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Nanocomposite materials are currently attracting much interest due to their
possibility of global property improvement — mechanical strength, toughness,
electrical breakdown strength, electrical erosion resistance and flame
retardancy. In order to disperse montmorillonite clay (MMT) into polyethylene
(PE), the clay sheets need to be rendered organophilic. Masterbatches with a
high level (~40 %wt) of organomodified clay can then be dispersed into a host
by a simple mechanical process. Two chemically different masterbatches were
purchased: Nanoblend 2101 from PolyOne Corp. and C30PE from Nanocor
Inc. These were let down using a Randcastle™ single screw extruder with a
patented mixing device to provide elongational flow. Wide angle X-ray
diffraction was used together with transmission electron microscopy to
evaluate the particle dispersion, which consisted of intercalated clay organised
in clusters up to one micron in diameter.

The performance of these materials was assessed in terms of AC ramp
breakdown statistics, dielectric spectroscopy, dynamic and tensile mechanical
properties. Nanoblend masterbatch consistently improved the breakdown
statistics, more than overcoming the inherent demerit of extrusion, which mildly
aged the unfilled material (as confirmed by Raman spectroscopy.) On the other
hand, even low loading levels of Nanocor could result in reduced breakdown
strength and increased scatter. Furthermore, both sets of materials
demonstrated large dielectric losses at power frequencies and poorer
performance under mechanical tension. These materials would therefore
require considerable development before they could confidently be used
commercially.

The nature of the PE-MMT interactions was examined by investigating
the crystallisation kinetics and resulting morphologies with differential scanning
calorimetry and scanning electron microscopy. By varying the masterbatch
type, loading level and crystallisation temperature, it was possible to study a
wide range of supercrystalline morphologies using a permanganic etching
technique. This is a useful contribution to the field of nanocomposites
research. It is known that the morphologies of polymers can affect their
mechanical properties and electrical treeing behaviour, and so it is possible
that controlled crystallisation could provide a route toward designer materials
with optimised behaviour.
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