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ABSTRACT

Recently, at the University of Southampton, a series of taper roller bearing tests have been conducted
to evaluate the effectiveness of using on-line sensing technologies to detect incipient faults. The test
rig instrumentation included vibration and electrostatic sensors as well as off-line processes such as
debris analysis and tribological assessment of bearing condition, which are used for corroborative
purposes. The test results indicate that the combination of these techniques are capable of detecting
bearing deterioration shortly before complete failure, but the expected precursor events related to
fatigue failure initiation are indistinguishable from the conventional univariate signal plots. Therefore,
more advanced data fusion techniques have been developed to extract further information and enhance
the detection of abnormal trends. This paper describes work on intelligent processes of both training
and testing data and demonstrates how the prognostic window is significantly improved relative to
original processed features. The approach also identifies the main variables which drive the anomaly
detection so as to provide diagnostic information.

Keywords: Rolling Element Bearing, Condition Monitoring, Vibration Monitoring, Electrostatic
Monitoring, Data Fusion.

1. INTRODUCTION

Vibration analysis has been used in bearing condition monitoring for over 50 years, and has achieved
various degree of success. Electrostatic charge detection was originally developed by GE Aviation
(formerly Smiths Aerospace) for the identification of debris in the gas path of jet engines [1]. Further
research at the University of Southampton has shown its potential to detect precursor processes that
indicate contact distress and wear in lubricated environments [2]. Recently, a series of taper roller
bearing tests have been conducted to evaluate the effectiveness of using on-line sensing technologies
to detect incipient faults [3]. The test rig instrumentation included vibration accelerometer and
electrostatic sensors as well as off-line processes such as debris analysis and tribological assessment
of bearing condition, which are used for corroborative purposes. Although the test results indicate that
the combination of these techniques is capable of detecting bearing deterioration shortly before
complete failure, expected precursor events related to initiation of bearing fatigue failure are
indistinguishable from the conventional univariate signal plots. Moreover, these techniques require a
lot of manpower to analyze the results in order to achieve detection and diagnostic information. Thus,
developing a systematic approach that can automatically extract bearing abnormal events and
diagnostic information is crucial.

So far, various approaches have been tried, including artificial neural networks (ANNs) [4], fuzzy
logic [5], evolutionary algorithms [6] etc. to develop automatic fault detection and diagnosis systems.
Although the performances of these systems are consistently improved with the adaptation of the
algorithms or implementation of the data pre-processing [7] and feature selection [8] techniques, there
is still a major concern over this development strategy: it is not easy to obtain multi-class training data
covering all aspects of bearing symptoms that can appear very different and confusing. Nevertheless,
data representing the normal condition of the bearings is the most easy-to-obtain dataset, and the
systems can be built to detect whether the bearing condition deviates from the ‘normal’ region rather
than mapping collected data into several established categories of the bearing conditions. This idea
has been used as the central development strategy by novelty detection [9, 10] and statistical process
control (SPC) [11, 12] techniques in image processing and chemical plant applications.



In this paper, a Gaussian mixture model (GMM) is proposed to summarize the probabilistic density of
the training data (normal condition) and to build the normal model. However, the true condition of the
training data is unknown and it might contain a number of anomalous data due to the sensor
malfunction or environmental effects etc., so the GMM could not be expected to respond to these
anomalies [13]. Therefore, the model is adapted with a novel approach to suppress regions with
anomalies. Further, Hotelling’s T-squared statistic is applied to extract abnormal information by
measuring the distance between the test sample and the origin of the adapted normal model. Finally,
the contribution values to the calculated T-squared statistic are calculated for each extracted feature,
which are related to bearing components as well as to the sensor locations.

This paper is organized as follows: a brief introduction of the proposed approach is presented in
section 2. Section 3 describes the experiments, extracted signals in both time and frequency domains
and applied datasets. Section 4 provides the training process of the normal model, and the anomaly
detection and diagnosis results of the test data is described in the section 5.
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Fig. 1 Methodology flowchart of the proposed intelligent scheme

2.1. Gaussian Mixture Model

Often it is assumed that normal data may be described by a single Gaussian distribution. However,
real world data can be distributed in a more complicated way. Data from different time intervals might
occupy their own space of normality (e.g. vibration levels varies at different times due to a different
load regime) or it may contain unknown anomalies. Clearly data with these elements will not follow a
single Gaussian distribution. In this case, the data may be characterized by a combination of Gaussian
distributions, or a Gaussian Mixture Model. Details of the GMM and its associated
Expectation-Maximization (EM) algorithm used for clustering the training data can be found in [14].
It should be noted that the Bayesian Information Criterion (BIC) [15] was utilised in the current study
to indicate the optimized number of clusters.

2.2. Adaptation of GMM to remove anomalies in the training data
As indicated in the introduction section, the true condition of the training data is unknown and it



might contain a number of outlying data which could affect the fault detection results. In this paper, a
novel approach is introduced to identify areas of the cluster space that might be associated with
anomalies.

To define the proposed approach, two assumptions need to be made according to the general
distribution of the anomalies: 1) The anomalies are occurring at occasional time intervals in the time
series; 2) The clusters associated with anomalies are distant from the clusters with normal data.

- Entropy based method
To find out anomalies under the first assumption, the Entropy statistic from the information theory is
applied. For n partitioned categories (equal time intervals) in the time series, and for a training vector
x with all samples having a cluster ID v, the Entropy E is defined as [16]:
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- Distance based method
Although anomalies are found occurring occasionally in the time series of the training data in most
situations, however anomalies are also appearing frequently throughout the test, and the entropy based
method will be insensitive to these anomalies. Hence, a distance based method is developed to
measure the data dispersion-clusters with distant points from other regions being eliminated from the
calculation. In this study, the Hotelling’s T-squared distance is calculated between two clusters [17],
using equations (2) and (3):
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Where n,4 and np are the number of support cases in clusters 4 and B; (; and L are sample means of



clusters 4 and B, respectively; >, and 2 jare estimates of covariance matrices of the clusters 4 and
B, respectively.

2.3. Anomaly detection and diagnosis

After characterization of the training data and adaptation of the GMM, the PCA is applied in each of
the remaining Gaussian component, so the multiple PCA models can be generated. For detailed
introduction of PCA, please refer to [18]. And then, for the given testing vector y;, the sum of
normalized squared scores, known as Hotelling’s T-squared statistic is calculated to measure the
variation of testing vector y; within the PCA model. The T-squared statistic is defined as:

];2 = Zz‘/i_lliT = yipc/l_lchyiT 4)
where ¢, refers to the i row of Tc , the m by ¢ matrix of ¢ scores vectors from the PCA model, and A is
a diagonal matrix containing the eigenvalues (Al through Ac) corresponding to ¢ eigenvectors
(principal components) retained in the model. On the other hand, the anomaly detection threshold is
defined by maximum Hotelling’s T-squared distance of the training data.

It should be noted that Hotelling’s T-squared statistic is calculated based on a single component within
the multiple PCA models for each testing vector. The component is chosen with the minimum
Mahalanobis distance, dj, from its centre to the testing vector [9], given by equation (5):
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Where y; and 2 are mean vector and covariance matrix of & Gaussian component respectively.

Furthermore, the T-squared contribution values describe how individual variables contribute to the
Hotelling’s T-squared value for a given testing sample.

tcon,i = ti/lil/zpcr = yiPc/lil/ZPcT (6)

Thus, diagnostic information is achieved by calculating the variables contribution value, to identify
which variables are the main driven factors for the detected anomalies.

3. EXPERIMENT AND DATASETS
Radial load End load
3.1. Experiment
The bearing rig tests discussed in this paper
form part of a series of tests undertaken at
the University of Southampton. Details of the
rig may be found in other references (see [3]
for example), so only a brief overview is
provided here.

The bearing rig comprises four taper roller
bearings housed in a chamber, as shown in
Fig. 3. The bearings are mounted on a shaft
driven by an electric motor. The outer two
bearings (#1 and #4) are support bearings, Support bearings
whilst the inner bearings (#2 and #3) are test Test Bearings (1&4)
bearings. The two test bearings have a radial - Q&Y ) )

load applied to accelerate their failure. In addition, &3 Bearing rig chamber showing main test components
#2 was pre-indented on the inner race. The baseline test used non-indented bearings. The bearing
types were LM67010 (cup) and LM67048 (cone), which are all steel bearings. The rig was run at a




constant speed of 2500 rpm under ambient conditions and fully flooded with the Shell Vitrea 32
lubricant at the oil flow rate of 4 litres min.

The rig was instrumented with a number of condition monitoring sensors. In the test chamber there
was one vibration sensor (mounted externally) and three electrostatic wear-site sensors (WSS) - one
each on bearings #1 and #4 and one looking at bearings #2 & #3. The oil re-circulation pipework
included an electrostatic oil-line debris sensor. Additional oil-line debris sensors included an inductive
debris sensor, which provided wear particle counts for > 100 microns.

The testing also included a number of complimentary off-line analyses. Oil samples were taken during
various stages of the testing and these were analyzed for sub-100 micron debris content. Tribological
analyses of the bearing condition pre and post-test were conducted and included photographic
evidence and mass loss calculations. Where applicable, the oil-line sensors and post-test / off-line
analyses were used to help interpret the responses of the vibration and WSS sensors during the tests.

3.2. Feature extraction

The post-processed signal features from the three types of sensors (vibration, WSSs and OLS) were
extracted to construct both training and testing data set for the developed intelligent scheme.

To form the vibration and WSSs training set, six dimensional features were selected for each of the two
sensing technologies. In theses features, the first and second dimensions were chosen as the RMS value
of the time domain and the energy at the rotational frequency respectively. The third to sixth features are
based on the energies at the bearing defect frequencies, i.e. races, rollers and cage. These features are
used to reveal the information on the bearing components. Each energy was externally clocked using
once per revolution signal from the shaft tachometer. Data sets of RMS value and energies at bearing
defect frequencies were produced at two points per minute. The bearing defect frequencies are listed as
the equations (7) ~ (10) given by [19],
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Where s is the shaft rotational speed in rad /s, d is the diameter of the roller, D is the pitch diameter,
Z is the number of rolling elements and a is the contact angle.

Vibration WSS1 WSS2 WSS3 OLS
RMS RMS RMS RMS RMS1
Tacho Energy Tacho Energy Tacho Energy Tacho Energy RMS2
Cage Energy Cage Energy Cage Energy Cage Energy Indicator
Roller Energy Roller Energy Roller Energy Roller Energy
OuterRace Energy OuterRace Energy OuterRace Energy | OuterRace Energy
InnerRace Energy InnerRace Energy InnerRace Energy InnerRace Energy
Front Vicinity of Vicinity of Vicinity of Oil-line
housing Bearingl Bearings2&3 Bearing4

Tablel Extracted features for the multivariate data analysis



For the OLS analysis, three time domain parameters including RMS values of the two oil line sensors
and the cross-correlated value that couples two OLSs to identify charge moving at the oil flow rate,
were utilised to generate data set. This training and testing sets were produced one point every two
seconds. Table 1 tabulates the selected features for the bearing wear detection.

3.3. Bearing test datasets

In this paper, 2 sets of data are utilized to validate the proposed anomaly detection and diagnostic
scheme. Table 2 summarizes the datasets and their test conditions and functions. From the test
condition perspective, there are two modes of test, the first one is the baseline test, in which bearings
are free from defects; the second one is the defect test, in which the inner race of one of the test
bearings was pre-indented to accelerate the fatigue failure process. According to the investigation of
the proposed condition monitoring scheme, the central idea of utilization of these data is: the baseline
datasets are collected to build the reference model representing the normal operating condition, while
the defect test datasets are evaluated against the established reference model to detect anomalies as
well as diagnosing detected anomalies.

Test No. Test load/kN | Test duration/hours | Defect bearing Speed/rpm Application
1 20 80 none 2500 Training data
2 20 62 #2 2500 Testing data

Table2 Bearing test data used in this paper
4. TRAINING OF THE NORMAL MODEL

4.1. Construction of the classic mixture model

The first step is to build the suitable GMM to correctly describe the training data. Fig. 4(a) shows the
Bayesian Information Criterion (BIC) for model-based method applied to test 1 data. It was found that
the local minimum for the mixture model occurs with eleven clusters, hence, this was the number of
clusters chosen and the trained normal model is illustrated in Fig. 4 (b).
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4.2. Adaptation of GMM
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of partitions. Mostly the partition needs to be assigned properly, as it directly affects the anomaly
detection result. Thus the parameter of number of partitions has to be set explicitly. In this paper, the
number of partitions is varied, and cross validation helps to find an appropriate parameter.

For the test 1 data, three partition numbers 8, 16 and 32 were assigned accordingly. Fig. 5 shows the
calculated entropy score for each of the 11 trained clusters with 3 different partitions in the time series.
It can be seen that the entropy score for each cluster increases lineally with increasing number of
partitions. From the Fig.5, the entropy scores of clusters 10 and 11 are seen as significantly lower than
the other scores of clusters, no matter how many partitions are assigned. Thus, these two clusters are
highly suspected to be the regions associated with anomalies, and are suggested to be removed from
the classical GMM.

Fig. 6 shows vibration RMS value before and after the removal of clusters 10 and 11 and their support
cases. It was found a distinctive running-in region existed in the original plot (Figure 6(a)), if these
running-in data points are used to build the GMM, they would lead to a coarser view of ‘normality’
which may not prove so effective when trying to detect real faults. After the removal of clusters 10
and 11 and their support cases as the Figure 6(b) shows, the running-in region data points have been
successfully trimmed, and a new GMM can be generated for the anomaly detection.

25 25
3 3
P T Sruminginregion !
0.5 1 0.5
(a) (b)
0 0

1 1001 2001 3001 4001 5001 6001 7001 8001 9001
Sample

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

Sample

Fig.6 Vibration RMS plot before (a) and after (b) the removal of clusters 10, 11 and their support cases

However, the anomalies might be occurring frequently or distributed throughout the dataset, and the
entropy based method would be ineffective in detecting these anomalies. This situation also occurred
with the test 1 data. Drilling down to the extracted features in the frequency domains, as Fig. 7(a)
illustrates, a significant number of anomalies still exist throughout the test, although clusters 10 and 11
and their associated support cases were eliminated.
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If the clustering space is plotted with the dimensions of WSS2 OR and WSS2 IR in Fig. 7(b). The
cluster 9 might be the region with the anomalies discovered in Fig. 7(a). Going back to the entropy



score plot (Fig. 5), cluster 9 is the region with high entropy score with 3 types of partitions. Hence,
this cluster should not be removed.

Under this circumstance, the second strategy to remove anomalies in the training data is triggered.
With the second anomaly detection strategy, Hotelling’s T-squared distance is calculated between each
of the Gaussian components. Fig.8 (a) illustrates the calculated result. It can be seen that clusters 3 and
9 are recognized as distant from the other clusters, so the support cases associated with these two
clusters are identified as anomalies. Fig.8 (b) shows the WSS2 OR and WSS2 IR data after the
removal of clusters 3 and 9 and their associated data points. Most of the defined anomalies have been
filtered out from the original data plot, and shown a reasonable flat trend for the usage of the normal
training data.
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4.3. Principle Component Analysis in the remained Gaussian components

After the construction and adaptation of the normal reference model, the Principle Component
Analysis (PCA) is applied in each of the remaining Gaussian component, so that the multiple PCA
subspace can be built. Table 3 shows the number of the Principle Components (PCs) and their
captured variance for each of the remained Gaussian components of the test 1 data.

Remained clusters Number of PCs Cumulative Variance (%)
1 14 82.61
2 11 82.04
4 14 81.18
5 13 80.42
6 13 82.49
7 12 80.73
8 13 80.40

Table 3 Summary of number of extracted PCs in the remained clusters

5. ANOMALY DETECTION AND DIAGNOSIS RESULTS

5.1.Anomaly detection

The effectiveness of using equipped multiple sensing technologies to detect impending failure of the
bearings, and the multivariate dataset, marked as test 2 in this paper are reported in [3]. There are two
aims behind the further analysis of the data. First to determine whether an earlier (prognostic)
indication of the failure can be achieved, i.e. can the initiation of fatigue failure be detected in advance
of the finial few hours? Second, the capability for determining what and where the fault is i.e. is there
clear diagnostic information available? In the field, both of these are important if goals such as
optimized maintenance planning, minimum logistic footprint and maximum equipment are to be



achieved.

Fig. 9(a) shows the Hotelling’s T-squared statistic with the test 2 data, which has been run through the
normal reference model trained with test 1 data. From this figure there is evidence of abnormal
behaviour at the start of the test which, is due to the bearing running in. The run out to failure from
about 54 hours, dominates. However, it is encouraging to find evidence of change in advance of 54
hours: an overall increase at around 36 or so hours, with significant peaks between 43 and 45 hours. It
is also noted that these detected prognostic activities could not be seen clearly in the original extracted
features, which proves the advantage of the proposed anomaly detection approach.

So far, it is not clear the cause of the period of activity between 43 and 45 hours in Fig. 9(a), they may
result from the generated wear debris by delamination from the pre-indent on the inner race of bearing
#2 or surface debounding by subsurface cracks. It is also found in Fig.10, that the off-line debris
counter could detect increases in debris production at 43 hours. This correlates with the detected
activities by the T-squared statistic over the similar period of time. Hence, these abnormal events are
invaluable, as they could be used to detect debris related abnormal conditions that result from the
initiation of fatigue failure.

T-squared statistic based on trirnmed GMM trained by test1 dataset T-squared statistic based on original GMM trained by test? dataset

T-squared statistic {log)
T-sguared statistic (log)
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Fig.9 T-squared statistic with the test 2 data based on trimmed GMM (a)
T-squared statistic with the test 2 data based on original GMM (b)
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training data (testl) which is used to build the Fig.10 Off-line debris counter

model of normality, and the abnormal events in the testing data which are similar to the anomalies in
the training data become undetectable.

5.2. Anomalies diagnosis

The anomaly detection results indicate two periods of interest as shown in Fig. 9(a). In the field, it
might be insufficient to conduct appropriate maintenance plan with only the knowledge of detected
anomalies, as it is meaningful to understand where these anomalies occur. As stated before, the
applied features could reveal the condition of different bearings and components within the bearing.
Hence, there is a need to investigate which variables are the main driving factors for the detected



anomalies to achieve a diagnostic function. In this study, contribution values for each of the variables
are calculated to identify the main influencing factors that drive the detected anomalies of interest.

Fig. 11(a) shows the absolute contribution values of the rolling element energy for the four applied
sensors. Over the first period of interest (between 37 and 43 hours, as Fig. 11(b) shows), the WSS3
rolling element energy dominates the trend with additional peaks, while the other rolling element
energies show insignificant contributions to the detected abnormal trend. On the other hand, it is clear
to see that the vibration and WSS3 rolling element energies are the main driving factors to the
increasing trend during the second period of interest (54-63 hours). For the contribution value of outer
race energies (see Fig.11 (c) and (d)), vibration and WSS3 elements dominate both periods of interest,
but do not seem as significant as the rolling element energies. For the contribution value of inner race
energies (not shown here), the difference from the previous two bearing elements is that contribution
values of inner race energies can not be distinguished to see which variables are the major
contribution resource for both two areas of abnormal, and have the relatively weak impact. Apart from
the contribution values of the bearing element energies, the oil-line variables are also examined, and
found that the OLS variables were seen to be significant in the second period interest.
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Fig.11 Contribution charts of the applied variables for the bearing diagnosis

Therefore, it can be seen that the WSS 3 rolling element and vibration outer race energies obtain the
highest impact on the detected prognostic events (between 37 and 43 hours), from which two
diagnostic information is generated: 1) abnormal conditions occurred within the bearing #4, since it is
monitored by WSS3. 2) As the WSSs are designed to detect charge generated between the contacting
surfaces and wear debris, it can be inferred that the delamination or initial spallation occurring
between the contacting surfaces of rolling elements and outer race of bearing #4, and amount of debris
generated which is detected by off-line debris counter.

On the other hand, nearly all the variables have the impact on the abnormal condition at the end stage
(54-63 hours), but the rolling element and outer race energies of vibration and WSS3 are the strongest.
This could be explained as spallation occurred within the bearing #4 due to rolling contact fatigue,
hence large amounts of debris and hugely modified contact surfaces generate high charge and strong
energies which are reflected by the WSS and vibration sensors, respectively. Furthermore, OLS
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variables also show a significant trend during this period. This is because the OLSs are installed in the
oil-line, and the generated debris was brought by the oil flow passing through the OLSs, causing
significant charges.

5.3.Bearing inspection

In order to relate the physical condition of the bearing elements to the diagnostic results, both these
faults are corroborated by post-test inspections of the bearings. It is clear to see in the Fig. 12 that
there is significant damage to the outer race of bearing #4 and several rolling elements of the same
bearing suffered material loss. This confirms that, for the two periods of interest, the fatigue initiation
and spallation occurred between the contacting surfaces of the rolling elements and the outer race of
bearing #4.

Fig.12 Post-analysis of the failed bearing #4 of outer race and rolling elements

6. CONCLUSIONS AND FUTURE WORK
A new intelligent scheme has been developed to detect early signals of bearing distress. From the
work conducted to date the following conclusions can be made:

1)

2)

3)

4)

A novel approach based on entropy statistic and T-squared distance has been developed to
effectively remove the anomalies in the training data, and the demonstration results show the
importance of adaptation of the normal model.

The T-squared distance has been utilized for extracting abnormal events from the multivariate
data. Prognostic information has been extracted approximately 10 hours before the severe wear
occurred.

The contribution values of the extracted features can assist operators locate faulty bearings as
well as indicate that the vibration features have the strongest impact on the T-squared statistic
at the second period of interest while the electrostatic features are more sensitive to the
precursors. Furthermore, off-line debris analysis and final bearing surface inspection also
provide strong physical evidence for the precursors and predicted faulty bearing locations.

The vibration features were examined by the developed scheme for the first time to obtain the
physical understanding of the vibration sensor. From the testing results, the vibration sensor
could be used to detect and locate prognostic events that are related to fatigue initiation, this
capability was complementary with the electrostatic wear-site sensors which also provide
contribution to detect prognostic events. On the other hand, vibration sensor is found to be
more sensitive for monitoring severe wear of the bearing (e.g. large amounts of wear debris
were entrained between the raceways and rolling elements due to the spallation giving rise to
significant shocks).

Although the test results have shown the effectiveness of the scheme, there are still several concerns
that need to be addressed by future work:
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1) In the approach of reference model adaptation, number of the partitions assigned in the time
series is set explicitly. A mechanism is required to set this parameter by investigating number
of the data points and dimensionality in the training data.

2) The threshold value for the anomaly detection needs to be optimized.

3) To achieve the automated reasoning, the system needs to be assigned with the knowledge that
represents different conditions of the bearings. The current diagnostic method using
contribution values is not an automatic approach. Hence, it is important to develop diagnostic
training data representing different bearing symptoms (bearing fault mechanism, and fault
location) by discovering knowledge from the run-to-failure test and recording characteristic
features from such datasets.
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