
Compression of Boundary Element Matrix in Micromagnetic Simulations

A. Knittel,1 M. Franchin,1,2, G. Bordignon,1,2 T. Fischbacher,1 S. Bending,3 H. Fangohr1

1School of Engineering Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
2School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom and

3Department of Physics and Astronomy, University of Bath, BA2 7AY Bath, United Kingdom

(Dated: November 18, 2008)

A hybrid finite element method/boundary element method (FEM/BEM) is a standard approach
for calculating the magnetostatic potential within Micromagnetics [1]. This involves dealing with a
dense N ×N -matrix Bij , N being the number of mesh surface nodes. In order to apply the method
to ferromagnetic structures with a large surface one needs to apply matrix compression techniques on
Bij . An efficient approach is to approximate Bij by hierarchical matrices (or H-matrices). We have
used HLib [2], a library containing implementations of the hierarchical matrix methodology, together
with the micromagnetic finite element solver Nmag in order to optimize the hybrid FEM/BEM. In
this article we present a study of the efficiency of algorithms implemented in HLib concerning the
storage requirements and the matrix assembly time in micromagnetic simulations.

Introduction H-matrices [3] have already been suc-
cessfully applied for compressing the dense boundary
element matrix Bij appearing in the hybrid finite ele-
ment/boundary element method and thus increasing the
efficiency of the method [4, 5]. So far, H-matrices have
mostly been used in connection with the so called adap-
tive cross approximation (ACA) heuristic [6]. There have
been discussions about the convergence and the efficiency
of ACA [7, 8] and several alternatives have been pro-
posed, including an algorithm based on interpolation [9],
a variant of ACA called ACA+ [10], and hybrid cross ap-
proximation (HCA) [7]. Furthermore an adaptive recom-
pression algorithm has been introduced, which optimizes
memory consumption. In this article we present simu-
lation results using those alternatives. We start with a
brief review of the Hybrid FEM/BEM and H-matrices.

Hybrid Finite Element Method/ Boundary Element
Method The open boundary problem for the magneto-
static potential φ as defined in [1] can be approached by
splitting φ into two auxiliary potentials φ = φ1 + φ2.
Then the computation of φ within the magnetic region
Rm is done in three steps:

First, using the finite element method (FEM), φ1 is
obtained at discrete nodal points within Rm by solving
a Poisson equation with von Neumann boundary condi-
tions on the surface ∂R between Rm and the vacuum
region Rv.

Second, φ2 is determined on ∂R by solving the surface
integral of the classical double layer potential on ∂R:

φ2(~R) =
1

4π

∫

∂R

φ1(~r)
(~R− ~r) · ~n

|~R− ~r|3
d2r + λ(~R)φ1(~R). (1)

Here the vector ~n(~r) is the surface normal vector on ∂R.

The calculation of the diagonal term λ(~R)φ1(~R) is de-
scribed elsewhere [1] and will be omitted in the following.
Since φ1 is only given at discrete nodal points ~ri on ∂R,

the integral equation (1) needs to be discretized. This is
done by expanding φ1(~r) in terms of a set of linear basis

functions ψj(~r) with local supports Ωj around ~rj . φ2(~R)
is evaluated at the nodal points:

φ2(~Ri) =
1

4π

∫

Ωj

ψj(~r)
(~Ri − ~r) · ~n(~r)

| ~Ri − ~r|3
d2r

︸ ︷︷ ︸

=:Bij

·φ1(~rj). (2)

Third, the φ2(~Ri) on ∂R serve as Dirichlet boundary con-
ditions for solving the Laplace equation for φ2 inside the
magnetic region Rm.

H-matrices The H-matrix approach splits a matrix
into a hierarchical tree of submatrices. The matrix it-
self is stored in the leaves of the tree. There are two
kinds of leaves: Admissible leaves can be approximated
by low rank, while inadmissible leaves need to be stored
in full. Data compression is achieved through the ad-
missible leaves. For dense matrices stemming from the
discretization of a boundary integral a situation as in
equation (1) is assumed, i.e. the kernel of the integral has

a singularity where ~r = ~R, but is smooth when |~r − ~R|
is large. An admissibility criterion, which as in [7] is
used with η = 2.0 for all simulations, determines which
submatrices correspond to a smooth kernel and therefore
can be represented by a low rank matrix. The parameter
nmin specifies a minimal number of rows or columns that
a leaf can have, and thus prevents that leaves become ar-
bitrarily small. We found that nmin = 30 is a reasonable
choice.

There are several algorithms to create the low-rank
blocks for admissible leaves. The algorithms discussed
here can be organized into three classes:

ACA [6] and ACA+ [10] belong to the first class. They
start with the already discretized matrix Bij as defined
in equation (2), and build the low-rank approximation

2

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0N u m b e r o f S u r f a c e N o d e s� 0 . 5� 0 . 4� 0 . 3� 0 . 2� 0 . 10
rel .E rror[%] LL M t

FIG. 1: Relative error of the demagnetization factor obtained
with the full BEM calculation as compared to its analytical
value. The inset shows the test geometry

from just a few entries of the original matrix block. The
accuracy of the approximation is determined by a heuris-
tic parameter ǫACA. A second parameter kmax defines
a maximal rank for the admissible leaves. It has been
stated [7, 10] that ACA becomes unreliable for the dou-
ble layer potential (as in equation (1)). ACA+ has been
proposed as a working alternative.

The second class starts from the integral (in our case
equation (1)) and expands the kernel with respect to ~r

or ~R. From that expansion one can assemble the low-
rank approximation for the corresponding matrix block.
Interpolation [9] uses Lagrange polynomials for this ex-
pansion, whose order p determine the accuracy [9]. The
algorithm shows good convergence but is inefficient con-
cerning the matrix assembly time [7].

The hybrid cross approximation (HCA) algorithm [7]
comprises elements of both, interpolation and ACA.
There are two different types of this algorithm. HCA
I is closer to interpolation, while HCA II is more similar
to ACA. The accuracy of these algorithms can be tuned
with two parameters p and ǫACA. While being more accu-
rate, HCA II has shown a comparable efficiency to ACA+
[7].

For all these algorithms one can use adaptive recom-
pression [10] to improve storage requirements. This is
done by optimizing the rank within the admissible leaves
and coarsening the hierarchical structure itself. The ac-
curacy of the recompressed hierarchical matrix can be
adjusted with a parameter ǫ.

There are two possible ways of combining HLib with
existing code: The first is to use the heuristic ACA(+)
to build the hierarchical matrix from few matrix entries,
which are computed by the existing code.

Alternatively, one can write extensions to HLib, which
compute the matrix entries by numerical integration (for
ACA(+)) or by approximating the kernel of the integral
and numerical integration (interpolation, HCA I+II). We
only had to modify the HLib implementation for the
Galerkin discretization of the double layer potential such
that it computes the corresponding collocation matrix
(1). To perform the numerical integration one needs to
specify a quadrature order q. Our choice is q = 3.

FIG. 2: Comparison of the relative error from full BEM solu-
tion for different algorithms. All methods use recompression
except the ACA data shown with circles

Numerical Results In order to investigate the effi-
ciency of the different algorithms we study a finite thin
film system of square shape (see Fig. 1). The thickness
of the films is t = 5 nm and their edge lengths L vary
in 10 nm steps between 10 and 260nm, while the coarse-
ness of the mesh is kept constant. All thin films have a
constant magnetization M perpendicular to the square
surface. The corresponding mesh contains a large num-
ber of surface nodes relative to the total number of nodes.
Furthermore the magnetometric demagnetizing factor, a
quantity which is proportional to the spatially averaged
magnetostatic self-energy, can be computed analytically
[11], serving as an useful estimate for the comparison of
errors introduced by the application of H-matrices with
errors due to the Hybrid FEM/BEM. However, due to its
definition it is unsuitable for detecting local deviations
in the demagnetization field. We address the local error
further below. One should note that the performance of
the algorithms (i.e. efficiency and accuracy) depends on
the geometry of the system and the distribution of the
magnetisation.

Figure 1 shows how the demagnetizing factor obtained
from simulations using the full boundary element matrix
deviates from the analytical result: The deviation de-
creases with an increasing number of surface nodes and
should be roughly of the order of 0.1 % for realistic node
numbers above 20000.

All simulation results on H-matrices have been ob-
tained with p = 5 for interpolation, ǫACA = 10−4 and
kmax = 100 for ACA and ACA+, ǫACA = 10−7 and p = 6
for HCA I, ǫ = 10−7 and p = 4 for HCA II, and ǫ = 10−3

when recompression has been applied.

Figure 2 shows the deviation in the demagnetization
factor between H-matrix approxmations created by dif-
ferent algorithms and the full BEM solution. All errors
are more than one order of magnitude lower than the er-

3

FIG. 3: Comparison between the storage requirements for Bij

for different algorithms and the full BEM case. For the H-
matrix approximations the additional memory costs due the
storage of the hierarchical tree are included.

FIG. 4: Comparison between the setup times for Bij for dif-
ferent algorithms and the full BEM case

ror introduced through the hybrid FEM/BEM (see Fig.
1) and stable with an increasing number of surface nodes.
A comparison of the curves for ACA with and without
recompression yields that the use of recompression does
not affect the error. Generally the deviations observed
for ACA and ACA+ are higher than for the other algo-
rithms. They could not be reduced by further decreasing
ǫACA. This seems to to be related to general problems
with the adaptive cross approximation [7, 8]. Looking at
the local demagnetization field it turns out that (indepen-
dently of the film size) the relative error as compared to
the full BEM solution does not exceed 0.5% for ACA and
ACA+, and 0.03% for interpolation and HCA I+II, i.e.
it is of the same order of magnitude as the difference be-
tween the analytical and the BEM solution (see for exam-
ple figure 1). Figure 3 compares the storage requirements
for the different algorithms. ACA without recompression
exhibits the poorest compression rates. Using recompres-
sion ACA and ACA+ show slightly better compression
rates than interpolation and HCA I+II. According to fig-
ure 4 the matrix assembly time is increased significantly
by using recompression for ACA. However, the speed of
the recompression is dependent on the algorithm used in

the first place [10], and corresponding tests on the ACA+
showed that for this algorithm recompression is faster. A
general comparison of the matrix assembly times between
the different algorithms (Fig. 4) shows that, as expected,
interpolation is relatively slow. The best results are again
exhibited by ACA+. HCA II, however, shows a similar
efficiency.

Summary We have compared the efficiency of sev-
eral algorithms implemented within the library HLib.
The storage requirements can be reduced significantly
by using recompression routines, while the error made
by the approximation remains virtually the same. How-
ever, dependent on the algorithm, recompression can sig-
nificantly increase the matrix assembly time. While in-
terpolation, HCA I and HCA II are more accurate than
ACA and ACA+, this advantage may not be significant
for micromagnetic simulations as the deviation of ACA
and ACA+ is at least an order of magnitude smaller than
the numerical FEM/BEM inaccuracy. The superior ef-
ficiency of ACA+ concerning memory consumption and
time needed for the matrix assembly suggest it as the
algorithm of choice in the field of micromagnetics. The
speed of the algorithms may even increase by not com-
puting the matrix numerically but using an analytical
expression [12]. The HLib-library can only be used se-
quentially. While most of the CPU time goes into the
solving of Poisson equations and the (implicit) integra-
tion of the equations of motion, it would be desirable to
use a parallel version of the Hlib for the highest perfor-
mance.

We thank Steffen Börm and Lars Grasedyck for
their support on HLib related issues. This work has
been funded by the Engineering and Physical Sciences
Research Council (EPSRC) in the United Kingdom
(EP/E040063/1,EP/E039944/1).

[1] D. Fredkin and T. Koehler, Magnetics, IEEE Transac-
tions on 26, 415 (1990).

[2] http://www.hlib.org.
[3] W. Hackbusch, Computing 62, 89 (1999).
[4] H. Forster, T. Schrefl, R. Dittrich, W. Scholz, and J. Fi-

dler, Magnetics, IEEE Transactions on 39, 2513 (2003).
[5] T. Schrefl, M. E. Schabes, D. Suess, O. Ertl,

M. Kirschner, F. Dorfbauer, G. Hrkac, and J. Fidler,
Magnetics, IEEE Transactions on 41, 3064 (2005).

[6] M. Bebendorf, Numerische Mathematik 86, 565 (2000).
[7] S. Börm and L. Grasedyck, Numerische Mathematik 101,

221 (2005).
[8] M. Bebendorf and R. Grzibovski, Mathematical Methods

in Applied Science 29, 1721 (2006).
[9] S. Börm and L. Grasedyck, Computing 72, 325 (2004).

[10] L. Grasedyck, Computing 74 205 (2005).
[11] A. Aharoni, Journal of Applied Physics 83 3432 (1998).
[12] D. Lindholm, Magnetics, IEEE Transactions on 20, 2025

(1984).

