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Abstract 

 

Active control works by destructive interference between the original sound or vibration field in 

the vehicle and that generated by a controllable, secondary, source. Physical limitations 

generally confine its usefulness to low frequencies and so that it complements conventional 

passive control methods. The development of powerful processors at an affordable cost and the 

increasing trend towards integration in vehicles has allowed the commercial implementation of 

active control systems by several manufacturers, mainly for the reduction of low frequency 

engine noise. As vehicles become lighter to achieve fuel efficiency targets, it is expected that 

active control will play an important part in maintaining an acceptable NVH environment, in 

terms of sound quality as well as overall level. 
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1. INTRODUCTION 

 

Active control involves driving a number of actuators to create a sound or vibration signal out 

of phase with that generated by the vehicle, thus attenuating it by destructive interference. Its 

successful application requires that there is both a good spatial and a good temporal matching 

between the field due to the actuators, or secondary sources, and that due to the vehicle. The 

requirement for spatial matching gives rise to clear limits on the upper frequency of active noise 

control, due to the physical requirement that the acoustic wavelength must be small compared 

with the zone of control. The requirement for temporal matching requires a signal processing 

system that can adapt to changes in the vehicle speed and load. Both the physical limitations and 

the signal processing control strategies will be described in this report, together with a 

description of some of the practical systems that have found their way into production at the 

time of writing. Active noise and vibration control can provide a useful alternative to passive 

noise and vibration control, particularly at low frequencies and on vehicles with particular 

problems. Although active control has been experimentally demonstrated in vehicles for over 20 

years, it is only recently that the levels of integration within the vehicle’s electronic systems 

have allowed the cost to become affordable. Active control may now allow a reduction in the 

weight of conventional passive methods of low frequency noise control, helping the push 

towards lighter, more fuel efficient, vehicles.    
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2. PHYSICAL PRINCIPLES OF ACTIVE CONTROL 

 

Active vibration control in vehicles often involves the isolation of a particular transmission 

path, particularly of engine orders through engine mounts. Here the spatial matching problem 

requires that the mechanical actuator drives in the same direction as the dominant transmission 

path from the source and at more or less the same point. For this reason most systems use 

combined active/passive mounts, in which the actuator is integrated into a conventional hydro 

mount. Although piezoelectric and magnetostrictive actuators have been considered for this 

application, the most successful actuator type appears to be electromagnetic. Cost 

considerations generally limit the number of actuators that can be used, since these are generally 

the most expensive parts of automotive active vibration control systems, and so the successful 

use of active control is limited to vehicles with a few dominant transmission paths. The 

introduction of active mounts can significantly ease the conventional problems in trading off 

high static stiffness with low dynamic stiffness. 

 

An idealised arrangement to illustrate the function of an active mount is shown in Figure 1.  

 

 

 

Figure 1. Idealised active vibration system consisting of a single active mount, which includes a 

passive stiffness SM and an actuator generating an active force fS, connecting a vibration source 

such as an engine to the vehicle’s body. 
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The force transmitted through the mount, assuming it behaves reasonably linearly, can be 

written at a particular frequency as 

 

 ),( BSMST xxSff −+=  [1] 

 

where fS is the secondary force generated by the actuator, xS is the displacement of the source 

above the mount, xB is the displacement of the body below the mount and SM is the mount 

stiffness. The body is assumed to only be driven by this total force, so that if FB is the flexibility 

of the body below the mount, then 

 

 ),( BSMBSBTBB xxSFfFfFx −+==  [2] 

 

so that solving the equation for the displacement of the body gives 
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If xB is measured using an accelerometer on the body, for example, and, at a particular engine 

order, an adaptive controller is used to adjust the secondary force, fS, so that the output of this 

accelerometer is cancelled, then it can be seen by setting equation [3] to zero that fS under these 

optimum conditions must be equal to 

 

 SMoptimumS xSf −=
)(

. [4] 

 

Notice that the required force does not depend on the flexibility of the body, since this has been 

brought to rest. Also, notice that the total force in equation [1] has also been set to zero with this 

control force, and that not only does this total force act down on the body but it also acts up on 

the source structure. Thus, if the total force becomes zero, the source structure is effectively 

floating at this control frequency and xS becomes the free displacement of the source. Equation 

[4] thus provides a useful way of estimating the force requirements of an active mount, 

depending as it does on only the mount stiffness and the free source displacement at the 

frequency of interest. There are some advantages to measuring the total transmitted force for use 

as the control signal, rather than the body acceleration, since it is related to the secondary force 

in a more straightforward way than the latter. The measurement of the total transmitted force, 

using a load cell for example, can, however, be more complicated than measuring the 

acceleration. 
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The requirement for spatial matching is more complicated for active noise control, since it is the 

acoustic field inside the vehicle which must be controlled and this is generally excited by the 

distributed vibration of the whole body, excited by multiple sources. In order to illustrate the 

frequency limitations of active noise control inside a vehicle, we assume that the soundfield is 

tonal and use the complex pressure at a single frequency, ω , which may be described in modal 

form as 

 

 ∑ Ψ=
∞

=0

),()(),(
n

nnap xx ωω  [5] 

 

where x is the position vector, )(ωna is the amplitude of the n-th acoustic mode and )(xnΨ is its 

mode shape. 

 

Although in principle an infinite number of modes must be used to describe the sound in the 

enclosure, the sound field can always be approximated to arbitrary accuracy with a finite modal 

series. In the low frequency range, where active control is most effective, the modal description 

is a very efficient representation of the sound field since relatively few modes need be 

considered.. Conventional passive noise control techniques also do not work very well in this 

low frequency region, unless very massive barriers or bulky absorbers are used, and so active 

control conveniently complements the effect of passive noise control techniques and can 

provide significant weight and space savings at low frequencies. 

 

Two active control problems will be briefly considered: global control and local control. The 

objective of a global control system is to reduce the sound throughout the enclosure by adjusting 

the amplitudes and phases of a number of secondary sources, which are typically loudspeakers. 

The fundamental limits of such a strategy can be assessed by calculating the reductions which 

are possible in the mean square pressure integrated over the whole volume, which is 

proportional to the acoustic potential energy in the enclosure that may be written as 
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Assuming that the mode shapes are orthonormal, )(ωpE is equal to the sum of the modulus 

squared mode amplitudes (Nelson and Elliott, 1992). Since the secondary sources linearly 

couple into each mode amplitude, )(ωpE  is a quadratic function of the complex secondary 
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source strengths, and this function has a unique global minimum. This minimum value of 

)(ωpE provides a measure of the best performance that can be obtained in a global control 

system for a given distribution of secondary sources and a given excitation frequency. Figure 

2(b), for example, shows the result of a number of such calculations for the levels of )(ωpE at 

various excitation frequencies in a computer model of an enclosure of dimensions 

0.11.19.1 ×× m as shown in Fig. 2(a), which are approximately the conditions inside a small car 

(Elliott, 2001). The solid line in Fig. 2(b) shows the way that the energy due to a primary source 

in one corner of the enclosure varies with excitation frequency, the dashed line the energy after 

it has been minimised using a single secondary loudspeaker in the opposite corner and the dot-

dashed line after minimisation using seven secondary loudspeakers placed at all the corners of 

the enclosure away from the primary. The first longitudinal resonance, at about 80 Hz, is 

significantly attenuated by the action of a single secondary loudspeaker, but almost no reduction 

is achieved in the energy at about 160 Hz, close to which three acoustic modes have their 

natural frequencies. This is to be expected, since in general a single loudspeaker can only 

control a single mode. Even with seven secondary loudspeakers, however, a reduction in energy 

of only about 5 dB is achieved at this excitation frequency and this reduction becomes less than 

1 dB at about 250 Hz. 

 

 

Figure 2. An active noise control system in which a loudspeaker is used to globally control the 

sound in an enclosure of about the size of a small car interior (a). The total acoustic potential 

energy in the enclosure as a function of excitation frequency, when driven by the primary source 

alone, solid line, when the energy is minimised using a single secondary source (dashed line) 

and when the energy is minimised using seven secondary sources (dot-dashed line). 

 

 

The number of secondary sources required to achieve active control is approximately equal to 

the number of significantly excited acoustic modes, which can be estimated from the modal 

overlap, i.e., the average number of modes with natural frequencies within the half power 

bandwidth of a single mode (Elliott, 2001). The modal overlap in this enclosure is about seven 

at 250 Hz, which explains the limited performance with seven loudspeakers, but at higher 
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frequencies the acoustic modal overlap in an enclosure rises as the cube of the excitation 

frequency. This sharp rise with frequency in the required number of secondary sources provides 

a very clear upper frequency limit to global control with a system of reasonable complexity. 

 

An alternative strategy to global control would be to only control the sound at specific locations 

in an enclosure, such as close to the ears of passengers in a vehicle. Such a local control strategy 

was originally suggested by Olsen and May (1953) who describe an active headrest using a 

feedback control system from a microphone to a closely-spaced loudspeaker acting as the 

secondary source. The acoustic performance of such a system depends on the detailed geometric 

arrangement of the headset and the position of the passenger’s head, but some physical insight 

can be gained by considering simplified models. Figure 3, for example, shows a cross-section 

through the zone of quiet, within which the sound has been attenuated by at least 10 dB, 

generated when a diffuse primary soundfield is cancelled at the point x = L by an acoustic 

monopole at the origin (Elliott, 2001). The two graphs correspond to an excitation frequency for 

which L is much smaller than the acoustic wavelength, in which case a “shell” of quiet is 

generated around the secondary source, and to an excitation frequency for which L is of the 

order of the acoustic wavelength, in which case the zone of quiet is spherical with a diameter 

which is about one tenth of an acoustic wavelength (Elliott et al., 1988). The rule of thumb that 

the spatial extent of a local active control system is about one tenth of a wavelength has proved 

to be very useful in the initial stages of many practical designs. 

 

 

Figure 3. The zone of quiet, within which a diffuse primary field is attenuated by more than 10 

dB for a local control system in which a monopole acoustic source at the origin is arranged to 

cancel the pressure at x = L for two different excitation frequencies for which L is much larger 

than the acoustic wavelength (left) and L is of the order of the acoustic wavelength (right). 
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3. CONTROL STRATEGIES 

 

The effective attenuation of a signal using active control requires a high degree of temporal 

matching between the waveform due to the vehicle alone and that due to the active control 

system. This is most easily illustrated with a sinusoidal signal, for which a 10 dB attenuation 

requires that the two signals must be matched within about 2 dB in amplitude and within about 

20o in phase. In practice, this temporal matching is achieved by using a control system with a 

sensor to monitor the residual difference between the two signals. This “error sensor” may be a 

microphone, or microphone array, for an active noise control system inside a vehicle, or an 

accelerometer on the chassis next to an active mount for an active vibration control system. 

 

There are two different ways in which the control system can use the signal from this error 

sensor: either using feedforward control or feedback control. Idealised, single channel 

feedforward and feedback controllers are illustrated in Fig. 4. In addition to the signal from the 

error sensor, which is illustrated as a microphone in Fig. 4, a feedforward control system also 

requires an independent “reference” signal, generally denoted x, that is correlated with that 

being controlled. In an engine noise controller, for example, it is the engine orders which are 

being attenuated and a reference signal at the frequency of these engine orders is required, 

which will track these orders as the engine speed changes. Originally, such a reference signal 

was derived by analogue processing of the ignition signal, but is now commonly synthesised 

from knowledge of the engine speed supplied over a CAN bus, for example. The signal driving 

the secondary loudspeaker is obtained by adjusting the amplitude and phase of this tonal 

reference signal. 

 

 

Figure 4. Illustration of single channel active noise control systems using a feedforward (left) 

and a feedback (right) control strategy. Note that the feedforward control signal requires an 

additional reference signal, x, and uses the error signal to adapt the controller. 

 

 

Error microphone 

Feedback 
controller 

Secondary 
loudspeaker 

Feedforward 
controller 

Secondary 
loudspeaker 

Error microphone 

Reference 
Signal, x 



 13 

It is not generally effective to operate a feedforward controller with a fixed response, since it is 

then not responsive to changes in the error signal or the environment, i.e. it is “open loop”. The 

error signal is thus used to adapt the response, so that it is able to change with engine speed and 

load for example, and the system then becomes “closed loop”. The need to adapt the controller 

response means that most practical implementations use digital electronics, operating in 

sampled versions of the reference and error signals and producing a sampled signal to drive the 

actuator, which all need to be filtered to remove components above half the sampling frequency. 

A variety of algorithms have been used to adapt the controller, but most are based on an 

adaptive filtering method called the “LMS” (or least mean square) algorithm which was 

originally developed in the 1960s for applications such as echo cancellation on telephone lines 

(Widrow and Stearns, 1985). The modified algorithm required to get the controller to converge 

reliably in active control applications, is called the filtered reference LMS or “filtered x LMS” 

(Widrow and Stearns, 1985; Elliott, 2001). In practice, multiple loudspeakers are driven to 

minimise the sum of the mean square responses from a number of microphones, which requires 

a multichannel generalisation of the filtered x LMS algorithm (Elliott et al., 1987). 

 

The feedback system, illustrated in Fig. 4(b), by contrast is generally implemented with a fixed 

controller and so can be efficiently built using analogue electronics. The feedback system has 

several other advantages, such as not requiring a reference signal, but also has a number of 

significant disadvantages. One disadvantage is that the control is not selective, i.e. any signal 

will be attenuated, not just those correlated with the reference signal. Another disadvantage is 

that the error sensor, which is the microphone in Fig. 4(b), must be placed close to the 

secondary loudspeaker. 

 

The fundamental trade-off in the design of any feedback controller is that between performance 

and stability (Franklin et al., 1994; Elliott, 2001). The feedback system can become unstable 

when the loop gain, which includes the response between the actuator and sensor and that of the 

controller, has a phase shift of 180
o
. The feedback then changes from being negative, which 

leads to an attenuation of the error signal, to being positive, which leads to an enhancement of 

the error signal. All practical systems will have a loop gain with such a phase shift at high 

frequencies, due to the acoustic propagation delay from the loudspeaker to the microphone, and 

thus inevitably have enhancement at some frequencies. If, however, the loop gain is greater than 

unity at the frequency where this phase shift is 180o, then the feedback system will become 

unstable. Some mitigation of this condition can be achieved using analogue ‘compensator’ 

circuits, but sooner or later this unstable condition will arise as the feedback gain is increased, 

which will then limit the performance at lower frequencies. A phase shift of 180o is reached at a 

frequency for which the distance between the loudspeaker and microphone, d, is half an acoustic 
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wavelength. If c0 is the speed of sound, the upper frequency of operation of a feedback control 

system, f(max),  will be significantly below this frequency, which is given by c0/2d, so that 

 
d

c
f

2

0
(max) << , [7] 

 

and, in practice, the upper frequency is about one tenth of c0/2d. One can thus see that for an 

active headphone, for which feedback controllers are widely used and in which d is about 1 cm, 

then the maximum frequency will be about 1.7 kHz, since c0 is 340 metres per second. For an 

active control system in a car, however, where the microphone is close to the driver’s head but 

the loudspeaker is fitted in the door or the dashboard, then d will be about 50 cm and so the 

upper frequency will be about 34 Hz. The feedback system is thus of limited use unless either 

very low frequency noise is to be controlled or the loudspeaker can be brought significantly 

closer to the microphone, by mounting it in the headrest, for example. Laboratory versions of 

such headrest controllers have been demonstrated (Elliott 2001), with performance up to about 

300 Hz. At this frequency, however, the size of the zone of quiet, predicted to be one tenth of an 

acoustic wavelength following the discussion in Section 2, is about 10 cm, so that significant 

active control would only be experienced if the listener’s head was fairly stationary. 
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4. COMMERCIAL SYSTEMS 

 

Early automotive active noise systems were feedforward arrangements for tonal engine noise 

control (Elliott et al., 1988), developed as part of a research programme that also focused on the 

active control of interior noise in propeller aircraft (Nelson and Elliott, 1993). The physical 

arrangement of a typical feedforward active noise control system, developed in collaboration 

with Lotus Engineering, is shown in Fig. 5, in which four of the six loudspeakers, in the 

dashboard and front doors, were adjusted at the engine firing frequency and its harmonics, to 

control the sum of the mean square pressures at eight microphones, mounted in the head lining. 

The A-weighted sound pressure levels at the engine firing frequency (second order for this 1.1 

litre 4-cylinder car) are shown in Fig. 6, measured at the front seat positions using monitoring 

microphones separate from the error microphones used by the control system. Reductions of 

about 10 dB are measured in the front seats above about 3,000 rpm (a firing frequency of 100 

Hz), which gave an improvement in the overall dB(A) level of 4 to 5 dB(A). Reductions at 

lower speeds were measured in the rear due to the suppression of the first longitudinal acoustic 

mode, that has a nodal line near the front passengers’ heads. Nissan first put such a system into 

production on a Bluebird vehicle in 1992 (Hasegawa et al., 1992), in a system which used 

loudspeakers, amplifiers and processors separate from the audio system, and so was relatively 

expensive. 

 

 

 

Figure 5. The components of an active noise control system for engine noise, showing the 

feedforward controller deriving a reference signal from the engine and driving four 

loudspeakers at a number of engine orders, adjusted in amplitude and phase to minimise the 

sum of the mean square responses at eight microphones, positioned in the roof lining. 
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Figure 6. A-weighted engine second order levels at the four seat positions as a function of 

engine speed as a small, 4 cylinder car is accelerated along a track, without (dashed) and with 

(solid) the active control system shown in Figure 5 operations. 

 

 

Demonstration systems were also developed for the active control of random road noise using 

feedforward techniques, with reference signals derived from accelerometers on the vehicle 

suspension and body (Sutton et al., 1994; Bernhard, 1995; Dehandschutter and Sas, 1998; 

Mackay and Kenchington, 2004). In order to obtain reasonable levels of active control, 

however, it was found that about six such reference signals were required. This is because the 

tyre vibration is relatively uncorrelated in its various degrees of freedom, and reference signals 

have to be used for all the significantly contributing sources (Sutton et al., 1994). Typical 

locations for the accelerometers used to generate the reference signals are shown in Fig. 7.  

 

 

Figure 7. Typical locations of the accelerometers used to obtain the six reference signals in a 

feedforward active control system for road noise. 
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The A-weighted spectrum of the pressure at the driver’s ear using a real-time feedforward 

system is shown in Fig. 8 (Sutton et al., 1994), which shows that from 100 Hz to 200 Hz 

reductions of up to 10 dB are measured. The additional expense of these accelerometers has 

prevented the mass production of such feedforward active control systems for road noise. In 

2000, however, Honda demonstrated a mainly feedback system to control a 40 Hz boom in the 

front of their Accord wagon car (Sano et al., 2001). A fixed feedforward system was then used 

to prevent the noise in the rear of the car being amplified. This excitation was relatively narrow 

band and the microphone was placed fairly close to the loudspeakers, compared with the 

wavelength at 40 Hz, so that good performance was obtained in suppressing this resonant boom.  

 

 

Figure 8. Spectrum of the A-weighted sound pressure level in a small car using a real-time 

active control system for road noise, measured at the drive’s ear. Vehicle speed was 60 km/h 

over asphalt and coarse chippings. 

 

Figure 9 shows the configuration of the active control system, from Sano et al. (2001), and Fig. 

10 shows the measured spectrum at a front seat, illustrating the suppression of the narrowband 

boom at 40 Hz by about 10 dB. An important aspect of reducing the cost of this system, so that 

it could be used in mass production, was the integration of the loudspeakers with the audio 

system, although at that time a separate active control unit was used from the audio system, 

since a number of different audio head units were offered on this vehicle. It is the full 

integration of the active control system with the audio system that would make this technology 

affordable on many vehicles.  
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Figure 9. Configuration of the active control system in the Honda Accord (Sano et al., 1993). 

 

 
Figure 10. Spectrum of the C-weighted pressure in the front seat of a Honda Accord (Sano et 

al., 1993). 
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Since 2000, active engine noise systems have been introduced on vehicles by Honda, for 

variable cylinder management systems (Inoue et al. 2004) and hybrid vehicles (Honda, 2005), 

and by Toyota for hybrid vehicles (Toyota, 2008), to improve the sound quality inside the 

vehicle. The synthesis of external noise on hybrid vehicles has also been suggested in order for 

them to be safer for pedestrians (Lotus, 2008). 

 

Systems for the active control of vibration in vehicles have tended to concentrate on active 

engine mounts, which may also reduce internal noise. Nissan, for example, used two 

electromagnetic engine mounts to reduce the vibration in a 4-cylinder direct injection diesel in 

1998 (as discussed by Sano et al., 2002), which used feedforward control operating from 20 Hz 

to 130 Hz and a load cell on the body to provide an error signal. Figure 11 shows the main 

components of such an active engine mount, which integrates an electromagnetic actuator 

capable of generating about 50 N into a conventional hydromount. The reduction in internal 

noise when such mounts are used in a diesel vehicle is illustrated in Fig. 12. Honda also has 

introduced active engine mounts on vehicles with variable cylinder management in addition to 

engine noise systems to keep 6 cylinder noise and vibration quality during 3 cylinder operation 

(Matsuoka et al., 2004). More recently, Jaguar have used Avon electromagnetic engine mounts 

to control the vibration on the diesel version of their XJ vehicle (Avon, 2005) again largely for 

sound quality reasons. 

 

Figure 11. Components of an active engine mount (Sano et al., 2002). 
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Figure 12. Measured spectrum of the sound in a diesel vehicle fitted with active engine mounts 

(Sano et al., 2002). 
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5. FUTURE TRENDS 

 

An important overall trend in the automotive industry is clearly the design of more fuel efficient 

vehicles. One of the main ways in which improvements in fuel efficiency can be achieved is by 

reducing weight. Reducing the weight of the body panels inevitably degrades their ability to 

attenuate low frequency noise, and so increases noise levels within the vehicle in this frequency 

range. Passive methods of noise control using absorption are very effective from mid-

frequencies upwards, but generally rely on tuned systems to provide significant low frequency 

control. These tuned systems are only suitable for certain frequencies and themselves add 

weight to the vehicle. The drive towards more fuel efficient vehicles thus provides a real 

opportunity for active systems to be used to control the low frequency noise and vibration 

without significantly increasing weight. 

 

Another trend is the active control of the overall sound quality in a vehicle, rather than just 

sound level. This may become important with the use of hybrid vehicles and in vehicles with 

variable cylinder management, since the changes in the quality of the sound inside these 

vehicles as the power source changes character can be disconcerting to the driver. The active 

control of sound quality generally involves a control system that drives the microphone signals 

inside the car towards a target, or command, signal, rather than just minimising it.  This has 

been termed “noise equalisation” (Ji and Kuo, 1993), “sound synthesis” (McDonald et al. 1994), 

“active design” (Scheuren et al., 2002) and “sound profiling” (Rees and Elliott, 2006), and can 

include the use of psychoacoustic models (Rees and Elliott, 2004). Recent trends also include 

the use of active control systems to provide a smoothly changing sound profile with engine 

speed, but with an emphasis on sporty sound during acceleration, to make the vehicle “fun to 

drive” (Kabayashi et al., 2008). Further development along these lines is also possible, by 

providing an acoustic environment inside the vehicle that encourages the owner to drive in a 

more fuel-efficient way, for example. There has been some resistance to this trend towards 

active control of sound quality in some parts of the automotive industry, who see such 

electronic sound control as ‘cheating’ compared to mechanical re-design. As more virtual 

systems are introduced in vehicles, however, with active braking, stability and steering, and 

with a younger generation of customer, more used to audio manipulation, these objections are 

likely to die away. 

 

Another important development is in the integration of electronic vehicle systems. Early active 

control systems were completely stand-alone, which meant that amplifiers, loudspeakers and 

processors were all duplicated in the audio and active control systems. This duplication has 

continued, to some extent because of the different responsibilities of the vehicle manufacturer 
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and audio supplier, and the requirement that a given vehicle may be fitted with a number of 

different audio systems. It is a paradox that a customer can be sold a very expensive audio 

system in a vehicle for which the low frequency vehicle noise impairs their enjoyment of the 

audio system, and yet the additional cost of an active control system would be small compared 

with that of the audio system if it was fully integrated. 

 

It is clear that active control can have most impact on light weight vehicles and that in these 

vehicles the active noise control system could be effectively integrated with the audio system, 

reducing the cost considerably. The loudspeakers may need to be upgraded for low frequency 

active control use, but this is still considerably less expensive than having two systems with 

duplicate drivers, wiring and amplifiers. Many audio systems now also contain considerable 

digital processing power, for CD and MP3 players, radio tuning and audio effects. This 

processing power is no longer expensive and can also be used to implement active control 

algorithms. The microphones and associated wiring remain an additional cost for active control 

systems on some vehicles, although others already have microphones fitted as standard, for 

hands-free telephone operation, for example. A fully integrated system could then be achieved if 

these microphones could be positioned so that they effectively measured the noise field in the 

car as well as the driver’s voice, and their signal could be integrated into the audio system.   
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6.     SOURCES OF FURTHER INFORMATION 

 

The physical basis of active noise control is explained in the textbook Active Control of Sound 

by P.A. Nelson and S.J. Elliott (1992). The principles of feedforward and feedback control, 

together with a more detailed discussion of the control algorithms used and an introduction to 

hardware and optimum placement of actuators and sensors, are described in Signal Processing 

for Active Control by S.J. Elliott (2001). 

 

A good review of the development of automotive active noise and vibration control is provided 

by Sano et al. (2002) and an interesting discussion of the integration of active and passive 

control to reduce cost is provided by Su (2002). 

 

Further information on individual systems can be found on the following websites: 

http://www.isvr.soton.ac.uk/ACTIVE/Introduction.htm 

 

http://www.mecheng.adelaide.edu.au/avc/projects/ 
  
http://www.mech.kuleuven.be/mod/other/topic_03_08 
  
http://www.grouplotus.com/mediacentre_pressreleases/view/406 

 

  

Movies 

  

http://www.thefutureschannel.com/dockets/critical_thinking/bose/index.php 

  

http://cnettv.cnet.com/?type=externalVideoId&value=6214373 

  

http://uk.youtube.com/watch?v=zOtTX_NPPBs 
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