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Nanocomposite materials are currently attracting much interest due to their 
possibility of global property improvement – mechanical strength, toughness, 
electrical breakdown strength, electrical erosion resistance and flame 
retardancy. In order to disperse montmorillonite clay (MMT) into polyethylene 
(PE), the clay sheets need to be rendered organophilic. Masterbatches with a 
high level (~40 %wt) of organomodified clay can then be dispersed into a host 
by a simple mechanical process. Two chemically different masterbatches were 
purchased: Nanoblend 2101 from PolyOne Corp. and C30PE from Nanocor 
Inc. These were let down using a RandcastleTM single screw extruder with a 
patented mixing device to provide elongational flow. Wide angle X-ray 
diffraction was used together with transmission electron microscopy to 
evaluate the particle dispersion, which consisted of intercalated clay organised 
in clusters up to one micron in diameter.   

The performance of these materials was assessed in terms of AC ramp 
breakdown statistics, dielectric spectroscopy, dynamic and tensile mechanical 
properties. Nanoblend masterbatch consistently improved the breakdown 
statistics, more than overcoming the inherent demerit of extrusion, which mildly 
aged the unfilled material (as confirmed by Raman spectroscopy.) On the other 
hand, even low loading levels of Nanocor could result in reduced breakdown 
strength and increased scatter. Furthermore, both sets of materials 
demonstrated large dielectric losses at power frequencies and poorer 
performance under mechanical tension. These materials would therefore 
require considerable development before they could confidently be used 
commercially.  

The nature of the PE-MMT interactions was examined by investigating 
the crystallisation kinetics and resulting morphologies with differential scanning 
calorimetry and scanning electron microscopy. By varying the masterbatch 
type, loading level and crystallisation temperature, it was possible to study a 
wide range of supercrystalline morphologies using a permanganic etching 
technique. This is a useful contribution to the field of nanocomposites 
research. It is known that the morphologies of polymers can affect their 
mechanical properties and electrical treeing behaviour, and so it is possible 
that controlled crystallisation could provide a route toward designer materials 
with optimised behaviour.  
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