The University of Southampton
University of Southampton Institutional Repository

Adaptation in multisensory neurons

Kuang, Xutao (2008) Adaptation in multisensory neurons University of Southampton, School of Electronics and Computer Science, Doctoral Thesis , 201pp.

Record type: Thesis (Doctoral)


The most studied region in the mammalian brain for multisensory integration is the deep superior colliculus (DSC). Neurophysiological experiments have revealed many response properties of DSC neurons, such as cross-modal enhancement (CME) and sub-additive/additive/super-additive op- erational modes. CME occurs when the response of a multisensory neuron to stimulation in one sensory modality is enhanced, often non-linearly, by temporally and spatially coincident stimulation of a second sensory modality. Response enhancement is frequently larger for weaker input stimuli than for stronger stimuli, a phenomenon known as inverse e®ectiveness. It is believed that a non-linear, saturating response function may underlie CME associated with inverse effectiveness. We explore this idea in more detail, showing that apart from CME, many other response properties of DSC neurons, including the different dynamic ranges of responses to unimodal and multimodal stimuli and the diverse operational modes, also emerge as a direct consequence of a saturating response function such as a sigmoidal function.
We then consider the question of how the exact form of a candidate, saturating sigmoidal function could be determined in a DSC neuron. In particular, we suggest that adaptation may determine its exact form. Adaptation to input statistics is a ubiquitous property of sensory neurons. Defining the operating point as the output probability density function, we argue that a neuron maintains an invariant operating point by adapting to the lowest-order moments of the input probability distribution. Based on this notion, we propose a novel adaptation rule that permits unisensory neurons to adapt to the lowest-order statistics of their inputs, and then extend this rule to allow adaptation in multisensory neurons, of which DSC neurons are an example. Adaptation in DSC neurons is expected to change the responses of a neuron to a fixed, probe or test stimulus. Such a neuron would therefore exhibit different CME when presented with the same stimulus drawn from different statistical ensembles. We demonstrate that, for suitable selections of test stimuli, adaptation to an increase in the mean, the variance or the correlation coefficient induce consistent changes in CME. By virtue of the robustness of the results, the underlying adaptation notion can be tested in neurophysiological experiments. Finally, it is known that descending cortical projections from the anterior ectosylvian sulcus and the rostral aspect of the lateral suprasylvian sulcus are indispensable for DSC neurons to exhibit CME. The structure of our proposed adaptation rule for multisensory neurons therefore permits us to speculate that the descending cortical inputs to multisensory DSC neurons facilitate the computation of the correlation coefficient between different sensory channels' activities.

PDF Kuang08AdapMulNeu.pdf - Other
Download (2MB)

More information

Published date: December 2008
Organisations: University of Southampton


Local EPrints ID: 65419
PURE UUID: 46103062-864b-44d8-9cf6-9a631af4f3eb

Catalogue record

Date deposited: 25 Mar 2009
Last modified: 19 Jul 2017 00:34

Export record


Author: Xutao Kuang
Thesis advisor: Nigel Shadbolt
Thesis advisor: Klaus-Peter Zauner
Thesis advisor: Terry Elliott

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.