BioSimGrid: grid-enabled biomolecular simulation data storage and analysis


Ng, Muan Hong, Johnston, Steven, Wu, Bing, Murdock, Stuart E., Tai, Kaihsu, Fangohr, Hans, Cox, Simon J., Essex, Jonathan W., Sansom, Mark S.P. and Jeffreys, Paul (2006) BioSimGrid: grid-enabled biomolecular simulation data storage and analysis Future Generation Computer Systems, 6, (22), pp. 657-664. (doi:10.1016/j.future.2005.10.005).

Download

[img] PDF Ng_06pp.pdf - Accepted Manuscript
Download (1MB)

Description/Abstract

In computational biomolecular research, large amounts of simulation data are generated to capture the motion of proteins. These massive simulation data can be analysed in a number of ways to reveal the biochemical properties of the proteins. However, the legacy way of storing these data (usually in the laboratory where the simulations have been run) often hinders a wider sharing and easier cross-comparison of simulation results. The data is commonly encoded in a way specific to the simulation package that produced the data and can only be analysed with tools developed specifically for that simulation package. The BioSimGrid platform seeks to provide a solution to these challenges by exploiting the potential of the Grid in facilitating data sharing. By using BioSimGrid either in a scripting or web environment, users can deposit their data and reuse it for analysis. BioSimGrid tools manage the multiple storage locations transparently to the users and provide a set of retrieval and analysis tools for processing the data in a convenient and efficient manner. This paper details the usage and implementation of BioSimGrid using a combination of commercial databases, the Storage Resource Broker and Python scripts, gluing the building blocks together. It introduces a case study of how BioSimGrid can be used for better storage, retrieval and analysis of biomolecular simulation data.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1016/j.future.2005.10.005
Keywords: biomolecular simulation, database, grid computing, storage resource broker, python
Subjects:

ePrint ID: 65004
Date :
Date Event
15 August 2005Submitted
May 2006Published
Date Deposited: 27 Jan 2009
Last Modified: 16 Apr 2017 17:17
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/65004

Actions (login required)

View Item View Item