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THE FEASIBILITY OF USING ELECTROSTATIC CHARGE CONDITION MONITORING FOR ADDITIVE SCREENING 

By James Edward Booth 

International standards require lubricant formulators to develop additive packages that increase fuel economy, 
reduce environmental impact and minimise wear over ever increasing service intervals.  However, additive 
behaviour and interactions between additives is not well understood.  An absence of real-time technology has 
hindered understanding of additive behaviour and interaction between additives in tribo-contacts.  The work 
presented in this thesis assessed whether electrostatic charge monitoring, which is sensitive to changes in 
surface chemistry, can offer insight into additive-surface behaviour and how this affects tribological 
performance. 
  Electrostatic sensors were deployed on tribological test apparatus used to simulate: engine valve-train, 
manual transmission synchroniser and automatic transmission clutch tribo-contacts.  Additive performance in 
these simulated contacts was assessed by electrostatic surface charge measurements and cross-correlated with 
friction, wear and off-line surface chemistry analysis. 
  The first study involved electrostatic monitoring of valve-train contacts, which was a continuation of 
previous electrostatic monitoring work carried out to relate wear and electrostatic charge.  During a simulated 
TU3 cam-follower wear test, charge signals underwent a sign inversion; this was due to a transition between 
tribocharging of the lubricant under running-in and mild wear, and contact potential difference generated at 
the onset and progression of adhesive wear.  It was found that charge signals differed between different oils, 
which could not be explained by the wear performance alone; this indicated that lubricant chemistry 
significantly affected charge generation. 
  Dynamic charge peaks produced by simulated valve-train contacts lubricated with zinc 
dialkyldithiophosphate (ZnDTP) additive were related to the stripping of the tribofilm.  The source of this 
charge peak was an increase in negative charge, which correlated with a dominance of phosphate and 
sulphate (anions) compared to zinc (cations), as the film was worn away.  When friction modifier (FM) and 
dispersant additives were combined to lubricate a simulated wet clutch contact, x-ray photo-electron 
spectroscopy (XPS) analysis and friction data indicated that the dispersant dominated the tribofilm 
composition; evidenced by nitrogen levels and friction levels similar to the dispersant alone.  Electrostatic 
charge data showed that competition for surface sites is an extremely dynamic process; as indicated by charge 
levels which alternated between the levels of the FM and dispersant alone.  When a potassium borate additive 
was added to a polysulphide additive containing oil during testing (seeding), the charge data showed a 
transition from being predominantly positive to predominantly negative.  This correlated with the formation 
of a borate rich (anions) layer on top of the sulphur film. 
  Further novel tribological discoveries were found through investigation into these additive-surface charge 
behaviours.  An underdeveloped ZnDTP tribofilm, which predominantly contained sulphur, was formed at 
room temperature; the sulphur promoted tribochemical wear and resulted in a pro-wear affect for primary 
ZnDTP. The combination of FM and dispersant showed a clear antagonism resulting in increased wear 
compared to the individual additives. 
  XPS of brass and steel simulated synchroniser contacts lubricated with potassium borate and polysulphide 
identified the affect of surface chemistry on film formation.  For the potassium borate additive: potassium 
(cation) preferentially adsorbed to brass, and borate (anion) preferentially adsorbed to steel.  Seeding the 
borate additive into the oil, and therefore the contact, produced the same film composition and structure as 
the combination from the start.  This inferred that the polysulphide additive drove initial film formation.  
Seeding is an extremely powerful technique, but its use is almost absent in the literature. 
  It has been shown that lubricant chemistry dominates charge levels even in a wearing contact.  Electrostatic 
monitoring is sensitive to the type of additive-surface adsorption and interaction between additive and 
additive or contaminant.  Also, cross-correlation of surface charge and tribofilm chemical composition 
demonstrated that electrostatic sensors have the ability to detect tribofilm kinematics.  This is a significant 
finding; no current real-time technique used to monitor tribofilm kinematics derives its measurements from 
the tribofilm composition.  Although interpretation of electrostatic charge data is currently an intensive 
process, in the long term, lubricant development could see a move towards charge informed formulation.   
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L Length of contact m 
b Half the contact width for a line contact m 
a Radius of circular contact area for a point contact m 

∗R  Reduced radius of curvature m 

1R  Radius of cylinder or sphere 1 m 

2R  Radius of cylinder or sphere 2 m 
*E  Contact modulus Pa 

1E  Elastic modulus of cylinder or sphere 1 Pa 

2E  Elastic modulus of cylinder or sphere 2 Pa 

1υ  Poisson’s ratio of cylinder or sphere 1 - 

2υ  Poisson’s ratio of cylinder or sphere 2 - 
x,y,z Cartesian coordinates - 
P  Contact Pressure Pa or N m-2 

0P  Maximum contact pressure Pa or N m-2 

mP  Mean contact pressure Pa or Nm-2 
Y  Yield stress in tension Pa or N m-2 

321 ,, σσσ  Principle stresses Pa or N m-2 
k  Yield stress in pure shear Pa or N m-2 

maxτ  Maximum shear stress Pa or N m-2 

YW  Load for first yield (point contact) N 
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FF  Frictional force N 
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Q Tangentially applied force N 
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inleth  Film thickness at inlet of wedge m 

outleth  Film thickness at outlet of wedge m 
*W  Estimated non-dimensional load - 

1U  Velocity of body 1 m s-1 

2U  Velocity of body 2 m s-1 
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U  Horizontal entrainment velocity,  ( )212
1 UUU +=  m s-1 

h  Film thickness m 

h  Film thickness at which maximum pressure occurs m 

ch  Central film thickness m 

η  Dynamic viscosity kg m-1 s-1, or N 
s m-2 or cP 

minh  Minimum film thickness m 
α  Pressure viscosity index/coefficient Pa-1 
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λ  Ratio of minimum film thickness to combined roughness - 

1qR  rms surface roughness of body 1 m 

2qR  rms surface roughness of body 1 m 

np  Nominal bearing pressure Pa or Nm-2 
ω  Rotational speed Rad s-1 
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κ  or SWR Specific wear rate  m3 N-1 m-1 or 
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SD Sliding Distance m 
VL Volume Loss m3 

E  Elastic Modulus Pa or Nm-2 
A  Area m-2 

F Force N 
τ  Shear stress Pa or N/m2 
γ&  Stain rate s-1 
V  Velocity ms-1 

ρ  Density kg m-3 
ν  Kinematic viscosity m2/s or cSt 
T  Oil temperature  oC 

tempk  Lubricant constant Pa s 

1θ  & 2θ  Lubricant constants  oC 

tempa  Lubricant constants (around 0.6) - 

tempc  Lubricant constants - 

atmη  The base viscosity at atmospheric pressure N s m-2 (cP) 
∗
0p  Universal constant, 8

0 102×≈∗p  Pa 
Z  Modifies the increase in viscosity at high pressures - 

LSRη  The low shear rate viscosity at a particular temperature N s m-2 (cP) 

∞η  The limiting shear viscosity N s m-2 (cP) 
γ  Shear rate S-1 

cγ  
Shear rate at which the viscosity is midway between 0η and 

∞η  
S-1 

effecth&  Growth rate of the effective film thickness m s-1 

dphysisorbeh&  Physisorbed growth rate m s-1 

dchemisorbeh&  The chemisorbed film growth rate m s-1 



 

XVII 

reacth&  Chemically reacting film growth rate m s-1 

scrapeh&  Tribofilm removal rate m s-1 

•E  Indentation modulus  Pa or Nm-2 
Q  Isolated point charge C 

fE  Electric field strength N C-1 or V m-1 
S  Surface area m2 
ε  Permittivity F m-1 

r  Radius of the sphere or the distance between the particle and 
the surface m 

AQ  Charge induced on the surface C 
C  Capacitance F 
V  Potential difference V 

CPDeV  Contact potential difference V 
t Time s 
φ Work function eV 
ESA Electrokinetic Sonic amplitude AESA E-1 
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ABBREVIATIONS 
 

Abbreviation Definition 
A/D Analogue to digital 
AISI The American Iron and Steel Institute 
ANOVA Analysis of Variance 
API American Petroleum Institute 
ASTM American Society for Testing and Materials  
AT Automatic Transmission  
ATF Automatic Transmission Fluids 
CPD  Contact Potential Difference 
DAT  Digital Analogue Tape Or Direct Acting Tappet 
ECR Electrical contact resistance 
EDX Energy Dispersive X-ray spectroscopy 
EHL Elasto-hydrodynamic lubrication 
EP Extreme Pressure 
ESA Electrokinetic Sonic Amplitude 
FM Friction modifiers 
GMO Glycerol Mono-Oleate 
HPLC High performance liquid chromatorgrahpy 
IC Internal Combustion 
ICP-AES Coupled Plasma-Atomic Emission Spectroscopy 
IDMS Ingested Debris Monitoring System 
MoDTC Molybdenum-DiThioCarbamate 
MTF Manual transmission fluids 
MTM Mini-Traction-Machine 
OCP Olefin Copolymers 
ODR Oil Droplet Rig 
OEM Original Equipment Manufacturer  
OHC Over-Head-Cams 
OHV Over-Head-Valve 
OLS Oil Line Sensor 
PAO Poly-Alpha-Olefin 
PC Personal Computer  
PIBS Polyisobutylene 
PMA Poly Methacrylates 
PoD Pin-on-Disc 
RMS Root Mean Squared 
SDC Spinning Disc Charger 
SEM Scanning Electron Microscopy 
TBN Total Base Number 
VI Viscosity Index 
VII Viscosity Index Improvers 
WSS Wear Site Sensor 
XPS X-ray Photoelectron Spectroscopy 
ZnDTP Zinc-Dialkyldithiophosphate 
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1 INTRODUCTION 

1.1 MOTIVATION 

The 20th century saw the greatest advances in technology since civilisation began and oil was the great 

enabler for this rapid progress.  The century was nearly half over when the nuclear age began, and more 

than half over when the computer revolution swept the world [1].  The development of both technologies 

may have never developed or may have taken much longer to develop if oil was not available to provide 

fuels for: heating, lighting, power and transportation, and lubricants for almost any moving mechanical 

component.  But as oil has created the greatest growth in technology it has also meant that the world has 

become dependent on it.  As oil stocks dwindle and more is known about the harmful effect that burning 

oil based products have on the environment, so countries and industries involved in the supply and 

consumption of oil are under greater political and economic pressure.  The automotive sector is under 

continued media and public scrutiny for its major role in consuming oil and fuel and the effect this has on 

the environment.  Additive chemists and lubricant formulators, for their part, are facing challenges of 

producing lubricants which increase fuel economy, reduce environmental impact and allow service 

intervals to be lengthened, while keeping wear to a minimum.  Lubricants must conform to national and/or 

international standards, such as the Peugeot TU3M valve-train wear test [2], to assess the antiwear 

performance of a lubricant.  This approval process is extremely expensive; the rate at which classifications 

are superseded is increasing (particularly driven by environmental targets), and as a consequence, 

lubricant development costs are escalating [3].  This thesis assesses whether electrostatic charge 

monitoring can be used to aid additive chemists and lubricant formulators in the lubricant development 

process. 

 

1.2 CONDITION MONITORING AND THE ORIGINS OF ELECTROSTATIC MONITORING  

The development of condition monitoring techniques was originally driven by the need to carry 

unscheduled maintenance to prevent failure of machine components.  More recently, condition monitoring 

techniques have been used as a research tool to understand contact degradation, more specifically wear 

mechanisms.  Electrostatic sensing was originally developed for detection of electrostatic charge 

associated with wear debris in the gas path of jet engines and gas turbines [4- 56] which was correlated with 

a specific component problem such as turbine blade rub.  The early success, of electrostatic charge 

detection as a condition monitoring technique, led to the deployment of electrostatic sensors on a wide 

range of lubricated contacts.  Experiments over the last 10 years at the University of Southampton have 

covered fundamental, bench and industrial levels, with the aim of de-coupling specific aspects relating to 
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charge generation within tribo-contacts to investigate if surface charge can be linked to wear/friction 

processes. 

 

During lubricated wear studies it was noted that charge signals, generated by simple pin-on-disc contacts, 

differed between a base oil and a fully formulated lubricant [6F7], could not be explained by the level of 

wear alone.  In addition oxidational wear was successfully monitored by electrostatic sensors and revealed 

the oxidation-delamination-reoxidation mechanisms [7F8], due to the varying work functions on the surface 

that result at different stages of the wear mechanism.  Differences in work function drives contact 

potential difference (CPD) and thus charge separation and variation in surface charge density on worn 

surfaces.  Work over the last 3 years has been based on the hypothesis that if electrostatic monitoring can 

detect the growth and removal of a chemical film such as an oxide, then there is the potential to monitor 

the growth and/or breakdown of a physically or chemically adsorbed additive tribofilm. 

 

1.3 AIM 
The aim of the work carried out during this PhD was to assess whether electrostatic monitoring could be 

an insightful technique to aid additive screening/development to optimise tribological contact 

performance. 

 

Objectives  

To achieve this, a number of objectives were set, namely to: 

• Successfully install a electrostatic charge sensor to monitor the; 

o Cam surface charge in engine valve-train contacts. 

o Disc surface charge in pin-on-disc tribometers. 

• Assess the sensitivity of electrostatic monitoring to wear and lubricant chemistry. 

• Relate electrostatic charge signals to additive-surface interactions. 

• Relate electrostatic surface charge to additive-contaminant and additive-additive interactions. 

• Relate electrostatic surface charge to additive tribofilm chemical composition. 

• Seek electrostatic surface charge signatures associated with additive tribofilm kinematics (film 

formation, removal and replenishment). 

 

1.4 THESIS STRUCTURE 
The work presented in this thesis is multi-disciplinary, drawing on understanding from three scientific 

research areas: automotive tribology, lubricant chemistry and electrostatic condition monitoring.  The 

1483HLiterature review Chapter starts with 1484HSurfaces and tribology, which introduces the tribological concepts 

pertinent to the experimental work presented in this thesis.  The 1485HAutomotive tribology Section draws on 

the concepts identified in the 1486HSurfaces and tribology Section and applies them to automotive contacts.  

The drivers affecting automotive power-train design and how these affect the tribological performance 
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(lubrication, friction and wear) are discussed for: the engine valve-train, manual transmission synchroniser 

contacts, and automatic transmission frictional clutch plates.  Environmental legislation and consumer 

requirements are influencing automotive engine and power-train design, and as such are putting greater 

demands on the lubricant.  The 1487HLubricant chemistry & surface interaction Section examines how lubricant 

chemists formulate oils, with additives, to minimise friction and wear in engines, while keeping the engine 

clean for extended drain intervals.  The need for technology, such as electrostatic monitoring, to assist in 

the lubricant development process is identified.  1488HAdvances in the electrostatic health monitoring of tribo-

contacts are discussed, with specific reference to charge generation mechanisms within the tribo-contact 

and the factors affecting these charge mechanisms. 

 

The experimental work presented in this thesis discusses the results from the first ever deployment of 

electrostatic sensors in a cylinder head (to monitor cam wear), and on a PCS Instruments Mini-Traction-

Machine.  Testing was carried out on a variety of contact materials, using a range of additives.  The 

1489HExperimental Equipment and Procedures Chapter (Chapter 1490H3) discusses the rational behind the test: 

procedure employed, apparatus, conditions, material and additives used for the experimental studies. 

 

The experimental studies discussed in this thesis are the first to use electrostatic sensors to help understand 

additive-surface behaviour.  There were 5 discrete experimental programmes. 

 

Chapter 1491H4 presents work from experiments where electrostatic sensors were used to monitoring the 

cam/follower contact in a TU3 motorised engine.  Mild wear tests, which used a fully formulated oil and a 

oil starvation test, were carried out to try to decouple the charging mechanism generated during a carbon 

black contaminated oil test and identify charge features associated with the transition from mild wear to 

scuffing. 

 

Chapter 1492H5 details the first investigation into the use of electrostatic monitoring to aid understanding of 

additive-additive and additive-contaminant interactions.  An additive and contaminant matrix study was 

carried out, on a in-house pin-on-disc tribometer, to investigate the affect additives and contaminant have 

on electrostatic charge and wear. 

 

Chapter 1493H6 describes work designed to understand charge, friction and wear behaviour of six single 

additive types in three different base oils.  A full factorial matrix was run, to minimise issues of de-

coupling more than one variable.  Correlations between particular additive-surface interaction, whether 

physical and chemical adsorption, and electrostatic surface charge are made.  For the first time 

electrostatic charge features are correlated with tribofilm thickness and elemental composition (by x-ray 

photoelectron spectroscopy (XPS) analysis) and tribofilm kinematics. 
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The final two Chapters (1494H7 & 1495H8) explore the deployment of electrostatic sensors on non-ferrous surfaces 

and explore additive-additive interactions in great detail.  These studies investigated whether electrostatic 

monitoring can inform the interaction of binary additive systems on the dissimilar tribo-couples of brass-

steel to simulate manual transmission components, and cellulose based friction material-steel to simulate 

automatic transmission clutches.  These are the only studies to have implemented electrostatic monitoring 

on brass-steel and paper-steel contacts.  Both studies cross-correlated charge signals and tribofilm 

composition. 
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2 LITERATURE REVIEW 
 

This literature review aims to cover Surfaces and tribology, lubricant chemistry and condition monitoring 

concepts, on which the experimental work in this thesis is based.  This literature review details current 

understanding and highlight areas this thesis sought to advance. 
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2.1 SURFACES AND TRIBOLOGY 
This part of the literature review aims to review specific tribological background relevant to subsequent 

literature and experimental Chapters.  It is the foundation on which, the more industrially applied, 

1496HAutomotive tribology section (see Section 1497H2.2) is based.  This Section starts with the important concepts 

for tribo-contacts, such as contact pressure, which is the driver for friction and wear, the two most 

important parameters for tribological systems presented in this thesis. 

 

2.1.1 CONTACT MECHANICS  

2.1.1.1 Hertzian contact pressure  

The contact of two curved bodies can be described initially as a single point or a line contact.  Even under 

the slightest load, localised elastic deformation around and within the point or line of contact will occur.  

Making some assumptions (see reference [8F9] for details of assumptions), the method for determining the 

contact pressure was first described by Henrich Hertz (1881).  1498HFigure 1 presents schematics of a point and 

line contact, and the geometric parameters required to calculate the contact area and pressure.  The contact 

geometry and pressure for these two types of contacts are given by eq 1499H(1)- 1500H(10) in 1501HTable 1. 
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                                                          (a)                                                                 (b) 

Figure 1. Schematic of a (a) point contact and (b) line contact. 
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Table 1. Contact geometry and contact pressure for line and point contacts. 

 

1502HFigure 2 shows the contact pressure distribution, applicable for point of line contacts.  The pressure 

distribution is elliptical with a maximum value of Po at the axis of symmetry (x=0 or r=0).  The contact 

pressure falls to zero outside the area of contact.  

 

z

a or b a or b

P0

P(x)

x

 
Figure 2. The pressure profile developed when two spheres or cylinders are pressed together. 

 

The majority of automotive contacts, including the cam and follower, can be simplified to model line 

contacts.  For research purposes these automotive components are often simulated, in terms of maximum 

contact pressure, by Pin-on-Disc (PoD) tribometers.  The PoD Tribometer can be run with a point contact, 

where the radius of the flat disc is taken as R2 = ∞. 

 

2.1.1.2 Shear stresses & onset of yield 
There is a value of W for which the material of the weaker object (cylinder or sphere) starts to deform 

plastically rather than elastically.  To estimate this critical value, W’
y (load at which yield of ductile metals 

occurs) the Tresca maximum shear stress criterion or the von Mises strain energy criterion is typically 
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used.  Tresca criterion describes that a material under a multi-axis state of stress will yield when the max 

shear stress reaches some critical value.  The maximum shear stress for static Hertzian line and point 

contacts subjected to normal loading occurs on the axis of symmetry ( 0=x ); contacts are considered to 

produce a uniaxial tensile stress.  At the moment yield occurs one principal stress will be equal to the yield 

stress ( Y=1σ ) and the other principal stresses will be zero ( 032 ==σσ ).  This condition defines the 

critical value of the shear stress at which yield occurs (see eq 1503H(11)).  It should be noted that this value is 

half the value of the tensile yield stress (see eq 1504H(12)). 

 

2
31

max

σσ
τ

−
=                    (11)                           

2max

Yk ==τ              (12) 

 

The maximum shear stress, the depth z  that maxτ  occurs, the load required for yield, and contact pressure 

at first yield for steel point and line contacts are given in 1505HTable 2. 

 

 Line Contact Point Contact 
Maximum sheer stress 

0max 30.0 P≈τ                  (13) 0max 31.0 P≈τ                 (14) 
Depth of maximum shear stress bz 78.0=                       (15) az 4.0=                        (16) 
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        (17) ( )3
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Y
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RWY

∗
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     (18) 

Peak contact pressure at first yield ( ) YkP Y 67.13.30 ==      (19) ( ) YkP Y 60.12.30 ==     (20) 
Table 2. Yield parameters for line and point contacts0F

*. 
 

When yield initially occurs beneath the surface, the plastic region is still totally surrounded by a region in 

which the stresses and strains are still elastic; changes in shape are therefore small.  If the normal load is 

increased further, the plastic zone grows until eventually it breaks out at the free surface, known as the 

state of full plasticity.  The hardness of a material is quantified by measuring the plastic indentation of a 

material.  Therefore the hardness, H, may be related to the material yield stress by eq 1506H(21).  Thus the point 

at which yield will occur can be approximated to eq 1507H(22): 

YH 7.2≈    (21) 

HPm 4.0>   (22) 

The hardness of TU3 cam and followers range between 600-800 Hv.  This equates to a mean contact 

pressures at which yield occurs ( mP ) of 230-380 MPa and a peak contact pressure at first yield of between 

350-480 MPa.  This is not insignificant when considering the reported maximum contact pressure for this 

contact is 680MPa.   

 

                                                      
* These equations have been derived by assuming contacts are steel and have a Poisson’s ration of 0.3 
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2.1.2 FRICTION 
Although the work remained unpublished for several centuries, Leonardo da Vinci carried out scientific 

studies around 1500 A.D. and was first to define the coefficient of friction (COF) as a ratio between the 

friction force and normal force.  The laws of friction were rediscovered by Guillaume Amontons in 1699 

and later Leonard Euler (1750) who derived an analytical definition of friction using the symbol μ [9F10]. 

 

FN

FF

Applied force, 
Q

 

Figure 3. Schematic showing the forces involved in defining the coefficient of friction. 

 

This is the basis of the COF, which is defined as the ratio of the frictional force between the two bodies 

and the normal force (pressing them together) (see 1508HFigure 3).  In practice, the common causes of frictional 

force are adhesion, abrasion and deformation (see Section 1509H2.1.4.2).  COF is shown in Eq 1510H(23), and is a 

dimensionless scalar value. 

N

F

F
F

=μ  (23) 

 

The definition of friction by Charles Augustin Coulomb (1785) is the most commonly used today.  

Coulomb confirmed the results of the previous investigations, but in addition found that friction is 

independent of sliding velocity.  He also made a clear distinction between static and dynamic friction. 

 

If a force (Q) is applied tangentially to one of the contacting bodies in addition to the Normal force ( NF ) 

then the bodies will not move if: 

NFQ μ<   (24) 

If Q increases such that:  

NFQ μ>   (25) 

then sliding will occur.  Static friction ( Sμ ) is the maximum friction force ( FF ) that the surface can 

sustain without relative motion to the normal force ( NF ).  Dynamic friction ( Dμ ) is the resistance force 

encountered when the surfaces in contact move relative to each other.  This is actually an over 

simplification; Dokos (1946) and Rabinowicz (1951) showed that the static COF is time dependant and 

that the dynamic COF is dependant on the sliding velocity [10F11].  In addition, the general relationship 

between normal force and frictional force is not exactly linear so the frictional force is not entirely 
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independent of the contact area of the surfaces.  This relationship is a function of scale – a single asperity 

in contact is dependent on area.  However, the strength of the approximation is its simplicity and 

versatility.  In generally the Coulomb approximation is an adequate representation of friction for the 

analysis of many macro physical systems found in automotive engine and transmission. 

 

The COF is a useful property of tribological systems as it represents the energy loss caused by friction.  In 

the majority of cases where high efficiency is required, particularly when the source of energy is from 

fossil fuels (such as IC engines), friction needs to be kept to a minimum.  In some applications, however, 

friction is necessary and instead of reducing friction a high and well defined level of friction is required; 

such applications are brakes, clutches and synchronisers ( 1511HTable 3 shows the friction values of some of the 

material pairs used for these applications).  The benefit of using a lubricant to reduce friction can be seen 

in 1512HTable 3.  The friction of a fluid (e.g. lubricant) is termed traction coefficient; because the work 

presented in this thesis assesses lubricant performance, under conditions where there is a degree of contact 

between two solid surfaces, COF is the terminology used throughout.  Additives are used to change the 

friction properties of the bulk materials through adsorption and formation of additive-surfaces layers 

within the contact (see 1513HFigure 8 (e)).  These films are known as tribofilms.  There are different 

mechanisms by which the tribofilms ensure low friction.  These films can also offer wear protection. 

 

Contacting Surface Static Friction, Sμ  Dynamic Friction, Dμ  
Steel on Steel (dry) 0.6 0.4 
Steel on Steel (greasy) 0.1 0.05 
Brass on Steel (dry) 0.5 0.4 
Brake lining on cast iron 0.4 0.3 

Table 3. Typical values of coefficient of friction (COF) for commonly found material pairs [1514H12 11F]. 

 

2.1.2.1 Stick-slip 

Stick-slip is the alternation of two surfaces sticking to each other and sliding over each other, with a 

corresponding change in the friction force.  Typically, the static COF between two surfaces is larger than 

the dynamic COF (see 1515HTable 3).  If an applied force is large enough to overcome the static friction, then 

the reduction of the friction to the dynamic friction can cause a sudden jump in the sliding velocity (slip).  

Stick occurs when the applied force decreases to a point at which it becomes insufficient to overcome the 

dynamic friction.  The source of the shudder phenomenon comes from a friction characteristic that is 

velocity dependent, therefore the shudder performance of a lubricant or wet-friction material is typically 

analysed using a friction vs. velocity (μ-V) graph. 

 



Chapter 2 Literature Review                                                                                            Surfaces and Tribology 

11 

2.1.3 LUBRICATION REGIMES 
Successful separation of two surfaces requires a convergent geometry into which viscous fluid is entrained 

by the relative motion of the solids (see 1516HFigure 4).  A pressure is generated which tends to push the faces 

of the wedge apart and it is the integrated effect of this pressure distribution within the fluid that balances 

the normal load on the bearing.  Reynolds was the first to establish a relationship between the velocity of 

sliding, the geometry of the surface, the properties of the lubricant and the magnitude of the normal load 

the bearing can support.  Despite several assumptions (e.g. fluid incompressibility, Newtonian viscosity 

(see Section 1517H2.1.5.1)), constant viscosity, negligible inertia, rigid/solid surfaces, constant pressure through 

thickness of film and smooth solid surface) this one dimensional solution (see eq 1518H(26)) is applicable to a 

wide range of technologically important problems. 
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Figure 4. The convergent geometry that viscous fluid is entrained into by the relative motion 

separates the two surfaces through the generation of pressure which balances the normal 
load.  

                                                                    
3

12
h

hhU
dx
dp −

= η                                                                  (26) 

Reynolds did develop a solution of the problem in 2 dimensions to analyse short or narrow bearings.  

Reynolds 2-dimensional solution with the half Sommerfeld boundary conditions (pressure distribution 

through the contact) applied leads to an equation for the non-dimensionalised bearing load ( *W ) (see eq 

1519H(27)).  Under sufficiently high contact loads, Reynolds equations suggest that unacceptable surface 

damage would result.  However, in practice many mechanical components such as gears run quite 

satisfactorily.  The reason for the difference is that Reynolds solution does not take into account the 

increase in oil film thickness which arises from the thickening of the oil within the contact due to the 

localised high pressures. 
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The one dimensional Reynolds equation based on continuity of volume flow (see eq 1520H(26)) can be 

combined with the Barus equation (see Section 1521H2.1.5.3, eq 1522H(41)) which describes variation between 

lubricant viscosities with pressure.  Solving these two equations results in the reduced Reynolds equation 

for piezoviscous (variable viscosity) fluids (see eq 1523H(28)).  This is similar to the Reynolds equation for 

constant viscosity, but the pressure is replaced by a variable known as the pressure viscosity index (α ). 

                                                             ( ) 3/13/2
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Having accounted for local increases in lubricant viscosity under high contact loads, how machines 

operate under severe contact conditions with little damage is still not completely explained.  The reason 

for the discrepancy is that Reynolds assumes that the surfaces are solid and ridged.  This is not the case, 

even under light loads, surfaces will deform.  The elastic deformation of surfaces plays an important role 

in providing beneficial contact geometries to generate of the all important hydrodynamic film. 

 

There is no complete analytical solution to describe the contribution of surface elastic deformation to fluid 

film thickness, but Grubin [12F13] and many researchers thereafter, assumed in the presence of a fluid the 

elastic deformation of solids are exactly the same as the dry Hertzian contact geometry and pressure 

distribution.  This simplification implies that the numerical film thickness will be governed by the shape 

of the convergent wedge at the entry of the contact.  The linking of hydrodynamics and solid mechanics 

spawned the field of research known as elasto-hydrodynamic lubrication (EHL). 
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With some calculus, algebra and substituting in the Hertzian contact geometry Ertel and Grubin arrived at 

a relationship with non-dimensional groupings (see 1524H(29)).  This analysis assumed that the surfaces have 

the rectangular deformed shape of an unlubricated Hertzian contact, but set apart by distance, h .  

However, eq 1525H(26) shows that the film profile is more complicated than the rectangle of constant film 

thickness, h .  If this was the case then the pressure gradient would have to be positive throughout; there 

would be a build-up to a high pressure at the inlet, remain high through the Hertzian region and then 

increase further in the outlet.  Clearly this is not possible as the pressure at the exit must fall to ambient 

pressure.  To re-establish ambient pressure at the exit of the contact there must be some local constriction 

of the film, where the film thickness falls below h , this is known as the minimum film thickness minh .  

Numerical solutions have shown that, just prior to the point of constriction there exists a pressure spike, 

which has a maximum value considerably greater than the maximum Hertzian contact pressure [13F14] (see 

1526HFigure 5 (a) & (b)).  For point contacts the constriction of the oil film and associated pressure spike 

towards the exit of the contact also extends around the side of the contact forming a ‘horse-shoe’ shaped 

constraint [14F15, 15F16] (see 1527HFigure 5 (c)). 
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Figure 5. Comparison between calculated (green) and measured (red) (a) film thickness and (b) 
pressure distributions in elasto-hydrodynamically lubricated contacts; Hertzian semi-
ellipse is shown in Blue [1528H14].  (c) elasto-hydrodynamically lubricated circular point 
contact film thickness contours in which the dotted line is the Hertzian dry contact area.  
Figures are fractions of the central value [1529H17 16F]. 

 

The problem with the Ertel and Grubin eq 1530H(29) was that the localised film constriction was not taken into 

account and the non-dimensional groupings do not give any insight into the physical significance of the 

contact.  Dowson and Higginson’s pioneering work [17F18, 18F19] developed an equation for the minimum film 

thickness with insightful dimensionless groupings.  The equation is split into a load parameter, 

)2/( * LREW ∗ , a speed parameter , )2/( *
0

∗REUη , and a material (oil and surface) parameter, *2 Eα , 

all of which are equated to the minimum film thickness normalised by the reduced radius.  A semi-

empirical power law equation for point and line contacts was developed (see eq 1531H(30) & 1532H(31) respectively). 
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The theories of EHL, discussed thus far, have assumed that the surfaces are perfectly smooth and 

therefore, in theory, as the load increases so the film thickness reduces without any limits.  However, in 

practice, surfaces under a certain load will begin to show signs of wear and failure may result.  It is 

intuitive that wear is dependent on the ratio (designated lambda, λ ) of minimum film thickness to 

combined surface roughness (see eq 1533H(32)) and 1534HFigure 6). 

2
2

2
1

min

qq RR
h
+

=λ   (32) 
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Figure 6. The film thickness between two rough surfaces. 

 

Stribeck carried out a great number of experiments on bearings and plotted the results against two non-

dimensional parameters; μ  versus the group np/ηω  (Sommerfeld number).  Using dynamic similarity, 

Stribeck’s data led to a single curve.  This is a powerful tool for enabling extrapolation of performance for 

a given machine element (of any dimension), which is based on non-dimensional groupings.  The lambda 

ratio (λ ) over the years has replaced the Sommerfeld number because it is more insightful, in terms of the 

extent of surface interaction between the two bodies.  The characteristics of the single curve lead to 

identification of regimes (see 1535HFigure 7).  Further details can be found in [19F20]. 
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Figure 7. Modified Stribeck diagram which describes the friction levels of contacts with different 
film thickness to surface roughness ratios (lubricant regimes); with the lubricant regimes 
of the major IC components: cam & follower, piston rings and engine bearings, 
superimposed. 

 

The contact conditions for each lubricant regime are described below; 

• Hydrodynamic lubrication λ>3 

The two surfaces are completely separated by a fluid film.  Generation of pressures in the film 

carries the load.  The main characteristic of the fluid is the dynamic viscosity. 

• Elastohydrodynamic lubrication 1<λ<3 

In theory the surfaces are separate, but due to the thinner oil films the contact becomes far more 

concentrated, resulting in elastic distortion of the surfaces.  The effect of pressure on dynamic 

viscosity is influential (pressure viscosity index). 

• Mixed or partial lubrication 0.5<λ<1.5 

As inferred by the name this region is a mixture of the characteristic of Elastohydrodynamic and 

Boundary in which a fluid contact has overall load bearing capacity and some degree of asperity 

contact between surfaces (assuming no tribofilm has formed). 

• Boundary λ<1 

Under these conditions there is a great deal of asperity contact and the lubricant exhibits minimal 

load bearing capacity.  Within this range of operation the bulk properties of the fluid, such as its 

density and viscosity, are of relatively little importance, while its chemical composition and action 

of thin surface tribofilms, as well as that of the underlying metals or substrates, will be important 

to the performance. 

Friction can increase substantially with the transition to boundary conditions, perhaps by as much 

as two orders of magnitude over the minimum value which occurs within the fully hydrodynamic 

regime. 
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                                                     (d)                                                                     (e) 

Figure 8. Schematics of lubrication regimes: (a) hydrodynamic, (b) elastohydrodynamic, (c) mixed, 
(d) boundary and (e) boundary with tribofilm. 

 

The obvious conclusion from the Stribeck diagram is that in order to achieve minimal energy loss, 

components should operate under elastohydrodynamic lubrication, because this region produces the 

lowest friction.  Indeed, the promotion of elastohydrodynamic lubrication in internal combustion (IC) 

engines, through design and surface modifications, has been reported in [20F21, 21F22].  However, the slightest 

change in contact conditions (e.g. oil temperature, surface roughness), can result in lubrication conditions 

going from EHL to boundary. 

 

2.1.4 WEAR 
Wear is the progressive damage, involving material loss that occurs on the surface of a component as a 

result of its motion relative to the adjacent working parts.  Although this definition does not strictly cover 

mechanisms such as corrosive wear and erosion, it is applicable for describing the general grouping of 

wear mechanisms which occur in the power-train.  Wear is the almost inevitable companion of friction 

[1536H9]; yet the relationship between friction and wear is not linearly dependent.  1537HFigure 9 shows the specific 

applications which demand certain levels of friction and wear.  The automotive market is driven to 

increase fuel efficiency by reducing the friction caused by the lubricant and by increasing manufacturing 

precision.  This has reduced component clearances.  Both encourage smaller film thickness, but these will 
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have a tendency to increase wear.  This problem is tackled by changes to engine design, material selection, 

surface finish and lubricant formulation. 
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Figure 9. The friction and wear demands for different systems. 

 

2.1.4.1 Component life 
The wear during a component’s life can be split into idealised regimes of running-in, mild wear and severe 

wear (see 1538HFigure 10).  During running-in the wear rate is often initially quite high, but as prominent 

surface asperities are lost (or flattened) the surfaces become smoother (conformal matting of surfaces 

reduces effective load) and the wear rate drops off. During the running-in process both abrasion and 

adhesion occur simultaneously.  Once running-in is complete, a period of low-wear-rate (mild wear 

regime) is maintained. Under mild wear conditions there is little metallic contact between the two 

lubricated surfaces, occasionally extremely small wear debris is produced (typically only 100nm 

diameter). The resulting surfaces are smoother than the original.  For longer durations fatigue processes 

become important due to the cyclic loading nature of lubricated mechanical components. Fatigue can 

produce cracking, pitting and spallation which will roughen the surface and accelerate other wear 

processes such as abrasion and adhesion. 
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Figure 10. Idealised component bath tub type curve describing the wear rate. 
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2.1.4.2 Wear mechanisms  
There are four basic wear mechanisms that are found in the automotive power-train: adhesive wear, 

abrasive wear, surface fatigue and tribochemical wear. 

 

Adhesive wear is the localized welding of asperities of two solids moving relative to one another.  The 

asperities of two surfaces in relative motion come into contact with each other and plastically deform.  

Due to the high localised pressure and temperature in the contact, some of the asperities weld together.  

Further motion causes plastic shearing of the junctions resulting in the tips of the softer asperities being 

plucked off.  The broken asperity tip is either adhered to the harder surface or ejected out of the contact in 

the form of wear debris – which may cause abrasive wear if entrained into the contact.  This type of wear 

is a particular problem when both surfaces are made of the same material, or when there is poor 

lubrication, or high sliding speeds and temperature.  The term scuffing is used to describe adhesive wear 

between two lubricated surfaces.  During scuffing localised areas are starved of oil, causing the adhesion 

process discussed above; the significance of the lubricant is that, if it gets back into the previously oil 

deficient area, it quenches the surface.  Tearing of macroscopic ‘chunks’ of material from (often non-

lubricated) surfaces at low sliding speeds is known as galling. 

 
                                        (a)                                                                              (b) 

 
(c) 

Figure 11. Schematic of adhesive wear, showing (a) asperities of two counter surfaces approaching, 
(b) contact between the asperities results in plastic deformation and welding of the 
asperities (c) asperity tips are broken off the  softer material and remain adhered to the 
harder surface, wear debris is also generated. 
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Abrasive wear is damage to a component surface because of the relative motion of either harder asperities 

or hard particles to the softer component surface (see 1539HFigure 12).  If abrasive wear is the result of a harder 

counter face then it is termed two-body-abrasion or grooving abrasion (see 1540HFigure 13 (a)).  Grooving 

abrasion can also occur via a hard particle becoming imbedded (see 1541HFigure 13 (b)) in a softer surface 

which is in relative motion with another component.  If abrasive wear is dependent on the presence of free 

rolling particles it is termed three-body-abrasion or rolling abrasion (this does not tend to occur in engine 

or transmission contacts). 

 

v

 

Figure 12. Schematic representation of two-body abrasion mechanism [1542H23 22F]. 

 

 
                                          (a)                                                                              (b) 

Figure 13. Micrograph of a typical wear scar due to (a) two-body abrasion [1543H24 23F], (b) seeded debris 
embedment onto the pin surface [1544H25 24F]. 

 

Hard particles may have arisen by chemical (oxidation) or mechanical processes or as a contaminant.  

There is a fundamental relationship between component wear, the size of contaminant particles, and the 

thickness of dynamic oil films separating opposing surfaces.  Particles responsible for the greatest damage 

are in the size range of the dynamic lubricant films separating moving component surfaces [25F26].  Light 

abrasion is called scratching and severe abrasion is called gouging. 
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In surface fatigue wear, delamination occurs after a prolonged period of contact stress loading.  Cyclic 

events (usually millions) eventually initiate and propagate cracks on the surface or sub-surface.  Although 

renowned as the primary wear mechanism in rolling contacts, such as bearings, surface fatigue also occurs 

in sliding contacts.  When two surfaces are loaded together, a stress field is generated; as discussed in 

Section 1545H2.1.1.2 the magnitude and location of maximum shear stress is dependent on the normal load and 

the COF.  For lubricated systems where the maximum shear stress and associated plastic flow lies beneath 

the surface, and the plastic strain accumulated by each sliding pass is small.  Eventually this can lead to 

nucleation and growth of subsurface cracks, which eventually become large enough to cause discrete 

regions near the surface to be ejected / spalled away from one of the surfaces as debris.  Particles from 

fatigue wear are typically much larger than the small fragments associated with abrasion or adhesion; the 

formation of lamellar wear particles (delamination wear) through fatigue is common.  Wear debris or 

contaminant particles, although primarily thought to influence abrasion, can also initiate fatigue.  Particles 

making simultaneous contact with opposing surfaces focus the load onto a small area, which can result in 

the generation of sub-surface cracks, leading to fatigue (see 1546HFigure 14).  This type of wear is characterised 

by pitted surfaces. 

 

LoadLoad LoadLoad

 
                                     (a)                                                                                    (b) 

LoadLoad LoadLoad

 
                                     (c)                                                                              (d) 

Figure 14. Schematic of surface fatigue as a result of particle entrained into contact; (a) particle 
making simultaneous contact with both surfaces; (b) focused load leads plastic 
deformation and sub-surface stresses; (c) subsequent cycles lead to sub-surface cracking, 
and (d) subsurface cracks progress to the surface and ejection of debris (spalling). 
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Tribochemical wear involves a coupling between mechanical and thermo-chemical processes that occur 

at the interface and with the environment (in lubricated contacts, this is chemical species contained within 

the oil).  Chemical reactions between the environment and a surface produce a mechanically mixed 

layered surface film that can be worn away (see 1547HFigure 15).  If this film is more readily worn away than 

the bulk material, this leads to greater wear than would be expected by the bulk material.  Alone, the 

chemical reaction at the surface or shearing at the surface (e.g. abrasion) may not be that detrimental; it is 

the combination of a chemical reaction and tribological action together which exacerbates wear.  The 

chemical reactivity effects wear; in general the higher the reactivity the greater the tribochemical wear.  

Not only does tribological action remove the material, it also enhances chemical reaction; high 

temperatures and pressures found in the tribo-contact accelerate chemical reaction. 

 

 

Corrosive element, e.g. sulphur

Chemical film

 
                                    (a)                                                                               (b) 

  
                                     (c)                                                                               (d) 

Figure 15. Schematic of tribochemical wear. 

 

2.1.4.3 Wear model 
The most well known wear model is the well known Archard wear law (see eq 1548H(33)) [26F27] which suggests 

that, for a system with constant, the wear rate is directly proportional to the load on the contact, but 

inversely proportional to the surface hardness ( H ) of the wearing material. 

c
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H
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VLSWR ===

)(
)(κ   (33) 
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Where κ  is the dimensional specific wear rate (mm3/Nm or m2/N), (VL ) is the volume loss, (W ) the 

applied load, ( SD ) is the sliding distance ( wk ) is the dimensionless wear coefficient and ( H ) is the 

material surface hardness. 

 

Archard’s wear law was derived from adhesion, but Preston [27F28] derived the same equation by 

considering the interactions between asperities as grooving abrasion.  The Archard’s theoretical prediction 

of modelling wear has been proved experimentally.  However, the relationship between sliding distance 

and wear falls down during short tests with a non-linear running-in period.  Also, proportionality between 

wear rate and normal load is not often found; abrupt transitions from low to high wear rates (and 

sometimes back again) are often found with increasing load.  Another issue for contention is that the 

equation is used broadly in the research community, even for wear mechanism other than those used in its 

derivation.  Nonetheless, the Archard wear law is the basis for more sophisticated wear models.  1549HFigure 16 

shows typical specific wear rate ranges as a function of lambda ratio for different severities of wear. 
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Figure 16. Schematic showing a range of specific wear rates as a function of lambda ratio (film 
thickness/composite roughness). 

 

2.1.5 LUBRICANT RHEOLOGY 
The viscosity of a fluid depends on temperature, pressure, shear rate and strain rate.  Many empirical 

functions relate viscosity and pressure (in some cases temperature) [28F29] including those by Briant et al. 

[29F30], Gohar [1550H15], and Jacobson [1551H16]. 

 

2.1.5.1 Viscosity 
Dynamic viscosity is defined as the tangential force per unit area required to move one horizontal plane 

with respect to the other at unit velocity, when maintained a unit distance apart by the fluid (see 1552HFigure 17 

and eq 1553H(34), 1554H(35), 1555H(36)). 
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Figure 17. Schematic depicting the parameters involved in dynamic viscosity calculation. 
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Kinematic viscosity describes how the lubricant flows due to its own weight under gravity, with no 

external force involved (see eq 1556H(37)). 

ρ
η

=v   (37) 

 

2.1.5.2 Temperature 
Viscosity is approximately exponentially dependent on temperature.  This dependency is a result of the 

van de Walls and electrostatic forces of attraction reducing with increasing temperature.  Vogel’s eq 1557H(38) 

described the variation of viscosity with temperature.  Where T  is the oil temperature, and tempk , 1θ  and 

2θ  are constants for a lubricant. 
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For a range of typical temperatures encountered in most situations involving mineral oils an empirical 

equation has been developed (see eq 1558H(39)). 

( ) Tca temptemp logconstantloglog −=+ρη      (39) 

Experience has shown that if the kinematic viscosity is measured in centistokes then the constant tempa  has 

the value of 0.6.  This is the basis of the ASTM chart on which the value of the term on the left hand side 

of eq (40) is plotted against the log of temperature to give a linear trend to oil properties (see 1559HFigure 18). 
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Figure 18. ASTM chart1F

†, which describes how the viscosity of an oil changes with temperature, this is 

characterised by the viscosity index. 

Lubricants are often designed to provide a viscosity that is low enough for good cold weather starting and 

high enough to provide adequate film thickness and lubricity in hot, high-severity service. Therefore, 

when hot and cold performance is required, a small response to changes in temperature is desired. The 

lubricants industry expresses this response as the viscosity index (VI). A higher VI indicates a smaller, 

more favourable response to temperature [30F31]. 

 

2.1.5.3 Pressure 
The effect of local high pressures on viscosity can be described by the Barus relationship (see eq 1560H(41)) [1561H9]. 

( )Patm αηη exp=        (41) 

The Barus relationship can adequately model the viscosity dependency on pressure for many mineral oils 

and other fluids.  In the case of fully formulated oils (those containing additives), the most successful 

expression is the Roeland equation (see eq 1562H(42)). 
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Where 7.05.0 << Z  and 8
0 102×≈∗p  Pa.  All of these parameters can be found experimentally.  These 

equations describe a local increase in viscosity under load.  Therefore it might be possible to successfully 

lubricate heavily loaded sliding contacts under conditions of greater severity than would be predicted by 

                                                      
† Additives 2005: Optimising Automotive Power Trains - Training Day. The Burling Hotel, Dublin 4th April 2005. 
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the constant viscosity, hydrodynamic analysis.  Oils become glassy like in most contacts (i.e. semi-solid 

(see Section 1563H2.1.3)). 
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2.2 AUTOMOTIVE TRIBOLOGY 

The work presented in this thesis investigates lubricant performance in simulated valve-train and 

transmission contacts.  This part of the 1564HLiterature review aims to examine these specific tribological 

contacts and set the context of lubricant testing.  Unfortunately published literature on transmission 

tribology, on the whole, has not been discussed at the same scientific level as other sections in this 

1565HLiterature review.  This area of research has received industrial treatment with minimal tribological 

analysis.  This Section discusses the drivers in automotive design and the tribological performance of 

cam-follower, frictional clutch and synchroniser contacts.  The experimental work presented in Chapters 

1566H4-1567H1568H1569H1570H8 are based on the fundamental and applied tribological conditions identified in this Section. 

 

The automotive sector is the 6th largest economic sector worldwide, with a value of € 2 trillion; it also 

encompasses interrelationships with more than 300 different fields [32F33].  Thus, even small changes in the 

automotive sector could have huge global benefit. 

 

The oil crisis of the 1970’s generated public awareness of the dwindling supply of fossil fuels.  More 

recently, the need for change in all aspects of automotive design has been highlighted by; high fuel prices 

(due to high demand from a dwindling supply and political instability); greater understanding about the 

impact of harmful emissions on global warming, and the ever increasing number of vehicles in the world 

(particularly in China and India).  Ever since the invention of the internal combustion engine there has 

been a desire to improve the design.  This originally took the form of producing greater power, but has 

recently focused on satisfying conflicting demands of increased durability and reduced environmental 

impact (though engine cleanliness and smaller engines providing better fuel efficiency), while maintaining 

the same power that automobile customers expect. 

 

Improvement in vehicle efficiently alone has a direct impact on fossil fuel consumption; because less fuel 

is required to travel the unit distance, and because less fuel is being burnt, there are fewer harmful gases 

being produced over that unit distance.  The total power from fuel is 32kW, of which 4.9 kW is lost in the 

engine and power-train compared to 3.8kW from rolling and air resistance and acceleration [33F34] (see 

1571HFigure 19).  A 10% reduction in mechanical losses would lead to a 1.5% reduction in fuel consumption; 

this is significant when noting that only 12% of the available energy in the fuel finds its way to the driving 

wheels [34F35]. 
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Figure 19. Power distribution in an automobile during city driving [1572H35]. 

 

The evolution of the internal combustion engine has resulted in higher specific outputs, higher surface 

speeds, higher temperatures and smaller components for the major frictional components in the engine, 

and transmission, namely: piston assembly, valve-train, journal bearings and gears.  Reducing frictional 

losses requires lower viscosity engine oils, resulting in a decreasing oil film thickness between the 

interacting surfaces (see eq1573H(31)), which has obvious durability implications for engine components.  

During the 20th century the thickness of lubricating films in machine elements has reduced by several 

orders of magnitude [35F36].  Of particular concern are those contacts which operate with a film thickness of 

a fraction of a micron, as often these contacts have surface roughness’s of a similar order of magnitude 

(λ≤1).  Under these conditions (boundary lubrication, see Section 1574H2.1.3) surface interaction is inevitable; 

additives are required to minimise the affect contact between component surfaces have on wear and 

friction. 

 

Improvements in fuel efficiency must not be at the detriment to durability; durability and fuel efficiency 

improvements need to be advanced together.  Many studies have been carried out on the greatest sources 

of automotive failure.  Heyes [36F37] has shown that the most failed parts are from the engine and its 

components (41%) followed by the drive-train (which includes transmission) failures (26%).  Although 

these aspects of automotive tribology are not the greatest in terms of energy loss they are important areas 

of research because they operate under some of the most severe contact conditions (see 1575HTable 4). 

 

 



Chapter 2 Literature Review                                                                                              Automotive Tribology 

28 

 

Some Power-train component Oil film thickness (μm) 
Piston ring-to-cylinder 
Connecting-rod bearings 
Main shaft bearings 
Turbocharger bearings 
Piston pin bushing 
Valve-train  
Gears 

3.0 – 7 
0.5 – 20 
0.8 – 50 
0.5 – 20 
0.5 – 15 
0 – 1.0 
0 – 1.5  

Table 4. The operating film thickness of major contacts in a IC engine and transmission [1576H26]. 

 

2.2.1 VALVE-TRAIN TRIBOLOGY 

It is generally accepted that out of the three major frictional components in the internal combustion engine 

(the piston assembly, engine bearings and valve-train), the valve-train is the least energy absorbing (see 

1577HFigure 20).  However, the valve-train experiences the greatest contact pressures of these three major 

frictional components and thus operates under the lowest oil film thickness.  Satisfactory lubrication of the 

cam and follower contact in internal combustion (IC) engines has proven to be the most difficult of all the 

tribological components [37F38, 38F39].  Wear of valve-train components is one of the most critical factors 

limiting the life and performance of automotive engines [39F40] as cam and follower wear will affect valve 

timing and therefore combustion and performance. 

 

Piston assembly, 45%

Pumping Losses, 20%

Valve train, 10%

Bearings, 25%

Frictional Loses

 

Figure 20. Mechanical losses distribution in an internal combustion engine [1578H35]. 

 

The valve-train incorporates a wide spectrum of interesting contacts to tribologists: the cam/follower, 

camshaft bearings, valve guides, lash adjusters, bucket guides, pivots and belt drives.  This thesis focuses 



Chapter 2 Literature Review                                                                                              Automotive Tribology 

29 

on the cam/follower contact.  This Section on valve-train tribology discusses the drivers behind valve-train 

design and how this affects tribological performance, with particular reference to cam and follower 

adhesive (scuffing) wear.  The cam and follower materials are also discussed as part of the general 

background to valve-train design. 

 

2.2.1.1 Kinematics 

The primary aim at the engine design stage is to improve combustion, and therefore maximising 

efficiency.  The valve lift profile is highly influential to the performance/efficiency of the IC engine.  The 

kinematic cam profile/lift profile (see 1579HFigure 21) is heavily dependent on the valve-train stiffness and 

mass.  Thus material and configuration are important considerations for valve-train design.  The effect of 

valve-train stiffness and mass is exasperated at significantly high engine speeds.  More information on 

how kinematics influence valve-train design can be found in [40F41]. 
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Figure 21. Kinematic cam profile characteristics [1580H34]. 

 

2.2.1.2 Valve-train design 

Over 20 years ago the move to OHC configurations, such as the PAS TU3, was driven by manufacturing 

and kinematics (see 1581H2.2.1.1).  The OHC allowed improved production arrangements because the cylinder 

head could be assembled separately from the engine block and was less expensive to manufacture [41F42].  

High valve-train reciprocating mass and low stiffness became increasingly undesirable as engine speeds 

increased; OHC valve-trains were inherently lighter and stiffer than over-head valve ‘push-rod’ designs 

[42F43] and operated better at higher speeds [1582H42] (see Section 1583H2.2.1.1).  The advantages and disadvantages of 
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a range of valve-train architectures are discussed in 1584HAppendix A.  The development of the valve-train to 

improve fuel economy is a complex process in its own right, and one that unfortunately does not seem to 

have been linked directly to the tribological operating environment [1585H35].  The following sections discuss 

the tribological performance, and surface engineering involved in TU3 cam-follower contacts. 

 

2.2.1.3 Valve-train materials 

Camshafts are generally produced by casting or forging.  For sliding contact valve-train systems (like 

rocker-followers/direct acting tappet (DAT)), the cam lobe and followers, tend to be made from chilled 

grey cast iron, nodular cast iron and malleable cast iron [1586H33]. 

 

The TU3 camshaft is made from nodular cast iron.  Nodular cast iron has good fluidity and is easily cast 

and machined.  Nodular graphite cast iron has a number of properties similar to those of steel, such as high 

strength, toughness, ductility, hot workability, and hardenability as well as good wear resistance.  The 

carbon content of unalloyed ductile iron ranges from 3.0% to 4.0% C and the silicon content from 1.8% to 

2.8% [1587H33].  The spherical nodules in ductile cast iron are formed during the solidification of the molten 

iron; these spherical nodules are responsible for high fracture toughness.  Impurities, such as sulphur and 

phosphorous, must be kept to a minimum because they interfere with the formation of graphite nodules.  

Magnesium is introduced to the metal just before it is cast to react with sulphur and oxygen so that these 

elements do not interfere with the formation of spherical nodules [43F44]. 

 

The TU3 followers are made from stainless steel.  The presence of chromium creates a passive layer 

(when exposed to air), which makes the follower more corrosion resistant.  This is important for followers 

in cylinder-heads where incomplete combustion gases may collect.  For roller followers both the cam and 

followers are made out of steel rather than cast iron because of the high contact stresses inherent in roller 

followers. 

 

Fuel economy depends on the reduction of friction losses and weight reduction of engine components 

[44F45].  These can be achieved by the development of two key areas: materials technology and lubrication 

technology.  Alternative non-ferrous materials have been investigated and improved kinematic 

performance (see Section 1588H2.2.1.1) has been shown when lighter materials are used. 
 

2.2.1.4 Surface treatments/finishing 

The wear resistance of cast or forged valve-train components can be improved through surface hardening.  

By infusing elements into the ferrous surface, a thin harder alloy is formed.  Surface hardening techniques 

include: fame hardening, carburizing, nitriding, carbonitriding and Nitrosulphurising.  Sliding followers 

tend to be harder than the cam [45F46] because the area in contact for one cycle is smaller than that of the 
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cam, thus followers require greater wear resistance.  The TU3 cam has a hardness of approximately 

600Hv30 compared to the follower hardness of around 800 Hv30. 

 

The surface topography is a valve-train design consideration that has not seen much development and 

there are still conflicting views regarding its effect on lubricated contacts.  Limited research has 

investigated the effect of surface finish of cam and follower components on wear. 

 

The surface finish of automotive metallic cams and followers is widely published at around 0.2 μm Ra.  

The traditional view has been that the smoother the finish the better, as this will promote EHL lubrication 

rather than boundary (see Section 1589H2.1.3).  However, in reality it is not that simple.  Contacts with rough 

surfaces could encourage lubricant retention in valleys.  There is evidence that smoother surfaces may not 

encourage lubricant retention, because of the lack of valleys in the contacting surfaces, and therefore wear 

may result [1590H35]. 

 

2.2.1.5 Wear 

The first part of this Section discusses general valve-train wear mechanism, the conditions which 

exacerbate wear and the consequence this has on engine operation.  The second part uses some of the 

tribological concepts introduced in Section 1591H2.1.4.3 to aid understanding about the tribological conditions 

in cam and follower contacts, which enabled models for cam and follower wear to be developed. 

 

General valve-train wear  

The change in valve-train design from crankcase location to OHC gives inherently poorer tribological 

performance [1592H35] resulting in high friction and wear, especially for the finger and rocker-follower design.  

Between 1980 and 2000, almost all the major automobile manufacturers have experienced cam and 

follower failures [1593H38].  In general, the failure mechanisms observed in valve-trains are: abrasion/polishing, 

pitting, and scuffing [1594H35], all of which are influenced by valve-train design, materials, lubricant and 

operating conditions. 

 

Under boundary lubrication, the asperities of the cam and follower surfaces interact causing grooving and 

breaking of asperity tips (debris ejection).  Although initially this can have a polishing affect, reducing 

surface roughness, over a period of time, at some point contact between the surfaces will cause grooving 

and new valleys to be formed.  Usually there are contaminants such as wear debris or soot in the case of 

diesel engines; these extremely small particles circulating in the lubricant can transmit load between the 

surfaces and produce abrasive wear.  This results in the gradual removal of material, which at the very 

least will have an affect on component tolerances.  More importantly, abrasion may initiate scuffing (see 

Section 1595H2.1.4.2); deep valleys and narrow asperities reduce the surface area increasing the chances for 

plastic deformation and localised welding.   
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Scuffing is thought to occur under transient conditions such as start-up, shutdown, and high torque 

conditions (e.g. driving up steep gradients) [1596H26, 46F47].  These driving conditions lead to low speed and high 

load between the cam and follower.  This produces the most severe boundary lubrication, increasing the 

amount of asperity contact between the surfaces (wear).  In addition, scuffing is likely during running-in 

periods, because the two surfaces are not conformed (small contact area), leading to high contact pressures 

between asperities. 

 

The immediate affect of wear is furrowed and roughened surfaces, which increases friction and therefore 

reduces fuel efficiency (see Section 1597H2.1.2).  In addition it opens up clearances between cam, follower and 

valve components, causing the timing of the engine port openings and closings to vary, leading to 

incomplete combustion and the possibility of combustion in the exhaust manifold (backfiring).  This will 

lead to a much greater loss of engine performance.  Ultimately progression of severe adhesive wear can 

lead to engine seizure. 

 

A survey in 1986 concluded that scuffing was one of the most critical lubricant related valve-train wear 

mechanisms [47F48].  The Lubricant group of the Co-ordination European Council, CEC IGL-17 looked into 

valve-train wear and recommended the standardisation of a scuffing test method using an overhead 

camshaft and pivoted rockers/finger-followers engine unit [48F49].  The PSA TU3 engine2F

‡ was used as the 

basis for developing the test method [1598H2].  Other standard industry engine tests have joined the PSA TU3 

engine to assess for cam and follower wear, such as the Sequence VE [49F50], and the Toyota 3A tests (both 

single over-head camshaft (SOHC) valve-train systems with pivoted followers).  Although most modern 

engines now use the Direct Acting Tappet (DAT) design (which significantly reduces wear (see 1599HTable 5)), 

finger follower engines continue to be the industry standard test engines for assessing valve-train wear.  

Wear in these test engines occurs principally by abrasive and adhesive processes [1600H38] and in some cases 

there is a significant corrosive element under low-temperature conditions [50F51, 51F52], as acidic combustion 

products retained in the cam-casing do not evaporate at low temperatures.  At an advanced stage of wear, 

a transition to severe adhesive wear (scuffing) is frequently observed [1601H52]. 

 

Valve-train wear Models  

The combination of EHL theory (see Section 1602H2.1.3) and Archard’s law (see Section 1603H2.1.4.3) have been 

incorporated to predict valve-train wear.  EHL theory enabled prediction of the minimum film thickness 

(see eq 1604H(31)) and therefore the ratio of film thickness to composite roughness (see eq 1605H(32)).  Archard’s wear 

law is combined with EHL theory to give a wear model that incorporates a specific wear rate (κ ), which 

is a function of the oil film thickness ( h ), based upon EHL lubrication theory. 

                                                      
‡ The engine is a 1360cc displacement, 4 cylinder OHC petrol engine having a compression ratio of 9.3:1 and an 
output of 47kW.  Typically, these engines are used in Citroen Ax, Bx, Peugeot 205, 405. the follower unit is also 
used in the Renault 21 and the Volvo V6 engine. 
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Cam-follower contact pressure and entrainment velocity, as a function of cam angle, can be found through 

computation.  (The kinematics of finger follower systems are rather complex and lead to wide changes in 

loading and sliding speed [52F53,53F54]; consequently, many researchers have simplified the configuration to a 

cam-tappet arrangement (e.g. ref [54F55]).  There are very few papers predicting cam and finger follower 

wear.)  Using Dowson’s (see eq 1606H(31)) equation for line contact the film thickness can be calculated, as a 

function of cam angle and follower sliding distance, for one rotation of the cam.  The oil viscosity, for a 

given temperature, used in the EHL equation, can, to a first approximation, be derived from the base oil 

viscosity [55F56]; at the high shear stresses and shear rates in the EHL contact the viscosity of multigrade oils 

is similar to the base oil. 

 

 Rocker follower Equivalent tappet follower 
Maximum load (kN/m) 63.94 32.84 
Maximum contact pressure (MPa) 684.5 358.9 
Entrainment velocity (m/s) 0-3.059 0-6.253 
Maximum film thickness  0.76 2.38 
Minimum film thickness 0.07 0.14 
Load at minimum film thickness (kN/m) 41.0 32.8 

Table 5. TU3 cam and follower contact parameters at 40oC and 750rpm [1607H52]. 

 

The lubrication regime of the cam-follower varies around the cam cycle, due to varying load, entrainment 

velocity and contact geometries as a function of cam angle.  Thus the minimum film thickness does not 

necessarily occur at the point where minimum sliding speed and maximum contact pressure co-inside.  

(Although it is not usually that far away from the minimum sliding speed and maximum contact pressure).  

1608HTable 5 shows that the minimum film thickness occurred at a load below the maximum; entrainment 

velocity and maximum contact pressure for the TU3 valve-train are also given.  It is generally accepted 

that the lubrication regime from the base circle, flank and nose is EHL-mixed [1609H38].  Boundary lubrication 

occurs at various points around the cam nose.  Typically the minimum oil film thickness is found either 

side of the cam nose (see 1610HFigure 22). 
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Figure 22. Butterfly diagram showing typical film thickness variation around cam [1611H57 56F]. 

 

In most case cams and followers undergo steady, but non-catastrophic, wear.  Based on the assumptions of 

steady state wear, a mathematical model was developed [1612H53,57F58] based on a simple Archard’s wear law 

[1613H27], in the form proposed by Lancaster [58F59].  The specific wear rate is a function of the film thickness 

and therefore is also a function of the interacting materials, their surface topography, the lubricant and the 

operating conditions.  The variation in specific wear rate thus follows the different lubrication regimes due 

to change in oil film thickness (see 1614HFigure 23).  The variation of the wear coefficient is obtained from 

subsidiary well controlled experiments.  Fired engine tests have shown that the overall specific wear rate 

for the cam/follower contact was 1-3 x 10-18m3/Nm [59F60, 60F61]; a transition to scuffing (see below) results in a 

specific wear rate of 50 x 10-18m3/Nm [1615H61]. 
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Figure 23. Transition models for specific wear coefficient and coefficient of friction [1616H40]. 
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The friction in valve-trains can be predicted using a similar model to the wear model.  The hydrodynamic 

COF is approximately 0.0002.  Under boundary lubrication the coefficient of friction (COF) is assumed to 

be around 0.08 for friction modified oil to 0.12 for conventional formulations.  These values enable the 

power loss between the cam and follower contact to be predicted. 

 

Models versus real wear 

The wear model described above is capable of predicting the wear profiles of both cams and followers 

(see 1617HFigure 24).  Bell [1618H52] used the model to predict the wear for a pivoted finger follower and DAT 

valve-trains.  The effectiveness of the model can be assessed by comparing the predicted follower wear 

profile to those of an exhaust follower obtained in a standard engine test.  The predicted follower wear 

profile is fairly similar to that of the retrieved follower (see 1619HFigure 24 (a)).  Particularly worthy of note is 

the tendency for wear to increase towards the end contact path closest to the pivot of the follower on both 

the predicted wear and on the worn follower.  This is because it is the position of maximum contact 

duration in the main loaded part of the cycle.  In practice it has been found at this particular point there is 

relatively poor antiwear film formation [61F62]. 
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Figure 24. Wear profiles (a) theoretical and predicted follower and (b) predicted cam [1620H52]. 

 

The maximum cam wear is predicted approximately 10o from the cam peak (see 1621HFigure 24 (b)); it occurs 

close to the point of minimum sliding speed.  Unfortunately there is not any worn cam profile data in the 

literature which enables direct comparison; this is likely to be because of the difficulty in profiling a 

curved surface with a small radius.  However there are reports which that noted little change in roughness 

of the cam flanks [62F63,63F64], which corresponds with the low wear rate predicted for the flanks. 

 

Problems with models 

Experimental measurements in a pivoted follower valve-train system [ 1622H56, 64F65] have shown that the 

theoretical predictions may significantly overestimate oil film thickness in places and underestimates oil 

film thickness in others (see 1623HFigure 25(a)).  The agreement between predicted and actual wear is not exact 
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for two reasons, changing contact conditions and squeeze film effects.  The initial roughness is used to 

calculate the film thickness ratio; in reality the roughness will change rapidly from the initial value.  This 

may lead to reduced contact area and increased Hertzian contact pressure.  Or the surface may become 

correlated after running-in, which promotes full film lubrication [1624H54, 65F66]. 
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Figure 25. Oil film thickness between TU3 cam and follower (a) experimental and EHL theoretical 

prediction, and (b) dynamic EHL theoretical prediction (taking into account squeeze film 

effects) [1625H40]. 

 

Experimental measurements highlight the major discrepancies with static EHL theory predicting zero oil 

film thickness (see 1626HFigure 25) around zero entrainment velocity [1627H56].  EHL theory neglects squeeze film 

effects, which are important at small oil film thicknesses.  The measured wear at zero entrainment velocity 

is not as severe as the predicted model suggests.  It therefore signifies that transient effects need to be 

accounted for. 

 

Dynamic EHL models 

To get more quantitative results, non-linear, time dependent wear models involving wear transitions [66F67] 

combined with dynamic EHL models have been developed.  1628HFigure 25 (b) shows the oil film thickness 

calculated using dynamic EHL models, which correlates far better to the experimental oil film thickness 

shown in 1629HFigure 25(b) than the non dynamic EHL models. 

 

Midlife scuffing 

The previous wear model predicted the level of wear around the cam and along the follower, assuming 

steady state wear.  The problem with this model is that is not sophisticated enough to take into account 

wear transitions, such as mild wear to sever adhesive failure.  Bell and Willemse [1630H61] investigated the 

processes leading up to scuffing, without any increase in the severity of the externally applied condition, 

termed mid-life scuffing.  They recorded cam and follower surface roughness and wear at regular intervals 
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during a series of valve-train wear tests in a fired engine.  The shakedown conditions in cam and follower 

contacts in these tests were modelled using both a statistical description of the surfaces, in the form 

proposed by Kapoor et al. [67F68], and also a numerical technique similar to that of Webster and Sayles [68F69] 

which employs actual measured surface profiles.  This work enabled the following observations to be 

made regarding the transition to scuffing; a) surface roughening in the mild wear regime, which 

progressively increased maximum asperity contact pressure until b) the elastic shakedown limit was 

exceeded, causing plastic deformation wear, accelerated roughening and enlargement of valleys, leading 

eventually to c) a transition to high rates of wear, probably resulting from hydrodynamic pressure loss and 

oil-film collapse. 

 

2.2.2 TRANSMISSIONS 

Transmission of power from the IC engine to the vehicles wheels requires a geared system because the 

range of operating rotational speeds of the engine and wheels are different (700-7000rpm and 0-1900rpm 

respectively).  In addition, moving a vehicle from rest, or when travelling slowly, requires a gearing that 

transmits high torque at low speeds.  The key difference between a manual and an automatic transmission 

is that the manual transmission locks and unlocks different sets of gears to the output shaft to achieve the 

various gear ratios, while in an automatic transmission, the same set of gears (planetary gearset) produces 

all of the different gear ratios. 

 

The following sections focus on two transmission contacts; the synchroniser used in manual transmission 

and the frictional clutch used in automatic transmission.  In the majority of automotive lubricated contacts 

it is desirable for friction to be kept to a minimum (e.g. the valve-train), but where power transmission is 

required, such as the synchromesh and frictional clutch, a certain amount of friction is needed to enable 

quick and smooth operation.  The literature discussing these two contacts is extremely limited and has not 

seen the same academic insight as valve-train tribology. 

 

2.2.3 MANUAL TRANSMISSION SYNCHRONISERS 

Synchronisers are used to equalise the rotational speeds of the output shaft and the desired active gear (the 

gear to be selected), preventing the need for double clutching.  The synchroniser rotates at the same 

rotational speeds as the shaft, whereas the gear(s) along the shaft(s) run on bearings, synchronisers lock 

the active gears to the shaft(s).  The synchroniser consists of a taper, which fits over a corresponding cone 

section of the desired active gear and makes frictional contact to equalise peripheral speeds before dog 

teeth make contact (see 1631HFigure 26(b)).  A lockout mechanism prevents positive gear engagement prior to 

completion of the synchronisation process (see 1632HFigure 26(a)).  Once equalisation of active gear and 

synchroniser rotational speeds have occurred, the synchroniser sleeve slides to engage the collar dog teeth 

with the corresponding teeth on the gear (see 1633HFigure 26(c)). 
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Figure 26. Synchronising process; (a) collar and output shaft are rotating at a different speed to the 

desired active gear; (b) friction between the cone and collar synchronises the collar and 

gear rotational speed and (c) the collar then slides to engage the collar dog teeth with the 

corresponding teeth of the desired active gear. 

 

2.2.3.1 Tribological considerations for manual transmission synchronisers 

Synchronisers must equalise rotational speeds of the output shaft and the desired active gear.  Whether the 

synchroniser needs to increase or decrease the rotational speed of the active gear to match the output shaft, 

the equalisation is achieved through frictional forces between the synchroniser ring and active gear.  When 

the rotational speeds between the active gear and output shafts are vastly different, friction between the 

two contacts occurs through viscous effects.  As the difference between rotational speeds of the two 

surfaces decreases, frictional forces are generated through solid-solid contact up until there is no relative 

movement between the two surfaces.  Transition between gears needs to occur as quickly (few tenths of a 

second) and as smoothly as possible, from the stand point of power transmission and efficiency, as well as 

driveability.  To achieve this, high friction between the contacts is required, but not to the detriment of 

wear, which will inhibit equalisation and result in the clashing of dog gears and eventually lead to the 

inability to select the gear. 

 

Almost all car manufactures use Borg-Warner synchronizers [69F70], which are conical in shape.  The rings 

are made of forged brass and the gear is typically made from cast steel; other materials are used, in 

particular Molybdenum coatings, but brass synchronisers remain the major synchroniser ring material.  

Hard and soft material couplings have been used for a very long time due to their good friction and wear 

characteristics; cast steel and brass have a hardness of 700 and 100 Hv respectively [70F71].  The brass-steel 

pairing is used because of excellent friction characteristics (see Section 1634H2.1.2); the ability to endure high 

temperatures generated during high friction contact, and good thermal conductivity [71F72].  In addition, 

brass is able to withstand high stresses. 
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Groves are machined onto the friction surface [1635H70].  The surface topography fulfils a complex, and 

conflicting, range of functions; the groves provide some cooling as well as promote lubricant retention 

(see Section 1636H2.2.1.4), the pattern of these groves is designed to give best braking performance (high 

friction).  Generally, synchroniser performance deteriorates because the grooves diminish as a result of 

wear [1637H70].  Due to the difference in surface hardness between brass and steel, wear of synchroniser rings is 

abrasive and adhesive (see Section 1638H2.1.4.2); the main type of failure observed in the field is severe 

adhesion which results in seizure of the gear and synchroniser ring [72F73]. 

 

2.2.4 AUTOMATIC TRANSMISSION CONTACTS 

A basic automatic transmission (AT) contains two complete planetary gearsets folded together into one 

component, called a compound planetary gearset.  In this configuration there are four wet-plate clutches to 

lock parts of the gearset to create the desired input/output gear ratio.  Each clutch is actuated by 

pressurised hydraulic fluid that enters a piston inside the clutch.  The clutch consists of a plate of friction 

material and a steel plate (see 1639HFigure 27).  The friction material is splined on the inside to lock onto one of 

the gears.  The steel plate is splined on the outside to lock onto the clutch housing. 

 

Wet friction materials must transmit and cut-off power repeatedly based on frictional force.  

Environmental pressures have driven the need for improved fuel economy, through among other things, 

more efficient automatic transmissions.  Current design development is set to achieve this with smaller 

size units with lower lock-up speeds, which means that wet friction materials and automatic transmission 

fluids (ATFs) must provide greater durability. 
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Figure 27. A multiple disc wet clutch showing the friction material and steel plates. 

 



Chapter 2 Literature Review                                                                                              Automotive Tribology 

40 

2.2.4.1 Tribological operation of wet-plate clutches 

There is very little theoretical work on wet friction material; this is principally because Hertzian and EHL 

calculations are not valid for wet friction material due to inhomogeneity and porosity (between 25 and 

60% porosity).  Even though an elastic modulus can be experimentally obtained to describe the friction 

material, at the microscopic level the elastic modulus will vary.  Most of the literature therefore employs a 

qualitative experimental approach to understanding wet frictional clutches tribology. 

 

Wet-plate clutches require a certain amount of friction to enable quick and smooth operation.  The 

lubrication of a wet friction clutch can be split into four stages; (1) disengaged rotating clutch operates 

under full film lubrication, where viscous shearing fluid produces a small torque; (2) initial engagement of 

the clutch squeezes the film out of the contact creating a hydrodynamic pressure, which supports the load 

and prevents asperity contact; (3) the onset of asperity contact, deforms the porous friction material 

pushing out fluid [73F74], and in the final stage (4) the two plates are locked together, torque is transmitted by 

asperities and boundary film.  In the earlier stages the rheological properties of the base oil play a 

significant role in friction performance; in the latter stages additives and friction material mechanical 

properties dominate friction response [74F75, 75F76]. 

 

Wet friction material must produce specific friction characteristics (see Section 1640H2.2.4.2) over long 

durations; they must also provide sufficient heat adsorption and be compatible with oils and additives 

[76F77,77F78].  Porosity may be desirable for certain wet friction clutch applications, because it promotes fluid 

retention in the contact and improves heat transfer from friction material to fluid.  Higher porosity 

increases COF [78F79] and inhibits shudder (see Section 1641H2.2.4.2) [79F80]; however porosity also promotes 

cavitation [1642H79]. 

 

The most commonly used friction materials are paper, sintered bronze, steel, carbon fibre, cork, asbestos 

and aramid fibres.  From the viewpoint of stable friction coefficient and price, the paper type friction 

material [80F81] has been the favoured friction material for AT wet clutches.  In general paper-based wet 

friction materials are porous composites consisting of phenol resin-impregnated cellulose fibres [81F82] (see 

1643HFigure 28).  In addition, diatomaceous earth, carbon fibres, graphite, cashew dust, aramid fibres and 

asbestos fibres can be found in cellulose / phenolic resin based wet friction material [82F83, 83F84].  Fibres are 

included for their frictional properties, their heat resistance, and their thermal conductivity [84F85].  

Diatomaceous earth and graphite are included as fillers [85F86], graphite and cashew dust are used as friction 

modifiers, and aramid fibre and carbon fibre are occasionally used to toughen and strengthen the binder 

(phenolic resin), which is quite brittle in its pure form [1644H83].  Fibres coated with phenolic resin are bound to 

each other at their intersections leaving spaces between the fibres (pores).  Since fibres are laid 

perpendicular to the direction of thickness, their strength shows an anisotropic characteristic [86F87]. 
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                                      (a)                                                                                     (b) 

Figure 28. Disc wet friction material (a) macro image and (b) micrograph. 

 

2.2.4.2 Challenges for wet plate clutches 

There are three interconnected problems with the wet clutch in AT: efficient transmission of power 

(torque capacity), smooth transmission of power (minimise shudder) and wear. 

 

It has been reported that AT are the least energy efficient component in a vehicle drive-train [87F88].  

Conventional ATs are 5-10% less efficient in fuel consumption than a manual gearbox ‘on the open road’, 

yet demand for ATs remains high because of their ‘driver friendly operation’ [88F89,89F90].  This is significant 

considering 89% of cars in Japan (in 1999) [1645H87,90F91] and 90% in US (in 2000) are equipped with ATs 

[1646H89, 91F92].  Thus, in the current political climate, there is a need to improve AT efficiency, to improve fuel 

economy. 

 

Slip-stick behaviour (see Section 1647H2.1.2.1) of the clutch, which creates shudder (friction-induced vibration) 

and hinders smooth transition of power, is a major problem.  To eliminate shudder a low static COF (μs) 

and a dynamic COF (μd) that increases with increasing sliding velocity is required [92F93].  This is described 

by a positive dμ/dV curve for oil A in 1648HFigure 29 [93F94].  In reality, a low static COF will limit the torque 

capacity (the amount of torque that can be transmitted before slipping occurs, which directly affects 

transmission efficiency), thus there is a trade off between good anti-shudder properties and high torque 

capacity [94F95].  Oil B may be susceptible to vibrations since it exhibits a negative slope.  Increasing the 

system damping can reduce or completely eliminate friction-induced vibration.  This can be achieved by 

modifying the friction-velocity characteristic of the fluid and interface materials [1649H74]. 
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Figure 29. Friction vs. velocity graph, used to assess friction induced vibration.  Oil A does not 

exhibit shudder, oil B is likely to cause shudder due to the reduction in friction with 
velocity. 

 

The strength of wet friction materials decreases under repeated compression loading as pores grow in the 

direction parallel to the surface of the friction material.  Pore growth occurs through cleavage of cellulose 

fibre from the matrix (failure).  The fatigue life of friction material is dependent on the Automatic 

Transmission Fluid (ATF).  It has been observed by Chiba et al. [1650H87] that the fatigue life of wet clutch 

friction materials differed depending on the fluid used, but the strain level at the time of failure was equal 

for various types of fluid.  Wear of wet friction material leads to a reduced torque capacity (low 

efficiency) and increased likelihood of shudder.  Wear on the steel friction plate tends only to be mild 

abrasion. 
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2.3 LUBRICANT CHEMISTRY & SURFACE INTERACTION 

This Section outlines the background to lubricants3F

§ so that, in assessing whether electrostatic charge 

monitoring can be used to aid additive chemists, cross-correlation between additive performance and 

electrostatic charge can be made. 

 

2.3.1 BACKGROUND: LUBRICANT FORMULATING AND TESTING 

Alone, Basestock oil properties are insufficient to meet the current demands of engine efficiency (low 

friction), durability, longer drain times and emissions regulations.  Additives are therefore blended with 

base oils to perform two basic functions, to minimize destructive processes and to confer beneficial 

properties.  Almost all lubricants contain additives, to enhance their performance, in amounts ranging 

between 5–25% wt. [95F96, 96F97].  Additive components are generally classified by primary function, but can 

have other properties which can be beneficial to achieve the desired lubricant performance. 

 

Function Component Concentration, %wt. 
Base oil (mineral and/or synthetic  75-95 
Friction and wear Viscosity index improver 0-6 
 Antiwear additive 0.5-2 
 Friction reducer 0-2 
 Rust/corrosion inhibitors 0-1 
Contamination and cleanliness Antioxidant 0-1 
 Dispersant  1-10 
 Detergent  2-8 
Maintain fluid properties Pour point depressant  0-0.5 
 Anti-foam additive 0.001 

Table 6. Type and concentration of additives typically found in engine lubricants [1651H97]. 

 

Formulating a lubricant does not involve blending all the best additives together as this can lead to 

undesirable interactions between additives.  Additives interact in a variety of ways, both in the bulk oil 

(forming complexes) and on surfaces (competition with other additives for surface sites), resulting in 

synergies or antagonisms which greatly complicate the task of oil formulation [ 97F98].  The most prevalent 

issue is that additives which perform functions unrelated to friction and wear may affect the performance 

of friction and wear additives.  The interaction between formulation components is not fully understood 

and therefore a matrix approach is usually adopted to screen lubricant performance; there are several 

iterative process to optimise the lubricant formulation.  The screening tests used during this initial process 

are typically small scale laboratory (e.g. Pin-on-disc) or engine tests that are cheap to run and can be 

carried out at a high rate either by being short in duration or by being easy to complete in large numbers.  

It is important that the screening tests mimic as closely as possible the phenomena that occur in the 
                                                      
§ The term ‘lubricant’ and ‘oil’ are interchangeable and are different from the terms ‘base oil’, ‘basestock’ and ‘base 
fluid’. Lubricant and oil imply base oil, basestock or base fluid plus additives. 
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contacts of interest so that improvements in screening test performance can be relied upon to represent 

improvements in performance in the engine. 

 

It is necessary for the lubricant formulator to prove (for classification) a lubricant’s performance through a 

wide range of bench and engine tests as specified by the OEMs and industry bodies.  Once a formulation 

has passed the small-scale tests the next stage is full-scale testing, which is very expensive (a typical 

European passenger vehicle test costing between $15,000 and $20,000).  The cost largely depends on the 

number of rated parameters.  Some engine tests required by VW Mercedes Benz and Porsche cost up to 

$100,000.  For US heavy duty diesel engines the average cost is between $80,000 and $100,000; however 

tests with a greater number of rated parameters range from $250,000 - $500,000.  By the time a new range 

of engine lubricants has been developed, proven and launched, the overall investment was approaching £5 

million in 1992 [98F99].  As newer classifications are introduced the number of engine test and the 

parameters which are assessed have increased.  It is therefore easy to see how the cost of lubricant 

development is ever increasing.  Clearly there is a need to maximise the information gained from each test 

at both the small and large scale.  A real-time measurement which is able to produce information about 

additive behaviour throughout testing could be of great benefit to the lubricant industry. 

 

2.3.2 BASE OIL  

Originally the function of base oils was to provide a fluid layer which separates moving surfaces and wear 

particles, removes heat, while keeping friction to a minimum.  As greater demands were put on lubricants, 

additives were heavily relied upon, with little change to base oil chemistry.  Between 1940s and the late 

1980s the lubricants industry relied heavily on additive technology to improve the performance of finished 

oils.  This was the only strategy until a significant improvement in base oil technology was available.  The 

type of basestock, like the additive package, needs to be tailored for specific application/performance 

requirements.  Background information on base oils, including discussions about refinement processes can 

be found in [1652H31]. 

 

2.3.2.1 Important base oil characteristics 

In order to determine how well base oils perform, as a component of an automotive lubricant, the 

following properties must be considered: VI (see Section 1653H2.1.5.2), pressure viscosity index (see Section 

1654H2.1.5.3), pour point, cold crank, NOACK volatility and oxidation stability (see 1655HTable 7).  The type and 

concentration of ‘impurities’ within base oils affects these properties.  One of the main ‘impurities’ is 

aromatics.  These are good solvents for additives, but they make poor quality base oils because they are 

among the most reactive components in the natural lube boiling range.  Oxidation of aromatics can start a 

chain reaction that can dramatically shorten the useful life of a base oil.  Also the viscosity of aromatic 

components in a base oil respond relatively poorly to changes in temperature (low VI).   
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 Test Method Automotive significance 
Viscosity 
Index 

The kinematic viscosity of the oil is measured at 
40oC and 100oC using a calibrated glass capillary 
viscometer (test method ASTM D 445).  Test method 
ASTM D2270-04 assigns a number (see eq 1656H(39)) 
which describes how viscosity varies between these 
two temperatures. 

A high viscosity index indicates that an oil’s 
viscosity is not as dramatically affected as an 
oil with a low viscosity index. It is a useful 
parameter to predict whether sufficient 
lubrication is maintained over a range of 
service conditions (temperatures). 

Pressure 
viscosity 
index  

 Describes how an oil’s viscosity changes 
under load.  This is particularly useful for 
predicting lubricant performance of highly 
loaded components (e.g. valve-train). 

Pour Point The lowest 0Htemperature at which oil will pour or 
flow 

The lowest temperature at which 1Hoil is readily 
able to be pumped in an engine 

Cold Crank 
Simulator 

Apparent viscosity of engine oils by cold cranking at 
temperatures between -5 & -35°C, at shear stresses 
of 50-100 kPa and shear rates of 105 to 104 s-1.  
ASTM Method D 5293 

Viscosity in engine journal bearings during 
cold temperature start-up – the lowest 
temperature at which an engine will start. 

NOACK 
Volatility 

The oil is heated to 150°C for 1 hr. The lighter oil 
fractions vaporize oil. The test reports results as % 
weight loss.  ASTM D 5800 

oil consumption 
thickening of oil and therefore reduced 
performance 

Oxidation 
Stability 

Assessing resistance to oxidation by Dornte-type 
oxygen absorption apparatus [ 99F100].  Conditions are 
one atmosphere of pure oxygen at 340 F., reporting 
the hours to absorption of 1000 ml of O2 by 100 g of 
oil.  A soluble metal catalyst is used to simulate the 
average metal content of a used crankcase oil. 

Chemical reactions result in the formation of 
acids (can cause corrosion), sludge and 
varnish (see 1657HAppendix B).  This increases 
viscosity, causes sluggish operation, plugs oil 
lines and increases wear . 
Better base oil oxidation stability – better 
additive stability and longer life. 

Table 7. Important properties to assess base oil quality. 

 

Once the oil is refined the additive chemist then adds an appropriate blend of additives to fulfil specific 

requirements.  Therefore the base oil must be able to solubilise the additives under all normal working 

conditions. 
 

2.3.2.2 API base oil classification 

When base oils made by hydrocracking and wax isomerisation showed differentiated performance, the 

API in 1993 categorize base oils by composition (see 1658HTable 8). 

 

Group Sulphur, wt.%  Saturates, wt.%  Viscosity index (VI) 
I >0.03 and/or <90 80-119 
II ≤0.03 and ≥90 80-119 
III ≤0.03 and ≥90 ≥120 
IV All polyalphaolefins (PAOs)   
V All stocks not included in Groups I-IV (e.g. Pale Oils) 

Table 8. API base oil categories [1659H101100F]. 

 

Group I 

Group I base oils are manufactured through solvent refinement, but contain a high level of impurities. 
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Group II 

Group II base oils are differentiated from Group I because they contain significantly lower levels of 

impurities; this is achieved through hydroprocessing.  This means the oil is more inert and forms less 

oxidation by-products that increase base oil viscosity and react with additives.  However the VI range for 

Group I and Group II is the same. 

 

Group III4F

** 

The difference between Group II and III base oils is increased temperature or time in the hydrocracker, 

producing higher VI. 

 

Group IV1660H

** 

In recent years the market for poly-alpha-olefin (PAO) has significantly increased.  This is attributed to 

the stricter lubricant specifications in Europe that created a niche market for synthetics and semi-synthetic 

products.  One of the main advantages is that it has a high oxidative stability, which enables it to operate 

more effectively than other base oils at higher temperatures.  However, there are also some disadvantages 

with synthetic basestocks such as the absence of some naturally occurring components, which can act as 

anti-oxidants and form a weak tribofilm [1661H26].  Also, synthetic lubricants can be very expensive. 

 

2.3.3 GENERIC ADDITIVE-SURFACE INTERACTION 

2.3.3.1 Additive-surface interaction: physical and chemical adsorption  

In addition to classifying additives into their primary function they can also be classified into chemically 

inert and chemically active types.  Chemically inert additives improve the lubricant physical properties 

(e.g. emulsifiers, demulsifiers, pour point depressants, foam inhibitors, viscosity modifiers etc.).  All the 

additives tested in this thesis are chemically active.  Chemically active additives interact with metals to 

form protective films to reduce wear, and contaminants to prevent viscosity increases, as well as wear.  

Chemically active additives include dispersants, detergents, anti-wear, extreme pressure (EP) agents, 

oxidation inhibitors, friction modifiers (FM), and rust and corrosion inhibitors.  The temperature at which 

an additive reacts with the metal or metal oxide surface significantly affects its activity.  Each additive 

type has a range of temperatures over which it is active [101F102]. 

 

                                                      
** Traditionally, synthetic is the name given to oils which do not contain any of the molecules which are present in 
crude oil; however Group III base oils are sometimes referred to as synthetic.  The use of the word synthetic in the 
lubricants industry has historically been synonymous with poly-alpha olefins (PAOs) and is made by polymerizing 
(poly) ethylene. 
 



Chapter 2 Literature Review                                                           Lubricant Chemistry & Surface Interactions 

47 

The term ‘chemically active additives’ is a misnomer, because these active additives may not chemically 

react to the surface, but rather physically adsorb.  Physical adsorption is achieved through van der Waals 

forces, hydrogen bonding, ionic bonding etc.  Fundamentally, physical adsorption is reversible; usually by 

temperature.  Physical adsorption takes place at the lower end of the temperature range over which the 

additive is active and can occur at ambient and higher temperatures depending on the polarity of the 

additive and the impact the additive has on surface energy.  Additives that are only weakly bound to the 

surface may desorb as the temperature rises.  The greater the reduction in surface energy, the more 

strongly absorbed the surface film will be and the greater the likelihood that the additive will remain in 

place [102F103].  The latter point is particularly important for those additives which initially physically adsorb 

and then go on to chemically react with the surface, which is known as chemical adsorption and is 

irreversible.  As the temperature increases so does the surface reactivity, hence chemically adsorbed films 

tend to occur at high temperatures.  A reaction film is similar to chemical adsorption, but where as 

chemical adsorption only requires temperature, a reaction film involves tribochemical action. 

 

2.3.3.2 The effect of surface composition on additive film formation 

The reactivity of a surface affects how additives interact with it.  Surfaces generated under rubbing 

conditions are more reactive towards additives, because the fresh nascent metal surface has a higher 

reactivity than its oxidised predecessor.  Engineers tend to use harder and harder metallurgies to combat 

abrasive wear.  These surfaces are less and less reactive to anti-wear agents and consequently the risk of 

adhesive wear increases [103F104]. 

 

Most additives are developed and extensively tested on ferrous components.  Additives optimised for 

ferrous components may perform differently on non-ferrous surfaces.  How additives perform on non-

ferrous surfaces, which have different surface reactivity and adsorption site density, has received 

increasing interest in recent years, particularly for coatings [1662H45, 104F105-105F106F107], but less so for bulk materials.  

Work investigating additive compatibility with coatings has led to a new generation of additives which are 

derivatives of those used for ferrous contacts and where a synergistic approach to both coating 

development and additive development is undertaken [107F108].  However the behaviour of additives 

specifically developed for use with non-ferrous contacts is not well understood; this is especially the case 

for tribofilm formation on non-ferrous/ferrous contacts.  The reactivity of the surfaces of a tribo-couple 

consisting of dissimilar materials is likely to be different.  It is therefore predictable that different additives 

will preferentially adsorb or react onto one surface.  Thus the nature of an additive film which forms on 

each surface is likely to be different. 
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2.3.3.3 Kinematics of film formation 

Although the chemical and physical principles of additive adsorption are relatively well known, the 

dynamic process of tribofilm formation is not.  Tribofilm formation is a dynamic process which involves 

formation (whether chemical or physical adsorption), removal and replenishment [108F109].  Understanding 

the kinematics of surface active additives is of great importance to the lubricant formulator; how readily 

these additives form surface films and how easily they are removed (tenacity) will dictate their ability to 

reduce friction and wear. 

 

The thickness of an additive tribofilm is determined by the balance between the rate of film 

formation/replenishment and the rate of film removal.  Lin et al. [109F110] proposed a very simple model for 

ZnDTP tribofilm thickness, which is applicable to all surface active additives (see eq 1663H(12)).  This model is 

based on the components that contribute to the growth rate of the effective film thickness ( effecth& ); where 

( dphysisorbeh& ) is the physisorbed film growth rate, dchemisorbeh&  the chemisorbed film growth rate and reacth&  the 

chemically reacting film growth rate. 

reactdchemisorbedphysisorbeeffect hhhh &&&& ++=      (43) 

Lin et al. [1664H110] also suggested a generic relationship for good antiwear performance – although it is also 

valid for friction performance – the rate of tribofilm removal should always be lower or equal to the rate 

of the tribofilm formation (see eq 1665H(44)); where scrapeh&  defines the tribofilm removal rate. 

scrapeeffect hh && ≥       (44) 

There are several issues related to the dynamic process of tribofilm formation which are still not fully 

exploited because of the lack of technology to make truly in situ measurements which would enable a 

more detailed understanding [110F111].  As will be shown in the following discussions, understanding of 

additive film kinematics is based on many static observations ‘stitched’ together to give an explanation of 

what happens in real-time. 

 

2.3.4 ADDITIVES 

In this subsection the additives used in experimental work are described in detail, such as the additive 

chemical and physical properties, how they function, what type of film they produce and how this affects 

friction and wear. 

 

2.3.4.1 Dispersants 

The function of deposit control agents is to keep combustion and oxidation products dispersed within the 

oil; they increase engine life and control oil consumption by maintaining clean, engine operation. 
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2.3.4.1.1 Chemical & physical composition 

Dispersants typically consist of a polar-group, usually oxygen or nitrogen based, and a high molecular 

weight non-polar-group (between 950-2000 Mwt.) (see 1666HFigure 30 (a)).  Dispersants will aggregate in oil, 

the polar-ends group together inwards and the non-polar-ends stick out (see 1667HFigure 30 (b)), forming a 

reverse micelle.  It is thought that the driving force for the aggregation of dispersants is H-bounding 

between amino groups [111F112]. 

 

±Polar 
Head

Non-polar 
hydrocarbon tail

                  
                                    (a)                                                                     (b) 

Figure 30. Simplified (a) dispersant molecule and (b) dispersant micelle. 

 

The micelles size is affected by the size of the hydrocarbon tail.  For this reason, commercial succinimide 

dispersants contain high molecular weight polyisobutylene (PIBS) groups, which can form smaller 

micelles and associated with more material than hydrocarbon tails of a lower molecular weight.  Two of 

the most common dispersants are mono-succinimide and bis-succinimide (see 1668HFigure 31); aggregation 

numbers5F

†† for mono are more than twice those for bis due to steric effects of the hydrocarbon tail(s).  Bis-

succinimides are often used instead of mono-succinimides because they give better dispersancy per 

number of N atoms; in addition H-atoms of the amino groups are more masked and thus not so involved in 

undesirable reactions [1669H98].  Polymeric succinimides are also used; they exhibit greater dispersancy still. 

 

                                                      
†† Micelles form aggregates when their concentration exceeds a characteristic value known as the critical micelle 
concentration. The number of molecules per micelle is called the aggregation number 
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Figure 31. Chemical structure of (a) mono-succinimide and (b) bis-succinimide dispersants. 

 

2.3.4.1.2 Dispersant behaviour in bulk lubricant  

Before 1955 only detergents (See Section 1670H2.3.4.2) were used to keep engines clean.  This was effective 

provided that the engine was operated at relatively high temperatures.  Low operating temperatures as a 

result of short-distance/stop-and-go type driving, do not allow engine oil temperature to rise sufficiently.  

Dispersants are better at suspending oil insolubles at low temperature than detergents [1671H98]. In diesel 

engines the major contribution to insolubles comes from carbon/soot (see Section 1672H2.3.8.2) and oxidation 

products of the fuel and oil.  More recently, European OEMs have identified low temperature wear as an 

area of concern [1673H99]. 

 

Dispersants control sludge and reduce formation of large soot particles.  The mechanism whereby this 

occurs can be represented by a basic dispersant molecule attaching itself to an acidic site on the soot 

surface (see 1674HFigure 32 (a)).  Proton transfer from the acid group to the succinimide group (dispersant) can 

lead to charge formation (see 1675HFigure 32 (b)).  The non-polar-groups (hydrocarbon chains) keep soot 

suspended in the bulk lubricant and prevent soot particles from coming together.  Coalescence is 

prevented through either steric or electrostatic factors [112F113].  The stability of the dispersion is influenced 

by the molecular weight of the non-polar-group and the level of reactive sites within the polar-region.  

Desorption of polar-head groups of dispersants can leave charge on the soot surface.  These soot surface 

charges lead to mutual electrostatic repulsion of modified soot particles (see 1676HFigure 32 (d)) [113F114].  

Dispersants can have secondary properties such as lowering the surface/interfacial energy of the polar 

species and reducing their adherence to metal surfaces and some act as VII (see Section 1677HAppendix D). 
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Figure 32. Dispersant action on soot and charge formation; (a) Dispersant molecule can attach to 

an acidic site on the soot surface; (b) proton transfer from the acid group to the 

succinimide group leads to charge formation; (c) coalescence is prevented through either 

steric or electrostatic factors, and (d) if the dispersant molecule desorbs from the soot 

particle, a charge can be left on the soot surface, which leads to mutual electrostatic 

repulsion of modified soot particles. 

 

2.3.4.1.3 Surface films composition and kinematics 

Dispersants can also physically adsorb onto an acidic site on a metal surface.  The stability of the 

dispersant film is influenced by the molecular weight of the hydrocarbon tail and the number of functional 

groups contained within the polar-region of the dispersant. 

 

2.3.4.1.4 Tribological properties 

Apart from their use in wet frictional clutches (see Sections 1678H2.2.4 & 1679H2.3.7), the tribological properties of 

dispersants films has not been heavily studied.  A dispersant film may yield some wear reducing 
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properties, but generally dispersants offer little or no benefit to wear performance.  Similarly there is little 

information about the friction performance of dispersants, but it is intuitive that the high molecular weight 

of the hydrocarbon tail will increase the viscosity locally and thus increase friction.  Dispersants may have 

a greater affect on tribological performance of additive packages as they may compete with antiwear 

and/or friction modifier additives for surface sites or interfere with their surface activity, thus reducing the 

coverage of the friction modifying and antiwear additives. 

 

2.3.4.2 Detergents  

Originally detergents were developed and used to control corrosion and minimise high temperature engine 

varnish and lacquer deposit (see 1680HFigure 161) build-up in engines.  More recently it has been observed that 

detergents exhibit very good extreme pressure 6F

‡‡ (EP) properties [114F115-115F116F117] and are therefore used in 

automatic transmission fluids and industrial oils [117F118]. 

 

2.3.4.2.1 Chemical structure and physical form 

Many alkaline and earth-alkaline mineral salts (e.g. carbonate & borate (see Section 1681H2.3.4.5.3)) possess 

potentially excellent tribological properties (e.g. low wear), but they are insoluble in organic solvent (oil) 

[1682H116].  However, mineral salts can be incorporated into organic solvent in the form of a reverse micelle 

[118F119,119F120] (similar to dispersant, see Section 1683H2.3.4.1.1).  Surfactant surrounds the mineral salt to form a 

stable micelle within the oil [120F121, 121F122].  Ottewill et al. [122F123] investigated the physical properties of 

overbased calcium carbonate (the most common metal salt used in detergents) detergent and proposed a 

concentric shell model consisting of a spherical core (1-10nm) of metal carbonate surrounded by a 

monolayer (shell) of surfactant (1-5nm) (see 1684HFigure 33).  The surfactant polar-group is located near the 

polar mineral core while the hydrocarbon tail is unfolded to the organic solvent, thus keeping the metal 

salt in solution.  This model has also been proposed by several other authors [123F124-124F125F126].  Detergents have 

aggregation numbers1685H

†† from 5 to 20 [1686H112]. 

                                                      
‡‡ The discussion of detergents could equally fit in the extreme pressure additive section, but due to the similarity to 
dispersant and the fact that it is primarily a deposit control agent it is discussed here, after the dispersant 
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Figure 33. Schematic diagram of thee concentric shell model of overbased detergents. The model 

consists of a spherical core of metal carbonate surrounded by a monolayer of surfactant. 

 

The most studied mineral salts are calcium, magnesium or sodium carbonates [1687H123,126F127, 127F128 128F129] and 

calcium borate [129F130,130F131].  Usually detergents contain an excess base and are described as overbased; this 

is derived from the fact that the metal cation to surfactant ratio is greater than one.  Detergent 

classification usually involves the total base number7F

§§ (TBN).  The mineral core can be crystalline or 

amorphous; in general the mineral core in detergents is amorphous [131F132].  The literature suggests that a 

stable system requires a certain amount of residual calcium hydroxide, thus the inorganic core is 

amorphous [132F133]; if carbonation is driven to completion, the cores transform into crystalline calcite. 

 

The surfactant polar-head that binds to the mineral salt is typically: carboxylic acid, glycol, alcohol, 

sulphonate, phenate, salicylate, phosphonate and naphthenate [1688H129,133F134].  Phenate [134F135,135F136] stabilised 

systems have been found to have a similar structure to the sulphonate species.  However, phenate 

surfactants are thought to produce micelles which are discus-shaped (oblate spheroidal / flatter structure) 

with an axial arrangement of the surfactant molecules around the equator [1689H135,136F137, 137F138]; sulphonate and 

slicylate [138F139] are more spherical by comparison [139F140].  For sulphurised calcium phenate, the sulphur 

bridge constrains the geometry of the molecule so that the two phenyl rings do not fall in the same plane 

but are out of plane by approximately 20 degrees [1690H135].  Some of these polar-heads can give other 

desirable properties, for example, sulphonates have particularly good antirust properties and phenates 

provide oxidation inhibition properties.  Connected to the polar-head are one or more alkyl chains 

(hydrocarbon tails) ranging in size from C9 to C60 [1691H129]. 

 

                                                      
§§ The base number is defined as the amount of potassium hydroxide that would be equivalent to a gram of the 
material, and therefore is expressed as mgKOH/g. (ASTM D-2896). 
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Figure 34. Chemical drawings of (a) sulphonate, (b) phenate (c) salicylate and (d) sulphurised 

calcium phenate detergent, surfactants used to stabilise excess base, usually in the form of 

calcium carbonate. 

 

Electrophoretic studies of these systems have given evidence that overbased detergents can carry an 

appreciable electrostatic charge [1692H135].  Miller [140F141] suggested that this arises from a dynamic equilibrium 

between the surfactant adsorbed to the base and the solvent strength.  However, it has been argued, 

principally through molecular modelling, that strong Coulombic forces (originating from the inorganic 

core material) binding the surfactant to the carbonate core [1693H140] and that once nanoparticles of CaCO3 are 

formed, the stabilising surfactant molecules are essentially ‘locked’ in place on the surface. 

 

2.3.4.2.2 Neutralisation 

Detergents neutralise acidic combustion (see Section 1694H2.3.8.1) and oxidation products, thereby minimising 

corrosion, rust and deposit formation on surfaces in engine.  The mechanism of acid neutralisation 

involves base transfer from detergent to the acid-containing droplet (see 1695HFigure 35) [141F142,142F143].  The 

organic proportion of the detergent enables solubilisation of the salts formed by neutralisation and keeps 

them suspended in the bulk lubricant.  Although the TBN is a good guide to the neutralisation capacity of 

a detergent it does not give any indication of the neutralisation efficiency of the additive.  Detergents 

containing an excess base not only neutralise corrosive products but also form surface films that isolate 

metal surfaces from corrosive agents [1696H113,143F144]. 
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Detergent particle

Acid containing droplet

Base Transfer

 

Figure 35. Schematic diagram of the transfer of base from a detergent particle to an acid-containing 

droplet (without micro-emulsion), during an effective collision [1697H132].  This is a key step in 

the mechanism of the neutralisation proposed by Hone et. al [1698H143] for their measurement 

system. 

 

2.3.4.2.3 Detergent surface film composition & kinematics 

In addition to engine oils, overbased metallic detergents are also used in gear oils, automatic transmission 

fluids and other industrial oils.  In these applications, the additive does not act primarily as a detergent, but 

rather as a rust inhibitor and antiwear/extreme pressure agent or for stabilizing friction characteristics 

[1699H116, 144F145-145F146F147F148F149F150]. 

 

2.3.4.2.3.1 Surface film composition 

In the literature there is a great deal of variation in the description of detergent surface films.  Early work 

led to the belief that the surface film was just physically adsorbed detergent; this was based on the 

observation that proportions of sulphur and calcium (from calcium sulphonate detergent) were identical at 

the surface and in the oil [150F151].  More recently, Costello et al. [151F152] reported that both crystalline and 

amorphous calcium sulphonate formed thin layers of CaCO3 on top of a thicker layer of iron sulphide.  

However, there are papers which suggest that both amorphous and crystalline overbased calcium 

sulphonate form a thicker layer of CaO (from CaCO3 decomposition, see Section 1700H2.3.4.2.3.2) on the 

ferrous surface [152F153-153F154F155].  On the uppermost surface sulphonate and CaCO3 are present and are derived 

from adsorbed overbased calcium sulphonate.  The reported thickness of these films varies from 100 nm 

[155F156] to 250 nm [1701H155], however thin films (<10 nm) [1702H153] that do not react strongly with the substrate 

have been reported.  There are no discussions in the literature on the relative proportions of CaO layer and 
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adsorbed calcium sulphonate, although the CaO layer has been reported to be thicker than the adsorbed 

CaCO3 and sulphonate layer [1703H154]. 

 

2.3.4.2.3.2 Kinematics of film formation 

The stoichiometry of the calcium carbonate detergent tribofilm as identified by XPS has been found to be 

different to the theoretical stoichiometry of calcium carbonate [1704H156].  In addition, it has been found that 

the thickness of CaO on the wear track was 15 times higher than off the wear track [1705H155].  Both the excess 

calcium and the greater tribofilm thicknesses are indicative of a tribochemical process on the wear track.  

Overbased detergents have been reported to form films on rolling contacts, which indicated that elevated 

pressure and elevated temperature are more important than abrasion (revealing of nascent surface) in 

promoting the formation of a detergent tribofilm [1706H151]. 

 

The current view of the processes involved with detergent tribofilm formation is that micelles are first 

adsorbed on rubbing surfaces – detergent particles adsorb on metal surfaces even without rubbing [1707H98] – 

then undergo tribochemical reactions (see 1708HFigure 36).  Although the mechanism is still unclear, it has been 

conjectured that part of the CaCO3 decomposes to CaO and CO2 after deposition on the surface [1709H156].  

The conversion of CaCO3 into CaO with loss of CO2 is thought to be as a result of pyrolysis, rubbing and 

pressure [1710H155].  Under these conditions CaO crystallises in the tribofilm [1711H145, 1712H156]. 

 

Steel
Film composed of  CaO  with  Fe

CaCO3

Calcium sulphonate

Rubbing
CO2

 

Figure 36. Model structure of boundary films produced by overbased calcium sulphonate [1713H155]. 

 

The existence of adsorbed surfactant outside of the wear track has been observed [1714H155]; on the wear track 

there was a significantly lower amount of surfactant chains.  It is thought that because the surfactant is 

only physically adsorbed (rather than chemically bound) to the carbonate particle, it is expelled from the 

contact [1715H98].  Cizaire et al. [1716H156] investigated the presence of the surfactant in the tribofilm, under 

different contact conditions and concluded that;  

(1) For lower pressure and shearing, long hydrocarbon surfactant chains are split into smaller units. 



Chapter 2 Literature Review                                                           Lubricant Chemistry & Surface Interactions 

57 

(2) At higher contact pressure or for longer sliding distances, the ionic bonds between sulphur and 

calcium are broken.  The Sulphur element is mechanically expelled out of the tribofilm. 

 

2.3.4.2.4 Tribological performance  

Overbased calcium sulphonates, in particular, exhibit good wear protection of metallic surfaces [1717H117, 1718H146] 

through the formation of a surface boundary film [1719H145, 156F157].  Over the past few decades the antiwear 

properties of overbased sulphonates have been explored: Morizur et al. [1720H149], Shirahama et al. [157F158], 

Sugimoto [158F159], Giasson et al. [159F160] and Willermet et al. [160F161].  It has been suggested that the surfactants 

are responsible for the antiwear effect [1721H146].  However, other experiments have shown that surfactant 

alone does not provide any antiwear properties [1722H126]; the antiwear properties were attributed to the CaCO3 

colloidal particles [1723H126, 1724H148].  More specifically, it is thought that the antiwear performance is related to 

the pseudo-graphitic CaO boundary film [1725H149, 1726H150, 1727H158-1728H1729H1730H161F162].  Sacrificial shearing of this film is 

responsible for EP performance [162F163]. 

 

The antiwear properties of detergents depend on their colloidal structure [163F164] and on their overbased 

character [164F165].  Delfort et al. [1731H126] linked the antiwear performance of colloidal calcium carbonates to 

the size of the mineral CaCO3 particles.  Particles of 42.2Å diameter produced a weak antiwear effect, 

whereas greater antiwear performance was observed for colloidal species having larger (64.3Å) colloidal 

sizes.  Overbased metal detergents have been found to reduce pin and disc wear to a greater extent than 

neutral metal detergents [1732H155].  It has been observed that the crystalline overbased sulphonates are 

superior to amorphous overbased sulphonates in EP/AW testing [1733H154,165F166].  Costello et al [1734H154] presented 

XPS tribofilm (on steel) depth profiles showing a higher amount of CaCO3 for crystalline overbased 

sulphonates than amorphous overbased sulphonates.  However, in this study the authors had not 

normalised for particle size (Particle size: amorphous 10-30 nm, crystalline 40-80 nm).  Analyses of wear 

particles by energy-filtered transmission electron microscopy (EFTEM) show the presence of crystallized 

calcite grains separated by a homogenous pseudo-graphitic layer [1735H146]. Shearing of carbon in these grains 

prevents cracking, plastic deformation and abrasion [1736H163].  Detergents containing a crystallised core 

already contain the optimal structure to minimise wear [166F167], whereas amorphous detergent cores need to 

be converted into a crystalline structure to provide good EP properties; for this reason crystallised 

detergents are thought to be better EP additives than amorphous detergents. 

 

The literature is inconclusive about the friction behaviour of detergent tribofilms.  Detergents have been 

shown to increase friction compared to base oil [1737H156] (although given sufficient time it dropped to a level 

close to the base oil).  Other researchers have reported outstanding friction reduction and low fluctuation 

even at prolonged test [1738H155].  This inconsistency is probably due to the wide variety of detergent 

surfactant structures.  
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Many investigations have tried to relate aspects of the tribofilm to friction performance, including: film 

topography, CaO grain structure, adsorbed surfactant and the source of base.  Costello et al. [1739H154] 

observed that many of the tribofilms studied contained calcium-rich regions which were rough or 

contained particles >100 nm; a rough film may increase friction (see Section 1740H2.1.3).  Minami et al. [1741H162] 

suggested that CaO deposited on rubbing surface plays an important role on reduction of friction (and 

wear); shearing of the pseudo-graphitic layer; could have a friction reducing affect.  Also, the hydrocarbon 

tails of the surfactant could produce a friction reducing affect, provided they are able to remain adsorbed 

to the surface and not shear off; their hydrocarbon tails are not dissimilar to organic friction modifier tails 

(see Section 1742H2.3.4.3.1).  The source of base has also been found to affect friction.  Costello et al. [1743H166] 

found that the friction performance of the amorphous overbased calcium sulphonate, was slightly lower 

than a magnesium sulphonate detergent.  The authors sited the difference in hardness as a possible 

explanation; the softer calcium carbonate providing more lubricity than the harder magnesium carbonate 

(3 versus 4 Mohs hardness). 
 

2.3.4.3 Friction modifiers 

Friction modifiers (FMs) were originally developed to minimise shudder (see Section 1744H2.1.2) in automatic 

transmissions.  However, since fuel economy became an international issue, FMs have been used in 

crankcase lubricants (see Section 1745H2.3.5.1) to improve fuel efficiency.  FMs are surfactants that 

significantly reduce COF at low concentrations (see 1746HTable 9).  Friction modified lubricant films consist of 

closely packed multi-molecular layers which are loosely adhering to each other.  The outer layers of the 

film can be easily sheared off, allowing for a low coefficient of friction (COF).  Unfortunately, due to the 

requirement of surface active sites deterioration in anti-wear, performance can become an issue. 

 

Lubrication mode Coefficient of friction 
Non lubricated surface 0.5 – 7  
Antiwear / EP films 0.12 – 0.18  
Friction modified films 0.06 – 0.08  
Elasto-hydrodynamic lubrication 0.001 – 0.01 

Table 9. Lubrication modes versus coefficient of friction [1747H113]. 

 

Broadly, there are three main categories of FM organic, metallo-organic and mechanical, all with differing 

modes of action.  This thesis presents work involving organic FMs which physically adsorb to the surface 

and metallo-organic FMs, which chemically react to the surface. 

 

2.3.4.3.1 Organic friction modifiers 

Organic friction modifiers generally have long, straight hydrocarbon chains consisting of at least 10 

carbon atoms and a polar-group at one end (similar to dispersant and detergent surfactant (see Sections 
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1748H2.3.4.1.1 & 1749H2.3.4.2.1 respectively)).  There are a large number of organic modifiers, which have differing 

modes of action and result in varied friction reduction.  1750HTable 10 shows FMs classified by mode of action. 

 

Mode of action  Examples  
Formation of adsorbed layers Long-chain carboxylic acids, esters, ethers, amines, amides, imides 
Formation of reacted layers Saturated fatty acids, sulphur-containing fatty acids 
Formation of polymers Unsaturated fatty acids, methacrylates, sulphurised olefins 
Mechanical types  Organic polymers 

Table 10. Friction modifier mode of action and examples. 

 

The formation of absorbed layers occurs by attachment of the polar-head to metal surfaces by hydrogen 

bonding.  The polar-head is anchored to the metal surface, while the hydrocarbon tail is left solubilised in 

the oil, perpendicular to the metal surface.  The polar-heads of other friction modifiers are attracted to 

each other by hydrogen bonding and Debye orientation forces (see 1751HFigure 37).  Van der Walls forces 

cause the molecules to align themselves such that they form multi-molecular clusters that are parallel to 

each other.  The orienting field of the absorbed layer induces further clusters to position themselves with 

their methyl groups stacking onto the methyl groups of the tails of the adsorbed monolayer [167F168].  As a 

result, all molecules line up straight, perpendicular to the metal surface, leading to a multilayer matrix of 

friction modifier molecules (see 1752HFigure 38 (a)).  The FM layers are easy to shear at the hydrocarbon tail 

interfaces (see 1753HFigure 38 (b)).  Sheared-off layers are easily rebuilt to their original state, due to the strong 

orienting forces mentioned above.  A conventional organic friction modifier will reduce the boundary 

COF from about 0.13 to 0.11, an improvement that will result in a modest but nevertheless useful gain in 

fuel efficiency performance. 

 

Oxidised metal surface

Van der Waals forces

Polar heads

Long, non-polar 
hydrocarbon chains

Adhesive hydrogen bonding

Dipole-dipole interactions
(hydrogen bonding and 
Debye orientation forces)

 

Figure 37. Formation of organic friction modifier adsorbed layers. 
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                                         (a)                                                                                           (b) 

Figure 38. (a) Multilayer matrix of friction modifier molecules and (b) stripping of multilayer. 

 

The thickness and effectiveness of the adsorbed friction modifier depend on: polar-group, hydrocarbon 

chain length, molecule configuration and temperature.  The degree of hydrogen-bonding capability of the 

polar-head affects the adsorption.  One of the most frequently used organic FMs, glycerol mono-oleate 

(GMO) is strongly polar due to the presence of hydroxyl groups [168F169] (see 1754HFigure 39)).  Longer 

hydrocarbon chains increase the thickness of the adsorbed film as well as increasing Van der Walls 

interactions between the hydrocarbon chains [169F170].  Thin molecules increase packing efficiency (denser 

additive coverage) which also increases van der Walls interactions between adjacent chains and leads to 

more tenacious films.  Temperature affects the FM film tenacity and thickness (see Section 1755H2.3.3.1); 

adsorption of FMs to the surface occurs at relatively low temperatures, high temperatures might provide 

enough energy to desorb the FM molecules. 

 

 

Figure 39. Structure of glycerol mono-oleate (GMO). 

 

2.3.4.3.2 Reacted layers  

Some FMs chemically react with the surface to form friction reducing films.  Unlike other chemical film 

forming additives (e.g. antiwear and EPs), the reaction of FMs with the surface has to occur under the 

relatively mild conditions (temperature, load) in the mixed lubrication regime.  A fairly high level of 

chemical activity is therefore required for FMs; hence, the presence of phosphorus and sulphur in 

chemical film forming FM additives. 
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The most popular FM, which reacts chemically to the surface, is Molybdenum-dithiocarbamate (MoDTC), 

a metallo-organic FM (see 1756HFigure 40).  The typical friction response for a MoDTC-containing lubricant 

shows two distinct regions, an initial high friction region, called the induction phase, followed by a 

reduced friction phase [1757H111].  Morina et al. [170F171] reported that the initial film contained N and S; no Mo-

containing tribofilm is formed [171F172].  MoDTC breaks down to form a carbon-based tribofilm containing a 

few per cent of highly dispersed Molybdenum disulfide (MoS2) in the form of individual sheets less than 

10 nm [172F173] in length.  It is MoS2 that is responsible for reducing friction [1758H172-1759H173F174F175]; the layer-lattice 

structure of the MoS2 facilitates low friction between the tribo-couple [1760H172].  The MoS2 molecule contains 

strong covalent bonds between atomic species, but weak van der Waals attraction between lattice layers 

(see 1761HFigure 41).  The low friction properties result from weak van der Waals forces enabling the lattice 

layers to be easily sheared. 

 

 

Figure 40. Structure of molybdenum dithiocarbamate (MoDTC). 
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Figure 41. MoS2 solid state structure [1762H111]. 
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2.3.4.4 Antiwear additive – ZnDTP 

Antiwear additives are types of compounds that provide good wear resisting properties in mixed to 

boundary lubrication.  Such materials have the capacity to build strong layers under severe load conditions 

and protect metallic surfaces moving relative to each other from damage. 

 

Antiwear performance in the automotive industry has largely been met by the use of zinc-

dialkyldithiophosphate (ZnDTP) additives.  Although introduced in the 1940s as antioxidants, their role as 

antiwear additives was only realized in the 1950s.  Recently there have been increased restrictions8F

*** on 

the amount of phosphorus allowable in lubricants (see 1763HTable 11), ZnDTP film formation remains heavily 

researched.  This is for two main reasons; to actively make a reduced amount of ZnDTP more efficient at 

antiwear performance, and to understand the mechanisms behind ZnDTP film formation, which may 

enable a replacement for ZnDTP in the long term.  This Section discusses chemical and physical 

properties of ZnDTP films, current proposed mechanisms for film formation and the tribological 

performance of the film.  More extensive recent reviews can be found in [175F176-176F177F178]. 

 

Year Standard P & S restriction 
1989 SG No P, S limits 
1994 SH, GF-1 ≤ 0.12% wt. P 
1997 SJ, GF-2 ≤ 0.10% wt. P 
2000 SL, GF-3 ≤ 0.10% wt. P 
2004 GF-4 0.06% wt. ≤ P ≤ 0.08% wt.  
2007/8 GF-5 - 

Table 11. Phosphorous and sulphur limits in engine oil specifications modified from [1764H176]. 

 

2.3.4.4.1 Chemical structure 

The type of ZnDTP is defined by the organic alcohol used to synthesise it: alkylphenols for aryl ZnDTP, 

primary alcohols for primary ZnDTP (CH3CH2CH2CH2O–), and secondary alcohols for secondary ZnDTP 

(CH3CH2CH(CH3)O–) (see 1765HFigure 42).  A primary ZnDTP is more thermally stable than a secondary 

ZnDTP; aryl ZnDTP is more thermally stable than both primary and secondary ZnDTPs [178F179].  There is 

                                                      
*** In the 1970s, due to the concern vehicle emissions have on photochemical smog – and is now accompanied by 
global warming concerns – legal requirements on limiting exhaust products was brought in. One of the major design 
changes to the automobile was the use of a catalytic converter, positioned between the exhaust outlet and rear 
silencer. The most common is a three-way catalyst, the nitrogen oxide content in exhaust gas acts as the oxidizing 
agent to promote combustion of carbon monoxide and hydrocarbons to carbon dioxide and water, while the nitrogen 
oxides, being stripped of their oxygen, are reduced to nitrogen. Cheaper catalytic converters using base metals, 
instead of precious metals, have been developed but these are poisoned by small quantities of elements such as 
sulphur and phosphorus which are the active agents in ZnDTP additives. This has major implications for the use of 
ZnDTP additives in oil, as any oil that is combusted will reduce the efficiency of the catalytic converters, preventing 
the required conversion of exhaust products. Lubricant regulatory bodies are therefore continually reducing the 
amount of phosphorous allowable. 
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an inverse relationship between temperature of thermal decomposition and the potency of antiwear 

protection. The ZnDTP which is the most efficient for antiwear film formation is likely to be the one 

which suffers depletion due to thermal effects.  Secondary ZnDTP gives superior wear protection at lower 

temperatures than primary ZnDTP but is destroyed more quickly at high temperatures.  For this reason, 

the primary ZnDTPs are generally preferred for use in diesel engines while the secondary ZnDTPs are 

preferred for use in gasoline engines [179F180] (gasoline engines operate at a lower temperature than diesel 

engines). 

 

   
                                       (a)                                                                                   (b) 

Figure 42. General chemical structure for (a) primary and (b) secondary alcohol zinc 

dialkyldithiophosphate (ZnDTP). 

 

2.3.4.4.2 Oxidation inhibition 

ZnDTPs are highly effective oxidation inhibitors because they decompose hydroperoxides 9F

††† [180F181] and 

peroxy-radicals [181F182,182F183].  This combined action makes them very effective as an antioxidant.  In 

addition, the reaction products that ZnDTP generates when it reacts with hydroperoxides and peroxy 

radicals are also effective oxidation inhibitors [183F184], making ZnDTP a highly efficient inhibitor.  

Empirical determination of the relative antioxidant capability of the three main classes of ZnDTP shows 

secondary > primary > aryl [1766H96].  There is agreement that when ZnDTPs act in their peroxide-

decomposing role, the species that they form are no longer able to produce effective zinc phosphate 

antiwear films [184F185]. 

 

2.3.4.4.3 ZnDTP tribofilm 

2.3.4.4.3.1 Structure of ZnDTP antiwear film 

The chemical structure of a ZnDTP tribofilm is complex, consisting of three layers: an inner chemically 

reacted film, a chemisorbed layer and a physisorbed gel-like layer [1767H110, 185F186, 186F187] (see 1768HFigure 43). 

                                                      
††† The oxidation of hydrocarbon chains is caused by the peroxide oxidation cycle. 
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Figure 43. Schematic diagram of pad structure and composition [1769H176]. 

 

Chemically reacted layer (FeS) 

On the metal surface there is generally thought to be a chemically reacted sulphur-rich layer of zinc or 

iron sulphide [1770H187-187F188F189]. 

Chemically adsorbed layer (Phosphate) 

Above the zinc and/or iron sulphide layer there exists a relatively thick layer consisting mainly of glassy 

iron and zinc phosphate.  Zinc and iron cations act to stabilise the glass structure.  The phosphate chains 

are shorter towards the steel surface than at the top of the tribofilm.  (Basic ZnDTPs form very similar 

tribofilms to neutral salts but with shorter polyphosphate chains in the tribofilm [189F190]).  In addition there 

is more iron phosphate towards the steel surface [190F191] and mainly zinc phosphate away from the steel 

surface.  Pyro- or orthophosphate also exists in this layer [1771H191,191F192], there is negligible thiophosphate (O 

atoms replaced by S) [1772H179,192F193].  On top of the glassy iron and zinc phosphate layer there is a thin (less 

than 10 nm thick) outer layer of zinc polyphosphate. 

Gel-like Layer (Organic sulphides, ZnDTP) 

Atomic force microscopy (AFM) has enabled the discovery of a gel-like layer covering the solid ZnDTP; 

this layer had gone un-noticed for a long time due to solvent washing and the use of apparatus which 

requires a vacuum.  This uppermost viscous layer consists of alky phosphate precipitates [1773H187]. 

 

ZnDTP tribofilms initially form as separate patches on steel surfaces and these gradually develop to form 

almost continuous, but still pad-like structures separated by deep valleys (see 1774HFigure 43), which are 5-20 

μm in diameter.  They tend to grow to a thickness of about 50–150 nm on steel surfaces and then stabilise 

at this level [193F194-194F195F196].  However, the thickness of the full ZnDTP tribofilm, including the viscous over-

layer of alkyl phosphate precipitates, is suggested to be up to 1000 nm thick [1775H189, 1776H187]. These pads are 

solid-like up to 150oC. 
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2.3.4.4.3.2 Kinematics of film formation 

A very important area of ZnDTP behaviour, about which far too little is known, concerns the kinetics of 

formation, removal and replenishment.  A lot of research work has tried to decouple different aspects of 

ZnDTP antiwear film formation; this subsection discusses the chemical processes involved in film 

formation and poses questions that still remain unanswered. 

 

The thickness and composition of this anti-wear film is directly related to the temperature and the extent 

of surface rubbing [196F197].  The rate of film formation increases with increasing temperature [1777H196].  

Formation of the ZnDTP film is seen to be increased in more severe rubbing conditions, thicker films are 

observed when the sliding frequency is decreased and the contact pressure is increased [197F198]. 

 

Adsorption  

Studies have shown that ZnDTP molecules physically adsorb on iron via the sulphur atoms [198F199].  As the 

temperature is raised above about 60oC, a very striking loss of Zn ions occurs from the tribofilm and 

adsorption becomes irreversible [199F200].  Precisely what chemical processes are involved in the formation 

of ZnDTP antiwear films is not fully understood. 

 

Thermal film formation  

Understanding of the nature and formation of ZnDTP has largely been based on studying ZnDTP thermal 

film formation.  This is because thermal films are easily controlled and analysis can be performed during 

formation – current technology cannot identify chemical intermediates during tribofilm formation.  

ZnDTPs react in solution at high temperatures (130-230 oC); this leads to a zinc phosphate solid deposit, 

alkyl sulphides, mercaptans, hydrogen sulphide and olefins.  The mechanism of thermal degradation was 

proved in to be a result of oxygen and sulphur exchange [200F201].  The alkyl groups, which are initially 

bonded to oxygen atoms in ZnDTP are transferred to the sulphur atoms [201F202, 202F203]. 

 

Film  Thermal films Tribofilms
Found on  entire surface rubbing tracks [1778H197, 203F204]

contain long chain polyphosphate on top of shorter chain poly- or 
orthophosphate glass material [1779H179, 1780H192,204F205 205F206] 

Composition 

little evidence of iron [206F207] contains iron within the film [1781H207] 
Thickness  similar magnitude up to 200 nm [1782H205] 
Formation (bulk oil) 
temperature 

130-230 oC 50oC [1783H204], and even at 20oC 
[1784H106, 207F208]

Indentation modulus 35=•E  GPa [208F209] 35=•E  90 GPa               [1785H176]
Hardness 5.1=H  GPa  [1786H209] 5.1=H  3.5 GPa              [1787H176]
Antiwear performance good [1788H206] excellent

Table 12. Similarities and differences between ZnDTP thermal films and ZnDTP tribofilms. 
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There is some justification in studying ZnDTP thermal films to further understanding in tribofilms; 

thermal films have similar physical and chemical properties to tribofilms (see 1789HTable 12).  However there 

are some significant differences between ZnDTP thermal films and tribofilms.  The differences between 

thermal ZnDTP thermal films and tribofilms infer that thermal decomposition is not the sole mechanism 

behind ZnDTP tribofilm formation.  Thermal degradation products were found to be less effective as 

antiwear agents than ZnDTP [1790H185,209F210].  One of the principal degradation products was found to be the 

disulphide, which on subsequent synthesis and wear testing was shown to be inferior to the ZnDTP.  In 

addition, Fujita et al. [1791H197] concluded, based on tests conducted at different sliding speeds, that thermal 

action alone cannot explain the kinetics of ZnDTP tribofilm formation and that the existence of some form 

of surface catalysis that arises during rubbing must be invoked to explain the observed behaviour.  The 

problem is that there is a near absence of equipment which can monitor tribofilm growth and removal and 

a complete absence of equipment that can identify chemical intermediates formed at the surface of a 

ZnDTP lubricated contact.  This would then help identify whether ZnDTP tribofilm formation is driven by 

a rubbing, thermal, pressure or a combination of all three to varying degrees. 

 

2.3.4.4.4 Wear  

Many researchers have reported ZnDTP tribofilm formation after a short period of rubbing [1792H171,1793H196, 

210F211], and have concluded that ZnDTP works as an antiwear additive from the first stroke.  There are 

currently a few differing views about how ZnDTP provides antiwear behaviour.  The most generally 

accepted view is that the reaction film acts simply as a mechanically protective barrier [211F212], or that it 

preferentially wears, rather than the metallic surface.  Other mechanisms proposed include; reaction with 

peroxides preventing corrosion of the metal surface [212F213, 213F214]; digestion of oxide particles, that would 

cause abrasive wear, to form relatively soft iron phosphate, [214F215, 215F216].  There is merit to these 

suggestions, but it is likely that the mechanical resistance of the film is the predominant factor for 

reducing wear. 

 

Once formed, ZnDTP tribofilms are generally perceived to be very stable and durable.  Their stability has 

been studied by many researchers; mainly by running a wear test with a ZnDTP containing oil for a period 

of time and then exchanging the oil to a non-additized oil.  Chemical and physical analysis of the tribofilm 

were carried out at various intervals; it has been found that the ZnDTP tribofilms were worn off only very 

slowly [1794H195,1795H196,1796H206,216F217, 217F218].  However, the literature appears to over-look the problem of carrying out 

chemical and physical analysis ex-situ.  Any short transient affects are unlikely to be captured by stopping 

the test at various intervals.  Electrical contact resistance (ECR) has been heavily relied upon for 

information about the tenacity of the ZnDTP tribofilm.  This real-time technique gives a good indication 

of tribofilm presence or absence, but its sensitivity to more subtle changes in film formation is 

questionable. 
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There is a relatively small amount of work which questions the view that ZnDTP forms a highly tenacious 

film.  It has been demonstrated that phosphate film antiwear activity is a dynamic process of simultaneous 

formation and destruction, with films increasing at some points while disappearing at others [218F219].  A 

study by Minfray et al. [219F220] has shown that a ZnDTP tribofilm that was etched into narrow transverse 

strips, was quite rapidly worn off.  Increased sliding distances have shown a reduction of the ZnDTP 

tribofilm thickness; it was suggested that species which contribute to the film formation can also act as 

abrasives in the contact region, stimulating the film removal [1797H195, 1798H196]. 

 

2.3.4.4.5 Friction behaviour 

When engine fuel economy became an important issue in the 1980s, lubricant formulators soon noted that 

some ZnDTPs had a deleterious effect on engine friction and thus fuel economy [220F221].  However the 

literature suggests that the friction-ZnDTP film relationship is not that clear.  There are conflicting reports 

on the effect of ZnDTP on friction with some reports of neutral effects [221F222], some reports of ZnDTP 

increasing friction [222F223, 223F224] (consistently over three temperatures [1799H111]) and reports of ZnDTP 

decreasing friction [224F225].  The simplified view is that ZnDTP forms films which are semi-plastic deposits 

that are difficult to shear off.  So, under shearing conditions their COF is usually moderate to high.  The 

more widely held view is that ZnDTP reaction films are rough (see pad-like structure in 1800HFigure 43) and 

higher speeds are needed to generate a full separating fluid film than in the absence of a ZnDTP film 

[1801H204, 225F226] (see Sections 1802H2.1.2 & 1803H2.1.3). 

 

However it has recently been shown that even smooth ZnDTP films give increased friction in mixed 

lubrication [226F227, 227F228].  One possible explanation given by Spikes [1804H176] in a review of ZnDTP drew 

reference to work which suggested the liquid lubricant may slip (inhibits fluid film entrainment, compared 

to bare metal) against the ZnDTP pad surfaces, which are extremely smooth [228F229] and coated with a 

polyphosphate chain material, and thus not be entrained into the rubbing contact.  However discussions in 

[1805H229] included no such statement.  The notion that something slippery increases friction seems counter 

intuitive. 

 

2.3.4.5 Extreme pressure additives 

The use of the words antiwear and extreme pressure (EP) to describe the performance of an additive is 

somewhat subjective.  In general, EP is the protection from shock loading, and intermittent applied heavy 

or sliding loads, whereas antiwear is the prevention of damage caused by moderate and continually 

loading.  EP more commonly refers to highly reactive molecules; these tend to be more active and more 

corrosive than ZnDTP. 
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2.3.4.5.1 Organo-sulphides 

Function 

Sulphur lubricant additives are used [229F230], to help prolong gear fatigue life by minimising micropitting 

surface damage [230F231].  Organic sulphides, although possessing some wear-reducing capability are 

generally regarded as EP additives [231F232].   

 

Chemical composition 

Alkyl polysulphides have the general formula R-(S)n-R (see 1806HFigure 44).  The sulphur molecules expected 

to be the least active are alkyl mono- and di- sulphides (n=1, 2); these are not aggressive towards yellow 

metals (brass).  Higher polysulphides, n>2, are the most active towards tribofilm formation but are the 

most corrosive [1807H230].  Long-chain sulphur bridges in polysulphides are thermally less stable than short 

sulphur bridges.  For this reason, the reaction with the metal surfaces is possible at relatively low 

temperatures [1808H103]. 

 

Sx
 

Figure 44. Simplified chemical structures of hydrocarbyl polysulphide gear oil additives. 

 

Film Chemical composition and formation 

Polysulphides chemically react with the surface; in the case of a ferrous surface, the reaction product is 

usually iron sulphide.  Iron sulphide has a low shear resistance, which means that the film can easily be 

removed, but this is off-set by the speed that the film can re-form; the low molecular weight of the 

additives makes them highly mobile. 

 

Tribological performance 

The Polysulphide additive does not provide a mechanical barrier resistant to wear, but rather a film which 

is preferentially worn away instead of the component surface.  The additive must have a sufficient 

reactivity to form a film quickly – to fulfil the replenishment requirements – yet the additive must not so 

reactivity that it causes tribo-corrosive wear (see Section 1809H2.1.4).  A balance must therefore be found 

between excellent load-carrying capacity and corrosion; the success of these additives comes from the 

range of molecular weight.  Many reports have demonstrated that organo-polysulphides have excellent 

load-carrying capacity and low corrosion [232F233,233F234].  The low shear nature of an iron sulphide film means 

that polysulphide exhibits a friction reducing effect. 
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2.3.4.5.2 Boron containing additives 

In the automotive tribology field, non-corrosive anti-wear additives are of particular interest.  Potassium 

borate dispersions, as reported by Adams [234F235] for gear oils, were found to provide oxidation, wear, and 

load carrying benefits. This provoked an increasing interest in additives containing boron, as they could 

replace the more toxic and polluting sulphur and phosphorus compounds [235F236].  Stanulov et al. [236F237] 

reported that nearly half of the phosphorus, in the case of ZnDTP equivalent amounts of Zn and sulphur, 

can be beneficially replaced by approximately 10 times smaller amounts of boron. 

 

2.3.4.5.3 Inorganic borates and nanoparticle dispersions 

Extreme-pressure properties of some inorganic additives have been found to be superior to some organic 

additives [1810H236,237F238].  Inorganic borate has been used in gear oil and metal working oil [238F239] for 40 years, 

because it possesses excellent load-carrying capacity, good anti-wear properties, friction reducing ability, 

high thermal stability, and good rust and corrosion characteristics [1811H235]. 

 

Chemical and physical structure 

Additives based on solids in suspension, such as potassium tri-borate, display anti-wear and extreme 

pressure properties in spite of high thermal stability [1812H151].  These additives are similar to detergents in 

their physical structure (see Section 1813H2.3.4.2.1), both contain surfactants which suspend a metal salt, that 

otherwise would be insoluble (see 1814HFigure 45).  The main difference between detergents and dispersed 

potassium borate is the metal salt and the size; detergents are typically 20 nm in diameter whereas 

dispersed potassium borate is around 200 nm. 

KB3Ox

 

Figure 45. Simplified structures of dispersed potassium borate additive. 

 

Potassium borates have been found to be excellent anti-wear additives [239F240-240F241F242] and perform very well in 

the FZG SSP180 (synchroniser) rig synchroniser durability test.  Adams [242F243] discussed a potassium 

borate additive with a boron:potassium mole ratio of 2.5-4.5:1 that has good extreme pressure properties, 

good hydrolytic stability, improved seal and anti-wear properties, and improved compatibility with other 

lubricating oil additives, especially ZnDTP [243F244-244F245F246].  Despite claims that insolubility and difficulty of 

dispersion restrain the application of the inorganic material in lubricating oil [246F247], potassium borate is 



Chapter 2 Literature Review                                                           Lubricant Chemistry & Surface Interactions 

70 

commercially available and has received great interest in the research community.  Improvements to the 

original art described by Adams [1815H243] have shown excellent extreme pressure properties and excellent 

hydrolytic stability [247F248-248F249F250].  Recent changes have included dispersion of hexagonal boron nitride with 

dispersed hydrated potassium borate which exhibited excellent anti-wear performance [250F251]. 

 

The majority of publicly available information on the tribological properties of dispersed potassium borate 

comes from patents.  These tend to state the wear performance relative to other additives, or performance 

during standardised tests.  There is little discussion on the nature of the film which forms, how this 

performs the antiwear function and what friction characteristics it produces.  

 

2.3.5 FORMULATION CONSIDERATIONS 

The formulating process starts by understanding the specification set by the industry bodies.  Although 

oils will be blended to try to maximise the number of applications that the oil can be used in, oils are 

generally formulated for a particular application (see Sections 1816H2.3.5.1, 1817H2.3.6 & 1818H2.3.7).  With a few 

exceptions the engine lubricant and drive-train lubricant are significantly different in terms of their 

additive content. 

 

2.3.5.1 Crankcase lubricants / engine oils 

Automotive engine oils must be able to function over a wide temperature range, lubricating effectively a 

wide range of contacts and minimise the disastrous affects contaminants can have on wear and friction.  

Engine oils must exhibit good lubricity at start-up temperatures, which can be sub-Zero oC, and have 

sufficient oxidative stability at high temperatures, which can be as high as 270oC around the piston 

ring/cylinder interface. 

 

1819HFigure 7 shows the regimes in which critical IC engine components operate in, the tribological 

components rely upon different lubrication mechanisms.  This highlights the complex task of formulating 

a single lubricant to operate effectively within all areas of the engine, thus the formulation will be a 

compromise in terms of durability, energy efficiency and emission requirements [1820H39].  The engine 

lubricant, more than any other lubricant, is susceptible to contamination, the sources of which include 

coolant, fuel and air-borne particulates.  Additives within engine oils must neutralise and suspend 

incomplete combustion products, to prevent them forming deposits on the surface, increasing viscosity 

and forming large abrasive particle; all of which will affect wear and friction performance.  For this reason 

the drain interval for engine oils is significantly shorter than that for transmission lubricant; there is 

however increasing pressure to extend the drain interval. 
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2.3.6 MANUAL TRANSMISSION FLUIDS (MTFS) AND ADDITIVES 

Manual transmission fluids (MTFs) must (1) protect against wear, (2) provide friction characteristics for 

smooth gear shifting, and (3) control oxidation.  The synchroniser contact is one of the most complex 

automotive tribological components, which requires additives to achieve a balance between minimising 

wear and ensuring the right level of friction to enable smooth gear changes (see Section 1821H2.2.3.1).  The 

synchroniser poses an additional challenge, that of providing sufficient surfaces films on dissimilar tribo-

contacts materials (see Section 1822H2.3.3.2).  To improve fuel efficiency, small transmissions and low viscosity 

base fluid are used; this increases demands on the additive system.   

 

Typical MTFs contain highly surface active and reactive compounds such as organo-phosphorus, organo-

sulphur [251F252] (see Section 1823H2.3.4.5.1).  Their extreme pressure effectiveness is related to the high reactivity 

of these decomposition products in the friction zone, and hence to the low thermal stability of the 

additives [1824H151].  This property is not always compatible with the increasing thermal stability requirements 

of gearbox lubricants [252F253] as some transmissions will operate at high temperatures, especially if the 

exhaust system is in close proximity.  The high reactivity is of a particular concern for yellow metals (e.g. 

brass) used in synchroniser contacts, because they are susceptible to corrosion; for this reason inorganic 

boron compounds (see Section 1825H2.3.4.5.3) maybe used in MTFs because of their high thermal stability 

[1826H244, 1827H245].   

 

2.3.7 AUTOMATIC TRANSMISSION FLUIDS (ATFS) 

ATFs must remove frictional heat, prevent corrosion, minimise wear and act as a hydraulic medium for 

the transmission of mechanical power quickly and smoothly.  The selection of surface active molecules 

for ATFs is dependent on the friction materials used for the clutch pack [253F254].  ATFs must satisfy 

conflicting demands of maximising friction to improve power transmission efficiency (or torque capacity), 

whilst ensuring smooth gear changes (see 1828H2.2.4.1).  Typically dispersants (see Section 1829H2.3.4.1) are used to 

improve torque capacity (the amount of torque that can be transmitted before slipping occurs), and FMs 

(see Section 1830H2.3.4.3.1) ensure smooth gear changes and minimise shudder [254F255].  Matsuoka et al. [255F256] 

found that dispersants were effective at retaining the strength of the cellulose fibre, whereas antiwear 

agents such as ZnDTP and organic phosphates seriously deteriorated fibre strength. 

 

Three functional groups, contained within dispersant and/or FM molecules: amine, amides/imides and 

acids may all adsorb via H bond to –OH of cellulose and phenolic resin (see 1831HFigure 28 & 1832H46).  Amines can 

also form a stronger ionic bond with -OH of phenolic resin [256F257].  It is expected that amines will form a 

stronger bond to paper/resin friction materials than amides and acids.  Although amides and acids are 

generally equal in surface activity, the ionic bond created by amines is twice that created by the H-bond of 

acids and amides.  On the other hand, acids can form a chemisorbed film on the steel plate; comparatively, 

adsorption of amide and amino groups onto steel is likely to be weak.  As both dispersants and FMs, used 
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in work presented in this thesis (succinimides), contain amino groups, similar modes of bonding apply, but 

the stability of the adsorbed surfactant/surface complex will vary according to the molecular weight, 

structure, and degree of functionality (number of amine groups associated with the polyamine).  FMs have 

been found to be more effective in reducing COF, when their bond strength to phenol resin is greater 

[1833H257]; polar-groups are thought to directly effect COF [1834H83].  Adsorption of succinimides to graphitic fibres 

is expected to be minimal [1835H84], as there are no functional groups to react with. 
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Figure 46. Typical chemical structures for materials found in wet friction material a) cellulose, b) 
phenolic resin and (c) graphite. 

 

2.3.8 LUBRICANT DEGRADATION PROCESSES 

The effect of contact conditions on wear and friction performance has been covered in the previous two 

sections (1836H2.1 & 1837H2.2).  However, degradation of the lubricant itself can lead to undesirable friction and wear 

performance. 
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There are many ways to categorise the lubricant degradation processes, by: ingress (e.g. built in 

contamination, external ingression, internal generation or through maintenance), source (e.g. incomplete 

combustion, shear, temperature etc), contaminants (e.g. soot, acid, wear debris etc.), affect (e.g. adhesion, 

abrasion, thickening, corrosion).  It is the effect of lubricant degradation on wear that reduces component 

life that is the ultimate concern.  Wear and lubricant thickening that result in a loss in engine performance 

(primarily from an increase in friction, but changes in component tolerances will also have an effect) will 

reduce fuel efficiency.  Therefore, at the very least, lubricant degradation can shorten useful oil service 

life, reduce efficiency, but at worst initiate component failure. 

 

To gain an understanding of lubricant degradation processes a considerable amount of research has 

concentrated on the contaminants that are produced.  Contaminants can be sub-categorised into: solids, 

liquids and gases.  Solid particles, such as soot and wear debris, damage mechanical components and 

catalyse lubricant breakdown.  The surfaces of fresh metallic wear particles provide convenient reaction 

sites for oil oxidation.  The reaction products result in varnishes, sludges and increased oil acidity.  Liquid 

contaminants, which include fuel, water and coolant, corrode metal surfaces and hinder function of 

lubricants.  They react with additives; the products are often unable to fulfil functions of minimising wear 

and friction.  Gaseous contaminants, including acidic combustion products, corrode component surfaces 

and degrade the oil.  Needelman et al. [1838H26] presented a table which shows the type of contaminants, the 

source or how it was generated and the problems associated with that particular type of contaminant (see 

1839HTable 13). 

 

Type Primary sources Major problems 
Metallic particles Component wear Abrasion 

Surface roughening leading to adhesion 
Catalysis of lubricant breakdown 

Metal oxides Component wear  
Oxidation of metallic particles 

Abrasion 
Surface roughening leading to adhesion  

Minerals (i.e. silica 
sand) 

Induction Air Abrasion 
Surface roughening leading to adhesion 

Exhaust gases Combustion blowby Acids promoting lubricant breakdown 
Soot Combustion blowby Interfere with additives 

Abrasive wear 
Heavy deposits 
Oil thickening/gellation 

Water Combustion blowby 
Coolant leaks 

Metal corrosion 
Promotes lubricant breakdown 

Glycol  Coolant leaks Lubricant breakdown 
Fuel Blowby-rich mixture Lubricant breakdown 
Acids Combustion blowby  

Lubricant breakdown 
Metal corrosion 
Autocatalysis of lubricant breakdown 

Table 13. Lubricant contaminant type, source of contaminant and the problems the contaminant 

causes which hinders lubricant performance [1840H26]. 
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This thesis concentrates on the affect of soot (a contaminant produced through incomplete combustion) on 

additive performance and component wear.  There are however, other lubricant degradation processes 

such as oxidation, corrosion and shear which also have an affect on additive performance and component 

wear (see 1841HAppendix B &1842H C). 

 

2.3.8.1 Incomplete combustion 

Incomplete combustion is the main source of a range of contaminants found in internal combustion 

engines.  The combustion gases in the cylinder are not completely exhausted into the environment; some 

of these gases pass between the piston rings and cylinder into the sump.  These ‘blow by gases’ contain 

incomplete combustion products of the air/fuel mixture such as carbon monoxide, unburned hydrocarbons 

(soot), water and reactive radicals (eq 1843H(45)) and these can become mixed within the lubricant. 

 

Radicals)(HCCOSONOOHCOAirFuel baxx22 ++++++⇒+ soot   (45) 

 

2.3.8.2 Soot 

The work in this thesis focuses on one contaminant, soot. The following Section will therefore concentrate 

on the production, nature and antagonistic effect soot has on wear.  Firstly, it should be noted, that ‘soot’, 

as it is frequently referred to actually incorporates exhaust and lubricant soot.  Exhaust soot is formed 

through incomplete combustion of the fuel and contaminates the lubricating oil by travelling past the 

piston rings [257F258].  Lubricant soot is produced through oxidation in the crank-case or in-between the 

piston ring/liner face, where temperatures are extremely high (around 270oC).  Both exhaust and lubricant 

soot production is mainly a concern in diesel engines; incomplete combustion leads to a large amount of 

soot being generated and the higher operation temperatures in diesel engines increase the amount of 

lubricant soot.  However soot can occur in direct injection gasoline engines, but the nature and 

concentration is different to that of diesel engines. 

 

It is difficult to characterise soot in terms of chemical composition because engine, fuel, lubricant and 

operating conditions will all affect the type produced.  It is also extremely difficult to distinguish between 

fuel and lubricant derived soot.  In very general terms soot is made of hydrocarbon fragments, which form 

aromatic molecular networks [258F259].  Elemental analysis by inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES) carried out by Rausa et al. [259F260] showed that ‘typical’ soot recovered from used 

diesel engine oils contain, in addition to carbon, significant levels of H, N, O and S with lower levels of 

lubricant additive derived species such as Ca (from detergents), Zn and P (from ZnDTP).  In an attempt to 

understand the chemical composition of fuel derived soot Bérubé et al. [260F261] carried out analysis of diesel 

exhaust particles by electron probe microanalysis and ICP-AES.  This work showed the presence of a 

wide range of elements including C, O, Na, Mg, K, Al, Si, P, S, Cl, Ca, Ti, Mn, Fe, Zn, Cr, Mo, Ba and Sr.  
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Clearly, many of these are metallic wear particles from the engine while others are fuel and/or lubricant 

derived.  This is similar to other work, which also identified oil additive-related elements such as 

phosphorous, zinc and calcium in exhaust soot [261F262].  This highlights the difficulty in separating fuel and 

lubricant derived soot, as some of the lubricant manages to get into the combustion chamber and is burnt 

and exhausted.  However it has been speculated that there may be some structural differences between 

soot from the used lubricant and exhaust soot, with the exhaust soot possibly showing a higher degree of 

crystallinity [262F263].  Lowenthal et al. [263F264] identified what was deemed to be the six most significant 

compounds and their average percent composition of diesel Particulate Matter/exhaust soot are nitrate 

(0.09%), sulphate (9.2%), silicate (0.008%), ammonium (0.31%), organic carbon (29.6%) and elemental 

carbon (53.4%). 

 

Transmission electron microscopy (TEM) analysis has shown that primary soot particles are of the order 

of 20-30 nm in diameter [1844H263, 264F265], whether they are collected from the exhaust [1845H261] or extracted from 

the used lubricant [265F266].  1846HFigure 47 (a) shows soot particles with a primary size of 28nm.  Unless there are 

electrical and steric barriers to keep them apart (see Section 1847H2.3.4.1.2), soot particles will agglomerate as 

they approach one another (see 1848HFigure 47 (b)).  This agglomeration is caused by both van der Waals forces 

and electrostatic attraction of the charges present on the soot surface [1849H114].  Primary soot particles have a 

tendency to agglomerate into a larger macrostructure, up to 1 μm in size [1850H263,266F267], which can lead to a 

significant rise in oil viscosity, with fuel economy consequences.  When aggregates occur on surfaces, 

such as those of the combustion chamber, soft and flaky soot deposits result. 

 

  
                                  (a)                                                                                            (b) 

Figure 47. TEM image10F

‡‡‡ of (a) primary soot particles and (b) agglomerated soot particles. 

                                                      
‡‡‡ Courtesy of Chevron Oronite LLC © 
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There is great difficulty in obtaining sufficient volumes of well characterised soot for research purposes 

and even if a sufficient quantity can be obtained, the soot generated will be specific to the engine, fuel, 

lubricant and operating conditions used.  Several attempts have been made to synthesise suitable model 

soot [1851H260,267F268].  Most popular have been thermal treatments and/or oxidation of carbon black/oil mixtures 

to mimic the effects that occur during engine operation.  However, the processes used to generate 

industrial quantities of carbon blacks result in materials whose surface structure and chemistry are 

generally not well characterised, although their physical properties in terms of particle size, surface area 

and volatile content, for example, are accurately known [1852H97].  A surrogate such as carbon black is 

frequently used in bench tests for lubricant screening to artificially stress the lubricant, when time, costs, 

control over the precise soot content are important and that there is sufficient quantity of soot surrogate 

available for the large number of tests usually involved in lubricant screening.  In general, carbon black is 

found to be predominantly aromatic, with a high surface coverage of oxygen which may be in the form of 

hydroxyl, ether, carbonyl, ester or surface acid groups [268F269, 269F270].  Rausa et al. [1853H260] carried out XPS 

analysis on carbon black and soot and showed that the soot had a significantly greater degree of surface 

oxidation, and a lower graphitic content than comparative carbon black specimens.  There are many 

commercially available carbon blacks used as a soot surrogate, but the relative proportions of the various 

surface groups and physical properties differ greatly.  Consequently, model soot may be found to mimic 

certain aspects of the behaviour of real engine soot but may poorly reproduce other performance factors 

[1854H97]. 

 

2.3.8.2.1 Industry demands  

The increase in start-stop driving and the increase in diesel vehicles used in city and urban environments 

mean that these engines are generally being run on rich fuel mixtures (to compensate for the low operating 

temperatures); these operating conditions result in excessive soot generation [1855H265, 270F271].  In addition, 

tighter emission regulations, specifically for diesel engines, have lead to the use of exhaust gas re-

circulation systems to reduce NOx emission.  Also, the deliberate ignition retardation, to reduce peak 

cylinder combustion temperature and therefore reduce NOx production, increases the amount of 

incomplete combustion products, such as soot.  Both of these systems increase the amount of soot finding 

its way into the lubricating oil.  The consumer demand for longer service intervals and the increased cost 

for oil disposal have lead to lengthening of engine oil drain times.  Soot levels as high as 5%, in certain 

types of duty cycles, have been noted [1856H103].  The ‘soot’ concentration in gasoline engines is significantly 

lower than that produced by diesel engines, but with extended oil drain intervals gasoline ‘soot’ could 

become a problem for gasoline engines, as well. 
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2.3.8.2.2 The effect of soot on wear 

The contamination of lubricating oil by diesel soot is a key factor relating to increased engine wear [1857H96].  

In general wear of engine components by soot particles is thought to be caused by chemical reactions 

between soot and the engine surface (corrosion) or abrasive action on surfaces.  This is an 

oversimplification and ultimately the soot induced wear mechanism is still not fully understood and a 

more fundamental knowledge is needed in this area [1858H96].  More sophisticated understanding of the 

mechanisms which can result in soot induced wear have been proposed since the 1970s [271F272-272F273F274].  The 

subsequent paragraph discusses five wear mechanisms which involve interactions between soot and 

additives, soot and metal, or among soot particles. 

 

Many studies have shown that abrasive action by soot is the major wear mechanism 

[1859H47, 1860H96,1861H266,1862H271,274F275, 275F276].  Whether this is a result of soot as acting as an abrasive particle, or whether the 

presence of soot increases the metal-metal contact or a combination of both is a cause of division in the 

research community.  Early work by Rounds [1863H262] concluded that antiwear additives adsorb onto the soot, 

rather than the component surface.  This was based on the hardness of soot compared to other known 

abrasive particles such as alumina.  Rounds thought that soot was too soft to act as an abrasive, so 

concluded that the increase in wear was a result of antiwear additive adsorption onto the soot rather than 

the component surface, lessening the antiwear film formation on metal surfaces, causing direct metal-

metal contact between the two surfaces.  However, this conclusion was never directly tested; it is thought 

that the adsorption of antiwear additives onto soot is low and insufficient to affect antiwear film 

formation.  Also the hardness measurements were carried out off-line and never took into account the 

change in hardness of soot in the contact.  Soot is thought to become very hard under high-pressure 

conditions [276F277].  More widely accepted is that soot acts as an abrasive, weakening and removing 

antiwear films [1864H47, 1865H273,1866H277].  Needelman [1867H26] suggested that, a special relationship is present between the 

size of the contaminant particles and the thickness of dynamic oil films.  Soot particles that were larger 

than the oil film, but small enough to be entrained into the contact, caused the greatest wear of engine 

components, by making simultaneous contact with both the surfaces.  Competition for metal surface sites 

between soot and antiwear additives is thought to reduce surface coverage [277F278].  Increased concentration 

and agglomeration of soot increases oil viscosity and eventually causing gelling of the oil [1868H26].  This gives 

rise to pumpability problems; insufficient lubricant is able to get to the contact, thus partially or 

completely starving the contact.  Oil drain analysis and exhaust soot analysis has showed that viscosity 

increases depended on the percentage of soot in the oil and the particle size of the soot [278F279].  More 

recently it has been suggested that soot may build-up at the inlet of two surfaces moving relative to one 

another and hinder/prevent the lubricant being entrained into the contact, which results in surface-surface 

contact. 
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2.4 ADVANCES IN THE ELECTROSTATIC HEALTH MONITORING OF TRIBO-CONTACTS 

This Section discusses; initial use of electrostatic sensing as a condition monitoring technique, the benefits 

of a charge based condition monitoring system, the basic electrostatic theory, principle operation for 

electrostatic charge detection and types of sensors are outlined.  The remainder of this Section discusses 

charge mechanisms generated by tribo-contacts and how charge has been related to wear and lubricant 

chemistry. 

 

2.4.1 CONDITION MONITORING 

Condition monitoring is defined as the assessment on a continuous or periodic basis of mechanical and 

electrical condition of machinery, equipment and systems from the observations and/or recordings of 

selected measurement parameters [279F280].  The ability to monitor the transition from mild to severe wear of 

‘high risk machines’ and oil quality could enable intervention before component failure and prevent any 

catastrophic secondary damage.  Also, unnecessary component change often takes place simply because 

the machine operator has no information on the remaining life span of the components.  A condition 

monitoring system which allows a less conservative approach to be taken for safe operating limits and 

allows preventative maintenance will lower operational costs.  Condition monitoring is becoming more 

frequently used by the research community to try and understand the real-time tribophysics and 

tribochemistry of contact degradation that generates wear and ultimately failure; thus developing a better 

understanding of wear mechanisms. 

 

2.4.2 ELECTROSTATIC MONITORING 

Around 600BC a Greek mathematician, astronomer and philosopher, Thales of Miletus, noted that when 

amber was rubbed with silk it produced sparks and attracted particles of fluff and straw [280F281].  The 

intensity of rubbing has been found to affect the charge magnitude.  Unger [281F282] compiled the 

triboelectric series (see Section 1869H2.4.3.3, 1870HTable 15) to predict the polarity of charge produced on each 

member of a pair of solids that have been rubbed together. 

 

Electrostatics has often been thought of as an undesirable phenomena, however, relatively recently, 

electrostatics has been developed to aid the understanding of component deterioration.  Electrostatic 

monitoring was originally developed for detection of debris in the gas path of jet engines and gas turbines 

[1871H5, 282F283].  An Engine Distress Monitoring System (EDMS) [1872H4] was installed in the outlet of the jet engine 

to monitor debris exiting the engine.  Electrostatic sensors are also installed in the intake (Ingested Debris 

Monitoring System (IDMS)) of the engine in order to discriminate foreign objects entering the engine to 

wear debris leaving the engine [1873H6]. 
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Electrostatic monitoring has many benefits over other condition monitoring techniques, charge 

mechanisms are a primary result of changes in surface chemistry and it can be deployed on non-ferrous 

contacts.  In highly stressed contacts many on-line condition monitoring techniques rely on significant 

increases in noise, temperature and vibration or the generation of significant quantities of larger wear 

debris to warn of imminent failure, but rely on some significant event to trigger this warning.  Electrostatic 

monitoring has been able to detect the initial onset of failure and in advance of clear indication from 

vibration data [283F284]. 

 

2.4.2.1 Principle of electrostatics 

If an isolated point charge of ( Q ) coulombs is considered, if the charge is enclosed in the centre of a 

spherical Gaussian surface, Gauss’ law states that the outward flux of ( fE ) over any closed surface ( S ) is 

equal to the algebraic sum of the charges enclosed divided by ε , or 

 ∑ ∫= S f dSEQ .ε  (46) 

The flux of electric field strength ( fE ) from the surface may be deduced by Equation 1874H(47): 

 fErQ 24π
ε
=  (47) 

Where ε  is the permittivity and r  is the radius of the sphere or the distance between the particle and the 

surface.  If this Gaussian surface were placed just inside a Faraday cup, then all the charge ( Q ) would be 

induced on the cup surface and hence measurement of the total charge ( Q ) could be made.  Consider now 

a small surface of area ( A ) within the Gaussian surface.  The flux terminating on this surface may be 

approximated by Equation 1875H(48): 

 AEQA ~
ε

 (48) 

Where AQ  is the charge induced on the surface.  AQ  will be a fraction of Q , and can be deduced by 

dividing Equation 1876H(48) by equation 1877H(47): 

 2~
r
A

Q
QA  (49) 

The area ( A ) is taken as the surface of the electrostatic sensor and hence its sensitivity to the total charge 

( Q ) maybe deduced by re-arranging Equation 1878H(49):  

 2~
r
QAQA  (50) 

In practice, other factors, such as the presence / proximity of other earthed metal surfaces, will also 

influence the charge measured at the sensor face, so equation 1879H(50), at best, serves as an approximation to 



Chapter 2 Literature Review                            Advances in the electrostatic health monitoring of tribocontacts 

80 

the sensor’s response.  For a distributed surface charge, the sensor behaves more like a capacitor.  The 

capacitance ( C ) can be related to charge by Equation 1880H(51). 

 
r
A

V
QC ε==  (51) 

This can be rearrange to give charge 

 
r
VAQ ε

=  (52) 

The potential difference (V ) between the sensor and the surface will be proportional to the charge on that 

surface and thus can be approximated by Equation 1881H(53). 

 
r

QAQA ~  (53) 

 

2.4.2.2 Principles of electrostatic sensing 

If a charge source (debris particle, surface, etc.) passes in front (or passes the field-of-view) of the sensor, 

electric field lines will terminate on the sensing face.  This will induce free electrons to be drawn to or 

away from the surface of the sensor (depending on the polarity of the charge source) due to electrostatic 

attraction/repulsion, see 1882HFigure 48(b).  Holes will move in the opposite direction.  This phenomenon is 

known as polarisation or induction. 
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Figure 48. Principles of polarization in electrostatic sensor: (a) shows an isolated plate, (b) shows 

an isolated plate in the presence of charge source and (c) shows the same plate connected 

to earth. 

 

If the sensor is connected to earth, electrons will flow to or from earth (depending on the polarity of the 

charge source) to counteract this polarisation as shown in 1883HFigure 48 (c).  In an electrostatic system, the 

sensor (see Section 1884H2.4.2.3) is connected to a signal-conditioning unit (a charge amplifier).  This signal 
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conditioner will measure the flow of electrons and produce a measurable output.  1885HFigure 49 shows a 

schematic diagram showing the process of charge detection in an electrostatic sensor as moving charge 

passes the sensor face. 

 

Sensor Area, A

Electric (E-)Field Lines

Moving Charge, Q

Earthed Shield

Signal resulting 
from charge induced
on sensor

(pC)

time

x
- - - - - -

Signal Conditioning

 + + + + +

+Q

QA

 
Figure 49. Schematic illustration of the electrostatic charge sensing system. 

 

2.4.2.3 Electrostatic sensors 

Electrostatic sensors are passive inductive sensors that can take several geometrical forms, for example 

planar button [284F285] or cylindrical ring (see 1886HFigure 50).  Button type sensors are generally used to 

monitoring charge on surfaces (e.g. wear sites).  Ring sensors are employed in pipe flow to detect charge 

on particles driven by fluid motion to act as a flow meter [285F286-286F287F288] or to detect the presence of wear 

debris in a lubrication oil line [1887H284].  The advantage of the ring sensors is that the presence of any charged 

particle in the flow will be detected and is non-intrusive to flow. 
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                                                        (a)                                                   (b) 

Figure 50. Schematic diagram of electrostatic (a) button and (c) ring sensor. 

 

2.4.3 CHARGE MECHANISMS 

This Section discusses the theory behind charge mechanisms thought to be dominant in lubricated tribo-

contacts.  Theses are tribocharging and contact potential difference (CPD), but other mechanisms such as 

contact charging, and debris generation are also thought to be important. 

 

2.4.3.1 Tribocharging 

It has been known since the early 1600’s that an electric field could exert a force on a dielectric fluid and 

since the middle of the 18th century that electrostatic charging can occur in flowing dielectric fluids [288F289].  

Tribocharging is a term used to describe the charging of a low-conductivity fluid by its relative motion 

over a surface.  An electrical double layer forms naturally at any solid-liquid interface. A charged metal 

surface attracts opposite charges and repels like charges.  Several theories relating to double layer 

structure and formation have been proposed and have been reviewed recently by Parsons [289F290].  There are 

two tribocharging theories Double Layer Stripping theory and Differential Rate theory.  The first theory is 

based on the relative motion at the fluid-solid interface being sufficient to strip a portion of the charge 

double layer and entrain it into the main body of the lubricant (see 1888HFigure 51).  The second theory suggests 

that charge is created by a differential rate of either diffusion of charge species to and from the interface or 

a differential rate of adsorption/desorption of these charged species. 
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Figure 51. Schematic diagram of an electrical double layer, the dotted line indicates the shear line 

[1889H291 290F]. 

 

The chargeability of a lubricant is also dependent on its rheological properties, particularly the 

temperature viscosity relationship.  Harvey et al. [1890H291] reported that the electrostatic charging current 

increases with increasing temperature up to a point and then decreases with further increases of 

temperature (see 1891HFigure 52 (a)).  This indicates that there are two competing mechanisms each with 

dominance over a particular temperature range.  The two mechanisms are thought to be tribocharging at 

lower temperatures and charge relaxation at higher temperatures.  At lower temperatures an increase in 

temperature will decrease the oil’s viscosity (see Section 1892H2.1.5.2), increase hydrodynamic flow, increase 

ionic mobility and therefore charge transportation, resulting in an increase in charging current.  At higher 

temperatures the greater ionic mobility increases the rate of mixing, promoting the recombination of 

charges (charge relaxation).  The conductivity of the fluid also affects the tribocharging, but not in a direct 

way.  Indeed, an increase in concentration of charge species (higher conductivity), will lead to greater 

tribocharging.  However there is an opposing factor; as conductivity increases the double layer thickness 

decreases [291F292], which will reduce the amount of charge species stripped as a greater proportion are more 

tightly bound in the double layer.  Experiments have also shown that tribocharging increases with 

increasing surface roughness due to (see 1893HFigure 52 (b)) the increased surface area that can be stripped; also 

increasing roughness causes greater microturbulance which facilitates greater charge removal from the 

double layer. 
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                                        (a)                                                                                     (b) 

Figure 52. The affect of (a) temperature and (b) surface roughness on charging current [1894H291]. 

 

2.4.3.2 Contact potential difference 

Contact potential difference is the surface charge generation mechanism which occurs when materials of 

different work functions11F

§§§ are brought together.  Classically, this phenomena is described by the bringing 

together of two metals of different work functions, Ma and Mb.  The difference in their work functions (φMa 

and φMa) drives a contact potential difference and thus charge separation. (see 1895HFigure 53) [292F293].  The 

contact potential difference, VCPD, between the two surfaces is related to the difference in work function as 

shown in Equation 1896H(54). 

 

 MbMaPCDeV φφ −=  (54) 

 

Ma Mb Ma Mb

φMa
φMa

Energy

φMb
φMb

Unconnected Connected

++++++++-------------

 
Figure 53. Schematic diagram of contact potential difference theory [1897H8]. 

 
                                                      
§§§ The work of a material is the energy required to remove a surface-state electron from the surface, to infinity 
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Morris et al. [1898H285] investigated the detection of contact potential difference using electrostatic sensing 

technology.  Non-contact tests were carried out to investigate the sensitivity of the electrostatic sensor to 

variation in surface contact potential difference by inserting copper, aluminium, En31 and carbon steel 

inserts in a bearing steel disc (see 1899HFigure 54 (a)).  The experiments produced positive peaks corresponding 

to the position of the aluminium insert indicating that it charges positively with respect to the steel (see 

1900HFigure 54 (b)); the copper charged negatively with respect to steel (see 1901HFigure 54 (c)) [293F294].  The localised 

surface charge characteristics may be predicted from the work functions of the two metals (see 1902HTable 14), 

which indicate that the electrostatic sensor is detecting the CPD phenomenon.  Of particular significance 

is the carbon steel test, which shows that electrostatic sensor is sensitive to small changes in surface 

composition (see 1903HFigure 54 (d)). 

 

Button Type 
Electrostatic Sensors

(10 mm φ)
En31 steel 

disc

Copper, 
Aluminium

and Mild Steel
Inserts (diameter 13 mm)

Rotation speeds of 
250, 500, 750 and 1000 rpm

Sensing 
diameter 
64 mm

 
                                        (a)                                                                                     (b) 

         
                                     (c)                                                                                          (d) 

Figure 54. Schematic showing bimetallic disc (a) and charge results from (b) aluminium, (c) copper 

and (d) mild steel inserts [1904H294]. 
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Metal φM (eV) (Photoelectric) 
Zinc 3.63 
Silver 4.26 
Aluminium 4.28 
Tin 4.28 
Chromium 4.44 
Tungsten 4.55 
Iron 4.40 
Copper 4.65 
Gold 5.10 
Nickel 5.15 

Table 14. Work function of a range of metals [1905H295 294F]. 

 

2.4.3.3 Contact charging 

Contact charging, also known as triboelectrification [295F296], occurs when two solid materials are touching 

or rubbing together.  When two materials (similar or dissimilar) are placed in contact and then separated, 

electrons are transferred from the surface of one material to the surface of the other.  Which material 

becomes negative and which becomes positive depend on the relative tendencies of the materials involved 

to gain or loose electrons.  The drive for both contact charging and CPD mechanisms is the ability to give 

electrons.  The difference is that under contact charging, when the materials are separated, there is a back 

flow of electrons which depends on the materials.  For insulators this process is very slow hence high 

charge remains, for metals it is faster and only a portion of the charge remains. 

 

Virtually all materials can be triboelectrically charged; the magnitude of charge transferred/generated is 

dependent on interfacial properties (e.g. chemical composition and surface roughness) and the nature of 

the contact.  Generally, the total charge transferred during friction is greater than during static contact 

[296F297] due to the increase of actual contact area during friction [1906H296]. 

 

The charge transfer between two metals is proportional to their work functions.  A considerable amount of 

charge can be generated on the surface of an insulator, such as clutch friction material, because an 

insulating material does not readily allow the flow of electrons, which also means both positive and 

negative charges can reside (at different locations) on insulating surface at the same time.  Electron 

transfer is thought to be the predominant charge mechanisms [297F298] although Diaz [298F299] suggested that the 

charge ordering of polymers infers that the charge develops from the transfer of protons (hydrogen ions).  

Compared to metal-metal contacts, steel-wet friction material and steel-silicon nitride contacts contact 

charging is thought to be more significant.  Insulator-insulator contact charge densities are in the same 

range as for metal-insulator contacts. 
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Material  Charge  
Air [1907H302] +++ 
Asbestos [1908H302]  
Lead [1909H302]  
Aluminium [1910H302]  
Cellulose [1911H300]  
Steel [1912H302]  
Wood [1913H302]  
Amber [1914H302]  
Nickel [1915H302]  
Copper [1916H302]  
Silver [1917H302]  
Brass [1918H302]  
Sulphur [1919H301]  
Silicon [1920H302]  
Teflon [1921H302] --- 

Table 15. Tribo-electric series. 

 

When two materials come into contact and separate, the charge polarity is indicated by their relative 

position in the triboelectric series (see 1922HTable 15), which ranks various materials according to their 

tendency to gain or lose electrons.  A triboelectric series containing the main elements of interest in recent 

electrostatic monitoring of dissimilar tribo-couples was complied using results by: Coehn [299F300], Henniker 

[300F301] and Adams [301F302]. 

 

2.4.3.4 Debris generation 

Debris generation involves the breaking of numerous bonds which produces charge on the debris particle 

upon detachment.  The charged debris can be detected by an electrostatic sensor at the tribo-contact and at 

remote locations [1923H25], provided that the debris is suspended in the insulating fluid or not discharged by 

contact with earth.  If suspended in the lubricant, wear debris can be further charged by tribocharging and 

contact charging.  The interplay between these three charge mechanisms on debris charge generation is 

currently not fully understood.  However, Morris [1924H23] proposed debris charging models for different 

scenarios that depend on surface work functions, oil chemistry, conductivity, wear rate and sliding 

velocity. 

 

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +
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Figure 55. The removal of an area of different work function leads to the formation of charged debris 

[1925H23]. 
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2.4.4 CHARGE GENERATION FROM TRIBO-CONTACTS 

The charge mechanisms generated by a lubricated tribo-contact are complex and affected by chemical and 

physical properties of the lubricant and contacting materials, as well as any tribochemical changes 

occurring between the contacting materials.  Experiments at the University of Southampton, over the last 

10 years, have been designed with the aim of de-coupling specific aspects relating to charge generation.  

Fundamental studies have investigated the chargeability of lubricants and wear tribometers have 

investigated the charge generation of predominant wear mechanisms in simple contact pairs.  Electrostatic 

monitoring has also been implemented in industrial applications to assess progress in understanding the 

electrostatic charge response and to drive future charge de-coupling studies. 

 

The following sections discuss the advances in understanding the affect of wear mechanism and lubricant 

chemistry on electrostatic charge.  The ability of electrostatic sensors to detect the onset of wear and 

subtleties in lubricant chemistry has immediate potential for the lubricant industry, as well as how 

electrostatic monitoring could be used in the lubricant industry. 

 

2.4.4.1 Charge generation related to wear processes 

The electrostatic charge generated from wear is a result of CPD, through tribologically generated phase 

transformed regions or oxide stripping [302F303].  Kelvin probe12F

**** work with a modified atomic force 

microscope (AFM) by DeVecchio and Bhushan [303F304] has detected chemical and structural changes to 

specimen surfaces caused by nanoscale wear.  Zharin and Rigney [304F305] have studied wear events with a 

vibrating Kelvin probe and reported that the probe was sensitive to CPD changes associated with wear. 

 

Electrostatic sensing was originally developed for detection of electrostatic charge associated with wear 

debris in the gas path of jet engines and gas turbines [1926H4-1927H1928H6] and was correlated with a specific component 

problems, such as turbine blade rub.  This work has lead to the deployment of electrostatic sensors on a 

wide range of lubricated contacts.  A significant proportion of work at the University of Southampton has 

sought to identify the charge mechanisms which relate to wear mechanisms/processes including: running-

in [1929H8, 305F306], mild oxidative [1930H8], adhesive [1931H284,1932H285,1933H294,306F307, 307F], abrasive [1934H25,308F309], fatigue [309F310,310F311] and 

tribochemical [311F312-312F313] (see 1935HTable 16).  The majority of this work has focused on identifying the onset of 

wear, so that a system can be developed to allow intervention before catastrophic failure 

[1936H4, 1937H5, 1938H310,1939H311,313F314]. 

 

 

                                                      
**** The Kelvin probe is based on a vibrating capacitor and measures the work function difference, or for non-metals 
the surface potential, between a conducting specimen and a vibrating tip. 
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Wear process Description Tribological activity resulting in charge generation  

Running-in 

 

1. removal of asperities  

2. rougher surfaces will result in higher initial wear rates (greater 

removal of asperities) 

1. reveals discrete areas of nascent metal surfaces  

2. localised areas of nascent metal are being exposed at a greater 

rate 

Mild Oxidational Wear 1. growth of oxides on the contact surface 

2. full oxide film 

3. delaminated oxide debris will expose clean metal surfaces 

1. Фoxide > Ф bulk metal – increase in ES charge 

2. no CPD (uniform oxide film) charge levels fall 

3. Ф nascent metal < Фoxide – increase in surface ES charge and 

charged debris generated.  

Abrasive Wear 1. carbon black resulted in minor to major increases in wear rate 

2. seeding debris into tribo-contact 

1. greater number of  transient charge signals 

2. transient charge signals associated with charged debris and 

increased wear rate (CPD) 

Adhesive Wear 1. formation of phased transformed (white layer) regions (1st 

Transition scuffing) 

2. progression to second transition scuffing – increasing number 

of phase transformed regions 

1. difference in work function between white layers and bulk 

steel 

2. electrostatic charge increases until failure 

Tribochemical polishing 

of hybrid contacts 

1. Si3N4 - SiO2 – ejection of debris which acts as a polishing paste 

2. spallation (steel disc) wear 

3. ceramic ball volume loss 

1. this action has been monitored by a small increase in charge 

when debris has agglomerated 

2. revealing nascent metal surface increase ES charge (CPD) 

3. correlated with ES charge  

Table 16. Predominant wear mechanisms and the corresponding charge response. 
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One of the most significant findings came from a series of electrostatic wear monitoring studies on 

adhesive failure of steel.  The onset (first transition scuffing) has been detected by electrostatic sensors 

prior to adhesive failure (second transition scuffing) for PoD and reciprocating (TE-77) test rigs [1940H307, 

1941H294].  This is particularly useful because little material loss is observed during first transition scuffing.  

Investigations found that the pre-cursor electrostatic charge signal was the result of CPD generated 

between the localised phase transformation (white layers) and the bulk steel.  These white layers are 

produced during initial asperity-asperity contacts, friction or cold pressure welding and the resulting high, 

localised contact temperature transforms the region affected (see Section 1942H2.1.4.2).  A white layer may be 

identified, essentially, in two interrelated ways.  White layers are more resistant to etchants used to 

prepare specimens for optical microscopy [314F315].  In addition, there is a substantial increase in local micro-

hardness in white layers [315F316].  Multi-precursor events per-revolution were found which correspond to 

multiple 1st transition scuffing wear sites [1943H7].  The test conditions used for these studies are accelerated 

wear test, thus under normal operating conditions pre-cursor signals could occur further in advance of 

component failure allowing more time for maintenance planning. 

 

2.4.4.2 Charge generation related to lubricant chemistry 

For lubricated sliding contacts, the lubricant has a major influence on charge generation.  The lubricant 

quality/chemistry will influence wear and therefore CPD and debris generation.  Also, the lubricant’s 

chemical (type of charge species) and rheological (mobility of charge species) properties affect 

tribocharging and CPD irrespective of wear. 

 

The majority of electrostatic monitoring work has been carried out to relate wear mechanisms and 

electrostatic charge, with the lubricant chemistry kept constant.  Although the significance of lubricant 

chemistry was initially neglected, during a number of lubricated wear studies it was noted that charge 

signals differed between a base oil and a fully formulated lubricant [1944H7], which could not be explained by 

the wear performance alone.  This led to a series of fundamental studies investigating the bulk 

chargeability of different lubricants [1945H291,1946H293,1947H319].  This Section discusses what was known at the 

beginning of the present work. 

 

2.4.4.2.1 Pure hydrocarbons and base oils 

Considering liquid hydrocarbon (base oils) as an inert matrix, conduction is generally governed by the 

concentration of impurities.  These impurities are either molecular in scale or large particles [316F317] and can 

be ionic.  Pure hydrocarbon liquids (e.g. decane, hexadecane and squalane) have very low conductivities, 

consistent with low impurity levels, which manifests as very low charge levels making detection difficult 

[317F318].  Harvey et al. [318F319] observed that both squalane and hexadecane have a stronger bias to positive 
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charge; thus it is concluded that the positively charged species (impurities) are more mobile than the 

negative ones for these liquids.  For decane, the bias is slightly toward negative charging.  

 

Bustin and Dukek [319F320] observed that hydrocarbons do not normally ionize appreciably, however it only 

takes one singly ionised impurity in 2x1012 molecules to produce a large electrostatic charge in a moving 

dielectric fluid.  The ions involved in hydrocarbon liquids are likely to be polynuclear aromatics and 

organo-sulphur compounds (see Section 1948H2.3.2), which are covalent in nature and are present, even in 

highly refined liquids.  Such impurities are electroactive and are able to undergo charge transfer reactions 

at an electrode [1949H318]. 

 

2.4.4.2.2 Formulated oils 

Fundamental experiments using the oil droplet rig (ODR) and spinning disc charger (SDC), [1950H7, 1951H291], 

revealed that there is a greater affinity for pure hydrocarbons and base oils to give a positive charge, but 

fully formulated aviation oils gave a negative charge of a greater magnitude [1952H319, 1953H291] (see 1954HFigure 56).  

This corresponds to the pre-cursor signals in scuffing experiments carried out on a PoD tribometer, which 

were positive for base oil and negative for fully formulated oil [1955H8].  This was investigated further by 

performing a PoD test with a fully formulated oil until negative precursor signals were observed.  The test 

was suspended and the wear track was cleaned with a solvent to remove the oil film.  It was observed that 

several of the precursor charge signals underwent charge sign inversion [1956H7].  There are two possibilities 

that could lead to charge sign inversion between formulated and mineral oils.  The first possibility relates 

to studies carried out by Walmsley and Woodford [320F321, 321F322] who observed for low conductivity dielectric 

liquids that the polarity of the streaming current in pipeflow was related to the algebraic sum of charges 

and the sign was determined by the dominant species.  The second possibility is that the adsorption of high 

concentrations of additives in formulated oils on the disc surface causes the sign of the space charge in the 

fluid to reverse [1957H317,322F323]. 
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Figure 56. Electrostatic charging current for three base oils and a formulated aviation oil. 

 

Harvey et al [1958H319] showed that it was possible to relate the charging of two different oils; which were part 

of a gear micropitting programme, directly to their additive package.  One of the oils was a low-grade 

(minimal package) oil and the other a high-grade (fully formulated) oil, with high and low micropit index 

respectively.  The high grade oil had a high charging ability while the low-grade oil had behaviour similar 

to a base oil (i.e. low ionic mobility).  The distinction is not as straightforward as relating a higher charge 

to an increased amount of additives, but demonstrates how additive packages affect charge. 

 

2.4.4.2.3 Lubricant contamination & degradation 

The effect of lubricant condition/aging on conductivity and chargeability has been investigated by Harvey 

et al. [1959H291].  It was observed that an oil which had been distressed in a spinning disc charger for 5 hrs 

nearly doubled the conductivity.  The relative motion between solid surface and liquid oil will involve 

high shear stresses that may be sufficient to shear the double layer and specifically shear molecules within 

the double layer, resulting in charged fragments.  Other handling factors that affected charging tendencies 

included level of stagnation, exposure to the atmosphere and heat treatment [323F324]. 
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Figure 57. The change in conductivity of oils aged by air, light and mechanical shearing [1960H291]. 

 

Wang et al. [1961H313] investigated the electrostatic charge generated by aviation oils which had been aged, but 

analysis was focused on relating the severity of wear, due to lubricant age rather than relating the charge 

signal to the decomposition products in the aged oil and then how these affect wear.  The effect of soot (a 

contaminant, see Section 1962H2.3.8.2) on electrostatic charge depended on the base oil, additive type and the 

soot type.  Wood et al. [1963H309] found the conductivity in the presence of 2% carbon black (a soot surrogate) 

appeared to be lower in most cases than in its absence.  This was thought to be due to the ability of carbon 

black to adsorb polar compounds.  Studies by Ramkumar et al. [324F325] involving a basic additive package of 

VII, dispersant, Zinc dithiophophate and a detergent (see Section 1964H2.3.5) showed that conductivity 

decreased with increasing moisture content.  The effect of other contaminants and degradation processes, 

such as acid, oxidation soot, and soot have been investigated [1965H309,1966H325,325F326].  The discussions in these 

studies mainly focuses on the affect lubricant chemistry has on wear and the affect wear has on charge 

generation.  Increasing oxidation levels resulted in decreasing charge.  Increasing the sulphuric acid level 

produced an increase in charge; the combination of oxidation and sulphuric acid reduced charge [1967H377].  

No explanation was given for these three observations.  

 

2.4.4.3 The potential use of electrostatic monitoring for additive/lubricant screening 

Electrostatic monitoring of oxidational wear (induced by dry sliding) has revealed the oxidation-

delamination-reoxidation mechanisms, resulting from varying work functions present at different stages of 

the wear mechanism [1968H8, 1969H306] (see 1970HTable 16).  Therefore, if electrostatic monitoring can detect the growth 

and removal of a chemical film, such as an oxide, then there is the potential to monitor the growth and/or 

breakdown of an adsorbed additive based tribofilm.  Adsorption of charge species (such as impurities and 

additives) is known to alter the work function [326F327,327F328] (see eq 1971H(55) and 1972HFigure 58). 
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Tribocharging is thought to be a significant charge source in lubricated tribo-contacts due to the high shear 

nature of the contact.  Additives and contaminants found in lubricating oils are generally charged or 

chargeable and therefore interact/adsorb to the surface.  Thus they will form a large proportion of the 

charged species present in the charge double layer (see 1973HFigure 58 (a)).  Part of the current focus of work is 

to assess whether electrostatic charge monitoring can detect the integrity of the tribofilm and if it is 

sensitive to film composition. 

steelNascentTribofilm −Φ−Φ=ΔΦ    (55) 
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Figure 58. Schematic showing: (a) how the difference in work function between the bulk metal and 

tribofilm may generate surface charge through contact potential difference, and (b) 

Tribocharging of additives. 
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2.5 SUMMARY 

Power-train design is continually evolving to meet environmental demands of lower emissions and 

increased fuel economy.  These design improvements are often to the detriment of tribological 

performance.  Tolerances between components are reduced to increase performance (e.g. improve 

combustion) and fuel economy; but these changes increase friction and the likelihood of wear.  Friction is 

an important parameter because it is directly related to energy loss and therefore fuel economy.  

Component wear almost invariably results in an increase in friction, through roughening of the surface.  

Wear can also reduce performance by increasing clearances; valve-train wear can lead to incomplete 

combustion.  Although the automotive manufacturer can mitigate some wear and friction issues through 

material selection or surface treatments it is usually requires the formulation of a new lubricant to 

minimise wear and friction. 

 

There are similar environmental constraints on lubricants; they must increase fuel economy and reduce 

environmental impact for longer service intervals, while keeping wear to a minimum.  Lubricants contain 

additives which minimise detrimental processes (e.g. acid and soot production, oxidation and wear) and 

confer beneficial properties (e.g. lubricity (low friction)).  Some additives are required to function in the 

bulk of the lubricant; additives concerned with the reduction of friction and wear are surface active.  These 

surface active additives adsorb either physically and/or chemically onto a surface; physically adsorbed 

additives can desorb or be mechanically removed, whereas chemically adsorbed additives can only be 

removed mechanically.  In general, low friction is achieved by the formation of a film which easily shears; 

antiwear performance can also be achieved through the formation of a film which preferentially shears or 

by providing a mechanical barrier. 

 

Lubricants must conform to national and/or international standards, such as the Peugeot TU3M valve-train 

wear test.  Formulating new oils is not simply a matter of blending the best and latest additives, as this 

often results in undesirable interactions between additives.  Unfortunately these interactions are not well 

known and change under different contact conditions.  Thus lubricant testing usually involves an iterative 

matrix approach and is carried out at: fundamental, bench and fired engine or drive-train test levels.  The 

cost of lubricant development and approval is escalating because the increasing rate at which 

classifications are superseded and the number of standard tests required for approval are increasing.  It is 

therefore important that the lubricant formulator can extract the maximum amount of information from 

each test to make subsequent formulations better informed; instrumentation which can monitor wear 

and/or additive behaviour in real-time could be extremely useful. 

 

Electrostatic charge sensing has been developed to monitor wear of a range of components.  The main 

charge generation mechanisms in lubricated contacts are CPD and tribocharging.  CPD arises from the 

difference in work function between discrete regions on the component surface and tribocharging occurs 
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through the stripping of the charged double layer formed, on a surface, in the presence of a low 

conductivity fluid (oil).  Oxidational wear was successfully monitored by electrostatic sensors and 

revealed the oxidation-delamination-reoxidation mechanisms, due to the varying work functions on the 

surface that result at different stages of the wear mechanism.  Therefore if electrostatic monitoring can 

detect the growth and removal of a chemical film such as an oxide, then there is the potential to monitor 

the growth and/or breakdown of a physically or chemically adsorbed additive tribofilm; adsorption of 

additives is known to alter the work function of a surface.  Additives are charged or can be chargeable 

through interaction with surfaces or contaminants; it is therefore thought that electrostatic charge detection 

could be a new way of trying to understand additive behaviour.  Initial fundamental lubricant charging 

tests have shown sensitivity to lubricant chemistry, but very little work has tried to relate surface charge 

generation to additive-surface interaction in a tribo-contact. 

 

The literature review has identified some of the better understood additives; this understanding will enable 

greater comparison of charge data to additive behaviour.  However, there is still a great deal that is not 

known or fully understood about additive film formation; and it is hoped that electrostatic monitoring 

could offer insight into the fundamentals of film formation ands stability.  ZnDTP is the most heavily 

researched additive and a great deal is known about aspects of film formation through (predominantly) 

post-test analysis, but ZnDTP tribofilm kinematics is not particularly well understood due to the lack of 

technology to monitor film formation and removal in real-time.  There are also additives such as dispersed 

potassium borate, for which comparatively little is known about film formation mechanism, friction 

characteristics and how it achieves its wear performance. 

 

One of the biggest concerns for the lubricant formulator is the interactions between additive and base oil 

and interactions between additives, that leads to undesirable friction and wear performance.  At the heart 

of managing antagonistic interactions is the ability to understand which additive(s) drive initial film 

formation and how this affects film composition of a multiple additive system.  In most cases this 

interaction arises from conflicting performance requirements.  For example, ATFs must provide high 

torque capacity in wet friction clutches and minimise shudder.  For this purpose, dispersants are used to 

maximise torque capacity, but they also increase the likelihood of shudder and FMs reduces shudder, but 

also reduce torque capacity.  Similarly, MTF must provide relatively high (stable) friction in the 

synchroniser contact to ensure quick and smooth transition of power, while at the same time maintaining 

low wear.  The dissimilar materials of these two tribo-contacts pose additional problems to the lubricant 

formulator; additives may preferentially adsorb onto one of the surfaces which may have undesirable 

effect on friction and wear.  These two contacts are therefore ideal for studying additive interactions and 

additive preferential adsorption. 
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3 EXPERIMENTAL EQUIPMENT AND PROCEDURES 
This Chapter discusses the methodology employed to fulfil the aim and objectives identified in Section 

1974H1.3.  The methodology involved an integrated approach; where specific additives were chosen because of 

their surface interaction behaviour; testing was designed to simulate automotive contacts, where these 

additives are used, and post-test analysis techniques were chosen to give maximum insight into the 

tribological processes and to identify the charge generation mechanisms (see 1975HFigure 59 & 1976HTable 17). 
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Figure 59. Schematic showing the flow of experimental aspects, which make up the overall test 

methodology. 
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Thesis Chapter  
4 5 6 7 8 

Line      Contact 
Point      
Cam/follower      
Automatic transmission frictional clutch      

Simulated contact 

Manual transmission Synchroniser      
Cast iron / steel       
Steel / Steel      
Wet friction material / Steel      

Material  

Brass / Steel      
Boundary      
Mixed      

Lubricant regime  

EHL      
Group I      
Group II      

Base Oils 

PAO      
Dispersant       
Detergent      
Antiwear      
Extreme pressure      
Friction modifier      

Additive 

Antioxidants      
Contaminant Soot      

RMS      
Negative & Positive      
Raw data      

Electrostatic charge  

Colour map      
Average      

Real-time data 

Friction 
Standard deviation      

Conductivity      Fluid electro-kinetic properties 
ESA      

Optical microscope      
Optical Profilometry      

Rate 

Talysurf      

Wear 

Mechanism SEM      
EDX      

Post-test analysis 

Film Composition 
XPS      

Statistical analysis      
Assess the sensitivity of electrostatic monitoring to wear and 
lubricant chemistry. 

     

Relate electrostatic charge signals to additive-surface 
interactions. 

     

Relate electrostatic surface charge to additive-contaminant and 
additive-additive interactions. 

     

Relate electrostatic surface charge to additive tribofilm chemical 
composition. 

     

Objectives 

Seek electrostatic surface charge signatures associated with 
additive tribofilm kinematics 

     

Table 17. Shows similar and different experimental aspects between experimental studies 

(Chapters). 
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Lubricant chemistry 

The aim of the work presented in this thesis was to assess whether electrostatic monitoring could be an 

insightful technique to aid additive screening/development.  One of the main objectives was to relate 

surface charge signals to additive-surface interaction in a tribo-contact; to assess this, surface active 

additives were tested.  To offset the lack of additive-charge related papers in the literature, additives with 

relatively well defined surface interaction(s) were used (e.g. friction modifiers and antiwear additives), so 

that surface charge signals could be related to known additive-surface behaviour.  Both physically and 

chemically adsorbing additives were tested to investigate the surface charge generation by these two 

absorption mechanisms.  In addition, different base oils and a contaminant were used in a few studies to 

alter additives/surface interaction, in order to assess whether electrostatic charge sensors can detect subtle 

changes in additive behaviour.  The later experimental studies investigated the interaction between two 

additives for which little is known about their interaction, to assess whether electrostatic monitoring can 

offer understanding of the interaction between two additives.  This was a significant shift from known 

additive chemistry training interpretation of charge signals, to charge signals being used to identify 

unknown additive interactions.  Particular lubricant chemistry variables were carefully selected to suit the 

aims of each experimental study. 

 

Test apparatus  

A range of test apparatus and test conditions were devised to simulate the contact conditions that the 

additives selected would normally experience as a component in automotive lubricants.  A motorised TU3 

engine rig was purpose built to test lubricant performance using actual component geometry, material and 

contact conditions.  The TU3 valve-train was selected as it is the European industry standard for assessing 

valve-train scuffing.  Other studies involved tribometers with a pin-on-disc configuration; these allowed 

greater control over the tribological parameters (e.g. oil temperature, contact pressure, entraining velocity, 

surface roughness and contact materials).  Appropriate test conditions and materials were used to simulate 

valve-train, synchroniser and wet frictional clutch contact conditions using the PoD configuration.  

Additive-surface interaction is dependent on the chemical properties of the surface; therefore materials 

similar to those found in real tribological contacts, relevant to specific additive performance, were used. 

 

Real-time data 

Additives are charged or are chargeable; there interaction with a surface will generate surface charge.  

Thus electrostatic charge monitoring has the possibility of detecting additive/surface interaction, by the 

surface charge it generates or neutralises.  The work presented in this thesis is the first to use a charge 

based measurement technique to explore additive behaviour in tribo-contacts.  The charge data was 

processed in different ways, so that charge parameters, which give the most insight into additive 

behaviour, could be identified. 
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Friction data was recorded during the PoD tests to give insight into the contact conditions within the tribo-

contact.  In corroboration with other data, usually post-test inspections, the growth/presence of an additive 

film, either by reducing or increasing the friction level relative to base oil can be detected.  Wear will also 

affect the friction response.  Thus it was a useful measurement to aid interpretation of electrostatic data. 

 

Off-line test analysis 

As identified in the 1977HLiterature review Chapter, there are very few references related to additive-surface 

charge behaviour.  Therefore suitable off-line analysis was chosen to differentiate the charge related to 

wear and lubricant chemistry.  Thus, in the absence of relevant literature, off-line analysis could enable 

supposition of the charge generation mechanism.  Surface chemistry analysis (e.g. energy dispersive x-ray 

spectroscopy (EDX) & x-ray photoelectron spectroscopy (XPS)) was one of the most powerful analysis 

tools; it produces information to confirm the presence of / and if so the chemical composition of the 

additive film.  This provided critical information to which charge signals could be compared.  Surface 

chemical analysis was used in all 5 experimental Chapters, but due to the expense of such analysis, in 

some cases it was used to investigate only the most interesting charge results. 

 

Lubricant conductivity and electrokinetic sonic amplitude (ESA) measurements were taken to provide 

understanding of the level of charge species present in the bulk of the oils.  Electrostatic signals generated 

by the tribo-contact were compared to the electrokinetic properties of the lubricant; disparity between the 

two infers that the charge generated within the tribo-contact is an important factor and justifies further 

investigation of additive-surface interaction and how this drives these charge characteristics.   

 

Statistical analysis 

To investigate whether surface charge measurements directly relate to additive-surface behaviour, large 

test matrices where run, in order to test a range of components (additives, base oils and contaminants).  

Statistical analysis was employed in two studies for two reasons.  Firstly, to efficiently handle the large 

amount of real-time and post-tests data, and secondly to try to objectively identify the significance of 

additive effects and additive interactions on surface charge. 

 

The remainder of this Chapter, discuses the common elements involved with the experimental programme 

(testing procedures and post-test analysis) in this thesis.  Experiential methodology and analysis specific to 

each set of experiments are discussed at the beginning of the relevant Chapter. 
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3.1 TEST APPARATUS 

3.1.1 PCS INSTRUMENTS MINI-TRACTION-MACHINE (MTM) 

The majority of the work presented in this thesis was carried out on a PCS Instruments Mini-Traction-

Machine (MTM), made available by Chevron Oronite Co LLC, and was employed in Pin-on-Disc mode 

(pure sliding).  The MTM is widely used in the lubricant industry for additive screening tests, because it 

regulates lubricant temperature and automates load and speed, which improves repeatability.  

Modifications were made to the oil baffle and oil reservoir lid to allow the electrostatic sensor to be 

positioned over the wear track, while ensuring that the contact is fully flooded with lubricant.  A purpose 

built sensor holder was mounted on the MTM calibration points (see 1978HFigure 60).  The holder allowed two 

degrees of freedom for positioning the sensor; dial indicators were used to accurately (± 12.7μm) position 

the sensor above the wear track. The electrostatic probe monitored surface charge on the disc and was 

positioned 100° away from the pin/disc contact and 0.5 mm above the wear track (see 1979HFigure 61).  A laser 

tachometer measured the disc rotating speed for data processing purposes (see Section 1980H3.5) and to enable 

synchronisation of the electrostatic charge data and the MTM friction data. 

 

 

Figure 60. MTM with additional instrumentation: electrostatic sensor & holder and tachometer. 
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Figure 61. Schematic showing the position of the senor relative to the steel ball and steel disc. 

 

3.2 MATERIALS 

The work in this thesis involved a range of materials including cast iron, bearing steels, brass and a 

cellulose composite; these materials were used to replicate materials found in cam/follower, synchroniser 

and wet frictional clutch contacts.  Chemical and physical properties of these materials are shown in 1981HTable 

18 & 1982H19 respectively. 

 

In the PoD experiments, presented in Chapters 1983H5-1984H1985H1986H8, bearing steel instead of cast iron and/or steel was used 

for the pin, and sometimes for the disc.  The chemical and physical properties of the bearing steel (pin and 

disc) are given in 1987HTable 18 and 1988HTable 19; these are similar properties to the ferrous components of interest.  

Bearing steel, rather than cast iron specimens, have been used by other researchers looking at the 

fundamentals of lubricant interactions with an iron based surface [1989H47, 328F329, 329F330].  Homogeneous bearing 

steels are used to enhance the reproducibility and repeatability of experiments; both of which are integral 

to validate statistical analysis (see Section 1990H3.7).  For work presented in Chapters 1991H5-1992H1993H1994H8 a 6 mm diameter steel 

ball bearing was pressed into a brass cup (see 1995HFigure 62), which was then secured in a modified pin holder 

connected to the load arm (see 1996HFigure 60).  This set-up enabled the ball bearing to be easily positioned in 

the correct place for post-test analysis on the wear scar.  In addition, the ball bearing pressed into the cup 

prevents ball rotation. 
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Figure 62. 6 mm ball bearing pressed into a brass cup. 
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  C Si Mn P S Al Co Cr Cu Mo Ni V W Fe Mg Pb Zn 
Follower 2.02 0.47 0.28 0.023 0.021 0.04 0.04 11.7 0.13 0.26 0.1 0.25 0.18 Bal.    Chapter 

4 Cam 3.60 1.88 0.68 0.15 0.046 0.01 <0.01 0.02 0.4 <0.01 0.03 <0.01 <0.05 Bal.    
Chapter 
5 

BS534A99 
(En 31) 

0.95-
1.10 

0.10-
0.35 

0.40-
0.70 

    1.60      Bal    

Chapter 
6, 7, 8 

AISI 52100 0.98-
1.10 

0.15-
0.3 

0.25-
0.4 

0.025 0.025   1.30-
1.60 

     Bal    

Chapter 
8 

Brass  <0.01    <0.01   Bal     0.16 <0.01 2.80 37.1 

Table 18. Chemical composition of wear specimens used in experimental work presented in this thesis. 

 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 
 Cam Follower Pin Disc Pin Disc Pin Disc Pin Disc 
Material   BS534A99 (En 31) AISI52100 AISI52100 Paper AISI52100 Brass 

Elastic 
Modulus 
[GPa] 

- 201 210 210 201 201 201 0.780 [330F331] 201 102 

Yield Strength  
[MPa] 

- 502 - - 2003 2003 2003 - 2003 - 

Poisson’s ratio - - 0.28 0.28 0.28 0.28 N/A 0.28 0.35 

Hardness 
(Hv30) 

570 780 640 220 650-870  650-870 N/A 650-870 130-150 

Density, ρ 
[kg/m3] 

- - 7800 7830 7830 N/A 7830 8450 

Dimensions 
[mm] 

Ø(14.3 – 
19.5) x 19 
Circum.100 

15 x 20 

Ø6 Ø100 × 10 

Ø6 Ø46 x 4.5 Ø6 Substrate 
Ø46 x 4.5 
Coating  
Ø46 x 0.38 

Ø6 Ø46 x 4.5 

Roughness, Ra 
[μm] 

0.5-0.9 0.3-0.6 0.09 0.02 0.015 0.01 0.015 9.2 0.01 0.15 

Table 19. Physical properties of wear specimens used in experimental work presented in this thesis. 
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3.3 LUBRICANT CHEMISTRY 

3.3.1 BASE OIL 

A range of base oils were used to replicate the base oil used for different contacts under simulation and to 

investigate how additives behave in different base oils.  A list of their rheological and chemical properties 

is given in 1997HTable 20. 

 
 Base Oil 1 Group I Group II PAO 
Used in chapter 4, 5 6 6, 7, 8 6 
Temperature, T [oC] 20 100 100 100 100 
Kinematic Viscosity, ν [cSt] 103.10 6.30 4.05 4.05 3.87 
Viscosity Index 105 95 103 121 
Density, ρ [kg/m3] 871.56 864.07 862.39 816.98 
Absolute Viscosity, η [cP] 103.1 5.49 3.50 3.49 3.16 
Pressure viscosity index, α [1/GPa]  20  13.5 11.7 10.7 
Sulphur [ppm] 3,830 4,120 6.6 <6 
Nitrogen [ppm] 21.4 20.3 1.04 0.004 
Aromatics [wt%] 23.5 23.2 0.219 <0.1 

Table 20. Rheological and impurity levels of base oils used in work presented in this thesis. 

 

3.3.2 ADDITIVES 

For early studies, additives selected (see 1998HTable 21) had to be; surface active, commonly found in 

crankcase oils and therefore could be tested under conditions simulating the cam/follower contact, and 

finally their behaviour needed to be relatively well characterised in the literature.  The mode of additive 

adsorption, as a group of additives, had to be split roughly equally into chemically and physically 

adsorbing.  The latter two studies saw a change in investigative approach; additives were chosen because 

of their interaction with one another, and preferential adsorption to one material over another.  For these 

additives comparatively little was known about their behaviour.  The purpose of this was to assess whether 

electrostatic monitoring could give insight into additive behaviour. 

 

The majority of lubricant testing involved single additives.  It is acknowledge that in practice tribofilm 

formation, stability and removal processes will be affected by other additives in fully formulated oils.  

However understanding these processes in model tribofilms will facilitate the understanding of the more 

complex processes related with the tribofilm formed from fully formulated lubricants, a point noted by 

other researchers [1999H111].  Combined, additives tend to behave differently to their singular use; the latter 

two studies addressed this to a degree, through systematic characterisation of the performance of binary 

additive systems, with different elements, alone and in combination.  This is fairly common practice in the 

lubricant industry, to promote additive selection [2000H237]. 
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Unless stated, additives were blended into the base oils at 1% wt., to minimise any rheological changes, 

thus allowing additive chemistry effects to be easily assessed, rather than the more difficult task of 

decoupling lubricant mechanical properties from additive chemistry, where the concentrations are not 

controlled.  Additives were dispensed into base oil and mechanically stirred for 10 minutes, on a magnetic 

hot plate stirrer, followed by 60 minutes in an ultrasonic bath at 30°C.  All blends were ultrasonically 

shaken for 30 minutes prior to testing. 
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Generic 
description 

Abbreviation Description  Used in  
chapter 

Dispersant 1 A commercially available post-treated conventional bis-succinimide made from polyisobutene having a number average 
molecular weight of 2300 Daltons.  It is characterised by 1.0% nitrogen.  It consists of one polar-head connected to two 
hydrocarbon tails and has a theoretical molar mass of about 5600 Daltons [331F332, 332F333].  See 2001HFigure 31(b). 

4, 5 Dispersant 

Dispersant 2 A polymeric succinimide dispersant. It is made from an alpha olefin/maleic anhydride copolymer, a polyisobutenyl 
succinic anhydride having a number average molecular weight of about 2300, and an ethylene polyamine.  It is 
characterised by 1.2% nitrogen.  It is a mixture, theoretically of one mole of polymeric succinimide, Mn≈35000, and four 
moles of bis-succinimide, Mn≈5600.  The polymeric succinimide has about 10 polar-heads per molecule [2002H3322003H-333F334]. 

5 

 Dispersant 3 A conventional mono- Mono-polyamine succinimide dispersant, made from polyisobutene having an average molecular 
weight of 1200.  It contains one polar-head per hydrocarbon tail and according to molecular modelling13F

†††† is 70Å in 
length (tail-head).  The polar-head contains 3 amine functional groups.  See 2004HFigure 31(a). 

6, 7 

Detergent Detergent An overbased sulphurised calcium phenate, containing excess base in the form of calcium carbonate.  It is characterised 
by a total base number of 250 mgKOH/g, and 9.25% Calcium.  The surfactant hydrocarbon tail is branched C20-28, 450 
Mwt  See 2005HFigure 34(d). 

5, 6, 

GMO Glycerol mono-oleate.  See 2006HFigure 39. 6 
MGMO Modified Glycerol mono-oleate. 6 
MoDTC Molybdenum dithiocarbamate.  See 2007HFigure 40. 6 

Friction 
modifier 

FM 1 A FM used in Automatic transmissions, not IC engines. like Disp1 It is a bis succinimide, 2 hydrocarbon tails to one 
polar-head, but with a much smaller hydrocarbon tail; dimensions of 28Å tail-head2008H

†††† and 41Å tail-tail 2009H

††††.  The polar-
head contains one amine functional group.  See 2010HFigure 31(b). 

7 

ZnDTP 1 Primary zinc dialkyldithiophosphate.  2011HFigure 42(a). 5 Antiwear 
ZnDTP 2 Secondary Alcohol zinc dialkyldithiophosphate.  2012HFigure 42(b). 6 
Borate Dispersed potassium borate. The mean particle size of the colloid was 163nm14F

‡‡‡‡ in diameter.  The surfactant length was 
approximately 7 nm, therefore the potassium borate particle was 149nm in diameter.  More details of a similar potassium 
borate additive can be found in [2013H243].  See 2014HFigure 45. 

8 Extreme 
Pressure 

Polysulphide The hydrocarbyl polysulphide additive varies in molecular weight from 144 to 390, and has an average molecular size of 
about 9 Å.  See 2015HFigure 44. 

8 

Table 21. Chemical and physical properties of additives used in work presented in this thesis. 

(Further details regarding the structures of the chemicals can be found in [334F335].)  

                                                      
†††† Minimum energy conformations, and molecular dimensions, for additives were determined using Cambridgesoft Company CSChem3d Pro software version 7.0.0. Conformations 
were minimised to an RMS gradient of 0.05. 
‡‡‡‡ characterised using a Horiba Instruments LA920 – Laser Particle Size Analyser 
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3.3.3 CARBON BLACK 

Carbon black was used as a contaminant in two experimental studies; this follows other research work 

where carbon black was used as a model soot compound [2016H278].  The carbon black used as a surrogate for 

diesel engine soot was Raven 1040, supplied by Columbian Chemicals Company, Marietta, GA, USA.  

Raven 1040 has the following properties [335F336]: 

• Primary particle Size: 28nm 

• Average agglomerated particle size: ~ 300nm 

• Nitrogen Surface Area: 95m2/g 

• Cetyltrimethylammonium Bromide Surface Area: 100m2/g 

• Dibutylphthalate Oil Absorption: 100cc/100g 

• Density: 192 kg/m3 

• pH: 2.8 

• Percent Volatile: 3.0 

The contaminated oils contained carbon black blended at 2% wt.  The carbon black-laden oil was mixed 

using a rotor stator type high shear mixer model T25 Basic Dispenser w/S25N-18G manufactured by IKA 

Laboratory Analytical and Processing Equipment.  Oil and carbon black were mixed for one minute, and 

then the oil was degassed in a vacuum oven for 15 minutes at about 55°C.  Like the non-contaminated 

oils, contaminant oil blends were ultrasonically shaken for 30 minutes prior to testing on the either the 

PoD or MTM tribometer 

 

3.4 TEST CONDITIONS AND PROCEDURE 

Sample preparation 

All wear specimens were cleaned prior to testing.  For both the MTM and PoD the pins and discs (as well 

as all removable components) were ultrasonically cleaned in HPLC-grade heptane for 30 minutes at 40oC.  

The reservoir and non-removable parts were cleaned with HPLC-grade toluene followed by HPLC-grade 

heptane.  The cam and follower, which were too large to be ultrasonically cleaned, were cleaned using 

hexane and a lint free cloth. 

 

The test conditions and procedures are somewhat different across the 5 experimental studies (see 2017HTable 

22), principally because different contacts were simulated and different test apparatus was used; details of 

these differences are discussed within each experimental Chapter.  However there are some similarities, 

firstly all tribological studies presented in this thesis were carried out under pure sliding conditions.  

Secondly all experiments were designed around using contact pressure, sliding speed and lubricant 

temperature to simulate automotive contacts and conditions of interest.  The contact pressure, oil film 
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thickness and lambda ratio equations discussed in Sections 2018H2.1.1.1 & 2019H2.1.3 respectively, were used to 

ensure the contacts were operating in the appropriate lubricant regime. 

 

For all PoD work (whether on the ‘in-house’ PoD Tribometer or MTM) the test was split into two stages.  

The first involving a continually changing test condition (sliding speed or load) and for the second stage 

all test conditions were kept constant.  As the MTM was used in 3 out of 5 experimental studies, the core 

experimental procedures are discussed below. 

 

For all experiments involving the MTM, the reservoir was heated until the oil reached the test temperature 

of 100°C, which typically required 15 minutes.  During this period the disc was rotated at 0.8 m/s without 

the pin in contact.  Once thermal equilibrium was achieved the test was started.  All tests were split into 

two stages; during the first stage the sliding speed decreased incrementally over 2.5 minutes and the 

second stage was run at constant speed, which was always the minimum sliding speed between the pin and 

disc.  For all MTM tests the contact pressure remained constant throughout stage one and stage two. 
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 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 
Contact simulated  Cam-follower Cam-follower Cam-follower Automatic transmission 

frictional clutch 
Manual transmission 

synchronizer 
Test apparatus Motorized TU3 

engine 
In house Pin on Disc MTM MTM MTM 

Stage  1 2 1 2 1 2 1 2 
Duration [mins] 45-345 12.5 60.0 2.5 25.0 2.2 33.3 2.2 33.0 
Sliding speed [m/s] 0 – 3.0 

400-1000rpm 
5.0 5.0 – 1.0 0.8 4.5 – 0.6 0.2 4.5-0.6 0.2 

Load [N]  0-30 30 7 3 7 
Max Contact Pressure 
[MPa] 

683 [2020H52] 0-2050 2050 1219 400-425 964 

Mean contact pressure 
[MPa] 

N/A 0-1365 1365 810 N/A 643 

Maximum Shear Stress 
[MPa] 

N/A 0-635 635 381 N/A 299 

Max Tensile Stress 
[MPa] 

N/A 0-317 317 183 N/A 149 

Depth of Max Shear 
[μm] 

N/A 0-34 34 25 N/A 34 

Contact diameter [μm] N/A 0-167 167 105 N/A 117 
Minimum Film 
thickness [μm] 

0.76 – 0.0715F

§§§§  0.47 0.04-0.01 0.01 – 0.01 N/A 0.04 - 0.01 0.01 

Oil Temperature [oC] 19.5-60 15-23 100 100 100 
Lambda ratio 1.3 - 0.06  3.12 3.07-0.85 0.88 - 0.73 Boundary 0.26-0.07 0.03 

Table 22. Details of test conditions used for experiments presented in this thesis. 

 
 
 

                                                      
§§§§ Calculated for an SAE 10W30 grade oil 



Chapter 3  Experimental Methodology 

111 

 

3.5 REAL-TIME DATA 

3.5.1 INSTRUMENTATION 

A button-type inductive electrostatic sensor was used in all experiments (see Section 2021H2.4.2.3 & 2022H2.4.2.2, for 

construction and principle operation, respectively).  Two sensors with differing sensing areas were used; 

one with a sensing area of 7.85 x 10-5 m2 (10 mm diameter sensing face), and the second with a sensing 

area of 5.03 x 10-5 m2 (8 mm diameter sensing face).  The sensors, in all applications, were positioned 

(approximately) 0.5 mm above the component surface, through the use of feeler gauges or dial indicators. 

 

The button-type electrostatic sensor was connected to a signal-conditioning unit (Endevco charge 

amplifier), which converted the charge into an amplified voltage signal (see 2023HFigure 63).  This conditioning 

unit also gave a selectable gain range from 1 mV pC-1 to 1000 mV pC-1.  The conditioning unit also had 

switchable high pass and low pass filters, set at 1 Hz and 10 kHz respectively.  The incorporation of a high 

pass was designed so that only dynamic charge events are monitored and is insensitive to static/constant 

charges.  The unit also processed the signal to provide an inverted output to reproduce the same polarity as 

the charge monitored. 

 

The component rotation speed was measured using an optical tachometer, purchased from Compact 

Instruments Limited, for data processing purposes.  The tachometer was bench model BT10000 with 

optional pulse output (BT1000) giving a voltage output of 0-10 V and was connected to a VLS5/D Laser 

sensor (see 2024HFigure 63).  A reflective strip was affixed to the PoD/MTM motor shaft, or the camshaft 

pulley, and the optical sensor was position adjacent to the shaft. 

 

Electrostatic
Sensor

Charge 
Amplifier

Laser
Tachometer

Signal 
Generator 

Analogue / Digital
Data acquisition

PC

Microdot

Software 
Time signal average
(2 second average)

• QRMS
• QMin
• QMax
• QSD

Raw data sample 2s 
(every 10 mins)

Once per revolution 
signal average

(average every 10s)
• Charge Colour Map 

(Bayonet Neill Concelman)

BNCBNC

USB

BNC

 

Figure 63. Instrumentation and software output parameters for electrostatic sensing systems. 
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3.5.2 ELECTROSTATIC CHARGE DATA ACQUISITION AND SIGNAL PROCESSING 

Recording of on-line measurements was performed with a PC data acquisition system, using a Data 

Translation DT321 16-bit 8-channel A/D card, at a sample rate of 4096Hz.  2025HFigure 64 (a) & (f) show the 

electrostatic charge raw data over 10 second and 600 second periods respectively.  Raw electrostatic 

charge data is noisy and the bi-polar nature tends to make observations, such as whether the charge level is 

increasing or becoming more dynamic, more difficult.  Therefore signals produced by the charge 

amplifiers and tacho-generator were processed, analysed, displayed, and stored in real-time using a 

software analysis suite developed by GE Aviation (Smith Aerospace Information Systems).  The software 

analysed the data in two ways, a time signal statistical algorithm and a once per revolution signal average 

(see 2026HFigure 63).  In addition a raw data sample, 2 seconds in length was recorded every 10 minutes, so that 

processed data could be compared to raw data.   

 

3.5.2.1 Time signal statistical algorithm  

Time signal averages smoothes out the data enabling certain parameters to be isolated and trends to be 

identified over a period of time.  Every 2 seconds of raw data is processed to give charge: rms average, 

minimum, maximum and standard deviation (designated as QRMS, QMin, QMax and QSdev respectively).  An 

example of the processing of 10 seconds of raw data is plotted on top of the raw data graph to demonstrate 

how the data is sectioned (see 2027HFigure 64 (a)).  2028HFigure 64 (b)-(i) shows how, plotted individually, the 

analysed parameters vary over 10 second; many of these features would not be discernable by viewing the 

raw data.  This is definitely the case when dealing with tests over a comparatively long duration (compare 

2029HFigure 64(f) with (g)-(j)). 
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Figure 64. 10 seconds of electrostatic charge data: (a) raw (with time signal average parameters 

overlaid), (b) mean, (c) rms, (d) standard deviation, (e) minimum and maximum. And 600 

seconds of electrostatic charge data: (f) raw, (g) mean, (h) rms, (i) standard deviation, (j) 

modulus of minimum and maximum. 
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Mean & RMS 

Due to the bi-polar nature of the charge signal (see 2030HFigure 64(a) & (f)), calculating the mean of the charge 

signal typically produces a value close to 0 pC.  This parameter gives information about the positive 

charge relative to negative charge, rather than the charge magnitude (see 2031HFigure 64 (b)).  A better 

parameter for charge magnitude is the root mean squared (rms) which enables the overall charge level 

(irrespective of sign) to be assessed (see 2032HFigure 64 (c)).  RMS charge has been the main parameter used by 

other researchers using electrostatic monitoring.  At the most basic level, rms charge is thought to give an 

indication of the severity of wear or the type of additive adsorption.  More subtle changes in rms charge 

could correspond to changes in wear mechanisms or changes in additive film coverage; an increase in 

charge could result from a thickening of the additive film, or greater additive coverage. 

 

Standard deviation 

Charge standard deviation (see 2033HFigure 64 (d)) is a measure of data spread and is thought to be a parameter 

which indicates the transient nature of tribological processes, for example, the stability of the tribofilm. 

 

Minimum Maximum 

The minimum (Min) and maximum (Max) charge data is the lowest and highest charge magnitude 

respectively of the 2 second segment, but due to bi-polar nature of the electrostatic charge signal usually 

Max is positive and Min is negative (see 2034HFigure 64 (e))  The Min and Max charge data are useful to try 

and identify the charge generation mechanism.  For example, if a particular additive is known to produce a 

negative surface charge through adsorption, then a high negative charge relative to background charge 

levels indicates adsorption of that particular additive.  Although the way charge data is plotted in 2035HFigure 

64 may infer that both positive and negative charges are coinciding at a single point in time and thus a 

single point on the component surface, this is not the case, merely that in a 2 second average both positive 

and negative charges have been detected.  In fact taking a once per revolution average (see Section 

2036H3.5.2.2) of the 10 seconds raw data shows that the min data (see 2037HFigure 64 (e)) corresponds to a discrete 

region of negative charge at 120o, while the max data relates to the remaining predominantly positively 

charged disc (see 2038HFigure 65).  The presentation of the Min / Max data in 2039HFigure 64 (e) can make it difficult 

to observe the change in dominance of one charge sign over another; to clarify this the modulus is taken of 

the charge data (see 2040HFigure 64 (j)). 
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Figure 65. Positive and negative electrostatic charge distribution around the disc sensing area. 

 

3.5.2.2 Once per revolution signal average 

An alternative way of viewing charge data is to process the raw data into a once per revolution charge 

map.  Raw data (see 2041HFigure 66 (a)) is split into 10 second segments (see 2042HFigure 66 (b)); using the tacho 

signal (see 2043HFigure 66 (c)) the data is further sliced into one revolution segments (see 2044HFigure 66 (d)).  These 

segments are averaged across the angle of rotation (see 2045HFigure 66 (e)).  A range of colours are assigned to 

represent a range of charge magnitudes (see 2046HFigure 66 (f)); the charge magnitude is plotted as a function 

of component rotational orientation and time.  Over a 600 second period, 60 signal averages will be 

produced (see 2047HFigure 66 (h)).  This technique enhances the cyclic content of the signals, suppresses 

random non-related effects, and can determine electrostatic charge features associated with a specific 

location on the component.  Development of new features within the signal average as time progresses 

allows correlation of charge with areas of tribological interest; for example, additive film 

formation/removal or adhesive wear. 

 

There maybe occasions where constant charge features mask other features of interest.  By subtracting the 

first (or however many) signal averages away from subsequent data may reveal new features (background 

subtraction).  For example the dominant negative charge at approximately 120o on the once per revolution 

colour map (see 2048HFigure 66 (h)), hides the charge feature just prior to 200 seconds, by subtracting the first 

10 averages from the entire data set, the feature prior to 200 seconds is now obvious (see 2049HFigure 66 (g)); 

this technique is called normalisation.  This does not necessarily work well when key features (always at 

the same angle) vary in magnitude across the test.  In addition, using the first few once per revolution 

averages to subtract from the rest of the data, assumes that no transient processes are occurring at the 

beginning of the test; this is not always the case. 
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Figure 66. Schematic showing how the once per revolution colour map is produced.  (a) 600 seconds 

of raw charge data, (b) 10 seconds of raw data (c) raw charge and tacho data over 1 

second, (d) raw data sliced into once per revolution segments, (e) an average of the raw 

data once per revolution segments, (f) a colour map representation of the average once 

per revolution charge profile, (g) a series of 60 successive 10 seconds averaged once per 

revolution profile, and (h) normalisation of (g). 
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3.5.3 ADDITIONAL REAL-TIME MEASUREMENTS 

All three pieces of test apparatus involved additional real-time measurements other than electrostatic 

surface charge.  The oil sump temperature in the TU3 engine was monitored using a thermocouple and a 

stand-alone data acquisition system acquired at one data point every 10 seconds.  The output from the 

force transducer on the ‘in-house’ PoD load arm was analysed through an auxiliary input in the GE 

software and was processed in a similar manner to the charge time signal statistical algorithm.  This was 

converted to coefficient of friction (COF), using calibration plots.  The MTM, using PCS software, 

produced averaged COF every two seconds, the auxiliary tacho was used to synchronise the MTM friction 

data and the electrostatic charge data. 

 

3.6 OFF-LINE ANALYSIS 

The literature review highlighted the limited number of papers that have related charge to wear and that 

very few papers relate additive behaviour to surface charge generation.  For this reason, off-line analysis 

was relied upon to gain insight into the charge signals.  Off-line analysis was carried out to identify 

lubricant electro-kinetic properties, and surface physical and chemical properties.  Surface analysis 

involved; visual observations through optical and scanning electron microscopy; topographical analysis 

through contacting and laser profilometers, and chemical analysis through energy dispersive x-ray 

spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS). 

 

3.6.1 CONDUCTIVITY 

All conductivity measurements were performed prior to wear testing with a Wolfson Electrostatic liquid 

L30 conductivity meter (see 2050HFigure 67), made at the University of Southampton.  The conductivity meter 

can measure in a range of 0.1 pS m-1 to 2.0 × 109 pS m-1.  Further details of this equipment can be found in 

[336F337,337F338]. 
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Figure 67. Wolfson Electrostatic liquid L30 conductivity meter. 

 

3.6.2 QUANTIFYING SPECIMEN WEAR 

3.6.2.1 Non-contact optical surface profilometry 

A XYRIS 4000WL TaiCaan Technologies 3-D profilometer was employed to examine pin and disc wear 

scars for both PoD and MTM tribometers.  This system has an x-y table motion of 25 mm and a WL 

(white laser) sensor.  The sensor has a 0.35 mm gauge range with 7 μm spot size.   

 

For the worn ball samples the topographical measurements were compared to a 6mm diameter sphere (the 

dimensions of an unused ball) using Bodies (proprietary TaiCaan software); the difference between the 

two was deemed to be the volume loss.  The disc wear track was analysed at 4 positions, 90o from each 

other.  The unworn area was used as a reference plane to calculate volume loss below the plane and 

volume gain above the plane; the difference between the two was used to calculate wear volume loss.  The 

volume loss was calculated from an average scar area over the 4 positions and multiplied by a function of 

the circumference, to give the total disc volume loss.  The wear volume loss for each tribo-couple was 

then inserted into equation 2051H(33) to calculate the specific wear rate (SWR). 

 

3.6.2.2 Contact profilometry 

Two dimensional topographical analyses of the cams, followers and discs were carried out using a Taylor 

Hobson Talysurf 120L profilometer.  The analysis procedure for these components is described within 
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their appropriate experimental Section.  The specifications of the Taylor Hobson 120L form profilometer 

are as follows: 

 

Traverse Speed 10 mm s-1 maximum 

Measuring Speed 1 mm and 0.5 mm s-1 ±5% 

Return Speed up to 5 mm s-1 

Gauge Type 6 mm Laser Stylus range  

Measuring Range 10 mm 

Resolution 12.8 nm @ 10mm range 

Range to Resolution Ratio 780,000:1 

Straightness Accuracy 0.5 µm over 120 mm traverse  

 0.2 µm over 20 mm traverse 

Data Resolution 0.25 µm  

Dimensions (L x D x H) 396 x 127 x 195 mm 

 

3.6.2.3 Optical microscopy 

Surface wear mechanisms and wear scar geometry for dissimilar tribo-couples (Chapter 2052H7 & 2053H8) were more 

difficult to quantify than typical steel/steel contacts.  The ball wear was analysed by measuring the wear 

scars using a digital optical microscope.  Two optical microscopes, Olympus BH and Olympus BH-2, 

were employed; the Olympus BH has a black and white MOTIC 2000 digital camera attachment, while 

the Olympus BH-2 has Prosilica EC 1350 colour camera attachment using GigEViewer software.  Due to 

the elliptical nature of some wear scars, they were characterised by two measurements; the first in the 

direction of sliding and the second perpendicular to the sliding direction. 

 

3.6.3 SCANNING ELECTRON MICROSCOPY & ENERGY DISPERSIVE X-RAY 

A Philips XL30ESEM environmental scanning electron microscope was employed to analyse the wear 

scar morphology to identify wear mechanism.  The SEM was also equipped with an energy dispersive x-

ray microanalysis spectrometer system, manufactured by EDAX Phoenix, which was used to reveal 

elemental composition.  Operating voltages range from 0.5 to 30 kV and an ultimate resolution of 1.5 nm 

at 15kV.  The SEM and EDX are controlled and analysed by proprietary software produced by Philips and 

EDAX respectively. 
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3.6.4 X-RAY PHOTO-ELECTRON MICROSCOPY 

Post-test x -ray photoelectron spectroscopy (XPS) analysis was carried out, in collaboration with Dr Sheila 

Yeh 16F

***** at the Chevron Richmond Technology centre, on selected wear specimens in Chapters 2054H5-2055H2056H2057H8.  XPS 

is a technique used to analyse the surface chemistry of a material (unlike EDX it can be conducting or 

non-conducting), without the need for time intensive preparation.  XPS analysis was used to identify the 

composition of the additive tribofilm and how composition varies with depth, in order to try to relate 

charge and friction signals to additive-surface interactions.  The XPS analysis carried out can be split into 

two techniques: on and off the wear scar surface chemistry analysis and elemental depth profiling.  These 

were carried out on 3 XPS analysers. 

 

3.6.4.1 Kratos AXIS-HS 

The formation and chemical composition of additive tribofilms on steel, paper and brass (Chapter 2058H6,2059H7 & 2060H8 

respectively) on and off the wear scar/track were studied by XPS using a Kratos AXIS-HS analyser.  The 

XPS analysis was performed by bombarding the surfaces with a beam of monochromatic Al Kα x-rays 

with energy of 1486.6 eV.  The beam size used was 0.4 mm x 1.8 mm and the analysis averaged the 

elemental concentration over a 0-110 Å depth.  The total acquisition time for each spot was 1.5 hrs and 

individual spectral regions were scanned at a high spectral resolution of 1.2 eV full width at half 

maximum.  Tribofilm compositions were determined from the intensities of characteristic core-level 

electron peaks of the XPS spectra.  The core-level electron peaks were fitted as Gaussian line shapes (by 

Kratos software).  The atomic percentages of tribofilm constituents were determined from the calculated 

areas under the corresponding Gaussian profiles.  Line positions were used to infer the various chemical 

states.  Analysis of the discs was carried out in the centre of the wear track.  For the brass and steel discs 

this was 1.0-1.2 mm either side of the wear track for the paper disc it was 1.2-1.4 mm. 

 

3.6.4.2 PHI Quantum 2000 instrument 

The surface chemistry of three balls were analysed in Chapter 2061H5.  These three balls had shown interesting 

topographical features (via laser Profilometry see Section 2062H3.6.2); it was therefore desirable to relate these 

topographical features to surface chemistry.  Due to the small scale of these topographical features XPS 

analysis was carried out on three worn pin samples by Evans Analytical Group (California, USA) using a 

PHI Quantum 2000 instrument.  The x-ray source and the spectral resolution were similar to that of the 

Kratos system, but the x-ray beam had a spot size of 5μm across and 95% of the analysed signal originates 

from a depth of ~50-100 Å. 

 

                                                      
***** Chevron Energy Technology Company – Integrated Laboratory Technologies 
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3.6.4.3 Quantera SXM system 

Elemental depth profiling of the additive tribofilm on steel (Chapter 2063H6) and brass (Chapter 2064H8) was carried 

out using a Quantera SXM system.  The XPS analysis was performed by bombarding the surfaces with a 

beam of monochromatic Al Kα x-rays with energy of 1486.6 eV.  The analysis beam spot size was 18μm 

diameter and was set at 45o to the surface.  Surface etching was carried out to gain understanding about 

how the tribofilm elemental composition changes as a function of depth and to get an approximate value 

of the tribofilm thickness.  The tribofilm was Argon etched at 2 keV, at a rate of 6.4 nm/min (relative to 

SiO2); the tribofilm surface was analysed every 2-6nm. 

 

3.7 THE USE OF STATISTICAL METHODS FOR MULTIPLE VARIABLES AND MEASURED 

PARAMETERS 

The following statistical approach was devised in conjunction with Jo Martinez17F

†††††.  Statistical analysis of 

test data was carried out by Jo Martinez using SAS software. 

 

Statistical analysis is an important tool employed in this thesis to relate additive behaviour to surface 

charge generation.  Statistical analysis also makes interpreting interactions between multiple charged 

species in the oil more manageable.  To evaluate the effect of two or more independent variables (e.g. 

additives) on a dependent variable (e.g. charge), a factorial design is employed and analysis of variance 

(ANOVA) is used to analyse the data.  ANOVA determines the significance (p-value) of variable effects 

or variable interactions on measured parameter (see 2065HTable 23). 

 

Independent variable Dependent variable (Measured Parameters) 
Variable Variable Interaction Real-time data Off-line analysis 
Additive Additive – Additive  Electrostatic charge Disc wear 
Base Oil Additive – Contaminant  Coefficient of friction Ball wear 
Carbon black (contaminant) Additive – Base oil  Conductivity or ESA 

Table 23. ANOVA statistical terms and examples. 

 

When experimental costs are high, or the risk (of success) is unknown, statistical methods can enable 

extraction of unbiased information, regarding the factors affecting a variable, from as few observations as 

possible.  (This was the case for work presented in Chapter 2066H5).  Fractionated factorial matrices are used 

to reduce the number of tests required to evaluate varying order interactions, which is defined as the effect 

of one independent variable (e.g. additive A) as a result of the level (e.g. presence or absence) on another 

independent variable (e.g. additive B).  Optimal design procedures are used for this purpose.   

                                                      
††††† Lead Research Statistician, Global Statistics/Global Partnership Services, Products and Technology, Chevron 
Oronite Company LLC 



Chapter 3  Experimental Methodology 

122 

 

The aim of Optimal Design is to derive unbiased (or least biased) main effects and interactions with a 

minimum number of observations.  The D- and A- optimal design procedures are methods used to select 

from a list of candidate points (combinations of factors), those points that will extract the maximum 

amount of information from the experimental region (the n-dimensional space where the model is 

applicable).  D-optimal design maximises the determinant D- of a matrix, which indicates factor effects 

that are maximally independent of each other.  A-optimal designs also seeks independence, but by 

maximising the diagonal elements of the matrix, while minimising the off-diagonal elements.  Searching 

for the best design is not an exact method, but rather an algorithmic procedure that employs D- and A- 

optimal criteria along with the model (e.g. fractionated factorial) required to fit to the data and the number 

of tests desired to find the best design. 

 

In Chapter 2067H5 the effect of two dispersants, a detergent, an antiwear additive and carbon black on 

electrostatic charge, friction and wear, was tested.  Standard analysis would require all 5 variables to be 

separated by running 32 tests.  For the work presented in Chapter 2068H5 a fractionated (half) factorial matrix 

2(5-1) (16 test oils) allowed the main effects and 2-factor interactions to be evaluated using ANOVA.  The 

half factorial matrix described above has the disadvantage of insensitivity to three or more factor 

interactions.  However it was decided that this number of interactions was not a key concern at this early 

stage of research.  The original 16 blends were designed so that the factor effects are maximally 

independent of each other (A- and D- optimality), which are shown in 2069HTable 26. 

 

In Chapter 2070H6, six additive: detergent, dispersant, ZnDTP and three different friction modifiers, were 

blended into API Group I, Group II and poly alpha olefin (PAO) base oils.  A full factorial matrix was 

constructed and each base oil test (non-additized) was repeated, giving 24 runs in total.  A full factorial 

matrix was run in this study for two reasons: firstly the statistical approach was validated by the initial 

study (Chapter 2071H5) and secondly, although the changing of multiple variables could be handled by the 

statistical approach, it meant that interpretation and comparison between real-time data was difficult. 

 

The measured parameters (dependent variables) obtained from running the fractionated or full factorial 

matrix were disc wear, ball wear, conductivity and real-time data.  The real-time data, including the COF 

and rms charge, were averaged for the duration of stage 2 of each test to assess correlation over the whole 

test period.  The data in Chapter 2072H5 were also averaged for every 5 minute interval (described as interval 

electrostatic charge hereafter) to try and assess correlations of dynamic real-time features.   

 

ANOVA is used to analyse the measured parameters.  ANOVA has the following assumption to make it 

valid: 

1. Samples are randomly selected. 

2. Sample distributions are normal. 
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3. Homogeneity of Variance - the variances of the different groups are equal. 

 

Assumption 1 is achieved by randomising the test runs in the factorial matrix.  If assumptions 2 and/or 3 

are violated, the data can be transformed to make the data normally distributed and to stabilise the 

variance.  The Box-Cox procedure was used to identify the appropriate transformation of the data.  

Typical transformations include: 2y , y , )log(y , 
y

1  and y
1  

 

With the above assumptions met, ANOVA is used to determine whether two or more means are different.  

This procedure tries to identify sources of variability from one or more factors and uses these variances to 

decide whether ‘the means’ are significantly different.  The residual error is required for estimating the 

probability of significance.  The work in Chapter 2073H6 achieved this through repeat base oil tests.  The 

probability of errors (i.e. p-value) is used to indicate the significance of the interactions on the variable 

and its associated response.  For p-values less than 0.05, the interactions between the factors are 

considered significant because only 5% of the interaction could be explained by other factors.  When, 

0.10 > p-value > 0.05 the variable or variable interaction is marginally significant. 

 

Because of the fractionated nature of the matrix and because there were no randomised repeat tests in 

Chapter 2074H5, there was no residual error for estimating the probability of errors (p-value).  A model with 

only the most probable significant effects (as highlighted from the sum of squares plots) was introduced to 

overcome insufficient degrees of freedom for error estimating, required by a full model (i.e. randomised 

repeat tests).  Essentially, this involves visually looking at the data to identify which factor(s) stands out 

from the rest of the data; the significance of the identified factor is calculated by using the rest of the data 

to simulate repeat tests, thus providing enough degrees of freedom.  Extra degrees of freedom created by 

this model were used to estimate the error. 

 

Further details of the statistical methods used can be found in references [338F339,339F340]. 
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4 SCUFFING DETECTION OF TU3 CAM-FOLLOWER CONTACTS BY 
ELECTROSTATIC CHARGE CONDITION MONITORING  

 

4.1 INTRODUCTION 
The immediate affect of wear in an automotive engine is that it roughens component surfaces, which result 

in greater friction and therefore reduces fuel efficiency.  One of the main contacts, that wear has a major 

impact on engine performance is the cam-follower.  This Chapter presents work from experiments where 

electrostatic sensors were used to monitoring the cam-follower the contact.  A series of experiments were 

carried out on a non-fired (motorised) TU3 engine to investigate the prominent charge mechanisms under 

no-wear conditions and adhesive wear.  Carbon black contaminated oil test was carried out to simulate 

scuffing in a short duration.  Mild wear tests, which used a fully formulated oil and oil starvation tests, 

were carried out to try to decouple the charging mechanism in the carbon black contaminated oil test and 

identify charge features associated with the transition to scuffing. 

 

4.1.1 AIMS 

The aims of this work are to:  

• Instrument an industry standard automotive engine (TU3) with electrostatic sensors to monitor the 

surface charge of the cam. 

• Characterise the background levels of the system and understand how it is affected by lubricant 

temperature and engine rotation speed. 

• Assess the sensitivity of electrostatic sensors to detect the onset and progression of adhesive 

(scuffing) failure. 

• Further understanding of soot initiated and oil starved adhesive failure. 

 

4.2 EXPERIMENTAL PROCEDURE 

4.2.1 MODIFICATIONS TO ENGINE 

A 1.3L TU3 engine was used in a non-fired mode, driven through the crankshaft by a 5.5 kW motor.  The 

camshaft was driven by a timing belt connected to the crankshaft.  The pistons and part of the connecting 

rods were removed, to minimise the wear from other components in the engine which might influence the 

charge measurements.  The crank shaft bearings were held by the remaining part of the connecting rod, to 

maintain the correct cylinder head oil pressure.  All followers were removed except the one contact of 

interest (see 2075HFigure 68), again to minimise the effect other wearing components have on charge detection.  
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Spacers were used to replace the missing followers to ensure the designed oil pressure is maintained.  An 

oil recirculation system was attached to the engine (where the oil filter is normally located).  This enabled 

the oil temperature to be controlled by a heat exchanger.  During the wear test, a cap was placed onto the 

oil filter adapter/spacer to replace the oil filter to avoid removal of the entrained carbon black. 

 

Two WSSs were employed to monitor cam lobes 3 and 5 (from pulley end).  These were located on the 

exhaust manifold side of the head, 6 mm below the cam centre line and 0.5 mm from the cam-nose (see 

2076HFigure 68); previous tests indicated this positioning gave the best resolution.  The sensing face of the WSS 

had a diameter of 10 mm; the cam and follower widths were 19 mm and 15 mm respectively. 

 

Wear site sensors

Camshaft

Follower
Follower shaft

Valve Spring

Valve

Wear site sensors

Camshaft

Follower
Follower shaft

Valve Spring

Valve

 

Figure 68. Schematic diagrams of the positioning of the two wear site sensors relative to the TU3 
valve-train. 

Details of the instrumentation, data acquisition and signal processing can be found in Section 2077H3.5.1 & 

2078H3.5.2.  The oil sump temperature was monitored using a thermocouple and a stand-alone data acquisition 

system. 
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Figure 69. TU3 instrumentation and data acquisition systems. 

 

4.2.2 TEST MATERIALS  

The chemical composition of the followers and camshaft are shown in 2079HTable 18.  The cams were made of 

chilled cast iron with a graphitic nodular structure (see Section 2080H2.2.1.3) at the centre of the cam shaft, with 

reduced nodular content and increased graphite flakes towards the surface.  The followers are high 

chromium cast steel (see Section 2081H2.2.1.3).  2082HTable 19 shows the mechanical and physical properties of the 

camshaft and follower, which illustrates the difference in cam and follower hardness.  

 

4.2.3 TEST METHODOLOGY 

Experiments were divided into two categories: system characterisation and wear testing.  The system 

characterisation tests, which were non wear tests, were conducted to understand the influence of 

operational parameters on charge levels.  The information gained from these tests was then used to 

compare charge signals generated by the wear tests. 
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System characterisation tests investigated the effect of cam geometry, lubricant temperature and 

rotational speed on electrostatic charge.  The first test kept the engine (camshaft) rotation speed and 

lubricant temperature constant.  The second test investigated the influence of lubricant temperature by 

holding the rotation speed constant and increasing the temperature (from room temperature to 60°C).  The 

third test investigated the influence of camshaft speed by holding the lubricant temperature constant and 

increasing engine speed.  The test parameters are detailed in 2083HTable 24.  To allow a direct comparison 

between the system characterisation and wear tests, the rotation speed was held constant at 400 rpm.  To 

minimize wear for the system characterisation test a fully formulated oil was used.  Surface profilometry 

of the follower and camshaft surfaces revealed that no measurable wear occurred during these tests. 

 

Wear testing involved two tests, both employed a camshaft speed of 400 rpm to mimic increased wear 

[340F341] seen during start-up, shutdown, and high torque conditions (i.e. long hills), which can starve the 

contact zone of lubricant [2084H26].  The first test employed 2% carbon-black laden oil with the primary aim of 

instigating wear in a reasonable time-frame.  The oil temperature was allowed to increase naturally (under 

mechanical action), which resulted in a temperature similar to that used for the low temperature stage of 

the TU3 standard test.  Previous studies of wear in the Peugeot TU3 test indicated that wear is more rapid 

at lower temperatures [2085H51].  The second test was an oil starvation test (no lubricant was used), designed to 

remove lubricant-related charge generation mechanisms.  Tests parameters are detailed in 2086HTable 24. 

 

 System Characterisation Wear testing 
Test Description Cam profile 

(SCCP) 
Variable 
lubricant 
temperature 
(SCVLT) 

Variable cam 
rotational 
speed 
(SCVCS) 

Carbon black 
contaminated oil 
(CBCO) 

Oil 
starvation 
(OS) 

Camshaft speed 
(rpm) 

400 400 527, 760, 999, 
1248 

400 400 

Lubricant 
temperature (°C) 

40 19.5-60 40 2% carbon black + 
4% Dispersant 1 

No oil 

Lubricant Commercially available fully formulated oil 15-45 None 

Table 24. Parameters for the system characterisation and wear tests. 

 

4.2.4 LUBRICANT CHEMISTRY 

An ‘off the shelf’ fully formulated oil was used for the System Characterisation tests.  For one of the wear 

tests the test oil contained a Group I base oil, 4% Dispersant 1 and 2% carbon black was blended to 

promote wear (see Section 2087H3.3 for details of lubricant chemistry).  For the other wear test (oil starvation), 

no lubricant was used. 
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4.2.5 POST-TEST ANALYSIS 

The cam topography was measured, using a 2D Taylor Hobson Talysurf profilometer (see Section 

2088H3.6.2.2), at 7 positions perpendicular to the direction of sliding at the following cam angles:-30o, -15o, -5o, 

0o, 5o, 15o and 30o (see 2089HFigure 70 (a)), because oil film thickness predictions discussed in Section 2090H2.2.1.5 

identified that this area of the cam experienced the greatest contact severity.  The follower topography was 

measured at 5 equally spaced positions along the sliding direction and 5 equally spaced positions 

perpendicular to the sliding direction (see 2091HFigure 70 (b)).  SEM and EDX analysis was carried out on the 

worn cam and follower samples to identify wear mechanisms and surface composition (see Section 2092H3.6.3). 

 

CAM

30o

15o
5o

0o
-30o

-15o
-5o

Nose

Flank

Base 
circle

          

Pivot
Follower pad

 
                          (a)                                                                                     (b) 

Figure 70. Position and direction of surface topography measurements on (a) cam and (b) follower. 

 

4.3 CHARACTERISATION OF SYSTEM 

4.3.1 THE EFFECT OF CAM PROFILE ON CHARGE 

2093HFigure 71 shows a once per revolution signal average of the cam surface charge as a function of cam 

angle.  The peak cam surface charge occurs at 0o which corresponds to the position that the cam nose is 

closest to the sensor.  In general, the further away a charge source is from the sensor, the fewer electric 

field lines terminate on the sensor surface (the lower the charge).  The once per revolution charge profile 

is closer to a 1/x relationship than to a 1/x2 relationship (see 2094HFigure 71), because the charge on the cam 

surface is planar, rather than at a discrete point (see Section 2095H2.4.2.1).  However the correlation is not exact.  

This is for two reasons; firstly the cam surface is not flat, and thus not all the electric field lines terminate 

on the sensor surface; secondly, because contact pressure, and more importantly velocity, vary around the 

cam surface, the distance between the surface and double layer shear plane will vary, thus tribocharging is 

not constant around the cam surface.  
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Figure 71. Once per revolution charge trace (averaged over 10 seconds), depicting a once per 
revolution positive peak relating to the cam nose.  Cam rotation 400 rpm, fully formulated 
lubricant temperature 40oC. 

 

4.3.2 EFFECT OF LUBRICANT TEMPERATURE ON CHARGE  

The colour map (see 2096HFigure 72) shows a persistent positive charge associated with the cam nose at 

approximately 0°.  However, as the test progresses and the lubricant temperature increases, the charge 

magnitude associated with this peak increases and broadens.  The charge spread will increase with the 

increase in magnitude as there is higher charge to detect.  The increase in charge with increasing 

temperature can be explained by tribocharging theory (see Section 2097H2.4.3.1); as the temperature increases, 

so the oil viscosity decreases, which increases hydrodynamic entrainment and increases ionic mobility 

[2098H291].  2099HFigure 73 shows how the rms charge level varies with time and temperature; the charge does not 

increase linearly, but appears to have three temperature ‘transients’ or short periods of increased charge 

activity.  Repeat tests have shown that these transients appear at approximately the same temperature 

despite different heating rates used.  The fully formulated oil used contains additives, such as ZnDTP; at 

the temperatures observed these additives can start to decompose, the products of which then react with 

the surface to form a tribochemical film.  There have been reports of film formation on steel, lubricated 

with oils containing ZnDTP, at 50°C even at 20°C (see 2100HTable 12); within the oil temperature range these 

charge transients occurred.  In reality the contact temperature will be significantly higher than the bulk 

lubricant temperature, which will promote greater decomposition of the anti-wear additives. 
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Figure 72. Charge colour map for lubricant temperature test conducted at camshaft rotation speed of 
400 rpm. 
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Figure 73. Electrostatic charge (RMS) and oil sump temperature levels during lubricant temperature 
test conducted at camshaft rotation speed of 400 rpm. 
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4.3.3 EFFECT OF CAM ROTATION SPEED ON CHARGE  

2101HFigure 74 illustrates charge as a function of rotation speed (stepped over 10 minute intervals) and clearly 

shows that charge intensity, as well as spread, increases with increasing rotational speed.  Fluid velocity is 

an important factor in determining the charge magnitude produced by tribocharging [2102H291].  As the cam 

rotational speed increases the shear stress at the surface/fluid interfaces increases.  This can be explained 

by both the differential rate theory and the double layer stripping theory (see Section 2103H2.4.3.1).  For the 

differential rate theory, as rotational speed increases so there is a greater volume of charge species passing 

the surface, increasing the rate of transportation to/from the cam surface.  For the double layer stripping 

theory the further away the double layer shear plane is from the surface the more diffused positive and 

negative charge species are.  As the distance between the surface and double layer shear plane decreases 

so the charge species are less diffuse and one charge sign dominates.  The increase in rotational speed 

decreases the distance between the double layer shear plane and the surface, thus increasing the 

dominance of one charge sign (see 2104HFigure 75).  Many studies have shown that the charging increases with 

fluid velocity; with some showing a linear [341F342 342F343F-344F345], log-log [345F346, 346F347] and log-linear [2105H324,2106H344] 

relationships. 

 

180

120

60

0

-60

-120

-180

C
am

 A
ng

le
 / 

°

Time / minutes
5 10 15 20 25 30 35

0.6

0.4

0.2

0

-0.2

-0.4

999rpm760rpm527rpm 1248rpm

Electrostatic charge / pC

 

Figure 74. Charge colour map for camshaft rotation speed of 527, 760, 999, 1248 rpm at a constant 
lubricant temperature of 40°C. 
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Figure 75. Schematic diagram depicting the distance between the double layer shear plane and cam 
decreasing with increasing rotational speed, and how this leads to a greater surface 
charge. 

 

4.4 WEAR TESTS 

The following Section discusses the charge data from a carbon black contaminated oil (CBCO) wear test 

and an oil starvation (OS) wear test.  Detailed post-test analysis of the worn components was carried out to 

identify wear mechanisms and the charge generation mechanism which might result.  The latter part of 

this Section pulls together real-time data and post-test analysis to relate charge measurements to the 

lubricant (tribocharging) or wear (CPD) and debris generation. 

 

4.4.1 CARBON BLACK CONTAMINATED OIL (CBCO) TEST 

4.4.1.1 RMS data 

2107HFigure 76 shows the electrostatic and lubricant temperature data for the CBCO test.  After 330 minutes, 

highly dynamic charge signals were seen in real-time through the GE Aviation (formerly Smiths 
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Aerospace) software.  Given the dynamics of the charge trace compared to the preceding signal a decision 

was made to stop the test.  Visually inspecting the cam and follower confirmed that scuffing had occurred.   
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Figure 76. Charge RMS and sump oil temperature data for the entire duration of the carbon black 
contaminated oil wear test run at 400 rpm. 

 

At the beginning of the test, charge increased almost linearly, which generally correlates with the increase 

in temperature.  From the SCVLT test (see 2108HFigure 74), charge increases with increasing temperature due 

to the increased mobility of the charge species [2109H291].  As the temperature starts to level out, the charge 

drops from 0.08pC to 0.01pC.  There are two possible explanations for this: temperature induced charge 

relaxation and a reduction in roughness, reducing tribocharging.  Electrostatic charging has been observed 

to increase with temperature to a maxima, then decrease due to charge relaxation through leakage 

[2110H345, 2111H347,347F348]; high temperatures can promote charge recombination (see 2112HFigure 52(a)).  This was not 

seen in the SCVLT tests, but the lubricant chemistry is significantly different and therefore may affect this 

response.  Indeed numerous authors [2113H324,2114H342,2115H343,348F349] did not report such maxima and some have 

observed both types of behaviours over the temperature range of 25–60°C [2116H344].  As the cam and follower 

run-in their surfaces become conformal [2117H54, 2118H66], resulting in a reduction in roughness, reducing 

tribocharging as observed by Harvey et al. [2119H291] (See 2120HFigure 52(b)).  A reduction in roughness reduces the 

actual surface area reducing the number of charge species that can be stripped.  A reduction in roughness 

also reduces the microturblance which facilitates charge removal from the double layer. 

 

The charge signal from 110 minutes onwards follows the idealised bathtub wear curve (see 2121HFigure 10) 

shape of running-in, mild wear and failure.  Although no steps were taken to directly relate charge and 

wear rate, it has been observed by Harvey et al. [2122H25] and Wang et al. [2123H313] that electrostatic charge signals 

can be related to wear rate. 
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4.4.1.2 Charge colour maps 

2124HFigure 77 shows a positive peak (red) around 0° which increases in magnitude and spread over the initial 

period (0-110 minutes); in a similar manner to the SCVLT test (see 2125HFigure 72).  This peak then decreases 

in magnitude and spread.  At approximately 200 minutes the charge peak changes from a faint positive 

charge to a faint negative charge, which increases in magnitude and width as the test progresses.  The 

appearance of a strong negative charge on the cam nose was not seen in the system characterisation tests.  
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Figure 77. Charge colour map for the entire duration of the carbon black contaminated oil wear test 
run at 400 rpm. 
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Figure 78. Charge colour map of the carbon black contaminated oil wear test, from minute 325-346. 



Chapter 4                     Scuffing detection of TU3 cam-follower contacts by electrostatic charge condition monitoring 

135 

 

2126HFigure 78 shows a colour map of the end of the test, which is an expansion of 2127HFigure 77 between 325 and 

345 minutes.  This clearly shows four highly negative charge features between 1 and 2 minutes in 

duration.  The cam surface is closest to the sensor at 0° on the colour maps and it is this position that 

produces the highest positive charge level (see discussions in Section 2128H4.3).  However, the first two high 

magnitude negative peaks occur between -6° and 26°, the centre of the feature is positioned at 10° (see 

2129HFigure 78).  This can be explained by comparing the colour map to 2130HFigure 25(b), which shows the film 

thickness between the TU3 cam-follower contact for different viscosity oils; this shows that the point of 

minimum film thickness appears at a point -12° away from the centre of the cam nose, where the oil 

entrainment velocity between the cam-follower contact is small [2131H58].  It is likely that if film break-down 

occurs, wear will initiate at this position.  It was observed that after the first two high negatively charged 

peaks (see 2132HFigure 78), the negative charge levels remain high and further peaks are positioned closer to the 

cam nose.  This is believed to be an indication of the progression of wear around the cam surface. 

 

4.4.1.3 Raw data traces 

Raw data traces for the CBCO test are shown in 2133HFigure 79.  The initial raw signal (see 2134HFigure 79(a)) shows 

a high, broad positive peak, which is thought to relate to the adsorption of Dispersant 1 onto the cam 

surface promoting tribocharging and/or surface charge mechanisms.  The dispersant will acquire a positive 

charge via reaction with an acidic surface site, thus forming an acid-base pair [349F350].  The raw data trace 

half-way through the test, where the charge level is at its lowest, is relatively flat (see 2135HFigure 79(b)).  Just 

before the end of test, where scuffing is thought to be occurring, a high magnitude negative peak of 

approximately -0.15 pC is observed (see 2136HFigure 79(c)).  This charge peak is more symmetrical than at the 

beginning of this test; probably due to discrete regions of (high) wear around the cam surface.  At the 

beginning of the test, wear is thought to be minimal and therefore the surface charge generated by 

tribocharging, in comparison to discrete regions of wear, is relatively uniform over the cam surface.  Thus 

the sensor mainly detects charge related to cam geometry, which is asymmetric because of the position of 

the sensor, below the cam centre line, thus the sensor sees the rise side of the cam for longer than the fall 

side (see 2137HFigure 79(a)).  Wear on the cam surface is not uniform and therefore leads to a non-uniform 

charge distribution over the cam surface, which results in a charge profile which is no-longer dominated 

by geometry, but rather geometry and discrete regions of wear around the cam nose. 
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Figure 79. Electrostatic charge raw data for one rotation of the cam for the carbon black 
contaminated oil test at: (a) 10 minutes, (b) 170 minutes and (c) 340 minutes. 

 

4.4.2 OIL STARVATION (OS) 

The charge colour maps and raw data for the CBCO test show that the charge signal goes through a sign 

inversion.  To gain a better understanding of the charge mechanisms involved, which are believed to be 

tribocharging of the lubricant and CPD due to wear, a second wear test under oil starvation conditions was 

performed to remove the lubricant/tribocharging effect. 

 

4.4.2.1 RMS data 

2138HFigure 80 shows the charge (QRMS) for the OS test.  The test starts with a low charge (around 0.015 pC), 

lower than observed for the majority of the CBCO test (0.04 pC).  However, these charge levels are 

similar to the middle stage of the CBCO test.  After 10 minutes, there is a steady increase in charge (to 

0.055 pC) as the test progresses.  This is about half the maximum level reached by the CBCO test.  The 

charge signal for the OS test does not exhibit the same dynamics as the CBCO tests (compare 2139HFigure 80 to 

2140HFigure 76); instead there are a number of charge oscillations over longer time durations. 
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Figure 80. Charge RMS levels for oil starvation test. 

 

4.4.2.2 Charge colour maps 

The charge colour map (see 2141HFigure 81) shows the development of a strong negative region at around 0°.  

Unlike the CBCO test, wear does not initiate around the side of the cam nose.  The absence of a positive 

charge peak indicates that the source of the positive charge in 2142HFigure 76 was related to the presence of the 

lubricant and the negative charge was produce by wear. 
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Figure 81. Colour map for oil starvation test. 
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4.4.2.3 Raw charge data 

The raw signal for the initial part of OS test (see 2143HFigure 82(a)) exhibited a small magnitude negative 

charge peak (approximately –0.015 pC).  As can be seen, towards the end of the test (see 2144HFigure 82(b)) the 

negative peak has increased in magnitude to approximately -0.125 pC.  If 2145HFigure 82(a) & (b) are compared 

to the CBCO test 2146HFigure 79(b) and (c) a clear similarity in sign, shape and magnitude can be seen, 

indicating that for the two wear tests the charge generation mechanism, are comparable. 
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Figure 82. Electrostatic charge raw data for one rotation of the cam for the oil starvation test at: (a) 
10 minutes (b) at 120 minutes. 

 

4.4.3 POST-TEST ANALYSIS 

The cam and followers for both wear tests were examined by SEM and their surface topography measured 

using a Taylor Hobson 120L Talysurf.  This information was used to identify wear mechanisms and the 

severity of wear so that charge generation mechanisms as a result of wear could be revealed.  Energy 

dispersive x-ray analysis (EDX) identified areas of different chemical composition. 

 

4.4.3.1 Carbon black contaminated oil test (test 2147H4.4.1) 

2148HFigure 83 (a) shows that wear occurred from the nose of the cam, round to the base circle.  However wear 

on the base circle and flanks was minimal compared to the nose; in general, small adhesive tears in the 

direction of sliding were observed (see for 2149HFigure 11 illustration).  Around both flanks of the cam are areas 

of embedded material (see 2150HFigure 83(b)), which are high in carbon, oxygen and iron content (see 2151HTable 

25).  It is thought that this substance is a mixture of carbon black and wear debris which ‘clumped’ 

together and has been entrained through the cam-follower contact.  Towards the cam nose, greater surface 

deformation was observed as well as the removal of carbides at the surface (see 2152HFigure 83(c)).  Repeated 

contact between the follower and cam could have loosened the carbides, resulting in ejection and/or pulled 

out when surface material is plucked away.  2153HFigure 83 (d) is typical of the type of greater adhesive 
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material removal seen around the cam nose.  EDX analysis identified that there is a large difference in 

surface composition between point 2 (which mainly contains carbon and could be carbon black) and 

points 3 and 4, which have both a higher iron concentration, but differ in carbon concentration (see 2154HTable 

25).  These differences in chemical composition will drive CPD and thus charge generation. 

 

 

1

 
                                      (a)                                                                                       (b) 

 

24
3

 
                                      (c)                                                                                      (d) 

Figure 83. Images of the CBCO test cam surface: (a) entire cam surface (b) material embedded all 
over the flanks of the cam (c) deformation and carbides pulled out with material removal, 
and (d) showing large material transfer with three regions of differing surface 
composition. 

 

The greatest adhesive wear was shown around the rise flank, close to the cam-nose, as indicated by 

surface topography measurements, which show the greatest amount of wear at 15° before the cam nose 

(see 2155HFigure 84).  This correlates with theoretical oil film thickness and charge colour map data, which 

indicated that wear initiated at approximately 10° before the cam nose. 
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Figure 84. Surface topography of cam from carbon black contaminated oil test. 

 

2156HFigure 85(a) shows the region of wear on the follower.  Closer inspection shows that surface cracks are 

present throughout the wear area and tend to connect to regions where large pieces of material have been 

ejected (see 2157HFigure 85(b)).  A cross-section of the follower shows that the cracks are subsurface (see 

2158HFigure 85(c)).  Fatigue is indicated by large debris (large voids) ejected through surface and subsurface 

cracks.  The follower surface shows signs of adhesion, which is symptomatic of high localised 

temperatures that can generate subsurface strain.  A high localised stress caused by load applied through 

carbon black particles or rough asperities could cause subsurface cracking to initiate and then propagate to 

the surface (see Section 2159H2.1.1.2 & 2160HFigure 14).  This type of wear mechanism is seen on the follower rather 

than the cam because it is harder and has a shorter contact path (sliding distance per revolution). 

 

It is widely thought by other researchers that plastic deformation is one of the main mechanisms which 

initiate scuffing.  Typically, once the cam-follower elastic shakedown limit is exceeded, the contacts pass 

through an intermediate stage of plastic deformation wear, which accelerates the roughening of the 

surface, and this accelerated roughening finally causes scuffing [2161H61].  Although some micrographs in this 

study show plastic deformation, due to the short duration at which scuffing occurred and that abrasive 

particles were present, plastic deformation is not thought to be the dominant mechanism that initiated 

scuffing.  Rather it is thought that abrasion or contact starvation by carbon black initiated scuffing.  

Carbon black may cause roughening and enlargement of valleys, by abrasion, leading to increased 

localised hydrodynamic pressure and collapse of the oil film by a mechanism of the type proposed by 

Evans and Snidle [350F351], as a result of the increasing area of individual valleys.  Alternatively 

agglomerated carbon black particles of approximately the size of the dynamic film thickness could starve 

the contact, causing local asperity contact, deformation and increase the localised surface temperature.  

After a set number of cycles where the contact has been starved of oil separating the cam and follower 

surface, high localized temperature will lead to asperity welding and the onset of severe adhesion ensues.  

Although it is possible that follower fatigue (surface cracking and ejection of large wear debris) led to 



Chapter 4                     Scuffing detection of TU3 cam-follower contacts by electrostatic charge condition monitoring 

141 

increased surface roughening and oil film collapse, the high localised temperature required to produce 

high subsurface stresses suggests that fatigue was a secondary mechanism to adhesive wear. 

 

     
                                         (a)                                                                                   (b) 

 
(c) 

Figure 85. Follower micrographs, from the carbon black contaminated oil test, of; (a) plastic 
deformation, adhesive material removal and surface cracking; (b) material ejection and 
surface cracks, and (c) a cross-section showing subsurface cracks. 

 

4.4.3.2 Oil starvation test (test 2162H4.4.2) 

Severe adhesive failure is seen on the cam surface (see 2163HFigure 86(a)); material has been plucked-out and 

debris has been embedded.  There were also signs of deformation, where once sharp edge protrusions are 

displaced laterally, smoothing the edges.  2164HFigure 86(b) shows gross material removal.  The flat dark areas 

are not believed to be the original surface of the cam as they are significantly below the unworn plane.  

This infers that the micrograph only represents one of many cycles of material removal, a layer at a time.  

The plate-like wear debris (see 2165HFigure 89) produced also supports this theory.  EDX analysis of regions 5 

and 6 of 2166HFigure 86(b) shows that the uppermost surface (dark grey) is oxidised and the surface below is 

fresh, un-oxidised (see 2167HTable 25).  2168HFigure 86(c) also shows that there are smaller oxidised and un-oxidised 

regions.  2169HFigure 86(d) shows that the OS test exhibited a greater severity of carbide loosening and removal 
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than the CBCO test.  Loose carbides in the contact could also be responsible for the abrasion observed on 

the protruding surface in 2170HFigure 86(b). 

 

   

6

5

 
                                       (a)                                                                                       (b) 

7
8

  
                                           (c)                                                                                  (d) 

Figure 86. Images of OS test cam; (a) one side of cam surface (b) material removal leaving large 
fresh material (un-oxidised) large oxidised regions, (c) smaller scale oxidised and un-
oxidised regions, and (d) carbide loosening and removal. 

 

Surface profilometry shown in 2171HFigure 87, identifies the greatest wear on the cam in the region 15° before 

the nose (on the rise flank of), which was also observed for the CBCO test. 
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Figure 87. Surface topography of cam from oil starvation test. 

 

The worn follower surface is shown in 2172HFigure 88(a); the area near the worn/unworn boundary shows 

indications of adhesive material removal and some plastic deformation.  In severely worn areas, this 

adhesive wear and deformation creates a ‘wavy’ surface which is quite rough in places (see 2173HFigure 88(b)), 

there are also some protruding areas with evidence of material transfer; embedding of debris contributes to 

abrasion, as shown by 2174HFigure 88(c). 

 

Wear during the OS is dominantly plastic deformation and adhesion.  There are some differences between 

the two wear tests.  The area, on both the follower and cam, affected by adhesive wear was significantly 

larger for the OS test.  The levels of surface and subsurface cracks on the OS test follower (see 2175HFigure 88 

(c)); are lower than those observed in the CBCO test (see 2176HFigure 85 (b)), which could be due to removal of 

the original surface, along with any signs of initial surface fatigue.  The extent of cam adhesive material 

removal for the OS test can be seen through comparison of 2177HFigure 86(c) with 2178HFigure 83(c).  There is also 

greater carbide removal from the cam during the OS test.  These differences could be due to the period of 

oil starvation being much shorter for the CBCO test.  Despite these differences the wear from both tests 

was principally adhesive and the predominant charge mechanism is CPD generated between areas which 

are oxidised and un-oxidised. 
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                                       (a)                                                                                   (b) 

 
(c) 

Figure 88. Oil starvation test follower micrographs of: (a) adhesive material removal, debris 
embedded and plastic deformation; (b) adhesive material removal leaving a wavy/rough 
finish with (c) debris from cam embedded into follower surface (material transfer). 

 

Wear debris was collected from the oil wells close to the cam.  2179HFigure 89(a) shows a follower debris 

particle (as indicated by the high chromium content measured by EDX), which is a similar shape to the 

protruding material shown in 2180HFigure 88(b).  There are abrasion marks on the debris particle which could 

be a surface feature prior to detachment or due to subsequent entrainment into the tribo-contact.  2181HFigure 

89(b) shows a rougher, oxidised cam debris particle.  Adhesion of these highly oxidised particles onto the 

nascent cam surface (e.g. 2182HFigure 86 (b)) would create a CPD, due to the difference in oxygen and iron 

concentration. 
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 (a) (b) 

Figure 89. Wear debris from a) follower b) cam. 

 

Atomic concentration % Spot  
Number C O Si Cr P S Cl Ca Mn Zn Ni Fe 
1 29.16 37 1.87 0.17      1.25  30.56 
2 59.57 10.83 2.02  0.18 0.32 0.14 0.24 0.29 0.85  25.56 
3 4.28 4.49 2.76      0.73   87.73 
4 13.62 5.75 0.62 0.41       2.76 76.84 
5 7.63 56.63 1.6 0.34        33.8 
6 28.29  0.8      0.76   70.14 
7 6.36 51.78 2.38      0.47   39 
8 22.48 8.41 1.69      0.67   66.75 
9 37.6 12.96 0.68 14.22  0.12  0.03 0.63 0.14  34.35 
10 8.86 43.86 1.45 0.48 0.06 0.1 0.05 0.17 0.45 0.09 0.4 44.02 

Table 25. Summary of EDX elemental composition analysis. 

 

4.4.3.3 Topographical comparison across wear tests  

As discussed above the greatest cam wear (as measured by surface profilometry, identified by colour map, 

and theoretically predicted) for the CBCO and OS tests occurred around 15° before the cam nose, on the 

cam flank.  2183HFigure 90(a) and (b) show the surface profiles of the two worn cams and an unused cam 

perpendicular and parallel to the sliding direction respectively.  The wear generated in the OS test was 

significantly larger than the CBCO test.  It was also noted that the regions of greatest wear along the 

follower (see 2184HFigure 90(b)) are similar to those predicted by Coy [2185H40] and Bell [2186H52,2187H61], notably the wear at 

the 0 mm position, which corresponds to the minimum entrainment velocity (see 2188HFigure 24 of theoretical 

and experimental follower wear profiles).  (This region of maximum wear at the centre of the follower can 

be seen on the macro images of the follower, see 2189HFigure 85 and 2190H 88).  It has been observed that failure 

most frequently initiates towards the end of the contact path closest to the pivot of the follower, which is 

the position of maximum contact duration in the main loaded part of the cycle and is believed to be due to 

the inherent asymmetry of the rocker-follower system causing dwell times to be greater at the pivot end of 
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the contact path [2191H61].  Although both tests artificially induce wear, the surface topography of the cam and 

follower shows good correlation with results reported by researchers studying long term engine wear. 
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Figure 90. Surface topography of unused, carbon black contaminated oil test, oil starvation test 
specimens; (a) cam perpendicular to sliding direction at 15o before the nose, and (b) 
along the centre of the follower, parallel with sliding direction; 0 mm refers to the centre 
of the follower. 

 

4.4.4 EXPLANATION OF CHARGE CHARACTERISTICS DURING WEAR TESTING 

The following Section pulls together all the real-time data and post-test analysis of the system 

characterisation tests and the oil starvation test to fully explain the charge data from the CBCO test; which 

is also representative of generic component life.  The system characterisation test produced charge signals 

similar to that of the first half of the carbon black contaminated oil test – a predominantly positive charge 

signal.  The oil starvation test, like the second half of the carbon black contaminated oil test produced a 

predominantly negative charge.  The main charge mechanisms are thought to be tribocharging followed by 

CPD.  By decoupling the tribocharging and CPD charge mechanisms into the system characterisation tests 

and oil starvation tests, greater insight into the charge produced by a lubricated contact undergoing 

adhesive wear (scuffing) was gained. 

 

Although debris generation is generally an important charging mechanism, it is not thought to be a 

dominant mechanism in this study for the following reason; the rotation of the cam could lead to a 

synchronous generation of debris that should appear in electrostatic charge colour maps [2192H25], but such 

signals are not observed. 

 

4.4.4.1 Running-in 

The initial part of the CBCO test exhibited an increase in charge which appears to be closely associated 

with the lubricant temperature (see 2193HFigure 76).  If this is compared to the SCVLT tests (see 2194HFigure 72), 
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there is clear similarity.  Both show the development of a strong positive charge feature associated with 

the camshaft nose.  For the characterisation test the increase in charge with increasing temperature was 

associated with the decrease in lubricant viscosity, increasing hydrodynamic entrainment and ionic 

mobility, thus increasing tribocharging.  This confirms that tribocharging is an important charge 

mechanism during the first half of the contaminated CBCO test.  After the first 110 minutes, there is a 

drop in surface charge while the temperature continues to increase.  This can be explained by either a 

reduction in roughness (running-in), reducing tribocharging (a smaller surface area with adsorbed charged 

species), or increased temperature promoting charge recombination and therefore charge relaxation. 

 

It should be noted that the charge magnitude is dependent on the lubricant used (see 2195HFigure 91).  The 

charge magnitude of the OS test (no lubricant) was about half the maximum level reached by the CBCO 

test.  The system characterisation tests show a charge magnitude over 3 times higher than the soot 

contaminated lubricant test.  The fully formulated oil used for the characterisation tests contains between 

10-25% wt. of additives, many of which are extremely mobile and surface active.  This increase in mobile 

charge species will enhance tribocharging levels. 
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Figure 91. Bar chart showing the charge maximum average over the test duration for system 

characterisation and wear testing. 

 

4.4.4.2 Mild wear / transition to high wear 

From 130 minutes the charge level decreases further, which is thought to relate to a low wear rate regime 

(see 2196HFigure 10), until 180 minutes at which point it starts to increase slowly (see 2197HFigure 76).  During this 

period the positively charged cam nose gradually changes to a negative charge (see 2198HFigure 77).  This 

signifies a transition from tribocharging to CPD.  The onset of adhesion (and abrasion) will reveal nascent 

material.  The work function difference between the oxidised and un-oxidised surface can produce surface 
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charge; charge will increase as the surface roughens/valleys get deeper (see 2199HFigure 76, between 180-300 

minutes). 

 

4.4.4.3 Adhesive failure 

The oil starvation test produced a dominantly negatively charge, this was of the same sign as the charge 

features produced at the end of the CBCO test.  This negative charge is related to a CPD driven by the 

areas of the cam with differences in chemical composition.  Common to both tests were adhesively worn 

areas which contained regions of oxidised and un-oxidised material.  Also the removal of carbides from 

certain areas could also produce a CPD effect.  It is noteworthy that, rotation of the worn cams without the 

follower present shows that a negative charge is still persistent, if at a fraction of that during the wear test.  

Retention of charge on an adhesively worn surface was also seen on FZG gears [2200H284,2201H308]. 

 

There were some subtle differences between the two wear tests, such as: surface chemical composition, 

angle of charge peak, and charge dynamics.  In addition to the regions of oxidised and un-oxidised, on the 

flanks of the carbon black contaminated test cam a high-carbon and iron substance was observed; this will 

also produce a CPD effect.  This material is thought to be embedded agglomerations of carbon black and 

wear debris. 

 

During the last 15 minutes of the carbon black contaminated test, there are 4 periods of heightened 

negative charge activity (see 2202HFigure 76 & 2203HFigure 78), whereas the oil starvation test exhibited relatively 

constant negative charge (see 2204HFigure 81).  The transient signals are indicative of scuffing, where the 

lubricant may re-enter the contact resulting in discrete periods of adhesive wear.  With no lubricant to re-

enter the contact in the oil starvation test, adhesion is continual. 

 

The charge rms data, 65 minutes onwards for the oil starvation test exhibited oscillations (see 2205HFigure 80).  

These oscillations are thought to be closely related to the mechanism proposed by Morris et al. [2206H8] of 

oxidation, de-lamination, re-oxidation (see 2207HFigure 92).  2208HFigure 86 (b) shows regions of oxidised and 

nascent cam material, well below the non-worn area, and thin wear debris 2209HFigure 89 (b) suggest that 

numerous cycles of oxidational wear have occurred.  Layers of material are removed through, plastic 

deformation and repeated contact, leading to high surface temperature and to oxidation of surface 

material, followed by plucking of oxidised material leaving an un-oxidised surface.  As the areas of 

oxidised and un-oxidised change during the cycles so the CPD between these areas, and thus charge, 

varies. 
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Figure 92. A schematic relating surface charge to oxide stripping and growth. 

 

4.5 CONCLUSIONS 

This Chapter has presented work from a feasibility study into the investigation of electrostatic condition 

monitoring of valve-train wear.  A series of tests were carried out to investigate the charge generated 

between TU3 cam and follower contacts under conditions simulating various stages of component life.   

 

System characterisation tests revealed that cam surface charge is affected by lubricant temperature and 

rotational speed; two factors consistent with the tribocharging mechanism.   The charge polarity inverted 

during the CBCO test.  The charge signals at the early stages of the test were similar to the system 

characterisations tests (no wear) and the charge signals at the latter part of the test were similar to the OS 

test.  This demonstrated that the change in polarity corresponds to a transition between tribocharging of 

the lubricant under running-in and mild wear, and CPD generated at the onset and progression of adhesive 

wear.  Both the CBCO test and OS test showed adhesive material removal and plastic deformation.  These 

mechanisms left oxidised and un-oxidised regions on the cam surface, which produced a CPD on the cam 

surface.  In addition, for the carbon black contaminated test, a carbon black / wear debris agglomeration 

was found embedded on the rise and fall flanks, which may have produced an additional CPD.  

Electrostatic charge signals identified that wear initiated approximately 15° from the cam nose (on the 

cam rise flank), which also correlated with oil film thickness calculations and the region of greatest wear, 

as identified from surface topography measurements. 

 

Overall it is clear that electrostatic condition monitoring is a useful tool in the detection of the onset and 

progression to severe adhesive cam-follower failure, with specific reference to the mechanism.  If a 

lubricant formulation does not meet the wear requirements, information about whether this excessive wear 

occurred over the entire duration of the test or whether it occurred in a small fraction of the test, such as at 

the beginning or end, could be valuable.  For example this could mean that the lubricant formulator needs 

to: a) change the antiwear additives (in the case of overall poor wear); b) select a antiwear additive which 

is particularly good during running-in (in the case of rapid wear at the beginning of the test), or c) select 

and additive that doesn’t readily deplete (in the case of failure at the end of test).   



Chapter 5  The Feasibility of Using Electrostatic Monitoring to Identify Diesel Lubricant Additives and 
Soot Contamination Interactions by Factorial Analysis 

150 

 

5 THE FEASIBILITY OF USING ELECTROSTATIC MONITORING TO 

IDENTIFY DIESEL LUBRICANT ADDITIVES AND SOOT 

CONTAMINATION INTERACTIONS BY FACTORIAL ANALYSIS 

 

5.1 INTRODUCTION 

In chapter 2210H4 the highest charge levels were produced by a test with a fully formulated, which produced no 

wear and the lowest charge was produced by a test without a lubricant which produced the greatest wear.  

This inferred that lubricant chemistry has a major influence on charge generation, even under high wear 

conditions.  There were charge features during the system characterisation test which may relate to 

additive activation or interactions of additives at the surface of the cam.  Work presented in this Chapter 

was designed to investigate whether electrostatic monitoring is sensitive to more subtle changes in 

lubricant chemistry than the vast difference between a fully formulated oil and a carbon black 

contaminated base oil.  This study focuses on interactions between three additive components commonly 

found in fully formulated oils, namely detergent, dispersant and zinc dialkyldithiophosphate (ZnDTP), as 

well as their interactions with carbon black (a soot surrogate) contamination. 

 

5.1.1 AIM 

The aim of this Chapter is to investigate additive-additive and additive-contaminant interactions by 

measuring on-line electrostatic charge; friction and wear performance.  Of particular interest is the ability 

of dispersants to prevent carbon black from agglomerating (causing adverse wear), whether sufficient anti-

wear films are formed at low temperature, and if so how carbon black affects the tribofilm formation.   

 

5.2 EXPERIMENTAL PROCEDURE 

2211HFigure 93 (a) shows the basic set-up of the pin-on disc rig, without any instrumentation.  The advantage of 

the PoD rig is that it can simulate, to a degree, contact conditions of an industrial component – in this case 

valve-train – in a cost effective and experimentally controlled manner.  Advantages of this particular in-

house PoD tribometer are the high load (0-250N) and sliding speed ranges (0-12m/s) compared to 

commercially available tribometers.  The main limitations of this equipment are that temperature is not 

controlled and that sliding speed and applied load are manually controlled. 
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Figure 93. (a) Schematic of the PoD test set-up (b) PoD instrumentation and position of electrostatic 

sensor. 

 

The pin consists of a 6 mm steel bearing ball, held in a brass ball holder (see Section 2212H3.2).  This is fixed in 

the pin holder, which is height adjustable to ensure that the Gimbal arm (and thus pin) is perpendicular to 

the disc (see 2213HFigure 93 (a)).  The load is applied at the end of the Gimbal arm and a counter-weight is used 

to offset the load carrier.  The PoD rig was adapted to employ a hydro-loading system, replacing the 

original dead weight system.  The dead weight system encounters problems during load increments, the 

operator manually lowers the weight onto the load carrier, which can produce shock loading and cause 

unexpected damage and even premature failure.  The dead weight system employs a high initial load (10 

N).  To avoid these problems a water-loading system was invented and adapted in this research work.  The 

contact was lubricated by a pneumatic spray. 

 

2214HFigure 93 (b) shows a schematic of the ‘in-house’ (University of Southampton) pin-on-disc wear test rig 

with the associated instrumentation used.  The electrostatic probe was positioned 90 degrees away from 

the pin/disc contact and 0.5 mm above the disc wear track.  The friction force acting on the Gimbal arm 

was measured using a calibrated strain gauge force transducer.  A data acquisition system and GE 

software (see Section 2215H3.5) were used to collect and process the electrostatic charge and coefficient of 

friction (COF) signals in real-time. 

 

5.2.1 TEST CONDITIONS AND PROCEDURE 

The pin-on-disc (PoD) tribometer described above was used to simulate the wear of diesel engine valve-

train components.  Experiments were carried out under ambient conditions (temperature = 15-23°C, 

relative humidity = 20-60%) at a sliding speed of 5 m/s and load of 30 N (2.05 GPa initial contact 
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pressure).  Hertzian contact stress within the valve-train in the range of 1.7-2.07 GPa has been reported for 

low emission diesel engines [351F352].  Thus the PoD conditions are mildly accelerated compared with typical 

valve-train entrainment velocities and contact pressure (see 2216HTable 22).  Tests were carried out with a 

bearing steel ball loaded against a bearing steel disc, lubricated by different oil blends containing various 

additive combinations in a Group I base-stock (see Section 2217H3.3).  The half factorial test matrix is shown in 

2218HTable 26.  The properties of the test material BS534A99 (pin and disc) are given in 2219HTable 18 &2220H 19; these 

are similar properties to the valve-train components of interest. 

 

The test started with rotating the disc without contacting the pin for two minutes in order to record 

background signals before the oil was sprayed onto the disc using a pneumatic spray at a rate of 120 

ml/hour.  Five minutes later, once the disc surface was fully lubricated, the pin was brought into contact 

with nominal initial load.  This load was then ramped up to the maximum load of 30 N; using a hydraulic 

loading system, over a period of about 12.5 minutes.  This was considered sufficient running-in and once 

the maximum load was reached the tests were run for one hour. 

 

5.2.2 OIL CHEMISTRY AND TEST MATRIX 

This Chapter investigated the interactions between 4 additives and carbon black.  Oil blends were 

prepared from baseline formulations that contained 7.3 percent viscosity index improver (see 2221HAppendix D) 

concentrate (ethylene/propylene copolymer) with an API Group I base oil.  The four additives included 

one detergent, two dispersants and one type of ZnDTP.  The concentrations of each factor, under 

investigation, are as follows: 

• Carbon black (see Section 2222H3.3.3) – 2% wt  

• Detergent (see 2223HFigure 34(d)) – 50 milli-molar calcium (about 2% wt). 

• Dispersant 1 (see 2224HFigure 31(b)) and Dispersant 2 (a polymeric succinimide) – 8% wt.  However, when 

the two dispersants were used together, they were blended at an equal percent of 8% wt in total. 

• ZnDTP 1 (see 2225HFigure 42(a)) – 0.1% phosphorus 

 

Chemical and physical properties of the additives and base oil are shown in 2226HTable 21.  The blending 

process can also be found in Section 2227H3.3.  The test matrix was designed, taking into account A- & D- 

optimality (see Section 2228H3.7), to enable analysis of main effects and two factor interactions. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Detergent  x  x  x  x  x  x  x  x 
Dispersant 1   x x   x x   x x   x x 
Dispersant 2     x x x x     x x x x 
ZnDTP 1 x   x  x x   x x  x   x 
Carbon black         x x x x x x x x 

Table 26. Factorial matrix oil blends. 
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5.2.3 OFF-LINE ANALYSIS 

The volume loss for the pin and disc were measured by TaiCaan 3D laser Profilometry (see Section 

2229H3.6.2.1).  Post-test XPS analysis was carried out on three worn pin samples (see Section 2230H3.6.4.2). 

 

5.2.3.1 Electrokinetic sonic amplitude (ESA) 

The separation of charge which exists at the particle liquid interface gives rise to several dynamic 

phenomena associated with colloidal systems. The driving force for electrokinetic phenomena is the net 

charge at the interface between the liquid; which is (hydrodynamically) bound to the particle, surface and 

the bulk fluid. The potential of the interface; known as the plane of shear, is the zeta potential. When an 

alternating electric field is applied to a colloidal dispersion, the particles will move in the electric field 

because of their net zeta potential. If there is a density difference between the particles and the liquid, this 

oscillatory motion of the particles will result in the transfer of momentum to the liquid and the 

development of an acoustic wave (see 2231HFigure 94).  Electrokinetic Sonic Amplitude (ESA) is the pressure 

amplitude generated by the colloid per unit electric field strength and is analogous to electrophoretic 

mobility. 
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Figure 94. Principle operation for measuring ESA. 

 

A Matek Instruments MBS 8000 system was used to measure the electrokinetic sonic amplitude (ESA) of 

the 16 oils.  The instrument was configured for non-aqueous measurement, and the phase was referenced 

to a used diesel engine oil that contained approximately 6% wt. of soot by thermogravimetric analysis. 

Ten measurements were performed for each sample and the results averaged. 
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5.2.4 STATISTICAL ANALYSIS 

All real-time and off-line data was statistically analysed in the manner described in Section 2232H3.7. 

 

5.3 RESULTS 

The results for the measured on-line and off-line parameters are shown graphically in 2233HFigure 95-2234H2235H 97.  

ANOVA was carried out on both the on-line and off-line parameters.  Only a few interactions (additive-

additive and additive-contaminant) were identified for the 60 minute electrostatic charge average.  

Electrostatic monitoring is sensitive to dynamic events and thus when ANOVA was carried out for each 5 

minute interval of the 60 minute period, interactions were found, and in some cases persisted for the 

duration of the test.  The statistical analysis yielded many interactions and therefore narrowing down these 

statistical results was necessary.  This was achieved by focusing on the electrostatic results and calculating 

the significance of such interactions, p-values (see 2236HTable 27). 
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Figure 95. Bar chart of the 60 minute average electrostatic charge values and the off-line ESA 

measurements. 
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Figure 96. Bar chart of the 60 minute COF average. 
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Figure 97. Bar chart of disc and ball SWR. 

 

Factor Variable Response p-value 
Carbon black Average charge increase 0.13 
Dispersant 2 without Detergent Interval charge decrease <0.05 
ZnDTP 1 with Dispersant 2 Interval charge  increase <0.05 
Carbon black without Detergent Interval charge increase <0.05 
Carbon black without Dispersant 2 Interval charge increase <0.05 

Table 27. Statistical results from ANOVA for On-line parameters. 
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Factor Variable Response p-value 
ZnDTP 1 Ball SWR increase 0.06 
Carbon black with ZnDTP 1 Disc SWR decrease 0.01 
Dispersant 2 without Dispersant 1 Disc SWR decrease 0.04 
Carbon black ESA increase 0.01 
ZnDTP 1 without Dispersant 2 ESA increase 0.04 
Detergent with Dispersant 1 ESA decrease 0.09 
ZnDTP 1 with Dispersant 1 ESA increase 0.12 

Table 28. Statistical results from ANOVA for post-test parameters. 

 

5.4 DISCUSSIONS 

A marginal correlation between ESA and 60 minute average surface charge was suggested by a relatively 

high p-value of 0.15.  Although both are charge related techniques, ESA is a measurement of the pre-

existing charge in the oil, whereas the electrostatic sensor detects the total charge as a result of tribological 

activity.  Thus the correlation is marginal rather than significant.  The following sections discuss charge 

response in relation to additive behaviour, the effect carbon black had on wear, and where possible draw 

some links between the two. 

 

5.4.1 CARBON BLACK INTERACTIONS WITH OTHER ADDITIVES AND THE EFFECT ON CHARGE 

RESPONSE 

Carbon black increased the electrostatic charge detected and ESA measured (see 2237HTable 27 and 2238HTable 28).  

This could be due to the fact that carbon black particles are known to be chargeable (see Section 2239H2.3.8.2).  

In oil containing 2%wt of carbon black, considering an average diameter of 300 nm for spherical carbon 

black agglomerates, there would be 7 x 1012 carbon black particles in one ml of oil sample.  Agglomerated 

particles (see 2240HFigure 47), if large enough, could retain a localised charge to be detected by the electrostatic 

sensor.  Some agglomerated carbon black particles may adhere to the disc surface, but the correlation 

between ESA and electrostatic charge, for carbon black, suggests that the charge characteristics are a 

result of suspended (agglomerated) carbon black particles. 
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                                          (a)                                                                                  (b) 

Figure 98. Real-time electrostatic charge for (a) Run 9 (carbon black) (b) Run 14 (Detergent, 

Dispersant 2, carbon black). 

2241HFigure 98 illustrates the statistical findings (see 2242HTable 27) that both Dispersant 2 and Detergent reduce the 

effect that carbon black contributes towards increasing electrostatic charge; Dispersant 1 does not have 

this effect.  For dispersed carbon black to acquire a charge, Dispersant (1 & 2) and/or Detergent must 

desorb or be stripped from the surface taking a charge with it and leaving an equal but opposite charge on 

the aforementioned surface.  As the dispersants employed are amine-based they acquire a positive charge 

from the formation of an acid-base pair at the soot surface (see 2243HFigure 32).  Relative to Dispersant 2, 

Dispersant 1 is more surface active, and as there are fewer polar-regions per non-polar hydrocarbon tails – 

there are 2 hydrocarbon tails per polar-region in Dispersant 1 – it is more likely to desorb and/or strip from 

carbon black as it goes through the contact.  Dispersant 2 contains about 10 polar-regions per molecule 

and a ratio of polar to non-polar regions of about 1:1, which means it is less likely to desorb or be stripped 

from carbon black.  In addition Dispersant 1 can form multiple layers (many adsorption and potential de-

sorption sites), whereas Dispersant 2 can only form a monolayer (fewer adsorption and potential de-

sorption sites)).  For these reasons, Dispersant 2 does not support charge formation as well as Dispersant 

1.  Thus lower charge from carbon black may suggest a more stable suspension. 

 

Detergents generally employ organic acid based surfactants, which are negatively charged [2244H350].  As there 

may be both positive and negative charges present when Dispersant and Detergent are used, these 

positively charged particles serve to offset, or neutralize the measured static charge. 

 

5.4.2 SPECIMEN WEAR 

2245HFigure 99 (a - d) shows 3D topographical ball maps grouped in relation to the presence or absence of 

ZnDTP 1 and carbon black, which have historically had the greatest impact on wear performance.  The 

four maps are representative of the four different ball scar shapes seen for all 16 tests, but with varying 

severity.  For oils without either ZnDTP 1 or carbon black (e.g. run 5, see 2246HFigure 99 (a)) the ball SWR was 
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small and conformal.  Oils containing carbon black, but no ZnDTP 1 exhibit slightly greater (abrasive) 

ball wear (see 2247HFigure 99 (b)), the SWR for run 9 is double that of run 5.  For oils which contain ZnDTP 1 

and carbon black the ball shoulders are severely worn leaving a ‘Mohawk’ type feature in the middle of 

the ball (see 2248HFigure 99 (c)).  Run 16 showed 14 times greater ball SWR than run 9.  All oils containing 

both ZnDTP 1 and carbon black exhibited this Mohawk feature; but with varying widths.  The Mohawk 

width for run 16 (see 2249HFigure 99 (c)) is 220 μm; this is larger than the initial maximum Hertzian contact 

pressure (see Section 2250H2.1.1.1) diameter of 167 μm.  For all other oils which contain ZnDTP 1 and no 

carbon black, the ball scar is approximately flat, with small ridges and has the greatest ball SWR, a fact 

shown in the statistical analysis (see 2251HTable 28). Run 1 (see 2252HFigure 99 (d)) has the highest ball SWR out of 

the 16 test oils, which is 4 times more wear than run 9 and over 100 times more wear than run 5.  The 

effect of ZnDTP 1 to exacerbate wear is contrary to what is generally thought of as an antiwear additive; 

in the following sections this negative effect is termed ‘pro-wear’. 
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Figure 99. (a) Run 5 (Dispersant 2), (b) Run 9 (carbon black), (c) Run 16 (Detergent, Dispersant 1, 

Dispersant 2, carbon black, ZnDTP 1) and (d) Run 1 (ZnDTP 1). 

 

The wear scar shapes, in particular those oils containing carbon black and ZnDTP 1, can be explained by 

elastohydrodynamic theory (see Section 2253H2.1.3).  In sliding elastohydrodynamic point contacts, deformation 

of the (originally) spherical surface (see 2254HFigure 5(a)) will cause a constriction in the oil film with an 

associated pressure spike (see 2255HFigure 5(b)), towards the downstream end and around the side of the 

contact, forming a ‘horse-shoe’ shaped constraint [352F353], producing areas of minimum film thickness [353F354] 

(see 2256HFigure 5(c)). 

 

Wear for run 1 started around the area of maximum pressure/minimum film thickness and progresses to 

the centre of the ball, flattening the spherical surface.  For oils containing other additives and/or 

contaminants the pro-wear effect of ZnDTP 1 is slowed – preventing the progression of wear from the ball 

shoulders to the centre. 

 

5.4.2.1 ZnDTP 1’s ‘pro-wear’ effect 

The following sections discuss reasons behind the pro-wear effect and how this is minimised due to 

interactions with other additives, in particular dispersants.  X-ray Photoelectron Spectroscopy (XPS) was 
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conducted on three worn ball surfaces and an unusual tribo-film was found for those surfaces run with oils 

containing ZnDTP 1.  2257HTable 29 shows the elemental compositions of these films.  The results show low 

concentrations of zinc, sulphur and phosphorous compared to other ZnDTP antiwear films [354F355] (also see 

Chapter 2258H6).  The low phosphorous level especially relatively to sulphur indicates that a minimal 

amorphous-polyphosphate layer had formed.  This layer is critical for effective ZnDTP antiwear 

performance; it shears preferentially to the metal component under boundary lubrication conditions, or 

provides a wear resistant barrier. 

 

Ball specimen C N O Na Si P S Cl K Ca Fe Zn Pb 
Run 5 40.2 2.0 40.9 0.8 1.8 - - 0.6 0.5 1.1 10.3 1.0 0.9 
Run 7 39.8 1.7 40.9 0.7 1.3 0.9 0.4 0.4 - 0.8 10.0 2.5 0.7 
Run 16 (centre) 35.5 0.4 44.1 0.9 - 0.2 0.5 0.4 - 0.6 13.2 3.6 0.7 
Run 16 (side) 34.8 0.7 43.4 0.8 0.9 0.4 0.6 0.8 - 0.5 13.2 3.1 0.8 

Table 29. Surface chemistry identified by XPS for run 5, 7 and 16. 

 

The pro-wear effect of ZnDTP 1 is due to the formation of an under-developed anti-wear film – minimal 

polyphosphate layer.  Primary ZnDTPs, like ZnDTP1, have high thermal stability (see Section 2259H2.3.4.4.1) 

and at the test temperature (approximately 20oC) there is limited thermal decomposition of primary 

ZnDTP, hence the formation of an under-developed antiwear film.  However, the reaction of sulphur 

within ZnDTP, with iron to form iron-sulphide is less temperature dependent.  Active sulphur has a 

significant influence on promoting wear [2260H103].  The polyphosphate layer normally creates a barrier against 

access of sulphur and oxygen, thus reducing the rate of the tribochemical wear caused by uncontrolled 

sulphide and oxide growth, as the amorphous phosphate film structure develops [2261H111].  However under 

these conditions, low temperature and high sliding speed, the thin phosphate layer is easily stripped away 

leaving an iron sulphide layer, which is also readily sheared leaving nascent metal surface (see 2262HFigure 

100).  This nascent metal surface is able to form iron oxide which reacts with sulphur to form iron 

sulphide. This tribochemical (see Section 2263H2.1.4.2 & 2264HFigure 15) process repeats to promote ball wear. 
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Figure 100. Schematic diagram of proposed under-developed film which leads to a pro-wear 

characteristic – ZnDTP 1 reacts with the surface to form initial stage of tribofilm but 

constant removal of this iron rich film will promote wear (tribochemical wear). 
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5.4.2.2 Interactions between ZnDTP 1 and Dispersant 

The ball and disc SWR clearly showed that other factors (additives and carbon black) reduce the pro-wear 

effect of ZnDTP 1 (see 2265HFigure 97).  Both Dispersants in particular show a reduction in the ball pro-wear 

effect of ZnDTP 1.  The interaction of Dispersants and Detergents with ZnDTP has been investigated by 

other researchers [2266H112, 2267H165, 355F356- 356F357F358]. 
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                                          (a)                                                                               (b) 

Figure 101. Schematic of the (a) Dispersant 1 and (b) Dispersant 2 interaction with ZnDTP 1 which 

leads to a reduction in the pro-wear effect of ZnDTP 1. 

 

The ZnDTP 1-Dispersant interaction is thought to be a combination of three mechanisms: increasing the 

thermal stability of ZnDTP 1, suspension of ZnDTP 1 and ZnDTP 1 decomposition products, and 

competition for surface sites.  2268HFigure 101 shows a simplified schematic of three mechanisms associated 

with ZnDTP 1-Dispersant interaction.  The formation of a complex between ZnDTP and succinimide 

Dispersants has been observed by other researchers [358F359,2269H112] and has been proposed as a reason for 

reduced antiwear performance [359F360, 360F361].  Harrison et al. [361F362] reported that the basic nitrogen from the 

Dispersant was shown to form a stable complex with ZnDTP.  It has been demonstrated that this ZnDTP-

amine complex makes the ZnDTP more resistant to thermal degradation [362F363] by retarding the rate of 

peroxide decomposition [2270H112].  Usually a reduction in ZnDTP decomposition products would reduce the 

ability of ZnDTP to form an effective film to minimise wear.  However, under the test conditions in this 
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study a reduction in the amount of ZnDTP 1 decomposition products, especially sulphur containing, is 

beneficial as it minimises the pro-wear effect. 

 

In addition, Dispersants suspends undegraded ZnDTP 1 and ZnDTP 1 decomposition products.  This 

prevents sulphur containing decomposition products from reacting with the steel surface, further reducing 

the pro-wear effect of ZnDTP 1.  Bartha et al. [363F364] postulated that the strength of ZnDTP-Dispersant 

interaction is dependent on the dispersing efficiency. 

 

Surface catalysed decomposition of ZnDTP 1 is also reduced by surface competition between the 

Dispersant molecules and ZnDTP 1 decomposition products [364F365, 365F366].  The more adsorbed Dispersant 

molecules on the steel surface, the fewer ZnDTP 1 decomposition products can reach the surface.  This 

effect is discussed in Section 2271H5.4.2.3. 

 

The interaction between ZnDTP 1 and both Dispersants is also shown by electrostatic charge and ESA 

(see 2272HTable 27 &2273H 28) and is thought to be related to the same interaction discussed for ball SWR.  2274HFigure 

102 illustrates the statistical finding that ZnDTP 1 with Dispersant 1 increases interval electrostatic 

charge.  The interaction between ZnDTP 1 and Dispersant 2 is shown by the statistical analysis to be only 

significant for ESA.  However, on-line electrostatic data shown in 2275HFigure 102 (b) indicated that there is a 

marginal reduction in electrostatic charge due to the presence of Dispersant 2.  This follows the marginal 

correlation between ESA and electrostatic charge discussed earlier. 
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                                               (a)                                                                                 (b) 

Figure 102. Real-time electrostatic charge for (a) Run 4 (Detergent, Dispersant 1, ZnDTP 1), (b) Run 

6 (Detergent, Dispersant 2, ZnDTP 1). 

 

The suspension of ZnDTP 1 and ZnDTP 1 decomposition products by Dispersant 2 and the corresponding 

reduction in charge is believed to relate to the reasons discussed for the carbon black-Dispersant 2 

interaction.  The tenacious bond formed between the 10 polar-regions of Dispersant 2 and ZnDTP 1 
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requires more energy to desorb than for Dispersant 1.  Thus the suspension of ZnDTP 1 by Dispersant 2 is 

more stable as shown by the lower ESA measurement.  Dispersant 1 in the presence of ZnDTP 1, 

increased the charge detected by both electrostatic sensor and ESA, because it can form multiple layers 

that are more easily desorbed, resulting in a higher localised charge, even if comparatively unstable. 

 

Through comparison of 2276HFigure 102 (a) & (b) it can be seen that the presence of Dispersant 2 produced 

oscillating charge features.  Interval charge averages (5 minute duration) were used to try and identify the 

transient nature of the surface charge.  However this statistical analysis does not take into account the 

oscillating characteristic that only occurs in a few experiments, neither does it assess if the oscillations 

have different periods.  It is thought that Dispersant adsorption/desorption (or stripping) is responsible for 

this behaviour.  Dispersant 2 has a significantly higher molecular weight than Dispersant 1, therefore 

when it desorbs or is stripped from the surface, it takes longer to re-adsorb.  Subsequent Chapters address 

this observation in more detail. 

 

5.4.2.3 The effect of dispersants on wear 

For the oils which did not contain ZnDTP 1, it appears that the additives in particular dispersants provided 

a film which minimised the wear on the ball (see 2277HFigure 99 (a)).  Both dispersants employed in this study 

are expected to form surface films capable of small wear reductions.  The surface packing efficiency of 

the two dispersants is very different.  A molecule of Dispersant 1 has two hydrocarbon tails standing out 

from the surface.  Each of these tails occupies space at the surface based on the area occupied by the 

polar-region, and the volume filled by the motion of the hydrocarbon tail in the oil medium, this limits 

packing efficiency.  For Dispersant 2, the hydrocarbon tails are linked together through polar-regions; the 

distance between these anchor points for the hydrocarbon tails is of the order of several carbon-carbon 

single bonds.  These molecules are expected to form comb-like adsorbed layers [366F367].  The close packing 

of the hydrocarbon tails serves to thicken the surfactant layer in the contact (relative to Dispersant 1) and 

reduce wear.  When both dispersants were employed, the anti-wear effect of Dispersant 2 was not 

observed (see 2278HTable 28); indicating a competition for surface sites, which favours the lower molecular 

weight and more mobile Dispersant 1. 

 

5.5 CONCLUSIONS 

This study has demonstrated the use of electrostatic sensors and ESA to detect changes in charge 

associated with the presence of additives and a contaminant, as well as detecting binary interactions on a 

PoD tribometer. Electrostatic sensors that correlate or show anti-correlation with off-line electrokinetic 

measurements such as ESA, could be extremely useful for lubricant performance evaluation.  By 

comparing the pre-existing charge in the lubricant (measured by ESA) with the electrostatic charge 
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detected from the tribo-contact, further understanding of additive and contaminant interactions could be 

gained. 

 

The presence of carbon black was found to increase average electrostatic charge and ESA.  Where steric 

or electrical barriers are insufficient to keep carbon black particles dispersed, agglomeration will occur; 

these large particles could retain a high enough charge to be detected by the electrostatic sensor. 

Dispersant and Detergents can also charge carbon black through a desorption mechanism.  Both 

Dispersant 2 and Detergent in the presence of carbon black were found to reduce the interval electrostatic 

charge, which are known to bind tightly to the carbon black surface; minimising charge formation through 

desorption. 

 

Ball wear increased in the presence of ZnDTP 1.  Investigations using XPS analysis identified that under 

the test conditions used in this study, the presence of primary ZnDTP (ZnDTP 1) did not generate a fully 

developed antiwear film.  Instead, the formation and stripping of iron sulphide promoted ball wear. 

 

The majority of electrostatic charge observations in the Chapter discuss charge species in the bulk of the 

lubricant – hence the correlation with ESA – with a few observations about surface charge generation.  

This suggests that future experiments need to move away from testing in EHL and into more severe 

(boundary) lubrication, to be able to more closely relate charge generation to additive-surface behaviour, 

plus many additives such as ZnDTP 1 are more surface active under more severe conditions.  Another 

possible reason, that few direct surface charge / additive-surface behaviour observations were made, is 

that the tribofilm will be made-up, to varying degrees, as many surface active additives are present in the 

oil.  Perhaps under these conditions no-one additive dominated the film, thus the statistical analysis failed 

to pick-up on these effects because only main effects and two factor interactions could be identified. 
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6 MINI-TRACTION-MACHINE TESTS TO ASSESS THE EFFECT OF BASE 
OIL AND ADDITIVE INTERACTIONS ON SURFACE CHARGE AND 
FRICTION. 

 

6.1 INTRODUCTION 

Although Chapter 2279H5 identified some interesting additive-additive and additive-contaminant interactions 

related to charge, direct observations were confounded by the fractionated nature of the matrix.  In 

addition, there was a limitation in interpreting additive-additive interactions related to charge because 

single additive charge behaviour was not fully understood.  In this study single additive oils were used, so 

that electrostatic charge signatures could be directly related to single additive behaviour, without the 

added complication of trying to decouple additive-additive or additive-contaminant interactions.  

 

Six surface active additives were chosen; these represented the wide range of additives used in IC engine 

oils.  The nature of the surface interaction of these additives is quite different.  This enabled the sensitivity 

of electrostatic monitoring to these significant differences in additive chemistry and surface behaviour to 

be assessed.  Additives were blended into three base oils with differing impurity levels, which affects the 

solubility of additives and results in different additive-surface interactions; this enabled the assessment of 

the sensitivity of electrostatic monitoring to subtle differences in surface behaviour of the same additive. 

 

Testing was carried out on a MTM tribometer, under conditions designed to simulate the valve-train 

contact.  One of the main limitations with the ‘in-house’ PoD tribometer used in Chapter 2280H5 is that 

lubricants cannot be used at elevated temperature.  In addition, manual loading and speed control meant 

that testing was subject to human error, which may compromise repeatability.  This is a major 

consideration when statistical analysis is being used to identify subtle changes in additive behaviour.  The 

MTM enabled elevated lubricant temperatures to be used and contact load and sliding speed to be 

programmed. 

 

A full factorial matrix was carried out to assess the effect of dependent variables (additives and base oils) 

on measured parameters (electrostatic charge, COF, ball wear, disc wear and conductivity).  Due to the 

size of the data set, which included 9 dependent variables (6 additives and 3 base oils) and 5 measured 

parameters (charge, COF…etc.), the following systematic approach was taken; 

• All measured parameters were averaged over each test duration, to produce a single value which was 

statistically analysed using ANOVA (see Section 2281H3.7). 
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o Correlations between the measured parameters were assessed (e.g. whether charge related 

to wear, friction related to wear…etc.) to identify which measured parameters to focus on. 

o Statistical analysis was used to identify the affect that different additives and base oil–

additive interactions had on the measured parameters.  This enabled information about the 

overall additive friction and/or charge performance to be obtained. 

• Real-time data was examined to give additional insight into the statistical findings for the averaged 

data. The real-time data, in addition to off-line measurements and additive adsorption studies, were 

complied to form hypotheses about additive-surface interaction. 

o This approach was used to discuss differences between additives (in the same base oil) 

and the effect that different base oils had on the same additive.  

• The interpretation of additive-surface interaction through real-time data, for one additive (ZnDTP) in 

one base oil, was investigated through additional tribological testing and extensive surface chemistry 

analysis.  (The cost of the surface chemistry analysis required to verify all real-time data discussions 

was beyond the financial constraint of this work.)   

  

Additive absorption onto iron oxide powder was investigated through XPS analysis to show that 

adsorption relates to additive solubility; thus the difference in charge levels produced by the same additive 

in different base oils could be compared to the solubility of the additive. 

 

Charge features produced by ZnDTP were thought to relate to the breakdown of the antiwear film.  To 

investigate this hypothesis, a series of tests were carried out to investigate the tenacity of the antiwear film 

by running a ZnDTP containing oil followed by a base oil.  Many similar tests reported in the literature 

stopped the experiment to change the oils and found that it took more than 12 hrs before the ZnDTP film 

broke-down [2282H206].  This observation has led many researchers to state that ZnDTP is extremely tenacious 

and does not readily break down.  However, while developing a test procedure to test the hypothesis, it 

was found that exchanging oils while the pin-on-disc were still in contact and moving relative to each 

other significantly decreased the tenacity of the ZnDTP antiwear film.  Although this is not fully 

understood, it is thought that the reduction in tenacity is a result of the removal of physically adsorbed 

ZnDTP. 

 

When a test is stopped and cleaned it is extremely difficult to remove all of the un-reacted ZnDTP.  Thus, 

residue (physiadsorbed) ZnDTP may enable further film formation or replenishment.  However, by not 

stopping the test the changing of oils (flushing) occurs at high temperature where the physically adsorbed 

ZnDTP is more readily desorbed from the surfaces (see Section 2283H2.3.3.1).  Another important point is that if 

the test is stopped, cleaned and re-started important data is not recorded; data logging only starts once the 

test is started.  While developing a test procedure to test the hypothesis it was noticed that there were 

important transient signals not detected if the test is stopped.   
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6.1.1 AIMS 

The aims of the work presented in this Chapter were to; 

• Relate electrostatic charge to additive-surface behaviour, and to assess whether; 

o The absence or presence of a film can be detected 

o Charge features correspond to additive-surface interactions, e.g. adsorption and 

desorption/stripping 

o Charge can be related to chemical composition of the tribofilm 

• Investigate how base oil – additive interaction affects surface film formation. 

 

6.2 EXPERIMENTAL PROCEDURE 

6.2.1 SAMPLES, TEST CONDITIONS AND PROCEDURE  

The MTM was run in pin-on-disc mode; a 6 mm ball was loaded onto a standard MTM disk (both AISI 

52100 steel, see 2284HTable 18 &2285H19).  Details of the MTM and instrumentation deployed can be found in 

Section 2286H3.1.1 & 2287H3.5 respectively.  A maximum contact pressure of 1.2GPa was used.  The test was split 

into two stages; during the first stage the sliding speed changed incrementally from 5-1 m/s over 2.5 

minutes, and the second stage was run at constant speed of 0.8 m/s for 25 minutes (see 2288HTable 22).  

Experiments were carried out at an oil temperature of 100°C. 

 

6.2.2 BASE OIL AND ADDITIVE CHEMISTRY 

Six additives (see 2289HTable 30) were blended into three API base oils: Group I, Group II and poly alpha 

olefin (PAO) base oils at 1% wt., to minimise any rheological changes (see 2290HTable 20).  The additives 

included a Detergent, Dispersant 3, ZnDTP 2 and three different friction modifiers (see 2291HTable 21 for more 

details).  For the Glycerol Mono-oleate (GMO) approximately 70% of the GMO is made up of mono 

oleate; for the Modified Glycerol Mono-oleate (MGMO) this is around 90%.  A full factorial matrix was 

constructed (6 x 3) and each base oil test (non-additized) was repeated, giving 24 runs in total. 

 

Additive type Hereafter 
referred to as 

Additive description 

Detergent  Detergent  Overbased sulphurised calcium phenate, Branched C20-28, 450 Mwt 
( 2292HFigure 34 (d)) 

Dispersant Dispersant 3 Mono-polyamine succinimide, 1200 Mwt (50Å in length) (see 2293HFigure 
31(a)) 

ZnDTP ZnDTP 2 Secondary Alcohol zinc dialkyldithiophosphate (see 2294HFigure 42(b)) 
GMO Glycerol Mono-oleate (see 2295HFigure 39) 
MGMO Modified Glycerol Mono-oleate (chemical structure is unavailable) 

Friction  
modifier 

MoDTC Molybdenum dithiocarbamate (see 2296HFigure 40) 

Table 30. Description of additives used in a full factorial matrix. 
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6.2.3 POST-TEST ANALYSIS. 

Ball and disc wear volume loss were measured by laser profilometry (see Section 2297H3.6.2.1).  XPS elemental 

depth profiling analysis was carried out in a manner described in Section 2298H3.6.4.3.  Test oil conductivity 

measurements were also taken (see Section 2299H3.6.1). 

 

6.2.4 STATISTICAL APPROACH 

The measured parameters (dependent variables) obtained from running the full factorial matrix were disc 

wear, ball wear, conductivity, and real-time data.  The real-time data, including coefficient of friction 

(COF) and rms charge, were averaged for the duration of stage 2, for each test.  The effect of additive and 

additive-base oil interaction on measured parameters was identified using ANOVA (see Section 2300H3.7). 

 

6.2.5 ADSORPTION STUDY 

Oils were mixed with iron oxide powder and were subjected to heat (100oC) and stirring for 1hr.  The iron 

oxide was then removed from the oils, rinsed multiple times with solvent and dried.  The iron oxide 

powder was then examined using XPS analysis (see Section 2301H3.6.4.1).  The strength of the iron and oxygen 

peaks were compared between samples to assess the adsorption of additives onto the iron oxide powder; 

the lower the iron concentration, the greater the adsorption. 

 

6.2.6 ZNDTP 2 TRIBOFILM TENACITY EXPERIMENTAL PROCEDURE 

Tests were run under the same contact conditions as for the full factorial matrix, except that 20 minutes 

into stage 2 the ZnDTP 2 containing oil was replaced by Group I base oil.  This oil change was carried out 

while the test was running – ball and disc were in contact and moving relative to each other.  The ZnDTP 

2 containing oil was drained and 500 ml of base oil (pre-heated to 100oC) was flushed through the system.  

During flushing the oil reservoir volume was maintained at approximately 50 ml to ensure that the contact 

was not starved.  The entire flushing procedure lasted approximately 1 minute.  Multiple tests were carried 

out using this procedure with the base oil only stage run for differing durations. 

 

6.3 STATISTICAL ANALYSIS RESULTS AND DISCUSSIONS  

This Section interprets base oil and additive significant findings for friction, electrostatic charge, 

conductivity and wear.  The statistical observations are discussed in terms of general additive-surface 

behaviour. 
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6.3.1 CORRELATION BETWEEN MEASURED PARAMETERS 

Previous work has tried, with varying degrees of success, to relate electrostatic charge with: wear, COF 

and oil conductivity (see Sections 2302H2.4.4.1 & 2303H2.4.4.2).  It was therefore important to assess whether the 

electrostatic charge detected is purely a function of wear, friction or conductivity; if it was, then 

electrostatic monitoring of tribofilms would be a superfluous technique to the measurements already being 

deployed.  This study showed there was no statistical correlation between electrostatic charge and ball or 

disc wear.  There was a 20% correlation between average COF and LnQRMS, which was significant (p-

value = 0.02), (see 2304HFigure 103(a)).  Similarly conductivity was significantly (p-value = 0.00) correlated 

with LnQRMS; 52% of the charge detected related to the oil blend conductivity (see 2305HFigure 103(b)).  This 

left a significant proportion of the total charge unaccounted for and is thought to be related to surface 

chemistry. 
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                                             (a)                                                                                  (b) 

Figure 103. Correlation between electrostatic charge and (a) COF, (b) conductivity. 

 

6.3.2 COEFFICIENT OF FRICTION 

Across all base oils, the Detergent and ZnDTP 2 produced significantly (p-value ≤ 0.03) higher COF than 

the friction modifiers: GMO, MGMO and MoDTC (see 2306HFigure 104).  These findings are consistent with 

the literature.  In general ZnDTP and detergent produce rough tribofilms, which effectively increase the 

severity of boundary lubrication conditions (reduce lambda ratio, see eq 2307H(32)).  Also ZnDTP and detergent 

films may offer resistance to the relative motion of pin and disc (see Sections 2308H2.3.4.4.5 for more details 

about ZnDTP friction behaviour).  All three FMs produce tribofilms which easily shear and offer little 

resistance to the relative motion of pin and disc.  GMO and MGMO form physically adsorbed films 

consisting of closely packed multi-molecular layers; the outer layers are easily sheared from the tribofilm 

(see Section 2309H2.3.4.3.1).  MoDTC forms a chemical film, containing MoS2 (see Section 2310H2.3.4.3.2) sheets 

with weak van der Waals interactions between layers, enabling the lattice layers to be easily sheared.  
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2311HFigure 105 illustrates the tribofilm characteristics, for all 6 additives, which dominated friction 

performance. 
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Figure 104. Coefficient of friction average for the full factorial test matrix. 

 

Although it has been reported that detergents produce lower COF than ZnDTP [2312H158, 2313H357,367F368], no 

statistical difference was found between the two.  There were no statistical findings for base oil only; this 

is due to the large variation in COF produced by the three different base oils (see 2314HFigure 104). 
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Figure 105. Schematic diagrams showing friction characteristics for additive tribofilms of: (a) ZnDTP 

(b) Detergent (c) Dispersant 3 (d) GMO & MGMO (e) MoDTC. 

 

Partial friction differences between additive and base oil groups 

Another interesting statistical finding was that MoDTC had significantly lower COF standard deviation 

than the Dispersant 3 (p-value = 0.03); and GMO and base oil alone had a marginally lower COF standard 
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deviation than the Dispersant 3 (p-values < 0.06).  This variation in COF may be an indication of tribofilm 

stability – an unstable film will produce variable friction.  The FMs produce tribofilms which can be 

sheared off in layers and easily rebuilt, due to the strong orienting forces (see Section 2315H2.3.4.3.1).  Whereas 

the Dispersant 3 tribofilm requires more time to re-form due to its considerably greater molecular weight.  

The greater variability in friction for Dispersant 3 is explored further in Section 2316H6.4.3.3. 

 

6.3.3 ELECTROSTATIC CHARGE 

Across all base oils, Detergent and Dispersant 3 produced a significantly (p-value < 0.001) higher charge 

than MGMO, MoDTC, GMO and ZnDTP 2 (see 2317HFigure 106).  This significant difference in surface 

charge is now discussed in relation to the proposed mechanism of additive adsorption, whether physical or 

chemical. 
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Figure 106. LnQRMS LS Mean for the full factorial test matrix. 

 

6.3.3.1 Dispersants & detergents  

Dispersant 3 and Detergent surfactant physically adsorb onto ferrous surfaces.  Detergents and dispersants 

have the ability to form acid-base pairs with the ferrous surface.  Detergent surfactants are acid (in order to 

suspend excess base) and adsorb onto a basic site on the surface; dispersants contain excess base and 

adsorb onto an acidic site (see 2318HFigure 107 (b) & (c) respectively).  Adsorption of dispersants and detergent 

to the surface will generate a surface charge.  Ionic separation, through desorption or mechanical stripping 

could result in charge retained on the surface. 
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Figure 107. Schematic diagram showing charge generation for additive tribofilms of (a) ZnDTP (b) 

Detergent (c) Dispersant 3 (d) GMO & MGMO (e) MoDTC. 

 

6.3.3.2 Detergent & Dispersant 3 vs. GMO & MGMO 

Although GMO, MGMO, dispersants and detergents all physically adsorb onto the surface, the surface 

charge generated by the organic FMs was significantly lower than Dispersant 3 and Detergent is (p-values 

≤ 0.00, see 2319HFigure 106).  The explanation for this observation is the difference in charge carriers and the 

mode of adsorption.  Dispersants and detergents containing oils contain a greater number of ions – 

although Dispersant 3 does not contain as many cations as the Detergent anions, (as evidenced by the 

conductivity (see Section 2320H6.3.4)) – that form acid-base pairs with the surface.  GMO and MGMO are very 

weak bases and are unlikely to form an acid-base pair with the surface in their original form; typically 

adsorption will arise from the sharing of charges (hydrogen bonding), rather than charge separation (see 

Section 2321H2.3.4.3.1). 

 

Preferential shearing at the hydrocarbon tail interface of the FMs, rather than at the polar-head/ferrous 

surface interface (see 2322HFigure 45 (d)), means there is little charge separation through stripping.  Although 

alignment of the FM hydrocarbon tails is caused by electrostatic and van der Waals forces, shearing of 

theses layers does not have the same likelihood to generate surface charge as desorption of Dispersant 3 

and Detergent polar-head from the surface. 

 

6.3.3.3 Surface charge generation by chemical film forming additives (ZnDTP 2 & MoDTC) 

The additives which form chemical films such as ZnDTP 2 and MoDTC produced a lower charge than 

dispersants (p-values 0.00, see 2323HFigure 106) which physically adsorb.  The reaction of the chemical film 

forming additives, with the surface, is irreversible.  Thus charge generation from contact potential 

difference (CPD) is most likely; where the chemical tribofilm has a different work function to the steel, 

which drives charge separation.  In addition, the surface coverage by chemical and physical adsorption is 

likely to have an affect on surface charge.  These chemical films occur in the wear track, where as 

dispersants and detergents physically adsorbed onto the entire surface (see Section 2324H2.3.4).  The Detergent 
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contains elements which physically adsorb (surfactants) and chemically adsorb (calcium carbonate); the 

high surface charge produced by Detergent is a result of the physical adsorption, rather than the chemical 

film, although CPD from the chemical film will contribute to the surface charge detected. 

 

6.3.3.4 Detergent vs Dispersant 3 

For Group I and Group II base oils, the Detergent exhibited a greater charge than Dispersant 3 (p-values 

0.00 for both, see 2325HFigure 106).  This may be contrary to expectations, when considering charge generated 

through desorption – Dispersant 3 has a greater molecular weight than Detergent, which makes desorption 

of Dispersant 3 more likely than Detergent.  Three aspects could explain this, detergents have: a greater 

surface packing efficiency, greater number of charge species present, and contribution of a chemical film. 

 

6.3.4 CONDUCTIVITY 

Across all base oils, the Detergent had a significantly (0 < p-value < 0.05) higher conductivity than the 

other additives (see 2326HFigure 163 in 2327HAppendix E).  Dispersant 3 exhibited a significantly (0 < p-value < 

0.05) higher conductivity than MoDTC and ZnDTP 2.  These observations are related to the concentration 

of ions present in oils.  As discussed above, Detergent contains the greatest number of ions, followed by 

Dispersant 3.  The poor correlation between conductivity and electrostatic charge is a result of the pre-

existing charges in the oils (conductivity) compared to the production of additional charge carriers in the 

tribo-contact and the extent to which these charge carriers are present in the bulk oil or adsorb to the 

surface. 

 

6.3.5 SPECIMEN WEAR 

There were no significant additive or base oil effects on ball wear volume.  However, there were some 

significant findings for disc wear volume loss, but none were consistent for additives across base oils.  For 

the non-additized oils, the PAO exhibited significantly greater disc volume loss than the Group I and II 

base oils (p-values 0.00 & 0.01 respectively (see 2328HFigure 164 in 2329HAppendix E)).  The greatest wear came 

from MoDTC in Group II base oil, which was significantly greater than that from MoDTC in PAO and 

Group I base oils (p-value = 0.01, for both). 

 

6.4 RESULTS & DISCUSSIONS OF REAL-TIME DATA 

This Section examines the significant findings from the real-time data.  Dynamics in the real-time data, 

which are not handled by the statistical approach (see Section 2330H6.3) are also discussed.   
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6.4.1 DIFFERENCES BETWEEN NON-ADDITISED BASE OILS 

The COF for PAO base oil was significantly higher than Group II (p-value = 0.05) (see 2331HFigure 108(b)).  

The PAO base oil exhibited significantly greater disc volume loss than the Group I and II base oils (p-

values 0.00 & 0.01 respectively) (see 2332HFigure 164, in 2333HAppendix E).  Thus the high COF seen for PAO is 

due to the abrasive wear of the disc surface, and Group I and Group II base oils were capable of forming 

low shear strength tribofilms which produced a stable COF and low wear.  In addition to the significant 

difference between PAO and Group II, Group II produced a significantly higher COF than Group I (p-

value = 0.05), thus the ranking of friction levels followed the impurity concentrations (see 2334HTable 20).  It is 

interesting to note that for the first 7, minutes the charge levels also follow the impurity concentrations of 

the base oils (e.g. PAO < Group II < Group I).  However, over the whole duration of the test, the charge 

produced by PAO was marginally higher than Group II (p-value = 0.06).  It is therefore thought that the 

progression of the high charge for PAO corresponds to wear.  It is noteworthy that for the remainder of the 

test the charge levels for Group I and Group II continued to correspond to the impurity levels.  Wear, 

friction and charge results indicate that the impurities in the Group I and II base oils are able to form a 

weak tribofilm which reduces wear and maintain a constant friction level. 
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                                             (a)                                                                                (b) 

Figure 108. Real-time (a) electrostatic charge and (b) coefficient of friction data for non-additized: 

Group I, Group II and PAO base oils. 

 

6.4.2 DIFFERENCES BETWEEN ADDITIVES WITHIN BASE OIL 

This sub-section details the statistical and real-time data differences between different additives within the 

same base oil. 

 

6.4.2.1 FMs in PAO 

All FMs in PAO produced tribofilms with friction reducing properties compared to PAO alone (p-value = 

0.00, also compare 2335HFigure 108(b) 2336H109(b)).  MGMO produces a significantly lower COF than MoDTC (p-
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value = 0.02).  The MGMO started the stage at a low COF and then progressed to an even lower friction 

level; indicating an induction period was required for full film formation (see 2337HFigure 109 (b)).  The 

electrostatic charge for the MGMO was an order of magnitude higher than that of MoDTC (p-value = 

0.00) (see 2338HFigure 109 (b)), yet the conductivity for MoDTC was higher than MGMO (p-value = 0.02).  

This observation indicates that the charge generated by the MGMO was related to surface interaction 

rather than bulk electrical properties of the oil.  The high charge level by MGMO infers that there is a full 

film on the disc surface; this corresponds to the low friction. 
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Figure 109. Real-time (a) electrostatic charge and (b) coefficient of friction data for GMO, MGMO 

and MoDTC in PAO base oil. 

 

Although there was no statistical difference between the GMO and MGMO average COF (p-value = 0.23, 

see 2339HFigure 104), 2340HFigure 109  shows there is a large difference in COF and charge, particularly at the end of 

test.  This difference is believed to be related to the concentration of mono oleate in the two additives; 

mono oleate is the component principally responsible for friction reduction.  For the GMO approximately 

70% of the GMO is made up of mono oleate; for the MGMO this closer to 90%. 

 

6.4.2.2 ZnDTP 2, Detergent and Dispersant 3 in Group I base oil 

Detergent, Dispersant 3 and ZnDTP 2 COF traces compared to the Group I base oil alone were 

significantly higher (p-values 0.00, 0.00 and 0.01 respectively), which suggests that a film was present 

from the beginning of the test (compare 2341HFigure 108 &2342H 110).  The charge and friction data indicated that 

the kinematics of the films produced by these three additives were quite different.  The charge traces show 

that Dispersant 3 adsorption/desorption was extremely dynamic; Detergent exhibited periodic features and 

ZnDTP 2 exhibited some periodic features that became more dynamic as the test progressed (see 2343HFigure 

110 (a)).  The COF traces for Dispersant 3 and Detergent were also dynamic. 
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Figure 110. Real-time (a) electrostatic charge and (b) coefficient of friction data for Detergent, 

Dispersant 3 and ZnDTP 2 in Group I base oil. 

 

The charge oscillations and the variability in the COF (see 2344HFigure 110) for Dispersant 3 and Detergent 

relate to the dynamic process of additive adsorption and desorption/partial film removal.  Dispersant 3 

exhibited dynamic charge features which were irregular.  By comparison, Detergent exhibited short 

duration semi-regular periodic features which occurred 5 times during the 25 minute stage.  This might be 

due to the fact that the Detergent was not as susceptible to stripping as the Dispersant 3, or that adsorption 

is much quicker and equilibrium is therefore restored more quickly.  The superior solubility of the high 

molecular weight Dispersant 3, compared to the Detergent, accounted for the continually variable charge 

and friction; the charged dispersant cation is more easily desorbed than detergent.  Similarly, the length 

(70 Å vs. 30 Å, for Dispersant 3 and Detergent molecules respectively) of Dispersant 3 relative to the 

Detergent makes Dispersant 3 more likely to be sheared from the surface compared to Detergent. 

 

In comparison to Detergent and Dispersant 3, the ZnDTP 2 exhibited a relatively stable COF and charge 

trace, although COF steadily increased over the duration of the test.  The electrostatic charge signal for 

ZnDTP 2 exhibited some charge dynamics, especially towards the end of the test. 

 

6.4.3 DIFFERENCES BETWEEN ADDITIVES AMONG BASE OILS 

The statistical analysis indicated that the base oil had an effect on Q and COF.  The real-time friction and 

charge data are used in this section to interpret base oil and additive interactions. 

 

6.4.3.1 MGMO 

MGMO exhibited a significantly lower COF in PAO compared to Group I (p-value = 0.01).  The low 

solubility of MGMO in PAO, as evidenced by a hazy solution, may have increased the surface activity of 

MGMO and resulted in a greater surface coverage.  It is believed this is related to the higher charge 
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observed for MGMO in PAO compared to other base oils indicating denser coverage (see 2345HFigure 111).  

For the PAO and Group II base oils, MGMO exhibited a significantly lower COF than the respective base 

oils only (p = 0.001, 0.00 respectively) (see 2346HFigure 104).  The reduction in friction between MGMO in 

Group I base oil and Group I alone was not significant (p value 0.16).  The formation of a full friction 

modifying film was inhibited as a result of the higher solubility of, and competition with, impurities in the 

base oil.  It is not fully understood why Group II exhibited the lowest charge of the MGMO containing 

oils. 
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Figure 111. Real-time (a) electrostatic charge and (b) coefficient of friction data for MGMO in Group 

II, Group I and PAO base oil. 

 

2347HFigure 111 (b) shows a peak in COF around 5-6 minutes followed by a decrease in friction for both 

MGMO in PAO and Group II base oils, which appears to correlate with a charge peak at the same time.  

This infers that the film present at the beginning is stripped and then re-formed with a greater covering 

(see 2348HFigure 111). 

 

6.4.3.2 MoDTC 

MoDTC in Group I base oil exhibited higher and more dynamic electrostatic charge and COF than Group 

II or PAO (see 2349HFigure 112).  MoDTC produced significantly lower COF in PAO and Group II than the 

respective base oils alone (p-values 0.00, 0.02 respectively).  For MoDTC in Group I, compared to Group 

I base oil only there was no statistical difference (p-value = 0.32) in COF average.  Through comparison 

of 2350HFigure 108 and 2351HFigure 112 the MoDTC in Group I only formed a friction reducing tribofilm after the 

21st minute. 

 



Chapter 6  MTM tests to assess the effect of base oil and additive interactions on surface charge and friction 

178 

4 6 8 10 12 14 16 18 20 22 24 26 28

0.015

0.020

0.025

0.030

0.035

0.048

0.050

0.052
 PAO
 Group II
 Group I

Q
RM

S  
/  

pC

Time / mins

   

4 6 8 10 12 14 16 18 20 22 24 26 28
0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

 PAO
 Group II
 Group I

C
O

F

Time / mins
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Figure 112. Real-time (a) electrostatic charge and (b) coefficient of friction data for MoDTC in Group 

II, Group I and PAO base oil. 

 

It has generally been observed that MoDTC film formation occurs in two phases: the initial phase 

produces high friction and is called the induction phase.  The subsequent phase produces a film which 

reduces friction.  It has been observed that there is no molybdenum in the tribofilm during the induction 

phase [2352H172].  During this stage, metal-metal contact removes the oxide layer facilitating breakdown of 

MoDTC [2353H171] to react with the surface to form FeSx which reduces friction [2354H233,368F369, 369F370].  The tribofilm 

formed during the induction phase was reported to reduce wear and promote formation of the friction 

reducing MoS2 tribofilm [2355H218].  However, in this study MoDTC in Group I exhibited significantly greater 

disc wear volume loss than MoDTC in Group II or PAO (p-value = 0.01, for both).  This suggests that the 

delayed progression (i.e. after 21 minutes) from high to low COF resulted in high wear.  It has been 

reported that once a (low friction) MoDTC tribofilm is formed it needs continuous replenishment from 

MoDTC additive in the bulk oil to maintain the low friction and if MoDTC is removed from the lubricant 

an instantaneous increase in friction can occur [370F371].  The higher levels of impurities in the Group I base 

oil may compete for surface sites, hindering the formation of a MoDTC tribofilm, or the high solubility of 

MoDTC in Group I may prevent MoDTC getting to the surface.  This is confirmed by an XPS adsorption 

study carried out on MoDTC in the three base oils, which showed that MoDTC in Group I base oil 

produced the least coverage of the adsorbant (FeO) (see 2356HFigure 113).  It is proposed that up until this time 

breakdown of iron oxide and formation of FeSx followed by removal caused tribochemical wear (see 

Section 2357H2.1.4.2) similar to that seen for primary ZnDTP (ZnDTP 1) in Chapter 2358H5.  The cause of the 

transition to friction reducing tribofilm is not fully understood, but a change in contact conditions as a 

result of wear – increasing contact area and therefore reducing contact pressure – may have promoted the 

formation of a fully developed MoDTC film.  It is noteworthy that the friction levels at the end of the test 

are the same for all base oils with MoDTC (see 2359HFigure 112). 
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Figure 113. XPS results from a adsorption study involving MoDTC in Group I, Group II and PAO 

base oils. 

 

6.4.3.3 Dispersant 3 

In Group I base oil, Dispersant 3 exhibited a significantly higher COF than the base oil alone (p-values 

0.00); for PAO this was marginally significant (p-value = 0.07), and for Group II there was no statistical 

difference (p-value = 1) between base oil and Dispersant 3 containing base oil.  If the real-time data is 

examined a more complex picture emerges (see 2360HFigure 114 (b)).  All the friction traces start at a low level 

(similar to base oil only) then increase to higher friction levels at different rates.  This behaviour does not 

appear to follow simple impurity and solubility relationships, but appears to be more complex and will be 

explored later in Section 2361H6.4.3.6. 
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Figure 114. Real-time (a) electrostatic charge and (b) coefficient of friction data for Dispersant 3 in 

Group II, Group I and PAO base oil. 
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Dynamic electrostatic charge signals were observed for all three oils, prior to the increase in friction (see 

2362HFigure 114), which may be associated with tribofilm formation.  For example, Group I showed dynamic 

charge signals up to the 7th minute, by the 9th minute the friction has reached the higher level.  For Group 

II, the charge dynamics persist until 21st minute, by the 24th minute the COF has reached the higher level.  

These charge dynamics are thought to be related to the initial instability of a Dispersant 3 tribofilm, where 

the film is partially formed then removed.  As discussed in Section 2363H6.3.2, dispersants produced a 

significant to marginally significantly higher COF standard deviation than (MoDTC, GMO and) base oil 

alone; which infers tribofilm instability.  The observed difference in positive and negative charge data 

supports this explanation (see 2364HFigure 115).  Dispersant 3 can become positively charged at the amino 

group by a reaction with the surface.  It is believed that upon desorption, an opposite charge may remain 

on the surface [2365H350].  Dispersant 3 in Group II compared to Group I exhibited oscillating positive and 

negative charge signals, with a short periodicity (compare 2366HFigure 115 (c) & (b) respectively).  The 

dominance of positive and negative charge varies over these oscillations, which is thought to indicate 

Dispersant 3 adsorption and desorption, which also suggests an unstable film was produced.  This 

reinforces the view that an unstable film was produced by Dispersant 3 in Group II. 
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Figure 115. Real-time positive and negative charge data for (a) Group II base oil only; (b) Dispersant 

3 in Group II, (c) Dispersant 3 in Group I, and (d) Dispersant 3 in PAO. 
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This inability for Dispersant 3 to form a full stable film, until the 24th minute, probably explains the higher 

wear observed for Group II than Group I (p-value = 0.05).  This might suggest that these charge dynamics 

are related to wear, however, there was no significant difference in wear between Group II base oil with 

and without Dispersant 3 (p-value = 0.92), but the positive and negative charge data is very different, not 

only in magnitude but more importantly in the oscillations (compare 2367HFigure 115 (a) & (c) respectively). 

 

Dispersant 3 produced a significantly higher electrostatic charge in PAO base oil when compared to 

Group I (p-values 0.02) and marginally higher electrostatic charge than Group II (p-value = 0.06).  This 

can be explained by examining the positive and negative charge data for PAO.  2368HFigure 115 (d) shows that 

from 5 minutes onwards there were fewer charge dynamics between positive and negative charge, which 

is believed to be related to the lower solubility of Dispersant 3 in PAO base oil, as evidenced by the 

directionality of the adsorption data (see 2369HFigure 116).  The adsorbed positively charged Dispersant 3 

molecules are less likely to desorb into bulk PAO than Group I and Group II producing a greater density 

of adsorbed dispersants, which yielded a greater surface charge. 
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Figure 116. XPS results from an adsorption study involving Dispersant 3 in Group I, Group II and 

PAO base oils. 

 

6.4.3.4 Detergent  

The Detergent in PAO and Group I (see 2370HFigure 117) both increased in COF to a peak at around 12 minutes 

followed by a drop to the initial levels.  The electrostatic charge data shows periodic features for 

Detergent in PAO and Group I.  This periodicity, like Dispersant 3, is thought to relate to adsorption and 

stripping/desorption that cause variable COF.  By contrast, Detergent in Group II showed less fluctuation 

in COF and increased in magnitude over the duration of the test; the charge signal was also more stable. 
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Figure 117. Real-time (a) electrostatic charge and (b) coefficient of friction data for Detergent in 

Group II, Group I and PAO base oil. 

 

The positive and negative charge data showed periodic signals which are predominantly negative for 

Group I and PAO (see 2371HFigure 118 (a) & (c) respectively).  For Group I and PAO the charge signals 

contained peaks, with the negative charge at a greater level than positive charge at the peak; this was not 

as pronounced for the Group II.  An overbased sulphurised calcium phenate detergent was used in this 

study employing an organic based surfactant, which is negatively charged.  It is thought that adsorption of 

the surfactant gives rise to this negative peak. 

 

2372HFigure 119 shows a magnification of a single charge peak typically seen for Group I and PAO.  During the 

dwell periods the surface is thought to be made up of CaO, adsorbed CaCO3 and adsorbed surfactant, 

yielding equal positive and negative charge (see 2373HFigure 119 A & 2374HFigure 120(a)).  Changes in the contact 

result in the adsorption of CaCO3 micelles and mass adsorption of free surfactants which generate 

negative charge [2375H350] (see 2376HFigure 119 B & 2377HFigure 120 (b)).  Over many passes through the contact the 

surfactants are sheared/stripped resulting in equal positive and negative charge (see 2378HFigure 119 C & 2379HFigure 

120(c)). 

 

The Detergent contained an excess amount of surfactant to ensure that all the base is suspended in the oil; 

consequently there were free surfactants in solution.  These free surfactants can adsorb to the surface, 

producing a negative charge.  However, the reason for the initiation of mass surfactant adsorption is not 

fully understood.  Surfactants have a greater affinity for nascent metal than oxides, therefore breakdown of 

CaO or iron oxide layers to reveal nascent metal could result in mass adsorption of surfactant molecules.   
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Figure 118. Real-time positive and negative charge data for Detergent in (a) Group I, (b) Group II 

and (c) PAO. 

 

Shearing of surfactants has been observed by comparing adsorbed surfactants on and off the wear [2380H155].  

Cizaire et al. [2381H156] carried out more detailed analysis and found that the stripping of surfactant from the 

surface can result in the splitting of hydrocarbon chains and/or the ionic bonds between sulphur and 

calcium.  Although this observation was for calcium sulphonate detergent, calcium phenate could be split 

in a similar manner. 
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Figure 119. Positive and negative charge data for Detergent in Group I highlighting the negative 

charge peak between 21.8 & 22.5 minutes. 
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                      (a)                                                                    (b)                                                 (c) 

Figure 120. Schematic describing how the charge features seen in 2382HFigure 118 & 2383HFigure 119 can be 

explained; (a) CaO, adsorbed CaCO3 and some adsorbed surfactant produce equal 

positive and negative charge, (b) changes in the contact result in the mass adsorption of 

surfactants which generate negative charge, and (c) surfactant is sheared from the surface 

resulting in equal positive and negative charge. 

 

This interpretation of charge data and Detergent surface interactions links with the observed fluctuating 

friction and intermittent adsorption of CaCO3 micelles [2384H154].  It is believed that Detergent in Group II 

produced a stable tribofilm, which was not susceptible to the mass adsorption and stripping seen for the 

Detergent in Group I and PAO, as evidenced by the comparatively stable friction and charge data. 

 

6.4.3.5 ZnDTP 2 

The high friction observed for ZnDTP 2 in Group I base oil also produced the most dynamic charge trace 

(see 2385HFigure 121), which is similar to charge dynamics seen for Dispersant 3 and Detergent, and associated 

with a non-steady state tribofilm, or more specifically film stripping and formation.  The positive and 

negative charge data showed that the oscillations seen on the RMS charge graph (see 2386HFigure 121) were a 

result of periodic negative charge features (see 2387HFigure 122 (a)).  It is also noted that the positive charge did 

not follow the negative charge oscillations, which is different to dynamic features associated with 

Dispersant 3 and Detergent tribofilms.  A possible explanation for this difference is the tenacity of ZnDTP 
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2 film.  The oscillations seen for ZnDTP 2 could relate to the partial removal of the polyphosphate layer, 

creating a patchy surface and temporary CPD effect (which is observed in 2388HFigure 165 (d) which shows a 

patchy ZnDTP 2 tribofilm), followed by replenishment by organic ZnDTP decomposition products.  

Partial film removal could also explain the higher friction levels seen for ZnDTP 2 in Group I, compared 

to PAO or Group II, as the patchy film equates to a rougher surface and thus, higher friction (see Section 

2389H2.1.3).  Partial ZnDTP 2 tribofilm removal and tenacity of these films is explored further in Section 2390H6.5. 
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                                             (a)                                                                                 (b) 

Figure 121. Real-time (a) electrostatic charge and (b) coefficient of friction data for ZnDTP 2 in 

Group II, Group I and PAO base oil. 
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Figure 122. Real-time positive and negative charge data for ZnDTP 2 in (a) Group II and (b) Group 

II. 
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6.4.3.6 Base oils 

It is clear from the charge and friction data that the duration for additive film formation and the extent of 

coverage was related to the solubility of various additives in the three different base oils.  However, the 

solubility of these additives in the three base oils did not simply follow the impurity concentration (Group 

I > Group II > PAO, see 2391HTable 20); instead the polarity or structure of these base oils (solvents) were the 

dominant factors. 

 

The FMs and ZnDTP 2 exhibited friction and charge results which suggest that the tribofilm formed by 

these additives either takes longer, or is less tenacious, in Group I base oil than Group II and especially the 

PAO (see 2392HFigure 111,2393H112 &2394H 121).  Group I contains the most polar hydrocarbon species, followed by 

Group II and then PAO.  All the FMs (GMO, MGMO and MoDTC) and ZnDTP 2 are highly polar 

species.  Thus FMs and ZnDTP 2 are more soluble in Group I, which means that they do not readily come 

out of solution to form a tribofilm. In addition, the highly polar nature of some of the impurities present in 

Group I base oil, means that impurities compete with the FMs and ZnDTP 2 for surface sites, inhibiting 

film formation further.  The FMs in PAO produced the lowest friction films with the least instability.  

Similarly, Costello [2395H118] reported that GMO is most effective in the least polar base oil and least effective 

in the most polar base oil, but no explanation was given.  It is because FMs are the least soluble in PAO 

and there are fewer polar species in PAO to compete with the FMs for surface sites.  Although this 

resulted in a significantly better friction performance for the tests in this study, it must be realised that 

there is an issue for additives which readily fall out of solution in a particular base oil for long term engine 

use – although this might give greater performance initially, additive depletion could occur over a 

unacceptable period of time. 

 

Dispersant 3 and Detergent in Group II produced different results to the two additives in PAO and Group I 

base oil.  A tribofilm was formed more readily for dispersants in Group I and PAO base oils, whereas it 

took considerably longer for Dispersant 3 in Group II (see 2396HFigure 114 (b)).  Detergent in PAO and Group I 

base oil produced dynamic charge signals and variable COF traces, whereas Detergent Group I yielded a 

steady charge and friction trace (see 2397HFigure 117).  The proposed reason for this is that dispersants and 

detergents are less polar than FMs and ZnDTP 2 and are therefore more soluble in a less polar base oil, 

which makes them more soluble in Group II.  This meant that Dispersant 3 did not as readily come out of 

solution in Group II compared to PAO and Group I and it therefore took longer for the film to build.  The 

greater solubility of Detergent in Group II, or more specifically the surfactant, meant that the surfactant 

did not come out of solution and adsorb onto the surface ‘en mass’ like Detergent in Group I and PAO. 

 

6.5 ZNDTP 2 TRIBOFILM TENACITY EXPERIMENT  

It was hypothesised in Section 2398H6.4.3.5 that the negative charge peaks produced by ZnDTP 2 in Group I 

base oil are related to partial stripping of the tribofilm.  This hypothesis was investigated through a series 
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of tests which artificially induced wearing/stripping of the ZnDTP 2 tribofilm through changing the 

ZnDTP 2 containing oil to a base oil 20 minutes into the test.  Different test durations were run to assess 

the extent of ZnDTP 2 tribofilm stripping so that tribofilm thickness would be a function of time to which 

charge signals could be compared.  However, the test variability proved to be too poor to be able to plot 

test duration as a function of tribofilm wear/stripping.  Despite this, some interesting observation can be 

made through comparison of electrostatic charge data with tribofilm XPS elemental depth profiling.   

 

2399HFigure 123 (a) shows the positive and negative charge data for the test with no base oil flushing (F0).  

Although there are some dynamics at 5.5 and 14.5 minutes, this test showed a predominant positive charge 

and will be used as a comparison for the other tests.  Test F1 (2400HFigure 123 (b)) shows that after base oil 

flushing, the negative charge dominates the charge level.  Test F2 (see 2401HFigure 123 (c)) shows an increase 

in charge when the ZnDTP 2 oil is exchanged for base oil only; in this test negative charge was only 

slightly dominant.  Test F4 yielded a high negative charge during and immediately after the changing of 

oils (see 2402HFigure 123 (d)).  The negative charge levels then reduce to a level below the positive charge and 

similar to that seen for at the beginning of the test. 
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Figure 123. Real-time charge positive and negative data for tests (a)F0 (b)F1 (c) F2 and (d) F3.  Base 

oil flushing occurred at 20 minutes. 
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A summary of four of the tests, in terms of dominant charge sign and tribofilm thickness is reported in 

2403HTable 31.  Comparisons between the dominants of a positive and negative charge to tribofilm thickness 

demonstrated that a significant increase in negative charge appears to relate to ZnDTP 2 tribofilm 

removal. 

 

Test reference Duration of test run 
with Base oil / minutes 

Tribofilm 
thickness / nm 

Positive/negative charge observation 

F0 0 25 Dominant positive charge 
F1 5 5 Dominant negatively charge 
F2 25 25 Equal positive and negative charge 
F3 200 30 Dominant positive charge 

Table 31. ZnDTP 2 followed by base oil experiments; positive and negative charge observations, 

and tribofilm thickness as measured by XPS. 

 

The main charge species thought to be present in a ZnDTP 2 tribofilm are zinc cations (Zn2+), phosphate 

anions (PO4
3-) and sulphate anions (SO4

2-).  XPS elemental depth profiling was carried out to examine 

changes in surface chemistry that might have led to the change in charge polarity (see 2404HFigure 124).  Test 

F0, which yielded a dominant positive charge, had the highest levels of Zn in the tribofilm.  The 

concentration of Zn in the tribofilms decreased from high to low with charge polarity from positive (F0), 

comparable positive and negative (F2), and predominantly negative charge (F1).  There was also a 

reduction in phosphorous and sulphur concentration from the tests with predominantly positive to negative 

charge, but the change was not as great as that for zinc.  The reduction of the Zn, which will include Zn2+ 

ions, meant that there were substantially less positively charge species in the tribofilm, thus leading to a 

dominance of negatively charge species. 
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Figure 124. XPS elemental depth profiling for test F0, F1 and F2. 

 

2405HFigure 125 shows the ratio of tribofilm elements which are likely to be positively charge (zinc) against 

elements which are likely to be negatively charged (e.g. phosphate and sulphate).  It was found that those 

tests which produced a tribofilm that contained more zinc than phosphate and sulphate produced a 

dominantly positive charge (e.g. F0).  Those tribofilms which contained a greater concentration of 

phosphate and sulphate than zinc produced either a negative charge or an equal positive/negative charge 

(e.g. F1 and F2).  This analysis indicates that the negative peaks seen for ZnDTP 2 in Group I (see Section 

2406H6.4.3.5) relate to partial removal of the tribofilm and the source of the negative charge is a reduction of Zn. 
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Figure 125. Ratio of the major positive (Zn) and negative charges (PO4 and SO4) thought to be present 

in ZnDTP 2 tribofilms for test F0, F1, F2 and F3. 

 

As discussed previously, many of the tenacity experiments were discarded because they were difficult to 

plot ZnDTP 2 film wearing/degradation as a function of time.  Re-examination of these tests show the 

same findings as discussed above.  One of the most interesting tests was F3 which showed a separation 

between positive and negative charge prior to the change from ZnDTP 2 oil to base oil (see 2407HFigure 123 

(d)).  During and shortly after the oil change the negative charge increased to a greater extent than the 

positive charge.  After 10 minutes (30 minutes from start) the positive and negative charge levels 

separated and returned to that seen in the first 20 minutes and seen for test F0 which did not involve a 

change to base oil.  This infers that during the change of oils, the ZnDTP 2 tribofilm is stripped and then 

re-built, which was further substantiated by the near identical elemental depth profiles for F0 and F3 (see 

2408HFigure 126).   
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Figure 126. XPS elemental depth profiling for test (a) F0 and (b) F3. 
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Despite the difference that F0 was run for a short period of time in a ZnDTP 2 containing oil and F3 was 

run in base oil, after the ZnDTP 2 oil, for two hours, the wear of the two samples were very similar.  This 

suggests that ZnDTP 2 could break-down and reform with very little effect on wear.  This is at odds with 

many researchers who suggest that low wear produced by ZnDTP is evidence that the tribofilm it forms is 

extremely tenacious and not readily removed.  This series of ZnDTP 2 tenacity experiments have 

demonstrated, through electrostatic monitoring and XPS analysis, that films could partially break-down 

and quickly reform again with minimal effect on wear. 

 

The detailed cross-correlation between electrostatic charge and surface chemistry further substantiates the 

dynamic additive-surface interactions inferred from electrostatic charge, friction, wear and adsorption 

data. 

 

6.6 CONCLUSIONS 

This study assessed the effect of three base oils and 6 additives on friction, wear and electrostatic surface 

charge. A full factorial matrix was carried out, under conditions designed to simulate the valve-train 

contact. 

 

Electrostatic charge generation from additive-surface interaction has been discussed.  The charge 

generation was found to be dependent on the mode of adsorption (chemical or physical) and the charge 

carriers existing in the additive (whether acids or bases).  Physical adsorption is thought to generate charge 

through adsorption, particularly through the formation of acid-base pairs, as well as desorption (charge 

separation).  Detergent and Dispersant 3 produced charge levels two orders of magnitude greater than the 

FMs and ZnDTP 2.  Dispersant 3 is basic and therefore promotes positive charge formation through 

adsorption.  Due to the excess base present in the Detergent, there is a significant amount of acid 

surfactant molecules which keep the base soluble, adsorption of these surfactant molecules containing 

acidic sites, promotes negative surface charge formation.  The Detergent produced a higher charge in 

Group I and Group II base oils because there is a greater number of acidic surfactants in the Detergent 

compared to the basic dispersants.  The organic FMs (GMO and MGMO) produced a low charge 

compared to detergents and dispersants, because they physically adsorb, through sharing of electrons 

rather than charge separation (formation of an acid-base pair).  In addition, FMs preferentially shear at the 

hydrocarbon tail interface rather than at the polar-head/metallic surface interface, which produces less 

charge. 

 

ZnDTP 2 and MoDTC, which adsorb at the surface then, chemically react to produce a surface film which 

has a different work function to the bulk steel and this drives charge separation.  The charge generated by 

these chemical films is lower than that produced by additives which only physically adsorb, because 
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chemical films cannot desorb (creating charge separation).  Chemical films are also often only found in 

and just outside the contact, whereas physically adsorbed films adsorb on the entire surface; the surface 

area to sensor area ratio is smaller for chemically adsorbed films, hence a lower charge is detected.  

 

Real-time charge and COF signals have been used to discuss tribofilm kinematics, with particular 

reference to the affect the base oil has on additive film formation (additive solubility).  Charge and friction 

signals indicate that the higher molecular weight Dispersant 3 is more susceptible to stripping/desorption 

than Detergent.  Electrostatic charge signals have been related to the partial stripping of the ZnDTP 2 film 

as well as the chemical composition of the tribofilm; the reduction of zinc relative to phosphate and 

sulphate resulted in an increase in negative charge. 

 

This work has an impact on formulating, as additive selection could be, in part, based on additive-surface 

charge and additive tribofilm kinematics.  Additives which are known to produce different charge levels 

and sign could be optimised to attract absorption of another additive, or alternatively additives that are not 

desired at the surface could be repelled.  The tribofilm kinematics could also be managed to promote the 

desired tribofilm composition, or more correctly minimise antagonistic surface competition – a point, to 

the knowledge of the author, that has not been realised in the literature.  Understanding the kinematics of 

tribofilm formation for surface active additives could enable lubricant formulators to achieve their goal of 

achieving low friction and low wear. 
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7 EVALUATION OF THE TRIBOLOGICAL PROPERTIES OF DISPERSANT 
AND FRICTION MODIFIERS WITHIN A SIMULATED AUTOMATIC 
TRANSMISSION TRIBO-COUPLE 

 

7.1 INTRODUCTION 
Work presented in Chapter 2409H6 showed that different additives produced different charge levels – the 

difference between physical and chemically forming additives was significant – and charge features were 

also related to additive-surface interaction.  With this advance in understanding, the work presented in this 

Chapter investigated single additive-surface charge generation, as well as how additive interactions affect 

surface charge.  This work shows an incremental increase in test complexity, to push understanding of 

additive-surface charge generation further. 

 

Two physically adsorbing additives, dispersant and FM, which are found in automatic transmissions, were 

chosen.  These additives affect the frictional performance in wet clutches in automatic transmissions; 

dispersants are used to maximise torque capacity and FMs are used to minimise shudder.  These 

requirements are conflicting as FMs lower torque capacity, and dispersants increase friction, making 

shudder more likely.  In industry, an iterative approach is taken to identify the type and concentration of 

these two additives which optimise these two characteristics, but it is usually a trade off between the two.  

Interaction between these additives and how this affects film formation, in most cases, is identified 

through frictional behaviour; there is very little known about the chemical and physical properties of the 

film produced by these two additives, and how this leads to the friction characteristics seen.   

 

The tests detailed in this Chapter represent a challenge for the interpretation of electrostatic charge.  Both 

additives are quite similar in chemical and physical structure (both are succinimides) and electrostatic 

monitoring has not previously been employed to monitor the charge on wet friction material. 

 

7.1.1 AIM 
The work presented in this Chapter investigated the tribological behaviour of dispersant and friction 

modifier containing oils on a steel-paper tribo-couple through; real-time friction and surface charge 

measurements, and off-line wear and XPS analysis.  The work aimed to assess; 

• Monitoring of wet friction material surface charge. 

• Whether electrostatic monitoring was sensitive enough to small changes in additive chemistry. 

• Whether electrostatic monitoring can offer new insight into dispersant and FM interaction. 

 



Chapter 7 Evaluation of the tribological properties of dispersant and FM within a simulated AT tribo-couple 

194 

7.2 EXPERIMENTAL PROCEDURE 
A PCS instruments MTM was employed in Pin-on-Disc mode, under pure sliding (see Section 2410H3.1.1 & 

2411HFigure 60).  Details of the instrumentation, data acquisition and signal processing can be found in Section 

2412H3.5. 

 

7.2.1 WEAR SPECIMENS AND TEST PROCEDURE 
In order to simulate FM and dispersant interactions found in clutch pack contacts of modern automatic 

transmissions, it was important to try to mimic the wet friction clutch materials and contact conditions. 

 

The test specimens consisted of a 380 μm thick paper bonded to a coated standard MTM disk with an 

epoxy resin, and a 6mm AISI 52100 steel ball (see 2413HFigure 127).  The physical properties of these 

components are shown in 2414HTable 19.  The wet friction material was supplied by an automotive fibre 

composites manufacture. 

 

 

Figure 127. Schematic showing brass disc and the position of the sensor relative to the steel ball. 

 

Oil (50 ml) was added to the MTM oil reservoir.  The reservoir was heated until the oil reached the test 

temperature of 100°C (considered normal operating temperatures for transmission components [2415H76]), 

which typically required 15 minutes.  During this period the disc was rotated at 0.8 m/s, without the pin in 

contact.  Once thermal equilibrium was achieved the test was started.  A constant load of 3 N was 

employed, which produced a contact pressure higher than normally experienced by the clutch pack, 400 

MPa was found to be the lowest pressure that produced repeatable results.  Contact pressure has a 

moderate influence on clutch friction compared to the influence of temperature and sliding velocity [2416H76].  

The test consisted of two stages (see 2417HTable 22); the first stage employed sliding speeds between 4.5 m/s 

and 0.6 m/s over a period of 2 minutes for running-in; the second stage employed a constant sliding 

velocity of 0.2 m/s for a period of 33 minutes.  A sliding speed of 0.2 m/s has been found to be the upper 

range for investigating friction-induced vibration from automatic transmission clutches [2418H74]. 
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7.2.2 BASE OIL RHEOLOGY AND ADDITIVE CHEMISTRY 
In this study, an API Group II base oil (see 2419HTable 20), dispersant and an ATF friction modifier were used.  

The choice of base oil was based on good repeatability identified in Chapter 2420H6.  A conventional mono-

succinimide dispersant (Dispersant 3), made from polyisobutene, had one polar-head/molecule and 

according to molecular modelling18F

‡‡‡‡‡ was 70Å in length (tail-head) (see 2421HFigure 31(a)).  The friction 

modifier (FM 1) was a bis succinimide with 2 tails/polar-head with dimensions of 28Å tail-head 2422H

‡‡‡‡‡ and 

41Å tail-tail2423H

‡‡‡‡‡ (see 2424HFigure 31(b)).  For both FM 1 and Dispersant 3 the polar-head was attached to the 

hydrocarbon tail via an alkylation reaction.  The FM 1 contained about one amine functional group and 

the Dispersant 3 typically contained more than 3 amine functional groups.  Dispersant 3 and FM 1 were 

tested individually and in mixtures (1:1) at 1% wt. (in total), to minimise changes in oil rheology (see 

2425HTable 32); also it was reported that the friction behaviour of dispersants, when used alone, saturates above 

1% - concentrations above 1% do not significantly alter the friction characteristics compared to the 

friction characteristics at 1% [2426H83, 2427H84].  Blended at an equal percent weight the FM 1 containing oil has a 

higher concentration of nitrogen than Dispersant 3 containing oil. 

 

Test order  Oil 
1 Base oil 
2 Base oil + 1% Dispersant 3 
3 Base oil + 1 % Friction Modifier 1 
4 Base oil + 0.5% Dispersant 3 + 0.5% Friction Modifier 1 

Table 32. Oil test matrix. 

 

7.2.3 OFF-LINE ANALYSIS 
On/off wear scar surface composition analysis was carried out on worn wet friction material sample (see 

Section 2428H3.6.4.1).  The ball wear scars were measured using an optical microscope (see Section 2429H3.6.2.3).  

Due to the elliptical nature of the wear scar, it was characterised by two measurements; the first in the 

direction of sliding and the second perpendicular to sliding.  The wet friction material surface wear was 

impossible to image through laser profilometry; even with tactile profilometers, the wear track is not 

discernable.  Given these problems with quantification methods, a qualitative approach was taken, which 

compared optical macro and micro images between test specimens.  Although this method is not without 

subjective error, some general visual observations about the difference in wear can be made.  Conductivity 

measurements (see Section 2430H3.6.1) were carried out on test oils 1-4 (see 2431HTable 34). 

 

                                                      
‡‡‡‡‡ Minimum energy conformations, and molecular dimensions, for additives were determined using Cambridgesoft 

Company CSChem3d Pro software version 7.0.0. Conformations were minimised to an RMS gradient of 0.05. 
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7.3 RESULTS 

7.3.1 ON-LINE DATA 

7.3.1.1 Coefficient of friction 
The highest COF was produced by the Dispersant 3 containing oil followed by base oil, FM 1 + 

Dispersant 3, and then FM 1 alone (see 2432HFigure 128).  All friction traces were relatively stable, apart from 

the FM 1 + Dispersant 3; that starts at 0.17, which is in-between FM 1 and Dispersant 3 levels (0.16 and 

0.19 respectively), and as the test progressed the friction level increased in magnitude and dynamics.  By 

the end of the test, the FM 1 + Dispersant 3 COF level was similar to that of Dispersant 3 alone. 
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Figure 128. COF traces for base oil, Dispersant 3, FM 1, and FM 1 + Dispersant 3. 

 

7.3.1.2 Electrostatic charge 
The base oil electrostatic charge levels were fairly constant around 1.2 ± 0.2 pC for the majority of the 

test, but after 29 minutes the charge level doubled (see 2433HFigure 129).  Dispersant 3 varied around similar 

charge levels to the base oil, but did not increase in magnitude towards the end of the test.  The FM 1 

produced a lower charge level than base oil and Dispersant 3 alone, in addition the FM 1 charge trace was 

more stable than the other test oils, and exhibited a steady increase in magnitude over the entire duration 

of the test.  The FM 1 and Dispersant 3 mixture yielded initial charge levels half way between Dispersant 

3 and FM 1 only.  At approximately 6 minutes the charge dropped to a level slightly above that of the FM 

1 only.  Between 9th and 11th minutes the level increased to be around that of Dispersant 3 only, where it 

remained until the 16th minute.  Around the 20th minute, the charge signals returned to a low level, close to 

that for the FM 1 only.  From this time onwards, the charge signals became more dynamic in terms of 

amplitude and spikiness, alternating between Dispersant 3 and FM 1 levels. 
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Figure 129. Electrostatic charge traces for base oil, Dispersant 3, FM 1, and FM 1 + Dispersant 3. 

 

7.3.2 OFF-LINE ANALYSIS  

7.3.2.1 Disc wet friction material wear 
The paper surface from the Dispersant 3 + FM 1 run shows the most damage (see 2434HFigure 130), followed 

by the base oil.  It is not possible to clearly distinguish whether FM 1 or Dispersant 3 individually was 

better at minimising paper surface damage. 
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                                        (a)                                                                                  (b) 

 
                                         (c)                                                                                  (d) 

Figure 130. Macro images of worn disc (46 mm diameter) wet friction material for: (a) base oil (b) 
Dispersant 3 (c) Friction Modifier 1 and (d) Friction Modifier 1+ Dispersant 3.  Images 
are processed in Adobe Photoshop to give greater definition to the worn areas. 

 

7.3.2.2 Ball wear scar analysis  
The ball surface was characterised using a macroscope.  The ball wear scars are large and acutely elliptical 

(see 2435HFigure 131 (a)).  The ball scar width for base oil is over 15 times larger than the Hertzian contact 

width and 20 times that for an equivalent steel-steel contact.  Eguchi et al. [371F372] reported that the real 

contact area of wet friction material on steel compared to steel/steel is different by 1-2 orders of 

magnitude.  The friction material deforms to take the shape of the ball; the compliances of the friction 

material in the direction of sliding is different to that perpendicular to sliding, hence the elliptical wear 

scar.  The ball wear scar was not flat; the ball contact surface remained fairly spherical, but exhibited 
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groves in the sliding direction, indicating that only mild abrasion had occurred on the ball surface.  A 

degree of caution is required when viewing the ball wear scar results, because the wear scars are not flat, 

the same wear volume could arise from a small wear scar with deep groves and a wide wear scar with 

shallow groves.  Despite this, the methodology employed gave a general indication of test oil wear 

performance.  Taking into account a certain degree of error, the single additive containing oils showed the 

best wear resistance (see 2436HFigure 131 (b)).  The combination of Dispersant 3 + FM 1 exhibited the worst 

wear performance, significantly worse than base oil alone. 
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                                     (a)                                                                                     (b) 

Figure 131. Ball wear scar analysis (a) characterisation of wear scar (b) wear scar results for the test 
oils. 

 

7.3.2.3 Disc XPS analysis 
2437HFigure 132 shows the results from XPS analysis performed on five friction material discs: base oil only, 

Dispersant 3, FM 1, FM 1 + Dispersant 3, and an unused sample (as a control).  Elemental analysis was 

carried out on the wear track and off the wear track (for the unused sample the analysis was performed in 

similar radial positions).  The unused disc exhibited the highest oxygen, but lowest hydrocarbon and 

nitrogen concentrations of all the samples analysed (see 2438HFigure 132).  The source of nitrogen could be the 

phonic resin (see 2439HFigure 46 (b)). The base oil only sample showed a lower oxygen concentration and 

higher hydrocarbon concentrations than the base oil, indicating the presence of a weak tribofilm from the 

‘impurities’ in the oil.  Of the additive containing oils, FM 1 yielded the highest oxygen concentration and 

Dispersant 3 exhibited the highest hydrocarbon concentration.  Hydrocarbon and Oxygen levels for the 

FM 1 + Dispersant 3 mixture were in-between that of Dispersant 3 and FM 1 alone.  The most significant 

result is that the Nitrogen levels for the FM 1 + Dispersant 3 and Dispersant 3 only are similar. 
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Figure 132. Disc wet friction material XPS analysis for worn and unused surfaces. 

 

7.3.2.4 Conductivity measurements 
2440HFigure 133 shows the conductivity results for the test oils.  Dispersant 3 has the highest conductivity and 

the base oil the lowest.  The conductivity of the Dispersant 3 + FM 1 oil is half that of Dispersant 3 alone, 

which is not surprising considering that Dispersant 3 is present at 0.5% wt.. 
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Figure 133. Conductivity of test oils. 
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7.4 DISCUSSIONS 

7.4.1 WET FRICTION MATERIAL 
The charge and COF levels for friction-material/steel contacts lubricated with base oil and Dispersant 3 

containing oils are significantly higher than those produced when the same oils were used on steel/steel 

contacts (see 2441HTable 33).  The paper surface compared to the steel is considerably rougher; rough surfaces 

generally reduce the lambda value and thus increase asperities contact (see Section 2442H2.1.3).  However 

classical EHL may not strictly apply to paper/steel contacts; adhesion and deformation between the paper 

disc and steel ball may play a role.  The rubbing of a rough insulator (disc friction material) against a 

conducting material (steel ball) will lead to a major contribution of contact charging to the total charge 

detected.  The majority of published work on electrostatic monitoring has concentrated on tribo-contacts, 

which have been conducting; thus contact charging has not previously been considered a major charge 

mechanism.  Contact charging is thought to predominantly affect the DC levels (steady state magnitude) 

as load and sliding speed are kept constant; the two main contact conditions affecting contact charging 

levels.  However, if the contact area of the surface increased through either wear or deformation of the 

composite surface, it may lead to an increase in contact charging.  This could be an explanation for the 

high charge seen at the end of the base oil test (see 2443HFigure 129). 

 

The FM 1 produced a lower charge than Dispersant 3; this corresponds to similar studies involving 

steel/steel contacts (see Section 2444H6.3.2).  However, the same studies showed that base oil produces a lower 

charge than Dispersant 3 and FMs.  In this study the base oil charge level is similar to that of Dispersant 3.  

It is thought that this observation relates to the influence of the additives on contact charging.  The base oil 

test charge level (29 minutes onwards) is the closest to charge generated by dry sliding of organic polymer 

against a conductor; it is thought that the high charge level is a consequence of increased contact charging 

during wear.  The FM 1 provided a sufficient film (as indicated by the significantly low COF levels) 

which minimised contact charging.  The similar charge levels between base oil and Dispersant 3, up until 

the 29th minute, suggests that the larger Dispersant 3 molecules did not cover the entire friction material; 

therefore contact charging was not significantly reduced.  The relatively similar COF levels of Dispersant 

3 and base oil compared to FM 1 also suggest this.  However, the COF level is slightly higher for 

Dispersant 3 compared to base oil; this does infer an adsorbed Dispersant 3 film was present, even if only 

a minimal covering, and this reduced wear.  The charge level of the FM 1+ Dispersant 3 tests was lower 

than the base oil, even though the wet friction material wear was greater.  It is thought that the additives 

partly covered the friction material, even if the dominance of one additive over another is changing and 

antagonises wear, the presence of these additives still minimise contact charging relative to the base oil 

test.  Further explanations of additive charge characteristics are discussed below. 
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 COF Electrostatic charge /pC 
 steel / steel 

Ave, Std 
paper / steel  
Ave, Std 

steel / steel 
Ave, Std 

paper / steel  
Ave, Std 

API Group II base oil 0.103, 0.002 0.190, 0.002 0.022, 0.001 1.396, 0.348 
Mono-succinimide dispersant 0.105, 0.010 0.194, 0.002 0.411, 0.192 1.266, 0.122 

Table 33. Comparison of COF and electrostatic charge results from the same or similar oils tests on 
friction - material/steel and steel/steel (from Chapter 2445H6) contacts under similar test 
conditions. 

 

7.4.2 FRICTION MODIFIER  
In order for FM 1 to significantly reduce the COF compared to base oil alone (see 2446HFigure 128), multiple 

layers of FMs must have adsorbed onto the fibre and resin surface.  Due to the severe boundary 

conditions, on a nanometre scale the FMs are unlikely to form multiple layers on asperities’ tips even 

allowing for re-arrangement of the flexible hydrocarbon tails, but they will form in the pores/valleys, 

effectively smoothing the surface.  The presence of FMs in the pores may explain the low COF seen from 

the beginning of the test (see 2447HFigure 128).  The FMs would be able to form multiple layers, even if the 

shear plane crosses the top of two adjacent asperities (see 2448HFigure 134).  The roughness of the disc surface 

changed from 9μm at the start of the test to 5 μm on the track at the end of the test; microscopic analysis 

revealed that this was predominantly as a result of plastic deformation (compression of the porous surface) 

rather than asperity removal.  This change in roughness over the duration of the test will reduce the 

severity of boundary conditions, which will promote greater adsorption of FMs further along asperities 

towards the tip, not increasing film thickness as such, but increasing surface coverage and hence the 

surface charge increased with time (see 2449HFigure 129). 

 

Phenolic resin

Cellulose fibre

Graphitic fibre

 

Figure 134. Schematic depicting the adsorption of FMs on wet friction material. 
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7.4.3 DISPERSANT 
The slightly higher COF for Dispersant 3 compared to base oil infers that an adsorbed Dispersant 3 film 

has formed on the contacting surfaces.  Previous studies with Dispersant 3 have shown that dispersant film 

formation on steel-steel contacts resulted in an increase in COF (see Chapter 2450H6, when the film forms it is 

higher).  Other researchers have used similar dispersants in wet friction material / steel tribological testing 

and reported that dispersants increase COF relative to base oil [2451H83,2452H84,2453H254,372F373,373F374].  The base oil and 

Dispersant 3 COF and charge levels are quite similar, especially when compared to the FM 1 (see 2454HFigure 

128 & 2455H129), the data implies that Dispersant 3 does not form multiple layers and/or does not cover the 

contacting surfaces completely.  The charge level for Dispersant 3 and base oil coincide between 12 and 

22 minutes.  A possible explanation for this is that the contact conditions during this period are such that 

Dispersant 3, which has a higher molecular weight and stiffer hydrocarbon tail than FM 1, is unable to 

maintain a stable adsorbed film.  On the whole the Dispersant 3 charge signal is more stable than the base 

oil; in previous studies this charge characteristic has been associated with a steady state process such as 

stable tribofilm, equilibrium of film formation and shear (see Chapter 2456H6), or mild wear. 

 

The base oil and Dispersant 3 tests showed very similar charge levels during the first two thirds of the test; 

from 22 minutes onwards the charge signals for the base oil and Dispersant 3 diverge.  The charge levels 

were similar up to this point, but the ball and disc wear was significantly different; so the increase in 

charge for the base oil, at the latter stage of the test, could be related to the onset and progression of wear 

for the base oil.  2457HFigure 135 (a) shows that the top surface of the composite material has been disrupted 

and fibres have been pulled through or have broken away from the composite matrix.  The movement of 

fibres against one another (tribo-electrification), or the breaking of insulating fibres (by breaking bonds), 

will generate surface charge.  The production of fibrous debris may also contribute to the overall charge 

level.  The disc track for the Dispersant 3 containing oil did not exhibit the same degree of disruption.  

Matsuoka et al. [2458H256] reported that dispersants help retain the shear strength of cellulose fibres compared 

to base oil; however no explanation as to the mechanism by which shear strength increased was given. 
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                                     (a)                                                                                   (b) 

  
                                     (c)                                                                                (d) 

Figure 135. Macro images of worn wet friction material areas for (a) base oil, (b) Dispersant 3, (c) 
Friction Modifier 1 and (d) Dispersant 3 + Friction Modifier 1. 

 

7.4.4 DIFFERENCES IN DISPERSANT 3 AND FRICTION MODIFIER 1 TRIBOLOGICAL AND SURFACE 
CHARGE BEHAVIOUR 

FM 1 molecules have flexible hydrocarbon tails, while Dispersant 3 molecules have one stiff tail which 

increases viscosity locally and therefore COF.  In addition, multiple layers of FM 1 molecules easily shear 

at the hydrocarbon tail interfaces, reducing COF, whereas Dispersant 3 molecules bind tightly to the 

surface and require a greater shear force to remove them (see 2459HFigure 136). 
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                                      (a)                                                                              (b) 

Figure 136. Shearing and corresponding friction behavior of (a) Friction Modifier 1 and (b) 
Dispersant 3. 

 

Dispersant 3 or FM 1 will acquire a positive charge via reaction with an acidic surface site, thus forming 

an acid-base pair (see 2460HFigure 137 (a) & (b)).  Desorption of the charged molecules results in a negative 

charge on the surface (see 2461HFigure 137 (c)).  The superior solubility of the high molecular weight 

Dispersant 3 versus FM 1 can account for the increased charge detected; the charged Dispersant 3 cation is 

more easily desorbed.  Similarly the high molecular weight and length of Dispersant 3 relative to the 

contact clearances make Dispersant 3 most likely to be sheared from the surface compared to FM 1.  

Although alignment of the FM 1 hydrocarbon tails is caused by electrostatic and van der Waals forces, 

shearing of theses layers does not have the same likelihood to generate surface charge as dispersants.  The 

electrostatic charge stability also relates to the shearing and stripping of FM 1 and Dispersant 3 

respectively.  Due to the high mobility and strong orientation forces, sheared-off layers are quite easily 

rebuilt to their original state [2462H103] hence the fairly linear charge trace.  Dispersant 3 molecules are large 

and bulky compared to FM 1 molecules and take time to re-adsorb, so areas of the surface are left 

deficient of Dispersant 3 for a period of time, consequently the charge levels are more variable than FM 1.  

This follows observations for FMs and Dispersants 3 in Chapter 2463H6. 
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                                                          (a)                     (b)                    (c) 

Figure 137. Mechanism for surface charge generation by succinimides (a) free dispersant (b) 
adsorption – creating an acid-base pair, and (c) desorption. 

 

The nitrogen level on the paper surface indicates that, lubricated with Dispersant 3, the paper becomes 

nitrogen enriched (even though the nitrogen contained in Dispersant 3 is lower than FM 1).  For this to 

occur the dispersant must decompose in the contact; this is probably through cleavage of a carbon-carbon 

bond near the hydrocarbon tail / polar-head linkage in the molecule, during shear.  However it could also 

occur thermally via a reverse alkylation reaction of the succinimide portion of Dispersant 3 (see 2464HFigure 

138).  These processes would leave the nitrogen rich polar-head on the surface.  Dispersant 3 has the 

possibility of forming 3 amide groups, whereas FM 1 only has one.  Consequently, FM 1 is more likely to 

desorb intact (one surface bond versus 3). 

 

Cleavage of C-C 
bond or thermal
cracking

Acid base 
pair
Or amide 
bonds

 
                                                   (a)                        (b)                        (c) 

Figure 138. Schematic of additive adsorption showing (a) FM 1 forms one amide, (b) Dispersant 3 
forms three amides, and (c) decomposition of Dispersant 3. 
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The difference in friction material wear for Dispersant 3 and FM 1 is indistinguishable (see 2465HFigure 135 (b) 

& (c) respectively).  Conversely there appeared to be a difference in steel ball wear scar between the two 

additives.  Dispersant 3 protected the ball better than the FM 1, because it is more polar and has stronger 

adsorption to the ferrous surface. 

 

7.4.5 DISPERSANT 3 + FRICTION MODIFIER 1 
For the combination of FM 1 and Dispersant 3, the COF and charge data indicated that the FM 1 

dominated the tribofilm between 2 and 9 minutes.  Kamada et al. [2466H84], noted a similar finding – that FM 

exerts the controlling action over dispersant when blended at the same weight – for dispersant and a 

phosphorous based FM.  The same authors also argued that this was an unlikely finding since the 

dispersant molecule is significantly larger than the FM, therefore the larger part of the sliding surface is 

coated with dispersant molecules; however this assumes that the dispersants are able to sufficiently cover 

the contact area.  FM 1 is smaller, more mobile and flexible than Dispersant 3, which is preferential for 

FM 1 film formation under the test conditions, where clearances are likely to be small.  During running-in, 

deformation of the paper material occurred, so the film thickness to composite roughness increased, 

allowing Dispersant 3 into the contact and competition between FM 1 and Dispersant 3 for surface sites 

ensued.  Despite FM 1 being more mobile, Dispersant 3 is more polar and can therefore compete with FM 

1 for surface sites.  The charge trace shows Dispersant 3 dominates the tribofilm between 11 and 17 

minutes.  The charge level then drops, implying that the FM 1 is dominating the tribofilm content.  It is 

possible in the preceding period that wear and sufficient roughening of the surface occurred to reduce the 

film thickness to composite roughness ratio, minimising Dispersant 3 adsorption.  For the remainder of the 

test the charge level is highly dynamic, varying in-between levels similar to FM 1 and Dispersant 3 alone.  

By the end of the test the charge and COF levels are of the same magnitude as the Dispersant 3 only.  In 

addition the XPS analysis showed that the nitrogen levels for the mixture was the same as for the 

Dispersant 3 only test.  Therefore, charge, COF and XPS data all infer that Dispersant 3 dominated the 

tribofilm by the end of the test.  Whether Dispersant 3 displaces FM 1 by the end of test or whether 

Dispersant 3 forms a substantial layer on top a FM 1 layer is not clear, but the displacement of FM 1 from 

the surface is more likely to result in an increase in friction (see 2467HFigure 139). 

 

 



Chapter 7 Evaluation of the tribological properties of dispersant and FM within a simulated AT tribo-couple 

208 

        

Shear plane

      

Shear plane
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                                                          (c)                                                                             (d) 

Figure 139. Schematic depicting the layering permutations of Friction Modifier 1 and Dispersant 3 
molecules as a (a) dispersants on top of friction modifiers, and (b) dispersants mixed 
amongst the friction modifiers.  The shearing of these two scenarios is shown in (c) and 
(d) respectively. 

 

Other researchers have reported that during wear, the surface composition of wet friction material changes 

and this effects preferential absorption of one additive over another [374F375,375F376].  Although likely, evidence 

in this study suggests that it is the interaction between the two additives which produces wear.  The disc 

and ball wear for the FM 1 + Dispersant 3 mixture was the greatest among the tests run, clearly showing 

antagonism between the two additives.  2468HFigure 135 (d) shows disruption of the paper surface, with fibres 

detached from the main composite matrix, leading to large holes/spaces along the wear track.  The 

degradation of the surface is indicative of a ‘fatigue’ like process.  The charge data shows that the 

dominance of Dispersant 3 and FM 1 on the paper surface is continually changing.  Also, as the COF 

levels increase so the peaks of the oscillations within the overall trend increase (see 2469HFigure 128).  This 

perhaps leads to an oscillating high friction/low friction response resulting in a ‘fatigue’ process/loosening 

and breaking of fibres. 

 

Both FMs and dispersants are used in ATFs to minimise shudder and improve torque capacity 

respectively, yet they have resulted in the greatest amount of wear and the most unstable friction response.  

Clearly an incorrect balance of FMs and dispersants could have disastrous consequences for durability and 



Chapter 7 Evaluation of the tribological properties of dispersant and FM within a simulated AT tribo-couple 

209 

shudder.  Guan et al. [376F377] suggested that the identification – through bench tests – of ATF-friction 

material interactions that accelerate friction material degradation may be related to ATF effects on the 

service life of AT clutches.  Thus the test procedure described in this Chapter could be useful for FM and 

dispersant development in ATF additive packages. 

 

7.5 CONCLUSIONS 
FM 1 produced low friction and low surface charge, whereas Dispersant 3 exhibited high friction and 

charge characteristics.  Both additives singularly were effective at reducing friction material and steel ball 

wear compared to base oil.  XPS analysis revealed that when FM 1 and Dispersant 3 are combined the 

friction material nitrogen levels are similar to Dispersant 3 alone, indicating that by the end of test the 

Dispersant 3 is dominating the tribofilm content.  The friction trace shows a gradual increase over the test 

duration, which infers that Dispersant 3 is steadily dominating the tribofilm content.  The electrostatic 

charge data suggests that competition for surface sites is an extremely dynamic process, with each additive 

appearing to dominate surface coverage at different times.  The dominance of one additive over the other 

is thought to be a function of friction material compression/deformation and wear.  The competition 

between the two additives is thought to mechanically weaken the friction material.  The information 

gained by these tests could enable the reactivity and concentration of these additives in a formulation to be 

tailored to suit ATF applications.  Electrostatic charge monitoring could enable tests to be stopped at 

critical moments – as identified by charge features – so that detailed surface chemical analysis maybe 

carried out off-line.  The real-time charge/film information may be a valuable tool for the optimisation of 

additive chemistry, and for the formulation of finished ATFs. 
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8 EVALUATION OF GEAR OIL ADDITIVES IN A SIMULATED MANUAL 

TRANSMISSION CONTACT 

 

8.1 INTRODUCTION 

The previous Chapter ( 2470H7) investigated the interaction between surface active additives through real-time 

electrostatic charge and COF measurements as well as off-line wear analysis.  Due to the success of real-

time charge measurements to identify the dynamic nature of the interaction between two physically 

adsorbing additives (Dispersant 3 and FM 1) and the negative effect this has on wear resistance, a similar 

approach was undertaken for the work presented in this Chapter.  The interaction between two chemical 

forming additives hydrocarbyl-polysulphide and dispersed potassium-borate, which are used to lubricate 

manual transmission synchronisers was investigated.  The nature of a tribofilm which forms from a binary 

additive oil can be more complicated than the resultant/composite of the films which form when the 

additives are used singularly, especially for chemical film forming additives.  Also of interest is, whether 

the interaction between these additives during film formation is dependent on surface chemical 

composition; synchronisers typically consist of a ferrous-brass pair.  This Chapter presents a series of pin-

on-disc wear tests, using a brass disc and steel ball, intended to mimic the metallurgy of synchroniser ring 

contacts in a manual transmission.  Real-time surface charge and coefficient of friction (COF) 

measurements, along with off-line XPS (x-ray photoelectron spectroscopy) elemental depth profiling, are 

analysed with respect to film composition and formation mechanism. 

 

8.1.1 AIMS 

The work presented in this Chapter aimed to assess whether electrostatic charge monitoring could give 

insight into the nature of the films produced on brass and steel surface by hydrocarbyl-polysulphide and 

dispersed potassium-borate additives, and how interaction between the two additives affects film 

formation. 

 

8.2 EXPERIMENTAL PROCEDURE  

A PCS instruments MTM was employed in Pin-on-Disc mode, under pure sliding (see Section 2471H3.1.1 & 

2472HFigure 60).  Details of the instrumentation, data acquisition and signal processing can be found in Section 

2473H3.5. 
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8.2.1 SAMPLES, TEST CONDITIONS AND PROCEDURE 

The wear test specimens consisted of a brass MTM disk and a 6mm AISI 52100 steel ball.  The chemical 

and physical properties of these materials are shown in 2474HTable 18 &2475H 19 respectively. 

 

The test consisted of two stages (see 2476HTable 22); the first involved a reduction of sliding speed from 4.5 m/s 

and 0.6 m/s over a period of 2 minutes 10 seconds, with decreases every 10 seconds.  This stage was 

designed to replicate increasingly more severe boundary lubrication conditions experienced by the gear 

and synchroniser ring prior to equalisation of their peripheral speeds.  The second stage employed a 

constant sliding velocity of 0.2 m/s for 33 minutes; the sliding velocity used was similar to other bench 

test transmission simulations [2477H151].  For both stages a constant load of 7 N was employed; this produces a 

contact pressure of 964 MPa, slightly higher than normally experienced by the synchroniser. 

 

8.2.2 BASE OIL RHEOLOGY AND ADDITIVE CHEMISTRY 

As in the previous Chapter ( 2478H7), an API Group II base oil (see 2479HTable 20) was used because of repeatability.  

A dual-component additive system was examined employing potassium borate and hydrocarbyl 

polysulphide gear oil additives (see 2480HFigure 45 & 2481H44 respectively).  The mean particle size of the colloidal 

potassium borate was 163 nm (as characterised using a Horiba Instruments LA920 – Laser Particle Size 

Analyser).  The dispersant length was approximately 7 nm; therefore the potassium borate was 149 nm.  

More details of a similar potassium borate additive can be found in [ 2482H243].  The hydrocarbyl polysulphide 

additive varies in molecular weight from 144 to 390, and has an average molecular size of about 9 Å. 

 

The work presented in this Chapter studied individual components, the effect of combining them, as well 

as seeding additives mid-test (see 2483HTable 34).  In order to understand how these additives interact and 

which one drives initial film formation, time-delayed introduction of each additive component (hereafter 

referred to as seeding) was carried out.  The seeding experiments were conducted in a similar manner to 

the standard test, except that the second component of the binary system (borate or sulphur additive) was 

introduced approximately 16 minutes into the ‘wear’ stage.  Both permutations were tested.  All test oils 

were blended to 1% by weight, to minimise changes in rheological properties; the mixed and seeded set at 

0.5% by weight for individual additives (i.e. 1% by weight in total). 
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Test Number Oil Blend 
1 Group II Base oil 
2 Group II Base oil + 1% wt. potassium borate 
3 Group II Base oil + 1% wt. hydrocarbyl polysulphide 
4 Group II Base oil + 0.5% wt. potassium borate + 0.5% wt. hydrocarbyl polysulphide 
5 Group II Base oil + 0.5% wt. potassium borate + Seeded 0.5% wt. hydrocarbyl 

polysulphide 
6 Group II Base oil + 0.5% wt. hydrocarbyl polysulphide + Seeded 0.5% wt. potassium 

borate 

Table 34. Lubricant Test Matrix. 

 

8.2.3 OFF-LINE ANALYSIS 

Both, on/off wear scar surface composition and elemental depth profiling was carried out on worn brass 

disc and steel ball samples (see Section 2484H3.6.4.1 & 2485H3.6.4.3).  The ball wear scars were measured using an 

optical microscope (see Section 2486H3.6.2.3); wear scars were circular (measurements in direction of and 

perpendicular to sliding were similar), therefore wear scar diameter was deemed sufficient to characterise 

the worn ball.  Brass disc wear, was analysed by performing 2D Taylor Hobson Talysurf profilometry (see 

Section 2487H3.6.2.2) at four radial positions (typically at 0°, 90°, 180° and 270°); wear track depth and height 

were averaged across the four readings.  Conductivity measurements (see Section 2488H3.6.1) were carried out 

on test oils 1-4 (see 2489HTable 34). 

 

8.3 RESULTS 

8.3.1 ON-LINE DATA 

8.3.1.1 Stage one 

All the test oils exhibited an increase in COF, with decreasing sliding speed, during stage 1; this is 

associated with increasing asperity contact (see 2490HFigure 140).  The potassium borate additive produced the 

highest COF, followed by base oil, the binary combination of additives, and then polysulphide additive.  

This suggests that the borate additive forms a COF increasing film; whereas the polysulphide film reduces 

COF.  There was a large increase in COF when the sliding speed was decreased from 0.6 m/s to 0.2 m/s 

for the additive containing oils.  The mixture of the borate and polysulphide additives yielded a COF level 

between that of its individual components; but still lower than base oil. 
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Figure 140. Stage one COF data for oils tested. 

 

Base oil yielded the lowest charge level (the same observation as seen in Chapter 2491H6) and charge remained 

low throughout stage 1 (see 2492HFigure 141).  Initially (at high sliding speed), all the additive containing oils 

exhibited relatively high charge levels; these dropped to a baseline level as sliding speed decreased (time 

increased).  Both the borate additive and the combination showed a stepped increase in charge with 

decreasing sliding speed below 1.5m/s (70s) and 0.8m/s (100s) respectively.  Like the COF trace, the 

largest increase in charge was seen for sliding speeds 0.6 m/s to 0.2 m/s; but whereas this was seen for all 

additives for the COF, an increase in charge was only seen for the borate additive containing oils. 
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Figure 141. Stage one charge data for oils tested. 
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8.3.1.2 Stage 2 non-seeded 

The base oil COF exhibited a steady and relatively linear increase over the test duration (see 2493HFigure 142).  

The polysulphide additive exhibited the lowest and most variable COF of all the oils tested.  The borate 

additive produced a relatively high COF level and it reached stable behaviour 8 minutes onwards, whereas 

the polysulphide additive does not appear to have exhibited stable behaviour until 22 minutes onwards.  

The friction trace for the borate additive and base oil cross at approximately 20 minutes.  Combining the 

borate and polysulphide additives produced a COF trace that more closely resembled the borate additive 

than polysulphide, and it was more stable than the polysulphide. 
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Figure 142. Stage two coefficient of friction traces for base oil, potassium borate, hydrocarbyl 

polysulphide, and hydrocarbyl polysulphide + potassium borate. 

 

The lowest surface charge (0.04 pC) was observed for base oil test (see 2494HFigure 143), which has been 

previous observed for steel/steel contacts under similar test conditions (see Chapter 2495H5 & 2496H6).  The charge 

level for the polysulphide additive test, like the base oil, was low and stable.  The most variable charge 

was observed for the borate additive; the charge trace contained regular small pulses that occurred on 

average every 13.8 seconds, which was not associated with the disc rotational frequency (1.57 Hz).  The 

combination of additives produced a charge level less than 50% of the borate additive, but significantly 

higher than the polysulphide.  In addition the charge signal was more stable when the polysulphide and 

borate were combined, than the borate additive alone.  The individual additives and base oil exhibited a 

reduction in charge with time, whereas the charge level for both additives combined increased with time. 
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Figure 143. Stage two electrostatic charge traces for base oil, potassium borate, hydrocarbyl 

polysulphide, and hydrocarbyl polysulphide + potassium borate. 

 

8.3.1.3 Stage 2 seeded 

Both seeded tests created dynamic COF and charge traces and therefore have been plotted separately to 

the non-seeded tests.  During the beginning of the test, where only the borate additive was present, a 

reduction in charge and peak in charge occurred at 4 and 7 minutes respectively (see 2497HFigure 144).  These 

features also appeared in the borate additive only run (see 2498HFigure 143).  Although the COF at the 

beginning of the test was similar to that of the borate additive only, the COF trace increased in a relatively 

linear fashion (over the first 16 minutes), rather than increasing, reaching a peak and then reducing as in 

the borate additive only run; possibly due to a longer induction time for film formation with one-half the 

borate concentration.  After the point that the polysulphide additive was seeded into the oil, there was a 

step drop in charge level and an increase in COF that progresses to a COF of 0.15 at the end of the test; 

the highest seen for all tests in this study.  The charge level was also the highest seen for all experiments 

in this study.  Again, regular charge pulses occurred every 13.8 seconds; when the polysulphide additive 

was seeded, the pulses persisted. 
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Figure 144. Stage 2 electrostatic charge and coefficient of friction results for test 5: 0.5% wt. 

potassium borate + 0.5% wt. hydrocarbyl polysulphide seeded in at 16 mins. 
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Figure 145. Stage 2 electrostatic charge and coefficient of friction results for test 5: 0.5% wt. 

hydrocarbyl polysulphide + 0.5% wt. potassium borate seeded in at 16 mins. 

 

For the polysulphide + borate seeded experiment the COF level and variability (see 2499HFigure 145) was 

similar to the polysulphide additive only run (see 2500HFigure 142); during the first 16 minutes, the charge level 

was low, and dropped linearly from the start of the test.  Seeding in the potassium borate additive yielded 

a 1.5 pC increase in charge and a 0.02 increase in COF.  This step change in charge was more significant 

than the borate additive + the polysulphide additive seeded test.  After seeding, the COF became more 

stable and both COF and charge decrease steadily over the remainder of the test.  The charge pulses 
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appeared, once the borate additive is seeded into the polysulphide additive, but they are not as pronounced 

in magnitude as the borate additive alone, or borate + polysulphide seeded (see 2501HFigure 143 & 2502H144). 

 

8.3.2 POST-TEST ANALYSIS 

8.3.2.1 Specimen wear 

The base oil test yielded the highest steel ball wear and the polysulphide produced the greatest ball wear 

resistance (see 2503HFigure 146).  The ball wear for the borate additive was only slightly larger than the 

polysulphide additive.  It is interesting to note that the combination of borate and polysulphide produced a 

wear scar, greater than that produced by the additives singularly, indicating an antagonistic interaction 

between the two additives.  Both permutations of seeding produce the same wear scar diameter, which 

was better than base oil, but worse than the polysulphide singularly, borate singularly and both additives 

in combination from the start. 
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Figure 146. Steel ball wear scar diameter. 

 

The borate additive with polysulphide seeded, borate singularly and base oil produced the greatest brass 

disc wear (see 2504HFigure 147).  This indicates that the borate additive exhibited negligible brass disc anti-

wear properties when employed as the only anti-wear additive, or when allowed to react first with the 

brass surface.  The greatest brass disc wear resistance came from the polysulphide additive + borate 

additive seeded and polysulphide only test, suggesting that the polysulphide was the significant factor for 

brass disc anti-wear performance.  However seeding of the borate additive after the polysulphide arguably 

produced lower wear than the combination from the start.  This suggests that initial competition for the 

surface between the two additives at the start of the test antagonises wear resistance, and delaying the 
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introduction of the borate additive was beneficial for minimising brass disc wear.  This infers that initial 

reaction of sulphur additive was beneficial for brass wear performance, and that a highly surface active 

sulphur compound is desirable such that the sulphur compound will adsorb and react before the borate. 

 

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

Hydrocarbyl polysulfide + 
Seeded potassium borate

Potassium borate + Seeded
 Hydrocarbyl polysulfide

Hydrocarbyl polysulfide + 
potassium borate

Hydrocarbyl polysulfide

Potassium borate

Base Oil

Wear track depth below plane / μm

 
Figure 147. Brass disc wear track depth. 

 

8.3.2.2 Conductivity 

The oil containing the borate additive has the highest conductivity followed by: the combination, base oil 

and the polysulphide additive (see 2505HFigure 148).  It is interesting to note that the polysulphide conductivity 

was nearly half that of the base oil, whereas the charge levels for the polysulphide were twice that of the 

base oil.  This indicates that disc surface charge, as detected by electrostatic sensor, was related to 

additive-surface interaction rather than the bulk oil electrical properties; this is similar to findings in 

Chapters 2506H6 & 2507H7. 
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Figure 148. Conductivity of test oils. 

 

8.3.2.3 Steel pin elemental depth profiling 

2508HFigure 149 showed the atomic concentration of various elements across the depth of the tribofilm for steel 

balls.  The plateau in the iron atomic concentration was assumed to indicate the position of the steel 

surface and thus an indication of the tribofilm thickness.  For the steel balls, the borate additive yielded the 

thickest film.  The films produced by the polysulphide additive and the mixture were about half this 

thickness.  All steel balls show evidence of material transfer (presence of copper), with the polysulphide 

additive having the greatest amount, followed by the borate additive and the mixture. 

 

The tribofilm formed on the steel ball by the borate additive consisted of small concentrations of 

potassium and boron throughout the depth of the film (see 2509HFigure 149 (a)).  The film formed by the 

polysulphide additive on the steel surface contained a high concentration of sulphur, which occurred near 

the top of the film (see 2510HFigure 149 (b) at 0 nm sputter depth).  The boron concentration for the 

combination of borate and polysulphide was higher than the borate alone, despite the concentration being 

half of that used singularly (see 2511HFigure 149 (c)).  Similarly, the potassium levels were higher for the 

mixture than for the borate additive alone.  The film consisted of a mainly boron containing top layer with 

a predominately sulphur layer under it. 
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                           (a)                                                       (b)                                                  (c) 

Figure 149. XPS elemental depth profiling of Steel pins (a) potassium borate (b) hydrocarbyl 

polysulphide (c) potassium borate + hydrocarbyl polysulphide. 

 

8.3.2.4 Brass disc elemental depth profiling 

2512HFigure 150 showed the atomic concentration of various elements across the brass tribofilm, and like the 

steel elemental depth profiling, the plateau in the copper atomic concentration was assumed to indicate 

tribofilm thickness.  The borate additive produced the thinnest film and the mixture the thickest film; the 

polysulphide additive thickness falls in-between these levels.  The presence of iron on the brass discs was 

not detected; therefore material transfer was in one direction only (softer metal to the harder metal – 

similar to that seen in service). 

 

The borate tribofilm formed on the brass surface was thinner than the steel surface (see 2513HFigure 150 (a) and 

2514HFigure 149 (a) respectively).  The brass surface also showed the presence of sulphur, which was not 

observed on the steel disc.  Potassium was present at a much higher level on the brass surface than on the 

steel surface.  Boron was present but not at a significant level to be detected in the depth profiling.  The 

polysulphide tribofilm contained a high sulphur concentration at the top surface, which penetrated the 

depth of the film (see 2515HFigure 150 (b)).  The mixture yielded the thickest tribofilm on the brass disc, but 

thinnest on the steel ball (see 2516HFigure 150 (c)).  The tribofilm for the mixture has a lower concentration of 

sulphur than the polysulphide additive alone and the potassium concentration was lower than the borate 

additive only.  These later observations are understandable given that the mixture has half the treat rate of 

the individual additive tests.  However, despite the lower treat rate, boron was present in the tribofilm at 

much higher concentration than that produced by the borate additive only test (where it is present at twice 

the concentration).  Like the polysulphide additive film, sulphur penetrated the depth of the film for the 

combination, whereas boron was predominately present at the top of the tribofilm; boron alternated across 

the depth of the film. 
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                                                (d)                                                                    (e) 

Figure 150. XPS elemental depth profiling of brass discs lubricated with; (a) potassium borate; (b) 

hydrocarbyl polysulphide; (c) potassium borate + hydrocarbyl polysulphide; (d) 

potassium borate + hydrocarbyl polysulphide seeded and (e) hydrocarbyl polysulphide + 

potassium borate seeded. 

 

The tribofilms produced by the seeded experiments are thicker than those produced by single additives 

and the mixture (non-seeded).  The borate additive + the polysulphide additive seeded film contained the 

highest concentration of potassium close to the top of the film (see 2517HFigure 150 (d)) of all the tests.  There 

was a high concentration of sulphur at the top of the film again, but, like the borate additive only run, the 

sulphur concentration tailed off over a much shorter depth than the polysulphide additive only (see 2518HFigure 

150 (e)).  The polysulphide additive + the borate additive seeded produced a predominantly sulphur 

containing film (see 2519HFigure 150 (e)), which, like the hydrocarbyl polysulphide additive only (see 2520HFigure 

150 (d)), has a higher concentration at the top of the film, but penetrated all the way to the brass surface.  

It is noteworthy that the maximum sulphur concentration, which occurred towards the top of the tribofilm, 

was the same for all binary additive oils, whether seeded or not. 
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8.4 DISCUSSIONS 

8.4.1 XPS ANALYSIS  

8.4.1.1 Polysulphide 

The formation and nature of a tribofilm formed by organic sulphur containing compounds is fairly well 

characterised; sulphur reacts to form metal sulphides [2521H103].  Formation is believed to be through physical 

adsorption onto the iron surface of S–S(x)–S group (see 2522HFigure 44), then cleavage of the sulphur–sulphur 

bond to give an inorganic sulphur containing layer.  A similar film formation process was thought to occur 

on a brass surface.  XPS analysis identified the presence of sulphur/sulphide and sulphate in the brass 

tribofilm (see 2523HFigure 151). 
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Figure 151. Test oils sulphide (and/or sulphur) and sulphate concentrations for the brass tribofilm. 

 

8.4.1.2 Potassium borate 

Dispersed potassium borate produced a thick boron containing film on the steel ball, but the presence on 

the brass surface was negligible in the elemental depth profiling (see 2524HFigure 150 ), and the lowest of all 

borate containing oils (see 2525HFigure 152).  Similar to calcium sulphonate detergent (see Section 2526H2.3.4.2), a 

sequence of processes, which resulted in a borate tribochemical film is proposed, based on that described 

by Hu et al. [2527H238] for dispersed magnesium and lanthanum [2528H236] borate on steel surfaces.  Firstly 

dispersed potassium borate was adsorbed onto the scar/rubbing surface (see 2529HFigure 153).  Shearing breaks-

up the adsorbed micelles, resulting in an amorphous layer containing borate and potassium, as well as 

adsorbed dispersing agent.  High contact pressure and temperature, as well as further shearing causes 

polymerisation (through dehydration) of the amorphous borate particles into a glassy film.  The 
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tribochemical film may also contain small amounts of FeB [2530H149, 2531H236,2532H247], Fe2B [2533H247] and B-Fe-O [2534H149].  

Although the literature is not unanimous on the specific film formation mechanism, it was generally 

acknowledged that surface charge and electric field play a major role.  Adams and Godfrey [377F378] 

suggested that the borate film was formed through electrophoresis; metal surfaces in contact and sliding 

relative to each other generate surface charge to which charged borate particles are attracted.  Junbin et al. 

[378F379] thought the reactivity of borates may be due to the existence of electron-deficient p orbitals, which 

enables electron transfer between borate and iron, and acts as an electron carrier to lower the escape of 

exo-electrons.  Low energy exo-emissions can cause lubricant degradation and can catalyze the 

degradation of some additives, the degradation products can react with a surface to form a tribofilm [379F380]. 
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Figure 152. Sulphur and boron concentrations on and off the brass wear track for entire test matrix. 
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Figure 153. A schematic describing the anti-wear mechanism for dispersed potassium borate. 

 

The elemental depth profiles show that boron preferentially accumulated on the steel surface over the 

brass surface (compare 2535HFigure 149 (a) with 2536HFigure 150 (a) and 2537HFigure 149 (c) with 2538HFigure 150 (c)).  This is 

thought to be due to preferential transfer of boron containing species onto the steel surface from the brass; 

as a result of the two interlinking factors of chemical reactivity and contact conditions. 
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The contact minimum film thickness (see 2539HTable 22) was smaller than dispersed potassium borate micelle 

(see 2540HTable 21); therefore the borate additive must adsorb onto the disc surface and then transfer to the steel 

ball in the contact.  Converse to the greater boron concentration on the steel surface rather than brass, 

there was a greater potassium concentration on the brass surface, which may relate to the electrophoresis 

mechanism for potassium borate film formation proposed by Adams [2541H378].  The borate anion (B(OH)4
-) 

preferentially collected on the predominantly iron surface, which has vacant d orbitals (can accept s orbital 

electrons), where as the Potassium cation (K+) collected onto the predominantly copper surface, which has 

1 s orbital electron that it can donate.   

 

The physical conditions in the contact affected film formation.  Morizur et al. [2542H151] reported that with the 

potassium triborate additive a solid film of borate, bound to the steel, was only detected under conditions 

of severe wear when the steel friction surfaces have been activated by abrasion.  Out of the two 

specimens, the steel ball fulfilled these characteristics better than the brass disc as it was under the greater 

continued mechanical stress.  The adsorbed borate additive on the disc surface required successive disc 

cycles to promote the formation of a chemical film; whereas the steel ball was continually under extreme 

pressure and localised high temperature conditions that generated a tribochemical film.  In Chapter 2543H5 a 

difference between ball and disc were was observed – in that particular case both ball and disc were steel – 

which highlights that different tribological conditions experienced by pin and disc influences tribofilm 

formation.  2544HFigure 153 shows a significantly higher boron concentration in the brass tribofilm on the wear 

track than off, which emphasises the importance of high pressure, high temperature and abrasion for 

borate film formation. 

 

8.4.1.3 Polysulphide + potassium borate 

Insight into this interaction can be found by looking at the primary elements for these two additives, 

sulphur and boron, from the on and off the wear scar XPS analysis and elemental depth profiling (see 

2545HFigure 151 & 2546H150 respectively).  For both steel and brass surfaces, the boron and potassium concentrations 

produced by the combination of borate and polysulphide additives, was higher than the borate alone, 

despite the treat rate used in the combination being half of that used alone.  This suggests that the 

combination of borate with polysulphide was beneficial for high boron concentration in the tribofilm.  The 

sulphide film produced by the polysulphide additive could either promote or protect the inclusion of boron 

in the tribofilm.  The borate additive may have a greater affinity to adsorb/react with the electron rich iron 

sulphide and copper sulphide surfaces than the nascent iron and copper surfaces.  Conceivably, the 

reaction of sulphide with the surfaces activates a reaction with potassium borate in a manner similar to 

activation through abrasion.  Alternatively, the polysulphide additive could form a shear resistant film, 

which prevents the borate additive from being stripped from the surface. 
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The boron and sulphur concentrations across the depth of the tribofilm and on/off the wear scar 

concentrations (see 2547HFigure 152) for the combination of both additives from the start was very similar to the 

polysulphide + borate additive seeded.  Whereas the boron and potassium concentrations were much 

higher for the borate additive + polysulphide additive seeded case.  It therefore appears that artificially 

delaying the introduction of the borate additive into the oil, and therefore the contact, produced the same 

film composition and structure as the combination from the start.  This suggests that the polysulphide 

additive was driving initial film formation. 
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                             (a)                                                    (b)                                                    (c) 

Figure 154.  XPS elemental depth profiling of brass disc tribofilm, re-plotted to look at B & 

concentration of: (a) potassium borate + hydrocarbyl polysulphide, (b) hydrocarbyl 

polysulphide + potassium borate seeded, and (c) potassium borate + hydrocarbyl 

polysulphide seeded. 

 

2548HFigure 154(b) shows that boron was present close to the brass surface (between 100-150 nm), even though 

the borate additive was introduced after the polysulphide additive.  It is thought that this is due to the 

small atomic diameter of boron, which allows it to penetrate into the sublayer [380F381].  For the borate 

additive + polysulphide additive seeded film, the boron concentration was consistently much higher 

throughout the depth of the tribofilm than for any other tests.  Clearly the interaction between the 

polysulphide and borate additives was complex; the polysulphide additive was required to either 

promote/protect the formation, but the more constant boron concentration and higher potassium 

concentration was produced when the borate additive does not compete with the polysulphide additive for 

initial film formation.  Perhaps polysulphide affected the growth of the boron containing tribofilm rather 

than the initial film formation.  When polysulphide was seeded into the borate additive, the greatest 

concentration of sulphide was detected on the surface.  Although the ordering of additive addition affected 

the film structure the interaction between boron and sulphur promoted film formation.  This can be 

explained by the electron rich nature of sulphur, and the availability of an empty p orbital in boron.  A 

layering of boron (an electron acceptor) and sulphur (an electron donor) films is anticipated, and is 

evidenced in the depth profiles (see 2549HFigure 154 (a) & (b)). 
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8.4.2 ELECTROSTATIC CHARGE  

The triboelectric series shows that the brass disc should charge negatively when rubbed against steel (see 

2550HTable 14, also see 2551HFigure 55).  However, the positive and negative charge data for the base oil shows a 

slightly stronger positive surface charge than negative (see 2552HFigure 155).  The base oil contains impurities 

that are easily polarisable.  Migration of these impurities can cause a charge sign inversion.  Harvey et al. 

[2553H319] found that base oils have a tendency to charge positively (see Section 2554H2.4.4.2.1). 
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Figure 155. Positive and negative electrostatic charge data for base oil. 

 

Polysulphide and potassium borate have distinctly different charge characteristics.  The charge generated 

by the polysulphide was low and stable, whereas the borate additive produced a high variable charge.  

These charge signatures do not appear to be related to wear or conductivity of the oil.  These two 

observations infer that charge signals relate to additive-disc surface charge generation – this conclusion 

was also made in Chapters 2555H6 & 2556H7.  Thus the difference in surface charge activity between the borate and 

polysulphide additives indicates different physical and/or chemical processes occurred on the brass disc. 

 

8.4.2.1 Polysulphide 

The polysulphide additive exhibited distinctly different charge characteristics to base oil and the borate 

additive.  It produced a notable surface charge as indicated by the higher charge level for polysulphide 

than base oil, despite the lower or comparable conductivity of polysulphide compared to base oil.  In 

addition, the wear for the base oil was higher than the polysulphide additive.  Both these observations 

infer that wear generated surface charge and tribocharging are insignificant compared to the surface 

charge generated by polysulphide film formation.  Previous experience in Chapters 2557H5, 2558H6 & 2559H7 have shown 

high and dynamic charge signals for film formation – stripping/shearing processes.  However, additives 

that exhibit a high dynamic charge through film formation and removal are able to desorb (e.g. dispersants 
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and detergents) – leaving a surface charge in the process.  The small sulphur additives quickly adsorb and 

react with the surface; this reaction is not reversible.  Therefore, the likely way that a sulphur (only) 

containing film gains charge is oxidation followed by sulphate ion transfer between the surfaces.  2560HFigure 

151 shows a significantly greater sulphate concentration in the tribofilm for polysulphide containing oils 

than base oil.  The decrease in charge level for the polysulphide additive (see 2561HFigure 143 and the first 16 

minutes of 2562HFigure 145) may be related to the relative increase of sulphide, rather than sulphate in the 

tribofilm due to decreasing friction from tribofilm maturation, decreased contact temperature, and thus a 

decrease in the oxidation of the sulphide film. 

 

8.4.2.2 Potassium borate 

Potassium borate is a salt of potassium 2Hcations and borate 3Hanions.  The borate anion (B(OH)4
-) 

preferentially collected on the steel surface, whereas the Potassium cation (K+) preferentially accumulated 

on the brass surface (compare 2563HFigure 149 (a) with 2564HFigure 150 (a) and 2565HFigure 149 (c) with 2566HFigure 150 (c)).  

The positive and negative charge data for the brass disc with the potassium borate additive showed that the 

disc charged significantly more positively than the base oil (see 2567HFigure 156 and 2568H 155 respectively).  Since 

concentration of potassium ions onto the brass disc surface will lead to positive surface charge, the 

elemental depth profiling and electrostatic charge data appear correlated. 
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Figure 156. Positive and negative electrostatic charge data for the potassium borate additive. 

 

In addition to the transfer of borate and potassium ions that generated surface charge, the dispersing agents 

can contribute to surface charge generation; as shown in Chapters 2569H4- 2570H2571H2572H7.  To achieve complete dispersion of 

the potassium borate particles, succinimide dispersants and sulphonate detergents are present at levels 

higher than the critical micelle concentration.  This means there are free dispersant and detergent 
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molecules in solution.  Dispersing agents in chapters 2573H4- 2574H2575H2576H7, similar to those used to disperse the potassium 

borate, have been found to yield a high electrostatic charge. 

 

The stage one electrostatic charge data showed that for the borate additive alone, and the binary 

combination, the charge level starts to increase with decreasing sliding speed; the polysulphide additive 

and the base oil charge levels remained unchanged (see 2577HFigure 141).  This increase in charge could be 

related to tribofilm formation.  As the sliding speed decreased, so the contact temperature and level of 

asperity contact increases; these factors are thought to be important for borate film formation. 

 

The potassium borate additive alone and in both seeded experiments generated the most complex charge 

response, with semi-regular dynamics lasting tens of seconds and other dynamics lasting between 5 and 10 

minutes (see 2578HFigure 143 -2579H2580H 145).  This is thought to relate to the constituent parts of the additive; large 

potassium borate core (149 nm) which is dispersed by a significantly smaller, and therefore more mobile, 

sulphonate surfactant (7 nm).  Borate film formation is a dynamic process involving adsorption, shearing 

of micelles and polymerisation, which could generate variable surface charge; the small surfactant is more 

likely to give rise to short duration transient processes (adsorption/stripping) compared to the larger 

potassium borate particle.  Whereas polysulphide film formation requires adsorption followed by chemical 

reaction; this is a more straightforward process. 

 

8.4.2.3 Polysulphide + potassium borate 

The highest charge was seen when the polysulphide additive was seeded into the borate additive (see 

2581HFigure 144).  This test also produced the greatest potassium and boron concentrations, both of which are 

thought to be the main charge sources.  The charge data for the polysulphide additive + borate additive 

seeded showed the most dramatic change in COF and charge (see 2582HFigure 145).  Positive and negative 

charge data showed a change from a predominantly positive charge before seeding to a mainly negative 

charge after seeding (see 2583HFigure 157).  This change in dominance of disc positive and negative surface 

charge was not seen in any of the other tests; the other test oils produced a positive surface charge, to 

varying degrees.  This real-time data also lends insight into the film formation mechanism.  The positive 

and negative charges look to be converging, possibly relating to a tribochemical reaction that would have 

brought the system to the same state as the other binary experiments, if the test was allowed to run on.  

Thus, the observed sulphur boron interaction created a borate rich negatively charged top-layer on the 

sulphur film (similar to the observed layering of boron) when the borate additive was seeded.  This reverse 

film appeared to be less stable than the other films and may be approaching a charge inversion (as 

indicated by the convergence of positive and negative charge signals, see 2584HFigure 157) as a result of a 

change in film composition (e.g. an additional sulphur layer on top of the borate layer). 
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Figure 157. Minimum and maximum charge data for the polysulphide additive + borate additive 

seeded test, which infers whether the disc surface charge was predominantly negative or 

positive. 

 

8.4.3 FRICTION 

8.4.3.1 Polysulphide 

The friction properties of iron sulphide are fairly well known; sulphide films are more easily sheared than 

the metallic asperity junctures under extreme pressure conditions [381F382]; hence the lower COF seen for the 

polysulphide additive compared to base oil and the borate additive in both stage one and two of the test 

(see 2585HFigure 140 &2586H 142).  However, the COF trace is not entirely explained by the iron sulphide film.  The 

physical properties of a copper-sulphide film are not as well understood as iron sulphide.  It could be 

similar to the low shear nature of iron sulphide, but the twice as thick sulphide film observed on brass 

shows there is a difference (compare 2587HFigure 149 (b) with 2588HFigure 150 (b)).  Sakurai et al. [382F383] noted a 

similar finding and concluded that the greater formation of sulphide for the brass versus steel, suggests 

that the reactivity of the copper with sulphur on the friction surface was greater than that of the iron.  

However, the tribofilm thickness is not solely explained by the reactivity of the surface.  It is possible that 

the different type of sulphide film on brass was more shear/wear resistant than the iron sulphide, and this 

allowed the formation of a thick, possibly rough or patchy, sulphur containing film.  This could explain 

the variable friction seen for the polysulphide additive; copper sulphide may require more energy to shear 

and was therefore a transient process rather than constant shearing, hence the dynamics seen in the friction 

trace. 
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8.4.3.2 Potassium borate 

Although borate films have been reported to be friction reducing [2589H240, 2590H241], the literature is not clear on 

the friction performance.  Morizur et al. [2591H151] reported that borate films displayed increasing friction 

levels with boron content.  The borate additive in this study produced a high friction film, which over the 

duration of the test, dropped to below the base oil COF level.  The high COF produced by the borate 

additive over the first 20 minutes of the test can be explained by the process of borate film formation.  The 

adsorbed layer of potassium borate, as well as the amorphous phase it develops into, created a high 

friction surface, predominantly because of the presence of adsorbed dispersing agent, which was shown to 

increase COF in Chapter 2592H6.  After 20 minutes the COF levels of the base oil and borate additive crossed-

over.  This change in friction characteristics could be a result of tribochemical reactions between borate 

and iron, producing a glassy surface, which was smoother than the amorphous film.  This change in COF 

for the boron additive compared to base oil during a wear tests was also observed by Hu et al. [383F384] for 

titanium borate. 

 

8.4.3.3 Polysulphide + potassium borate 

The polysulphide additive COF trace was low and the most dynamic/variable (see 2593HFigure 142) and at the 

beginning of polysulphide + borate additive seeded test (see 2594HFigure 145).  The polysulphide additive alone 

would not provide friction magnitude and stability required for the synchromesh to achieve quick and 

smooth gear changes.  When the borate additive was present with the polysulphide, and when introduced 

after the polysulphide additive, it increased the stability of the COF.  This may be a result of relatively 

high boron concentrations at various points across the tribofilm depth effectively ‘pinning’ the shear 

planes, or the amorphous layer of adsorbed borate and dispersant on top of the copper sulphide layer, 

modifying COF behaviour. 

 

8.4.4 SPECIMEN WEAR 

Previous discussions have identified the composition and possible mechanisms for tribofilm formed by 

polysulphide and borate additives, singularly, combined and seeded one-into another.  Having understood 

film composition, it was important to relate this with properties that produce anti-wear performance.  It is 

worthy of note that there was no correlation between film thickness and brass disc wear. 

 

8.4.4.1 Polysulphide 

The polysulphide additive produced the greatest steel ball wear resistance.  Sulphur containing oils can be 

detrimental to wear; high sulphur activity results in faster formation of the metal sulphide and has been 

reported to result in higher wear [2595H103].  However, provided the rate of tribofilm regeneration is similar to 

that of the film stripping, reduced wear should result (see Section 2596H2.3.3.3).  In addition, the tendency for 
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brass disc wear is reduced further by the thicker, more shear resistant sulphide film, which minimises film 

stripping that resulted in wear. 

 

8.4.4.2 Potassium borate 

The ball wear scar was small and the disc wear was large compared to the other test oils.  Thus suggesting 

that the predominantly boron containing tribofilm on the steel ball was more wear resistant than the 

potassium enriched film on the brass disc. 

 

8.4.4.3 Polysulphide + potassium borate 

When both additives were used in combination, seeded or non-seeded, steel ball anti-wear performance 

was not as good as when the additives are used singularly, indicating an antagonistic interaction between 

the two additives.  However, it should be noted that all additives, singularly, mixed or seeded, produce 

lower steel ball wear than base oil. 

 

Polysulphide formed the most wear resistant tribofilm on brass; the mixture of polysulphide and borate 

additives produced a good anti-wear film, but it was not as wear resistant as polysulphide alone.  Even 

though polysulphide was thought to be more surface active than the borate additive, the borate additive 

may still offer significant competition with the polysulphide to antagonise film formation.  This was 

supported by the very low brass wear for seeding the borate additive after the polysulphide additive (see 

2597HFigure 147).  Sulphur, and a varying composition of boron in the tribofilm produced by the combination 

and borate additive seeded into the polysulphide additive, minimised wear.  Whereas a high and constant 

boron/potassium concentration, produced by the borate additive + polysulphide additive seeded, did not 

exhibit any brass anti-wear properties. 

 

An interesting observation from both the brass disc wear and XPS analysis was the significance of 

sulphur.  The highest sulphur concentration in the tribofilm was produced from the polysulphide additive 

only run, which also saw the lowest wear.  The worst anti-wear performance came from the films that 

contain the least sulphur: base oil, borate additive and borate additive + polysulphide seeded.  This infers a 

relationship between the brass tribofilm sulphur content and brass disc wear, such a relationship does not 

exist for boron (see 2598HFigure 158).  Baldwin [384F385] examined the anti-wear efficiencies of a series of 

sulphur-containing borates and suggested that the sulphur and not the boron, plays a major role in the anti-

wear properties of such compounds.  The dispersed potassium borate produced a tribofilm which 

contained greater sulphate than sulphide (see 2599HFigure 151); the origin of this was the sulphonate detergent 

used to disperse the potassium borate particle.  The polysulphide additive produced a mainly sulphide 

and/or sulphur containing film, however it also produced the highest sulphate concentration as well.  

When the borate and polysulphide are combined, equal quantities or sulphide and sulphate are produced.  
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The three lowest brass wear producing oils had a higher sulphide and/or sulphur content than sulphate, 

whereas the three highest were predominantly sulphate containing.  Such a relationship is tentative, but 

warrants further investigation. 
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Figure 158. Shows a possible relationship between brass tribofilm sulphur content and brass disc 

wear performance, no relationship exist between boron tribofilm content and brass disc 

wear. 

 

8.5 CONCLUSIONS 

A series of pin-on-disc wear tests, using a brass disc and steel ball to mimic the synchroniser ring contacts, 

were carried out to investigate the nature of the tribofilms produced on these surfaces by hydrocarbyl-

polysulphide and potassium borate additives. 

 

The polysulphide additive exhibited good brass and steel anti-wear performance, but low and unstable 

friction behaviour.  Both brass disc and steel ball tribofilms contained sulphide, but the thicker film on the 

brass surface and the variable friction levels are thought to indicate that sulphide formed on the brass 

surface is more shear resistant.  The potassium borate exhibited good steel ball anti-wear performance and 

high stable friction, but negligible brass disc anti-wear performance.  Boron was found at a higher 

concentration on the steel surface compared to brass and vice versa for potassium; suggesting preferential 

adsorption of potassium to brass and borate to steel.  The combination of the two additives produced good 

steel ball anti-wear and high steady friction (necessary for synchroniser contacts).  The tribofilm formed 

by this combination indicated that polysulphide with potassium borate promotes and/or protects boron 

inclusions in the brass tribofilm.  Seeding one additive into another additive solution mid test illustrated 
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that the polysulphide drives initial film formation, when in combination with the potassium borate 

additive. 

 

Real-time charge measurements identified distinctly different charge levels and dynamics for the 

potassium borate additive and the polysulphide additive.  Surface charge related to polysulphide film 

formation was related to the generation of sulphate.  The highest charge levels were correlated to the 

tribofilm which contained the greatest inclusion of charge carriers.  The charge data for the polysulphide 

additive and borate additive seeded shows a change from predominantly positive charge before seeding to 

a mainly negative charge, thought to relate to the adsorption of negative borate charge species, inferring a 

amorphous borate layer. 

 

The experiments presented in this Chapter illustrate that the interaction between polysulphide and borate 

may be beneficial or antagonistic depending on the conditions, i.e. the order of reaction of the additives 

with the surface.  The polysulphide with seeded potassium borate produced the best brass wear protection, 

moderate wear on the steel, as well as the needed stable friction required for a synchroniser.  The 

information gained by these tests could enable the reactivity and concentration of these additives in a 

formulation to be tailored to suit various applications.  The real-time charge/film information may be a 

valuable tool for the optimisation of additive chemistry, and for the formulation of finished lubricants. 
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9 CONCLUSIONS 

9.1 MOTIVATION 
The engine power-train design is continually evolving to meet environmental demands of lower emissions 

and increased fuel economy.  These design improvements are often to the detriment of tribological 

performance.  The lubricant formulator must mitigate the severity of the contacts by blending additive 

packages which increase fuel economy, reduce environmental impact and minimise wear for lengthened 

service intervals.  Formulating lubricants is a difficult process because additive-surface behaviour and 

interactions between additives is not well understood.  A review of the literature identified that an absence 

of real-time technology has hindered understanding of additive behaviour and interactions between 

additives in tribo-contacts.  The work presented in this thesis assessed whether electrostatic charge 

monitoring, which is sensitive to changes in surface chemistry, can offer insight into additive film 

formation and additive-additive interactions and how these affect tribological performance. 

 

9.2 METHODOLOGY 

Electrostatic sensors were deployed on a range of tribological tests apparatus: TU3 valve-train, in-house 

pin-on-disc (PoD) and a PCS instruments Mini-Traction-Machine (MTM).  Specific test conditions were 

used to simulate: engine valve-train, manual transmission synchroniser, and automatic transmission 

frictional clutch tribo-contacts.  A range of additives were tested including: dispersants, detergents, 

friction modifiers, antiwear and extreme pressure.  The interaction of these additives with: bearing steel, 

brass and paper materials was assessed.  Also additive-additive and additive contaminant interactions were 

investigated.  This was achieved by assessing surface charge generation, as well as analysing friction and 

wear performance and, where appropriate, cross-correlated with one another and off-line XPS analysis. 

 

9.3 SENSITIVITY OF ELECTROSTATIC MONITORING TO WEAR AND LUBRICANT CHEMISTRY 

A series of tests were carried out to investigate the charge generated between TU3 cam and follower 

contacts under conditions simulating various stages of component life.  Charge signals underwent a sign 

inversion during a simulated wear test; this was due to a transition between tribocharging of the lubricant 

under running-in and mild wear, and contact potential difference generated at the onset and progression of 

adhesive wear.  Electrostatic charge signals identified that wear initiated at point of minimum film 

thickness on the cam and post-test correlated to position of greatest wear. 
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Although electrostatic monitoring was originally developed to monitor wear, experiments on the TU3 

valve-train revealed that the highest charge was produced by a test with a fully formulated which 

produced no wear and the lowest charge was produced by a test without a lubricant which produced the 

greatest wear.  Clearly lubricant chemistry had a significant effect on charge generated.  Two statistical 

studies (Chapter 2600H5 & 2601H6) investigated the correlation between electrostatic charge, wear and lubricant 

electrokinetic properties.  Both studies showed no correlation between wear and electrostatic charge; there 

was a poor correlation between electrostatic charge and lubricant electrokinetic properties.  The low 

degree of correlation is explained by the electrokinetic techniques measuring the pre-existing charge in the 

oil, whereas electrostatic charge is generated as a result of tribological action and additive-surface 

interaction. 

 

9.4 ADDITIVE-SURFACE INTERACTION 

Results (Chapters 2602H6 & 2603H8) have shown that additives which can physically adsorb (e.g. Dispersants, 

Detergents) produced a greater surface charge than additives which principally chemically adsorb (e.g. 

ZnDTP 2, MoDTC and polysulphide).  The charge generation mechanisms are different for the two types 

of additives; Detergents and Dispersants form acid-base pairs with the surface, whereas chemical films 

generate charge through contact potential difference. 

 

9.5 ADDITIVE-CONTAMINANT AND ADDITIVE-ADDITIVE INTERACTIONS 

Work in Chapter 2604H5 showed statistically that carbon black, compared to base oil alone, increased 

electrostatic charge.  Both Dispersant 2 and Detergent in the presence of carbon black were found to 

reduce the interval electrostatic charge.  The charge data indicated that Dispersant 2 and Detergent 

provided sufficient barriers to prevent agglomeration and therefore minimise charge generation.  The 

interaction between dispersants and ZnDTP 1 was found to reduce electrostatic charge because dispersant 

complexes with ZnDTP 1 making it less reactive; thus the number of free charges is reduced. 

 

9.6 ADDITIVE FILM COMPOSITION RELATED TO ELECTROSTATIC CHARGE 

Across the different experimental studies electrostatic charge measurements were related to tribofilm 

chemical composition, as identified by XPS.  To the author’s knowledge no real-time technique has shown 

a correlation with tribofilm composition. 

 

Changes in zinc, phosphate and sulphate concentrations in a ZnDTP 2 tribofilm (Chapter 2605H6) affected 

charge polarity.  For the polysulphide additive (Chapter 2606H8) higher electrostatic charge measurements were 

found for tribofilms which contained a higher ratio of sulphate to sulphide; the most likely way for 

polysulphide to generate surface charge is through oxidation (sulphide to sulphate).  In Chapter 2607H8 the 
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highest charge was seen when the polysulphide additive was seeded into the borate additive.  This test also 

produced the greatest potassium and boron concentrations, both of which are thought to be the main 

charge sources (borate anions and potassium cation).  The charge data for the polysulphide additive + 

borate additive seeded showed a transition from being predominantly positive to predominantly negative.  

This correlated with the observed borate rich (anions) layer on top of the sulphur film. 

 

9.7 TRIBOFILM KINEMATICS 

Cross-correlation between electrostatic charge and tribofilm thickness showed that dynamic charge peaks 

related to the stripping of the ZnDTP 2 antiwear film.  The source of this charge peak was found to be due 

to an increase in negative charge, which correlated with a dominance of phosphate and sulphate (anions) 

compared to zinc (cations), as the film was worn away. 

 

When FM 1 and Dispersant 3 were combined, XPS analysis and friction data indicated that Dispersant 3 

dominated the tribofilm composition; nitrogen levels and friction levels were similar to Dispersant 3 

alone.  The electrostatic charge data revealed that competition for surface sites is an extremely dynamic 

process, with each additive dominating surface coverage at different times; as indicated by charge levels 

which alternate between the levels of the FM 1 and Dispersant 3 alone. 

 

Adsorption of Detergent surfactants leads to negative surface charge and adsorption of Dispersant 3 

produces positive surface charge; thus the dynamic variation between the dominance of positive and 

negative surface charge is thought to be related to Dispersant 3 and Detergent adsorption and stripping. 

 

Organic friction modifiers (Chapters 2608H6 & 2609H7) produced a low and stable surface charge compared to 

Dispersants and Detergents.  This is because organic FMs preferentially shear at the hydrocarbon tail / 

hydrocarbon tail interface rather than the polar-head / surface interface, thus minimising charge generated 

through desorption and/or stripping. 

 

Cross-correlation of surface charge and tribofilm composition has demonstrated the ability of electrostatic 

sensors to detect the tribofilm kinematics.  This is a significant finding; no current real-time technique 

used to monitor tribofilm kinematics derives its measurements from the tribofilm chemical composition.  

The tribofilm kinematics could also be managed to promote the desired tribofilm composition – a point, to 

the knowledge of the author that has not been realised in the literature.  Additives selection could be based 

on the time it takes to re-form a tribofilm.  During this dwell period it might allow other additives that are 

required at the surface to adsorb, thus enabling a composite tribofilm made up off additives with different 

functions.  Antiwear additives and friction modifiers in particular – although other additives will be 

important – could be optimised in this way. 
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9.8 NON-CHARGE RELATED OBSERVATIONS 

Through investigation into additive-surface charge behaviour, there have been many additional 

tribological discoveries; many of these findings are, in their own right, original. 

 

9.8.1 WEAR 

In Chapter 2610H5 statistical analysis revealed that ball wear was increased in the presence of ZnDTP 1; 

contrary to the expected antiwear behaviour of ZnDTP.  XPS analysis indicated that primary ZnDTP 

(ZnDTP 1), which has a high thermal stability, did not form a fully developed antiwear film under the low 

test oil temperature.  The source of the pro-wear effect was the reaction of sulphur, from ZnDTP 1 (which 

is less temperature dependent), with iron, which promoted a tribochemical wear process.  This supports 

the theory that thermal decomposition of ZnDTP does have a role in the formation of a ZnDTP antiwear 

film, which has been disputed by some researchers.  Dispersants were found to minimise the pro-wear 

effect of ZnDTP 1, by forming a complex and increasing the thermal stability. 

 

The greatest friction material disc and steel ball wear was observed when the FM 1 + Dispersant 3 were 

combined, which clearly shows antagonism between the two additives.  This is an important finding as 

both these additives are widely used in ATFs to fulfil two different functions; FMs minimise shudder and 

dispersants improve torque capacity.  However, this study has demonstrated that an incorrect balance of 

FMs and dispersants could have disastrous consequences. 

 

When both polysulphide and potassium borate additives were used in combination (seeded or non-seeded) 

steel ball anti-wear performance was not as good as when the additives were used singularly; thus 

indicating an antagonistic interaction between the two additives.   

 

9.8.2 ADDITIVE PREFERENTIAL SURFACE ADSORPTION 

XPS carried out on brass and steel wear specimens lubricated with potassium borate and polysulphide 

identified the effect surface chemistry has on film formation.  For the potassium borate additive alone; 

potassium (cation) preferentially adsorbed to brass, and borate (anion) preferentially adsorbed to steel.  

For the polysulphide additive alone, both brass disc and steel ball tribofilms contained sulphide, but the 

film on the brass surface was thicker, which may explain the variable friction performance; polysulphide 

is generally known as a stable friction educing additive. 
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9.8.3 THE EFFECT OF BINARY ADDITIVE SYSTEMS ON TRIBOFILM COMPOSITION 

The combination of the borate additive with polysulphide additive was beneficial for high boron 

concentration in the tribofilm – higher than the borate additive alone.  The sulphide film produced by the 

polysulphide additive either promotes or protects the inclusion of boron in the tribofilm. 

 

Artificially delaying the introduction of the borate additive into the oil (seeding), and therefore the contact, 

produced the same film composition and structure as the combination from the start.  This suggests that 

the polysulphide additive was driving initial film formation.  Seeding is an extremely powerful technique, 

but its use is almost absent in the literature. 

 

9.9 CONCLUDING REMARKS 

With reference to the original aim, the work presented in this thesis has demonstrated the benefits of using 

electrostatic monitoring for the purpose of wear testing and additive screening.  It is clear that electrostatic 

condition monitoring is a useful tool in the detection of the onset and progression to severe adhesive cam-

follower failure, with specific reference to the breakdown of the oil film and wear mechanism.  This in 

itself is valuable information to the lubricant formulator.  It has been shown that additive-surface 

interaction dominates charge levels even in a wearing contact.  Electrostatic monitoring is sensitive to the 

type of additive-surface adsorption, interactions between additive and additive or contaminant, and 

tribofilm kinematics.  The charge sign and magnitude produced by additive-surface adsorption could be 

useful criteria on which to select an additive, or combinations of additives.  Also tribofilm kinematics – 

identified by electrostatic charge monitoring – could also be managed to promote the desired tribofilm 

composition.  The information gained by using electrostatic monitoring in tribological testing has great 

potential to streamline the additive screening process.  Although interpretation of electrostatic charge data 

is currently an intensive process, in the long term, lubricant development could see a move towards charge 

informed formulation. 
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10 FUTURE WORK 
The directions of future work is split into work that is short term, the next step from the work presented in 

this thesis, and in the long term, more fundamental approach of looking at additive by electrokinetic 

techniques, as well as applying electrostatic monitoring to full scale fired engines. 

 

10.1 FUTURE INVESTIGATION BORN DIRECTLY FROM THIS WORK 

10.1.1 ELECTROSTATIC CHARGE BASED WORK 

There is a great deal of electrostatic monitoring work that could immediately follow on from work 

presented in this thesis.  Understanding of the relationship between charge and additive film formation 

could be furthered through testing of a greater range of additives.  Financial restriction limited the extent 

to which tribofilm chemical compositions were analysed; any future advances in understanding surface 

charge generated by tribofilm formation, will be best served with extensive XPS analysis, as well as other 

surface techniques.   This would enable a model to be built which relates electrostatic charge parameters 

with film composition and film kinematics; to improve the accuracy of this model information about 

friction and wear performance would also be required.  The natural progression of single additive testing 

is to add complexity through binary, tertiary and so on, up to complete additive package systems with 

additives at different concentrations.  This model could enable the interactions of a blend of additives 

previously not tested to be predicted.  Such a model could also aid the development of new additives.   

 

One of the most important findings reported in this thesis is the correlation between electrostatic charge 

features and ZnDTP 2 film removal and formation, through base oil flushing experiments.  There is an 

absence of technology which monitors tribofilm kinematics in real-time, let alone derives its 

measurements from film chemical composition.  Therefore it is important to continue this work to further 

understand tribofilm formation, removal and replenishment.  Given more time, using this flushing 

technique on detergent and potassium borate would have been useful as comparatively very little is known 

about the kinematics of their films.  Detailed XPS analysis of the tribofilm elemental composition would 

be integral to this work. 

 

It is envisaged that the post-test analysis used to examine absorbed additives (namely XPS) may have 

limitations when examining physically adsorbing additives.  Because by the time the sample surface is 

examined the surface chemical composition may have change due to re-adsorption or desorption of 

additive(s) (as it takes time to remove the sample from the lubricant.  For chemical film forming additives 

this is not really a problem as physical adsorption of this additive is different in to the tribofilm they 
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produce.  However for physically forming additives it is difficult to distinguish between additives 

adsorbed during tribological testing and additives adsorbed after.  A new approach to analysing physically 

adsorbing additives is required so that kinematics of physically adsorbing additives can be better 

characterised and therefore enable confidence in corroboration with electrostatic charge signals. 

 

It is acknowledged that fairly basic charge parameters have been used during this work.  Despite this, a 

correlation between charge and additive-surface interaction has been made.  Of particular value was the 

use of maximum and minimum (positive and negative) charge data, in conjunction with known additive 

chemistry this enabled electrostatic charge signals to be correlated with additive-surface interactions.  For 

the physically adsorbing dispersants and detergent surfactants, charge polarity was related to their 

adsorption and desorption.  However, it is intuitive that if a dispersant which forms a positive charge upon 

adsorption and a detergent surfactant which forms a negative charge upon adsorption are combined, 

interpretation of positive and negative charge data may be difficult.  More sophisticated charge parameters 

are required to better characterise the complexity that multiple additive systems might create.  The 

ultimate goal would be to develop an artificial intelligence system which incorporates many real-time and 

off-line parameters, but is predominantly driven by electrostatic charge data to yield information such as: 

tribofilm thickness, tribofilm composition, tribofilm tenacity factor, time for tribofilm formation, 

interaction with other additives etc. 

 

10.1.2 NON-EXCLUSIVE ELECTROSTATIC CHARGE BASED WORK 

Although the main focus of this thesis has been electrostatic monitoring of tribo-contacts, there have been 

a number of interesting tribological and surface chemistry observations which are in their own right 

extremely interesting.  The main two are preferential adsorption of one additive over another and the 

preferential adsorption of an additive for a particular surface. 

 

XPS analysis of tribofilms produced by artificially delaying the introduction of an additive into the contact 

(seeding) has found to be very useful in identifying which additive drives film formation of the additive 

mixture.  This seeding technique is an extremely powerful technique which is surprisingly unused.  A 

possible reason that this technique may not have seen widespread uses is that wear may differ between the 

different permutations of seeding.  However, wear could be used as another parameter to identify which 

order of seeding best represents the additive system when not seeded.  Its application is not limited to 

binary additive systems; a four additive system could be assessed, although this would require a large 

number of tests (24), although the information gained would be extremely valuable. 

 

The preferential adsorption of an additive onto one surface over another was identified; when a series of 

test run with a steel ball on a brass using a potassium borate additive, it was found that the potassium 

(ions) preferentially adsorbed onto the brass surface and borate preferentially adsorbed onto the steel 
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surface.  It was postulated that this was driven by electron orbital interactions between the adsorbate and 

surface.  Alternatively it has been suggested that potassium borate only forms a film once the surface has 

been activated by abrasion, which general occurs more rapidly on the (steel) ball as it is in continuous 

contact.  To determine which mechanism is the driving factor in tribofilm formation it is suggested that a 

brass ball on steel disc test should be run.  If the film composition on the brass ball is the same found for 

the brass disc and likewise the steel components, then surface chemistry drives preferential adsorption.  

However, if the tribofilms for the balls (and discs) for the two tests are the same the contact conditions 

drives preferential adsorption. 

 

The wear of wet friction material was found to increase when friction modifier and dispersant additives 

were blended together.  It is believed that this requires further work to understand the antagonistic 

interaction between these two additives and if a fatigue-type process, induced by the different friction 

performance of the additives, is responsible.  Alternative suggestions for the increase wear rates are that 

the adsorption weakens the material. 

 

10.2 WIDER REACHING WORK 

The work presented in this thesis has wider reaching implications and would see a move from electrostatic 

monitoring of PoD contacts to fundamental additive charge investigations and tribological testing of more 

complex components to acknowledge the various experimental levels (see 2611HFigure 159). 
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Figure 159. Schematic describing the various experimental levels of lubricant testing. 
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10.2.1 FUNDAMENTAL ELECTRO-KINETIC WORK 

A fundamental approach to understanding additive charge and additive-surface interactions is thought to 

be obtained through electrokinetic techniques, such as impedance spectroscopy or electrokinetic sonic 

amplitude.  For both techniques apply an AC field to the colloid sample; impedance spectroscopy 

measures the response as a lag (impedance) associated with frequency, while ESA measures 

electrophoretic motion of the particle by the associated sound wave.  Both techniques enable information 

about particle size, zeta potential and charge sign to be determined.  Zeta potential is the electrical 

potential that exists in the shear plane of the double layer of a particle.  This is important, as it directly 

relates to tribocharging.  It is also a function of the surface charge of a particle, any absorbed layer at the 

interface and the nature and composition of the surrounding medium in which the particle is suspended.  

Although ESA was used in this thesis, it was of limited use, because analysis was only carried out at one 

frequency (due to the use of dated equipment).  Most modern electrokinetic measurement techniques 

operate over a range of frequencies, allowing more information to be obtained.  These fundamental 

electrokinetic experiments could be extremely insightful for understanding the interaction between 

additives and soot; surfactants and metal salts for calcium phenate detergent and potassium borate.  

Information gained from these fundamental experiments would help add further insight into the charge 

generated by a lubricated contact. 

 

10.2.2 FULL-SCALE TESTING 

Pin-on-disc tribometers have been the main apparatus for additive testing in this thesis.  Tribometers are 

used to try and replicate power-train components; it is therefore important to transfer the advances made 

on electrostatic monitoring of PoD additive tests to actual power-train component.  The success of being 

able to monitor cam surface charge has been proven in Chapter 2612H4.  The same test oils as those used in 

Chapter 2613H6 could be run in the motorised engine test to assess whether similar findings are found in full 

scale contacts.  It would also be interesting to run a series of additive-base oil flushing experiments similar 

to those carried out for ZnDTP 2 in Chapter 2614H6. 

 

Ultimately there should be a long-term aim to use electrostatic monitoring on full scale fired engines, as 

this is where a large proportion of lubricant development costs are consumed.  If additive interactions 

could be determined then this would greatly aid the lubricant development process.  Attempts have been 

made to deploy electrostatic sensors to monitor the cams of a single cylinder diesel engine have 

unfortunately not been successful, because the location of the camshaft in the crankcase meant that the 

sensor was susceptible to a great deal of noise from other rotating components in the crankcase as well as 

oil splatter (see 2615HFigure 160).  Although fraught with difficulties, electrostatic monitoring of full scale, real-

life components should be attempted. 
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Figure 160. Electrostatic sensor positioned to monitor cam wear in a fired single cylinder diesel 

engine. 
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APPENDIX 
 

Appendix A. Valve-train design 
There are a wide range of valve-train mechanisms e.g., push rod, pivoted follower, direct acting (DAT), 

roller follower and desmodromic; more details of these can be found in [2616H57,385F386].  2617HTable 35 shows a 

summary of the advantages and disadvantages of different valve-train designs.  The type of valve-train of 

interest is the pivoted finger follower and DAT system; however it is important to have an appreciation of 

a range of valve-trains. 

 

 Valve-train 
Configuration 

Advantage Disadvantage 
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ad
 

V
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Push-Rod 
 

• Simple camshaft drive-gear 
• Low engine height 
• Simpler head design 
• Single camshaft use for V-engine 

• High reciprocating mass 
• Low Valve-Train Stiffness 

Finger follower 
• Low reciprocating Mass 
• High Stiffness 

• High friction 
• Pure sliding – requires positive 
lubrication – prone to wear 

Compound valve 
head 

• Reduced reciprocating Mass 
• Increased valve-train stiffness 

• Small tappet diameter constrains 
cam profile design 

Finger 
Follower 

• High stiffness (although not as 
stiff as direct acting) 
• Lower friction than sliding contact 
• Low cost pressed steel 

• Higher contact stress than sliding 
and therefore requires a more expensive re-
entrant cam 

R
ol

le
r 

Rocker 
Arm 

• Low engine height compared with 
DAT and finger followers 
• Low friction 

• Low stiffness compared to DAT 
and finger follower 
• Die cast aluminium requires more 
machining  

External 
Shim 

• High system stiffness 
• Optimum material choice for shim 

• Requires adjustment on  initial 
engine build and service checks there after  
• Cam contact is less than tappet 
diameter 

Internal 
Shim 

• High system stiffness 
• Full tappet diameter for cam 
contact 
• Optimum shim material 

• Adjustment on initial engine build 
and services thereafter 
• Limited material choice for tappet 
face 

O
ve

r-
H

ea
d 

C
am

sh
af

t 

D
ire

ct
 A

ct
in

g 

Hydraulic 
Lash 

adjuster 

No lash adjustment on initial build 
Full tappet diameter available for cam 
contact 
Compensates for valve seat wear 

• Not as stiff as mechanical 
adjustment 
• Limited material choice for the 
tappet face 

Table 35. Advantage and disadvantage of different valve-train designs. 

 

Many of the problems with the finger follower valve-trains have been over come through the use of DAT 

valve-train systems.  In part, this has been due to the move to double over-head cam (DOHC) gasoline 

engines, which have inclined valves to give a pent roof combustion chamber, which is more desirable.  

DAT designs are highly suitable for this type of arrangement.  However, finger follower valve-trains are 
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still used in diesel engines.  Diesel engines require vertical valves for optimum combustion which makes 

the DOHC DAT system infeasible, because the camshafts would be too close together. 

 

Appendix B. Other degradation processes 
There are other lubricant degradation process such as oxidation, corrosion and shear. However these are 

not dealt with directly in the experimental work presented in this thesis.  Therefore their discussions about 

these processes are treated briefly. 

 

The rate of oxidation is affected by the operating conditions, such as temperature and aeration.  The 

tendency towards oxidation is affected by the basestock; highly unsaturated basestocks have a greater 

tendency to oxidize.  The use of sulphur in either the basestock or in the additive system is influential as it 

is an antioxidant.  All oxidative processes have a common reaction pattern due to the bi-radical nature of 

oxygen. Oxidation degradation can be measured by oxygen number, a change in viscosity, acid number 

build up, and an increase in polar materials.  The formation of organic acids can be corrosive to some 

engine components.  Oxidation is always detrimental to the performance of a lubricant and can result in 

the formation of sludge, which can block oilways and filters.  At advanced stages reactions of high 

molecular weight intermediates results in products (precipitates) which are no longer soluble in the 

hydrocarbon called sludge. Varnish-like deposits are formed on the metal surface under thin-film 

conditions [386F387]. 

 

STEEL SURFACE

VARNISH

LACQUER 

SLUDGE

 

Figure 161. Schematic of the deposits that can occur on the engine surface as a result of oxidation. 

 

As discussed above some of the products of incomplete combustion are nitrogen oxides and sulphur 

oxides; these can react with water to form nitric and sulphuric acids (eq (16)), which causes corrosion 

within the engine.  

422332 SOHOHSO then and   SO1.5OS ⇒+⇒+    (16) 

Rust refers to the oxidation of ferrous metals, catalyzed by water and acids through the following reaction 

(eq (17)). 

322 OFe1.5O2Fe ⇒+   (17) 

There is also corrosion of non-ferrous metals such as copper and lead (see eq(18) & (19)). 

CuSSCu ⇒+   (18) 
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salt-PbacidPb ⇒+   (19) 

 

 

Appendix C. Shear 
When a polymer is stretched the maximum energy is concentrated in the middle of the molecule. Thus 

when a polymer breaks due to mechanical shearing, the resulting fragments are predicted to be about half 

of the molecular weight of the starting polymer. The higher the molecular weight, the more likely a 

polymer is to break. However the mechanical degradation process is limited by the molecular weight. At 

some point, whatever the application, a molecular weight is reached where the energy concentration 

during coil distortion is insufficient to break further bonds. Viscosity loss during use is thus characterized 

by a rapid initial decrease as the bigger molecules break, followed by a slower loss and finally a plateau as 

the equilibrium molecular weight is reached, however this final viscosity maybe insufficient to prevent 

surfaces from wearing. 

 

Permanent loss in molecular weight can also occur through chemical degradation (e.g. by acids), oxidative 

and thermal; although the processes are quite different the outcome is the same. Chemical degradation is a 

totally random process. Thus a significant viscosity loss will only come as a result of the chemical 

reaction in the middle of the polymer. If the reaction occurs at the end of the polymer then no real change 

will occur to the viscosity. However when the last scenario happens there are deposit implications. As the 

fragments produced from such a reaction are reactive and may contribute to sludge formation. 

 

Appendix D. Viscosity index improver 
The primary function of viscosity index improvers (VIIs) is to increase viscosity at high temperature, 

more than at low temperature (see 2618HFigure 162).  Oil viscosity is defined by the SAE J300 classification, 

which specifies viscosity at low temperatures to define the W (winter) grade and at 100oC.  Oils 

containing VIIs are known as multi-grade oils. 
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Figure 162. (a) How viscosity modifiers affect the viscosity/temperature response, (b) Function of 

viscosity modifiers. 

 

Types of VIIs include Olefin Copolymers (OCPs), poly methacrylates (PMA) and Styrene-butadienes.  

OCPs typically cause considerable thickening of oil at low temperatures as well as at high temperature.  

The side chains of the polymer have little effect on the viscosity; it is mainly affected by the length of the 

back bone.  Styrene-butadiene, polyisoprene and poly methacrylate (PMA) are attractive VII components 

as they retain improve viscosity at high temperature behaviour but reduced at low temperature. 

 

Appendix E. Additional figures for Chapter 2619H6 
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Figure 163. Conductivity for the all oils in the used in the test matrix. 
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Figure 164. Disc wear average for the entire test matrix. 

 

  
   (a)       (b) 

  
   (c)       (d) 
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   (e)       (f) 

 
(g) 

Figure 165. Micrographs of disc wear track for (a) Group II Base oil, (b) Detergent, (c) Dispersant 3, 

(d) ZnDTP 2, (e) GMO, (f) MGMO and (g) MoDTC. 
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