
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

University of Southampton

Faculty of Engineering, Science and Mathematics, School of

Electronices and Computer Science

Support-vector-machine based
automatic performance modelling and

optimisation for analogue and
mixed-signal designs

by

Xianqiang Ren

A thesis submitted for the degree of Doctor of Philosophy

October, 2008

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

ABSTRACT

Doctor of Philosophy

Support-vector-machine based automatic performance modelling and
optimisation for analogue and mixed-signal designs

by Xianqiang Ren

The growing popularity of analogue and mixed-signal (AMS) ASIC and SoC designs for com-
munication applications has led to an increasing requirement for high efficiency performance
modelling and optimisation methodologies in AMS synthesis systems. Recently, the support
vector machine (SVM) method has been introduced into this challenging field. This research
has studied the application of SVMs to AMS performance modelling in terms of the computa-
tional cost and prediction accuracy. A novel, general performance modelling methodology which
could be applied to an arbitrary AMS system has been developed and integrated into an AMS
performance optimisation system.

The contributions of this research can be summarised as follows: firstly, a new performance
modelling methodology based on automatic generation of knowledge databases for AMS perfor-
mance modelling using SVM techniques has been developed. Two performance model construc-
tion methods have been implemented: a linearly graded method and a support vector regression
method. They can provide a basis for efficient design space exploration. Both methods construct
performance models for AMS designs in a fully automatic way. A simulator, a performance ex-
tractor and an SVM trainer have been developed and integrated into a practical demonstrator
system.

Secondly, a knowledge-based AMS performance optimisation system has been developed for
system-level and circuit-level designs. Knowledge data bases created using the proposed method-
ology are reusable. This has been verified by the application of two optimisation methods, a
dedicated genetic optimisation algorithm and the standard pattern search technique.

Finally, the proposed performance model construction methodology and the underlying per-
formance optimisation system have been validated using two complex case studies. The first
example is a high-level model of a mixed-signal sigma-delta modulator which comprises most of
the practical design nonlinearities and imperfections that are known to affect the performance.
The proposed method is able to find designs with significantly superior key performance figures
compared to those obtained by the standard sigma-delta modulator design procedure. The sec-
ond example is a radio frequency (RF) range Colpitts filter for silicon implementations. The
non-standard structure of this filter with a lossy spiral inductor makes this type of circuit dif-
ficult to handle by standard filter synthesis methods. The proposed performance optimisation
method has found solutions which satisfy performance requirements in cases where a standard
manual filter design procedure failed.

Contents

List of Figures vi

List of Tables xii

Abbreviation xiii

Acknowledgements xv

1 Introduction 1

1.1 Challenges in AMS design . 1

1.1.1 AMS synthesis . 3

1.2 Motivation for this research . 5

1.2.1 Why support vector machines? 6

1.3 Research contributions . 7

1.4 Thesis structure . 10

2 Literature review 12

2.1 AMS synthesis methodology . 12

2.1.1 Overview of AMS synthesis 14

2.1.2 Knowledge-based vs. simulation-based AMS synthesis system 15

2.1.3 Analogue filter synthesis . 16

2.1.4 Analogue-to-digital converter synthesis 16

2.2 Performance modelling and optimisation in AMS synthesis 18

2.2.1 Analogue performance modelling 18

2.2.1.1 Symbolic analysis method 19

2.2.1.2 Neural network method 21

2.2.1.3 Other methods . 24

2.2.2 Optimisation algorithms . 25

2.2.2.1 Cost function . 25

2.2.2.2 Genetic algorithm 27

2.2.2.3 Pattern search algorithm 29

2.3 HDLs for AMS modelling and simulation 30

2.3.1 Modelling capabilities of HDLs 30

2.3.2 VHDL-AMS . 31

ii

CONTENTS iii

VHDL-AMS models 32

VHDL-AMS simulation cycle 32

Applications . 33

2.3.3 SystemC . 34

SystemC language elements 34

SystemC design methodology 34

SystemC-A: extending SystemC for AMS simulation
and modelling 35

2.4 Sigma delta modulation . 36

2.4.1 Delta and sigma-delta modulation 37

2.4.2 Noise-shaping and oversampling 38

2.4.3 SDM structures . 40

2.5 Concluding remarks . 44

3 Support vector machines: an introduction and the state of the
art 46

3.1 SVM introduction . 46

3.1.1 Background . 47

3.1.2 Statistical learning and kernel method 48

3.1.2.1 Similarity measurement 48

3.1.2.2 Generality capability and Vapnik Chervonenkis di-
mension . 51

3.1.3 Hyperplane classifier . 53

3.1.4 Support vector classifier . 56

3.1.5 Kernels . 57

3.1.6 SVM regression . 58

3.2 SVM in AMS performance modelling - the state of the art 59

3.2.1 LibSVM - an SVM trainer 60

3.3 Concluding remarks . 60

4 Linearly graded automated performance model construction us-
ing support vector machines 62

4.1 Linearly graded performance modelling methodology 63

4.1.1 Relationship between design and performance spaces 63

4.1.2 Performance modelling methodology 64

4.2 Automated performance model construction 65

4.2.1 Grid search algorithm . 68

4.2.2 Heuristic grading algorithm 70

4.3 Case study: a 2nd order lowpass analogue filter 72

4.3.1 Linearly graded SVM classification model construction . . . 73

4.4 Concluding remarks . 77

CONTENTS iv

5 Computational cost aware automatic generation of SVM regres-
sion performance models 79

5.1 Computational cost analysis of SVM model construction 80

5.1.1 C and γ in solving the SVM problems 80

5.1.2 Influence of C on computational cost 81

5.1.3 Influence of γ on computational cost 84

5.1.4 Computational cost and prediction accuracy 85

5.1.4.1 Computational cost analysis in the case studies . . 87

5.2 Computational-cost aware SVM regression training parameter de-
termination algorithm . 90

5.3 SVM regression performance model construction 92

5.4 Concluding remarks . 94

6 Knowledge based AMS performance optimisation 95

6.1 Structure of the optimisation system 95

6.1.1 Components of the system 96

6.1.2 Interfaces . 98

6.2 Optimisation system using the linearly graded SVM performance
models . 99

6.2.1 Genetic optimisation . 99

6.2.2 Performance estimator . 101

6.3 Optimisation system using the SVM regression performance models 101

6.3.1 Pattern search optimisation 101

6.3.2 Performance estimator . 102

6.4 Concluding remarks . 103

7 Case studies 104

7.1 2nd order SDM: a mixed-signal example 105

7.1.1 Scenario 1: linearly graded SVM model construction 105

7.1.1.1 Balanced data grading algorithm 106

7.1.1.2 Model construction 107

7.1.1.3 Genetic algorithm optimisation 112

7.1.2 Scenario 2: SVM regression model construction 114

7.1.2.1 Computational cost aware model construction . . . 115

7.1.2.2 Performance optimisation using pattern search al-
gorithm . 116

7.2 Colpitts filter: an RF example . 117

7.2.1 Design and performance spaces 118

7.2.2 SVM regression model construction 119

7.2.2.1 Computational cost analysis of the standard grid
search algorithm 120

7.2.3 Performance optimisation 120

7.3 Addtional experiments . 122

CONTENTS v

7.4 Concluding remarks . 126

8 Conclusion and future work 128

A Journal paper submitted to IET CDS Proceeding 131

B Development of the 2nd order non-ideal SDM model 141

B.1 Theoretical analysis . 141

B.2 Standard manual design process for SDMs 144

B.3 Modelling imperfections in non-ideal SDM designs with MATLAB
Simulink . 149

B.3.1 Slew rate and OpAmp unity-gain bandwidth 150

B.3.2 Clock jitter . 151

B.3.3 Switch thermal noise . 154

B.3.4 OpAmp thermal imperfections 154

B.3.5 OpAmp finite DC gain . 155

B.3.6 OpAmp non-linear DC gain 156

B.3.7 Quantiser non-ideal model 158

B.3.8 Overview of the non-ideal SDM model 159

B.3.9 Simulation and analysis of the non-ideal model 159

B.4 SystemC models . 161

B.4.1 Why SystemC? . 162

B.4.2 Conversion of the MATLAB Simulink modules to SystemC . 163

B.4.3 Simulation results and comparison 163

C Development of the RF Colpitts bandpass filer 165

C.1 Inductor SPICE model . 166

C.2 Inductance calculation . 167

C.3 Inductor model verification . 169

C.4 Calculation of other components in the π model 170

Bibliography 172

List of Figures

1.1 An illustrative AMS SoC example. 2

1.2 Manual design flow graph of the general VLSI design stage in detail. 3

2.1 VLSI design flow composed of six design stages in the two-dimensional
space formed by the abstraction level and the specification level. . . 13

2.2 Classical flow chart of the interaction between the optimisation en-
gine and the evaluation engine in an AMS synthesis system. 14

2.3 General analogue filter synthesis procedure [65]. 17

2.4 Typical sampling-frequency vs. resolution range for different ADC
architectures. 18

2.5 Symbolic analysis process in the ISAAC system. 20

2.6 Classical two layer multi-input single-output feed forward neural
network structure. 22

2.7 Model construction process using neural network technique. 23

2.8 Flow chart of the canonical genetic algorithm. 28

2.9 Mesh exploration of pattern search optimisation. 29

2.10 Application fields covered by different HDLs [9].The x-axis is the
abstraction levels and the y-axis is the design representations. . . . 31

2.11 Time domain simulation cycle of VHDL-AMS. 33

2.12 A typical SystemC design and synthesis process. 35

2.13 a) structure of the Delta modulator as an ADC; b) the linearised
model. 37

2.14 a) structure of the SDM as an ADC; b) the linearised model. 38

2.15 Noise shaping reduces noise in signal band. a) noise in the signal
band before the noise shaping; b) noise is shaped and pushed to
high frequency range. 39

2.16 Oversampling reduces noise in signal band. a) noise distribution
when fs = 4f ; b) noise distribution when fs = 8f 40

2.17 General structure of a SDM used as an ADC [111]. 41

2.18 Detailed z-domain model of the delay free structure of 2nd order
modulators constructed by cascading 1st order modules. 42

2.19 MASH structure of two-stage SDMs. 44

3.1 SVM models in a typical application environment. 47

vi

LIST OF FIGURES vii

3.2 The 3 dimensional surface plane separates the space into two parts.
Three nodes (N1, N2, N3) are projected onto the plane and classified. 48

3.3 The two separation lines L1 and L2 have different capability features
for unknown data as their corresponding weight vectors ω1 and ω2

are of different values. 49

3.4 Geometrical relationship between the two classes C1, C−1, their
distance ω = C1 − C−1, their mid-point C = C1+C−1

2
and the new

pattern x. 50

3.5 Two data sets with 3 samples separated by an oriented straight line.
Triangles represent class +1 and circles are −1. 53

3.6 Two data sets with 4 points can not be separated by the oriented
straight line used in figure 3.5. The last two cases in the dashed
square can not be separated successfully. Triangles represent +1
and circles are labeled −1. 53

3.7 The hyperplane (labelled as ‘0’) separates two classes: triangles
(class 1) and circles (class −1). Geometrical relationships between
the patterns and the hyperplane are illustrated. 54

3.8 ε-insensitive soft margin loss setting for a linear SVM. 58

4.1 Structure of the overall model between design and performance pa-
rameters of AMS designs. 63

4.2 Illustrative example of the constructed linearly graded SVM classi-
fication and regression models in the two dimensional space formed
by performance parameter P1 and P2. a) linearly graded perfor-
mance models for performance parameter P1 includes classification
models for boundaries B11 and B12 and regression models R11, R12,
R13; b) linearly graded performance models for performance param-
eter P2 with its corresponding classification and regression models;
c) organisation of the classification and regression models for the
two parameters P1 and P2. 64

4.3 Flow chart of the model construction process including the BDG
and the training algorithm details. 66

4.4 CGS and RGS in determining the SVM training parameters C and
γ. a) optimal region in CGS defined by the lower left point [C1, γ1]
and upper right point [C2, γ2]; b) RGS re-scans the optimal region
in higher resolution. 68

4.5 Illustrative representation is the distribution of the samples accord-
ing to a performance parameter. Abstract representation is the
number of samples. V1 and V2 are the original grades; V3 and V4

are the new values calculated by the BDG algorithm. 70

4.6 Signal flow graph of the 2nd order analogue filter. 72

LIST OF FIGURES viii

4.7 Sample scatter diagrams showing projection of the performance
space onto the 3-dimensional spaces that reflect the relationship be-
tween over-shoot (R) and the four design parameters. a) R(a1, a2),
b) R(a1, t1), c) R(a1, t2), d) G(a1, t2). 74

4.8 Top plot is a 3D classification accuracy diagram showing the CGS of
the model construction for the boundary Fc = 4. Sub-plots a) and
b) are projections onto 2D planes showing optimal, under-trained
and over-trained regions. a) shows γ vs. classification accuracy. b)
shows C vs. classification accuracy. 75

4.9 3D prediction accuracy diagram with contours showing the RGS
searching the optimal area labelled in figure 4.8. 76

4.10 Graded sub-spaces showing the divided performance space of pa-
rameter R(a1, a2). 77

5.1 The computational cost influenced by parameter C in an SVM
training parameter determination experiment using the data set
from a database [124]. 82

5.2 Computational cost model in the scan of parameter C. 82

5.3 The computational cost influenced by parameter γ in the same SVM
training parameter determination experiment as previously. The
data set is still the one from the database [124]. 84

5.4 Computational cost model in the scanning of parameter γ. 84

5.5 Under and over training in supervised learning [86]. 85

5.6 a) empirical computational cost model of C-γ grid-search process;
b) the corresponding accuracy model. 86

5.7 Computational cost influenced by the training parameters C and
γ for the SNR of the 2nd order SDM. a) the influence of C on the
computational cost when γ=0.5; b) the corresponding prediction
accuracy plot; c) and d) are the computational cost and prediction
accuracy diagrams when C is a constant while γ is scanned. 87

5.8 a) Computational cost contours (in seconds) of C-γ grid search
process for the SNR of the 2nd SDM, b) corresponding accuracy
performance of the models (RMS error in dB). 88

5.9 Computational cost influenced by the training parameters C and
γ for the Q factor of the the Colpitts RF filter. a) influence of
C on the computational cost when γ=0.5; b) the corresponding
prediction accuracy plot; c) and d) are the computational cost and
prediction accuracy diagrams showing the influence of γ when C is
a constant. 89

5.10 a) Computational cost contours (in seconds) of C-γ grid search pro-
cess for the Q factor of the Colpitts RF filter; b) the corresponding
accuracy performance of the models (RMS error). 90

5.11 Flow chart of the SVM regression performance model construction. 94

LIST OF FIGURES ix

6.1 Working environment and structure of the AMS performance opti-
misation system. 96

6.2 Contour of a cost function C = SNR + 50 ∗ INT1 formed by the
performance parameters SNR and INT1 in a projected design space
of the design parameters a1 and b1 of the 2nd order SDM. 97

7.1 Signal flow graph of the non-ideal SDM using MATLAB Simulink
modules. 105

7.2 Distributions of the design samples of every performance parameter
dimension in dual-y-axis plots. The left y axes are the number of
samples and the right y axes are performance parameters’ values. . 107

7.3 Classification accuracy contours of parameter stability. a) accuracy
contours of the CGS phase; b) accuracy contours of the RGS phase. 108

7.4 Comparisons of the classification accuracies of all the performance
parameters in CGS and RGS phases. The total computational costs
of the two phases are listed in the bottom table. 109

7.5 MSE contours of the SVM regression model for 0.35 grade of the
performance parameter INT1. a) the CGS MSE contours; b) the
RGS MSE contours. 110

7.6 Comparisons of the MSE (dB) accuracies of all the performance
parameters’ grades in the CGS and RGS phases. The model con-
struction computational costs are listed in the bottom table. 111

7.7 Comparisons of the prediction accuracies of the regression models
using the linearly graded approach and the full-space analysis ap-
proach. The corresponding grading elements’ values are labelled at
the bottom of each bar. 112

7.8 Typical convergence curves of the predicated performances with
the GA optimization engine using a cost function including all the
performance parameters. 114

7.9 Schematic of the Colpitts RF bandpass filter with a highlighted
on-chip planar spiral inductor. 118

7.10 Typical cost function and mesh resolution regression curves in the
pattern search optimisation . 121

7.11 a) Manual design using design parameters derived from ideal model
[65], b) optimised design derived by the proposed algorithm. 122

7.12 Influence of C on the computational cost of SVM regression training
with different data sets. 123

7.13 Influence of γ on the computational cost of SVM regression training
with different data sets. 124

7.14 Computational cost (in seconds) and prediction contours using the
standard grid search for SVM training of data set 1. 124

7.15 Computational cost (in seconds) and prediction contours using the
standard grid search for SVM training of data set 2. 125

LIST OF FIGURES x

7.16 Computational cost (in seconds) and prediction contours using the
standard grid search for SVM training of data set 3. 125

7.17 Computational cost (in seconds) and prediction contours using the
standard grid search for SVM training of data set 4. 126

7.18 Computational cost (in seconds) and prediction contours using the
standard grid search for SVM training of data set 5. 126

B.1 Relationship of n2
0/e

2
rms and OSR with number of loops L. 143

B.2 Theoretical SNR as a function of SDM order n and OSR shown in
equation B.3. 144

B.3 Signal flow graph of a 2nd order ideal SDM with the integrator boxed
and a linearised quantiser. 145

B.4 FFT analysis of the output of the ideal 2nd order SDM shown in
figure B.3. 146

B.5 SNR analysis of the ideal 2nd order SDM shown in figure B.3. . . . 147

B.6 Histogram of the outputs of the 1st and 2nd integrator before and
after signal scaling. 148

B.7 1st order classical SC integrator module with the OpAmp parasitic
capacitor Cp. 149

B.8 MATLAB Simulink models for the SR modelling. The bottom two
sub-systems show the detail implementations when the SR limita-
tion is applied and not. 152

B.9 Output of the SR module with a ramp input. 153

B.10 MATLAB Simulink model for the clock jitter modelling. 153

B.11 MATLAB Simulink model for the switch thermal noise modelling. . 155

B.12 MATLAB Simulink model for the OpAmp thermal noise modelling. 155

B.13 Input sine wave with the superimposition of clock jitter, switch
thermal noise and OpAmp thermal noise disturbances. 156

B.14 Intuitive illustration of the non-linear DC gain versus output voltage
with the rail-to-rail voltage of Vdd. 157

B.15 MATLAB Simulink modules to model the non-linear integrator DC
gain (subplot a) and leakage (subplot b). 158

B.16 A relay model of the quantiser with offset and hysteresis. 158

B.17 Comparison of the MATLAB Simulink modules for the non-ideal
and ideal 2nd order SDMs. 159

B.18 SNR comparison of the ideal and non-ideal 2nd order SDM obtained
by FFT analysis on simulation results. 160

B.19 Comparison of the power spectral density analyses of the non-ideal
and ideal SDM outputs. 162

B.20 SystemC module converted from MATLAB Simulink module. . . . 163

B.21 FFT analysis and comparison of SDM outputs for both of the MAT-
LAB Simulink and SystemC ideal and non-ideal models. 164

LIST OF FIGURES xi

C.1 Schematic of the Colpitts RF bandpass filter with a highlighted
on-chip planar spiral inductor. 165

C.2 a) the lumped π model of the on-chip spiral inductor; b) cross-
section view of the dimension of the spiral inductor. 166

C.3 Geometry of two inductors in parallel. 168

C.4 Influence of the inductor geometry len and S on the Q factor. . . . 170

List of Tables

2.1 Comparison between the knowledge-based and simulation-based syn-
thesis methodologies. 15

3.1 Summary of recent SVM performance modelling applications. . . . 59

4.1 Cross-validation accuracies of the RGS phase for the ten grades
(nine boundaries) of the performance parameters. 74

7.1 Testing results for the linearly graded SVM classification and re-
gression performance models. 113

7.2 Comparisons of the performance values achieved by the manual
design and the optimisation in experiment 1 and 2. 114

7.3 Computational cost comparison of the standard grid search and the
proposed method in the 2nd order SDM case study. 115

7.4 RMS errors of the SVM regression performance models constructed
using the training parameters determined by the standard grid
search and proposed methods and the corresponding C and γ values
for the 2nd order SDM. 116

7.5 Summary of the standard and optimised design results for the 2nd

order SDM. 117

7.6 Bounds of the design parameters in the Colpitts RF filter case study.119

7.7 Computational cost comparison in the Colpitts RF filter case study. 120

7.8 RMS error of the SVM regression performance models constructed
using the training parameters determined by the grid search and
proposed methods and the corresponding C and γ values for the
Colpitts RF filter. 121

7.9 Summary of the manual and optimised design results for the Col-
pitts RF bandpass filter. 121

7.10 Information of the sample data sets. 123

B.1 Summary of system level design parameters of SDMs. 142

B.2 Summary of circuit-level design parameters for non-ideal 2nd order
SDM modelling and simulation. 161

C.1 Summary of the process parameters for on-silicon spiral inductor
modelling. 169

xii

Abbreviation

A/D Analogue/Digital

AC Alternating Current

ADC Analogue-to-Digital Converter

AMS Analogue and Mixed-Signal

ASIC Application Specific IC

BDG Balanced Data Grading

CAD Computer Aided Design

CGS Coarse Grid Search

CMOS Complementary Metal-Oxide Semiconductor

DAC Digital to Analogue Converter

DAE Differential and Algebraic Equation

DC Direct Current

DR Dynamic Range

ENOB Effective Number Of Bits

ERM Empirical Risk Minimization

FFT Fast Fourier Transform

GA Genetic Algorithm

HDL Hardware Design Language

I/O Input and Output

IC Integrated Circuit

ISAR Input Signal Amplitude Range

KKT Karush Kuhn Tucker

MASH Multi-stAge noise-SHaping

MSE Mean Squared Error

NTF Noise Transfer Function

OpAmp Operational Amplifier

OSR OverSampling Ratio

PSD Power Spectral Density

xiii

ABBREVIATION xiv

RBF Radial Basis Function

RF Radio Frequency

RGS Refined Grid Search

RMS Root-Mean Square

RTL Registor Transistor Level

SC Switched Capacitor

SDM Sigma-Delta Modulator

SFG Signal-Flow Graph

SNR Signal to Noise Ratio

SNRDR SNR Degration Ratio

SoC System-on-Chip

SR Slew Rate

SRM Structured Risk Minimization

STF Signal Transfer Function

SV Support Vectors

SVM Support Vector Machine

UBW Unity-gain BandWidth

VC Vapnik Chervonenkis

VHDL VHSIC HDL

VHDL-AMS VHDL-Analogue and Mixed-Signal

VHSIC Very High Speed Integrated Circuit

VLSI Very Larege Scale Integration

Acknowledgements

xv

To My Family

xvi

Chapter 1

Introduction

1.1 Challenges in AMS design

In the design of modern electronic systems, AMS circuits are important parts in

the interfacing between digital circuitries and the real world [1]. Although the

main applications of AMS design methods are analogue signal processing and

data conversion components, a complete system with both digital and AMS cir-

cuits may contain dozens of such components on a silicon die and are designed in

highly scaled digital fabrication technologies [2]. This exposes the major design

challenge: the increasing integration level in a large system-on-chip environment

with advanced fabrication processes. Such designs, usually called system-on-chip

(SoC), are widely applied in consumer electronics such as DVD systems [3] and

mobile media applications [4].

A typical SoC is the cell phone shown in figure 1.1 [5]. Although, the primary IC

components here are microprocessors and memory, analogue and RF blocks also

play an important role. High level of integration in such a complex design can

reduce the cost and promote high volume production. However, it is very difficult

to achieve such a goal mainly due to the following two aspects. Firstly, analogue

design methods need to be refined with the development of the fabrication technol-

ogy. The current trend is to design analogue components using deep submicron

digital fabrication technologies for high speed and high frequency applications.

Secondly, the high integration level of analogue designs has to be achieved with

low power supply voltages [6].

1

Chapter 1 Introduction 2

Figure 1.1: An illustrative AMS SoC example.

Major design tasks, such as verification, optimisation and synthesis of complex

SoC systems need to be carried out at both system and circuit design levels in

the VLSI design flow. One particular characteristic of analogue designs is that

typically they need to be optimised using dozens of competing continuous-valued

performance specifications. A successful optimisation is dependent on the circuit

designer’s ability to explore a range of nonlinear behaviours across abstraction

levels in the VLSI design flow [7]. This means that, firstly, designers need to

have adequate means to evaluate the behaviour of the designs and, secondly, they

should be able to explore their designs thoroughly at different abstraction levels.

In most stages of the VLSI design flow, various simulation approaches are avail-

able for design evaluation. In most cases, designs are presented in the form of a

description language including classical SPICE netlists, extended digital hardware

description languages (HDLs) such as VHDL-AMS [8], SystemC-A [9] as they can

cover almost all the VLSI design stages. Simulators for these HDLs, either from

industry or academia, are widely available. From the point of view of this re-

search, it is important to stress that it is the lack of methods for sound design

exploration that severely limits the designer’s efficiency. This research is moti-

vated by this. Specifically the main aim here is to investigate the possibility to

develop methodologies for effective AMS design exploration.

Chapter 1 Introduction 3

1.1.1 AMS synthesis

The hierarchical approach to VLSI design using multiple abstraction levels of cells

has become the established way for designers to control the explosion of complexity

[10]. Using this well-known methodology, a top-down design procedure [11] is

often adopted. It starts from conceptual formulation at the system design level

and goes down to block function designs then to circuit cell designs until layout

and fabrication. As the design is refined, specifications are transformed into the

forms suitable to the corresponding design stage.

In every design stage, a manual iterative process can often be observed [12] as

shown in figure 1.2. The design from the previous stage is passed to the current

stage. It is then redesigned by considering the design specifications transformed

from those at the previous stage and using the library components at the current

stage. The main design loop is to use simulations as a means to evaluate and verify

the performance of the design iteratively until it fulfils the design specifications.

If not, the design will be returned to the previous stage for more refinement.

Figure 1.2: Manual design flow graph of the general VLSI design stage in
detail.

Chapter 1 Introduction 4

As the design methodology is so well structured, it seems that AMS synthesis

can be easily implemented. However, AMS synthesis is still in its infancy and

falling far behind its purely digital counterpart [12]. Although digital designs have

sufficient support by computer aided design (CAD) methodologies at all the de-

sign levels, AMS synthesis has only just moved from conceptual demonstrations to

first-generation commercial offerings [13] and only capable of handling analogue

cell designs with 10-100 devices [10]. This slow evolution of AMS synthesis es-

sentially reflects the nature of analogue designs where numerous and competing

design objectives exist at different design levels. One of the reasons that the AMS

synthesis development lags behind is because there is no uniform HDL for synthe-

sis at different design stages in the VLSI design flow. Most AMS HDLs including

VHDL-AMS [8], Verilog-A [14], SystemC-A [9] are created for the purpose of mod-

elling and simulation [15]. Therefore, when they are adopted in synthesis systems,

a subset is selected to enable writing synthesisable HDL code. Although the new

HDLs have attractive features for high-level simulation, up to now, they are not

mature enough for the purpose of AMS synthesis.

More importantly, today’s modelling and optimisation techniques are not powerful

enough to replace designer’s experience. At system and circuit design level, AMS

designers often use the following six dimensional evaluation matrix for their syn-

thesis methodologies [16]: prediction accuracy, application generality, capability

on complexity, synthesis time, automation and preparatory effort needed. How-

ever, some of these principles are very subjective and difficult to be quantified. So

many famous systems [17–19] have to emphasise some aspects of the evaluation

principles while sacrificing some others. Numerous systems are dedicated to spe-

cific analogue designs [20, 21], and they use specialised optimisation algorithms

[22] or simulators [16] at various design levels [23].

This research is not attempting to solve a general AMS synthesis problem. How-

ever, the performance modelling and optimisation methodology applicable to a

wide class of AMS designs developed in this research represents a concrete step

towards a full general AMS synthesis system. Such a methodology is an important

underlying part of any general AMS synthesis system.

Chapter 1 Introduction 5

1.2 Motivation for this research

As stated above, the aim of this research is to develop a general performance

modelling methodology which could be applied to an arbitrary synthesis system

for a wide class of AMS designs. It is well known that simulation is the main

method to evaluate the performance of analogue IC designs especially when circuits

operate at high frequencies with ever shrinking transistor geometry [24]. However,

applying simulation directly in analogue synthesis is not always efficient because

the number of iterative executions in a synthesis process is large [25]. This is

especially true for certain designs that need long simulation times at circuit level

such as sigma-delta modulators [20].

Most of the current performance modelling techniques for AMS synthesis are ap-

plicable to only one type of circuit. Operational amplifier (OpAmp) and other

analogue cells are usually modelled by symbolic expressions [19, 26] or posynomial

functions [27]. These methods are essentially the extension of manual design expe-

rience. Although they can cover a category of design problems at circuit-level, the

generality is restricted to particular problems. The current modelling techniques

for analogue filters are another typical example. Transfer function analysis and

synthesis is critical in the decomposition and implementation of complex analogue

filter structures [28, 29]. Although some analogue-to-digital converter (ADC) de-

signs can also be modelled by transfer functions [30], ADC synthesis methodologies

differ significantly [31, 32] because of the lack of general performance modelling

methods for different ADC structures, implementation techniques and applica-

tion specifications. Most systems have to use specifically developed simulation

techniques [33] and sacrifice the reusability and generality. Such systems are usu-

ally interactive tools which assist designers in design exploration as they provide

specific design information in a dedicated way.

There have been attempts to develop general performance modelling techniques

for AMS synthesis based on neural networks [17] and fuzzy logic [34]. In such

systems, subjective human design expertise, either in a symbolic or a numerical

form, can be extracted by the training process. However, neural networks and

fuzzy logic have a number of drawbacks which are listed and discussed in detail

in the next section. This research aims to investigate an alternative approach to

extract design expertise from simulations based on SVMs.

Chapter 1 Introduction 6

1.2.1 Why support vector machines?

SVMs [35] were proposed originally in the context of machine learning for classifi-

cation problems on large sets of data which have complex and unknown relation-

ships between variables. The SVM approach can be used both for classification

and regression estimation [35]. The technology has been successfully applied to

pattern recognition [36], fault diagnosis [37], nonlinear control [38] and many other

problems.

SVMs are easier to integrate into an automated design environment than cor-

responding fuzzy logic systems. The preparatory overhead in the application of

fuzzy logic to synthesis is very high because special design experience is needed

to convert numerical evaluations of the designs to fuzzy rules. The selection of

membership functions is almost always dependent on AMS synthesis system de-

signers’ knowledge and specific applications [34, 39, 40]. This impedes a wide

adoption of this technique and creates extra difficulties in automation. In con-

trast to fuzzy logic, SVM training parameters can be determined automatically

by applying search algorithms without the designers’ manual intervention.

The so called structured risk minimisation (SRM) [41] strategy is used in the

SVM training to construct optimal performance models. In a nutshell, the SRM

builds the optimum regression function by minimising the prediction error and

maximising the distance between the nearest samples and the regression function.

In contrast to this strategy, traditional neural network technology uses empirical

risk minimisation (ERM) [41] that minimises the approximation error only. It

is clear that the SRM strategy automatically solves the optimisation problem by

balancing the competing objectives of model generality and accuracy using the

well-studied quadratic programming. For ERM methods, this trade-off has to be

carried out by dedicated algorithms as seen in some examples [17]. SVM models

tend to be more compact than corresponding neural network models because opti-

mal support-vector regression functions include only a subset of the whole training

data set, namely the support vector set [35, 41, 42]. It has been reported that

SVM based approaches are able to find global optima in cases where neural net-

works converge to a local one [43]. As some comparisons between the SVM and

neural network [44] indicate that the two methods work equally well in terms of

prediction accuracy, in summary, it can be conservatively concluded that SVMs

perform at least as well as neural networks in terms of model accuracy. Also, SVM

Chapter 1 Introduction 7

methods seem to perform better in terms of training and prediction errors than

simple linear least-square regression and posynomial models [45].

Another advantage of SVMs is that the model construction can be readily auto-

mated. As the SVM SRM strategy has implemented the trade-off between the

generality and accuracy of the models, the training process would ensure to gen-

erate performance models that are very suitable for the design. In additional,

the SVM trainer can be configured in an easy tuning way with only two training

parameters to explore.

1.3 Research contributions

SVMs have already been suggested as an efficient means to model analogue per-

formance restricted to the classical “good-bad” classification model construction

[46, 47] and performance space regression [45]. In this research, SVM application

has been extended to the automatic generation of a general performance optimi-

sation system for AMS designs. Compared to most state-of-the-art applications

of SVMs [45–47], which use manual and “try-it-out” methods for SVM training

parameters determination that may lead to non-optimal results, the method pre-

sented in this thesis needs minimum human intervention thus is labour effective.

A new, accurate model construction algorithm has been developed and imple-

mented. The algorithm has been demonstrated to provide almost an order of

magnitude speed up for SVM training parameter determination compared with

the standard grid search approach recommended by SVM trainer’s creaters [116].

In addition, the proposed performance modelling methodologies have been imple-

mented in a way that makes the model construction system independent of the

underlying optimisation system to achieve high generality and flexibility in the

choice of an optimisation system. The proposed algorithms lend themselves eas-

ily to effective performance optimisation. As the SVM technique is applicable to

any design modelling, the performance modelling methodologies developed in the

course of this research are also applicable to a very wide range of problems. The

purpose of developing different performance modelling methodologies is to explore

the possibilities of applying the SVM technique to the area of AMS performance

modelling.

The main contributions of this research can be outlined as follows:

Chapter 1 Introduction 8

1. Linearly graded automated performance model construction using

SVMs:

A linearly graded performance modelling approach has been developed to

extend the classical ‘good-bad’ binary classification model. The idea be-

hind the method is to partition a multi-dimensional design space into a few

sub-spaces; all the sub-spaces are modelled separately. The partitioning is

done by constructing boundaries between the sub-spaces using SVM classi-

fication method; each sub-space is modelled by the SVM regression method

to provide performance predictions at design points in the sub-space. The

partitioning divides the complex design problem into smaller sub-problems

which are easier to be solved in terms of computational cost overhead. In

addition, the model can give more insight into the design than the classical

‘good-bad’ method by providing a linearly graded evaluation result. This

approach has been presented in two conference papers [48, 49].

2. SVM regression based automated performance modelling method-

ologies:

Two approaches have been developed for SVM performance model construc-

tion using the SVM regression method:

� Automatic generation of SVM regression performance mod-

els for AMS and RF designs: the approach uses SVM regression

models on the whole design space to simplify the performance model

construction process and eliminate classification errors introduced in

the linearly graded approach. The approach is fully automatic with no

need for manual intervention and lends itself naturally to a knowledge-

based AMS performance optimisation system. This approach has been

published and presented in a conference [50].

� Computational-cost aware SVM training parameter determi-

nation: the computational cost analysis of the standard grid search

training parameter determination algorithm, which is used in the pre-

vious two methods, has revealed that the computational cost of an

accurate determination of SVM training parameters can be dramati-

cally reduced. The training parameters have significant influence on

the computational cost which can vary by up to three or four orders

Chapter 1 Introduction 9

of magnitude. Thus a very efficient gradient-based and heuristic algo-

rithm has been developed for high speed training parameter determi-

nation. An improvement of up to 7 times in terms of the CPU time

has been achieved which means days of training time can be saved in

practical applications. The new algorithm has been applied in the SVM

regression performance model construction system. Results have been

summarised in a journal paper submitted to IET CDS Proceedings (see

appendix A).

3. Knowledge-based performance optimisation using SVM models:

A very efficient performance optimisation system has been developed. The

performance models have the form of an automatically constructed knowl-

edge database so that no simulations are required during the exploration of

the design space. Two popular optimisation systems have been implemented

in the practical case studies. One uses a dedicated genetic optimisation al-

gorithm and the linearly graded SVM performance models, and the other

utilises a standard pattern search technique with SVM regression perfor-

mance models. Both can converge to an optimal design extremely quickly.

In the analysis of the 2nd order sigma delta modulator (SDM) case study,

pattern search optimisations required only about two to five minutes of CPU

time. The optimisation system has been presented at a conference [50] and

an extended version has been described in the submission to the IET CDS

Proceedings mentioned above.

4. Verification of the proposed performance modelling and optimisa-

tion methodology using two practical case studies of complex AMS

systems:

Two main case studies have been modelled and optimised to validate the

proposed methodologies. This includes the specifications of the design and

performance spaces, SVM model construction and performance optimisa-

tion experiments. The mixed-signal example is a 2nd order SDM. It includes

most of the imperfections typical for a switched-capacitor implementation:

non-linear OpAmp DC gain, finite OpAmp DC gain, slew rate, clock jitter,

OpAmp and switch thermal noise, OpAmp dynamic range etc. This exam-

ple is representative for AMS designs with moderate complexity for which

advanced design methodologies are highly required. The second example

is a Colpitts RF bandpass filter. The main challenge in this case study is

Chapter 1 Introduction 10

that it is not suitable for a standard analogue filter transfer function syn-

thesis method. It contains a number of nonlinearities and a complex on-

chip spiral inductor with very high losses. The optimised designs have been

verified by full simulation. Comparisons of optimisation results with stan-

dard manual design results are provided to demonstrate the effectiveness of

the proposed methods. Using the proposed computational cost aware SVM

training parameter determination algorithm, it has achieved almost an order

of magnitude efficiency improvement with less than 5% prediction accuracy

degradation.

In addition, the computational cost model of the SVM regression model

construction using the standard grid search algorithm has been further con-

firmed by extra experiments using five public data sets.

1.4 Thesis structure

This thesis is composed of seven chapters. The following is a chapter-by-chapter

explanation with each chapter’s main points and contributions.

Chapter 2 is a literature review of the topics related to the research. It covers

details of state-of-the-art AMS synthesis systems, modelling and performance op-

timisation techniques. Chapter 3 introduces the underlying technique used in this

research, i.e. the support vector machines. Chapter 4 outlines the first contribu-

tion of this research: the linearly graded SVM performance modelling methodol-

ogy. The automated model construction process is presented in detail including a

heuristic grading algorithm. A simple case study has been included for conceptual

demonstration. Chapter 5 has a twofold purpose. The first goal is to present the

proposed methodology for the construction of SVM regression performance models

for AMS designs. The second one is to illustrate the computational cost analysis

using the standard grid-search algorithm. This analysis leads to an empirical SVM

training process computational cost model and an effective SVM training parame-

ter determination algorithm which has been shown to be up to 7 times faster than

the classical grid-search method. Chapter 6 presents the proposed performance

optimisation system and the two optimisation algorithms used in the underlying

optimisation engine. Chapter 7 presents the case studies and experiments. The

development of the two cases studies are illustrated in appendix B and C.

Chapter 1 Introduction 11

Finally, chapter 8 summarises the presented work. The main achievements are

discussed and highlighted. A number of conclusions are drawn based on the con-

tents of the previous chapters. Further work is also suggested as a basic guide for

a future research on this subject.

Chapter 2

Literature review

Chapter 1 highlights the importance of performance modelling in AMS synthesis

systems, its challenges and proposes a general methodology and an optimisation

system. Before explaining the work, this chapter provides details of the background

literature review as the following: section 2.1 presents a general introduction of

AMS synthesis methodologies. It includes the review of the classical structure

of AMS synthesis systems and specific synthesis techniques for analogue filters

and ADCs. As an important part of an AMS synthesis system, the most popular

performance modelling approaches and optimisation algorithms are explained in

section 2.2. The HDLs used in the case studies are introduced in section 2.3.

Finally, in section 2.4, a brief introduction of the design of SDM is presented.

2.1 AMS synthesis methodology

The design of VLSI system can not been successfully done without the help by

CAD tools [51]. The purpose of using CAD tools is to implement a rational

methodology to address the challenges of design complexity encountered in mod-

ern VLSI designs. One of the design methodologies is a hierarchical top-down

strategy [12]. The whole VLSI design process is divided into several stages and

each stage corresponds to a form of representation of the design with the specifi-

cations projected at that level. There are different opinions of dividing the VLSI

design flow [52–54], however, in general, the following process, shown in figure

2.1, is acceptable to cover all the stages. It illustrates the top-down VLSI design

12

Chapter 2 Literature review 13

methodology using the hierarchical decomposition method in the space formed by

the ‘specification’ and ‘abstraction level’. Seven design stages present and each

contains one design step and one verification step (fabrication is verified by test-

ing). Verifications can result in a redesign loop back in the design process, so the

design is refined at every step by this forward and backward flow until fulfils the

design specifications. The documentation is independent but essential for every

design stage to make the design traceable in this complex flow.

Figure 2.1: VLSI design flow composed of six design stages in the two-
dimensional space formed by the abstraction level and the specification level.

Synthesis systems are designed to automatically accomplish this design flow to

generate electronic circuits from high-level specifications [55]. They are roughly

categorised as digital and analogue synthesis systems depending on the type of

circuits to be synthesised. AMS synthesis is a mixed synthesis involving both

analogue and digital parts in one design. The tasks include: choice of a structure

at the block diagram level, analogue/digital (A/D) partition, determination of

parameters and properties for analogue and digital blocks [56]. All of these can

be separate research fields.

Chapter 2 Literature review 14

2.1.1 Overview of AMS synthesis

In general, AMS synthesis is still in its infancy and falling far behind its digi-

tal counterpart [7, 12]. This predicament is essentially because of the nature of

analogue designs. Although analogue units are usually small with dozens of tran-

sistors [57], the design needs highly specialised expertise to work on numerous

design objectives and trade-offs. This deeply affects the development of perfor-

mance modelling techniques and synthesis. The first IEEE standard AMS mod-

elling language - VHDL-AMS [8] was released more than ten years later than the

first version of its digital counterpart VHDL [58]. Other major AMS HDLs such as

Verilog-A and SystemC-A are also modelling and simulation oriented [15]. There-

fore, when they are adopted for synthesis designs, some modifications will have to

be applied to create synthesisable HDL code. There are two main approaches to

do this task. The first approach is to create an intermediate language as an inter-

pretation of the simulation-oriented HDL [59]. The new language is designed to

be easily synthesised as a detailed model of design components’ functionality and

performance descriptions. The second approach is to map synthesisable syntax

elements of AMS HDL languages to the components in a pre-defined library [60].

Both approaches have not yet achieved breakthrough developments.

Figure 2.2: Classical flow chart of the interaction between the optimisation
engine and the evaluation engine in an AMS synthesis system.

AMS synthesis systems usually contain two blocks as shown in figure 2.2. The

optimisation engine block is to explore the design space for the optimal design

with a set of specifications. The evaluation engine block is to estimate the per-

formance figures of design sets. Optimisation engine modifies the values of the

design parameters and sends them to the evaluation engine; then accepts the per-

formance estimations to evaluate the design. The number of interactions between

the optimisation and evaluation engine blocks is usually large because the design

Chapter 2 Literature review 15

space has a multi-dimensional feature. Both of these two blocks need to be highly

efficient for quick AMS synthesis.

2.1.2 Knowledge-based vs. simulation-based AMS synthe-

sis system

AMS synthesis systems can be categorised as knowledge-based and simulation-

based systems. Systems of these two types have the same structure. The difference

mainly lies in the techniques used to evaluate the performance of the designs, i.e.

the evaluation engine in figure 2.2. Simulation-based systems use simulations

directly at various design levels in the evaluation engine [25, 61]. This method

works very well for analogue cell synthesis because the computational cost for

simulations of small scale designs is usually negligible using modern workstations.

However, it is not always efficient especially for certain designs that need long

simulation time such as SDMs [20, 62]. For knowledge-based system, a knowledge

database is utilised in the evaluation engine to provide estimations of the designs

rather than simulations. Generation of the knowledge database is usually carried

out separately using analytical [19, 26, 27] or supervised learning technologies [17].

Table 2.1: Comparison between the knowledge-based and simulation-based
synthesis methodologies.

Simulation-based Knowledge-based
Prediction accuracy High Technique dependent
Application generality High High
capability on complexity High Low
Synthesis time High Low
Preparatory effort Low High
Reusability Low High

Comparison of these two methods using the six evaluation figures is summarised

in table 2.1. According to the comparison, in a knowledge-based synthesis system,

the modelling technique should be able to provide high prediction accuracy; at the

same time, the preparatory effort should be minimised.

Chapter 2 Literature review 16

2.1.3 Analogue filter synthesis

As the communication sector in nowadays worldwide semiconductor market has

exceeded that of the computing sector [63], analogue filter, which has very wide

applications in telecommunication systems [64], gets increasingly important. Most

analogue filter synthesis systems use standard transfer function analysis techniques

[28, 29], which is usually utilised by manual designs. Roughly, the synthesis process

is to decompose high order transfer functions into first order terms. The first order

terms can be mapped to some standard circuit level cells so that the high order

system can be constructed in a bottom-up way.

As shown in figure 2.3 [65], filter specifications are transformed to differential

and algebraic equations (DAEs) or Laplace transfer function forms firstly. This

is because it is easier to analyse the behaviour of the analogue design in the

frequency domain. The synthesis strategy is to convert the system specifications

to mathematical forms. Then the DAEs are transformed to suitable forms so that

the structures in the equations can be mapped to pre-stored cell circuits. Every cell

in the library is parameterised so that they possess flexibility to be redesigned. The

cells are combined to form larger structures until the whole system is constructed.

During this composition process, architecture and parameter optimisations are

performed to ensure the design quality [28, 66].

This standard synthesis methodology does not have many variations for different

designs. One of the major variations usually considered is the implementation

technique [29]. The characteristics of the first order cell have to be studied and

considered in great detail in the synthesis design [67, 68]. In summary, analogue

filter synthesis is more mature than most of other analogue synthesis systems.

2.1.4 Analogue-to-digital converter synthesis

ADCs are found in almost every SoC designs as the interface between the digital

and real world. According to application specifications (such as input sampling

frequency and resolution), the architectures of ADCs can be flash [69], successive

approximation [70], subranging [71] and sigma delta [72]. These architectures can

be best applied for different sampling frequencies and resolution specifications as

shown in figure 2.4. Unlike analogue filters that need only very few analogue

building cells, ADCs need many basic components such as integrator, quantiser,

Chapter 2 Literature review 17

Figure 2.3: General analogue filter synthesis procedure [65].

Chapter 2 Literature review 18

each of which has to be constructed by smaller analogue cells. State-of-the-art

ADC designers use specifications to select the architecture of the design roughly

and consider performance degradation induced by mismatch. The whole design is

very customised and needs expertise badly.

Figure 2.4: Typical sampling-frequency vs. resolution range for different ADC
architectures.

Therefore, ADC synthesis is very specialised. Many systems are designed for one

type of architecture only [73, 74]. As the synthesis is an iterative process and

simulations are expensive at circuit level for full ADC designs, synthesis environ-

ments commonly tend to explore the design space at behavioural level with the

considerations of the circuit level imperfections. Another method is to develop

high speed simulators so that simulation-based system can be developed [75].

2.2 Performance modelling and optimisation in

AMS synthesis

2.2.1 Analogue performance modelling

Simulation is essential to assess the performance of analogue IC designs especially

with the ever smaller transistors used for high frequency applications. Both circuit

Chapter 2 Literature review 19

level and behavioural level simulators are applied to cooperate with the AMS VLSI

design flow [76]. In simulation-based AMS synthesis systems, circuit level simula-

tion is mainly used for cell synthesis because for large scale designs, simulation cost

is so expensive that full circuit simulation is not practical [25]. Behavioural level

simulation is thus developed [74] and the development on AMS HDLs is rapid.

As introduced in section 2.1.2, simulation-based synthesis methodology has some

disadvantages compared to the knowledge-based methodology.

Even for the systems using behavioural level simulation, performance modelling

techniques are very critical to enhance the design efficiency [77]. Especially in

knowledge-based synthesis systems, performance modelling is the key technique

to extract knowledge from simulation results thus is an underlying part of such

AMS synthesis systems. In recent years, the evolution of analogue performance

modelling has been through its initial stage [78, 79] and is progressing swiftly.

There have been many advanced techniques applied for this task. Some classical

and important methods will be introduced in this section.

2.2.1.1 Symbolic analysis method

One of the most extensively studied performance modelling techniques is the sym-

bolic analysis approach [80]. Symbolic expressions of the circuit parameters such

as AC characteristics can be derived for analogue circuits. With symbolic analysis

method, analogue circuits are treated as nodal networks connected by electrical

elements. The CAD tools of this kind derive transfer functions and other relation-

ships between the design and performance parameters for the network as symbolic

forms in terms of complex Laplace variable s or z-transform variable z, as given

by:

H(x) =
N(x)

D(x)
=

∑
i x

i · ai(p1, · · · , pm)∑
i x

i · bi(p1, · · · , pm)
(2.1)

where x represents s or z, ai and bi are symbolic polynomial functions of the

circuit elements p. The circuit elements are represented by symbols instead of

numerical values. As an example, ISAAC [26, 81] is introduced for the purpose of

understanding the symbolic analysis process.

Chapter 2 Literature review 20

Figure 2.5: Symbolic analysis process in the ISAAC system.

The input of the system is a SPICE netlist. At the input stage, the circuit netlist

is firstly read in then expanded if any sub-circuit is included. All the sub-circuits

in the netlist are replaced by their complete descriptions. Still in the stage, all the

recognisable components are replaced by the corresponding small-signal models.

After verifying the connections, the netlist is transformed to a network form and

the symbolic description of the network is simplified for the first time. For in-

stance, parallel elements, like the elements of current mirror pairs, are represented

by the same set of symbols because their small-signal models are exchangeable.

After the network transformation stage, equations are set up. The network func-

tion is then derived by solving the equations using a dedicated equation deriving

routine. Results of this stage are usually very complex equations, which are usually

impossible for human to understand. Heuristic programs work on the complex re-

sultant equations and simplify them further with a user-defined error tolerance in

Chapter 2 Literature review 21

the formula post-processing stage. The formula output may need to be re-derived

if they cannot satisfy the specifications. The redesign can happen at a stage in

the middle of the process as shown in the figure.

This approach gets very popular since it was reported in later 80s [26] because it

can provide more insight of the behaviour of the designs than numerical simulations

[26]. Great attention was attracted during 90s. With the increment of calculation

power from personal computers and workstations, the method has achieved signif-

icant improvements to deal with lumped, linear or linearised and weakly nonlinear

systems, and is still improving [12]. However, the methodology encounters great

difficulty in recently years. Firstly, the application field is confined to circuit-level

designs as at system design level, some performance parameters are difficult to be

expressed explicitly by circuit-level design parameters and need to be calculated

with simulation results using complex algorithms such as fast Fourier transform

(FFT). Secondly and more importantly, the methodology shows limited capability

in cooperating with the fast developing fabrication technologies. To handle large

scale circuits, symbolic analysis technique needs two main capabilities: hierarchi-

cal analysis and good approximation capability [82]. However, as device scaling

has a great impact on the transistor modelling for analogue designs [83] such that

approximations of the symbolic expressions become more and more difficult.

2.2.1.2 Neural network method

Another very important approach to capture the design’s behaviour is to use au-

tomatically constructed neural network models for the linear and non-linear re-

lationships that exist between design and performance parameters [17, 84, 85] of

analogue designs. This technique is attractive because a neural network with suffi-

cient size can provide estimations at arbitrary precision level given a finite discrete

set of training data [86].

In a fully connected neural network, as shown in figure 2.6, the output is related

to the inputs by the hidden layer neurons, each of which is related to all the inputs

with different weights.

Typically, neural networks are used to construct the database in a knowledge-

based analogue synthesis system. In the application, the outputs of the neural

networks represent the performance parameters of the analogue system and the

Chapter 2 Literature review 22

Figure 2.6: Classical two layer multi-input single-output feed forward neural
network structure.

design parameters are used as the inputs. Several neural networks are constructed

for each of the performance parameters so that the design parameters are con-

nected to them by weighted and fully connected networks. The collection of all

the networks forms the underlying knowledge database in the design automation

system.

The neural networks’ training process can be automated. The goal of the training

process is to obtain the optimal neural networks in terms of training error and

model complexity. The training process, also is called model construction process,

is likely to be similar to that shown in figure 2.7. The process starts from a data

generation phase. There are two data sets needed for neural network construction.

One is the training data set and the other is the verification data set or called

testing data set. Depending on the design level and accuracy requirements that

the data can be generated from behavioural level or SPICE level simulations. The

testing data set should not have any overlap to the training data set to ensure the

effectiveness of the verification.

The quality of the models are characterised by two features: generality and accu-

racy. Generality is used to evaluate how well the model can still perform when it is

applied to unknown design sets; accuracy reflects the quality of the model on pre-

dicting the outputs and it is measured by the error between the estimation and the

real output. Generality and accuracy are a pair of tradeoff. Higher accuracy in the

Chapter 2 Literature review 23

Figure 2.7: Model construction process using neural network technique.

training process can be achieved by sacrificing the generality. During the training

process, the number of neurons is the tradeoff parameter: a smaller number of

neurons can have better generality while a larger number, better accuracy. The

two loops on conditions of ‘generality’ and ‘accuracy’ in figure 2.7 show a sample

process that can optimise neural network models. A well verified neural networks

model features the characteristics of adequate neurons with suitable generality for

Chapter 2 Literature review 24

the training set. These models are essentially the coefficients on every neuron con-

nections in the neural networks. After model construction, the application simply

feeds unknown data to the models and collects the predictions.

The advantages of the technique include that neural networks are very powerful in

modelling non-linear relationships; the method is flexible and general for vast de-

signs and different design stages; the knowledge modelling process can be standard

and easy for automation.

2.2.1.3 Other methods

� State space method State space method is widely used in modern control

theories and applications [87]. Because of the generality of the method, state

space method has also been applied in analogue synthesis designs [88, 89].

The state space descriptions of AMS systems provide dynamic representa-

tions of the transfer functions therefore the information about the control-

lability, observability and stability features of the system. The well-known

Laplace transform and z-transform can be used to convert the transfer func-

tion between the time domain and frequency domain easily. For time domain

implementation, optional time domain components for structural implemen-

tations are limited to the functional blocks like adders, amplifiers, integrators

and delay units, it is usually enough for analogue systems such as some ADCs

or filters to be synthesised.

� Fuzzy logic method Fuzzy logic technology has been applied to deal with

“uncertain” information and provides an effective means of capturing the

approximate and inexact nature of human reasoning [90]. The fuzzy infer-

ence process derives conclusions from a set of fuzzy rules in an “IF-THEN”

format. To work with the numerical input and output signals, the system

needs to convert inputs to the corresponding fuzzy levels that the fuzzy in-

ference system can understand. At the same time, fuzzy inference results are

converted back to numerical values at the output. Application of the models

in AMS synthesis is very similar as in the neural network. Compared to the

neural network method, the disadvantage is that the preparatory overhead

of this method is high because expertise is needed to select the member

function and define the input and output conversions.

Chapter 2 Literature review 25

� Signal flow graph method Signal flow graphs (SFGs) are functional no-

tations used traditionally in control theories to define system structures [91].

The method is widely used in the design of linear systems. In an SFG, system

functionality is represented by the flow of the signal processing. The sys-

tem structures can be derived from specifications explicitly but none of the

features of the signals and the implementation details of the signal process-

ing blocks will be indicated. Thus the technology is suitable for structural

exploration of the design at the system level. A recent development for ana-

logue synthesis [59] using the SFG method extends the concept of simple

SFG to “characterised” SFG with performance attributes and requirements

integrated into the individual blocks. In this way, it is possible to explore

the architectures of analogue designs with the considerations of the perfor-

mance. Also, it is very advantageous that SFGs for analogue designs can be

easily described by HDLs such as VHLD-AMS. However, developing a highly

accurate SFG model for non-linear analogue and RF design is very labour

intensive and needs expertise a lot. For circuit level designs with sub-micron

technologies, the situation will get even worse. This indicates the reason

why applications of the method are limited at system level.

2.2.2 Optimisation algorithms

Analogue designs can have a large number of solutions with different trade-offs. If

the performances of the analogue designs are evaluated by a cost function that rates

the solutions according to their performance parameters, the design problem can be

considered as a combinatorial optimisation problem. It is commonly accepted that

exhaustive search of the analogue design space is not a practical method to obtain

the optimal solution especially when the design space has a high dimensional

feature. The purpose of using optimisation algorithms is to search the design

space effectively. Some optimisation algorithms are introduced in this section.

2.2.2.1 Cost function

The analogue optimisation problem is considered as a constrained optimisation

as both of the design and performance parameters are bounded by inequality

constraints that must be met [18]. At this point, it can be accommodated in the

Chapter 2 Literature review 26

following standard constrained nonlinear programming problem:

minimise : C(x)

subject to:

x1 ∈ [V1−low, V1−high]

x2 ∈ [V2−low, V2−high]

· · ·
xn ∈ [Vn−low, Vn−high]

where C(x) is the cost function to be optimised with design parameter vector x,

xi represents the ith design parameter, Vi−low and Vi−high are the lower and upper

constraints of the ith design parameter.

Cost function is a special function used as the optimisation objective in analogue

synthesis systems. It represents an overall evaluation of the whole design including

all the performance parameters. So it is usually constructed as a combination of all

the performance parameters. The weights in the equation balance the competing

performance parameters. Generally, there are two forms of cost functions. The

first type is a weighted linear summation form:

C(x) =
n∑
i

wiRi(x) (2.2)

where wi, i ∈ [1 · · ·n] are the weight coefficients for all the performance parameters

and Ri are performance parameters. This form can be found in many systems

[16, 17, 92].

The second form is a weighted scalar error function. This form can be one of the

two kinds as the following:

C(x) =
n∑
i

wi|Ri(x) − R
′
i|2 (2.3)

Chapter 2 Literature review 27

or

C(x) =
n∑
i

wi| R
′
i

Ri(x)
| (2.4)

where R
′
i is the designer-specified objective value of ith the performance parameter.

Both of these two kinds of the cost functions are suitable for optimisations with

explicit specifications [39, 59].

The two forms of cost functions are capable of exploring design spaces of analogue

systems. The first form is more suitable for the cases where performance param-

eters have open specifications such as “the design area is the smaller the better”.

The second form can be used to find solutions that have the smallest deviations

from the specified performance targets. In practice, it is possible to combine the

two forms in one cost function if the weights are assigned properly. In this way,

the constraints of the performance parameters of a design to be optimised can be

openly or exactly specified.

2.2.2.2 Genetic algorithm

As its name suggests, the genetic algorithm (GA) attempts to develop solutions

for the optimisation problems by mimicking the process of biological evolution.

GA has been shown to have promising performance in a wide variety of problems

when very large difficulties arise and there is no obvious way to calculate solutions

[93]. The general flow chart of a GA is shown in figure 2.8. The concepts of fitness,

crossover and mutation are borrowed from the biological terminology.

Initially, a number of individuals are generated with random gene values and they

form the first generation population. The population scale will remain the same

until the optimisation process finishes. This candidate solution set needs to be

adequate and usually in a range from 50 to 1000. The individuals are featured

by their chromosomes which are coded characteristics of the individuals. Fitness

is an indicator calculated for each of the individuals to measure the quality of

their chromosome. From the initial population, the first generation parents are

selected according to their fitness. There can be variant algorithms to do the

selection. One of the methods is to pick up the ones with better performance than

others by ranking their fitness. After selection, if the crossover operation, which

Chapter 2 Literature review 28

Figure 2.8: Flow chart of the canonical genetic algorithm.

happens with a fixed probability, is triggered, some parts of the chromosomes of the

selected parents are exchanged and their offspring is produced. When the crossover

operation is carried out on the selected parents, the new generation is formed. For

each of the individuals in the new generation, the genes on their chromosomes have

fixed probability to mutate on random positions. This evolution process finishes

when the generation number exceeds the specified number. The optimal solution

is then selected from the last generation with highest fitness.

GA has been applied in analogue synthesis systems to search for optimal solutions

Chapter 2 Literature review 29

[17, 94] in design spaces. It is commonly used in AMS synthesisers that the per-

formance parameters of the designs are combined in one cost function, which is

the objective function in the GA controlled synthesis process. The formation of

the cost function can be simply a linear combination or some specifically designed

type like a fuzzy membership approach [17]. GA is applicable for general pur-

pose systems and is effective for the problems with no obvious formal analytical

solutions. However, there are reported discussions [94] showing that for analogue

circuit sizing problem, some specified numerical optimisations can be more effec-

tive than the general purpose GA. Even though, GA still can be a good option as

a powerful optimisation engine in analogue synthesis systems.

2.2.2.3 Pattern search algorithm

Pattern search algorithms belong to the family of direct search methods [95]. They

can be applied to a number of optimisation problems that are not well suited for

standard optimisation algorithms [96] including problems in which the objective

function is discontinuous [95], non-differentiable or highly nonlinear [97].

Figure 2.9: Mesh exploration of pattern search optimisation.

As shown in figure 2.9, pattern search explores a set of points, called a mesh,

around the central point ωk, Δk is the distance on direction of di, i ∈ 1, · · · , n. All

the directions form a direction vector D. The mesh points are evaluated, and their

objective values are compared to the one of the central point in order to select the

next central point. If an improvement is found among the points, the iteration is

declared successful and the mesh size is retained or coarsened; otherwise, the mesh

size is refined and a new set of points will be constructed. The process terminates

Chapter 2 Literature review 30

when either the mesh size is smaller than the pre-defined mesh tolerance or the

performance of the system has better performance than the specifications.

A very important issue is to select the direction set. Research [98] has proved that

if the number of directions n is within the following range:

m + 1 ≤ n ≤ 2m (2.5)

where m + 1 and 2m are the lower and upper limits for the number of directions

respectively, an effective exploration of a m-dimensional design space �m can be

achieved. The significance of the conclusion is that given a design space, there are

a number of ways to choose a direction set with different number and weights of

the directions.

Since the pattern search approach was first introduced in the 1960s, the algorithm

could not get enough popularity because of the lack of convergence verification.

However, in 1997, the algorithm was analyzed and its convergence proved by Torz-

con [99] for derivative-free unconstrained optimisation problems. Then the proof

has been extended to handle constrained optimisation problems [100], including

problems with a finite number of linear constraints [101]. This justifies that the

algorithm is applicable for AMS design optimisations.

2.3 HDLs for AMS modelling and simulation

2.3.1 Modelling capabilities of HDLs

HDLs are designed for various simulation and design problems. They are appli-

cable to different abstraction levels in the VLSI design flow and various design

domains such as digital and analogue. Figure 2.10 shows the abstraction levels

and designs covered by some of the main HDLs. The abstraction levels on the

x-axis start from analogue systems that cover all analogue designs then change to

digital designs from low gate level to high algorithm level. Most of the well-known

HDLs such as VHDL, Verilog and SystemC, are for digital designs while some are

for analogue only like SPICE. There is a trend to extend standard digital HDLs by

adding new language syntax elements. This is mainly to cover AMS design issues.

The new languages include VHDL-AMS, Verilog-AMS, Verilog-A and SystemC-A

Chapter 2 Literature review 31

for complex AMS system simulation and modelling. HDLs with AMS extensions

are mainly developed for the purpose of filling the gap between the digital do-

main and the analogue domain. Among them, VHDL-AMS has been standardised

by the IEEE; SystemC-A has been applied to complex simulation and modelling

problems [9]; others are still under development.

Figure 2.10: Application fields covered by different HDLs [9].The x-axis is the
abstraction levels and the y-axis is the design representations.

In figure 2.10, it clearly shows that different HDLs are applicable for various design

stages and representations. For AMS synthesis applications, unfortunately none

of the HDLs can be synthesisable without any dedicated modifications at the

moment.

2.3.2 VHDL-AMS

The standard IEEE 1076.1 language, also informally known as VHDL-Analogue

and Mixed-Signal (VHDL-AMS) extension, is based on the IEEE std 1076-1993

(VHDL) language. The aim of the extension is to provide capabilities for modelling

and simulation of AMS designs [8]. IEEE std 1076.1 1999 contains not only the

extensions and modifications of IEEE std 1076 1993 but is a superset of VHDL,

which is widely used for digital system simulation and synthesis. The language

Chapter 2 Literature review 32

supports modelling at various abstraction levels of electrical and nonelectrical

energy domains [102]. The systems to be modelled are lumped systems that can

be described by ordinary DAEs in the following form [103]:

F (x, dx/dt, t) = 0; (2.6)

where F is a vector of expressions, x is a vector of unknowns, dx/dt is the deriva-

tives of the unknowns with respect to time t. VHDL-AMS defines the notations

for DAEs without indicating any method to solve them. This provides maximum

flexibility to simulator development.

VHDL-AMS models As in VHDL, a VHDL-AMS model consists of an entity

with one or more architectures in one design. The interfaces and generic defi-

nitions are in the entity, which define the input/output (I/O) characteristics of

the design. The behaviour of the system is defined in the architecture. At be-

havioural level, event-driven behaviour is described by concurrent statements or

sequential processes while continuous behaviour by simultaneous statements. At

structural level, different configurations can be implemented for one entity to de-

scribe register transistor level (RTL) netlists. The language supports hierarchical

design methodology by providing a series of language elements for components’

interconnection.

VHDL-AMS simulation cycle The time domain simulation cycle using VHDL-

AMS is shown in figure 2.11 [102]. The simulation cycle of VHDL-AMS is a process

that advances on the time axis with a nested delta-cycle iteration. It is based on

event-driven simulation mechanism. The simulator maintains an event list record-

ing the new values assigned to the signals and the corresponding time points. At

one time point T ′
n, the process executes all the related signals and processes trig-

gered by active events. If more signals or processes are triggered by the executed

events, the current time will not move on, i.e. Tn will not be updated. The simu-

lation will add delta cycles to propagate the signals to the components that they

affect. After all the delta cycles are processed, the simulation process will move

on to the next time point that an event happens. The process terminates when

the simulation stop time is reached.

Chapter 2 Literature review 33

Figure 2.11: Time domain simulation cycle of VHDL-AMS.

Applications Although VHDL-AMS has been standardised for only few years,

it has been widely used in AMS simulations [15] and synthesis systems [56, 59, 104].

Simulation problems covered by the language spread from electronics and electrical

to non-electrical problems. However, as it has been introduced previously, because

of the lack of mature simulators, the synthesis tools based on VHDL-AMS are still

in their infancy. A good example of using VHDL-AMS is its application as the

Chapter 2 Literature review 34

main simulation language [15] to multi-discipline complex problems related with

aircraft design.

2.3.3 SystemC

SystemC is a C++ library and a methodology that can be used to effectively

create a cycle-accurate model of software algorithms, hardware architectures and

interfaces of SoC and system-level designs [105]. Applications of SystemC are

mainly digital designs. Nevertheless, the extension of the language for analogue

designs is under development [9] so that complex systems involving a number of

hardware and software components can be handled.

SystemC language elements The basic building block in SystemC is a mod-

ule. Designers can facilitate the hierarchical decomposition of complex systems

using simple modules to reduce design complexity. The definition of a module

includes its interfaces and implementations of member functions. Processes are

the basic units that define the execution of functions in a design. The execution

order of the processes changes the sequential feature of C++ and makes SystemC

suitable for concurrent programming. Every process maintains a sensitivity list.

When variables in the sensitivity list are modified, the corresponding process will

be triggered. SystemC has very flexible techniques to connect different modules.

There are defined ports and signals for direct connections. Channels can be created

for specific connections with specially defined behaviour. Another flexibility of us-

ing SystemC comes from its rich data types with C++ default and user defined

types. Relying on the widely used objective-oriented software language, SystemC

gets more and more popular for its powerful features inherited from C++.

SystemC design methodology The current SystemC design flow does not

cover on automatic synthesis stage, even for digital designs. There are missing

connections between SystemC simulation and synthesis. Figure 2.12 shows a draft

design flow. It starts from SystemC system level design. Then the design is

simulated and verified in the design loop. This design loop is for a complete system

level design including system level architectural design, system level simulations

and verifications. However, the system level design results need to be converted to

Chapter 2 Literature review 35

other synthesisable HDLs such as VHDL or Verilog manually for synthesis [105]

and further refinement.

Figure 2.12: A typical SystemC design and synthesis process.

SystemC provides a platform to enhance productivity. Both high level and RTL

level designs can be implemented in SystemC. Low level designs can be refined

from system specifications. Because designers can work on the design at different

levels using one uniform language, this makes the design easier to be managed.

SystemC-A: extending SystemC for AMS simulation and modelling

Although SystemC is designed for digital system simulation, recently developments

try to extend the language capable for AMS simulation and modelling [9, 106, 107].

One important aspect is to develop a class package for analogue modelling. A suc-

cessful development with practical examples can be found in recent works [9, 106].

Three key elements are utilised for analogue designs. The first one is called system

variable. Because it is an effective method to represent the system using DAEs,

a system variable is needed for the unknowns in the equations. Secondly, a class

Chapter 2 Literature review 36

of analogue components are developed to facilitate the representation of analogue

nodes, component instances and analogue sources. Thirdly, some methods need

to be built to solve the DAEs. The three elements form a complete set of utilities

for the representation and simulation needs.

To cooperate with AMS designs, the mechanism of handling the synchronisation

between the digital and analogue parts is essential. Firstly, there should be some

means to convert the signals from one domain to another. This has been imple-

mented [9] with two specific SystemC modules: one for the digital to analogue

conversion and one for the opposite direction. Secondly, because the events in the

two domains are in different forms, it is necessary for the system to recognise as

well as synchronise them between the analogue and digital solvers. Digital simula-

tion uses traditional delta cycle concept while analogue events are evaluated only

when certain behaviour is detected. The exchange of the notification of events in

both digital and analogue domains should ensure that extra simulation cycles will

be added to propagate events.

2.4 Sigma delta modulation

ADCs can be categorised as: Nyquist-rate and oversampling converters. The sam-

pling frequency of Nyquist-rate converters must be at least twice of the maximum

signal bandwidth. One sample in the input signal corresponds to a batch of bits on

all the output pins [108]. The oversampling ADCs can achieve higher resolution

than Nyquist-rate ADCs and release critical requirements on the IC fabrication

process by sacrificing the signal bandwidth. Oversampling and noise shaping are

the two main techniques employed to achieve their advantages [109, 110]. One

input sample corresponds to a long sequence of digital bits on one output pin

and further digital signal processing techniques generate a good estimation on the

output based on these bits. Traditionally, as one of the oversampling modulators,

SDMs are applied for low frequency designs such as audio, instrumentation and

sonar systems because they can have higher output resolution than other ADC

structures such as flash, pipelined and successive approximation.

Chapter 2 Literature review 37

2.4.1 Delta and sigma-delta modulation

There are two kinds of modulators often seen in oversampling converters. The first

one is the Delta modulator whose structure is shown in figure 2.13 a). Modulators

of this kind have a feedback loop that contains one ADC, one digital to analogue

converter (DAC) and one filter. The filter is often implemented by an integrator

and placed on the feedback path. The whole system modulates the input signal

onto the difference between two successive input samples plus a first order noise

difference generated from the quantiser. The linearised model of the quantiser is

an adder with an external noise source E as shown in figure 2.13 b). The following

difference equation is used to describe the behaviour of the system:

v(i) = u(i) − u(i − 1) + n(i) − n(i − 1) (2.7)

where vector v is the output signal, vector u is the input signal, n is the noise

signal and i is the index.

Figure 2.13: a) structure of the Delta modulator as an ADC; b) the linearised
model.

The second type is SDM, whose structure and linearised model are shown in figure

2.14 a) and b) separately. The system is composed by the same components as in

delta modulators but with different arrangement. The filter is on the feed forward

path. The output of the system is now a delayed input plus a first order difference

of the noise signal as the following difference equation:

v(i) = u(i − 1) + n(i) − n(i − 1) (2.8)

In these two structures, the DAC is the main component that generates noise and

affects the performance of the system [111]. To reduce the non-linear distortion

from the DAC, many techniques have been developed such as to use single-bit

DAC instead of multi-bit ones or digital correction and dynamic matching [111].

Chapter 2 Literature review 38

 S ADC

DAC

+

-

+ +
1

Z - 1U V

E

U V
a) b)

Figure 2.14: a) structure of the SDM as an ADC; b) the linearised model.

The structures of delta modulators and SDMs are actually commutative because

the adder (subtractor) and the integrator are linear components. Delta modulation

does the integration on the output then addition; sigma-delta modulation does

addition first then integration. So the result is that the first order difference on

the input signal in the Delta modulation is integrated to become the complete

input signal in the sigma-delta modulation. This swapping makes it equal if an

integrator is added on the input signal in the delta modulators.

2.4.2 Noise-shaping and oversampling

The first order difference of the noise in equation 2.7 and 2.8 is called quantisation

noise as it comes from the process when a continuous analogue signal is quantised

to a discrete digital signal. This is not avoidable for all the A/D conversion

systems. In the z-domain, considering the effect of the filter in the system, the

noise E(z) is expressed as Q(z) = (1 − z−1)E(z) at the output. To view the

relationship of the power spectral density (PSD) of Q(z) and E(z), the amplitudes

of 1 − z−1 is approximated and z is substituted by e2jπf/fs , where f is the signal

frequency and fs is the sampling frequency:

1 − z−1 = 2 sin(π
f

fs

)(sin π
f

fs

+ j cos π
f

fs

) (2.9)

therefore, the relationship of the PSD between Q(z) and E(z) is:

Sq(f) = (2 sin(π
f

fs

))2Se(f) (2.10)

A well-known conclusion about a “random” quantisation noise is that the root-

mean square (RMS) value of the signal follows the following equation:

e2
RMS =

Δ2

12
(2.11)

Chapter 2 Literature review 39

where the Δ is the least significant bit of the ADC. With a practical assumption

that the noise power spreads over the half of the sampling bandwidth uniformly,

the PSD is expressed as:

Se(f) =
e2

RMS

fn/2
=

Δ2

6fn

(2.12)

where fn is the normalised frequency.

Substitute Se in equation 2.10 by equation 2.12, the result equation shows that

the noise power is shaped by the modulator with a factor of (2 sin(π f
fs

))2. This

factor indicates that the noise power will approach to zero at low frequency range

and will increase at high frequency range. This noise shaping technique, as shown

in figure 2.15, is one of the two most important concepts behind SDMs.

Figure 2.15: Noise shaping reduces noise in signal band. a) noise in the signal
band before the noise shaping; b) noise is shaped and pushed to high frequency

range.

The other key technique in SDM is oversampling. Oversampling can reduce noise

level because while the the useful signal keeps its power in the signal band, the

noise power always spread over the entire sampling bandwidth, thus the increment

of the sampling bandwidth reduces the noise level in the signal band as shown in

figure 2.16. This is based on another fact that the power of the noise signal is

a constant that can be derived by integrating equation 2.12 from 0 to fs. The

resultant power of the noise in the signal band is:

q2
RMS =

π2e2
RMS

3OSR3
(2.13)

where OSR stands for oversampling ratio and is calculated as OSR = fs/2f .

Chapter 2 Literature review 40

Figure 2.16: Oversampling reduces noise in signal band. a) noise distribution
when fs = 4f ; b) noise distribution when fs = 8f .

OSR has significant influence on the performance. The above equation is logarith-

mically scaled to give the following relationship:

log10(q
2
RMS) = C − 3 log10 OSR (2.14)

where C is the constant that represents all other values after the logarithmic

operation.

A common and qualified measurement of the accuracy of a converter is the signal

to noise ratio (SNR). It has a simple relationship with the effective number of bits

(ENOB) [111]:

SNR = 6.02 · ENOB + 1.76 (2.15)

Considering equation 2.14 and 2.15, when the OSR is doubled, an SDM will give

9dB noise decrement thus is equally to get 1.5 ENOB increment on the resolu-

tion. However, in practice, as the input signal frequency increases, the difficulty

of improving the SDM performance by increasing the OSR gets more and more

challenging.

2.4.3 SDM structures

The general structure of a SDM contains a filter block and a quantiser block as

shown in figure 2.17 [111]. The filter is a linear component and includes memory

Chapter 2 Literature review 41

elements. The output of the two-input single-output system is expressed as a

linear combination of its inputs U and V :

Y (z) = L0(z)U(z) + L1(z)V (z) (2.16)

where L0 represents the transfer function of the filter shaping the input signal U

and L1 is the one for the feedback signal.

Figure 2.17: General structure of a SDM used as an ADC [111].

The quantiser is a single-input single-output system that can be linearised if noise

is considered as external and the gain of the quantiser is unity:

V (z) = Y (z) + E(z) (2.17)

Thus, the overall system has one signal input, one noise input and one output. The

relationship between the inputs and output is expressed by the following equation:

V (z) = STF (z)U(z) + NTF (z)E(z) (2.18)

where NTF stands for noise transfer function and STF for signal transfer function,

which are expressed by the following equations for general and highly abstract

SDM structures:

NTF (z) =
1

1 − L1(z)
and STF (z) =

L0(z)

1 − L1(z)
(2.19)

Chapter 2 Literature review 42

Conversely, with given NTF and STF , the corresponding loop filter transfer func-

tion can be calculated directly from the following equations:

L0(z) =
STF (z)

NTF (z)
and L1 = 1 − 1

NTF (z)
(2.20)

These equations are independent of the structures of SDMs, which means that the

input-output characteristics of the modulators are solely determined by the NTF ,

STF and the performance of the quantiser. Also, because the NTF provides

all the poles for both filters, it has the most significant influence on the overall

performance [111].

Figure 2.18: Detailed z-domain model of the delay free structure of 2nd order
modulators constructed by cascading 1st order modules.

One of the strategies to make high-order SDMs is to cascade first-order modulators

as shown in figure 2.18. However, typically, first-order modulator is implemented

by an integrator with unit delay not a delay free one as in the figure. When the

first-order modulators are cascaded on the feed forward path, the input signal is

delayed more on the propagation to the output but the absolute form of STF stays

the same; noise is differentiated more times and sharper noise shaping function

will be achieved. Suppose STF is delayed by k unit clock periods and the NTF

is differentiated n times, they take the following form:

STF = z−k and NTF = (1 − z−1)n (2.21)

by equation 2.20, the loop filters are:

Chapter 2 Literature review 43

L0 =
z−k

(1 − z−1)n
=

zn−k

(z − 1)n
(2.22)

L1 = 1 − 1

(1 − z−1)n
=

(1 − z−1)n − 1

(1 − z−1)n
(2.23)

Poles of equation 2.22 and 2.23 are all located at z = 1. Zeros for equation 2.22 are

at z = 0. Zeros for equation 2.23 lie on the solutions of (1− z−1)n − 1 = 0, which

is (1− z−1)n = 1. Considering equation 2.9, noise in higher order modulators will

be more attenuated in the signal band and shaped more to high frequency ranges

than in low order systems. In practice, the advances of high-order SDMs may only

be achieved by sacrificing the dynamic range.

Another structure commonly seen in high order SDMs is called multi-stage noise-

shaping (MASH) modulator. Figure 2.19 shows the general structure. The first

stage takes the input and the second stage uses the noise from the first stage as

the input. The z-transform outputs of the two stages are:

V1(z) = STF1U(z) + NTF1E1(z) (2.24)

V2(z) = STF2E1(z) + NTF2E2(z) (2.25)

The transfer functions of the two digital filters, i.e., H1, H2, are designed to cancel

the quantisation noise generated from the first stage. According to the above two

equations, their relationship should be:

H1NTF1 − H2STF2 = 0 (2.26)

The usual and practical choice is to make H1 = STF2 and H2 = NTF1. For both

of the two stages, the STF s are very likely to have delays. Then the overall output

can be found to be:

V (z) = STF1STF2U(z) + NTF1NTF2e2(Z) (2.27)

If both of the two stages use second-order modulators, then STF1 = STF2 = z−2

and NTF1 = NTF2 = (1 − z−1)2. Thus the overall NTF = (1 − z−1)4. So the

noise is shaped as by a fourth order system while the system keeps the robustness

Chapter 2 Literature review 44

Figure 2.19: MASH structure of two-stage SDMs.

of second-order modulators. Another advantage is that as the input to the second

stage e1(n) is “noise” already, the output of the second stage is closer to the white

noise. This can reduce the harmonics of the output thus reduce some non-linear

effects. Also, as H2 = NTF1 is a high-pass filter and the non-linear errors from the

second stage will be multiplied with H2 before the final summation, the non-linear

errors in the signal band will be suppressed.

2.5 Concluding remarks

This chapter presents a review of the literature related to this research with the

exception of the SVM technique which is introduced and reviewed separately in

the next chapter for clarity. Regarding AMS-synthesis related techniques, the

Chapter 2 Literature review 45

review covers general AMS synthesis systems and then narrows down to the spe-

cific techniques that are usually seen in many existing research publications. This

part highlights the core role of performance modelling and optimization in AMS

synthesis and their treatment by some traditional approaches; advancement and

generalisation of performance modelling and optimization for the purpose of AMS

synthesis is the main focus in this research. In addition, the underlying tech-

niques needed for the development of the case studies are reviewed. This includes

theoretical analysis of SDM designs and review of HDLs.

Chapter 3

Support vector machines: an

introduction and the state of the

art

This chapter has a twofold purpose. Section 3.1 contains an introduction to the

support vector machine technology used in this research. It focuses on how the

technology is developed from concepts. Section 3.2 is mainly about the state of

the art for the application of the technology in AMS performance modelling and

optimisation. A SVM trainer is also introduced in this chapter.

3.1 SVM introduction

SVMs [35] were proposed originally in the context of machine learning for classifi-

cation problems on large sets of data which has complex and unknown relationship

with variables. Being supervised learning, the application of SVM models needs

firstly a training process to construct the models and then a testing process to

verify the models before they can be used to solve practical problems. The con-

structions of the SVM classification or regression models follow the same approach

for different applications: simulations are needed to generate data where the in-

formation about the relationship between the design and performance parameters

is contained; then SVM trainer extracts knowledge from the data and constructs

SVM classification or regression models that can be stored in a database. The

46

Chapter 3 Support vector machines: an introduction and the state of the art 47

application of the databases, as the working flow shows in figure 3.1, is to provide

predictions on unknown design sets with their corresponding classes or numerical

approximations.

Figure 3.1: SVM models in a typical application environment.

This introduction is based on SVM technologies for classification problems.

3.1.1 Background

Classification is to recognise raw pattern data for specific classes by measuring the

similarity between the data and the feature of the classes. A distance matrix is

commonly employed for this purpose.

Think of an example to use a 3 dimensional plane to classify 2 dimensional patterns

in an X-Y space (xi, yi), i ∈ [1, · · · , n]. The plane is defined by:

z = ωx + υy + c (3.1)

So any point that makes z−ωx−υy− c = 0 lies on the plane. If a pattern (xi, yi)

has a corresponding positive value in the right hand side of equation 3.1, then the

point is above the plane, otherwise below the plane as shown in figure 3.2.

The plane can be generalised for a multi-dimensional space. Considering that

there is always an error expected between the prediction and the truth, an extra

Chapter 3 Support vector machines: an introduction and the state of the art 48

Figure 3.2: The 3 dimensional surface plane separates the space into two
parts. Three nodes (N1, N2, N3) are projected onto the plane and classified.

term can be added to represent the errors. So the plane is of the following form:

O =
n∑

i=1

ωixi + ε

where O is real numbered output to be used for different classes and ε is the error

term.

Before applying the plane for classification problems, the key step is to determine

the values of the elements in the weight vector ω. As shown in figure 3.3, the

weight vector straightly decides the generality capability of the separating line (one

dimensional plane). This can become a very complex issue in multi-dimensional

cases. It should be noted that the process of constructing the separating plane is

the training process.

3.1.2 Statistical learning and kernel method

3.1.2.1 Similarity measurement

To generalise the plane constructed using known data onto unknown data, first of

all, it is important to quantify the similarity between known and unknown data.

Chapter 3 Support vector machines: an introduction and the state of the art 49

Figure 3.3: The two separation lines L1 and L2 have different capability fea-
tures for unknown data as their corresponding weight vectors ω1 and ω2 are of

different values.

In SVMs, the dot-product is utilised for this purpose, which is defined as:

�v1 · �v2 =
m∑

i=1

(�v1)i(�v2)i (3.2)

where �v1 and �v2 are two vectors in an N dimensional space �N . Using dot-

products, the relationship between data points can be constructed geometrically

in terms of angles, lengths and distances. More importantly, a designated feature

space can be created so that the separability of the patterns can be maximised

when they are mapped to the feature space. As explained next, this mapping

simplifies calculation because of the following equivalence:

k(x, x
′
) = x · x′

= Φ(x) · Φ(x
′
) (3.3)

where function Φ : χ → F is the mapping function for each pattern in the input

space and x and x
′
are mapped patterns in the feature space, function k is called

the kernel function.

Assume two classes are to be separated without any prior information about the

probabilities of the two classes by the following means of the input patterns from

Chapter 3 Support vector machines: an introduction and the state of the art 50

Figure 3.4: Geometrical relationship between the two classes C1, C−1, their
distance ω = C1 − C−1, their mid-point C = C1+C−1

2 and the new pattern x.

classes yi = 1 and yi = −1:

C1 =
1

m1

m1∑
i:yi=1

xi (3.4)

C−1 =
1

m−1

m−1∑
i:yi=−1

xi (3.5)

where m1 and m−1 are the total number of patterns in the 1 and −1 classes.

As shown in figure 3.4, the label of a new pattern x depends on the angle enclosed

by x and ω.

y = sgn(cosθ) (3.6)

According to the Law of Consines, equation 3.6 can be rewritten as:

y = sgn((x − C) · ω) (3.7)

= sgn((x · C1) − (x · C−1) + b) (3.8)

where the offset parameter b is

b =
1

2
(||C1||2 − ||C−1||2) (3.9)

Chapter 3 Support vector machines: an introduction and the state of the art 51

Equation 3.8 and 3.9 can be rewritten in the input space by substituting equation

3.3:

y = sgn

(
1

m1

∑
i:yi=1

(x · xi) − 1

m−1

∑
i:yi=−1

(x · xi) + b

)
(3.10)

= sgn

(
1

m1

∑
i:yi=+1

k(x, xi) − 1

m−1

∑
i:yi=−1

k(x, xi) + b

)
(3.11)

b =
1

2

⎛
⎝ 1

m2
1

∑
i,j:yi,j=1

k(xi, xj) − 1

m2
−1

∑
i,j:yi,j=−1

k(xi, xj)

⎞
⎠ (3.12)

If the two classes C1, C−1 have the same distance to the origin and the kernel func-

tion is integral on the input space, then the offset parameter b = 0 and equation

3.11 is called the Bayes decision boundary. This separation can be correctly esti-

mated by Parzen windows, i.e the correct label depends on the larger of equation

3.13 and 3.14:

P1(x) =
1

m1

∑
i:yi=1

k(x, xi) (3.13)

p2(x) =
1

m−1

∑
i:yi=−1

k(x, xi) (3.14)

3.1.2.2 Generality capability and Vapnik Chervonenkis dimension

The knowledge of a problem can only be extracted from known data. During the

extraction process, the generality capability of the knowledge onto unknown data

is a great concern. A function that works well on training data may not be a good

one for unknown data. In fact, assume a training set

(x1, y1), . . . , (xm, ym) ∈ Rn → {±1} (3.15)

and a testing set

(x̄1, ȳ1), . . . , (x̄m, ȳm) ∈ Rn → {±1} (3.16)

subject to {x̄1, . . . , x̄m} ∩ {x1, . . . , xm} ∈ {} (3.17)

Chapter 3 Support vector machines: an introduction and the state of the art 52

there can exist a function f∗ that fulfils the following results simultaneously:

f∗(xi) = f(xi) (3.18)

but f ∗(x̄i) �= f(x̄i) (3.19)

So it is concluded that only minimising training error does not consequently imply

a small testing error [43]. The two kinds of errors are distinguished as:

Remp[f] =
1

m

m∑
i=1

1

2
|f(xi) − yi| (3.20)

is the training error and called empirical risk and

R[f] =

∫
1

2
|f(x) − y|dP (x, y) (3.21)

for testing error and called risk.

To choose a classification function for a fixed data set, the statistical learning

theory or Vapnik Chervonenkis (VC) theory [35] states:

� a suitable function is restricted to have a capacity that is suitable for the

amount of available training data

� VC theory provides bounds on the risk (testing error)

� minimisation of these bounds depends on both the empirical risk Remp and

the capacity of the function.

This minimisation method is called structured risk minimization (SRM). The ca-

pability of a classification function is defined as how much data the function can

be successfully applied on for correct classification. As shown in figure 3.5 and

3.6, the capability of an oriented straight line is 3.

The relationship between risk bounds and VC dimension is: if h < m is the VC

dimension of a class of functions that a learning system can implement, then for

all functions of that class, with a probability of at least 1 − η, the bound is

R(α) ≤ Remp(α) + Φ(
h

m
,
log(η)

m
) (3.22)

Chapter 3 Support vector machines: an introduction and the state of the art 53

Figure 3.5: Two data sets with 3 samples separated by an oriented straight
line. Triangles represent class +1 and circles are −1.

Figure 3.6: Two data sets with 4 points can not be separated by the oriented
straight line used in figure 3.5. The last two cases in the dashed square can not
be separated successfully. Triangles represent +1 and circles are labeled −1.

and coefficient term Φ is

Φ(
h

m
,
log(η)

m
) =

√
h(log(2m

η
) + 1) − log(η

4
)

m
(3.23)

In equation 3.23, term Φ is monotonic with h. So no training error means a high

VC dimension and this will consequently give a high Φ and enlarge the bound

according to equation 3.22. So it will not support possible hopes that due to the

small training error, we can have a small testing error.

3.1.3 Hyperplane classifier

The hyperplane classifier algorithm performs dot-products in the feature space

with VC theory considerations, i.e the capability of the separation functions need

Chapter 3 Support vector machines: an introduction and the state of the art 54

Figure 3.7: The hyperplane (labelled as ‘0’) separates two classes: triangles
(class 1) and circles (class −1). Geometrical relationships between the patterns

and the hyperplane are illustrated.

to be calculated. For instance, the following is a hyperplane:

(ωx) + b = 0 (3.24)

where ω ∈ �N is the coefficient vector in the N dimensional feature space � as

the mapped patters x, and b ∈ � is the bias vector. The separation function using

this hyperplane definition can thus be expressed:

f(x) = sgn(ωx) + b) (3.25)

For this separation, two observations need to be emphasised:

� there should exist a unique plane yielding a maximum margin of separation

between the classes

� the generality capability decreases with margin increasing

According to the observations, construction of the hyperplane is a constrained

optimisation problem. First of all, the margin needs to be defined. Assume a

hyperplane is used to separate two classes represented by triangles and circles

as shown in figure 3.7. Vector ω defines the hyperplane and is perpendicular to

it. Patterns x1 and x2 are located on the boundary hyperplanes. The difference

vector D = x1−x2 encloses an angle of θ with the perpendicular ω. The following

process derives the distance between the two patterns:

Chapter 3 Support vector machines: an introduction and the state of the art 55

⎧⎪⎨
⎪⎩

D = x1 − x2

ω · x1 + b = 1

ω · x2 + b = −1

⇒ ω · (x1 − x2) = 2 (3.26)

⇒ |ω| · |x1 − x2| · cosθ = 2 (3.27)

⇒ |x1 − x2| · cosθ =
2

|ω| (3.28)

⇒ |D| · cosθ =
2

|ω| (3.29)

So the constrained optimisation problem can be equally expressed by minimising

equation 3.30 subject to equation 3.31 as the following:

τ(ω) =
1

2
||ω||2 (3.30)

yi · (ω · xi) + b ≥ 1 for i = 1, . . . , m (3.31)

A typical technique to solve the above problem is to use Lagrange optimisation.

L(ω, b, α) =
1

2
||ω||2 −

m∑
i=1

αi(yi · (ω · xi) + b) (3.32)

where αi is a Lagrange coefficient vector. The goal is to find the minimum value

of function L with respect to its primal variables (ω and b) or the maximum

value with respect to its dual variable (α). When equation 3.31 is not taking

the equality condition, intuitively, the corresponding αis have to be zero in the

second term in equation 3.32 for the maximum value of L. This statement is

called Karush-Kuhn-Tucker (KKT) complementarity conditions. It is clear that

the partial differentiations of function L with the respect to its primal variables ω

and b should be zeros:

∂L(ω, b, α)

∂ω
= 0 ⇒ |ω| =

m∑
i=1

α · yi · xi (3.33)

∂L(ω, b, α)

∂α
= 0 ⇒

m∑
i=1

α · yi = 0 (3.34)

Chapter 3 Support vector machines: an introduction and the state of the art 56

Equation 3.33 indicates that some αi are not zero, which means the corresponding

points contribute to the construction of the hyperplane; however, equation 3.34

indicates that some αi are zero, which means the corresponding points are not

used in the construction of the hyperplane. In SVM, all points that have non-zero

Lagrange coefficients are called Support Vectors (SV).

Considering equation 3.33, the decision function is written as:

f(x) = sgn(
m∑

i=1

(yi · αi(x · xi) + b)) (3.35)

3.1.4 Support vector classifier

Considering equation 3.3, when equation 3.35 is rewritten in the input space, the

mapping from the input space and the feature space can be implicitly carried out

by using the kernel functions:

f(x) = sgn(
m∑

i=1

(yi · αi(x · xi) + b)) (3.36)

= sgn(
m∑

i=1

(yi · αiΦ(x)Φ(xi) + b)) (3.37)

= sgn(
m∑

i=1

(yi · αik(x, xi) + b)) (3.38)

Up to here, all the analysis and derivations are based on an assumption that

the classes can be perfectly separated without any errors. However, in practice,

this assumption is almost never valid and infeasible patterns can be seen very

commonly in many cases. So, the original objective function in equation 3.30

should be re-expressed:

minimise
1

2
||ω||2 + C

m∑
i=1

(ξi + ξ∗i) (3.39)

subject to

{
yi − ω · xi − b ≤ ε + ξi

ω · xi + b − yi ≤ ε + ξ∗i
(3.40)

where constant C is the trade-off parameter that determines the weight of the

error terms in the optimisation problem. So from equation 3.39, the maximisation

Chapter 3 Support vector machines: an introduction and the state of the art 57

of the generalisation capability and minimisation of the training errors are jointly

solved so that a saddle point of the optimisation problem can be found. This is

the principle of the SRM. The solving still uses Lagrange optimisation techniques.

The new optimisation problem with infeasible samples is as the following:

maximise −1

2

m∑
i,j=1

(αi − α∗
i)(αj − α∗

j)k(xi, xj)

−ε

m∑
i=1

(αi + α∗
i) +

m∑
i=1

(αi − α∗
i)yi (3.41)

subject to

{ ∑m
i=1(αj − α∗

j) = 0

αi, α
∗
i ∈ [0, C]

(3.42)

where αs are the Lagrangian coefficients.

3.1.5 Kernels

Kernel function is one of the main extensible factors of the SVM technique. Several

kernel functions have been developed and more are emerging. Most applications

use the following four kinds of kernels:

� Linear Kernel: k(xi, x) = xi · x [112]

� Polynomial Kernel: k(xi, x) = (γxi · x + r)d [113]

� Radial Basis Function Kernel (RBF): k(xi, x) = exp(−γ||xi − x||2), γ > 0

[46]

� Sigmoid Kernel: k(x, x′) = tanh(γxi · x + r) [114]

where γ, r, d are training parameters of the kernel functions that determine the

functions’ characteristics. Only when the parameters are assigned to optimal val-

ues for the training data set that the corresponding model constructed can provide

optimal modelling accuracy and generality. So the task of finding optimal models

is essentially finding the optimal training parameter values.

Among these kernels, the RBF kernel is recommended for the following three main

reasons [42]. Firstly, the RBF kernel has better capability to handle non-linear

Chapter 3 Support vector machines: an introduction and the state of the art 58

relationships between the input patterns than the linear kernel. Actually, both of

the linear and sigmoid kernels behave like special cases of the RBF kernel with

special parameters. Secondly, compared to the polynomial kernel, the RBF kernel

has less training parameters so it is easy tuning. Finally, the RBF kernel has less

numerical difficulties than the sigmoid and polynomial kernels. In this research,

the SVMs are used with the RBF kernel in all the case studies.

3.1.6 SVM regression

SVM regression is of the same idea as in SVM classification. In the ε-SVM regres-

sion [35], the goal is to construct a function f(x) that has at the most ε deviation

from the simulation results ysim
i for all the training data samples. So in SVM

regression problems, the SRM is minimises the estimation errors and maximises

the generality of the regression function, which is usually defined by the so-called

ε-insensitive loss function |ξ|ε as the following:

|ξ|ε =

{
0 if |ξ| < ε

|ξ| − ε otherwise
(3.43)

This is illustrated graphically in figure 3.8.

Figure 3.8: ε-insensitive soft margin loss setting for a linear SVM.

Chapter 3 Support vector machines: an introduction and the state of the art 59

3.2 SVM in AMS performance modelling - the

state of the art

SVM technique was firstly applied to solve automatic analogue circuit sizing prob-

lems in 2003 [46]. Since then, as a technology with lot of potential, it has attracted

a lot of attention [45, 47, 49, 50].

Currently, the application of SVM technology on AMS performance modelling

and optimisation is in its initial state. Research has just emerged in the field. A

summary has been created in table 3.1 based on the collected publications. A few

points can be outlined. Firstly, most of the applications use classical basic analogue

circuits such as various amplifiers as the case studies. Secondly, the number of

samples for SVM training varies significantly from case to case. Generally, the

number of training samples is mainly related to the complexity of the relationship

between the design and performance spaces not the dimension of the design and

performance spaces. There is no theory to define how many samples are adequate

for a design. Many of them are carried out to prove that SVM is applicable for

the AMS performance modelling problem.

Table 3.1: Summary of recent SVM performance modelling applications.

Ref Example
Design-to- # of training Time(h) to construct
performance samples optimal models
mapping

[45] high speed
13-to-5 243 N/A

CMOS OTA
[46] low noise

7-to-7 up to 50000 1 (approx)
amplifier

[47] single stage OTA 6-to-3 7000 0.85
two stage OTA 11-to-3 7800 2.2

[49] 2nd order
5-to-5 3125 1.1

Σ-Δ modulator
[50] Colpitts

6-to-5 4096 0.4
RF filter

Among all the publications, the RBF kernel is solely utilised in all the references

for SVM training. The model accuracy is the only factor to evaluate the quality

of the models. On this point, the references can show with different cases that the

technique is able to construct accurate models for analogue and AMS designs. The

Chapter 3 Support vector machines: an introduction and the state of the art 60

computational cost is not considered in the construction of the SVM performance

models except the last two from this research. The computational costs in the

last column are for the construction of optimal models, i.e. the optimum pair

of SVM training parameters. Other research uses manual methods for training

parameter determination or there are no explicit statements that indicate that an

automatic method is used. Compared to those work, this research represents an

initiative effort for automatic SVM performance model construction, in addition,

the computational cost of the SVM training parameter determination has been

explored.

3.2.1 LibSVM - an SVM trainer

There have been quite a few software packages available for SVM applications. A

good list can be found on the kernel machines web site [115]. Among them, Lib-

SVM [116] is selected in this research for its reliability and flexibility. Firstly, the

software has been applied in many SVM related performance modelling initiatives

as explained previously. This reflects the reliability of the software for various

designs. Also, as the software is created as an open source package, it is fully

visible to users. With its Windows-based executable files, it is easy to make the

synthesis system independent of the software by using a function for interfacing.

The software package contains executable files to do scaling, training and pre-

diction separately for Windows applications. The execution of the tools is fully

controlled by users in a command-line interface. Popular programming languages

such as C and MATLAB can call the tool with standard interface functions or

commands. This eases the cooperation between LibSVM and user defined func-

tions. Secondly, the documentation of the tool is outstanding and it contains rich

samples on its web page. This includes a user guide and research publications

which can give an insight into how the tool works.

3.3 Concluding remarks

In this chapter, the SVM technology is introduced. Key concepts such as VC

dimensional and SRM principles have been explained with examples. The rela-

tionships between the concepts and the SVM have been derived and explained.

Chapter 3 Support vector machines: an introduction and the state of the art 61

The state-of-the-art of SVM in the application of AMS performance modelling has

been summarised and reviewed. The main SVM trainer used in this research has

also been introduced.

Chapter 4

Linearly graded automated

performance model construction

using support vector machines

Linearly graded performance modelling methodology is an extension of the classi-

cal ‘good-bad’ classification model. This initiative aims to implement the ‘divide

and conquer’ strategy to partition large analogue design space into smaller sub-

spaces using user specified linear grades, then construct models for each subspace.

This chapter contains an introduction of this methodology in section 4.1. An auto-

mated model construction algorithm based on a traditional grid-search approach

and a new heuristic grading algorithm is presented in section 4.2. Section 4.3 is a

preliminary application of the linearly graded performance modelling methodology

on a 2nd order lowpass analogue filter. The SVM classification models have been

successfully constructed for it.

62

Chapter 4 Linearly graded automated performance model construction using
support vector machines 63

4.1 Linearly graded performance modelling method-

ology

4.1.1 Relationship between design and performance spaces

The design space of an AMS design is formed by the design parameters that have

influence on the performance of the system. Each design parameter represents one

dimension in the design space. When several design parameters are combined, a

multi-dimensional design space is then formed. As in most cases, the design pa-

rameters are constrained in ranges, so the design space is more likely to be a closed

multi-dimensional space. In the same way, the corresponding performance space

can be formed by all the performance parameters that designers are interested in.

Figure 4.1: Structure of the overall model between design and performance
parameters of AMS designs.

Performance parameters have complex relationships with design parameters in

AMS designs and each design parameter influences different performance param-

eters with variant degrees. As shown in figure 4.1, the overall performance model

of an AMS design is composed of several independent models, each of which cor-

responds to single relationship between one performance parameter and all the

related design parameters. When all these models are combined, the overall per-

formance model represents the relationship between the performance and design

spaces.

Chapter 4 Linearly graded automated performance model construction using
support vector machines 64

The performance modelling methodology introduced in this chapter is to construct

this overall performance model for the design and performance spaces of general

AMS designs automatically for knowledge-based optimisation applications.

4.1.2 Performance modelling methodology

For one design, the overall linearly graded AMS performance models are composed

of two kinds of models. For each performance parameter, the SVM classification

models are used to model the boundaries between different grades; the SVM re-

gression models are built for each subspace separated by the boundaries so that

a numerical performance prediction can be provided at arbitrary design points in

that subspace.

Figure 4.2: Illustrative example of the constructed linearly graded SVM clas-
sification and regression models in the two dimensional space formed by perfor-
mance parameter P1 and P2. a) linearly graded performance models for perfor-
mance parameter P1 includes classification models for boundaries B11 and B12

and regression models R11, R12, R13; b) linearly graded performance models for
performance parameter P2 with its corresponding classification and regression
models; c) organisation of the classification and regression models for the two

parameters P1 and P2.

Chapter 4 Linearly graded automated performance model construction using
support vector machines 65

An imaginary example is shown in figure 4.2, a) and b) to illustrate what the

models really are. The distribution of the samples is a projection from the multi-

dimensional performance space of a design to a two-dimensional performance space

formed by the performance parameters P1 and P2. Subplot a) shows that the

performance space is divided into three subspaces according to P1 by two grades

G11 and G12, while b) shows the partitioning according to P2 by grades G21 and

G22. As shown in the figure, each grade has six or seven or eight samples. The

classification models, B11, B12 for P1 and B21, B22 for P2, will be constructed

for the boundaries defined by the grades. Within each subspace, SVM regression

models are constructed based on the distribution of the samples in the grades, i.e.

R11, R12 and R13 for P1 and R21 to R23 for P2. In the figure, each regression model

R is represented by three curves. The central solid line represents the regression

itself while the symmetric dashed lines drift away from the regression function by a

tolerance distance. c) in the figure summarises the organisation of the models. For

each of the performance parameter, P1 and P2, the linearly graded SVM models

contain their own set of classification and regression models for each grades and

subspaces.

4.2 Automated performance model construction

The model construction flow chart is shown in figure 4.3. The main operations

including simulation, grading and SVM training are highlighted in grey rectangular

in the middle. This chart has been implemented by algorithm 1.

The first element needed by the linearly graded performance modelling is a pa-

rameterised design with m design parameters Di, i ∈ 1 · · ·m and each has bounds

assigned. The n performance parameters Pi, i ∈ 1 · · ·n and their extraction func-

tions need to be provided. Firstly, the design space is sampled to provide k design

samples in the training data set. All the design samples are fed through a sim-

ulator, which can be behavioural-level or circuit-level. After simulations, k sets

of performance vectors Pv of length n are extracted, either directly from simula-

tions or by complex post-simulation result processing functions. Then one design

sample Dv and its corresponding performance vector Pv form one training data

sample Tv in the training data set. Applying the balanced data grading algorithm

on the user-specified performance grades, a new set of grade vectors G[1 : l] for

Chapter 4 Linearly graded automated performance model construction using
support vector machines 66

Figure 4.3: Flow chart of the model construction process including the BDG
and the training algorithm details.

each performance parameter can be generated. The training data set is graded

using the new grade vectors G[1 : l].

After these preparatory steps, the SVM classification and regression model con-

struction processes commence. The classification model MCi,j for the ith perfor-

mance parameter Pi’s jth grade is constructed using the training data falling into

the grade. Following this classification training step, a regression model MRi,j

for Pi’s jth grade G(j) is trained, which straightforwardly uses training samples in

the grade. So, for each grade of each performance parameter, there is one SVM

classification model and one regression model. The structure of the whole perfor-

mance model is shown at the bottom of figure 4.2. These models are stored as the

knowledge database in optimisation applications.

To achieve highest prediction accuracy, a few points have been considered. For

each grade of the SVM classification training, the training samples in that grade

are treated as one class while all other training samples are treated as another.

Chapter 4 Linearly graded automated performance model construction using
support vector machines 67

Algorithm 1 Linearly graded performance model construction algorithm.

Require: design parameters Di, i ∈ 1 · · ·m;
Require: performance parameters Pi, i ∈ 1 · · ·n;
1: generate k design vectors Dv = [D1, · · · , Dm] by sampling design parameters’s

ranges;
2: for i = 1 to k do
3: run simulation;
4: for j = 1 to n do
5: extract the performance parameter in the vector Pv[j];
6: end for
7: form one training data sample Ti = [Dv[i], Pv[i]];
8: end for
9: for i = 1 to m do

10: use BDG to generate grading vector G[1 : l] for Pi;
11: grade the design space;
12: end for
13: for i = 1 to n do
14: while j = 1 to l do
15: construct SVM classification model MCi,j for Pi’s G(j);
16: construct SVM regression model MRi,j for Pi’s G(j);
17: end while
18: end for
19: return all MC, MR;

This can make full use of the data for the SVM trainer as all the samples in the

design space are used for each grade’s binary classification model construction.

To make the model construction fully automatic, it is very essential to develop the

assistant algorithms to determine the grades and the SVM training parameters.

The balanced data grading (BDG) algorithm (introduced in section 4.2.2) has

been developed so that the generated grades can have the following property: the

number of samples in each grade is similar. SVM training parameter determination

algorithms and cross-validation techniques are used in the training process for the

purpose of achieving good trade-off between the models’ accuracy and generality.

Compared to other methods that have traditionally been accomplished by manual

efforts [45–47], the salient feature of the methodology is that it is fully automatic

and needs minimum human intervention, and is therefore labour saving. Apart

from the main flow, the training parameter determination algorithm and the BDG

algorithms are introduced in the following two sections.

Chapter 4 Linearly graded automated performance model construction using
support vector machines 68

4.2.1 Grid search algorithm

The grid search algorithm is used to determined the SVM training parameters

based on the prediction accuracy. It is recommended as a general approach by the

LibSVM creators [42]. The contribution of this research is to automate the process

and integrate the algorithm in the performance modelling flow. The training pa-

rameters include the SRM trade-off parameter C and the kernel parameters, which

is, in this research, γ of the RBF kernel. The algorithm has been implemented in

MATLAB.

Considering that both SVM training parameters C and γ need to be scanned in

exponential ranges, to enhance the search efficiency, the grid search contains two

successive phases. In the first phase, the training parameters are searched with

a loose resolution to locate an optimal range; then in a second stage, a detailed

grid search with much higher resolution searches the optimal range only to find

the optimum. These two phases are the so called coarse grid search (CGS) and

refined grid search (RGS) phases.The process is illustrated in figure 4.4.

Figure 4.4: CGS and RGS in determining the SVM training parameters C and
γ. a) optimal region in CGS defined by the lower left point [C1, γ1] and upper
right point [C2, γ2]; b) RGS re-scans the optimal region in higher resolution.

As shown in figure 4.3, in the right-hand column, this model training process starts

from the scaling, which is the operation to scale all the training samples to the

same interval using proportional mapping. The reason to do this is to eliminate

the domination by large numerical values of one design parameter. The CGS and

Chapter 4 Linearly graded automated performance model construction using
support vector machines 69

RGS are then carried out. The training data is cross validated for each C and

γ pair in the grid search for the maximum validation on the prediction accuracy

and generality using the whole training data set. The cross validation process is

to split the whole data set into several folds then testing the model constructed

using one fold with other folds on every fold set of the data.

The CGS is outlined in algorithm 2. The algorithm requires the configuration

parameters for the SVM trainer. Parameters ε and μ configure the SVM trainer

as a μ SVM with tolerance ε for regression. V in the training command sets the

number of folds of the cross validation, kernelType has options for the four kernel

functions introduced in section 3.1.5. The lower and upper bounds of the training

parameters C and γ are required. In the CGS, C and γ are sampled n and m

times exponentially so that n ·m pairs of C-γ are created to form the grids. Each

pair is fed to the SVM trainer and finally the optimal prediction accuracy Aopt

and the corresponding optimal parameters Copt and γopt are output.

Algorithm 2 CGS phase of the standard grid search algorithm for SVM training
parameter determination.

Require: SVM trainer setting ε, μ;
Require: SVM trainer setting V ;
Require: SVM trainer setting kernelType;
Require: C = [Clb, Cub], γ = [γlb, γub];
1: generate C and γ vectors VC [1 : n] and Vγ[1 : m];
2: define Aopt, Copt, γopt;
3: for i = 1 to m do
4: for j = 1 to n do
5: involve the SVM trainer with all the setting parameters;
6: post processing the resulting file for prediction accuracy Atemp;
7: if Atmep > Aopt then
8: Aopt = Atemp;
9: Copt = VC [j];

10: γopt = Vγ[i];
11: end if
12: record the results;
13: end for
14: end for
15: return Copt, γopt, Aopt;

This algorithm can be easily modified for the RGS algorithm. The difference is

that the Copt and γopt found in the CGS are used used as the starting point on

Chapter 4 Linearly graded automated performance model construction using
support vector machines 70

which the RGS sampling is centred on. All other parts are identical to algorithm

2.

4.2.2 Heuristic grading algorithm

The new heuristic grading vector generation algorithm, the BDG, is to modify

user-specified grading vectors to obtain a new set of vectors that can divide the

training data set into several subsets according to their performances, and each

subset has a similar number of design samples in it. The reason to have similar

amounts of training samples for each grade classification and regression model

construction is to avoid the situation wherein one grade has too many samples

or too few samples. These situations can easily create overtrained models. The

concept is explained by figure 4.5. The distribution using the original grading

vector [V1, V2] can generate overtrained models while the new vector V3, V4 can

avoid the difficulty. The comparison of the distribution on the left in the figure

clearly shows the effect of the algorithm.

Figure 4.5: Illustrative representation is the distribution of the samples ac-
cording to a performance parameter. Abstract representation is the number
of samples. V1 and V2 are the original grades; V3 and V4 are the new values

calculated by the BDG algorithm.

Chapter 4 Linearly graded automated performance model construction using
support vector machines 71

Users specify an initial set of grading elements to the performance parameters

according to their experience. As shown in figure 4.3, in the left-hand column,

the heuristic algorithm tries to increase or decrease the values of the elements

in the grading vector. If a more balanced grading result can be achieved, the

algorithm continues the increment or decrement, otherwise it modifies the value

in an opposite way until best balance is reached. When this is finished on every

element in the grading vector, the process terminates and returns the modified

grading vector.

Algorithm 3 BDG algorithm for the generation of new grading elements.

Require: original grading vector G[1 : m];
Require: step size s;
Require: direction d;
1: number of grades N = length(G);
2: count the total number of samples Nt;
3: calculate Nini[1 : m] using G[1 : m];
4: calculate ideal Ng = Nt

m
for each grade;

5: calculate Ntol = Ng · s for each grade;
6: calculate sample difference Nd = Nini − Ng for E1;
7: define temporary difference of number of samples Ntemp in the adjustment of

grading elements;
8: while i < m do
9: while abs(Ntemp) ≤ abs(Nd) and Ntemp ∗ Nd > 0 do

10: Nd = Ntemp;
11: if xor(d, Nd)=false then
12: G(i) = G(i) + s;
13: else
14: G(i) = G(i) − s;
15: end if
16: recalculation the distribution;
17: calculate new sample difference Nd;
18: end while
19: i = i + 1;
20: calculate new overall distribution;
21: update Nd, Ntemp;
22: end while
23: return G[1 : m];

The process has been implemented in algorithm 3. The original grading vector

G with m elements, together with the step size s and direction character d, is

provided for a performance parameter. Using G, the original distribution Nini is

calculated. The ideal distribution Ng with minimum difference on the number

Chapter 4 Linearly graded automated performance model construction using
support vector machines 72

of samples is derived. The acceptable tolerance for each grade Ntol = Ng · s can

be obtain by multiplying the ideal distribution and the modification step size.

From the first element E1 in G, every element is modified according to the current

sample difference Nd and the direction d feature of the performance parameter

using an xor(d,Nd) operator. Ntemp is used to record the previous number of

samples difference. The modification process terminates when the current number

of samples difference Nd is larger than the previous one recorded in Ntemp. The

new grading vector G is returned as the output.

4.3 Case study: a 2nd order lowpass analogue fil-

ter

As a preliminary example to verify the concept of the linearly graded AMS perfor-

mance modelling methodology, a 2nd order lowpass analogue filter has been used to

construct the SVM classification models of ten grades for each of the three selected

performance parameters. The number of grades has been determined randomly as

it has no effect on the conceptual proof.

Figure 4.6: Signal flow graph of the 2nd order analogue filter.

The signal flow graph of the analogue filter is in figure 4.6. In the figure, ter-

minal “ip” and “op” represent the input and output; “M” and “P” are internal

connections. Four design parameters a1, a2, t1, t2 have been attached to the corre-

sponding components. a1 and a2 are the feedback coefficients; t1 and t2 are the

time constants of the integrators.

The design has been implemented in VHDL-AMS. The four design parameters

are defined as the generics in the filter’s entity. The connections in the filter are

Chapter 4 Linearly graded automated performance model construction using
support vector machines 73

defined as quantities in the architecture. The behaviour of the system is described

by three simultaneous statements for the DAEs as the follows:

VM = Vip + a1 · Vp + a2 · Vop (4.1)

V
′
P = t1 · VM (4.2)

V
′
op = t2 · VP (4.3)

where VM , Vip, VP and Vop are the voltages at the corresponding nodes, the V
′

represents the differential operation of the nodal voltage.

A MATLAB based VHDL-AMS simulator, called ‘SAMAS’ [117], has been used

for simulations. The main advantage of using this tool is that it can be easily

integrated in the performance model construction process without much overhead

dealing with graphical interfaces. However, it is noted that the netlists for design

and analysis are separated in the tool. In one simulation, a design netlist is firstly

complied and loaded then an analysis netlist file is loaded and applied.

4.3.1 Linearly graded SVM classification model construc-

tion

The four design parameters form the design space. The performance space is

formed by three performance parameters: gain (G), cut-off frequency (Fc), and

over-shoot (R). The goal of this case study is to model the ten grades of each per-

formance parameter in the relationships with the four dimensional design space.

Using the linearly graded performance modelling methodology introduced in chap-

ter 4, a training data set is generated and graded for each of the performance

parameters. Figure 4.7 shows the performance of the training data samples pro-

jected onto three-dimensional spaces that the other two dimensions are two design

parameters. The distribution of the samples clearly indicates the nonlinear rela-

tionship between the design and performance spaces.

The standard grid search training parameter determination algorithm and cross-

validation technique have been used for the model construction. The cross-validation

accuracies for each grade are summarised in table 4.1.

For the G parameter, high training accuracies have been achieved for all the grades.

For the other two parameters Fc and R, most grades’ classification model training

Chapter 4 Linearly graded automated performance model construction using
support vector machines 74

Figure 4.7: Sample scatter diagrams showing projection of the performance
space onto the 3-dimensional spaces that reflect the relationship between over-
shoot (R) and the four design parameters. a) R(a1, a2), b) R(a1, t1), c) R(a1, t2),

d) G(a1, t2).

Table 4.1: Cross-validation accuracies of the RGS phase for the ten grades
(nine boundaries) of the performance parameters.

Grades Fc G R
1 99.84 99.9 93.38
2 99.39 99.93 90.77
3 98.38 99.91 90.41
4 95.22 99.87 88.25
5 83.86 99.89 84.45
6 79.76 99.8 74.35
7 96.93 99.79 98.52
8 99.49 99.94 99.76
9 99.94 99.99 99.98

accuracies are high. One or two models have comparably low accuracies. This is

because the grading in this example is uniform and considers no distribution of

the samples in the design space. So the grades that separate high design sample

density areas in the design space can have more infeasible errors.

The accuracy contours of the CGS and RGS in the standard grid search training

Chapter 4 Linearly graded automated performance model construction using
support vector machines 75

Figure 4.8: Top plot is a 3D classification accuracy diagram showing the CGS
of the model construction for the boundary Fc = 4. Sub-plots a) and b) are
projections onto 2D planes showing optimal, under-trained and over-trained
regions. a) shows γ vs. classification accuracy. b) shows C vs. classification

accuracy.

parameter determination algorithm are presented. Figure 4.8 and 4.9 show an

example pair of the CGS and RGS results for the grade 4 boundary of the cut-off

frequency Fc.

In figure 4.8, C takes a two based exponential increment from 2−19 to 231 while

γ has the range from 2−29 to 219. The top plot clearly shows an optimum region

centred at C = 220 and γ = 2. This is the optimal pair for C and γ achieved in

Chapter 4 Linearly graded automated performance model construction using
support vector machines 76

Figure 4.9: 3D prediction accuracy diagram with contours showing the RGS
searching the optimal area labelled in figure 4.8.

.

the CGS and it is used at the central values for these two parameters’ scan in the

RGS.

The RGS accuracy surface around the optimum C-γ pair is shown in figure 4.9.

A better pair of C and γ with higher accuracy can be found at C = 25.4 × 106

and γ = 3.48 with about 2% prediction accuracy improvement. As commonly

seen in supervised learning, the undertrained and overtrained models with lower

accuracies than the optimal have been observed in the experiments as shown at

the bottom in figure 4.8. The ranges have been labelled in the subplots.

Figure 4.10 shows a sample performance space of the performance parameter R

projected onto a two-dimensional space, which is formed by normalised a1 and a2

Chapter 4 Linearly graded automated performance model construction using
support vector machines 77

<10%

10%~20%

20%~30%

30%~40%

40%~50%

50%~60%

60%~70%

70%~80%

80%~90%

90%~100%

a1

a2

0 1

1

Figure 4.10: Graded sub-spaces showing the divided performance space of
parameter R(a1, a2).

in [0, 1]. Every grade of R corresponds to one grey level in the figure. Support

vector points are observed on the boundaries between different grades. The figure

shows clearly the main advantage of the linearly graded models where relation-

ships between the design and performance parameters provides more potential for

accurate modelling of analogue systems than those of the “good-bad” approaches.

4.4 Concluding remarks

The development of the linearly graded AMS performance model construction

methodology is to extend the classical ‘good-bad’ binary classification models so

that designers can have more insight into the behaviour of the design and be more

capable of exploring the design space. This methodology has been introduced in

this chapter. The algorithms utilised for the automated model construction process

have been illustrated. This includes an SVM training parameter determination

algorithm as well as the BDG algorithm for training data grading. Apart from

the conceptual examples, the proposed methodology has been illustrated by an

Chapter 4 Linearly graded automated performance model construction using
support vector machines 78

analogue filter example. The SVM training accuracy contours using the CGS and

RGS training parameter determination algorithm have been shown for the design.

An example graded performance space has also been included to show how the

new methodology can provide better design space exploration than the classical

method. A more complex demonstration using the 2nd order SDM can be found

in chapter 7.

Chapter 5

Computational cost aware

automatic generation of SVM

regression performance models

This chapter includes the introduction of the new AMS performance modelling

methodology using SVM regression technique and describes an efficient, compu-

tational cost aware algorithm for SVM training parameter determination. The

computational cost of the training parameter determination process is analysed in

terms of CPU time in section 5.1. The analysis is based on the grid search algo-

rithm introduced in the previous chapter. Influence of different training parame-

ters on the computational cost is presented separately. Based on observations in a

number of experiments, an abstract computational cost model of the grid search

algorithm and the corresponding accuracy model are proposed. A measure of the

effectiveness in SVM training parameter determination is introduced and a new,

computational-cost aware training parameter determination algorithm is devel-

oped and presented in section 5.2. In section 5.3, the SVM regression performance

model construction process with the new algorithm is explained in detail.

79

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 80

5.1 Computational cost analysis of SVM model

construction

Since the introduction of the SVM technique to AMS performance modelling, the

huge computational cost related with performance model construction has been

ignored by the state-of-the-art researches [45–47]. This is mainly because of the

lack of automated implementation of the training parameter determination and

the need to use an empirical process for this important task. However, this re-

search has already developed an automated SVM performance model construction

approach[49]. The grid search algorithm has been applied but is extremely com-

putationally expensive, e.g. for a 2nd order SDM design, the whole performance

model construction process can take more than 100 hours. Thus, to employ the

SVM method for practical AMS designs, it is of great importance to study the

computational cost of the grid search algorithm, and very essential to develop new

algorithms for highly efficient training parameter determination approach. This

technique is key to the development of the knowledge based SVM optimisation

methodology presented here.

The computational cost analysis outlined below has been carried out using Lib-

SVM, a popular SVM trainer [46, 47, 49, 118, 119]. The grid search algorithm is

used to generate the computational cost contours because it is virtually an exhaus-

tive searching method. In all the experiments, the RBF kernel has been selected.

So there are two training parameters to be determined: C and γ. As introduced

in chapter 3, C is the SRM optimisation trade-off parameter between the accu-

racy and model generality; γ is the RBF kernel parameter that determines the

nonlinearity of the kernel function.

5.1.1 C and γ in solving the SVM problems

For each training parameter C-γ pair, LibSVM solves the SVM optimisation equa-

tion 3.39 on a selected subset, called the working set, of the training data set in

the feature space using Lagrangian optimisation. This solving process is composed

of two phases. Firstly, before the iteration starts, design samples in the training

data set are mapped to the feature space by involving the kernel function. Then, a

working set is iteratively selected from the training data set based on the gradients

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 81

at the mapped sample points in the feature space. The Lagrangian coefficients of

the working set, which lie in the range [0,C], are found by solving the optimisation

problem defined by equations 3.39 and its subjects. So it is clear that γ is involved

only at the kernel mapping while C is in the iterative optimisation solving.

Parameter C has influence on the computational cost as it determines the width

of the intervals where the Lagrangian coefficients lie. The working set selection is

dependent on the gradients of the training samples in the feature space which in

turn determines the convergence speed of the solving process. γ, as the parameter

that defines the nonlinearity of the kernel function, can influence the computational

cost by affecting the working set selection. The characteristics of the influences

are the main concerns for the development of new algorithms.

5.1.2 Influence of C on computational cost

The influence of parameter C on the computational cost, as shown in figure 5.1,

can vary significantly in the scan of C. It can be extremely expensive, especially

when C is large and γ is optimum in the grid search. The data set is obtained

from an online database [124].

Not only the data set shown in figure 5.1 has a clear feature in the scanning

of C, the observations of the experiments in chapter 7 all support the following

generalised description that the computational cost can be characterised by two

ranges on the dependence of C: insensitive and sensitive ranges. As shown in figure

5.2, there is a breaking point at C0, where the computational cost curve becomes

sensitive to the change of C. The computational cost remains at constant t0 in

the insensitive range. While in the sensitive range, the computational cost shows

a strong linear dependence on log2C.

The following empirical expression is proposed for a general description of the

influence of C:

T = logt =

{
t0 0 < C < C0

t0 + k[log(C) − logC0] C >= C0

(5.1)

where t is the computational cost, T is its log scale, t0 is the constant compu-

tational cost in the insensitive range, k is the slope of the linear dependence of

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 82

Figure 5.1: The computational cost influenced by parameter C in an SVM
training parameter determination experiment using the data set from a database

[124].

Figure 5.2: Computational cost model in the scan of parameter C.

computational cost on C in the sensitive range and C0 is the breaking point value

of C. Using this equation, the relationship of the Tn+1 and Tn on points Cn+1 and

Cn in the grid search with fixed γ can be derived as the following:

Tn+1

Tn

=
t0 + k[log(Cn+1) − logC0]

t0 + k[log(Cn) − logC0]
(5.2)

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 83

Assuming the increment factor of C in the grid search is r, i.e. Cn+1 = rCn,

equation 5.2 thus becomes:

Tn+1

Tn

=
t0 + k(log(r) + log(

Cn

C0

))

t0 + k · logCn

C0

(5.3)

The equation can be revised as:

Tn+1

Tn

= 1 +
klog(r)

t0 + klog

(
Cn

C0

) (5.4)

So the relationship between the two computational costs in normal time scale is:

tn+1 = tdn and d =

⎛
⎜⎜⎝1 +

klog(r)

t0 + klog
Cn

C0

⎞
⎟⎟⎠ (5.5)

where d is the exponent of the computational cost factor. This equation can be

used to deduce the following equation:

tn+1 = td0 and d =
n∏

i=0

⎛
⎜⎜⎝1 +

klog(r)

t0 + klog
Ci

C0

⎞
⎟⎟⎠ (5.6)

Equation 5.6 indicates that the exponents of previous Cs accumulate when the

current C value is scanned in the grid search. As the scanning range of C varies

widely, the accumulation creates a significant expansion of the computational cost.

It was observed when analysing the case studies described in 7 that when C is large,

computational cost becomes extremely high, up to several hours of CPU time for

just one point of C. In many cases, this means that the difference between the

insensitive range constant t0 and the high computational cost can be up to three

orders of magnitude. So it is important to consider the computational cost as a

critical factor in the development of the SVM training parameter determination

algorithm.

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 84

5.1.3 Influence of γ on computational cost

In the analysis of the computational cost influenced by parameter γ, again, an

interesting pattern shows up. As in figure 5.3, generally, the computational cost

in the scan of γ has a sectioned character.

Figure 5.3: The computational cost influenced by parameter γ in the same
SVM training parameter determination experiment as previously. The data set

is still the one from the database [124].

Figure 5.4: Computational cost model in the scanning of parameter γ.

Based on the observations in the experiments, the character of the computational

cost can be generalised as an abstract nonlinear relationship to γ when C is fixed.

As shown in figure 5.4, three ranges present, including two insensitive ranges when

γ < γ0 and γ > γ1. The nearly constant t0 is not necessarily the same for the two

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 85

insensitive ranges. Between these two, when γ0 < γ < γ1, is the sensitive range

where a peak computational cost presents which usually corresponds to accuracy

optimal or near optimal values of γ.

Although it is difficult to express the exact relationship in an explicit form, the

influence of γ on the computational cost can be significant, especially at some

points in the sensitive range. The magnitude can be as much as nearly up to three

orders larger than the insensitive ranges as shown in the case studies.

5.1.4 Computational cost and prediction accuracy

SVM method belongs to the supervised learning category [35] that creates a func-

tion from training data. The model’s prediction accuracy and its generality is a

well-known trade-off in the training process determined by the training parame-

ters. The training error can always be reduced by constructing more and more

specific models for the specific training data set; however, when using testing sam-

ples to verify the models, the more specific the model is the more error it will

generate because of its low generality on unknown data. This phenomenon is il-

lustrated in figure 5.5 and can be used on both C and γ for the explanation of the

prediction accuracy curves as shown in section 5.1.4.1.

Figure 5.5: Under and over training in supervised learning [86].

Because of this, the prediction accuracy in a two-dimensional space formed by C

and γ in the grid search thus has an optimal range corresponding to the optimal

ranges of C and γ accordingly. Based on the observations in the case studies and

additional experiments in chapter 7, this can be illustrated as the model shown in

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 86

figure 5.6 b). The optimum region has been highlighted by the grey shade. The

prediction accuracies around the optimal area correspond to low accuracy models.

Figure 5.6: a) empirical computational cost model of C-γ grid-search process;
b) the corresponding accuracy model.

In the same two-dimensional space, the computational cost has different charac-

teristics. First of all, when C is small (smaller than the breaking point in figure

5.2), the computational cost is low. Secondly, high computational cost areas start

to present at the C-γ values that correspond to the sensitive range of γ when C

is larger than the breaking point. The influence of γ is combined with the high

computational cost range of C and makes the computational cost at these areas

very high. The computationally expensive areas have been highlighted by the grey

rectangle in figure 5.6 a). For practical values of C and γ, the areas outside the

grey rectangle can be considered as low computational cost.

The significance of the models in figure 5.6 is that they indicate the high com-

putational cost area in the grid search is not necessarily overlapped to the high

prediction accuracy area as observed in the case studies and additional experi-

ments. In most of the cases, the most computational-cost-expensive areas have

no overlapping to the high accuracy area thus waste resources and could not con-

tribute to find the optimal C-γ values for high accuracy models. Therefore, the

standard grid search algorithm is not the most economical solution for SVM train-

ing parameter determination. In addition, because the computational cost in the

grid search is so high that unless special care is taken in the algorithm to avoid

the ‘very high’ computational cost regions (figure 5.6 a)), finding the optimal C-γ

pair for SVM training can hardly be effective.

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 87

5.1.4.1 Computational cost analysis in the case studies

In this section, the analysis of the computational cost in the case studies is carried

out to verify the proposed modelling technique. Details of the design of these

case studies can be found in chapter 7. In the 2nd order SDM case study, the

influence of C on the computational cost of training parameter determination

and prediction accuracy for performance parameter SNR is shown in figure 5.7.

As shown in figure 5.7 a), the insensitive and sensitive ranges clearly present

and are separated by the breaking point at log2C0 = 3. The linear relationship

between the computational cost and log2C is as described in the proposed model.

Also, as figure 5.7 c) shows, the influence of parameter γ on the computational

Figure 5.7: Computational cost influenced by the training parameters C and
γ for the SNR of the 2nd order SDM. a) the influence of C on the computational
cost when γ=0.5; b) the corresponding prediction accuracy plot; c) and d) are
the computational cost and prediction accuracy diagrams when C is a constant

while γ is scanned.

cost presents a highly nonlinear feature and the sensitive range is very noticeable

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 88

between γ0 = log2 − 3 and γ1 = log23. More importantly, the computational

cost varies by almost three orders of magnitude in the scan of C and γ. This

indicates how expensive the computational cost will be when the grid search covers

high computational cost C and γ pairs. For the prediction accuracy, both of the

subplots b) and d) in figure 5.7 follow the same pattern, that in the grid search,

the cross validation errors decrease in the under-trained range then increase in the

over-trained range.

Figure 5.8: a) Computational cost contours (in seconds) of C-γ grid search
process for the SNR of the 2nd SDM, b) corresponding accuracy performance of

the models (RMS error in dB).

The combined computational cost contours of the complete grid search process in

the 2nd order SDM case study are shown in figure 5.8 a). The high computational

cost area concentrates in a small region that corresponds to the values in the

sensitive ranges of C and γ. Although there are not many pairs of C and γ in this

region, each pair needs such a long time that the computational cost for all the pairs

in this region can take over 90% of the overall computational cost for the whole grid

search. The corresponding prediction accuracy diagram is in figure 5.8 b). It is

obvious that the high computational cost region and high accuracy region are only

partially overlapped, and some of the high computational cost areas are outside the

high accuracy C-γ region, which means that a lot of computational resources have

been wasted. This also indicates that highly accurate model construction can be

achieved without scanning the whole high computational cost area. It is especially

unnecessary to scan the very high computational cost C-γ pairs corresponding to

the over trained performance models that are not helpful to find optimal values.

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 89

Figure 5.9: Computational cost influenced by the training parameters C and
γ for the Q factor of the the Colpitts RF filter. a) influence of C on the
computational cost when γ=0.5; b) the corresponding prediction accuracy plot;
c) and d) are the computational cost and prediction accuracy diagrams showing

the influence of γ when C is a constant.

In the second main case study, the Colpitts RF bandpass filter, the influence of

parameter C on the computation cost of SVM training parameter determination

is shown in figure 5.9 a). The figure is generated for the Q factor of the design.

Although the constant computational cost in the insensitive range t0 is different

from the previous case study, the insensitive and sensitive ranges clearly present.

The breaking point in this case is at log2C = 1. The slope of the linear relation is

about 45 degrees and the computational cost finally reaches the point almost three

orders of magnitude larger than that in the insensitive range. A similar amount of

computational cost variation and the same pattern as described by the proposed

computational cost model have been observed in the scan of parameter γ. The

high computational cost figure, like the one in the previous case study, appears in

the nonlinear sensitive range as seen in figure 5.9 c). The corresponding prediction

accuracies in the search process of C and γ are shown in figure 5.9 b) and d). The

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 90

optimal values for C and γ are found between the under-trained and over-trained

ranges.

Figure 5.10: a) Computational cost contours (in seconds) of C-γ grid search
process for the Q factor of the Colpitts RF filter; b) the corresponding accuracy

performance of the models (RMS error).

The computational cost and prediction accuracy contours in the grid search are

shown in figure 5.10 a) and b) separately. The areas that are of interest to the

designer have been highlighted by solid boxes. The high accuracy area is inside

the high computational cost area. However, it should be noted that the very high

computational cost C-γ pairs at the bottom in both subplots correspond to over-

trained models with low prediction accuracy. They should be avoided as they are

not helpful for optimal performance model construction.

According to the experiments of these two case studies, it is clear that the standard

grid search algorithm wastes computational resources as it unnecessarily scans

areas of very high cost and sub-optimal accuracies. The computational cost in

these regions is considerably high and it would therefore be very beneficial to

achieve such savings here for more effective performance model construction.

5.2 Computational-cost aware SVM regression

training parameter determination algorithm

The observations and analysis discussed in the previous section are critical in the

development of the improved algorithm presented below. It is important to point

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 91

out that in the high computational cost areas, small accuracy improvements are

achieved at high computational cost expense. For example, a small improvement

of 0.2 in the RMS error of the RF filter case study’s Q factor at log2C=9 takes

1.5 hours of CPU time as shown in figure 5.9 b). This brings the question: is the

accuracy improvement worth such a high computational expense? In addition, the

very high computational cost region outside the high prediction accuracy region

should be avoided because it only generates over-trained performance models and

consumes computational resources but cannot contribute to finding the optimum

solution.

Now, a measure of the accuracy improvement effectiveness is defined as the fol-

lowing:

Eipv =
ΔA

ΔT
(5.7)

where ΔA is the accuracy improvement and ΔT is the extra computational cost

spent to achieve such an improvement at the current C-γ pair. Using the above

effectiveness measure, a new heuristic gradient-based C-γ determination algorithm

can be proposed. The algorithm uses the accuracy improvement effectiveness to

dynamically modify parameters C and γ as follows:

Cn+1 = k
sgn(ΔEipv)
C Cn n = 1, 2, · · · (5.8)

γn+1 = ksgn(ΔEipv)
γ γn n = 1, 2, · · · (5.9)

where n is the iteration index, kC and kγ are the stepsize refining factors for

parameters C and γ correspondingly, and ΔEipv is the effectiveness change at

the current iteration. The algorithm repeatedly involves the SVM trainer, calcu-

lates the accuracy improvements for equations 5.8 and 5.9, and terminates when

Eipv becomes higher than the pre-defined maximum effectiveness and a minimum

required training accuracy has been achieved. The pseudo code is shown in al-

gorithm 4. The initial C-γ point Ps and the refining factors kC , kγ are required

before the algorithm starts. Firstly, m points of Pn are derived around the Ps using

the initial refining factors. The related information about the surrounding points

including the prediction accuracy An, the computational cost Tn, the accuracy

improvement ΔAn and the computational cost difference ΔTn is calculated after

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 92

involving the SVM trainer on all the points. For each selected pair, if the predic-

tion accuracy improvement ΔAn < 0, which means that the prediction accuracy

of the performance model is improving, the point with maximum effectiveness Eipv

will be selected as the next point. At the same time, depending on the condition

of Eipv n − Eipv n−1, the stepsize refining factors kC and kγ are either extended

or halved for the calculation of the surrounding points in the next iteration. If

the prediction accuracy degrades, i.e. ΔAn > 0, the search stays at the current

point and reduces the stepsize refining factors for the next iteration. The number

of surrounding points in this research is four. The expansion coefficient e for the

refining factors is 2 and for degradation - it reciprocal value 1/2. At the end, the

last current pair Pcurrent is outputted as the optimal values of C and γ.

5.3 SVM regression performance model construc-

tion

The flow chart of the SVM performance model construction system is presented

in figure 5.11. This technique has been implemented in MATLAB. Unlike other

similar systems [45–47], which need the designer’s interaction to determine SVM

training parameters, this approach utilises the algorithm proposed in the previous

section for the task and is fully automatic, and therefore it is less labour intensive.

The simulator can be a behavioural or a circuit-level kind, as required. WinSpice

[120] has been used in the RF filter case study and SystemC [105] for the mixed-

signal SDM example presented in chapter 7. The performance model construction

process creates a training data set by running multiple simulations and, as a

result, builds regression models for further usage in performance optimisations. A

uniformly sampling scheme has been used to build training data sets. The number

of samples is arbitrarily determined as the relationship between the design and

performance spaces is unknown beforehand. However, the accuracy of the SVM

regression performance model is verified at the testing stage after the training,

and should the regression accuracy be found insufficient, the models can be rebuilt

using a larger number of samples.

Each SVM regression model performs a regression functional mapping from the

design space to a single performance parameter. Together, all the SVM regression

models can be viewed as a direct mapping to the multi-dimensional performance

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 93

Algorithm 4 Computational cost aware SVM training parameter determination
algorithm.

Require: initial point Ps = [C0, γ0];
Require: kC , kγ;
1: n = 1;
2: calculate the points Pn[1 : m], around the current point;
3: for i = 1 to m do
4: involve the SVM trainer;
5: record An(i), Tn(i), ΔAn(i), ΔTn(i) for point Pn(i);
6: end for
7: while An > Amin||Eipv n>Eipv min do
8: if ΔAn < 0 then
9: find the point Ptemp with maximum Eipv in Pn[1 : m];

10: Pnext = Ptemp;
11: if Eipv n > Eipv n−1 then
12: kC = 2 ∗ kC ;
13: kγ = 2 ∗ kγ;
14: else
15: kC = 2−1kC ;
16: kγ = 2−1kγ;
17: end if
18: else
19: Pnext = Pcurrent;
20: kC = 2−1kC ;
21: kγ = 2−1kγ;
22: end if
23: n = n + 1;
24: Cn = kCCn−1;
25: γn = kγγn−1;
26: calculate the points Pn[1 : m], around the current point;
27: for i = 1 to m do
28: involve the SVM trainer;
29: record An(i), Tn(i), ΔAn(i), ΔTn(i) for point Pn(i);
30: end for
31: end while
32: return Pcurrent;

space. Once SVM regression models are constructed, they are stored as a knowl-

edge database represented by the cylinder in figure 5.11, from which the perfor-

mances of the design can be estimated at an arbitrary point in the design space

without resorting to further simulations.

Chapter 5 Computational cost aware automatic generation of SVM regression
performance models 94

Figure 5.11: Flow chart of the SVM regression performance model construc-
tion.

5.4 Concluding remarks

This chapter has presented the SVM regression performance model construction

methodology using a novel computational-cost aware algorithm for SVM regres-

sion training parameter determination. Firstly, a computational-cost analysis has

been carried out based on the standard grid search algorithm. The influence of

the training parameters C and γ on the computational cost has been illustrated.

Based on a number of experimental tests, an empirical abstract computational cost

and prediction accuracy model has been proposed. A new measure of the search-

ing effectiveness in the SVM regression performance model construction is defined

and utilised in the proposed SVM regression training parameter determination al-

gorithm. Using this algorithm, an automatic SVM regression performance model

construction methodology is proposed and presented. An effectiveness improve-

ment by nearly one order in the model construction has been achieved as shown

by the case studies.

Chapter 6

Knowledge based AMS

performance optimisation

This chapter presents a new knowledge based AMS performance optimisation sys-

tem which uses the SVM performance models constructed by the proposed method-

ologies in chapter 4 and 5. The automated generation of SVM performance models

for AMS designs lends themselves naturally to optimisation applications. Two op-

timisation algorithms have been implemented. Section 6.1 introduces the structure

of the optimisation system including its components and interfaces. The optimisa-

tion system using the GA for linearly graded SVM models is presented in sections

6.2.1. The other optimiser with pattern search using SVM regression performance

models is introduced in section 6.3.1.

6.1 Structure of the optimisation system

The working environment of the AMS performance optimisation system is shown in

figure 6.1. It has the classical structure of knowledge based optimisation systems,

which is introduced in section 2.1.2. The system accepts an initial AMS design,

which is parameterised, and performance constraints, which define the optimisa-

tion goals. The optimisation engine searches the design space and sends modified

design parameter values to the performance estimator which predicts performance

parameter using the SVM knowledge database. The knowledge database replaces

95

Chapter 6 Knowledge based AMS performance optimisation 96

the simulations used in simulation-based optimisation systems. When the opti-

misation process finishes, a set of design parameters is generated for the optimal

design. The generation of the knowledge database, i.e. the SVM performance

models of the AMS design, is the application of the grid search algorithms in the

previous two chapters. The algorithm for the trade-off between the computational

cost and prediction accuracy in section 5.2 is utilised. Verification is carried out

as an extra step to confirm the optimisation results by simulating the design with

the optimised design set so that they can be compared with the predictions given

by the performance estimator using the SVM performance models.

Figure 6.1: Working environment and structure of the AMS performance
optimisation system.

6.1.1 Components of the system

The optimisation system is consisted of three components as shown in figure 6.1.

The main component of the optimiser is the optimisation engine. Performance

spaces of AMS designs have complex relationships with the design parameters

so when they form the cost function, it presents complex characteristics in the

design space. Figure 6.2 shows an example contour of the cost function C =

SNR + 50 ∗ INT1 in a two dimensional design space which is a projection of the

Chapter 6 Knowledge based AMS performance optimisation 97

whole design space onto the design parameters a1 and b1. These two parameters

are the coefficients of the amplifiers in the feed forward path of the 2nd order SDM

design (see section 7.1 for details). Three optimal regions with local and global

optima present and this requires optimisation algorithms able to escape a local

optimal and to find the global optimum. The two algorithms used in the system,

as shown in chapter 2, both satify this requirement.

Figure 6.2: Contour of a cost function C = SNR + 50 ∗ INT1 formed by
the performance parameters SNR and INT1 in a projected design space of the

design parameters a1 and b1 of the 2nd order SDM.

The optimisation engine takes an initial design and performance constraints as

the inputs. By including a cost function, the optimisation engine can be made

independent from the system’s working environment such that it can be easily re-

placed by other implementations with different optimisation algorithms by simply

re-writing the cost function.

Chapter 6 Knowledge based AMS performance optimisation 98

The cost function is formed by a combination of a linear summation and squared

deviations of weighted performance parameters as the follows:

Vcost =
m∑

i=1

wiPi +
n∑

i=1

wi(Pi − P spec
i)2 (6.1)

where wi is the weight coefficient, Pi is the predicted performance value provided by

the performance estimator and P spec
i is the performance specification value. This

provides enough capacity for both specific and open performance specifications

such as ‘Q factor is 100’ and ‘minimum chip area’. Scalar weights in the equation

balance the competing objectives for various design targets.

The performance estimator needs to be customised according to the SVM perfor-

mance models used in the knowledge database and the performance parameters

of the design. The main flow is composed of two phases: call and run the SVM

predictor and post-processing collected predictions. Two estimators have been

implemented for the two SVM performance modelling methodologies separately.

One is for the linearly graded performance models introduced in chapter 4; the

other is for the SVM regression performance models in chapter 5.

6.1.2 Interfaces

There are three inputs and one output in the optimisation system. One of the in-

puts is the parameterised initial design with a vector of design parameters Di initial

as the starting point and their corresponding bounds as the follows:

ini design = [D1, D2, · · · , Dm]

Di initial = ci

⋂
Di ∈ [Blb i, Bub i], i ∈ 1, · · · ,m (6.2)

where Di is the ith design parameter, ci is the ith parameter’s initial value, Blb i

and Bub i are the lower and upper bounds of the ith design parameter. This

information is used to configure the optimisation engine. The other input, a

vector of the performance constraints, is used by the cost function to build an

overall numerical evaluation of the AMS design. The performance constraints

can have specific value, e.g Pi is exactly equal to Vc or a tendency such as Pi

approaches to the min/max where i ∈ 1, · · · , n is the index. The third input is

Chapter 6 Knowledge based AMS performance optimisation 99

the SVM performance models and they are involved by the performance estimator

iteratively. The output of the optimisation is a design parameter vector that

can be used to assign values to the generic parameters in the design netlist for

simulations.

6.2 Optimisation system using the linearly graded

SVM performance models

6.2.1 Genetic optimisation

When the knowledge database is the linearly graded SVM performance models,

the optimiser uses a canonical GA as the optimisation engine. The population size

is usually from 10 to 20 and it is suitable for the case studies used in this research.

For problems with larger number of design parameters, a larger population size

should be selected. Every design parameter is mapped to one gene so that one

design vector corresponds to one chromosome of one individual. Pseudo code of

the algorithm is shown in algorithm 5.

The algorithm requires an initial population Pop[1 : n] with n individuals. An

individual’s chromosome is formed by the m design parameters D[1 : m]. In

every generation, n chromosomes will be evaluated by the performance estimator

using the SVM performance models. Performance figures are included in the cost

function fC to calculate the overall performance. The cost function values are

sorted so that chromosomes with better performances have a higher chance to be

selected by the Roulette Wheel algorithm. Firstly, r parents chromosomes are

selected. Then for all the parents, if the crossover possibility RAND is larger

than the predefined possibility pc, crossover happens on parents M and D to

generate their offspring. After all the offspring have been generated, each gene in

every chromosome may mutate if mutation possibility RAND is larger than the

predefined mutation possibility pm. The mutated gene g replaces the old gene in

the chromosome D(o), where o is the position.

An one-point arithmetic crossover [121] operator is used in the crossovers which

are the main variation mechanism during the evolution. The crossover position is

Chapter 6 Knowledge based AMS performance optimisation 100

Algorithm 5 Algorithm of the GA optimisation engine.

Require: Initial population Pop[1 : n];
Require: every chromosome is D[1 : m];
1: while i < g do
2: for j = 1 to n do
3: evaluate Pop(j) performance using SVM models;
4: evaluate fC(j) for Pop(j);
5: end for
6: generate r parent chromosomes by Roulette Wheel selection algorithm;
7: while l < r do
8: if RAND > pc then
9: select two parents M and D;

10: generate their offspring;
11: update the selected chromosome list r;
12: end if
13: l = l + 1;
14: end while
15: while s < n do
16: if RAND > pm then
17: while o < m do
18: generate a new gene g;
19: D(o) = g;
20: end while
21: end if
22: end while
23: i = i + 1
24: end while
25: return Pop[1 : n]

randomly determined by:

p = λ · m (6.3)

where p is the crossover position on the chromosome, λ∈[0,1] is a random crossover

ratio; m is the chromosome length. The design point with the best performance

in the last generation is outputted as the optimal solution achieved in the design

space exploration. MATLAB scripts have been implemented using data structures

for Pop and chromosome definitions.

Chapter 6 Knowledge based AMS performance optimisation 101

6.2.2 Performance estimator

The dedicated performance estimator, which uses linearly graded SVM perfor-

mance models, is shown in algorithm 6. The main while loop can predict the

values for all the performance parameters Pi, i ∈ 1 · · · , n for the given design set

Algorithm 6 Algorithm of the performance estimator using the linearly graded
AMS SVM performance models.

Require: design sample D[1 : m];
1: while i < n do
2: SVM classification OC = SV MClassification(D[1 : m]);
3: identify the class MCPi,j the design set belongs to;
4: if Pi is regressive then
5: load SVM regression models RCPi,j that corresponds to MCPi,j;
6: SVM regression OR(i) = SV MRegression(D[1 : m], RCPi,j);
7: store OR(i);
8: else
9: store OC(i);

10: end if
11: end while
12: return OR and OC ;

D[1 : m]. Firstly, the classification model of the ith performance parameter is

carried out using function SV MClassification(). The classification output OC

is generated and the corresponding classification model MCPi,j is located. If the

current performance parameter needs a numerical prediction, a regression func-

tion SV MRregression() will be involved with the regression model RCPi,j. For

each performance parameter, either a classification prediction value OC(i) or a

regression prediction value OR(i) is recorded and returned.

6.3 Optimisation system using the SVM regres-

sion performance models

6.3.1 Pattern search optimisation

The standard MATLAB pattern search algorithm has been employed as the op-

timisation engine in the optimiser using SVM regression performance models. As

Chapter 6 Knowledge based AMS performance optimisation 102

introduced in section 2.2.2.3, the algorithm can obtain global optimum in a design

space with local optimums.

The most significant feature of the algorithm is that it optimises designs without

any information of derivatives of the performance space of the design. So it is safe

to utilise the algorithm in this research as the characteristics of the relationship

between the design and performance spaces are unknown.

The algorithm is explained in algorithm 7. The while loop is executed when

current tolerance tcurrent is larger than the specified tolerance τ . The algorithm

uses a pattern to search n points around the current point pcurrent. The pattern

vector V [1 : n] separates the new points pnext[1 : n] mesh size m away from pcurrent.

The best point is selected by polling the cost function values on pnext[1 : n] and

used as the new starting point for the next loop.

Algorithm 7 Pseudo code of the pattern search algorithm.

Require: initial point pcurrent = pini;
Require: initial mesh size m = mini;
1: while tcurrent > τ do
2: modify pattern vector V [1 : n] = V [1 : n] ∗ m;
3: calculate new points pnext[1 : n] = pcurrent + V [1 : n];
4: evaluate the cost function values c[1 : n] at point pnext[1 : n];
5: poll the cost function values c[1 : n];
6: update the current point pcurrent to pi who has the largest cost function

value;
7: update mesh size m;
8: end while
9: return with pcurrent;

6.3.2 Performance estimator

The performance estimator is simpler using the SVM regression models than the

one for the linearly graded SVM models. As shown in algorithm 8, the main it-

eration process maintains as in the performance estimator for the linearly graded

SVM performance models. For each performance parameter Pi, i ∈ 1, · · · , n, the

corresponding regression model RPi is loaded first, then applied in the SVM re-

gression prediction. The results OR for all the n performance parameters Pi are

collected and returned.

Chapter 6 Knowledge based AMS performance optimisation 103

Algorithm 8 Algorithm of the performance estimator using the SVM regression
performance models.

Require: design sample D[1 : m];
1: while i < n do
2: load SVM regression models RPi that corresponds to Pi;
3: SVM regression prediction OR(i) = SV MRegression(D[1 : m], RPi);
4: store OR(i);
5: end while
6: return OR;

6.4 Concluding remarks

A novel, knowledge based AMS performance optimisation system has been pre-

sented in this chapter. It is applicable to a wide range of AMS designs. The op-

timal solution can be obtained very fast. Although the preparatory effort for the

knowledge database is high compared with simulation based systems, the reusabil-

ity of system is enhanced because the models can be used in many optimisations.

The interfaces, main working process and components of the optimiser have been

introduced. Two optimisation algorithms - genetic algorithm and pattern search

algorithm - have been applied in two systems for linearly graded SVM perfor-

mance models and SVM regression performance models separately. In the case

studies, the experiment using the GA can optimise the design in 10 to 20 minutes

depending on the number of generations; for the three experiments using the pat-

tern search finishes within 5 minutes. All of the experiments can achieve optimal

designs with higher performances than manual designs. Details of the experiments

are in the next chapter.

Chapter 7

Case studies

Firstly, this chapter contains two case studies for the general AMS performance

modelling and optimisation methodologies introduced in chapter 4, 5 and 6. The

first case study in section 7.1 is a 2nd order SDM. Based on the switched capacitor

implementation, the behavioural level design has integrated most circuit level im-

perfections that have influence on system’s performances. This makes modelling

the nonlinear relationships between the design and performance parameters even

more challenging. The SDM has been developed in both MATLAB Simulink and

SystemC (see appendix B). Using this example, both the linearly graded models

and SVM regression performance models for the case study have been constructed

and applied in two optimisation systems separately. In section 7.2, the second

case study based on an RF bandpass Colpitts filter is presented. This example

represents design challenges encountered in RF designs in high frequency appli-

cations that standard filter transfer function modelling method is invalid. An

accurate physical model for on-chip silicon spiral planar inductors has been in-

cluded in the circuit level simulation for data generation (see appendix C). SVM

regression performance models of the case study have been constructed and used

in optimisations.

Secondly, additional experiments to confirm the computational cost and accuracy

models (chapter 5) of the standard grid search SVM training parameter determi-

nation algorithm are accomplished and presented in section 7.3. Five public data

sets from different sources are randomly selected. The influence of C and γ on

the computational cost and the two dimensional computational cost contours have

104

Chapter 7 Case studies 105

been listed, and they reaffirm the proposed computational cost and SVM training

accuracy models.

7.1 2nd order SDM: a mixed-signal example

This case study is about a mixed-signal SDM example modelled at the behavioural

level. The construction of the linearly graded SVM model and SVM regression

performance model are introduced in section 7.1.1 and 7.1.2 separately. The per-

formance optimisation experiments and results are presented in section 7.1.2.2.

Figure 7.1: Signal flow graph of the non-ideal SDM using MATLAB Simulink
modules.

7.1.1 Scenario 1: linearly graded SVM model construction

At the early stage of the research, the SDM design used for the linearly graded

SVM model construction contains less imperfections than the models introduced in

appendix B. The model includes the imperfections such as clock jitter, OpAmp and

switch thermal noise, OpAmp finite and non-linear DC gain, SR and integrator

leakage as well as quantiser hysteresis and offset. However, compared with the

complete model in figure 7.1, there are two differences. The first one is that there is

no saturation component after the second integrator stage. The second one is that

the amplifier coefficient a3 is not included. This is mainly because the hysteresis

and offset of the quantiser are not considered as important and influencing [126] so

Chapter 7 Case studies 106

the effects of saturation and coefficient a3 is absorbed by the quantiser immediately

and does not propagate further. So the four amplifier coefficients on the feed

forward and feedback pathes a1, b1, a2 and b2 are selected to construct the design

space in the linearly graded SVM performance model construction.

The two most important performance parameters of SDM systems are the SNR

and dynamic range (DR). Both are calculated using FFT on the simulation results.

The peak SNR is selected as a performance parameter instead of the whole SNR

curve as this is usually what designers are interested in. DR is defined as a ratio

of the output power at the frequency of the input sinusoid with a full-scale input

over the output power of a small input for which the SNR is 0dB. The third is

the stability, which is a binary classification parameter, i.e. the SDM is either

stable or unstable. An easy definition of the stability is when internal signals

are detected exceeding a predefined threshold, the SDM is unstable. The fourth

performance parameter is the dynamic signal range. This requirement represents

a severe problem in circuit technologies such as CMOS VLSI, where the dynamic

range of the technology itself is limited [122]. In the SDM, this parameter is

controlled by the outputs of the two integrators (represented below as INT1 and

INT2). So, in total, there are five performance parameters. The linearly graded

SVM performance model of the SDM system is for the direct relationship between

the four dimensional design space and the five dimensional performance space.

4725 design points are simulated as the training data set. As explained in section

5.3, the number of training points is verified at the testing stage when the models

are constructed.

7.1.1.1 Balanced data grading algorithm

Figure 7.2 shows the distribution of the design samples in the performance space

with different grading vectors for each performance parameter. The left bars in the

figures are the distributions achieved using the original grading vectors provided by

a designer. They reveal the disadvantage of the original grading vectors that some

of the grades have very few samples than other grades. The sparse distribution

can generate over-fitted models easily thus increases the difficulty for regression

model construction. The right bars in the subplots are the distributions achieved

using the recalculated grading vectors for all the performance parameters using

the BDG algorithm. A new set of grading vectors is generated and non-equilibria

Chapter 7 Case studies 107

Figure 7.2: Distributions of the design samples of every performance param-
eter dimension in dual-y-axis plots. The left y axes are the number of samples

and the right y axes are performance parameters’ values.

are avoided. Each segment in the BDG bars in figure 7.2 corresponds to one class

of the performance parameter and is labelled by the inclined text.

7.1.1.2 Model construction

Firstly, the SVM training parameter needs to be determined. The standard grid

search algorithm is used here. Figure 7.3 a) shows the CGS accuracy contours of

the stability with the scanning ranges of C ∈ [2−3, 215] and γ ∈ [2−10, 25]. The ex-

pected optimal region is boxed by a thick frame and centered at C = 214, γ = 2−3.

This feature is observed in all the CGS phases of SVM classification experiments

of all the performance parameters. Then the optimal region is searched again in

the RGS phase. The accuracy contours in figure 7.3 b) show the result of RGS

scanning for classification accuracy of the stability parameter. As in the figure,

the accuracy contours are in the region of C ∈ [213, 215] and γ ∈ [2−5, 2−3], where

a pair of C and γ with improved classification accuracy is found. The summary

Chapter 7 Case studies 108

Figure 7.3: Classification accuracy contours of parameter stability. a) accu-
racy contours of the CGS phase; b) accuracy contours of the RGS phase.

of the CGS and RGS SVM classification results are compared in figure 7.4. It can

be seen that RGS can find improved or at least equal SVM training parameters.

Figure 7.5 a) and b) shows the CGS and RGS mean squared error (MSE) contours

for the SVM regression model of INT1 0.35, which is a grade of INT1. Similar

to the classification accuracy contours, the plot shows the same feature that there

is an optimal region confined in the CGS scanning, where it is the RGS phase

that searches the region in detail for even better training parameters. Results of

the CGS and RGS phase in the SVM regression model construction process are

summarised and compared in figure 7.6.

Chapter 7 Case studies 109

Figure 7.4: Comparisons of the classification accuracies of all the performance
parameters in CGS and RGS phases. The total computational costs of the two

phases are listed in the bottom table.

SVM training parameters found in the RGS phase improve the prediction accu-

racies for both classification and regression models. These training parameters

have been used to train the models. Both the prediction accuracy and computa-

tional cost of the linearly graded models are compared to the full-space analysis

approach, which treats the entire design space as a whole. The top plots in figure

7.7 show the MSE performance comparison of the SVM regression models. It is

clear that, in most cases, the MSE performance of the linearly graded approach is

better than that of the full-space analysis approach. The bottom table presents

the summary of the computational cost. The significance is that it shows that the

proposed methodology lead to more than 50% saving on the computational cost.

Chapter 7 Case studies 110

Figure 7.5: MSE contours of the SVM regression model for 0.35 grade of the
performance parameter INT1. a) the CGS MSE contours; b) the RGS MSE

contours.

Two testing data sets have been generated to verify the classification and regres-

sion performance models. The generation of the data sets assures that all the

testing data samples are unknown to the models so that the trained models must

have good generality to preserve their accuracy. Testing data set 1 (T1), with 1323

samples, spreads over large regions in the design space covering both the stable

and unstable designs cases to test the overall quality of the models. Testing data

set 2 (T2), with 4725 samples, is centralised on a small stable region in the design

sapce with mainly preferable design cases but different trade-off between the per-

formance parameters. The testing procedure is to use the classification models to

predict the classification of the testing data first then according to the predictions,

Chapter 7 Case studies 111

-28

-27

-26

-5

-4

-3

-13

-12

-11

-13

-12

-11

-50

-49

-48

-46

-45

-44

-45

-44

-43

-43

-42

-41

-39

-38

-37

-40

-39

-38

-40

-39

-38

-25

-24

-23

SNR_58.3 SNR_45 DR_55.2 DR_45

INT1_0.29 INT1_0.35 INT1_0.41 INT1_0.5

INT2_0.56 INT2_0.71 INT2_0.84 INT2_1.5

Total time 49:24:57 66:52:47
CGS RGS

C
G

S

R
G

S

C
G

S

R
G

S

C
G

S

R
G

S

C
G

S

R
G

S

C
G

S

R
G

S C
G

S

R
G

S

C
G

S

R
G

S

C
G

S

R
G

S

C
G

S

R
G

S

C
G

S

R
G

S

C
G

S

R
G

S

C
G

S

R
G

S

Figure 7.6: Comparisons of the MSE (dB) accuracies of all the performance
parameters’ grades in the CGS and RGS phases. The model construction com-

putational costs are listed in the bottom table.

corresponding regression models are used to give numerical estimations. The per-

formance of the models in the testing phase is summarised in table 7.1. The overall

prediction performance confirms that the training performance is well preserved

by the models. Blank cells in the table mean that the corresponding models are

not used either because the performance space covered by the testing data set does

not include that region or because of misclassifications. Misclassifications happen

during the classification testing. The exact influence of these errors on the pre-

diction accuracy is yet unknown but according to the experiments, mistakes are

in very reasonable range. The MSE performance of the regression testing shows

that very accurate numerical predictions are calculated, so misclassifications do

not degrade the performance of the method significantly.

Chapter 7 Case studies 112

Figure 7.7: Comparisons of the prediction accuracies of the regression models
using the linearly graded approach and the full-space analysis approach. The
corresponding grading elements’ values are labelled at the bottom of each bar.

7.1.1.3 Genetic algorithm optimisation

The configurations of the GA optimisation engine include the number of genera-

tions (100), population size (20), number of genes in a chromosome (1 chromosome

is composed by 4 genes), the crossover rate (0.7) and the mutation rate (0.05).

With these configurations, two experiments have been carried out. In the first

experiment, the design to be optimised corresponds to a cost function that has

a weighted combination of all the four regressive performance parameters. The

running results of the GA optimisation engine are shown in figure 7.8. When the

population is evaluated in the GA optimisation, the classification models of the

stability parameter are used firstly to filter out the chromosomes that are predicted

as unstable so that the stable chromosomes are left for further GA evolutions. The

four regressive performance parameters SNR, DR, INT1 and INT2 are contained

Chapter 7 Case studies 113

Table 7.1: Testing results for the linearly graded SVM classification and re-
gression performance models.

Parameter T1 T2

Classification

SNR 66.72% 78.73%
DR 74.5% 62.7%
INT1 87.7% 97.1%

Accuracy INT2 78% 99.6%
stability 98.4% 100%

Regression

SNR 58.3 -5 -26
SNR 45 - -
DR 55.2 -11 -6
DR 45 - -5
INT1 0.29 - -29
INT1 0.35 -43 -47
INT1 0.41 -37 -50

MSE(dB) INT1 0.5 -38 -
INT2 0.56 -28 -20
INT2 0.71 -28 -29
INT2 0.84 -26 -
INT2 1.5 -14 -

in the cost function to calculate an overall evaluation. The convergence curve of

the predicted overall performance result of the four regressive parameters is shown

in figure 7.8 a) with both of the best performances and the average of the whole

population. The corresponding convergence curves of each regressive parameter

are shown as b) to e). The convergence behaviour of the GA optimisation is con-

sistent to the desired changing trend of all the performance parameters. In the

second experiment, the design target is solely to maximise the SNR without con-

sidering any other performance parameters. So the cost function only includes the

SNR.

Results from both experiments are compared with a manual design based on the

method introduced in section B.2 and the results have been summarised in table

7.2. The computational cost of the optimisation using the proposed optimisation

system with the GA configurations is less than 20 minutes. The performance

figures in the two experiment columns in table 7.2 have been verified by SystemC

and MATLAB simulations using the optimised design parameters. Experiment 1

shows that the overall performance of the SDM has been improved, especially the

INT1 and INT2, although it is achieved in different degrees for the four parameters

Chapter 7 Case studies 114

Figure 7.8: Typical convergence curves of the predicated performances with
the GA optimization engine using a cost function including all the performance

parameters.

separately. Experiment 2 shows that both of the SNR and INT1 have outstanding

Table 7.2: Comparisons of the performance values achieved by the manual
design and the optimisation in experiment 1 and 2.

Parameter Manual
Experiment 1 Experiment 2

Values Improvements Values Improvements

SNR (dB) 58.4 59.3 1.5% 62.2 6.1%
DR (dB) 55.2 55.3 0% 55.4 0.3%
INT1 (amplitude) 0.34 0.26 30.8% 0.29 17.2%
INT2 (amplitude) 0.65 0.33 97% 0.72 -9.7%
stability Yes Yes - Yes -

improvements. The improved design can provide half more resolution bit (as

indicated by equation 2.15) at the output making the ENOB equal to 10 in the

optimised SDM as compared to 9 in the manual design.

7.1.2 Scenario 2: SVM regression model construction

At the latter stage of the research, the complete SDM model, as shown in figure

7.1, is used for the SVM regression model construction and optimisation. The

Chapter 7 Case studies 115

model of the design includes the saturation and amplifier coefficients a3 even the

influence of these components are not significant. The selected design parameters

are the amplifier gains (a1, a2, a3, b1, b2

A MATLAB script extracts the following performance parameters from SystemC

time-domain simulations: the SNR, maximum input signal amplitude range (ISAR)

at peak SNR, maximum dynamic range of integrator 1 and integrator 2 outputs

INT1 and INT2 correspondingly as well as the SNR degradation ratio (SNRDR).

Unlike in scenario 1, the DR is not selected because it is directly related to even

equal to SNR [111]. As in the previous implementation, the SNR is calculated

by means of an FFT analysis on time-domain waveforms and peak SNR has been

selected rather than the whole SNR curve. The SNRDR is measured as the aver-

age slope of the SNR curve obtained from multiple simulations using input signals

of varying amplitude. It indicates how well the system can reserve the SNR per-

formance in a certain ISAR for example from 0.5 to 0.8. In summary, the models

to be constructed are about the relationship between the six dimensional design

space and the five dimensional performance space.

7.1.2.1 Computational cost aware model construction

The computational cost using the standard grid search algorithm and the corre-

sponding accuracy contours for this case study has been shown in section 5.1.4.1

in chapter 5. Here, the results of applying the computational cost aware algorithm

for SVM training parameter determination are shown. To construct the SVM re-

gression models, each design parameter range was uniformly sampled to provide

3125 samples in the design space. The SVM regression model construction process

is time consuming, especially in this case, as some performance parameters need to

be calculated from multiple simulation runs. The CPU time used by the standard

Table 7.3: Computational cost comparison of the standard grid search and
the proposed method in the 2nd order SDM case study.

Performance model
Computational cost

construction approach
Standard grid search 6 days 1 hour
Proposed method 1 day 4 hours

Chapter 7 Case studies 116

grid search algorithm and the proposed computational-aware approach are listed

in table 7.3. The proposed algorithm saves nearly 5 days of CPU time in this case.

This is significant as this saving can make the proposed method more practical for

applications.

Table 7.4: RMS errors of the SVM regression performance models constructed
using the training parameters determined by the standard grid search and pro-
posed methods and the corresponding C and γ values for the 2nd order SDM.

Performance prediction accuracy RMS error
SNRdB SNRDR ISAR INT1 INT2

Grid
12.7 9 5.75E-3 3.66E-3 3.82E-3

search
Proposed

12.9 9 6.32E-3 5.44E-3 4.11E-3
method

C and γ
Grid

512, 4.6 1024, 6 1, 5.28 36.7, 1 8, 2.64
search
Proposed

362, 4 1024, 5.6 1, 4 36.7, 1.52 90.5, 1
method

Table 7.4 summarises the performance prediction accuracies of the SVM regres-

sion models and the corresponding training parameters C and γ values. Firstly,

it shows that there are no significant difference in the performance prediction

accuracy between both algorithms. Secondly, the C and γ values found by the

two approaches have similar values in most cases, except for parameter INT2.

However, both models estimates the SDM performance with comparable accura-

cies indicating the existence of semi-optimal solutions in the training parameter

determination.

7.1.2.2 Performance optimisation using pattern search algorithm

Two cost functions with different weighted sums of performance characteristics

were used in two performance optimisation experiments: Exp I and Exp II. Cost

function I gives more weighting to frequency-related performance characteristics

namely SNR and SNRDR, whereas cost function II gives preference to DC-related

characteristics. Optimisation results are summarised in table 7.5. The first row

in table 7.5 specifies the performance characteristics obtained using the standard

Chapter 7 Case studies 117

SDM design procedure [123] introduced in section B.2 so that they can be com-

pared with the best designs found through the optimisation using the automati-

cally generated SVM regression model based knowledge database.

Table 7.5: Summary of the standard and optimised design results for the 2nd

order SDM.

Parameters SNRdB SNRDR SR INT1 INT2

Standard design using
64.2 10.73 0.7 0.29 0.61

non-ideal SDM model

Grid Exp I
Optimised 84.1 0.01 0.74 1.48 1.51
Verified 84.1 0.01 0.75 1.5 1.5

search Exp II
Optimised 69.9 7.47 0.83 0.2 0.3
Verified 69.2 9.75 0.8 0.29 0.34

Proposed Exp I
Optimised 81.1 0.8 0.82 1.44 1.47
Verified 84 0.2 0.8 1.5 1.5

method Exp II
Optimised 71.8 7.51 0.86 0.14 0.21
Verified 68 10.9 0.85 0.2 0.24

The results in table 7.5 show that the standard grid search approach determines

values for C and γ such that they provide slightly more accurate predictions than

the proposed approach. However, the marginal prediction performance degrada-

tion is compensated by a huge computational cost saving. Optimisation is ex-

tremely fast for both of these two experiments. Exp I takes 82 seconds and exp II

- 121 seconds of CPU time.

7.2 Colpitts filter: an RF example

This section is about the application of the SVM regression performance model

construction on a Colpitts filter example (see appendix C for details). Firstly, the

design and performance spaces are introduced. Then it is followed by section 7.2.2,

which contains the construction of the SVM regression performance models. Sec-

tion 7.2.3 presents the optimisation results using the knowledge based optimiser.

Standard filter synthesis techniques cannot be used in this application [135] due

to its non-linear nature, with significant losses and parasitics in the RF operating

ranges, especially those in the spiral inductor and transistor. The goal in this case

study is to model the relationship between the design and performance parameters

Chapter 7 Case studies 118

and to demonstrate how an optimal design can be extracted from this relationship

according to a set of performance constraints.

7.2.1 Design and performance spaces

The design space is a six-dimensional hyperspace formed by the following parame-

ters within their corresponding bounds: L1, L2, C1, C2, Ibias and Wid (width of the

NMOS transistor, see figure 7.9). L1 and L2 are selected out of the five structural

Figure 7.9: Schematic of the Colpitts RF bandpass filter with a highlighted
on-chip planar spiral inductor.

parameters associated with the spiral inductor because they have the most signif-

icant influence on the inductor model while other three WL, S and Z are of minor

importance. Ibias and Wid can affect the effectiveness of the Q-enhancement. The

two capacitors are related to the centre frequency performance parameter by the

following ideal equation:

Fc =
1

2π

√
1

L · CT

and CT =
C1C2

C1 + C2

(7.1)

where L is the total inductance of the inductor.

The performance space is formed by five performance parameters. The centre

frequency (Fc) and the passband bandwidth (determined by the Q factor) are both

Chapter 7 Case studies 119

included in the performance space as the two key measures of the filter quality.

As both on-chip capacitors and the inductor are area consuming, the area of the

design has been included in the performance parameters and calculated as:

Atotal = AL + AC + AM (7.2)

where Atotal represents the total area of the design consisted of area of the inductor

AL, two capacitors AC and the NMOS transistor AM . AL is the rectangular area

formed by L1 × L2; area of the capacitors are calculated by:

AC =
tox · C
εoεr

(7.3)

where εo is the permittivity of free space, εr is the relative permittivity of oxide

between the two plates formed by two polysilicon layers, C is the capacitance. The

transistor area is roughly calculated as AM = Wid · Len, where Wid and Len are

the width and length of the transistor separately. Another two performance pa-

rameters are the input and output noise power (Inoise and Onoise correspondingly)

over the frequency range of 0.1GHz to 10GHz.

7.2.2 SVM regression model construction

Firstly, each design parameter has been assigned to their bounds and those define

the closed hyperspace to be explored. Table 7.6 lists the upper and lower bound-

aries (’U. bound‘ and ’L. bound‘ correspondingly) for the design parameters. The

modelling construction process follows the introduction in chapter 5.

Table 7.6: Bounds of the design parameters in the Colpitts RF filter case
study.

Parameter L1 L2 C1 C2 Wid Ibias

U. bound 500 500 7 35 300 10
L. bound 300 300 3 6 50 5
Unit μm μm pF pF μm mA

Chapter 7 Case studies 120

7.2.2.1 Computational cost analysis of the standard grid search algo-

rithm

The characteristics of the computational cost using the standard grid search al-

gorithm of this case study have been presented in section 5.1. The experimental

results are outlined here. To construct SVM regression models, design parameter

intervals were uniformly sampled to provide 4096 samples to form the training data

set in the design space. Each is simulated and the corresponding five performance

parameter values are extracted. A set of design parameters and performance pa-

rameters are combined to form one training sample. The CPU time consumed

Table 7.7: Computational cost comparison in the Colpitts RF filter case study.

Performance model
Computational cost

construction approach
Standard grid search 9 days 6 hours
Proposed method 1 day 8 hours

by the standard grid search method and the proposed computational cost aware

algorithm are shown in table 7.7. As it can be seen, the proposed algorithm saves

almost 8 days (190 hours) of CPU time for SVM training parameter determi-

nation. Both performance model construction approaches have returned similar

results in terms of performance prediction accuracy as show in table 7.8. The C-γ

pair are also similar except the filter output noise Onoise, which is not sensitive to

the trade-off parameter C.

7.2.3 Performance optimisation

The goal of the optimisation is to obtain a set of design parameters that can

achieve a design with centre frequency of 1GHz and a Q factor of 50 (i.e the

bandwidth of 20MHz). Simultaneously, the total area, input and output noise

are minimised. Using the SVM regression models of the Colpitts RF filter, an

experiment has been carried out to optimise the design’s performance using a cost

function which is a weighted sum of the total silicon area, input and output noise

and squared error of the centre frequency and the Q factor. A typical regression

curve of the pattern search optimisation has been shown in figure 7.10. As the

Chapter 7 Case studies 121

Table 7.8: RMS error of the SVM regression performance models constructed
using the training parameters determined by the grid search and proposed meth-

ods and the corresponding C and γ values for the Colpitts RF filter.

Performance prediction accuracy RMS error
Fc Q A(μm2) Inoise Onoise

Grid
0.06GHz 6.1 719 0.28E-7V 2.31E-9V

search
Proposed

0.1GHz 6.1 739 0.27E-7V 2.3E-9V
method

C and γ
Grid 67108,

512, 1
32768, 1024,

64, 0.125
search 0.0625 0.0625 0.0625
Proposed 65535,

512, 1
32768, 1024, 362,

method 0.0625 0.0537 0.0372 0.0884

design approaches the optimum, the regression mesh size decreases as indicated

by the right subplot in figure 7.10.

Figure 7.10: Typical cost function and mesh resolution regression curves in
the pattern search optimisation

Table 7.9: Summary of the manual and optimised design results for the Col-
pitts RF bandpass filter.

Parameters Fc Q A(μm2) Inoise Onoise

Manual 1.34GHz 0.16 13500 1E-5V 5.8E-10V
Grid Optimised 1.08GHz 50 11500 1E-7V 6.8E-9V
search Verified 1.01GHz 48.2 12076 0.9E-7V 6.1E-9V
Proposed Optimised 1.05GHz 50 12180 1E-7V 7E-9V
method Verified 0.99GHz 49.6 12650 1E-7V 5.9E-9V

Chapter 7 Case studies 122

Figure 7.11: a) Manual design using design parameters derived from ideal
model [65], b) optimised design derived by the proposed algorithm.

The optimisation results in table 7.9 show that the performance figures are signif-

icantly improved than those from a manual design obtained using ideal formulas.

In figure 7.11, the results shown are from SPICE simulation using the design pa-

rameters derived from the optimisation. The optimisation is extremely fast, using

only 269 seconds of CPU time, as the associated performance evaluation involves

no simulations. To provide additional verification of the knowledge database ac-

curacy, the best design has been fully simulated using WinSPICE. As shown in

table 7.9, the performance figures calculated from the knowledge database are in

excellent agreement with those obtained from full simulation-based verification.

7.3 Addtional experiments

The empirical expression on the computational cost is derived based on not only

the two case studies in this chapter but also more experiments. Five public data

sets from various open databases have been randomly selected and analysed using

the standard grid search training parameter determination algorithm. Details of

the data sets are summarised in table 7.10. These five data sets are obtained from

various problems. The number of samples in each data set is different. Data set 1,

2, 3 and 4 have similar or less training data samples than the training data set used

in the case studies while data set 5 is much larger. The features (one feature is

equal to one design parameter) are similar or larger than the case studies. All the

data sets and further relevant information can be found on the LibSVM website

[116].

Chapter 7 Case studies 123

Figure 7.12: Influence of C on the computational cost of SVM regression
training with different data sets.

Table 7.10: Information of the sample data sets.

Data # of # of
Description

set samples features

1 3107 6
Election data including spatial coordinates
on 3,107 US counties from CMU StatLib

2 1385 6 [124]

3 392 7
City-cycle fuel consumption in
miles per gallon from UCI

4 506 13
Housing values in
suburbs of Boston from UCI

5 8192 12
Predict a computer system activity from system
performance measures from Delve of Toronto Uni

Running the SVM regression training on all the five data sets has confirmed the

significant influence of parameter C on the computational cost. According to figure

7.12, the insensitive and sensitive ranges for the influence of C are observed in all

the five data sets. The linear relationship between the computational cost and

Chapter 7 Case studies 124

Figure 7.13: Influence of γ on the computational cost of SVM regression
training with different data sets.

Figure 7.14: Computational cost (in seconds) and prediction contours using
the standard grid search for SVM training of data set 1.

log2C can be well described by equation 5.1. The computational cost within each

data set can vary from tens to tens of thousands seconds for different values of C.

So unless special attention is paid to the computational cost, any SVM training

algorithm is likely to take much more CPU time than necessary.

Chapter 7 Case studies 125

Figure 7.15: Computational cost (in seconds) and prediction contours using
the standard grid search for SVM training of data set 2.

Figure 7.16: Computational cost (in seconds) and prediction contours using
the standard grid search for SVM training of data set 3.

The corresponding non-linear influence of the RBF kernel parameter γ on the com-

putational cost in the grid search training is shown in figure 7.13. The nonlinear

relationship is clear. Even for data set 2 and 3 that have very small magnitude of

computational cost, the sensitive range presents.

The computational cost and accuracy contours in the C-γ space of the grid search

training algorithm using the five public data sets are shown in figures 7.14-7.18.

The high computational cost and high prediction accuracy regions both present for

each of the data set. However, the locations of these two regions are not necessarily

the same or even overlap. For data set 2, 3 and 4 (figure 7.15, 7.16, 7.17), the high

computational cost regions could not contribute the optimal model construction

and only waste resources. The contours of data set 1 and 5 are similar to the case

studies that some of the high computational cost regions that correspond to over

Chapter 7 Case studies 126

Figure 7.17: Computational cost (in seconds) and prediction contours using
the standard grid search for SVM training of data set 4.

Figure 7.18: Computational cost (in seconds) and prediction contours using
the standard grid search for SVM training of data set 5.

trained models have been wasted and should be avoided. The experiments support

the conjecture that firstly, the computational cost and prediction accuracy in the

grid-search algorithm follow the same pattern as described by the proposed models

presented in chapter 5; secondly, the trade-off between the computational cost and

prediction accuracy is essential for effective SVM regression training parameter

determination.

7.4 Concluding remarks

This chapter presents the two case studies to verify the proposed AMS perfor-

mance modelling and optimisation methodologies. The first case study is a 2nd

Chapter 7 Case studies 127

order SDM that represents complex AMS designs that require effective perfor-

mance modelling methods to explore the design space. The linearly graded and

SVM regression SVM performance modelling methods are both applied for the per-

formance model construction. Performance optimisation experiments show that

optimised designs can be derived very quickly using the proposed performance

modelling methodologies in the knowledge-based optimisation system. The sec-

ond case study is a Colpitts RF analogue bandpass filter. This example represents

RF designs that need highly expertise design knowledge and the standard filter

modelling techniques are not applicable. The SVM regression models of the de-

sign have been constructed and performance optimisation experiments can been

carried out to obtain optimal designs extremely quickly. With the verification by

simulations, the models are shown to possess good prediction accuracy.

The other matter that has been demonstrated is the SVM training parameter de-

termination using the computational cost aware algorithm that is developed on the

base of analyzing the computational cost and prediction accuracy of the standard

grid search algorithm. Apart from the case studies results, additional experiments

have been carried out to provide more support for the empirical models. Results

show excellent agreement with the proposed empirical expressions and models

introduced in chapter 5.

Chapter 8

Conclusion and future work

This thesis presents a novel general performance modelling methodology appli-

cable to a wide class of AMS designs. The modelling methodology is based on

SVM classification and regression. It can help to develop a synthesis system for

arbitrary AMS applications that may involve complex relationships between multi

dimensional design and performance spaces. The proposed method needs mini-

mum human intervention as it is fully automatic even for the SVM training pa-

rameter determination task, which normally is done manually as reported in most

published applications of SVM techniques for AMS performance modelling. The

contributions of the research are:

� A linearly graded SVM performance modelling methodology.

� An automated SVM regression performance model construction for AMS

designs and a computational-cost aware SVM training parameter determi-

nation algorithm based on a critical analysis of the standard grid search

algorithm.

� A knowledge-based performance optimisation system using SVM linearly

graded and regression performance models.

� The proposed performance modelling and optimisation methodologies have

been verified using two complex AMS designs with practical imperfections

integrated.

128

Chapter 8 Conclusion and future work 129

The purpose of developing both the linearly graded and SVM regression perfor-

mance modelling methodologies is to explore different possibilities of applying

SVM techniques to AMS performance modelling problems. The linearly graded

performance modelling method extends the classical ‘good-bad’ models and pro-

vides a graded design space exploration approach. The construction of SVM re-

gression models is simpler compared to the linearly graded approach. This sim-

plifies the development of the optimisation system. Because SVM techniques are

applicable to arbitrary design modelling, the performance modelling methodologies

developed in this research have a wide range of applications. Both methods have

achieved highly accurate modelling results as demonstrated in the case studies.

The new computational-cost aware SVM training parameter determination al-

gorithm has been developed based on the analysis of the standard grid search

algorithm and has been demonstrated to provide almost an order of magnitude

speed up for the task. It has been integrated into the the SVM regression model

construction process.

The proposed performance modelling methodologies lend themselves naturally to

effective performance optimisation of AMS designs. The proposed optimisation

system uses automatically generated knowledge database rather than simulations

and is therefore extremely fast.

The techniques described in chapter 4, 5 and 6 have been verified using three

case studies of complex and highly nonlinear analogue and AMS systems. They

are described using different HDLs including VHDL-AMS, MATLAB Simulink

and SystemC. The case studies cover both system level and circuit level designs.

Two main case studies, the signal delta modulator and silicon RF filter, comprise

complex imperfection effects and are known to provide significant challenges and

design difficulties in modern AMS and RF designs.

There are important points to make for future work. The most challenging prob-

lem in AMS synthesis designs is the difficulty introduced by large design space

dimension. The difficulty in performance modelling expands significantly in terms

of computational cost and modelling accuracy when the number of design param-

eters increases. One suggestion for future research is to explore the quality of the

proposed performance modelling methodologies for larger scale problems. Com-

plex AMS systems with detailed circuit level components such as phase locked

loops can be good candidates for verification. A possible solution may lie on

Chapter 8 Conclusion and future work 130

the combination of both the linearly graded method and the computational cost

aware SVM training parameter determination algorithm. Another research issue

is to study further the characteristics of SVMs in the AMS performance modelling

applications. Firstly, there may exist a rigid mathematical justification for the

computational cost model of the standard grid search algorithm; secondly, the use

of other kernel functions may be explored in performance model construction. The

latter issue has been preliminarily studied in this work and some kernel functions

have been compared with the RBF kernel using the SDM case study. Results have

been published [49]. However, this can be taken further in a future research.

Appendix A

Journal paper submitted to IET

CDS Proceeding

131

Appendix A Journal paper submitted to IET CDS Proceeding 132

Computational-cost aware SVM-based performance

modelling and optimisation for automated analogue

and mixed-signal system design

Xianqiang Ren and Tom J Kazmierski

School of Electronics and Computer Science

University of Southampton, UK

Email: xr03r, tjk@ecs.soton.ac.uk

Abstract— This paper presents a novel approach to efficient
performance modelling and optimisation which can be applied
to both high-level and circuit-level analogue and mixed-signal
(AMS) system synthesis. Support vector machine (SVM) regres-
sion is used to construct automatically general AMS performance
models which lend themselves naturally to pattern-search op-
timisation by exploring the design space. Based on the trade-
off between the computational cost and prediction accuracy, a
new search algorithm has been proposed to determine accurate
regression model parameters almost an order of magnitude faster
than standard grid search thus saving days of CPU time in
practical applications. Two case studies of complex analogue and
mixed-signal systems have been presented to demonstrate that,
once a support-vector knowledge data base has been created,
the proposed approach can provide accurate and extremely fast
performance estimation.

I. INTRODUCTION

Knowledge-based analogue and mixed-signal (AMS) design

automation systems, that have design expertise stored in a

database for use as the intelligence source in designs, have

been studied for over twenty years [1]. The main problem that

knowledge-based synthesis systems face is their specialised

nature due to the fact that specific and unique performance

characteristics are required almost for every type of analogue

systems. Traditionally knowledge-based synthesis systems

have been applied only to a narrow class of circuits mostly

op-amps [2] or voltage and current references [3]. In recent

years attempts have been made to generalise knowledge-based

approaches and make them applicable to wide classes of AMS

designs [4]. Some landmark methodologies such as fuzzy logic

[5] and neural network methods [6] have been applied in the

research of this subject. Such systems automatically construct

learning rules or neural networks to represent and reproduce

the behaviour of target systems. However, these approaches

are time consuming, labour intensive and also require a high

degree of specialised knowledge. Support vector machines

(SVMs) have already been suggested as an efficient means

to model analogue performance, although restricted to the

classical “good-bad” classification model construction [7], [8]

and performance space regression [9]. SVM models tend to

be more compact than corresponding neural network models

because optimal support-vector regression functions include

only a subset of the whole training data set, namely the

support vector set [10]–[12]. It has been reported that SVM

based approaches are able to find global optima in cases

where neural networks converge to a local one [12]. Also,

SVM methods seem to perform better in terms of training and

prediction errors than simple linear least-square regression and

posynomial models [9].

This paper presents two contributions. Firstly, we study the

computational cost of constructing SVM models and propose

a very efficient algorithm to determine SVM training parame-

ters. The proposed algorithm is almost an order of magnitude

faster than widely used Hsu’s standard grid search method

[13] and can save days of CPU time when applied to practical

problems. Secondly, we extend the application of SVMs to

automatic generation of a general AMS system performance

optimiser. The methodology is fully automatic, does not

require specialised knowledge, and regression databases are

built from simulations without a need for manual adjustment.

Two case studies, one a mixed-signal system and the other an

analogue RF circuit, have been optimised using the proposed

techniques. Results show that, once the knowledge data-base

has been created, optimisations can be accomplished extremely

quickly within a few minutes of CPU time. In contrast, most

state-of-the-art publications [7], [8], [9] use manual and “try-

it-out” methods for SVM training parameters determination

which often lead to non-optimal results. In an earlier work

[14] we demonstrated how the standard grid search method

[13] can be applied to AMS performance modelling. However,

the automated model construction process presented there is

extremely time consuming where the process of generating

an SVM regression knowledge database for a mixed-signal

sigma-delta modulator took more than 5 days. The improved

SVM training strategy proposed in this paper reduces the

required CPU time for a similar sigma-delta system to about

30 hours and is therefore significant.

II. COMPUTATIONAL COST OF SVR PERFORMANCE

MODEL CONSTRUCTION

A. Support vector regression

SVMs [10] were proposed originally in the context of

machine learning for classification problems on large sets

of data which have complex and unknown relationships be-

tween variables. The SVM approach can be used both for

Appendix A Journal paper submitted to IET CDS Proceeding 133

classification and regression estimation [10]. Support vector

regression (SVR) works as follows: suppose l observations

in an n-dimensional input space �n are given. Let vector x

denote one observation and y denote the corresponding real

numbered output value generated by the unknown relationship

to be modelled. xi, i ∈ [1, · · · , l], is the ith sample in the

training data set.

In ε-SVR [10], the goal is to construct a regression function

f(x) that can generate yi with at most deviation ε from the

simulation results ysim
i for all the training data samples. The

structured risk minimisation (SRM) [11] strategy is used in

the SVM training to construct the models. In a nutshell, the

SRM builds the optimum regression function by minimising

the prediction error and maximising the distance between

the nearest samples and the regression function. In contrast

to this strategy, traditional neural network technology uses

empirical risk minimisation (ERM) [11] that minimises the

approximation error only. An SRM-based training can be

presented as the following constrained optimisation problem:

minimise
1
2
||ω||2 + C

l∑
i=1

(ξi + ξ∗i) (1)

subject to

{
yi− < ω, xi > −b ≤ ε + ξi

< ω, xi > +b − yi ≤ ε + ξ∗i
(2)

where ω ∈ �n is the norm vector of the regression function

f , b is the bias vector of the regression function, ξi and

ξ∗i are the error terms introduced to cope with the mis-

predicted samples by the regression function, the constant

C is the trade-off parameter that determines the weight of

the error terms in the optimisation problem, operator <,> is

the dot product. The training error minimisation is included

in equation (1) maximisation of the separation distance is

achieved by minimising the Euclidean norm ||ω||2.

Support vector regression maps the xi vectors into the

feature space via a function Φ. This mapping is usually

implemented in an implicit form since it is the following kernel

function:

K(xi, xj) = < Φ(xi),Φ(xj) > i, j ∈ l (3)

that needs to be calculated not the Φ function itself. Several

kernel functions have been proposed [10], [11], [13]. We

have selected the radial basis function (RBF) kernel for its

capability to handle nonlinear relationships and easy tuning:

K(xi, x) = e−γ||xi−x||2 , γ > 0 (4)

The optimal regression function found by an SVR includes

only a subset of the whole training data set called the support

vector (SV) set. In this way, SVM models are usually smaller

than the corresponding neural network models, which use all

the training data points.

B. Computational cost analysis

The computational cost analysis outlined below has been

carried out using LibSVM [13], a popular SVM trainer [7], [8],

[14]–[16] and a training parameter determination algorithm e.g

the standard grid search algorithm. In the search process, for

each training parameter vector, in the case of the RBF kernel

the C-γ pair, the SVM trainer iteratively solves equation (1)

on a selected subset, called the working set, of the training

data set in the feature space using Lagrangian optimisation.

Before an iteration starts, samples in the training data set

are mapped to the feature space by the kernel function in

equation (3). Then, a working set is selected from the training

set based on the gradients at the mapped sample points in

the feature space. The Lagrangian coefficients of the working

set, which lie in the range [0,C], are found by solving the

optimisation problem defined by equations (1) and (2). As we

show below, parameter C influences the computational cost

because it determines the width of the intervals where the

Lagrangian coefficients lie. As the kernel is involved at the

mapping stage, its nonlinearity determines the gradients of the

training samples in the feature space. So it can be deduced

from this that kernel parameters affect the convergence speed

of the solving process by influencing the working set selection.

Experiments show that parameter C affects the computa-

tional cost of training parameter determination very signifi-

cantly, by up to three orders of magnitude as demonstrated

in figures 5, 9 a) and 11. The computational cost increases

monotonically with the increment of C. The RBF kernel

parameter γ has a nonlinear influence on the computational

cost as indicated in figures 5, 9 c) and 12. In our case studies

the regions where γ provides optimal mapping also coincide

with high computational cost especially when C is larger than

the optimum value. The computational cost as a function of

C and γ in two-dimensional contour diagrams for all the

experiments have been shown in subplots a) of figures 6,

10, 13, 14, 15, 16 and 17. Corresponding prediction accuracy

contours are also shown in the above figures. It is clear that

in many cases it should be possible to find the best C-γ

pair by avoiding the high computational cost regions. A new

computational-cost aware algorithm is proposed in the next

section as an alterative to the standard grid search.

C. Computational cost aware SVR performance model con-

struction

The observations discussed in the previous section are

critical in the development of the improved algorithm pre-

sented below. In the high computational cost area, where the

optimum C-γ pair usually lies, small accuracy improvements

are achieved at high computational cost expense. For example,

a small improvement of 0.2 in the RMS error of the RF filter

Q factor at log2C=9 takes 1.5 hours of CPU time as shown in

figure 5 b). The very high computational cost range outside the

high prediction accuracy range should be avoided because it

only consumes computational resources but cannot contribute

to finding the optimum solution.

Let us now define a measure of the accuracy improvement

effectiveness:

Eipv =
ΔA

ΔT
(5)

Appendix A Journal paper submitted to IET CDS Proceeding 134

where ΔA is the accuracy improvement, ΔT is the extra

computational cost spent to achieve the improvement at the

current C-γ pair. Using the above effectiveness measure, a

new heuristic gradient-based C-γ determination algorithm can

be proposed. The algorithm uses the accuracy improvement

effectiveness to dynamically modify parameters C and γ as

follows:

Cn+1 = k
sgn(ΔEipv)

C Cn n = 1, 2, · · · (6)

γn+1 = ksgn(ΔEipv)

γ γn n = 1, 2, · · · (7)

where n is the iteration index, kC and kγ are the stepsize

refining factors for parameters C and γ correspondingly, and

ΔEipv is the effectiveness change at the current iteration.

The algorithm repeatedly involves the SVM trainer, calculates

the accuracy improvements for equations 6, 7 and terminates

when Eipv becomes higher than the pre-defined maximum

effectiveness and a minimum required training accuracy has

been achieved.

III. AMS PERFORMANCE OPTIMISATION USING SVR

MODELS

The performance model construction technique outlined

above has been implemented in MATLAB. The flow chart of

the entire model construction system is presented in figure

1. Unlike other similar systems [7]–[9], which need the

designer’s interaction to determine SVR training parameters,

this approach is fully automatic and therefore less labour

intensive. The simulator can be behavioural one or circuit-

level as required. We have used WinSpice [17] in the RF

filter case study and SystemC [18] for the mixed-signal sigma-

delta example presented in section IV. The performance model

construction process creates a training data set by running

multiple simulations and, as a result, builds regression models

for further usage in performance optimisations. A uniformly

sampling scheme has been used to build the design space. The

number of samples is arbitrarily determined as the relationship

between the design and performance spaces is unknown be-

forehand. However, the accuracy of the SVR model is verified

at the testing stage after the training and should the regression

accuracy be found insufficient, SVR models can be rebuilt

using a larger number of samples.

Each SVR model performs a regression functional mapping

from the design space to a single-dimensional performance

parameter space. Together, all the SVR models can be viewed

as a multi-dimensional mapping to the performance space.

Once SVM regression models are constructed, they form a

knowledge database represented by the cylinder in figure 1,

from which the performance can be estimated at an arbitrary

point in the design space without resorting to further simula-

tions.

The SVR models are the intelligence source from which the

behaviour of the design can be predicted extremely quickly.

Even for very complex problem, once a regression knowledge

database is constructed, performance figures for any design

points in the design space can be obtained at negligible

Fig. 1. Flow chart of the SVM regression model construction.

computational cost. Therefore, performance optimisation can

be carried out very efficiently. The optimiser takes an initial

design as the starting point in the optimisation process and a

set of performance constraints. An arbitrary cost function can

be employed. In our case studies the cost function has the form

of linear combination of weighted performance characteristics

and squared deviations:

Vcost =
m∑

i=1

wiPi +
n∑

i=1

wi(Pi − P
spec
i)2 (8)

where wi is the weight coefficient, Pi is the predicted per-

formance value and P
spec
i is the performance specification

value. The combination of performance characteristics and

their squared deviations can explore the performance space

for both open constraints such as “area as small as possible”

and specific constraints such as “Gain is 65dB”. Scalar weights

wi balance the competing objectives.

Fig. 2. Performance optimisation design flow using SVM regression models.

Given required performance criteria, the best design point

can be found using e.g. a mixture of heuristic and gradient-

based optimisation. The optimal design that provides a mini-

mum cost function value is then verified by simulations. This

methodology is represented by the chart in figure 2. In the

case studies, the standard MATLAB pattern search algorithm

has been used as the optimisation method.

Appendix A Journal paper submitted to IET CDS Proceeding 135

IV. CASE STUDIES

Two case studies have been analysed and their performance

optimised to validate the proposed methodology. Each includes

a specification of the design and performance spaces, the SVR

model construction analysis and performance optimisation

experiments. The experiments were carried out on a Pentium

IV 2.8 GHz Windows PC.

A. Colpitts radio-frequency filter

The performance of a second-order RF bandpass filter based

on a Colpitts oscillator with a very low Q factor has been

optimised using the technique proposed above. Colpitts-type

LC oscillators, like the one shown in figure 3, are used

in integrated circuit bandpass filter designs [19], [20]. The

MOS transistor provides the positive feedback mechanism

for Q-enhancement to compensate inductor losses. Standard

filter synthesis techniques cannot be used in this application

[19] due to its non-linear nature, with significant losses and

parasitics in the RF operating ranges, especially those in the

spiral inductor and transistor. The goal in this case study is to

model the relationship between the design and performance

parameters and to demonstrate how an optimal design can

be extracted from this relationship according to a set of

performance constraints.

Fig. 3. Schematic of the Colpitts bandpass filter with a highlighted on-chip
spiral inductor structure.

1) Inductor model: On-chip planar rectangular spiral in-

ductors can be modelled by five structural parameters, as

illustrated in figure 3. They include the length of the first

and second wire segments (L1 and L2 separately), wire width

(WL), space between wires (S) and number of turns (Z).

Two metal layers are needed by the planar spiral inductor,

where metal 1 is used as the spiral wire and metal 2 as the

underpass to connect the inside terminal of the inductor with

external connections. The connections of the outside and inside

terminals of the inductor have been labelled as ‘1’ and ‘2’

in the figure. The spiral inductor can be accurately modelled

using the lumped π-model shown in figure 4 a) [21]. In the

model, Ltotal represents the actual total inductance; Rs is the

series resistance associated with the metal wires between the

connection point 1 and 2; Cs indicates the capacitive coupling

of the overlap between the spiral and the underpass; Cox is the

oxide capacitance between the spiral and the silicon substrate;

the capacitance and resistance of the substrate are modelled

by the network formed by Csi and Rsi. The model provides

accurate prediction of the inductor behaviour over a wide

range of operating frequencies, layout dimensions and process

parameters [21]. A set of scalable CMOS design rules based

Fig. 4. a) the lumped π model of the on-chip spiral inductor; b) cross-section
view of the spiral inductor.

on the TSMC 0.35μm process [22] with two polysilicon and

four metal layers has been employed to obtain an industrial

level accuracy. A cross-section view of the inductor is shown

in figure 4 b). A MATLAB program has been developed based

on Greenhouse’s method [23] for automatic calculation of the

inductance. The total inductance includes the self-inductance

and mutual inductance between parallel wire segments. The

method offers superior accuracy over many empirical formulas

[21].

2) Design and performance space: The design space is a

six-dimensional hyperspace formed by the following param-

eters within their corresponding intervals: L1, L2, C1, C2,

Ibias and Wid (width of the NMOS transistor). L1 and L2

are selected out of the five structural parameters associated

with the spiral inductor because they have the most significant

influence on the inductor model while other three WL, S and

Z are of minor importance. The performance space is formed

by five performance parameters. The centre frequency (Fc) and

the passband bandwidth (determined by the Q factor) are both

included in the performance space as the two key measures of

the filter quality. As both on-chip capacitors and the inductor

are area consuming, the area of the design has been included

in the performance parameters and calculated as:

Atotal = AL + AC + AM (9)

where Atotal represents the total area of the design consisted

of area of the inductor AL, two capacitors AC and the NMOS

transistor AM . AL is the rectangular area formed by L1×L2;

area of the capacitors are calculated by:

AC =
tox · C

εoεr

(10)

where εo is the permittivity of free space, εr is the relative

permittivity of oxide between the two plates formed by two

polysilicon layers, C is the capacitance. The transistor area is

roughly calculated as AM = Wid·Len, where Wid and Len are

Appendix A Journal paper submitted to IET CDS Proceeding 136

the width and length of the transistor separately. Another two

performance parameters are the input and output noise power

(Inoise and Onoise correspondingly) over the frequency range

of 0.1GHz to 10GHz.

3) Grid search computational cost: The influence of pa-

rameter C on the computation cost of training parameter

determination and prediction accuracy is shown in figure 5.

In this example, the computational cost can vary by up to

Fig. 5. Influence of C on the computational cost when γ=0.5 in a) and
prediction accuracy in b) for the the Q factor of the Colpitts RF filter; c) and
d) are the computational cost and prediction accuracy diagrams showing the
influence of γ when C is a constant.

three orders of magnitude for both C and γ. The computa-

tional cost contours for the complete grid search process are

shown in figure 6 a). The highest computational cost area has

been highlighted by a solid-line rectangle. The corresponding

Fig. 6. a) Computational cost contours (in seconds) of C-γ grid search
process for the Q factor of the Colpitts RF filter, b) Corresponding accuracy
performance of the models (RMS error) for the Q factor.

prediction accuracy contours are in figure 6 b). The optimum

C-γ area has been highlighted. It is clear that the standard

grid search algorithm wastes computational resources as it is

unnecessarily scanning areas of very high cost and sub-optimal

accuracies.

4) SVR model construction: Firstly, each design parameter

has been assigned to an interval and this defines the closed

hyperspace to be explored. Table I shows the upper and lower

boundaries (’U. bound‘ and ’L. bound‘ correspondingly) for

the design parameters.

TABLE I

DESIGN PARAMETER BOUNDS.

Parameter L1 L2 C1 C2 Wid Ibias

U. bound 500 500 7 35 300 10

L. bound 300 300 3 6 50 5

Unit μm μm pF pF μm mA

To construct SVR models, design parameter intervals were

uniformly sampled to provide 4096 samples to form the

training data set in the design space. The CPU times consumed

TABLE II

COMPUTATIONAL COST COMPARISON IN THE COLPITTS FILTER CASE

STUDY.

Performance model
Computational cost

construction approach

Standard grid search 9 days 6 hours

Proposed method 1 day 8 hours

by the standard grid search method and the proposed algorithm

are shown in table II. As it can be seen, the proposed algorithm

saves almost 8 days (190 hours) of CPU time. Both perfor-

mance model construction approaches have returned similar

results in terms of performance prediction accuracy as show

in table III. The C-γ pair are also similar except the filter

output noise Onoise, which is not sensitive to the trade-off

parameter C.

TABLE III

SVR PERFORMANCE MODEL PREDICTION RMS ERROR AND THE

CORRESPONDING C AND γ VALUES FOR THE COLPITTS RF FILTER.

Performance prediction accuracy RMS error

Fc Q A(μm
2) Inoise Onoise

Grid
0.06GHz 6.1 719 0.28E-7V 2.31E-9V

search

Proposed
0.1GHz 6.1 739 0.27E-7V 2.3E-9V

method

C and γ

Grid 67108,
512, 1

32768, 1024,
64, 0.125

search 0.0625 0.0625 0.0625

Proposed 65535,
512, 1

32768, 1024, 362,
method 0.0625 0.0537 0.0372 0.0884

5) Performance optimisation: The goal of the optimisation

is to obtain a set of design parameters that can achieve a

design with centre frequency of 1GHz and a Q factor of 50

(i.e the bandwidth of 20MHz). Simultaneously, the total area,

input and output noise are minimised. Using the SVR models

of the Colpitts filter, an experiment has been carried out to

optimise the design’s performance using a cost function which

is a weighted sum of the total silicon area, input and output

noise and squared error of the centre frequency and the Q

Appendix A Journal paper submitted to IET CDS Proceeding 137

factor. The optimisation results in table IV show significantly

Fig. 7. a) Manual design using design parameters derived from ideal model
[20], b) Optimised design derived by the proposed algorithm.

TABLE IV

SUMMARY OF THE MANUAL AND OPTIMISED DESIGN RESULTS FOR THE

COLPITTS FILTER.

Parameters Fc Q A(μm
2) Inoise Onoise

Manual 1.34GHz 0.16 13500 1E-5V 5.8E-10V

Grid Optimised 1.08GHz 50 11500 1E-7V 6.8E-9V
search Verified 1.01GHz 48.2 12076 0.9E-7V 6.1E-9V

ProposedOptimised 1.05GHz 50 12180 1E-7V 7E-9V
method Verified 0.99GHz 49.6 12650 1E-7V 5.9E-9V

improved performance figures than those for the manual design

obtained using ideal formulas. Simulation results are shown in

figure 7. The optimisation is extremely fast, using only 269

seconds of CPU time, as the associated performance evaluation

involves no simulations. To provide additional verification of

the knowledge database accuracy, the best design has been

fully simulated using WinSPICE. As shown in table IV, the

performance figures calculated from the knowledge database

are in excellent agreement with those obtained from full

simulation-based verification.

B. 2nd order sigma-delta modulator

Here the proposed algorithm has been used to optimise the

performance of a mixed-signal 2nd order sigma-delta modula-

tor (SDM). A circuit-level model, based on a typical 2nd order

SDM [24] but with added imperfections, has been developed

in SystemC for time-domain simulations. The imperfections

of the SystemC SDM model include, as shown in figure 8:

the clock jitter, thermal noise, opamp non-linear DC transfer

characteristic, opamp unity-gain bandwidth, slew rate, quan-

tizer offset, quantizer hysteresis and integrator DC saturation.

The imperfections not only degrade the system’s performance

but also require complex numerical simulations and results

post-processing for accurate performance prediction.

1) SVR model construction: The selected design parameters

are the amplifier gains (a1, a2, a3, b1, b2 in figure 8) and the

input amplitude, assuming sinusoidal excitation. A MATLAB

script extracts the following performance parameters from

SystemC time-domain simulations: the signal-to-noise ratio

(SNR), maximum input signal amplitude range (SR) at peak

SNR, maximum dynamic range of integrator 1 and integrator

2 outputs INT1 and INT2 correspondingly as well as the

Fig. 8. 2nd order SDM with imperfections.

SNR degradation ratio (SNRDR). The SNR is calculated by

means of an FFT analysis on time-domain waveforms and

the SNRDR is measured as the average slope of the SNR

curve obtained from multiple simulations using input signals

of varying amplitude.

To construct the SVR model each design parameter range

was uniformly sampled to provide 3125 samples in the design

space. The SVR model construction process is time consum-

ing, especially in this case, as some performance parameters

need to be calculated from multiple simulation runs. The

TABLE V

COMPUTATIONAL COST COMPARISON IN THE 2nd ORDER SDM CASE

STUDY.

Performance model
Computational cost

construction approach

Standard grid search 6 days 1 hour

Proposed method 1 day 4 hours

CPU times used by the standard grid search algorithm and

the proposed approach are listed in table V. The proposed

algorithm saves nearly 5 days of CPU time in this case.

Table VI shows that there are no significant difference in the

performance prediction accuracy between both algorithms.

TABLE VI

SVR PERFORMANCE MODEL PREDICTION RMS ERROR AND THE

CORRESPONDING C AND γ VALUES FOR THE 2nd ORDER SDM.

Performance prediction accuracy RMS error
SNRdB SNRDR SR INT1 INT2

Grid
12.7 9 5.75E-3 3.66E-3 3.82E-3

search

Proposed
12.9 9 6.32E-3 5.44E-3 4.11E-3

method

C and γ

Grid
512, 4.6 1024, 6 1, 5.28 36.7, 1 8, 2.64

search

Proposed
362, 4 1024, 5.6 1, 4 36.7, 1.52 90.5, 1

method

2) Grid search computational cost: The influence of C

on the computational cost of training parameter determination

and prediction accuracy is shown in figure 9. Here again, the

computational cost varies by almost three orders of magnitude

Appendix A Journal paper submitted to IET CDS Proceeding 138

Fig. 9. The influence of C on the computational cost when γ=0.5 in a)
and prediction accuracy in b) for the the SNR of the 2nd order SDM. c) and
d) are the computational cost and prediction accuracy diagrams when C is a
constant while γ is scanned.

with the changes of C and γ. The combined computational

cost contours of the complete grid search process are shown

in figure 10 a). The corresponding prediction accuracy diagram

Fig. 10. a) Computational cost contours (in seconds) of C-γ grid search
process for the SNR of the 2nd SDM, b) Corresponding accuracy performance
of the models (RMS error in dB).

is in figure 10 b).

3) Performance optimisation: Two cost functions with dif-

ferent weighted sums of performance characteristics were

used in two performance optimisation experiments: Exp I and

Exp II. Cost function I gives more weighting to frequency-

related performance characteristics namely SNR and SNRDR,

whereas cost function II gives preference to DC-related charac-

teristics. Optimisation results are summarised in table VII. The

first row in table VII specifies the performance characteristics

obtained using a standard SDM design procedure [25] so that

they can be compared with the best designs found through

the optimisation using the automatically generated SVR-based

knowledge database.

The results in table VII show that the standard grid search

approach determines values for C and γ such that they provide

slightly more accurate predictions than the new search ap-

proach. However, the marginal prediction performance degra-

TABLE VII

SUMMARY OF THE STANDARD AND OPTIMISED DESIGN RESULTS FOR THE

2nd ORDER SDM.

Parameters SNRdB SNRDR SR INT1 INT2

Standard design using
64.2 10.73 0.7 0.29 0.61

non-ideal SDM model

Grid Exp I
Optimised 84.1 0.01 0.74 1.48 1.51
Verified 84.1 0.01 0.75 1.5 1.5

search Exp II
Optimised 69.9 7.47 0.83 0.2 0.3
Verified 69.2 9.75 0.8 0.29 0.34

Proposed Exp I
Optimised 81.1 0.8 0.82 1.44 1.47
Verified 84 0.2 0.8 1.5 1.5

method Exp II
Optimised 71.8 7.51 0.86 0.14 0.21
Verified 68 10.9 0.85 0.2 0.24

dation is compensated by a huge computational cost saving.

Optimisation is extremely fast for both of these two experi-

ments. Exp I takes 82 seconds and exp II - 121 seconds of

CPU time.

Fig. 11. Influence of C on the computational cost of SVR training with
different testing data sets.

V. CONCLUSION

The main contribution of this paper is the computational

cost analysis of the standard grid search algorithm for auto-

matic SVM training. A significant dependence of up to three

orders of magnitude of the computational cost on the trade-off

parameter C has been observed and confirmed by experiments.

The influence of the RBF kernel function parameter γ on

the computational cost is also significant, up to two orders

of magnitude as demonstrated by experiments. Based on the

computational cost analysis, a new SVR training parameter

determination algorithm has been proposed and implemented.

The algorithm provides up to 7 times faster parameter deter-

mination compared with the standard and widely used grid

search approach. This difference is very significant as it can

save days of CPU time when applied to practical problems.

The second contribution is a methodology for automatic

construction of a knowledge-based performance optimiser for

arbitrary analogue or mixed-signal systems. A general AMS

design performance optimiser has been developed to imple-

ment the proposed methodology and the training parameter

Appendix A Journal paper submitted to IET CDS Proceeding 139

determination algorithm. The significance of these contribu-

tions is that knowledge databases for analogue or mixed-signal

system performance optimisation can be created efficiently in

a fully automatic way, without a need for manual intervention

or adjustment. The performance optimisation methodology

presented here relies on regression databases automatically

constructed from simulations.

Fig. 12. Influence of γ on the computational cost of SVR training with
different testing data sets.

Fig. 13. Computational cost and prediction contours in the grid search of
dataset 1.

VI. APPENDIX

To further confirm our computational cost analysis, five pub-

lic data sets from various open databases have been randomly

selected and analysed. Details are summarised in table VIII.

All the data sets and further relevant information can be found

on the LibSVM website [13].

TABLE VIII

INFORMATION OF THE SAMPLE DATA SETS.

Data # of # of
Description

set samples features

1 3107 6
Election data including spatial coordinates
on 3,107 US counties from CMU StatLib

2 1385 6 [26]

3 392 7
City-cycle fuel consumption in
miles per gallon from UCI

4 506 13
Housing values in
suburbs of Boston from UCI

5 8192 12
Predict a computer system activity from system
performance measures from Delve of Toronto Uni

Fig. 14. Computational cost and prediction contours in the grid search of
dataset 2.

Running the SVR training on all the five data sets has

confirmed the significant influence of parameter C on the

computational cost, as shown in figure 11. The computational

Fig. 15. Computational cost and prediction contours in the grid search of
dataset 3.

Fig. 16. Computational cost and prediction contours in the grid search of
dataset 4.

cost within each data set can vary from tens to tens of

thousands seconds for different values of C. So unless special

attention is paid to the computational cost dependency on

the parameter C, any SVM training algorithm is likely to

take much more CPU time than necessary. The corresponding

non-linear influence of the RBF kernel parameter γ on the

computational cost in the grid search training is shown in

figure 12.

The computational cost and accuracy contours of the grid

search training algorithm using the five public data sets are

shown in figures 13-17. They all follow the same pattern and

further confirm the computational cost analysis in section II-

B and support out conjecture that the trade-off between the

computational cost and prediction accuracy is essential for

effective SVR training parameter determination.

Appendix A Journal paper submitted to IET CDS Proceeding 140

Fig. 17. Computational cost and prediction contours in the grid search of
dataset 5.

REFERENCES

[1] G. G. E. Gielen and R. A. Rutenbar, “Computer-aided design of analog
and mixed-signal integrated circuits,” Proceedings of the IEEE, vol. 88,
no. 12, pp. 1825–54, Dec 2000.

[2] F. El-Turky and E. Perry, “BLADES: an artificial intelligence approach
to analog circuit design,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 8, Issue 6, pp. 680 – 692, June
1989.

[3] M. Degrauwe, O. Nys, E. Dijkstra, J. Rijmenants, S. Bitz, B. Goffart,
E. Vittoz, S. Cserveny, C. Meixenberger, G. V. der Stappen, and
H. Oguey, “IDAC: an interactive design tool for analog CMOS circuits,”
IEEE Journal of Solid-State Circuits, vol. 22, Issue 6, pp. 1106 – 1116,
Dec 1987.

[4] B. Antao and A. Brodersen, “ARCHGEN: Automated synthesis of
analog systems,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 3, Issue 2, pp. 231 – 244, June 1995.

[5] A. Torralba, J. Chavez, and L. Franquelo, “FASY: a fuzzy-logic based
tool for analog synthesis,” IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, vol. 15 Issue 7, pp. 705 – 715,
July 1996.

[6] G. Wolfe and R. Vemuri, “Extraction and use of neural network models
in automated synthesis of operational amplifiers,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 22,
Issue 2, pp. 198 – 212, Feb 2003.

[7] F. D. Bernardinis, M. I. Jordan, and A. S. Vincentelli, “Support vector
machines for analog circuit performance representation,” Proceedings of

Design Automation Conference, pp. 964 – 969, Jun 2-7 2003.

[8] M. Ding and R. Vemuri, “A combined feasibility and performance
macromodel for analog circuits,” Proceedings of Design Automation

Conference, pp. 63 – 68, June 13-17 2005.

[9] T. Kiely and G. Gielen, “Performance modeling of analog integrated
circuits using least-squares support vector machines,” Proceedings of

Design, Automation and Test in Europe Conference and Exhibition,
vol. 1, pp. 448 – 453, Feb 16-20 2004.

[10] V. N. Vapnik, The Nature of statistical learning theory. Springer-Verlag
New York Inc, 2001.

[11] B. Scholkopf, “Statistical learning and kernel methods,” Microsoft
reasearch limited, Tech. Rep., Feb 2000. [Online]. Available:
http:://research.microsoft.com/ bsc

[12] A. Smola and B. Scholkopf, “A tutorial on support vector regression,”
NeuroCOLT2 technical report series, NC2-TR-1998-30, Tech. Rep., Oct
1998.

[13] C.-C. Chang and C.-J. Lin, LibSVM: a library for support vector

machines, 2001, software available at http://www.csie.ntu.edu.tw/ cjlin
/libsvm.

[14] X. Ren and T. Kazmierski, “Behavioral-level performance modeling
of analog and mixed-signal systems using support vector machines,”
Proceedings of Behavioral Modeling and Simulation Workshop, pp. 28
– 33, Sept 2006.

[15] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using sec-
ond order information for training SVM,” Journal of Machine Learning

Research 6, pp. 1889–1918, Nov 2005.

[16] P.-H. Chen, R.-E. Fan, and C.-J. Lin;, “A study on SMO-type decom-
position methods for support vector machines,” IEEE Transactions on

Neural Networks, vol. 17, Issue 4, pp. 893 – 908, July 2006.

[17] M. Smith, WinSpice3 User’s manual, June 10 2004, software available
at http://www.ousetech.co.uk/winspice2/.

[18] IEEE, “IEEE standard SystemC language reference manual,” March 31
2006.

[19] D. Li and Y. Tsividis, “Active LC filters on silicon,” IEE Proceedings

of Circuits, Devices and Systems, vol. 147, Issue 1, pp. 49 – 56, Feb
2000.

[20] F. A. Hamid, “Architectural synthesis of analogue filters from be-
havioural VHDL-AMS descriptions,” Ph.D. dissertation, School of Elec-
tronics and computer science, University of Southampton, 2004.

[21] C. Yue and S. Wong, “Physical modeling of spiral inductors on silicon,”
IEEE Transactions on Electron Devices, vol. 47, Issue 3, pp. 560 – 568,
March 2000.

[22] MOSIS, “MOSIS scalable CMOS (SCMOS),” The MOSIS
Service, Tech. Rep., Oct 4 2004. [Online]. Available:
http://www.mosis.org/Technical/Designrules/scmos

[23] H. Greenhouse, “Design of planar rectangular microelectronic induc-
tors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10,
Issue 2, pp. 101 – 109, Jun 1974.

[24] H. Zare-Hoseini, I. Kale, and O. Shoaei, “Modeling of switched-
capacitor delta-sigma modulators in SIMULINK,” IEEE Transactions

on Instrumentation and Measurement, vol. 54, Issue 4, pp. 1646 – 1654,
Aug 2005.

[25] M. Safi-Harb and G. Roberts, “Low power delta-sigma modulator
for ADSL applications in a low-voltage CMOS technology,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 52, Issue
10, pp. 2075 – 2089, Oct 2005.

[26] G. W. Flake and S. Lawrence, “Efficient SVM regression training with
SMO,” Machine Learning, vol. 46, pp. 271–290, 2002.

Appendix B

Development of the 2nd order

non-ideal SDM model

In this appendix, the development of the behavioural-level mixed-signal SDM de-

sign, which has been used as the case study in chapter 7, has been explained in

detail. Most significant imperfections have been integrated in the design. The

ideal (section B.1 and B.2) and non-ideal SDM models (section B.3 and B.4)

have been implemented in both MATLAB Simulink and SystemC. Comparisons

between these models are presented to validate the accuracy of the models.

B.1 Theoretical analysis

SDM represents complex AMS designs that advanced performance modelling and

optimisation techniques are highly required. As a long-existing and important

technique in ADC design, theoretical analysis of the system provides some design

guidelines especially when ideal SDMs are analysed. For ideal SDMs, different

parameters such as the number of loops L (order of an SDM), OSR etc determine

the general design parameters at the system level. A set of design parameters are

summarised in table B.1.

141

Appendix B Development of the 2nd order non-ideal SDM model 142

Table B.1: Summary of system level design parameters of SDMs.

Parameter Description
M sine wave peak amplitude
n SDM order
L number of loops
Bq successive quantisation level difference
fs sampling frequency
fb signal frequency
OSR oversampling ration OSR = fs/fb

For ideal SDMs, noise uniquely comes from the quantiser. The SNR of the system

then can be expressed as:

SNR =
σ2

i

q2
rms

(B.1)

where σ2
i is the power of the input sine wave and qrms is the RMS value of the quan-

tisation noise. Considering equation 2.11 and 2.12 and approximating sin(πf/fs)

to πf/fs when the input signal frequency is low, the following equation can be

derived to estimate the RMS noise in the signal band:

n2
0

e2
rms

=
π2L

2L + 1
· 1

OSR2L+1
(B.2)

where n2
0/e

2
rms is the ratio of the in-band noise over the whole RMS power of the

quantisation noise and thus indicates the noise level in the signal band. This figure

is influenced by the number of loops L and the OSR. As shown in figure B.1, with

the increment of the OSR and L, this figure decreases which means the in-band

noise is shaped and pushed more to the high frequency range so the in-band noise

level becomes low.

Quantitatively, the peak SNR, which is assumed to be directly related or even

equal to DR, is related with n, Bq and OSR by the following equation [123]:

SNRpeak(z) =
3π

2
(2Bq − 1)2(2n + 1)(

OSR

π
)2n+1 (B.3)

Appendix B Development of the 2nd order non-ideal SDM model 143

2 4 8 16 32 64 128 256 512 1024

−100

−80

−60

−40

−20

0

20

Oversampling ratio (OSR)

n 02 /e
rm

s
2

 (d
B

)

L = 1

L =2

L = 3

L = 4

Figure B.1: Relationship of n2
0/e2

rms and OSR with number of loops L.

Usually, Bq is fixed in many designs, so the relationship between the SNRpeak, n

and OSR can be graphically illustrated in figure B.2.

These equations provide basic guidelines to decide important performance param-

eters in SDM designs. For instance, if a design needs the SNR to be above 80dB,

according to figure B.2, the 1st order designs cannot be used theoretically unless

very high OSR is used. Designs that can fulfil the specification can be with an

order equal or more than two if the OSR is less than 64. It has to be noted that

considering the degradations in practical designs because of the imperfections of

the fabrication process, 2nd order structures, which just hit the point of 80dB,

should not be used because they are not possible to reserve their perfect perfor-

mance. So solutions should come from structures with more than two feedback

loops or with higher OSR. The theoretical analysis is helpful as a starting point

for further analysis. However, degradations always happen in practical designs on

certain degrees and they are arduous to be explicitly expressed.

Appendix B Development of the 2nd order non-ideal SDM model 144

Figure B.2: Theoretical SNR as a function of SDM order n and OSR shown
in equation B.3.

B.2 Standard manual design process for SDMs

The standard manual design process for SDMs is based on ideal transfer function

analysis. Results of the design process are considered as the standard manual

analysis output and used to compare with the optimised non-ideal designs so that

the degradation of the imperfections can be clearly seen. Assuming the design

is based on a 2nd order low-pass SDM with OSR = 64. By cascading two 1st

order stages, the SDM can be built using the components in the signal flow graph

shown in figure B.3. Every integrator (as highlighted in the dashed box) plus the

beforehand subtractor form one stage. In z-domain, an integrator is expressed as

1/(z − 1), which represents the summation of the input and the accumulation of

its previous values. The quantiser can be linearised as an adder that adds the the

quantiser input and quantisation noise.

The performances of SDMs are determined by their transfer functions, which are

further controlled by the amplifier coefficients (a1, b1, · · ·) on the feed forward and

feedback paths. A straight forward derivation of the relationships on the labelled

nodes, M , N , P , Y , V in figure B.3, can link the distributed coefficients to the

Appendix B Development of the 2nd order non-ideal SDM model 145

Figure B.3: Signal flow graph of a 2nd order ideal SDM with the integrator
boxed and a linearised quantiser.

transfer functions as the following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M(n) = a1 · U(n) − b1 · V (n)

N(n) = M(n) + N(n − 1)

P (n) = a2 · N(n) − b2 · V (n)

Y (n) = a3 · P (n) + Y (n − 1)

V (n) = Y (n) + E(n)

(B.4)

With the substitution of integrators by its z-domain transform “1/(z − 1)” and

iterative substituting of the signals from the left side to the right side in the

signal flow graph, the equation that describes the transfer feature of the system is

expressed as:

V =
a1a2a3

z2 + (a3b2 − 2)z + 1 − a3b2 + a2a3b1

U +

(z − 1)2

(z − 1)2 + a3b2(z − 1) + a2a3b1

E (B.5)

As an ideal SDM, the poles and zeros of the STF and NTF are the same as in

the following standard equation:

V =
1

z2
U +

(z − 1)2

z2
E = z−2U + (1 − z−2)E (B.6)

where the output V of the SDM is a linear superimposition of the delayed input

U and a shaped quantisation noise E. By equalising the coefficients of U and E in

equation B.5 and B.6, a set of constraints, which the coefficients of the amplifiers

Appendix B Development of the 2nd order non-ideal SDM model 146

need to satisfy simultaneously, can be generated:

⎧⎪⎨
⎪⎩

a1a2a3 = 1

a3b2 − 2 = 0

1 − a3b2 + a2a3b1 = 0

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1a2a3 = 1

a2a3b1 = 1

a1 = b1

a3b2 = 2

(B.7)

With these four equations, it is not possible to solve the five variables unless one

of the variables is pre-assigned. For instance, let a1 = 1, then one set of solution

can be derived: a2 = 1, a3 = 1, b1 = 1, b2 = 2. It can be seen that the key step to

get the constraints for the variable solving is to map the derived transfer function

to the ideal ones. So if the poles and zeros of the STF and NTF need to be

designed specifically for specified transfer feature of the modulator, equation B.5

needs to be mapped to the required transfer function so that a set of constraints

can be generated and used to calculate the values of the coefficients.

10−4 10−3 10−2 10−1
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Normalized frequency

O
ut

pu
t P

S
D

 d
B

Figure B.4: FFT analysis of the output of the ideal 2nd order SDM shown in
figure B.3.

Appendix B Development of the 2nd order non-ideal SDM model 147

Assigning the derived coefficients to the amplifiers, the system is then ready for

simulations. It is more meaningful to see the performance of the system in the

frequency domain rather than the time domain. The well-known FFT analysis is

employed to see the frequency response of the system with the derived coefficients.

The results are shown in figure B.4. The spike shows the presence of the signal

clearly. The slope of the FFT result shows that noise is pushed to high frequency

band as illustrated in section 2.4.1.

0.0001 0.001 0.01 0.1 1 10
−10

0

10

20

30

40

50

60

70

Amplitude of the input signal

S
N

R
 d

B

Figure B.5: SNR analysis of the ideal 2nd order SDM shown in figure B.3.

In ideal SDMs, the presentation of the signal dependents on how strong the signal

is. When it becomes too small, the signal may not be possibly distinguished from

the quantisation noise. Parameter SNR is used to measure the strength of the

signal compared to the noise. In this design, figure B.5 shows the relationship

between the SNR and the input signal’s magnitude. It can be seen that when

input signal’s amplitude is approximately 0.0001, the SNR � 0dB. That is the

smallest amplitude for a meaningful signal.

Although, one of the coefficients should be pre-assigned to solve the design vari-

ables, the assignment of this coefficient is usually not arbitrary but dependent

Appendix B Development of the 2nd order non-ideal SDM model 148

mainly on two considerations [123]. For ease of implementation and minimum

hardware usage, it is desirable to choose the digital coefficients equal to 0, ±1, or

multiples of 2, which corresponds to one bit shift in the digital domain. Another

critical consideration in choosing the coefficients is the achievable output swing

for the integrators in the circuit implementation. The goal of the scaling is to

increase the signal dynamic range performance. As shown in figure B.6, if the

technology’s dynamic range is limited, for instance, a CMOS technology with dy-

namic range of 0.5V, the assignment of the design parameters needs to reduce the

signals’ amplitude within the limit so that saturation can be mostly eliminated.

−3 −2 −1 0 1 2 3
0

100

200

300

400

500

600

700

800

Amplitude of the output of the 1st stage integrator

N
um

be
r o

f o
ut

pu
ts

(a) unscaled signal statistics of the 1st integrator

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

200

400

600

800

1000

1200

1400

Amplitude of the output of the 1st integrator

N
um

be
r o

f o
ut

pu
ts

(b) scaled signal statistics of the 1st integrator

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

Ampltude of the output of the 2nd integrator

N
um

be
r o

f t
he

 o
ut

pu
ts

(c) unscaled signal statistics of the 2nd integrator

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

700

800

900

Amplitude of the output of the 2nd integrator

N
um

be
r o

f o
ut

pu
ts

(d) scaled signal statistics of the 2nd integrator

Figure B.6: Histogram of the outputs of the 1st and 2nd integrator before and
after signal scaling.

Appendix B Development of the 2nd order non-ideal SDM model 149

B.3 Modelling imperfections in non-ideal SDM

designs with MATLAB Simulink

Non-ideal effects are not avoidable in real designs and they degrade the perfor-

mance of the system. It is beneficial if the influence of the non-ideal effects is

modelled and the performance of the SDM with non-ideal effects is effectively es-

timated at system-level. This is because accurately estimated system level designs

can avoid some redesign loop back when they could not pass low level specifica-

tions. The lower the level that the design needs to be redesigned is, the more costly

the refinement process will be. The modelling of the non-ideal effects dependents

on the implementation techniques. In continuous time SDMs, the non-ideal ef-

fects include clock jitter, OpAmp non-linear effects and excess loop delay [125]. If

sampled data techniques such as switched capacitor (SC) or switched current are

used, the advantages initially come from the fabrication technology, i.e. standard

digital fabrication technologies can be used for mixed-signal implementation. SC

designs are more preferable than continuous time SDM because they can be more

efficiently realised in standard CMOS technology [122]. The design parameters

are highly controllable thus the influence of the non-ideal effects can be rejected in

some degree. The analyses outlined below are based on the SC implementation.

Cf

Cs

2

OpAmpVin
Vout

Cp

2

1

1

Figure B.7: 1st order classical SC integrator module with the OpAmp parasitic
capacitor Cp.

The non-ideal effects considered here include clock jitter, switch thermal noise,

OpAmp and quantiser non-ideal effects. Detailed model of each effect has been

developed and compared in both Matlab Simulink and SystemC. System-level

modelling of these non-ideal effects can save computational cost and achieve circuit

level accuracy as circuit level SDM simulation is very computationally costly [111].

Appendix B Development of the 2nd order non-ideal SDM model 150

Detailed behavioural modelling and simulation can make the examples ready to

be used in the performance modelling and optimisation.

An SC integrator is shown in figure B.7. It is a basic component to build the SDM

system. The analysis of the non-ideal effects is based on this unit. The module

contains an SC resistor (Cs), a feedback capacitor Cf , an OpAmp and a parasitic

capacitor Cp. The non-overlapping two working phases Φ1 and Φ2 form one cycle

that is equal to one clock cycle of the system’s sampling clock.

B.3.1 Slew rate and OpAmp unity-gain bandwidth

Slew rate (SR) and OpAmp unity-gain bandwidth (UBW) are the two distinct

parameters about the settling behaviour of the OpAmps [126]. The effects of these

two parameters are related to each other. When the OpAmp operates within the

SR-limited region, it functions as a non-linear amplifier; while the OpAmp operates

within the UBW-limited region, it works linearly.

To model the SR, the approach used here is to interpret the effect as a non-linear

gain which is influenced by the output of the integrator by feedback [127]:

Vo(nTs) = Vo(nTs − Ts) +
Cs

Cf

Vs(1 − e−t/τ); nTs − Ts

2
< t < nTs (B.8)

where Vs is the voltage on the sampling capacitor Cs, τ is the time constant of the

integrator and n is the clock index and Ts is the sampling clock period. For any

integrating phase (Φ2 in figure B.7 is on), the starting value of Vs is the voltage

on the capacitor when the charging phase (Φ1 in figure B.7 is on) is over.

Vs(nTs − Ts

2
) = Vin(nTs − Ts

2
) (B.9)

Then the voltage on the capacitor Vs decreases exponentially from the starting

voltage. The slope of equation B.8 reaches its maximum when the differentiation

over time is equal to 0:

dVo(t)

dt
|max =

Cs

Cf

Vs

τ
(B.10)

Appendix B Development of the 2nd order non-ideal SDM model 151

When this maximum slope is compared to the SR of the SC integrator, two sit-

uations can happen: either SR is larger than the maximum slope, the integrator

works as indicated by equation B.8; or SR is smaller than the maximum, the

integrator works under SR limitation for t0 time, the output voltage would be:

Vo(nTs) = Vo(nTs − Ts) +
Cs

Cf

Vs + (SRt0 − Cs

Cf

Vs)e
−(t−t0)/τ (B.11)

where SRt0 is the value reached on node Vo at the time point. It has a valid value

until SR limitation ends. The value of t0 can be calculated by inspecting that

the slope of equation B.11 should be equal to SR. Then t0 can be substituted and

equation B.11 becomes:

Vo(nTs) = Vo(nTs − Ts) +
Cs

Cf

Vs − sgn(Vs)SRτe
−(

Ts

2τ
−

Cs|Vs|
CfSRτ

+1)

(B.12)

where sgn represents the signum function that takes ±1 only. This function to-

gether with the absolute operation on Vs can cover both the positive and negative

of the output.

The implementation of the SR effect is shown in figure B.8. Calculation of the

new output needs both the previous output and the current sampled input, thus

a delay unit is placed after the zero-order hold component. The input value is

compared with the slope to check whether the SR limitation is triggered or not.

The last switch component is used to select which source the output should take.

Figure B.9 shows the overall output of the SR module with a ramp excitation.

Within the non-SR-limitation region, output approximates input well; when SR

limitation happens, the non-linear gain drives the output voltage away from the

input as indicated in the figure.

B.3.2 Clock jitter

The working mechanism of SC circuits depends on the transfer of the charge during

each clock phase. Clock jitter disturbs the charge transmissions and makes them

to be non-equal in each clock phase, thus noise is added to the sampling process.

However, as the sampling process is independent to the structure of the SDM, the

Appendix B Development of the 2nd order non-ideal SDM model 152

Figure B.8: MATLAB Simulink models for the SR modelling. The bottom
two sub-systems show the detail implementations when the SR limitation is

applied and not.

effect of clock jitter is considered as a superimposed noise to the input signal only

[128]. The magnitude of the function is related to both the statistical property of

the jitter and the input signal of the modulator. With an analogue input of Vin

and an error of the time instant δ, the error sampled input resulted from the clock

jitter is expressed as:

Vin(t + δ) − Vin(t) � δ
dVin(t)

dt
subject to δ << Ts (B.13)

where Ts is the sampling clock period, δ is a Gaussian random parameter with

a standard derivation Δτ = δ and is used to model the statistical property of

the jitter, the differentiation of the input signal is the input dependent part of

the jitter’s model. The signal flow graph shown in figure B.10 is the MATLAB

Simulink model used to simulate the superimposed clock jitter.

Appendix B Development of the 2nd order non-ideal SDM model 153

Figure B.9: Output of the SR module with a ramp input.

Figure B.10: MATLAB Simulink model for the clock jitter modelling.

Appendix B Development of the 2nd order non-ideal SDM model 154

B.3.3 Switch thermal noise

Switch thermal noise is defined as the thermal noise of the switch resistance sam-

pled by capacitor Cs, which is in series with switch Φ. It has a white spectrum and

wide band, limited only by the time constant of the SC integrator or the band-

width of the OpAmp [128]. The sampling capacitor Cs is equal to finite resistance

Ron and the total noise power can be found by evaluating the integral:

e2
T =

∫ ∞

o

4kTRon

1 + (2πfRonCs)2
df =

kT

Cs

(B.14)

where k is the Blotzmann’s constant and T is the absolute temperature at working

condition. The above thermal nose voltage is superimposed onto the input signal:

y(t) = [x(t) +

√
kT

Cs

n(t)]b (B.15)

where n(t) is a Gaussian random function, b = Cs/Cf is the ratio that associated

with the gain g of the SC integrator, whose transfer function can be expressed as

the following:

H(z) = g
z−1

1 − αz−1
(B.16)

Equation B.15 can be modelled by the signal flow graph shown in figure B.11.

B.3.4 OpAmp thermal imperfections

OpAmp imperfections contain thermal noise, flicker (1/f) noise and DC offset etc.

The reason that flicker and DC offset noise are neglected is because these two are

cancelled by design techniques in low-pass SDM and they are not important in

bandpass SDM designs [128]. The OpAmp thermal noise is modelled by the signal

flow graph shown in figure B.12. The constant in the figure is the RMS value of

the noise in voltage, which should come from transistor level simulation.

Figure B.13 shows the input signal with superimposition of the clock jitter, switch

thermal noise and OpAmp thermal noise. As shown in the enlarged window, the

input has fluctuation on the amplitude indicating the presence of the noise sources.

Appendix B Development of the 2nd order non-ideal SDM model 155

Switch
thermal
noise

Represents input

n(t)

Figure B.11: MATLAB Simulink model for the switch thermal noise mod-
elling.

Figure B.12: MATLAB Simulink model for the OpAmp thermal noise mod-
elling.

B.3.5 OpAmp finite DC gain

The transfer function of an ideal integrator is:

H(z) =
z−1

1 − z−1
(B.17)

Compared to equation B.16, it is a special case that the gain is unity and the

feedback factor is 1. The presence of the differences is because of the finite OpAmp

DC gain. The consequent effect is known as a “leakage” in the integrator [126, 128].

The precise transfer function can be rewritten with the considerations of the SC

Appendix B Development of the 2nd order non-ideal SDM model 156

Figure B.13: Input sine wave with the superimposition of clock jitter, switch
thermal noise and OpAmp thermal noise disturbances.

integrator implementation shown in figure B.7:

H(z) = greal
z−1

1 − αz−1

= rs(1 − 1 + rs + rp

A0

)
z−1

1 − (1 − rs

A0

)z−1
(B.18)

where rs = Cs/Cf , rp = Cp/Cf and A0 is the OpAmp’s finite DC gain. With the

change of the integrator transfer function, the finite DC gain changes the ideal

integrator pole from DC to other frequency defined by the circuit parameters.

B.3.6 OpAmp non-linear DC gain

As equation B.18 shows, even with the OpAmp finite DC gain, the relationship

between the circuit parameters, the OpAmp DC gain and the integrator leakage is

Appendix B Development of the 2nd order non-ideal SDM model 157

linear. Finite DC gain of the integrator does not introduce distortion directly to

the design [126, 127]. Distortion is introduced because the DC gain is non-linearly

dependent on the input signal. Figure B.14 shows that because of the non-linear

DC gain of the OpAmp, the output of the OpAmp drifts away from the ideal

response.

Figure B.14: Intuitive illustration of the non-linear DC gain versus output
voltage with the rail-to-rail voltage of Vdd.

To estimate this effect, a biquadratic equation, like the following, is added to the

integrator’s gain and leakage:

f(Vo) = 1 + β1Vo + β2V
2
o (B.19)

The coefficients of β1 and β2 can make the performance equal to ideal situation if

they are set to 0. Adding the non-linear expression onto the integrator gain and

leakage provides a new version of the integrator transfer equation:

greal = rs(1 − 1 + rs + rp

A0

f(Vo)) (B.20)

αreal = 1 − rs

A0

fVo (B.21)

The imperfect greal and αreal are modelled by the signal flow graph in figure B.15.

Both of the modules are superimposed to the integrator block.

Appendix B Development of the 2nd order non-ideal SDM model 158

(a) integrator non-linear finite DC gain

(b) integrator non-linear leakage

Figure B.15: MATLAB Simulink modules to model the non-linear integrator
DC gain (subplot a) and leakage (subplot b).

B.3.7 Quantiser non-ideal model

The quantiser in SDMs is literally a comparator. The response time of an ideal

quantiser is zero for any input. However, a real quantiser needs some setup time to

response the change of the inputs and generates correct output. Also, it features

some offset voltage, which corresponds to the shift of the threshold of the quantiser.

The two main non-ideal parameters used for the construction of a real quantiser

model are hysteresis and offset [129], which are shown in figure B.16. This is

modelled by a ‘quantizer’ component in MATLAB Simulink.

Vin

Vout

Offset

Hysterssis

Figure B.16: A relay model of the quantiser with offset and hysteresis.

Appendix B Development of the 2nd order non-ideal SDM model 159

B.3.8 Overview of the non-ideal SDM model

(a) non-ideal 2nd order SDM model

(b) ideal 2nd order SDM model

Figure B.17: Comparison of the MATLAB Simulink modules for the non-ideal
and ideal 2nd order SDMs.

All the imperfections discussed above are integrated into one non-ideal 2nd order

SDM model and is compared with the ideal SDM model in figure B.17. The clock

jitter, OpAmp thermal noise and switch thermal noise are superimposed onto the

input directly because of their additive feature. For the integrator finite DC gain,

leakage and non-linear DC gain, they are combined to model the behaviour of

the non-ideal integrator. The saturation component is to model the power supply

limitation applied on voltage signals. Finally, the model includes a non-ideal

model of the quantiser even though noise from this component is not considered

as important and influencing [126].

B.3.9 Simulation and analysis of the non-ideal model

To simulate the non-ideal SDM model, two sets of parameters are needed. The

first set is the distributed amplifier coefficients for the transfer function analysis.

Appendix B Development of the 2nd order non-ideal SDM model 160

10−5 10−4 10−3 10−2 10−1 100 101
−20

−10

0

10

20

30

40

50

60

70

Input amplitude (dB)

S
N

R
 (d

B
)

SNR comparison of ideal and non−ideal SDM

Ideal
Non−ideal

Figure B.18: SNR comparison of the ideal and non-ideal 2nd order SDM
obtained by FFT analysis on simulation results.

The other set of parameters is the circuit-level parameters to calculate the im-

perfections. The parameters should come from circuit level simulations [126] or

measure of physical designs [128]. The accuracy of the performance modelling is

dependent on this parameter set. By taking a study of design parameters mea-

sured in some physical designs [123, 130–133], the second set of parameters are

assigned and listed in table B.2.

Figure B.18 shows the comparison of the SNR curve of the ideal and non-ideal

2nd order SDM models using the same set of amplifier coefficients. The peak

SNR of the non-ideal model is about 55 dB, which is about 15 dB lower than

the ideal model result. This degradation on the SNR performance is significant.

The models used here have been applied to predict real physical designs and have

achieved good approximations to circuit level simulations [126]. It is observed that

there is an evident shift of the non-ideal SNR curve in the figure. This is because

the capacitor ratio constant b of integrator is 1/2 which modifies the gain of the

integrator to half of unity, so the input range is extended.

Appendix B Development of the 2nd order non-ideal SDM model 161

Table B.2: Summary of circuit-level design parameters for non-ideal 2nd order
SDM modelling and simulation.

Parameter Value Description
M 1.0 sine wave peak amplitude
n 2 SDM order
L 2 number of loops
Bq 1.0v successive quantisation level difference
fs 12.8MHz sampling frequency
fb 50kHz signal frequency
OSR 128 oversampling ration OSR = fs/fb

Δτ 1ns standard derivation of the clock jitter
Cs 2pF sampling capacitor
T 300K working temperature
k 1.38 × 1023 J/Kelvin Boltzmann’s constant
Vn 30μVrms input-referred OpAmp thermal noise
Cf 4pF feedback capacitor
SR 20V/μs OpAmp slew rate
A0 75dB OpAmp DC gain
Vor 3V OpAmp output range
Cp 0.005pF OpAmp input parasitic capacitance
Voff 30mV quantiser offset voltage
Vhys -50mV quantiser hysteresis voltage

Figure B.19 shows the comparison of the FFT results of the non-ideal model and

ideal model. Clearly, the power spectrum of the non-ideal SDM has larger in-band

noise than the ideal one and a noise floor presents. Also, the in-band noise power

spectrum is more flat because clock jitter noise, switch thermal noise and OpAmp

thermal noise cover the whole frequency range from zero to half of the sampling

frequency, when they are added, the entire noise level raises and degrades the

effectiveness of the noise-shaping effect.

B.4 SystemC models

A SystemC model of the non-ideal 2nd order SDM has been developed so that

an executable parameterised design can be created and iteratively involved by the

performance model construction program. A few points in the development of this

model have been summarised below.

Appendix B Development of the 2nd order non-ideal SDM model 162

10−3 10−2 10−1
−150

−130

−110

−90

−70

−50

−30

−10

10

Normalized frequency [0, 0.5]

A
m

pl
itu

de
 (d

B
)

PSD analysis and comparison of the ideal and non ideal SDM output

Figure B.19: Comparison of the power spectral density analyses of the non-
ideal and ideal SDM outputs.

B.4.1 Why SystemC?

As mentioned in section 2.3, there have been a few new HDLs emerging for AMS

modelling and simulation. Each of the languages has the capability of modelling

the non-ideal 2nd order SDM correctly. Compared to other HDLs, SystemC has

its advantages over other languages.

VHDL-AMS is a popular AMS modelling language and has wide applications.

As a standard HDL, it has all the language elements needed for the task. The

problem encountered in this research is the lack of suitable VHDL-AMS simulators.

The simulators that have been tried include SAMSA [117] and SystemVision from

MentorGraphic. SAMSA is a MATLAB toolbox that has limited support of the

language. It can not do simulation with VHDL-AMS alone but has to be assisted

by separate simulation configuration files. More sadly, it does not support mixed

model simulation, so it is for either pure digital or analogue designs. SystemVision

is a commercial simulator with excellent graphic user interface and integrated

Appendix B Development of the 2nd order non-ideal SDM model 163

design environment. The limitation of the tool is listed in the user guide [134].

The weakest point of SystemVision is that it does not support text I/O operations,

which makes the tool difficult to cooperate with other CAD tools and languages.

So the post simulation data processing has to be done using VHDL-AMS along.

This increases the development difficulty.

SystemC is flexible and powerful for digital system modelling. Without much

effort, it can be easily fitted into sampled data system modelling as used for the

SDM application. As the purpose of the research is not to develop dedicated

simulation environment for SDMs, this general purpose language is selected.

B.4.2 Conversion of the MATLAB Simulink modules to

SystemC

SystemC is a hardware-oriented HDL rather than the software-oriented computing

language MATLAB.

Figure B.20: SystemC module converted from MATLAB Simulink module.

Figure B.20 shows the structure of the SystemC module. Only two integrator

modules are needed and they are triggered by the system clock. Other operations

are combinational and have been integrated into the two modules respectively.

The signal generator module can be separated because it is independent to the

system and the only function is to provide one input signal.

B.4.3 Simulation results and comparison

Figure B.21 shows the comparison of the four FFT for the ideal and non-ideal SDM

models using MATLAB Simulink and SystemC respectively. The results show

good consistence of the two simulations. As the MATLAB model has been proved

Appendix B Development of the 2nd order non-ideal SDM model 164

Figure B.21: FFT analysis and comparison of SDM outputs for both of the
MATLAB Simulink and SystemC ideal and non-ideal models.

by both the circuit level simulation [126] and physical designs [128], SystemC

model can be trusted and used to generate the data needed for further performance

modelling and AMS optimisations.

Appendix C

Development of the RF Colpitts

bandpass filer

This appendix presents the development of the RF Colpitts bandpass filter. Colpitts-

type LC oscillators, like the one shown in figure C.1, are used in integrated circuit

bandpass filter designs [65, 135]. The MOS FET provides the positive feedback

mechanism for Q-enhancement to compensate inductor losses.

Figure C.1: Schematic of the Colpitts RF bandpass filter with a highlighted
on-chip planar spiral inductor.

165

Appendix C Development of the RF Colpitts bandpass filer 166

As the inductor in the design is the most challenging component to be imple-

mented, the modelling methodology of the inductor and the calculation of the

components’ values are introduced in detail in section C.1, C.2 and C.3.

C.1 Inductor SPICE model

On-chip planar rectangular spiral inductors can be modelled by five structural

parameters, as illustrated in figure C.1. They include the length of the first and

second wire segments (L1 and L2 separately), wire width (WL), space between

wires (S) and number of turns (Z). Two metal layers are needed by the planar

spiral inductor, where metal 1 is used as the spiral wire and metal 2 as the under-

pass to connect the inside terminal of the inductor with external connections. The

connections of the outside and inside terminals of the inductor have been labelled

as ‘1’ and ‘2’ in the figure. The spiral inductor can be accurately modelled by

the lumped π-model shown in figure C.2 a) [136]. In the model, Ltotal represents

the actual total inductance; Rs is the series resistance associated with the metal

wires between the connection point 1 and 2; Cs indicates the capacitive coupling

of the overlap between the spiral and the underpass; Cox is the oxide capacitance

between the spiral and the silicon substrate; the capacitance and resistance of the

substrate are modelled by the network formed by Csi and Rsi. The model pro-

vides accurate prediction of the inductor behaviour over a wide range of operating

frequencies, layout dimensions and process parameters [136]. A set of scalable

Figure C.2: a) the lumped π model of the on-chip spiral inductor; b) cross-
section view of the dimension of the spiral inductor.

Appendix C Development of the RF Colpitts bandpass filer 167

CMOS design rules based on the TSMC 0.35μm process [137] with two polysilicon

and four metal layers has been employed to obtain industrial level accuracy. A

cross-section view of the inductor is shown in figure C.2 b). A MATLAB program

has been developed based on Greenhouse’s method [138] for automatic calculation

of the inductance. The total inductance includes the self-inductance and mutual

inductance between parallel wire segments. The method offers superior accuracy

over many empirical formulas [136].

C.2 Inductance calculation

To calculate the values of the components in the π-model, not only the structural

parameters but also the parameters of the fabrication process are necessary. The

total inductance includes self-inductance and mutual inductance between parallel

wire segments.

Ltotal = L0 +
∑

M = L0 + M+ − M− (C.1)

where L0 is the sum of self-inductance, M+ and M− are the sum of positive and

negative mutual inductance separately. The self-inductance L0 can be calculated

using the following equation:

L0 = 2 · l · (ln 2l

WL + t
+ 0.5 +

WL + t

3l
) (C.2)

where l is the wire length, WL and t are the width and thickness of the wire.

For mutual inductances, the signs depend on the current flow directions in two

segments that are parallel. The values are functions of the length and separations

as the following:

M = 2 · l · Q (C.3)

where the mutual inductance parameter Q is calculated from equation:

Q = ln[
l

GMD
+

√
1 + (

l

GMD
)2 −

√
1 + (

GMD

l
)2 +

GMD

l
] (C.4)

In this equation, l is the length of the wire, GMD is the geometric mean dis-

tance between two inductor segments. The exact value can be calculated from the

Appendix C Development of the RF Colpitts bandpass filer 168

following equation:

ln(GMD) = ln(d) − W 2
L

12d2
− W 4

L

60d4
− W 6

L

168d6
− W 8

L

360d8
− · · · (C.5)

where WL is the width of the inductor and d is the distance between the tracks’

centres.

With a set of specifications on the structural parameters of the inductor, the

MATLAB program calculates the lengths of the other segments of the inductor

are derived using the following relationship:

lodd = l1 − (y − 2) · (WL + S) (C.6)

leven = l2 − (y − 1) · (WL + S) (C.7)

where y ∈ (2, Z) is the loop index. Then, the next step is to calculate the self and

mutual inductance using the equations introduced above. In general, for a parallel

pair of inductor like shown in figure C.3, the equation is:

2M1,2 = (M2+p + M2+q) − (Mp + Mq) (C.8)

Figure C.3: Geometry of two inductors in parallel.

As the inductor segments are symmetric over the central axis, there are two cases

for the parallel structure:

for p = q, M1,2 = M2+p − Mp (C.9)

for p = 0, 2M1,2 = (M1 + M2) − Mq (C.10)

Considering the structure of the inductor, it is clear that equation C.9 deals with

general situations and equation C.10 is applicable to the first segment only. For a

Z-turn spiral inductor, the overall inductance involves 4Z self-inductance terms,

2Z(Z − 1) positive mutual inductance terms and 2Z2 negative mutual inductance

Appendix C Development of the RF Colpitts bandpass filer 169

terms. The above models for inductance calculations provide superior accuracy

over wide range of rectangular planar on silicon than those empirical ones [136].

C.3 Inductor model verification

The fabrication process parameters used for Q factor calculation have been sum-

marised in table C.1.

Table C.1: Summary of the process parameters for on-silicon spiral inductor
modelling.

Parameter Value Unit Description
ε 8.854×10−18 F/μm permittivity of free space
ρ 2.82×10−2 Ω-μm resistivity of Aluminium
μ 1.257×10−12 H/μm permeability of Aluminium
Csub 6×10−18 F/μm2 capacitance of unit area of substrate
Gsub 1.6×10−7 S/μm2 conductance of unit area of substrate
t 1 μm thickness of the conductors

toxM1M2 0.4 μm
oxide thickness between
metal1 and metal2

tox 2.8 μm
oxide thickness between
inductor and substrate

The Q factor is calculated using the following equation:

Q =
fmaxG

|f−3dB − f+3dB| (C.11)

where fmaxG is the frequency where maximum gain G appears, f−3dB and f+3dB

are the frequency points whose gain values are 3dB smaller than the maximum

gain. Figure C.4 shows the influence of the inductor geometry on the Q factor.

Compared to the measured results from fabrications [136, 139], the model can

provide accurate modelling of the rectangular spiral on-silicon inductors.

Appendix C Development of the RF Colpitts bandpass filer 170

Figure C.4: Influence of the inductor geometry len and S on the Q factor.

C.4 Calculation of other components in the π

model

The equations of other components in the π model reflect the studies of the high-

order effects associated with the on-chip inductor. The series resistance is calcu-

lated from:

Rs = ρ · l/(WL ∗ teff) (C.12)

teff = δ · (1 − e(−t

δ
)) (C.13)

δ =

√
ρ

π · μ · f ; (C.14)

where ρ is the resistivity of the metal wires, μ is the permeability, l, t and WL are

the length, thickness and width, δ is the skin depth of the eddy current, teff is the

effective thickness. The series capacitance of the inductor in figure C.2 is:

Cs = n · W 2
L · εox

tox M1 M2

(C.15)

Appendix C Development of the RF Colpitts bandpass filer 171

where n is the number of overlaps of the spiral metal 1 and the underpass metal

2, εox is the oxide unit area capacitance, tox M1 M2 is the oxide thickness between

the spiral metal 1 and the underpass metal 2. The substrate network has three

components. They are derived straight from the following three equations:

Cox = 0.5 · l · WL · εox

tox

(C.16)

Csi = 0.5 · l · Wl · Csub (C.17)

Rsi =
2

l · WL · Gsub

(C.18)

where Csub and Gsub are the capacitance and conductance per unit area of the sub-

strate separately. All the calculations of the components have been implemented

in MATLAB as functions to be utilised by the SPICE netlist creation scripts.

References

[1] G. Bois, S. Tahar, and M. Zaki, “Formal verification of analog and mixed

signal designs: survey and comparison,” IEEE North-East Workshop on

Circuits and Systems, pp. 281 – 284, June 2006.

[2] G. Choi, J. Kim, H. Park, Y. Ahn, H. Park, J. Bae, I. Park, and D. Shin,

“A 0.18-μm CMOS front-end processor for a Blu-Ray Disc recorder with

an adaptive PRML,” IEEE Journal of Solid-State Circuits, vol. Vol.40(1),

pp. 342 – 350, Jan 2005.

[3] P. Kollig and S. Stan, “System-on-chip platform for high-speed DVD+R/RW

video and data applications,” IEEE International Conference on Consumer

Electronics (ICCE), pp. 326 – 327, June 17-19 2003.

[4] S. Lee, J. Park, S. Kim, S. Ko, and S. Kim, “Implementation of H.264/AVC

decoder for mobile video applications,” Asia and South Pacific Conference

on Design Automation, p. 2 pp, Jan 24-27 2006.

[5] D. Buss, B. Evans, J. Bellay, W. Krenik, B. Haroun, D. Leipold, K. Mag-

gio, J. Yang, and T. Moise, “SOC CMOS technology for personal internet

products,” IEEE Transactions on Electron Devices, vol. Vol.50(3), pp. 546

– 556, March 2003.

[6] D. Buss, “Device issues in the integration of analog/RF functions in deep

submicron digital CMOS,” International Electron Devices Meeting (IEDM)

Technical Digest, pp. 423 – 426, Dec 5-8 1999.

[7] R. A. Rutenbar, G. G. E. Gielen, and J. Roychowdhury, “Hierarchical mod-

eling, optimization, and synthesis for system-level analog and RF designs,”

Proceedings of the IEEE, vol. Vol.95(3), pp. 640 – 669, March 2007.

172

REFERENCES 173

[8] IEEE, “IEEE standard VHDL analog and mixed-signal extensions language

reference manual,” 1076.1 - 1999, Dec 1999.

[9] H. Al-Junaid and T. Kazmierski, “Analogue and mixed-signal extension to

SystemC,” IEE Proceedings-Circuits, Devices and Systems, pp. 682 – 690,

Dec 9 2005.

[10] O. Kaser, “On squashing hierarchical designs [VLSI],” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. Vol.14(11),

pp. 1398 – 1402, Nov 1995.

[11] M. Stan, A. Cabe, S. Ghosh, and Z. Qi, “Teaching top-down ASIC/SoC

design vs bottom-up custom VLSI,” IEEE International Conference on

Microelectronic Systems Education (MSE), pp. 89 – 90, June 3-4 2007.

[12] G. Gielen and R. Rutenbar, “Computer-aided design of analog and mixed-

signal integrated circuits,” Proceedings of the IEEE, vol. Vol.88(12), pp. 1825

– 1854, Dec 2000.

[13] R. Rutenbar, “Design automation for analog: the next generation of

tool challenges,” IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pp. 458 – 460, Nov 2006.

[14] IEEE, “Verilog-A language reference manual - analog extensions to Verilog

HDL version 1.0,” 1996.

[15] F. Pecheux, C. Lallement, and A. Vachoux, “VHDL-AMS and Verilog-

AMS as alternative hardware description languages for efficient modeling

of multidiscipline systems,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. Vol.24(2), pp. 204–225, Feb 2005.

[16] E. Ochotta, R. Rutenbar, and L. Carley, “Synthesis of high-performance

analog circuits in ASTRX/OBLX,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. Vol.15(3), pp. 273 – 294,

March 1996.

[17] G. Wolfe and R. Vemuri, “Extraction and use of neural network models

in automated synthesis of operational amplifiers,” Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, vol. Vol.22(2),

pp. 198 – 212, Feb 2003.

REFERENCES 174

[18] W. Nye, D. Riley, A. Sangiovanni-Vincentelli, and A. Tits, “DE-

LIGHT.SPICE: an optimization-based system for the design of integrated

circuits,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. Vol.7(4), pp. 501 – 519, Apr 1988.

[19] G. V. der Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche,

G. Gielen, W. Sansen, P. Veselinovic, and D. Leenarts, “AMGIE-A synthesis

environment for CMOS analog integrated circuits,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. Vol.20(9),

pp. 1037 – 1058, Sep 2001.

[20] K. Francken, P. Vancorenland, and G. Gielen, “DAISY: a simulation-based

high-level synthesis tool for ΣΔ modulators,” IEEE/ACM International

Conference on Computer Aided Design ICCAD, pp. 188 – 192, Nov 5-9

2000.

[21] T. Mukherjee, L. Carley, and R. Rutenbar, “Efficient handling of operat-

ing range and manufacturing line variations in analog cell synthesis,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. Vol.19(8), pp. 825 – 839, Aug 2000.

[22] S. Balkir, G. Diindar, and G. Alpaydin, “Evolution based synthesis of ana-

log integrated circuits and systems,” NASA/DoD Conference on Evolvable

Hardware, pp. 26 – 29, June 24-26 2004.

[23] V. M. zu Bexten, C. Moraga, R. Klinke, W. Brockherde, and K. Hess, “AL-

SYN: flexible rule-based layout synthesis for analog IC’s,” IEEE Journal of

Solid-State Circuits, vol. Vol.28(3), pp. 261 – 268, March 1993.

[24] T. Li and W. Sui, “Extending spice-like analog simulator with a time-domain

full-wave field solver,” IEEE MTT-S International Microwave Symposium

Digest, vol. Vol.2, pp. 1023–1026, May 20-25 2001.

[25] B. Song, S. Kim, S. Kwack, M. Choi, and K. Kwack, “A simulation efficiency

improvement method for simulation-based analog cell synthesis,” IEEE Asia

Pacific Conference on ASICs (AP-ASIC), pp. 225–228, Aug 23-25 1999.

[26] G. Gielen, H. Walscharts, and W. Sansen, “ISAAC: a symbolic simula-

tor for analog integrated circuits,” IEEE Journal of Solid-State Circuits,

vol. Vol.24(6), pp. 1587 – 1597, Dec 1989.

REFERENCES 175

[27] M. del Mar Hershenson, S. Boyd, and T. Lee, “GPCAD: a tool for CMOS op-

amp synthesis,” IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pp. 296 – 303, Nov 8-12 1998.

[28] B. Ray, P. Chaudhuri, and P. Nandi, “Efficient synthesis of OTA network

for linear analog functions,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. Vol.21(5), pp. 517 – 533, May 2002.

[29] C. Cuypers, N. Voo, M. Teplechuk, and J. Sewell, “General synthesis of

complex analogue filters,” Circuits, Devices and Systems, IEE Proceedings-,

vol. Vol.152(1), pp. 7 – 15, Feb 4 2005.

[30] H. Aboushady, L. de Lamarre, N. Beilleau, and M. Louerat, “A mixed

equation-based and simulation-based design methodology for continuous-

time sigma-delta modulators,” Midwest Symposium on Circuits and Systems

(MWSCAS), vol. Vol.1, pp. oI – 109–12, July 25-28 2004.

[31] M. Vogels and G. Gielen, “Architectural selection of A/D converters,” Design

Automation Conference (DAC), pp. 974–977, June 2-6 2003.

[32] L. Carley, P. Fung, P. Donehue, and A. Biyabani, “Numerical optimization-

based synthesis of pipelined A/D converters,” IEEE International

Symposium on Circuits and Systems (ISCAS), vol. Vol.5, pp. 2152–2155,

May 3-6 1992.

[33] G. Gielen and J. Franca, “CAD tools for data converter design: an overview,”

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, vol. Vol.43(2), pp. 77–89, Feb 1996.

[34] A. Odet-Allah and M. Hassoun, “An algorithm for symbolic and nu-

meric architecture determination in a knowledge-based analog-to-digital

converter synthesis environment using fuzzy membership functions,” IEEE

International Symposium on Circuits and Systems (ISCAS), vol. Vol.5,

pp. 607–611, May 30 - June 2 1999.

[35] V. N. Vapnik, The Nature of statistical learning theory. Springer Verlag

New York Inc, 2001. ISBN: 978-0387987804.

[36] S. Lu, W. Chen, and M. Li, “Fault pattern recognition of rolling bearing

based on wavelet packet and support vector machine,” World Congress on

REFERENCES 176

Intelligent Control and Automation (WCICA), vol. Vol.2, pp. 5516 – 5520,

June 21-23 2006.

[37] Z. Luo and Z. Shi, “On electronic equipment fault diagnosis using least

squares wavelet support vector machines,” World Congress on Intelligent

Control and Automation (WCICA), vol. Vol.2, pp. 6193 – 6197, June 21-23

2006.

[38] H. Li, X. Zhu, and B. Shi, “Nonlinear identification based on least

squares support vector machine,” Control, Automation, Robotics and Vision

Conference (ICARCV), vol. Vol.3, pp. 2331 – 2335, Dec 6-9 2004.

[39] A. Torralba, J. Chavez, and L. Franquelo, “FASY: a fuzzy-logic based tool

for analog synthesis,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. Vol.15(7), pp. 705 – 715, July 1996.

[40] A. Sahu, B.; Dutta, “Automatic synthesis of CMOS operational amplifiers:

a fuzzy optimization approach,” Asia and South Pacific Design Automation

Conference (ASP-DAC), pp. 366 – 371, Jan 7-11 2002.

[41] B. Scholkopf, “Statistical learning and kernel methods,” tech.

rep., Microsoft reasearch limited, Feb 2000. Software available at

http:://research.microsoft.com/~bsc.

[42] C. Hsu, C. Chang, and C. Lin, “A practical guide to sup-

port vector classification,” 2001. National Taiwan University,

http://www.csie.ntu.edu.tw/cjlin/libsvm.

[43] A. Smola and B. Scholkopf, “A tutorial on support vector regression,” tech.

rep., NeuroCOLT2 technical report series, NC2-TR-1998-30, Oct 1998.

[44] D. Sebald and J. Bucklew, “Support vector machine techniques for non-

linear equalization,” Control, Automation, Robotics and Vision Conference

(ICARCV), vol. Vol.48(11), pp. 3217 – 3226, Nov 2000.

[45] T. Kiely and G. Gielen, “Performance modeling of analog integrated cir-

cuits using least-squares support vector machines,” Proceedings of Design,

Automation and Test in Europe Conference and Exhibition, vol. Vol.1,

pp. 448 – 453, Feb 16-20 2004.

REFERENCES 177

[46] F. D. Bernardinis, M. I. Jordan, and A. sangiovanni Vincentelli, “Sup-

port vector machines for analog circuit performance representation,” Design

Automation Conference (DAC), pp. 964 – 969, Jun 2-7 2003.

[47] M. Ding and R. Vemuri, “A combined feasibility and performance macro-

model for analog circuits,” Design Automation Conference (DAC), pp. 63 –

68, June 13-17 2005.

[48] X. Ren and T. Kazmierski, “Linearly graded behavioural analogue perfor-

mance models using support vector machines and VHDL-AMS,” Forum on

specification and design languages (FDL), ECSI, Sep 27-30 2005.

[49] X. Ren and T. Kazmierski, “Behavioral-level performance modeling of analog

and mixed-signal systems using support vector machines,” IEEE Proceedings

of Behavioral Modeling and Simulation Workshop (BMAS), pp. 28 – 33, Sept

2006.

[50] X. Ren and T. Kazmierski, “Performance modelling and optimisation of RF

circuits using support vector machines,” IEEE International Mixed design

conference (MIXDES), pp. 317 – 321, June 21-24 2007.

[51] W. Wolf, “Synthesis tools help teach systems concepts in VLSI design,”

IEEE Transactions on Education, vol. Vol.35(1), pp. 11–17, Feb 1992.

[52] J. Allen, “Performance-directed synthesis of VLSI systems,” Proceedings of

the IEEE, vol. Vol.78(2), pp. 336 – 355, Feb 1990.

[53] K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, and F. Sendig,

“Design of mixed-signal systems-on-a-chip,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. Vol.19(12),

pp. 1561 – 1571, Dec 2000.

[54] J. Harlow, “Toward design technology in 2020: trends, issues, and chal-

lenges [VLSI design],” IEEE Computer Society Annual Symposium on VLSI,

vol. Vol.20, pp. 3 – 4, Feb 2003.

[55] V. Grimblatt, “Synthesis - state of art,” International Caribbean Conference

on Devices, Circuits and Systems, pp. 327 – 332, April 2006.

[56] P. Oehler, C. Grimm, and K. Waldschmidt, “A methodology for system-level

synthesis of mixed-signal applications,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. Vol.10(6), pp. 935 – 942, Dec 2002.

REFERENCES 178

[57] R. Harjani and B. Vinnakota, “Analog circuit observer blocks,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal,

vol. Vol.44(3), pp. 154 – 163, March 1997.

[58] IEEE, “IEEE standard VHDL language reference manual language reference

manual,” 1076 - 1987, Feb, 21 1992.

[59] A. Doboli and R. Vemuri, “Behavioral modeling for high-level synthesis of

analog and mixed-signal systems from VHDL-AMS,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. Vol.22(11),

pp. 1504 – 1520, Nov 2003.

[60] T. Kazmierski and F. Hamid, “Analogue integrated circuit synthesis

from VHDL-AMS behavioural specifications,” International Conference on

Microelectronics, vol. Vol.2, pp. 585–588, May 12-15 2002.

[61] M. Krasnicki, R. Phelps, R. Rutenbar, and L. Carley, “MAELSTROM:

efficient simulation-based synthesis for custom analog cells,” Design

Automation Conference (DAC), pp. 945 – 950, June 21-25 1999.

[62] R. Tortosa, J. de la Rosa, A. Rodriguez-Vazquez, and F. Fernandez, “A di-

rect synthesis method of cascaded continuous-time sigma-delta modulators,”

IEEE International Symposium on Circuits and Systems (ISCAS), vol. Vol.6,

pp. 5585 – 5588, May 23-26 2005.

[63] K. Mashiko, “Challenge and opportunity in analog and RF electronics,”

International Conference On ASIC (ASICON), vol. Vol.1, pp. 1205 – 1209,

Oct 24-27 2005.

[64] Z. Ciota, A. Napieralski, and J. Noullet, “Analogue realisation of inte-

grated FIR filters,” IEE Proceedings of Circuits, Devices and Systems,

vol. Vol.143(5), pp. 274 – 281, Oct 1996.

[65] F. A. Hamid, Architectural synthesis of analogue filters from behavioural

VHDL-AMS descriptions. PhD thesis, School of Electronics and computer

science, University of Southampton, 2004.

[66] A. Younis and R. Massara, “Automated synthesis of switched-capacitor

ladder filters within an analogue silicon compilation environment,” IEE

Proceedings of Circuits, Devices and Systems, vol. Vol.139(2), pp. 249 –

255, 1992.

REFERENCES 179

[67] C.-M. Chang, B. Al-Hashimi, Y. Sun, and J. Ross, “New high-order filter

structures using only single-ended-input OTAs and grounded capacitors,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. Vol.51(9),

pp. 458 – 463, Sept 2004.

[68] E. Drakakis, A. Payne, and C. Toumazou, ““log-domain state-space”:

a systematic transistor-level approach for log-domain filtering,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, vol. Vol.46(3), pp. 290 – 305, March 1999.

[69] M. Wang, C.-I. H. Chen, and S. Radhakrishnan, “Low-power 4-b 2.5-

GSPS pipelined flash analog-to-digital converter in 130-nm CMOS,” IEEE

Transactions on Instrumentation and Measurement, vol. Vol.56(3), pp. 1064

– 1073, June 2007.

[70] E. Culurciello and A. Andreou, “An 8-bit 800-μW1.23-MS/s successive

approximation ADC in SOI CMOS,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. Vol.53(9), pp. 858 – 861, Sept 2006.

[71] Q. Wu and A. Wang, “A 12 bits/200 MHz resolution/sampling/power-

optimized ADC in 0.25 μm SiGe BiCMOS,” IEEE International Symposium

on Circuits and Systems (ISCAS), vol. Vol.6, pp. 6174 – 6177, May 23-26

2005.

[72] Y.-I. Park, S. Karthikeyan, W. Koe, Z. Jiang, and T. Tan, “A 16-bit,

5MHz multi-bit sigma-delta ADC using adaptively randomized DWA,” IEEE

Custom Integrated Circuits Conference, pp. 115 – 118, Sept 21-24 2003.

[73] H. Zhang and A. Doboli, “Fast time-domain symbolic simulation for synthe-

sis of sigma-delta analog-digital converters,” International Symposium on

Circuits and Systems (ISCAS), vol. Vol.5, pp. 125 – 128, May 23-26 2004.

[74] J. Ruiz-Amaya, J. de la Rosa, M. Delgado-Restituto, and A. Rodriguez-

Vazquez, “Behavioral modeling simulation and high-level synthesis of

pipeline A/D converters,” IEEE International Symposium on Circuits and

Systems (ISCAS), vol. Vol.6, pp. 5609 – 5612, May 23-26 2005.

[75] Y.-T. Chien, L.-R. Huang, W.-T. Chen, G.-K. Ma, and T. Mukherjee,

“SPEED: synthesis of high-performance large scale analog/mixed signal cir-

cuit,” IEEE International Symposium on VLSI Design, Automation and Test

(VLSI-TSA-DAT), pp. 112 – 115, April 27-29 2005.

REFERENCES 180

[76] R. Saleh, B. Antao, and J. Singh, “Multilevel and mixed-domain simula-

tion of analog circuits and systems,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. Vol.15(1), pp. 68 – 82, Jan

1996.

[77] X. Li, X. Zeng, D. Zhou, X. Ling, and W. Cai, “Behavioral model-

ing for analog system-level simulation by wavelet collocation method,”

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, vol. Vol.50(6), pp. 299 – 314, June 2003.

[78] R. Arora, U. Dasgupta, D. Hocevar, and L. Goff, “OASYS: a tool for

aiding in design of high performance linear circuits,” IEEE International

Symposium on Circuits and Systems (ISCAS), vol. Vol.3, pp. 1911–1914,

May 1-3 1990.

[79] F. El-Turky and E. Perry, “BLADES: an artificial intelligence approach to

analog circuit design,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. Vol.8(6), pp. 680 – 692, June 1989.

[80] M. Hassoun and L. Huelsman, “Symbolic circuit analysis: an overview,”

Midwest Symposium on Circuits and Systems, vol. Vol.1.2, pp. 957 – 960,

Aug 13-16 1995.

[81] G. Gielen, H. Walscharts, and W. Sansen, “Analog circuit design optimiza-

tion based on symbolic simulation and simulated annealing,” IEEE Journal

of Solid-State Circuits, vol. Vol.25(3), pp. 707 – 713, Jun 1990.

[82] Q. Yu and C. Sechen, “A unified approach to the approximate symbolic anal-

ysis of large analog integrated circuits,” IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, vol. Vol.43(8), pp. 656 –

669, Aug 1996.

[83] B. Murmann, P. Nikaeen, D. Connelly, and R. Dutton, “Impact of scaling

on analog performance and associated modeling needs,” IEEE Transactions

on Electron Devices, vol. Vol.53(9), pp. 2160–2167, Sep 2006.

[84] G. Alpaydin, S. Balkir, and G. Dundar, “An evolutionary approach to au-

tomatic synthesis of high-performance analog integrated circuits,” IEEE

Transaction on Evolutionary Computation, vol. Vol.7(3), pp. 240 – 252,

June 2003.

REFERENCES 181

[85] G. Alpaydin, S. Balkir, and G. Dundar, “An evolutionary approach to au-

tomatic synthesis of high-performance analog integrated circuits,” IEEE

Transactions on Evolutionary Computation, vol. Vol.7(3), pp. 240 – 252,

June 2003.

[86] N. K. Bose, Neural network fundamentals with graphs, algorithms, and

applications. McGraw-Hill series in electrical and computer engineer-

ing. Communications and signal processing, McGraw-Hill, 1996. ISBN:

0071140646 (pbk).

[87] R. J. Vaccaro, Digital control: a state-space approach. McGraw-Hill series

in electrical and computer engineering. control theory, McGraw-Hill, 1995.

ISBN: 0070667810.

[88] B. Antao and A. Brodersen, “ARCHGEN: Automated synthesis of ana-

log systems,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. Vol.3(2), pp. 231 – 244, June 1995.

[89] S. Somanchi and M. Manwaring, “Analog synthesis from behavioral descrip-

tions,” IEEE International Symposium on Circuits and Systems (ISCAS),

vol. Vol.3, pp. 2079 – 2082, May 1993.

[90] G. Klir, Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall,

1995. ISBN: 0131011715.

[91] K. Ogata, Modern control engineering. Prentice Hall, 2nd ed., 1990. ISBN:

0135891280.

[92] J. Yuan, N. Farhat, and J. V. der Spiegel, “GBOPCAD: A synthesis tool

for high-performance gain-boosted Opamp design,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. Vol.52(8), pp. 1535 – 1544, Aug

2005.

[93] J. Carnahan and R. Sinha, “Nature’s algorithms [genetic algorithms],” IEEE

Journal of Potentials, vol. Vol.20(2), pp. 21 – 24, Apr-May 2001.

[94] J. Grimbleby, “Automatic analogue circuit synthesis using genetic algo-

rithms,” IEE Proceedings of Circuits, Devices and Systems, vol. Vol.147(6),

pp. 319 – 323, Dec 2000.

REFERENCES 182

[95] T. Sriver and J. Chrissis, “Combined pattern search and ranking and selec-

tion for simulation optimization,” Winter Simulation Conference, vol. Vol.1,

Dec 5-8 2004.

[96] S. Ebadi, K. Forouraghi, and S. Sattarzadeh, “Optimum low sidelobe

level phased array antenna design using pattern search algorithms,” IEEE

Antennas and Propagation Society International Symposium, vol. Vol.1B,

pp. 770–773, July 3-8 2005.

[97] A. Honkela, “Speeding up cyclic update schemes by pattern searches,”

Conference on Neural Information Processing, vol. Vol.1, pp. 18–22, Nov

2002.

[98] A. Zaouche, I. Dayoub, and J. Rouvaen, “Blind equalization via the use

of generalized pattern search optimization and zero forcing sectionally con-

vec cost function,” Information and communication technologies (ICTTA),

vol. Vol.2, pp. 2303–2308, April 2006.

[99] V. Torzcon, “On the convergence of pattern search algorithm,” SIAM

Journal on optimization, vol. Vol.7(1), pp. 1–25, 1997.

[100] R. Lewis and V. Torzcon, “Pattern search algorithm for bound constrained

minimization,” SIAM Journal on optimization, vol. Vol.9(4), pp. 1082–1099,

1999.

[101] R. Lewis and V. Torzcon, “Pattern search algorithm for linearly constrained

minimization,” SIAM Journal on optimization, vol. Vol.10(3), pp. 917–941,

2000.

[102] E. Christen and K. Bakalar, “VHDL-AMS - a hardware description language

for analog and mixed-signal applications,” IEEE Transactions on Circuits

and Systems II: Analog and Digital Signal Processing, vol. Vol.46(10),

pp. 1263 – 1272, Oct 1999.

[103] T. Kazmierski, “A formal description of VHDL-AMS analogue systems,”

Design, Automation and Test in Europe (DATE), pp. 916 – 920, Feb 23-26

1998.

REFERENCES 183

[104] G. Domenech-Asensi, T. Kazmierski, J. Ruiz-Marin, and R. Ruiz-Merino,

“Architectural synthesis of high-level analogue VHDL-AMS descriptions us-

ing netlist extraction from parse trees,” IEE Journal of Electronics Letters,

vol. Vol.36(20), pp. 1680 – 1682, Sep 28 2000.

[105] IEEE, IEEE Standard SystemC Language Reference Manual. March 31

2006.

[106] H. Al-Junaid and T. Kazmierski, “SEAMS - a SystemC environment with

analog and mixed-signal extensions,” International Symposium on Circuits

and Systems (ISCAS), vol. Vol.5, pp. 281 – 284, May 23-24 2004.

[107] A. Vachoux, C. Grimm, and K. Einwich, “Extending SystemC to sup-

port mixed discrete-continuous system modeling and simulation,” IEEE

International Symposium on Circuits and Systems (ISCAS), vol. Vol.5,

pp. 5166 – 5169, May 23-26 2005.

[108] J. Bruce, “Meeting the analog world challenge: Nyquist-rate analog-to-

digital converter architectures,” IEEE Journal of Potentials, vol. Vol.17(5),

pp. 36 – 39, Dec - Jan 1998 - 1999.

[109] P. Aziz, H. Sorensen, and J. vn der Spiegel, “An overview of sigma-delta

converters,” IEEE Signal Processing Magazine, vol. Vol13(1), pp. 61 – 84,

Jan 1996.

[110] R. Stewart and E. Pfann, “Oversampling and sigma-delta strategies for

data conversion,” Electronics and Communication Engineering Journal,

vol. Vol.10(1), pp. 36 – 47, Feb 1998.

[111] R. Schreier, Understanding delta-sigma data converters. Wiley-Interscience,

2005. ISBN: 0471465852.

[112] M. Pontil and A. Verri, “Support vector machines for 3D object recogni-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. Vol.20, pp. 637 – 646, June 1998.

[113] J. Huang, X. Shao, and H. Wechsler, “Face pose discrimination using support

vector machines (SVM),” International Conference on Pattern Recognition,

vol. Vol.1, pp. 154 – 156, Aug 16-20 1998.

REFERENCES 184

[114] T. Onoda, H. Murata, G. Ratsch, and K.-R. Muller, Experimental analysis

of support vector machines with different kernels based on non-intrusive

monitoring data, vol. Vol.3, pp. 2186 – 2191. May 12-17 2002.

[115] A. Smola and B. Scholkopf, Kernel machine software, 2002. Report available

at http://www.kernel-machines.org/index.html.

[116] C.-C. Chang and C.-J. Lin, LibSVM: a library for support vector machines,

2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[117] M. Zorzi, F. Franze, and N. Speciale, “Construction of VHDL-AMS sim-

ulator in MATLAB,” International Workshop on Behavioral Modeling and

Simulation (BMAS), pp. 113 – 117, Oct 7 - 8 2003.

[118] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using second

order information for training SVM,” Journal of Machine Learning Research.

[119] P.-H. Chen, R.-E. Fan, and C.-J. Lin;, “A study on SMO-type decomposi-

tion methods for support vector machines,” IEEE Transactions on Neural

Networks, vol. Vol.17(4), pp. 893 – 908, July 2006.

[120] M. Smith, WinSpice3 User’s manual, June 10 2004. Software available at

http://www.ousetech.co.uk/winspice2/.

[121] F. Herrera, M. Lozano, and A. M. Sanchez, “A taxonomy for the

crossover operator for real-coded genetic algorithms: an experimental

study,” International Journal of Intelligent Systems, vol. Vol.18, pp. 309–

338, 2003.

[122] B. Boser and B. Wooley, “The design of sigma-delta modulation analog-

to-digital converters,” IEEE Journal of Solid-State Circuits, vol. Vol.33(6),

pp. 1298 – 1308, Dec 1988.

[123] M. Safi-Harb and G. Roberts, “Low power delta-sigma modulator for ADSL

applications in a low-voltage CMOS technology,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. Vol.52(10), pp. 2075 – 2089,

Oct 2005.

[124] G. W. Flake and S. Lawrence, “Efficient SVM regression training with

SMO,” Machine Learning, vol. Vol.46, pp. 271–290, 2002.

REFERENCES 185

[125] S. Rabii and B. A. Wooley, The Design of Low-Voltage, Low-Power

Sigma-Delta Modulators. Springer, 1998. ISBN: 0792383613.

[126] H. Zare-Hoseini, I. Kale, and O. Shoaei, “Modeling of switched-

capacitor delta-sigma modulators in SIMULINK,” IEEE Transactions on

Instrumentation and Measurement, vol. Vol.54(4), pp. 1646 – 1654, Aug

2005.

[127] F. Medeiro, B. Perez-Verdu, A. Rodriguez-Vazquez, and J. Huertas, “Mod-

eling opamp-induced harmonic distortion for switched-capacitor sigma-delta

modulator design,” IEEE International Symposium on Circuits and Systems

(ISCAS), vol. Vol.5, pp. 445 – 448, May 30 - June 2 1994.

[128] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and

A. Baschirotto, “Behavioral modeling of switched-capacitor sigma-delta

modulators,” IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, vol. Vol.50(3), pp. 352 – 364, March 2003.

[129] R. Khoini-Poorfard and D. Johns, “On the effect of comparator hysteresis

in interpolative al modulators,” IEEE International Symposium on Circuits

and Systems (ISCAS), pp. 1148 – 1151, May 3 - 6 1993.

[130] T. Lee, W. Lin, and D.-L. Lee, “Design techniques for low-voltage microp-

ower cmos switched-capacitor delta-sigma modulator,” IEEE Asia-Pacific

Conference on Circuits and Systems, vol. Vol.1, pp. 249 – 252, Dec 6 - 9

2004.

[131] J. Ruiz-Amaya, J. de la Rosa, F. Medeiro, F. Fernandez, R. del Rio,

B. Perez-Verdu, and A. Rodriguez-Vazquez, “Matlab/simulink-based high-

level synthesis of discrete-time and continuous-time σ δ modulators,”

Design, Automation and Test in Europe Conference and Exhibition (DATE),

vol. Vol.3, pp. 150 – 155, Feb 16 - 20 2004.

[132] S. Rabii and B. Wooley, “A 1.8-V digital-audio sigma-delta modulator in 0.8-

μm CMOS,” IEEE Journal of Solid-State Circuits, vol. Vol.32(6), pp. 783 –

796, June 1997.

[133] S. Brigati, F. Francesconi, P. Malcovati, and F. Maloberti, “A fourth-

order single-bit switched-capacitor σ δ modulator for distributed sensor

applications,” IEEE Transactions on Instrumentation and Measurement,

vol. Vol.53(2), pp. 266 – 270, April 2004.

REFERENCES 186

[134] M. Graphics, “SystemVision user’s manual,” www.mentor.com, January

2005.

[135] D. Li and Y. Tsividis, “Active LC filters on silicon,” IEE Proceedings of

Circuits, Devices and Systems, vol. Vol.147(1), pp. 49 – 56, Feb 2000.

[136] C. Yue and S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE

Transactions on Electron Devices, vol. Vol.47(3), pp. 560 – 568, March 2000.

[137] MOSIS, “MOSIS scalable CMOS (SCMOS),” tech. rep.,

The MOSIS Service, Oct 4 2004. Document available at

http://www.mosis.org/Technical/Designrules/scmos.

[138] H. Greenhouse, “Design of planar rectangular microelectronic inductors,”

IEEE Transactions on Parts, Hybrids, and Packaging, vol. Vol.10(2), pp. 101

– 109, Jun 1974.

[139] J. Burghartz, D. Edelstein, M. Soyuer, H. Ainspan, and K. Jenkins, “RF

circuit design aspects of spiral inductors on silicon,” IEEE Journal of

Solid-State Circuits, vol. Vol.33(12), pp. 2028 – 2034, Dec 1998.

