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Abstract

A default strategy for fully Bayesian model determination for GLMMs is considered which

addresses the two key issues of default prior specification and computation. In particular,

the concept of unit information priors is extended to the parameters of a GLMM. A

combination of MCMC and Laplace approximations is used to compute approximations

to the posterior model probabilities to find a subset of models with high posterior model

probability. Bridge sampling is then used on the models in this subset to approximate the

posterior model probabilities more accurately. The strategy is applied to four examples.

Keywords: unit information priors, bridge sampling, MCMC, Laplace approximation

1. Introduction

Generalised linear mixed models (GLMMs) extend generalised linear models (GLMs)

to responses which are correlated due to the existence of groups or clusters, by the inclu-

sion of group-specific parameters (known as random effects in classical statistics). For

example, in a longitudinal study we record several observations from the same individual.

GLMs, linear mixed models (LMMs), and linear models (LMs) are all special cases of

GLMMs.

1.1. Specification of a GLMM

Let yij be the jth response from the ith group where j = 1, ..., ni and i = 1, ..., G.

Let xij and zij denote the p× 1 and q× 1 vectors of covariates which correspond to the
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regression and group-specific parameters, respectively. Assume that the components of

zij form a subset of the components of xij . Let the total sample size be n =
∑G

i=1 ni.

Conditional on the group-specific parameters, ui, we assume that yij is independently

distributed from some exponential family distribution with density

f(yij |ui) = exp

[

yijζij − b(ζij)

aij(φ)
+ c(yij , φ)

]

, (1)

where ζij is the canonical parameter, φ is the dispersion parameter, and aij(), b(), and

c() are known functions. Define µij = E(yij |ui) = b′(ζij) as the conditional mean of yij .

This is related to the linear predictor, ηij , through

g(µij) = ηij = xT
ijβ + zijui, (2)

where g() is the link function, β is a p × 1 vector of regression parameters, and ui is a

q × 1 vector of group-specific parameters.

Suppose, for the ith group, that yi = (yi1, ..., yini
)T , Xi = (xi1, ...,xini

)T , Zi =

(zi1, ..., zini
)T , ηi = (ηi1, ..., ηini

)T , µi = (µi1, ..., µini
)T , and that the link function is

applied elementwise, then

g(µi) = Xiβ + Ziui.

Suppose further that y = (yT
1 , ...,y

T
G)T , X = (XT

1 , ...,X
T
G)T , Z = diag(Z1, ...,ZG),

η = (ηT
1 , ...,η

T
G)T , µ = (µT

1 , ...,µ
T
G)T , and u = (uT

1 , ...,u
T
G)T , then (2) can be rewritten

in matrix form as

g(µ) = Xβ + Zu.

We make the assumption that the first columns of Xi and Zi (if non-zero) are always

formed from a vector, of length ni, of ones. We also assume that the columns of Zi are

a subset of the columns of Xi.

We complete the specification of a GLMM by making the common assumption that

ui
iid∼ N(0,D), for i = 1, ..., G, where the variance components matrix, D, is an unstruc-

tured q× q matrix which depends upon the 1
2 (q2 + q)× 1 vector of variance components,

d. If D∗ = IG ⊗ D, where ⊗ denotes the Kronecker product, then u ∼ N(0,D∗).

Our approach will be Bayesian, so we require a joint prior, with density f(β,D, φ),

for the regression parameters, β, the variance components matrix, D, and the dispersion
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parameter, φ. Initially, we decompose this prior density as

f(β,D, φ) = f(β|D, φ)f(D|φ)f(φ). (3)

1.2. Bayesian Model Determination for GLMMs

Bayesian model determination for GLMMs proceeds as follows. Suppose model m ∈

M is defined by the integrated likelihood

fm(y|βm,Dm, φm) =

∫

RGq

fm(y|βm,um, φm)fm(um|Dm)dum, (4)

where M is a set of models. The posterior model probability, f(m|y), of model m is given

by

f(m|y) =
f(m)fm(y)

∑

k∈M f(k)fk(y)
, (5)

where fm(y) is the marginal likelihood of model m given by

fm(y) =

∫

fm(y|βm,um, φm)fm(um|Dm)f(βm,Dm, φm)dβmdumdDmdφm, (6)

and f(m) is the prior model probability of model m. Note that in (6),

fm(y|βm,um, φm) =

G
∏

i=1

ni
∏

j=1

exp

[

yijζmij − bm(ζmij)

amij(φm)
+ cm(yij ;φm)

]

, (7)

is known as the first-stage likelihood.

It is common to adopt a uniform prior for m, i.e. f(m) = 1
|M| , and this is what is

used for the remainder of this paper. However, there do exist alternative approaches,

such as multiplicity correction priors (see, for example, Scott & Carvalho (2008)).

Suppose we are comparing two models, labelled 1 and 2, say, with posterior model

probabilities f(1|y) and f(1|y), respectively. Consider the posterior odds in favour of

model 1
f(1|y)

1 − f(1|y)
=
f(1|y)

f(2|y)
=
f(1)f1(y)

f(2)f2(y)
=

f(1)

1 − f(1)

f1(y)

f2(y)
.

The ratio f1(y)/f2(y) is known as the Bayes factor in favour of model 1. Kass & Raftery

(1995) provide a comprehensive review of Bayes factors, including how to interpret them.

Posterior model probabilities and Bayes factors represent the gold standard in fully

Bayesian model determination. In Section 1.3 we discuss how these quantities are sen-

sitive to the choice of prior distribution in the case of specifying a default prior under
3



weak prior information. There exist methods of model determination which rely on the

Bayesian approach but do not give posterior model probabilities. However, as such, the

issue of default prior specification is avoided. These include criterion-based methods such

as BIC or DIC (Spiegelhalter et al (2002)). Aitkin et al (2009) proposed a method based

on posterior deviances for model determination applied to small area estimation.

1.3. Our Aim

Our aim is to develop an automatic, fully Bayesian analysis of GLMMs with regards

to model determination under weak prior information. This needs to address the two

key issues of default prior specification and computation, while minimising the need for

choosing arbitrary values of prior hyperparameters.

Lindley’s paradox (see, for example, O’Hagan & Forster (2004) pgs 77-79) dictates

that we cannot simply choose a uniform or an arbitrarily diffuse informative prior for

the model parameters since a fully Bayesian model selection method will tend to favour

the model with smallest dimension. In specifying prior distributions for the model pa-

rameters, we aim to calibrate the amount of information they provide to make consistent

model comparisons. In Section 2, we introduce a generalisation of the approximate unit

information prior for the regression parameters, β. In Section 3, we discuss some of

the priors for the variance components matrix, D, that exist in the literature, before

introducing a conjugate inverse-Wishart prior with hyperparameter choice based on a

unit information concept. There remains a choice for the prior distribution for the dis-

persion parameter, φ. The dispersion parameter is one for responses from the binomial

and Poisson distributions. We focus on these examples in this paper and therefore do

not consider a prior for φ.

The integral (6) is generally analytically intractable and requires approximation. Suit-

able approximation methods include importance sampling and bridge sampling. Bridge

sampling, in particular, was found by Sinharay & Stern (2005) to provide very accu-

rate approximations to the marginal likelihoods for GLMMs. A potential problem with

using this approach, solely, is that the number of models, |M |, may be large thus ren-

dering bridge sampling for each model impractical. In this case, it may be necessary to

use Markov Chain Monte Carlo (MCMC) methods to approximate the posterior model

probabilities directly, i.e. not through (5). Approaches to computation are considered in
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Section 4. Our computational approach is presented for the more general case of when

φ is unknown. It is easy to modify for when φ is known.

In Section 5, we assess the efficacy and robustness of the model determination strategy

using simulations where the responses are generated from the Poisson and Bernoulli

distributions.

In Section 6, we demonstrate the model determination strategy on four examples.

2. Prior for the Regression Parameters, β

The regression parameters, β, are typically the most important parameters with

respect to inference. Chen et al (2003) proposed an informative prior for β in a GLMM

which uses historical data. However, this is inappropriate for the situation we consider

here of weak prior information.

In this section, we extend the concept of unit-information priors to the regression

parameters, β, of a GLMM. Previously, versions of these priors have been applied to

linear models (Smith & Spiegelhalter (1980) and Kass & Wasserman (1995)), linear

mixed models (Pauler (1998)) and generalised linear models (Ntzoufras et al (2003)).

We define a unit information prior for β as the multivariate normal distribution with

mean m and Σ, i.e.

β ∼ N(m,Σ),

for particular choices of m and Σ. We follow Raftery (1996) and Ntzoufras et al (2003),

and choose the prior mean as m = (m0, 0, ..., 0)T . Typically, m0 = 0, however for

Bernoulli responses and the complementary log-log link function we may want to choose

m0 = log(log(2)) to correspond to a mean response of 1
2 . The variance matrix, Σ, is

chosen to approximately provide the same amount of information as one unit of data.

Consider the linear model: y ∼ N(0, σ2In). The Fisher information is given by

Iβ =
1

σ2
XTX.

A unit of data in this case is one observation, so the average amount of information

provided by one observation is 1
nσ2 X

TX, and therefore

Σ = nσ2(XT X)−1. (8)
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Consider a GLM, the Fisher information is given by

Iβ = XT W−1X,

where W = diag{var(yi)g
′(µi)

2}, where g() is the link function. In this case, the Fisher

information depends upon the unknown regression parameters, β. Ntzoufras et al (2003)

proposed replacing β by its prior mean m. Therefore,

Σ = n(XT W−1
m X)−1,

where Wm = diag{var(yi|β = m) (g′(µi)|β=m
)2}.

Pauler (1998) proposed a unit information concept prior distribution for β for linear

mixed models. To achieve this, the group-specific parameters, u, are integrated out to

give the integrated likelihood. The Fisher information for β is then

Iβ = XTV−1X,

where V = σ2In + ZDZT . In both the LM and GLM cases, we divide the Fisher

information by the sample size. However, Pauler (1998) states, that in mixed models,

the sample size “is ambiguous because of correlations between observations”. Pauler

(1998) defines the effective sample size, Nk, for βk, the kth element of β, to be the order

of the Fisher information for βk, i.e. the order of the kth diagonal element of the Fisher

information matrix. Let

Σ = ΛI−1
β Λ, (9)

where Λ = diag
{√

Nk

}

for k = 1, ..., p. Pauler (1998) shows that for an LMM

Nj =







G, if βj has an associated group-specific parameter,

n, otherwise.

Note that the unit information prior distribution for β of Pauler (1998) is conditional on

the variance components matrix, D.

In the case of a linear model, none of the regression parameters have associated group-

specific parameters and so Nk = n, for all k. Therefore, (9) reduces to the appropriate

variance matrix of a unit information prior for a linear model, given in (8).

We could generalise the unit information prior distribution proposed by Pauler (1998)

to GLMMs by using a deterministic approximation for the Fisher information of β from
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the integrated likelihood of a GLMM (see, for example, Breslow & Clayton (1993)).

However, this would result in a prior distribution for β that is conditional on D. In

Section 3, we propose an inverse-Wishart prior distribution for D that is based on the

first-stage likelihood, (7), using a unit information concept. It would be logical, therefore,

to also base our unit information prior distribution for the regression parameters, β, on

the first-stage likelihood. Also, we find that a unit information prior for β based on the

first-stage likelihood is independent of D. There are certain computational advantages

of using a prior distribution for β that is independent of D. We discuss these advantages

in Section 4. We, therefore, propose a unit information prior distribution for β that is

based on the Fisher information from the first-stage likelihood.

From (7), the first-stage likelihood, having dropped the subscript m, is

f(y|β,u, φ) =

G
∏

i=1

ni
∏

j=1

exp

[

yijζij − b(ζij)

aij(φ)
+ c(yij ;φ)

]

.

Therefore the Fisher information from the first-stage likelihood is

Iβ = XT W−1X,

where W = diag
{

var(yij)g
′(µij)

2
}

. Since, conditional on ui, the yij ’s are independent,

the effective sample size for βk is N for all k, where N is the order of the diagonal

elements of XTW−1X. Note that Iβ depends on the unknown β and u through W, so

we follow Ntzoufras et al (2003) and replace β and u by their prior means of m and 0,

respectively. Therefore,

Σ = N
(

XT W−1
m,0X

)−1
,

where Wm,0 = diag
{

var(yij)g
′(µij)

2
}∣

∣

β=m,u=0
. Note that this prior variance is iden-

tical to that we would use for the corresponding GLM. This prior is independent of D.

It follows that N is the order of
∑G

i=1

∑ni

j=1
1

wij
, where wij are the diagonal elements of

Wm,0.

Note that Wm,0 = diag
{

var(yij)g
′(µij)

2
}∣

∣

β=m,u=0
can often be written as τ2In or

diag
{

τ2
i Ini

}

. For instance, suppose that yij ∼ Bernoulli(µij), where logit(µij) = ηij =

xT
ijβ + zT

ijui, where ui
iid∼ N(0,D). Suppose, we have chosen E(β) = m = 0 as the

prior mean of β. Then, var(yij) = µij(1 − µij) =
exp(ηij)

(1+exp(ηij))2
and g′(µij) = 1

µ2
ij

(1−µij)2
.
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Therefore,

W = diag

{

1

µij(1 − µij)

}

= diag

{

(1 + exp(ηij))
2

exp(ηij)

}

,

and Wm,0 = diag
{

(1+exp(ηij))2

exp(ηij)

}∣

∣

∣

β=0,u=0
= 4In. So in this example, τ2 = 4 and N = n,

the sample size.

For each of the four examples in Section 6, we explain the values of τ2 and N .

3. Prior for the Variance Components Matrix, D

There is a large literature on default prior distributions for the variance components

matrix, D.

Natarajan & Kass (2000) defined an approximate generalisation of the uniform shrink-

age prior of Daniels (1999) for GLMMs. A similar prior was suggested by Gustafson et

al (2006) where the variance components matrix can be written as D = σ2Ω, where Ω

is a known positive-definite matrix and σ2 is unknown. This is different to the setup

we consider since in our case, D is unstructured. Kass & Natarajan (2006) proposed a

conjugate inverse-Wishart distribution as a default prior for D. The priors of Natara-

jan & Kass (2000), Gustafson et al (2006), and Kass & Natarajan (2006) are all data

dependent as they rely on the maximum likelihood estimate of β.

Cai & Dunson (2006) define a prior for the variance components matrix where D is

decomposed as D = LΓΓT L, to ensure positive-definiteness, L = diag(λ1, ..., λq) with

λk ≥ 0, and Γ is lower triangular, with off diagonal elements, γij . Zero-inflated positive

normal distributions are then placed on the λk’s and zero-inflated normal distributions

are then placed on the γij ’s.

A completely different approach is taken by Garcia-Donato & Sun (2007) in their

divergence-based (DB) priors for comparing between the following two models:

1. yij ∼ N(µ, σ2), where i = 1, ..., G and j = 1, ..., n∗,

2. yij ∼ N(µ+ ui, σ
2), where ui ∼ N(0, τ2).

The DB prior for τ2 is

f(τ2|µ, σ2) ∝
[

1 +
D(µ, σ2, τ2)

n∗G

]−g

, g > g∗,
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where g∗ is the minimum value such that the DB prior is proper if g > g∗, andD(µ, σ2, τ2)

is the Kullback-Liebler divergence between models 1 and 2. Note that the divergence

is divided by the sample size n∗G thus linking to the idea of unit information which is

central to the priors developed in this and the previous section.

We define a default prior distribution for D as the inverse-Wishart distribution with

ρ degrees of freedom and scale matrix, ρR, i.e. D ∼ IW(ρ, ρR), where ρ > q − 1.

Following Kass & Natarajan (2006), we set ρ = q. Kass & Natarajan (2006) give the

Fisher information for ui from the first-stage likelihood as

Iui
= ZT

i W−1
i Zi,

for i = 1, ..., G, where Wi = diag
{

var(yij)g
′(µij)

2
}

. Following the approach in Section 2

we replace the unknown parameters, β and ui by their prior means, m and 0, respectively.

The approximate average unit information over the G groups is then

1

G

G
∑

i=1

1

ni
ZT

i W−1
i,m,0Zi,

where Wi,m,0 = diag
{

var(yij)g
′(µij)

2
}∣

∣

β=m,ui=0
. If D was a fixed hyperparameter

then we would set D−1 = 1
G

∑G
i=1

1
Ni

ZT
i W−1

i,m,0Zi, to give a unit information prior for

u. However, since D is not fixed we set

E(D−1) = R−1 =
1

G

G
∑

i=1

1

Ni
ZT

i W−1
i,m,0Zi.

Here Ni is the order of the diagonal elements of ZT
i W−1

i,m,0Zi and therefore the order of
∑ni

j=1
1

wij
where wij are the diagonal elements of Wi,m,0. Therefore

R = G

(

G
∑

i=1

1

Ni
ZT

i W−1
i,m,0Zi

)−1

.

Note that, in the case of equal group sizes and where O(1) = 1
wij

, so that Ni = ni = n∗,

and if the maximum likelihood estimate of β is replaced by m, then this prior is the

default conjugate prior of Kass & Natarajan (2006) with c = n∗,

When q = 1, i.e. when ui
iid∼ N(0, σ2), then the proposed prior distribution reduces to

σ2 ∼ IG







1

2
,
G

2





G
∑

i=1

1

Ni

ni
∑

j=1

1

wij





−1





,
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where wi = (wi1, ..., wini
)T are the diagonal elements of Wi,m,0.

We explain the values of Ni for the four examples in Section 6.

4. Computation

4.1. General Strategy

In this section, we describe the computational strategy and methods to approximate

the posterior model probabilities. Sinharay & Stern (2005) found that bridge sampling

provided very accurate approximations to the Bayes’ factors for comparing GLMMs

with respect to minimising the standard errors, when compared to importance sampling,

Chib’s method (from the marginal likelihood identity, see Chib (1995)) and reversible

jump (Green (1995)). Bridge sampling, given a sample from the posterior distribution,

is an easily implemented method for approximating the marginal likelihood of a given

model. Evaluating the marginal likelihood, by approximation or exactly, of every model

m ∈M to find the posterior model probabilities is called the marginal likelihood approach.

However, if the number of models, |M |, is large, the marginal likelihood approach becomes

impractical. A more suitable approach, therefore, is a “one-shot” implementation of an

MCMC method such as reversible jump (Green (1995)). The disadvantage of such a

method is making effective proposals which is made more acute by the large differences

in dimensionality between models we consider.

As a compromise we propose the following general strategy. We use a simple deter-

ministic Laplace approximation to the integrated likelihood (4) to reduce the dimension

of the parameter space. We then use an independence sampler which is a special case

of the reversible jump MCMC method to approximate the posterior model probabilities

of all models m ∈ M . These approximations, denoted as f̂L(m|y), are used to identify

a smaller set of candidate models, M ′ ⊂ M . Finally, bridge sampling is used to ap-

proximate the posterior model probabilities of the models m ∈ M ′. Denote the bridge

sampling approximations to the marginal likelihood and posterior model probabilities of

model m by f̂B
m(y) and f̂B(m|y), respectively.
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4.2. An MCMC Method

We ease the computational burden by taking advantage of the conditional indepen-

dence of the yi, and write the integrated likelihood (removing the subscript m) as

f(y|β,D, φ) =

G
∏

i=1

∫

Rq

f(yi|β,ui, φ)f(ui|D)dui. (10)

Using the Laplace approximation for each
∫

f(yi|β,ui, φ)f(ui|D)dui, we obtain the

following approximation to the integrated likelihood:

f̂(y|β,D, φ) = |D|−
G
2

G
∏

i=1

[

f(yi|β, ûi, φ)|Vi + D−1|−
1
2 exp

(

−1

2
ûT

i D−1ûi

)]

, (11)

where Vi = − ∂2

∂ui∂uT
i

log f(yi|β,ui, φ)
∣

∣

∣

ui=ûi

. The value, ûi, of ui that maximises the in-

tegrand in (10), or equivalently log f(yi|β,ui, φ)f(ui|D), can be found using the Newton-

Raphson method since the 1st and 2nd derivatives of log f(yi|β,ui, φ)f(ui|D) with re-

spect to ui are readily available.

Therefore, the approximate posterior density of β, D, and φ is given by:

f̂L(β,D, φ|y) ∝ f̂L(y|β,D, φ)f(β|D, φ)f(D|φ)f(φ).

Before we consider the MCMC method, we briefly describe the transformations that

we use on the variance components and the dispersion parameter.

For the variance components matrix, we use, as the transformation, the Cholesky

decomposition D = ΓΓT , where Γ is the lower-triangular matrix, which depends upon

υ, the 1
2q(q + 1) × 1 vector of transformed parameters, given by

















eυ11

υ12 eυ22

...
. . .

υ1q · · · eυqq

















.

Note that if υ ∈ R
1
2 q(q+1) then D is guaranteed to be positive-definite. For the dispersion

parameter, we use the transformation ω = logφ.

The approximate posterior density of the transformed parameters, (β,υ, ω)T , is given

by f̂L(β,υ, ω|y) ∝ ĥL(β,υ, ω|y), where

ĥL(β,υ, ω|y) = f̂L(y|β,ΓΓT , eω)f(β|ΓΓT , eω)f(ΓΓT |eω)f(eω)2qeω

q
∏

i=1

eυii(q+2−i),
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and the Jacobian for the transformation D = ΓΓT is given by, for example, Muirhead

(1982, Theorem 2.19). Note that the vector of transformed parameters, (β,υ, ω)T , lies in

R
p+ 1

2 q(q+1)+1 if the dispersion parameter is unknown and lies in R
p+ 1

2 q(q+1), otherwise.

The MCMC method we propose is the independence sampler (see, for example,

O’Hagan & Forster (2004, pg 298)) which is a special case of the reversible jump al-

gorithm where the proposals are made independently of the current state. For model

m ∈ M , the proposal distribution, with density πm(βm,υm, ωm), is the multivariate

normal distribution with mean given by the value of (βm,υm, ωm)T that maximises the

approximate posterior density, f̂L
m(βm,υm, ωm|y) ∝ ĥL

m(βm,υm, ωm), (or, equivalently,

log f̂L
m(βm,υm, ωm|y) ∝ log ĥL

m(βm,υm, ωm)) and variance matrix given by the nega-

tive, inverse of the approximate Hessian matrix of log f̂L
m(βm,υm, ωm|y) with respect

to (βm,υm, ωm)T evaluated at the maximum value. These quantities will need to be

found numerically. A group of methods for doing so are quasi-Newton methods. Some of

these methods are implemented in the statistical software package, R, using the function

optim. Thus the proposal distribution is a normal approximation to the distribution

with density f̂L
m(βm,υm, ωm|y).

The independence sampler proceeds as follows:

1. Given the current state (m,βm,υm, ωm), propose a new model m∗ with proba-

bility 1
|M| . Then generate proposal model parameters (β∗

m∗ ,υ∗
m∗ , ω∗

m∗) from the

distribution with density πm, as described above.

2. Calculate the acceptance probability, α = min(1, a), where

a =
ĥL

m∗(β
∗
m∗ ,υ∗

m∗ , ω∗
m∗ |y)πm(βm,υm, ωm)

ĥL
m(βm,υm, ωm|y)πm∗(β∗

m∗ ,υ∗
m∗ , ω∗

m∗)
.

3. Accept the proposed move with probability a and set (m∗,β∗
m∗ ,υ∗

m∗ , ω∗
m∗) as the

new state. Otherwise, retain (m,βm,υm, ωm) as the current state.

4. Repeat steps 1) to 3) for a total of B iterations, for large B.

The independence sampler provides f̂L
m(m|y) for m ∈ M . We identify the smaller set,

M ′ ⊂M , of candidate models from f̂L
m(m|y) by using a definition of Madigan & Raftery

(1994), in relation to model averaging, of

M ′ =
{

m ∈M : max
k∈M

f̂L(k|y) ≤ cf̂L(m|y)
}

, (12)
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for some constant c > 1. Larger values of c correspond to a larger number of models

in M ′. This definition aims to collect most of the posterior model probability without

having to consider too large a set of models for M ′.

Cai & Dunson (2006) proposed a computational strategy for model determination

amongst GLMMs using a SSVS algorithm based on a deterministic approximation of the

integrated likelihood. Their approximation was based on a second-order Taylor series

expansion of the first-stage likelihood, f(y|β,u, φ), whereas the Laplace approximation

we use is based on a second-order Taylor series expansion of the log first-stage likelihood,

log f(y|β,u, φ).

4.3. Bridge Sampling

Bridge sampling is a method for approximating the marginal likelihood, fm(y), of

model m ∈ M . It requires a sample from the posterior distribution of model m ∈ M .

Let θm be the vector of model parameters for model m ∈M .

The bridge sampling estimator is given by

f̂B
m(y) =

1
N1

∑N1

i=1 fm(y|θ̃
i

m)fm(θ̃
i

m)γ(θ̃
i

m)

1
N2

∑N2

i=1 gm(θi
m)γ(θi

m)
,

where {θi
m}N2

i=1 is a sample of size N2 from the posterior distribution with density

fm(θm|y), {θ̃
i

m}N1

i=1 is a sample of size N1 from a distribution with density gm(θm),

and γ() is a function that satisfies 0 < |
∫

gm(θm)γ(θm)fm(θm|y)dθm| <∞.

Meng & Wong (1996) showed that, with respect to minimising the mean squared

error, the optimal γ() is given by

γ∗(θm) =

[

N2fm(y|θm)fm(θm)

fm(y)
+N1gm(θm)

]−1

.

Of course, γ∗() depends on the unknown marginal likelihood, fm(y), which suggests the

following iterative scheme

f̂B
m(y)(t+1) =

1
N1

∑N1

i=1
l̃i

N2 l̃i+N1f̂B
m(y)(t)

1
N2

∑N2

i=1
1

N2li+N1f̂B
m(y)(t)

, (13)

where l̃i =
fm(y|θ̃

i

m)fm(θ̃
i

m)

gm(θ̃
i

m)
and li =

fm(y|θi
m)fm(θi

m)

gm(θi
m)

. The scheme (13) is iterated un-

til convergence, to give f̂B
m(y) as the bridge sampling approximation to the marginal

likelihood, fm(y).
13



Chen et al (2000, pg 129) discuss the allocation of sample sizes,N1 andN2. They state

that using the optimal choice for γ() is often more essential then the optimal allocation

of sample sizes. In what follows, we take N1 = N2 = R.

There remains a choice for the distribution, Gm, with density gm(θm). From practice,

it appears that bridge sampling performs best when gm(θm) ‘mimics’ the posterior den-

sity, fm(θm|y). An obvious choice is the normal distribution with it first few moments

chosen to match those of the posterior distribution. If the first two moments are matched

then this is known as Warp II bridge sampling.

When the posterior distribution is approximately normal then we can find the mode

and curvature, at the mode, of the posterior distribution deterministically. We can then

set Gm to be the normal distribution with mean equal to the mode and the variance

equal to minus the inverse curvature. However, for distributions that are non-normal,

we feel that the mode and curvature will provide insufficient information and that the

sample mean and variance from a posterior sample will be a better choice.

However, if sample statistics of the entire posterior sample are used, then this leads to

correlation between the moments of the distribution with density gm() and the posterior

sample, {θi
m}, and an apparent underestimation of fm(y) (see the Appendix).

We propose to use a proportion, ψ, of the posterior sample to estimate the posterior

moments. The remainder of the posterior sample can then be used in the bridge sampler,

(13). From practice, it appears that ψ = 1
2 is a robust choice. Therefore, we need a

posterior sample of size 2R.

We now specifically turn our attention to approximating the marginal likelihood of a

GLMM, which is

fm(y) =

∫

fm(y|βm,um, φm)fm(um|Dm)

× f(βm|Dm, φm)fm(Dm|φm)fm(φm)dβmdumdDmdφm,

using the prior decomposition in (3). If we use the prior for β proposed in Section 2, or

any prior for β such that fm(βm|Dm, φm) = fm(βm|φm), then

fm(y) =

∫

fm(y|βm,um, φm)fm(βm|φm)fm(φm)

×
∫

Pq

fm(um|Dm)fm(Dm|φm)dDmdβmdumdφm,

14



where P
q is the set of all positive-definite q × q matrices. Now suppose we adopt

the prior for Dm proposed in Section 3, i.e. Dm|φm ∼ IW(qm, qmRm) where Rm =

G
(

∑G
i=1

1
ni

ZT
i W−1

i,m,0Zi

)−1

, where Rm is a function of φm through Wm,0, then

∫

Pq

fm(um|Dm)fm(Dm|φm)dDm

is analytically tractable as

Γqm

(

qm+G
2

)

Γqm

(

qm

2

)

1

π
Gqm

2

|qmRm|
qm
2

|qmRm +
∑G

i=1 umiu
T
mi|

qm+G

2

,

where Γqm
(a) = πqm(qm−1)/4

∏qm

j=1 Γ
(

a+ 1−j
2

)

is the multivariate gamma function. So

the marginal likelihood of a GLMM is now

fm(y) =

∫ Γqm

(

qm+G
2

)

Γqm

(

qm

2

)

π
Gqm

2

|qmRm|
qm
2

|qmRm +
∑G

i=1 umiu
T
mi|

qm+G
2

× fm(y|βm,um, φm)fm(βm|φm)fm(φm)dβmdumdφm.

The dispersion parameter is such that φm > 0, if it is unknown. We need to trans-

form the parameter to lie on the real line, R. Similar to in Section 4.2, we use the

transformation φm = eωm . Therefore,

fm(y) =

∫ Γqm

(

qm+G
2

)

Γqm

(

qm

2

)

π
Gqm

2

|qmRm|
qm
2

|qmRm +
∑G

i=1 umiu
T
mi|

qm+G
2

× fm(y|βm,um, e
ωm)fm(βm|eωm)fm(eωm)eωmdβmdumdωm.

(14)

We can now apply the bridge sampling approach to approximate the integral (14), with

θm = (βm,um, ωm)T ∈ R
pm+Gqm+1,

fm(y|θm) = fm(y|βm,um, e
ωm),

and

fm(θm) =
Γqm

(

qm+G
2

)

Γqm

(

qm

2

)

π
Gqm

2

|qmRm|
qm
2

|qmRm +
∑G

i=1 umiu
T
mi|

qm+G

2

fm(βm|eωm)fm(eωm)eωm .

We need to generate a posterior sample from β,um, ωm|y, i.e. the marginal posterior

distribution of β,um,Dm, ωm with Dm integrated out. This can be done easily by

generating a sample from β,um,Dm, φm|y and discarding the Dm’s and transforming
15



φm to ωm = logφm. We discuss how to generate a sample from β,um,Dm|y in the next

section.

The algorithm for approximating the marginal likelihood of a GLMM using bridge

sampling is:

1. Generate a sample,
{

θ
1
m, ...,θ

R
m,θ

R+1
m , ...,θ2R

m

}

, of size 2R from the posterior dis-

tribution, where θj
m = (βj

m,u
j
m, logφj

m)T .

2. Let µm and Σm be the sample mean and variance of
{

θR+1
m , ...,θ2R

m

}

. Let Gm

be N(µm,Σm), the (pm +Gqm)-dimensional normal distribution. Let gm() be the

density function of Gm.

3. Generate a sample,
{

θ̃
1

m, ..., θ̃
R

m

}

, of size R from Gm.

4. Approximate fm(y) using (13), to obtain f̂B
m(y).

The above algorithm is presented for when the dispersion parameter is unknown. It

is easily modified for when the dispersion parameter is known.

4.4. Posterior Simulation

As described in Section 4.3, bridge sampling requires a sample from the posterior

distribution of each model. The structure of GLMMs lends itself well to Gibbs sampling

due to the conditional independences involved. Zeger & Karim (1991) describe a Gibbs

sampling algorithm for GLMMs which relies on rejection sampling.

If the prior distribution of β is independent of D and the prior distribution of D is

the inverse-Wishart distribution then, due to conditional conjugacy, the full conditional

distribution of D is also inverse-Wishart, specifically

D|y,β,u, φ ∼ IW

(

q +G, qR +

G
∑

i=1

uiu
T
i

)

.

This makes generating from the full conditional distribution of D, in the Gibbs sampler,

a trivial task.

We use the statistical software package WinBUGS (Lunn et al (2000)) to generate a

posterior sample. WinBUGS essentially uses the algorithm of Zeger & Karim (1991). We

run WinBUGS remotely in the statistical software package R (R Development Core Team

(2008)) using the R2WinBUGS package (Sturtz et al (2005)).
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5. Simulations

In this section, we assess the efficacy and robustness of our strategy outlined in

Sections 2, 3, and 4 by way of a simulation study. Bernoulli and Poisson responses are

generated from a GLMM with the canonical link function and linear predictor:

ηij = (β0 + ui) + β1xij ; where ui
iid∼ N(0, σ2),

and i = 1, ..., G and j = 1, ..., ni = n∗. We generate 1000 datasets with n = 200

observations in either G = 25 or G = 4 groups meaning n∗ = 8 or n∗ = 50, respectively.

We therefore have four scenarios; two with Bernoulli responses and two with Poisson

responses. Within each response distribution, one scenario has G = 25 and n∗ = 8,

and one has G = 4 and n∗ = 50. For each dataset, the xij ’s are generated from the

standard normal distribution and the intercept parameter, β0, are held fixed at 1
2 , whereas

β1 and σ2 are drawn from the U[0, 5
4 ] distribution for Poisson responses and U[0, 5]

distribution for Bernoulli responses. Once the responses have been generated, we consider

the following five models:

1. ηij = β0,

2. ηij = β0 + β1xij ,

3. ηij = β0 + ui; where ui
iid∼ N(0, σ2),

4. ηij = β0 + ui + β1xij ; where ui
iid∼ N(0, σ2),

5. ηij = β0 + u0i + (β1 + u1i)xij ; where (u0i, u1i)
T iid∼ N(0,D),

where the priors described in Sections 2 and 3 are applied to the appropriate parameters.

We then approximate the posterior model probabilities in two ways: a) via the marginal

likelihood approach by approximating the marginal likelihood of each model above using

bridge sampling, and b) using the MCMC independence sampler. The independence

sampler is run for a total of 2000 iterations after a burn-in phase of 100 iterations. The

bridge sampling uses a total posterior sample size of 2R = 4000, after a burn-in phase of

100 iterations.

Assessment of the simulation study involves two parts: Part 1) assessing the accuracy

of the independence sampler for identifying M ′, and Part 2) assessing the efficacy of the

prior distributions. Part 1) is basically asking: are the posterior model probabilities
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approximated by the two methods, a) and b) above, similar? Part 2) is asking: do the

proposed default prior distributions result in sensible model determination conclusions?

We assume throughout these analyses that the posterior model probabilities approx-

imated by bridge sampling are close enough to the true values to be considered exact.

We consider Part 1) first. There are many possible ways to we could analyse the

results of the simulations study. We begin by plotting f̂L(m|y) against f̂B(m|y) for each

model, m. Figures 1 and 2 shows these plots for the Bernoulli and Poisson responses,

respectively. If the independence sampler provides a good approximation to the posterior

model probability, then the points should lie on a straight line with slope one, through

the origin, and we have overlaid each plot with such a line. We see that, typically, the

points lie near the overlaid line. The one concern is for Bernoulli responses where G = 4

and n∗ = 50, where the independence sampler seems to underestimate the posterior

model probability of Model 5. From the adjacent plot for Model 4, it appears that the

independence sampler is allocating this probability to Model 4. However, we note that

the independence sampler does not necessarily need to approximate f(m|y) close to its

true value, it just needs to identify a M ′ with high total posterior model probability.

To assess this, for each of the 1000 datasets for each scenario, we use the independence

sampler to identify M ′ according to (12) where we choose c = 10. We then evaluate

the total posterior model probability within M ′ according to f̂B(m|y) , i.e. we find
∑

m∈M ′ f̂B(m|y) for each repetition. We would like these total probabilities to be large

since a small value would indicate that the independence sampler has failed to include in

M ′; a model with high posterior model probability. Table 1 shows the sample statistics

of these total posterior model probabilities. Typically these total probabilities are close

to 1 indicating that the independence sampler identifies a M ′ with high total posterior

model probability.

We present the results of for Part 2). In what follows, all posterior model probabilities

are the posterior model probabilities as approximated by bridge sampling.

For each of the four scenarios we consider two plots. The first is a plot of the total

posterior model probability of models 2, 4 and 5 (i.e. the models that include a xij effect)

against the value of the β1 parameter. The second is a plot of the total posterior model

probability of models 3, 4 and 5 (i.e. the models that include group-specific effects)
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Table 1: Sample statistics of the total posterior model probability within M ′ according to f̂B(m|y) for

simulated Poisson and Bernoulli responses.

Bernoulli responses

Scenario Minimum 1st Quartile Median 3rd Quartile Maximum

G = 25,n∗ = 8 0.7385 0.9270 0.9723 0.9950 1.0000

G = 4,n∗ = 50 0.7365 0.9585 0.9855 1.0000 1.0000

Poisson responses

Scenario Minimum 1st Quartile Median 3rd Quartile Maximum

G = 25,n∗ = 8 0.8915 1.0000 1.0000 1.0000 1.0000

G = 4,n∗ = 50 0.6640 0.9884 0.9975 1.0000 1.0000

against the value of the σ2 parameter. Figures 3 and 4 show these plots for the Poisson

and Bernoulli responses, respectively. We add smoothing splines to the plots.

We see from Figures 3 and 4 that for small values of the true parameter, we are unlikely

to choose the more complicated models. As the magnitude of the parameter increases

the total posterior model probability of the appropriate models increases toward one.

However, consider the bottom right plot of Figures 3 and 4 which shows the total

posterior model probability of models 3, 4 and 5 plotted against the true value of the

σ2 parameter. The smoothing spline appears to not approach one for large values of σ2.

We see that even for large values of σ2 there exist total posterior model probabilities of

models 3, 4 and 5 which are not close to one. Under further investigation this was due

to the small number of groups, i.e. G = 4, and how the observed σ2, i.e. the observed

variance of ui for i = 1, ..., G being significantly smaller than the true value of σ2. To see

this, consider Figure 5 which shows the total posterior model probability of models 3, 4

and 5 plotted against the observed value of σ2. We see from Figure 5 that the posterior

model probability approaches and reaches one as the observed σ2 increases.

Model 5 will never be the most parsimonious model available, and this is reflected

in the results of the simulation study. It is the model with the highest posterior model

probability 1.3% and 2.9% for Bernoulli responses, for G = 25 and G = 4, respectively,

and 0.1% and 0.2% for Poisson responses, for G = 25 and G = 4, respectively.
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Figure 1: Plots of the posterior model probabilities as approximated by the independence sampler (PMP

(MCMC)), f̂L(m|y), against the posterior model probabilities as approximated by the bridge sampler

(PMP(bridge sampling)), f̂B(m|y) for the Bernoulli responses. The top two rows corresponds to G = 25

and n∗ = 8 and the bottom two rows to G = 4 and n∗ = 50.
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Gelman (2006) points out that inverse-gamma (and inverse-Wishart) prior distribu-

tions for variance components can be overly informative, even with “non-informative”

choices for the hyperparameters. To investigate this issue, we consider coverage rates of

probability intervals for the parameters β0, β1 and, most importantly, σ2. We find the

95% probability intervals by taking the 0.025 and 0.975 quantiles of the posterior sample

of β0, β1 and σ2 under Model 4, i.e. the true model. Table 2 shows the coverage rates of

these intervals when compared against the true values of β0 and β1 for the intervals for

β0 and β1, respectively, and when compared against the true and observed value of σ2

for the interval for σ2.

Table 2 shows that the coverage rates of the intervals for the regression parameters,

β0 and β1 are close to the nominal value of 95%. However, there is under-coverage of

the intervals for σ2 when compared to the true and observed values of σ2. On further
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Figure 2: Plots of the posterior model probabilities as approximated by the independence sampler (PMP

(MCMC)), f̂L(m|y), against the posterior model probabilities as approximated by the bridge sampler

(PMP(bridge sampling)), f̂B(m|y) for the Poisson responses. The top two rows corresponds to G = 25

and n∗ = 8 and the bottom two rows to G = 4 and n∗ = 50.
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investigation, we find that, for Bernoulli responses, 91.5% and 100% of the time the

true value of σ2 is less than the lower value of the interval for G = 25 and G = 4,

respectively. The corresponding values for the Poisson responses are 91.2% and 100%.

This shows that the proposed default prior distribution for σ2 is informative when the

true value of σ2 is small. However, in these cases, Figures 3, 4 and 5 show us that we will

allocate small posterior model probability to models that contain group-specific effects,

i.e. models with non-zero σ2. To demonstate this effect, we produce a model-averaged

probability interval for σ2; averaged over Models 2 and 4, i.e. the true model and the

true model but with the group-specific parameters removed. This is found by producing

a model-averaged posterior sample, of size 2N = 4000, of σ2, as follows. The sample will

contain

R =
f̂B(2|y)

f̂B(2|y) + f̂B(4|y)
× 4000
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Figure 3: Plots of the total approximate posterior model probability for the 1000 datasets with Bernoulli

responses against the true value of β1 and σ2. Top row: G = 25 and n∗ = 8. Bottom row: G = 4 and

n∗ = 50.
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elements that are identically zero and 4000 − R elements that are randomly selected

from the posterior sample of σ2 under Model 4. We then find a 95% probability interval

by taking the 0.025 and 0.975 quantiles of this model-averaged posterior sample. The

coverage rates of this model-averaged probability interval when compared against the

true and observed values of σ2 are shown in Table 2. The coverage rates for the model-

averaged probability intervals are much closer to the nominal value than for the non-

model-averaged intervals. In the case of when they are compared to the observed value

of σ2 the coverage rate is very close to the nominal level.

The simulation study shows that the proposed strategy appears to make favourable

model determination conclusions.
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Figure 4: Plots of the total approximate posterior model probability for the 1000 datasets with Poisson

responses against the true value of β1 and σ2. Top row: G = 25 and n∗ = 8. Bottom row: G = 4 and

n∗ = 50.
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6. Examples

We demonstrate our strategy on four real datasets: Natural Selection Study Data, Six

Cities Data, Ship Incident Data and Malignant Melanoma Mortality Data. The R code

used to apply our proposed strategy is available as a Supplementary Material.

6.1. A Natural Selection Study

Sinharay & Stern (2005) presented A Natural Selection Study containing the survival

status (0=died, 1=survived), birthweight (grams) and clutch (family) membership of 244

newborn turtles from 31 different clutches. The researchers want to determine whether

there is a birthweight and/or clutch effect on survival of newborn turtles. Suppose yij

and xij are the survival status and birthweight, respectively, from the jth turtle in the

ith clutch, i = 1, ..., 31, j = 1, ..., ni, and yij |pij ∼ Bernoulli(pij), where pij = Φ(ηij), i.e.

we use the probit link function. We consider 5 models:
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Figure 5: Plots of the total approximate posterior model probabilities for Model 3,4 and 5 for the 1000

datasets with Bernoulli and Poisson responses against the observed value of σ2. Top row: Bernoulli

responses. Bottom row: Poisson responses. First Column: G = 25 and n∗ = 8. Second Column: G = 4

and n∗ = 50.
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1. ηij = β0,

2. ηij = β0 + β1xij ,

3. ηij = β0 + ui, where ui
iid∼ N(0, σ2),

4. ηij = β0 + ui + β1xij , where ui
iid∼ N(0, σ2),

5. ηij = β0 + ui + (β1 + vi)xij , where (ui, vi)
T iid∼ N(0,D).

We apply the default priors proposed in Sections 2 and 3 to the appropriate model

parameters. Note that for this example, Wi,m,0 = π
2 Ini

, therefore τ2 = π
2 , Ni = ni and

N = n.

In this example, the set of models is small enough to avoid the use of the independence

sampler and we can approximate the posterior model probabilities, via bridge sampling,

of all 5 models. However, as a demonstration we have computed the posterior model

probabilities via the independence sampler as well. The independence sampler is run for
24



Table 2: Coverage rates of the probability intervals for β0, β1, and σ2 for the simulated Bernoulli and

Poisson responses.

Bernoulli responses

Scenario β0 β1 σ2 Model-averaged σ2

True σ2 Observed σ2 True σ2 Observed σ2

G = 25,n∗ = 8 0.956 0.952 0.883 0.891 0.910 0.937

G = 4,n∗ = 50 0.944 0.946 0.878 0.787 0.910 0.949

Poisson responses

Scenario β0 β1 σ2 Model-averaged σ2

True σ2 Observed σ2 True σ2 Observed σ2

G = 25,n∗ = 8 0.967 0.952 0.897 0.923 0.902 0.937

G = 4,n∗ = 50 0.940 0.950 0.863 0.781 0.907 0.948

a total of 10000 iterations after a burn-in phase of 1000 iterations. Bridge sampling is

based on a posterior sample of size 2R = 20000 from each model after a burn-in phase

of 1000 iterations. Table 3 shows the posterior model probabilities approximated via the

independence sampler and bridge sampling. It also contains the values of the Bayesian

Information Criterion (BIC), Akaike Information Criterion (AIC), and Deviance Infor-

mation Criterion (DIC) of the 5 models as a comparison. The DIC values are based

on the following priors: we assume that the regression parameters are independent and

βk ∼ N(0, 105), σ2 ∼ IG(0.00005, 0.5) for models 3 and 4, and D ∼ IW(2, 2I2) for model

5. These priors are proposed by Natarajan & Kass (2000).

The results in Table 3 show that, in this example, the Laplace approximation to

the integrated likelihood performs very well since the posterior model probabilities as

approximated by the independence sampler correspond closely to those approximated by

bridge sampling. The posterior model probabilities seem to support the results of the

BIC model selection method. It is known that AIC and DIC, typically, tend to favour

more complicated models and this appears to be confirmed by this example.
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Table 3: Approximated posterior model probabilities and BIC, AIC and DIC for the 5 models of the

Natural Selection Study

Model Posterior Model Probabilities BICm AICm DICm

m Bridge Sampling Independence Sampler

f̂B(m|y) f̂L(m|y)

1 0.0002 0.0003 325.68 322.18 322.22

2 0.9095 0.8947 308.65 301.66 301.67

3 0.0007 0.0006 323.74 316.75 309.97

4 0.0794 0.0922 311.90 301.41 299.40

5 0.0103 0.0122 321.90 304.41 289.24

6.2. Six Cities Data

The Six Cities Data is frequently used to assess mixed models methodology. The

data consists of the wheezing status, yij (0=not wheezing, 1=wheezing), of child i at

time-point j, for i = 1, ..., 537 and j = 1, .., 4. Also included, is the age of the ith child,

x1ij , at time-point j and the smoking status, x2ij , of the ith child’s mother at time-

point j. Note that x2ij = x2ik for all j, k ∈ {1, .., 4}. We can also define the interaction

covariate x3ij = x1ijx2ij . By considering all possible models with the canonical logit

link where we use first-order terms of x1ij and x2ij and their interaction and adhering

to the modelling convention of not including an interaction covariate unless all marginal

covariates are included, there are 19 possible models.

We apply the default priors proposed in Sections 2 and 3 to the appropriate model

parameters. Note that in this example, Wi,m,0 = 4Ini
, therefore τ2 = 4, Ni = ni and

N = n.

It is impractical to apply bridge sampling to all models, so in this example it is

necessary to use the independence sampler described in Section 4.2 to identify a smaller

subset of models on which to use bridge sampling.

We run the independence sampler for a total of B = 10000 iterations after a burn-in

phase of 1000 iterations. After running the independence sampler we identify M ′ with

the four models shown below:
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6. ηij = β0 + ui; ui ∼ N(0, σ2),

7. ηij = β0 + β1x1ij + ui; ui ∼ N(0, σ2).

8. ηij = β0 + β2x2ij + ui; ui ∼ N(0, σ2).

9. ηij = β0 + β1x1ij + β2x2ij + ui; ui ∼ N(0, σ2).

The posterior model probabilities of these four models as approximated by the indepen-

dence sampler are shown in Table 4. These four models account for 95.87% of the total

posterior model probability in M . The model with the next highest approximated poste-

rior model probability is model 11 with linear predictor ηij = (β0 +u0i)+ (β1 + u1i)x1ij ,

where (u0i, u1i)
T ∼ N(0,D). This model has f̂L(11|y,M) = 0.0144. Table 4 also shows

the posterior model probabilities as approximated by the independence sampler, if we

only consider models in M ′. These are denoted by f̂L(m|y,M ′).

We then used bridge sampling with a posterior sample size of 2R = 50000 from

each model after a burn-in phase of 1000 iterations, to obtain approximations to the log

marginal likelihoods, log f̂B(y|m,M ′), and posterior model probabilities, f̂B(m|y,M ′),

conditional on M ′. These are shown in Table 4.

Table 4: Approximated posterior model probabilities and log marginal likelihoods for the 4 models in

M ′ for the Six Cities Data

m f̂L(m|y,M) f̂L(m|y,M ′) log f̂B(y|m,M ′) f̂B(m|y,M ′)

6 0.3813 0.3977 -808.1482 0.3877

7 0.4131 0.4309 -807.9760 0.4606

8 0.0731 0.0762 -809.8046 0.0740

9 0.0912 0.0951 -809.7553 0.0777

We computed the AIC, BIC and DIC values for all 19 models. BIC chooses as the top

four models, the same four models in M ′ as our strategy. However, BIC prefers model 6

to model 7, although the values of BIC are very similar. AIC chooses model 9 with linear

predictor ηij = β0 + β1x1ij + β2x2ij + ui where ui ∼ N(0, σ2), with model 7 second.
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6.3. Ship Incident Data

The Ship Incident Data can be found in McCullagh & Nelder (1989) and concerns

the number of damage incidents suffered by cargo ships between 1960 and 1979, that

were caused by waves. The dataset contains data from five different types of ship which

we regard as the groups, i.e. G = 5. There are two other classification factors: year

of construction (1960-64, 1965-69, 1970-74, 1975-79) and year of operation (1960-74,

1975-79).

Let yij and Eij denote the number of damage incidents suffered by and the aggregate

months of service of the ith ship type and the jth unique combination of classification

factors, respectively, for i = 1, ..., G = 5 and j = 1, ..., ni. Since there are four different

classifications for year of construction and two for year of operation, ni = 8. However,

since a ship constructed in 1975-79 cannot operate in 1960-74, the aggregate months of

service is zero and these rows can be deleted, resulting in ni = 7. Also, the aggregate

months of service for ship type 5, constructed in 1960-64 and operating in 1975-79 is

also zero, so this row can be deleted. Therefore, ni = 7, for i = 1, ..., 4, n5 = 6, and

n =
∑G

i=1 ni = 34.

We construct indicator variables for the classification factors. For the ith ship type,

let

x1ij =







1, if the jth entry was operating in 1975-79,

0, otherwise,

for j = 1, ..., ni. Likewise, for the ith ship type, let

x2ij =







1, if the jth entry was constructed in 1965-69,

0, otherwise,

x3ij =







1, if the jth entry was constructed in 1970-74,

0, otherwise,

x4ij =







1, if the jth entry was constructed in 1975-79,

0, otherwise,

for j = 1, ..., ni.

We adhere to the modelling principle, that if there are more than one indicator

variables that relate to a classification factor, then they are either all included or all
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excluded from the linear predictor. For example, if x4ij is included in the linear predictor,

then so must x2ij and x3ij .

We assume that yij ∼ Poisson(µij) where µij = Eijλij and log λij = ηij . The link

function is then g(µij) = log
(

µij

Eij

)

, with g′(µij) = 1
µij

. We term Eij , the aggregate

months of service as the exposures. We do not consider interactions between the classi-

fication factors, so there are a total of thirteen models, including four GLMs.

We apply the prior distributions proposed in Sections 2 and 3 for β and D. Note that

in this example, Wi,m,0 = diag
{

E−1
ij

}

, so that N =
∑G

i=1

∑ni

j=1 Eij and Ni =
∑ni

j=1 Eij .

We run the independence sampler for a total of 10000 iterations after a burn-in phase

of 1000 iterations. The independence sampler identifies an M ′ containing two models.

These models have linear predictors:

7. ηij = β1 + ui + β2x2ij + β3x3ij + β4x4ij ; where ui
iid∼ N(0, σ2),

8. ηij = β1 + ui + β2x1ij + β3x2ij + β4x3ij + β5x4ij ; where ui
iid∼ N(0, σ2).

Table 5 shows the posterior model probabilities of the two models in M ′, as approx-

imated by the independence sampler. These two models account for 98.70% of total

posterior model probability. Table 5 also shows the posterior model probabilities as ap-

proximated by the independence sampler, if we consider only models in M ′. These are

denoted by f̂L(m|y,M ′).

Table 5: Approximate posterior model probabilities and log marginal likelihoods of the models in M ′

from the Ship Incident Data.

m f̂L(m|y,M) f̂L(m|y,M ′) log f̂B(y|m,M ′) f̂B(m|y,M ′)

7 0.0909 0.0921 -104.6083 0.0861

8 0.8961 0.9079 -102.2457 0.9139

We now approximate the marginal likelihood of the two models in M ′ using bridge

sampling with a total posterior sample size of 2R = 20000. Table 5 shows the log

marginal likelihoods and resulting posterior model probabilities, as approximated by

bridge sampling.
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6.4. Malignant Melanoma Mortality Data

The Malignant Melanoma Mortality Data is analysed by Langford et al (1998) and

concerns the number of deaths due to malignant melanoma in the European community.

The dataset contains data from 354 countries from nine different countries which we

consider to be the groups, so G = 9 and n = 354. Let dij , Eij and zij denote the number

of male deaths due to malignant melanomas, expected number of these deaths and the

measure of the UVB dose reaching the earth’s surface, respectively, of the jth county

in the ith country, for i = 1, ..., G and j = 1, ..., ni. We define xij =
zij−z̄√
var(zij)

as the

standardised zij ’s, and the response to be

yij =







1, if dij ≥ Eij ,

0, if dij < Eij .

We assume that yij ∼ Bernoulli(pij). We assume that the link function is unknown and

we consider two options: the logit link and the probit link. For each link function, there

are five choices for the linear predictor, similar to the Natural Selection Study in Section

6.1, so we have a total of 10 models.

We apply the prior distributions proposed in Sections 2 and 3. Note that in this

example, if the logit link is chosen then Wi,m,0 = 4Ini
, therefore τ2 = 4, Ni = ni and

N = n. If the probit link is chosen then Wi,m,0 = π
2 Ini

, therefore τ2 = π
2 , Ni = ni and

N = n.

We run the independence sampler for a total of 10000 iterations after a burn-in phase

of 1000 iterations. The independence sampler identifies an M ′ that contains two models

defined by the linear predictor

ηij = (β1 + u1i) + (β2 + u2i)xij ,

and either having the logit link (Model 1) or the probit link (Model 2). Table 6 gives

the approximate posterior model probability of the models in M ′. These two models

account for approximately 100% of total posterior model probability. Table 6 also shows

the posterior model probabilities as approximated by the independence sampler, if we

consider only models in M ′. These are denoted by f̂L(m|y,M ′).

We now approximate the marginal likelihood of the two models in M ′ using bridge

sampling with a total posterior sample size of 2R = 20000. Table 6 shows the approximate
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log marginal likelihoods and the resulting posterior model probabilities.

Table 6: Approximate posterior model probabilities and log marginal likelihoods of the models in M ′

from the Malignant Melanoma Mortality Data.

m f̂L(m|y,M) f̂L(m|y,M ′) log f̂B(y|m,M ′) f̂B(m|y,M ′)

5 0.5044 0.5044 -153.3822 0.5055

10 0.4956 0.4956 -153.4040 0.4945

7. Discussion

In this paper, we considered a default strategy for model determination amongst

GLMMs under weak prior information and where the dispersion parameter of the expo-

nential family is unknown. Our strategy takes into account default prior specification for

the regression parameters and the variance components, and describes a general compu-

tational strategy.

The default priors are based on a unit information concept that has proved successful

for other authors. We note that the priors are conditional on the design matrices Xi (and

also Zi) so therefore the prior distributions are dependent on the form of the experiment.

However, all regression analyses are conditional on the regressors so we feel that the

proposed strategy is still fully Bayesian.

The general computational strategy is based on two phases. Phase one combines

a Laplace approximation of the integrated likelihood with an MCMC method to find

f̂L(m|y); an approximation to the posterior model probabilities. These f̂L(m|y) are

then used to define M ′ a candidate set of promising models on which to focus. Phase

two involves performing the more computationally expensive but more accurate bridge

sampling on the models in M ′ to find f̂B(m|y).

The strategy considered allows a fully Bayesian analysis of GLMMs under model

uncertainty and weak prior information, without the need of choosing arbitrary hyper-

parameters. This strategy allows us to consider model determination amongst models

that do not just have a group-specific intercept (i.e. a random intercept). In the Malig-

nant Melanoma Mortality Data example, we showed that models with just group-specific
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intercepts would have low posterior model probability when compared to the more com-

plicated models included in M ′.

Bridge sampling is a computationally expensive method since it requires a sample

from the posterior distribution. However, the models from which we require a posterior

sample will be the models of greatest interest and therefore we will need a posterior

sample on which to base posterior inferences.

We do not consider a default prior for the dispersion parameter since, typically, this is

either known (as is the case for Bernoulli or Poisson response) or is present in all models.

However, it may be the case that we are uncertain of the response distribution (e.g.

normal vs. gamma) and therefore defining a default prior for the dispersion parameter

becomes relevant. Future work will address this issue.

The independence sampler considered in Section 4.2 is feasible for a small to moderate

number of models, or equivalently a small to moderate number of covariates. However,

as this number increases it will become impractical to maximise ĥm(βm,υm, ωm|y) for

all m ∈ M . A more suitable approach would be to use a more general reversible jump

approach where proposals are based on the current set of parameters, thus negating

the need to maximise ĥm(βm,υm, ωm|y) for each m ∈ M . Future work will focus on

developing this methodology.
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Appendix A. Bridge Sampling

Sinharay & Stern (2005) found that matching the moments (or mode and curvature

at the mode) of the distribution with density g(θ) to those of the posterior distribution,

θ|y, increased the accuracy of bridge sampling by reducing the standard deviation of the

approximations.

For some models, where the posterior distribution is non-normal we feel that the

sample mean and variance from a posterior sample is the best choice. Since we have
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Figure A.6: Plots of the approximated log marginal likelihood for the two different approaches and three

different dimensions against the sample size.
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a sample from the posterior distribution, a naive approach may be to approximate the

mean and variance of θ|y using the sample statistics of the same posterior sample as

we use in the bridge sampler. However, as we show using simulations, this leads to

underestimation of the marginal likelihood.

We choose the posterior distribution to be the k-variate normal distribution with

mean 0 and variance matrix Ik. Hence,

f(θ|y) ∝ exp

(

−1

2
θT θ

)

,

and the marginal likelihood is the normalising constant of the N(0, Ik) distribution:

(2π)
k
2 . As the distribution with density g(), we also use the k-variate normal distribution

with mean µ and variance matrix Σ.

We have a sample {θi}2R
i=1 of size 2R from N(0, Ik) which represents our posterior

sample. All that remains is to choose appropriate values for µ and Σ, and we assess two

different methods for doing so:
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1. Approach 1 (The naive approach). Use the sample mean and variance of the

posterior sample, {θi}2R
i=1, and use the bridge sampler (13) with a sample size of

N1 = N2 = 2R.

2. Approach 2 (Our approach). Use the sample mean and variance of half of the

posterior sample, {θi}R
i=1. Use the second half of the posterior sample, {θi}2R

i=N+1,

in the bridge sampler (13) with a reduced sample size of N1 = N2 = R.

The sample sizes, 2R, that we consider come from the set {100p : 1 ≤ p ≤ 20, p ∈ Z},

and we repeat each computation at each unique sample size 10000 times. We consider

three different dimensions, k, from the set {1, 10, 20}.

Figure A.6 shows plots of the approximated log-marginal likelihood for the two differ-

ent approaches against the sample size, 2R. Also included on the plot is a line at the true

log-marginal likelihood, k
2 log(2π). The plots show that the naive approach leads to an

underestimation of the marginal likelihood which appears to decrease as the sample size

increases. Our approach leads to no such underestimation with a small overestimation

for small sample sizes which is expected since the bridge sampling estimator is based on

a ratio and it is well known that E
(

X
Y

)

> E(X)
E(Y ) , for positive random variables X and Y .
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