The University of Southampton
University of Southampton Institutional Repository

Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy

Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy
Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy
An assessment of the effects of microstructure on room temperature fatigue crack initiation and short crack propagation in a Ni-base superalloy is presented. The assessment was carried out on microstructural variants of U720Li, including as-received U720Li, U720Li-LG (large grain variant) and U720Li-LP (large intragranular coherent ?? variant). Fatigue tests were carried out at room temperature using a 20Hz sinusoidal cycling waveform on plain bend bars. Tests were conducted in 3-point bend under load control with an R-ratio of 0.1. A maximum load of 95% ?y was used in all tests. Room temperature fatigue crack initiation was noted to occur due to slip band cracking and from porosity on or just beneath the surface in all materials. Crack propagation was noted to be highly faceted (due to planar slip band cracking) immediately after crack initiation followed by a transition to a flatter Stage II type crack path as crack length increases. U720Li-LP was noted to show the longest fatigue lifetime, followed by U720Li-LG while U720Li shows the shortest life. The longer lifetime of U720Li-LP was linked to a higher resistance to both fatigue crack initiation and short crack propagation. U720Li and U720Li-LG show approximately similar crack initiation resistance although U720Li-LG showed slightly improved short crack growth resistance. The observations have been rationalised in terms of the microstructural characteristics of the materials, and it is believed that larger grain size, larger coherent ?? precipitate size and higher volume fractions of both coherent and primary ?? precipitates will improve overall fatigue lifetimes in PM Ni-base alloys which exhibit planar slip characteristics at room temperature.
udimet 720Li, microstructural effects, fatigue crack initiation, short crack growth, planar slip
0142-1123
2009-2020
Pang, H.T.
021f768b-408c-4a98-b6ae-0c7ae21dd4ce
Reed, P.A.S.
8b79d87f-3288-4167-bcfc-c1de4b93ce17
Pang, H.T.
021f768b-408c-4a98-b6ae-0c7ae21dd4ce
Reed, P.A.S.
8b79d87f-3288-4167-bcfc-c1de4b93ce17

Pang, H.T. and Reed, P.A.S. (2008) Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy. International Journal of Fatigue, 30 (10-11), 2009-2020. (doi:10.1016/j.ijfatigue.2008.01.001).

Record type: Article

Abstract

An assessment of the effects of microstructure on room temperature fatigue crack initiation and short crack propagation in a Ni-base superalloy is presented. The assessment was carried out on microstructural variants of U720Li, including as-received U720Li, U720Li-LG (large grain variant) and U720Li-LP (large intragranular coherent ?? variant). Fatigue tests were carried out at room temperature using a 20Hz sinusoidal cycling waveform on plain bend bars. Tests were conducted in 3-point bend under load control with an R-ratio of 0.1. A maximum load of 95% ?y was used in all tests. Room temperature fatigue crack initiation was noted to occur due to slip band cracking and from porosity on or just beneath the surface in all materials. Crack propagation was noted to be highly faceted (due to planar slip band cracking) immediately after crack initiation followed by a transition to a flatter Stage II type crack path as crack length increases. U720Li-LP was noted to show the longest fatigue lifetime, followed by U720Li-LG while U720Li shows the shortest life. The longer lifetime of U720Li-LP was linked to a higher resistance to both fatigue crack initiation and short crack propagation. U720Li and U720Li-LG show approximately similar crack initiation resistance although U720Li-LG showed slightly improved short crack growth resistance. The observations have been rationalised in terms of the microstructural characteristics of the materials, and it is believed that larger grain size, larger coherent ?? precipitate size and higher volume fractions of both coherent and primary ?? precipitates will improve overall fatigue lifetimes in PM Ni-base alloys which exhibit planar slip characteristics at room temperature.

Text
U720Li_RTSC_web.pdf - Author's Original
Download (6MB)

More information

e-pub ahead of print date: 15 January 2008
Published date: October 2008
Keywords: udimet 720Li, microstructural effects, fatigue crack initiation, short crack growth, planar slip
Organisations: Engineering Mats & Surface Engineerg Gp

Identifiers

Local EPrints ID: 65058
URI: http://eprints.soton.ac.uk/id/eprint/65058
ISSN: 0142-1123
PURE UUID: 026f22f0-c9eb-415b-9945-eccb9b67766d
ORCID for P.A.S. Reed: ORCID iD orcid.org/0000-0002-2258-0347

Catalogue record

Date deposited: 29 Jan 2009
Last modified: 16 Mar 2024 02:44

Export record

Altmetrics

Contributors

Author: H.T. Pang
Author: P.A.S. Reed ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×