The University of Southampton
University of Southampton Institutional Repository

Electrical currents and liquid flow rates in micro-reactors

Fletcher, Paul D.I., Haswell, Stephen J. and Zhang, Xunli (2001) Electrical currents and liquid flow rates in micro-reactors Lab on a Chip, 1, (2), pp. 115-121. (doi:10.1039/b106339c).

Record type: Article


For micro-reactor devices in which liquids are pumped by electro-osmotic flow (EOF), in situ monitoring of the electrical currents in the channel networks provides a valuable diagnostic tool. We demonstrate here that the voltage–current characteristics of a micro-reactor channel network can be accurately modelled using measurements of the full 3-D geometry of the channel network, the liquid conductivity and the channel wall–liquid surface conductivity. It is shown that surface conductivity provides a significant contribution to the overall measured electrical currents in channel networks for which the ratio of surface area to volume is high. Following correction for surface conductivity, the electrical currents are proportional to the liquid volumetric flow rates measured in the different branches of the channel network. The constant of proportionality is related to the zeta potential of the channel wall–liquid surface. Measurements of the variation of electrical currents and volumetric flow rates as a function of the applied voltages allows the determination of the surface conductivity and zeta potential within the micro-reactor which enables the prediction of the voltages required to produce the desired flow rates in any channel section. In situ logging of the electrical currents, incorporated within the control system, allows continuous monitoring of the liquid flow rates during micro-reactor operation.

PDF Current-flowrate_Lab_Chip_v1pp115-121.pdf - Version of Record
Restricted to Registered users only
Download (597kB)

More information

Published date: 5 October 2001


Local EPrints ID: 64835
ISSN: 1473-0197
PURE UUID: 0507a7f2-4308-4a4a-9862-ce89dab8fb29

Catalogue record

Date deposited: 16 Jan 2009
Last modified: 17 Jul 2017 14:11

Export record



Author: Paul D.I. Fletcher
Author: Stephen J. Haswell
Author: Xunli Zhang

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.