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6. AC ramp breakdown testing and analysis  

 

6.1 Experimental procedure 

 

In Chapter 1, a brief overview was given of the types of physical 

processes that might determine the electrical breakdown strength of a system. 

Recalling that the likelihood of some catastrophic instability occurring will be a 

function of both applied field and time, constant stress tests (with time as the 

dependent variable) would provide the most statistically complete information. 

Such tests are very time-consuming, however, and since it is not possible to 

make time the independent variable, a ramped stress test is in practice the 

most efficient way to obtain large amounts of data.  

An electrical testing procedure based upon the general considerations 

laid down in ASTM standard D149-87 [6.1],[6.2],[6.3] was used. A circuit 

diagram is shown in Figure 6.1. The sample for testing was immersed in Dow 

Corning 200/20 cs silicone fluid, between two 6.3 mm steel ball bearings.  A 

50 g load was added to the upper electrode (total mass 56 g) in order to 

eliminate the film of oil between the electrode and the sample which would 

affect the breakdown data. A 50 Hz voltage was then increased from zero up to 

a maximum of 18 kV at 50 V s-1, the sample failing at around 10 kV. Hosier 

[6.4] found that 15 breakdowns were sufficient to cause pitting on the 

electrodes, reducing the effective breakdown strength. A conservative 

approach was taken in this study, changing the electrodes after every five 

breakdowns. The silicone fluid was changed at the start of every day, since it is 

known that fluid contaminated by electrical activity would eventually lower the 

measured breakdown strengths.  

The principal advantage of this geometry over pin-plane and plane-plane 

geometries is the small amount of material required for each breakdown. Each 

sample consisted of a 25 mm diameter disk of material with a thickness of       

70±2.5 µm. It might be argued that charge injection processes could limit the 

number of breakdowns that could be performed on each disk. However, in 

practice, 5 breakdowns were performed on each disk, and cumulative 

experience on over 100 disks provided reassurance that this did not introduce 
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any noticeable problems into the data.  Another potential advantage of 

sampling small areas is that the effect of anomalous defects can be contained 

within smaller clusters of data, meaning that less data need to be left-censored 

to obtain datasets which truly represent the background (anomalous defect-

free) population. Also, the field divergence with this film thickness closely 

approximates parallel-plate geometry at the contact tangents. 

 

 

Figure 6.1 Schematic diagram for electrical breakdown rig. 

 

 Tests conducted with recessed electrodes or epoxy-encapsulated 

samples can yield LDPE breakdown strengths around 600 kV mm-1 [6.5]; this is 

over three times as high as the values obtained by Hosier using a ball-bearing 

setup [6.4]. Furthermore, Martin [6.6] found that the breakdown strengths of 

XLPE samples varied strongly with the roughness of the sample surface. 

Clearly then, the breakdown strengths obtained from this technique should not 

be regarded as indicative of the intrinsic material breakdown strength. Rather, 

they are a measure of the combined effect of internal processes and external 

discharges in the oil. These hot electrons will provide an additional source of 

both charge carriers and kinetic energy for heating and electrical erosion. The 
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consequence of using a ramped test together with a ball-bearing apparatus is 

that this is a multi-modal test. The failure mode is a function of the applied 

voltage and of the electrical environment at the electrode-oil-sample triple point 

(and of course, the latter is in turn dependent on the former.) Nonetheless, it is 

considered that the benefit of generating large amounts of data for statistical 

analysis outweighs the inability of this technique to test specific mechanistic 

models.  

During early experiments, the audible onset voltage for corona voltage 

between the high tension lead (HTL) and the surrounding air was very low – 

around 9 kV. Corona discharge would add a high frequency component onto 

the applied signal, possibly accelerating the breakdown processes. It was found 

that shielding the HTL with a PTFE pipe and suspending it from the top of the 

cage with nylon fishing wire increased the audible corona onset to 12 kV, which 

was above the breakdown strength of most of the samples. The explanation for 

this is that a counter-field was established to suppress the corona due to 

charges deposited on the internal wall of the pipe. 

The HT voltage was measured using a 10 000:1 potential divider and 

Precision Gold WG020 digital multimeter (not shown in Figure 7.1 for 

simplicity.) Initially, it was feared that these devices could be damaged by 

transients from the breakdowns, and so they were calibrated every week 

against the laboratory standard voltmeter until confidence in their long-term 

stability could be established. There was also concern about the possibility of 

nonlinearity in the transformer (Foster no. ED355;) in practice, it proved 

possible to draw a chord from the origin to an output voltage – time plot with a 

gradient accurate to with 5%. The frequency was stable, as observed on an 

oscilloscope (Hameg HM203-4 20 MHz), with a drift of at most 1% over the 

course of 10 min. It proved necessary incrementally to adjust the ramp rate 

after each ramp; otherwise, it could drift by up to 6% per hour. The effect of this 

uncertainty was further minimised by recording the breakdown voltage directly 

rather than by back-calculation from the breakdown time. 
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6.2 Statistical background: Selecting the best distribution 

 

There are 3 questions that need to be considered when selecting an 

appropriate distribution for breakdown statistics: 

 

<1> Is there a suitable model or family of models that might generate a testable 

distribution? 

 

<2> Does the distribution have sufficient flexibility to conform to the observed 

data?  

 

<3> Is the distribution easy to handle computationally, both in parameter 

estimation and confidence bound estimation? 

 

In practice, <3> is generally less important than it was historically. A 

sophisticated software package (Weibull++7TM from Reliasoft®) was used to 

facilitate the data analysis in this research. Questions <1> and <2> stand in 

opposition to each other in the sense that the more flexible the distribution is, 

the less predictive power the physical model can have.  

 Useful compromises between <1> and <2> can be best obtained by 

realising that a number of asymptotic distributions exist for large samples of 

stochastic events drawn from the same population. The best known of these is 

the central limit theorem, which states that the sampling distribution of the 

mean of any population approaches a normal distribution with increasing 

sample size [6.7]. Alternatively, a variable which can be considered as the 

multiplication, rather than the addition, of the outcomes of a large number of 

stochastic processes drawn from the same population could be represented by 

the log-normal distribution. Because of their ease of handling, both the normal 

and log-normal distributions were used extensively in the early days of life data 

analysis, but it has not been possible to find families of physical models which 

could generate breakdown statistics through such addition or multiplication 

mechanisms [6.8]. 

More relevant are the asymptotic distributions of extreme values 

(sampling maxima and minima,) discussed in detail by Lawless [6.9]. Gumbel 
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[6.8] showed that three asymptotically stable extreme value distributions (AEV) 

exist, termed the 1st, 2nd and 3rd AEVs. The second is of no importance to 

electrical engineers (the time domain is negative, and all the samples have 

failed by t=0!) The first, otherwise known as the Gumbel distribution, has the 

form: 
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where F(x) is the cumulative probability of failure at time (or in our case, 

voltage) x, xt is a threshold time below which no failures will occur and xc is a 

scale parameter. The disadvantages of the Gumbel distribution are that they 

have no shape-modifying parameter and that like the 1st AEV they give a finite 

probability of failure for negative times. Dissado [6.10], however, insists that the 

Gumbel distribution is the most appropriate AEV for ramp breakdown initiated 

by a distribution of field-enhancing defects or partial discharges in voids. The 

1st AEV can also be appropriate for liquid dielectric breakdown [6.11].  

 It is in fact the 3rd AEV that is the most widely used breakdown 

distribution, due to its flexibility. This was reported by Weibull in 1951 and is the 

standard distribution recommended by the IEEE [6.12],[6.13]. 
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where α and β are the location and shape parameters of the distribution. Under 

some conditions, such as where there is a critical threshold for space charge 

injection, the threshold parameter will take a non-zero value. However, in most 

cases there is simply not enough evidence to justify the use of a 3-parameter 

distribution. Cacciari et al. [6.14] have analyzed the breakdown data of thin PE 

films. They note that although, for their data, a goodness of fit test favours a 3-

parameter model over a 2-parameter one, this is an artefact of increased 

mathematical versatility. 
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 Weibull deduced this model, as explained by Ross [6.15], by considering 

that the cumulative distribution function (cdf) of the mechanical strength of a 

chain containing n links should have the same shape as the strength of any one 

link. The underlying mechanisms must have fractal characteristics in space or 

time. The highly idealised thermodynamic fluctuation model [6.1] could produce 

this, but the real value of a Weibull distribution is actually due in its 

mathematical flexibility, especially in those cases (which may be the vast 

majority) where the underlying mechanisms are not fractal. 

Plots of the probability density functions (pdfs) and cdfs of Weibull 

distributions under α=1 and various β are shown in Figures 6.2 and 6.3. 

 

 

 

 

 

Figure 6.2: CDF of Weibull function under α=1 and various values of β. 
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Figure 6.3: PDF of Weibull function under α=1 and various values of β. 

 

Chi-squared goodness of fit tests were conducted on the data prior to 

Weibull analysis. Overall, it was found that the generalised gamma and 3 

parameter Weibull functions gave the best fit, with the data fitting least well to 

the 1- and 2- parameter exponential distributions*. The first two functions were 

rejected as they are 3-parameter distributions, so it was decided to conduct a 

narrower comparison of the normal, Weibull and Gumbel functions. The 

goodness-of-fit rankings are shown in Table 6.1 below.  

 

 

 

 

*Much interconnectedness can be found between different types of distribution. If event rates follow a normal 

distribution in time, event quantities will have a Poisson distribution in sampled time intervals and an exponential 

distribution of times between successive events. If successive events can then be thought of as causing cumulative 

damage, the time to critical damage will have a Gamma distribution. The exponential distribution is a limiting case of 

the 1AEV, 3AEV and Gumbel functions; being highly specified, it is relatively inflexible mathematically. 
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Dataset  Normal Weibull 2 (3 AEV) Gumbel (1 AEV) 

1 1 1 2 

2 3 2 1 

3 2 1 1 

4 2 1 3 

5 1 2 3 

6 3 2 1 

7 3 2 1 

8 3 2 1 

9 1 2 3 

10 1 2 3 

11 3 2 1 

12 3 2 1 

13 1 2 3 

14 1 2 3 

15 1 2 3 

Mean rank 1.93 1.8 2 

Standard deviation in 

rank 

0.96115 0.414039 1 

Table 6.1: Chi-squared goodness-of-fit rankings for most of the datasets 

of between 15 and 25 datapoints obtained in this study. The 2 parameter 

Weibull consistently provides the best fit. 

 

The 2-parameter Weibull distribution is the best overall fit considered in terms 

of its mean rank, the standard deviation of its rank position and the fact that it is 

never the worst distribution – though it is seldom the best.  

In order to estimate the Weibull parameters, it is necessary first to rank 

the breakdowns in order of voltage and then estimate the true probability of 

failure from each point by median rank estimation. In other words, the 

cumulative probability of failure for each data point needs to be estimated. The 

key here is to realise that it is possible to assign a unique cumulative probability 

of failure Fi(x) for each ranked data point i (out of n) such that the probability 

that the estimate is too high (or low) will follow a binomial distribution [6.7]. 

Median rank estimation, therefore, assigns a value of 50% to this probability: 
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In order to solve this equation, a transformation must be made to an incomplete 

beta function. However, it is more convenient to use a simple approximation, 

several of which are available, such as the Bernard estimator [6.16]: 
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A double log plot is then made of equation (6.2) (setting xt=0), ideally yielding a 

straight line. Next, the parameters α and ß need to be estimated. Linear 

regression will be biased toward the extremes of the distribution, and so it might 

be argued that Maximum Likelihood Estimation (MLE) gives better estimates of 

the parameters. This reverses the question “Given this set of parameter values, 

what is the most probable model output?” to “Given this set of outputs, what are 

the most likely parameter values?” Firstly, a likelihood function L(α,β) is 

defined, which is the product of the pdfs f(x:α,β) for each data point: 
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It is more practical to maximise log(L(α,ß)) than L(α,ß), and the relevant 

equations for 2-parameter Weibull are: 
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Equation (6.7) can be solved by Newton-Raphson on an initial guess of β 

provided by least squares regression. A likelihood surface L(α,ß) for quenched 

NB20, generated from the Weibull++7TM software, is shown below. 

 

 

  

Figure 6.4: Likelihood function surface for quenched NB20. (The axis 

labelled “eta” corresponds to α.) Contours drawn parallel to the α,ß plane 

would indicate the Likelihood Ratio (see below) confidence limits of these 

parameters. 

 

However, MLE parameter estimation is also known to be biased, 

especially for β, with the effect becoming worse for small n and the bias in α 

becoming worse for small β. Cacciari et al. [6.17] have reviewed the various 

unbiasing techniques available, which can be split into two categories. Firstly, 

there are those methods that modify the estimator equations (7.6) and (7.7) 

above in some way, such as the Jacquelin [6.18] technique. By contrast, the 

Ross [6.19] and Harter-Moore [6.20] methods operate on the parameters which 

have already been obtained by conventional MLE. The methods are more or 
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less reliable for given sample sizes, parameter values and whether or not the 

data sets are censored or not. Cacciari et al. [6.17] for example, demonstrate 

by Monte Carlo analysis that the Bain-Engelhart estimated data is worse for 

β>1 and small sample sizes than unestimated data. 

 Once the estimated parameters have been obtained, it is necessary to 

estimate their confidence intervals. These can be determined from the ratios of 

the likelihood values of the estimated data to those of associated with other 

values of α and ß. If likelihood ratios are not available, confidence bounds can 

be obtained from Monte Carlo datasets. Monte Carlo data tables have even 

been published using pivotal quantities (statistics which are a function only of 

the sample size) [6.17]. 

 

6.3 Statistical background: optimal parameter estimation 

 

The manual for the Weibull ++7TM software does not give any indication 

that an unbiasing technique is used in its MLE procedure. Moreover, it advises 

that for sample sizes of less than 30, the rank regression technique should be 

used. This is clearly at odds with received wisdom [6.1] and it was therefore 

necessary to use a Monte Carlo procedure to determine the best-behaved 

method. It is important to note that the following discussion does not concern 

the general applicability of the MLE and RRX methods for Weibull analysis. 

Rather, the suitability of these methods is discussed for the particular range of 

parameters pertinent to this study, using this particular piece of software. A 

constant nominal value of α was chosen to be 100, with ß and n ranging from 

0.5 to 25 and 5 to 25 respectively. This more than covers the extremes of n and 

ß found experimentally. For example, sections 6.4 and 6.5 of this chapter 

contain inferences made on datasets with n>14. For each pair of (n,ß) values, 

1000 datasets were generated and analysed using MLE and rank regression 

with respect to the x (RRX) and ln(ln(F(x)) (RRY) values, producing sets of 

estimated α and ß parameters, <α>i and <ß>i, where 0<i<1001.  

Figures 6.5-6.7 below illustrate typical differences seen using the three 

estimators on 1000 datasets for ß=6 and n=20. The median and mean 

estimated parameter lines are consistently biased away from the true 
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parameter line for the MLE and RRY methods. We conclude that for these for 

this sample size and shape parameter, RRX gives the best estimation of the 

population line.   

 

 

Figure 6.5: MLE estimation on 1000 Monte Carlo datasets with n=20 and 

ß=6, 90% 2-sided confidence intervals. Black line = original parameter 

line, green and yellow lines correspond to mean and median <α> and <ß> 

parameters respectively. A systematic anticlockwise deviation is seen in 

the estimated data lines with respect to the original parameter line; this 

corresponds to an overestimation of ß. 
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Figure 6.6: As Figure 6.5 but with RRY estimation and a clockwise bias in 

the data lines corresponding to the estimated parameters. 

 

Figure 6.7: As Figures 6.5 and 6.6 above but with RRX estimation. RRX in 

this case is a better estimator than both RRY and MLE. 
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Figures 6.8-6.11 illustrate the behaviour of the RRX- and MLE-calculated <α> 

and <ß> as a function of both n and ß. Confidence bounds for <α> and <ß> are 

given as a half-width: 

 

95% uncertainty parameter 
1000

96.1 σ
=  (7.8) 

 

where σ is the standard deviation in <α> or <ß>. In each of these figures, the 

upper and lower plots show the bias and uncertainty in the estimated 

parameters respectively. Common to all the graphs is that the bias and 

uncertainty in <α> and <ß> decrease with increasing n. Apart from this, 

however, the RRX and MLE estimators show very different behaviour. 

 Figure 6.8 shows that even for large sample sizes, the MLE algorithm 

employed by Weibull++7TM will consistently overestimate. At n=25, for example, 

the bias in <ß> is at least 1.06 – 1.1% = +1.05. With n=15, it could be as high 

as 1.12 +1.6% = +1.14. In contrast the RRX-calculated <ß> shown in Figure 

6.9 is much more stable. Here, the bias has a 95% confidence upper maximum 

of +1.05 at n=20. It is interesting, though, that whereas a clear correlation 

between ß and the bias in <ß> can be seen in the MLE-estimated data, the 

corresponding RRX-estimated bias is highly random with respect to ß. Also of 

interest is that the confidence parameters for <α> in Figures 6.10 and 6.11 are 

massively dependent on the true value of ß, unlike the <ß> above. The 

dependence on sample size is weak by comparison. For sample sizes above 

15, both the MLE and RRX techniques can be trusted to estimate α to within 

1%, provided the ß > 2. Fortunately, this requirement is met by all of the data 

obtained experimentally. Both MLE and RRX are therefore used below. 
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Figure 6.8: Predicted bias in MLE-estimated <ß> from Monte Carlo data. 

The technique is seen consistently to overestimate ß for all n. Key: ß. 
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Figure 6.9: Predicted bias in RRX-calculated ß from Monte Carlo data. The 

RRX procedure is demonstrated to be much more reliable than MLE for 

these data. Key: true ß. 
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Figure 6.10: Predicted bias in MLE-calculated <α> from Monte Carlo data. 

MLE can be trusted provided ß>2 and n≥15. Key: true ß. 
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Figure 6.11: Predicted bias in RRX-calculated <α> from Monte Carlo data. 

Again, RRX out-performs MLE. Key: true ß. 
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6.4 Non-parametric estimation 

 

 It is also possible to determine confidence bounds for ranked 

experimental data without the assumption of a parametric model. Increased 

generality is thereby obtained at the expense of wider confidence bounds. As 

the data in this report are not interval or right-censored (at worst, the only points 

removed from the data are taken from the bottom end, with a corresponding 

reduction in sample size) the ideal way of doing this would be to generate beta 

binomial confidence bounds. Returning to equation (6.3) and setting the left 

hand side to 0.5 yields the median rank estimator. If instead the left hand side 

is first set to 0.05 and then 0.95, a 90% confidence interval in cumulative 

probability will have been generated.  

 Unfortunately, the Weibull++7TM software does not support this technique 

for raw data. Instead, the Kaplan-Meier technique for interval-censored data is 

employed (in our case with ability to censor is redundant.) The following 

equation is used to estimate the cumulative failure probability: 
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where a is the number of units available to fail in the jth interval (ie that have not 

already failed or been suspended) and b is the number of units failing in this 

interval. In this work, b=1 and equation (6.8) reduces to the crude: 
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The software then generates confidence bounds via the Greenwood formula 

[6.21] to estimate the variance in Fi(x): 
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6.5 Methodology: summary 

 

 Although the ball-bearing breakdown method suffers from the distinct 

disadvantage of partial discharge and surface tracking phenomena, it is by far 

the most efficient method of generating large enough sets of data on which to 

perform robust statistical analysis in small amounts of time. Further efficiency 

can be realised by coupling time and applied field into a single ramped 

parameter, though this does mean that the ability to discern specific types of 

stochastic processes in the time domain is lost. Nonetheless, the objective of 

this work is not to probe the underlying physical mechanisms, but simply to 

study the breakdown statistics as a function of masterbatch type and loading 

level. It is a satisfying result that chi-squared testing favours the use of a 2-

parameter Weibull distribution for this analysis. 

 Monte Carlo analysis has been used to decide whether MLE or RRX is 

the more reliable parameter estimator. For the range of beta parameters and 

sample sizes used in this work, RRX has overwhelmingly been shown to be 

favourable. Nonetheless, there is value in using both techniques in the 

discussion below, for the sake of comparison. As there is no physical basis for 

using the Weibull distribution for these samples, there is no physical basis for 

trusting Weibull confidence bounds on the empirical cdfs. Therefore, a simple 

but powerful non-parametric technique by the name of Kaplan-Meier estimation 

is also used below in order to bolster confidence in the conclusions that are 

drawn. 

 

6.6 Results 

 

 Breakdown data were obtained from samples for both masterbatches as 

a function of loading level. Data for α and ß are summarised in Table 6.2. A 

nomenclature is used in which the isothermal crystallisation temperature in °C 

is given in brackets, “q” indicating that the sample was quenched. The colours 

in the table indicate subsections of the data under which the samples were 

randomised and atmospheric conditions were roughly constant. To each  
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Material MLE  RRX  

 α – kV mm-1 ß α– kV mm-1 ß 

NB0=NC0(q) 146.6 
 

6.2 
 

146.6 5.9 
 

NB5(q) 162.7 
 

8.0 
 

163.7 
 

5.9 
 

NB10(q) 166.9 
 

12.4 
 

167.4 
 

10.0 
 

NB20(q) 175.1 
 

17.2 
 

175.0 
 

23.9 
 

PERef1 158.3 
 

24.3 
 

159.3 
 

21.3 
 

PERef2 151.7 
 

22.3 
 

151.4 
 

25.3 
 

NC5(q) 152.3 
 

8.4 
 

152.4 
 

7.5 
 

NC10(q) 144.1 
 

6.0 
 

144.6 
 

5.1 
 

NC20(q) 155.4 
 

22.8 
 

155.7 
 

18.9 
 

PERef3 163.6 
 

14.2 
 

163.0 
 

16.4 
 

NB0=NC0(q) 149.7 
 

9.4 
 

151.0 
 

6.9 
 

NB0=NC0(117) 148.1 
 

8.0 
 

148.0 
 

7.1 
 

NB5(q) 164.6 
 

18.6 
 

164.4 
 

20.6 
 

NB5(117) 165.3 
 

25.3 
 

165.0 
 

26.7 
 

NB20(q) 172.4 
 

17.8 
 

171.7 
 

22.1 
 

NB20(117) 170.9 
 

19.0 
 

170.6 
 

20.4 
 

NC20(q) 150.4 
 

12.1 
 

151.3 
 

9.3 
 

NC20(117) 156.4 
 

11.0 
 

157.3 
 

8.4 
 

 

Table 6.2: Estimated Weibull parameters from RRX and MLE for all data in 

Figures 6.16-6.19. Each colour block groups samples that were tested 

together over 4 days, shuffled to eliminate experimental drift. 

 

 

 

 

 



 146 

subsection belongs a reference sample PERef1, PERef2 and PERef3, pressed 

from LDPE. It is apparent from these data that a monotonic increase in 

breakdown strength and reduction in scatter result from increasing the amount 

of Nanoblend masterbatch. Corresponding to the yellow section of the table, 

Figure 6.12 compares the Weibull plots for the Nanoblend-based systems to an 

LDPE reference. The striking feature of these data is that sample NB0=NC0(q) 

has a markedly lower breakdown strength than the LDPE reference sample. 

This effect can be attributed to ageing during extrusion. A distribution of 

residence times results in an aged morphology as shown in Figure 2.13, which 

may affect the high voltage conduction characteristics of the material due to the 

introduction of a new trap distribution. (The low field behaviour proved to be 

unaffected by ageing, as discussed in the previous chapter.) 

The other significant conclusion to be drawn from Figure 6.12 is that 

NB0=NC0(q), NB10(q) and NB20(q) are significantly different from each other 

at the 90% confidence level. NB10(q) is not significantly different from the 

reference blend, illustrating the usefulness of this filling level for mitigating the 

effects of extrusion ageing. The Weibull plot for NB5(q) is particularly 

interesting as it appears to contain two clusters of data corresponding to the 

NB0=NC0(q) and NB10(q) populations respectively. This would argue for 

competing mechanisms which are both operating at sufficiently small loading 

levels. If much larger quantities of data were available, it would be an 

informative exercise to correlate these sub-populations to morphological 

features. The value in a non-parametric approach as a statistically robust tool 

for confirming these conclusions is shown by Figure 6.13. We can be quite sure 

of the validity of the confidence bounds, as they do not rely on any assumed 

distribution. 

Whereas the breakdown data for the Nanoblend systems are promising, 

the same cannot be said of the Nanocor systems, as shown in Figure 6.13, 

lower plot. At best, it can be argued that there is a slight improvement in 

breakdown strength for NC20(q); smaller loadings, however, only serve to 

increase the scatter below Eb relative to the LDPE reference. Although NC5(q) 

and NC20(q) exhibit better performance than NB0=NC0(q), the NC10(q) does 

not. This contrasts to the monotonic relationships both between breakdown   
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Figure 6.12: Influence of Nanoblend loading level on breakdown statistics 

relative to a non-extruded LDPE reference sample. NB20 serves to more 

than nullify the detrimental effect of extrusion. Outer confidence bounds: 

RRX. Inner confidence bounds: MLE. All materials quenched. 
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Figure 6.13: Kaplan-Meier plots with 90% confidence bounds for 

Nanoblend and Nanocor systems. Both systems improve breakdown 

strength and shape relative to NB0=NC0, although the Nanoblend 

masterbatch does so more effectively. 
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strength / shape parameter and loading level seen in the Nanoblend-based 

systems.  

It was a cause of concern that the LDPE reference sample used for the 

quenched Nanocor systems had a breakdown strength nearly 7 kV mm-1 lower 

than that used to characterise the Nanoblend systems. These correspond to 

PERef1 and PERef2 in Table 6.2 respectively. It was decided, therefore, to 

compare all of these data to equivalent quenched sets obtained during 

subsequent isothermal crystallisation / quenching experiments. Reassuringly, 

as can be seen in Table 6.2, the breakdown strength of PERef3 (used for this 

final set of experiments) is much closer to PERef1, confirming the anomalous 

nature of PERef2. In the corresponding Weibull plot, Figure 6.14, the lower ß 

exhibited by PERef3 is due to three anomalously high values; PERef1 and 

PERef3 are not otherwise significantly different.  

 

Figure 6.14: Comparison of the LDPE reference samples used in this 

study. PERef1 has a significantly lower breakdown strength than the 

other samples. Outer confidence bounds: RRX. Inner confidence bounds: 

MLE. 
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Comparison of the data for NB0=NC0(q) and NB20(q) shows that this does not 

affect our conclusion that the Nanoblend-based materials have higher 

breakdown strengths than the unfilled polyethylene blend. 

It is important to establish that there are good reasons why PERef2 

should exhibit significantly different breakdown statistics to PERef1 and 

PERef3. One possible candidate explanation is the ambient temperature. 

PERef2 was studied during the summer, with an ambient laboratory 

temperature of 23-25 °C, whereas PERef1 and PERef3 were analysed during 

the winter, with an ambient temperature of 15-17 °C. Oakes [6.5] studied the 

effect of temperature (77-350 K) on the AC ramp breakdown statistics of 100-

700 µm recessed polyethylene films with graphite electrodes. Pentatene / 

toluene and transformer oil were used as the immersion media from -100 °C - 

+25 °C and from 25 °C to 40 °C respectively. Between 0 °C and 40 °C, Eb 

drops from ~650 kV mm-1 to ~600 kV mm-1. Although the response does not 

appear to be linear (Oakes tentatively suggests a critical Fröhlich temperature 

around 30 °C,) this would correspond to a change in the region of 1 kV mm-1 

°C-1, which would be entirely consistent with the variation in our results. Guerin 

et al.[6.22], studied the DC breakdown strengths of 100 µm LDPE film between 

Rogowski-profiled electrodes. Although they did not measure below room 

temperature, a drop of 30 kV mm-1 was found between 25 °C and 45 °C, which 

by extrapolation below room temperature would nonetheless corroborate our 

hypothesis. 

In our samples, however, we must also consider the effect of partial 

discharging in micro-pockets of silicone oil between the electrodes and the 

sample. Yehia et al.[6.23] studied the DC breakdown strengths of oxygenated 

and degassed silicone oil (50 cS) between a nickel-plated steel sewing needle 

and a 5 mm-diameter earthed steel sphere. The experiments were all 

conducted at room temperature. For a negative needle, and for a needle-

sphere spacing of 50 µm, the oxygenated oil had a ~50 % higher breakdown 

strength than the degassed oil. For a positive needle, the increase was smaller, 

at ~20 %. One cannot reject the possibility that, even if we concede that the 

variation of oxygen content will only be a very weak function of temperature 

[6.28], the actual discharging process may itself be temperature dependent. 

Although a degree of variability can be seen between the three sets of data, the 
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possibility of variation within each of these need not be feared. This is because 

rather than testing all 5 disks of each material at the same time, the materials 

were alternated such that any variation in external factors would appear only to 

increase the overall scatter in the data. 

Note also that the ß-value according to MLE is 18.6 for the second 

NB5(q) sample in Table 6.2 (green region), compared to a previous 8.0 for the 

first (yellow region.) The RRX-estimated value has increased from 5.9 to 20.6. 

This is simply a consequence of increasing the sample size from 20 to 25. Of 

all the systems associated with PERef3, there was no reason to censor any of 

the low values, whereas 4 points were removed from both NB5 samples in the 

green section of Table 6.2 that could legitimately be assigned to the 

NB0=NC0(q) or NB0=NC0(117) datasets. Due to the smaller sample size, 

progressive censoring of NB5(q) would have removed too many points due to 

the apparent change in mechanism at high fields.  

Figure 6.15 shows the effect of isothermal crystallisation on these 

samples. Based on the work of Hosier [6.4] it was expected, at least in 

NB0=NC0, that isothermal crystallisation would significantly increase the 

breakdown strength. On the contrary, if there are any effects present they are 

very subtle and would require much larger sets of data for their validation. Even 

the higher ß seen in NB5(117) is an artifact of censoring a 211 kV mm-1 

breakdown event. It is curious that the only other anomalously high event can 

be seen uncensored in the corresponding NB5(q) population, Figure 6.19. A 

Kaplan-Meier plot was used for the NC20 samples due to the second 

population of points which appear below 140 kV mm-1 (most likely another 

consequence of differences in temperature and humidity.) When these points 

are removed, the remaining populations are still not significantly distinct at the 

90 % level.  
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Figure 6.15: Effect of crystallising samples at 117 °C on breakdown 

strength. Isothermal crystallisation does not significantly increase the 

breakdown strengths of these materials. Outer confidence bounds: RRX. 

Inner confidence bounds: MLE. 

 

  We attribute the unexpected behaviour of NB0=NC0 to extruder 

degradation. Another run of NB0=NC0 and NC10 was processed using a much 

finer feedstock. These materials are designated 2/NB0=NC0 and 2/NC10 

respectively. It is estimated that they were processed with residence times 

approximately one half of NB0=NC0 and NC10. Although it was very difficult to 

decide by optical microscopy whether they contained less degradation, 

2/NB0=NC0 was visibly whiter than NB0=NC0. The effect of isothermal 

crystallisation on the breakdown behaviour of 2/NB0=NC0 is shown in Figure 

6.16. The breakdown strength in the isothermally crystallised sample is 
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significantly increased, as originally expected. However, the corresponding data 

for 2/NC10 shown in Figure 6.17 indicate that the addition of o-MMT 

nonetheless suppresses the effect. However, the breakdown strength of 

2/NC10(q) is substantially greater than NC10(q) and marginally greater than 

2/NB0=NC0. It is ~50 kV mm-1 greater than that of a poorly dispersed reference 

(produced, as before, by solution in xylene) containing 90 : 10 : 10 w/w/w BPE : 

LPE : I30P. It is not clear whether this improvement is due to reduced 

degradation or a result of shorter residence times leading to a different particle 

size distribution. 

 

 

Figure 6.16: Weibull plots for material 2/NC0=NB0 with differing thermal 

histories. Red: Isothermal crystallisation at 117 °C. Black: Quench. 

Isothermal crystallisation significantly increases the breakdown strength. 

Confidence bounds: MLE 
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Figure 6.17: Weibull plots for 2/NC10. Red and black indicate same 

thermal histories as in Figure 6.16. Blue: poorly dispersed reference with 

same %wt o-MMT content as 2/NC10. Breakdown strength of 2/NC10 than 

poorly dispersed reference, but not increased by isothermal 

crystallisation. Confidence bounds: MLE 

 

 

6.7 Discussion 

 

The loss of isothermal strengthening seen in Figure 6.17 for material 

2/NC10 may be a combination of reduced spherulite size or the result of a new 

distribution of electrical scattering, mechanical toughening or surface discharge 

resistance centres. The distinct population of low breakdown strengths seen in 

the NC20 plot of Figure 6.15 suggests that the larger filler particles may be 

acting as defect initiators [6.25-6.26]; such behaviour is typified by the 

behaviour of the poorly dispersed reference blend. The defects can be 

morphological, as mismatched thermal expansion coefficients between the 

particle and the matrix can combine with chemical incompatibility to result in 

voiding at the interface. They can also distort the electric field through charge 

trapping, or via permittivity or conductivity mismatch under AC and DC 

conditions respectively. Breakdown strength-reducing processes may compete 
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with enhancement processes to produce the non-monotonic loading level – 

breakdown strength behaviour seen in the Nanocor-based systems.  

The encouraging results for the Nanoblend systems are supplemented 

by data from NB0(MA) and NB10(MA) shown in Figure 6.18. In this case, it is 

clear that in NB10(MA) the cumulative probability of failure drops off rapidly 

below 180 kV mm-1. This is a useful result for a design engineer when 

optimising the maximum working stress of a system.  

 

 

 

Figure 6.18: Weibull probability plots for material NB10(MA) (right) and 

NB0(MA) (left) following quenching.  It is seen that the breakdown 

strength of the filled sample is increased by ~11%, and that a threshold 

voltage appears to be introduced. Confidence bounds associated with 

MLE estimation. 

 

There is much evidence in the literature of the potential for breakdown 

strength enhancement in nanocomposite systems. Provided that the nanofillers 

are adequately dispersed, the electrical breakdown strength of the resulting 

system is higher than its unfilled counterpart. For example, breakdown by 

electrical treeing was studied in an epoxy composite filled with a mixture of 
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micro- and nano-silica [6.27] and improved endurance times were observed 

compared with a simple microcomposite.  This feature was related to the 

denser, more tightly-packed tree structures that evolved in the presence of the 

nanofiller. This is a graphic illustration of the kind of scattering processes 

discussed above. Roy et al.[6.28] suggest that the increased DC breakdown 

strength of an XLPE / silica nanocomposite is linked with a reduced charge 

carrier mobility through a free volume breakdown mechanism with enhanced 

scattering.  More tentative conclusions have been made in connecting 

breakdown statistics with space charge behaviour. A recent paper [6.29] has 

discussed the improved DC breakdown strengths of magnesium oxide/LDPE 

nanocomposites in terms of the suppression of packet charge.  However, 

another paper reports that internal fields due to space charge build up in nano-

alumina / LLDPE materials regularly initiated sample breakdown during pulsed 

electroacoustic testing [6.30]. 

 In Chapter 2, the various types of breakdown mechanism in polymers 

were discussed. It was noted that it there is still a lack of consensus even in 

simple polymers (eg. polyethylene) concerning whether the intrinsic breakdown 

mechanism is of an electronic or thermo-mechanical nature. Since the 

breakdown process will ultimately involve electrical and thermo-mechanical 

activity, the real difficulty is in deciding which precedes the other. A thorough 

knowledge of macroscopic parameters such as Young’s modulus (and its 

temperature variation,) thermal conductivity, electrical conductivity and space 

charge profile are of use only in distinguishing between macroscopically-

predictive models. (Space charge has been shown to build up in XLPE cables 

even under 50Hz applied stress [6.31].) If more advanced microstructural 

models are required to explain the data, including local inhomogeneities in 

electric field distribution and space charge density, the task of selecting the 

best model becomes even more difficult. Our situation is even more 

indeterminate than this, however, because of the electrode-surface discharge 

processes which result in heating, erosion and modified charge injection 

behaviour. We can be quite confident about the improved behaviour of the 

Nanoblend-systems under these experimental conditions, but we cannot be 

sure why. 
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 The effect of isothermal crystallisation on the dielectric strength of 

polyethylene blends is another case in point. The explanation given for this [6.4] 

is that isothermal crystallisation leads to space-filling spherulites which present 

the breakdown process with a more tortuous path. This could describe one of 

five processes: 

 

●A more tortuous path to frustrate the progress of electrical treeing. This does 

not apply in the thin-film situation. 

 

●More resistance to a filamentary thermal breakdown event. 

 

●More resistance to filamentary electromechanical failure.  

 

●More scattering of hot electrons, limiting their energies. A consequence of 

lamellar material having a negative electron affinity. 

 

●More surface resistance to partial discharge erosion. As the amorphous 

material is preferentially eroded from the surface, emerging spherulites offer 

increasing defence to further erosion. 

 

In any case, it seems that if the material spends too long in the extruder barrel, 

this strengthening mechanism is no longer able to overcome the intrinsically 

weakened amorphous material.  

It is possible to simulate the effect of surface erosion due to electrical 

activity by means of laser ablation [6.32]. A Synrad CO2 class 4 laser source 

was used. The melt-pressed sample, measuring 7 * 7 * 2 mm3, was placed in 

an aluminium chamber with an interlock before applying a power of 12 W. This 

was low enough for the beam not to burn through the sample, but it was also 

considered that any time dependence in ablated volume at this power level is a 

function of changing material parameters alone rather than thermal conduction 

out of the sample [6.32]. Estimation of hole depths by optical microscopy was 

not able to detect any significant differences between NB0=NC0, NB5 and NC5 

at 60 J, at around 1.0 mm. However, the hole depths of NB20 and NC20 

remained constant at ~0.4 mm over a range of applied energies from 20 J to   
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60 J, showing that the highly-loaded materials are highly resistant to 

degradation in this energy range. Nonetheless, the mechanism responsible for 

this is apparent even in the lightly-loaded materials, as judged by SEM.  

Figure 6.19 was generated by exposing an ablated sample of NB5 to the 

standard permanganic reagent of Chapter 4, comprising 1% w/v               

KMnO4 : (1:2:5 v/v/v H2O: H2PO4: H2SO4). There seem to be two clay-rich 

phases present that could contribute to the erosion resistance. Firstly, an ashy 

region is present which is essentially separate from the bulk material. It might 

be expected that this layer is friable and consequentially useless for designed 

ablation-resistant materials, though it did manage to survive a 2-hour acid 

etching process under vigorous mechanical agitation. Secondly, a clay-rich melt 

zone exists inside the surface of the pit. This will contribute to degradation 

resistance in at least one of four ways: 

 

● Enhanced mechanical stiffness acting to reinforce the ablation pit by 

spreading local stresses. 

 

● Enhanced heat capacity, diffusing heat energy away from hot spots. Direct 

evidence for this is seen in the banded crystallisation in the lower image of 

Figure 6.19. From Chapter 3, these objects will have been formed slowly over 

the space of several minutes as the filler cooled. Hosier [6.32] observed 

micron-sized (alumina and zinc oxide) fillers to glow red hot in laser ablation 

experiments at similar powers. 

 

● Enhanced thermal conductivity – the thermal conductivity of clay is over twice 

that of polyethylene [6.33]. This will act to diffuse the heat away from the 

ablation zone. If the heat transport takes place primarily by percolation through 

the network of clay particles, it is approprate to think of this as a barrier effect. 

Otherwise, it would be more appropriate to think of the clay of modifying the 

intrinsic thermal conductivity of the matrix. 

 

● Furthermore, the possibility that there may be a significant optical barrier 

effect should not be neglected. A significant drawback in comparing laser 

ablation with electrical erosion is that the clay may provide a barrier effect in 
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terms of photon reflection and scattering. This question could be investigated 

through the use of in-situ CCD detection of reflected light, together with simple 

light-scattering experiments. For the time being, inferences made concerning 

enhanced electrical erosion resistances based on laser ablation data must 

remain working hypotheses rather than foregone conclusions.  

 

 

 

Figure 6.19: SEM images of ablated hole in material NB5. Upper image: 

formation of incipient protective inorganic layer. Lower image: Zoomed-in 

image of arrowed region in upper image. A clay-rich melt zone has formed 

with a high heat capacity, as judged by the presence of banded 

spherulitic growth. 
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6.8 Conclusion 

 

AC ramp breakdown statistics have been obtained for the Nanoblend- 

and Nanocor-filled materials at various loading levels. Ball-bearing electrodes 

were used to generate a sufficiently large amount of breakdown data to be 

analysed under a Weibull distribution. Both MLE and RRX were used to 

generate confidence bounds, providing additional graphical information about 

the goodness of fit to a Weibull distribution. It was found that the Nanoblend-

filled systems have consistently higher breakdown strengths than the unfilled 

polyethylene blends. The increase in breakdown strength varies monotonically 

with loading level, though the data are decidedly non-Weibull at low to 

intermediate loading levels. Rather, there are at least two master populations 

associated with unfilled and highly-filled samples which, under sufficiently small 

loading levels, can be seen together. A non-parametric approach was therefore 

used to establish the significance of the differences between the datasets. 

It was found that the Nanocor masterbatch also had the potential to 

improve the breakdown strength and shape parameter, albeit in a much less 

robust way than the Nanoblend masterbatch. It is believed that breakdown 

events are very sensitive to the larger clay agglomerates found in the Nanocor-

based materials, and that this sensitivity can be exacerbated through a 

synergism with degradation products originating from the extruder. 

This experiment is not suitable for making inferences about the electrical 

strengthening mechanisms present in these materials; despite half a century of 

work, this remains a controversial topic even in simple materials. However, 

laser ablation data suggest that the filled materials may offer greater resistance 

to electrical erosion. Whether they also have a higher breakdown strength in 

terms of solely bulk processes remains to be seen. However, even the bulk 

processes governing practical engineering systems, namely partial discharge 

and electrical breakdown, are extrinsic in the sense that they are involved with 

the formation of new surfaces. It is highly probable, therefore, that the 

Nanoblend-based systems would offer superior performance in these respects 

too.  

 


