

University of Southampton Research Repository
ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination

UNIVERSITY OF SOUTHAMPTON
FACULTY OF MEDICINE, HEALTH & LIFE SCIENCES
School of Medicine

**Functional Study of Ubiquitin C-terminal Hydrolase-L1 Gene Promoter
Haplotypes**

by

Shane Sanassy

Thesis for the degree of Doctor of Philosophy

October 2007

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MEDICINE, HEALTH & LIFE SCIENCES

SCHOOL OF MEDICINE

Doctor of Philosophy

**FUNCTIONAL STUDY OF UBIQUITIN C-TERMINAL HYDROLASE-L1 GENE
PROMOTER HAPLOTYPES**

by Shane Sanassy

The Ubiquitin Conjugating System (UCS) describes a system in which the 96-amino acid residue Ubiquitin can be selectively covalently linked to intracellular proteins. This endows cells with an indispensable level of regulation to determine protein fate in a wide range of basic cellular events.

The abundant, neuron specific Ubiquitin Carboxyl-Terminal Hydrolase-L1 (UCH-L1) is intimately involved with the UCS – both in a hydrolase and ligase capacity. Mutations in *UCH-L1* have clearly been associated with various neurodegenerative disorders, including Alzheimer's, Huntington's and particularly Parkinson's disease.

The main and unique objective of this study was to identify any common Caucasian sequence variants in *UCH-L1*'s promoter, and to investigate whether they are associated with neurodegenerative symptoms, and any change in *UCH-L1* transcriptional activity.

Seven novel *UCH-L1* Single Nucleotide Polymorphisms (SNPs), as well as the C54A documented coding region polymorphism (Ser18Tyr), were identified using both denaturing High Performance Liquid Chromatography (dHPLC) and DNA sequencing analysis. In relation to the translational start site, the novel SNPs elucidated were: A-307G, A-306G, G-234A, A-24G, C-16T, G12A and G21A. Restriction Fragment Length Polymorphism (RFLP) genotyping analysis was then employed within Caucasian DNA sample sets of 31 and 480 individuals, to firstly elucidate the common *UCH-L1* promoter haplotypes that exist within the population, and secondly, in an attempt to uncover any association between the polymorphic alleles and general neurodegenerative symptoms - no association was uncovered.

Using pGEM-T Easy as an initial 'holding vector', the three common *UCH-L1* promoter haplotypes elucidated – AAGAC, GAGGT and AGAAC - were incorporated into a modified pGL3 vector to ascertain transcriptional activity rates. This was done by Luciferase expression analysis, and the results identified the GAGGT promoter haplotype as having a significantly increased transcriptional activity in all human cell lines tested.

It is my contention, that the pronounced increase in transcriptional activity elucidated for the GAGGT *UCH-L1* promoter haplotypes, potentially indicates a primary genetic risk factor for sporadic Parkinson's disease in the Caucasian population – a novel pathogenic model of which is proposed in this thesis. The fact that RFLP genotyping analysis uncovered no association of the promoter polymorphic alleles with more general neurodegenerative symptoms, indicates the need for further studies to be focused more specifically towards Parkinson's disease.

Table of Contents

<u>Abstract</u>	i
<u>Declaration of Authorship</u>	ii
<u>Acknowledgements</u>	iii
<u>Abbreviations</u>	iv
<u>1 Introduction</u>	1
<u>1.1 The Ubiquitin-Conjugating System</u>	1
<u>1.1.1 Polyubiquitination</u>	4
<u>1.1.2 Monoubiquitination and Endocytic Trafficking</u>	6
<u>1.1.3 A Fourth UCS Enzyme?</u>	7
<u>1.1.4 The Proteasome (inv. UPS)</u>	8
<u>1.2 Deubiquitinating Enzymes (DUBs)</u>	11
<u>1.2.1 Ubiquitin-Specific Proteases (UBPs/ USPs)</u>	12
<u>1.2.2 Ubiquitin C-Terminal Hydrolases (UCHs)</u>	14
<u>1.2.3 The Ovarian Tumour (OTU)- Related Proteases</u>	16
<u>1.2.4 Machando-Joseph Disease Proteins (or Josephin) Domain Protease (MJDs)</u>	17
<u>1.2.5 JAMM Motif Proteases (Metalloprotease Subclass)</u>	17

<u>1.3 Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCH-L1)</u>	19
<u>1.3.1 UCH-L1's Isoleucine93Methionine Mutation (Ile93Met) and Parkinson's Disease</u>	20
<u>1.3.2 UCH-L1's Serine18Tyrosine Polymorphism (Ser18Tyr) and Parkinson's Disease</u>	25
<u>1.3.2.1 UCH-L1's Ser18Tyr Polymorphism and Alzheimer's Disease</u>	29
<u>1.3.2.2 UCH-L1's Ser18Tyr Polymorphism and Huntington's Disease</u>	30
<u>1.3.3 UCH-L1's Methionine124Leucine Mutation (Met124Leu) and Parkinson's Disease</u>	30
<u>1.3.4 UCH-L1 and Dementia With Lewy Bodies</u>	31
<u>1.3.5 Gracile Axonal Dystrophic Mouse - UCH-L1 Intragenic Deletion</u>	31
<u>1.3.6 Ubiquitin Carboxyl-Terminal Hydrolase-L1 – Discussion</u>	33
<u>1.3.7 Summary of UCH-L1 Neurodegenerative Disease Association</u>	38
<u>1.4 Other UCS Associated Genes Implicated in Parkinson's Disease</u>	39
<u>1.4.1 α-Synuclein</u>	39
<u>1.4.2 Parkin</u>	41
<u>1.4.3 Synphilin-1</u>	42
<u>1.5 Parkinson's Disease</u>	44
<u>1.5.1 Physiological Characteristics of Parkinson's Disease</u>	44

<u>1.5.2 Parkinson's Disease Epidemiology</u>	45
<u>1.5.3 Pathology of Parkinson's Disease</u>	46
<u>1.5.4 Environmental Factors in Parkinson's Disease</u>	50
<u>1.5.5 Parkinson's Disease Therapy</u>	53
<u>1.6 Basic Overview of other Neurodegenerative Diseases (Dementias) Associated with UCH-L1</u>	55
<u>1.6.1 Alzheimer's Disease</u>	55
<u>1.6.2 Dementia with Lewy Bodies</u>	58
<u>1.6.3 Huntington's Disease</u>	62
<u>1.7 Basic Relevant Molecular Overview</u>	66
<u>1.7.1 Eukaryotic Transcription Regulation</u>	66
<u>1.7.1.1 The Core Promoter</u>	67
<u>1.7.1.2 Upstream Regulatory Elements</u>	68
<u>1.7.1.3 Distant Regulatory Elements</u>	68
<u>1.7.1.4 DNA Methylation</u>	69
<u>1.7.2 Genome Variation</u>	70
<u>1.7.2.1 Hardy-Weinberg Equilibrium</u>	72
<u>1.8 UCH-L1's Expression</u>	73
<u>1.9 This Study's Importance</u>	77

<u>1.10 Objectives</u>	78
<u>2. Materials & Methods</u>	79
<u>2.1 Polymorphism Identification</u>	79
<u>2.1.1 DNA Arrays</u>	79
<u>2.1.1.1 x26 Control DNA Array</u>	79
<u>2.1.1.2 x64 Control DNA Array</u>	79
<u>2.1.1.3 x480 DNA Array with Cognitive Function Data</u>	80
<u>2.1.2 Polyacrylamide MADGE Gels</u>	80
<u>2.1.2.1 MADGE Background</u>	80
<u>2.1.2.2 MADGE Gel Preparation</u>	81
<u>2.1.2.3 MADGE Gel Loading and Running</u>	82
<u>2.1.2.4 DNA Ladders</u>	83
<u>2.1.3 Polymerase Chain Reaction</u>	83
<u>2.1.3.1 Theory</u>	83
<u>2.1.3.2 Protocol</u>	85
<u>2.1.3.3 Polymerase Chain Reaction + Betaine</u>	86
<u>2.1.3.3.1 Theory</u>	86
<u>2.1.3.3.2 Protocol</u>	86
<u>2.1.3.4 PCR Primer Pairs Utilised to Amplify <i>UCH-L1</i> Regions</u>	87
<u>2.1.4 denaturing High Performance Liquid Chromatography</u>	88
<u>2.1.4.1 Basic HPLC Theory</u>	88

<u>2.1.4.2 dHPLC Theory</u>	89
<u>2.1.4.3 Setting up a dHPLC Method in 'WavemakerTM'</u>	90
<u>2.1.4.4 dHPLC Protocol</u>	92
<u>2.1.5 DNA Sequencing</u>	93
<u>2.1.5.1 Underlying Theory</u>	93
<u>2.1.5.2 Theory</u>	94
<u>2.1.5.3 Shrimp Alkaline Phosphatase/ Exonuclease I Sample Preparation</u>	95
<u>2.1.5.4 Sequencing Reaction Protocol</u>	96
<u>2.1.5.5 Ethanol Precipitation Protocol</u>	96
<u>2.1.5.6 Sequencing Gel Preparation</u>	97
<u>2.1.5.7 Sample Preparation/ Loading</u>	99
<u>2.1.5.8 Sequence Run</u>	99
<u>2.2 Single Nucleotide Polymorphism</u>	100
<u>2.2.1 Restriction Endonucleases</u>	100
<u>2.2.2 PCR Product Endonuclease Digestion</u>	101
<u>2.2.3 Primer-Intro. Restriction Analysis-Polymerase Chain Reaction</u>	101
<u>2.2.4 Restriction Fragment Length Polymorphism Genotyping Methods</u>	102
<u>2.2.4.1 C-16T SNP Genotyping</u>	102
<u>2.2.4.2 G-234A SNP Genotyping</u>	103
<u>2.2.4.3 A-307G SNP Genotyping</u>	104
<u>2.2.4.4 C54A (S18Y) SNP Genotyping</u>	105

<u>2.2.4.5 A-24G SNP Genotyping</u>	105
<u>2.2.4.6 A-306G SNP Genotyping</u>	107
 <u>2.3 Cloning Methodologies</u>	109
<u>2.3.1 Plasmid DNA Vectors</u>	109
<u>2.3.1.1 pGEM-T Easy Theory</u>	109
<u>2.3.1.2 pGL3-Basic Vector</u>	111
<u>2.3.1.3 pGL3-<i>Eco</i> RI Construction</u>	112
<u>2.3.1.4 pGL3-<i>Eco</i> RI Modified Vector</u>	113
<u>2.3.2 Agarose Gels</u>	114
<u>2.3.2.1 Gel Loading and Running</u>	114
<u>2.3.3 Plasmid DNA Endonuclease Digestion</u>	115
<u>2.3.4 General DNA Isolation/ Purification Protocols</u>	115
<u>2.3.4.1 DNA Isolation from Agarose Gels</u>	115
<u>2.3.4.2 Miniprep Protocol</u>	116
<u>2.3.4.3 Midiprep Protocol</u>	117
<u>2.3.5 Polymerase Chain Reaction from Bacterial Colony</u>	119
<u>2.3.6 Plasmid DNA Endonuclease Digestion</u>	119
<u>2.3.7 Preparation of Competent Cells – Calcium Chloride Method</u>	120
<u>2.3.8 Ligations Using the pGEM-T Easy Vector</u>	121
<u>2.3.9 Ligations Using the Modified pGL3-<i>Eco</i> RI Vector</u>	122

<u>2.3.10 Transformations Using the pGEM-T Easy Vector System</u>	123
<u>2.3.11 Transformations Using the pGL3 Vector Ligation Products</u>	124
 <u>2.4 Cell Culture Protocols</u>	125
<u>2.4.1 Mammalian Cell Lines and Required Growth Media</u>	125
<u>2.4.1.1 - A2058 (Human Skin Melanoma)</u>	125
<u>2.4.1.2 – MCF-7 (Human Breast Adenocarcinoma)</u>	125
<u>2.4.1.3 – ND-7 (Mouse Neuroblastoma/ Rat Basal Ganglia Neuron Hybrid)</u>	125
<u>2.4.1.4 – HCN-1A (Human Brain Cortical Neuron)</u>	126
<u>2.4.2 Cell line Maintenance</u>	126
<u>2.4.2.1 Propagation</u>	126
<u>2.4.2.2 Subculturing Protocol</u>	127
<u>2.4.3 Vector Transfection into Adherent Mammalian Cells</u>	127
<u>2.4.3.1 Transfection Related Chemicals</u>	127
<u>2.4.3.1.1 GeneJuice Theory</u>	127
<u>2.4.3.2 Transfection Preparation</u>	128
<u>2.4.3.3 Transfection Procedure</u>	128
<u>2.4.4 Dual-Luciferase Reporter Assay</u>	129
<u>2.4.4.1 Dual-Luciferase Reporter Assay Theory</u>	129
<u>2.4.4.2 Dual-Luciferase Reporter Assay Buffer Preparation</u>	130
<u>2.4.4.3 Assay Preparation – Lysis of Cultured Cells</u>	130
<u>2.4.4.4 Luciferase Assay Protocol</u>	131

<u>2.5 Statistical Analysis</u>	132
<u>2.5.1 Statistical Analysis of Luciferase Data</u>	132
<u>2.5.1.1 Standard Error of Mean Calculations</u>	132
<u>2.5.1.2 p-value Calculations</u>	132
<u>2.5.2 Cognitive Function Tests</u>	132
<u>2.5.2.1 AH4 Cognitive Function Test</u>	132
<u>2.5.2.2 Mill Hill Cognitive Function Test</u>	132
<u>2.5.2.3 Immediate Recall Section of Wechsler Logical Memory Cognitive Test</u>	133
<u>2.5.2.4 Delayed Recall Section of Wechsler Logical Memory Cognitive Test</u>	133
<u>2.5.2.5 Regression of AH4 Test Scores on Mill Hill Test Scores (theory of)</u>	133
<u>2.5.2.6 p-value Calculations</u>	133
<u>3 Results</u>	134
<u>3.1 Results I – Mutation Screening</u>	134
<u>3.1.1 dHPLC Analysis</u>	134
<u>3.1.1.1 dHPLC Analysis of Promoter Region A</u>	136
<u>3.1.1.2 dHPLC Analysis of Promoter Region B</u>	137
<u>3.1.1.3 dHPLC Analysis of Promoter Region C</u>	138
<u>3.1.1.4 dHPLC Analysis of Promoter Region D</u>	139
<u>3.1.1.5 Interpretation of dHPLC Analysis</u>	140
<u>3.1.1.6 Confirming the Presence of Exon 3's Polymorphic +54A allele</u>	141

<u>3.1.1.6.1 RFLP of Exon 3's +54A Allele - Interpretation</u>	142
 <u>3.1.2 Sequencing Results</u>	143
<u>3.1.2.1 DNA Sequencing of Promoter Region A</u>	144
<u>3.1.2.2 DNA Sequencing of Promoter Region B</u>	147
<u>3.1.2.3 DNA Sequencing of Promoter Region C</u>	149
<u>3.1.2.4 Exon 3 (C54A) Sequencing Results</u>	152
<u>3.1.2.5 Interpretation of DNA Sequencing</u>	154
 <u>3.1.3 Determination of Allele Frequency and <i>UCH-L1</i> Promoter Haplotypes</u>	155
<u>3.1.3.1 RFLP Genotyping Strategies</u>	155
<u>3.1.3.2 x64 DNA Sample Set (62 Chromosomes) Genotyping Results and Analysis</u>	166
<u>3.1.3.2.1 Variant Allele Frequency Table</u>	166
<u>3.1.3.2.2 Genotype Frequency Table</u>	167
<u>3.1.3.2.3 Hardy-Weinberg Equilibrium Consistency of Genotype Frequencies</u>	168
<u>3.1.3.2.4 Haplotype Frequency Diagrams</u>	169
<u>3.1.3.2.5 Interpretation of x64 DNA Sample Set Genotyping Analysis</u>	170
 <u>3.1.3.3 x480 DNA Sample Set (960 Chromosomes) Genotyping Results and Analysis</u>	171
<u>3.1.3.3.1 Variant Allele Frequency Table</u>	171
<u>3.1.3.3.2 Genotype Frequency Table</u>	172

<u>3.1.3.3.3 Hardy-Weinberg Equilibrium Consistency of Genotype Frequencies</u>	173
<u>3.1.3.3.4 Haplotype Frequency Diagrams</u>	174
<u>3.1.3.3.5 Interpretation of x480 DNA Sample Set Genotyping Analysis</u>	176
 <u>3.1.4 Discussion of Mutation Screening</u>	177
 <u>3.2 Results II – Functional Studies</u>	180
<u>3.2.1 Construction of pGL3/ <i>UCH-L1</i> Promoter Vectors</u>	181
<u>3.2.1.1 Initial Cloning Strategy</u>	181
<u>3.2.1.2 Revised Cloning Strategy</u>	183
<u>3.2.1.2.1 – Incorporation of Haplotypes into pGEM-T Easy</u>	183
<u>3.2.1.2.2 Transfer from pGEM-T Easy into pGL3-Eco RI</u>	185
 <u>3.2.2 Transcriptional Activity of the <i>UCH-L1</i> Promoter Haplotypes</u>	191
<u>3.2.2.1 A2058 Dual-Luciferase Reporter Assays</u>	192
<u>3.2.2.2 MCF-7 Dual-Luciferase Reporter Assays</u>	194
<u>3.2.2.3 ND-7 Dual-Luciferase Reporter Assays</u>	196
<u>3.2.2.4 HCN-1A Dual-Luciferase Reporter Assays</u>	198
<u>3.2.2.5 Luciferase Reporter Assays – Discussion</u>	199
 <u>3.2.3 Discussion of Functional Studies</u>	200
 <u>3.3 Results III – Population Studies</u>	202

<u>3.3.1 Population Genetics Discussion</u>	209
<u>4 Discussion</u>	211
<u>5 Future Work</u>	221
<u>6 Appendix</u>	225
<u>7 References</u>	242

Table of Figures

Figure 1 – Schematic diagram of the ubiquitin-proteasome system	2
Figure 2 – Ribbon structure of Ubiquitin	4
Figure 3 – Schematic representation of the 26S proteasome's subunits	8
Figure 4 – The family in which the Ile93Met mutation was discovered demonstrating the Ile93Met's penetrance.	22
Figure 5 – A structural model for the UCH-L1-ubiquitin complex.	24
Figure 6 – The dopaminergic diffuse modulatory systems arising from the substantia nigra and the ventral tegmental area in the midbrain	46
Figure 7 – A substantia nigra neuron realising a Lewy body inclusion	48
Figure 8 – The Hardy-Weinberg principle for two alleles.	72
Figure 9 – Basic depiction of <i>UCH-L1</i> 's main promoter elements	73
Figure 10 – Comparison of the nucleotide sequences at the 5' ends of the human and <i>Monodelphis</i> <i>UCH-L1</i> genes by optimal sequence alignment.	76
Figure 11 – 96-well MADGE gel showing direction of electrophoresis.	81
Figure 12 – The 100bp ladder	83
Figure 13 – The 1kb DNA extension ladder	83
Figure 14 – Basic outline of the PCR reaction	84
Figure 15 – Creation of a mixture of hetero- and homoduplexes through dHPLC hybridisation	89
Figure 16 – Temperature-dependent resolution of dHPLC heteroduplexes from homoduplexes	90
Figure 17 – Chemical structure of deoxythymidine triphosphate	93

Figure 18 – Chemical structure of dideoxythymidine triphosphate	93
Figure 19 – Pictorial summary of the dideoxy DNA sequencing method	94
Figure 20 – Diagram outlining the assembly of the DNA sequencing plates	97
Figure 21 - Linear representation of promoter region A and the <i>Nci</i> I restriction sites	103
Figure 22 - Linear representation of promoter region B and the <i>Sgr</i> AI restriction site	103
Figure 23 - Linear representation of promoter region C and both <i>Taq</i> I's restriction sites.	104
Figure 24 - Linear representation of the amplified exon 3 sequence and the <i>Rsa</i> I restriction site	105
Figure 25 - Linear representation of the specified A-24G mismatch PCR region and <i>Fok</i> I's restriction site	106
Figure 26 - Linear representation of the specified A-306G mismatch PCR region and <i>Mbo</i> II's restriction site	108
Figure 27 – Schematic representation of the pGEM-T Easy vector	110
Figure 28 – Schematic representation of the pGL3-Basic vector	111
Figure 29 – pGL3-Eco RI construction strategy.	112
Figure 30 – Schematic representation of the pGL3-Eco RI vector	113
Figure 31 – Comparative dHPLC scans for Promoter Region A	136
Figure 32 – Comparative dHPLC scans for Promoter Region B	137
Figure 33 – Comparative dHPLC scans for Promoter Region C	138
Figure 34 – Comparative dHPLC scans for Promoter Region D	139
Figure 35 – A 5% polyacrylamide gel displaying <i>UCH-L1</i> exon 3 <i>Rsa</i> I RFLP analysis of x16 control DNA samples	141

Figure 36 – Comparative DNA sequencing scans for the <i>UCH-L1</i> anti-sense nucleotide sequence -11 to -30 of promoter region A	145
Figure 37 – Comparative DNA sequencing scans for the <i>UCH-L1</i> anti-sense nucleotide sequence +28 to +5 of promoter region A	146
Figure 38 – Comparative DNA sequencing scans for the <i>UCH-L1</i> anti-sense nucleotide sequence -223 to -245 of promoter region B	148
Figure 39 – Comparative DNA sequencing scans for the <i>UCH-L1</i> sense nucleotide sequence -318 to -296 of promoter region C	150
Figure 40 – Comparative DNA sequencing scans for the <i>UCH-L1</i> sense nucleotide sequence -318 to -296 of promoter region C	151
Figure 41 – Comparative DNA sequencing scans for the <i>UCH-L1</i> anti-sense nucleotide sequence +65 to +45 of exon 3	153
Figure 42 – A 5% polyacrylamide gel displaying <i>UCH-L1</i> promoter region A <i>Nci</i> I RFLP analysis of x96 samples	156
Figure 43 – A 5% polyacrylamide gel displaying <i>UCH-L1</i> promoter region B <i>Sgr</i> AI RFLP analysis of x96 samples	157
Figure 44 – A 5% polyacrylamide gel displaying <i>UCH-L1</i> promoter region C <i>Taq</i> I RFLP analysis of x96 samples	158
Figure 45 – A 5% polyacrylamide gel displaying <i>UCH-L1</i> exon 3 <i>Rsa</i> I RFLP analysis of x64 samples	159
Figure 46 – Comparative DNA sequencing scans for the <i>UCH-L1</i> anti-sense nucleotide sequence -11 to -30 of promoter region A	161
Figure 47 – Comparative DNA sequencing scans for the <i>UCH-L1</i> sense nucleotide sequence -318 to -296 of promoter region C	163

Figure 48 – Comparative DNA sequencing scans for the <i>UCH-L1</i> sense nucleotide sequence -318 to -296 of promoter region C	164
Figure 49 - The four <i>UCH-L1</i> haplotypes are diagrammatically represented with reference to the distribution of the six polymorphic alleles	169
Figure 50 - The ten <i>UCH-L1</i> promoter haplotypes are indicated with reference to the distribution of the five promoter/ 5' UTR polymorphic alleles	175
Figure 51 – Diagrammatic representation of required <i>UCH-L1</i> promoter sequences	182
Figure 52 – Agarose gel identifying three pGEM-T Easy constructs harbouring the <i>UCH-L1</i> promoter inserts	184
Figure 53 – Basic outline of the cloning strategy devised.	186
Figure 54 – ‘Modified TAE agarose gel’ showing the pGL3-Eco RI vector and the three <i>UCH-L1</i> promoter haplotype inserts after <i>Spe</i> I → <i>Eco</i> RI digestion	188
Figure 55 - Agarose gel identifying three pGL3-Eco RI constructs harbouring the <i>UCH-L1</i> promoter inserts for all three promoter haplotypes	189
Figure 56 – A bar graph displaying the mean firefly/ renilla luciferase activity ratios realised for the three pGL3/ <i>UCH-L1</i> promoter constructs and a control pGL3 vector with no insert, in the A2058 human skin melanoma cell line	192
Figure 57 – A bar graph displaying the mean firefly/ renilla luciferase activity ratios realised for the three pGL3/ <i>UCH-L1</i> promoter constructs and a control pGL3 vector with no insert, in the MCF-7 human breast adenocarcinoma cell line	194
Figure 58 – A bar graph displaying the mean firefly/ renilla luciferase activity ratios realised for the three pGL3/ <i>UCH-L1</i> promoter constructs and a control pGL3 vector with no insert, in the ND-7 mouse neuroblastoma/ rat basal ganglia neuron hybrid cell line.	196

Figure 59 – A bar graph displaying the mean firefly/ renilla luciferase activity ratios 198
realised for the three pGL3/ *UCH-L1* promoter constructs and a control pGL3 vector
with no insert, in the HCN-1A human brain cortical neuron cell line.

Figure 60 – A bar graph displaying the mean increase in firefly/ renilla luciferase 200
mean activity ratios

Figure 61 – Comparison of the nucleotide sequences at the 5' end of the human (H) 212
and *Monodelphis domestica* (M) *UCH-L1* genes

Figure 62 - The three *UCH-L1* promoter haplotypes are diagrammatically 214
represented with reference to the distribution of the five novel promoter/ 5' UTR
polymorphic alleles

Table of Tables

Table 1 – Indicates the main reported mutations or genetic loci associated with familial Parkinson's disease	21
Table 2 – Summarises the association that UCH-L1 has with various neurodegenerative diseases	38
Table 3 – Indicates genes (UCS unrelated), and their respective genetic loci, that are associated with sporadic Parkinson's disease	51
Table 4 – Indicates the sample duplicity and quadruplicity in the x64 control DNA array	79
Table 5 – Lists and details the PCR primer pairs used to amplify the respective <i>UCH-L1</i> promoter and coding regions	87
Table 6 – Displays all the relevant information for each restriction endonuclease used in this study	100
Table 7 – Displays the four <i>UCH-L1</i> regions in which dHPLC heteroduplexes were elucidated	135
Table 8 – Summarises the novel <i>UCH-L1</i> SNPs elucidated in this result's section.	143
Table 9 – Displays the frequency of variant alleles obtained from the x 31 DNA sample set through both RFLP and sequencing analysis	166
Table 10 – Collation of the RFLP and sequencing results with respect to the genotypes exhibited by each of the x31 individuals within the x64 DNA sample set	167
Table 11 – Exhibits the genotype frequencies for the six <i>UCH-L1</i> SNPs investigated for this sample set with the Hardy-Weinberg formula applied	168
Table 12 – Displays the frequency of variant alleles obtained from the x 480 DNA sample set	171

Table 13 – Collation of the results with respect to the (determinable) genotypes exhibited within the x480 DNA sample set (960 chromosomes)	172
Table 14 – Exhibits the genotype frequencies for the five <i>UCH-L1</i> SNPs investigated for this sample set (x480) with the Hardy-Weinberg formula applied	173
Table 15 – Outlines the predicted changes in transcription factor binding that the five promoter <i>UCH-L1</i> SNP variant alleles realised from that of the reference alleles utilising the 'TFSEARCH' software	179
Table 16 – Table displaying a summary of the statistical analysis (from x480 DNA array) for the AH4 cognitive function test scores in relation to each <i>UCH-L1</i> allele investigated in this study, and their respective genotypes	204
Table 17 – Table displaying a summary of the statistical analysis (from x480 DNA array) for the Mill Hill cognitive function test scores in relation to each <i>UCH-L1</i> allele investigated in this study, and their respective genotypes	205
Table 18 – Table displaying a summary of the statistical analysis (from x480 DNA array) for the immediate recall section of Wechsler logical memory cognitive function test scores in relation to each <i>UCH-L1</i> allele investigated in this study, and their respective genotypes	206
Table 19 – Table displaying a summary of the statistical analysis (from x480 DNA array) for the delayed recall section of Wechsler logical memory cognitive function test scores in relation to each <i>UCH-L1</i> allele investigated in this study, and their respective genotypes	207
Table 20 – Table displaying a summary of the statistical analysis (from x480 DNA array) for the residuals of a regression of AH4 Test Scores on Mill Hill cognitive function test scores, in relation to each <i>UCH-L1</i> allele investigated in this study, and their respective genotypes.	208

DECLARATION OF AUTHORSHIP

I, [please print name]

declare that the thesis entitled [enter title]

.....
.....

and the work presented in the thesis are both my own, and have been generated by me as the result of my own original research. I confirm that:

- this work was done wholly or mainly while in candidature for a research degree at this University;
- where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
- where I have consulted the published work of others, this is always clearly attributed;
- where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
- I have acknowledged all main sources of help;
- where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
- none of this work has been published before submission.

Signed:

Date:.....

Acknowledgements

Primarily, I would like to thank the Parkinson's Disease Society for funding this research; without which this work would not have been possible.

I would also like to thank my two main supervisors during the course of this study - Dr Shu Ye & Dr Beatrice Zhang - whose constant friendly support and guidance have allowed me to reach the high standards that I have attained.

Professor Ian Day, Dr John Holloway, Dr Eve Pearce, Tricia Briggs, Kelly Wilkinson and Ross Laxton (Department of Human Genetics (Southampton University) – past and present) all deserve a special mention for their continual interest and willingness to help me throughout my research project.

Finally, appreciation indeed, to my friends and family for their unyielding support, particularly my parents for providing me with this opportunity.

Abbreviations

- A - adenine
- ABI - Applied Biosystems
- AchEI – cholinesterase inhibitors
- AMC - amido-4-methylcoumarin
- AMP - adenosine monophosphate
- ANOVA - Analysis of Variance
- ANT HBS - antennapedia homeobox binding site
- APP - amyloid precursor protein
- APS - ammonium persulphate solution
- AS – anti-sense
- ATP – adenosine triphosphate
- β APP - amyloid precursor protein
- BAG-1 - bcl-2-associated athanogene-1
- Bard1 - Brca-associated RING domain 1
- Bp – base pairs
- Brca1 - breast-cancer susceptibility gene 1
- BSA - bovine serum albumin
- C - cytosine
- CIAP - Calf Intestinal Alkaline Phosphatase
- CNS – central nervous system
- CO₂ – carbon dioxide
- CP – core particle
- CSP α - cysteine-string protein α
- DAT - dopamine transporter
- dATP - 2'-deoxyadenosine 5'-triphosphate
- dCTP – deoxycytosine triphosphate
- ddTTP - dideoxynucleotide dideoxythymidine triphosphate
- dGTP – deoxyguanine triphosphate

- dHPLC – denaturing high performance liquid chromatography
- DLRTM - Dual-Luciferase Reporter
- DMSO - 1Dimethyl sulfoxide
- DNA - deoxyribonucleic acid
- DNTPs - deoxynucleosides
- DOPAC - 3, 4-dihydroxyphenylacetate
- DTTP - deoxythymidine triphosphate
- DUBs - deubiquitinating enzymes
- EDTA - ethylenediaminetetraacetic acid disodium salt
- EGFR - epidermal growth factor receptor
- ER - endoplasmic reticulum
- ESCRT - endosomal sorting complex required for transport
- EXO1 - exonuclease 1
- FGF - fibroblast growth factor
- G - guanine
- GABA - γ -amino butyric acid
- Gad - gracile axonal dystrophic
- GRE - glucocorticoid response element
- H-Page - horizontal polyacrylamide
- HAUSP - herpesvirus-associated ubiquitin-specific protease
- Hbp - Hrs-binding protein
- HECT - homologous to E6-associated protein c-terminus
- HGF - hepatocyte growth factor
- HPLC – high performance liquid chromatography
- HSTF - heat shock transcription factor
- HVA - homovanillic acid
- Hz - hertz
- Inr - initiator
- JAMM - JAB1/ MPN/ Mov34 metalloenzyme
- Kb - kilobase

- LB - Luria-Bertoni
- LD - Linkage Disequilibrium
- MADGE - Microplate Array Diagonal Gel Electrophoresis
- MBF - metal binding factor
- Mda - Megadalton
- MDM2 - murine double minute clone 2 oncoprotein
- MEF - mouse embryonic fibroblast
- $MgCl_2$ – magnesium chloride
- MJD - Machado-Joseph disease
- MPTP - 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- MRI - magnetic resonance imaging
- mRNA – messenger ribonucleic acid
- mV - millivolts
- MVB - multi-vesicular bodies
- n – number
- ns – not significant
- NEB – New England Biolabs
- NF- κ B - nuclear factor-kappa B
- OR – odds ratio
- OUT - ovarian tumour
- p - probability
- Pael-R - parkin-associated endothelin receptor-like receptor
- PCNA - proliferating cell nuclear antigen
- PCR – polymerase chain reaction
- PD – Parkinson's disease
- PDGFR - platelet derived growth factor receptor
- PGP - protein gene product
- PIRA-PCR - primer-introduced restriction analysis
- PSN - perfectly conserved 12bp sequence
- RC - regulatory complex

- REMSBD - rapid eye movement sleep behaviour disorder
- RFLP – Restriction Fragment Length Polymorphism
- RING - really interesting new gene
- RNA - ribonucleic acid
- RTK - receptor tyrosine kinases
- S - sense
- S.D. – standard deviation
- SANS - small-angle neutron scattering
- SAP - shrimp alkaline phosphatase
- SDEV - standard deviation
- SEM - standard error of mean
- SNP - single nucleotide polymorphism
- T - thymine
- TBP - TATA box binding protein
- TE - transformation efficiency
- TEMED - N, N, N', N'-Tetramethyl-1-, 2-diaminomethane
- TF - transcription factors
- TFIID - transcription factor D complex
- TH - tyrosine hydroxylase
- TIC - transcription initiation complex
- UBA - ubiquitin-associated
- UBL - ubiquitin-like
- UBMC - ubiquitin-7-amido-4-methycoumarin
- UBP_s - Ubiquitin-Specific Proteases
- UCH-L1 - ubiquitin carboxyl-terminal hydrolase-L1
- UCH-L2 - ubiquitin carboxyl-terminal hydrolase-L2
- UCH-L3 - ubiquitin carboxyl-terminal hydrolase-L3
- UCH-L4 - ubiquitin carboxyl-terminal hydrolase-L4
- UCH-L5 - ubiquitin carboxyl-terminal hydrolase-L5
- UCH_s - ubiquitin carboxyl-terminal hydrolases

- UCS – ubiquitin-conjugating system
- UEV - ubiquitin E2 variant
- UFD2 - ubiquitin fusion degradation model 2
- UIM - ubiquitin-interacting motif
- UPS – ubiquitin-proteasome system
- URE - upstream regulatory elements
- USPs - Ubiquitin-Specific Proteases
- UTR – untranslated region
- UV – ultra violet
- VNTRs - variable number of tandem repeats
- Wt – wild type