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1. Introduction 

 
During the last years the diffusion of multi-channel audio systems has dramatically 

increased. New products have been introduced in the consumer and high-end market 
and the research activity in this field has been stimulated by industry. An intense re-
search effort has been dedicated to the study and application of new multi-channel au-
dio technologies [1], [2], [3], [4], [5]. The diffusion of digital technologies which al-
low the processing of multiple audio signals with small computational cost has given 
the possibility of implementing a range of scientific theories into real audio systems. 
In parallel to this technological development, research in mathematics has applied 
modern theories to the study of electromagnetic and acoustic phenomena. Relevant 
examples consist of the application of functional analysis to the study of acoustic and 
electromagnetic scattering [6], [7]. Recent developments have tried to extend this theo-
retical approach to the physical reconstruction of a sound field with an array of loud-
speakers and to near field acoustic holography [8], [9].  

 
In the field of processing of audio signals, a large interest has always been dedi-

cated to the study of digital reverberation. In parallel to the evolution of the well estab-
lished “reverb engine” based on a delay network, recent scientific developments [10], 
[11] have allowed the introduction into the market of convolution reverberation sys-
tems, which allow the emulation of the reverberation characteristics of real rooms and 
halls. The underlying theory on which these “convolution reverbs” are based mainly 
consists in the convolution of the dry signal (that means of an audio signal recorded in 
ideally anechoic conditions) with the impulse response of a real room, which needs to 
be previously measured or simulated numerically. Most of the available convolution 
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digital reverberation systems are based on single channel processing, even if multi-
channel convolution reverberation systems have already been proposed [12].  

 

Figure 1: Diagram of the original sound field and reconstructed sound field  

 
This paper introduces the theoretical fundamentals of a new multi-channel convo-

lution reverberation system. The main idea of the proposed approach is to evolve the 
single channel or binaural rendering of the virtual hall with the physical reconstruction 
of the reverberant sound field over a bounded region of the space (also called sweet 

spot) using an array of loudspeakers arranged over a three dimensional surface.  
 
The aim of this paper is to provide an introduction to the underlying theory of the 

system, while the practical implementation of this technique in terms of measurement 
techniques and design of digital filters is not presented here.  
 

The method presented can be intuitively and briefly summarised as follows: when 
an acoustic source is radiating sound in a reverberant environment such as a room or a 
hall, the generated sound field can be represented by the value of the associated acous-
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tic pressure as a function of space and time. It can also be assumed that this function is 
known on the boundary ∂Ω of a bounded region of the space Ω , as schematically rep-

resented in Figure 1. As discussed in [8], the knowledge of the acoustic pressure 
( )p x on ∂Ω  fully defines the sound field in the interior region Ω , as long as no sound 

source or scattering object is contained in Ω . The aim is then to reconstruct the target 
sound field using a loudspeaker array. The latter is assumed to be constituted by a uni-

form distribution of monopole sources, later on also called secondary sources, con-
tinuously arranged in an anechoic environment on the surface Φ , which can contain a 
region of the space equal to Ω  (see Figure 1). The signals driving the loudspeakers are 
chosen to be such that the acoustic pressure on the surface ∂Ω  is ideally the same as 

the target pressure profile ( )p x . The loudspeaker signals are computed by solving, for 
each frequency of interest, an integral equation of the first kind. The latter represents 
an ill-posed inverse problem and therefore an exact solution does not exist. However, 
it is ideally possible to define an approximate solution to the problem by applying a 

regularization scheme. It is important to point out that, in the ideal case of a continu-
ous distribution of sources, it is mathematically possible to compute a solution with an 
arbitrary level of accuracy, at the price of decreasing the stability of the system. In 
other words, the harder one tries to reduce the reconstruction error, the more the re-

construction will be degraded by the presence of errors in the data.  
 
1. Sound field in a reverberant environment  

 

Let Λ  be a region of the space, representing the room or concert hall under consid-
eration. Assuming that a point source is located at 0y , a monochromatic sound field of 
angular frequency ω  generated by this source can be described by the complex func-
tion ( )p x , solution of the inhomogeneous Helmholtz equation 
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The time dependence j t

e
ω has been implicitly assumed and k cω= is the wave 

number, c being the speed of sound. An explicit solution for equation (1) can be calcu-
lated after imposing the impedance condition on the boundary ∂Λ , and is often called 
the Green function ( | )G 0y x . As an example, the walls of the hall could be assumed to 
be perfectly rigid; this would correspond to imposing Neumann conditions on ∂Λ  
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The explicit formulation of the Green function largely depends on the geometry of 

the domain Λ  and it is in general a non trivial mathematical task. A general method of 
calculating the Green function consists of expressing it in terms of the eigenfunctions 
of the negative Laplacian, but the discussion of this technique is beyond the scope of 
this paper. For practical purpose and for 0y  given position of the point source, the 

Green function of an enclosure with complex geometry and complex impedance con-
ditions on the boundary can be computed numerically or measured.  
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For the case under consideration, it is sufficient to know the value of the Green 
function for a given source position 

0y  and for x  being on ∂Ω . ∂Ω  is the boundary of 

the bounded and simply connected region Ω , with has boundary of class 2
C , which is 

fully contained in Λ  and which does not contain 0y . Under these assumptions, it is 
obvious that the sound field in Ω  satisfies the homogeneous Helmholtz equation. Fol-
lowing [8], it can be shown that the determination of the sound field in Ω  from the 

knowledge of the sound field on the boundary ∂Ω  is a well posed problem with a 
unique solution, provided that the wave number k  does not correspond to one of the 
eigenvalues nk  of the negative Laplacian 
 

2 2( ) ( )    
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nkψ ψ

ψ
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x x x
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or, in other words, provided that the angular frequency ω  does not correspond to any 
of the resonance frequency of the cavity Ω  with pressure release boundaries. 
 
 
2. Reconstruction of the reverberant field 
 

Let Φ be the boundary (of class 2
C ) of a bounded region of the space which can 

contain Ω  (see Figure 1) and assume that a continuous distribution of secondary 
sources is arranged on Φ . Assume also that the electro-acoustic transfer function of a 
secondary source located at y can be described, for a given wave number k , by the 
free space Green function  
 

( )
4
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− −
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x y
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  (4) 

 
In other words, it is assumed that the secondary sources can be assimilated to 

monopole sources in the free field. Let ( )a y  be the continuous, complex function rep-
resenting, for the given wave number, the signal of the secondary sources in the fre-
quency domain. The sound field generated by the secondary sources in Ω  can be rep-
resented by the integral 
 

( )( ) ( ) ( ) ( )      Sa g a dS
Φ

= ∈Ω∫x y | x y y x   (5) 

 
Thus, from what has been explained previously, if the secondary sources are driven 

with a function ( )a y  such that 
 

( ) ( ) ( )=G( )      ,  g a dS
Φ

∈∂Ω ∉Ω∫ 0 0
y | x y y y | x x y  (6)    

 
where G( )0y | x  is the Green function solution of equation (1), then the sound field 
generated by the loudspeakers in Ω is the reproduction of the sound field generated by 
the monopole source at position 0y in the reverberant environment under considera-
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tion. The unknown of the problem is therefore the function ( )a y , which can be deter-
mined by solving the integral equation (6). 

 
 
3. Solution to the integral equation 
 

Equation (6) is an integral equation of the first kind, and represents therefore an ill-
posed problem [6]. This means that, in general, an exact solution to equation (6) does 
not exist. However, it is possible to compute an approximate solution by performing a 
singular value decomposition of the operator Φ  and then performing the inversion af-

ter applying a regularization scheme. The procedure is analogous to that shown in [8], 
to which the reader is referred for a more in depth discussion.  

 
The adjoint operator S

+ is defined as 

 

( )( ) ( ) ( ) ( )      S p g p dS+

∂Ω
= ∈Φ∫x x | y x x y   (7) 

 
Then one can solve the eigenvalue problem for the self adjoint, compact operator 

S S
+  

 

2
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= =

∈Φ
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 (8) 

 
The set of eigenfunctions { }( )na y represents a set of orthogonal functions on Φ . It 

is also possible to generate a set of orthogonal functions  { }( )np y  by letting the opera-
tor S  act on { }( )na y  
 

( )( ) ( )n n nSa pµ=x x   (9)    

 
Due to the orthogonality of { }( )np y , which is proved in [8], the target pressure 

profile on ∂Ω  can be expressed as 
 

1

( ) ( ) ( ) ( ) ( ) ( )( )n n

n
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∞

∂Ω
=
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where ( )( )Rp x  is the orthogonal projection of ( )p x  on the null-space of the adjoint 
operator S

+ . If the reconstruction of ( )p x  is limited to the component of ( )p x  be-
longing to the range of S , that is orthogonal to the null-space of S

+ , then an approxi-
mate solution to equation (6) is given by [6],[8] 
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where the regularization parameter β  has been introduced in order to obtain a stable 
solution. This regularisation scheme is known as Tikhonov regularisation [6]. In fact, 

the ill-conditioning of the inverse problem could also be understood in terms of the 
roll-off of the singular values nµ , which in general accumulate at zero.   
 

Provided that the set of functions { }( )na y  is known, equation (11) gives an explicit 

representation of the signals ( )a y , which drives the secondary sources in order to rec-
reate the sound field generated by a source in a reverberant environment from the 
knowledge of the original sound field ( )p x  on ∂Ω . 
 

 
4. Conclusions 

 
The basic theory of a multi-channel reverberation has been presented. The proposed 

method is based on the reconstruction of the sound field generated by a monopole 
source in a reverberant environment using an array of loudspeakers, ideally constituted 
by a continuous distribution of monopole sources. The reverberant sound field has 
been described in terms of a Green function, being the solution of the inhomogeneous 

Helmholtz equation. The sound field reconstruction problem has been formulated as 
an integral equation of the first kind. A method for the approximate solution of the in-
verse problem based on the singular value decomposition of the integral operator and 
on the Tikhonov regularisation scheme has been illustrated. The proposed solution ex-

plicitly shows the relation between the ill-conditioning of the inverse problem and the 
roll-off of the singular values of the integral operator.  
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