The University of Southampton
University of Southampton Institutional Repository

An integrated scheme for adaptation and updating of anomaly detection model

An integrated scheme for adaptation and updating of anomaly detection model
An integrated scheme for adaptation and updating of anomaly detection model
anomaly detection, gaussian mixture model, training data
284-296
Springer
Chen, S.L.
ffb45732-4c5d-4329-afa3-9cab1c38fd1c
Wood, R.J.K.
d9523d31-41a8-459a-8831-70e29ffe8a73
Wang, L.
c50767b1-7474-4094-9b06-4fe64e9fe362
Callan, R.
de583693-edb5-4b6f-81fa-9782e8981685
Powrie, H.E.G.
7a4ce31f-8441-47a3-827a-5463dcdfedfb
Chen, S.L.
ffb45732-4c5d-4329-afa3-9cab1c38fd1c
Wood, R.J.K.
d9523d31-41a8-459a-8831-70e29ffe8a73
Wang, L.
c50767b1-7474-4094-9b06-4fe64e9fe362
Callan, R.
de583693-edb5-4b6f-81fa-9782e8981685
Powrie, H.E.G.
7a4ce31f-8441-47a3-827a-5463dcdfedfb

Chen, S.L., Wood, R.J.K., Wang, L., Callan, R. and Powrie, H.E.G. (2008) An integrated scheme for adaptation and updating of anomaly detection model. In Proceedings of the 3rd World Congress on Engineering Asset Management and Intelligent Maintenance Systems. Springer. pp. 284-296 .

Record type: Conference or Workshop Item (Paper)

Full text not available from this repository.

More information

Published date: 2008
Venue - Dates: 3rd World Congress on Engineering Asset Management and Intelligent Maintenance Systems, 2008-10-27 - 2008-10-30
Keywords: anomaly detection, gaussian mixture model, training data

Identifiers

Local EPrints ID: 64896
URI: https://eprints.soton.ac.uk/id/eprint/64896
PURE UUID: 47af29aa-a9aa-4f2b-84ca-7fd5dde26b70
ORCID for R.J.K. Wood: ORCID iD orcid.org/0000-0003-0681-9239
ORCID for L. Wang: ORCID iD orcid.org/0000-0002-2894-6784

Catalogue record

Date deposited: 21 Jan 2009
Last modified: 14 Mar 2019 01:52

Export record

Contributors

Author: S.L. Chen
Author: R.J.K. Wood ORCID iD
Author: L. Wang ORCID iD
Author: R. Callan
Author: H.E.G. Powrie

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×