

5.1 Estimation of the flow statistics for a turbulent jet

The solution of the Reynolds-averaged Navier–Stokes (RANS) equations offers an easy-access

estimation of the turbulent-jet flow statistics. In this work a commercial solvera has been

used to provide a Reynolds-transport-closure compressible-flow RANS solution. The RANS-

solution strategy is detailed in Appendix F where the RANS solution for a coaxial jet is

described as an example. We restrict attention to jet flows with axisymmetric boundary

conditions; axisymmetry of Favre averages has therefore been imposed on the RANS solution.

The Reynolds-stress closure model (RSM) allows for representing anisotropies in the turbulence

aFluent (version 6.2) has been used by adopting a Reynolds-stress model for the closure of the RANS
equations. The meshes have been designed by using the commercial software MSC/PATRAN and specifically
implemented computer routines (FORTRAN 77) for designing the mesh pattern in the near-wall region and in
those regions where the mesh size changes rapidly.
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field. The Favre averages of the unit-density Reynolds-stress componentsb appear among the

variables of the compressible RSM RANS equation system; they are therefore output as part

of the solver solution. The set of Favre-averaged flow variables that are output by the solver

and used by the acoustic model is listed as follows:

- Velocity vector 〈u〉ρ

- Static temperature 〈T 〉ρ

- Unit-density Reynolds stress 〈u′⊗u′〉ρ

- Turbulence-dissipation rate 〈ε〉ρ

Here the Favre average is denoted by 〈 〉ρ. As explained in Appendix F, these flow variables

are evaluated along radial profiles starting from the symmetry axis in the RANS-solution

computational domain.c

5.2 Connection between the RANS solution and the acoustic

model

The determination of the acoustic-model input (space distribution of flow statistics) needs

to be performed on the basis of the RANS-solver output; the base-flow quantities and the

volumetric source strength need therefore to be expressed as a function of the Favre-averaged

RANS variables defined in section 5.1. Determining the volumetric source strength (4.37) and

(4.38) requires the spatial distributions associated with q̄ij,kl (y), l̃i (y, f), α̃ (x,y, f), ŝ0(y,0, f),

∇T̄ (y). Note that α̃, see equation (4.34), requires the definition of the source-convection

parameter Uc and the appropriate speed of sound and source–observer radiation direction.

The latter are given by c∞ and r̂ for the high-frequency solution (3.23); they are c̄ and r̂E for

the high-frequency solution (3.16). The Green-function parameters are expressed in terms of

the mean-velocity field ū (y) and the speed of sound c̄ (y). The parameters are the Doppler

factor D−ū and emission-time source–observer vector rE for solution (3.16); they are the flow-

factor components for solution (3.23). We identify the time-averaged velocity and speed of

sound with the corresponding Favre averages output by the RANS solver:

ū = 〈u〉ρ c̄ =
√
γR 〈T 〉ρ (5.1)

bIn the axisymmetric case the non-zero Favre-averaged components of the unit-density Reynolds stress are
〈u′1u′1〉ρ, 〈u′2u′2〉ρ, 〈u′3u′3〉ρ and 〈u′1u′2〉ρ.

cThis spatial distribution of acoustic-processor sampling points has been chosen in order to simplify the
numerical space integration of the acoustic-source volumetric strength. Note that this fact has the drawback
of imposing an intermediate step between the RANS solution and the acoustic processing: the RANS solution
needs to be interpolated to gather the solution on the acoustic-processor sampling points. The sampling points
are chosen in a way that allows for spatially resolving the high-Reynolds-stress region in the flow; the part of
the computational domain outside the jet flow is not considered in the acoustic computation.
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As explained in Appendix G, assuming that the two-point correlation coefficient is expressed

by model (4.19) implies that the frequency-dependent terms ŝ0(y,0, f) and l̃i (y, f) collapse on

corresponding characteristic spectra, if expressed as function of the Strouhal number Srτ = fτd

and scaled as in equations (G.4) and (G.6). The time scale τd is therefore a key parameter

to be expressed in terms of the RANS solution; we assume that the time scale is proportional

to the ratio between the Favre-averaged turbulent kinetic energy k and turbulent dissipation

rate ε.

τd (y) = cτ 〈k〉ρ / 〈ε〉ρ (5.2)

Expression (5.2) corresponds to similar expressions introduced in previous hybrid RANS–

acoustics models, e. g. Ref. [21], to model the acoustic-source time scale; the different physical

meanings of the time scales are to be noted.a The connection relation (5.2) defines a spatial

variation for the Strouhal number Srτ = Srτ (y) at a fixed frequency; we refer to Srτ as the

local Strouhal number.

The characteristic spectra fA (Srτ ) and fL (Srτ ) associated with ŝ0(y,0, f) and l̃i (y, f) are

found as follows:

1. The acoustic-source two-point correlation coefficient at the Harper-Bourne4 measurement

location is estimated from (4.19), based on the values τ
(m)
d and l

(m)
i that best fit the

Harper-Bourne4 measurements.

2. A numerical Fourier transform is applied and the result is scaled according to equations

(G.4) and (G.6).

The evaluation of the length-scale function fL (Srτ ) is performed at different values of the

parameter al; this allows for setting different high-frequency decay trends to the frequency-

dependent length scales l̃i (y, f) .b The zero-separation scaled two-point CPSD (see table on

p. 139) is expressed at an arbitrary position in the jet by using the local value of τd (5.2) as

follows:

ŝ0(y,0, f) =
τd(y)

τ
(m)
d

ŝ0

(
y(m),0, fτ

(m)
d

)
(5.3)

Here we indicate with ŝ0(y,0, f) and ŝ0(y,0, Srτ ) spectral densities with respect the frequency

f and the local Strouhal number Srτ , respectively. Note that ŝ0

(
y(m),0, fτ

(m)
d

)
/τ

(m)
d is the

characteristic spectrum function fA introduced in (G.4). A similar procedure is followed to

estimate the local value of the 1/e-decay lengths of the normalised two-point CPSD σ0(y,η, f).

aIn the cited example, Morris and Farassat21 use a connection relation like (5.2) to define a time-scale in
a “moving-axis” correlation-coefficient model. In the present thesis a similar relation is used to define the
fixed-frame autocorrelation-coefficient time scale.

bRecall that the Harper-Bourne experimental data are insufficient to establish a high-frequency decay which
is valid for both the axial and the tranverse separations. The model we use here adopts an isotropic-decay model,

where the high-frequency trend for the characteristic function l̃i
“
y(m), Srτ

”
is determined by the parameter al.

Pending the availability of a more complete set of measurements, we study the effect on the acoustic predictions
of the high-frequency roll-off in the modelled 1/e-decay lengths.
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The corresponding connection relation is given as follows:

l̃i (y, f) =
li (y)

l
(m)
i

l̃i

(
y(m), fτ

(m)
d

)
(no summation) (5.4)

The length scale li (y) needs to be defined in equation (5.4); it is assumed to depend on the

local value of the RANS output as

li (y) = cLg

(√
〈k〉3ρ / 〈ε〉ρ

)(
3
〈
(u′i)

2
〉
ρ
/2 〈k〉ρ

)cLe
(5.5)

where the usual k-ε length scale
(√
〈k〉3ρ / 〈ε〉ρ

)
, as defined in previous RANS–acoustic-analogy

papers (e. g. Ref. [21]), is modified by adopting an anisotropy factor. If the turbulence were

isotropic, the averaged Reynolds-stress component
〈
(u′i)

2
〉
ρ

would equal 2 〈k〉ρ /3. The ratio

of these quantities, raised to the power cLe , is used as an anisotropy factor in (5.5).c This

assumption associates a larger length scale with a given direction if the mean square of the

fluctuating velocity in that direction is larger than those in the other directions. Note that

the ratio l̃i

(
y(m), fτ

(m)
d

)
/l

(m)
i , in equation (5.4), is the local-Strouhal characteristic spectrum

function fL, as defined in equation (G.6).

A further frequency-dependent parameter to be defined is α̃. Expression (4.34) gives an

explicit frequency dependence for α̃ once the frequency-independent flow parameters Uc and c

are determined. The parameter Uc represents the average convection velocity to be associated

with the acoustic-source two-point correlation at a given location; we assume that this quantity

is proportional to the modulus of the Favre-averaged velocity.

Uc (y) = cU 〈u〉ρ (y) (5.6)

Note that the Uc convection-velocity parameter is in principle different from the mean velocity,

and the radial profiles of Uc can be expected not to be similar to the mean-velocity profiles.d

However, pending the availability of experimental data across the shear layer for the unit-

density Reynolds stress correlation, we propose expression (5.6) as a closure relation.

The value of the speed of sound is set according to equation (5.1) for the high-frequency

cNote that this ratio is known, since we are using an RMS-closure RANS solver that provides estimates for
individual components of the Reynolds-stress tensor. If two-equation RANS systems are used to provide the
input, this ratio will not be locally available. In that case a further parameter needs to be included in order to
account for directionality.

dAlthough no measurements are available across the shear layer for the unit-density-Reynolds-stress two-
point covariance, in the case of the fluctuating velocity, the phase speed (convection velocity) associated with the
two-point correlation measurements presents radial profiles that are different from the time-averaged-velocity
profiles. The fluctuating-velocity two-point correlation measurements performed by Lau53 (also in Fig. 27 of Lau
and Fisher,54 profile corresponding to the velocity fluctuations) showed a convection-velocity radial distribution
having a shape across the shear layer that is like a sin function between 0 and 2π. The convection velocity is
constant in the potential core and outside the jet, having a value that is close to the nozzle-lip-line value. This
picture is consistent with the overlapping of a perturbation field moving at a speed which is close to the lip-line
speed and a perturbation field that moves at the local mean velocity.
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solution; it is set as the ambient speed of sound c = c∞ for the low-frequency model.e Note

that the spectral characteristics associated with the volumetric acoustic-source strength are

now assigned in terms of the empirical parameters cτ , cLg , cLe , and cU . These parameters,

for a given two-point correlation coefficient model (4.19), determine the local time scale τd

together with the 1/e-decay length scales and phase-shift parameter of the normalised CPSD

σ0(y,η, f). The parameter al in model (4.19) will influence the source-strength spectrum by

varying the decay of the frequency-dependent length scales l̃i and, consequently, of α̃ and

Cf (α̃).

The remaining source-strength factors in expressions (4.37) and (4.38) are frequency inde-

pendent. The Favre-averaged static-temperature field is used to define the static-temperature

terms ∇T̄ and T̄ in the applied-force source-strength expression (4.12). The time averaged

product of two unit-density Reynolds-stress fluctuating components is assumed to be pro-

portional to the product of corresponding Favre-averaged Reynolds-stress components. Zero

correlation is assumed between different components of the Reynolds stress to give

q̄ij,kl (y) =
(
u′iu
′
j − u′iu′j

) (
u′ku

′
l − u′ku′l

)
= cQ

〈
u′iu
′
k

〉
ρ

〈
u′ju
′
l

〉
ρ
δikδjl (no summation) (5.7)

Note that here we use all possible cross products of the principal Reynolds-stress components〈
(u′i)

2
〉
ρ

to scale the 6 non-null different components of the fluctuating-Reynolds-stress mean

product tensor. Expression (5.7) implies a constant ratio between the mean squared Reynolds-

stress fluctuations q̄ij,ij =
¯(
S′ij
)2

and the product of the mean Reynolds-stress components

S̄iiS̄jj.
f

Expression (5.7) is used with the static-temperature gradient ∇T̄ in expression (4.23) to de-

termine the factor ∆i,j in the applied-force volumetric source strength. The radial component

of the temperature gradient is assumed to dominate the gradient direction to give

∆i,j (y) = cQ
〈
(u′2)2

〉
ρ

〈
u′iu
′
j

〉
ρ
δij (no summation) (5.8)

It is important to note that the connection relations described in this section need to be tested

against experimental/DNS data and possibly redefined. A set of empirical relations linking

the Reynolds-stress two-point covariance with the local time-stationary statistics such as mean

velocity, turbulence intensity, turbulence-dissipation rate, etc. is a key element of the present

model. Here we are providing an initial guess, following the lead of previous hybrid jet-noise

predictions such as Ref. [21], but using the Harper-Bourne4 measurements as a constraint, and

eWe stress that the radiation parameters r̂ and c must be chosen depending on the asymptotic radiation
model in use. The source–observer direction r̂ and the ambient speed of sound c∞ are to be used for the
low-frequency model whilst the source–observer emission-time direction r̂E and the local speed of sound c̄ need
to be used for the high-frequency model.

fAs an example, we give in explicit form the terms q̄11,11 and q̄13,13:

q̄11,11 = cQ
˙
u′1u

′
1

¸2
ρ

q̄13,13 = cQ
˙
u′1u

′
1

¸
ρ

˙
u′3u

′
3

¸
ρ
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including the applied-force equivalent source needed for hot jets.

5.3 Calibration of the jet-noise model

As pointed out in section 5.2, the jet-noise model is connected to the RANS solution by means

of a number of dimensionless scaling parameters. The scaling parameters are listed as follows:

cQ, κd, cτ , cLg , cLe , cU

The parameters are respectively introduced in equations (5.7), (4.12), (5.2), (5.5), and (5.6).

This section details the method adopted to define the values of these scaling parameters.

The philosophy behind the use of the RANS solution for the jet is to assume a one-to-one

correspondence between RANS-solution and experimental quantities at corresponding spatial

locations in the axial section of a single-stream jet. The corresponding spatial locations are

defined in terms of potential-core lengths in the axial direction and in jet diameters in the radial

direction. This establishes a similarity between the RANS-solution field and a corresponding

ideal experimental field.

The parameters associated with the model of the Reynolds-stress two-point correlation (cτ ,

cLg , cLe and cU ) are chosen by matching the model prediction to available Reynolds-stress

measurements, Ref [4], as described in chapter 4, and taking into account the jet-stretching

associated with the present RANS solution. The remaining parameters (cQ, κd) are set by

matching the 1/3-octave spectra associated with the jet-noise-model low-frequency (3.23) and

high-frequency (3.16) components to existing far-field measurements. In choosing cQ and κd

we also evaluate the effect on the noise-model components of varying the correlation-coefficient

parameter al.

5.3.1 Matching the model prediction to available velocimetry data

A RANS solution has been generated for a round jet whose nozzle-exit velocity and diam-

eter are the same as in the Harper-Bourne4,5 measurements. The RANS-solution velocity-

magnitude (a) and turbulence-intensity (b) radial profiles are shown in Fig. 5.1 for the Harper-

Bourne jet.a The RANS variables at the measurement location (nozzle lip line, 4 diameters

downstream of the nozzle) have been used to generate the turbulence-statistics quantities

ŝ0(y,0, f), l̃i (y,0, f) and Uc (y) as described in section 5.2. A matching of these quantities to

the corresponding measurements fixes cτ , cLg , cLe and cU . While cLe has been set to main-

aThe RANS-solution nozzle is a conical nozzle and a radial component of the velocity is still present at
the nozzle-exit section (near-wall region). The jet is under-expanded at the nozzle exit; this implies that the
expansion and acceleration continue outside the nozzle. The assigned target conditions for the axial velocity
(isentropic 1-D laminar flow) are met downstream of the nozzle exit, where smallness of the radial-velocity
component means that the velocity magnitude and the axial velocity are nearly coincident.
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Figure 5.1: RANS solution for a single-stream air jet with the same nozzle-exit diameter and
centre-line velocity as in the Harper-Bourne measurements (MJ ' 0.18, TJ/T∞ ' 1). Radial
profiles are shown for the Favre-averaged velocity and turbulence intensity. The radial position
is normalised by the jet nozzle-exit diameter dJ = 50.8 mm. The normalisation velocity is the
target (isentropic, laminar and perfectly-expanded flow) nozzle-exit jet velocity uJ = 61 m/s.
The labels indicate the axial coordinate y1 in jet diameters dJ .

tain the ratio between l̃1 and l̃⊥ as in the Harper-Bourne low-frequency measurements,b the

choice of the parameters cτ , cLg and cU has been made accounting for the jet axial stretching

associated with the RANS solution. This is explained in more detail in the next paragraph.

As can be seen in Fig. 5.1 and Fig. 5.2 (a), the potential-core length associated with the

RANS solution is close to 8 dJ . Experimental data for low-Mach number turbulent jets with

density equal to ambient indicate a potential-core length in the range going from 4 dJ (as

reported in Ref. [24]) to 5 dJ (as indicated in Ref. [55]); we assume that the Harper-Bourne4

measurement location y(m) = 4dJγ̂γγ1 + 0.5dJ γ̂γγ2 is at the end of the potential core. The axial

stretching of the RANS solution,c yields a predicted shear-layer thickness which is smaller

than the corresponding experimental measurement at the same axial coordinate. The axial

variation along the nozzle lip line associated with the variables τd and li, given by the respective

connection relations (5.2) and (5.5), is reported in Fig. 5.2. The trends in Fig. 5.2 suggest a

linear growth of these time and length scales in the axial region between the nozzle exit and

the end of the potential core. Assuming a similarity with the shear-layer width, we expect the

values for the RANS-solution τd and li to be lower than the corresponding experimental data

bThe l̃1/l̃⊥ ratio is not frequency independent for the Harper-Bourne measurements. The ratio varies between
a value of about 10 at the lowest frequency to a value around 4 at the highest frequencies. Here a value of 10
has been set in order to maintain the ratio shown by the Harper-Bourne data at the lowest frequencies. Note
that a more extensive set of measurements (preferably made by adopting less invasive probing, such as laser
anemometry) is needed to properly assess the frequency dependence and the range of values of this ratio. We
underline that the present jet-noise model assumes a frequency-independent value for the ratio.

cReconsidering the set of empirical parameters associated with the RANS-closure equations could give a
RANS solution characterised by an axial evolution that is more rapid and closer to the experimental evidence.
In order to simplify the RANS-solution strategy and to have consistency between the various cases reported in
this thesis, the default values, assigned to the RANS-closure parameters by the commercial solver, are used in
this thesis.
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Figure 5.2: RANS solution for single-stream jet at the Harper-Bourne conditions, as in Fig. 5.1.
Variation of ū, τd, k-ε length scale and li along lines parallel to the jet axis. The lengths are
normalised by the jet nozzle-exit diameter dJ = 50.8 mm. The normalisation velocity is the
target (isentropic laminar perfectly-expanded flow) nozzle-exit jet velocity uJ = 61 m/s.

at the same lip-line location y1/dJ . Given the factor two between the experimental and the

RANS-solution potential-core lengths we assume that the values of τd and li, to be associated

with the RANS solution at the Harper-Bourne measurement location, are approximately half

those in the corresponding Harper-Bourne measurements.

τd

(
y(m)

)
' 0.5τ

(m)
d li

(
y(m)

)
' 0.5l

(m)
i (5.9)

Note that relations (5.9) and the linear growth of the RANS-solution lip-line τd (y) and li (y)

in the initial region the jet (Fig. 5.2) imply that the RANS solution is anchored to the Harper-

Bourne measurements at the end of the respective potential cores.

For the ratio cU between Uc and ū we assume the same value as in the Harper-Bourne
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Figure 5.3: Assignment of spectrum and length-scale parameters to the isothermal-jet RANS
simulation of Figs. 5.1 and 5.2. The location y(m) is the same as in the measurements of
Harper-Bourne.4 The figure shows the frequency-domain behaviour of model (4.19) assuming

τd(y
(m)) = 0.5τ

(m)
d and li(y

(m)) = 0.5l
(m)
i , where τ

(m)
d and l

(m)
i are the best-match values

used in model (4.19) as in Fig. 4.5. The Harper-Bourne measurements and the corresponding
modelled quantities are shown as a function of the jet Strouhal number.

measurement, to give cU = 1.23; this choice is justified by the nearly constant value of the

RANS-solution lip-line velocity between the axial position 4dJ and the end of the potential

core, as shown in Fig. 5.2 (a). The model prediction for the autospectrum at the location

y(m) is indicated in Fig. 5.3 (a). This corresponds to the fluctuating-Reynolds-stress spectrum

obtained by applying a Fourier transform to the correlation coefficient (4.19), with η = 0,

and by scaling (see Fig. 4.5). The modelled 1/e-decay length scales l̃i are reported in Fig. 5.3

(b). Note that reducing τd and li from the value that gives the best fit to the Harper-Bourne

measurements (the best-fit values are used for the model prediction in Fig. 4.5) causes a

displacement of the normalised autospectrum and the length scales l̃i from the corresponding

measurements. As shown in Fig. 5.3 (a), we assign higher frequencies to the modelled 1/3-

octave spectrum (the reference model is shown in Fig. 4.5). The 1/e-decay length scales

associated with the modulus of the normalised two-point PSD are modelled as being scaled

down and moved to higher frequencies from the corresponding measurement, as shown in

Fig. 5.3 (b).

Note that, by reducing the time and length scales associated with the RANS solution at the

measurement location y(m), we are trying to impose similarity between the RANS solution and

an idealised physical statistical field that is consistent with experimental observations, Ref. [55,

24], regarding the potential-core length. We are also assuming that the Harper-Bourne4,5

measurements are part of this idealised physical statistical field. As mentioned in section
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5.2, an experimental jet-flow data base, including an accurate description of the boundary

conditions and Reynolds-stress single-point and two-point statistics at various locations in a

turbulent jet, is needed to accurately define the spatial evolution of quantities such as τd and

li. The availability of such data base is seen as a necessary step in order to

- Better set the RANS-solver closure parameters in order to achieve RANS solutions in

closer agreement with the turbulence single-point statistics.

- Validate the modelled spatial evolution of the Reynolds-stress two-point statistics.

The parameters fixed in this section determine the characteristic spectrum of the fluctuating

Reynolds stresses as defined in (4.29). They also determine how the two-point CPSD varies

with separation, with some uncertainty associated with the value of al. It is important to

note that this spectral characterisation it is arrived at without using acoustic data, but just

by trying to match two-point-correlation flow measurements.

5.3.2 Matching the model prediction to available acoustic data

The scaling parameters cQ (quadrupole sources) and κd (dipole sources for non-isothermal

jets) will be set in this section by matching the model prediction to available acoustic data.

The parameter al of model (4.19) is varied across a set of prescribed values in order to assess

the effect on the noise prediction. The acoustic data used in this step are single-stream 1/3-

octave jet-noise spectra, Ref. [10], for which the nozzle profile and the nozzle-exit flow data

are known.

The value cQ is found by running a RANS solution for an isothermald jet whose far-field

90-degree acoustic spectrum is known. The acoustic data, Ref. [10], have been provided by

QinetiQ.e The nozzle-exit Mach number is 0.75 and the nozzle diameter is 86 mm. The model

prediction is in this case dominated by the applied-stress component, since the mean-static-

temperature gradient is very small in the high-turbulence region. The 1/3-octave spectra in

dIsothermal here means that the nozzle-exit mean static temperature is the same as the ambient (compu-
tational domain) temperature. This condition is an ideal condition that is not exactly satisfied by the RANS
solution. Small static-temperature discrepancies due to the non-uniformity of the nozzle-exit velocity profile,
the presence of a turbulent boundary layer, viscosity effects etc. are present in the RANS flow.

eThe data are part of a set of single-stream jet-noise measurements provided by QinetiQ to the European-
Community Jet-Noise consortium JEAN (Jet-Exhaust Aerodynamics and Noise). The data have been acquired
in December 1983 at the QinetiQ Noise Test Facility (NTF) in Pyestock, Farnborough, United Kingdom. The
data have been corrected for atmospheric attenuation; therefore the data ideally represent the free-field jet
noise in a loss-less atmosphere. The data include far-field 1/3-octave spectra measured at a set of 10 locations
spanning, in an evenly spaced array, the downstream-axis polar angles between 30 and 120 degrees. The
measurement locations are at a distance greater than 10 m from the nozzle exit. The spectra are normalised to
a constant distance of 6 m. Each data record includes the jet-aerodynamics and anechoic-chamber data (jet-exit
velocity, diameter and temperature; stagnation pressure and temperature; ambient pressure and temperature)
that are associated with the specific jet-noise measurement. The acoustic data have been used by Harper-
Bourne;56 they were published by Bryce.57 The data and the related documentation, Ref. [10], are available
for public free download at the web address
http://www.qinetiq.com/home/defence/defence solutions/aerospace/acoustic solutionsforstructures/ntf.html,
directing to the QinetiQ Internet pages.
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Figure 5.4: Modelled jet-noise 1/3-octave spectrum at 90-degree polar angle and correspond-
ing measured data. The jet is isothermal; the nozzle-exit parameters are as follows: MJ=0.75,
dJ=0.086 m, uJ=256 m/s. The curves denote the applied-stress component of the high-
frequency solution (3.16) at varying model parameters. The solid circles indicate the cor-
responding jet-noise measurement, Ref [10].

Fig. 5.4 (a) show a comparison between the high-frequency model (3.16) and experimental

data, for various values of the cQ parameter.f The effect of the parameter al, associated with

the space-separation decay in the two-point correlation coefficient (4.19), is shown in Fig. 5.4

(b). The value of the parameter al greatly affects the high-frequency trends of the modelled

spectrum and has little effect on the power assigned by the model to the low-frequency 1/3-

octave bands. The parameter cQ is then defined by matching the low-frequency spectral

contribution of the model prediction to the corresponding measurement. This yields the result

cQ = 0.4.

The parameter κd contributes as a scaling factor to the applied-force contributions associated

with the high-frequency (3.16) and the low-frequency (3.23) models. The optimal value of

κd is found by running a RANS solution for a heated low-Mach-number jet whose far-field

90-degree acoustic spectrum is known. As indicated by Morfey58 and confirmed in Morfey,

Szewczyk and Tester,41 in this case, at sufficiently high nozzle-exit static temperatures, the

applied-force noise contribution will dominate the 90-degree spectrum. A jet issuing from

the QinetiQ single-stream nozzle at acoustic Mach numberg 0.5 and at a jet–ambient static-

temperature ratio 2.5 has been used in this case. The comparison between measured data,

Ref. [10], and model prediction with varying κd is given in Fig. 5.5 (a) and (b), where the

applied-stress and applied-force components are reported for the low-frequency (3.23) and the

high-frequency (3.16) model components, respectively. Note that the low-frequency asymptotic

fThe low-frequency solution (3.23) and the high-frequency solution (3.16) generate the same 90-degree 1/3-
octave spectrum in this case. At 90-degree polar angle in perfectly isothermal conditions the low-frequency
solution and the high-frequency solution coincide. More generally at 90 degrees, for isothermal jets, there is a
coincidence of solution for the Lilley analogy and the Lighthill analogy.1

gThe Mach number based on the nozzle-exit velocity and the ambient speed of sound.
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solution (3.23) dominates the prediction, Fig. 5.5 (c). As expected, the value of κd only affects

the applied-force contribution where it acts as a scaling factor. The effect of the parameter

al on the applied-force contribution is shown in Fig. 5.5 (d), where the dipole contributions

associated with the low-frequency (3.23) and the high-frequency (3.16) solutions are calculated

by adopting different values for al in the acoustic-source two-point correlation coefficient (4.19).

Varying al does not have the marked effect on the applied-force-contribution spectral shape

that is seen for the applied-stress contribution in Fig. 5.4 (b). Fig. 5.5 (b) shows that changing

al from 2.0 to 3.0 has the effect of increasing the spectral peak value by about 1 dB and

reducing the power in the low-frequency and high-frequency bands. We set the parameter κd

to the value κd = 50 (κdcQ = 20)h which, as shown in Fig. 5.5 (c), gives a reasonable match

between model and measured data.

As shown in Fig. 5.4 (b) the parameter al has a significant effect on the applied-stress contri-

butions to the 1/3-octave noise spectrum. The uncertainty regarding this parameter is related

to the uncertain high-frequency roll-off associated with the 1/e-decay length scales l̃ of the

fluctuating-Reynolds-stress normalised two-point CPSD, as measured by Harper-Bourne.4,5

As shown in Fig. 5.4 (b), changing the value of al from 2 to 3 reduces the applied-stress noise

contribution and significantly changes its spectral shape by varying the high-frequency trend.

Recall that, as shown in Fig. 5.3 (b), setting al = 2 yields a modelled high-frequency trend for

l̃ which is close to the Harper-Bourne measurements for l̃1, while setting al = 2.7 corresponds

to a trend for l̃ close to the Harper-Bourne measurements for l̃⊥. Pending the availability

of a wide set of Reynolds-stress two-point measurements in turbulent jet flows, a convenient

choice for the parameter is al = 2.7. This choice is convenient as, together with having the

high-frequency roll off as in the measured l̃⊥, it allows one to match important characteristics

of the measured isothermal jet-noise spectrum:

- It correctly identifies the noise peak and the corresponding frequency.

- It minimises the error between the model components (3.23) and (3.16) and the acoustic

measurements in the isothermal-jet case, at frequencies below 10 kHz.i

Having fixed a value for al, we stress that this is for the moment just a pragmatic choice:

the best-match value for al is to come from two-point measurements of the Reynolds-stress

covariance, once a high-frequency trend for the frequency-dependent length scales is identified

for a large set of measurement conditions and locations. Only with this best-match value,

possibly joined by a best-match value of parameter c in model (4.16), we will be able to

correctly evaluate the high-frequency extrapolation of the modelled spectra for isothermal

jets.

hThe scaling factor for the applied-force component is given by cQκd as obtained by inserting (5.8) into
(4.22).

iThe atmospheric-absorption correction on the acoustic measurement, Ref. [10], is confined below 2 dB for
the 1/3-octave bands below 10 kHz; it increases from 1.91 dB for the 1/3-octave band at 10 kHz to 10 dB for
the band at 40 kHz. We consider this correction as a possible source of error in the measured 1/3-octave data.
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components for the high-frequency solution
(3.16), at varying κd and constant al (κd= 25,
50 and 100; al=2.7).
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(b) Applied-stress (LF4) and applied-force (LF2)
components for the low-frequency solution (3.16),
at varying κd and constant al (κd= 25, 50 and
100; al=2.7).
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Figure 5.5: Effect of the parameters κd and al on modelled heated-jet 1/3-octave noise spectra.
The nozzle-exit acoustic Mach number is 0.5, the jet/ambient temperature ratio TJ/T∞ is 2.5.
The measured data, Ref [10], are shown by the solid circles.

61



The large value of the scaling parameter κd indicates that the fluctuating applied-force two-

point correlation function is weakly driven by the Reynolds-stress term u ′⊗u′ · ∇T̄ ; this fact

adds emphasis on studying the correlations of the remaining terms forming the instantaneous

applied-force strength (see section 4.1.1), in order to validate or better define expression (4.12)

that assumes the two-point covariance function of the applied-force source as being propor-

tional to the two-point covariance of u′⊗u′ · ∇T̄ .

5.4 Comparison between model components and acoustic mea-

surements

The output of the jet-noise model is systematically compared in this section to corresponding

far-field acoustic measurements. The model predictions are broken down to show the separate

1/3-octave spectral contributions due to the high-frequency (3.16) and to the low-frequency

(3.23) approximations. Each spectral contribution is in turn broken down to show the dipole

or quadrupole nature of the noise emission: the applied-stress (3.6) and the applied-force (3.8)

source terms of the Lilley-Goldstein3 equation are shown separately for each modelled spec-

trum. According to the flow-factor results in Tester and Morfey,40 a good approximation of

the Lilley-equation Green function can be obtained by simply adding the high-frequency and

the low-frequency solutions. This possibility depends on the jet conditions and the observer

polar angle.a It is important to underline the fact that an appropriate low-pass filter should

eventually be applied to the low-frequency solution (3.23) and the opposite frequency filter

should be used on the high-frequency solution. The filter should be used to ensure that the

low-frequency approximation (3.23) is only used when the acoustic wavelength is much larger

than the typical mean-flow spatial dimension in the radiation direction. Note that the imple-

mentation of this filter is not part of the present work. For jets with moderate variations of

the Favre-averaged density field and at 90-degree polar angles, the far-field noise contributions

(3.23) and (3.16) can each be considered as a jet-noise prediction. At the mentioned condi-

tions there are no mean-flow effects on the radiation or on the modelled source strength; the

predicted contributions (3.23) and (3.16) both agree with a Lighthill-analogy solution.

5.4.1 Isothermal single-stream jet noise

The 1/3-octave spectra at 90-degree polar angle are shown in Figures 5.6, 5.7 and 5.8 (a) for

isothermal jets issuing from two different single-stream nozzles. The nozzles are the conical noz-

aAn obvious contradiction to this rule is given by the 90-degree contributions for isothermal jets. In this
case the high-frequency solution and the low-frequency solution both coincide with the Lilley-analogy solution.
Simple addition of the asymptotic approximations would therefore mean a 3-dB overestimation of the Lilley-
analogy 1/3-octave spectrum. Morfey, Tester and Powles43 show other cases for which the addition between
the low-frequency solution and the high-frequency solution does not produce a good fit for the numerically
evaluated Lilley–Goldstein Green function.
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(a) uJ = 166 m/s, MJ=0.5
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(b) uJ = 253 m/s, MJ=0.75

Figure 5.6: Isothermal jet-noise 1/3-octave spectra for jets issuing from the QinetiQ conical
nozzle; nozzle-exit diameter dJ = 0.086 m. The measured data (QinetiQ, NTF Pyestock,
United Kingdom), Ref. [10], were acquired at a distance grater than 10 m, corrected at high
frequency for the atmospheric attenuation and normalised assuming a distance of 6 m; the
model prediction is related to the normalisation distance. The high-frequency-solution (3.16)
applied-stress and applied-force components are respectively labelled HF4 and HF2. The low-
frequency-solution (3.23) components are correspondingly indicated by LF4 and LF2. The
level associated with the applied-force source in (a) is below 50 dB.

zle already introduced in section 5.3 and the contoured nozzleb used in gathering the jet-noise

acoustic data published by Tanna Dean and Burrin.9 The conical-nozzle jet-noise 1/3-octave

spectra are reported in Fig. 5.6 at two different nozzle-exit velocities. The measurements have

been provided by QinetiQ, Ref. [10]. Note that the acoustic spectrum in Fig. 5.6 (b) has been

used in the model calibration. As mentioned in section 5.3, the high-frequency approxima-

tion (3.16) and the low-frequency approximation (3.23) yield the same spectral contributions.

The predicted quadrupole-contribution spectral shapes are similar to the measured ones in

the low-frequency range; the model over-predicts the corresponding measurement for the fre-

quency bands above 10 kHz. The peak frequency and the SPL variation due to the change

in velocity from MJ=0.5 (a) to MJ=0.75 (b) are correctly predicted by the model quadru-

pole contributions. The isothermal jet-noise data from the set of measurements published by

Tanna Dean and Burrin9 are shown with the corresponding model prediction in Fig. 5.7 and

in Fig. 5.8 (a). Also in this case, for varying nozzle-exit Mach number, the model-component

quadrupole spectra show the same frequency and SPL scaling as the measurements. As shown

in Fig. H.1 (b) in Appendix H, where the Tanna9 measurements are shown normalised by

applying Lighthill–Strouhal scaling (H.1), the data in Ref. [9] do not exactly scale according

to the Lighthill1 law. The data show a peak-level scattering of 2.5 dB; this indicates possi-

ble contamination due to noise sources different from turbulent mixing. This fact is also in

agreement with the difference between model and measurements which, as shown in Fig. 5.7,

bThe geometry of the nozzle is not specified in Ref. [9]. Technical drawings of the nozzle geometry have
been kindly provided by Professor K. K. Ahuja. These drawings have been used to define the RANS-solution
boundary conditions.
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(a) uJ = 207 m/s, MJ=0.6
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(b) uJ = 242 m/s, MJ=0.7
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(c) uJ = 276 m/s, MJ=0.8
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(d) uJ = 310 m/s, MJ=0.9

Figure 5.7: Isothermal jet-noise 1/3-octave spectra for jets issuing from the Tanna convergent
nozzle; nozzle-exit diameter dJ = 0.051 m. The data (Tanna, Dean and Burrin9) were measured
at 3.60 m (72 dJ ) from the nozzle-exit centre and corrected for atmospheric attenuation. The
far-field model prediction corresponds to the measurement position. The labels are as in
Fig. 5.6.

is maximum in the noise-peak frequency region, with the model predicting lower noise peak

(2 to 3 dB) and lower noise-peak frequency (1 octave) compared to the measurements.

Note that a small applied-force contribution is predicted by the jet-noise model in isothermal

conditions. This results from the small temperature variations in the RANS solution, due to

the presence of vorticity; the corresponding static-temperature gradients drive the dipole-term

contribution in the model.

5.4.2 Hot single-stream jet noise

Heating the jet causes a reduction of the density in the jet core and consequent density gradients

in the jet shear layer. The applied-stress and the applied-force contributions to the modelled

far-field noise respond to heating with opposite changes in intensity:
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(a) uJ = 172 m/s, MJ=0.5, isothermal. The
applied-force model contributions are below the
minimum SPL of 50 dB.
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(b) uJ = 174 m/s, heated, TJ/T∞ = 3.3

Figure 5.8: Effect of heating on a single-stream jet at nozzle-exit acoustic Mach number
MJ = 0.5. Jet-noise 1/3-octave spectra for jets issuing from the Tanna convergent nozzle
(dJ = 0.051 m) in isothermal and heated conditions. The labels are as in Fig. 5.6.

- The applied-stress contribution is reduced due to the density-dependent scaling factor

associated with the corresponding acoustic-pressure PSD per unit volume.

- The applied-force volumetric source strength results from fluctuations of the term u ′⊗u′ ·
∇T̄ and is therefore driven by the static-temperature gradient ∇T̄ . A higher dipole-order

contribution is then expected as a result of heating the jet.

This effect is most evident at low nozzle-exit acoustic Mach number as, by reducing the jet

speed, we scale-down the applied-stress contribution, proportional to M 8
J , more rapidly than

the applied-force contribution, proportional to M 6
J . Evaluations of the model components in

heated conditions have been performed for the QinetiQ10 conical nozzle and for the Tanna9

nozzle; in both cases the jet conditions are at the same nozzle-exit acoustic Mach number,

MJ = 0.5. Fig. 5.8 shows the effect of heating on the model components, as the model is tested

in producing 1/3-octave spectra for an isothermal jet (a) and for a heated jet (b); the jets were

both considered in the Tanna9 measurements. Increasing the jet temperature ratio from 1 to

3.3 reduces the peak SPL of the high-frequency model (3.16) applied-stress contribution by 14

dB; it reduces the low-frequency (3.23) applied-stress-contribution maximum level by 6 dB.

In the heated case Fig. 5.8 (b), the applied-force contributions dominate the low frequency

part of the modelled 1/3-octave spectra for both solutions (3.23) and (3.16), with the low-

frequency dipole contribution being greater than the high-frequency dipole contribution (peak-

level difference of 2.5 to 3 dB).

As shown in section 5.3, in flows with large density inhomogeneities the low-frequency (3.23)

and the high-frequency (3.16) solutions contribute differently to the modelled 1/3-octave spec-

trum. In these cases it is then important to consider the model contributions (3.23) and (3.16)

as raw jet-noise components that need to be opportunely frequency filtered. The comparison
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(a) uJ = 168 m/s, heated, TJ/T∞ = 1.5
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(b) uJ = 168 m/s, heated, TJ/T∞ = 2.5

Figure 5.9: Effect of heating on a low-speed single-stream jet. Jet-noise 1/3-octave spectra for
jets issuing from the QinetiQ convergent nozzle (see Fig. 5.6) in heated conditions. The labels
are as in Fig. 5.6.

between the QinetiQ10 90-degree 1/3-octave spectra and the corresponding model contribu-

tions is shown in Fig. 5.9, where two cases at different nozzle-exit/ambient static-temperature

ratios are reported. Note that the measured data in Fig. 5.9 (b) have been used to define

the value of the parameter κd. The applied-force components dominate the low frequency

spectrum in both cases.

We note that the high-frequency solution (3.16) behaves similarly to the predictions made

by applying the geometric-acoustics scaling laws identified in Ref. [41]. In this case we use a

dipole characteristic spectrum that is derived from the Harper-Bourne4 fluctuating-Reynolds-

stress two-point measurements, the volumetric-source-strength spectrum is defined, depending

on the position in the jet, as a function of the Strouhal number Srτ (based on the fluctuating-

Reynolds-stress autocorrelation 1/e-decay time) and of a non-dimensional repetency α̃, defined

in equation (4.34).c The low-frequency solution (3.23) shows a different behaviour from the

high-frequency solution (3.16), with a higher quadrupole/dipole SPL ratio.

cThis spectrum is not the same as the dipole master spectrum deduced in Ref. [41] or, more recently, in
Ref. [56] from jet-noise acoustic measurements. The dipole master spectrum is defined in the (fdJ/uJ ) Strouhal
domain. The identification of this dipole master spectrum uses whole-jet scaling laws for the quadrupole (i.e. as
in Lighthill1) and dipole sources (i.e. as in Morfey58). The quadrupole master spectrum is defined by scaling
isothermal-jet acoustic data and gathering a collapse in the Strouhal (fdJ/uJ ) domain, as in Appendix H. The
quadrupole 1/3-octave master spectrum is then used to remove the quadrupole contribution from heated-jet
measurements. Given the nozzle-exit characteristics of the jet the 1/3-octave spectrum contribution is derived
from the quadrupole master spectrum scaled according to a Lighthill–Strouhal law (see Appendix H); this
contribution is then subtracted from the heated-jet 1/3-octave spectra. The resulting dipole-driven 1/3-octave
spectra are scaled according to the Morfey58 dipole-scaling law and then collapsed on a characteristic curve in
the Strouhal (fdJ/uJ ) domain; this curve is referred to as dipole master spectrum. The identified master spectra
can then be used for reproducing jet-noise measurements. The method, recently applied by Harper-Bourne,56

allows for reproducing 90-degree jet-noise acoustic data at various jet velocities and heating conditions.
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5.4.3 Unheated coaxial jet noise

The results in this section compare the model prediction to jet-noise data for unheated coaxial

jets. The jet flows issue from two different coaxial nozzles. Both nozzles are axisymmetric

and have coplanar exit sections without a bullet. The same inner-flow nozzle-exit area is

maintained for both nozzles; two different outer-flow nozzle-exit areas are considered in order

to realise outer/inner area ratios of 2 and 4 for the different nozzles. A schematic showing

the geometry of the area-ratio 4 nozzle is given in Fig. F.1. The acoustic measurements

were performed at the QinetiQ NTF facility.d The measured data were corrected in order to

simulate loss-free propagation. The data were measured at a distance greater than 10 m and

normalised to a distance of 6 m from the nozzle centre. A comparison between measured data

and model components is given in Fig. 5.10 and Fig. 5.11 where the 90-degree acoustic spectra

are shown respectively for jets issuing from the area-ratio-4 and the area-ratio-2 nozzles. The

discrepancies between modelled noise components and measured data are contained within

3 dB for 1/3-octave bands below 10 kHz. At greater frequencies, for secondary/primary

velocity ratio 0.6, Fig. 5.10 (a) and Fig. 5.11 (a), the model prediction shows a different high-

frequency trend from the measurement. A similar difference in high-frequency trend is not

clearly observed at secondary/primary velocity ratio 0.8, Fig. 5.10 (b) and Fig. 5.11 (b). For

all cases examined, the model prediction fails to well reproduce the spectral shape associated

with the measurement, with the SPL-peak frequency predicted at lower frequency compared

to the measurement. Improvements in predicting the spectral shapes are expected with more

realistic RANS predictions, without the axial stretching of the flow field.

dThe measurements were made in 2001 before the recent refurbishment, Ref. [59], of the facility; Ref. [10]
can be used as a description of the facility, the jet rig and the measurement set-up. The measurements were
performed by QinetiQ for the ISVR as part of a jet-noise programme for the determination of the jet-noise
loads on the aircraft structures. The research programme was funded by the Engineering and Physical Science
Research Council (EPSRC, United Kingdom); funding for the jet-noise measurements was provided by Airbus
UK.
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(a) Inner-flow velocity 280 m/s, outer-flow veloc-
ity 168 m/s, velocity ratio 0.6
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(b) Inner-flow velocity 211 m/s, outer-flow veloc-
ity 168 m/s, velocity ratio 0.8

Figure 5.10: 1/3-octave noise spectra for a coaxial coplanar jet in unheated conditions at
90-degree polar angle. The jet issues from a coplanar bullet-free area-ratio-2 nozzle. The
nozzle-exit jet diameter is 0.058 m. The labels are as in Fig. 5.6.
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(a) Inner-flow velocity 281 m/s, outer-flow veloc-
ity 169 m/s, velocity ratio 0.6
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(b) Inner-flow velocity 210 m/s, outer-flow veloc-
ity 168 m/s, velocity ratio 0.8

Figure 5.11: 1/3-octave noise spectra for a coaxial coplanar jet in unheated conditions at
90-degree polar angle. The jet issues from a coplanar bullet-free area-ratio-4 nozzle. The
nozzle-exit jet diameter is 0.075 m. The labels are as in Fig. 5.6.
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5.5 Conclusions

The aerodynamic-noise model developed in chapters 3 and 4 has been applied to jet-noise

prediction. We have developed a RANS-based jet-noise prediction scheme, in which a com-

mercial RANS solver is used to provide turbulence statistics as well as the mean-flow field.

The principal conclusions are outlined below.

1. The RANS solver uses a Reynolds Stress Model closure; this implies that the RANS

solution includes estimates for the mean values of the unit-density Reynolds stress. The

mean-flow RANS solution shows axial stretching compared to jet-flow measurements

described by Abramovich55 and Goldstein;24 the RANS potential-core length is approx-

imately double the experimental value.

2. The empirical scaling relations (connection relations) between the local value of the

RANS-solver flow variables and the jet-noise source statistics have been defined by in-

troducing a set of acoustic-model scaling parameters. Note that the local-Strouhal scaling

that is a feature of model (4.19) is incorporated into the connection relations; this was

not implemented in earlier work by Bassetti and Morfey,50 where an extra scaling pa-

rameter was adopted. It is important to note that the developed connection relations

constitute an initial guess inspired by previous papers on jet noise, e. g. [21]. They need

to be validated against corresponding experimental/DNS data. This step is a fundamen-

tal requirement in order to properly asses the extent to which the proposed empirical

relations capture the physics of jet turbulence.

3. The acoustic-model scaling parameters are defined by matching the jet-noise model com-

ponents to corresponding measured data. In order to do that, RANS solutions are derived

for three single-stream jets corresponding to available experimental data. Both two-point

measurements of the Reynolds-stress statistics and far-field noise spectra are used in this

stage.

- A first RANS solution is evaluated for the same jet as in the Harper-Bourne4,5,42

measurements. The parameters defining the model of the Reynolds-stress two-point

correlationa are chosen in order to match the corresponding measurements at a sin-

gle location on the jet lip line (i.e. the same location where the Harper-Bourne mea-

surements were performed). The unphysical axial stretching of the RANS solution

has been taken into account by assuming correspondence between RANS-solution

and measurement positions, mapped in terms of potential-core lengths in the axial

direction and in terms of nozzle-exit diameters in the radial direction.

- Two more RANS solutions are evaluated for jets associated with existing far-

field acoustic measurements. As done by previous RANS-based jet-noise models,

aRecall that the Reynolds stress two-point correlation function is here used as model for the acoustic-source
two-point correlation function both for the Reynolds stress source and the applied-force source.
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e. g. [21, 60], the remaining model parameters are chosen by fitting model predic-

tions to corresponding 90-degree far-field jet-noise spectra. This procedure uses

measurements acquired for jets issuing from a single-stream axisymmetric conical

nozzle: an isothermal jet with MJ = 0.75, and a hot jet at nozzle-exit acoustic Mach

number 0.5 and temperature ratio TJ/T∞=2.5. The isothermal-jet data are used

to set the scaling factor associated with the applied-stress component. The hot-jet

spectrum is used to determine the scaling factor for the applied-force component.

The high-frequency roll-off of the modelled applied-stress spectrum is highly sensitive

to variations of the parameter al, that controls the spatial-separation decay associated

with the two-point correlation coefficient (4.19). Pending the availability of a greater

number of two-point measurements for the Reynolds-stress statistics, we fixed the value of

al = 2.7. This value allows for matching the transverse-separation high-frequency roll-off

associated with the Harper-Bourne4,5 measured frequency-dependent length scales (see

Fig 4.5). This value also allows for matching, below 10 kHz, the modelled isothermal

single-stream far-field jet-noise predictions (3.23) and (3.16) to the corresponding 90-

degree 1/3-octave spectra measured by QinetiQ.10 We note anyway that the jet-noise

model predictions (3.23) and (3.16), at frequencies higher than 10 kHz, do not decay

with increasing frequency as fast as the corresponding measurements.

4. A comparison between model components and isothermal-jet 90-degree 1/3-octave spec-

tra has been performed for 7 jets issuing from 2 different single-stream nozzles. In

this case the low-frequency solution (3.23) and the high-frequency solution (3.16) yield

the same result for the modelled 1/3-octave spectrum. The applied-stress components

strongly dominate the modelled noise, although a small applied-force contribution is

present, due to the moderate temperature gradients in the jet shear layers. The compar-

ison of the applied stress-components of model (3.23) and (3.16) against the QinetiQ10

measurements shows a difference in the range of 1 dB for frequencies from 100 Hz to 10

kHz. At higher frequencies the model does not follow the same high-frequency trend as

the measurement, and over-predicts the measured SPL. The same comparison against the

Tanna measurements shows discrepancies within 3 dB between the applied-stress model

predictions and the measured spectra, for 1/3-octave bands ranging from 200 Hz to 20

kHz centre-band frequency. In this case the model prediction consistently underestimate

the SPL in proximity of the peak value and does not correctly evaluate the SPL-peak

frequency. In all cases examined, the dominant applied-stress components reproduce the

variations of the measured spectra due to variations in jet-exit Mach number. In the

comparison against the Tanna9 measurements, the difference between model prediction

and corresponding measurement is maximum in the same frequency region where the

measured data do not scale according to the Lighthill1 scaling law (peak-level scattering

of 2.5 dB, see Appendix H). The difference between model and measurements confirms

the hypothesis of extraneous noise contamination present in the measurements, due to

noise sources different from turbulent-mixing noise.

70



5. A study of the model-component behaviour has been offered by jet-noise comparisons

for hot jets. The effect of heating has been studied by considering 3 single-stream jets

issuing from the axisymmetric nozzles used in acquiring the Tanna9 and the QinetiQ10

measurements; all jets are characterised by the same nozzle-exit acoustic Mach number

0.5. Also in this case we compared measurements and corresponding model components

at 90 degrees and at different 1/3-octave bands. The applied-force contribution dom-

inates the modelled jet-noise at the highest temperature ratios, confirming the dipole

scaling of low-velocity high-static-temperature jets. We note that the model behaviour

agrees with the explanation given by Morfey58 regarding the extra low-frequency noise

associated with heating the jet. Contrary to the isothermal case, in the hot-jet case the

low-frequency (3.23) and the high-frequency (3.16) solutions yield distinct jet-noise con-

tributions. Provided the different contributions can be accepted as jet-noise predictions,b

the low-frequency solution is the main contribution for low-density jets.

6. A comparison between model components and unheated-jet 90-degree 1/3-octave spec-

tra has been performed for 4 jets issuing from 2 different coaxial coplanar nozzles. The

applied-stress component dominates the model predictions. The low-frequency (3.23)

and the high-frequency (3.16) solutions nearly yield the same spectral result with dif-

ferences near to 1 dB at high frequencies, above 10 kHz. Compared to the isothermal

single-stream case, we observe a reduced agreement between modelled and measured

1/3-octave spectra, especially in terms of the spectral shape. In the cases at higher pri-

mary velocity, the model components diverge in trend from the measured data at high

frequency, above 10 kHz. For all cases examined, in the frequency range from 250 Hz

to 10 kHz, the difference in level between model and measurement is contained within 3

dB.

bRecall that the high-frequency (3.23) and the low-frequency (3.16) solutions need to be frequency filtered
in order to respect the corresponding hypotheses on the flow-scale/wavelength ratio. A low-pass filter on the
low-frequency solution, not implemented in the present work, is likely to remove part of the applied-stress
low-frequency-model contribution.
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Chapter 6

Conclusions

A hybrid jet-noise model has been developed, based on a time-stationary spatial field of the

jet-flow statistics. An acoustic-analogy approach has been used to define spatial distributions

of equivalent acoustic sources and corresponding Green functions. The far-field jet-noise PSD

is determined by modelling a PSD contribution per unit volume in the turbulent region of the

flow; this PSD contribution is then integrated across the jet volume. The unit-volume PSD

contribution is modelled by combining a Green-function term and a volumetric source strength;

the latter is determined on the basis of the two-point statistics of the equivalent acoustic

sources. The two-point statistics of the equivalent acoustic sources have been modelled by

using available measurements of the Reynolds-stress two-point covariance. The model has been

tested to reproduce jet-noise acoustic measurements; here a RANS solution has been adopted

as a basis for describing the time-stationary jet-flow statistics. The principal conclusions are

outlined in the following sections.

6.1 Acoustic model

The perfect-gas Goldstein3 equation for the Lilley2 analogy (the Lilley–Goldstein analogy)

has been used to relate the turbulent jet to corresponding volume distributions of applied-

force and applied-stress equivalent acoustic sources. The acoustic-source volume has been

parted in a number of finite-volume source subregions; each subregion is such that small

variations for the acoustic-source and the flow statistics can be assumed in its interior. The

far-field acoustic-pressure PSD in the quiescent ambience surrounding the turbulent jet has

been expressed as sum of contributions from all the subregions. Each subregion contributes to

the acoustic-pressure PSD with a high-frequency term and a low-frequency term. These terms

are both expressed as a function of the acoustic-source two-point CPSD and of the source–

observer Green function. They share the same acoustic-source statistics, but are characterised

by different Green functions. The high-frequency and the low-frequency Green functions result

from acoustic analogies corresponding to the Lilley–Goldstein3 analogy in the limits of very
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large and very small flow-dimension/wavelength ratio, respectively.

- The high-frequency approximation has been realised by specifying to the given acoustic

subregion the geometric-acoustic jet-noise-scaling approach used by Morfey Szewczyk

and Tester.41 Through the geometric-acoustics laws, the acoustic field at a location

in the quiescent-medium is connected to the acoustic field at a ray-direction virtual

location in a uniform medium characterised by the same velocity and speed of sound as

the subregion mean flow. While the geometric-acoustics scaling has been adapted from

previous work, Ref. [41], the virtual-location acoustic-field PSD has been derived in the

present work, by adopting the following procedure.

1. A local-medium Lighthill-type analogy has been formulated by considering a uni-

formly moving medium whose characteristics are assigned by the subregion mean

flow. The analogy, expressed in a frame moving with the medium, removes the

mean medium-motion effect from the instantaneous source terms of the standard

Lighthill analogy; it yields applied-stress (quadrupole) and applied-force (dipole)

terms that are identical to the corresponding forcing terms of the Lilley–Goldstein3

equation.

2. Rather than using a convective-wave-equation Green function, the solution for the

acoustic field has been determined by adopting a moving-source solution for the

standard wave equation. As explained in Appendix C, a Lorentz-transformation

technique has been used to gather a solution for a moving monopole. The moving-

monopole solution has been expressed in emission-time polar coordinates and ex-

tended to dipole-order and quadrupole-order moving sources. Although we only use

the acoustic-far-field approximations, the multipole solutions have been expressed

including the near-field terms; these are in agreement with corresponding solutions

published by Lowson61 (dipole) and Brentner62 (quadrupole).

3. The far-field acoustic-variable autocorrelation in the local medium has been ex-

pressed in terms of the two-point correlation function associated with the fluctuat-

ing part of the quadrupole-order and dipole-order acoustic-source terms (far-field

approximations). The two-point cross correlation terms between applied-stress and

applied-force sources are omitted due to a symmetry hypothesis, expression (D.16)

on page 116, on the source-field correlation function. Applying Fourier transform

with respect to the time delay yields the acoustic-field PSD at the virtual location.

Note that, in order to realise a spherical-spreading correspondence between the virtual-

location and the acoustic-subregion PSD, we require small Fresnel corrections inside the

given acoustic subregion, based on the typical dimension of the source-coherence volume.

This implies that the model is limited to small-scale coherence regions, compared to the

flow-variation scales.

The acoustic variable PSD is expressed as a sum of applied-stress and applied-force con-

tributions; each of these contributions is given as a dot product between tensors. A
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first Green-function tensor depends on the source–virtual-observer emission-time sepa-

ration, Doppler factor and speed of sound associated with the local acoustic medium.

A second tensor, referred to as volumetric source strength, depends on the acoustic-

source two-point CPSD. The two-point CPSD is phase-shifted according to the time

delay between acoustic emission from the source-coherence centroid and reception at

the virtual-observer position. The volumetric source strength is expressed as volume

integral across the source-coherence volume of the phase-shifted two-point CPSD of the

applied-stress and the applied-force sources.

- For the low-frequency approximation, the far-field solution for the acoustic radiation from

an acoustic-source subregion is expressed in terms of a multiplying factor relating a cor-

responding zero-flow solution to the solution including an axisymmetric base flow. The

multiplying factor, called flow factor, is the ratio between the far-field acoustic-pressure

PSD derived as solution of the axisymmetric-base-flow Lilley–Goldstein3 equation and

the acoustic-pressure PSD associated with a zero-flow Lilley–Goldstein3 equation.

The flow-factor components associated with combinations of the acoustic-source com-

ponents were developed by Morfey Tester and Powles43 starting from the low-frequency

approximate solution in Ref. [40]. The result has been further developed by Morfey to

yield simplified flow-factor expressions valid at low Helmholtz number; see Appendix

E. The zero-flow Lilley–Goldstein solution is obtained by specifying the high-frequency

solution to the same quiescent-medium conditions as in the ambience surrounding the

source region.

Likewise for the high-frequency solution, the acoustic-variable PSD is expressed as a sum

of applied-stress and applied-force components; each component is given by forming a

dot product between tensors. In this case the zero-flow Green-function tensor and the

zero-flow volumetric source strength are operated by a flow-factor tensor in order to get

the components of the far-field acoustic-pressure PSD.

The integration across the source region of the acoustic-subregion contributions yields two

separate solutions for the acoustic-pressure PSD, corresponding to the low-frequency and the

high-frequency analogies. Note that these solutions need in principle to be frequency filtered,

in order to satisfy the respective hypotheses regarding the wavelength/flow-scale ratio; they

need then to be combined in order to achieve a jet-noise prediction. Both solutions converge to

the standard Lighthill-analogy solution for far-field observation point at 90-degree polar angle

and for jet-flows with zero temperature gradient.

Both the high- and the low-frequency solutions need expressions for the frequency-dependent

volumetric source strength; this is given by the space integral across the source-correlation

volume of the phase-shifted two-point CPSD for both the applied-stress and the applied-force

sources. While the phase shift needs to be specified differently for the low- and the high-

frequency cases, the same term for the source two-point CPSD is included in both solutions.

For jet-noise models based on space–time resolved CFD solutions, the acoustic-source two-
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point CPSD can in principle be directly evaluated for each acoustic subregion. In the present

work the jet-noise model is based on an incomplete time-stationary space distribution of the

jet-flow one-point statistics, as a consequence the acoustic-source two-point CPSD requires

modelling.

6.2 Acoustic-source two-point covariance

The model for the acoustic-source two-point covariance has been based on available experimen-

tal measurements of the Reynolds-stress two-point covariance. The model has been derived

by fitting a suitable analytical model for the two-point correlation coefficient. The acoustic-

source two-point CPSD has then been derived by applying Fourier transform with respect to

the time-separation variable. The integral across space separation of the appropriately phase-

shifted two-point CPSD yields the acoustic-source volumetric source strength tensor. In order

to achieve the volumetric source strength we have performed the following.

1. The acoustic-source covariance function has been associated with the correlation function

of the fluctuating Reynolds stress.

- Assuming that the pressure-fluctuations are much smaller than the mean pressure,

the instantaneous value of the Lilley–Goldstein3 applied-stress equivalent acoustic

source equals the unit-density Reynolds stress u′⊗u′. A direct consequence of this

is the identification of the applied-stress-source two-point covariance function with

the unit-density Reynolds-stress two-point covariance function.

- A relation between the instantaneous value of the applied-force source and the

scaled projection of the unit-density Reynolds stress has been identified by assuming

moderate and purely convective static-temperature fluctuations. Under the same

hypotheses, the instantaneous applied-force source involves a second component;

this is given by the Lagrangian derivative plus the mean-flow gradient operating on

the fluctuating velocity scaled by the fluctuating static temperature. By assuming

a closure hypothesis (full characterisation of the two-point covariance function by

means of the unit-density Reynolds-stress component), the applied-force two-point

covariance function has been related to the unit-density Reynolds-stress two-point

covariance function. This closure hypothesis introduces an empirical scaling param-

eter, that we refer to as the applied-force scaling parameter.

2. Following the analysis of the Harper-Bourne4,5 estimates for the Reynolds-stress two-

point covariance (derived from axial-velocity measurements and therefore related to

component c11,11 only), an analytical model (4.16) for the fluctuating-Reynolds-stress

two-point correlation-coefficient function has been introduced. The model is based on

a space–time distance in a normalised-separation space. It includes a convection ef-

fect in the axial direction given by a time-separation shift that varies linearly with the
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space-separation axial component. The model follows the trends of the Harper-Bourne

measurements both in the time-separation domain and in the frequency domain. This

model shows that the frequency-domain behaviour of the Harper-Bourne data can be

reproduced by a constant-parameter model. The modified-distance model departs from

the Gaussian-decay separable-variable model that, introduced by Ribner,47 has been

widely used in jet-noise literature (e.g. Refs. [63,21,60]) to represent the acoustic-source

two-point correlation coefficient. Although we renounce to analytical advantages associ-

ated with the Ribner47 model, we propose a model that ensures a closer agreement with

available measurements.

3. All components cij,kl of the two-point Reynolds-stress covariance tensor have been fac-

torised as the product between mean value and correlation-coefficient function (see table

on page 139). This allows for confining the dependence on space and time separations in

the correlation-coefficient functions. The correlation-coefficient-function model (4.19), a

simplification (isotropic shape for the space-separation decay) of the model introduced

in point 2 above, has been extended from the c11,11 component to all components cij,kl.

The acoustic-source two-point CPSD has then been derived by applying Fourier Trans-

form with respect to time separations. By further factorising the correlation-coefficient

Fourier transform (or scaled CPSD, table on page 139), the space-separation dependence

has been confined in a normalised two-point CPSD function.

4. A frequency–wavenumber expression for the volumetric source strength tensor has been

derived by integrating across the space-separation variable the acoustic-source two-point

CPSD. The spatial-decay isotropy of the CPSD model has been used to reduce this vol-

ume integral to a 1-D integral that has been numerically evaluated at varying wavenum-

ber modulus. A one-variable cancellation function has been tabulated for the numerical

integral, to be directly accessed for the evaluation of the acoustic-source volumetric

strength.

5. The acoustic-source volumetric strength has been derived by specifying to the given

radiation condition the frequency–wavenumber expression. The radiation condition is

different for the low-frequency and the high-frequency solution; it is set by imposing

the appropriate uniform-medium velocity and speed of sound, together with the source–

observer emission-time direction.

The volumetric source strength components, see expressions (4.37) and (4.38), are given by the

product of scalar factors: mean value, scaling parameter (only for the applied-force contribu-

tion), scaled autospectrum, normalised-CPSD length scales and Cancellation function. While

the mean value – q̄ij,kl for the applied stress and
(
∇T̄ /T̄

)
∆i,j for the applied force – varies for

different source-strength components, the other factors are the same for all components. The

component-invariant factors – scaled-autospectrum model ŝ0(y,0, f), 1/e-decay length scales

l̃i (y, f) of the normalised CPSD and Cancellation function Cf (α̃) – are frequency dependent.
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Due to the characteristics of the simplified two-point correlation model all these factors can be

expressed by means of one-variable functions: the cancellation function Cf only depends on a

modified-wavenumber modulus, while the scaled autospectrum and the length scales can both

be related to characteristic functions fA and fL of a Strouhal number Srτ = fτd, where τd rep-

resents the autocorrelation-coefficient time scale. The functions Cf , fA and fL are numerically

evaluated, based on the simplified correlation-coefficient model (4.19); they have been tabu-

lated in order to rapidly evaluate the volumetric source strength at varying y, f and α̃. The

parameter al controls the spatial-separation decay of the correlation-coefficient model (4.19)

and, consequently, the frequency dependence of fL and the wavenumber-modulus dependence

of Cf . A set of different functions fL and Cf have been evaluated, depending on different

values for the parameter al. The different high-frequency trends measured by Harper-Bourne

for l̃1
(
y(m), f

)
or l̃⊥

(
y(m), f

)
are spanned by the modelled fL at varying al.

6.3 Application to jet-noise prediction

The acoustic model has been applied to predict 90-degree jet noise for single-stream and

coaxial jets issuing from axisymmetric nozzles. The acoustic model has been input with a

description of the jet-flow time-stationary statistical field, which has been computed as a

solution of the compressible steady RANS equations. The RANS solution does not output all

the statistical functions required by the acoustic model. In order to get a full description of

the volumetric source strength, the missing statistical parameters have then been introduced

by means of empirical expressions that supplement the RANS-solution output; we refer to

these expressions as the connection relations. The far-field jet-noise components, according

to the low-frequency (3.23) and the high-frequency (3.16) solutions, have been systematically

compared to corresponding measurements at 90-degree polar angle on unheated, isothermal

and hot jets. This part, detailed in Chapter 5, is briefly resumed as follows.

1. The jet-flow steady statistics have been evaluated by using a commercial RANS solver.

Solutions of the RANS equations, with Reynolds-stress closure for the turbulent-variable

equations, have been determined for a series of turbulent-jet flows. The solutions in-

clude spatial distributions for the Favre-averageda velocity, Reynolds-stress components,

turbulent-dissipation rate and static temperature. The RANS-solution flow fields, ob-

tained by using the solver-default turbulence-closure empirical parameters, show axial

stretching if compared to low-velocity turbulent-jet flow measurements.

2. A set of empirical relations, the connection relations, has been defined to establish a

link between the flow variables output by the RANS solver and the jet-noise model

(source statistics and Green function). The connection relations have been derived by

aConsistently with the adopted acoustic analogy, the jet is considered as an ideal-gas flow. Due to the
compressibility, the time averages are changed for the Favre averages. We have assumed that Favre averages
can be used in place of the time averages in the expressions associated with the acoustic source strength.
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following the lead of previous RANS-based (k-ε closure) jet-noise models and by adding

further relations that use the extra information arising from the RSM closure (turbulence

anisotropies). The connection relations introduce a set of empirical parameters.

3. The values of the acoustic-model parameters (the connection-relation empirical parame-

ters and the applied-force scaling parameter) have been defined by matching the jet-noise

model components to corresponding measured data. In order to do that, RANS solutions

have been derived for three single-stream jets corresponding to available experimental

data.

- An important aspect of the empirical-parameter definition is given by the use of

flow measurements. A first RANS solution has been evaluated for a jet with the

same nozzle-exit characteristics as the jet described in the Harper-Bourne4,5,42 mea-

surements. The Harper-Bourne4,5,42 estimates for the fluctuating Reynolds-stress

scaled autospectrum and the normalised-CPSD 1/e-decay length scales have been

used in matching the corresponding volumetric-source-strength factors. The ax-

ial stretching of the RANS-solution mean flow field has been taken in account by

putting in correspondence experiment and RANS-solution quantities at locations

mapped in potential-core lengths (axial direction) and in nozzle-exit diameters (ra-

dial direction). This part of the calibration procedure defines the spectral shape of

the 1/3-octave spectra for the modelled applied-stress and applied-force components

of the low-frequency (3.23) and the high-frequency (3.16) solutions.

- As done by previous RANS-based jet-noise models (e. g. in Ref. [21, 60]), the re-

maining parameters are chosen by adopting 90-degree far-field jet-noise spectra.

Note that these parameters act as scaling factors for the applied-stress and for the

applied-force contributions to the modelled far-field jet noise.

� The applied-stress scaling factor is chosen by performing a RANS solution for

an isothermal single-stream jet whose 1/3-octave spectrum is known (QinetiQ10

measurements). In this case the low-frequency and the high-frequency solutions

coincide and both model contributions can be considered as jet-noise predic-

tions. While the high-frequency part of the modelled 1/3-octave spectrum

is strongly affected by the frequency trend of the modelled normalised-CPSD

1/e-decay lengths (parameter al in the correlation-coefficient model),b the low-

frequency part of the modelled 1/3-octave SPL is not affected by changing al.

Thus the applied-stress scaling factor is assigned by matching the isothermal-

jet 90-degree spectral measurements and the low-frequency part of the applied-

stress components for both the low-frequency (3.23) and the high-frequency

(3.16) solutions.

bThe modelled normalised-CPSD 1/e-decay lengths are part of the volumetric source strength both as explicit
factors and as argument of the cancellation function Cf . Their frequency trend is controlled by the parameter
al in the correlation coefficient model (4.19), which we assumed to vary within a set of 4 prescribed values.
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� The applied-force scaling factor is chosen by performing a RANS solution

for a low-Mach-number hot single-stream jet whose 1/3-octave spectrum is

known (QinetiQ10 measurements). In this case the low-frequency and the high-

frequency solutions do not coincide and the model contributions can only be

considered as raw jet-noise predictions (a high- low-pass filtering procedure

needs to be applied on the low-frequency and high-frequency solutions in order

to enforce the respective hypotheses concerning the wavelength/flow-scale ra-

tios). The low-frequency solution yields applied-stress and applied-force compo-

nents for the raw SPL prediction that are greater than the corresponding high-

frequency components. The applied-stress raw spectra strongly under-predict

the low-frequency part of the measured 1/3-octave spectrum; this part of the

spectrum can be successfully modelled by opportunely setting the applied-force

scaling parameter κd which acts as an amplification factor of the applied-force-

component 1/3-octave spectra. Note that the applied-force 1/3-octave contri-

butions do not significantly change their spectral shapes, when changing the

value of parameter al.

As mentioned in the above points, the value of the correlation-coefficient-model

spatial-separation-decay parameter al strongly affects the high frequency trends

of the applied-stress 1/3-octave noise spectrum and has a more limited effect on

the applied-force 1/3-octave noise spectrum. Pending the availability of further

two-point correlation measurements for the fluctuating Reynolds stress, which are

needed in order to properly identify the high-frequency roll-off of the normalised-

CPSD length scales, we set the value of al in order to best match the isothermal

jet-noise measurements at 1/3-octave bands below 10 kHz. This value also allows

the modelled trends of l̃i
(
y(m), f

)
to match the Harper-Bourne measurements for

l̃⊥
(
y(m), f

)
.

4. The noise model has been tested on jet flows including moderate temperature gradients

(isothermal and unheated jets). At these conditions, being the observer at 90-degree

polar angle, no relevant differences appeared between the low-frequency (3.16) and the

high-frequency (3.16) solutions. The applied-stress contributions to the modelled spectra

can be considered as jet-noise predictions, since they strongly dominate the applied-force

contributions.

- A comparison between modelled isothermal-jet 1/3-octave spectra and correspond-

ing measurements (Refs. [10,9]) has been performed for 7 jets issuing from 2 different

single-stream nozzles. The comparison shows discrepancies within 3 dB between the

applied-stress model predictions and the measured spectra. The dominant applied-

stress components reproduce the variations of the measured spectra due to varia-

tions in nozzle-exit Mach number and diameter. The model predictions also show a

small applied-force component which is driven by the moderate static-temperature
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gradients present in the RANS solutions.

The QinetiQ10 measurements are closely followed by the model in the frequency

range 200 Hz to 10 kHz. For higher frequencies, the model overpredicts the mea-

surements, being the measurements characterised by steeper high-frequency roll-off.

The maximum SPL and the SPL-peak frequency are almost coincident between

measurement and model prediction.

The agreement between model predictions and measurements reduces when consid-

ering the test cases associated with the jet-noise data by Tanna, Dean and Burrin.9

In this case, the model underestimates the measured SPL in the SPL-peak region

for all nozzle-exit velocities considered. The SPL maximum is predicted by the

model at a lower frequency compared to the measurements. Note that a similar

difference has been identified in Appendix H, comparing the QinetiQ10 and the

Tanna9 measurements after Lighthill–Strouhal scaling.

- A comparison between modelled components and measured (ISVR data, acquired

by QinetiQ) unheated-jet 1/3-octave spectra has been performed for 4 jets issuing

from 2 different coaxial coplanar nozzles. The cold-coaxial-jet modelled noise shows

a discrepancy contained within 3 dB from the corresponding measurements in the

frequency range from 200 Hz to 10 kHz. The difference between modelled and

measured spectra increases if compared to the isothermal single-stream jet-noise

comparison. For the cases at lower velocity ratio (higher nozzle-exit inner-flow

velocity) the modelled-spectrum diverges in trend from the measurement at fre-

quencies above 10 kHz.

5. The effect of density inhomogeneity has been studied by considering 3 hot jets issuing

from 2 single-stream nozzles. The observation point has been kept at 90-degree polar

angle and a constant nozzle-exit acoustic Mach number has been considered. In this

case the low-frequency (3.23) and the high-frequency (3.16) solutions originated differ-

ent jet-noise contributions, the low-frequency solution being dominant. In this case it is

required to apply frequency filtering in order to enforce the hypotheses associated with

the different solutions. The problem of appropriately filtering the low-frequency (3.23)

and high-frequency (3.16) solutions, and achieve then jet-noise predictions, has not been

considered in the present work. Consequently, the different solutions and the correspond-

ing applied-stress and applied-force components need to be viewed as raw contributions.

The low-frequency noise amplification observed when heating moderate-velocity turbu-

lent jets is also observed in the modelled raw contributions. Increasing the nozzle-exit

temperature causes in the model an amplification of the applied-force source (greater

mean-temperature gradient) and a reduction of the applied-stress source. At the con-

sidered jet-exit velocities (acoustic Mach number 0.5), the applied-force contributions

dominated both the low-frequency (3.23) and the high-frequency (3.16) solutions in the

low-frequency range of the modelled 1/3-octave spectra. In this respect, the model

behaviour confirms the dipole-source plus quadrupole-source scaling given by Morfey58
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which was implemented in the scaling laws proposed by Morfey, Szewczyk and Tester.41

Preliminary results regarding the model-component evolution at rear-arc polar angles are

reported in Appendix I. These results compare the raw model components to the QinetiQ

single-stream jet-noise measurements, Ref. [10]. As above, the raw model components are given

by the low-frequency (3.23) and the high-frequency (3.16) solutions, each of these solutions

is broken down into the applied-stress and the applied-force components. The comparison

constitutes a first benchmark for those model components that are silent at 90 degrees, even

if we are not able to exactly evaluate the effect on the modelled noise components due to

the stretched jet mean flow, computed as RANS solution. The comparison shows that the

developed model could be used as a jet-noise prediction tool, provided the low-frequency (3.23)

and the high-frequency (3.16) contributions are appropriately frequency filtered and combined.

The results also show that the low-frequency solution dominates the predicted noise at the

lowest polar angles; here the high-frequency solution decays, due to refraction effects.

6.4 Possible future developments

A refinement of the RANS solution is possibly the first step forward in the future development

of the present model. By changing the values of the RANS-closure empirical parameters a

RANS-solution which is closer to jet-flow measurements could be achieved. Ideally a study

of test cases corresponding to jets with available experimental flow-statistics data can be

performed in order to determine best-fit sets of empirical constants for the RANS-system

closure.

The jet-noise model needs to be further tested for predictions at polar angles different from

90 degrees. As shown by the results reported in Appendix I, we can expect the noise at

low polar angles as being dominated by the low-frequency-solution components. A rear-arc

comparison between modelled low-frequency spectral components and corresponding acoustic

measurements will possibly clarify aspects of frequency-domain filtering and combining the

low-frequency (3.23) and high-frequency (3.16) solutions, once the effect of the RANS-solution

stretching is removed from the jet-noise model. An alternative approach for appropriately

combining the low-frequency and the high-frequency solutions could use numerically derived

Green functions for the Lilley–Goldstein analogy. Comparing the given solutions to a solution

obtained by using the exact Green functiona would give us information about the possibility of

constructing the exact Lilley-analogy propagation effect by combining the solutions proposed

in the present thesis. These tests will assess the extent to which the present model can be

aThe method indicated by Tester and Morfey40 can be applied on the Lilley–Goldstein equation (B.23)
for axisymmetric base flow and used to generate numerical solutions for the flow factors between a zero flow
solution and the far field pressures. These numerical flow factors will depend on the local mean-flow profile.
They can be used to evaluate the exact Lilley-analogy solution for the far-field noise, assuming each source
coherence region as being embedded in a stratified, axisymmetric and 1-D base flow which is given by the local
mean-velocity/mean-speed-of-sound profiles associated with the jet.
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used to achieve a whole-spectrum jet-noise prediction at conditions different from 90-degree

polar angle.

The model (4.16) for the two-point correlation coefficient of the fluctuating Reynolds-stress

components is central in the present work, this model has been based on available measure-

ments at a single location on a single-stream low-velocity jet, i. e. the Harper-Bourne4,5,42

measurements. The assumption made for this model is that its shape is universal for jets and

depends on a number of time-invariant parameters (τd, li, Uc, a, b, c). A validation of this

assumption is required, here we call for a series of two-point velocimetry experiments in jets

aimed to an estimate of the Reynolds-stress two-point covariance function on large volumes

of the jet flow. Such experiments should be preferably made by adopting the middle point

between the probes as fixed reference point, and by minimising the probe-introduction effect

on the jet flow. Provided model (4.16) can be used to successfully fit the estimated correlation

coefficient at various locations in any turbulent jets and for all Reynolds-stress components,

spatial distributions of the time-invariant parameters τd, li and Uc could be identified; a fine

tuning of the covariance-decay exponents a, b, c could also be performed.

Once a reliable model for the Reynolds-stress two-point correlation coefficient is established,

the connection relations between the RANS solution and the acoustic model are the area

where to concentrate research in order to produce reliable jet-noise predictions, based on

time-inexpensive CFD computations. These relations are required in order to complete the

RANS-solution description of the single-point statistics and to supply information for the two-

point statistics. In addition to the output given by a RANS-solver the model essentially needs

a spatial distribution of the following quantities:

- The fluctuating-Reynolds-stress mean-product tensor (components q̄ij,kl)

- The fluctuating-Reynolds stress autocorrelation-coefficient time scale τd

- The Reynolds-stress two-point covariance length scales li (i=1, 2, 3)

- The Reynolds-stress two-point CPSD phase velocity Uc

Velocimetry estimates of these quantities in a large volume of a jet could be used to define

empirical relations to replace (or confirm) the proposed connection relations.

As mentioned in Chapter 4, a DNS or experimental analysis of the applied-force term could

better frame the closure hypothesis (4.1.1), scaling the applied-force two-point covariance

tensor from the fluctuating-Reynolds-stress two-point correlation tensor. We need a measure

of the two-point correlation function associated with the fluctuations of

T ′

T

Du

Dt
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or, assuming convective temperature fluctuations and a Lilley-type base flow, of the term

1

T

(
D

Dt
+∇ū·

)(
T ′u′

)
+

1

T

(
u′⊗u′

)
· ∇T̄

In the present work we assumed that the applied-force two-point covariance is simply pro-

portional to the two-point covariance of (u′⊗u′) ·
(
∇T̄ /T̄

)
and we scaled it, based on the

two-point covariance of the unit-density Reynolds-stress u′⊗u′. A comparison between a mea-

sured applied-force two-point covariance and the corresponding statistical function for the

unit-density Reynolds-stress is then needed in order to validate the present model. Note

that two-point measurements of the term T ′u′ would add important information regarding

the two-point covariance function associated with

(
D

Dt
+∇ū·

)
(T ′u′), which has not been

directly modelled in the present work.
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Appendix A

Definitions regarding tensors and

reference systems

This appendix briefly describes the notation and the elements of Algebra and Geometry that

are used in this work. Some definitions as in Appendix II of Truesdell64 are adopted with

restrictions regarding the vector-space dimensions (the vector spaces used here are of dimen-

sion 3) and the definition of the corresponding bases (the bases adopted in this work are

always right-handed orthonormal bases; this makes the definition of reciprocal bases and co-

variant/contravariant coordinates redundant). A further source of information that has been

used in this appendix and in general in the whole work is the Dictionary of Acoustics.65 Sec-

tion A.1 gives the basic definitions for tensors in the 3-D space and introduces the dot product

and the tensor product. Some differentiation rules for tensor fields in the Euclidean space are

given in section A.2. Section A.3 defines the jet-noise fixed-frame coordinate systems.

A.1 Definitions and notation for tensors

Scalars are indicated with italic letters. A vector is defined as a geometrical entity carrying the

information to define a direction in the 3-D space and having a defined magnitude. Vectors are

indicated with lower-case boldfaced letters. The modulus of an arbitrary vector a is indicated

by the scalar a. Unit vectors are indicated by using the symbol ˆ as follows:

â = a/a

A n-order tensor generalises the concept of vector to n directions. A scalar is a zero-order ten-

sor, a vector is a first-order tensor. It is possible to identify tensors of higher order with linear

mappings: a linear mapping of vectors into vectors is a second-order tensor, a linear mapping

of vectors into second-order tensor is an order-3 tensor, and so on. Given an orthonormal basis
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of 3 unit vectors, all vectors can be represented by their components according to this basis.

An orthonormal basis will be generally indicated with the three vectors ê1, ê2, ê3. The basis

is used to represent a general vector a as follows:

a = a1ê1 + a2ê2 + a3ê3 = aiêi

This expression embodies the notation for tensor components (corresponding italic letters with

index) and the general use in this work of the Einstein convention for repeated indexes. The

component along a given unit vector is extracted by forming the dot product between a vector

and the unit vector:

a · êi = ai

It is easy to demonstrate how the definition above implies that the dot product between two

vectors results in the sum of the products between corresponding coordinates.

a · b = aibi

Here a operates on b to get a scalar value; viewing a as linear mapping also identifies the

· operator with “operates on” seen above in the general identification of tensors as linear

mappings.

A further operation between vectors – the tensor product – allows for extending the concept

of basis to tensors of any order greater than one. The tensor product between two vectors is

indicated by the symbol ⊗ . The tensor product between a and b is defined as the second-order

tensor which operates on the arbitrary vector c as:

(a⊗b) · c = (b · c) a (A.1)

The use of this operation allows for constructing a basis for second-order tensors by executing

the 9 different tensor products between the basis unit vectors ê1, ê2, ê3. A general second-order

tensor S can therefore be expressed in components as follows:

S = Sijêi⊗ êj

The given component of a tensor is extracted by forming the dot product with the correspond-

ing basis tensor as follows:

Sij = S · (êi⊗ êj) = (S · êj) · êi

Here the dot-product operation is extended to tensors of order greater than one. The general
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rule adopted in this work is expressed by the following examples:

S · a = Sijajêi

a · S = Sijaiêj

a · S · b = Sijaibj

S ·T = SijTij

It is to be noted that a dot product corresponds to an order contraction. The order contraction

involved in the dot-product operation simply depends upon the orders of the two factors

involved in the operation; the order of the resulting tensor is given by the difference between

the orders of the factors. The components of the tensor product between two arbitrary vectors

are given as follows:

(a⊗b) · (êi⊗ êj) = aibj

The concepts of tensor product and dot product can be used to deal with tensors of any order.

A basis of 33 tensors for order-3 tensors is given by the possible triple tensor products between

the basis vectors êi, a basis of 34 tensors for order-4 tensors is given by the possible quadruple

products between the basis vectors and so on.

A.2 Differentiation rules for tensor fields

Points are locations in the 3-D space and are indicated by using the upper-case letters A, B...

Z. The set of all possible points is the Euclidean space. Tensor fields are functions defined

over a connected Euclidean-space domain and taking values over any tensor space.a Given an

arbitrary point P the functions ρ(P), v(P), and S(P) correspondingly indicate the value in

P for arbitrary fields of scalars, vectors and second-order tensors. Let a displacement in the

Euclidean space be indicated by a vector δ and let δ connect our arbitrary point P to another

point Q inside the domain of the above tensor fields. The variation of the tensor fields when

changing the position from P to Q can be described as follows:

ρ(Q)− ρ(P) = ∇ (ρ) · δ + ◦ (δ · δ)

v(Q) − v(P) = ∇ (v) · δ + ◦ (δ · δ)

S(Q)− S(P) = ∇ (S) · δ + ◦ (δ · δ)

The above expressions include the use of the gradient operator ∇. The gradient operator is

used to define the part of the tensor-field variation that is linear in the displacement. The

gradient operator outputs a tensor field whose order equals n + 1 if applied to a continuous

and differentiable n-order tensor field. The gradients of general tensors up to second order are

aHere tensor space is used as vector space whose elements are tensors of arbitrary order.
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expressed as follows:

∇ (ρ) =
∂ρ

∂xi
êi

∇ (v) =
∂vi
∂xj

êi⊗ êj

∇ (S) =
∂Sij
∂xk

êi⊗ êj ⊗ êk

(A.2)

The following expressions can be deduced for the gradients of some special tensor fields:

∇ (a⊗b) =
∂ai bj
∂xk

êi⊗ êj ⊗ êk

=

(
∂ai
∂xk

bj + ai
∂bj
∂xk

)
êi⊗ êj ⊗ êk

∇ (ρS) =

(
∂ρ

∂xk
Sij + ρ

∂Sij
∂xk

)
êi⊗ êj ⊗ êk

= S⊗∇ρ+ ρ∇S

∇ (S · a) =
∂Sijaj
∂xk

êi⊗ êk

= ∇T (S) · a + S∇ (a)

∇ (ρa) =
∂ρai
∂xj

êi⊗ êj

= ρ∇ (a) + a⊗∇ (ρ)

∇ (a · b) =
∂aibi
∂xj

êj

= ∇T (a) · b +∇T (b) · a

(A.3)

Here the superscript T indicates the transpose operation; the transpose operator swaps the

last two directions of a given tensor,

ai1i2...in−1in

(
êi1 ⊗ êi2 ⊗ ...êin−1

⊗ êin
)T

= ai1i2...in−1in

(
êi1 ⊗ êi2 ⊗ ...êin ⊗ êin−1

)

The divergence is defined as the specific flux of a given tensor across a closed surface in

the limit of the enclosed volume tending to zero. In contrast to the gradient operator the

divergence yields a contraction in the tensor order: the divergence of an order-n tensor is a

tensor of order n− 1. The divergence is here evaluated by forming the trace of the gradient
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as follows:

div( ) = ∇ ( ) · I (A.4)

where I indicates the second-order identity tensor I = δij êi⊗ êj = êi⊗ êi. Equation (A.4) can

be used with the expressions (A.2) and (A.3) to derive the following results for the divergence

of some tensor fields.

div(a) =
∂ai
∂xi

div(S) =
∂Sij
∂xj

êi

div(a⊗b) = ∇ (a) · b + a div(b)

div(ρS) = S · ∇ρ+ ρdiv(S)

div(S · v) = div
(
ST
)
· v + ST · ∇ (v)

div(ρv) = ρdiv(v) +∇ (ρ) · v

(A.5)

A.3 Jet-noise coordinate systems

This work refers to three reference systems that are fixed to the jet nozzle. The systems describe

the space associated with the jet aeroacoustic field by means of Cartesian, cylindrical and polar

coordinates. The reference systems are defined by identifying an origin and corresponding

fields of vector bases. The systems map the Euclidean space into triplets of scalars that are

defined for each different system. The schematic in Fig. A.1 represents the position of the

common origin of the three coordinate systems and the orientation of the cylindrical-system

and spherical-system bases at an arbitrary location.

The Cartesian-coordinate system (O, ê1, ê2, ê3) is defined by placing the origin at the jet-exit

section on the jet symmetry axis. The unit vector ê1 is aligned with the jet centreline and has

the same direction as the jet flow. The components in (ê1, ê2, ê3) of the vector x = P − O,

indicating an arbitrary point P (see. Fig. A.1) from O, constitute the triplet (x1, x2, x3) of

Cartesian coordinates.

The cylindrical-coordinate system (O, γ̂γγ1, γ̂γγ2, γ̂γγ3) is defined by taking the polar axis coincident

with the jet centreline. The azimuth angle ϕ that is associated with the arbitrary point P
is measured from the plane containing the origin O and spanned by the unit vectors ê1 and

ê2. Positive ϕ correspond to positive rotations around ê1 from this reference plane to P. The

vector bases that are associated with the cylindrical coordinates form a non constant field.

Specifically the orientation of γ̂γγ2 and γ̂γγ3 varies with ϕ. The field is specified by the following
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PSfrag replacements

ê1

ê2

ê3

γ̂γγ1

γ̂γγ2

γ̂γγ3

ρ̂1

ρ̂2

ρ̂3

x

ϑ ϑ

ϑ
ϕ

O

P

Rx1

x2

x3

Figure A.1: Jet-noise coordinate systems: the Cartesian-system unit vectors (constant) are
drawn at the origin O of the system. The cylindrical-coordinate and spherical-coordinate unit
vectors (function of position) are represented at the generic point P defined from the origin O
by the vector x.
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relations at the arbitrary location P.

γ̂γγ1 = ê1

γ̂γγ2 (ϕ) = (cosϕ) ê2 + (sinϕ) ê3

γ̂γγ3 (ϕ) = (− sinϕ) ê2 + (cosϕ) ê3

(A.6)

The vector x can be expressed as:

x = x1γ̂γγ1 +Rγ̂γγ2(0) +R

ϕ∫

0

γ̂γγ3(ξ)dξ

or, equivalently,

x = x1γ̂γγ1 +Rγ̂γγ2(ϕ)

where R indicates the distance of the point P from the polar axis. The triplet of cylindrical

coordinates indicating the arbitrary point is (x1, R, ϕ).

The system of spherical polar coordinates, centred on O can be indicated as (O, ρ̂1, ρ̂2, ρ̂3).

The field associated with the unit-vector basis can be easily derived for the arbitrary location x

by rotating the corresponding cylindrical-coordinate unit vectors around γ̂γγ3 of the polar angle

ϑ (angle between ê1 and x). The spherical-coordinate unit-vector field is defined as function

of ϑ and ϕ as follows:

ρ̂1 (ϑ, ϕ) = (cosϑ) γ̂γγ1 + (sinϑ) γ̂γγ2 (ϕ)

ρ̂2 (ϑ, ϕ) = (− sinϑ) γ̂γγ1 + (cosϑ) γ̂γγ2 (ϕ)

ρ̂3 (ϕ) = γ̂γγ3 (ϕ)

(A.7)

As it is seen in Fig. A.1 the unit vector ρ̂1 is aligned with x. The position of the arbitrary

point P can be indicated with respect to the origin as:

x = xρ̂1(ϑ, ϕ)

That is equivalent to:

x = xρ̂1 (0, 0) + x

ϑ∫

0

ρ̂2(ζ, 0)dζ +R

ϕ∫

0

ρ̂3(ξ)dξ

The triplet of spherical coordinates associated with the arbitrary position P is given by

(x, ϑ, ϕ).
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Appendix B

Acoustic analogy for radiation

through a parallel base flow

A Lilley2 acoustic analogy has been derived by Goldstein3 (Lilley–Goldstein analogy) with

an exact forcing term given by a velocity quadrupole and a temperature dipole. The Lilley–

Goldstein analogy is valid for unbounded inviscid flows of perfect gas. In this appendix,

starting from the continuum-thermomechanics balances of mass, momentum, and energy, we

derive the Goldstein3 equation. An intermediate result is the expression of the conservation of

mass and momentum in terms of the state variables p
1
γ , u, c. These conservation equations are

used for the derivation of the local-medium Lighthill analogy in section (3.1.1). The Goldstein3

equation is finally rearranged to get the Lilley analogy in the form utilised by Morfey to derive

the low-frequency asymptotic solution of the Lilley–Goldstein analogy equation (section 3.2).

For a non-stationary, compressible, isentropic flow that has no external sources of mass,

momentum or energy, the conservation of mass, momentum, and energy can be expressed as

follows:

Dρ

Dt
+ ρdiv(u) = 0 (B.1)

Du

Dt
+
∇p
ρ

= 0 (B.2)

Ds

Dt
= 0 (B.3)

Here p is the thermodynamic pressure, ρ is the fluid density, u is the velocity vector, and s is

the specific entropy. Since the fluid is a perfect gas, entropy conservation (B.3) implies for a

material volume:

p
1
γ

ρ
= const. (B.4)
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where γ is the specific-heat ratio cp/cρ of the perfect gas. Taking the logarithm and the

material derivative of expression (B.4) yields:

Dρ

Dt
=

ρ

p
1
γ

Dp
1
γ

Dt
(B.5)

The entropy-conservation expression (B.5) allows for rewriting the conservation of mass (B.1)

and momentum (B.2) as follows:

mass
Dp

1
γ

Dt
+ p

1
γ div(u) = 0

∂p
1
γ

∂t
+ div

(
p

1
γu
)

= 0 (B.6)

momentum
Du

Dt
+
∇p
ρ

= 0

Du

Dt
+
γp

ρ

p−1

γ
∇p = 0

p
1
γ
Du

Dt
+ c2

p
1
γ
−1

γ
∇p = 0

Dp
1
γ u

Dt
− Dp

1
γ

Dt
u + c2∇p

1
γ = 0

∂p
1
γu

∂t
+∇

(
p

1
γu
)
· u + p

1
γ udiv(u) + c2∇p

1
γ = 0

∂p
1
γu

∂t
+ div

(
p

1
γu⊗u

)
+ c2∇p

1
γ = 0 (B.7)

Here the flow is described by the space–time evolution of the state variables u, p
1
γ , and speed

of sound c. The relation c2 = γp/ρ has been used to obtain (B.7).

A steady flow field is introduced as basis for the flow-variable variations. We we refer to this

flow as the base flow; it is defined as follows:





ū = U(x2, x3)ê1

p̄ = p∞

c̄ = c̄(x2, x3)

(B.8)

Note that the base flow is invariant to translations in the direction ê1; it is a generalised

Pridmore-Brown66 flow admitting general variability in directions orthogonal to ê1 for both

the velocity and the speed of sound.
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The decomposition of the velocity vector into base-flow component and unsteady component

u (x1, x2, x3, t) = U (x2, x3) ê1 + u′ (x1, x2, x3, t)

and the adoption of the base-flow convective time derivative

D̄

Dt
=
∂

∂t
+ U

∂

∂x1

are introduced in the mass conservation equation to give: a

D̄p
1
γ

Dt
+ div

(
p

1
γ u′
)

= 0 (B.9)

Similarly the momentum balance can be expressed as follows: b

D̄p
1
γu′

Dt
+
(
u′ · ∇U

)
p

1
γ ê1 + div

(
p

1
γ u′⊗u′

)
+ c2∇p

1
γ = 0 (B.10)

aEquation (B.9) is obtained by substituting the velocity decomposition in the mass balance, using the
linearity of the div operator, and observing that div(f ê1) = ∂f/∂x1 and that U does not depend on x1:

∂p
1
γ

∂t
+ U

∂p
1
γ

∂x1
+ div

“
p

1
γ u′
”

= 0

D̄p
1
γ

Dt
+ div

“
p

1
γ u′
”

= 0.

bThe procedure to obtain equation (B.10) can be shown in explicit terms as:

U
∂p

1
γ

∂t
ê1 +

∂p
1
γ u′

∂t
+ div

“
p

1
γ
`
U2ê1⊗ ê1 + U

`
ê1⊗u′ + u′⊗ ê1

´
+ u′⊗u′

´”
+ c2∇p 1

γ = 0

U
∂p

1
γ

∂t
ê1 +

∂p
1
γ u′

∂t
+ ê1⊗ ê1 · ∇

“
p

1
γ U2

”
+
`
ê1⊗u′ + u′⊗ ê1

´
· ∇
“
p

1
γ U
”

+

+p
1
γ Udiv

`
ê1⊗u′ + u′⊗ ê1

´
+ div

“
p

1
γ u′⊗u′

”
+ c2∇p 1

γ = 0

U
∂p

1
γ

∂t
ê1 +

∂p
1
γ u′

∂t
+ U2 ∂p

1
γ

∂x1
ê1 + u′ · ∇

“
p

1
γ U
”

ê1 + U
∂p

1
γ

∂x1
u′ +

+p
1
γ U

„
div
`
u′
´
ê1 +

∂u′

∂x1

«
+ div

“
p

1
γ u′⊗u′

”
+ c2∇p 1

γ = 0

U
∂p

1
γ

∂t
ê1 +

D̄p
1
γ u′

Dt
+ U2 ∂p

1
γ

∂x1
ê1 + u′ · ∇

“
p

1
γ U
”

ê1 + p
1
γ Udiv

`
u′
´
ê1 +

+div
“
p

1
γ u′⊗u′

”
+ c2∇p 1

γ = 0

 
D̄p

1
γ

Dt
+ div

“
p

1
γ u′
”!

U ê1 +
D̄p

1
γ u′

Dt
+
`
u′ · ∇U

´
p

1
γ ê1 +

+div
“
p

1
γ u′⊗u′

”
+ c2∇p 1

γ = 0

Expression (B.10) is easily deduced by using the mass-conservation equation (B.9).
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Some second order terms appearing in the momentum equation can be grouped as follows:

f B −div
(
p

1
γ u′⊗u′

)
−
(
c2 − c̄2

)
∇p

1
γ (B.11)

The defined vector f is equivalent to a scaled force per unit volume.c The tensor p
1
γu′⊗u′ can

therefore be regarded as analogous to a scaled applied stress, while the vector
(
c2 − c̄2

)
∇p

1
γ

is analogous to a scaled volume force. Introducing f in equation (B.10) gives

D̄p
1
γ u′

Dt
+
(
u′ · ∇U

)
p

1
γ ê1 + c̄2∇p

1
γ = f (B.12)

If the divergence of the momentum equation (B.12) is subtracted from the base-flow convec-

tive derivative of the mass equation (B.9), observing that the operators divergence and base

convective derivative do not commute,d the following scalar equation is obtained:

D̄2p
1
γ

Dt2
−∇U · ∂p

1
γ u′

∂x1
− ∂

∂x1

(
p

1
γ u′ · ∇U

)
− div

(
c̄2∇p

1
γ

)
= −div(f)

or, developing the x1 partial derivative in the third term of the above,

D̄2p
1
γ

Dt2
− 2∇U · ∂p

1
γ u′

∂x1
− div

(
c̄2∇p

1
γ

)
= −div(f) (B.13)

Operating on (B.13) with the base-flow convective time derivative and commuting the opera-

tors
∂

∂x1
and

D̄

Dt
equation(B.13) yield the following:

D̄

Dt

(
D̄2p

1
γ

Dt2
− div

(
c̄2∇p

1
γ

))
− 2∇U · ∂

∂x1

D̄p
1
γu′

Dt
= −D̄

Dt
div(f)

The momentum equation (B.12) can be used to remove the non-linear term on the left-hand

cAn applied volume force can be easily introduced as forcing term of the momentum equation (B.2). This
forcing term can be generalised as the sum of an applied volume force fa and the divergence of an applied stress
Sa (negative trace for compression):

fm = fa + div(Sa)

This applied load would appear on the right-hand side of equation (B.7) scaled by the factor

c2

γ
“
p

1
γ

”γ−1 =
p

1
γ

ρ

dThe divergence of the base convective time derivative of an arbitrary vector field a is given by:

div

„
D̄a

Dt

«
= div

„
∂a

∂t
+ U

∂a

∂x1

«
=
∂

∂t
div(a) + U

∂

∂x1
div(a) +∇U · ∂a

∂x1
=
D̄

Dt
div(a) +∇U · ∂a

∂x1
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side of the equation to give:

D̄

Dt

(
D̄2p

1
γ

Dt2
− div

(
c̄2∇p

1
γ

))
+ 2∇U · ∂

∂x1

((
u′ · ∇U

)
p

1
γ ê1 + c̄2∇p

1
γ − f

)
= −D̄

Dt
div(f)

or, observing that ∇U is orthogonal to ê1 and moving to the right hand side of the equation

the nonlinear terms,

D̄

Dt

(
D̄2p

1
γ

Dt2
− div

(
c̄2∇p

1
γ

))
+ 2∇U · ∂

∂x1

(
c̄2∇p

1
γ

)
= −D̄

Dt
div(f) + 2∇U · ∂f

∂x1
(B.14)

It is now useful to introduce the Goldstein variable πG.

πG B
p

1
γ − p

1
γ
∞

p
1
γ
∞

(B.15)

The Taylor expansion of πG around the ambient pressure p∞ shows the relatione between the

Goldstein variable πG and the acoustic pressure p′ = p− p∞.

p− p∞ + ◦
(

(p− p∞)2
)

= γp∞πG (B.16)

Dividing equation (B.14) by p
1
γ
∞ the Lilley–Goldstein equation is expressed as a function of πG

as follows:

D̄

Dt

(
D̄2πG
Dt2

− div
(
c̄2∇πG

))
+ 2c̄2∇U · ∂

∂x1
(∇πG) = − D̄

Dt
div(φ) + 2∇U · ∂φ

∂x1
(B.17)

Here the vector φ is given by

φ = div
(
− (πG + 1) u′⊗u′

)
−
(
c2 − c̄2

)
∇πG. (B.18)

where the applied-stress part Q is given as

Q = − (πG + 1) u′⊗u′ (B.19)

and the applied-force part is

d = −
(
c2 − c̄2

)
∇πG (B.20)

eThe proportionality between πG and the acoustic-pressure field in all flow regions characterised by the
property p′ << p∞ implies that πG can be successfully used in problems in which one intends to filter out the
acoustic-pressure field from the rest of the flow. An example is given by applications that use Ffowcs Williams
Hawkings surfaces for the far-field extrapolation of near-field acoustic fields. Morfey and Wright67 discuss
in detail the advantages of using the Goldstein variable πG or alternative density-related scalars for acoustic
analogies.
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Equation (B.17) is the Goldstein3 equationf expressing the Lilley acoustic analogy for a per-

fect gas in isentropic conditions; including an exact forcing term given by the applied-stress

term (B.19), referred to by Goldstein as velocity quadrupole, and by the applied-force (B.20),

referred to by Goldstein as temperature dipole.

Further processing of (B.17) is required in order to obtain the equation that is used for

the present low-frequency approximation. Restricting (B.14) to axisymmetric base flows and

dividing by c̄2 the following is obtained:

D̄

Dt

(
1

c̄2
D̄2πG
Dt2

+
1

ρ̄

dρ̄

dR

∂πG
∂R
−∇2πG

)
+ 2

dU

dR

∂2πG
∂R∂x1

=− 1

c̄2

(
D̄

Dt
div(φ)− 2∇U · ∂φ

∂x1

)
(B.21)

As explained by Morfey and Wright,67 Tester and Morfey40 looked for solutions of an equation

having the same linear differential operator as equation (B.21) and forced by the generalised

source distribution

ρ̄

(
D̄

Dt

)m
(−∂)n sij...
∂xi∂xj . . .

(B.22)

If equation (B.21) is scaled by the factor ρ̄c̄2 that – being proportional to p̄ – is constant for

the base flow, the following is obtained:

D̄

Dt

(
1

c̄2
D̄2π̃G
Dt2

+
1

ρ̄

dρ̄

dR

∂π̃G
∂R
−∇2π̃G

)
+ 2

dU

dR

∂2π̃G
∂R∂x1

=−ρ̄
(
D̄

Dt
div(φ)− 2∇U · ∂φ

∂x1

)
(B.23)

where

π̃G = ρ̄c̄2πG

Solutions of equation (B.23) can be found by adopting the same procedure as in Tester and

Morfey.40 Analytical expressions of the solutions are available in the low and high frequency

limits. The low-frequency Green function adopted in this work has been derived by Morfey

as a solution of (B.23) in the low-frequency limit, by introducing the further small parameter

dJ/λ and expanding the low-frequency solution of Ref. [40] to lowest order in this parameter.

fEquation (B.17) corresponds to equation (3.11) in Ref. [3]. Note that a sign difference in the forcing terms
appears between the present solution and the equation published by Goldstein.3
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Appendix C

The sound field of moving acoustic

sources

The acoustic field associated with a constant-velocity moving monopole source in a stationary

unbounded uniform medium is studied in this appendix. The Lorentz-transformation pro-

cedure as indicated in Morse and Ingard68 and generalised by Morfey as in Hu Morfey and

Sandham69 is detailed in section C.1. By means of a Galilean transformation the monopole

solution is expressed for an observer that is in general uniform motion relative to the medium.

The source–observer emission-time coordinates are introduced in section C.2. In section C.3

the moving-monopole solution is rearranged and expressed in emission-time coordinates. The

emission-time solution is then extended to singularities of dipole and quadrupole order. The

acoustic fields for the moving singularities are developed retaining the near-field terms.

C.1 The pressure field of a moving monopole by Lorentz trans-

formation

This section details the solution for the acoustic pressures generated by a constant-velocity

moving point source. The acoustic medium is assumed to be at rest. A reference frame fixed

to the medium is indicated as (P, ê1, ê2, ê3), where the unit vector ê1 is aligned with the

source velocity v. The point-source position in (P, ê1, ê2, ê3) is indicated by the coordinates

(y1, y2, y3). A second frame of reference is connected to the moving source and is called

(P ′, ê1, ê2, ê3). Frames (P, ê1, ê2, ê3) and (P ′, ê1, ê2, ê3) coincide at t = 0. The position of

the source in (P ′, ê1, ê2, ê3) is constant and is indicated by the coordinates (y ′1, y
′
2, y
′
3). The

coordinates indicating the source position in (P, ê1, ê2, ê3) and (P ′, ê1, ê2, ê3) are related by
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the Galilean transformation associated with the uniform motion of the source:





y1 = y′1 + vt

y2 = y′2

y3 = y′3

The acoustic problem can be formulated in the reference frame (P, ê1, ê2, ê3) as a wave equation

that is forced by a spatial Dirac function of prescribed time-varying intensity a and whose

position changes according to the source velocity:

1

c2
∂2p

∂t2
−∇2p = a(t)δ(x1 − y′1 − vt)δ(x2 − y′2)δ(x3 − y′3) (C.1)

Here p is the acoustic pressure. If the modulus of the source velocity v is smaller than the

speed of sound c the following Lorentz transformation can be defined:





x′′1 = β2 (x1 − vt)
x′′2 = βx2

x′′3 = βx3

t′′ = β2
(
t− v

c2
x1

)
β2 =

1

1− v2/c2





x1 = x′′1 + vt′′

x2 = x′′2/β

x3 = x′′3/β

t = t′′ +
v

c2
x′′1

(C.2)

Using the transformations (C.2) the scalar field p can be considered as function of the variables

x′′1 , x′′2, x′′3 and t′′. The problem expressed by equation (C.1) can be moved to the new space-

time coordinates to give:

β2

(
1

c2
∂2p

∂t′′2
−∇2p

)
= β4a

(
t′′ +

v

c2
x′′1
)
δ
(
x′′1 − β2y′1

)
δ
(
x′′2 − βy′2

)
δ
(
x′′3 − βy′3

)
(C.3)

In order to obtain equation (C.3), the following equivalence has been used for the Dirac

distribution

δ

(
x

β

)
= βδ (x)

and the partial derivatives have been developed by using the chain rule as follows:

∂2p

∂t2
= β4

(
∂2p

∂t′′2
− 2v

∂2p

∂x′′1∂t
′′ + v2 ∂

2p

∂x′′1
2

)

∂2p

∂x1
2

= β4

(
∂2p

∂x′′1
2 − 2

v

c2
∂2p

∂x′′1∂t
′′ +

v2

c4
∂2p

∂t′′2

)

∂2p

∂x2
2

= β2 ∂
2p

∂x′′2
2

∂2p

∂x3
2

= β2 ∂
2p

∂x′′3
2
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Equation (C.3) can be further developed by dividing with β2 and using the sifting property of

the Dirac function operating on x′′1 , to give:

1

c2
∂2p

∂t′′2
−∇2p = β2a

(
t′′ +

v

c2
β2y′1

)
δ
(
x′′1 − β2y′1

)
δ
(
x′′2 − βy′2

)
δ
(
x′′3 − βy′3

)
(C.4)

Equation (C.4) is a wave equation forced by a stationary point source. The solution of equation

(C.4) with free-field boundary conditions for an observer located at the position indicated by

the coordinates (x′′1 , x
′′
2, x
′′
3) and at the time t′′ is given by:

p
(
x′′1, x

′′
2 , x
′′
3 , t
′′) =

β2a

(
t′′ + β2 v

c2
y′1 −

r′′

c

)

4πr′′
(C.5)

where r′′ indicates the source–observer distance in the transformed coordinates:

r′′ B
√

(x′′1 − β2y′1)2 + (x′′2 − βy′2)2 + (x′′3 − βy′3)2

Going back to the original coordinates and defining rM as

rM B
r′′

β2
=

√
(x1 − y′1 − vt)2 +

(
1− v2

c2

)(
(x2 − y′2)2 + (x3 − y′3)2

)
(C.6)

equation (C.5) is transformed to give

p (x1, x2, x3, t) =
a
(
β2
(
t− v

c2
(
x1 − y′1

)
− rM

c

))

4πrM
(C.7)

Expression (C.7) represents the free-field solution for a prescribed point source moving with

constant subsonic velocity in a stationary medium. This solution is valid for a generic observer

in a position (x1, x2, x3) which is rigidly connected to the medium. It can be rearranged to

make explicit the dependence on the source–observer relative position at the time t:

p (x1, x2, x3, t) =
a
(
t− β2

( v
c2
(
x1 − y′1 − vt

)
− rM

c

))

4πrM
(C.8)

The solution for an observer that is in uniform motion relative to the medium is derived by

applying to expressions (C.8) and (C.6) the Galilean transformation:





x̃1 = x1 − ũ1t

x̃2 = x2 − ũ2t

x̃3 = x3 − ũ3t
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where ũ is the time-invariant velocity of the observer. The acoustic-pressure field at the generic

position indicated by the vector x̃ from the origina of a reference frame fixed with the observer

(the moving-observer frame) is given as follows:

p (x̃, t) =
a
(
t− β2

( v
c2
(
x̃1 − y′1 + (ũ1 − v) t

)
− rM

c

))

4πrM
(C.9)

where the modified distance is given by

rM =

√
(x̃1 − y′1 + (ũ1 − v) t)2 +

(
1− v2

c2

)(
(x̃2 − y′2 + ũ2t)

2 + (x̃3 − y′3 + ũ3t)
2
)

(C.10)

We now identify with ỹ the vector that, at the instant t, indicates the source position from

the origin of the moving-observer frame.

ỹ = ỹ1ê1 + ỹ2ê2 + ỹ3ê3 =
(
y′1 + vt− ũ1t

)
ê1 +

(
y′2 − ũ2t

)
ê2 +

(
y′2 − ũ3t

)
ê3 (C.11)

Expressions (C.9) and (C.10) are here viewed as function of the source-position coordinates

(ỹ1, ỹ2, ỹ3) in the moving-observer frame, corresponding to expressions (C.8) and (C.6) in

the medium-fixed frame (P, ê1, ê2, ê3). Indicating with r the vector that connects the source

position to the observer position,

r = x̃− ỹ(t) = x(t)− y(t) (C.12)

the moving-source acoustic field is related to the instantaneous separation between source and

observer as follows:

p (x, t) =
a
(
t− β2

(vr1

c2
− rM

c

))

4πrM
(C.13)

where the modified distance is given by

rM =

√
r2

1 +

(
1− v2

c2

)(
r2

2 + r2
3

)
(C.14)

Provided the symbols always indicate the same corresponding physical quantities, and the given

reference frame is aligned with the velocity of the source relative to the medium, expressions

(C.13) and (C.14) are symbolically invariant for Galilean transformations associated with the

observer motion.

The solution for the acoustic pressures recorded by an observer which moves at the same

speed as the sourceb is of interest in the study of random pressure fields. This solution can be

aNote that at t = 0 the origin of this reference frame coincides with the origin of the reference frame that is
fixed to the medium. Corresponding basis vectors of the reference frames are aligned.

bIn Appendix D, we generalise the notion of source speed. The source velocity v becomes simply the velocity
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obtained by specialising expressions (C.9) and (C.10) to the case

ũ = vê1

This yields

p
(
x′, t

)
=

a

(
t− β2 v

c2
(
x′1 − y′1

)
− β2 r

′
M

c

)

4πrM
(C.15)

rM =

√
(x′1 − y′1)2 +

(
1− v2

c2

)(
(x′2 − y′2)2 + (x′3 − y′3)2

)
(C.16)

The acoustic-pressure solution (C.15) corresponds to the problem of a fixed source, fixed

observer, and moving medium between source and observer. In this problem the medium

moves with constant velocity −vê1. This solution coincides with the solution of the convective

wave equation forced by a fixed space-time Dirac function.

C.2 Emission-time coordinates

The use of emission-time coordinates allows a compact expression for the acoustic field asso-

ciated with moving sources. This section introduces the concepts of emission-time separation,

emission-time polar angle and Doppler factor for a source that is moving in a uniform medium

at rest. A series of spatial derivatives that need to be computed to obtain the Green functions

for multipole moving sources are also derived. As in section C.1, it is assumed that a point

source is in motion with velocity v in a uniform medium at rest (constant speed of sound

c). If a wave is emitted by the source at a given instant tE it will propagate in the medium

maintaining a spherical wavefront. The wavefront will hit a given stationary observer (loca-

tion indicated by x from the origin P) at the instant t. The schematic in Fig. C.1 presents

the situation at the instant t. If the position of the source at the times tE (SE) and t (S) is

indicated respectively by the vectors yE and y from the origin P, the emission-time separation

vector rE is defined as follows:

rE B x− yE (C.17)

The modulus of rE is the emission-time distance between source and observer. The emission-

time distance rE divided by the speed of sound will give the time lag between emission at the

source location and reception at the observer position:

rE/c = t− tE
of the reference frame that most conveniently describes the source region. In aeroacoustic applications, this is
the reference frame in which the source distribution is statistically stationary.
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...............
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Figure C.1: The circle in the diagram indicates the wavefront at the time t when it reaches
the observer at R. The wave is emitted by a moving source of velocity v ê1 in a quiescent
medium. The location of the source at time of emission is indicated by SE. The emission-time

separation rE =
−−→SER = x−yE and the vector MrE ê1 =

−−→SSE = y−yE are indicated by solid

lines. The dashed line indicates the separation vector r =
−→SR = x − y giving the observer

position from the source location at time t. The emission-time polar angle is indicated by ϑE .

The emission-time separation is related to the source–observer separation r as follows (see

Fig. C.1):

rE =
rE
c

v + r =
(
r1 +

rEv

c

)
ê1 + r2ê2 + r3ê3

where ri are the components of the separation vector r. If we indicate with M the source-

motion Mach number

M B
v

c
(C.18)

the emission-time separation vector can be expressed as follows:

rE = (r1 +MrE) ê1 + r2ê2 + r3ê3 (C.19)

The squared emission-time distance is therefore given by

r2
E = (r1 +M rE)2 + r2

2 + r2
3. (C.20)

The latter allows for expressing the emission-time distance as function of the components ri

and the signed Mach number M . By solving (C.20) for rE and considering the positive solution
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at subsonic source velocity the following is obtained:

rE =
Mr1 +

√
M2r2

1 + r2 −M2r2

1−M2
(C.21)

It is noted that the square-root term in equation (C.21) equals the modified distance rM which

has been introduced for the acoustic field of moving sources in expression (C.6). This leads to

the simpler expression for the emission-time distance:

rE =
Mr1 + rM

1−M2
(C.22)

The emission-time polar angle (Fig. C.1) is defined as the angle between the source-velocity

vector v and the emission-time separation vector rE . The relation linking the r1 component

to the emission-time distance and polar angle is

r1 = rE cosϑE −MrE . (C.23)

This expression, inserted in (C.22), gives for the emission-time distance:

rE =
rM

1−M cosϑE
(C.24)

The ratio between the emission-time distance and the modified distance is a scalar. This scalar

is generally referred to as a Doppler factor and is defined by the following expression:

Dv B
1

1− v · rE
crE

=
1

1−M r̂E · ê1
=

1

1−M cosϑE
(C.25)

The gradient ∇x of the emission-time distance, calculated by varying the observer position

with t held constant, needs to be evaluated when deriving the acoustic field of moving multipole

inhomogeneities. Taking the partial derivatives in expression (C.22) with respect to xi, t being

held constant, gives:

∂rE
∂x1

=
M +

∂rM
∂x1

(1−M2)
=
M +

r1

rM
(1−M2)

∂rE
∂x2

=

∂rM
∂x2

(1−M2)
=

(
1−M2

)
r2

rM
(1−M2)

∂rE
∂x2

=

∂rM
∂x3

(1−M2)
=

(
1−M2

)
r3

rM
(1−M2)

(C.26)
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By using (C.24) and simplifying, (C.26) becomes:

∂rE
∂x1

=

M +
r1

rE (1−M cosϑE)

(1−M2)

∂rE
∂x2

=
r2

rE (1−M cosϑE)

∂rE
∂x2

=
r3

rE (1−M cosϑE)

(C.27)

Here we used expression (C.14) and the identity ∂/∂xi = ∂/∂ri. The partial derivative

∂rE/∂x1 can be further simplified by introducing equation (C.23) to get:

∂rE
∂x1

=
MrE (1−M cosϑE) + rE cosϑE −MrE

rE (1−M cosϑE) (1−M2)
=

rE cosϑE
rE (1−M cosϑE)

(C.28)

Finally, by noting that

rE · ê1 = rE cosϑE rE · ê2 = r2 rE · ê3 = r3

and by introducing (C.28) into (C.27), the expression for the partial derivatives of the emission-

time distance is given as follows:

∂rE
∂x1

=
rE · ê1

rE (1−M cosϑE)

∂rE
∂x2

=
rE · ê2

rE (1−M cosϑE)

∂rE
∂x2

=
rE · ê3

rE (1−M cosϑE)

(C.29)

This means that the observer-position gradient ∇x of the emission-time distance is given by

the unit vector which points towards the observer location from yE scaled by a Doppler factor:

∇x (rE) = Dv
rE
rE

= Dv r̂E (C.30)

A further expression to be evaluated when deriving the acoustic field of moving multipole

inhomogeneities is the gradient ∇x of the ratio between Doppler factor and emission-time

distance, calculated by varying the observer position with t held constant. In order to derive

∇x (Dv/rE), the observer-position gradient, with t constant, of the emission-time separation

vector is determined first. Expression (C.30) is used to express the gradient of the emission-
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time separation vector rE as follows:a

∇x (rE) = I +MDvê1⊗ r̂E (C.31)

The observer-position gradient of the ratio between the Doppler factor and the emission-time

distance is evaluated as follows:

∇x

(
Dv

rE

)
= ∇x

(
1

rE +Mre · ê1

)
=

(
Dv

rE

)2 (
−∇x (rE) +M∇T

x (re) · ê1

)
(C.32)

By using equations (C.30) and (C.31) expression (C.32) can be expressed as follows:

∇x

(
Dv

rE

)
=

(
Dv

rE

)2

(−Dv r̂E +M (ê1 +MDv r̂E))

Grouping the components along the same direction yields the following

∇x

(
Dv

rE

)
=

(
Dv

rE

)2 v

c
−
(
1−M2

)(Dv

rE

)3

rE (C.33)

C.3 The acoustic field of moving singularities in emission-time

coordinates

The result found in section C.1 for the acoustic-pressure field of a moving point source in

a uniform medium is used to write the solution for the acoustic monopole in emission-time

coordinates. The solution is generalised to any scalar field g that is a solution of the wave

equation
1

c2
∂2g

∂t2
−∇2g = a(t)δ(x − y)

where δ(x − y) = δ(x1 − y1)δ(x2 − y2)δ(x3 − y3) and y varies with time as seen in section

C.1. Free-field boundary conditions are assumed for the problem. The solution for moving

dipoles and quadrupoles is obtained by generalising the problem to multipole sources. This is

obtained by assuming that the forcing term is a N -order tensor that is operated N times by

a divergence operator.

1

c2
∂2g(N)

∂t2
−∇2g(N) = div

(
...div

(
div(ai1i2...iN (t)êi1 ⊗ êi2 ⊗ ...⊗ êiN δ(x − y))1

)
2
...
)
N

(C.34)

aThe emission-time separation vector is given by expression (C.19). By noting that the gradient ∇x of the
source-observer separation r is given by the identity tensor I and by using (A.3), the observer-position gradient
of rE is expressed as follows:

∇x (rE) = I +M ê1⊗∇x (re)

Expression (C.31) is obtained by introducing equation (C.30).
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In general the solution of the N -order problem (C.34) can be obtained by taking the divergence

of the vector field that is solution of the (N − 1)-order problem. This procedure is applied

in this section to obtain the dipole solution g(1) and the quadrupole solution g(2) from the

monopole solution g(0). For the multipole cases the full free-field solution is derived; the

higher-order terms in the emission-time distance are then removed, leaving a solution whose

validity is limited to the acoustic far field.

C.3.1 The acoustic field of moving monopoles

As shown in section C.1 the acoustic field of a subsonic moving point source in an undisturbed

uniform medium at rest can be conveniently evaluated as a function of the separation vector

between source and observer. Assuming that the reference-frame base vector ê1 is aligned with

the velocity v of the source relative to the medium, this acoustic field is given by generalising

expressions (C.13) and (C.14) to the arbitrary source position y and the arbitrary acoustic

field g: 



g(0) (x|y, t) =
a
(
t− β2 vr1

c2
− β2 rM

c

)

4πrM

rM =
√
r2

1 + (1−M2)
(
r2

2 + r2
3

)
(C.35)

Here M indicates the non-dimensional velocity of the source (C.18) relative to the medium, β is

the Lorentz-transformation contraction factor as in (C.2), and r indicates the source–observer

separation vector at the time t.

Equation (C.35) can be rearranged by introducing the emission-time distance rE and the

emission-time polar angle ϑE between source and observer. The modified distance rM can be

expressed as function of the emission-time coordinates by using (C.24) to give:

rM =
rE
Dv

(C.36)

where the Doppler factor Dv is given by (C.25). If expression (C.36) is introduced into (C.35),

the acoustic field associated with the moving point source can be expressed as follows:

g(0) (x|y, t) =
Dv

4πrE
a
(
t− rE

c

)
(C.37)

It is noted that equation (C.37) is general to the extent of any constant subsonic velocity

of the source relative to the medium. Expression (C.37) conveniently separates the effects

of the source–medium relative motion and the observer–acoustic-field relative motion. The

directional distribution of the acoustic field over a given wavefront is controlled by the source–

medium relative motion and confined to the Doppler factor Dv. The observer position with

respect to wavefronts in the acoustic field is expressed by the emission-time coordinates ϑE
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(in the Doppler-factor expression) and rE .a

C.3.2 The acoustic field of moving dipoles

For the moving-dipole case the forcing term in the wave equation is given by the divergence of

a moving vector. The possibility of commuting the D’Alembert operator and the divergence

operator, combined with the linearity of the D’Alembert operator, gives a solutionb for the

acoustic field of a general dipole:

g(1) (x|y, t) = divx

(
Dv

4πrE
a
(
t− rE

c

))
(C.38)

where the subscript x on the divergence operator indicates that the divergence is evaluated by

varying the observer position, t being held constant. The Doppler factor Dv is given by (C.25)

for a dipole source which moves with constant velocity v. It is useful to give an expression for

the observer-position divergence of any tensor function depending upon the variable t− rE/c:

divx

(
T
(
t− rE

c

))
=

∂T

∂rE
· ∇x (rE) = −1

c

∂T

∂t
· ∇x (rE) = −Dv

c
Ṫ · r̂E (C.39)

Here the partial time derivative represents the time variation of the source field as observed

from a reference frame that is connected to the source;c it is indicated with the symbol ˙ over

the argument variable. Note that the gradient ∇x (rE) has been derived by using expression

(C.30). The divergence on the right-hand side of equation (C.38) can be expressed by using

(A.5) as follows:

1

4π

(
Dv

rE
divx

(
a
(
t− rE

c

))
+ a

(
t− rE

c

)
· ∇x

(
Dv

rE

))

Using expressions (C.39) and (C.33), the above expression develops as

1

4π

(
−D

2
v

crE
ȧ · r̂E + a ·

((
Dv

rE

)2 v

c
− 1

β2

(
Dv

rE

)3

rE

))

Using the above expression, equation (C.38) can finally be written as:

g(1) (x|y, t) = − D2
v

4πcrE
ȧ · r̂E +

D2
v

4πr2
E

a ·
(

v

c
− Dv

β2
r̂E

)
(C.40)

aThe emission-time coordinates indicate the current position of the observer from the centre of the wavefront
that is being currently recorded by the observer.

bNote that the solution given by Garrick an Watkins8 for a moving dipole is the equivalent of (C.38) expressed
by using the source-observer separation r and the modified distance rM . Equations (4) and (5) in Ref. [8] have
been obtained by applying a “procedure which consists of scheduling a succession of fixed sources in a path to
act consecutively one after the other so as to represent in effect the desired source moving along its path.” The
procedure is explained in the appendix of Ref. [8].

cThe derivative does not include the time dependence of rE .
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Here the characteristic feature associated with multipole acoustic sources emerges: the solution

is given by a combination of terms carrying different dependences on the emission-time distance

and therefore falling more or less rapidly as the distance rE increases.

The radiation in the acoustic far field will be dominated by the first term in equation (C.40)

to give:

g(1) (x|y, t) = − D2
v

4πcrE
ȧ · r̂E (C.41)

Expressions (C.40) and (C.41) are equivalent to the moving-dipole solutions identified by

Lowson61 for zero acceleration of the point dipole.d

C.3.3 The acoustic field of moving quadrupoles

The solution for quadrupole-order sources is obtained from the monopole solution (C.37) by

applying twice the observer-position divergence. The quadrupole source field is in this case

given by a symmetric second-order tensor field A. The expression of the acoustic field for a

quadrupole which moves with velocity v is given as follows:

g(2) (x|y, t) = divx

(
divx

(
Dv

4πrE
A
(
t− rE

c

)))
(C.42)

The inner divergence operator can be developed applying (A.5) to result in

g(2) (x|y, t) =
1

4π
divx

(
Dv

rE
divx(A) + A · ∇

(
Dv

rE

))

Similarly, operating the second divergence results in

g(2) (x|y, t) =
1

4π

(
Dv

rE
divx(divx(A)) + 2divx(A) · ∇

(
Dv

rE

)
+ A · ∇

(
∇
(
Dv

rE

)))
(C.43)

Where use has been made of the symmetry property of the quadrupole tensor.e The three

terms that sum to give the moving-quadrupole pressure field in (C.43) can be taken separately.

dLowson61 published a solution for the pressure field associated with moving dipole-order sources. The source
motion was not uniform and a source-acceleration term appears in the far-field acoustic solution. Equations
(17) and (18) in Ref. [61] respectively give the far-field and the near-field terms. Note that, in Ref. [61], the wave
equation is in the Lighthill1 form; the retarded time notation is equivalent to the emission-time coordinates for
medium-fixed observer. Provided the retarded-time formulae are applied by considering the current-time for
the observer position, as in Garrick and Watkins,8 the zero-acceleration Lowson61 solution is fully equivalent
to (C.40). The far-field contribution for the acoustic field of uniformly moving dipole-order sources is included
in the Bakerian lecture 1961 by Lighthill.70

eThe form for a non symmetric tensor is given by

g(2) (x|y, t) =
1

4π

„
Dv
rE

divx(divx(A)) +∇
„
Dv
rE

«
· divx (A) + divx

“
AT
”
· ∇
„
Dv
rE

«
+ AT · ∇

„
∇
„
Dv
rE

«««
.
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The double divergence term can be developed as:

divx(divx(A)) =
D2
v

c2
Ä · r̂E ⊗ r̂E −

Dv

crE
Ȧ ·

(
I + 2DvSym

(
r̂E ⊗

v

c

)
− D2

v

β2
r̂E ⊗ r̂E

)
(C.44)

Here Sym( ) indicates the symmetric part of a tensor.f The steps involved in the derivation

of (C.44) used expressions (C.39), (A.5), (A.3), (C.31) and (C.33). Similarly, the mixed

divergence-gradient term develops as:

divx(A) · ∇
(
Dv

rE

)
= −D

3
v

cr2
E

Ȧ ·
(

r̂E ⊗
v

c
− Dv

β2
r̂E ⊗ r̂E

)
(C.45)

The derivation of (C.45) used expressions (C.39) and (C.33). The double gradient term can

be developed as:

∇
(
∇
(
Dv

rE

))
=
D3
v

r3
E

(
2
v

c
⊗

v

c
− 1

β2
I

)
− 6D4

v

β2r3
E

Sym
(
r̂E ⊗

v

c

)
+

3D5
v

β4r3
E

r̂E ⊗ r̂E (C.46)

Here expressions (A.3), (C.31) and (C.33) have been used. Introducing (C.44), (C.45) and

(C.46) into (C.43) results in the following expression for the acoustic field of a moving qua-

drupole:

g(2) (x|y, t) =
D3
v

4πc2rE
Ä · r̂E ⊗ r̂E

+
3D2

v

4πcr2
E

Ȧ ·
(
D2
v

β2
r̂E ⊗ r̂E −

1

3
I− 4

3
DvSym

(
r̂E ⊗

v

c

))

+
3D3

v

4πr3
E

A ·
(
D2
v

β4
r̂E ⊗ r̂E −

1

3β2
I− 2Dv

β2
Sym

(
r̂E ⊗

v

c

)
+

2

3

v

c
⊗

v

c

)
(C.47)

Expression (C.47) contains all the terms of sound propagation from a moving quadrupole-order

point source. As for the dipole source, the multipole nature of the source implies a solution

that includes terms characterised by different dependences upon the emission-time distance

rE . Note that the solution (C.47) is equivalent to the zero-acceleration terms associated with

the moving-quadrupole solutiong introduced by Brentner.62

fThe symmetric part of a tensor is given as follows:

Sym(A) =
A + AT

2

gEquation (17) in Ref. [62] includes a free-field Green function for generally-moving quadrupole-order sources.
The Green function includes the effect of source acceleration; both the near-field and far-field terms are con-
sidered. Note that, provided the retarded-time notation includes the observer position at current time (as in
Garrick and Watkins8 or Farassat71), the retarded-time solution is equivalent to the emission-time solution.
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The far-field radiation will be dominated by the first term of (C.47):

g(2) (x|y, t) =
D3
v

4πc2rE
Ä · (r̂E ⊗ r̂E) (C.48)

The specialisation of (C.47) to the case of zero source velocity gives the solution

g(2) (x|y, t) =
1

4πc2r
Ä · r̂⊗ r̂ +

3

4πcr2
Ȧ ·

(
r̂⊗ r̂− 1

3
I

)
+

3

4πr3
A ·

(
r̂⊗ r̂− 1

3
I

)
(C.49)

Noting the differences between corresponding definitions of the source strength,h expression

(C.49) is equivalent to the pressure field of non-periodic quadrupole sources given by equation

(7.1.13) in Ref. [68]. Equation (C.49) can be rearranged by noting that

A · I = (A · I) I · (r̂⊗ r̂)

to give

g(2) (x|y, t) =
1

4πc2r

(
Ä +

3c

r
Dev

(
Ȧ
)

+
3c2

r2
Dev (A)

)
· (r̂⊗ r̂) (C.50)

where the operator Dev ( ) extracts the deviatoric part of A.i It is observed that (C.50) can be

derived directly by considering the radiation problem for the case of stationary medium and

stationary quadrupole-order point source. The contributions associated with the spherical j

and the deviatoric parts are shown separately in (C.50). The spherical part Sph (A) is only

included in the far-field radiation. As explained by Morse and Ingard,68 the acoustic-radiation

field generated by Sph (A) is identical to a monopole-source acoustic field; the 5 independent

components of Dev (A) generate corresponding acoustic-pressure fields that are characteristic

of the quadrupole radiation. This justifies the form of the near-field terms in (C.50), only

including the deviatoric part of the quadrupole tensor.

hMorse and Ingard68 derive the quadrupole-source pressure field superposition of monopole-source fields;
where the monopole sources are opportunely placed and phase shifted, in order to obtain the various components
of the quadrupole tensor. The monopole source strength in Ref. [68] is given by s, being

a = ρṡ

The same relation holds between A and the quadrupole source as in Ref. [68].
iThe deviatoric part of a tensor is given by

Dev (T) = T− 1

3
(T · I) I

jThe spherical part of a tensor is given as follows:

Sph (T) = T−Dev (T) =
1

3
(T · I) I
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Appendix D

The acoustic-field of a source

distribution in a moving medium

The expression for the acoustic-variable autocorrelation function in the far field, associated

with a spatial distribution of acoustic sources in relative uniform motion with respect to a

uniform medium, is derived in this appendix. The acoustic-source distribution is considered

as a statistically-stationary random field in a fixed reference frame (O, ê1, ê2, ê3) that is rigidly

connected to the sources.a The acoustic sources are characterised by multipole orders 1 and

2. The dipole source distribution is indicated as follows:

d (w, t)

where w is the vector indicating the source position from O and t is the time. The quadrupole

source distribution is referred to as

Q (w, t)

The acoustic-field statistics are derived for an observer fixed in (O, ê1, ê2, ê3). The maximum

wave length of interest in the problem is assumed small compared to the emission-time distance

between any source volume and the observer. The acoustic-variable autocorrelation functionb

at the observer-position x is indicated as

cgg (x,0, τ) = g (x, t) g (x, t+ τ) (D.1)

The autocorrelation cgg (x,0, τ) can be evaluated by using the far-field expressions (C.48) and

(C.41). Assuming that the medium is moving with uniform velocity v with respect to the fixed

aThis means that the uniform medium is moving with respect to the frame of reference in which the source
statistics are time-stationary; one could also consider the sources as moving with respect to a stationary medium.

bHere we use the two-point correlation function with zero separation to indicate the autocorrelation function.
The overbar indicates the time average.
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reference frame, means that equations (C.48) and (C.41), expressing the far-field radiation

for moving sources at velocity v and fixed medium, must be specialised for source velocity

−v. The instantaneous acoustic variable for a far-field observer is given by the source-effect

superposition as a volume integral across the source region.

g (x, t) =
1

4πc

∫∫

w

∫ (
D3
−v

crE
Q̈ (w, t− rE/c) · R̂E −

D2
−v
rE

ḋ (w, t− rE/c) · r̂E
)

d
3
w (D.2)

Here R̂E indicates the emission-time radiation-direction tensor r̂E ⊗ r̂E . Indicating with P1

and P2 two arbitrary positions within the source region and introducing expression (D.2) into

(D.1) one obtains

cgg (x,0, τ) =

=

∫∫

z

∫∫∫

w

∫
D6
−v

16π2c4rErE

(
Q̈ (z, t− rE(z)/c) ⊗Q̈ (w, t+ τ − rE(w)/c)

)
·
(
R̂E ⊗R̂E

)
d

3
wd

3
z

+

∫∫

z

∫∫∫

w

∫
D4
−v

16π2c2rErE

(
ḋ (z, t− rE(z)/c) ⊗ ḋ (w, t+ τ − rE(w)/c)

)
· (r̂E ⊗ r̂E) d3wd3z

+

∫∫

z

∫∫∫

w

∫
D5
−v

16π2c3rErE

(
Q̈ (z, t− rE(z)/c) ⊗ ḋ (w, t+ τ − rE(w)/c)

)
·
(
R̂E ⊗ r̂E

)
d3wd3z

+

∫∫

z

∫∫∫

w

∫
D5
−v

16π2c3rErE

(
ḋ (z, t− rE(z)/c) ⊗Q̈ (w, t+ τ − rE(w)/c)

)
·
(
r̂E ⊗R̂E

)
d

3
wd

3
z

(D.3)

where z and w indicate the positions P1 and P2 from the origin O. We now indicate with P
the middle point between P1 and P2. The location P is indicated by y from O. The separation

vector indicating P2 from P1 is η.
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2
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(D.4)

Introducing, in expression (D.3), the unit-Jacobian change of integration variables from the

coordinates given by the components of z, w to the coordinates associated with y and η yields

cgg (x,0, τ) =

=

∫∫

y

∫
D6
−v

16π2c4r2
E

∫∫

η

∫ (
Q̈
(
y − η

2
, t
)
⊗Q̈

(
y +

η

2
, t+ τ +

η · r̂E
c

))
d3η ·

(
R̂E ⊗R̂E

)
d3y

+

∫∫

y

∫
D4
−v

16π2c2r2
E

∫∫

η

∫ (
ḋ
(
y − η

2
, t
)
⊗ ḋ

(
y +

η

2
, t+ τ +

η · r̂E
c

))
d

3
η · R̂Ed

3
y

+

∫∫

y

∫
D5
−v

16π2c3r2
E

∫∫

η

∫ (
Q̈
(
y − η

2
, t
)
⊗ ḋ

(
y +

η

2
, t+ τ +

η · r̂E
c

))
d3η ·

(
R̂E ⊗ r̂E

)
d3y

+

∫∫

y

∫
D5
−v

16π2c3r2
E

∫∫

η

∫ (
ḋ
(
y − η

2
, t
)
⊗Q̈

(
y +

η

2
, t+ τ +

η · r̂E
c

))
d

3
η ·
(
R̂E ⊗ r̂E

)
d

3
y

(D.5)

We note that the change of integration variables (D.4) corresponds to rearranging the integral

sum (D.3), of the correlations between all possible combination of source volumes, by associat-
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ing all the source volumes that form a group of source-volume pairs with respect to a common

centre y. The source-pair centre y is then moved in order to span the whole set of possible

source-volume combinations. Equation (D.5) includes an offset of the time-average variable

t = t′ + rE(z)/c. We have also assumed that

rE(y − η/2) − rE(y + η/2) ' r̂E(y) · η (D.6)

For each source pair, i. e. an element of the η volume integral in (D.5), the approximation

(D.6) is valid in the Fresnel far fieldc

η

rE
,
η3

r2
Eλ

<< 1 (D.7)

where λ denotes the acoustic wavelength. Note that the geometric far-field hypothesis η/rE <<

cWe assume correlated harmonic sources placed in P1 and P2 at emission time, see equations and schematic
(D.4). In order to derive the exact path difference between P1 and P2, with the middle point as reference, we
consider the triangle having as vertices the positions of sources and observer.
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rE (z)
rE (y)

rE (w)

P1 P2
η/2 η/2

β

Note that the diagram tends to the diagram in (D.4) for observer positions in the
geometric far field, where rE >> η. We use the Carnot cosine theorem to derive
rE(z) and rE(w) in terms of rE(y) and the separation modulus η as

rE(y − η/2) = rE(y)

r
1 + ε cos β +

ε2

4

rE(y + η/2) = rE(y)

r
1 − ε cos β +

ε2

4

where ε denotes the ratio η/rE(y) and β is the angle between η and rE(y).

By expanding the above expressions around ε = 0 (geometric far field), the path-length difference can be
expressed as follows

rE(y − η/2)− rE(y + η/2) = η · r̂E(y)− 1

8
ηε2(sin β)2 cos β + ◦

`
ηε4
´

Here we have used the relation η · r̂E(y) = η cos β. The Fresnel correction to be applied to the path-difference
Fraunhofer approximation (D.6) is then given by the following:

−1

8
ηε2(sin β)2 cos β + ◦

`
ηε4´

The validity of the approximation (D.6) is limited to observer locations that guarantee small Fresnel corrections,
compared to the acoustic wavelength λ associated with the harmonic sources

−1

8
ηε2(sin β)2 cos β + ◦

`
ηε4
´
<< λ

or, considering the leading term in the geometric far field (ε << 1),

ηε2

λ
<< 1

This relation defines the Fresnel far field for two correlated sources separated by η, when the middle point y is
the Fraunhofer-approximation reference point:

rE >>

r
η3

λ

Note that this differs from the definition using one of the sources as reference point for the source-pair Fraunhofer
approximation. In this case small Fresnel corrections are associated with observers that are at a distance

rE >>
η2

λ

from the sources.
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1 allows for approximating the factor

1

rE(y + η/2)rE(y − η/2)
' 1

(rE(y))2 (D.8)

which has been taken out from the η integral of equation (D.5); the geometric far-field hypoth-

esis also lets us assume constant emission-time radiation direction r̂E within the η integral.

Assuming that the two-point correlation function of the acoustic-source field decays to 0 for

large separations allows for formulating the geometric and Fresnel far-field hypotheses in terms

of a correlation length. Given a typical separation ηmax such that for η > ηmax we can assume

zero correlation between any source-volume pairs, equation (D.5) is valid for source–observer

emission-time distances rE respecting the hypotheses of

- Geometric far field, or rE >> ηmax

- Fresnel far field, or geometric far field plus rE >>
√
η3
max/λ; as derived from equation

(D.7) with η = ηmax

The acoustic-field autocorrelation function is connected by expression (D.3) to the symmet-

ricd part of the two-point correlation function corresponding to the source tensor-field time

derivatives Q̈ and ḋ. In the following sections the source two-point correlation terms are

discussed separately for different tensor orders. The time derivative are changed into time-

separation derivatives to give a simplified expression of the frequency-domain acoustic-field

autocorrelation function.

D.1 Quadrupole–quadrupole correlation

The quadrupole-acceleration–quadrupole-acceleration two-point correlation function is an or-

der-4 tensor that is defined as follows:

cQ̈Q̈ (y,η, τ) = Q̈ (y − η/2, t) ⊗Q̈ (y + η/2, t+ τ) (D.9)

Operating as follows

Q̈ (y − η/2, t) ⊗Q̈ (y + η/2, t+ τ) =
∂2

∂τ2
Q̈ (y − η/2, t) ⊗Q (y + η/2, t + τ)

=
∂2

∂τ2
Q̈ (y − η/2, t′ − τ) ⊗Q (y + η/2, t′)

=
∂4

∂τ4
Q (y − η/2, t′ − τ) ⊗Q (y + η/2, t′)

dThe tensors R̂E ⊗R̂E , R̂E ⊗ r̂E and R̂E are symmetric. The dot product between a general tensor and an
equal-order symmetric tensor extracts the symmetric part of the general tensor.
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allows for expressing (D.9) as

cQ̈Q̈ (y,η, τ) =
∂4

∂τ4
Q (y − η/2, t) ⊗Q (y + η/2, t + τ) =

∂4

∂τ4
cQQ (y,η, τ) (D.10)

D.2 Dipole–dipole correlation function

The dipole-velocity–dipole-velocity two-point correlation function is a second-order tensor that

can be defined as follows

cḋḋ (y,η, τ) = ḋ (y − η/2, t) ḋ (y + η/2, t+ τ) (D.11)

Operating as in section D.1 for the quadrupole–quadrupole term, the change of derivative from

time t to time separation τ results in

cḋḋ (y,η, τ) = − ∂
2

∂τ2
d (y − η/2, t) ⊗d (y + η/2, t+ τ) = − ∂

2

∂τ2
cdd (y,η, τ) (D.12)

D.3 Quadrupole–dipole correlation function

The mixed dipole-velocity–quadrupole-acceleration term is a third-order tensor given by two

correlation-function terms as follows:

cQ̈ḋ (y,η, τ) + cḋQ̈ (y,η, τ)

= Q̈ (y − η/2, t) ⊗ ḋ (y + η/2, t + τ) + ḋ (y − η/2, t) ⊗Q̈ (y + η/2, t+ τ)

(D.13)

Expression (D.13) can be developed as follows:

Q̈ (y − η/2, t) ⊗ ḋ (y + η/2, t+ τ) + ḋ (y − η/2, t) ⊗Q̈ (y + η/2, t+ τ)

=
∂

∂τ
Q̈ (y − η/2, t) ⊗d (y + η/2, t+ τ) +

∂2

∂τ2
ḋ (y − η/2, t) ⊗Q (y + η/2, t+ τ)

=
∂

∂τ
Q̈ (y − η/2, t− τ) ⊗d (y + η/2, t) +

∂2

∂τ2
ḋ (y − η/2, t − τ) ⊗Q (y + η/2, t)

=
∂3

∂τ3
Q (y− η/2, t − τ) ⊗d (y + η/2, t) − ∂3

∂τ3
d (y − η/2, t− τ) ⊗Q (y + η/2, t)

=
∂3

∂τ3
Q (y− η/2, t − τ) ⊗d (y + η/2, t) − d (y− η/2, t) ⊗Q (y + η/2, t+ τ)

(D.14)
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Noting that only the symmetric parts of the tensors contribute to the acoustic-field autocor-

relation, the averaged part of (D.14) can be put in the form

d (y + η/2, t) ⊗Q (y − η/2, t − τ)− d (y − η/2, t) ⊗Q (y + η/2, t+ τ)

or equivalently

Q (y − η/2, t) ⊗d (y + η/2, t + τ)−Q (y + η/2, t) ⊗d (y − η/2, t− τ)

The mixed dipole-velocity–quadrupole-acceleration term can therefore be expressed as

cQ̈ḋ (y,η, τ) + cḋQ̈ (y,η, τ) =
∂3

∂τ3
(cdQ (y,−η,−τ)− cdQ (y,η, τ))

=
∂3

∂τ3
(cQd (y,η, τ)− cQd (y,−η,−τ))

(D.15)

We observe that, if the quadrupole–dipole two-point correlation function is characterised by

the symmetry property

cdQ (y,η, τ) = cdQ (y,−η,−τ) (D.16)

the symmetric part of expression (D.13) is zero.

D.4 Acoustic-field autocorrelation and PSD

The acoustic-variable autocorrelation function (D.3) can be expressed as follows:

cgg (x,0, τ) =

∫∫

y

∫
D6
−v

16π2c4r2
E

∫∫

η

∫
∂4

∂τ4
cQQ (y,η, τ − η · r̂E/c) d3η ·

(
R̂E ⊗R̂E

)
d3y

−
∫∫

y

∫
D4
−v

16π2c2r2
E

∫∫

η

∫
∂2

∂τ2
cdd (y,η, τ − η · r̂E/c) d

3
η · (r̂E ⊗ r̂E) d

3
y

(D.17)

Here we are assuming that the symmetry property (D.16) holds for the quadrupole–dipole

contribution. It is useful to summarise the hypotheses under which expression (D.17) holds;

the conditions are listed as follows:

1. A source distribution of quadrupole-order and dipole-order acoustic sources is embed-

ded in a uniform moving medium. The distribution is statistically time-stationary in

a reference frame that is fixed to the sources. The observer position x is fixed to the

sources.

2. The maximum wavelength of interest in the source emission is negligible if compared

to the source–observer emission-time distance. This assumption, referred to as acoustic
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far field, is used to express the dipole and quadrupole acoustic-field contributions in the

form given by expressions (C.41) and (C.48), respectively.

3. The two-point correlation functions associated with the possible combinations of qua-

drupole and dipole sources are characterised by a spatial dimension ηmax such that

values of the separation with amplitude greater than ηmax imply a negligible value for

the modulus of the two-point correlation function. We have assumed that, respect to

the source volume at emission time, the observer position is in the geometric far field

and in the Fresnel far field, both far-field conditions being based on ηmax. Note that

using middle-point referenced two-point correlation functions has implications on the

Fresnel-correction expression, see note c on page 113.

4. The two-point correlation functions associated with quadrupole–dipole mixed terms are

characterised by the symmetry property (D.16). This hypothesis justifies not considering

the contributions corresponding to the quadrupole–dipole two point correlation function.

For source distributions with non-zero time average,a the two-point correlation function can

be decomposed as

cQQ = cQ′Q′ + Q (y − η/2) ⊗Q (y + η/2) (D.18)

where we indicate with Q′ the instantaneous fluctuation around the mean value, such that:

Q (y, t) = Q (y) + Q′ (y, t)

We note that the τ partial derivatives in (D.17) remove the effect of the τ -independent part of

the source correlation functions cQQ and cdd. The acoustic-variable autocorrelation function

can then be expressed as follows:

cgg (x,0, τ) =

∫∫

y

∫
D6
−v

16π2c4r2
E

∫∫

η

∫
∂4

∂τ4
cQ′Q′ (y,η, τ − η · r̂E/c) d

3
η ·
(
R̂E ⊗R̂E

)
d

3
y

−
∫∫

y

∫
D4
−v

16π2c2r2
E

∫∫

η

∫
∂2

∂τ2
cd′d′ (y,η, τ − η · r̂E/c) d

3
η · (r̂E ⊗ r̂E) d

3
y

(D.19)

Applying Fourier transform to expression (D.19) yields the following relation for the acoustic-

variable power spectral density (PSD):

sgg (x,0, f) =

∫∫

y

∫
π2D6

−vf
4

c4r2
E

∫∫

η

∫
sQQ (y,η, f) exp (j 2πfη · r̂E/c) d3η ·

(
R̂E ⊗R̂E

)
d3y

+

∫∫

y

∫
D4
−vf

2

4c2r2
E

∫∫

η

∫
sdd (y,η, f) exp (j 2πfη · r̂E/c) d

3
η · (r̂E ⊗ r̂E) d

3
y

(D.20)

aAn example is given by the principal components of the unit-density Reynolds-stress tensor. In the present
work we use the unit-density Reynolds-stress tensor to represent the applied-stress equivalent acoustic source
in the Lilley–Goldstein analogy.

117



Note here that we define the two-point CPSD of a given random variable as the Fourier

transform of the corresponding fluctuating-value correlation function

sdd (y,η, f) =

∞∫

−∞

cd′d′ (y,η, τ) exp (−j 2πfτ) dτ (D.21)

In equation (D.20) the acoustic-variable PSD is related to the integral across separation of the

phase-shifted two-point CPSD associated with the acoustic-source distribution.
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Appendix E

Low-frequency flow factors for the

Lilley–Goldstein source term

As shown in section 3.2, in the low-frequency limit and for axisymmetric base flow, it is

possible to represent the far-field acoustic contribution, that is output from a specific location

in the turbulent flow, as a flow-factor linear operator acting on the separation integral of the

phase-shifted two-point PSD of the acoustic source field. An important assumption on the

two-point PSD of the source field allows for restricting the number of flow factor components

needed in the problem. We assume that the two-point correlation function associated with

different components of the applied-stress (3.6) and applied-force (3.8) fluctuating source fields

is negligible if compared to the two-point correlation function between identical components.

cQ′ijQ′kl � cQ′ijQ′ij cd′id′k � cd′id′i i, j 6= k, l (no summation) (E.1)

Under the hypotheses (E.1), the flow-factor expressions (3.21) and (3.22) can be respectively

simplified as

FQQ = F̄ijδ
m
i δ

n
j δ

o
kδ
p
l γ̂γγi⊗γ̂γγj ⊗γ̂γγk ⊗γ̂γγl⊗γ̂γγm⊗γ̂γγn⊗γ̂γγo⊗γ̂γγp

and

Fdd = F̄iδ
k
i δ
l
jγ̂γγi⊗γ̂γγj ⊗γ̂γγk ⊗γ̂γγl

where only the PSD-contributing cylindrical-coordinatea components are considered. The

components F̄ij and F̄i have been calculated by Morfey. The procedure in Appendix D of

Morfey Tester and Powles43 has been followed. The low-frequency-limit leading terms associ-

ated with the low-frequency flow-factorb have then been identified. The results for F̄ij and F̄i

are reported in this appendix.

aThe unit vectors γ̂γγi form the jet-noise cylindrical-coordinate basis as described in section A.3.
bA small-argument Bessel-function expansion has been applied to equations (A.20), (A.21) and (A.23) in

Morfey et al.43
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The axisymmetric base flow associated with a given acoustic-source sub region can be de-

scribed as follows:

1. We define as sub-region radial line the perpendicular to the jet axis that goes through a

given acoustic-source sub region.c

2. The distribution of the mean axial-velocity component along the sub-region radial line

defines the sub-region velocity profile. Equally a sub-region speed-of-sound profile is

defined as the distribution of speed of sound along the sub-region radial line.

3. A transverse-section flow is generated by rotating the sub-region velocity and speed-of-

sound profiles around the jet centreline. The transverse-section flow is then translated

along the jet centreline to generate the Pridmore-Brown base flow.

In the low-frequency approximation the axisymmetric Pridmore-Brown flow described above

is simplified by assuming a top-hat profile with the source in proximity or inside the transi-

tion region. The flow-factor will therefore depend upon the flow variables at three different

positions.

- The centreline, where the mean axial velocity and mean density are respectively indicated

as Ŭ and ρ̆

- The point at radial cylindrical coordinate R that corresponds to the acoustic-source sub

region. Here mean axial velocity and mean density are respectively indicated as Ū and

ρ̄

- The region of quiescent medium outside the acoustic-source region, where mean speed

of sound and mean density are respectively indicated as c∞ and ρ∞

Indicating with ϑ∞ the angle between the source-region–observer unit vector and the down-

stream jet centreline, a centreline ambient-sound-speed Doppler factor is defined as

D̆ =
1

1− Ŭ

c∞
cosϑ∞

It is useful to define a scalar value Ĕ related to the centreline Doppler factor and the centreline

density ρ̆.

Ĕ =
ρ̆

ρ∞D̆2

Correspondingly, an ambient-sound-speed Doppler factor D̄ and a scalar Ē are defined at the

cThe sub-region radial line contains half of the points associated with the corresponding jet-centreline per-
pendicular. In other words starts at the jet centreline and goes indefinitely far from it.
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space location y corresponding to the acoustic sub region:

D̄ =
1

1− Ū

c∞
cosϑ∞

Ē =
ρ̄

ρ∞D̄2

The components F̄ij associated with the applied-stress flow factor are given as follows:

F̄11 = D̄4

F̄12 = 2

(
dŪ

dR

D̄3 cos θ∞
2πf sin θ∞

)2

+

(
2ĒD̄2

1 + Ĕ

)2

F̄13 =

(
2ĔD̄2

1 + Ĕ

)2

F̄22 =
8

3

D̄4

(sin θ∞)4

(
1

2

(
Ĕ − (cos θ∞)2

)( Ē
Ĕ
−RdĒ

dR

)
−
(
Ē − (cos θ∞)2

))2

+
1

3

(
4D̄2

1 + Ĕ

)2(
R

dĒ

dR
+ Ĕ − Ē

)2(
c∞

2πfR sin θ∞

)2

+
1

3

(
2D̄2

1 + Ĕ

)2(
R

dĒ

dR
+ 2Ĕ − Ē

)2

F̄23 =

(
4D̄2

1 + Ĕ

)2


(

c∞
2πfR

Ĕ − Ē
sin θ∞

− D̄Ĕ cos θ∞
2πf sin θ∞

dŪ

dR

)2

+

(
Ē − 1

2
Ĕ

)2



F̄33 =
2

3



Ē
(
Ĕ − (cos θ∞)2

)
D̄2

Ĕ sin θ∞




2

+
1

3




4c∞
(
Ĕ − Ē

)
D̄2

2πfR
(

1 + Ĕ
)

sin θ∞




2

+
4

3




(
2Ĕ − Ē

)
D̄2

1 + Ĕ




2

(E.2)

The remaining components of the applied-stress flow factor can be determined by using the

symmetry property F̄ij = F̄ji. The components F̄i associated with the applied-force flow factor
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are given as follows:

F̄1 = D̄4

F̄2 =

(
2Ē

1 + Ĕ

)2

D̄4

F̄3 =

(
2Ĕ

1 + Ĕ

)2

D̄4

(E.3)
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Appendix F

Solution of the averaged equations

for jet flows

In this appendix the solution strategy for the Reynolds Averaged Navier–Stokes equations

(RANS) associated with a jet issuing from an axisymmetric nozzle is described. A description

of the steps involved in the general solution strategy is given in section F.1. A detailed

solution for a two-stream nozzle is presented as an example (section F.2) to show how the

RANS solutions in this work are achieved. Possible developments of the solution strategy are

listed in section F.3.

F.1 Step-by-step RANS solution

The RANS solution strategy is described by specifying all the steps involved from the input to

the output. The methodology described here is general for all solutions included in this work.

The input and output data involved in the procedure can be summarised as follows.

- Input: axisymmetric nozzle geometry, nozzle-exit flow variables, ambient pressure and

temperature.a

- Output: Favre-averaged velocity, temperature, Reynolds stress and turbulence-dissipa-

tion rate on a set of prescribed acoustic-model points.

The sequence of steps that are made to achieve the solution is given in the following list.

1. The computational domain is defined as a cylindrical volume having the same symmetry

axis as the nozzle. The domain diameter and axial dimension are defined according to

aThe aim of the RANS solutions described here is to produce the turbulence statistics for a jets that cor-
respond to available noise measurements. In the measurements the nozzle-exit velocity and static temperature
are recorded with the acoustic data. The data also include the reservoir pressure and temperature together
with the anechoic-chamber pressure and temperature.
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the nozzle-exit diameter dJ (both lengths exceed 100dJ ). A constant-velocity ambient

co-flow is introduced along the volume/nozzle axis, having the same direction as the jet.

The co-flow velocity is determined as 5% of the jet nozzle-exit mean velocity (outer-flow

nozzle-exit velocity for coaxial-jet cases).

2. The nozzle-inlet static/dynamic pressure and total temperature are calculated starting

from the corresponding nozzle-exit conditions. Laminar and isentropic internal flow is

assumed for the nozzle. The domain boundary conditions are set by imposing constant

pressure and constant static temperature as the ambient characteristics.

3. The flow-field domain is defined as the simply connected 2-D region delimited by

- Symmetry axis

- Domain-outlet section (extending radially from the axis to the domain outer bound-

ary, more than 100 dJ downstream the nozzle exit)

- Domain outer boundary (constant distance from the symmetry axis)

- Co-flow inlet section (extending radially from the outer nozzle wall to the domain

outer boundary)

- Nozzle wall

- Nozzle inlet (extending radially from the symmetry axis to the nozzle wall)

For coannular nozzles a secondary-flow inlet will extend from the inner-nozzle wall to

the outer-nozzle wall. All the inlet sections are located at the same axial coordinate

upstream of the nozzle exit.

4. The flow-field domain is designed and discretised by adopting the commercial software

MSC/PATRAN. Due to RANS-solver requirements, the symmetry axis has to be located

at y2 = 0. In-house FORTRAN77 routines are combined with MSC/PATRAN to gen-

erate the near-wall mesh, where the RANS solver requires a particularly fine mesh due

to the selected near-wall turbulence model (enhanced wall treatment). The flow-field

discretisation is made by dividing it into quadrilateral elements, the set of elements and

corresponding nodes defines a CFD mesh. All CFD meshes designed in this work contain

a number of nodes included between 105 and 4× 105.

5. The CFD mesh is imported into Fluent 6.2 (2-D, axisymmetric solver, double precision),

where the boundary conditions are defined as follows:

- Slip boundary condition (zero-friction wall) on the domain outer boundary

- Symmetry-axis condition for the axis line

- No-slip condition for the nozzle-section wall

- Pressure-inlet conditions for the nozzle and computational-domain inlets. Constant

radial profiles are assigned for total temperature, static and total pressure, as de-

termined from the nozzle-exit and ambient conditions
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- Pressure-outlet condition at constant static pressure (ambient pressure) for the

domain outflow boundary.

6. The turbulence-closure model (Fluent 6.2, viscous panel) is set to RSM. The enhanced

wall treatment is selected for the near-wall turbulence model.

7. The flow is initialised starting from the nozzle-inlet conditions. The iteration-step relax-

ation parameters are reduced for the pressure and for the momentum, as suggested in

Ref. [72] for segregated-solver solution of compressible flows. The solver default target

residuals are reduced to avoid a premature automatic stop of the iteration procedure.

The iteration procedure is started. Provided the iteration converges towards a solution,b

the residuals of the RANS equations are reduced at each step in the discretised flow

field. The iteration procedure is stopped when a sufficiently small field for the residuals

is obtained. A constant number of iterations is used for all the cases from a given noz-

zle. With exception of cases with convergence problems,c the residuals always fall below

the value 10−5. The corresponding field of Favre-averaged flow variables is the RANS

solution. The field is sampled at the nodes of the CFD mesh.

8. The RANS solution is resampled on a set of acoustic-model points ordered along pre-

scribed radial profiles (acoustic mesh). The resampling is performed by means of inter-

polation routines relating the CFD-mesh solution to a solution on the acoustic mesh.

The interpolation routines use linear polynomial interpolation in the 2-D space domain

defined as the smallest triangle having three CFD-mesh nodes as vertices and containing

the given acoustic-mesh point.d

bThe convergence of the solver depends on various parameters that have to be carefully evaluated. Parameters
affecting the convergence of the iterative process are the zero-iteration conditions of the flow (the convergence
is normally easier if the initial conditions are not very far from the final conditions; the test-cases discussed
here demonstrate anyway that the solver converges also in cases initialised at conditions relatively far from the
final solution, although it seems important to give to the initial flow the same direction as the solution), the
choice of the length of each iteration step (parameters to reduce the amplitude of each step can be defined for
each PDE), the capability of the mesh to capture the variations in the specific flow.

cJet-flow cases for a specific single-stream nozzle geometry show a strange convergence behaviour. The solver
achieves first a low-residuals condition and then proceeds with the iterations marching towards an unphysical
solution and increasing the residuals until divergence. Further understanding of this specific problem is highly
desirable to assess the limitations involved with the solution to this specific RANS system. The specific con-
vergence problem has been one of the most time-consuming problems among those targeted in this work; we
can say that the reasons behind the strange convergence/divergence behaviour might rely on the given flow
setup rather than on a problem with the solution strategy. We note that in this case we are changing the
experimental-flow setup by adding a co-flow stream that was not present in the experiments.

dThe acoustic processor uses the RANS-solver output on a prescribed set set of spatial sampling points. The
RANS solution is sampled at the nodal points of the CFD-mesh (e. g. Fig. F.2). An interpolation procedure
has been implemented to transfer the solution from the CFD nodal points to the acoustic-model sample points.
The interpolation procedure performs a loop across the acoustic-model sample points. For each point the two
closest CFD nodes are identified. A third node is then found such that it is the closest to the sample point
and –with the previously found two nodes– forms a triangle containing the sample point. A linear polynomial
interpolation between the three nodal values is finally adopted. This assumes that the solution varies linearly
with varying position inside the node triangle,

p(y1, y2) = a0 + a1y1 + a2y2

The imposition of the nodal values for the given flow variable f determine a solution for the coefficients ai. The
interpolated value is finally obtained by specifying the coordinates of the sample point in the function p.

125



P
S

frag
rep

lacem
en

ts
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ê
3

(b) Axial section

Figure F.1: Geometry of the coaxial nozzle. The nozzle-exit diameters based on the internal
wall are 0.0333 m for the inner wall and 0.0750 m for the outer wall. The thickness is 0.5 mm
for the inner wall at the exit section. The jet is issued from a round exit section (primary
flow) and an annular exit section (secondary flow). The area ratio between secondary section
and primary section is 4.

F.2 A coaxial-jet solution

A case study for the RANS solution on a two-stream jet is detailed here to show with an

example the method that is generally used in this work and described in section F.1 above.

The preparation of the discretised flow field associated with the coaxial nozzle is first described.

The RANS solution is then shown for a single flow condition.

F.2.1 Boundary conditions and flow-field discretisation

The nozzle is an area-ratio 4 coplanar nozzle. The geometry of the nozzle is shown in Fig. F.1,

where both a 3-D view (a) and the axial section of the nozzle (b) are sketched. The geometry

of the nozzle is axisymmetric. The jet leaves the nozzle with a nozzle-exit velocity profile

determined by two different internal flows. The inner-nozzle flow (primary flow) has a higher

nozzle-exit average speed than the flow in the annular-section nozzle (secondary flow), with a

primary to secondary velocity ratio of 0.6. As described in section F.1, the jet forms part of the

inflow boundary of a computational domain that is cylindrical, having the same symmetry axis

as the nozzle. The computational domain is bounded by a slip-condition wall parallel to the

axis and it is open transversely to the axis. The domain is characterised by a constant-velocity

very-low-Mach-number ambient co-flow in the same direction as the jet. The domain has an

annular-section inlet extending from the outer nozzle-rig wall to the slip-condition wall. The

whole transverse section of the domain constitutes the flow outlet. The inlet conditions for the

flow are set depending on the nozzle-exit conditions and by assigning the ambient co-flow.a

The inlet conditions are defined as follows:

aThe ambient co-flow is assigned trying to maintain a constant Mach-number ratio between secondary flow
and ambient co-flow for all the flow cases.
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1. The inner nozzle-inlet conditions are set as the static and stagnation pressures that

guarantee the primary-flow nozzle-exit conditions.

2. The outer nozzle-inlet conditions are set as the static and total pressures that correspond

to the prescribed secondary-flow nozzle-exit conditions.

3. The co-flow inlet, whose annular section extends from the nozzle outer wall to the top-

domain wall, is set at the computational-domain static pressure and at a total pressure

that guarantee a co-flow stream at a Mach number that equals the 5% of the secondary-

flow nozzle-exit Mach number.

The nozzle-inlet conditions are determined by assuming an isentropic laminar flow in the inte-

rior of the nozzle and solving for the corresponding non-linear relation between the prescribed

nozzle-exit flow characteristics and the nozzle-inlet flow characteristics.b The inlet boundary

conditions are set by imposing a constant distribution of static pressure, total pressure and to-

tal temperature across the inlet sections. The outlet boundary conditions are set by imposing

the ambient static pressure on the outlet section.c

The boundary conditions assumed for the flow imply axisymmetric flow statistics and there-

fore the RANS solution is taken as axisymmetric. The discretisation of the flow field is per-

formed on half axial section. The half-plane section is bounded in the radial direction by the

symmetry axis and by the domain outer boundary; it is limited by the inlet/outlet prescribed-

pressure boundaries in the axial direction. The nozzle walls constitute the further boundary of

this simply-connected plane domain. The flow-field discretisation is reported in Fig. F.2 (a),

where the flow direction is from left to right. The mesh density is increased in those region

where a large mean-flow gradient is expected, for this reason the region close to the no-friction

wall (nearly uniform flow) is discretised with a mesh that is much coarser than the region in

proximity of the symmetry axis (flow distortion due to the presence of the jet). Fig. F.2 (b)

shows the mesh in greater detail for the region that is immediately downstream the nozzle exit.

As mentioned in section F.1, the nozzle wall is assigned as a zero-flow boundary condition.

The boundary layer is treated in the RANS by adopting an enhanced wall function (described

in Chapter 11 of Ref. [72]) for the turbulence modelling inside the boundary layer. This type

of wall function requires a fine discretisation in the near-wall region to allow for the resolution

of the viscous sub layer in the vicinity of the wall. The field discretisation in proximity of the

wall is shown in Fig. F.2 (c) and (d).d The mesh has been generated by adopting a commercial

bThe isentropic-flow conservation relations corresponding to the average flow characteristics at two sections of
prescribed area are solved iteratively by FORTRAN-77 routines. The prescribed nozzle-exit and computational-
domain flow conditions are assigned in input together with the inlet/outlet areas associated with the primary
and secondary flows and the computational-domain flow. Note that the calculation assumes the same fluid
characteristics as the RANS solver (Table F.1).

cBeing the computational-domain section constant downstream the jet rig, the mean static pressure is
constant for all the flow inside the computational domain. The flow inside the nozzle is an expanding flow
inside a subsonic convergent nozzle for both the primary (inner) and the secondary (outer) flows.

dNote that a quality assessment of the mesh needs to be performed a posteriori by visualising the y+ (see
Ref. [72]) distribution along the nozzle walls. An analysis for the highest-velocity case on the given mesh is
needed to ensure that the solver limits for the y+ parameter are respected.
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Air as perfect gas (p = ρ R T )

Constant-pressure specific heat cp = 1006.43 J kg−1K−1

Molar mass M = 0.02897 kg mol−1

Viscosity µ = 1.789 10−5 kg m−1s−1

Thermal conductivity kq = 0.0242 W m−1K−1

Perfect-gas constant R = 287.0 J kg−1K−1

Table F.1: Characteristics of the fluid used for the RANS solution. The values of cp, M, µ, kq
and R are constant. R has been calculated by taking the value per mole (R̂ = 8.314472 J
mol−1 K−1) and by adopting the given molar mass.

software (MSC/PATRAN) combined with specifically implemented FORTRAN77 routines for

the near-wall discretisation.

The fluid in the RANS solver is an ideal gas whose characteristics are summarised in Table

F.1. Note that the viscosity µ and the thermal conductivity kq are considered as constant.e
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Figure F.2: Mesh for the solution of the axisymmetric RANS with RSM closure and enhanced
wall treatment.

The presence of compressibility implies that the RANS are written in terms of Favre-averaged

variables. The energy-balance equation needs to be solved together with the continuity equa-

tion and the momentum-conservation equations. The closure of the averaged equations is

performed by adopting the Reynolds-transport closure; this adds five equations for the turbu-

lence modelling in the axisymmetric case (the reader is addressed to Ref. [72] for the full set of

RANS equations). The turbulent-closure constant parameters appearing in the relations be-

eThe dependence of µ and kq on the static temperature has not been implemented in the solution. The
solver default options for the ideal-gas have been used.
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tween turbulent and standard flow variables (viscous-model panel of Fluent 6.2) have been set

at the default value assigned by the solver. Fluent 6.2 allows for different solution strategies:

the segregated solver with default discretisation order has been used in the present case. The

iterative procedure converges to an approximate RANS solution that ensures residuals below

the value 10−5 for all the equations.

F.2.2 Results

The solution achieved for a cold jet whose target axial-velocity ratio is 0.6 and whose target

primary-flow velocityf is 280.7 m/s is reported in Fig. F.3 where contour plots indicate the

averaged flow variables in the axial section of the flow domain near to the nozzle. The axial

velocity peak value (a) is in good agreement with the target value for the flow. The radial-

velocity contour plot (b) shows the entrainment flow due to the presence of the jet. The

effect of compressibility are evident in the static-temperature distribution (d) showing static-

temperature differences for differently expanded subsonic (c) flows. The level of anisotropy

between the principal Reynolds stress components is given in (f), (g) and (h); where a good

level of transverse isotropy is shown together with a marked difference between the amplitude

of the axial component 〈u′1u′1〉ρ and the transverse components 〈u′2u′2〉ρ and 〈u′3u′3〉ρ.

The Fluent solution is sampled at the nodal values of the CFD mesh (Fig. F.2) and in-

terpolated on a different mesh to be used for the acoustic processing (acoustic mesh). The

acoustic-mesh normalised axial-velocity and turbulence-intensity radial profiles in Fig. F.4 give

a quantitative view of the flow solution. The axial-velocity profiles show the extent to which

the target values are met by the calculated velocity field.

F.3 Possible developments

The RANS solution methodology described above can probably be improved in order to reduce

the computational time, to further understand stability problems and to gather more accurate

solutions. Some possible developments of the explained RANS solution strategy are here listed.

- A change to the adopted near-wall turbulence model could be implemented, to assess

the possibility of using a less refined near-wall mesh. This step would reduce the compu-

tational time and seems essential if one needs to predict the flow-field statistics for 3-D

cases.

- Further understanding of certain flow cases with solution-convergence problems is re-

quired. It would be helpful if the solution strategy can be improved in terms of stability.

fThe velocities are defined at the nozzle exit. They are called target quantities because the inlet boundary
conditions have been calculated from the target values by assuming isentropic flow inside the nozzle. A deviation
from this target value is expected for the RANS solution; this is due to the combined effect of losses inside the
nozzle and absorption of part of the laminar-flow kinetic energy by the fluctuating field.
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Figure F.3: RANS solution, Favre-averaged flow variables in the axial section of the jet flow.
The tensor components are expressed along the cylindrical-basis unit vectors γ̂γγ1, γ̂γγ2, γ̂γγ3. All the
diagrams represent the same spatial region in the axial section of the jet. The nozzle section
is represented in black. The contour plots are symmetric with respect to the jet centreline
as they are obtained by reflecting the solution initially obtained on half section. The visible
asymmetries are due the graphic sampling of the diagram.
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Figure F.4: Radial profiles for the Favre-averaged axial velocity and turbulence intensity after
interpolation on the acoustic mesh. The radial position has been normalised with the inner
diameter of the nozzle dp = 33.3 mm. The normalisation velocity is the inner-flow target
velocity up = 280.7 m/s. The labels indicate the axial coordinate y1 in inner diameters dp.

- Validation of the RANS-results against corresponding experimental data is desirable.

This could open the way to a further investigation aiming to realise an optimal turbulent-

jet set of turbulence-model constant parameters.a Improvements in terms of solution

accuracy are possible if one changes from the solver-default turbulence-model parameters

to the optimised set of turbulent-jet parameters.

- RANS systems with two-equation closure could be tested. This would require a supple-

ment to the acoustic model to extrapolate the turbulent-jet anisotropy.

aChanging the turbulence-model parameters affects the spatial distribution and the amplitudes of the pre-
dicted flow statistics. As shown by Thies and Tam20 for a two-equation turbulence model, altering the values
of some of the closure-equation parameters produces a set of predicted turbulence statistics that is closer to
measured turbulent-jet-statistics data. The solver used in this work allows for modifying the value of the
closure-equation parameters.
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Appendix G

Strouhal scaling of the two-point

correlation coefficient model

In this appendix we show that the modulus of the two-point CPSD derived from the two-point

correlation coefficient model (4.19) can be collapsed on a characteristic curve, if expressed

as a function of the reduced frequency Srτ = fτd and appropriately scaled. An important

consequence of this property is that the scaled autospectrum ŝ0(y,0, f) /τd and the normalised

1/e-decay length scales l̃i (y, f) /li of the normalised two-point CPSD σ0 can be collapsed on

corresponding characteristic curves, if expressed as function of Srτ .

The Fourier transform of the simplifieda correlation-coefficient model (4.19) is given as follows

ŝ0(y,η, f) =

∞∫

−∞

exp


−

√(
τ − η1/Uc

τd

)2

+

(
η1

l1

)al
+

(
η2

l2

)al
+

(
η3

l3

)al
− j 2πfτ


dτ (G.1)

By introducing the time shift τ ′ = τ − η1/Uc, it is possible to express equation (G.1) as

ŝ0(y,η, f) = exp (−j 2πfη1/Uc)

∞∫

−∞

exp


−

√(
τ ′

τd

)2

+ ηali /l
al
i − j 2πfτ ′


dτ ′ (G.2)

The imaginary part of the integrand in (G.2) is an odd function that integrates to zero. The

integral in (G.2) converges to a real and positive value. This implies that (G.2) is a modulus–

phase description of the complex Fourier transform of model (4.19), where the modulus is

given by the value of the integral, the phase angle is given by the value −2πfη1/Uc. Since the

aNote that the results found in this appendix for the simplified model (4.19) are also valid for the more
general model (4.16). In the latter case one needs to add the hypothesis of convergence of the Fourier integral
with respect to τ ; this imposes restrictions on the value of the exponent c.
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real part of the integrand in (G.2) is even, the modulus of G.2 can be expressed as

|̂s0(y,η, f)| = 2

∞∫

0

exp


−

√(
τ ′

τd

)2

+ ηali /l
al
i


 cos

(
2πSrτ

τ ′

τd

)
dτ ′ = τd |̂s0(y, η, Srτ )| (G.3)

Here Srτ = fτd indicates a non-dimensional frequency. We give it the name local Strouhal

number, due to the spatial variability of the parameter τd. The normalised-CPSD modulus

|̂s0(y, η, Srτ )| is a density with respect to Srτ , rather than f . Note that equation (G.3) states

that, given a space separation and the local value of the time constant τd, a characteristic

function of the local Strouhal number Srτ represents the scaled modulus of the normalised

two-point CPSD (G.3).

A first implication is that the zero-separation scaled two-point CPSD – the autospectrum

divided by the mean squared value – can be scaled from non-dimensional to dimensional

frequency as follows:

ŝ0(y,0, f) = τdŝ0(y,0, Srτ ) = τd (y) fA (Srτ (y)) (G.4)

A characteristic-spectrum collapse is therefore obtained for ŝ0(y,0, f) by expressing it as func-

tion of Srτ and by dividing with τd.

A second implication is that the modulus of the normalised two-point CPSD at a given

space-separation η collapse on a single curve in the Srτ domain,

|σ0(y,η, Srτ )| = |̂s0(y,η, Srτ )|
ŝ0(y,0, Srτ )

= f (η1/l1 (y) , η2/l2 (y) , η3/l3 (y) , Srτ (y))

The corresponding 1/e-decay length scales are obtained by solving for





∣∣∣σ0

(
l̃1/l1, 0, 0, Srτ

)∣∣∣ = exp (−1)
∣∣∣σ0

(
0, l̃2/l2, 0, Srτ

)∣∣∣ = exp (−1)
∣∣∣σ0

(
0, 0, l̃3/l3, Srτ

)∣∣∣ = exp (−1)

(G.5)

Since σ0 is a monotonic decaying function of the normalised space-separation coordinates

ηi/li (no summation), equations (G.5) have single solutions l̃i/li corresponding to a given

local Strouhal number. The length scales l̃i (y, f) will then collapse to give a characteristic

normalised-length-scale spectral dependence in the Srτ domain if divided by li (y); they can

be defined as follows:

l̃i (y, f) = li (y) fL (Srτ (y)) (G.6)

133



Appendix H

Scaling quadrupole-dominated

measured spectra for single-stream

jets

In order to validate the jet-noise model, the far-field jet-noise predictions made in the present

work are compared to corresponding experimental data acquired in anechoic facilities. The

calibration procedure associated with the jet-noise model is also based on available measure-

ments for jet-noise 1/3-octave spectra. This means that the noise prediction is dependent on

the accuracy of selected noise measurements and that possible errors in the measurements can

affect both the noise prediction and the model validation. In this appendix we try to assess

the error level that can be associated with jet-noise measurements.

It is generally accepted that, for subsonic exhaust velocities, far-field single-stream jet-noise

measurements should scale according to the Lighthill1 scaling law if the applied-stress equiv-

alent sources dominate the noise production and the noise is measured at a 90-degree polar

angle from the jet. In this appendix we consider available far-field jet-noise data which were

acquired at 90-degree polar angle for single-stream jets characterised by moderate tempera-

ture gradients. We use the isothermal single-stream measurements acquired by QinetiQ10 and

by Tanna, Dean and Burrin;9 we also consider the measurements performed by Lush73 on

unheated single-stream jets. We restrict attention to the 90-degree 1/3-octave spectra;a these

were acquired at a distance exceeding 70dJ for all considered cases. A comparison between

the experimental data is made by normalising the acquired jet-noise 1/3-octave spectra, based

on a Lighthill–Strouhal scaling as explained in [56]. We normalise the 90-degree acoustic mea-

surements by using the Lighthill1 scaling law. The normalised SPL associated with a given

aIn the present work, regarding jet-noise experimental data, we only consider 1/3-octave spectra represen-
tative of far-field jet noise.
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measurement is scaled as follows:

SPLN = SPL− 20 log10(dJ) + 20 log10(r)− 80 log10(uJ)− 20 log10(p∞) + 40 log10(T∞) (H.1)

Here we use the international system for the units of velocity, temperature, length and pres-

sure; these are m/s, K, m and Pa, respectively. Here SPL denotes the measured sound

pressure level; note that we have assumed TJ = T∞.b We assume a Strouhal-domain col-

lapse for the normalised-SPL 1/3-octave spectra, with non-dimensional frequency given by

Sr = fdJ/uJ . We refer to the application of the normalisation (H.1) and the presentation

of frequency-dependent data in the Sr domain as Lighthill–Strouhal scaling. The result of

applying Lighthill–Strouhal scaling to the measurements by QinetiQ,10 by Tanna et al9 and

by Lush73 is shown in Fig. H.1. Jet-noise measurements from each facility at varying nozzle-

exit velocity uJ are shown in Fig. H.1 (a), (b) and (c). These are compared in Fig. H.1 (d).

As shown in Fig. H.1 (a) the Lighthill–Strouhal scaling of the data results in a good collapse

for the QinetiQ10 data, with a scatter of 1 to 2 dB in the Strouhal range from 0.1 to 3; the

scatter is 2 to 3 dB at low and high frequencies. A greater SPL scatter is present in the

earlier measurementsc performed by Lush73 and by Tanna, Dean and Burrin.9The combined

dependence of the measured jet noise on jet rig/measurement environment can be seen when

we place all the Lighthill–Strouhal scaled measurements on the same diagram, Fig. H.1 (d).

Here a difference of 3 to 4 dB in level characterises the data at low frequency; the difference

grows with increasing frequency to 5 dB at Sr = 1, and to 7 dB at Sr = 10.

The comparison made in this appendix shows us that, although quadrupole-dominated 90-

degree jet-noise 1/3-octave spectra from subsonic single-stream jets approximately collapse on

a characteristic spectrum – if normalised according to (H.1) and represented as a function of

the Strouhal number fdJ/uJ – an error is associated with this collapse. This error, appearing

as a scatter in the collapse of Lighthill–Strouhal normalised isothermal 1/3-octave SPL spectra,

is present even for different measurements taken in the same facility (with reduced magnitude

for the QinetiQ10 measurements) and increases when data measured at different facilities are

compared. The failure to collapse can be attributed to a series of different phenomena that

are not considered by the Lighthill–Strouhal scaling. These include Reynolds-number effects,d

bWhile the assumption TJ = T∞ is coherent with the isothermal-jet data of Refs. [10,9], it is an approximation
for the Lush measurements, Ref. [73] (unheated flow). No records of the nozzle-exit/ambient static temperature
are available for the Lush measurements, we assumed in this case an ambient/nozzle-exit temperature of 278
K. Note that at temperatures around 273 K, an error of 20 K for the ambient temperature results in a 1.3 dB
correction on SPLN (H.1).

cA major improvement of the quality of the jet-noise measurement, especially in terms of reduced noise
pollution from sources that are different from the turbulence-mixing, is expected to be associated with the
state-of-the-art jet-noise facility utilised for the QinetiQ10 measurements. We must anyway note that, in the
comparisons presented in this thesis, the MJ range is wider for the measurements in Ref. [9] and Ref. [73] that
were performed in the 1970s, respectively in the Lockheed jet-noise facility and in the ISVR large anechoic
chamber. Harper-Bourne56 recently published the Lighthill–Strouhal scaled QinetiQ10 data, as in Fig. H.1 (a)
and including a measurement at MJ = 1. The addition of the higher-velocity spectrum does not sensibly change
the SPLN scatter observed in the collapse of Fig. H.1 (a).

dThe term Reynolds-number effect refers both to partially-developed turbulence at the upstream region of
the jet, and to a different rate of boundary-layer development at constant nozzle geometry. In both cases we can
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Figure H.1: Lighthill–Strouhal scaling of 90-degree jet noise. Measured SPL 1/3-octave spectra
are normalised according to equation (H.1) and plotted as a function of the Strouhal number
Sr = fdJ/uJ .

effect of the convection speed on the volumetric source strength, contamination of the data

from noise sources different from jet noise, different methods of correcting the data,e and

boundary-condition effects.f

expect variations of the turbulence field characteristics in the initial region of the jet. This can have implications
both on the peak level and on the spectral shape of the measured noise. Measurements regarding the frequency-
dependent axial distribution of jet-noise source strength, e. g. the polar correlation technique Ref. [74], indicate
upstream shifting of the acoustic-source centroid at increasing frequencies. This implies that changes of the
turbulence characteristics in the upstream region of the jet are expected to affect the high-frequency region of
the measured jet-noise spectra.

eAn atmospheric-absorption correction is present in the QinetiQ10 and in the Tanna9 measurements. As
reported in Ref. [73], the Lush73 measurements were not corrected for atmospheric attenuation. Furthermore
the latter data are affected by non-linear microphone response at frequencies above 10 kHz. While the whole
1/3-octave spectra from Ref. [10,9] have been used in the present appendix, the 1/3-octave bands above 10 kHz
have been removed from the Lush73 spectra. Note that we can assume an atmospheric absorption ¡ 0.5 dB at
frequencies below 10 kHz.

fAlteration of the turbulent mixing due to variations in the co-flow stream, potential-core turbulence inten-
sity, small-scale characteristics of the nozzle wall.
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Appendix I

Jet-noise model components in the

downstream polar arc

In this appendix, the far-field 1/3-octave components associated with the jet-noise model de-

veloped in the present thesis are evaluated for observer positions in the rear arc and compared

to corresponding jet-noise measurements. As explained in Chapter 5, this comparison is to be

considered as a preliminary result, due to the stretching of the RANS-solution flow-statistics

field and to the preliminary connection relations used in the thesis. It is anyway of interest,

in order to give a first evaluation to the acoustic-propagation model and to assess how the

modelled SPL spectral components compare to corresponding jet-noise measurements. The

comparison is made for an isothermal single-stream jet at nozzle-exit Mach number MJ = 0.75.

The result is shown in Fig. I.1, where the QinetiQ10 jet-noise measurements at a set of polar

angles spanning the rear arc from 30◦ to 80◦ are compared to corresponding model compo-

nents. Note that the corresponding sideline-noise comparison, at 90◦ polar angle, is reported

in Fig. 5.6 (b). The model components overpredict the measured 1/3-octave spectra; this is an

encouraging result meaning that the model has the potential of being used as a prediction tool

once the components are opportunely frequency-filtered and combined. The modelled noise

is dominated by the applied-stress source contributions. The preliminary result shows that

applied-stress component HF4 of the high-frequency solution (3.16) presents an increasing-

SPL trend when the observer polar angle varies from 90◦ to 60◦; the SPL decreases going from

60◦ to 30◦ polar angles, with a great reduction moving from 50◦ to 40◦, as the component

is subject to a substantial cone-of-silence effect at 40◦. The applied-stress component LF2,

associated with the low-frequency solution (3.23), shows monotonically increasing SPL as the

observer polar angles change from 90◦ to 30◦. The model predicts a dominating low-frequency

solution (3.23) in the region closest to the jet axis.

The results in the present appendix suggests that the changes in spectral shape of isothermal

jet-noise measurements at varying observer polar angle are the result of a varying propaga-

tion factor acting on a constant volumetric-source-strength factor. This view of one source
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mechanism with varying propagation factor is in line with previous acoustic-analogy jet-noise

theories, e. g. works by Morris and Boluriaan22 or by Goldstein and Leib.38
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(f) ϑ = 80◦

Figure I.1: Jet-noise 1/3-octave spectra at varying downstream polar angle ϑ. Model compo-
nents and measured data correspond to the isothermal jet issuing from the QinetiQ conical
nozzle with nozzle-exit characteristics: uJ = 253 m/s, MJ=0.75 and dJ = 0.086 m. The mea-
sured data (QinetiQ, NTF Pyestock, United Kingdom), Ref. [10], were acquired at a distance
greater than 10 m, corrected at high frequency for the atmospheric attenuation and normalised
assuming a distance of 6 m; the model components are related to the normalisation distance.
The labels are as in Fig. 5.6, compare Fig. 5.6 (b) for sideline noise.
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Table of statistical functions

Quantity Definition Symbol

2-point correlation function for vectors a

and b

〈a (y − η/2, t) ⊗b (y + η/2, t+ τ)〉t cab (y,η, t)

2-point correlation function for tensors A

and B

〈A (y − η/2, t) ⊗B (y + η/2, t + τ)〉t cAB (y,η, τ)

2-point correlation function for the fluctu-

ating part of tensors A and B(a)

〈A′(y − η/2, t) ⊗B′(y + η/2, t + τ)〉t cA′B′(y,η, τ)

Component of the latter due to Aij and

Bkl

〈
A′ij(y − η/2, t)B ′kl(y + η/2, t+ τ)

〉
t
cij,kl (y,η, τ)

2-point correlation-coefficient function

(CCF)(b) for components of cA′B′

cij,kl (y,η, τ) /cij,kl (y,0, 0) ĉij,kl (y,η, τ)

2-point cross power spectral density

(CPSD) of tensors A and B

FT[cA′B′ (y,η, τ)] with respect to τ sAB (y,η, f)

Component of the latter due to Aij , Bkl;

2-point CPSD of Aij, Bkl

FT[cij,kl (y,η, τ)] with respect to τ sij,kl (y,η, f)

Scaled 2-point CPSD of Aij , Bkl sij,kl (y,η, f) /cij,kl (y,0, 0),

FT[ĉij,kl (y,η, τ)] with respect to τ

ŝij,kl (y,η, f)

Normalised 2-point CPSD of Aij, Bkl sij,kl (y,η, f) /sij,kl (y,0, f) σij,kl (y,η, f)

Scalar CCF functions used for modelling

cA′B′ when A and B are Reynolds stresses

ĉij,kl (y,η, τ) ' ĉ (y,η, τ)

or ĉ0(y,η, τ)

ĉ, ĉ0(y,η, τ)

Fourier transform of CCF model functions FT[ĉ, ĉ0(y,η, τ)] with respect to τ ŝ, ŝ0(y,η, f)

Scalar functions used for modelling the

separation dependence of the 2-point

CPSD(c)

ŝ (y,η, f) /ŝ (y,0, f) and likewise for

ŝ0

σ, σ0(y,η, f)

(a) This is the two-point covariance function for A and B, or the τ -dependent part of cAB:

cAB (y,η, τ ) = cA′B′ (y,η, τ ) + 〈A (y − η/2, t)〉t ⊗ 〈B (y + η/2, t)〉t
We assume that A′ = A− 〈A〉t and B′ = B− 〈B〉t are such that cA′B′ always decays to 0 for large τ ,

satisfying the hypotheses for the application of the Fourier transform (FT[ ]).

(b) This differs from the standard definition which has denominator (no summation)

(cij,ij (y − η/2, 0, 0) ckl,kl (y + η/2, 0, 0))1/2 =
“D`

A′ij
´2

(y − η/2)
E
t

D`
B′kl
´2

(y + η/2)
E
t

”1/2

However, if A′ij and B′ij are statistically homogeneous with respect to y, the definitions coincide.

(c) The functions also model the normalised 2-point CPSD of Aij , Bkl when these are Reynolds-stress

components.
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Nomenclature

a, a, A Source strength for moving acoustic point sources of monopole, dipole and

quadrupole order, see Appendix C.

al Spatial decay parameter of the isotropic-shape Reynolds-stress two-point cor-

relation coefficient model (4.19).

Cf (α̃) Cancellation-factor function. It is defined as the volume integral across separa-

tion of the generally phase-shifted normalised two-point CPSD model σ0 . See

equation (4.35).

c, c̄ Speed of sound, averaged value.

cSs (y,η, τ) Tensor function representing the two-point cross correlation between the ran-

dom tensor variables S (y− η/2, t) and s (y + η/2, t+ τ); it is expressed as

S⊗s, where the overbar indicates averaging.

cS′s′ (y,η, τ) Tensor function representing the two-point cross covariance between the random

tensor variables S (y − η/2, t) and s (y + η/2, t + τ); it is expressed as S′⊗s′,

where the overbar indicates averaging; S′ and s′ are the fluctuating parts of S

and s.

cij,kl (y,η, τ) Component of the two-point covariance function of the Reynolds-tress; it cor-

responds to the ij and kl Reynolds-stress components with respect to the

cylindrical-coordinate unit-vector basis in y.

ĉij,kl (y,η, τ) Two-point correlation-coefficient function of cij,kl.

ĉ, ĉ0(y,η, τ) Model and simplified isotropic-decay model for ĉij,kl; see equations (4.16) and

(4.19).

Dv Doppler factor associated with an acoustic problem where an acoustic source

moves with velocity v with respect to a uniform medium; see expression (C.25).

d Applied-force equivalent acoustic source in the acoustic analogy; see (3.8).

d(1) Contribution to the applied-force equivalent acoustic source d, associated with

the term T ′u′; see (4.10).
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d(2) Contribution to the applied-force equivalent acoustic source d, due to the unit-

density Reynolds-stress u′⊗u′; see (4.11).

dJ Nozzle-exit diameter of a turbulent jet.

F̄ij , F̄i Flow-factor for the ij applied-stress-source component and for the i component

of the applied-force source.

FQQ, Fdd Flow-factor tensors for applied-stress and applied-force sources.

fA (Srτ ) Characteristic spectrum function for the Reynolds-stress autospectrum; see

(G.4).

fL (Srτ ) Characteristic spectrum function for the Reynolds-stress frequency-dependent

length scales l̃i; see (G.6).

H(i)(y) Spatial Heaviside function; its value is 0 or 1 depending on y being external or

internal to the ith acoustic-source subregion.

k Turbulent kinetic energy.

li (y) Length scale associated with the Reynolds-stress two-point correlation coeffi-

cient model. It is the 1/e-decay space separation of ĉ (y, ηγ̂γγi, 0) or ĉ0(y, ηγ̂γγi, 0).

Introduced in equations (4.16) and (4.19).

l̃i (y, f) Length scale associated with the Reynolds-stress normalised two-point CPSD

model. It is the 1/e-decay space separation of σ (y, ηγ̂γγi, f) or σ0(y, ηγ̂γγi, f). See

Fig. 4.4 and Appendix G.

M Mach number; also used to indicate the source-motion acoustic Mach number;

see (C.18).

MJ Mean centreline acoustic Mach number at the nozzle exit of a turbulent jet.

p, p′ Thermodynamic pressure, acoustic pressure or pressure fluctuation; p = p∞+p′.

Q Applied-stress equivalent acoustic source in the acoustic analogy; see (3.6).

q̄ij,kl Time averaged product between fluctuations of the Reynolds stress components

u′iu
′
j and u′ku

′
l; see equation (4.21).

R̂ Source–observer direction tensor r̂⊗ r̂.

R̂E Source–observer emission-time direction tensor r̂E ⊗ r̂E .

r, r̂ Source–observer separation vector, unit vector indicating its direction. The

amplitude r denotes the distance between source and observer.
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rE , r̂E Source–observer emission-time separation vector, unit vector indicating its di-

rection. They are evaluated by considering the reception-time observer position

and the acoustic-source position at emission time tE ; see section C.2.

rE Source–observer emission-time distance, modulus of rE .

rM Modified source–observer distance in the moving-source acoustic field; see equa-

tion (C.10).

S,S′ Unit-density Reynolds stress, fluctuating part; they are the tensor quantities

S = u′⊗u′ and S′ = u′⊗u′ − u′⊗u′.

sAb (y,η, f) Two-point CPSD tensor between the general random variables A (y − η/2, t)
and b (y + η/2, t), defined as Fourier transform of the two-point cross correla-

tion function cA′b′ of the fluctuating parts of A and b; see equation (D.21).

sij,kl (y,η, f) Component of the two-point CPSD function of the fluctuating Reynolds-tress;

it corresponds to the ij and kl Reynolds-stress components with respect to the

cylindrical-coordinate unit-vector basis in y.

ŝij,kl (y,η, f) Scaled two-point Reynolds-stress CPSD function. It is defined as sij,kl (y,η, f)

divided by the corresponding mean square Reynolds-stress fluctuation qij,kl (y);

it is equivalent to the Fourier transform of ĉij,kl (y,0, 0).

ŝ, ŝ0(y,η, f) Model and simplified isotropic-decay model for ŝij,kl (y,η, f).

Sr Nozzle-exit Strouhal number; Sr = fdJ/uJ .

Srτ Local Strouhal number, defined on the basis of the position-dependent 1/e-

decay time of the Reynolds-stress autocorrelation coefficient τd (y); Srτ (y) =

fτd.

T , T̄ , T ′ Static temperature, averaged value, fluctuating part; T = T̄ + T ′.

TJ Centreline nozzle-exit mean static temperature for a turbulent jet.

tE Emission time of an acoustic signal which is emitted in a uniform medium by

a moving source and received by an observer at current time t; see section C.2.

Uc (y) Convection parameter associated with the Reynolds-stress two-point correlation

coefficient model. Introduced in equations (4.16) and (4.19).

u, ū, u′ Flow velocity, averaged value, fluctuating part; u = ū + u′.

uJ Nozzle-exit centreline velocity of a turbulent jet.

v Constant velocity of an acoustic singularity as seen from a reference fixed to

the medium.
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x Vector indicating the observer position from the origin of the reference system.

xW Vector indicating the wavenormal-direction image of the observer position x

from the origin of the reference system. This is different from x if the acoustic

medium moves with respect to acoustic source and observer (source and ob-

server are fixed). xW is indicated by the separation vector rE from the source

position; rE is evaluated depending on the medium characteristics at the source.

See Fig. 3.2.

y Vector indicating the two-point source-coherence reference position from the

reference-system origin. It is also used to indicate the point-source position in

Appendix C.

yE Vector indicating the emission-time source position from the reference-system

origin.

y(m) Vector connecting the nozzle-exit-section centre and the measurement location

for the Harper-Bourne4 data. The measurement location is on the nozzle lip

line 4 diameters downstream the nozzle-exit section; see section 4.2.1.

α Acoustic repetency vector, first introduced in equation (4.28).

α̃ Non-dimensional modified acoustic repetency vector, first introduced in equa-

tion (4.31).

β Lorentz-transformation transverse-length contraction factor; see (C.2).

∆i,j Component of the tensor
(
S′ · θ̂

)
⊗
(
S′ · θ̂

)
, according to γ̂γγi⊗γ̂γγj , first intro-

duced in (4.22).

δij Kronecker symbol.

ε Turbulence dissipation rate.

η Spatial separation in the evaluation of the two-point flow/acoustic source statis-

tics.

πG Acoustic variable used in the perfect-gas Goldstein equation for the Lilley ana-

logy, see equation (B.15).

π̃G Acoustic variable for the perfect-gas the Lilley-analogy equation used by Tester

and Morfey, first introduced in equation (B.23).

σij,kl (y,η, f) Normalised two-point CPSD sij,kl (y,η, f) /sij,kl (y,0, f); see equation (4.15).

σ, σ0(y,η, f) Model and simplified isotropic-decay model for σij,kl (y,η, f); they are derived

from ĉ and ĉ0, respectively. We use σ0 , first introduced in (4.29), in determining

the acoustic-source volumetric strength.

143



τ Time separation in the evaluation of the correlation functions.

τd (y) Time scale in the Reynolds-stress autocorrelation coefficient model. It is the

1/e-decay time separation of ĉ (y,0, τ) or ĉ0(y,0, τ). Introduced in equations

(4.16) and (4.19).

ϑ Angle between the mean-flow (jet-axis) and the source–observer directions.

ϑW Angle between the local-medium wavenormal direction and the mean flow di-

rection; see Fig. 3.1.

θ̂ Unit vector indicating the direction of the spatial gradient of the time-averaged

absolute static temperature.

ξ Spatial separation corresponding to η after transformation to the moving ref-

erence frame; ξ = η − τuMF . Here uMF indicates the velocity of the moving

frame.

Subscripts

∞ Value of a given variable in the ambient region outside the jet.

Supersripts

(i) Mean value of a given variable in the spatial region associated with the i-th

acoustic-source subregion.

(m) Quantity associated with the Harper-Bourne4 measurements of the Reynolds-

stress two-point statistics.
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