
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Sparse Kernel Feature Extraction

by

Charanpal Dhanjal

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

November 2008

http://www.soton.ac.uk
mailto:cd04r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Sparse Kernel Feature Extraction

by Charanpal Dhanjal

The presence of irrelevant features in training data is a significant obstacle for many

machine learning tasks, since it can decrease accuracy, make it harder to understand the

learned model and increase computational and memory requirements. One approach to

this problem is to extract appropriate features. General approaches such as Principal

Components Analysis (PCA) are successful for a variety of applications, however they

can be improved upon by targeting feature extraction towards more specific problems.

More recent work has been more focused and considers sparser formulations which po-

tentially have improved generalisation. However, sparsity is not always efficiently imple-

mented and frequently requires complex optimisation routines. Furthermore, one often

does not have a direct control on the sparsity of the solution. In this thesis, we address

some of these problems, first by proposing a general framework for feature extraction

which possesses a number of useful properties. The framework is based on Partial Least

Squares (PLS), and one can choose a user defined criterion to compute projection di-

rections. It draws together a number of existing results and provides additional insights

into several popular feature extraction methods. More specific feature extraction is con-

sidered for three objectives: matrix approximation, supervised feature extraction and

learning the semantics of two-viewed data. Computational and memory efficiency is

prioritised, as well as sparsity in a direct manner and simple implementations. For the

matrix approximation case, an analysis of different orthogonalisation methods is pre-

sented in terms of the optimal choice of projection direction. The analysis results in a

new derivation for Kernel Feature Analysis (KFA) and the formation of two novel ma-

trix approximation methods based on PLS. In the supervised case, we apply the general

feature extraction framework to derive two new methods based on maximising covari-

ance and alignment respectively. Finally, we outline a novel sparse variant of Kernel

Canonical Correlation Analysis (KCCA) which approximates a cardinality constrained

optimisation. This method, as well as a variant which performs feature selection in one

view, is applied to an enzyme function prediction case study.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:cd04r@ecs.soton.ac.uk

Contents

Declaration of Authorship xiii

Acknowledgements xv

Nomenclature 1

1 Introduction 3

1.1 Challenges and Problem Statement . 5

1.2 Contributions . 6

1.3 Thesis Outline . 7

2 Feature Extraction 9

2.1 A Toy Example . 10

2.2 Eigenproblems . 11

2.3 Kernel Methods . 13

2.4 Unsupervised Approaches . 16

2.4.1 Principal Components Analysis . 16

2.4.2 Gram-Schmidt Orthogonalisation 21

2.4.3 Recent Advances . 25

2.5 Supervised Approaches . 26

2.5.1 Partial Least Squares . 26

2.5.2 Kernel Boosting . 34

2.5.3 Boosted Latent Features . 37

2.5.4 Sparse KPLS . 39

2.5.5 Further Advances . 41

2.6 Feature Extraction Using Two-Viewed Data 42

2.6.1 Canonical Correlation Analysis . 43

2.6.2 Recent Advances . 48

2.7 Summary . 49

3 A General Framework for Feature Extraction 51

3.1 Primal Feature Extraction . 51

3.1.1 Specialisations to Existing Approaches 53

3.2 Kernel Feature Extraction . 55

3.2.1 Specialisations to Existing Approaches 56

3.3 Parallels with the (K)PCA Deflation . 59

3.4 A Note on Numerical Stability . 60

3.5 Summary . 61

v

vi CONTENTS

4 Matrix Approximation for Machine Learning 63

4.1 Aims and General Approach . 64

4.2 Data Matrix Approximation . 65

4.3 Kernel Matrix Approximation . 67

4.4 Sparsity . 69

4.5 Sparse Kernel Matrix Approximation . 71

4.5.1 Kernel Feature Analysis . 71

4.5.2 Greedy Double Deflated KPLS . 73

4.5.3 Greedy Single Deflated KPLS . 75

4.5.4 A Stopping Condition . 76

4.6 Computational Results . 77

4.6.1 Residual Error . 77

4.6.2 UCI Classification Experiment . 80

4.7 Summary . 82

5 Supervised Feature Extraction 83

5.1 Supervised Sparse Methods . 84

5.1.1 Sparse Maximal Alignment . 84

5.1.2 Sparse Maximal Covariance . 85

5.2 Cost of Sparsity . 86

5.3 Computational Complexity . 89

5.4 Statistical Stability . 91

5.5 Computational Results . 96

5.5.1 Bilkent Regression Experiment . 96

5.5.2 UCI Classification Experiment . 98

5.5.3 Text Retrieval . 100

5.5.4 Face Detection . 101

5.6 Summary . 103

6 Learning Underlying Semantics of Two-Viewed Data 105

6.1 Imposing Sparsity in (K)CCA . 106

6.1.1 A primal-dual Variant . 108

6.1.2 Efficient Centering . 110

6.2 Connection with Kernel Alignment . 112

6.3 Computational Results . 115

6.3.1 Greedy versus Exhaustive Search 115

6.3.2 Cumulative Correlation . 116

6.3.3 UCI Mate Retrieval Experiment 119

6.4 Case Study: Enzyme Function Prediction 120

6.4.1 Background and Related Work . 120

6.4.2 Data Description and Feature Representation 122

6.4.3 Learning the Semantics of Enzymes and their Reactions 124

6.4.4 Learning the Semantics of Enzymes and their EC Numbers 126

6.5 Summary . 128

7 Conclusions 131

7.1 Future Work . 133

CONTENTS vii

A Data Preprocessing 135

A.1 Centering . 135

A.2 Normalisation . 135

Bibliography 137

List of Figures

1.1 Plot of the Iris dataset using different feature sets. The black points
represent Iris setosa plants, the red points are Iris versicolour, and the
blue ones are Iris virginica plants. 4

2.1 Mapping from a 20-dimensional kernel-defined feature space (left) to a
2-dimensional input space (right). A linear surface in the kernel-defined
feature space is mapped in a non-linear manner into the input space. . . . 10

2.2 Test errors obtained on a toy dataset as the number of irrelevant features
changes. 11

2.3 Plot of the PCA projection vectors for an example 2-dimensional dataset. 16

2.4 The application of KPCA to a toy dataset using the RBF kernel. 19

2.5 Plot of the PLS projection vectors for an example 2-dimensional binary
labelled dataset. 27

2.6 Plot of the CCA projection vectors for a set of paired 2-dimensional ex-
amples. 43

5.1 Effect of using different numbers of examples per sparse projection direction. 88

5.2 Effect of using different sized random subsets of the kernel matrix columns
at each iteration for the selection of αj. Curves are shown in order of
legend. 89

5.3 Plot of the lower bound of ED[g(x, y2)] and empirical expectation of
g(x, y2) on a test set. 96

5.4 Illustration of the different kinds of features proposed by Viola and Jones.
Each feature is the sum of the pixels values within the white regions
subtracted from the sum of the pixels values within the black regions. . . 102

5.5 ROC curves for the MIT CBCL face dataset I. 103

6.1 Distribution of the number of amino acids in each protein sequence. . . . 123

ix

List of Tables

2.1 Several example BLF loss functions. 37

4.1 Information about the UCI datasets. 77

4.2 Residual errors of training (top) and test (bottom) kernels using the Der-
matology dataset with the linear kernel. Best results are in bold, and
standard deviations are in parentheses. 78

4.3 Residual errors of training (top) and test (bottom) kernels using the Ar-
rhythmia dataset with the linear kernel. 78

4.4 Residual errors of training (top) and test (bottom) kernels using the Der-
matology dataset with the RBF kernel. 79

4.5 Residual errors of training (top) and test (bottom) kernels using the Ar-
rhythmia dataset with the RBF kernel. 79

4.6 Errors obtained by following kernel approximation with SVM classifica-
tion. Top results use the linear kernel and bottom ones apply the RBF
kernel. 81

5.1 The training and test complexities of some feature extraction algorithms. 90

5.2 Information about the UCI (top) and Bilkent University function approx-
imation (bottom) datasets. 97

5.3 Error rates of feature extraction followed by least squares regression. . . . 97

5.4 Error rates of the extracted features with the KNN algorithm. 99

5.5 Error rates of the extracted features with the SVM algorithm. 99

5.6 Average precisions on the Reuters dataset. Sparsity is the number of
kernel evaluations required for the projection of a new test example and
SVs is the number of support vectors used. 101

6.1 Comparison of the mean eigenvalues obtained using approximate and ex-
act computations of Equations 6.1 and 6.5. 115

6.2 Cumulative correlations obtained using KCCA and p-KCCA on an arti-
ficial dataset. 117

6.3 The mean proportion of relevant examples selected using by p-KCCA for
different values of p. 117

6.4 Cumulative correlations obtained using KCCA, p-KCCA and p-PDCCA
on an artificial dataset. 118

6.5 The relevant examples and features selected using p-PDCCA. 118

6.6 Information about the UCI datasets. 119

6.7 Average mate retrieval rates of the CCA methods for linear (top) and
RBF (bottom) kernels. 119

xi

xii LIST OF TABLES

6.8 Description and frequency (in our training set) of top level EC numbers
(Sourced from Wikipedia (2007)). 121

6.9 Number of features for each protein sequence encoding. 123

6.10 Some properties of the reaction kernel matrices for 2000 examples. 125

6.11 Average mate retrieval accuracies on the enzyme data. Top results use
κr, and bottom ones use κs for the reaction kernel evaluations. 125

6.12 Average EC classification accuracies with different sequence features. . . . 126

6.13 Average EC and enzyme mate retrieval rates using all 6618 examples. . . 128

Declaration of Authorship

I, Charanpal Dhanjal, declare that the thesis entitled “Sparse Kernel Feature Extraction”

and the work presented in the thesis are both my own, and have been generated by me

as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as:

– C. Dhanjal, S. R. Gunn, and J. Shawe-Taylor. Sparse Feature Extraction

using Generalised Partial Least Squares, In Proceedings of the IEEE Inter-

national Workshop on Machine Learning for Signal Processing, pages 27-32,

2006.

Signed: ..

Date: ..

xiii

Acknowledgements

Primarily I would like to thank Prof. Steve Gunn for his advice, enthusiasm and support

during the course of my PhD. I am also grateful to Prof. John Shawe-Taylor for his

supervision during the first part of my degree. Thanks for the support and advice of

my colleagues Dr. Craig Saunders and Dr. Sandor Szedmak. For their crucial part in

formulating the data for the enzyme function prediction work, Katja Astikainen, Liisa

Holm, Esa Pitkänen, and Juho Rousu are credited. Furthermore, I would like to thank

Dr. Adam Prügel-Bennett for assisting with my foray into the world of research.

I am grateful for the useful and inspiring conversations with Alexei, the positivity of

Jacob, and the cold realism of Shodhan. Lastly, and perhaps most importantly I am

thankful for the patience, support and understanding of my parents.

xv

Nomenclature

A, . . . ,Z a bold uppercase letter represents a matrix

a, . . . , z a bold lowercase letter represents a vector

k number of output features

` number of examples

m number of features of X

n number of features of Y

Aij element at ith row and jth column of A

0 all zeros vector

α,β dual projection vectors

ei ith standard unit vector

j all ones vector

u,v,w primal projection vectors

x an example

y label vector or example

C covariance matrix

I identity matrix

K kernel matrix

X data matrix with rows as examples

Y label matrix with rows as labels vectors

corr(·, ·) correlation between two random variables

cov(·, ·) covariance between two random variables

var(·) variance of a random variable

E[·] expectation of a random variable

Ê[·] empirical expectation of a random variable

L(·) Lagrange objective function

φ(·) function mapping from input to feature space

φ̂(·) function mapping from input to extracted feature space

κ(·, ·) kernel function

card(·) number of non-zero elements of a vector

diag(·) vector of diagonal elements of a matrix

rank(·) matrix rank

tr(·) matrix trace

1

2 NOMENCLATURE

A′ matrix transpose of A

A[I, J] submatrix of A defined by row indices I and column indices J

‖ · ‖p p-norm, with default value 2

Chapter 1

Introduction

A crucial aspect of science is making observations for a particular phenomenon and then

formulating inferences from the observations. Where the data is highly multidimensional

and patterns are complicated, inferences can be difficult to discover manually. Hence,

there is a requirement for automatic procedures for such tasks, which is precisely the aim

of machine learning (Mitchell (1997); Bishop (2006)). To illustrate a typical application

of machine learning, consider the prediction problem using the Iris flower dataset (Fisher

(1936)). The dataset contains 150 observations of three types of plant characterised by

four attributes or features: sepal length, sepal width, petal length and petal width. The

aim of the prediction problem is to learn the mapping of the attributes to the plant type.

One can then identify a new unseen plant using its attributes. This task is an example

of a classification problem since the value one is trying to predict is selected from a

finite number of classes. In the regression problem, one predicts a real valued number or

vector, for example the plant height. Both classification and regression have been well-

studied and several popular and effective algorithms include Support Vector Machines

(SVMs, Boser et al. (1992)), Logistic Regression (Hosmer and Lemeshow (2000)) and

Boosting (Freund and Schapire (1995)).

Although these algorithms often generalise well, it is not always clear which features are

useful for prediction. Furthermore, certain application domains such as text classifica-

tion, bioinformatics, and image retrieval are characterised by a high number of features,

many of which are irrelevant for learning. The discovery of the useful features improves

understanding of the data, reduces computational storage and processing requirements

and can increase prediction accuracy (e.g. with SVMs in Weston et al. (2000); Bi et al.

(2003)). The field of feature selection1 (Guyon and Elisseeff (2003); Guyon (2008)) is

devoted to finding a subset of the features which can improve learning performance or

give insight into the data. In this thesis, we focus mainly on the more general feature

1An insightful discussion on the relevance of features can be found in Blum and Langley (1997).

3

4 Chapter 1 Introduction

extraction (Guyon et al. (2006)) problem which aims to reduce the dimensionality of the

data, whilst retaining important information.

Before continuing, it is useful to formalise some of the concepts given in the preceding

text, starting with the definition of two types of dataset.

Definition 1.1 (Unlabelled Dataset). An unlabelled dataset is denoted by the set of

vectors S = {x1, . . . ,x`} where xi ∈ R
m is an example or observation with m features

or dimensions. An example is a representation used for an object in a machine learning

task, and a feature is a quantity used to describe the example.

Definition 1.2 (Labelled Dataset). A labelled dataset is an unlabelled dataset with

an additional label or target vector for each example, and is given by the set of pairs

S = {(x1,y1), . . . , (x`,y`)}, with yi ∈ R
n. A label vector is composed of the set of

quantities one wishes to predict for each example.

These definitions lead onto more precise statements describing feature selection and

feature extraction.

Definition 1.3 (Feature Extraction). Let S be an unlabelled dataset described as a

matrix X ∈ R
`×m which has its rows composed of the observations. Unsupervised

feature extraction is the process of finding a new matrix X̂ ∈ R
`×k, k < m, which is

a low dimensional representation of the useful information in X. Supervised feature

extraction performs an equivalent operation on a labelled dataset.

Definition 1.4. (Feature selection) Feature selection is a special case of feature extrac-

tion, in which the new matrix X̂ is composed of a subset of the columns of X.

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

Sepal Length (cm)

S
ep

al
 W

id
th

 (
cm

)

(a) Sepal width versus sepal length

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Petal Length (cm)

P
et

al
 W

id
th

 (
cm

)

(b) Petal width versus petal length

Figure 1.1: Plot of the Iris dataset using different feature sets. The black points
represent Iris setosa plants, the red points are Iris versicolour, and the blue ones are

Iris virginica plants.

Figure 1.1 illustrates two plots using different features from the Iris dataset. In Fig-

ure 1.1(a) the sepal features are not useful for discriminating Iris versicolour from Iris

Chapter 1 Introduction 5

virginica plants. In contrast, Figure 1.1(b) shows that petal lengths and widths can ef-

fectively discriminate all three types of plant. Furthermore, one could accurately classify

the plant types using just a single feature: the ratio between petal width and length.

This simple example illustrates a situation in which feature extraction can reduce the

number of features from 4 to 1, whilst still retaining much of the discriminative infor-

mation.

1.1 Challenges and Problem Statement

One of the important problems in feature extraction is defining a precise problem state-

ment. For example, if one were to target features towards performing regression then the

optimal choice depends on the regression algorithm as opposed to the regression problem

itself. To illustrate this point, a polynomial mapping between features and labels would

be appropriate for a polynomial regression method, as opposed to one which fits linear

models. It follows that a general approach to feature extraction is useful since it allows

one to specify the type of the features required without designing an algorithm from

scratch. One such approach is given in Smola et al. (1999) which iteratively projects

the examples into the space orthogonal to a projection direction. A disadvantage of this

approach however is that the resulting features could potentially be correlated and hence

redundant. One issue examined in this thesis is whether one can formulate a general

feature extraction method which guarantees uncorrelated features.

Another key challenge in feature extraction occurs when one uses kernel functions (Aron-

szajn (1950)), which provide a flexible way of modelling non-linear relationships. With

an algorithm that uses kernel functions, one no longer has access to the kernel features

and hence performing feature selection becomes difficult or impossible. Furthermore,

since learning often requires a kernel matrix which is quadratic in the number of exam-

ples, good computational and memory efficiency is difficult to achieve.

One way of improving efficiency is to introduce sparsity into the feature extraction

formulation, which restricts learning to use only a subset of the examples. This can have

the additional advantage of improving interpretability and generalisation, since examples

which are considered as outliers can be omitted. To date, there have been several

traditional feature extraction methods (such as Principal Components Analysis (PCA,

Hotelling (1933))) which have been adapted to incorporate sparsity (e.g. sparse PCA

(d’Aspremont et al. (2005))). However, sparsity is often implemented using complex

optimisation routines, and few methods offer a direct control on the sparsity of the

solution. In this thesis, we propose several feature extraction approaches which offer a

direct control on sparsity in a simple and efficient manner.

This thesis tackles three important feature extraction problems. The first asks the

question: How can one find a low dimensional approximation of a set of examples most

6 Chapter 1 Introduction

effectively? In particular, given that orthogonalisation is a intuitive method to remove

important aspects of the features we pose the problem of finding optimal directions for

different orthogonalisation methods. The second problem considers the scenario where

the labels are used to guide feature extraction, which is useful as a step before prediction

for example. Finally, we examine the problem of finding the common semantics of a

set of paired examples, S = {(x1,y1), . . . , (x`,y`)}, where y ∈ R
n is an alternative

representation of x.

1.2 Contributions

The main contributions of this thesis are summarised as follows:

• The formulation of a general framework for feature extraction which is a general-

isation of Partial Least Squares (PLS, Wold (1966)) and its kernel variant. The

framework draws together a number of existing results and provides additional

insight into several popular feature extraction methods. It also serves as a tool

to formulate new methods, which have the advantage of possessing many of the

useful properties of PLS.

• The analysis of orthogonalisation procedures in the context of matrix approxima-

tion. Given a method of orthogonalising a data or kernel matrix, we compute

optimal sparse projection directions. The analysis results in the formation of two

novel matrix approximation algorithms based on PLS, which is the first instance it

has been used in this setting. Furthermore, the investigation reveals an alternative

derivation for an existing sparse approximation method.

• The formation of two new supervised feature extraction methods using the gen-

eral feature extraction framework. Both a theoretical and empirical evaluation is

conducted for these algorithms. A useful theoretical result gives insight into the

statistical stability of the resulting features, and is general enough to be applied

to PLS.

• An alternative sparse variant of the Kernel Canonical Correlation Analysis (KCCA)

algorithm given in Bach and Jordan (2003), which finds the semantics of a set of

paired examples. The formulation used potentially results in an increased level

of sparsity by targeting sparsity towards optimising correlation. Furthermore, we

derive a variant of our sparse approach which performs feature selection.

• The application of KCCA and our sparse variants to a real-world enzyme function

prediction problem. This work is novel because it considers fine-grained prediction

of enzyme function and also uses new feature representations for both enzymes and

their reactions.

Chapter 1 Introduction 7

• The implementation of a significant volume of code, some of which is available at

http://users.ecs.soton.ac.uk/cd04r/code.php.

This work has contributed to the following publications:

• C. Dhanjal, S. R. Gunn, and J. Shawe-Taylor. Sparse Feature Extraction us-

ing Generalised Partial Least Squares, In Proceedings of the IEEE International

Workshop on Machine Learning for Signal Processing, pages 27-32, 2006.

• C. Dhanjal, S. R. Gunn, and J. Shawe-Taylor. Efficient Sparse Kernel Feature

Extraction Based on Partial Least Squares, Accepted for publication in IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2008.

1.3 Thesis Outline

The thesis first reviews in Chapter 2 important work in feature extraction. The chapter

begins with a description of two key elements of current feature extraction algorithms:

kernel methods and eigenproblems. It then presents a literature review corresponding

to each of the three feature extraction scenarios outlined in Section 1.1. Chapter 3 in-

troduces a general framework for feature extraction and demonstrates its specialisations

to several existing feature extraction methods. The next three chapters consider specific

feature extraction scenarios. Chapter 4 presents a study of matrix approximation by

examining a number of different orthogonalisation methods. Two new sparse approxi-

mation methods are derived and evaluated against several existing algorithms. Chapter

5 considers the supervised feature extraction problem by using the general framework for

feature extraction with supervised projection directions. This is followed by Chapter 6

which explores sparse feature extraction using paired examples. Two sparse alternatives

to KCCA are formulated, analysed, and then applied to an enzyme function prediction

case study. This thesis concludes with Chapter 7 which provides a summary and review

of the thesis, as well as interesting directions for future research.

Chapter 2

Feature Extraction

As previously described, feature extraction is a process which reduces the dimensionality

of a set of examples by removing redundant or irrelevant information. The informative

characteristics of the examples are defined by the problem under investigation. For

example, in PCA the directions of minimal variance are considered as uninformative

and hence removed, whereas in a supervised setting directions which are predictive of

the labels are selected. In this chapter important feature extraction techniques which

fall under several different problem settings are reviewed. The aim is to provide an

overview of the field and also contextualise later work.

The feature extraction approaches covered in this chapter broadly can be categorised into

linear and kernel methods. In the linear case, examples are projected onto the columns

of a projection matrix Z = [z1, . . . zk], i.e. X̂ = XZ, where z1, . . . zk are called projection

vectors. For kernel-based feature extraction, one operates in a high dimensional feature

space. The new data is given by the projection X̂ = KQ, where K is a kernel matrix

and Q is a projection matrix whose columns are known as the dual projection vectors.

One can see the equivalence to the primal case if the linear kernel is used, i.e. K = XX′,

and Z = X′Q. If a non-linear kernel is used then the examples lie in a high dimensional

feature space and X̂ is a linear projection of the examples in that space (illustrated in

Figure 2.1).

Our overview begins with an introduction to eigenproblems1 and kernel methods, which

are key properties of many feature extraction algorithms. The following three sections

detail important work in specific feature extraction scenarios which mirror the novel

approaches developed in Chapters 4, 5 and 6. Section 2.4 details several unsupervised

feature extraction methods, including the popular Principal Components Analysis and

Gram-Schmidt Orthogonalisation approaches. Partial Least Squares is central to this

thesis, and along with several supervised approaches, it is given an in depth coverage

1A good survey of eigenproblem based feature extraction methods is given in De Bie et al. (2004).

9

10 Chapter 2 Feature Extraction

Â
20

Â
2

Figure 2.1: Mapping from a 20-dimensional kernel-defined feature space (left) to a
2-dimensional input space (right). A linear surface in the kernel-defined feature space

is mapped in a non-linear manner into the input space.

in Section 2.5. In Section 2.6, methods which operate on paired data are reviewed,

including Canonical Correlation Analysis (CCA, Hotelling (1936)) and variants.

2.1 A Toy Example

Consider a synthetic dataset composed of 150 examples and 200 features. The examples

are generated using pseudo-random numbers drawn from a normal distribution with

mean 0 and standard deviation 1. Each example x has a corresponding binary label

y ∈ {−1,+1} which is computed as follows

y = sign(x′c + n(0, 1)),

where c is a vector of regression coefficients, n(µ, σ2) is a small Gaussian noise component

with mean µ and variance σ2, and examples are generated using xi = n(0, 1), i =

1, . . . ,m. In this case the number of non-zero elements of c is 10, hence only 10 features

are used to formulate the labels.

We conduct a simple test as follows. The dataset is split into a training set of size 100

and a test set of size 50. A linear SVM is trained with values of the penalty parameter

selected as C ∈ {2−4, 2−3, . . . , 27} and the lowest error for the predictions on the test

set is recorded. This process is repeated for varying numbers of irrelevant features from

0 to 190 in steps of 10.

The results are shown in Figure 2.2 and clearly there is a general increase in the classi-

fication error with more irrelevant features. The reason for the increase in classification

error is that the 2-norm of the weight vector used in the SVM does not mind using many

coefficients.

Chapter 2 Feature Extraction 11

0 50 100 150 200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of irrelevant features

E
rr

or

Figure 2.2: Test errors obtained on a toy dataset as the number of irrelevant features
changes.

2.2 Eigenproblems

There are a number of feature extraction methods that rely on solving eigenproblems

so these problems are introduced here and several of their important properties are

detailed. First, the set of eigenvectors v of a square matrix A ∈ R
n×n is defined as

those non-zero vectors which when multiplied by A result in a scaling,

Av = λv, (2.1)

where λ is the corresponding eigenvalue of A. The eigenvectors are invariant to scaling,

however we assume unless otherwise stated, that they have unit norm. If A is a symmet-

ric matrix, then the eigenvectors corresponding to distinct eigenvalues are orthogonal

since

λjv
′
jvi = v′

jA
′vi

= v′
jAvi

= λiv
′
jvi,

where λj ,vj and λi,vi are eigenvalue-vector pairs of A and λi 6= λj. This property

suggests that A can be written as

12 Chapter 2 Feature Extraction

AV = VΛ⇒ A = VΛV′,

where V has columns composed of the eigenvectors of A and Λ is a diagonal matrix

of corresponding eigenvalues, Λii = λi. This representation is known as the eigenvalue

decomposition of a symmetric matrix A.

Next consider the generalised eigenvalue problem, which has the form

Av = λBv, (2.2)

where A,B are symmetric and B ∈ R
n×n is positive definite, i.e. z′Bz > 0 for non-zero

z. Clearly B is invertible hence one can write B−1Av = λv which brings us back to

the initial eigenvalue problem. Furthermore, the positive definiteness of B implies that

it can be written as B = B1/2B1/2, hence defining w = B1/2v results in the standard

eigenvalue problem in terms of w,

B−1/2AB−1/2w = λw. (2.3)

Since B−1/2AB−1/2 is symmetric it follows that w′
iwj = v′

iBvj = 0, λi 6= λj , which

implies that the eigenvectors v are orthogonal in the metric defined by B. This in turn

implies a simple operation on A1 = A which yields an iterative solution to the above

eigenproblem,

Aj+1 = Aj − λjBvjv
′
jB

′, (2.4)

where v′
jBvj = 1, and (λj,vj) is the dominant eigenvalue-vector pair of Aj, j = 1, . . . , n.

Note that Aj+1vj = Ajvj−λjBvjv
′
jB

′vj = Ajvj−Ajvj = 0, implying that the above

step sets the dominant eigenvalue to zero. Also observe that for i ≥ j, Aj+1vi =

Ajvi − λjBvjv
′
jB

′vi = Ajvi, due to the orthogonality of the eigenvectors. It follows

that Equation 2.4 sets the dominant eigenvalue of Aj to zero whilst leaving all other

eigenvalues and eigenvectors intact.

Finally, we consider the case when A is not a square matrix hence by definition does

not have eigenvalues and eigenvectors. One can instead consider the eigenvalue problem

using the matrix A′A,

A′Av = λv. (2.5)

Chapter 2 Feature Extraction 13

Premultiplying both sides by A and letting σuu = Av, where σu is a scaling factor,

results in

AA′u = λu, (2.6)

which in turn implies σvv = A′u, for some σv, using a similar process. It remains only

to compute the scaling factors σu and σv. If Equations 2.5 and 2.6 are premultiplied by

v′ and u′ respectively then

λ =
v′A′Av

v′v
=

u′AA′u

u′u
,

and solving for σu and σv gives

σ2
v =

v′A′Av

v′v
= λ =

u′AA′u

u′u
= σ2

u,

hence A′u = σv and Av = σu, with σ = σu = σv. This is the singular value de-

composition of A where u and v are the left and right singular vectors and σ is the

corresponding singular value of A. Due to the orthogonality of the singular vectors, A

can be written as

A = UΣV′,

where U and V are matrices with columns composed of the left and right singular vectors

respectively and Σ is a diagonal matrix with Σii = σi.

2.3 Kernel Methods

Kernel functions are another key element of many feature extraction methods. They

allow one to operate in a high dimensional feature space without explicitly computing

feature representations in that space. They were popularised by the Support Vector

Machine, however Aronszajn (1950) was one of the first to employ the kernel method.

Let S = {x1, . . . ,x`} denote a dataset with x ∈ X , and φ(x) ∈ F be an alternative high

dimensional representation for x. Instead of explicitly computing φ(x), one evaluates

inner products using a kernel function κ : X × X → R,

κ(x, z) = 〈φ(x), φ(z)〉.

14 Chapter 2 Feature Extraction

All pairwise kernel evaluations are often represented as a kernel matrix, defined by

Kij = κ(xi,xj), and provided a learning algorithm only requires inner product calcula-

tions, this is sufficient between examples. Notice that the kernel matrix is independent

of the size of the feature representation φ(x), which implies computational storage and

processing advantages for large feature vectors. Additionally, evaluating a kernel func-

tion is often less computationally expensive than explicitly computing the corresponding

inner product. An important advantage of kernel learning algorithms is that one does

not need not be concerned with the choice of kernel function when designing them.

The requirement that a kernel learning algorithm should only use the inner products

between the examples, implies that it needs the norms of the examples and their relative

angles. The inner product between two vectors can be written as

〈φ(x), φ(z)〉 = ‖φ(x)‖‖φ(z)‖ cos θ,

where θ is the angle between φ(x) and φ(z). Clearly one can compute θ using a kernel

matrix by noting ‖φ(x)‖ =
√

〈φ(x), φ(x)〉. Thus a kernel matrix is invariant to a rotation

of the examples in the kernel feature space.

There are a few constraints required to formulate a kernel function. It should be sym-

metric, i.e. κ(x, z) = κ(z,x), and positive semi-definite so that

∑̀

i=1

∑̀

j=1

cicjκ(xi,xj) ≥ 0,

for any ` > 0, x1, . . . ,x` ∈ X , and any choice of numbers c1, . . . , c` ∈ R. It follows that

any mapping φ : X → R
m for m ≥ 0 results in a valid kernel. One need not restrict

themselves to real vector spaces, since kernels can be defined for any vector space that

has a dot product and is complete2, known as a Hilbert Space. This is formalised by the

following theorem.

Theorem 2.1. For any kernel κ on a space X , there exists a Hilbert space F and a

mapping φ : X → F such that

κ(x, z) = 〈φ(x), φ(z)〉, for any x, z ∈ X ,

where 〈·, ·〉 represents the dot product in the Hilbert space between two points in F .

2Completeness (Kreyszig (1978)) means that every Cauchy sequence of points in the space has a limit
that is also in the space. For a Cauchy sequence, after a finite number of steps starting from the first
term, any pair of elements chosen from the remaining terms will be within distance ε of each other, for
a fixed ε > 0.

Chapter 2 Feature Extraction 15

An intuitive way of considering kernel functions is as a similarity measure between two

examples, i.e. κ(x, z) is large if x and z are similar. This notion can be useful when

choosing or designing a kernel for a particular application domain.

There are a large number of existing kernel functions, and we briefly introduce some

well-known ones. The simplest is the linear kernel defined as

κ(x, z) = 〈x, z〉,

with φ(x) = x in this case. The polynomial kernel is computed using

κ(x, z) = (〈x, z〉+ b)d, (2.7)

where b is the bias, and d is called the degree. In the case that b = 0, d = 2 and with

input points in R
2, one maps the original data using

φ(x) : (x1, x2)
′ → (x2

1, x
2
2,
√

2x1x2)
′,

and the connection to Equation 2.7 can be seen as follows

〈φ(x), φ(z)〉 = x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2

= 〈x, z〉2.

To conclude this section on kernel methods, note that a kernel-defined feature space can

also be of infinite dimension which is clearly an impossibility if one were to use explicit

feature representations. One example of a kernel with infinite dimension is the Radial

Basis Function (RBF) kernel, which is a decreasing function of the distance between two

points. It is defined as

κ(x, z) = exp

(

−‖x− z‖2
2σ2

)

,

where σ is known as the kernel width. The RBF kernel can be shown to be infinite

dimensional by using the Taylor expansion of the exponential function (Shawe-Taylor

and Cristianini (2004)).

16 Chapter 2 Feature Extraction

2.4 Unsupervised Approaches

This section introduces several unsupervised feature extraction approaches such as the

popular PCA and Gram-Schmidt Orthonormalistion methods, and more recent tech-

niques. These approaches are particularly relevant for the work presented in Chapter 4

on matrix approximation.

2.4.1 Principal Components Analysis

PCA has successfully been applied to image compression (Jain (1989)) and face recogni-

tion (Turk and Pentland (1991b)). It projects examples onto a subspace defined by a set

of orthogonal vectors that maximise the variance of the data. Figure 2.3 shows the PCA

projection directions for an example 2-dimensional dataset. The first direction follows

that of maximum variance and the second is orthogonal to the initial one. Often the

majority of the variance of the data can be captured using a much smaller dimensional-

ity than that of the original space, hence the projections of the examples into the PCA

subspace provide a good approximation. The residual variance can be seen as noise in

the data, and is not useful for learning.

Feature 1

F
ea

tu
re

 2

1st direction

2nd direction

Figure 2.3: Plot of the PCA projection vectors for an example 2-dimensional dataset.

Since PCA maximises variance, we begin with the definition of the variance3 of a zero

mean random variable x

var(x) = E[(x− E[x])2] = E[x2]− E[x]2 = E[x2],

3The term input space variance is used to refer to the variance of the original examples.

Chapter 2 Feature Extraction 17

where the rightmost expression follows from E[x] = 0. Now consider the variance of

the projection of a zero mean multivariate random variable x ∈ R
m projected onto a

unit vector u ∈ R
m, E[u′xx′u]. The corresponding empirical variance with respect to a

sample of size ` is

Ê[u′xx′u] =
1

`

∑̀

i=1

u′xix
′
iu =

1

`
u′X′Xu,

where X is a matrix with rows xi, i = 1, . . . , `. PCA finds the unit projection direction

u to maximise the above quantity, i.e. it solves

max u′X′Xu

s.t. ‖u‖ = 1.

Now shown, using the Lagrangian method, is that the solution to the above is the

eigenvector of X′X corresponding to the largest eigenvalue. The objective function of

the above optimisation is

L(u) = u′X′Xu− λu′u,

where λ is a Lagrange multiplier. Differentiating and equating the derivative to zero

yields the eigenvalue equation

X′Xu = λu. (2.8)

Notice that u′X′Xu = λu′u = λ hence λ/` is the empirical variance of the data. It

follows that to maximise the variance one must choose u to be the eigenvector of X′X

corresponding to the largest eigenvalue. In order to compute k directions, one must

find eigenvectors u1, . . . ,uk corresponding to the k largest eigenvalues λ1, . . . , λk, λ1 ≥
λ2 . . . ≥ λk. The projections of the data onto these directions, given by Xu1, . . . ,Xuk,

are called the Principal Components. Furthermore, the projection of a new test point

φ(x) is given by

φ̂(x)′ = φ(x)′U,

where U is a matrix whose columns are u1, . . . ,uk. Notice that the projection directions

are orthogonal since they are the eigenvectors of a symmetric matrix. Additionally, the

principal components are orthogonal since u′
iX

′Xuj = λiu
′
iuj = 0 and λi 6= 0.

18 Chapter 2 Feature Extraction

A direct method of computing the projection matrix for PCA is through the eigen-

decomposition of X′X. However, there is also an iterative approach to finding the

PCA projection directions. Let X1 = X, then at iteration j, uj is the eigenvector

corresponding to the largest eigenvalue of X′
jXj , where Xj is called the jth residual

matrix. The residual matrices are computed using a process known as deflation, which

is an orthogonal projection into a subspace. As a general point on terminology, a residual

matrix or example is that obtained by projection into an orthogonal subspace. In the

PCA case, the rows of Xj are projected into the subspace orthogonal to uj ,

Xj+1 = Xj

(

I−
uju

′
j

u′
juj

)

, (2.9)

and the process of selecting a direction and deflating is repeated for the desired number

of iterations (see Algorithm 1). As one is extracting the features iteratively, techniques

such as the Power method (Strang (2003)) can be used to efficiently extract the first

eigenvector at each iteration.

Algorithm 1 Pseudo code for iterative PCA.

Inputs: Data matrix X ∈ R
`×m, dimension k

Process:

1. X1 = X

2. For j = 1, . . . , k

(a) Select uj as the first eigenvector of X′
jXj

(b) Xj+1 = Xj

(

I− uju
′

j

u′

juj

)

3. End

Output: Projection directions uj and features Xuj, j = 1, . . . , k

It may not be immediately clear that Algorithm 1 finds the first k eigenvectors of X′X.

However, the effect of the deflation of Equation 2.9 is to set the dominant eigenvalue of

X′
j+1Xj+1 to zero,

X′
j+1Xj+1 =

(

I−
uju

′
j

u′
juj

)

X′
jXj

(

I−
uju

′
j

u′
juj

)

= X′
jXj −

uju
′
jX

′
jXj

u′
juj

−
X′

jXjuju
′
j

u′
juj

+
uju

′
jX

′
jXjuju

′
j

(u′
juj)2

= X′
jXj −

λjuju
′
j

u′
juj

,

Chapter 2 Feature Extraction 19

since X′
j+1Xj+1uj = X′

jXjuj − λjuj = 0 and uj is a non-zero vector, it follows that

the eigenvalue of X′
j+1Xj+1 corresponding to uj is zero. The remaining eigenvalues

are left intact since for i 6= j, X′
j+1Xj+1ui = X′

jXjui due to the orthogonality of the

eigenvectors.

2.4.1.1 Dual Form

Kernel PCA (KPCA) was introduced in Schölkopf et al. (1998) to address the problem

of finding non-linear principal components. Its application to a toy dataset is shown

in Figure 2.4. Figure 2.4(a) displays the original data, and Figure 2.4(b) shows the

features extracted by KPCA in an RBF feature space with σ = 1.2. One can see that

the variance of the data has been reduced by projecting the points onto an ellipse. It is

not always possible to discover this line as the projections directions for KPCA exist in

a kernel-defined feature space and their representation in the input space may not exist.

Feature 1

F
ea

tu
re

 2

(a) Original features

Feature 1

F
ea

tu
re

 2

(b) Extracted features

Figure 2.4: The application of KPCA to a toy dataset using the RBF kernel.

The derivation of KPCA relies on the observation that in the primal case the eigenvectors

of the covariance matrix X′X lie in the row space of X since u = (1/λ)X′(Xu). Hence

the primal projection vector can be written in the form u = X′α for some dual projection

vector α. It follows from Equation 2.8 that

X′XX′α = λX′α (2.10)

⇒ KKα = λKα, (2.11)

where K = XX′ is the kernel matrix. Schölkopf et al. (1998) shows that this is equivalent

to finding the solutions of

20 Chapter 2 Feature Extraction

Kα = λα (2.12)

for non-zero eigenvalues, and their argument is summarised here. Let the orthogonal

eigenvectors of K be denoted by βi, with corresponding eigenvalues γi, i = 1, . . . , `.

Suppose α, λ satisfies Equation 2.11, then α can be written as α =
∑`

i=1 aiβi (since α

exists in the space of K spanned by its eigenvectors) and Equation 2.11 becomes

∑̀

i=1

γ2
i aiβi = λ

∑̀

i=1

γiaiβi,

which implies

γ2
i ai = λγiai,

for i = 1, . . . , `. Hence, one of the following conditions must be true to satisfy the above

equality: γi = λ or ai = 0 or γi = 0. Now assume that α and λ satisfy Equation 2.12.

Using a similar argument,

∑̀

i=1

γiaiβi = λ
∑̀

i=1

aiβi,

which implies

γiai = λai.

To satisfy this equality either ai = 0 or γi = λ. Hence all solutions to Equation 2.12

are also solutions of Equation 2.11, and the additional solutions have zero eigenvalues.

Since the eigenvalues of K correspond to the input svariance, eigenvectors with zero

eigenvalues have no relevance and Equation 2.12 supplies all of the required directions.

Recall from the primal case that the extracted features are given by the projections of the

examples onto the directions, hence Xuj = XX′αj = Kαj, j = 1, . . . , k. Furthermore,

since uj is a unit vector, αj must be scaled using

αj ←
αj

√

α′
jKαj

=
αj
√

λj

.

It follows that the expression for the projection of a new test point is

Chapter 2 Feature Extraction 21

φ̂(x)′ = k′AΛ−1/2,

where A is a matrix whose columns are αj, j = 1, . . . , k, and k is a vector of inner

products between the test and training examples.

In the primal case one can compute the eigenvectors of the covariance matrix using

deflation and the same technique can be applied for KPCA. By using Equation 2.9 with

Kj = XjX
′
j , one obtains

Kj+1 = Xj

(

I−
uju

′
j

u′
juj

)2

X′
j (2.13)

= Xj

(

I−
uju

′
j

u′
juj

)

X′
j (2.14)

= XjX
′
j −

Xjuju
′
jX

′
j

u′
juj

(2.15)

= Kj −
Kjαjα

′
jKj

α′
jKjαj

(2.16)

=

(

I−
Kjαjα

′
j

α′
jKjαj

)

Kj, (2.17)

where αj is the dominant eigenvector of Kj. It is then simple to show that this deflation

sets the dominant eigenvalue in Kj to zero since,

Kj+1 = Kj −
Kjαjα

′
jKj

α′
jKjαj

= Kj −
λjαjα

′
j

α′
jαj

.

The other eigenvectors and eigenvalues are left intact since the eigenvectors correspond-

ing to distinct eigenvalues are orthogonal. The iterative KPCA algorithm is shown in

Algorithm 2.

2.4.2 Gram-Schmidt Orthogonalisation

We now introduce the well-known Gram-Schmidt method (Poole (2003)) which orthog-

onalises a set of vectors. In machine learning it is often used to orthogonalise a set of

examples, but it can also approximate a data matrix. Gram-Schmidt is an iterative

22 Chapter 2 Feature Extraction

Algorithm 2 Pseudo code for iterative KPCA.

Inputs: Kernel matrix K ∈ R
`×`, dimension k

Process:

1. K1 = K

2. For j = 1, . . . , k

(a) Select αj , λj , the first eigenvector-eigenvalue pair of Kj

(b) Kj+1 =
(

I− Kjαjα′

j

α′

jKjαj

)

Kj

3. End

Output: Dual projection directions αj and features Kαj/
√

λj , j = 1, . . . , k

method, and at the jth iteration the rows of the residual matrices are projected into

the space orthogonal to uj, i.e. one uses the PCA deflation (Equation 2.9). In this case

uj = X′
jαj with

αj =
ej

√

e′jXjX
′
jej

, (2.18)

where ej is the jth standard vector (which has a 1 at the jth position and zeros elsewhere)

hence uj is a scalar multiple of the jth deflated example. Notice that the PCA deflation

removes from the rows of Xj the component in the direction of uj, which implies that

u′
jui = 0, i 6= j. The orthogonality of the projection directions in conjunction with the

PCA deflation can be seen by writing

Xj+1 =

(

I−
Xjujα

′
j

u′
juj

)

Xj,

and hence, for i < j,

u′
jui = α′

jXjui

= α′
j

(

I−
Xj−1uj−1α

′
j−1

u′
j−1uj−1

)

· · ·
(

I− Xiuiα
′
i

u′
iui

)

Xiui

= α′
j

(

I−
Xj−1uj−1α

′
j−1

u′
j−1uj−1

)

· · ·
(

Xiui −
Xiuiu

′
iui

u′
iui

)

= 0.

Chapter 2 Feature Extraction 23

It follows that after k iterations the first k residual examples are orthogonalised. In

addition, one can use the vectors u1, . . . ,uk as projection directions in which case Gram-

Schmidt functions as a matrix approximation method.

Algorithm 3 Pseudo code for Gram-Schmidt Orthogonalisation.

Inputs: Data matrix X ∈ R
`×m, dimension k

Process:

1. X1 = X

2. For j = 1, . . . , k

(a) Let uj = X′
jei/

√

e′iXjX
′
jei where i is index of example with maximum norm

(b) Xj+1 = Xj

(

I− uju
′

j

u′

juj

)

3. End

Output: Orthogonalised examples uj and features Xjuj, j = 1, . . . , k

In machine learning, a common strategy is to use the example with the maximum norm

as the projection direction which requires a search through ` examples. Given that

each deflation costs O(`m), it follows that the training complexity of k iterations of this

approach to Gram-Schmidt is O(`mk). The complete Gram-Schmidt method is shown

in Algorithm 3.

2.4.2.1 Dual form

It is useful to be able to compute the projection of the examples in a kernel-defined

feature space, which is precisely the aim of Kernel Gram-Schmidt (KGS, Cristianini et al.

(2002)). Let K1 = K, then from Equation 2.9 it follows that the kernel matrix should

be deflated in an identical manner to that of KPCA (Equation 2.17). Furthermore, the

dual projection direction is a multiple of the ith standard vector where i is the index of

the maximum diagonal entry of the residual kernel matrix. Hence from Equation 2.18,

αj =
ei

√

e′iKjei

. (2.19)

In the primal case, one computes the projections of the examples onto uj, j = 1, . . . , k,

however these vectors are not available in this case. Let A be the matrix with columns

aj =

j−1
∏

i=1

(

I− αiα
′
iK

′
i

α′
iKiαi

)

αj ,

24 Chapter 2 Feature Extraction

where the product is left to right, then uj = X′aj , j = 1, . . . , k. This implies U = X′A

and the projection of a new test point is given by

φ̂(x)′ = k′A.

Notice that aj is computed using only those examples which have previously been used

for deflation, hence it contains j non-zero entries. This implies that the computation of

φ̂(x) requires k kernel evaluations. Furthermore, given that the deflation of the kernel

matrix is O(`2), KGS has a training complexity of O(k`2).

Algorithm 4 Pseudo code for Kernel Gram-Schmidt Orthogonalisation.

Inputs: Kernel matrix K ∈ R
`×`, dimension k

Process:

1. K1 = K

2. For j = 1, . . . , k

(a) Let αj = ei/
√

e′iKjei where i is index of maximum diagonal entry of Kj

(b) Kj+1 =
(

I− Kjαjα′

j

α′

jKjαj

)

Kj

3. End

Output: Dual directions αj and features Kjαj, j = 1, . . . , k

2.4.2.2 Cholesky Decomposition

Another way of viewing Gram-Schmidt Orthogonalisation is as the QR-decomposition

of X, i.e. X′ = QR, where Q has columns uj, j = 1, . . . , k, k is the rank of X and

R is an upper triangular matrix. The matrix R is a representation of each example in

the basis defined by u1, . . . ,uk. It follows that R can be found by projecting X onto

Q, since XQ = R′Q′Q = R′. Furthermore, if one considers the kernel matrix given

by K = XX′, then K = R′Q′QR = R′R, which is the Cholesky decomposition of a

positive semidefinite matrix, see Shawe-Taylor and Cristianini (2004) for further details.

The complete Cholesky decomposition of a kernel matrix provides an exact represen-

tation of the examples. One can also obtain an approximation of the kernel matrix by

projecting into u1, . . . ,uj , j < k, using the Incomplete Cholesky decomposition (ICD,

Bach and Jordan (2003)). ICD has the decomposition K ≈ RjR
′
j where Rj ∈ R

`×j and

j is less than the rank of K. The algorithm picks a column of K at a time, greedily

maximising a lower bound on the reduction in the error of the approximation. It can be

efficiently implemented at O(`j2) complexity since it uses a comparison of the diagonal

elements of K−RiR
′
i at the ith iteration to pick a kernel matrix column. A variation of

Chapter 2 Feature Extraction 25

ICD is given in Bach and Jordan (2005), which at the same computational complexity,

approximates a kernel matrix using the labels as guidance.

2.4.3 Recent Advances

KPCA is an effective approach for capturing the variance of a set of examples, how-

ever the resulting solution is not sparse in the sense that the projection of a test point

requires ` kernel evaluations. Using more examples in KPCA implies better approxima-

tions, however this also results in reduced efficiency in computing projections. Several

authors have suggested sparse variants of KPCA to overcome this limitation. In Tip-

ping (2001) a sparse KPCA algorithm is derived by approximating the covariance matrix

with a reduced number of examples using a maximum likelihood approach. Jolliffe et al.

(2003) proposes ScoTLASS which uses an upper bound on the 1-norm of the projection

directions, leading to a non-convex problem. SPCA (Zou et al. (2006)) is another 1-

norm penalised algorithm, which targets directions towards regression. It can be solved

efficiently using a method known as least angle regression.

All of d’Aspremont et al. (2005), Moghaddam et al. (2006b) and Sriperumbudur et al.

(2007) consider the PCA optimisation with a stricter zero-norm4 constraint on the pro-

jection vectors. In d’Aspremont et al. (2005), this optimisation is relaxed to give a con-

vex semidefinite programming formulation. Moghaddam et al. (2006b) provides both

greedy and exact methods for solving the cardinality constrained optimisation using

insights between the eigenvalues of a positive definite covariance matrix and the eigen-

values of its submatrices. Sriperumbudur et al. (2007) approximates the zero-norm using

‖u‖0 ≈
∑

i log(ε + |ui|) where 0 ≤ ε � 1 avoids problems when ui is zero. The result-

ing optimisation is framed as a difference of convex functions program and solved as a

sequence of locally convex programs. Additional directions are found by deflating the

covariance matrix.

Williams and Seeger (2000b) outlines an approach to approximate the kernel matrix

based on the Nyström method. Let A[Ir, Ic] be the submatrix of A composed of the

rows indexed by Ir and columns indexed by Ic, and A[Ir,] and A[, Ic] be the rows and

columns of A indexed by Ir and Ic respectively. The Nyström approximation is given

by

K̃k = K[, I]K[I, I]−1K[I,],

where I ∈ [`]k is a set of k random indices. This approximation can be computed

in O(k2`) operations, and follows from an analysis of the eigenfunctions of the kernel

operator.

4The zero-norm, though not a true norm, is the number of non-zero elements in a vector.

26 Chapter 2 Feature Extraction

An orthogonalisation-based variant of KPCA is presented in Smola et al. (1999), and

in Chapter 4 it will become clear how it is related to our approach for feature extrac-

tion. Essentially the method finds a projection direction which maximises variance and

then orthogonalises the examples by projecting them into the space orthogonal to the

direction, i.e. using Equation 2.17. Each direction is chosen to be a scalar multiple of a

single deflated example, hence is sparse. A related paper, Smola and Schölkopf (2000),

is concerned with sparse greedy matrix approximation methods. A compact approxima-

tion of the kernel matrix is computed using a subset of kernel matrix columns or basis

functions (kernel evaluations of the form κ(x, ·) for a fixed x). With the column space

approximation method, the kernel matrix is deflated in the following way

Kj+1 =

(

I−
Kjαjα

′
jK

′
j

α′
jK

′
jKjαj

)

Kj ,

so that the columns of Kj+1 are orthogonal to Kjαj.

Franc and Hlavác (2006) derives a different sparse KPCA approach called Greedy KPCA

(GKPCA). Let S = {x1, . . . ,x`} be the training examples then GKPCA tries to find

a subset S′ of S which can be used to compute an approximation of the data. This

approximation is given by X̂ = XU where the columns of U are linear combinations

of the examples in S′. As implied by its name, GKPCA uses a greedy approach to

select the examples in S′. One simply chooses the example which minimises the residual

approximation error, deflates using the PCA deflation method, and repeats until the

desired number of examples are selected. On a selection of benchmark datasets, GKPCA

is shown to approximate the data with significantly larger error than KPCA, although

the difference between the two methods decreases as the number of iterations approaches

` as one might expect.

2.5 Supervised Approaches

A common use of feature extraction is as a step before classification or regression. Many

practitioners use PCA in this way, however one can in general improve upon PCA if the

labels are utilised. This section provides an introduction to supervised feature extraction

which covers several important techniques. In particular, an in depth coverage of PLS

is given since it is one of the core components of this thesis.

2.5.1 Partial Least Squares

PLS has enjoyed success in chemometrics where high dimensional and correlated rep-

resentations are common, and has recently gained favour within the machine learning

Chapter 2 Feature Extraction 27

community. It iteratively extracts features which are most covariant with the labels and

then performs least squares regression on the extracted features. Since its appearance,

PLS has since seen many variants, for example PLS Mode A (Wold (1975)), PLS-SB

(Sampson et al. (1989)) and in Barker and Rayens (2003) which tailors PLS for classi-

fication. General surveys of PLS variants are presented in Rosipal and Kramer (2006);

Wegelin (2000). Furthermore, Bennett and Embrechts (2003) gives an optimisation per-

spective on PLS and its kernel variant. The approach we outline here is often called

PLS2 or PLS regression, however we will simply refer to it as PLS.

The application of PLS feature extraction to a simple 2-dimensional, binary labelled

dataset is shown in Figure 2.5. The red points represent positively labelled examples

and the black ones are negatively labelled examples. The directions in Figure 2.5(a)

are those of maximum covariance and from Figure 2.5(b) one can see that the first of

the extracted features is able to discriminate the positive and negative examples almost

perfectly.

Feature 1

F
ea

tu
re

 2

2nd direction

1st direction

(a) Original features

Feature 1

F
ea

tu
re

 2

(b) Extracted features

Figure 2.5: Plot of the PLS projection vectors for an example 2-dimensional binary
labelled dataset.

We start our coverage of PLS with a definition of the covariance of two zero-mean

random variables x and y,

cov(x, y) = E[(x− E[x])(y − E[y])]

= E[xy],

28 Chapter 2 Feature Extraction

which follows from E[x] = E[y] = 0. In PLS, one projects an observation x ∈ R
m onto

direction u, and the corresponding vector of labels y ∈ R
n onto v. The covariance of

these projections is

cov(x′u,y′v) = E[x′uy′v].

Now consider the empirical covariance of a set of observations S = {(x1,y1), . . . , (x`,y`)},

Ê[x′uy′v] =
1

`

∑̀

i=1

u′xiy
′
iv =

1

`
u′X′Yv,

where Y has rows5 yi, i = 1 . . . , `. This leads us to the PLS optimisation, which

maximises the above quantity subject to unit norm projection vectors,

max u′X′Yv

s. t. ‖u‖ = 1

‖v‖ = 1.

(2.20)

The unit norm constraints on u and v are required to avoid trivial solutions. The

solutions for u and v are the left and right singular vectors corresponding to the largest

singular value of the covariance matrix X′Y. This can be seen using the Lagrangian

approach,

L(u,v) = u′X′Yv− 1

2
σu(u′u− 1)− 1

2
σv(v′v− 1),

where σu and σv are Lagrange multipliers. Differentiating with respect to u and v and

equating to zero gives,

X′Yv = σuu

Y′Xu = σvv.

Notice that premultiplying the above pair of equations by u and v respectively results

in u′X′Yv = σuu
′u and v′Y′Xu = σvv

′v, hence σu = σv = σ. Combining this

information with the above equations,

5For the classification variant of PLS, Y is an indicator matrix and is substituted with Ỹ =
Y(Y′

Y)−1/2 so that Ỹ
′

Ỹ = I.

Chapter 2 Feature Extraction 29

X′YY′Xu = σ2u (2.21)

Y′XX′Yv = σ2v, (2.22)

which implies from Equations 2.5 and 2.6 that u and v are the left and right singular

vectors of X′Y. Since σ corresponds to the quantity being maximised, it follows that

one must choose those singular vectors that are paired with the largest singular value of

X′Y.

After choosing a projection direction, one deflates the data matrix by projecting onto

the space orthogonal to Xjuj at the jth iteration,

Xj+1 =

(

I−
Xjuju

′
jX

′
j

u′
jX

′
jXjuj

)

Xj , (2.23)

where uj is the maximum left singular vector of X′
jY. One need not deflate the Y

matrix in a similar fashion since its deflation has no effect on the chosen directions,

however in the dual formulation the deflation of Y is necessary. Note that in general

the PLS directions do not correspond to the eigenvectors of Equation 2.21. However,

Hoskuldsson (1988) shows that the first singular value of X′
j+1Y is greater than or equal

to the second singular value of X′
jY.

The are several interesting properties of the PLS directions and projections. In Phatak

and de Hoog (2002) the authors show that PLS is identical to the conjugate gradient

method for solving a set of linear equations whose matrix is symmetric and positive

definite. The same paper also demonstrates a connection between PLS and the Lanczos

method for approximating the dominant eigenvalues of a symmetric matrix. One of the

key properties of the PLS deflation is that Xjuj, j = 1, . . . , k, are orthogonal since they

are the projections of the residual matrices which have been previously deflated by Xiui,

i = 1, . . . , j − 1. More formally,

X′
j+1Xiui =

(

I−
X′

jXjuju
′
j

u′
jX

′
jXjuj

)

X′
jXiui

=

(

I−
X′

jXjuju
′
j

u′
jX

′
jXjuj

)

· · ·
(

I− X′
iXiuiu

′
i

u′
iX

′
iXiui

)

X′
iXiui

=

(

I−
X′

jXjuju
′
j

u′
jX

′
jXjuj

)

· · ·
(

X′
iXiui −

X′
iXiui(u

′
iX

′
iXiui)

u′
iX

′
iXiui

)

= 0,

30 Chapter 2 Feature Extraction

for i = 1, . . . , j. The first line is a rearrangement of the deflation of Equation 2.23 so

that Xj is deflated by its rows. Note that the projections Xjuj, j = 1, . . . , k, are also

the final PLS features, and their orthogonality implies that they are uncorrelated.

Once PLS extracts features it uses them for least squares regression, whose optimisation

is

min ‖XC−Y‖2F ,

where C ∈ R
m×n is a matrix of regression coefficients and ‖A‖F =

√

tr(A′A) is the

Frobenius norm. Solving by differentiating and equating to zero yields C = (X′X)−1X′Y

(assuming X′X is invertible), but the inversion of X′X is computationally expensive if

X has many features. In the PLS case, the regression coefficients are Ĉ = (X̂
′
X̂)−1X̂

′
Y

where X̂ = [X1u1 · · ·Xkuk] is the matrix of new features. This is more efficient than

using the original features since X̂ has fewer columns than X and X̂
′
X̂ is a diagonal

matrix hence is simple to invert. As well as gaining these efficiency improvements, using

the PLS features can also be seen as a form of regularisation since the examples are

projected into a low dimensional subspace. The PLS pseudo code is given in Algorithm

5.

Algorithm 5 Pseudo code for PLS regression.

Inputs: Data matrix X ∈ R
`×m, target vectors Y ∈ R

`×n, dimension k
Process:

1. X1 = X

2. For j = 1, . . . , k

(a) Select uj as the first singular vector of X′
jY

(b) Xj+1 =
(

I− Xjuju
′

jX
′

j

u′

jX
′

jXjuj

)

Xj

3. End

4. Compute regression coefficients Ĉ = (X̂
′
X̂)−1X̂

′
Y where X̂ = [X1u1 · · ·Xkuk]

Output: Directions uj, features Xjuj , j = 1, . . . , k, and coefficients Ĉ

2.5.1.1 Projection of a Test Example

The PLS features are given in terms of the projections of the residual examples into

a subspace, however it would be useful to discover the transformation on the original

examples. This transformation, first derived in Manne (1987), allows one to find the

projection of a new test point for example. A simple rearrangement of Equation 2.23

results in

Chapter 2 Feature Extraction 31

Xj+1 = Xj

(

I−
uju

′
jX

′
jXj

u′
jX

′
jXjuj

)

,

which can be applied to a single test point φ(x) for k iterations as follows

φ(x)′k+1 = φ(x)′k

(

I− uku
′
kX

′
kXk

u′
kX

′
kXkuk

)

,

where φ(x)1 = φ(x). Let pj = X′
jXjuj/u

′
jX

′
jXjuj , j = 1, . . . , k, then the above

expression can be written as

φ(x)′k+1 = φ(x)′k
(

I− ukp
′
k

)

= φ(x)′k − φ(x)′kukp
′
k

= φ(x)′ −
k
∑

j=1

φ(x)′jujp
′
j ,

where for the last line, we have substituted the left hand side of the equality into the

first term on the right hand side. The final feature vector has components given by

φ̂(x) =
(

φ(x)′juj

)k

j=1
. Consider using the inner products between φ(x) and the matrix

U which has columns uj , j = 1, . . . , k,

φ(x)′k+1U = φ(x)′U−
k
∑

j=1

φ(x)′jujp
′
jU (2.24)

= φ(x)′U− φ̂(x)′P′U, (2.25)

where P is the matrix with columns pj , j = 1, . . . , k. Observe that Xjui = 0, i < j,

since

Xjui =

(

I−
Xj−1uj−1u

′
j−1X

′
j−1

u′
j−1X

′
j−1Xj−1uj−1

)

Xjui

=

(

I−
Xj−1uj−1u

′
j−1X

′
j−1

u′
j−1X

′
j−1Xj−1uj−1

)

· · ·
(

I− Xiuiu
′
iX

′
i

u′
iX

′
iXiui

)

Xiui

=

(

I−
Xj−1uj−1u

′
j−1X

′
j−1

u′
j−1X

′
j−1Xj−1uj−1

)

· · ·
(

Xiui −
Xiui(u

′
iX

′
iXiui)

u′
iX

′
iXiui

)

= 0.

32 Chapter 2 Feature Extraction

This implies that φ(x)′k+1U = 0, and substituting into Equation 2.25 and rearranging

gives

φ̂(x)′ = φ(x)′U(P′U)−1. (2.26)

This appears to require matrix inversion however P′U is upper triangular (also tridiag-

onal) with constant diagonal 1, so the inversion involves the solution of k sets of k linear

equations with an upper triangular matrix. To see that P′U is upper triangular, note

that the diagonal entries are u′
jpj = u′

jX
′
jXjuj/u

′
jX

′
jXjuj = 1. The lower diagonal

entries are given by u′
ipj , i < j. Since Xjui = 0, u′

ipj = u′
iX

′
jXjuj/u

′
jX

′
jXjuj = 0,

and putting the pieces together gives the required result.

2.5.1.2 Continuum Regression

An interesting connection between PLS, Principal Components Regression (PCR, Massy

(1965))6, and Ordinary Least Squares (OLS) regression is demonstrated in Stone and

Brooks (1990) under a general approach called Continuum Regression (CR). One of the

key components of CR is the following criterion

T = (u′X′y)2(u′X′Xu)α/(1−α)−1,

which is maximised to form the OLS (α = 0), PLS (α = 1
2), and PCR (α = 1) directions

respectively. After selecting a direction, one uses the PLS deflation and repeats. For the

OLS specialisation, the resulting projection direction is also the correlation coefficient

vector and the algorithm stops at a single iteration.

2.5.1.3 Dual Form

Kernel PLS (KPLS) was introduced in Rosipal and Trejo (2001) and a closely related

approach is shown to exhibit good performance with an SVM in Rosipal et al. (2003).

KPLS follows naturally from the primal case, since from Equation 2.21 one can see the

projection directions are in the row space of Xj. We introduce a set of dual features

τ j = Xjuj = Kjαj, where Kj = XjX
′
j , and the kernel matrix is deflated in the

following way

Kj+1 =

(

I−
τ jτ

′
j

τ ′
jτ j

)

Kj

(

I−
τ jτ

′
j

τ ′
jτ j

)

, (2.27)

6PCR is PCA feature extraction followed by least squares regression.

Chapter 2 Feature Extraction 33

which only requires kernel matrices. The dual projections directions are computed from

Equation 2.21,

σ2α = YY′Xu (2.28)

= YY′XX′α (2.29)

= YY′Kα, (2.30)

and scaled using α← α/
√

α′Kα so that the primal direction has unit norm.

We stated earlier that the deflation of Y is unnecessary in the primal case. However, if

Y is deflated is the same way as X, i.e.

Yj+1 =

(

I−
τ jτ

′
j

τ ′
jτ j

)

Yj ,

Y1 = Y, then the covariance matrix X′
jYj remains unchanged since,

X′
j+1Yj+1 = X′

j

(

I−
τ jτ

′
j

τ ′
jτ j

)2

Yj

= X′
j

(

I−
τ jτ

′
j

τ ′
jτ j

)

Yj

= X′
j+1Yj

= X′
j+1Y.

In the dual case however, the deflation of Y is required to provide a closed form expres-

sion for the projection of a new test point. This expression starts from the primal repre-

sentation, Equation 2.26. Since uj = X′
jαj and αj is in the column space of Yj, it fol-

lows, using an argument similar to that given above, that uj = X′αj. Similar reasoning

also allows us to write pj = X′
jXjuj/u

′
jX

′
jXjuj = X′Xjuj/u

′
jX

′
jXjuj = X′τ j/τ

′
jτ j .

Hence U = X′A and P = X′T(T′T)−1 where A has columns αj and T has columns

τ j, j = 1, . . . , k. Assembling the parts gives,

φ̂(x)′ = φ(x)′U(P′U)−1 (2.31)

= φ(x)′X′A((T′T)−1T′XX′A)−1 (2.32)

= k′A((T′T)−1T′K′A)−1. (2.33)

34 Chapter 2 Feature Extraction

The complete KPLS algorithm is given in Algorithm 6.

Algorithm 6 Pseudo code for KPLS regression.

Inputs: Kernel matrix K ∈ R
`×`, target vectors Y ∈ R

`×n, dimension k
Process:

1. K1 = K, Y1 = Y

2. For j = 1, . . . , k

(a) Let αj be the first eigenvector of YjY
′
jKj , αj ← αj/

√

α′
jKjαj, and let

τ j = Kjαj

(b) Kj+1 =
(

I− τ jτ ′

j

τ ′

jτ j

)

Kj

(

I− τ jτ ′

j

τ ′

jτ j

)

(c) Yj+1 =
(

I− τ jτ ′

j

τ ′

jτ j

)

Yj

3. End

4. Compute regression coefficients Ĉ = (X̂
′
X̂)−1X̂

′
Y where X̂ = [τ 1 · · · τ k]

Output: Dual directions αj, features τ j , j = 1, . . . , k, and coefficients Ĉ

2.5.2 Kernel Boosting

The popularity of Boosting has motivated new approaches to many problems in machine

learning. One such approach is Kernel Boosting (KB, Crammer et al. (2002)), which

learns a kernel matrix from a set of “base kernels matrices”. Essentially, it finds a

weighted combination of kernels functions,

κ̂(x,y) =

k
∑

j=1

γjκj(x,y),

where κj are known as base kernel operators and γj are weight coefficients, j = 1, . . . , k.

The jth base kernel operator is defined as κj(x, z) = x′wjw
′
jz where wj is a projection

direction. Hence, after k iterations each example is projected onto
√

γjwj , and it follows

that

κ̂(x, z) = x′WW′z,

where W has columns
√

γjwj , j = 1, . . . k.

We now introduce a quantity known as kernel alignment (Cristianini et al. (2001))

which is key to the Kernel Boosting algorithm. Kernel alignment is a similarity measure

between two kernel matrices, K1 and K2, and defined as

Chapter 2 Feature Extraction 35

A(K1,K2) =
〈K1,K2〉F

√

〈K1,K1〉F 〈K2,K2〉F
, (2.34)

where 〈A,B〉F = tr(A′B) is the Frobenius inner product. The kernel target alignment

is the kernel alignment between a kernel matrix K and the “ideal” kernel matrix yy′,

with y ∈ {−1,+1}`. Clearly if K = yy′ one can obtain perfect classification on the

training examples using f(x) = sign(yiκ(xi,x)) for a fixed i.

Kernel Boosting operates over pairs of examples, which are said to “align” with their

labels if sign(κ(xi,xj)) = yiyj for some i, j. One would like κ(xi,xj)yiyj to be as large

as possible, hence the following loss functions are introduced

l(κ(xi,xj), yiyj) = exp(−yiyjκ(xi,xj)) Exponential loss

l(κ(xi,xj), yiyj) = log(1 + exp(−yiyjκ(xi,xj)) Log loss.

A distribution matrix is maintained over all pairs of examples and if the weight of a

pair is high, the corresponding labels are not aligned with the examples. Those pairs

of examples with high weights are emphasised, hence learning concentrates on harder

examples.

Algorithm 7 Pseudo code for Kernel Boosting.

Inputs: Dataset S = {(xi, yi)}`i=1, xi ∈ R
m, yi ∈ {−1,+1}, 1 ≤ i ≤ `, and dimension k

Process:

1. Kernel operator matrix Q← 0, initial kernel operator κ̂(x, z) = 0

2. For j = 1, . . . , k

(a) Calculate distribution over pairs of examples, 1 ≤ s, t ≤ `,

Dj(s, t) =

{

exp(−ysytκ̂(xs,xt)) Exp. Loss
log(1 + exp(−ysytκ̂(xs,xt))) Log Loss

(b) Call Qj = baseKernelLearner(Dj , S). Let κj(x, z) = x′Qjz.

(c) Calculate

P+
j = {(s, t)|ysytκj(xs,xt) > 0} P−

j = {(s, t)|ysytκj(xs,xt) < 0}
w+

j =
∑

(s,t)∈P+

j
Dj(s, t)|κj(xs,xt)| w−

j =
∑

(s,t)∈P−

j
Dj(s, t)|κj(xs,xt)|

(d) Set κ̂(x, z) = x′Qz with Q← Q + γjQj and γj = 1
2 log

(

w+

j

w−

j

)

3. End

Output: Kernel operator κ̂(x, z)

36 Chapter 2 Feature Extraction

Algorithm 7 shows the pseudo code7 for the Kernel Boosting method. It differs slightly

from that given in Crammer et al. (2002) since one can optionally use a set of unlabelled

examples, and here we assume that this set is composed of the labelled examples without

their labels. The first step of the loop computes a distribution matrix over pairs of

examples using the loss functions given above. Following, one finds the kernel operator

κj based on the distribution matrix using a “base kernel learner”. Step 2c) evaluates

how well the pairs of examples are aligned with their labels which is used to compute

the weighting γj for the corresponding kernel operator in step 2d).

The definition of the base kernel learner in Algorithm 7 is left unspecified, however

an implementation from Crammer et al. (2002) is shown in Algorithm 8. It finds the

projection vector which maximises the alignment of the kernel matrix entries with the

corresponding labels, subject to the weights given in the distribution matrix. Notice that

the eigenvalue problem at step 2) can be written using the Rayleigh quotient formulation

as

max
v′XX′YDYXX′v

v′XX′v
,

or, in terms of w = X′v/‖X′v‖ as

max
w′X′YDYXw

‖w‖2 . (2.35)

The elements of the initial distribution matrix D1 are identical, so one can write

YD1Y = cyy′ for some constant c. Since Equation 2.35 is invariant under a scaling of

w one can constrain w to have unit norm,

max (w′X′y)2

s.t. ‖w‖ = 1.

Bearing in mind that the squared function is convex, this is the same as the PLS op-

timisation, Equation 2.20, in the single label case. Although the first kernel boosting

direction is the same as the first PLS direction, additional directions are not computed

in the same way and will in general be different.

2.5.2.1 Dual Form

The base kernel learner given in Algorithm 8 can easily be extended to operate in a

kernel-defined feature space. Note that the norm squared of w is given by

7In a slight deviation from our standard notation, A(i, j) denotes the matrix element of A at row i

and column j.

Chapter 2 Feature Extraction 37

Algorithm 8 Kernel Boosting base kernel learner.

Input: Distribution matrix D, dataset S = {(xi, yi)}`i=1

Process:

1. Let

Y =







y1 · · · 0
...

. . .
...

0 · · · y`







2. Find v ∈ R
` for which XX′YDYXX′v = λXX′v has the highest eigenvalue λ

3. Set w = X′v/‖X′v‖

Output: Kernel operator matrix Q = ww′

‖w‖2 = v′XX′v = v′Kv.

Furthermore, at iteration j of the kernel boosting algorithm,

κj(x, z) = x′wjw
′
jz

=
k′

xvjv
′
jkz

v′
jKvj

,

where vj is the vector that solves the eigenvalue problem of Algorithm 8 and kx and kz

are vectors of inner products between the training examples and x and z respectively.

2.5.3 Boosted Latent Features

Boosted Latent Features (BLF, Momma and Bennett (2005)) is another technique based

on the boosting paradigm, however it is easier to think of it in terms of its relation to

PLS. It is an iterative method which computes projection directions according to a user

defined loss function and then deflates in the same manner as PLS. The resulting features

are used to perform regression.

Name Loss function l(y, ŷ)

Least Squares
∑`

i=1(yi − ŷi)
2

Least Absolute Deviation (LAD)/1-norm
∑`

i=1 |yi − ŷi|
Exponential

∑`
i=1 exp(−yiŷi)

Negative binomial log-likelihood/logistic
∑`

i=1 log(1 + exp(−2yiŷi))

Table 2.1: Several example BLF loss functions.

38 Chapter 2 Feature Extraction

The aim of BLF is to generate orthogonal linear hypotheses of the form Xjuj, j =

1, . . . , k. A natural approach for obtaining orthogonality of these extracted features is

to use the PLS deflation. Hence BLF computes projection directions which follow the

gradient of a user defined loss function, and then deflates in the same way as PLS. The

loss functions from Momma and Bennett (2005) are presented in Table 2.1. Note that

with the least squares loss BLF specialises to PLS.

Let l(y, ŷ) be a loss function between labels y and predicted labels ŷ and let δl(y, ŷ)/δŷ

be the gradient8 of the loss function with respect to ŷ. Then at the jth iteration, BLF

solves

max α′
jXjuj

s. t. ‖uj‖ = 1,
(2.36)

where αj = δl(y, ŷj)/δŷj is the gradient of the loss function and ŷj is the jth predicted

label vector. This optimisation can be seen as finding the projection direction which

maximises the inner product between the gradient of the loss function and the projected

examples Xjuj. The solution is given by uj = X′
jαj/

√

α′
jXjX

′
jαj using the Lagrangian

approach. After computing this direction, one deflates the examples, calculates the

predicted labels using the features Xiui, i = 1, . . . , j, and finds the value of αj+1.

Algorithm 9 Pseudo code for Boosted Latent Features.

Inputs: Data matrix X ∈ R
`×m, label vector y ∈ R

`, loss function l, dimension k
Process:

1. X1 =
(

I− jj′

`

)

X, µy = arg minµy l(y, µyj), α1 = −δl(y, µyj)/δ(µyj), µX = 1
`X

′j

2. For j = 1, . . . , k

(a) Compute uj = X′
jαj/

√

α′
jXjX

′
jαj, τ j = Xjuj/

√

u′
jX

′
jXjuj ,

T = [τ 1, · · · τ j]

(b) Deflate Xj+1 =
(

I− τ jτ ′

j

τ ′

jτ j

)

Xj

(c) Compute regression coefficients (µy, c) = arg min l(y, µyj + Tc)

(d) Compute loss gradient αj+1 = −δl(y, µyj + Tc)/δ(µyj + Tc)

3. End

4. Compute projection matrix Z = U(P′U)−1 where U = [u1, . . . uk], P = [p1, . . . pk]

and pj = X′
jXjuj/

√

u′
jX

′
jXjuj.

Output: Directions Z, features T, coefficients c, bias µy and feature means µX

The complete BLF method is shown in Algorithm 9, and it starts by centering the

features of X. The initial feature is µyj and the gradient of the loss function is computed

8One can also use functions that are sub-differentiable, i.e. those that do not have a derivative for all
points.

Chapter 2 Feature Extraction 39

with respect to this vector. In the for loop, the projection direction uj is computed using

Equation 2.36 and one then deflates the residual matrix Xj . Steps 2c) and 2d) compute

the regression coefficients and loss gradient using the features obtained so far (denoted

by T). The projection matrix for a new test point is computed at step 4) which is

identical to that used in PLS (Equation 2.26). One can then make a prediction for a

new test point using

f(x) = (x− µX)′Zc + µy, (2.37)

where Z is the projection matrix for the centered examples, c is the regression coeffi-

cients, µX is the means of original features and µy is a bias term.

2.5.3.1 Dual form

The kernel extension to BLF (KBLF) follows naturally from the primal version. Since

we are working with residual kernel matrices, they are deflated in the same way as

KPLS, i.e. using Equation 2.27. Many of the steps of KBLF mirror those of the primal

algorithm. Furthermore, with the least squares loss KBLF reduces exactly to KPLS.

An important difference between KPLS and KBLF is in the way that the projections of

a new test example are computed. For KBLF, one must deflate the dual directions as

follows,

α̃j =

(

I−
j−1
∑

i=1

τ iτ
′
i

τ ′
iτ i

)

αj ,

and the projection matrix for a new example is Ã(T′K1Ã)−1 where Ã has columns

α̃1, . . . , α̃k. The function for the prediction of a new test point is

f(x) = k′

(

I− jj′

`

)

Qc− µK + µy,

where µK is the mean of the predictions of the training examples and Q = Ã(T′K1Ã)−1.

2.5.4 Sparse KPLS

Sparse KPLS regression (Momma and Bennett (2003)) is an attempt to enforce sparse

projection directions in an algorithm based on KPLS. The authors note that the steps

40 Chapter 2 Feature Extraction

in KPLS which require all of the training examples include centering of the data, com-

putation of the features and deflation. These steps are therefore modified accordingly

to create a sparse regression function.

Algorithm 10 Pseudo code for sparse PLS.

Inputs: Data matrix X ∈ R
`×m, label vector y ∈ R

`, dimension k, sparsity ν
Process:

1. X1 = X, v1 = y

2. For j = 1, . . . , k

(a) Compute αj and βj

(b) Construct primal projection uj = X′
jαj/

√

α′
jXjX

′
jαj

(c) Compute sj = X′
jβj and shift data, X̃j = Xj − js′j

(d) Compute τ j = X̃juj/bj with bj =
√

u′
jX̃

′
jX̃juj, and let T = [τ 1, . . . , τ j]

(e) Deflate Xj+1 = X̃j

(

I− uju
′
j

)

(f) Compute regression function (c, µy) = arg min ‖y−Tc− µyj‖2

(g) Compute residual vj+1 = y−Tc− µyj

3. End

4. Compute projection matrix Z = Udiag(b)−1, where U = [u1, . . . ,uk] and diag(b)
is the diagonal matrix with bj as its diagonal entries, j = 1, . . . , k.

Output: Directions Z, features T, coefficients c, bias µy and shift matrix S = [s1, . . . , sk]

The primal sparse PLS method is shown in Algorithm 10. At the beginning of the

for loop one computes a dual projection vector αj and the dual shift vector βj . Both

of these vectors contain few non-zero entries which occur at identical positions. Step

2c) computes the primal shift direction sj and performs a sparse centering process,

known as shifting, on the examples. Shifting is sparse since sj = X′
jβj is a linear

combination of only a few examples in Xj. The projections of the shifted examples onto

uj are computed in step 2d), and one then deflates the data by its rows. Notice that

this deflation is different from the standard PLS one, and the authors state that the

modification is necessary since the PLS deflation requires all examples. It follows that

the extracted features are no longer orthogonal. The final two steps of the loop compute

regression coefficients using the features obtained so far, and deflate the residual label

vector vj . The projection matrix for the shifted data (computed at step 4)), projects the

examples onto uj/bj , j = 1, . . . , k. Note that this projection is not sparse since finding

bj at each iteration requires all of the training examples. One can perform regression on

a new test example using

Chapter 2 Feature Extraction 41

f(x) = (x′ − j′S′)Zc + µy,

where S = [s1, . . . , sk] is a matrix of dual shift directions. The kernel variant of this

algorithm follows from the primal one, see Momma and Bennett (2003) for details.

It remains to show how the dual directions αj and βj are computed at step 2a). Let

ν ∈ [0, 1] be the desired degree of sparsity, then one solves an optimisation based on the

ε-insensitive loss function,

min 1
ν`

∑`
i=1 ξi + ε

s.t. 1
2‖xi − s− viu‖2 − ξi ≤ ε, i = 1, . . . , `

ξi ≥ 0, i = 1, . . . , `,

where vi is the ith element of residual label vector v and ξi, i = 1, . . . , `, are slack

variables. By using the Lagrangian approach one obtains a dual optimisation with

solutions αj and βj. This optimisation can be solved using non-linear programming

with linear constraints, with the number of non-zero elements in the dual directions

upper bounded by ν`.

One of the problems with sparse KPLS is that solving the above optimisation at each it-

eration is computationally expensive. This point is addressed in Momma (2005)9 which

proposes two heuristics for finding the dual projection vectors that do not require the

full kernel matrix in memory and provide significant speed improvements. These ap-

proximations are shown to exhibit good performance on several UCI datasets (Newman

et al. (1998)) in comparison with an SVM.

2.5.5 Further Advances

An alternative sparse PLS approach, known as Reduced Kernel Orthonormalised PLS

(rKOPLS), is presented in Arenas-Garćıa et al. (2006). The authors develop rKOPLS

from Orthonormalised Partial Least Squares (Worsley et al. (1997)), which minimises

‖Y−XU‖2F for centered X and Y. The dual form of this optimisation is equivalent to

finding the dominant eigenvectors of

KxKyKxα = λKxKxα, (2.38)

where Kx = XX′ and Ky = YY′. A deflation based strategy can be applied to solve

the above eigenproblem, which provides at most rank(Y) directions.

9Momma (2005) also details a sparse variant of KBLF but since we are interested in the general
approach of the sparse method, only sparse KPLS is reviewed here.

42 Chapter 2 Feature Extraction

To form rKOPLS the primal projection directions are selected from the space of r ran-

domly selected examples. Let this set of examples form the rows of Xr and define

Kx
r = XrX

′, then rKOPLS solves

Kx
rK

yKx
r
′α = λKx

rK
x
r
′α,

which is computationally cheaper than Equation 2.38. A related method is introduced

in Hoegaerts et al. (2004) which uses the Nyström approximation to obtain a sparse

KPLS solution. As in rKOPLS, the directions lie in the space of a subset of the training

examples.

2.5.5.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA, Duda et al. (2000)) is another popular approach for

supervised feature extraction. It specifically targets directions towards discriminative

data, i.e. examples that are partitioned into a finite number of classes. Consider the

binary label case, with negatively labelled examples S1 = {x1
1, . . . ,x

1
`1
} and positively

labelled ones S2 = {x2
1, . . . ,x

2
`2
}. LDA maximises the following quantity

J(u) =
u′Sbu

u′Swu
,

where Sb = (µ1−µ2)(µ1−µ2)
′, Sw =

∑

i=1,2

∑

x∈Si
(x−µi)(x−µi)

′ and µi is the mean

of the examples in Si, i.e. µi = 1
`i

∑`i
j=1 xi

j . The matrix Sb represents the between-class

scatter matrix, and Sw is the within-class scatter matrix. Hence, maximising J(u) can

be seen as finding the projection which maximises the distance between the class means

whilst minimising the class variance. In Moghaddam et al. (2006a), LDA is adapted

to use sparse directions, which generalises the previous work on cardinality constrained

PCA formulations in Moghaddam et al. (2006b).

The kernel variant of LDA (Mika et al. (1999)) makes use of the fact that the projection

directions are in the space of the examples. The resulting formulation, called Kernel

Fisher Discriminant (KFD), is regularised by penalising the norm of the dual projection

vector. KFD demonstrates good performance on a set of benchmark datasets when

followed with SVM classification.

2.6 Feature Extraction Using Two-Viewed Data

Consider a set of paired examples S = {(x1,y1), . . . , (x`,y`)}, where xi ∈ X and yi ∈ Y,

i = 1, . . . , `. Each pair of examples is an alternative pair of representations or views of

Chapter 2 Feature Extraction 43

a hidden variable z ∈ Z, and it is often useful to be able to recover z, e.g. to discover

the semantics in a set of English documents and their Japanese translations. Here we

introduce several methods which have the aim of recovering the semantics from a paired

dataset. These approaches tie in with the novel feature extractions techniques derived

in Chapter 6, which are applied to an enzyme function prediction problem.

2.6.1 Canonical Correlation Analysis

CCA finds the hidden variables in a paired dataset by searching for directions which

maximise the correlation. An example of the application of CCA to a simple toy dataset

is shown in Figure 2.6. The examples are generated so that the features in the X
view are rotated 45 degrees clockwise in order to form the Y view. CCA chooses a

pair of directions in each view which undoes this rotation, hence one obtains maximum

correlation. Notice that in general the CCA projection directions are not orthogonal,

and further insight into the geometry of CCA and its dual variant is presented in Kuss

and Graepel (2003).

Feature 1

F
ea

tu
re

 2

1st direction

2nd direction

(a) X view

Feature 1

F
ea

tu
re

 2

1st direction

2nd direction

(b) Y view

Figure 2.6: Plot of the CCA projection vectors for a set of paired 2-dimensional
examples.

To derive CCA we start with the definition of the correlation of a pair of zero-mean

random variables,

corr(x, y) =
E[xy]

√

E[xx]E[yy]
=

cov(x, y)
√

var(x)var(y)
.

Again we consider the projections of the examples onto directions, given by x′u and y′v

respectively. The empirical correlation is

44 Chapter 2 Feature Extraction

Ê[u′xy′v]
√

Ê[u′xx′u]Ê[v′yy′v]
=

u′X′Yv√
u′X′Xuv′Y′Yv

=
u′Cxyv

√

u′Cxxuv′Cyyv
,

where Cxy is the covariance matrix between X and Y and similar definitions apply for

Cxx and Cyy. Notice that in the above expression u and v are invariant to scaling,

hence maximising correlation can be written as

max u′Cxyv

s.t. u′Cxxu = 1

v′Cyyv = 1,

(2.39)

which is also equivalent to minimising the least squares error between Xu and Yv,

subject to the same constraints. Alternatively, one can see correlation as the cosine

of the angle θ between Xu and Yv, and hence maximising correlation is equivalent to

minimising θ.

To solve Equation 2.39, we use the Lagrangian technique which leads to the following

equations

Cxyv = λxCxxu (2.40)

Cyxu = λyCyyv. (2.41)

Notice that λx = λy = λ since premultiplying Equations 2.40 and 2.41 by u and v

respectively equates their left hand sides, and the value of λ is the correlation of the

projections. Putting the two equations together,

(

0 Cxy

Cyx 0

)(

u

v

)

= λ

(

Cxx 0

0 Cyy

)(

u

v

)

, (2.42)

which is a generalised eigenvalue problem. The CCA projection directions are those cor-

responding to the first k eigenvalues. The complete CCA algorithm is given in Algorithm

11.

There are several interesting properties of the above eigenproblem. The first is that

for each eigenvalue-eigenvector pair (λ, (u′ v′)′), there is also a pair (−λ, (u′ − v′)′).

However, since the eigenvalue corresponds to the correlation, one can ignore eigenvectors

Chapter 2 Feature Extraction 45

Algorithm 11 Pseudo code for CCA feature extraction.

Inputs: Data matrices X ∈ R
`×m, Y ∈ R

`×n, dimension k
Process:

1. Find first k eigenvectors of

(

0 Cxy

Cyx 0

)(

u

v

)

= λ

(

Cxx 0

0 Cyy

)(

u

v

)

Output: Directions uj, vj and features Xuj , Yvj, j = 1, . . . , k

associated with negative eigenvalues. The second property, which follows from Equation

2.3, is that the projections vectors u and v are conjugate with respect to Cxx and Cyy

respectively. Let U = [u1, . . . ,uk], V = [v1, . . . ,vk] and the CCA features be X̂ = XU

and Ŷ = YV. Then the columns of X̂ and Ŷ are orthogonal, i.e. X̂
′
X̂ = Ŷ

′
Ŷ =

I. Furthermore, X̂
′
Ŷ is a diagonal matrix with diagonal entries corresponding to the

correlations of the features.

As a final remark on CCA, note that one can find a solution to Equation 2.42 using

iterative deflation. The form of the deflation is given by Equation 2.4. In this case the

result is not a simple transformation of the data matrices. Along with the conjugacy of

the CCA directions, this highlights the tight coupling of the X and Y data matrices.

2.6.1.1 Dual form

Kernel CCA has successfully been applied to cross language information retrieval in

Hardoon et al. (2004) and multimedia content-based retrieval in Vinokourov et al. (2003).

The CCA projection directions lie in the row space of the examples, hence u = X′α and

v = Y′β for some α and β. The optimisation from the primal case (Equation 2.39) can

therefore be written in terms of kernel matrices

max α′KxKyβ

s.t. α′KxKxα = 1

β′KyKyβ = 1,

(2.43)

where Kx = XX′ and Ky = YY′. Applying the Lagrangian method yields the following

simultaneous equations

KxKyβ = λxK
xKxα (2.44)

KyKxα = λyK
yKyβ, (2.45)

and again we have λx = λy = λ by premultiplying the first equation by α and the second

by β. Using kernels often implies that examples are evaluated in a high dimensional

46 Chapter 2 Feature Extraction

feature space, and the likelihood of finding strong correlations increases. With the RBF

kernel for example, the kernel matrix is always full rank provided examples are distinct.

This poses a problem when measuring the correlation of the projected examples. If Kx

and Ky are invertible,

Kxα = λKyβ,

and substituting into Equation 2.44 gives

KxKyβ = λ2KxKyβ ⇒ β = λ2β.

Hence, λ = ±1, i.e. there is perfect correlation regardless of the choice of β. This is not

an ideal scenario and one would prefer to pick more stable directions. To move towards

this aim we introduce a result from Hardoon and Shawe-Taylor (2007b) which bounds

the correlation of the KCCA projections. The authors upper bound the expectation of

g(x,y) = ‖φx(x)′U−φy(y)′V‖2 which is the norm squared of the difference between the

projections of x and y in the feature space defined by mappings φx and φy respectively.

Under the KCCA constraints, this function is simply 2(k− ρ) where ρ is the cumulative

correlation.

Theorem 2.2 (Hardoon and Shawe-Taylor (2007b)). Fix A and B in R
+ and define

g(x,y) = ‖φx(x)′U − φy(y)′V‖2 with U = [u1, . . . ,uk] and V = [v1, . . . , vk]. Obtain

features given by ui, vi, i = 1, . . . , k, with ‖ui‖2 ≤ A and ‖vi‖2 ≤ B with correlations

ρi = u′
iCxyvi and u′

iCxxui = v′iCyyvi = 1 on a paired training set S of size ` in the

feature space defined by kernels κx and κy drawn i. i. d. according to a distribution D.

Then with probability greater than 1− δ over the generation of S, the expected value of

g on new data is bounded by

ED[g(x,y)] ≤ 1

`

k
∑

i=1

2(1 − ρi) +
1

`
4(A + B)k

√

√

√

√

∑̀

i=1

(κx(xi,xi) + κy(yi,yi))
2

+3R(A + B)k

√

ln(2/δ)

2`
,

where R = maxx∈supp(D)(κx(x,x) + κy(y,y)).

In order to keep ED[g(x,y)] low, the values of R, A, B and the middle term must be

small. There are two approaches one can take in order to improve statistical stability:

preprocess the data or regularise the KCCA eigenproblem. To regularise KCCA, one

penalises projection directions with large norms so that A and B are kept small. The

value of R can be reduced by removing outliers (examples with larger than average

deviation from the average norm). This step also decreases the value of the square root

Chapter 2 Feature Extraction 47

in the middle term. Note that u′X′Xu can be written as
∑r

i=1 λi(w
′
iu)2 where (λi,wi)

is the ith eigenvalue-eigenvector pair of X′X and r is the rank of X. If u is entirely in

the space of the last eigenvector, then we have λr(w
′
ru)2 = λru

′u = 1 which implies

u′u = 1/λr in this case. It follows that to improve stability, one could also denoise the

data using e.g. KPCA which would result in smaller final eigenvalues.

Motivated by the previous theorem, Equation 2.43 is regularised as follows

max α′KxKyβ

s.t. (1− τ)α′KxKxα + τα′Kxα = 1

(1− τ)β′KyKyβ + τβ′Kyβ = 1,

(2.46)

where 0 ≤ τ ≤ 1 is a trade off parameter which interpolates between maximising cor-

relation and covariance. In the case that τ = 1 the above optimisation maximises the

covariance hence the first directions will be identical to the PLS ones. Further directions

will not in general be the same.

Equation 2.46 leads to the following pair of simultaneous equations,

KxKyβ = λx((1− τ)KxKx − τKx)α (2.47)

KyKxα = λy((1 − τ)KyKy − τKy)β. (2.48)

Again we observe that λ = λx = λy, however in this case λ is not the correlation and

instead the “regularised correlation”. Solving the above pair of equations is identical to

finding the eigenvectors of

(

0 KxKy

KyKx 0

)(

α

β

)

=

λ

(

(1− τ)(Kx)2 − τKx 0

0 (1− τ)(Ky)2 − τKy

)(

α

β

)

. (2.49)

The complete regularised KCCA algorithm is shown in Algorithm 12.

As a final point on KCCA, notice that the generalised eigenvalue problem involves

matrices of size 2` × 2` which is computationally prohibitive for large `. To overcome

this limitation one can use Incomplete Cholesky decompositions of the kernel matrices

to create lower dimensional approximations of the data (Bach and Jordan (2003)).

48 Chapter 2 Feature Extraction

Algorithm 12 Pseudo code for KCCA feature extraction.

Inputs: Kernel matrices Kx,Ky ∈ R
`×`, dimension k, regularisation parameter τ

Process:

1. Find first k eigenvectors of

(

0 KxKy

KyKx 0

)(

α

β

)

=

λ

(

(1− τ)(Kx)2 − τKx 0

0 (1− τ)(Ky)2 − τKy

)(

α

β

)

Output: Directions αj, βj and features Kxαj and Kyβj , j = 1, . . . , k

2.6.2 Recent Advances

A number of interesting CCA variants have been recently suggested, mainly focusing

on efficient sparse solutions. One such method is given in Szedmak et al. (2007) which

transforms the KCCA problem into a convex maximum margin problem. The resulting

optimisation is analogous to the SVM optimisation albeit with vectorial target vectors.

Hardoon and Shawe-Taylor (2007a) introduces a method dubbed Sparse CCA (SCCA)

which minimises the least square error between the projections of a paired dataset, with

a 1-norm penalty on the projection directions. SCCA operates in the primal space for

the X view and the dual space for the Y view, hence sparsity implies picking features in

X and examples in Y. The resulting SCCA optimisation is convex, and to prevent an all

zeros solution one of the entries in the dual projection vector is fixed to be 1. After the

computation of the primal and dual projection directions, one deflates using a modified

(K)PLS deflation. However, the deflations used are costly as they operate on the entire

data and kernel matrices respectively.

In Torres et al. (2007), the CCA eigenvalue problem is modified to have an additional

sparsity constraint on the projection directions. First note that Equations 2.40 and

2.41 can be formulated into a single eigenvalue problem (assuming invertible covariance

matrices),

C−1
xx CxyC

−1
yy Cyxu = λ2u,

and a solution for u leads easily to one for v. By constraining the zero-norm of u, the

resulting optimisation is NP-hard, hence an approximation for the zero-norm is used

instead. In this case, one uses ‖u‖0 ≈
∑

i log(ε + |ui|) where 0 ≤ ε� 1 avoids problems

when ui is zero. This is identical to the approximation used in Sriperumbudur et al.

(2007). The resulting cardinality constrained CCA optimisation is

Chapter 2 Feature Extraction 49

max u′C−1
xx CxyC

−1
yy Cyxu− σ

∑

i log(ε + |ui|),
s.t. u′u = 1

(2.50)

where σ is a penalty on the sparsity of the solution. Torres et al. (2007) states that

this optimisation is difficult to solve because it involves maximising a convex objective

function. However, local solutions can be found using gradient descent or by solving a

sequence of linear approximations.

2.7 Summary

Feature extraction is a process for reducing the dimensionality of a set of examples to

improve prediction performance, reduce computational requirements and gain a greater

understanding of the data. Three categories of feature extraction techniques were iden-

tified: unsupervised, supervised and those that require paired examples. In these areas,

PCA, PLS and CCA are popular choices, based on maximising variance, covariance

and correlation respectively. All three algorithms result in eigenproblems, which can

be solved in O(n3) where n is the problem size. More recent feature extraction has

moved away from eigenproblem based formulations, and often used sparse projection

directions. Furthermore, Boosting has also proven to a popular paradigm, motivating

Kernel Boosting and BLF for example.

Chapter 3

A General Framework for Feature

Extraction

Since the features one requires are often dependant on the particular learning task, this

chapter introduces a general framework for feature extraction1. Within the framework,

one can use a user defined criterion to select projection directions and the features are

computed in the same manner as PLS. Consequently, many of the beneficial properties

of PLS are preserved. In particular, the projection directions are conjugate with respect

to the data (i.e. W′X′XW is a diagonal matrix, where W has its columns composed of

the projection directions for a new test point), extracted features are efficient to compute

and one can operate in a kernel-defined feature space.

We shall see that the framework draws together a number of existing results and pro-

vides additional insight into several popular feature extraction methods. It is shown to

specialise to PCA, PLS, BLF and their kernel variants.

3.1 Primal Feature Extraction

Our framework for feature extraction will start with an analysis of the primal represen-

tation, however it is easily extended to the dual case to allow the use of kernels. First of

all, consider Algorithm 13 which shows what we refer to as the general feature extraction

method. Essentially, the method operates iteratively, selecting a new feature direction

uj at iteration j and then deflating the data matrix Xj by projecting its columns into

the space orthogonal to Xjuj ,

1The general framework can be classified as a Projection Pursuit technique (Friedman and Tukey
(1974); Huber (1985)).

51

52 Chapter 3 A General Framework for Feature Extraction

Xj+1 =

(

I−
Xjuju

′
jX

′
j

u′
jX

′
jXjuj

)

Xj , (3.1)

which is identical to the PLS deflation. Observe that the features Xjuj, j = 1, . . . , `,

are orthogonal since they are a linear combination of the columns of Xj that have been

repeatedly projected into the orthogonal complement of previous Xiui, for i < j.

Algorithm 13 Pseudo code for primal general feature extraction.

Inputs: Data matrix X ∈ R
`×m, target vectors Y ∈ R

`×n, dimension k
Process:

1. X1 = X

2. For j = 1, . . . , k

(a) Select uj from the span of the rows of X

(b) Xj+1 =
(

I− Xjuju
′

jX
′

j

u′

jX
′

jXjuj

)

Xj

3. End

Output: Directions uj and features Xjuj, j = 1, . . . , k

There is one requirement that we impose on the choice of uj, that it should be in the

row space of X, i.e. for some αj , uj = X′αj . This ensures a dual representation of the

extracted features and later is shown to be important in the context of sparse projection

directions. We have seen with PCA and PLS for example, that projection directions are

in the row space of the residual matrices and our constraint is less strict since for some

βj ,

X′
jβj = X′

j−1

(

I−
Xj−1uj−1u

′
j−1X

′
j−1

u′
j−1X

′
j−1Xj−1uj−1

)

βj (3.2)

= X′
j−1
∏

i=1

(

I− Xiuiu
′
iX

′
i

u′
iX

′
iXiui

)

βj , (3.3)

where the product is from left to right. This implies that any vector in the row space of

Xj is also in the row space of X.

The apparent disadvantage with this simple description is that the features Xjuj are

defined relative to the deflated matrices Xj. We would, however, like to be able to

compute the extracted features directly from the original feature vectors so that one

can find features for a test set for example. The extracted features for a test point with

feature vector φ(x) are given by

Chapter 3 A General Framework for Feature Extraction 53

φ̂(x)′ = φ(x)′U(P′U)−1,

where the matrices U and P have their columns composed of the vectors uj and pj =

X′
jXjuj/u

′
jX

′
jXjuj, j = 1, . . . , k, respectively. The derivation of this result is identical

to that of PLS. Furthermore, since P′U is an upper triangular matrix the inversion can

be efficiently computed as the solution of k sets of k linear equations.

The vectors of feature values across the training set are orthogonal and can be written

as XU(P′U)−1, hence (U′P)−1U′X′XU(P′U)−1 is a diagonal matrix. This conjugacy

of the projection directions with respect to the examples ensures that the resulting

features are as dissimilar as possible. It also guarantees that the extracted features are

uncorrelated.

3.1.1 Specialisations to Existing Approaches

3.1.1.1 PCA

The connection between the PLS deflation and PCA was first identified in Stone and

Brooks (1990) and here we give an equivalent result using iterative PCA. When solving

PCA iteratively, one chooses uj to be the first eigenvector of X′
jXj ,

X′
jXjuj = λjuj ,

where λj is an eigenvalue. In this case, the deflation of Xj at each iteration is identical

to the PCA deflation

Xj+1 =

(

I−
Xjuju

′
jX

′
j

u′
jX

′
jXjuj

)

Xj

=

(

Xj −
Xjuju

′
jX

′
jXj

u′
jX

′
jXjuj

)

=

(

Xj −
λjXjuju

′
j

λju
′
juj

)

= Xj

(

I−
uju

′
j

u′
juj

)

.

It follows that each deflation can be seen as shrinking the largest eigenvalue of X′
jXj

to zero. Hence, the vectors u1, . . . ,uk extracted from this process are exactly the first

k eigenvectors of X′X, which are those used in PCA. The features extracted by PCA

54 Chapter 3 A General Framework for Feature Extraction

are given by Xu1, . . . ,Xuk, although those of the general feature extraction framework

are the projection of the residual data matrices. However, these representations are

equivalent since

Xj+1uj+1 =

(

I−
Xjuju

′
jX

′
j

u′
jX

′
jXjuj

)

Xjuj+1

=

(

Xj −
Xjuju

′
j

u′
juj

)

uj+1

= Xjuj+1

= Xuj+1,

where the third line follows from the orthogonality of uj , j = 1, . . . , k.

We can thus see PCA in two different ways: it deflates the columns of Xj by the

projection of the examples onto the vector of maximal variance, which is equivalent

to the deflation of the rows of Xj by the same vector. Since deflation is a projection

onto an orthogonal subspace, this demonstrates two geometric interpretations for the

computation of the PCA directions.

3.1.1.2 PLS

If we consider the PLS algorithm, then this is also easily placed within the framework.

In this case, uj is chosen to be the first singular vector of X′
jY. It should be clear that

since we are deflating in the same way, the resulting projection vectors are identical, as

are the final features. Furthermore, for the PLS case where one wishes to not just select

features, but compute the overall regression coefficients for the primal PLS problem,

they can be computed as

Ĉ = U(P′U)−1C′,

where C is the matrix with columns cj = Y′Xjuj/u
′
jX

′
jXjuj .

3.1.1.3 BLF

To position BLF within the general framework one must first center the data and com-

pute the initial gradient of the user defined loss function, α1. The jth projection direc-

tion is computed using uj = X′
jαj/

√

α′
jXjX

′
jXjX

′
jαj , where the denominator ensures

that the extracted features have unit norm. One then deflates as in Equation 3.1 and

Chapter 3 A General Framework for Feature Extraction 55

computes the next gradient of the loss function αj+1 using the features extracted so

far. Since the BLF deflation strategy is identical to that of the general framework, it

follows that the resulting features are also the same. As well as outputting features, BLF

additionally computes regression coefficients, details of which were given in Chapter 2.

3.2 Kernel Feature Extraction

Here we give a dual variable formulation of the framework, which allows feature extrac-

tion methods to be used in conjunction with kernels. Given a choice of dual variables

αj , let τ j = Xjuj = Kjαj. The deflation of Xj is given by Equation 3.1, hence the

kernel matrix is deflated by

Kj+1 =

(

I−
τ jτ

′
j

τ ′
jτ j

)

Kj , (3.4)

which is computable without explicit feature vectors. Notice that this deflation is differ-

ent to the dual-sided one used in KPLS, and in general results in non-symmetric residual

kernel matrices. However, it is more useful for sparse feature extraction and we shall

later see that it still allows for the specialisation to KPLS. The general kernel feature

extraction method is given in Algorithm 14.

Algorithm 14 Pseudo code for general kernel feature extraction.

Input: Kernel matrix K ∈ R
`×`, target vectors Y ∈ R

`×m, dimension k
Process:

1. K1 = K

2. For j = 1, . . . , k

(a) Choose dual vector αj ∈ R
` and let τ j = Kjαj

(b) Kj+1 =
(

I− τ jτ ′

j

τ ′

jτ j

)

Kj

3. End

Output: Dual vectors αj and features τ j, j = 1, . . . , k

In the primal case, we were able to give a closed form expression for the projection of a

new test point, and we would like to obtain a similar result for the dual variable case.

The derivation of the projection of a new point starts with the primal representation

and is identical to that of KPLS. Again, we have U = X′A and P = X′T(T′T)−1 where

A is the matrix with columns αj and T is the matrix with columns τ j , j = 1, . . . , k.

Hence, the final features are given by

φ(x)′U(P′U)−1 = k′A
(

(T′T)−1T′KA
)−1

, (3.5)

56 Chapter 3 A General Framework for Feature Extraction

where k is a vector of inner products between the test and training examples.

3.2.1 Specialisations to Existing Approaches

3.2.1.1 KPCA

In kernel PCA one finds the most dominant eigenvector of the kernel matrix and then

deflates using Equation 2.17. The resulting features are given by Kβj/
√

λj , j = 1, . . . , `,

where (λj , βj) is the jth eigenvalue-eigenvector pair. By letting αj = βj/
√

λj it follows

that kernel general framework deflation is equivalent to that of KPCA

Kj+1 =

(

I−
Kjαjα

′
jK

′
j

α′
jK

′
jKjαj

)

Kj

=

(

I−
λjKjαjα

′
j

λjα
′
jK

′
jαj

)

Kj

=

(

I−
Kjαjα

′
j

α′
jKjαj

)

Kj.

Hence, both the resulting residual kernel matrices and dual directions are the same as

those produced by KPCA. The extracted features are also identical since

Kj+1αj+1 =

(

I−
Kjαjα

′
j

α′
jKjαj

)

Kjαj+1

= Kj

(

I−
αjα

′
jKj

α′
jKjαj

)

αj+1

= Kj

(

I−
λjαjα

′
j

α′
jKjαj

)

αj+1

= Kjαj+1

= Kαj+1,

where the fourth line follows from the orthogonality of the eigenvectors.

3.2.1.2 KPLS

At first glance, it may seem that the kernel variant of KPLS does not fit within the

general framework for feature extraction since the deflations of the kernel matrices are

Chapter 3 A General Framework for Feature Extraction 57

different. However both deflations yield identical features when using the KPLS dual

directions. First, note that Equation 3.3 can be written as

Xj+1 =

j
∏

i=1

(

I− Xiuiu
′
iX

′
i

u′
iX

′
iXiui

)

X

=

j
∑

i=1

(

I− Xiuiu
′
iX

′
i

u′
iX

′
iXiui

)

X

=
(

I−Tj(T
′
jTj)

−1T′
j

)

X,

where Tj is the matrix composed of the first j columns of T, and the second line follows

from the orthogonality of Xiui, i = 1, . . . , j. Let K̃j = XjX
′
j be the jth residual kernel

matrix for KPLS, then the following relationship exists with the corresponding matrices

used for the kernel general framework

K̃j = XjX
′
j

= XjX
′
(

I−Tj−1(T
′
j−1Tj−1)

−1T′
j−1

)

= Kj

(

I−Tj−1(T
′
j−1Tj−1)

−1T′
j−1

)

,

where we have assumed that the vectors τ i, i = 1, . . . , j, are identical under both

deflations. To achieve the equivalence of the dual projections one could always choose

dual directions that are deflated by the dual projections. However, this is not required

in this case since αj is chosen to be the first eigenvector of YjY
′
jKj, and hence in the

space orthogonal to τ 1, . . . , τ j−1.

We elaborate on the previous point. Recall that for KPLS, the deflation of Y is required

in order to obtain the dual representations of the extracted features. It is deflated using

the same deflation of the kernel general framework,

Yj+1 =

(

I−
τ jτ

′
j

τ ′
jτ j

)

Yj

=
(

I−Tj(T
′
jTj)

−1T′
j

)

Y.

Since αj is in the column space of Yj, it can be written as αj = Yjβj for some vector

βj . Hence, αj is in the orthogonal space of τ 1, . . . , τ j−1 and

58 Chapter 3 A General Framework for Feature Extraction

τ j = Kjαj

= Kj

(

I−Tj−1(T
′
j−1Tj−1)

−1T′
j−1

)

Yβj

= Kj

(

I−Tj−1(T
′
j−1Tj−1)

−1T′
j−1

)2
Yβj

= K̃jYjβj,

which shows the equivalence of τ j under both double and left-sided deflations of the

kernel matrix.

To place KPLS within the general framework, we therefore need to modify Algorithm

14 as follows: at the start we let Y1 = Y and at each iteration we choose αj to be

the first eigenvector of YjY
′
jKj , scaled so that αj ← αj/

√

α′
jK̃jαj = αj/

√

α′
jKαj ;

after deflating Kj we must also deflate Yj by the process outlined above; the regression

coefficients for KPLS are computed as cj = Y′
jXjuj/u

′
jX

′
jXjuj = Y′τ j/τ

′
jτ j , making

C = Y′T(T′T)−1. Putting this together with Equation 3.5, the dual regression variables

are given by A(T′KA)−1T′Y, which is identical to the expression given in Rosipal and

Trejo (2001).

3.2.1.3 KBLF

Kernel BLF is closely related to the kernel general feature extraction framework. Its

specialisation is formed by first centering the kernel matrix and computing the initial

gradient of the loss function. Since the kernel matrix in KBLF is deflated on both sides,

one computes the jth projection direction using

uj = X′
jβj

= X′
(

I−Tj−1(T
′
j−1Tj−1)

−1T′
j−1

)

βj ,

where βj is the negative gradient of the loss function using the features extracted so

far. Clearly we have αj = (I−Tj−1(T
′
j−1Tj−1)

−1T′
j−1)βj at each iteration, normalised

with αj → αj/
√

α′
jK

′
jKjαj so that τ j has unit norm, j = 1, . . . , k.

Recall that in KBLF there is the requirement that one must deflate the dual projection

directions in order to compute the projection matrix for a new test example. However,

in this case the αj vectors are already deflated and the resulting features are computed

as per Equation 3.5. Notice that (T′T)−1 = I, so that the projection of a new test

example is φ̂(x)′ = k′A (T′KA)
−1

.

Chapter 3 A General Framework for Feature Extraction 59

3.3 Parallels with the (K)PCA Deflation

We have presented a framework based on deflating the columns of the data by the

projections of the residual examples. A related deflation is that of PCA (used in a

similar general setting in Smola et al. (1999)), which orthogonalises the rows of the

examples. It is difficult to claim superiority of either of the deflations in a general

setting. However, there are a number of parallels between these methods and here we

compare and contrast them and their kernel variants.

Assume that under the PCA deflation the projection directions are in the row space of

the residual matrices, i.e. uj = X′
jαj . Then in the same way that the vectors Xjuj

are orthogonal whilst using the general framework, the PCA projection directions are

mutually orthogonal as observed in Section 2.4.2. Furthermore, since the rows of Xj are

projected into the space orthogonal to ui for i < j, Xjui = 0. This is also the case with

the general framework deflation,

Xjui =

(

I−
Xj−1uj−1u

′
j−1X

′
j−1

u′
j−1X

′
j−1Xj−1uj−1

)

Xj−1ui

=

(

I−
Xj−1uj−1u

′
j−1X

′
j−1

u′
j−1X

′
j−1Xj−1uj−1

)

· · ·
(

I− Xiuiu
′
iX

′
i

u′
iX

′
iXiui

)

Xiui

= 0,

however, this property does not imply in general an equivalence to the PCA deflation.

Instead, the general framework can be seen as orthogonalising the examples with respect

to the projection directions as well as applying an additional transformation on them.

In the special case that the dual directions αj are in the space orthogonal to Xiui, i < j,

the resulting projection directions are orthogonal

u′
jui = α′

jXjui

= 0,

which follows from the previous result, and applies to all of the general framework

specialisations above.

With the KPCA deflation both the rows and columns of Kj are orthogonal to αi, i < j,

since

60 Chapter 3 A General Framework for Feature Extraction

Kjαi =

(

I−
Kj−1αj−1α

′
j−1

α′
j−1Kj−1αj−1

)

Kj−1αi

=

(

I−
Kj−1αj−1α

′
j−1

α′
j−1Kj−1αj−1

)

· · ·
(

I− Kiαiα
′
i

α′
iKiαi

)

Kiαi

= 0,

with a similar derivation showing that α′
iKj = 0. An identical property applies with

the rows of the residual kernel matrices for the kernel general framework deflation, i.e.

Kjαi = 0 for i < j.

3.4 A Note on Numerical Stability

One of the disadvantages of the deflation based strategies presented so far is that in

practice computations are performed using floating point numbers of finite precision

and errors can build up after a number of iterations. These errors are most apparent

when the floating point numbers involved are close to the limit of their range. Note that

the kernel general framework deflation never increases the norm of the kernel matrix

columns. Consider the deflation of a single kernel matrix column tj at the jth iteration,

‖tj+1‖2 =

∥

∥

∥

∥

∥

(

I−
τ jτ

′
j

τ ′
jτ j

)

tj

∥

∥

∥

∥

∥

2

= t′j

(

I−
τ jτ

′
j

τ ′
jτ j

)

tj

= t′jtj −
(t′jτ j)

2

τ ′
jτ j

= ‖tj‖2 −
(t′jτ j)

2

τ ′
jτ j

,

hence ‖tj+1‖2 is either reduced or stays the same, and any reduction is given by the

second term in the last line. We are interested in the relative sizes of ‖tj+1‖2 and ‖tj‖2,

‖tj+1‖2
‖tj‖2

= 1−
(t′jτ j)

2

‖tj‖2‖τ j‖2
.

To prevent the columns of the kernel matrix from decreasing too quickly, the cosine of

the angle between them and τ j must be small. Often the above quantity is small at the

Chapter 3 A General Framework for Feature Extraction 61

first iteration, since if the norm of the center of mass is large compared to the radius of

the hypersphere enclosing the data then (t′jτ j)
2/‖tj‖2 is generally large. Hence, one can

reduce numerical errors by centering the data, details of which are given in Appendix

A.

3.5 Summary

This chapter has introduced a new general framework for feature extraction based on

the PLS deflation scheme. Within this framework one chooses a projection direction

using a user defined criterion, and then deflates. The framework brings together a

number of existing results and supplies additional insights into several feature extraction

methods. In particular, it unifies PCA, PLS, BLF and their kernel variants. Several

useful properties from PLS are preserved in the framework, including conjugacy of the

projection directions with respect to the data, efficient computation of the final features

and the ability to operate in a kernel-defined feature space.

Chapter 4

Matrix Approximation for

Machine Learning

Kernel methods require a kernel matrix K ∈ R
`×`, which implies a computational com-

plexity of at least O(`2). If matrix inversion or eigenvalue decomposition is required

then the complexity increases to O(`3). However, low-rank approximations of the kernel

matrix can frequently improve efficiency. For example, the efficiency of SVMs changes

from O(`3)1 to O(`r) (where r is the rank of the approximation) in Fine and Scheinberg

(2001), and the kernel k-means algorithm is shown to improve its efficiency with low-

rank matrices in Kulis et al. (2005). Since kernel matrices often have rapidly decaying

eigenvalues (Williams and Seeger (2000a)), good approximations can be obtained with

a small rank. In this chapter, we provide some insights into matrix approximation using

a general unsupervised technique which chooses projection directions by maximising the

Frobenius norm difference between successive orthogonalised matrices.

Our analysis provides a number of interesting observations about KGS, KFA, (K)PCA

and (K)PLS. It is extended to derive two new sparse kernel approximation algorithms

called Greedy Single Deflated KPLS (GSD-KPLS) and Greedy Double Deflated KPLS

(GDD-KPLS). These methods are based on the deflations of the general kernel feature

extraction framework and KPLS respectively. The mechanism used to provide sparsity

for GSD-KPLS and GDD-KPLS is simple to implement, and for GSD-KPLS results

in a computationally efficient algorithm. The final part of this chapter compares the

approximation methods on a selection of benchmark datasets.

1In practice, SVMs can be trained using the Sequential Minimal Optimisation (SMO, Platt (1999))
method which scales linearly to quadratically in ` for various test problems.

63

64 Chapter 4 Matrix Approximation for Machine Learning

4.1 Aims and General Approach

Three requirements that are desirable in a matrix approximation method are a small

approximation error using a low dimensionality, and computational and memory effi-

ciency. The last two requirements are considered later in Section 4.4. The first leads to

the question about how the quality of matrix approximations can be evaluated. This

can vary depending on the use of the resulting matrices, for example in a supervised

setting a good approximation should also be predictive for the labels. We contemplate

a more general scenario and aim to find a low-rank approximation matrix X̂ such that

the following residual error

‖X− X̂‖2F =
∑

i,j

(X− X̂)2ij , (4.1)

is small. One could also consider different error functions, for example the 1-norm loss

between matrix elements. However, the Frobenius norm is simple to analyse and there

is also a useful intuition behind it. Note that

‖X‖2F = tr(X′X) =

m
∑

i=1

λi,

where λi is the ith eigenvalue of X′X, hence the Frobenius norm of X is the cumulative

variance of the columns of X. It follows that Equation 4.1 is simply the residual variance

of the approximation X̂.

A simple method for finding an approximation with least error is to project the examples

onto a set of orthogonal basis vectors, denoted by the columns of Uk ∈ R
m×k, and

minimise Equation 4.1,

min ‖X−XUkU
′
k‖2F

s.t. U′
kUk = I

k < rank(X),

which results in identical projection vectors to PCA. Often, one solves PCA using the

eigen-decomposition of the covariance matrix X′X however, earlier it was shown how it

can also be solved using iterative deflation. Since several methods employing iterative

deflation to extract features have been shown, it is natural to ask whether the alternative

deflations also have merit in a matrix approximation context. A simple greedy approach

for choosing projection directions is to maximise the Frobenius norm difference between

successive deflated matrices,

Chapter 4 Matrix Approximation for Machine Learning 65

max ‖Xj −Xj+1‖2F , (4.2)

and this is equivalent to maximising the variance of the component removed from Xj

through deflation. Observe that if we denote the approximation of X after k iterations

as X̂ = X − Xk+1, then the residual error given by substitution into Equation 4.1 is

‖Xk+1‖2F .

A similar criterion for choosing projection directions is used in Smola and Schölkopf

(2000) to approximate the kernel matrix, and here we extend their analysis to a number

of different deflation schemes. Furthermore, a full approximation of the kernel matrix is

given as opposed to the one in Smola and Schölkopf (2000) which is simply a subset of

the kernel matrix columns.

4.2 Data Matrix Approximation

The study of matrix approximation strategies begins with the PCA deflation, given by

Equation 2.9. Solving Equation 4.2 leads to the PCA projection directions,

‖Xj −Xj+1‖2F =
u′

jX
′
jXjuj

u′
juj

,

and to maximise the above one can fix ‖uj‖ = 1, since uj is invariant to scaling. The

resulting projection directions can be used to approximate a test point φ(x) using

φ̂(x) = φ(x)′UU′ =
k
∑

j=1

φ(x)′uju
′
j , (4.3)

which is the projection of the example onto the basis defined by uj , j = 1, . . . , k.

The PLS deflation of Equation 2.23 yields an identical result. In this case we have

‖Xj −Xj+1‖2F =
u′

jX
′
jXjX

′
jXjuj

u′
jX

′
jXjuj

,

and fixing the denominator to be equal to 1 implies that maximising the above can be

written as

66 Chapter 4 Matrix Approximation for Machine Learning

max u′
jX

′
jXjX

′
jXjuj

s.t. u′
jX

′
jXjuj = 1.

The Lagrangian is denoted by

L(uj, λ) = u′
jX

′
jXjX

′
jXjuj − λ(u′

jX
′
jXjuj − 1),

where λ is a Lagrange multiplier. Differentiating with respect to uj and equating the

derivative to zero results in the following eigenproblem

X′
jXjX

′
jXjuj = λX′

jXjuj .

Define vj = X′
jXjuj, then X′

jXjvj = λvj hence vj is an eigenvector of the covariance

matrix X′
jXj . Clearly, we have vj = X′

jXjuj = (1/λ)X′
jXjvj which implies that

uj = (1/λ)vj , assuming X′
jXj is invertible, hence uj is computed identically to the

corresponding PCA direction. One might expect directions after the first to be different,

however Chapter 3 showed that picking directions in this way and using either the PCA

or PLS deflations produces the same features.

One problem with the use of the PLS deflation is that the projection of a new test point

given by Equation 2.26 is not orthonormal, hence unintuitive in the matrix approxima-

tion setting. Further insight into how the projections can be used to approximate a

matrix can be gained by examining the PLS deflation

Xk+1 =

(

I− Xkuku
′
kX

′
k

u′
kX

′
kXkuk

)

Xk

= X−
k
∑

i=1

Xiuiu
′
iX

′
iXi

u′
iX

′
iXiui

= X−
k
∑

i=1

Xiuip
′
i,

with pi = X′
iXiui/u

′
iX

′
iXiui. Rearranging gives

X = TP′ + Xk+1

= T(T′T)−1T′X + Xk+1,

Chapter 4 Matrix Approximation for Machine Learning 67

where T has columns τ j = Xjuj , j = 1, . . . , k. Hence the original data matrix X is the

projection of the columns of X onto a basis defined by τ 1, . . . , τ k plus a residual term

Xk+1. The approximation of a new test example is therefore

φ̂(x) = φ(x)′U(P′U)−1P′. (4.4)

If one uses the PCA projection directions, pj = X′
jXjuj/u

′
jX

′
jXjuj = uj/u

′
juj = uj ,

hence the above expression is identical to Equation 4.3 in this case.

4.3 Kernel Matrix Approximation

A natural progression from approximating the data matrix is to do the same for the

kernel matrix. In this case one needs to find the optimal directions αj from the residual

matrices Kj , j = 1, . . . , k. In analogy to the previous section, these directions are found

by maximising the norm of successively deflated kernel matrices,

max ‖Kj −Kj+1‖2F , (4.5)

which in general is not equivalent to Equation 4.2.

The Frobenius norm of the kernel matrix is the sum of its squared eigenvalues since

‖K‖2F = tr(VΛV′VΛV′) = tr(Λ2), where K = VΛV′ is the eigen-decomposition of K.

The eigenvalues of the kernel matrix correspond to the input variance of the data, hence

Equation 4.5 maximises the cumulative squared variance of the component removed

from Kj through deflation, provided Kj is symmetric.

As before we solve the above optimisation for different deflation strategies, starting with

that of KPCA (Equation 2.17). In this case, the dual projection directions are found by

maximising

‖Kj −Kj+1‖2F =

(

α′
jK

′
jKjαj

α′
jKjαj

)2

,

which is equivalent to solving

max α′
jK

′
jKjαj

s.t. α′
jKjαj = 1.

The Lagrangian of this optimisation is

68 Chapter 4 Matrix Approximation for Machine Learning

L(αj, λ) = α′
jK

′
jKjαj − λ(α′

jKjαj − 1),

where λ is a Lagrange multiplier. After differentiating and equating to zero one obtains

K′
jKjαj = λKjαj , which is the same as the KPCA problem given by Equation 2.11.

Next, consider the KPLS deflation of Equation 2.27. The value of αj is computed by

maximising

‖Kj −Kj+1‖2F = 2
α′

jK
4
jαj

α′
jK

2
jαj
−
(

α′
jK

3
jαj

α′
jK

2
jαj

)2

. (4.6)

Since directions are chosen differently to KPLS, the projection of a new test point is no

longer computed in the same way. Instead, it is found using

φ̂(x)′ = k′Ã
(

(T′T)−1T′KÃ
)−1

,

where Ã has columns

α̃j =

j−1
∑

i=1

(

I− Kiαiα
′
iK

′
i

α′
iK

′
iKiαi

)

αj , j = 1, . . . , k.

In the primal case Equation 4.4 gives the approximation for a new test point, and it

follows that the corresponding approximate kernel evaluation is denoted by

κ̂(x, z) = φ(x)′U(P′U)−1P′P(U′P)−1U′φ(z) (4.7)

= φ̂(x)′(T′T)−1T′KT(T′T)−1φ̂(z) (4.8)

= k′
xÃ(T′KÃ)−1T′KT(Ã

′
K′T)−1Ã

′
kz, (4.9)

where kx and kz are vectors of inner products between the training examples and x and

z respectively.

Finally, consider the deflation used in the kernel general feature extraction framework

(Equation 3.4). The difference between successively deflated kernel matrices is

‖Kj −Kj+1‖2F =
α′

jK
′
jKjK

′
jKjαj

α′
jK

′
jKjαj

,

Chapter 4 Matrix Approximation for Machine Learning 69

hence, one needs to solve

max α′
jK

′
jKjK

′
jKjαj

s.t. α′
jK

′
jKjαj = 1,

(4.10)

which results in the eigenvalue equation

K′
jKjK

′
jKjαj = λK′

jKjαj ,

where λ is an eigenvalue. Let vj = K′
jKjαj then αj = (1/λ)vj is a solution, assuming

K′
jKj is invertible, which implies K′

jKjαj = λαj for non-zero eigenvalues. This is

identical to the way that KPCA chooses directions. Recall that in the primal case the

optimal directions for the PLS deflation were the same as the PCA directions. In the

same way and by using the result in Chapter 3, the optimal directions for the kernel

general framework deflation are identical to the KPCA ones.

4.4 Sparsity

One drawback of some of the kernel-based approximation methods considered so far is

that they are not sparse: to obtain projections for new test points, all training examples

are often needed. Sparseness however is a desirable property, providing computational

and efficiency benefits, and as such it is often the case that one is prepared to tolerate

a small reduction in performance if a high degree of sparseness is achieved.

A direct approach for enforcing sparsity is to constrain the cardinality of the projection

directions. For example, one can formulate a sparse variant of the PCA optimisation,

max u′Au

s.t. u′u = 1

card(u) ≤ p,

(4.11)

where card is the cardinality of its input vector, p is an upper bound on the cardinality

of u and A ∈ R
m×m is a positive semidefinite covariance matrix. Several authors

have tackled this optimisation. In d’Aspremont et al. (2005) it is relaxed to form a

semidefinite program which can be solved in O(m4
√

log(m)ε) complexity, where ε is

the desired absolute accuracy. In contrast, Moghaddam et al. (2006b) proposes both

greedy and exact methods for solving the above optimisation. The greedy method can

use either forward or backward selection to find non-zero indices in u, with complexities

O(m3) and O(m4) respectively. The exact computation of Equation 4.11 is achieved

with the branch and bound method, using a bound on the eigenvalues of the cardinality

70 Chapter 4 Matrix Approximation for Machine Learning

constrained eigenproblem. In Sriperumbudur et al. (2007), sparse eigenvalue problems

are solved using a zero-norm penalty on the projection directions, where the zero-norm

is estimated using the method presented in Weston et al. (2003). The resulting problem

is formulated as a difference of convex functions program and solved using a sequence

of locally convex programs at O(ηm3) complexity, where η is the number of iterations

before convergence. The authors also suggest relaxing the zero-norm constraint to a

1-norm constraint which can be solved using a sequence of sparse minimum eigenvalue

programs.

Most of these sparse optimisations need complex optimisation procedures, however sev-

eral authors have suggested simpler approaches to sparsity. For example, Arenas-Garćıa

et al. (2006) implements a sparsity constraint for rKOPLS by projecting onto directions

which are a linear combination of a random subset of the training examples. In Franc

and Hlavác (2006), the residual approximation error on the training examples is min-

imised by using projection directions selected from a subset of the examples, which are

in turn chosen using a simple greedy method.

A simple implementation is desirable since it is easy to test and analyse. Hence, we use

the method adopted in Smola et al. (1999), which represents a trade off between the

loss in the quality of the resulting directions, and the gains in computational efficiency.

To achieve a sparse representation on the projection vectors, αj is chosen so that it has

only one non-zero entry, hence after k iterations only k training examples will contribute

to the directions. Furthermore, if αj has a non-zero entry at its ith position, then

τ j = Xjuj = Kjαj is a scalar multiple of the ith column of Kj. One of the advantages

of this approach to sparsity is that the computation of αj does not require the entire

kernel matrix to be in memory. Furthermore, if an optimisation involving this cardinality

constraint is independent of the scaling of αj , then one need only iterate through at most

` non-zero entries to find a solution. However, if the examples are unevenly distributed

and the directions of interest lie in the space not well covered by them, the resulting

directions can be worse than those obtained without sparsity.

A further drawback of the above sparsity approach is that one still needs to run through

the entire kernel matrix to find each direction, which implies an O(`2) complexity. This

is more than we would like, and we propose a speed-up based on the method given in

Smola and Schölkopf (2000). This speed-up uses a small random subset of the examples

to select αj , motivated by the following lemma.

Lemma 4.1 (Maximum of Random Variables (Smola and Schölkopf (2000))). Denote by

ξ1, . . . , ξc identically distributed independent random variables with common cumulative

distribution function F (x). Then the cumulative distribution function of ξ = max(ξi) is

G(x) = F (x)c.

Let ξ1, . . . , ξc ∈ [0, 1] represent the values of a function f : R
` → R with c columns of

Kj, then F (x) is the probability that each column has its ξi value less than or equal to

Chapter 4 Matrix Approximation for Machine Learning 71

x. Clearly we have P (ξ > x) = 1 − F (x)c from the above lemma and it follows that

this quantity rapidly becomes closer to 1 as c increases provided F (x) 6= 1. Hence an

approximate method for finding the optimal dual sparse direction is to only consider a

few columns of the residual kernel matrix.

4.5 Sparse Kernel Matrix Approximation

One therefore has the ingredients to formulate efficient sparse kernel matrix approxima-

tion methods. Each optimisation in Section 4.3 is solved subject to the constraint that

the dual directions are chosen from scalar multiples of c standard unit vectors. One can

then deflate in the appropriate manner. However, there are important properties for

each case that are now outlined in detail.

4.5.1 Kernel Feature Analysis

The first method solves the KPCA optimisation subject to a sparsity constraint on the

dual vectors,

max α′
jK

′
jKjαj

s.t. α′
jKjαj = 1

card(αj) = 1,

(4.12)

which is identical to the Kernel Feature Analysis (KFA) approach used in Smola et al.

(1999). The authors also make the suggestion of randomly subsampling the kernel matrix

columns in order to select optimal directions, to obtain an O(`k2c) algorithm. One of

the problems with the random subsampling approach is that the relative quality of the

best column to the one selected is unknown. There could be one column that was much

better than the rest so that being in the top 95% for example would not guarantee being

close to this quality.

A simple result is now given that shows with high probability when being in the top

percentile for the type of measures used here will also imply a quality close to the

best. Consider a sample of data x1, . . . ,x` (already projected into a feature space)

and suppose that one wishes to find an index i such that e′iK
2ei is large, where K

is the corresponding kernel matrix. If we assume the vectors xi have norm one, this

corresponds to the optimisation considered in Equation 4.12. The largest possible value

is upper bounded by the largest eigenvalue of K2 which is λ2, where λ is the largest

eigenvalue of K = XX′ and also the largest eigenvalue of the matrix C = X′X.

72 Chapter 4 Matrix Approximation for Machine Learning

Now consider the eigenvalue decomposition of C = VΛV′. Let M = V′X′, so that

X′ = VM, making the columns Mi of M the coefficients of the data in the eigenbasis.

It follows that ‖Mi‖ = 1 and all entries in M are bounded by 1. Note that

MM′ = V′X′XV = Λ,

implying that
∑`

j=1 m2
1j = λ1 = λ. Consider a threshold θ = λ/2` for m2

1j . At least t

examples must have their m2
1j coordinate exceeding this threshold where

t.1 + (`− t)θ = λ.

Here it is assumed that t examples have their m2
1j coordinate set to 1, and the remainder

are set to θ. This implies that t = λ`/(2`−λ) and a random sample of log(0.05)/ log((`−
t)/(e`)) examples will with probability 0.95 have an example j with m2

1j ≥ θ, where e

is Euler’s number. To derive the sample size c, notice that the probability of choosing c

examples with their m2
1j coordinate less than θ should be less than 0.05,

(

`− t

c

)

/

(

`

c

)

< 0.05,

where
(

·
·

)

is the choose function. By substituting in bounds on the choose functions,
(

n
k

)

≥
(

n
k

)k
and

(

n
k

)

≤
(

ne
k

)k
, the following inequality results

(

`− t

`e

)c

< 0.05,

and by taking logarithms and simplifying, c is at least log(0.05)/ log((` − t)/(e`)). Re-

turning to the quantity of interest,

e′jK
2ej = ejXX′XX′ej = x′

jCxj = M′
jΛMj ≥ λθ = λ2/2`,

which for large λ is a significant fraction of the optimum, λ2.

As an interesting geometrical interpretation of this result, observe that

λ = v′
1X

′Xv1 =
∑̀

i=1

(v′
1xi)

2 =
∑̀

i=1

cos2 γi

where γi is the angle between the first eigenvector v1 and xi. Hence, λ = `Ê[cos2 γ], and

when Ê[cos2 γ] is large, λ is close to `. It follows that when the expectation of the angle

Chapter 4 Matrix Approximation for Machine Learning 73

between the examples and dominant eigenvector is small in general, then choosing one

example from a random subset will give a variance close to the best example with high

probability. One can also say that the resulting variance will be close to the variance

obtained using the dominant eigenvector, hence little is lost through enforcing sparsity

in the given way.

An additional observation about KFA (not covered in Smola et al. (1999)) is that in order

to compute features at the end of the algorithm, one must deflate the dual directions as

follows

α̃j =

j−1
∏

i=1

(

I− αiα
′
iK

′
i

α′
iKiαi

)

αj ,

which implies uj = X′α̃ hence U = X′Ã with Ã = [α̃1, . . . , α̃k]. The projection of a

new test point is therefore given by φ̂(x)′ = k′Ã and it follows that the corresponding

kernel evaluation is

κ̂(x, z) = k′
xÃÃ

′
kz. (4.13)

Notice that α̃j has exactly j non-zero entries, of which j−1 occur at identical indices to

α̃j−1, j = 2, . . . , k. Hence, for the above kernel approximation one need only compute

k kernel evaluations with x and z.

Observe that the Kernel Gram-Schmidt method is similar to KFA, since it uses the

KPCA deflation and a single residual example per projection direction. Each direction

is chosen to be a scalar multiple of the example corresponding to the largest diagonal

element of the kernel matrix. It has been shown that this is not the ideal choice by

considering the Frobenius norm difference between successively deflated matrices.

4.5.2 Greedy Double Deflated KPLS

The KPLS deflation is now used for sparse matrix approximation, formulating a method

termed Greedy Double Deflated KPLS. The optimisation of Equation 4.6 is augmented

with a cardinality constraint on the dual vector,

max 2α′
jK

4
jαj − (α′

jK
3
jαj)

2

s.t. α′
jK

2
jαj = 1

card(αj) = 1,

which can be solved by computing the values of the objective function for all ` non-

zero entries of αj. One would like to use Lemma 4.1 to efficiently approximate this

74 Chapter 4 Matrix Approximation for Machine Learning

optimisation, however, there are cubic and quartic terms of the residual kernel matrix.

The α′
jK

4
jαj term requires the multiplication of two ` × ` matrices which is O(`3). If

one also considers that the KPLS deflation requires O(`2) operations then it is clear that

GDD-KPLS has a complexity of O(k`3). The complete GDD-KPLS method is shown in

Algorithm 15.

Algorithm 15 Pseudo code for Greedy Double Deflated KPLS.

Inputs: Kernel K ∈ R
`×`, dimension k

Process:

1) K1 = K

2) For j = 1, . . . , k

(a) Solve
max 2α′

jK
4
jαj − (α′

jK
3
jαj)

2

s.t. α′
jK

2
jαj = 1

card(αj) = 1

(b) Deflate Kj+1 =
(

I− Kjαjα′

jK
′

j

α′

jK
′

jKjαj

)

Kj

(

I− Kjαjα′

jK
′

j

α′

jK
′

jKjαj

)

3) End

4) For j = 1, . . . , k

(a) α̃j =
∑j−1

i=1

(

I− Kiαiα′

iK
′

i

α′

iK
′

iKiαi

)

αj

5) End

6) Compute Z = (T′KÃ)−1T′KT(Ã
′
K′T)−1

Output: Directions αj, projections Kjαj , j = 1, . . . , k, and κ̂(x, z) = k′
xÃZÃ

′
kz

As well as having a method to find an approximate kernel evaluation, it is also useful

to compute a set of primal features for GDD-KPLS. Notice that if we define Kτ =

T(T′T)−1T′KT(T′T)−1T′ and substitute Kτ in place of K in Equation 4.9 the result

is unaltered due to the orthogonality of T. Hence, by using the Incomplete Cholesky

decomposition to obtain Kτ = RkR
′
k,

φ̂(x)′ = k′Ã(T′KÃ)−1T′Rk,

where Rk ∈ R
`×k since Kτ has rank k. It follows that the approximation of a test point

φ̂(x) has k features, and κ̂(x, z) = 〈φ̂(x), φ̂(z)〉 as required.

Chapter 4 Matrix Approximation for Machine Learning 75

4.5.3 Greedy Single Deflated KPLS

The final sparse approximation method, called Greedy Single Deflated KPLS, applies the

deflation from the kernel general feature extraction framework. One solves the following

optimisation at the jth iteration, based on Equation 4.10,

max α′
jK

′
jKjK

′
jKjαj

s.t. α′
jK

′
jKjαj = 1

card(αj) = 1.

(4.14)

This is equivalent to the expression used in Smola and Schölkopf (2000), which also

applies the same deflation. Notice that by substituting Qj = K′
jKj , which represents

the covariance matrix of the columns of Kj , Equation 4.14 becomes similar to the KFA

optimisation of Equation 4.12. It follows that an application of Lemma 4.1 allows one

to choose a direction close to the best with high probability when there is a rapid decay

in the spectrum of Qj . The resulting value of the objective function is also likely to be

close to that obtained without the cardinality constraint.

One of the problems with the optimisation of Equation 4.14 is that its complexity is

O(`3) (as noted in Smola and Schölkopf (2000)). It would seem that since one requires

the computation of K′
jKjK

′
jKj , Lemma 4.1 cannot be applied. However, observing the

following relationship

K′
jKj = K′

(

I−
j−1
∑

i=1

Kiαiα
′
iK

′
i

α′
iK

′
iKiαi

)2

K

= K′

(

I−
j−1
∑

i=1

Kiαiα
′
iK

′
i

α′
iK

′
iKiαi

)

K

= K′
jK,

where the second line follows from the orthogonality of the dual projections, implies

that α′
jK

′
jKjK

′
jKjαj = α′

jK
′
jKK′Kjαj . Furthermore, instead of using the full kernel

matrix K one can substitute its Nyström approximation. Recall that this is given by

K̃k = K[, I]K[I, I]−1K[I,],

where I ∈ [`]k is a set of k random indices. The resulting optimisation can be solved

in complexity O(c2`) if one uses c columns of Kj to select αj , and K̃c in place of K.

As with the KPCA deflation, the kernel general feature extraction framework deflates

the columns of the kernel matrix independently. Hence, one only needs to deflate a

76 Chapter 4 Matrix Approximation for Machine Learning

subset of the kernel matrix columns at each iteration. To compute c columns of Kj in

this way requires O(cj`) operations, and it follows that k iterations of GSD-KPLS is

O(c2k` + ck2`).

After iterating the required number of times, an approximate kernel evaluation can be

computed using a similar expression to that used for KPLS (Equation 4.9),

κ̂(x, z) = k′
xAZA′kz,

where Z = (T′KA)−1T′K̃qT(A′K′T)−1 and q = max(c, k). Notice that A is a sparse

matrix with only one non-zero entry per column, hence one need only compute the k

corresponding entries of kx and kz. Furthermore, to compute a set of primal features

one can use an identical method to that used for GDD-KPLS. The complete GSD-KPLS

method is given in Algorithm 16.

Algorithm 16 Pseudo code for Greedy Single Deflated KPLS.

Inputs: Kernel K ∈ R
`×`, dimension k, sample size c

Process:

1) For j = 1, . . . , k

(a) Randomly pick {i1, . . . , ic} ∈ [`]. Let K
`,c
1 = KE, E = [ei1, . . . , eic]

(b) For i = 1, . . . , j − 1

• Deflate K
`,c
i+1 =

(

I− Kiαiα′

iK
′

i

α′

iK
′

iKiαi

)

K
`,c
i

(c) End

(d) Solve

max α′
jK

′
jK̃

2
cKjαj

s.t. α′
jK

′
jKjαj = 1

αj ∈ s · {ei1 , . . . , eic}
for scalar s

2) End

3) Compute Z = (T′KA)−1T′K̃qT(A′K′T)−1, q = max(c, k)

Output: Directions αj, projections Kjαj , j = 1, . . . , k, and κ̂(x, z) = k′
xAZA′kz

4.5.4 A Stopping Condition

To conclude the discussion on sparse kernel approximation methods, we provide a stop-

ping criterion which uses a lower bound ε ≥ 0 on the residual error, tr(K − K̂) ≤ ε.

For GDD-KPLS this does not influence the complexity. With GSD-KPLS, the same

situation is apparent using the following observation,

Chapter 4 Matrix Approximation for Machine Learning 77

tr(K̂) = tr(T(T′T)−1T′KT(T′T)−1T′) (4.15)

= tr(T′KT) (4.16)

=

k
∑

i=1

τ ′
iKτ i, (4.17)

where (T′T) = I in this case. A substitution of K̃c for K provides a method for

approximating tr(K̂), with no increase in the complexity at each iteration.

4.6 Computational Results

This final section is an empirical evaluation of the kernel approximation algorithms. We

compare KPCA, KFA, KGS, GSD-KPLS and GDD-KPLS on a selection of benchmark

datasets.

4.6.1 Residual Error

The first experiment compares the approximation methods by measuring the residual

variance of the approximated kernel matrices,

1

`
tr(K− K̂),

on the UCI Arrhythmia and Dermatology datasets. Some additional information about

these datasets is shown in Table 4.1. Each dataset is first normalised and centered so

that the features have unit norm and zero mean (Appendix A). Centering is required in

order to reduce variance caused by a non-zero center of mass. To reduce bias caused by

sample selection, the error is measured using 5-fold cross validation. All experimental

code is implemented in Matlab.

Dataset Examples Features

Arrhythmia 452 279
Dermatology 366 34
Ionosphere 355 34
MUSK “Clean1” 476 166
SPECTF 267 44
WDBC 569 30

Table 4.1: Information about the UCI datasets.

Since one is interested in approximation errors across a range of output dimensionalities,

each method is iterated from 5 to 25 times in steps of 5 for the Dermatology dataset. The

78 Chapter 4 Matrix Approximation for Machine Learning

same test is repeated using the RBF kernel, with σ = 1, using iterations from 5 to 205 in

steps of 50. Notice that no attempt is made to select σ in a model selection framework,

however it is intuitive to compare residual error using the same kernel matrix. With

the Arrhythmia data we record residual errors for iterations 5 to 205 in steps of 40 with

the linear kernel, and 5 to 255 in steps of 50 with the RBF kernel (σ = 1). In order to

evaluate the effectiveness of Lemma 4.1 for KFA and GSD-KPLS, we vary the number

of kernel matrix columns used to select the dual directions from the set {100, 200, `}.

Projections

5 10 15 20 25

KPCA .0340 (.0007) .0203 (.0004) .0111 (.0004) .0053 (.0002) .0021 (.0001)

KGS .0482 (.0019) .0312 (.0016) .0194 (.0011) .0116 (.0010) .0059 (.0004)

KFA c = 100 .0419 (.0014) .0263 (.0006) .0155 (.0002) .0080 (.0002) .0031 (.0002)

KFA c = 200 .0405 (.0012) .0256 (.0005) .0154 (.0004) .0080 (.0002) .0033 (.0001)

KFA c = ` .0403 (.0011) .0255 (.0005) .0151 (.0004) .0078 (.0003) .0031 (.0003)

GDD-KPLS .0361 (.0007) .0224 (.0005) .0127 (.0005) .0062 (.0003) .0024 (.0002)

GSD-KPLS c = 100 .0361 (.0008) .0229 (.0004) .0131 (.0003) .0066 (.0003) .0027 (.0002)

GSD-KPLS c = 200 .0365 (.0007) .0227 (.0004) .0129 (.0002) .0065 (.0002) .0026 (.0002)

GSD-KPLS c = ` .0367 (.0006) .0230 (.0007) .0132 (.0004) .0066 (.0002) .0027 (.0003)

KPCA .0380 (.0031) .0272 (.0026) .0158 (.0017) .0076 (.0009) .0029 (.0006)

KGS .0495 (.0030) .0343 (.0021) .0233 (.0025) .0142 (.0011) .0077 (.0006)

KFA c = 100 .0462 (.0027) .0320 (.0039) .0192 (.0020) .0098 (.0015) .0037 (.0008)

KFA c = 200 .0422 (.0040) .0299 (.0032) .0190 (.0016) .0097 (.0005) .0039 (.0008)

KFA c = ` .0426 (.0052) .0299 (.0029) .0187 (.0019) .0095 (.0010) .0039 (.0006)

GDD-KPLS .0373 (.0044) .0276 (.0037) .0170 (.0030) .0084 (.0013) .0029 (.0006)

GSD-KPLS c = 100 .0382 (.0037) .0266 (.0030) .0166 (.0027) .0082 (.0009) .0034 (.0009)

GSD-KPLS c = 200 .0402 (.0036) .0274 (.0024) .0174 (.0021) .0088 (.0017) .0033 (.0005)

GSD-KPLS c = ` .0381 (.0046) .0267 (.0027) .0162 (.0014) .0084 (.0011) .0037 (.0006)

Table 4.2: Residual errors of training (top) and test (bottom) kernels using the Derma-
tology dataset with the linear kernel. Best results are in bold, and standard deviations

are in parentheses.

Projections
5 45 85 125 165 205

KPCA .409 (.019) .118 (.009) .037 (.004) .010 (.001) .002 (.000) .000 (.000)

KGS .467 (.020) .178 (.011) .068 (.005) .024 (.003) .007 (.001) .001 (.000)
KFA c = 100 .461 (.019) .164 (.010) .064 (.006) .022 (.002) .007 (.001) .001 (.000)
KFA c = 200 .457 (.019) .163 (.011) .064 (.006) .022 (.002) .007 (.001) .001 (.000)
KFA c = ` .454 (.021) .162 (.011) .063 (.006) .022 (.003) .007 (.001) .001 (.000)
GDD-KPLS .424 (.019) .135 (.009) .045 (.005) .012 (.002) .003 (.000) .000 (.000)
GSD-KPLS c = 100 .429 (.020) .138 (.010) .047 (.005) .013 (.002) .003 (.001) .000 (.000)
GSD-KPLS c = 200 .428 (.022) .138 (.011) .047 (.005) .013 (.002) .003 (.001) .000 (.000)
GSD-KPLS c = ` .426 (.018) .138 (.011) .046 (.005) .013 (.002) .003 (.001) .000 (.000)

KPCA .454 (.088) .286 (.057) .201 (.045) .133 (.040) .095 (.038) .069 (.033)
KGS .538 (.103) .356 (.062) .229 (.047) .152 (.042) .104 (.038) .073 (.033)
KFA c = 100 .500 (.098) .317 (.060) .219 (.045) .148 (.039) .101 (.036) .071 (.032)
KFA c = 200 .514 (.102) .320 (.060) .224 (.045) .146 (.038) .100 (.036) .071 (.032)
KFA c = ` .513 (.102) .320 (.060) .222 (.048) .147 (.040) .101 (.036) .071 (.033)
GDD-KPLS .443 (.086) .280 (.053) .194 (.042) .123 (.039) .084 (.035) .063 (.033)
GSD-KPLS c = 100 .453 (.084) .281 (.056) .197 (.041) .129 (.036) .089 (.036) .065 (.033)
GSD-KPLS c = 200 .445 (.085) .279 (.054) .198 (.040) .130 (.037) .089 (.036) .064 (.032)
GSD-KPLS c = ` .451 (.087) .284 (.058) .197 (.043) .128 (.038) .088 (.036) .064 (.033)

Table 4.3: Residual errors of training (top) and test (bottom) kernels using the Ar-
rhythmia dataset with the linear kernel.

Table 4.2 shows the results for the Dermatology dataset with the linear kernel. The ker-

nel matrix of the training examples is referred to as a training kernel, and a test kernel

Chapter 4 Matrix Approximation for Machine Learning 79

Projections

5 55 105 155 205

KPCA .0371 (.0009) .0010 (.0000) .0003 (.0000) .0001 (.0000) .0000 (.0000)
KGS .0614 (.0040) .0028 (.0002) .0008 (.0001) .0002 (.0000) .0001 (.0000)
KFA c = 100 .0494 (.0007) .0024 (.0001) .0007 (.0000) .0003 (.0000) .0001 (.0000)
KFA c = 200 .0478 (.0022) .0023 (.0001) .0007 (.0000) .0002 (.0000) .0001 (.0000)
KFA c = ` .0465 (.0012) .0023 (.0001) .0007 (.0000) .0002 (.0000) .0001 (.0000)
GDD-KPLS .0389 (.0008) .0011 (.0001) .0004 (.0000) .0001 (.0000) .0000 (.0000)
GSD-KPLS c = 100 .0396 (.0010) .0012 (.0001) .0004 (.0000) .0001 (.0000) .0001 (.0000)
GSD-KPLS c = 200 .0392 (.0012) .0012 (.0000) .0004 (.0000) .0001 (.0000) .0001 (.0000)
GSD-KPLS c = ` .0397 (.0010) .0012 (.0001) .0004 (.0000) .0001 (.0000) .0001 (.0000)

KPCA .0411 (.0032) .0022 (.0003) .0015 (.0002) .0012 (.0002) .0009 (.0002)
KGS .0627 (.0024) .0045 (.0004) .0022 (.0002) .0014 (.0002) .0010 (.0002)
KFA c = 100 .0531 (.0047) .0038 (.0003) .0020 (.0003) .0014 (.0002) .0010 (.0002)
KFA c = 200 .0521 (.0046) .0038 (.0004) .0020 (.0003) .0014 (.0002) .0010 (.0002)
KFA c = ` .0500 (.0045) .0038 (.0005) .0020 (.0003) .0014 (.0002) .0010 (.0002)
GDD-KPLS .0394 (.0086) .0023 (.0003) .0015 (.0002) .0011 (.0001) .0009 (.0001)
GSD-KPLS c = 100 .0427 (.0036) .0023 (.0004) .0015 (.0002) .0012 (.0002) .0010 (.0002)

GSD-KPLS c = 200 .0431 (.0073) .0023 (.0004) .0016 (.0002) .0012 (.0002) .0010 (.0002)
GSD-KPLS c = ` .0457 (.0016) .0023 (.0003) .0015 (.0002) .0012 (.0002) .0010 (.0002)

Table 4.4: Residual errors of training (top) and test (bottom) kernels using the Der-
matology dataset with the RBF kernel.

Projections

5 55 105 155 205 255

KPCA .273 (.010) .111 (.008) .045 (.004) .019 (.002) .008 (.001) .003 (.000)

KGS .572 (.064) .216 (.012) .088 (.007) .038 (.003) .016 (.001) .006 (.000)

KFA c = 100 .313 (.011) .156 (.009) .075 (.006) .035 (.003) .016 (.001) .006 (.000)

KFA c = 200 .313 (.012) .155 (.009) .075 (.006) .035 (.003) .016 (.001) .006 (.000)

KFA c = ` .311 (.010) .155 (.009) .074 (.005) .035 (.003) .015 (.001) .006 (.000)

GDD-KPLS .279 (.011) .125 (.009) .052 (.005) .021 (.002) .009 (.001) .004 (.000)

GSD-KPLS c = 100 .283 (.010) .127 (.008) .055 (.005) .024 (.002) .010 (.001) .004 (.000)

GSD-KPLS c = 200 .283 (.011) .127 (.008) .055 (.005) .024 (.002) .010 (.001) .004 (.000)

GSD-KPLS c = ` .283 (.011) .127 (.008) .054 (.005) .024 (.002) .010 (.001) .004 (.000)

KPCA .281 (.043) .209 (.038) .177 (.037) .157 (.037) .147 (.037) .142 (.037)

KGS .583 (.088) .327 (.034) .229 (.032) .185 (.036) .162 (.037) .149 (.037)

KFA c = 100 .318 (.044) .239 (.040) .205 (.035) .177 (.036) .159 (.037) .148 (.037)

KFA c = 200 .317 (.045) .240 (.036) .204 (.034) .177 (.036) .159 (.037) .148 (.037)

KFA c = ` .313 (.045) .241 (.037) .206 (.034) .177 (.036) .159 (.037) .148 (.037)

GDD-KPLS .285 (.043) .208 (.038) .178 (.035) .158 (.036) .147 (.037) .142 (.037)

GSD-KPLS c = 100 .288 (.043) .210 (.039) .185 (.033) .164 (.036) .151 (.037) .145 (.037)

GSD-KPLS c = 200 .289 (.038) .209 (.039) .184 (.035) .163 (.036) .151 (.037) .144 (.038)

GSD-KPLS c = ` .291 (.041) .210 (.038) .186 (.036) .163 (.037) .151 (.038) .144 (.038)

Table 4.5: Residual errors of training (top) and test (bottom) kernels using the Ar-
rhythmia dataset with the RBF kernel.

is a kernel matrix of test examples. With the training kernels, the best approximations

are always produced using KPCA. The other methods are sparse and one would expect

their approximations of the training data to be worse than KPCA in general. Observe

that KGS gives the highest approximation error in many cases, which correlates with

the previous analysis which identified KGS as choosing non-optimal directions at each

iteration. KFA fares better, as it selects directions that are optimal in the sense we de-

fined earlier. Notice that for KFA and GSD-KPLS, setting c to 100 and 200 respectively

results in residual errors that are only slightly worse than when c = `. This suggests

that Lemma 4.1 is effective in this case. The training residuals with the KPLS based

methods are only slightly worse than KPCA, however with the test kernels they are more

80 Chapter 4 Matrix Approximation for Machine Learning

competitive than KGS and KFA. Similar trends are evident with the Arrhythmia dataset

in Table 4.3. Here, GSD-KPLS and GDD-KPLS give particularly good approximations

on the test kernels, improving upon KPCA in every case.

The residual errors for the Dermatology dataset with the RBF kernel are shown in

Table 4.4. In this case the rank of the original kernel matrices are often equivalent to

the number of examples. Although initial approximation errors using 5 projection are

higher than those of the linear kernel, the trends amongst the approximation methods

are similar to the linear case. Further evidence for these trends is provided in Table 4.5

for the Arrhythmia dataset.

One might expect KFA to provide stable projections as they rely only on k examples

for the projection directions. In contrast, the Z terms in the kernel evaluations of

GSD-KPLS and GDD-KPLS involve the entire kernel matrix, and hence all training

examples. Deflation however, is a process which acts upon all of the examples and

selection of dual directions is influenced by perturbations in the data (as with PCA for

example (Ng et al. (2001))). The property of interest is the variance covered by the dual

projections, as opposed to the directions themselves. For KFA the variance is simply
∑k

i=1 α′
iK

′
iKiαi, and each term in the sum is maximised at each iteration, subject to

a cardinality constraint on the dual vector. In contrast, Equation 4.14 for GSD-KPLS

can be written as

max τ ′
jKKτ j

s.t. τ ′
jτ j = 1

τ j = Kjαj

card(αj) = 1,

and hence τ j maximises the variance of KK = VΛ2V′, with K = VΛV′. Without the

cardinality constraint on αj, the solution to the above is simply the maximal eigenvector

of K. GSD-KPLS approximates kernel matrices better than KFA in many cases, since

at the first iteration τ 1 = K1α1 is a closer approximation of the first eigenvector of K

than α1.

4.6.2 UCI Classification Experiment

This second experiment uses the matrix approximation methods in conjunction with

an SVM classifier. One would like to observe whether approximated kernel matrices

provide an improvement in accuracy over the original ones. Hence in this case, matrix

approximation acts as a noise reduction or regularisation method for the SVM. We

use the Ionosphere, MUSK “Clean1”, SPECTF Heart and WDBC datasets, and each

dataset is centered and normalised so that the features have unit norm and zero mean.

Chapter 4 Matrix Approximation for Machine Learning 81

Furthermore, the LIBSVM package (Chang and Lin (2001)) is used for computing SVM

models.

The general approach is to learn matrix approximations on a training set and then com-

pute a test kernel approximation. The training kernel approximation is used to train an

SVM and predictions are made using the corresponding test kernel approximation. Each

approximation method is evaluated using 3-fold cross validation repeated twice with ran-

dom permutations of the data. To select parameter values at each cross validation fold,

an inner 3-fold cross validation loop is repeated 2 times with random permutations of

the data. We also apply matrix approximation using RBF kernels, and for these tests

the inner cross validation loop is run once only.

Parameters at the model selection stage are selected as follows. For each approximation

method we vary the number of iterations from 1 to the rank of the original data, with a

total of 20 steps within this range for the linear kernels and 10 steps for the RBF ones.

For KFA and GSD-KPLS we fix c = 300, and the SVM penalty parameter is selected

from {2−1, 20, . . . , 27}. With the RBF kernels, σ is selected from {2−4, . . . , 22}.

SPECTF MUSK Ionosphere WDBC
k Error k Error k Error k Error

All features 44.0 .202 (.021) 166.0 .182 (.014) 34.0 .155 (.008) 30.0 .037 (.008)
KPCA 43.0 .204 (.015) 136.3 .175 (.006) 19.7 .144 (.013) 19.0 .034 (.000)
KGS 43.0 .204 (.000) 115.0 .169 (.013) 31.0 .148 (.028) 18.7 .041 (.004)
KFA 43.0 .202 (.012) 131.0 .173 (.011) 24.0 .140 (.007) 19.0 .035 (.006)
GDD-KPLS 43.0 .204 (.015) 119.0 .170 (.006) 26.7 .144 (.012) 24.0 .032 (.001)
GSD-KPLS 29.7 .202 (.001) 119.0 .162 (.015) 24.3 .145 (.009) 18.3 .038 (.006)

RBF features 44.0 .202 (.039) 166.0 .177 (.029) 34.0 .068 (.031) 30.0 .030 (.008)
KPCA 24.3 .184 (.036) 115.0 .086 (.057) 24.0 .071 (.027) 25.0 .028 (.008)
KGS 43.0 .187 (.013) 152.3 .116 (.020) 33.0 .071 (.026) 24.0 .053 (.019)
KFA 40.3 .195 (.017) 163.0 .124 (.029) 15.0 .051 (.009) 28.0 .037 (.019)
GDD-KPLS 40.3 .187 (.013) 163.0 .127 (.049) 14.0 .071 (.022) 24.0 .039 (.008)
GSD-KPLS 11.0 .191 (.051) 157.7 .133 (.042) 16.0 .066 (.025) 27.0 .042 (.014)

Table 4.6: Errors obtained by following kernel approximation with SVM classification.
Top results use the linear kernel and bottom ones apply the RBF kernel.

The results of this experiment are shown in Table 4.6, and first we discuss the linear

results. With the SPECTF dataset, GSD-KPLS is on par with KPCA and KFA, however

it requires a smaller dimensionality to match their performance. On the MUSK data,

the eigenspectrum decays rapidly and 92.8% of the variance can be captured with the

first 30 eigenvectors, hence matrix approximation improves over the use of the original

features. In general, the KPLS based methods are comparable to both KFA and KPCA

and improve over KGS in many cases. It is also evident that KPCA provides little

advantage over the sparse methods, despite using all of the training examples to compute

directions.

With the RBF kernels KPCA is more effective than the other approximation methods,

resulting in the lowest errors in 3 out of 4 datasets. The sparse methods are disad-

vantaged in this case since the examples may not cover the kernel space as effectively

82 Chapter 4 Matrix Approximation for Machine Learning

as in the linear case. One would expect the sparse methods to give better approxima-

tions if there was a larger number of examples. As a simple comparison to the linear

case, we note that with the MUSK data and an RBF kernel (σ = 0.25), the first 30

eigenvectors capture just 34.1% of the total variance. However, as σ increases the first

few eigenvectors capture a greater proportion of the total variance. In general, the

sparse methods are not significantly worse than KPCA, except with the MUSK data,

and broadly comparable to each other in terms of their resulting errors with the SVM.

It is worth reiterating that the features required for accurate prediction of the labels do

not necessarily correspond to those which most effectively approximate the data. The

results above show that approximation can improve accuracy over the use of the original

features in conjunction with an SVM. However, one would expect better results if labels

are used to guide feature extraction.

4.7 Summary

We have considered matrix approximation in conjunction with rank-one deflations, and

analysed the directions which maximise the Frobenius norm difference between succes-

sively deflated matrices. The analysis has revealed that the PCA directions are optimal

under both PCA and PLS deflations, and yield identical features. Analogous results

were observed with the KPCA and left-sided KPLS deflations.

By enforcing sparsity using a single residual example per direction, three sparse kernel

matrix approximation methods were formulated. The first, using the KPCA deflation,

is identical to KFA. The remaining two were based on left and double sided KPLS de-

flations, resulting in the novel GSD-KPLS and GDD-KPLS methods respectively. Both

KFA and GSD-KPLS have the advantage that they can be trained in linear complexity

in the number of examples. Furthermore, when it comes to computing kernel evaluations

for a new pair of test points, KFA and GSD-KPLS require only k kernel evaluations per

example, where k is the output dimensionality.

The quality of the new sparse approximation methods was measured on a selection of

real-world datasets. GSD-KPLS and GDD-KPLS are able to approximate test kernel

matrices more effectively in many cases than KPCA and the other sparse approximation

algorithms. Furthermore, when used in conjunction with an SVM they are in general

comparable with several other approximation techniques.

Chapter 5

Supervised Feature Extraction

If feature extraction is followed by classification then one can often find a smaller and

more relevant set of features, compared to the unsupervised case, by using the labels.

As PLS is successful in this area, the general feature extraction framework introduced

in Chapter 3 is applied to derive two new supervised algorithms, based on maximising

kernel target alignment and the covariance with the labels respectively. As the derivation

of the new sparse algorithms is relatively simple, the remainder of the chapter is devoted

to their analysis.

The main aims of the new algorithms are to perform supervised feature extraction with

a high degree of sparsity and in an efficient manner. Hence, we use the one example

per projection direction method seen in Chapter 4. Note that few existing supervised

algorithms meet the same criteria, with the exceptions of rKOPLS, and sparse KPLS

which upper bounds the sparsity of the solution. Sparse LDA has a tight control on

the sparsity of the solution, however, the training time scales cubically in the number of

examples. Our chosen method of sparsity does come at a price, and the cost of using a

single example per direction is compared to the use of multiple examples.

As well as the impact of sparsity, the sparse algorithms are analysed in a number of

additional ways. The effectiveness of random subsampling for approximating the optimal

example for each projection direction is considered. Furthermore, a worst case bound

for the covariance of the resulting features is derived, which gives useful insight into

the statistical stability of the features. The final section presents computational results

comparing the new feature extraction methods to several other popular approaches.

The comparison is performed first on several small datasets and then on larger text

classification and face detection datasets, demonstrating the scalability of the methods.

83

84 Chapter 5 Supervised Feature Extraction

5.1 Supervised Sparse Methods

5.1.1 Sparse Maximal Alignment

Our first algorithm is called Sparse Maximal Alignment (SMA), and it is based on

the notion of kernel target alignment. This is a useful quantity to optimise since the

alignment on a training set is likely to be similar to that of a test set. This result follows

from the sharp concentration of alignment (see Cristianini et al. (2001)), which means

that the probability of the empirical estimate of alignment deviating from its mean is

an exponentially decaying function of that deviation.

The alignment between a kernel matrix and the label kernel matrix yy′ is

A(K,yy′) =
〈K,yy′〉F

√

〈K,K〉F 〈yy′,yy′〉F
,

which is the cosine of the angle between the rows of K concatenated together and labels

y. If the alignment is 1, the kernel matrix elements are proportional to the corresponding

inner products between the labels, i.e. κ(xi,xj) = cyiyj, where c is a scaling factor. As

noted earlier, this implies a simple method for making a perfect prediction for a test

point.

SMA is derived by maximising the kernel target alignment of the kernel matrix given by

projecting the residual examples, subject to the sparsity constraint described in Chapter

4. This kernel matrix is given by Ku = Xuu′X′ = Kαα′K′, and has an alignment of

A(Ku,yy′) =
〈Kαα′K′,yy′〉F

√

〈Kαα′K′,Kαα′K′〉F 〈yy′,yy′〉F
(5.1)

=
tr(Kαα′K′yy′)

√

tr(Kαα′K′Kαα′K′)tr(yy′yy′)
(5.2)

=
(α′K′y)2

α′K′Kα y′y
. (5.3)

Hence at the jth iteration of SMA, one solves

max α′
jK

′
jy

s.t. α′
jK

′
jKjαj = 1

card(αj) = 1,

(5.4)

Chapter 5 Supervised Feature Extraction 85

for which the solution is found in an iterative manner by selecting each element of αj in

turn as the non-zero entry and choosing the one which gives maximal alignment. This

optimisation can be efficiently approximated by randomly subsampling the columns of

the kernel matrix in order to find the non-zero elements of αj. After finding αj , one

deflates using the kernel general framework deflation, and repeats for the desired number

of iterations.

5.1.2 Sparse Maximal Covariance

Our second sparse algorithm, Sparse Maximal Covariance (SMC), maximises the empir-

ical expectation of the covariance between the examples and their labels, subject to a

sparsity constraint. Recall that the covariance for a pair of zero mean random variables

x and y is

cov(x, y) = E[xy].

Consider the squared empirical covariance between projected examples and the labels,

given by

C(S) = Ê[yφ(x)′u]2

=
1

`2
(u′X′y)2

=
1

`2
(α′K′y)2,

where both examples and labels are centered. Maximising C(S) subject to ‖u‖ = 1

results in an identical vector to that computed for PLS. SMC is therefore a variation

on (K)PLS since it augments the optimisation with a cardinality constraint. At the jth

iteration of SMC one solves

max α′
jK

′
jy

s.t. α′
jKαj = 1

card(αj) = 1,

(5.5)

where the first constraint follows from u′
juj = α′XX′α = α′Kα. Observe that this

optimisation is similar to that of Equation 5.4, however the directions are influenced by

the input variance of the examples in this case. The pseudo code for both SMA and

SMC is given by Algorithm 17.

86 Chapter 5 Supervised Feature Extraction

Algorithm 17 Pseudo code for SMC and SMA.

Inputs: Kernel matrix K ∈ R
`×`, labels y ∈ R

`, dimension k, sample size c, algorithm
(i) SMA, (ii) SMC
Process:

1) For j = 1, . . . , k

(a) Randomly pick indices {i1, . . . , ic} ∈ [`] and let K
`,c
1 = KE, E = [ei1 , . . . , eic]

(b) For i = 1, . . . , j − 1

• Deflate K
`,c
i+1 =

(

I− Kiαiα′

iK
′

i

α′

iK
′

iKiαi

)

K
`,c
i

(c) End

(d) For scalar s, solve either (i)

max α′
jK

′
jy

s.t. α′
jK

′
jKjαj = 1

αj ∈ s · {ei1 , . . . , eic}

or (ii)
max α′

jK
′
jy

s.t. α′
jKαj = 1

αj ∈ s · {ei1 , . . . , eic}

2) End

3) Compute Z = ((T′T)−1T′KA)−1

Output: Directions αj, projections Kjαj , j = 1, . . . , k, and φ̂(x) = k′AZ

The above definition of covariance assumes that the data is centered, however with

sparse data the sparsity is often lost through centering. Centering the data reduces the

sum of the eigenvalues of the kernel matrix, and removes irrelevant variance due to a

shift in the center of mass. With uncentered data, the first SMC direction represents

this variance and hence the initial deflation acts as an approximation to the centering

operation.

5.2 Cost of Sparsity

Computing sparse projection directions has many advantages, however, sparsity does

come at a price and one would like to know if the benefits justify the disadvantages.

Here, we derive what we call p-sparse projection directions, which are those generated

using at most p examples per direction, and compare them to 1-sparse directions.

First, consider finding a p-sparse projection direction which maximises covariance, i.e.

one which solves

Chapter 5 Supervised Feature Extraction 87

max α′
jK

′
jy

s.t. α′
jKαj = 1

card(αj) ≤ p.

(5.6)

The solution can be found using a combinatorial approach. If one is already aware of

which entries in αj are non-zero, and the corresponding indices are given by {i1, . . . , iq} ∈
[`], q ≤ p, then the above problem can be rephrased by substituting αj = Eβj where

E = [ei1 , . . . , eiq]. Hence, it can be reformulated as

max β′
jE

′K′
jy

s.t. β′
jE

′KEβj = 1,
(5.7)

where the cardinality constraint has been removed. Using the Lagrangian method, the

solution to Equation 5.7 is given by

βj =
1

λj
(E′KE)−1E′K′

jy,

where λj is a scaling factor and it is assumed E′KE is invertible. Finding the non-zero

indices of αj in the first place is a costly procedure. One must search all subsets of the

numbers in [`] of size at most p. The complexity of computing a projection direction

using this approach scales proportional to
(`
p

)

, p ≤ `, where
(·
·

)

is the choose function.

However, this method suffices to compute p-sparse directions for small p.

In the case that one wishes to find a p-sparse direction which maximises kernel target

alignment, it can be found using

max α′
jK

′
jy

s.t. α′
jK

′
jKjαj = 1

card(αj) ≤ p.

(5.8)

Applying the same technique by substituting αj = Eβj yields

max β′
jE

′K′
jy

s.t. β′
jE

′K′
jKjEβj = 1,

(5.9)

and via the Lagrangian approach the solution is

βj =
1

λj
(E′K′

jKjE)−1E′K′
jy,

88 Chapter 5 Supervised Feature Extraction

assuming E′K′
jKjE is invertible.

These sparse directions are now compared using a synthetic dataset consisting of 100

examples and 1000 features, with labels computed using a linear combination of 50

of the features plus a small uniform noise component. The labels are given by y =

x′c+u(0, 0.05) where c is a sparse vector of coefficients with 50 non-zero entries, u(a, b)

is a uniform random variable with range [a, b] and x = u(0, 1). The data is first centered

and normalised so that each feature has unit norm, and Equation 5.6 is solved for

p ∈ {1, 2, 3} on the resulting data. Note that p-sparse projection directions, p > 3,

proved to be too computationally expensive on anything other than very small datasets.

The extracted features are compared using the cumulative square covariance per kernel

evaluation. For a sample S this is given by B(S)/r where

B(S) =
k
∑

j=1

Ê[yφ(x)′juj]
2 =

1

`2

k
∑

j=1

(u′
jX

′
jy)2, (5.10)

and r is the number of kernel evaluations used to project a new test point.

The same test is repeated using the solution to Equation 5.8, comparing the result-

ing features using the cumulative kernel target alignment per kernel evaluation. This

quantity is given by D(S)/r where

D(S) =
k
∑

j=1

A(Xjuju
′
jX

′
j ,yy′) =

k
∑

j=1

(y′Xjuj)
2

y′yu′
jX

′
jXjuj

, (5.11)

which approaches 1 as k tends towards `.

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 10

−3

k

C
um

ul
at

iv
e

sq
ua

re
 c

ov
ar

ia
nc

e/
ke

rn
el

 e
va

l.

1−sparse
2−sparse
3−sparse

(a) Cumulative square covariance per kernel evalua-
tion for p-sparse maximal covariance.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k

C
um

ul
at

iv
e

ke
rn

el
 ta

rg
et

 a
lig

nm
en

t/k
er

ne
l e

va
l.

1−sparse
2−sparse
3−sparse

(b) Cumulative kernel target alignment per kernel
evaluation for p-sparse maximal alignment.

Figure 5.1: Effect of using different numbers of examples per sparse projection direc-
tion.

Figure 5.1(a) shows the results of this test using the directions which maximise co-

variance. The 1-sparse method has a greater covariance per example than the 2 and

Chapter 5 Supervised Feature Extraction 89

3-sparse methods, although this advantage diminishes with increased dimensionality.

Similar curves are observed in Figure 5.1(b). Again, 1-sparse projection directions pro-

vide more alignment per example than the 2 or 3-sparse ones. Furthermore, notice that

the difference between the 1 and 2-sparse curves is generally larger than the difference

between the 2 and 3-sparse curves. Hence, in this case 1-sparse directions appear to

be optimal in terms of capturing covariance or alignment using sparse directions. One

would generally expect this to be the case, although it is not intuitive that 1-sparse

methods will always improve against the use of 2 or 3-sparse directions. If one considers

the cumulative covariance or alignment, then any loss through enforcing a high level of

sparsity can be compensated for by iterating further.

5.3 Computational Complexity

The efficiency of SMA and SMC is achieved by randomly subsampling the columns of

the residual kernel matrices for the selection of the dual directions. In Chapter 4 this

was motivated by Lemma 4.1 in the context of selecting dual directions for kernel matrix

approximation and a similar argument can be applied in this case. Here a simple test is

conducted which gives insight into how the best column differs from the best in a subset

as the size of the subset varies.

A synthetic dataset is composed of 2000 examples and 1000 features, with labels com-

puted as a linear combination of 50 features plus a small uniform noise component, i.e.

labels are found in an identical manner to that of the previous test. The data is centered

and normalised so that each feature has unit norm, and SMC and SMA are run using

sets of kernel matrix columns of different sizes for the selection of the dual directions.

0 50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

−3

k

C
um

ul
at

iv
e

sq
ua

re
 c

ov
ar

ia
nc

e

All examples
500 examples
200 examples
100 examples
50 examples
25 examples

(a) Cumulative square covariance of SMC.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

C
um

ul
at

iv
e

ke
rn

el
 ta

rg
et

 a
lig

nm
en

t

All examples
500 examples
200 examples
100 examples
50 examples
25 examples

(b) Cumulative kernel target alignment of SMA.

Figure 5.2: Effect of using different sized random subsets of the kernel matrix columns
at each iteration for the selection of αj . Curves are shown in order of legend.

Figure 5.2 shows how the cumulative square covariance of SMC and cumulative kernel

target alignment of SMA vary using the subset selection strategy. It is clear that using

90 Chapter 5 Supervised Feature Extraction

500 kernel matrix columns is nearly indistinguishable from using all 2000 in both the

SMC and SMA case. Even with only 100 kernel matrix columns the results are close to

optimal, hence Lemma 4.1 is useful in this case. In the general case, the selection of c

depends on the distribution of qualities of the kernel matrix columns. If this distribution

is tail ended for example, then one would need a larger proportion of kernel matrix

columns to find one within the top few.

Using Lemma 4.1 for approximating the solutions to Equations 5.4 and 5.5 reduces the

complexity from O(`2) to O(c`). Furthermore, one need only deflate c columns of the

original kernel matrix, which at the jth iteration requires O(cj`+c`p) operations, where

p is the cost of a kernel computation1. The final complexity of training both SMA and

SMC is therefore O(ck2`+ck`p), which is linear in the number of examples and does not

directly depend on the original dimensionality of the data. The projection of a new test

example is computed in O(kp + k2) operations since k′A requires k kernel evaluations

and the resulting vector is then multiplied by the k×k matrix ((T′T)−1T′KA)−1. This

compares favourably with the O(`p+k`) operations required for the projection of a test

point onto k non-sparse dual directions.

The complexities of SMA and SMC are compared with several other feature extraction

methods in Table 5.12. Training sparse KPLS is efficient at O(νk`2p + k4) complexity,

as its dual projection directions have at most ν` non-zero elements and each iteration

requires the projection of the residual kernel matrix onto these directions. The k4 term

arises from the evaluation of the regression coefficients at each iteration. To evaluate a

new test point, one must project onto a set of deflated dual directions as the original

directions are computed relative to the deflated kernel matrices. These deflated direc-

tions are often non-sparse, hence the projection of a new test point requires O(`p + k`)

operations.

Primal Dual
Algorithm Train Test Train Test

PCA O(m2` + m3) O(mk) O(`2p + `3) O(`p + k`)
PLS O(mk`) O(mk) O(`2p + k`2) O(`p + k`)
KB O(k`3) O(mk) O(`2p + k`3) O(`p + k`)
BLF O(mk` + kq) O(mk) O(`2p + k`2 + kr) O(`p + k`)
Sp. KPLS O(mk` + k4) O(mk) O(νk`2p + k4) O(`p + k`)
SMA/SMC N/A N/A O(ck`p + ck2`) O(kp + k2)

Table 5.1: The training and test complexities of some feature extraction algorithms.

To conclude, note that the efficiency of training SMA and SMC arises through the

particular deflation mechanism used, sparsity and the use of randomisation for selecting

1We assume that kernel matrix elements are computed on demand, however if they are precomputed
one can use p = 1 for example.

2We assume that the data is already centered which is an O(m`) operation in the primal case and
O(`2) for a kernel matrix. For BLF, the complexities of computing the loss function and gradient of the
loss function are denoted by q and r in the primal and dual cases respectively. For PLS and KPLS we
assume there is a single label per example.

Chapter 5 Supervised Feature Extraction 91

dual directions. Some of the methods listed in Table 5.1 could be made more efficient

by using sparsity and randomisation in a similar fashion. On the other hand, KPLS

for example does not lend itself easily to efficiency improvements in this way since its

deflation operates on the entire kernel matrix. This contrasts with the deflation of

Equation 3.4 which can be applied to kernel matrix columns independently.

5.4 Statistical Stability

An important question about the general framework is how the quality of the generated

subspace varies over different data sets from the same source. Such results have pre-

viously been derived for KPCA in Shawe-Taylor et al. (2005) and a similar result will

be shown here. As PLS and the sparse algorithms extract features that are predictive

towards the labels it is intuitive to measure the covariance of the extracted features with

the labels. One would like to know in which circumstances a high covariance on the

training set is maintained for a test set.

The value of interest is the expectation of the cumulative square covariance of the fea-

tures with respect to the labels. Define the function f(x, y2) =
∑k

i=1(yφ(x)′wi)
2 =

y2φ(x)′WW′φ(x), where W has its columns composed of the directions wi, i = 1, . . . , k.

Our aim is to provide a lower bound on E[f(x, y2)]. In the case of the general frame-

work, the projections of the training examples are given by T, and the corresponding

empirical estimate of the expectation is

Ê[f(x, y2)] =
1

`

∑̀

i=1

y2
i φ(xi)

′WW′φ(xi)

=
1

`
tr(T′ỸT),

where Ỹ is a diagonal matrix with diagonal entries Ỹii = y2
i , i = 1, . . . , `.

In order to derive a bound on the expected covariance, Rademacher theory (Ledoux

and Talagrand (1991)) is applied, which is concerned with how functions from a certain

function class are able to fit random data. The path taken starts with the definition

of the Rademacher complexity of a real-valued function class, which is a measure its

capacity. The function class of f is introduced as well as its corresponding Rademacher

complexity. One can bound the expectation of f using its Rademacher complexity and

empirical expectation.

Definition 5.1. For a sample S = {x1, . . . ,x`} generated by a distribution D on a set X
and a real-valued function class F with domain X , the empirical Rademacher complexity

92 Chapter 5 Supervised Feature Extraction

of F is the random variable

R̂`(F) = Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2

`

∑̀

i=1

σif (xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1, . . . ,x`

]

,

where σ = {σ1, . . . , σ`} are independent uniform {±1}-valued (Rademacher) random

variables. The Rademacher complexity of F is

R`(F) = ES

[

R̂`(F)
]

= ESσ

[

sup
f∈F

∣

∣

∣

∣

∣

2

`

∑̀

i=1

σif (xi)

∣

∣

∣

∣

∣

]

,

where ES[·] is the expectation over all samples S generated by a distribution D.

Notice that the term inside the sup is proportional to the covariance of the Rademacher

variables and f . In other words, if f can be chosen to fit random data easily in general

then the Rademacher complexity of F is high. It follows that there is a greater possibility

of detecting a spurious pattern which will not generalise to a test set.

In our case, the class of functions of interest is linear with bounded norm







fB(x) =
∑̀

i=1

αiκ(x,xi) : xi ∈ X ,
∑

i,j

αiαjκ(xi,xj) ≤ B2







⊆ {fB(x) = 〈φ(x),w〉 : ‖w‖ ≤ B} = FB ,

where X is the domain of FB , αi, i = 1, . . . , `, are dual variables and B is an upper

bound on the norm of the functions in FB . Note that this definition does not depend

on any particular training set.

We now introduce a bound on the empirical Rademacher complexity of FB using the

following theorem from Bartlett and Mendelson (2003).

Theorem 5.2 (Bartlett and Mendelson (2003)). If κ : X ×X → R is a kernel, and S =

{x1, . . . ,x`} is a sample of points from X , then the empirical Rademacher complexity of

the class FB satisfies

R̂`(FB) ≤ 2B

`

√

√

√

√

∑̀

i=1

κ(xi,xi) =
2B

`

√

tr (K).

It is intuitive that the Rademacher complexity of FB depends on B. Less so is its

dependence on the trace of the kernel matrix. However, the trace of K is the sum of

its eigenvalues, and also the cumulative variance of the examples. It follows that since

Chapter 5 Supervised Feature Extraction 93

w is chosen from the space of the training examples, the corresponding Rademacher

complexity is dependent on this quantity.

The last ingredient for our bound is a theorem which lower bounds the expectation of

a function in terms of its empirical expectation and the Rademacher complexity of its

function class. It results from a small modification of a theorem from Shawe-Taylor and

Cristianini (2004) which provides an upper bound on the expectation.

Theorem 5.3. Fix δ ∈ (0, 1) and let F be a class of functions mapping from X to [0, 1].

Let (xi)
`
i=1 be drawn independently according to a probability distribution D. Then with

probability at least 1− δ over random draws of samples of size `, every f ∈ F satisfies

ED [f(x)] ≥ Ê [f(x)]−R`(F)−
√

ln(2/δ)

2`

≥ Ê [f(x)]− R̂`(F)− 3

√

ln(2/δ)

2`
.

To tie up loose ends we introduce Theorem 5.4 which provides some useful properties of

Rademacher complexity.

Theorem 5.4 (Bartlett and Mendelson (2003)). Let F and G be classes of real functions.

Then:

1. If F ⊆ G, then R̂`(F) ≤ R̂`(G);

2. For every c ∈ R, R̂`(cF) = |c|R̂`(F).

The previous definitions and theorems are now used to derive a theorem which lower

bounds the expectation of our original function f(x, y2).

Theorem 5.5. Let f(x, y2) = y2k′BB′k be formulated by performing general feature

extraction on a randomly drawn training set S of size ` in the feature space defined

by a kernel κ(x, z) and projecting new data using the dual projection matrix B =

A((T′T)−1T′KA)−1. Fix c and let f(x, y2) belong to a class of linear functions Fc

with norm bounded by c. With probability greater than 1− δ over the generation of the

sample S, the expected value of f is bounded by

ED[f(x, y2)] ≥ 1

`
tr(T′ỸT)− 2c

`

√

tr(K̂)− 3cP 2

√

ln(2/δ)

2`
, (5.12)

where K̂ is the kernel matrix defined by κ̂(x, z) = y(x)2y(z)2〈φ(x), φ(z)〉2, y(x) is the la-

bel corresponding to x and P is radius of the hypersphere enclosing the examples yiφ(xi),

i = 1, . . . , `.

94 Chapter 5 Supervised Feature Extraction

Proof. First consider the following

f(x, y2) = y2φ(x)′WW′φ(x)

= y2
∑

i,j

φ(x)iφ(x)j(WW′)ij

= y2〈φ̃(x),W̃〉F ,

where φ̃(x)ij = φ(x)iφ(x)j and W̃ij = (WW′)ij . Hence, f can be considered as a linear

function of its inputs with norm bounded by c ≥ ‖W̃‖F , provided x is mapped to the

feature space defined by φ̃. The kernel function corresponding to φ̃ is

〈φ̃(x), φ̃(z)〉F =
∑

i,j

φ(x)iφ(x)jφ(z)iφ(z)j

=
∑

i

φ(x)iφ(z)i
∑

j

φ(x)jφ(z)j

= κ(x, z)2.

An application of Theorem 5.2 provides a bound on the empirical Rademacher complex-

ity of Fc,

R̂`(Fc) ≤
2c

`

√

√

√

√

∑̀

i

y4
i κ(xi,xi)2. (5.13)

Define h(x, y2) = f(x, y2)/cP 2 which belongs to a class of linear functions H with

bounded norm. Using Theorem 5.3,

ED

[

h(x, y2)
]

≥ Ê[h(x, y2)]− R̂`(H)− 3

√

log(2/δ)

2`
. (5.14)

The Rademacher complexity of H is

R̂`(H) =
1

cP 2
R̂` (F)

≤ 2

`P 2

√

√

√

√

∑̀

i=1

y4
i κ(xi,xi)2,

Chapter 5 Supervised Feature Extraction 95

which follows from an application of part 2 of Theorem 5.4. Substituting into Equation

5.14 and multiplying by cP 2 gives

ED[f(x, y2)] ≥ Ê[f(x, y2)]− 2c

`

√

tr(K̂)− 3cP 2

√

ln(2/δ)

2`
, (5.15)

and then making a substitution Ê[f(x, y2)] = 1
` tr(T

′ỸT) produces the required result.

This theorem indicates that the expected cumulative square covariance of the features

produced under the general framework will be close to its empirical estimate provided

the Rademacher and final terms are proportionately small. As one is working in kernel-

defined feature spaces, the original dimensionality is unimportant and the final two terms

grow inversely proportional to the root of the number of examples. For the middle term,

the trace of K̂ can be understood as the cumulative variance of the examples given by

S′ = {φ̃(x1)y
2
1 , . . . , φ̃(x`)y

2
` }. Hence, to ensure stable patterns with high probability and

allow a large covariance to be captured, one requires a rapid decay in the eigenvalues of

K̂ and also a small value of 1/
√

`.

To illustrate the effectiveness of Theorem 5.5 we consider a function g(x, y2) = f(x, y2)−
qk which introduces a cost q on the number of features k. This cost might represent

extra computational or memory requirements and indicates a preference for low dimen-

sional subspaces. We use two DELVE datasets for this evaluation. The first is one

of the Pumadyn datasets composed of 8192 examples, 32 features, classified as “fairly

linear” and with “high noise”. The second is called “bank-32nm” from the bank family

of datasets, and also has 8192 examples and 32 features. The original features are nor-

malised, the value of c for Theorem 5.5 is estimated from the data, and we set δ = 0.1.

As a simple heuristic to select the value of q we use half the gradient of Ê[f(x, y2)]

at the first iteration. Using two thirds of the examples for training and the remaining

for testing, we observe how the lower bound of ED[g(x, y2)] varies with the number of

iterations of SMC with c = 500. This bound is compared with the empirical expectation

on the test examples.

Figure 5.3 shows the results of this test, and with the Pumadyn dataset the bound

of ED[g(x, y2)] is predictive of the empirical expectation of g(x, y2) on the test set.

Although the peaks of these curves are dependent on the manner in which q is selected,

one could potentially use the bound as a method of selecting k in this case. Another

possible use of Theorem 5.5 is for selecting the number of examples required for the

lower bound of ED[g(x, y2)] to be close to its empirical estimate. For these applications,

Theorem 5.5 is most useful when the final two terms of Equation 5.12 are small relative to

the empirical expectation. One can then say, with high probability, that the empirical

96 Chapter 5 Supervised Feature Extraction

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8
x 10

−7

k

C
um

ul
at

iv
e

sq
ua

re
 c

ov
ar

ia
nc

e

Expectation bound
Empirical expectation

(a) Pumadyn dataset

0 5 10 15 20 25 30 35
−1

0

1

2

3

4

5
x 10

−5

k

C
um

ul
at

iv
e

sq
ua

re
 c

ov
ar

ia
nc

e

Expectation bound
Empirical expectation

(b) Bank dataset

Figure 5.3: Plot of the lower bound of ED[g(x, y2)] and empirical expectation of
g(x, y2) on a test set.

expectation of covariance of the features on a test set is close to the lower bound of

ED[g(x, y2)].

With the bank dataset, the bound is less close to the empirical expectation of g(x, y2)

on the test set. In this case a large value of P causes the final term of Equation 5.12 to

be significant in comparison the empirical expectation of f(x, y2). However, with this

dataset most of the examples from S′ lie in a hypersphere of small radius. Hence, to

improve the statistical stability of the extracted features, one could remove the examples

in S′ with large norm which can be considered as outliers.

5.5 Computational Results

As SMA and SMC are supervised methods, the predictive performance of their features is

compared with several other supervised feature extraction algorithms. This comparison

is performed first on a few Bilkent University function approximation (Guvenir and Uysal

(2000)) and UCI datasets and then on a large sample of the Reuters Corpus Volume 1

dataset (Rose et al. (2002)). This section is completed by applying SMA and SMC to

an example face detection application, an area in which PCA has traditionally been a

popular choice.

5.5.1 Bilkent Regression Experiment

This first experiment compares the regression performance of the features extracted by

SMC and SMA to those generated by KPLS, sparse KPLS and rKOPLS. The datasets

shown at the bottom of Table 5.2 are used, and each one has its examples and labels

centered and normalised to have zero mean and unit norm. With large datasets only

Chapter 5 Supervised Feature Extraction 97

the first 1000 examples are used so that the tests can be run within a reasonable time

frame.

Dataset Examples Features

Ionosphere 355 34
Sonar 208 60
SPECTF 267 44
WDBC 569 30

Ailerons 7154 40
Baseball 337 16
Pole Telecomm 9065 48

Table 5.2: Information about the UCI (top) and Bilkent University function approx-
imation (bottom) datasets.

The methods are evaluated by following feature extraction with least squares regression,

which in a kernel-defined feature space finds the minimum of ‖Kc−y‖2. The solution to

this optimisation is c = K−1y, assuming K is full rank, which with the linear kernel is

identical to OLS regression. After performing regression the root mean squared error is

recorded, given by ‖f(X)−y‖/
√

`, where f(X) is a vector of predicted labels of length `.

The error is measured using 5-fold cross validation, with an inner 5-fold cross validation

loop for model selection.

The parameters for the feature extraction methods are selected using the following val-

ues. The number of extracted features is chosen from 1 to the rank of the data. The

sparse KPLS sparsity parameter ν is selected from {0.125, 0.25, 0.5, 1.0} and the heuristic

used to compute dual projection directions is selected as either the Maximal Information

(MI) criterion with a kernel cache size of 500 or the Maximum Residual (MR) criterion.

For rKOPLS, the r parameter is chosen from {50, 100, 200, 400}. SMA and SMC are run

using 500 kernel matrix columns for the selection of each dual projection direction. To

test feature extraction in a dual space, each method is also used with the RBF kernel,

with kernel width σ selected from {0.125, 0.25, . . . , 16}.

Method Ailerons Baseball Pole Telecomm

All features 0.0168 (0.0021) 0.0329 (0.0043) 0.0232 (0.0007)
PLS 0.0160 (0.0005) 0.0321 (0.0026) 0.0231 (0.0005)
SMA 0.0158 (0.0008) 0.0327 (0.0038) 0.0233 (0.0004)
SMC 0.0159 (0.0007) 0.0323 (0.0026) 0.0231 (0.0005)
Sp. KPLS 0.0160 (0.0015) 0.0328 (0.0050) 0.0232 (0.0006)
rKOPLS 0.0315 (0.0035) 0.0453 (0.0122) 0.0316 (0.0010)

RBF Features 0.0156 (0.0011) 0.0344 (0.0063) 0.0196 (0.0011)
RBF PLS 0.0158 (0.0012) 0.0330 (0.0041) 0.0094 (0.0014)
RBF SMA 0.0157 (0.0004) 0.0342 (0.0059) 0.0157 (0.0026)
RBF SMC 0.0162 (0.0019) 0.0343 (0.0059) 0.0124 (0.0014)
Sp. RBF KPLS 0.0161 (0.0015) 0.0353 (0.0036) 0.0117 (0.0005)
RBF rKOPLS 0.0170 (0.0020) 0.0371 (0.0057) 0.0114 (0.0020)

Table 5.3: Error rates of feature extraction followed by least squares regression.

98 Chapter 5 Supervised Feature Extraction

The results, shown in Table 5.3, indicate that feature extraction often improves over the

use of the least squares method with these datasets. Most notably, KPLS often results

in the lowest error in both the linear and RBF spaces, although SMA and SMC are

only slightly worse in general. Also observed was that the number of output features

chosen for KPLS through the cross validation procedure is on average less than the

corresponding number used for SMA and SMC. One might expect this to be the case

since in contrast to KPLS, SMA and SMC have strict sparsity constraints. The rKOPLS

method produces a single feature based on the projection onto a linear combination of a

random subset of the examples. This clearly did not generalise well as rKOPLS results

in the highest errors in most cases.

5.5.2 UCI Classification Experiment

Another common scenario is now studied, which is when feature extraction is followed

by classification. In this case we apply k-Nearest Neighbour (KNN) and SVM classifi-

cation, and use a selection of UCI datasets (listed at the top of Table 5.2). The KNN

method is used since it classifies examples using the labels of nearby ones, and hence

the features used are critical for achieving good accuracy. SVMs are more robust to ir-

relevant features, however one can still improve accuracy using feature extraction. The

examples in the UCI datasets are preprocessed in an identical manner to that used in

the previous experiment. We compare SMA and SMC to KPLS3, sparse KPLS, Kernel

Boosting and KBLF4.

For most of these tests we use 5-fold cross validation repeated 3 times (with random

permutations of the data) and 5-fold cross validation for model selection. Kernel Boost-

ing, Least Absolute Deviation loss BLF and the RBF feature extraction algorithms are

considerably slower than the other methods, hence, they are evaluated using 5-fold cross

validation repeated 2 times with 3-fold cross validation for model selection.

The parameters for the feature extraction methods are selected using the same values

used in the previous experiment. However, Kernel Boosting could iterate further than

the rank of the data and was additionally allowed up to 1000 iterations in steps of 100.

The SVM penalty parameter is selected from {0.125, 0.25, . . . , 128} and the number of

neighbours k for the KNN method is selected from {1, 3, 5, 7, 9}. As a useful comparison

to the RBF feature extraction methods we also apply the SVM and KNN classifiers to

the original data using the RBF kernel, with σ selected from {0.125, 0.25, . . . , 16}.

Tables 5.4 and 5.5 summarise the results of this experiment and we first discuss the

primal results. A broad trend is that feature extraction results in larger improvements

3It may seem unusual to use regressive PLS in a classification task in light of the discriminative PLS
method, however in the single label case the methods are identical.

4Sparse KBLF is not included in the comparison since Momma (2005) shows that it performs worse
than an SVM.

Chapter 5 Supervised Feature Extraction 99

Ionosphere Sonar SPECTF WDBC

All features 0.140 (0.02) 0.150 (0.05) 0.244 (0.04) 0.034 (0.01)
PLS 0.110 (0.02) 0.179 (0.07) 0.230 (0.05) 0.032 (0.01)
SMA 0.106 (0.04) 0.215 (0.07) 0.253 (0.05) 0.047 (0.02)
SMC 0.105 (0.03) 0.203 (0.05) 0.235 (0.04) 0.045 (0.02)
Exp BLF 0.096 (0.03) 0.218 (0.07) 0.206 (0.04) 0.049 (0.01)
Log BLF 0.087 (0.03) 0.215 (0.06) 0.206 (0.06) 0.044 (0.02)
LAD BLF 0.099 (0.04) 0.241 (0.07) 0.219 (0.04) 0.043 (0.01)
Exp KB 0.134 (0.04) 0.237 (0.05) 0.238 (0.05) 0.046 (0.01)
Log KB 0.110 (0.03) 0.241 (0.07) 0.223 (0.04) 0.027 (0.02)
Sp. KPLS 0.084 (0.03) 0.180 (0.06) 0.236 (0.04) 0.044 (0.02)

RBF Features 0.141 (0.04) 0.133 (0.06) 0.235 (0.03) 0.033 (0.01)
RBF KPLS 0.050 (0.02) 0.107 (0.03) 0.223 (0.04) 0.029 (0.01)
RBF SMA 0.053 (0.02) 0.168 (0.05) 0.215 (0.07) 0.036 (0.02)
RBF SMC 0.057 (0.03) 0.173 (0.06) 0.243 (0.03) 0.052 (0.02)
Sp. RBF PLS 0.073 (0.04) 0.195 (0.07) 0.260 (0.04) 0.044 (0.02)

Table 5.4: Error rates of the extracted features with the KNN algorithm.

Ionosphere Sonar SPECTF WDBC

All features 0.134 (0.03) 0.231 (0.08) 0.205 (0.03) 0.025 (0.01)
PLS 0.132 (0.03) 0.224 (0.07) 0.201 (0.04) 0.028 (0.01)
SMA 0.133 (0.04) 0.224 (0.08) 0.230 (0.05) 0.028 (0.01)
SMC 0.123 (0.03) 0.231 (0.07) 0.213 (0.03) 0.034 (0.02)
Exp BLF 0.138 (0.03) 0.234 (0.06) 0.224 (0.06) 0.040 (0.01)
Log BLF 0.133 (0.03) 0.228 (0.06) 0.223 (0.05) 0.032 (0.01)
LAD BLF 0.124 (0.04) 0.239 (0.05) 0.228 (0.04) 0.031 (0.01)
Exp KB 0.131 (0.03) 0.205 (0.03) 0.200 (0.04) 0.033 (0.01)
Log KB 0.129 (0.03) 0.217 (0.05) 0.206 (0.03) 0.023 (0.01)
Sp. KPLS 0.136 (0.04) 0.246 (0.06) 0.209 (0.04) 0.021 (0.01)

RBF Features 0.056 (0.03) 0.145 (0.07) 0.200 (0.03) 0.031 (0.01)
RBF KPLS 0.069 (0.02) 0.122 (0.03) 0.219 (0.03) 0.027 (0.01)
RBF SMA 0.057 (0.03) 0.146 (0.06) 0.194 (0.03) 0.030 (0.02)
RBF SMC 0.057 (0.03) 0.141 (0.04) 0.202 (0.03) 0.031 (0.01)
Sp. RBF PLS 0.056 (0.03) 0.137 (0.09) 0.291 (0.10) 0.027 (0.01)

Table 5.5: Error rates of the extracted features with the SVM algorithm.

in the error with the KNN than with the SVM. This can be explained by the good

generalisation implied by maximising the margin for the SVM (Vapnik (1998)), whereas

KNN is more sensitive to noise. As with the regression results, SMC and SMA have

comparable errors to many of the other feature extraction methods despite using only

a single example for each projection vector. They are particularly effective on the Iono-

sphere dataset, improving the error obtained with the KNN method from 0.140 to 0.106

and 0.105 respectively, and SMC provides the lowest error with the linear SVM. Com-

paring SMC to PLS shows that the addition of the sparsity constraint does not have a

large impact on the error. A possible explanation is that the distribution of examples

in these datasets allows a single example to result in a covariance close to that obtained

100 Chapter 5 Supervised Feature Extraction

using a linear combination of the examples. Notice that the features produced by Kernel

Boosting often lead to low error rates, however this is frequently at the expense of a

higher dimensionality than that of the original data.

When considering the RBF features spaces, the low errors obtained on the Ionosphere

and Sonar datasets with both the KNN and SVM imply a non-linear relationship between

the features and labels. The RBF KPLS approach improves over using the plain RBF

features with the KNN, and also for the Sonar and WDBC datasets with the SVM.

KPLS also frequently has the lowest error rate when compared to the other RBF feature

extraction methods. One possible explanation is that since the RBF feature space is

infinite dimensional, examples are more spread out in this space. Therefore, enforcing

sparsity on the projection directions has more of a detrimental effect on the quality of

the resulting features. Having noted this however, SMA and SMC are only slightly worse

than KPLS, and also comparable to sparse KPLS.

5.5.3 Text Retrieval

We demonstrate the scalability of the sparse algorithms by running them on the Reuters

Corpus Volume 1 news database. The full database consists of about 800,000 news

articles (the period of a whole year), but only 20,000 examples are considered from first

three months of the Economics branch. As a preprocessing step, the Porter stemmer

has been used to reduce all words to their stems which yields 136,469 distinct terms.

Labels are assigned according to whether the articles are about the topic “Government

Finance”, with approximately 37% of the examples positively labelled. Features are

extracted on this dataset by sparse KPLS, SMC and SMA and then used to train a

linear SVM. In this case, we do not generate results using PLS, Kernel Boosting and

BLF since the computational and memory requirements needed to run these methods

are prohibitively high.

The process used to conduct this experiment is similar to that of the previous one. In

this case the data is not centered since the examples are sparse and centering in general

removes sparsity. The tests are run using a single repetition of 3-fold cross validation

with an inner 3-fold cross validation loop, used on 2000 randomly sampled training

examples, for model selection. For each method we record the average precision since it

is a standard measure in information retrieval. It is defined as the cumulative precision

after each relevant document is retrieved divided by the number of relevant documents,

where precision is the proportion of relevant documents to all the documents retrieved.

Average precision emphasises returning more relevant documents high up in the ranking.

At the model selection stage, the parameters are chosen as follows. Each feature extrac-

tion algorithm is run from 100 to 400 iterations in steps of 100. Sparse KPLS is run

using both the MI heuristic with a kernel cache size of 300 and the MR heuristic, with

Chapter 5 Supervised Feature Extraction 101

ν chosen from {0.2, 0.4, 0.8}. SMA and SMC are run using 500 kernel columns for the

selection of the dual vector. The SVM is trained using a linear kernel and its penalty

parameter is chosen from {0.125, 0.25, . . . , 128}. Since the class labels are imbalanced,

LIBSVM is parametrised so as to weight different classes with different values. The

weight for each class is fixed as the percentage of examples of the opposite class.

Average Precision Projections Sparsity SVs

SVM 0.847 (0.010) - - 8864
SMA 0.848 (0.007) 366 366 9964
SMC 0.823 (0.009) 400 400 9953
Sparse KPLS 0.776 (0.032) 400 13334 6690

Table 5.6: Average precisions on the Reuters dataset. Sparsity is the number of kernel
evaluations required for the projection of a new test example and SVs is the number of

support vectors used.

Table 5.6 shows that SMC and SMA outperform sparse KPLS, both in terms of average

precision and the number of kernel evaluations required to project a new example. Recall

that for SMA and SMC, the latter quantity is simply the number of iterations since the

projection of a new test example requires only the selected training examples and the

precomputed matrix ((T′T)−1T′KA)−1. Notice that SMA achieves a similar average

precision to the raw SVM using a much smaller dimensionality. We might hope for an

improvement over the SVM results, however, Joachims (1998) shows that few features

in text categorisation datasets are irrelevant. With sparse KPLS, we believe that the

heuristics used for selecting the non-zero elements in the dual directions were ineffective

and resulted in model selection making a preference for non-sparse directions.

The number of support vectors may appear to be useful in computing the total number

of kernel evaluations required for the classification of a new example. However, once a

new example is projected into the sparse subspace one can work in the primal space and

the number of support vectors is no longer relevant. In this case an efficient primal space

algorithm can be used, for example the one described in Joachims (2006). This has a

complexity of O(s`) where s is the average number of non-zero features per example.

When applied to sparse data, the overall complexity of SMA or SMC followed by this

SVM classifier is O(ck2` + ck`p), i.e. linear in the number of examples.

5.5.4 Face Detection

Facial recognition has seen a lot of attention in recent years (Zhao et al. (2003)), with

applications such as Human Computer Interaction (HCI), law enforcement and security.

An important stage in any face recognition system is face detection, which is concerned

with determining whether a particular image contains a face. If a raw image is used

as the input to a pattern recognition algorithm, the number of features is often large

and feature extraction is a useful process. PCA and KPCA have enjoyed success in face

102 Chapter 5 Supervised Feature Extraction

recognition, since in face datasets most of the variation can be captured with relatively

few projection directions (Turk and Pentland (1991a)). In this final experiment, we

apply KPCA, SMA and SMC followed by SVM classification to the MIT CBCL Face

Dataset 1 (cbc (1996)). The aim is to observe how effectively the examples are ranked

in each subspace using a Receiver Operating Characteristic (ROC) curve. This curve

shows the quality of the ranking of examples using different classifier thresholds. It

plots the false positive rate against the true positive rate, where the false positive rate

is the fraction of negative examples that are incorrectly predicted as positive and the

true positive rate is the fraction of positive examples that are correctly classified.

The MIT CBCL face dataset consists of a training set composed of 2,429 faces and

4,548 non-faces, and a test set with 472 faces and 23,573 non-faces. The test set is

particularly challenging since it contains those non-face images from the CMU Test Set

1 (Rowley et al. (1998)) which are most similar to faces. All images are captured in

grayscale at a resolution of 19× 19 pixels, but rather than use pixel values as features,

we use those proposed in Viola and Jones (2004) since they give excellent performance

in conjunction with their face detection system. Viola and Jones describe three kinds of

features computed for each image. A two-rectangle feature is the difference between the

sum of pixels within two adjacent rectangular regions of same size and shape. A three-

rectangle feature computes the sum of two outside rectangles subtracted from the sum of

a center rectangle, and a four-rectangle feature is the difference between diagonal pairs

of rectangles. These features, illustrated in Figure 5.4, are computed for each image

over many scales yielding 30,798 features per image.

Figure 5.4: Illustration of the different kinds of features proposed by Viola and Jones.
Each feature is the sum of the pixels values within the white regions subtracted from

the sum of the pixels values within the black regions.

The following procedure is used for this experiment. A reduced training set is formed

using 3000 examples sampled from the original training set. The Viola and Jones features

are used in the RBF feature space with σ = 0.25, as preliminary tests on the training

set showed that this gave good performance with an SVM. Model selection is performed

using 3-fold cross validation repeated twice using a sample of 1500 examples from the

training set. The parameters which result in the highest value for the Area Under

the ROC Curve (AUC) measure are selected at this stage. KPCA, SMA and SMC

are iterated from 100 to 1000 times in steps of 100 and the SVM penalty parameter is

selected from {0.125, 0.25, . . . , 64}. For SMA and SMC we use 500 kernel matrix columns

for the selection of the dual projection directions. To evaluate the learned models, a

ROC curve is recorded for the predictions made on the test set.

Figure 5.5 shows the resulting ROC curves for the SVM, KPCA, SMA and SMC. There

is little to differentiate the curves and all cover approximately 90% of the true positives

Chapter 5 Supervised Feature Extraction 103

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

SVM
SMA
SMC
KPCA

Figure 5.5: ROC curves for the MIT CBCL face dataset I.

with a false positive rate of 0.22 to 0.25. This is an improvement over the results given

in Heisele et al. (2000) which uses the full training set. Notice that the number of kernel

evaluations for the classification of a new test example using the SVM is 1022, compared

to 700 and 900 using SMA and SMC respectively. Furthermore, one would expect KPCA

to perform worse than SMA and SMC in terms of the number of features it requires to

match the SVM since it is an unsupervised method.

5.6 Summary

This chapter has built upon the work presented in the previous ones, by the use of the

kernel general feature extraction framework and the sparsity mechanism used in Chapter

4. The focus was on supervised feature extraction and two new sparse algorithms were

formulated by maximising kernel target alignment and covariance respectively. Efficient

training was achieved by randomly subsampling the kernel matrix columns to choose the

dual directions. This was shown to be effective in improving computational efficiency

without being significantly worse than the optimal solution. The resulting methods can

be trained with a complexity that is linear in the number of examples. Furthermore,

the projection of a new test example requires only k kernel evaluations where k is the

output dimensionality.

An important property of any learning algorithm is its ability to generalise to unseen

examples. To investigate how the covariance of the features produced by the kernel

general framework differed between training and test sets, we derived an upper bound

on the covariance using the Rademacher approach. Although the bound is not predictive

in every case, it suggests when the covariance of the features is stable across different

104 Chapter 5 Supervised Feature Extraction

data samples from the same source. In these cases, one could use the bound as a stopping

criterion for example.

We showed that the features produced by SMA and SMC compare well with other

successful feature extraction methods in both regression and classification scenarios.

Scalability of the algorithms was demonstrated using 20,000 examples from the Reuters

Corpus Volume 1 dataset. With this data, SMA was shown to match the performance

of the original 136,469 features in conjunction with an SVM using just 366 output fea-

tures. Furthermore, on an example face detection problem, SMA and SMC require fewer

features than KPCA to equal the performance of an SVM across a range of thresholds.

Chapter 6

Learning Underlying Semantics of

Two-Viewed Data

We previously introduced CCA as a useful approach for finding the underlying semantics

of a set of paired examples. Its kernel variant finds the solutions to an eigenproblem of

size 2` × 2` implying an O(`3) complexity, however by using the Incomplete Cholesky

decomposition to approximate the kernel matrices one can often reduce the size of the

eigenproblem. The resulting algorithm can be trained in O(`k3) complexity if the full

eigen-decomposition is used, where k is the output rank of the approximated kernel

matrices. However, it has already been shown in Chapter 4 that the Incomplete Cholesky

decomposition is not an ideal choice for approximating a kernel matrix, and instead KFA

or GSD-KPLS obtain better approximations at a similar computational cost. It would

be better still to target the approximations towards maximising correlation, which is

the approach we take in this chapter by formulating a cardinality constrained KCCA

algorithm.

The new KCCA optimisation limits the cardinality of the dual directions. It is infea-

sible to solve directly, and we propose a simple and efficient approximation which uses

deflation. A variation of this method is formulated which can select features from one

view and examples from the other. Using empirical evidence we show that the approx-

imations to the sparse optimisations, whilst not close to optimal, have certain other

desirable properties. We further demonstrate the effectiveness of the sparse CCA meth-

ods on a selection of synthetic and real-world datasets. The chapter concludes with

their application to a novel enzyme function prediction scenario, in which we attempt

to predict the reactions catalysed by enzymes.

105

106 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

6.1 Imposing Sparsity in (K)CCA

One approach for formulating a sparse KCCA algorithm is to maximise the correlation

between Kxα and Kyβ subject to the constraint that the dual vectors have one non-

zero element, and then deflate. A difficulty with the approach is that the correlation

of the resulting features is restricted by that of the respective residual kernel matrix

columns. One can always improve upon the features evaluated in this way by using

less sparse dual directions, however, doing so often increases the computational cost at

each iteration. Instead, consider maximising the (regularised) correlation subject to a

cardinality constraint on the dual vectors,

max α′Kx′Kyβ

s.t. (1− τ)α′Kx′Kxα + τα′Kxα = 1

(1− τ)β′Ky ′Kyβ + τβ′Kyβ = 1

card(α) ≤ p

card(β) ≤ p,

(6.1)

which is related to the p-sparse optimisations observed in Chapter 5. A useful property

of this optimisation is that in certain circumstances it results in an eigenvalue problem

which supplies at most p directions, hence it avoids the need for deflation. Observe that

the optimisation is also similar to the cardinality constrained generalised eigenvalue

problems considered in Moghaddam et al. (2006a), however in our case there are two

cardinality constraints.

The optimisation of Equation 6.1 can be seen as finding the maximal correlation subject

to the constraint that Kxα and Kyβ are in the space of at most p columns of Kx and

Ky respectively. It is identical to the one used for KCCA when p = `, and if we define

q = max(rank(Kx), rank(Ky)) and let p = q, one can always find a maximum correlation

which is equivalent to that obtained when p = `. Furthermore, since the solution to

Equation 6.1 never decreases as p increases, it follows that it is upper bounded by the

largest eigenvalue for the KCCA eigenproblem. It may seem that penalising the norm

of the projection vectors is unnecessary as they have a sparsity constraint. However,

limiting the cardinality of the directions does not necessarily ensure statistical stability,

and Theorem 2.2 implies that regularisation in the way used above is a useful property

in a KCCA algorithm.

A problem with Equation 6.1 is that it cannot be solved using the Lagrange method

since the constraints are non-differentiable. Suppose that we have found which indices

of α and β are non-zero and they are denoted by Ix = {ix1 , . . . , ixq} and Iy = {iy1, . . . , i
y
r}

respectively for q, r ≤ p. Let α̃ and β̃ be the vectors of non-zero entries in α and β,

then Equation 6.1 can be written as

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 107

max α̃′Kx[, Ix]′Ky[, Iy]β̃

s.t. (1− τ)α̃′Kx[, Ix]′Kx[, Ix]α̃ + τα̃′Kx[Ix, Ix]α̃ = 1

(1− τ)β̃
′
Ky[, Iy]

′Ky[, Iy]β̃ + τ β̃
′
Ky[Iy, Iy]β̃ = 1,

(6.2)

and solved using an eigenproblem similar to the KCCA one,

(

0 Cxy

Cyx 0

)(

α̃

β̃

)

= λ

(

Cr
xx 0

0 Cr
yy

)(

α̃

β̃

)

, (6.3)

where Cr
xx = (1 − τ)Kx[, Ix]′Kx[, Ix] + τKx[Ix, Ix], Cr

yy = (1 − τ)Ky[, Iy]
′Ky[, Iy] +

τKy[Iy, Iy], Cxy = C′
yx = Kx[, Ix]′Ky[, Iy].

Observe that the above equation is of size 2p × 2p, and therefore efficient to solve for

small p. Since it is a generalisation of the KCCA eigenproblem, it should come as no

surprise that their projections possess the same properties. The features produced in

this case are orthogonal in the following ways, provided τ = 0,

α̃′
iK

x[, Ix]′Kx[, Ix]α̃j = 0 ⇒ α′
iK

x′Kxαj = 0

β̃
′
iK

y[, Iy]
′Ky[, Iy]β̃j = 0 ⇒ β′

iK
y ′Kyβj = 0

α̃′
iK

x[, Ix]′Ky[, Iy]β̃j = 0 ⇒ α′
iK

x′Kyβj = 0

for i 6= j.

An exact solution for the optimisation of Equation 6.1 requires a combinatorial procedure

and is NP-hard. To improve efficiency, we use an approximation method for Ix and

Iy which greedily selects new indices. As with many search strategies there are two

general approaches that one can adopt: forward selection and backward elimination. In

backward elimination, one starts with the full set of indices [1, . . . , `] and successively

removes elements until p or fewer remain. If the suitability of the ith and jth columns of

Kx and Ky respectively can be evaluated at cost O(`), then the complexity of backward

elimination grows close to O(`4) if p � `. In contrast forward selection, which starts

with an empty set of indices and adds to them, is closer to O(`3) cost and hence is

preferred.

One possible strategy for choosing indices is to start with Ix, Iy = {}, iterate through all

pairs of possible indices, and choose the one which has the maximum value of Equation

6.2. The process is repeated until the desired number of indices is found. Unfortunately,

since Kxα is in the space of the columns corresponding to the non-zero elements of α,

choosing a column within this space does not provide any additional scope for increasing

correlation. It follows that a useful step at each iteration is to deflate the columns of Kx

108 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

and Ky so that they are orthogonal to the previously selected ones, i.e. using the general

kernel feature extraction deflation. Notice that one could also potentially use the KPCA

deflation, however the selected residual kernel matrix columns are not orthogonal and

its application is less intuitive in this case.

In conjunction with the deflations of Kx and Ky using Equation 3.4, the optimisation

used to select indices at the jth iteration is

max α′
jK

x
j
′K

y
jβj

s.t. (1− τ)α′
jK

x
j
′Kx

j αj + τα′
jK

xαj = 1

(1− τ)β′
jK

y
j
′
K

y
j βj + τβ′

jK
yβj = 1

card(αj) = 1

card(βj) = 1,

(6.4)

which is equivalent to Equation 6.1 with p = 1. We have already seen several examples

of optimisations involving dual directions with only one non-zero element, and one can

approximate the above using Lemma 4.1. A limit of c columns of Kx
j and K

y
j for the

computation of αj and βj respectively implies a complexity of O(c2`). Deflating two

` × c matrices j − 1 times, requires O(c(j − 1)`) computations and at the end of the

algorithm an eigenproblem is solved at O(p3) cost. It follows that the overall complexity

of our algorithm (called p-KCCA) is O(c2p` + cp2`), which is linear in the number of

examples and quadratic in the number of iterations p. The pseudo code for p-KCCA is

shown in Algorithm 18.

6.1.1 A primal-dual Variant

Sparsity in dual directions ensures that the equivalent primal vectors are chosen from a

linear combination of a subset of the examples. One can also enforce sparsity directly

in the primal vectors so that the projections use a subset of the original features. This

approach is used in Torres et al. (2007) and Hardoon and Shawe-Taylor (2007a) in

conjunction with algorithms based on CCA. We propose a method which follows the

same general blueprint as Hardoon and Shawe-Taylor (2007a), i.e. finds sparse primal

projection vectors in one view and sparse dual projection directions in the other. We

refer to this blueprint as a primal-dual CCA technique, and later it will become clear

why it is intuitive for the enzyme function prediction task.

To adapt p-KCCA to find primal sparse directions in the X view, one solves the following

optimisation based on Equation 6.1

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 109

Algorithm 18 Pseudo code for p-Kernel Canonical Correlation Analysis.

Inputs: Kernel Kx ∈ R
`×`, Ky ∈ R

`×`, dimension k, sparsity p, sample size c, regular-
isation parameter τ
Process:

1) Indices Ix = { }, and Iy = { }

2) For j = 1, . . . , p

(a) Randomly pick Ic
x, Ic

y ∈ [`]c and let K̃
x
1 = Kx[, Ic

x], K̃
y
1 = Ky[, Ic

y]

(b) For i = 1, . . . , j − 1

i) Let τ x
i = Kx

i αi and τ
y
i = K

y
i βi

ii) Deflate: K̃
x
i+1 =

(

I− τ x
i τ

x
i
′

τ x
i
′τ x

i

)

K̃
x
i and K̃

y
i+1 =

(

I− τ y
i τ

y
i
′

τ y
i
′τ y

i

)

K̃
y
i

(c) End

(d) Solve for scalars s and t

max α′
jK

x
j
′K

y
jβj

s.t. (1− τ)α′
jK

x
j
′Kx

j αj + τα′
jK

xαj = 1

(1− τ)β′
jK

y
j
′
K

y
j βj + τβ′

jK
yβj = 1

αj ∈ s · I[, Ic
x],βj ∈ t · I[, Ic

y]

(e) Let chosen directions be seixq and teiyr
. Update Ix ← Ix∪{ixq} and Iy ← Iy∪{iyr}.

3) End

4) Solve Equation 6.3 using Ix and Iy

5) Define αj = I[, Ix]α̃j and βj = I[, Iy]β̃j, j = 1, . . . , k

Output: Directions αj, βj and projections Kxαj , Kyβj, j = 1, . . . , k

max u′X′Kyβ

s.t. (1− τ)u′X′Xu + τu′u = 1

(1− τ)β′Ky ′Kyβ + τβ′Kyβ = 1

card(u) ≤ p

card(β) ≤ p,

(6.5)

where the number of non-zero entries in u, and hence number of columns of X used in

the projections, is limited to p. Notice that for p = max(m, `), the solution to the above

is equivalent to same optimisation without cardinality constraints. For known indices

Ix and Iy, the optimisation of Equation 6.5 can be written as

(

0 Cxy

Cyx 0

)(

ũ

β̃

)

= λ

(

Cr
xx 0

0 Cr
yy

)(

ũ

β̃

)

, (6.6)

110 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

where Cr
xx = (1 − τ)X[, Ix]′X[, Ix] + τI, and Cxy = C′

yx = X[, Ix]′Ky[, Iy] in this

case. The final projection directions are computed using u = I[, Ix]ũ and β = I[, Iy]β̃

respectively.

The indices Ix and Iy are computed using an analogous method to the one used for

p-KCCA. We set X1 = X and K
y
1 = Ky and solve the following at the jth iteration

max u′
jX

′
jK

y
jβj

s.t. (1− τ)u′
jX

′
jXjuj + τu′

juj = 1

(1− τ)β′
jK

y
j
′
K

y
j βj + τβ′

jK
yβj = 1

card(uj) = 1

card(βj) = 1,

(6.7)

using the deflations of Equations 3.1 and 3.4 respectively to compute the residual ma-

trices. One limitation of the deflation approach is that since each deflation is a rank-one

reduction, one cannot choose more indices than the minimum rank of the corresponding

matrices. However, if at the jth iteration the rank of K
y
j is zero for example then one

can always recover additional indices for Xj by fixing K
y
j ← K

y
1 and then continuing

without deflating K
y
j .

The optimisation of Equation 6.7 is approximated by selecting d columns of Xj and

c columns of K
y
j to find uj and βj. The resulting method, which we shall refer to

as p-primal-dual CCA (p-PDCCA), is shown in Algorithm 19. The complexity of the

algorithm is O(pq2` + qp2`), where q = max(c, d). This is an improvement over the

method presented in Hardoon and Shawe-Taylor (2007a), which is at least O(k`2+km2).

6.1.2 Efficient Centering

We mentioned in Chapter 3 that data centering can help to reduce compound numerical

errors that occur through deflation. In previous experiments, the data has been centered

wherever possible. Centering however is a computationally expensive procedure, requir-

ing O(`2) operations to center a kernel matrix, and here we propose a simple strategy

which centers a subset of the kernel matrix columns in linear complexity.

We start with a proposition from Shawe-Taylor and Cristianini (2004) which finds the

center of mass of a set of points.

Proposition 6.1 (Shawe-Taylor and Cristianini (2004)). The center of mass ΦS of a

set of points solves the following optimisation problem

min
1

`

∑̀

i=1

‖φ(xi)− µ‖2,

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 111

Algorithm 19 Pseudo code for p-primal-dual Canonical Correlation Analysis.

Inputs: Matrices X ∈ R
`×m, Ky ∈ R

`×`, dimension k, sparsity p, sample sizes c, d,
regularisation parameter τ
Process:

1) Indices Ix = { }, and Iy = { }

2) For j = 1, . . . , p

(a) Randomly pick Id
x ∈ [m]d, Ic

y ∈ [`]c and let X̃1 = X[, Id
x] , K̃

y
1 = Ky[, Ic

y]

(b) For i = 1, . . . , j − 1

i) Let τ x
i = Xiui and τ

y
i = K

y
i βi

ii) Deflate: X̃i+1 =
(

I− τ x
i τ

x
i
′

τ x
i
′τ x

i

)

X̃i and K̃
y
i+1 =

(

I− τ y
i τ

y
i
′

τ y
i
′τ y

i

)

K̃
y
i

(c) End

(d) Solve for scalars s and t

max u′
jXj

′K
y
j βj

s.t. (1− τ)u′
jX

′
jXjuj + τu′

juj = 1

(1− τ)β′
jK

y
j
′
K

y
j βj + τβ′

jK
yβj = 1

uj ∈ s · I[, Id
x],βj ∈ t · I[, Ic

y]

(e) Let chosen directions be seixq and teiyr . Update Ix ← Ix∪{ixq} and Iy ← Iy∪{iyr}.

3) End

4) Solve Equation 6.6 using Ix and Iy

5) Let uj = I[, Ix]ũj and βj = I[, Iy]β̃j, j = 1, . . . , k

Output: Directions uj, βj and projections Xuj , Kyβj, j = 1, . . . , k

with µ = ΦS = 1
`

∑`
i=1 φ(xi).

The above optimisation can be written as

min
1

`
‖X− jµ′‖2F , (6.8)

and we let µ be a linear combination of at most c examples, i.e. µ = X′α for some dual

vector α with card(α) ≤ c. By substituting this value of µ, Equation 6.8 is equivalent

to

min α′Kα− 2
` j

′Kα

s.t. card(α) ≤ c.
(6.9)

Rather than solve this optimisation exactly, we randomly select a set of indices I =

{i1, . . . , ic} ∈ [`]c. By defining α̃ = α[I], Equation 6.9 becomes

112 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

min α̃′K[I, I]α̃ − 2
` j

′K[, I]α̃, (6.10)

which has the solution α̃ = 1
`K[I, I]−1K[I,]j provided K[I, I] is invertible. In the case

that c = `, µ is identical to the solution of Equation 6.8.

In the primal space, the examples are centered using X̃ = X − jµ′ = X − jα′X and it

follows that the kernel equivalent is K̃ = X̃X̃′ = K−jα′K−Kαj′+α′Kαjj′. Hence one

can center a vector of inner products between a test example and the training examples

k using

k̃
′
= k′ −α′K− k′αj′ + α′Kαj′,

which requires at most c columns of the kernel matrix.

6.2 Connection with Kernel Alignment

A result is now presented connecting the (unregularised) p-KCCA and KCCA optimi-

sations to kernel alignment. It gives insight into the difference in the correlation of the

(p-)KCCA features between the training set and a test set.

First observe that the KCCA objective function is equivalent to the kernel alignment

between kernel matrices of the projections, K̃
x

= Kxαα′Kx′ and K̃
y

= Kyββ′Ky ′,

since

A(K̃
x
, K̃

y
) =

tr(Kxαα′Kx′Kyββ′Ky ′)
√

tr((Kxαα′Kx′)2)tr((Kyββ′Ky ′)2)

=
(α′Kx′Kyβ)2

α′Kx′Kxαβ′Ky ′Kyβ
.

One can extend this observation by considering the complete set of features extracted

by KCCA. In this case, let K̃
x

=
∑k

i=1 Kxαiα
′
iK

x′ and K̃
y

=
∑k

i=1 Kyβiβ
′
iK

y ′, then

the alignment between Kx and Ky is

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 113

A(K̃
x
, K̃

y
) =

∑k
i=1(α

′
iK

x′Kyβi)
2

√

∑k
i=1(α

′
iK

x′Kxαi)2
∑k

i=1(β
′
iK

y ′Kyβi)
2

=
1

k

k
∑

i=1

(α′
iK

x′Kyβi)
2,

where the first line follows from the conjugacy of the eigenvectors for the KCCA eigen-

problem, and the second uses the fact that Kxαi and Kyβi are unit norm. Therefore it

has been shown that the kernel alignment between the KCCA output kernel matrices is

equivalent to the average squared correlation of the resulting features.

A theorem is now derived, similar to that given in Cristianini et al. (2001), which shows

that the alignment between two kernel matrices is concentrated. In a slight modification

of notation, we denote the alignment between two kernel matrices evaluated from a data

sample S as A(S). First, we introduce a theorem from McDiarmid which is informative

about the deviation of a function from its expectation.

Theorem 6.2. (McDiarmid (1989)) Let X1, ...,Xn be independent random variables

taking values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f(x1, ..., xn)− f(x1, ..., x̂i, xi+1, ..., xn)| ≤ ci, 1 ≤ i ≤ n

then for all ε > 0,

P{|f(X1, ...,Xn)− E[f(X1, ...,Xn)]| ≥ ε} ≤ exp

(−2ε2

∑n
i=1 c2

i

)

.

This leads onto the following theorem.

Theorem 6.3. The sample based estimate of the alignment between two kernel matrices

is concentrated around its expected value. For kernels with feature vectors of norm at

most 1, we have

P{S : |A(S)− E[A(S)]| ≥ ε̂} ≤ δ,

where ε̂ = ε1√
A2(S)

+ (|A1(S)|+ε1)ε2√
A2(S)(A2(S)−ε2)·(

√
A2(S)+

√
(A2(S)−ε2))

, ε1 =
√

8`3 log(4/δ), ε2 =
√

8`5 log(4/δ), A1(S) = 〈Kx,Ky〉F , and A2(S) = 〈Kx,Kx〉F 〈Ky,Ky〉F .

114 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

Proof. First observe that A(S) = A1(S)/
√

A2(S). We derive the concentration of A1

and A2 by considering an alternative training set S′ = S\{xk}∪ {x̂k} and bounding the

following

|A1(S)−A1(S
′)| ≤ 4`

|A2(S)−A2(S
′)| ≤ (2`− 1)2 ≤ 4`2.

Applications of McDiarmid’s Theorem result in

P{|A1(S)− E[A1(S)]| ≤ ε1} ≤ 2 exp

(−ε2
1

8`3

)

P{|A2(S)− E[A2(S)]| ≤ ε2} ≤ 2 exp

(−ε2
2

8`5

)

.

By setting the right hand side of the above to δ/2, we have ε1 =
√

8`3 log(4/δ) and

ε2 =
√

8`5 log(4/δ). It follows that with probability at least 1−δ, |A1(S)−E[A1(S)]| < ε1

and |A2(S)− E[A2(S)]| < ε2. Hence,

|A(S)− E[A(S)]| =

∣

∣

∣

∣

∣

A1(S)
√

A2(S)
− E[A1(S)]
√

E[A2(S)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

A1(S)− E[A1(S)]
√

A2(S)
+

E[A1(S)]
√

A2(S)
− E[A1(S)]
√

E[A2(S)]

∣

∣

∣

∣

∣

≤ ε1
√

A2(S)
+

∣

∣

∣

∣

∣

E[A1(S)]
√

A2(S)
− E[A1(S)]
√

E[A2(S)]

∣

∣

∣

∣

∣

=
ε1

√

A2(S)
+

∣

∣

∣

∣

∣

E[A1(S)](
√

E[A2(S)]−
√

A2(S))
√

A2(S)E[A2(S)]

∣

∣

∣

∣

∣

≤ ε1
√

A2(S)
+

|E[A1(S)]| · |A2(S)− E[A2(S)]|
√

A2(S)E[A2(S)] · (
√

A2(S) +
√

E[A2(S)])

≤ ε1
√

A2(S)
+

(|A1(S)|+ ε1)ε2
√

A2(S)E[A2(S)] · (
√

A2(S) +
√

E[A2(S)])

≤ ε1
√

A2(S)
+

(|A1(S)|+ ε1)ε2
√

A2(S)(A2(S)− ε2) · (
√

A2(S) +
√

(A2(S)− ε2))

= ε̂.

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 115

The value of ε̂ tends to be small provided ε1/
√

A2(S) is also small. Since
√

A2(S) is

the product of the norm of the kernel matrices, this implies that examples are not too

dissimilar to each other in terms of the magnitude of their inner products in the kernel

feature spaces. In this case, it is intuitive that the alignment measured on a training

set is similar on a test set. Hence, for the KCCA case it would be better to project the

examples into a subspace of small dimensionality to increase the likelihood that A2(S)

is large. As a final remark, note that the concentration result in Cristianini et al. (2001)

considers the kernel target alignment (where Ky = yy′) and it follows that ‖Ky‖F = `

and hence A2 is likely to be large provided ‖Kx‖F is also large.

6.3 Computational Results

Using a set of artificial and real datasets, we highlight important properties of the sparse

CCA methods and also compare their performance to that of KCCA.

6.3.1 Greedy versus Exhaustive Search

An important question about the sparse CCA variants presented above is how the ap-

proximations to the sparse optimisations compare with their exact solutions. Since the

exact solutions require combinatorial procedures, one can only evaluate them in a prac-

tical time frame for small ` or p, and here we make such a comparison using a set of

small artificial datasets.

We create 5 synthetic datasets consisting of 20 examples, and 10 features in both X
and Y views. The examples are generated using x = n(0, 1) and y = n(0, 1) where

n(µ, σ2) is a vector of normal random variables with mean µ and variance σ2. Both

exact and approximate solutions to Equation 6.1 are considered for p = 3, τ = 0. The

approximate solution corresponds to that obtained using Algorithm 18, with c = 20.

An identical test is used to compare solutions to Equation 6.5, with c = 20 and d = 10

for the approximate case. The tests are repeated using all 5 datasets and the average

eigenvalues across the datasets are recorded.

Method λ1 λ2 λ3
∑3

i=1 λi

Optimisation 6.1 0.9421 0.3856 0.1347 1.4624
Optimisation 6.1 approx 0.7801 0.6394 0.5112 1.9306
Optimisation 6.5 0.9163 0.4228 0.1120 1.4511
Optimisation 6.5 approx 0.8048 0.6365 0.4460 1.8873

Table 6.1: Comparison of the mean eigenvalues obtained using approximate and exact
computations of Equations 6.1 and 6.5.

Table 6.1 highlights important differences between the exact solutions to Equations 6.1

and 6.5 and their approximations. One would expect that the approximate solutions

116 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

have a lower first eigenvalue, which is verified empirically in this case. More important

however, is that the successive eigenvalues are significantly higher for the approximations

than those obtained in the exact cases. The deflations used to formulate the approxi-

mations ensure that the chosen columns of the data and kernel matrices are orthogonal

and correlated between the two views, and hence have a high cumulative correlation.

In contrast, when solving Equation 6.1 for example, the chosen kernel matrix columns

are selected solely to maximise the initial correlation and will not necessarily result in a

high cumulative correlation.

6.3.2 Cumulative Correlation

An important consideration for any CCA variant is how much correlation is captured

when projecting examples from a test set, and here the test correlations of the CCA

methods are compared on a pair of artificial datasets.

6.3.2.1 Artificial Dataset 1

We start with a dataset composed of 300 examples of a hidden variable z which has 1000

features of which 100 on average are non-zero. The x and y examples are computed

using x = z + n(0, 0.01, 100), y = z + n(0, 0.01, 100) with probability 2/3 and x =

z + n(0, 1, 100), y = z + n(0, 1, 100) with probability 1/3, where n(µ, σ2, s) is a sparse

vector of random normal variables with s non-zero entries, mean µ and variance σ2.

Using a 10-fold cross validation procedure, the CCA methods are evaluated by allowing

each one to generate a maximum of 150 features. We use KCCA with an Incomplete

Cholesky decomposition and p-KCCA. Since all of the features in the examples are

relevant, p-PDCCA is not included in this experiment. For KCCA, the regularisation

parameter is selected from {0, 0.2, . . . , 1} and the precision parameter for the Incomplete

Cholesky decomposition, η, is 0.01. With p-KCCA, c = 200, τ = 0 and p is varied by

selecting it from the set {60, 90 . . . , 240}.

The test cumulative correlations are shown in Table 6.2. With KCCA it is clear that

regularisation provides little advantage as the highest correlations occur when τ = 0.

The p-KCCA method improves over KCCA in every configuration since it tends to

choose indices which correspond to examples with a low noise component. Table 6.3

shows that the average number of low noise examples chosen by p-KCCA is greater than

the expectation in general. The test correlations peak at approximately p = 180, which

corresponds closely to the point at which the proportion of lower noise examples starts

to decrease as p increases. After p = 180 the choice of projection directions is no longer

limited to that of a high proportion of low noise examples and one would expect the

correlation to eventually converge to that of KCCA.

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 117

Features
Method 30 60 90 120 150
KCCA τ = 0 17.3 (1.2) 35.1 (2.5) 53.0 (4.2) 71.3 (5.5) 89.6 (6.5)
KCCA τ = 0.2 15.6 (1.4) 31.7 (2.4) 47.7 (3.5) 64.6 (4.6) 82.4 (5.8)
KCCA τ = 0.4 15.6 (1.4) 31.7 (2.4) 47.8 (3.5) 64.7 (4.5) 82.6 (5.7)
KCCA τ = 0.6 15.6 (1.4) 31.7 (2.3) 47.7 (3.5) 64.7 (4.4) 82.8 (5.6)
KCCA τ = 0.8 15.5 (1.4) 31.5 (2.3) 47.5 (3.4) 64.6 (4.3) 82.8 (5.5)
KCCA τ = 1 15.2 (1.3) 30.7 (2.2) 46.5 (3.2) 63.6 (4.0) 82.0 (5.2)
p-KCCA p = 60 21.7 (1.6) 43.4 (3.3) - - -
p-KCCA p = 90 22.1 (1.3) 43.9 (3.0) 65.2 (4.6) - -
p-KCCA p = 120 22.1 (1.4) 44.1 (2.7) 65.7 (4.2) 86.5 (5.8) -
p-KCCA p = 150 22.1 (1.5) 44.1 (2.9) 65.7 (4.3) 87.3 (5.8) 108.2 (7.4)
p-KCCA p = 180 21.8 (1.6) 43.6 (3.3) 65.6 (4.6) 87.2 (6.0) 108.4 (7.7)
p-KCCA p = 210 20.6 (1.5) 41.3 (3.3) 61.6 (4.8) 82.3 (6.0) 102.8 (7.1)
p-KCCA p = 240 19.2 (1.8) 38.1 (2.9) 57.1 (4.0) 76.7 (5.3) 95.9 (6.7)

Table 6.2: Cumulative correlations obtained using KCCA and p-KCCA on an artificial
dataset.

p Relevant examples

30 0.817 (0.123)
60 0.822 (0.115)
90 0.820 (0.127)
120 0.808 (0.128)
150 0.816 (0.119)
180 0.819 (0.117)
210 0.751 (0.064)
240 0.703 (0.029)

Table 6.3: The mean proportion of relevant examples selected using by p-KCCA for
different values of p.

6.3.2.2 Artificial Dataset 2

The second artificial dataset has 400 examples, with hidden variable z being a sparse

vector consisting of 400 features of which 40 are non-zero on average. In this case

the particular features are important, hence we have x = C′
xz + n(0, 0.01, 50) where

the coefficient matrix Cx ∈ R
400×500 has only 100 non-zero columns. The remaining

examples are computed using y = z + n(0, 0.01, 50) with probability 2/3 and y =

z + n(0, 0.1, 50) with probability 1/3. It follows that only 100 out of 500 features in the

x examples are meaningfully correlated with those present in the y examples.

We again compare the cumulative correlations of the CCA methods using 5-fold cross

validation, and each method is iterated at most 120 times. For KCCA, the regularisation

parameter selected from {0, 0.2, . . . , 1} and η = 0.01. With p-PDCCA and p-KCCA we

set c = d = 200 and vary the values of p by selecting it from {144, 180, . . . , 360}.
Furthermore, the sparse CCA methods are regularised be setting τ = 0.1.

Table 6.4 shows that regularisation improves the performance of KCCA, and its best

correlation occurs when τ = 0.4 and k = 120. Regularisation is required for this dataset

118 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

Features
Method 20 40 60 80 100 120
KCCA τ = 0 2.0 (0.3) 4.1 (0.4) 6.2 (0.4) 8.3 (0.3) 10.1 (0.4) 12.2 (1.0)
KCCA τ = 0.2 8.8 (0.4) 15.9 (0.6) 21.8 (1.0) 26.4 (0.6) 30.6 (0.6) 34.4 (0.8)
KCCA τ = 0.4 8.6 (0.4) 15.7 (0.6) 21.6 (1.0) 26.4 (0.7) 30.6 (0.7) 34.6 (0.7)
KCCA τ = 0.6 8.4 (0.4) 15.3 (0.6) 21.2 (0.9) 26.1 (0.7) 30.4 (0.7) 34.4 (0.8)
KCCA τ = 0.8 8.0 (0.4) 14.7 (0.7) 20.5 (0.9) 25.6 (0.6) 30.0 (0.7) 33.8 (0.9)
KCCA τ = 1 7.2 (0.5) 13.6 (0.7) 19.1 (0.8) 24.2 (0.6) 28.7 (0.8) 32.2 (0.7)
p-KCCA p = 144 5.9 (0.3) 10.4 (0.6) 14.2 (1.0) 17.7 (0.9) 20.7 (0.8) 23.1 (0.7)
p-KCCA p = 180 6.6 (0.6) 11.5 (0.9) 15.8 (0.6) 19.1 (0.9) 22.3 (0.9) 25.2 (0.7)
p-KCCA p = 216 7.5 (0.7) 13.1 (0.8) 17.5 (0.5) 21.0 (0.4) 24.6 (0.7) 27.7 (0.6)
p-KCCA p = 252 7.9 (0.3) 14.0 (0.4) 19.3 (0.5) 23.3 (0.3) 26.7 (0.5) 29.7 (0.6)
p-KCCA p = 288 8.3 (0.4) 15.0 (0.5) 20.6 (0.3) 24.9 (0.3) 28.7 (0.6) 32.1 (0.6)
p-KCCA p = 324 8.6 (0.3) 15.6 (0.5) 21.3 (0.8) 25.7 (0.5) 29.7 (0.9) 33.4 (0.7)
p-KCCA p = 360 8.9 (0.4) 16.1 (0.6) 21.9 (0.9) 26.5 (0.6) 30.8 (0.7) 34.2 (0.9)
p-PDCCA p = 144 13.4 (0.4) 23.6 (1.0) 30.9 (1.3) 35.8 (1.9) 38.9 (2.0) 41.1 (2.2)
p-PDCCA p = 180 12.9 (0.5) 23.1 (1.0) 30.8 (1.0) 36.5 (1.3) 40.5 (1.4) 43.2 (1.6)
p-PDCCA p = 216 12.6 (0.5) 22.8 (0.7) 30.4 (0.9) 36.4 (1.4) 40.6 (1.6) 44.2 (1.5)
p-PDCCA p = 252 12.3 (0.3) 22.1 (1.0) 29.8 (1.2) 35.8 (1.5) 40.5 (2.0) 44.2 (2.1)
p-PDCCA p = 288 12.0 (0.1) 21.6 (0.7) 28.7 (0.9) 34.4 (1.0) 39.0 (1.7) 43.1 (1.9)
p-PDCCA p = 324 11.8 (0.4) 20.8 (0.6) 27.5 (1.1) 33.4 (1.3) 37.7 (1.3) 41.7 (1.5)
p-PDCCA p = 360 11.4 (0.3) 20.0 (0.5) 26.7 (0.9) 32.0 (1.0) 36.5 (1.1) 40.2 (1.2)

Table 6.4: Cumulative correlations obtained using KCCA, p-KCCA and p-PDCCA
on an artificial dataset.

p Features Examples

36 32.0 (0.0) 24.4 (3.5)
72 63.0 (0.7) 51.6 (5.5)
108 80.4 (2.4) 75.6 (5.0)
144 87.6 (3.4) 94.6 (4.3)
180 89.8 (3.1) 115.0 (1.4)
216 90.6 (2.6) 138.6 (3.0)
252 90.8 (2.5) 163.2 (3.7)
288 91.6 (2.2) 186.6 (4.0)
324 92.0 (1.7) 212.2 (2.2)
360 93.0 (1.7) 239.0 (0.0)

Table 6.5: The relevant examples and features selected using p-PDCCA.

since the smallest eigenvalues of Kx and Ky are close to zero. As discussed in Chapter

2, this implies that unregularised KCCA could potentially choose projections directions

with large norm which would not generalise well. Observe that sparsity in p-KCCA

provides little advantage, as the best correlation occurs when p = 360. In contrast,

with p-PDCCA sparse projection directions allow it to improve over the corresponding

correlations of KCCA. Table 6.5 demonstrates that p-PDCCA is effective at choosing

the useful features in the X view, however, the proportion of useful features selected

decreases with an increase in p. A higher value of p is required to capture the majority

of the lower noise examples, which suggests that one can sometimes improve performance

using different values for the cardinality of u and β, although it comes at the cost of

extra time needed for model selection.

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 119

6.3.3 UCI Mate Retrieval Experiment

The CCA methods are now applied to a series of UCI datasets, details of which are given

in Table 6.6. They are all multiclass datasets and indicator vectors using the labels form

the Y matrix. The features in X are centered and normalised to have unit norm, and

KCCA, p-KCCA and p-PDCCA are evaluated using 3-fold cross validation. This time

we are interested in the application of the CCA methods to a mate retrieval task. For

the ith projected example U′xi we retrieve the 5 closest opposite examples, and record

whether one of these is the “mate” of the original example, V′yi, in its projected space.

This process is averaged over all examples to obtain a retrieval rate.

Dataset Examples Features Classes

Arrhythmia 452 279 13
Glass 214 10 7
LRS 531 93 48
Multiple Features 2000 649 10

Table 6.6: Information about the UCI datasets.

Model selection is performed using 2 repetitions of 4-fold cross validation, with pa-

rameters selected as follows. For KCCA, the regularisation parameter is chosen from

{0, 0.2, . . . , 1} and η ∈ {0.05, 0.1, 0.2}. The setup of the sparse CCA methods is mod-

ified to introduce a sparsity parameter ν = p/` (the resulting methods are referred to

as ν-PDCCA and ν-KCCA), which is selected from {0.2, 0.4, 0.6} . For these methods

c = d = 200, the regularisation parameter τ ∈ {0, 0.2, 0.4, 0.6}, and ν-KCCA uses the

sparse centering procedure introduced in Section 6.1.2. The value of k is selected from

10 values in equal intervals from 1 to min(rank(X), rank(Y)). We also apply the RBF

kernel with σ ∈ {2−4, 2−2 . . . , 24} on the x examples for KCCA and ν-KCCA, and use

2 repetitions of 3-fold cross validation for model selection in these cases.

KCCA ν-KCCA ν-PDCCA
Dataset Rate k γ Rate k ν Rate k ν
Arrhythmia .629 (.023) 8 .70 .613 (.024) 9 .60 .611 (.028) 6.7 .20
Glass .836 (.035) 1 .06 .854 (.089) 1 .20 .892 (.022) 1 .33
LRS .537 (.015) 4 .16 .531 (.034) 3.3 .27 .548 (.065) 2.7 .33
Multiple Feat. .984 (.005) 7 .46 .980 (.006) 7.7 .33 .988 (.002) 8 .40
Arrhythmia .584 (.064) 10.7 .78 .536 (.057) 8.3 .53
Glass .859 (.037) 2.3 .53 .845 (.061) 1.3 .27
LRS .672 (.020) 14 .94 .706 (.043) 12.3 .60
Multiple Feat. .983 (.004) 7 .99 .988 (.006) 8 .47

Table 6.7: Average mate retrieval rates of the CCA methods for linear (top) and RBF
(bottom) kernels.

The results are shown in Table 6.7. For KCCA, γ is the maximum rank of the Incomplete

Cholesky decompositions of Kx and Ky divided by the number of training examples,

hence the sparsity of the solution. The linear results indicate the advantage of using

ν-PDCCA which results in the highest retrieval rates for most datasets, implying a

120 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

redundancy of some of the features. A comparison of the sparsity of the CCA methods

reveals that KCCA is broadly competitive with ν-KCCA and ν-PDCCA when using the

linear kernel. However, the rank of the linear kernel matrix is often small and one would

expect a high degree of sparsity. The RBF results are more insightful in terms of the

sparsity of the solutions, and here ν-KCCA improves over KCCA in every case whilst

remaining competitive with its mate retrieval rates.

The overall picture is that ν-KCCA and ν-PDCCA are competitive with KCCA, and in

some cases can provide a significant improvement over its performance. In particular,

ν-KCCA obtains sparse projection directions since it chooses examples that are targeted

towards finding a high cumulative correlation. An improvement in sparsity implies fewer

computational operations are needed for training and projecting new test data.

6.4 Case Study: Enzyme Function Prediction

Proteins are large organic molecules essential to all organisms, with a unique 3-dimensional

structure which they naturally fold into. They exist in every living cell, applying them-

selves to a variety of functions, and in the human body it is estimated that there may be

as many as a million different proteins. Hence, their analysis is important in understand-

ing organisms, and in particular to the study of human biology. Finding the function

of a protein with known sequence and structure using experimental evidence remains

a difficult, time and cost intensive task. For this reason, a computational approach is

desirable. This is not a simple task however, since proteins have complex structures and

can serve a large variety of functions.

This study attempts to learn the function of proteins, focusing on their catalytic prop-

erties, i.e. their action as enzymes. Enzymes are often specific to one or a few different

reactions, for example, DNA repair, DNA replication and those involved in metabolism1.

Most enzymes are much larger than the substrates they act on, and only a small part

of the enzyme2 (around 3 or 4 amino acids3) is directly involved in catalysis. It follows

that feature selection is important for this investigation since proteins are typically rep-

resented using a large number of features of which only a small fraction are useful for

catalysis.

6.4.1 Background and Related Work

One of the difficulties in predicting reactions from enzymes is the choice of data rep-

resentation. An unfolded protein is essentially a linear sequence of amino acids, often

1Metabolism is the breakdown of food into energy or the use of energy to construct components of
cells.

2Known as the active site.
3An amino acid is a molecule containing nitrogen and a carboxyl group (CO2H).

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 121

called the primary structure. The corresponding secondary structure is characterised

by regularly repeating local structures stabilized by hydrogen bonds. For example, the

structure of a few residues4 can be described in terms of different length helices. Using

protein structure alone for function classification can be difficult since proteins with a

similar function may have dissimilar structure, and proteins with a similar structure may

have distinct functions. In fact, a single amino acid mutation can alter the function of

a protein and make a pair of structurally closely related proteins functionally different.

The standard method for describing enzymatic reactions is using an Enzyme Commis-

sion (EC) number, which is a sequence of 4 numbers specifying a particular type of

reaction. The sequence of numbers represent progressively more specific classifications

of the reaction, of which the top level is shown in Table 6.8. The complete EC hierarchy

consists of 4 levels with 1633 nodes.

EC No. Name Description Frequency

1 Oxidoreductases To catalyse oxidation/reduction reactions;
transfer of H and O atoms or electrons
from one substance to another.

1088

2 Transferases Transfer of a functional group from one
substance to another. The group may
be methyl-, acyl-, amino- or phosphate
group.

2317

3 Hydrolases Formation of two products from a sub-
strate by hydrolysis.

1480

4 Lyases Non-hydrolytic addition or removal of
groups from substrates. C-C, C-N, C-O
or C-S bonds may be cleaved.

589

5 Isomerases Intramolecule rearrangement, i.e. isomer-
ization changes within a single molecule.

384

6 Ligases Join together two molecules by synthesis
of new C-O, C-S, C-N or C-C bonds with
simultaneous breakdown of ATP.

760

Table 6.8: Description and frequency (in our training set) of top level EC numbers
(Sourced from Wikipedia (2007)).

Recent work in function prediction has made use of a variety of enzyme feature repre-

sentations, for example in Cai et al. (2004) enzymes are encoded using characteristics

such as hydrophobicity, polarisability, charge and frequency of amino acid bases. The

resulting features are then used to classify, using an SVM, the enzymes into 46 different

EC Number categories belonging to the second level of the hierarchy. In Borgwardt

et al. (2005), the primary and secondary structures of proteins are encoded using graph

kernels, which are shown to perform well when predicting the top level of the EC hierar-

chy. Lanckriet et al. (2004b) uses a combination of kernel representations in an optimal

fashion by formulating a convex optimisation problem. They are applied to predicting

functional classification associated with Yeast proteins.

4A residue is a portion of a larger molecule.

122 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

Several authors have relied solely on amino acid sequences to encode proteins. In Leslie

et al. (2002) an efficient spectrum kernel is formulated and used for protein classification.

The features used by the spectrum kernel are the set of all possible subsequences of

amino acids of a fixed length n, which is computable in linear time in the lengths of the

input sequences. The features are used with an SVM on the Structural Classification

of Proteins (SCOP) database, and shown to be comparable to state-of-the-art using

n = 3. A more general approach is given in Ben-Hur and Brutlag (2005), which searches

for sequence motifs. These are elements that are conserved across different proteins

corresponding to functional regions of a protein. The motifs are based on a regular

expression applied to the amino acid sequences. The resulting features are shown to be

good predictors of the EC classification when used in conjunction with an SVM.

Our work differs from these publications, as it attempts to pinpoint which reactions are

catalysed by a given enzyme by modelling reactions directly as graphs. Furthermore, we

perform EC classification of the enzymes using all 4 levels of the EC hierarchy. Related

work from the same project is presented in Astikainen et al. (2007), which discovers

microlabel predictions for the EC hierarchy using Maximum Margin Regression (MMR,

Szedmak et al. (2005)).

6.4.2 Data Description and Feature Representation

Our dataset is composed of 28,765 protein sequences from the KEGG LIGAND database,

of which 9889 are enzymes. Of the enzymes, 9455 have a complete EC-classification and

434 have a partial classification. For the purposes of evaluation, the enzymes are sub-

sampled into a training set of size 6618 examples. Since proteins are made of sequences

of amino acids, these form the basis of their feature representation. There are twenty-

two naturally occurring amino acids, however, only twenty are required for the enzymes

in our dataset. Figure 6.1 shows the distribution of protein lengths in the training set.

6.4.2.1 Sequence Representations

The feature representations used for the enzymes fall into three categories: substring

features (Lodhi et al. (2002)), gap or mismatch features (Leslie et al. (2004)) and Global

Trace Graph (GTG) features.

The substring features make a count of each substring of length p in the enzyme se-

quences. Given an alphabet of size q, the number of features is qp, with q = 21 in

the case of the enzymes sequence features (20 amino acids plus a missing value). One

would expect the computation of this set of features to become prohibitive with large

p. Hence, Lodhi et al. (2002) supplies a technique for computing the inner product

between features at a reduced computational cost, using a dynamic programming tech-

nique. However, since p is small in our case and there is an interest in the underlying

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 123

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

Protein Length

F
re

qu
en

cy

Figure 6.1: Distribution of the number of amino acids in each protein sequence.

features, the substring features are computed explicitly. A small variation of the stan-

dard substring features is to allow gaps or mismatches in the substrings. The set of

sequence substring features of length p is referred to as Sp, and the set of sequence

features of length p with at most r gaps of length t is denoted by Sp-rGt.

An alternative protein encoding is the Alignment Trace Graph (Heger et al. (2003))

technique which finds residues that are potentially well conserved and thus may be part

of the active center. The GTG kernel obtained from this method has a feature for each

residual of a particular type in a particular cluster. Since a cluster could potentially be

within the active center, these features may be useful for predicting the reaction of an

enzyme. Table 6.9 shows some properties of the different enzyme feature representations.

Encoding Number of features Non-zero features

S3 9261 8338
S4 194481 155902
S4-1G1 194481 160877
S4-1G2 194481 160846
S4-2G1 194481 160851
S5 4084101 1452776
S5-1G1 4084101 2431977
S6 85766121 2879536
GTG 1659550 590411

Table 6.9: Number of features for each protein sequence encoding.

124 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

6.4.2.2 Reaction Representations

As mentioned earlier, one method of representing the catalysed reactions is by using EC

numbers. In the following experiments, these are encoded using indicator vectors with

a binary label corresponding to each node of the EC hierarchy. Hence, for a complete

EC number, only 4 labels are non-zero.

An alternative and more precise method of representing reactions is to model the reaction

substrates and products directly using graph kernel techniques (Takimoto and Warmuth

(2002)). There are two kernels that are computed in this way. The first is computed

using

κr(x, z) = m(x)′Kmm(z),

where m(x) is a vector indicating which molecules are present in reaction x, and Km ∈
R

1767×1767 is kernel matrix of molecules whose (i, j)th entry is the number of common

subgraphs of size less than 10 in molecules i and j. Hence, κr can be considered as

the similarity between two reactions based on common molecules. The second reaction

kernel is computed as

κs(x, z) = n(x)′Kmn(z),

where n(x) is a vector indicating the difference between product and substrate molecule

numbers for reaction x.

6.4.3 Learning the Semantics of Enzymes and their Reactions

We now apply the CCA variants to the enzyme data and reaction kernels, recording the

average number of correctly retrieved reactions. To retrieve a reaction for a particu-

lar enzyme we project the enzymes and reactions into the corresponding CCA-learned

subspaces, and then record whether the matching reaction is within the top 10 clos-

est reactions. The average retrieval accuracy is measured using 3-fold cross validation,

and an inner 3-fold cross validation procedure is used to select parameters using 900

examples.

For these tests we use 2000 examples and some of the properties of the corresponding

reaction kernels are shown in Table 6.10. All of the sequence features in Table 6.9 are

used in conjunction with the two reaction kernels described above, giving 18 combina-

tions of sequence-reaction features. The sequence data is preprocessed by removing the

zero norm features, and the resulting examples are then normalised to have unit norm.

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 125

The reaction kernels are centered and normalised so that the examples have zero mean

and unit norm.

Property κr κs

Rank 580 562
Unique columns 603 593
Column norm mode 0 0
Column norm mode frequency 209 221

Table 6.10: Some properties of the reaction kernel matrices for 2000 examples.

As before, we use a grid search to select model parameters. The KCCA, ν-KCCA,

ν-PDCCA methods are applied to the enzyme data using values of {50, 100, . . . , 500}
features. For KCCA, the regularisation parameter is selected from {0, 0.2, . . . , 1} and η =

0.01. The c parameter of ν-KCCA and ν-PDCCA is set to 500, and ν ∈ {0.25, 0.5, . . . , 1}.
Since many of the sequence encodings have a large number of features, we fix d = 1000

for ν-PDCCA. The ν-KCCA algorithm is used in conjunction with the sparse centering

procedure of Section 6.1.2 for the sequence features. Only the linear kernel is applied

on the sequence features, since preliminary tests showed that polynomial and RBF

kernels produced consistently worse retrieval rates when compared to the equivalent

linear results.

KCCA ν-KCCA ν-PDCCA
Features Accuracy k Accuracy k ν Accuracy k ν

S3 .053 (.046) 416.7 .075 (.042) 50 0.6 .105 (.011) 66.7 0.5
S4 .075 (.049) 366.7 .049 (.039) 83.3 0.6 .105 (.011) 100 0.5
S4-1G1 .055 (.052) 366.7 .105 (.011) 50 0.8 .105 (.011) 83.3 0.5
S4-1G2 .051 (.030) 350 .087 (.040) 50 0.7 .105 (.011) 83.3 0.5
S4-2G1 .079 (.054) 333.3 .075 (.042) 50 0.6 .105 (.011) 100 0.5
S5 .058 (.051) 383.3 .048 (.041) 66.7 0.7 .105 (.011) 66.7 0.5
S5-1G1 .080 (.053) 366.7 .051 (.045) 66.7 0.7 .105 (.011) 66.7 0.7
S6 .030 (.011) 416.7 .035 (.004) 50 0.7 .104 (.007) 50 0.6
GTG .071 (.039) 250 .105 (.011) 50 0.8 .066 (.041) 183.3 0.8

S3 .072 (.037) 283.3 .115 (.006) 50 1.0 .112 (.009) 83.3 1.0
S4 .053 (.033) 66.7 .108 (.021) 116.7 0.8 .111 (.008) 83.3 0.6
S4-1G1 .112 (.011) 183.3 .111 (.016) 116.7 0.8 .111 (.008) 100 0.6
S4-1G2 .107 (.012) 350 .080 (.057) 116.7 1.0 .112 (.009) 66.7 1.0
S4-2G1 .106 (.018) 200 .118 (.011) 50 0.9 .114 (.007) 116.7 0.8
S5 .085 (.045) 200 .107 (.020) 116.7 0.8 .103 (.014) 83.3 0.7
S5-1G1 .095 (.046) 66.7 .104 (.015) 183.3 0.8 .081 (.044) 50 0.7
S6 .095 (.046) 66.7 .109 (.011) 116.7 0.6 .079 (.055) 150 0.5
GTG .089 (.024) 233.3 .111 (.020) 116.7 0.8 .066 (.049) 183.3 0.7

Table 6.11: Average mate retrieval accuracies on the enzyme data. Top results use
κr, and bottom ones use κs for the reaction kernel evaluations.

Table 6.11 shows that the mate retrieval accuracies are low in general, with a best accu-

racy of 0.118 with ν-KCCA using the S4-2G1 features and the reaction kernel generated

using κs. If one predicts all zeros for these reaction features then an accuracy of at

126 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

least 221/2000 = 0.111 can be achieved. If the κr function is used for reaction kernel

evaluations, the base accuracy is 209/2000 = 0.105. This implies that the CCA variants

do not find a significant common semantics for the enzyme features and reactions kernels

in this case.

A possible explanation for the low mate retrieval rates is that the reaction kernels are

not useful for this scenario. Furthermore, the number of unique kernel matrix columns

(shown in Table 6.10) computed using κr is 603, which implies that the same number of

unique reactions are measured by the corresponding kernel function. In the same way,

the kernel matrix computed using κs has 593 unique reactions. Notice that there are

a large number of reactions which have a corresponding zero kernel matrix column. It

may be preferable to consider molecules of size greater than 10 for example, as well as

alternative reaction representations which better model their similarities.

6.4.4 Learning the Semantics of Enzymes and their EC Numbers

An experiment which uses the EC numbers of the enzymes as opposed to the reaction

kernels is now conducted. The EC numbers are slightly more descriptive than the reac-

tion kernels, having 700 unique EC classifications for the 2000 example training sample.

Each EC number is represented using an indicator vector of length 1633 containing four

non-zero entries matching the respective EC nodes. Since the lower nodes are more

fine-grained descriptions of reactions than the nodes above, each level is weighted as

100w−1 where w = 1 for the top level and w = 4 for the bottom level. The experimental

setup is identical to that of the previous experiment.

KCCA ν-KCCA ν-PDCCA
Features Accuracy k Accuracy k ν Accuracy k ν

S3 .267 (.006) 50 .160 (.008) 250 0.8 .217 (.007) 316.7 0.8
S4 .172 (.019) 66.7 .129 (.010) 200 0.8 .222 (.077) 333.3 1
S4-1G1 .212 (.008) 50 .159 (.007) 50 0.8 .121 (.014) 333.3 0.8
S4-1G2 .206 (.011) 50 .157 (.008) 100 0.8 .130 (.013) 333.3 0.8
S4-2G1 .214 (.013) 50 .160 (.009) 50 0.8 .150 (.055) 283.3 0.9
S5 .097 (.007) 383.3 .104 (.008) 183.3 0.6 .261 (.020) 316.7 0.8
S5-1G1 .103 (.008) 433.3 .110 (.003) 166.7 0.8 .063 (.012) 316.7 0.9
S6 .075 (.006) 283.3 .088 (.001) 183.3 0.5 .205 (.016) 283.3 0.8
GTG .593 (.008) 266.7 .575 (.015) 233.3 0.9 .456 (.024) 216.7 0.8

Table 6.12: Average EC classification accuracies with different sequence features.

The results of Table 6.12 show that the most effective features are the GTG ones. The

mate retrieval rate for KCCA with the GTG features is 0.593, which is a significant

improvement over all of the substring features. The corresponding retrieval rate with

ν-KCCA is only slightly worse at 0.575. An examination of the average correlations in

these cases reveals that KCCA has a correlation of 0.675 and ν-KCCA has a correlation

of 0.732, hence a higher value does not necessarily imply improved retrieval rates. Since

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 127

the retrieval rate is concerned with the rank of the examples in the projected spaces, there

is no reason to expect it to be proportional to the angle between corresponding features.

However, perfect correlation does imply a mate retrieval rate of 1. Further evidence of

these observations can be found with the GTG result for ν-PDCCA, which is significantly

worse than that of both KCCA and ν-KCCA, however, the average correlation of the

resulting features is 0.656. It is worth noting that the retrieval rate measure is sensitive

to noisy features, which may account for cases in which a high correlation does not result

in a high retrieval rate.

Of the substring features it appears that substrings of length 3, and 4 with mismatches

result in the highest retrieval rates with KCCA. In these cases, the number of output

features is generally small. As a base case, the most frequent EC number occurred 93

times, hence one could easily obtain a retrieval rate of 93/2000 = 0.0465. Interestingly,

the results with ν-PDCCA point to the plain substring features as being the most

predictive, and in most of these cases the retrieval rates are higher than the corresponding

KCCA ones. The intuition behind performing feature selection for the sequence features

is to capture relevant amino acid sequences, as it is likely that this gives ν-PDCCA its

advantage in these cases.

Overall, the GTG features are the most effective in predicting the EC numbers, although

the substring features also have some merit. Further testing which combined the GTG

and substring features by concatenating feature vectors resulted in worse retrieval rates,

but improved correlations. For example, with ν-KCCA a combination of the S3 and

GTG features results in a retrieval rate of 0.501 and a correlation of 0.801.

6.4.4.1 All Examples

The case study concludes by repeating part of the previous experiment with the complete

dataset consisting of 6618 examples. Since the GTG and plain substring features are

the most effective on a subsample of this data, only these features are used.

Table 6.13 shows the retrieval rates for both EC numbers and enzymes. Both ν-KCCA

and ν-PDCCA are more competitive with KCCA in terms of their retrieval rates when

compared to the respective results using 2000 examples. The retrieval of EC numbers in

conjunction with the GTG features improves to 0.682 with KCCA, and the corresponding

ν-KCCA result is only slightly worse at 0.678. Although ν-PDCCA performs worse than

these two algorithms, with an accuracy of 0.587, it uses only 3530 out of the 590,411

original features. Furthermore, the retrieval rate for the enzymes is 0.659, indicating the

success of feature extraction for finding common semantics in the paired examples. Of

the substring features, it appears that shorter substrings are more effective for predicting

EC numbers, with ν-KCCA producing a retrieval rate of 0.468 with the S3 features and

only 50 output features. The equivalent ν-PDCCA result is 0.421, which also only uses

128 Chapter 6 Learning Underlying Semantics of Two-Viewed Data

Features Enzyme → EC EC → Enzyme k ν

KCCA
S3 .374 (.021) .273 (.023) 50 -
S4 .319 (.003) .247 (.022) 50 -
S5 .220 (.010) .693 (.016) 483.3 -
GTG .682 (.013) .624 (.002) 300 -

ν-KCCA
S3 .468 (.005) .511 (.032) 50 0.8
S4 .305 (.016) .526 (.169) 200 0.7
S5 .233 (.008) .471 (.127) 316.7 0.7
GTG .678 (.016) .626 (.028) 233.3 0.8

ν-PDCCA
S3 .421 (.001) .150 (.053) 266.7 0.6
S4 .392 (.028) .211 (.020) 400 1
S5 .390 (.035) .550 (.046) 483.3 0.8
GTG .587 (.006) .659 (.007) 316.7 0.8

Table 6.13: Average EC and enzyme mate retrieval rates using all 6618 examples.

2647 of the 8338 original features. We stated earlier that typically 3 or 4 amino acids

act on substrate molecules, and these results back up this claim. As a whole, the results

suggest that a suitable combination of S3, S4, S5 and GTG features has the potential

to result in high retrieval rates for both EC numbers and enzymes.

6.5 Summary

Solving KCCA using Incomplete Cholesky decompositions of the kernel matrices ignores

the fact that the resulting approximations are used to find correlations. This motivated

the use of a KCCA-based optimisation where the dual directions have their cardinality

constrained to have at most p elements. The non-zero entries for the dual directions

are approximated by maximising correlation and then deflating, giving rise to a method

we refer to as p-KCCA. A variation of p-KCCA chooses sparse primal directions in one

view, and hence performs feature selection in a CCA-based framework.

An empirical evaluation of the CCA methods on artificial datasets highlights cases in

which p-KCCA and p-PDCCA improve over KCCA in terms of the cumulative correla-

tion of the features. Further testing on real-world datasets demonstrates a comparable

performance and improved sparsity over KCCA when used for mate retrieval. An en-

zyme function prediction case study using the CCA methods was also conducted, in

which the reactions of enzymes are predicted from their sequences. With the GTG

enzyme representation and 6618 examples we were able to retrieve EC classifications

with an accuracy of 0.682 using KCCA, and 0.678 with ν-KCCA using just 50 output

features. Novel graph kernel reaction representations did not yield high retrieval rates,

Chapter 6 Learning Underlying Semantics of Two-Viewed Data 129

which ties in with the observation made in Borgwardt and Kriegel (2005) that cur-

rent kernel methods are more appropriate for function class prediction than for specific

function determination.

Chapter 7

Conclusions

Feature extraction reduces the dimensionality of a set of examples, and in doing so

highlights important characteristics of the data, reduces computational and memory

requirements and often improves prediction accuracy. Traditional approaches to fea-

ture extraction have often relied on solving eigenvalue problems, which are effective

for relatively small datasets. New applications such as bioinformatics, image and text

classification produce large amounts of data and have encouraged researchers to focus

on more scalable approaches. Many of these algorithms, however, rely on complex op-

timisation procedures and are difficult to implement and analyse. The focus of this

thesis was on scalable feature extraction, using a high degree of sparsity and with simple

implementations.

A key element of the novel algorithms developed this thesis is the PLS deflation, which

was used in a number of instances. One such case was the formulation of a general feature

extraction framework, introduced in Chapter 3. It is a generalisation of PLS which allows

for projection directions to be generated according to a user defined criterion. The

primary advantages of the general framework are that one can target features towards

any particular application domain and the framework maintains several useful properties

of PLS. Furthermore, using the framework, close connections between PCA, PLS, BLF

and their kernel variants were demonstrated. A limitation of the framework however

is that the resulting features require all of the examples, regardless of how projection

directions are chosen, and hence, the generated subspace may be statistically unstable

in certain circumstances. Furthermore, numerical stability issues may arise through

successive deflation, however, we observed that centering the data reduces the effect of

this problem.

Another important theme in this thesis is the use of projection directions with a high

degree of sparsity, enforced by choosing a single example per direction. The advantage

of sparsity is that the resulting formulations can often be easily interpreted and effi-

ciently solved, however, one must sacrifice some of the quality of the resulting directions

131

132 Chapter 7 Conclusions

compared to non-sparse ones. In our feature extraction approaches, sparsity resulted

in algorithms with simple implementations, and that scaled linearly in the number of

examples in both computational and memory requirements. Given that the size of the

kernel matrix is `2, where ` is the number of examples, this implies that not all of the

kernel matrix elements are used. Randomisation was applied to limit the number of ker-

nel matrix columns used at each iteration. This was effective in many cases, although it

can degrade performance when the distribution of qualities of the columns is long tailed.

The first feature extraction scenario considered was matrix approximation, in which

PCA is a popular approach. The observation that PCA can be understood as a method

in which one chooses directions and then deflates led to an important question: Given a

deflation scheme, which projection direction maximises the Frobenius norm of the differ-

ence between successively deflated matrices? An answer is provided to this question for

a number of different deflations in Chapter 4. The results show that the PCA directions

are optimal for the PCA and PLS deflations, and the KPCA directions are optimal

for the KPCA and left-sided KPLS deflations. A move to sparse directions, using a

single example per direction, led to an alternative derivation of KFA. A similar deriva-

tion results in the novel GSD-KPLS and GDD-KPLS methods, based on the left and

double-sided KPLS deflations. Our empirical comparison of the methods showed that

sparsity did not significantly influence the quality of the resulting approximations and

with GSD-KPLS and GDD-KPLS the test kernel matrix approximations often improve

over that of KPCA.

A common use of feature extraction is as a step before classification or regression, hence

Chapter 5 examined supervised methods. Instead of focusing feature extraction towards

a particular classifier or regressor, two general approaches are formulated by maximising

covariance and alignment (called SMC and SMA respectively). Both of these methods

were derived using the general feature extraction method, and possess all of the useful

properties it provides. As part of the analysis of their properties, a bound on the

expectation of the covariance of the features produced by these algorithms is presented

using Rademacher theory, which is general enough to be applied to PLS. The bound

gives insight into the situations in which the features generated on a training set are

likely to have a cumulative squared covariance close to that of a test set. We concluded

the study of the new algorithms with an empirical comparison to several other popular

feature extraction methods. Our new methods were shown to be competitive, when

followed by classification or regression, to the other approaches on a selection of small

and large real-world datasets. In particular, using 20,000 examples from the Reuters

Corpus Volume 1 dataset, SMA was shown to match the performance of all 136,469

original features in conjunction with an SVM with just 366 output features.

The final feature extraction scenario we explored was learning using paired examples,

which is useful for finding common semantics in a set of English documents and their

corresponding Japanese translations for example. KCCA is commonly used for this kind

Chapter 7 Conclusions 133

of task, and to reduce computational requirements one often approximates each kernel

matrix using an Incomplete Cholesky decomposition. There are two disadvantages with

this approach: the Incomplete Cholesky decomposition is not the most effective means

for approximating a kernel matrix at linear cost in the number of examples, and one

might be able to improve upon matrix approximation by targeting sparsity towards

maximising correlation. The latter reason motivates p-KCCA, which uses a subset of

the columns of the kernel matrices in order to solve an optimisation similar to the

KCCA one. A variation of p-KCCA, called p-PDCCA, operates in the primal space for

one view and in a dual space for the other. The advantage of p-PDCCA is that one can

perform feature selection in the primal view, although the number of features is limited

to the rank of the data matrix. With these approaches, the enzyme function prediction

problem is studied using GTG and substring representations of enzymes. The first task

was to predict the reactions catalysed by the enzymes by modelling reactions using graph

kernels and then using the CCA variants in a mate retrieval manner. Unfortunately,

the reaction representations were not informative enough to provide high retrieval rates.

Improved results were obtained when trying to predict the EC classifications of the

enzymes. We obtained EC number retrieval rates of 0.682 and 0.678 with KCCA and

p-KCCA respectively, using the GTG features.

7.1 Future Work

The work presented in this thesis has opened up several avenues for further research.

Some minor extensions include the use of the general framework in conjunction with

different projection directions (e.g. one based on LDA), and the extension of SMA and

SMC to cater for vectorial labels. Another interesting area to investigate is finding an

efficient method for choosing the value of c used for the selection of dual projection

directions. Additionally, one could study effective caching strategies for reducing the

need to recompute kernel matrix columns for the selection of dual directions. Further

to these, we outline several more substantial extensions to our work.

The first extension considers the use of sparse stability bounds on the extracted fea-

tures. Stability bounds have already been seen for SMA, SMC and KCCA using the

Rademacher approach. However, for sparse methods the size of the function class in-

volved is smaller than the set of linear functions with bounded norm. This suggests

a way of tightening the bound of Theorem 5.5, for example. As an alternative to the

Rademacher approach, one could formulate a bound using the PAC-Bayesian method

(Langford and Shawe-Taylor (2003)). Whilst such bounds are not always close to the

empirical expectation, the shape of the bound as the number of dimensions varies may

be useful as a stopping criterion.

134 Chapter 7 Conclusions

Another interesting research area is the combination of feature extraction with a pre-

diction algorithm. For example in Zwald et al. (2005) the authors notice that using

KPCA as a step before SVM classification can be seen as double regularisation. Hence,

they combine KPCA regularisation in an empirical risk minimisation algorithm to form

a new classifier called the Kernel Projection Machine (KPM). The deficiencies of the

approach is that all of the examples are used for the projections, and the labels are only

used to guide dimensionality as opposed to the directions themselves. An improvement

over KPM could explore the use of sparse supervised directions (e.g. by using SMA and

SMC) to improve efficiency and generalisation.

Enzyme function prediction is a relatively new application area for machine learning,

and our work possesses scope for further research. A key area of interest is appropriate

feature representations for both enzymes and their reactions. It was observed that

the current reaction representations are not informative enough, and it is useful to

consider alternative ones e.g. bond strengths and geometric information about the shape

of the substrate and product molecules. One can also potentially improve accuracy

by modelling enzymes with features indicative of the secondary structure, particularly

relating to the active site. If accurate prediction is achieved then an interesting further

avenue of research is to find the pre-image (e.g. in Kwok and Tsang (2004)) of the

reaction kernels. This would enable the discovery of the original reaction representation

corresponding to a novel protein, even if the reaction did not exist in the training set.

As well as formulating new sequence representations, we observed that independently

both substring and GTG representations are useful for predicting EC numbers, however

a simple combination of the different features proved to be ineffective. This suggests

the importance of researching suitable data combination techniques. Related work is

presented in Ong et al. (2003, 2005) and Lanckriet et al. (2004a) which learn the kernel

matrix for large margin classifiers. The learned representation could instead be targeted

towards minimising the average rank of the mate examples. One way of combining

features is to use a committee of feature extraction methods, with weights determined

by individual performances. A related strategy of pooling selected features from different

feature subsets can be used to overcome the limitation that p-PDCCA chooses at most

min(rank(X), rank(Ky)) features.

As a final direction for research, recall that with the enzyme function prediction data,

features with high correlation did not necessarily have a high mate retrieval rate. One

could improve upon KCCA and related approaches by maximising the clustering of the

paired examples as opposed to correlation, which would better ensure mate examples

are close together.

Appendix A

Data Preprocessing

A.1 Centering

To center a set of examples ensures that the center of mass of the data, given by

Φs =
1

`

∑̀

i=1

xi =
1

`
X′j,

is zero. It follows that a data matrix is centered using

X̃ = X− 1

`
jj′X

=

(

I− jj′

`

)

X,

and the kernel matrix is centered by

K̃ =

(

I− jj′

`

)

K

(

I− jj′

`

)

.

A.2 Normalisation

If the features of a dataset are scaled differently, it becomes difficult to compare them

since large variations in the scalings can over-emphasise certain features. One solution

is to standardise the data by rescaling the features to have unit norm,

135

136 Appendix A Data Preprocessing

X̃ = X · diag(X′X)−1/2,

where diag(·) is a diagonal matrix composed of the diagonal entries of its input.

Unfortunately if one only has access to the kernel matrix, normalisation is not possible

in the same way. An alternative is to normalise the examples to have unit norm, i.e.

X̃ = diag(XX′)−1/2 ·X,

so that

K̃ = diag(K)−1/2 ·K · diag(K)−1/2.

Bibliography

MIT CBCL face database 1, 1996. Center for Biological and Computational Learning,

MIT.

Jerónimo Arenas-Garćıa, Kaare Brandt Petersen, and Lars Kai Hansen. Sparse kernel

orthonormalized PLS for feature extraction in large data sets. In Bernhard Schölkopf,

John C. Platt, and Thomas Hoffman, editors, Advances in Neural Information Pro-

cessing Systems 19, pages 33–40, Cambridge, MA, 2006. MIT Press.

Nachman Aronszajn. Theory of Reproducing Kernels. Transactions of the American

Mathematical Society, 68(3):337–404, 1950.

Katja Astikainen, Juho Rousu, Liisa Holm, Esa Pitkanen, and Sandor Szedmak. Towards

structured prediction of enzyme function. Machine Learning in Systems Biology, 2007.

Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. Journal

of Machine Learning Research, 3(1):1–48, 2003.

Francis R. Bach and Michael I. Jordan. Predictive low-rank decomposition for kernel

methods. In Luc De Raedt and Stefan Wrobel, editors, Proceedings of the 22nd

International Conference on Machine Learning, pages 33–40. ACM Press New York,

NY, USA, 2005.

Matthew Barker and William Rayens. Partial least squares for discrimination. Journal

of Chemometrics, 17(3):166–173, 2003.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: risk

bounds and structural results. Journal of Machine Learning Research, 3:463–482,

2003. ISSN 1533-7928.

Asa Ben-Hur and Douglas Brutlag. Protein sequence motifs: Highly predictive features

of protein function. In Isabelle M. Guyon, Steve R. Gunn, Masoud Nikravesh, and

Lofti Zadeh, editors, Feature Extraction, Foundations and Applications, pages 625–

645. Springer, 2005.

Kristin P. Bennett and Mark J. Embrechts. An optimization perspective on kernel partial

least squares. In Advances in Learning Theory: Methods, Models and Applications.

137

http://www.ai.mit.edu/projects/cbcl

138 BIBLIOGRAPHY

NATO Science Series III: Computer & Systems Science, volume 190, pages 227–250,

2003.

Jinbo Bi, Kristin P. Bennett, Mark J. Embrechts, Curt M. Breneman, and Minghu Song.

Dimensionality reduction via sparse support vector machines. Journal of Machine

Learning Research, 3:1229–1243, 2003.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New

York, NY, USA, 2006. ISBN 0387310738.

Avrim Blum and Pat Langley. Selection of relevant features and examples in machine

learning. Artificial Intelligence, 97(1-2):245–271, 1997.

Karsten M. Borgwardt and Hans-Peter Kriegel. Protein Function Prediction via Graph

Kernel. In Intelligent Systems in Molecular Biology, pages 47–56, 2005.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan,

Alex J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels.

Bioinformatics, 21(1):47–56, 2005. ISSN 1367-4803.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the 5th Annual Conference on Com-

putational Learning Theory, pages 144–152, New York, NY, USA, 1992. ACM Press.

ISBN 0-89791-497-X.

C. Z. Cai, L. Y. Han, Z. L. Ji, and Y. Z. Chen. Enzyme family classification by support

vector machines. Proteins Structure Function and Bioinformatics, 55(1):66–76, 2004.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,

2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Koby Crammer, Joseph Keshet, and Yoram Singer. Kernel design using boosting. In

Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural

Information Processing Systems 15, pages 537–544, Cambridge, MA, 2002. MIT Press.

Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz S. Kandola. On kernel-

target alignment. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani,

editors, Advances in Neural Information Processing Systems 14, pages 367–373, Cam-

bridge, MA, 2001. MIT Press.

Nello Cristianini, John Shawe-Taylor, and Huma Lodhi. Latent Semantic Kernels. Jour-

nal of Intelligent Information Systems, 18(2):127–152, 2002.

Alexandre d’Aspremont, Laurent El Ghaoui, Michael I. Jordan, and Gert R.G. Lanck-

riet. A Direct Formulation for Sparse PCA Using Semidefinite Programming. In

Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Infor-

mation Processing Systems 17, pages 41–48, Cambridge, MA, 2005. MIT Press.

file:citeseer.ist.psu.edu/blum97selection.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY 139

Tijl De Bie, Nello Cristianini, and Roman Rosipal. Eigenproblems in pattern recog-

nition. In E. Bayro-Corrochano, editor, Handbook of Computational Geometry for

Pattern Recognition, Computer Vision, Neurocomputing and Robotics, pages 129–167.

Springer-Verlag, Heidelberg, April 2004.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-

Interscience, 2nd edition, November 2000. ISBN 0471056693.

Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank kernel repre-

sentations. Journal of Machine Learning Research, 2:243–264, 2001.

Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals of

Eugenics, 7(2):179–188, 1936.

Vojtvech Franc and Václav Hlavác. Greedy kernel principal component analysis. In

Henrik I. Christensen and Hans-Hellmut Nagel, editors, Cognitive Vision Systems,

pages 87–106, Heidelberg, Germany, February 2006. Springer-Verlag. ISBN 3-540-

33971-X.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. In Proceedings of the 2nd European Conference

on Computational Learning Theory, pages 23–37, London, UK, 1995. Springer-Verlag.

ISBN 3-540-59119-2.

Jerome H. Friedman and John W. Tukey. A projection pursuit algorithm for exploratory

data analysis. IEEE Transactions on Computers, 23(9):881–889, 1974.

Halil Altay Guvenir and Ilhan Uysal. Bilkent university function approximation reposi-

tory, 2000.

Isabelle Guyon. Practical feature selection: from correlation to causality. In Mining

Massive Data Sets for Security. IOS Press, 2008.

Isabelle M. Guyon and André Elisseeff. An introduction to variable and feature selection.

Journal of Machine Learning Research, 3:1157–1182, 2003.

Isabelle M. Guyon, Steve R. Gunn, Masoud Nikravesh, and Lofti Zadeh, editors. Feature

Extraction, Foundations and Applications. Springer, 2006. ISBN 3540354875.

David R. Hardoon and John Shawe-Taylor. Sparse Canonical Correlation Analysis.

Technical report, University College London, UK, 2007a.

David R. Hardoon and John Shawe-Taylor. Stability Analysis of Kernel Canonical Cor-

relation Analysis: Theory and Practice. Technical report, University College London,

UK, 2007b.

http://funapp.cs.bilkent.edu.tr

140 BIBLIOGRAPHY

David R. Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation

analysis: an overview with application to learning methods. Neural Computation, 16:

2639–2664, 2004.

Andreas Heger, Michael Lappe, and Liisa Holm. Accurate detection of very sparse

sequence motifs. In Proceedings of the 7th annual international conference on Research

in Computational Molecular Biology, pages 139–147, New York, NY, USA, 2003. ACM.

ISBN 1-58113-635-8.

Bernd Heisele, Tomaso Poggio, and Massimiliano Pontil. Face detection in still gray

images. A.I. memo 1687, Center for Biological and Computational Learning, MIT,

USA, Cambridge, MA, 2000.

Luc Hoegaerts, Johan A. K. Suykens, Joos Vandewalle, and Bart De Moor. Primal space

sparse kernel partial least squares regression for large scale problems. In Proceedings

of the IEEE International Joint Conference on Neural Networks, volume 1, pages

561–566, 2004.

Agnar Hoskuldsson. PLS regression methods. Journal of Chemometrics, 2(3):211–228,

1988.

David W. Hosmer and Stanley Lemeshow. Applied Logistic Regression. Wiley-

Interscience, 2nd edition, 2000. ISBN 0-471-35632-8.

Harold Hotelling. Analysis of a complex of statistical variables into principle components.

Journal of Educational Psychology, 24:417–441 and 498–520, 1933.

Harold Hotelling. Relations between two sets of variates. Biometrika, 28:312–377, 1936.

Peter J. Huber. Projection Pursuit. The Annals of Statistics, 13(2):435–475, 1985.

Anil K. Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1989. ISBN 0-13-336165-9.

Thorsten Joachims. Text categorization with support vector machines: learning with

many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of

the 10th European Conference on Machine Learning, pages 137–142. Springer Verlag,

Heidelberg, DE, 1998.

Thorsten Joachims. Training linear SVMs in linear time. In Tina Eliassi-Rad, Lyle H.

Ungar, Mark Craven, and Dimitrios Gunopulos, editors, Proceedings of the 12th ACM

International Conference on Knowledge Discovery and Data Mining, pages 217–226,

New York, NY, USA, 2006. ACM Press.

Ian T. Jolliffe, Nickolay T. Trendafilov, and Mudassir Uddin. A modified principal

component technique based on the lasso. Journal of Computational and Graphical

Statistics, 12(3):531–547, 2003.

BIBLIOGRAPHY 141

Erwin Kreyszig. Introductory functional analysis with applications. Wiley, New York,

NY, USA, 1978. ISBN 0-471-03729-X.

Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney. Semi-supervised

graph clustering: a kernel approach. In Luc De Raedt and Stefan Wrobel, editors,

Proceedings of the 22nd International Conference on Machine learning, pages 457–464.

ACM Press New York, NY, USA, 2005.

Malte Kuss and Thore Graepel. The Geometry of Kernel Canonical Correlation Analysis.

Technical report, Max Plank Institute for Biological Cybernetics, Germany, 2003.

James T. Kwok and Ivor W. Tsang. The pre-image problem in kernel methods. IEEE

Transactions on Neural Networks, 15(6):1517–1525, 2004.

Gert R.G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I.

Jordan. Learning the Kernel Matrix with Semidefinite Programming. Journal of

Machine Learning Research, 5:27–72, 2004a.

Gert R.G. Lanckriet, Minghua Deng, Nello Cristianini, Michael I. Jordan, and William S.

Noble. Kernel-based data fusion and its application to protein function prediction in

yeast. In Proceedings of the Pacific Symposium on Biocomputing, pages 300–311,

2004b.

John Langford and John Shawe-Taylor. PAC-Bayes and Margins. In Suzanna Becker,

Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information

Processing Systems 15, pages 423–430, Cambridge, MA, 2003. MIT Press.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and

processes. Springer, May 1991. ISBN 0387520139.

Christina Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A

string kernel for SVM protein classification. In Proceedings of the Pacific Symposium

on Biocomputing, volume 7, pages 566–575, 2002.

Christina S. Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and William Stafford No-

ble. Mismatch string kernels for discriminative protein classification. Bioinformatics,

20(4):467–476, 2004. ISSN 1367-4803.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins.

Text classification using string kernels. Journal of Machine Learning Research, 2:419–

444, 2002.

Rolf Manne. Analysis of two partial-least-squares algorithms for multivariate calibration.

Chemometrics and Intelligent Laboratory Systems, 2(1):187–197, 1987.

William F. Massy. Principal Components Regression in Exploratory Statistical Research.

Journal of the American Statistical Association, 60(309):234–256, 1965.

http://eprints.ecs.soton.ac.uk/8968/

142 BIBLIOGRAPHY

Colin McDiarmid. On the method of bounded differences. In Surveys in Combinatorics

1989, pages 148–188. Cambridge University Press, Cambridge, 1989.

Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, and Klaus-Robert

Müller. Fisher discriminant analysis with kernels. In Proceedings of the IEEE Signal

Processing Society Workshop, pages 41–48, 1999.

Tom Mitchell. Machine learning. McGraw Hill, New York, NY, USA, 2nd edition, 1997.

ISBN 978-0070428072.

Baback Moghaddam, Yair Weiss, and Shai Avidan. Generalized spectral bounds for

sparse LDA. In William W. Cohen and Andrew Moore, editors, Proceedings of the

23rd International Conference on Machine Learning, pages 641–648, New York, NY,

USA, 2006a. ACM. ISBN 1-59593-383-2.

Baback Moghaddam, Yair Weiss, and Shai Avidan. Spectral Bounds for Sparse PCA:

Exact and Greedy Algorithms. In Yair Weiss, Bernhard Schölkopf, and John Platt,

editors, Advances in Neural Information Processing Systems 18, pages 915–922, Cam-

bridge, MA, 2006b. MIT Press.

Michinari Momma. Efficient computations via scalable sparse kernel partial least squares

and boosted latent features. In Proceedings of the 11th ACM International Conference

on Knowledge Discovery in Data mining, pages 654–659, New York, NY, USA, 2005.

ACM Press. ISBN 1-59593-135-X.

Michinari Momma and Kristin P. Bennett. Sparse kernel partial least squares regression.

In Bernhard Schölkopf and Manfred K. Warmuth, editors, Proceedings of the 16th

Annual Conference on Computational Learning Theory, pages 216–230, 2003.

Michinari Momma and Kristin P. Bennett. Constructing orthogonal latent features for

arbitrary loss. In Isabelle M. Guyon, Steve R. Gunn, Masoud Nikravesh, and Lofti

Zadeh, editors, Feature Extraction, Foundations and Applications, pages 551–583.

Springer, 2005.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine

learning databases, 1998.

Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. Link analysis, eigenvectors

and stability. In Bernhard Nebel, editor, Proceedings of the 17th International Joint

Conference on Artificial Intelligence, pages 903–910, 2001.

Cheng Soon Ong, Alex J. Smola, and Robert C. Williamson. Hyperkernels. In Suzanna

Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Infor-

mation Processing Systems 15, volume 15, pages 495–502, Cambridge, MA, 2003. MIT

Press.

http://www.ics.uci.edu/mlearn/MLRepository.html

BIBLIOGRAPHY 143

Cheng Soon Ong, Alex J. Smola, and Robert C. Williamson. Learning the kernel with

hyperkernels. Journal of Machine Learning Research, 6:1043–1071, 2005. ISSN 1533-

7928.

Aloke Phatak and Frank de Hoog. Exploiting the connection between PLS, Lanczos

methods and conjugate gradients: alternative proofs of some properties of PLS. Jour-

nal of Chemometrics, 16(7):361–367, 2002.

John C. Platt. Fast training of support vector machines using sequential minimal opti-

mization. In Bernhard Schölkopf, Chris Burges, and Alex Smola, editors, Advances in

kernel methods: support vector learning, pages 185–208. MIT Press, Cambridge, MA,

USA, 1999. ISBN 0262194163.

David Poole. Linear Algebra: A Modern Introduction. Thomson Brooks/Cole, Pacific

Grove, CA, USA, 2nd edition, 2003. ISBN 978-0534341749.

Tony Rose, Mark Stevenson, and Miles Whitehead. The reuters corpus volume 1 - from

yesterday’s news to tomorrow’s language resources. In Proceedings of the 3rd Inter-

national Conference on Language Resources and Evaluation, pages 827–832, 2002.

Roman Rosipal and Nicole Kramer. Overview and Recent Advances in Partial Least

Squares. Subspace, latent structure and feature selection techniques, Lecture Notes in

Computer Science, pages 34–51, 2006.

Roman Rosipal and Leonard J. Trejo. Kernel partial least squares regression in repro-

ducing kernel hilbert space. Journal of Machine Learning Research, 2:97–123, 2001.

Roman Rosipal, Leonard J. Trejo, and Bryan Matthews. Kernel PLS-SVC for linear and

nonlinear classification. In Armand Prieditis and Stuart J. Russell, editors, Proceedings

of the 12th International Conference on Machine Learning, pages 640–647, 2003.

Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Neural network-based face

detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):

23–38, 1998.

Paul D. Sampson, Ann P. Streissguth, Helen M. Barr, and Fred L. Bookstein. Neurobe-

havioral effects of prenatal alcohol: Part II. Partial Least Squares analysis. Neurotox-

icology and Teratology, 11(5):477–491, 1989.

Bernhard Schölkopf, Alex J. Smola, and Klaus-Robert Müller. Nonlinear component

analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

ISSN 0899-7667.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, New York, NY, USA, 2004. ISBN 0521813972.

144 BIBLIOGRAPHY

John Shawe-Taylor, Christopher K. I. Williams, Nello Cristianini, and Jaz S. Kandola.

On the eigenspectrum of the gram matrix and the generalization error of kernel PCA.

IEEE Transactions on Information Theory, 51(7):2510–2522, 2005.

Alex J. Smola, Olvi L. Mangasarian, and Bernhard Scholkopf. Sparse kernel feature

analysis. Technical report, Data Mining Institute, University of Wisconsin, Madison,

USA, 1999.

Alex J. Smola and Bernhard Schölkopf. Sparse greedy matrix approximation for machine

learning. In Pat Langley, editor, Proceedings of the 17th International Conference on

Machine Learning, pages 911–918, 2000. ISBN 1-55860-707-2.

Bharath K. Sriperumbudur, David A. Torres, and Gert R. G. Lanckriet. Sparse eigen

methods by d.c. programming. In Zoubin Ghahramani, editor, Proceedings of the 24th

International Conference on Machine Learning, pages 831–838, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-793-3.

Mervyn Stone and Rodney J. Brooks. Continuum Regression: Cross-Validated Se-

quentially Constructed Prediction Embracing Ordinary Least Squares, Partial Least

Squares and Principal Components Regression. Journal of the Royal Statistical Soci-

ety. Series B (Methodological), 52(2):237–269, 1990.

Gilbert Strang. Introduction to Linear Algebra. Wellesley Cambridge Press, Wellesley,

MA, USA, 3rd edition, 2003. ISBN 0961408898.

Sandor Szedmak, Tijl De Bie, and David R. Hardoon. A metamorphosis of canonical

correlation analysis into multivariate maximum margin learning. In Proceedings of the

15th European Symposium on Artificial Neural Networks, Bruges, April 2007.

Sandor Szedmak, John Shawe-Taylor, and Emilio Parado-Hernandez. Learning via linear

operators: Maximum margin regression. Technical report, University of Southampton,

UK, 2005.

Eiji Takimoto and Manfred K. Warmuth. Path kernels and multiplicative updates. In

Jyrki Kivinen and Robert H. Sloan, editors, Proceedings of the 15th Annual Conference

on Computational Learning Theory, pages 74–89, London, UK, 2002. Springer-Verlag.

ISBN 3-540-43836-X.

Michael E. Tipping. Sparse kernel principal component analysis. In Todd K. Leen,

Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information

Processing Systems 13, pages 633–639, Cambridge, MA, 2001. MIT Press.

David Torres, Douglas Turnbull, Luke Barrington, and Gert R. Lanckriet. Identifying

words that are musically meaningful. In Proceedings of the 8th International Confer-

ence on Music Information Retrieval, pages 405–410, 2007.

BIBLIOGRAPHY 145

Matthew A. Turk and Alex P. Pentland. Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1):71–86, 1991a.

Matthew A. Turk and Alex P. Pentland. Face recognition using eigenfaces. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 586–591,

1991b.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September 1998.

ISBN 0471030031.

Alexei Vinokourov, John Shawe-Taylor, and Nello Cristianini. Inferring a semantic

representation of text via cross-language correlation analysis. In Suzanna Becker,

Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information

Processing Systems 15, pages 1473–1480, Cambridge, MA, 2003. MIT Press.

Paul Viola and Michael J. Jones. Robust real-time face detection. International Journal

of Computer Vision, 57(2):137–154, May 2004. ISSN 0920-5691.

Jacob A. Wegelin. A survey of partial least squares (PLS) methods, with emphasis on

the two-block case. Technical report, University of Washington, USA, Washington,

D.C., 2000.

Jason Weston, André Elisseeff, Bernhard Schölkopf, and Mike Tipping. Use of the zero

norm with linear models and kernel methods. Journal of Machine Learning Research,

3:1439–1461, 2003. ISSN 1533-7928.

Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso Poggio,

and Vladimir Vapnik. Feature selection for SVMs. In Todd K. Leen, Thomas G.

Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing

Systems 13, pages 668–674, Cambridge, MA, 2000. MIT Press.

Wikipedia. EC Number — Wikipedia, the free encyclopedia, 2007.

Christopher K. I. Williams and Matthias Seeger. The effect of the input density dis-

tribution on kernel-based classifiers. In Pat Langley, editor, Proceedings of the 17th

International Conference on Machine Learning, pages 1159–1166, 2000a. ISBN 1-

55860-707-2.

Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed up

kernel machines. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors,

Advances in Neural Information Processing Systems 13, pages 682–688, Cambridge,

MA, 2000b. MIT Press.

Herman Wold. Estimation of principal components and related models by iterative least

squares. Multivariate analysis, pages 391–420, 1966.

http://en.wikipedia.org/wiki/EC_number

146 BIBLIOGRAPHY

Herman Wold. Path models with latent variables: The NIPALS approach. Quantitative

Sociology: International perspectives on mathematical and statistical model building,

pages 307–357, 1975.

K. J. Worsley, J. B. Poline, K. J. Friston, and A. C. Evans. Characterizing the Response

of PET and fMRI Data Using Multivariate Linear Models. Neuroimage, 6(4):305–319,

1997.

Wen-Yi Zhao, Rama Chellappa, P. Jonathon Phillips, and Azriel Rosenfeld. Face recog-

nition: A literature survey. ACM Computing Surveys, 35(4):399–458, 2003. ISSN

0360-0300.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis.

Journal of Computational and Graphical Statistics, 15(2):265–286, 2006.

Laurent Zwald, Regis Vert, Gilles Blanchard, and Pascal Massart. Kernel projection

machine: a new tool for pattern recognition. In Lawrence K. Saul, Yair Weiss, and

Léon Bottou, editors, Advances in Neural Information Processing Systems 17, pages

1649–1656, Cambridge, MA, 2005. MIT Press.

