
  
 

1

Bearing Condition Monitoring Using Multiple Sensors and 
Integrated Data Fusion Techniques 

 
S.L. Chen1, M. Craig1, R.J.K. Wood1, L. Wang1, R. Callan2, H.E.G. Powrie2 

1Surface Engineering and Tribology Group, University of Southampton, Southampton, SO17 1BJ, UK 
2GE Aviation, Digital Systems, Chandlers Ford, SO 53, 4YG, UK 

 
ABSTRACT 

Recently, at the University of Southampton, a series of taper roller bearing tests have been conducted 
to evaluate the effectiveness of using on-line sensing technologies to detect incipient faults. The test 
rig instrumentation included vibration and electrostatic sensors as well as off-line processes such as 
debris analysis and tribological assessment of bearing condition, which are used for corroborative 
purposes. The test results indicate that the combination of these techniques are capable of detecting 
bearing deterioration shortly before complete failure, but the expected precursor events related to 
fatigue failure initiation are indistinguishable from the conventional univariate signal plots. Therefore, 
more advanced data fusion techniques have been developed to extract further information and enhance 
the detection of abnormal trends. This paper describes work on intelligent processes of both training 
and testing data and demonstrates how the prognostic window is significantly improved relative to 
original processed features. The approach also identifies the main variables which drive the anomaly 
detection so as to provide diagnostic information.     
Keywords: Rolling Element Bearing, Condition Monitoring, Vibration Monitoring, Electrostatic 
Monitoring, Data Fusion.     
 

1. INTRODUCTION  
Vibration analysis has been used in bearing condition monitoring for over 50 years, and has achieved 
various degree of success. Electrostatic charge detection was originally developed by GE Aviation 
(formerly Smiths Aerospace) for the identification of debris in the gas path of jet engines [1]. Further 
research at the University of Southampton has shown its potential to detect precursor processes that 
indicate contact distress and wear in lubricated environments [2]. Recently, a series of taper roller 
bearing tests have been conducted to evaluate the effectiveness of using on-line sensing technologies 
to detect incipient faults [3]. The test rig instrumentation included vibration accelerometer and 
electrostatic sensors as well as off-line processes such as debris analysis and tribological assessment 
of bearing condition, which are used for corroborative purposes. Although the test results indicate that 
the combination of these techniques is capable of detecting bearing deterioration shortly before 
complete failure, expected precursor events related to initiation of bearing fatigue failure are 
indistinguishable from the conventional univariate signal plots. Moreover, these techniques require a 
lot of manpower to analyze the results in order to achieve detection and diagnostic information. Thus, 
developing a systematic approach that can automatically extract bearing abnormal events and 
diagnostic information is crucial.  
 
So far, various approaches have been tried, including artificial neural networks (ANNs) [4], fuzzy 
logic [5], evolutionary algorithms [6] etc. to develop automatic fault detection and diagnosis systems. 
Although the performances of these systems are consistently improved with the adaptation of the 
algorithms or implementation of the data pre-processing [7] and feature selection [8] techniques, there 
is still a major concern over this development strategy: it is not easy to obtain multi-class training data 
covering all aspects of bearing symptoms that can appear very different and confusing. Nevertheless, 
data representing the normal condition of the bearings is the most easy-to-obtain dataset, and the 
systems can be built to detect whether the bearing condition deviates from the ‘normal’ region rather 
than mapping collected data into several established categories of the bearing conditions. This idea 
has been used as the central development strategy by novelty detection [9, 10] and statistical process 
control (SPC) [11, 12] techniques in image processing and chemical plant applications.  
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In this paper, a Gaussian mixture model (GMM) is proposed to summarize the probabilistic density of 
the training data (normal condition) and to build the normal model. However, the true condition of the 
training data is unknown and it might contain a number of anomalous data due to the sensor 
malfunction or environmental effects etc., so the GMM could not be expected to respond to these 
anomalies [13]. Therefore, the model is adapted with a novel approach to suppress regions with 
anomalies. Further, Hotelling’s T-squared statistic is applied to extract abnormal information by 
measuring the distance between the test sample and the origin of the adapted normal model. Finally, 
the contribution values to the calculated T-squared statistic are calculated for each extracted feature, 
which are related to bearing components as well as to the sensor locations.   
 
This paper is organized as follows: a brief introduction of the proposed approach is presented in 
section 2. Section 3 describes the experiments, extracted signals in both time and frequency domains 
and applied datasets. Section 4 provides the training process of the normal model, and the anomaly 
detection and diagnosis results of the test data is described in the section 5.  
 

2. METHODOLOGY  
Fig. 1 shows the flow chart of the 
proposed scheme. At the beginning, 
multiple features from time domain, i.e. 
RMS value and frequency domain, i.e. 
energies at bearing defect frequencies are 
processed for both the training and testing 
data. Next, the GMM approach is applied 
to describe the training data. Thirdly, the 
innovative methods are adopted to locate 
and trim Gaussian components in the 
existing GMM associated with anomalies. 
The scheme then utilizes principle 
component analysis (PCA) in each of the 
remaining Gaussian components, so that 
the multiple PCA model can be achieved. 
Finally, the multivariate testing data is fed 
into the multiple PCA models, so the 
Hotelling’s T-squared statistic and variable 
contribution values can be calculated to 
obtain the anomaly detection and 
diagnosis information respectively.  

Fig. 1 Methodology flowchart of the proposed intelligent scheme 

 

2.1. Gaussian Mixture Model  
Often it is assumed that normal data may be described by a single Gaussian distribution. However, 
real world data can be distributed in a more complicated way. Data from different time intervals might 
occupy their own space of normality (e.g. vibration levels varies at different times due to a different 
load regime) or it may contain unknown anomalies. Clearly data with these elements will not follow a 
single Gaussian distribution. In this case, the data may be characterized by a combination of Gaussian 
distributions, or a Gaussian Mixture Model. Details of the GMM and its associated 
Expectation-Maximization (EM) algorithm used for clustering the training data can be found in [14]. 
It should be noted that the Bayesian Information Criterion (BIC) [15] was utilised in the current study 
to indicate the optimized number of clusters.  
 
2.2. Adaptation of GMM to remove anomalies in the training data  
As indicated in the introduction section, the true condition of the training data is unknown and it 
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might contain a number of outlying data which could affect the fault detection results. In this paper, a 
novel approach is introduced to identify areas of the cluster space that might be associated with 
anomalies.  
 
To define the proposed approach, two assumptions need to be made according to the general 
distribution of the anomalies: 1) The anomalies are occurring at occasional time intervals in the time 
series; 2) The clusters associated with anomalies are distant from the clusters with normal data.  
 

- Entropy based method 
To find out anomalies under the first assumption, the Entropy statistic from the information theory is 
applied. For n partitioned categories (equal time intervals) in the time series, and for a training vector 
x with all samples having a cluster ID v, the Entropy E is defined as [16]: 
                           

2
1

( )  log
n

i i
i

E x v p p
=

= = −∑         (1)  

                       
Where pi is the probability of training 
vector x coming from cluster v of 
category i occurring.   
 
Fig. 2 shows the concept and steps of 
using the Entropy statistic for finding 
the anomalies embedded in the GMM 
subspace. Hence, the main idea of the 
entropy based anomaly detection 
method is to explore whether the 
support cases in a particular cluster are 
from occasional time intervals or 
multiple time intervals. If data in a 
cluster is just from one time interval, the 
probability of the data points from this 
time interval in the current cluster will 
be as high as 100%, and the 
probabilities of the data points from 
other time intervals are 0%, so that the 
entropy score for the current cluster will 
be as low as zero. Regarding the first 
assumption, the current cluster could be 
recognized as a region associated with 
anomalies.   
 
-  Distance based method 
Although anomalies are found occurring occasionally in the time series of the training data in most 
situations, however anomalies are also appearing frequently throughout the test, and the entropy based 
method will be insensitive to these anomalies. Hence, a distance based method is developed to 
measure the data dispersion-clusters with distant points from other regions being eliminated from the 
calculation.  In this study, the Hotelling’s T-squared distance is calculated between two clusters [17], 
using equations (2) and (3):   
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Where nA and nB are the number of support cases in clusters A and B; μA and μB are sample means of 

Fig.2 Steps of the entropy based approach to remove anomalies  
In the training data 
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clusters A and B, respectively; 
^

A∑  and 
^

B∑ are estimates of covariance matrices of the clusters A and 
B, respectively.  
 
2.3. Anomaly detection and diagnosis  
After characterization of the training data and adaptation of the GMM, the PCA is applied in each of 
the remaining Gaussian component, so the multiple PCA models can be generated. For detailed 
introduction of PCA, please refer to [18]. And then, for the given testing vector yi, the sum of 
normalized squared scores, known as Hotelling’s T-squared statistic is calculated to measure the 
variation of testing vector yi within the PCA model. The T-squared statistic is defined as:  
 
                                    2 1 1T T T

i i i i c c iT t t y P P yλ λ− −= =                               (4) 
where ti refers to the ith row of Tc , the m by c matrix of c scores vectors from the PCA model, and λ is 
a diagonal matrix containing the eigenvalues (λ1 through λc) corresponding to c eigenvectors 
(principal components) retained in the model. On the other hand, the anomaly detection threshold is 
defined by maximum Hotelling’s T-squared distance of the training data. 
 
It should be noted that Hotelling’s T-squared statistic is calculated based on a single component within 
the multiple PCA models for each testing vector. The component is chosen with the minimum 
Mahalanobis distance, dk, from its centre to the testing vector [9], given by equation (5):  
 

                                 
1( ) ( )T

k i k i kK
d y y−

= −µ −µ∑                               (5)           

Where µk and Σk are mean vector and covariance matrix of kth Gaussian component respectively.  
 
Furthermore, the T-squared contribution values describe how individual variables contribute to the 
Hotelling’s T-squared value for a given testing sample.   
 
                               1/ 2 1/ 2

,
T T

con i i c i c ct t P y P Pλ λ− −= =                              (6) 
Thus, diagnostic information is achieved by calculating the variables contribution value, to identify 
which variables are the main driven factors for the detected anomalies.  
 

3. EXPERIMENT AND DATASETS  
 
3.1. Experiment  
The bearing rig tests discussed in this paper 
form part of a series of tests undertaken at 
the University of Southampton. Details of the 
rig may be found in other references (see [3] 
for example), so only a brief overview is 
provided here. 
 
The bearing rig comprises four taper roller 
bearings housed in a chamber, as shown in 
Fig. 3. The bearings are mounted on a shaft 
driven by an electric motor. The outer two 
bearings (#1 and #4) are support bearings, 
whilst the inner bearings (#2 and #3) are test 
bearings. The two test bearings have a radial 
load applied to accelerate their failure. In addition, for the failure test analyzed in this paper, bearing 
#2 was pre-indented on the inner race. The baseline test used non-indented bearings. The bearing 
types were LM67010 (cup) and LM67048 (cone), which are all steel bearings. The rig was run at a 

Fig.3 Bearing rig chamber showing main test components 
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constant speed of 2500 rpm under ambient conditions and fully flooded with the Shell Vitrea 32 
lubricant at the oil flow rate of 4 litres min-1.   
 
The rig was instrumented with a number of condition monitoring sensors. In the test chamber there 
was one vibration sensor (mounted externally) and three electrostatic wear-site sensors (WSS) - one 
each on bearings #1 and #4 and one looking at bearings #2 & #3. The oil re-circulation pipework 
included an electrostatic oil-line debris sensor. Additional oil-line debris sensors included an inductive 
debris sensor, which provided wear particle counts for > 100 microns. 
 
The testing also included a number of complimentary off-line analyses. Oil samples were taken during 
various stages of the testing and these were analyzed for sub-100 micron debris content. Tribological 
analyses of the bearing condition pre and post-test were conducted and included photographic 
evidence and mass loss calculations. Where applicable, the oil-line sensors and post-test / off-line 
analyses were used to help interpret the responses of the vibration and WSS sensors during the tests. 
 
3.2. Feature extraction  

The post-processed signal features from the three types of sensors (vibration, WSSs and OLS) were 
extracted to construct both training and testing data set for the developed intelligent scheme. 
 

To form the vibration and WSSs training set, six dimensional features were selected for each of the two 
sensing technologies. In theses features, the first and second dimensions were chosen as the RMS value 
of the time domain and the energy at the rotational frequency respectively. The third to sixth features are 
based on the energies at the bearing defect frequencies, i.e. races, rollers and cage. These features are 
used to reveal the information on the bearing components. Each energy was externally clocked using 
once per revolution signal from the shaft tachometer. Data sets of RMS value and energies at bearing 
defect frequencies were produced at two points per minute. The bearing defect frequencies are listed as 
the equations (7) ~ (10) given by [19],  

 
 
Where ωs is the shaft rotational speed in rad /s, d is the diameter of the roller, D is the pitch diameter, 
Z is the number of rolling elements and α is the contact angle. 
 

Vibration WSS1 WSS2 WSS3 OLS 
RMS RMS RMS RMS RMS1 

Tacho Energy Tacho Energy Tacho Energy Tacho Energy RMS2 
Cage Energy Cage Energy Cage Energy Cage Energy Indicator 
Roller Energy Roller Energy Roller Energy Roller Energy  

OuterRace Energy OuterRace Energy OuterRace Energy OuterRace Energy  
InnerRace Energy InnerRace Energy InnerRace Energy InnerRace Energy  

Front 
housing 

Vicinity of  
Bearing1 

Vicinity of 
Bearings2&3 

Vicinity of 
Bearing4 

Oil-line 

 
Table1 Extracted features for the multivariate data analysis 
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For the OLS analysis, three time domain parameters including RMS values of the two oil line sensors 
and the cross-correlated value that couples two OLSs to identify charge moving at the oil flow rate, 
were utilised to generate data set. This training and testing sets were produced one point every two 
seconds. Table 1 tabulates the selected features for the bearing wear detection. 

 
3.3. Bearing test datasets 
In this paper, 2 sets of data are utilized to validate the proposed anomaly detection and diagnostic 
scheme. Table 2 summarizes the datasets and their test conditions and functions.  From the test 
condition perspective, there are two modes of test, the first one is the baseline test, in which bearings 
are free from defects; the second one is the defect test, in which the inner race of one of the test 
bearings was pre-indented to accelerate the fatigue failure process. According to the investigation of 
the proposed condition monitoring scheme, the central idea of utilization of these data is: the baseline 
datasets are collected to build the reference model representing the normal operating condition, while 
the defect test datasets are evaluated against the established reference model to detect anomalies as 
well as diagnosing detected anomalies.  
 

Test No. Test load/kN Test duration/hours Defect bearing Speed/rpm Application 
1 20 80 none 2500 Training data 
2 20 62 #2 2500 Testing data 

Table2 Bearing test data used in this paper 
 
4. TRAINING OF THE NORMAL MODEL  
 
4.1. Construction of the classic mixture model 
The first step is to build the suitable GMM to correctly describe the training data. Fig. 4(a) shows the 
Bayesian Information Criterion (BIC) for model-based method applied to test 1 data. It was found that 
the local minimum for the mixture model occurs with eleven clusters, hence, this was the number of 
clusters chosen and the trained normal model is illustrated in Fig. 4 (b). 

 
Fig.4 BIC score for GMM applied to test 1 data (a) Trained GMM for the test 1 data (b)  

 
4.2. Adaptation of GMM  
It was indicated in section 2.2 that the 
training data (test 1 in this case) might 
contain a number of anomalies, and need to 
be eliminated by the developed entropy and 
distance based approaches.  
 
At the beginning of the approach, the 
training data in the time series needs to be 
partitioned into several categories. The 
difficult task here is to determine the number 
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of partitions. Mostly the partition needs to be assigned properly, as it directly affects the anomaly 
detection result. Thus the parameter of number of partitions has to be set explicitly. In this paper, the 
number of partitions is varied, and cross validation helps to find an appropriate parameter.  
 
For the test 1 data, three partition numbers 8, 16 and 32 were assigned accordingly.  Fig. 5 shows the 
calculated entropy score for each of the 11 trained clusters with 3 different partitions in the time series. 
It can be seen that the entropy score for each cluster increases lineally with increasing number of 
partitions. From the Fig.5, the entropy scores of clusters 10 and 11 are seen as significantly lower than 
the other scores of clusters, no matter how many partitions are assigned. Thus, these two clusters are 
highly suspected to be the regions associated with anomalies, and are suggested to be removed from 
the classical GMM.  
 
Fig. 6 shows vibration RMS value before and after the removal of clusters 10 and 11 and their support 
cases. It was found a distinctive running-in region existed in the original plot (Figure 6(a)), if these 
running-in data points are used to build the GMM, they would lead to a coarser view of ‘normality’ 
which may not prove so effective when trying to detect real faults. After the removal of clusters 10 
and 11 and their support cases as the Figure 6(b) shows, the running-in region data points have been 
successfully trimmed, and a new GMM can be generated for the anomaly detection.  

 
 Fig.6 Vibration RMS plot before (a) and after (b) the removal of clusters 10, 11 and their support cases  

 
However, the anomalies might be occurring frequently or distributed throughout the dataset, and the 
entropy based method would be ineffective in detecting these anomalies. This situation also occurred 
with the test 1 data. Drilling down to the extracted features in the frequency domains, as Fig. 7(a) 
illustrates, a significant number of anomalies still exist throughout the test, although clusters 10 and 11 
and their associated support cases were eliminated. 

 
Fig.7 WSS2 OR and IR plot after the removal of cluster 10, 11 (a) 

GMM in the space of WSS2 OR and IR energy (b) 
 
If the clustering space is plotted with the dimensions of WSS2 OR and WSS2 IR in Fig. 7(b). The 
cluster 9 might be the region with the anomalies discovered in Fig. 7(a). Going back to the entropy 
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score plot (Fig. 5), cluster 9 is the region with high entropy score with 3 types of partitions. Hence, 
this cluster should not be removed. 
 
Under this circumstance, the second strategy to remove anomalies in the training data is triggered. 
With the second anomaly detection strategy, Hotelling’s T-squared distance is calculated between each 
of the Gaussian components. Fig.8 (a) illustrates the calculated result. It can be seen that clusters 3 and 
9 are recognized as distant from the other clusters, so the support cases associated with these two 
clusters are identified as anomalies. Fig.8 (b) shows the WSS2 OR and WSS2 IR data after the 
removal of clusters 3 and 9 and their associated data points. Most of the defined anomalies have been 
filtered out from the original data plot, and shown a reasonable flat trend for the usage of the normal 
training data. 

 
Fig.8 T-squared distance between the trained clusters (a)  

WSS2 OR and IR energy plot after the removal of clusters 3 and 9 (b) 
 

4.3. Principle Component Analysis in the remained Gaussian components  
After the construction and adaptation of the normal reference model, the Principle Component 
Analysis (PCA) is applied in each of the remaining Gaussian component, so that the multiple PCA 
subspace can be built. Table 3 shows the number of the Principle Components (PCs) and their 
captured variance for each of the remained Gaussian components of the test 1 data.  
 

Remained clusters Number of PCs Cumulative Variance (%) 
1 14 82.61 
2 11 82.04 
4 14 81.18 
5 13 80.42 
6 13 82.49 
7 12 80.73 
8 13 80.40 

Table 3 Summary of number of extracted PCs in the remained clusters 
 
5. ANOMALY DETECTION AND DIAGNOSIS RESULTS  
 
5.1.Anomaly detection  
The effectiveness of using equipped multiple sensing technologies to detect impending failure of the 
bearings, and the multivariate dataset, marked as test 2 in this paper are reported in [3]. There are two 
aims behind the further analysis of the data. First to determine whether an earlier (prognostic) 
indication of the failure can be achieved, i.e. can the initiation of fatigue failure be detected in advance 
of the finial few hours? Second, the capability for determining what and where the fault is i.e. is there 
clear diagnostic information available? In the field, both of these are important if goals such as 
optimized maintenance planning, minimum logistic footprint and maximum equipment are to be 
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Fig.10 Off-line debris counter 

achieved.  
 
Fig. 9(a) shows the Hotelling’s T-squared statistic with the test 2 data, which has been run through the 
normal reference model trained with test 1 data. From this figure there is evidence of abnormal 
behaviour at the start of the test which, is due to the bearing running in. The run out to failure from 
about 54 hours, dominates. However, it is encouraging to find evidence of change in advance of 54 
hours: an overall increase at around 36 or so hours, with significant peaks between 43 and 45 hours. It 
is also noted that these detected prognostic activities could not be seen clearly in the original extracted 
features, which proves the advantage of the proposed anomaly detection approach.  
 
So far, it is not clear the cause of the period of activity between 43 and 45 hours in Fig. 9(a), they may 
result from the generated wear debris by delamination from the pre-indent on the inner race of bearing 
#2 or surface debounding by subsurface cracks. It is also found in Fig.10, that the off-line debris 
counter could detect increases in debris production at 43 hours. This correlates with the detected 
activities by the T-squared statistic over the similar period of time. Hence, these abnormal events are 
invaluable, as they could be used to detect debris related abnormal conditions that result from the 
initiation of fatigue failure.  
 

 
Fig.9 T-squared statistic with the test 2 data based on trimmed GMM (a)  

T-squared statistic with the test 2 data based on original GMM (b) 
 
In order to verify the importance of the 
model adaptation technique, the 
Hotelling’s T-squared statistic is also 
calculated against the un-trimmed original 
GMM as shown in Fig. 9(b). The 
prognostic activities between 43 and 45 
hours can not be visualized, this is due to a 
number of anomalies contained in the 
training data (test1) which is used to build the 
model of normality, and the abnormal events in the testing data which are similar to the anomalies in 
the training data become undetectable. 
 
5.2. Anomalies diagnosis 
The anomaly detection results indicate two periods of interest as shown in Fig. 9(a). In the field, it 
might be insufficient to conduct appropriate maintenance plan with only the knowledge of detected 
anomalies, as it is meaningful to understand where these anomalies occur. As stated before, the 
applied features could reveal the condition of different bearings and components within the bearing. 
Hence, there is a need to investigate which variables are the main driving factors for the detected 

(a) (b) 
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anomalies to achieve a diagnostic function. In this study, contribution values for each of the variables 
are calculated to identify the main influencing factors that drive the detected anomalies of interest. 
 
Fig. 11(a) shows the absolute contribution values of the rolling element energy for the four applied 
sensors. Over the first period of interest (between 37 and 43 hours, as Fig. 11(b) shows), the WSS3 
rolling element energy dominates the trend with additional peaks, while the other rolling element 
energies show insignificant contributions to the detected abnormal trend. On the other hand, it is clear 
to see that the vibration and WSS3 rolling element energies are the main driving factors to the 
increasing trend during the second period of interest (54-63 hours). For the contribution value of outer 
race energies (see Fig.11 (c) and (d)), vibration and WSS3 elements dominate both periods of interest, 
but do not seem as significant as the rolling element energies. For the contribution value of inner race 
energies (not shown here), the difference from the previous two bearing elements is that contribution 
values of inner race energies can not be distinguished to see which variables are the major 
contribution resource for both two areas of abnormal, and have the relatively weak impact. Apart from 
the contribution values of the bearing element energies, the oil-line variables are also examined, and 
found that the OLS variables were seen to be significant in the second period interest.  
     

 
Fig.11 Contribution charts of the applied variables for the bearing diagnosis 

 

Therefore, it can be seen that the WSS 3 rolling element and vibration outer race energies obtain the 
highest impact on the detected prognostic events (between 37 and 43 hours), from which two 
diagnostic information is generated: 1) abnormal conditions occurred within the bearing #4, since it is 
monitored by WSS3. 2) As the WSSs are designed to detect charge generated between the contacting 
surfaces and wear debris, it can be inferred that the delamination or initial spallation occurring 
between the contacting surfaces of rolling elements and outer race of bearing #4, and amount of debris 
generated which is detected by off-line debris counter.    
 
On the other hand, nearly all the variables have the impact on the abnormal condition at the end stage 
(54-63 hours), but the rolling element and outer race energies of vibration and WSS3 are the strongest. 
This could be explained as spallation occurred within the bearing #4 due to rolling contact fatigue, 
hence large amounts of debris and hugely modified contact surfaces generate high charge and strong 
energies which are reflected by the WSS and vibration sensors, respectively. Furthermore, OLS 
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variables also show a significant trend during this period. This is because the OLSs are installed in the 
oil-line, and the generated debris was brought by the oil flow passing through the OLSs, causing 
significant charges. 

 

5.3.Bearing inspection  
In order to relate the physical condition of the bearing elements to the diagnostic results, both these 
faults are corroborated by post-test inspections of the bearings. It is clear to see in the Fig. 12 that 
there is significant damage to the outer race of bearing #4 and several rolling elements of the same 
bearing suffered material loss. This confirms that, for the two periods of interest, the fatigue initiation 
and spallation occurred between the contacting surfaces of the rolling elements and the outer race of 
bearing #4.  
 

 
Fig.12 Post-analysis of the failed bearing #4 of outer race and rolling elements  

 
6. CONCLUSIONS AND FUTURE WORK 
A new intelligent scheme has been developed to detect early signals of bearing distress. From the 
work conducted to date the following conclusions can be made:  
 

1) A novel approach based on entropy statistic and T-squared distance has been developed to 
effectively remove the anomalies in the training data, and the demonstration results show the 
importance of adaptation of the normal model.  

 
2) The T-squared distance has been utilized for extracting abnormal events from the multivariate 

data. Prognostic information has been extracted approximately 10 hours before the severe wear 
occurred.  

 
3) The contribution values of the extracted features can assist operators locate faulty bearings as 

well as indicate that the vibration features have the strongest impact on the T-squared statistic 
at the second period of interest while the electrostatic features are more sensitive to the 
precursors. Furthermore, off-line debris analysis and final bearing surface inspection also 
provide strong physical evidence for the precursors and predicted faulty bearing locations.  

 
4) The vibration features were examined by the developed scheme for the first time to obtain the 

physical understanding of the vibration sensor. From the testing results, the vibration sensor 
could be used to detect and locate prognostic events that are related to fatigue initiation, this 
capability was complementary with the electrostatic wear-site sensors which also provide 
contribution to detect prognostic events. On the other hand, vibration sensor is found to be 
more sensitive for monitoring severe wear of the bearing (e.g. large amounts of wear debris 
were entrained between the raceways and rolling elements due to the spallation giving rise to 
significant shocks).  

 
Although the test results have shown the effectiveness of the scheme, there are still several concerns 
that need to be addressed by future work:  
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1) In the approach of reference model adaptation, number of the partitions assigned in the time 
series is set explicitly. A mechanism is required to set this parameter by investigating number 
of the data points and dimensionality in the training data.  

 
2) The threshold value for the anomaly detection needs to be optimized.  

 
3) To achieve the automated reasoning, the system needs to be assigned with the knowledge that 

represents different conditions of the bearings. The current diagnostic method using 
contribution values is not an automatic approach. Hence, it is important to develop diagnostic 
training data representing different bearing symptoms (bearing fault mechanism, and fault 
location) by discovering knowledge from the run-to-failure test and recording characteristic 
features from such datasets.  
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