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Abstract 

 

Statistical disclosure control refers to the methodology used in the design of the statistical 

outputs from a survey for protecting the confidentiality of respondents’ answers.  The 

threat to confidentiality is assumed to come from a hypothetical intruder who has access 

to these outputs and seeks to use them to disclose information about a survey respondent. 

One key concern relates to identity disclosure, which would occur if the intruder were 

able to link a known individual (or other unit) to an element of the output.  Another main 

concern relates to attribute disclosure, which would occur if the intruder could determine 

the value of some survey variable for an identified individual (or other unit) using the 

statistical output. Measures of the probability of disclosure are called disclosure risk. If 

this level of risk is deemed unacceptable then it may be necessary to apply a method of 

statistical disclosure control to the output. The choice of which method and how much 

protection to apply depends not just on the impact on disclosure risk but also on the 

impact on the utility of the output to users. This paper provides a review of statistical 

disclosure control methodology for two main types of survey output: (i) tables of 

estimates of population parameters and (ii) microdata, often released as a rectangular file 

of variables by analysis units. For each of these types of output, the definition and 

estimation of disclosure risk is discussed as well as methods for statistical disclosure 

control. 

 

 

1. Introduction 

 

1.1. The problem of statistical disclosure control 

Survey respondents are usually provided with an assurance that their responses will 

be treated confidentially. These assurances may relate to the way their responses will be 

handled within the agency conducted the survey or they may relate to the nature of the 

statistical outputs of the survey as, for example, in the ‘confidentiality guarantee’ in the 

United Kingdom (UK) National Statistics Code of Practice (National Statistics, 2004, 

p.7) that ‘no statistics will be produced that are likely to identify an individual’. This 

paper is concerned with methods for ensuring that the latter kinds of assurances are met. 

Thus, in the context of this paper, statistical disclosure control (SDC) refers to the 

methodology employed, in the design of the statistical outputs from the survey, for 

protecting the confidentiality of respondents’ answers. Methods relating to the first kind 

of assurance, for example computer security and staff protocols for the management of 

data within the survey agency, fall outside the scope of this paper. 

There are various kinds of statistical outputs from surveys. The most traditional are 

tables of descriptive estimates, such as totals, means and proportions. The release of such 
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estimates from surveys of households and individuals have typically not been considered 

to represent a major threat to confidentiality, in particular because of the protection 

provided by sampling. Tabular outputs from the kinds of establishment surveys 

conducted by government have, however, long been deemed risky, especially because of 

the threat of disclosure of information about large businesses in cells of tables which are 

sampled with a 100% sampling fraction. SDC methods for such tables have a long history 

and will be outlined in Section 2.  

  While the traditional model of delivering all the estimates from a survey in a single 

report continues to meet certain needs, there has been increasing demand for more 

flexible survey outputs, often for multiple users, where the set of population parameters 

of interest is not pre-specified. There are several reasons why it may not be possible to 

pre-specify all the parameters. Data analysis is an iterative process and what analyses are 

of most interest may only become clear after initial exploratory analyses of the data.  

Moreover, given the considerable expense of running surveys, it is natural for many 

commissioners of surveys to seek to facilitate the use of the data by multiple users. But it 

is usually impossible to pre-specify all possible users and their needs in advance.  A 

natural way to provide flexible outputs from a survey to address such needs is to make 

the survey microdata available so that users can carry out the statistical analyses that 

interest them. 

The release of such microdata raises serious confidentiality protection issues, 

however. Of course, statistical analyses of survey data do not require that the identities of 

the survey units are known. Names, addresses and contact information for individuals or 

establishment can be stripped from the data to form an anonymised microdata file. The 

problem, however, is that such basic anonymisation is often insufficient to protect 

confidentiality, and it is necessary therefore to employ one of a range of alternative 

approaches to SDC and this will be discussed further in Section 3.  

   

1.2 Concepts of confidentiality, disclosure and disclosure risk 

To be precise about what is meant by ‘protecting confidentiality’ requires discussion 

of definitions. These usually involve the notion of a hypothetical intruder who might seek 

to breach confidentiality. There are thus three key parties: (i) the respondent who 

provides the data, (ii) the agency which collects the data, releases statistical outputs and 

designs the SDC strategy, and (iii) the hypothetical intruder who has access to these 

outputs and seeks to use them to disclose information about the respondent. One 

important notion of disclosure is identity disclosure or identification, which would occur 

if the intruder linked a known individual (or other unit) to an individual microdata record 

or other element of the statistical output. Another important notion is attribute disclosure, 

which would occur if the intruder could determine the value of some survey variable for 

an identified individual (or other unit) using the statistical output. More generally, 

prediction disclosure would occur if the intruder could predict the value of some survey 

variable for an identified individual with some uncertainty.  When assessing the potential 

for disclosure for a particular statistical output, it is usual to refer to the disclosure risk. 

This might be defined as the probability of disclosure with respect to specified sources of 

uncertainty. Or the term might be used loosely to emphasize not only the uncertainty 

about potential disclosure but also the potential harm that might arise from disclosure 

(Lambert, 1993). The confidentiality of the answers provided by a respondent might be 
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said to be protected if the disclosure risk for this respondent and the respondent’s answers 

is sufficiently low.  We shall discuss disclosure risk in more detail in sections 2 and 3. 

For further discussion of definitions of disclosure see Duncan and Lambert (1986; 1989) 

and Skinner (1992). 

 

1.3 Approaches to protecting confidentiality 

If the disclosure risk is not deemed to be sufficiently low, then it will be necessary to 

employ some method to reduce the risk. There are broadly two approaches, which are 

referred to here as safe setting and safe data (Marsh et al. 1994). The safe setting 

approach imposes restrictions on the set of possible users of the statistical output and/or 

on the ways that the output can be used. For example, users might be required to sign a 

licencing agreement or might only be able to access microdata by visiting a secure 

laboratory or by submitting requests remotely (National Research Council, 2005). The 

safe data approach, on the other hand, involves some modification to the statistical 

output. For example, the degree of geographical detail in a microdata file from a national 

social survey might be limited so that no area containing less than 100,000 households is 

identified. In this paper we focus on the safe data approach and generally refer to 

methods for modifying the statistical output as SDC methods.  

 

1.4 SDC methods, utility and data quality 

SDC methods vary according to the form of the statistical output. Some simple 

approaches are: 

- reduction of detail, for example the number of categories of a categorical 

variable might be reduced in a cross-classified table or in microdata; 

- suppression, for example the entry in a table might be replaced by an asterisk, 

indicating that the entry has been suppressed for confidentiality reasons. 

In each of these cases, the SDC method will lead to some loss of information for the 

user of the statistical output. Thus, the method will reduce the number of population 

parameters for which a user can obtain survey estimates. Other kinds of SDC methods 

might not affect the number of parameters which can be estimated but may affect the 

quality of the estimates that can be produced. For example, if random noise is added to an 

income variable to protect confidentiality then this may induce bias or variance inflation 

in associated survey estimates. The general term utility may be used to cover both the 

information provided by the statistical outputs, e.g. the range of estimates or analyses 

which can be produced, and the quality of this information, e.g. the extent of errors in 

these estimates. It should, of course, be recognized that survey data are subject to many 

sources of error, even prior to the application of SDC methods, and the impact of SDC 

methods on data quality therefore needs to be considered in this context.    

Utility generally needs to be considered from the perspective of a user of the 

statistical outputs, who represents a key fourth party to add to the three parties referred to 

earlier: the respondent, the agency and the intruder.  

 

1.5 SDC as an optimisation problem: the risk-utility trade-off 

The key challenge in SDC is how to deal with the trade-off between disclosure risk 

and utility. In general, the more the disclosure risk is reduced by an SDC method, the 

lower will be the expected utility of the output. This trade-off may be formulated as an 
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optimisation problem. Let D  be the (anonymized) survey data and let ( )f D , be the 

statistical output, resulting from the use of an SDC method. Let [ ( )]R f D  be a measure of 

the disclosure risk of the output and let  [ ( )]U f D  be a measure of the utility of the 

output. Then the basic challenge of SDC might be represented as the constrained 

optimisation problem : 

 

for given D  and ε , find an SDC method, (.)f , which: 

 

maximises [ ( )]U f D , subject to [ ( )]R f D ε< . 

 

The elements of this problem need some clarification: 

(.)f  : the SDC method - a wide variety of these have been proposed and we shall refer to 

some of these in this paper; 

(.)R : the disclosure risk function - we shall discuss ways in which this function may be 

defined; this is certainly not straightforward, e.g. because of its dependence on 

assumptions about the intruder  and because of the challenge of combining the 

threats of disclosure for multiple respondents into a scalar function; 

(.)U : the utility function - this will also not be straightforward to specify as a scalar 

function, given the potential multiple uses of the output; 

ε     maximum acceptable risk:  in principle, one might expect the agency to provide this 

value in the light of its assurances to respondents. However, in practice, agencies 

find it very difficult to specify a value of ε , other than zero, i.e. no disclosure risk. 

Unfortunately, for most definitions of disclosure risk, the only way to achieve no 

disclosure risk is by not releasing any output and this is rarely a solution of interest!     

Given these difficulties in specifying (.)R  and (.)U  as scalar functions and in 

specifying a value for ε , the above optimization problem serves mainly as conceptual 

motivation. In practice, different SDC methods can be evaluated and compared by 

considering the values of alternative measures of risk and utility. For given measures of 

each, it can sometimes be useful to construct an RU map (Duncan et al., 2001), where a 

measure of risk is plotted against a measure of utility for a set of candidate SDC methods. 

The points on this map are expected to display a general positive relationship beween risk 

and utility, but one might still find that, for given values of risk, some methods have 

greater utility than others and thus are to be preferred. This approach avoids having to 

assume a single value of ε . 

 

2. Tabular Outputs 

 

2.1 Disclosure risk in social surveys and the protection provided by sampling 

The main developments in SDC methods for tabular outputs have been motivated by 

the potential risks of disclosure arising when 100% sampling has been employed, such as 

in censuses or in administrative data.  Frequency tables based upon such data sources 

may often include small counts, as low as zero or one, e.g. in tables of numbers of deaths 

by area by cause of death. Such tables might lead to identity disclosure, e.g. if it is public 

knowledge that someone has died, then it might be possible to identify that person as a 

count of one in a table of deaths using some known characteristics of that person. 
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Attribute disclosure might also occur. For example, it might be possible to find out the 

cause of the person’s death if the table cross-classifies this cause by other variables 

potentially known to an intruder. 

In social surveys, however, the use of sampling greatly reduces the risks of such kinds 

of disclosure for two reasons. Firstly, the presence of sampling requires different kinds of 

statistical outputs. Thus, the entries in tables for categorical variables tend to be weighted 

proportions (possibly within domains defined by rows or columns) and not unweighted 

sample counts.  Even if a user of the table could work out the cell counts (e.g. because the 

survey employs equal weights and the sample base has been provided), the survey agency 

will often ensure that the published cells do not contain very small counts, where the 

estimates would be deemed too unreliable due to sampling error. For example, the agency 

might suppress cell entries where the sample count in the cell falls below some threshold, 

e.g. 50 persons in a national social survey.  This should prevent the kinds of situations of 

most concern with 100% data.  Sometimes, agencies use techniques of small area 

estimation in domains with small sample counts and these techniques may also act to 

reduce disclosure risk.  

Secondly, the presence of sampling should reduce the precision with which an 

intruder could achieve predictive disclosure. For example, suppose that an intruder could 

find out from a survey table that, among 100 respondents falling into a certain domain, 99 

of them have a certain attribute and suppose that the intruder knows someone in the 

population who falls into this domain. Then the intruder cannot predict that this person 

has the attribute with probability 0.99, since this person need not be a respondent and 

prediction is subject to sampling uncertainty. This conclusion depends, however, on the 

identities of the survey respondents being kept confidential by the agency, preventing the 

intruder knowing whether the known person is a respondent, referred to as response 

knowledge by Bethlehem et al. (1980).  In general, it seems very important that agencies 

do adopt this practice since it greatly reduces disclosure risk, while not affecting the 

statistical utility of the outputs. In some exceptional cases, it may be difficult to achieve 

this completely. For example, in a survey of children it will usually be necessary to 

obtain the consent of a child’s parent (or other adult) in order for the child to take part in 

the survey.  The child might be assured that their responses will be kept confidential from 

their parent. However, when examining the outputs of the survey, the parent (as intruder) 

would know that their child was a respondent.   

For the reasons given above, disclosure will not generally be of concern in the release 

of tables of estimates from social surveys, where the sample inclusion probabilities are 

small (say never exceeding 0.1). See also Federal Committee on Statistical Methodology 

(2005, pp. 12-14). 

 

2.2. Disclosure risk in establishment surveys 

A common form of output from an establishment survey consists of a table of 

estimated totals, cross-classified by characteristics of the establishment. Each estimate 

takes the form ˆ
c i ci is

Y w I y=∑ , where 
iw  is the survey weight, 

ciI  is a 0-1 indicator for 

cell c in the cross-classification and iy  is the survey variable for the i
th 

establishment in 

the sample s .  For example, iy  might be a measure of output and the cells might be 

formed by cross-classifying industrial activity and a measure of size.  
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The relevant definition of disclosure in such a setting will often be a form of 

prediction disclosure. Prediction disclosure for a specific cell c might be defined under 

the following set-up and assumptions: 

- the intruder is one of the establishments in the cell which has the aim of predicting 

the value iy  for one of the other establishments in the cell or, more generally, the 

intruder consists of a coalition of m of the cN  establishments in the cell with the same 

predictive aim; 

- the intruder knows the identities of all establishments within the cell (since, for 

example, they might represent businesses competing in a similar market). 

Given such assumptions, prediction disclosure might be said to occur if the intruder is 

able to predict the value  iy  with a specified degree of precision.  In order to clarify the 

notion of precision, we focus in the next subsection on the important case where the units 

in the cell all fall within completely enumerated strata. Thus, 1iw =  when 1ciI =  so that 

ˆ
c

c iU
Y y=∑ , where 

cU  is the set of all establishments in cell c and 
cN  is the size of 

cU .  

In this case the intruder faces no uncertainty due to sampling and this might therefore be 

treated as the worst case.  

 

2.2.1 Prediction disclosure in the absence of sampling     

In the absence of sampling, prediction is normally considered from a deterministic 

perspective and is represented by an interval (between an upper and lower bound) within 

which the intruder knows that a value 
iy  must lie. The precision of prediction is 

represented by the difference between the true value and one of the bounds. It is supposed 

that the intruder undertakes prediction by combining prior information with the reported 

value ˆ
cY .  

One approach to specifying the prior information is used in the prior-posterior rule 

(Willenborg and de Waal, 2001), also called the pq rule, which depends upon two 

constants, p and q, set by the agency. The constant q is used to specify the precision of 

prediction based upon the prior information alone. Under the pq rule, it is assumed that 

intruder can infer the iy  value for each establishment in the cell to within q%. Thus, the 

agency assumes that, prior to the table being published, the intruder could know that a 

value iy  falls within the interval[(1 /100) , (1 /100) ]i iq y q y− + . The combination of this 

prior information with the output ˆ
c

c iU
Y y=∑  can then be used by the intruder to obtain 

sharper bounds on a true value. For example, let (1) (2) ( )...
cNy y y≤ ≤ ≤  be the order 

statistics and suppose that the intruder is the establishment with the second largest value, 

( 1)cNy − . Then this intruder can determine an upper bound for the largest value 
( )cNy  by 

subtracting its own value 
( 1)cN

y −  together with the sum of the lower bounds for 

(1) ( 2),...,
cNy y −  from ˆ

cY . The precision of prediction using this upper bound is given by 

difference between this upper bound and the true value ( )cNy , which is 
2

( )1
( /100) cN

ii
q y

−

=∑ . 

This cell would be called sensitive under the pq rule, i.e. judged disclosive, if this 

difference was less than p% of the true value, i.e. if  
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2

( ) ( )1
( /100) ( /100) 0c

c

N

N ii
p y q y

−

=
− >∑ .   (1) 

 

The expression on the left hand side of (1) is a special case of a linear sensitivity 

measure, which more generally takes the form ( )1

cN

c i ii
R a y

=
=∑ , where the ia  are specified 

weights. The cell is said to be sensitive if 0cR > . In this case, prediction disclosure 

would be deemed to occur. A widely used special case of the pq rule is the p% rule, 

which arises from setting q=100, i.e. no prior information is assumed. Another 

commonly used linear sensitivity measure arises with the (n,k) or dominance rule. See 

Willenborg and de Waal (2001), Cox (2001), Giessing (2001) and Federal Committee on 

Statistical Methodology (2005) for further discussion.  

 

2.2.2 Prediction disclosure in the presence of sampling     

More generally, all cell units may not be completely enumerated. In this case, ˆ
cY  will 

be subject to sampling error and, in general, this will lead to additional disclosure 

protection, provided the intruder does not know whether other establishments (other than 

those in the coalition) are sampled or not.  The definition of risk in this setting appears to 

need further research. Willenborg and de Waal (2001, section 6.2.5) present some ideas. 

An alternative model-based stochastic approach might assume that before the release of 

the table, the prior information about the iy  can be represented by a linear regression 

model depending upon publicly available covariate values ix  with a specified residual 

variance. The predictive distribution of iy  given ix  could then be updated using the 

known value(s) of 
iy  for the intruder and the reported ˆ

cY , which might be assumed to 

follow the distribution ˆ ˆ[ , ( )]c c cY N Y v Y∼ , where ˆ( )cv Y  is the reported variance estimate of 

ˆ
cY . Prediction disclosure could then be measured in terms of the resulting residual 

variance in the prediction of 
iy . 

 

2.3. SDC methods for tabular outputs 

If a cell in a table is deemed sensitive, i.e. the cell value represents an unacceptably high 

disclosure risk, a number of SDC approaches may be used.  

Redefinition of cells: The cells are redefined to remove sensitive cells, e.g. by combining 

sensitive cells with other cells or by combining categories of the cross-classified 

variables. This is also called table redesign (Willenborg and de Waal, 2001). 

Cell suppression: the value of a sensitive cell is suppressed. Depending upon the nature 

of the table and its published margins, it may also be necessary to suppress the values of 

‘complementary’ cells to prevent an intruder being able to deduce the value of the cell 

from other values in the table. There is a large literature on approaches to choosing 

complementary cells which ensure disclosure protection. See e.g. Willenborg and de 

Waal (2001), Cox (2001) and Giessing (2001) and references therein. 

Cell modification: the cell values may be modified in some way. It will generally be 

necessary to modify not only the values in the sensitive cells but also values in some 

complementary non-sensitive cells, for the same reason as in cell suppression. 

Modification may be deterministic, e.g. Cox et al. (2004), or stochastic, e.g. Willenborg 
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and de Waal (2001, Sect. 9.2). A simple method is rounding, where the modified cell 

values are multiples of a given base integer (Willenborg and de Waal, 2001, Ch. 9). This 

method is more commonly applied to frequency tables derived from 100% data but can 

also be applied to tables of estimated totals from surveys, where the base integer may be 

chosen according to the magnitudes of the estimated totals. Instead of replacing the cell 

values by single safe values, it is also possible to replace the values by intervals, defined 

by lower and upper bounds (Salazar, 2003; Giessing and Dittrich, 2006). The method of 

controlled tabular adjustment (Cox et al.,2004) determines modified cell values within 

such bounds so that the table remains additive and certain safety and statistical properties 

are met. 

Pre-tabular microdata modification: instead of modifying the cell values, the 

underlying microdata may be perturbed, e.g. by adding noise, and then the table formed 

from the perturbed microdata (Evans, et al. 1998; Massell et al., 2006). 

The statistical output from a survey will typically include many tables. Although the 

above methods may be applied separately to each table, such an approach takes no 

account of the possible additional disclosure risks arising from the combination of 

information from different tables, in particular, from common margins. To protect against 

such additional risks raises new considerations for SDC. Moreover, the set of tables 

constituting the statistical output is not necessarily fixed, as in a traditional survey report. 

With developments in online dissemination, there is increasing demand for the generation 

of tables which can respond in a more flexible way to the needs of users. This implies the 

need to consider SDC methods which not only protect each table separately as above, but 

also protect against the risk arising from alternative possible sequences of released tables 

(see e.g. Dobra et al, 2003).      

 

3. Microdata 

 

3.1. Assessing disclosure risk 

We suppose the agency is considering releasing to researchers an anonymised 

microdata file, where the records of the file correspond to the basic analysis units and 

each record contains a series of survey variables. The record may also include identifiers 

for higher level analysis units, e.g. household identifiers where the basic units are 

individuals, as well as information required for survey analysis such as survey weights 

and primary sampling unit (PSU) identifiers.  

We suppose that the threat of concern is that an intruder may link a record in the file 

to some external data source of known units using some variables, which are included in 

both the microdata file and the external source. These variables are often called key 

variables or identifying variables. There are various ways of defining disclosure risk in 

this setting. See e.g. Paass (1988) and Duncan and Lambert (1989). A common approach, 

often motivated by the nature of the confidentiality pledge, is to consider a form of 

identification risk (Bethlehem et al., 1990; Reiter, 2005), concerned with the possibility 

that the intruder will be able to determine a correct link between a microdata record and a 

known unit. This definition of risk will only be appropriate if the records in the microdata 

can meaningfully be said to be associated with units in the population. When microdata is 

subject to some forms of SDC, this may not be the case (e.g. if the released records are 

obtained by combining original records) and in this case it may be more appropriate to 
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consider some definition of predictive disclosure (e.g. Fuller, 1993) although we do not 

pursue this further here.   

A number of approaches to the assessment of identification risk are possible, but all 

depend importantly upon assumptions about the nature of the key variables. One 

approach is to conduct an empirical experiment, matching the proposed microdata against 

another data source, which is treated as a surrogate for the data source held by the 

intruder. Having made assumptions about the key variables, the agency can use record 

linkage methods, which it is plausible would be available to an intruder, to match units 

between the two datasets. Risk might then be measured in terms of the number of units 

for which matches are achieved together with a measure of the match quality (in terms of 

the proportions of false positives and negatives). Such an experiment therefore requires 

that the agency has information which enables it to establish precisely which units are in 

common between the two sources and which are not. 

The key challenge in this approach is how to construct a realistic surrogate intruder 

dataset, for which there is some overlap of units with the microdata and the nature of this 

overlap is known. On some occasions a suitable alternative data source may be available. 

Blien et al. (1992) provide one example of a data source listing people in certain 

occupations. Another possibility might be a different survey undertaken by the agency, 

although agencies often control samples to avoid such overlap. Even if there is overlap, 

say with a census, determining precisely which units are in common and which are not 

may be resource intensive. Thus, this approach is unlikely to be suitable for routine use.   

In the absence of another dataset, the agency may consider a re-identification 

experiment, in which the microdata file is matched against itself in a similar way, 

possibly after the application of some SDC method (Winkler, 2004). This approach has 

the advantage that it is not model-dependent, but it is possible that the re-identification 

risk is over-estimated if the disclosure protection effects of sampling and measurement 

error are not allowed for in a realistic way.   

 In the remainder of section 3, we consider a third approach, which again only 

requires data from the microdata file, but makes theoretical assumptions, especially of a 

modelling kind, in order to estimate identification risk. As for the re-identification 

experiment, this approach must make assumptions about how the key variables are 

measured in the microdata and by the intruder on known units using external information. 

A simplifying but ‘worst case’ assumption is that the key variables are recorded in 

identical ways in the microdata and externally. We refer to this as the no measurement 

error assumption, since measurement error in either of the data sources may be expected 

to invalidate this assumption. If at least one of the key variables is continuous and the no 

measurement error assumption is made then an intruder who observes an exact match 

between the values of the key variables in the microdata and on the known units could 

conclude with  probability one that the match is correct, in other words the identification 

risk would be one. If at least one of the key variables is continuous and it is supposed that 

measurement error may occur then the risk will generally be below one. Moreover, an 

exact matching approach is not obviously sensible and a broader class of methods of 

record linkage might be considered. See Fuller (1993) for the assessment of disclosure 

risk under some measurement error model assumptions.     

In practice, variables are rarely recorded in a continuous way in social survey 

microdata. For example, age would rarely be coded with more detail than one year bands. 
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And from now on we restrict attention to the case of categorical key variables. For 

simplicity, we restrict attention to the case of exact matching, although more general 

record linkage methods could be employed. We focus on a microdata file, where the only 

SDC methods which have been applied are recoding of key variables or random 

(sub)sampling. We comment briefly on the impact of other SDC methods on risk in 

section 3.4. 

 

3.2 File-level measures of identification risk  

We consider a finite population U of N  units (which will typically be individuals) 

and suppose the microdata file consists of records for a sample s U⊂  of size n N≤ . We 

assume that the possibility of statistical disclosure arises if an intruder gains access to the 

microdata and attempts to match a microdata record to external information on a known 

unit using the values of m categorical key variables 
1,..., mX X .  (Note that s  and 

1,..., mX X  are defined after the application of (sub)sampling or recoding respectively as 

SDC methods to the original microdata file.) 

Let the variable formed by cross-classifying 
1,..., mX X  be denoted X , with values 

denoted 1,...,k K= , where K is the number of categories or key values of X . Each of 

these key values corresponds to a possible combination of categories of the key variables. 

Under the no measurement error assumption, identity disclosure is of particular concern 

if a record is unique in the population with respect to the key variables. A record with key 

value k  is said to be population unique if 1kF = , where kF  denotes the number of units 

in U with key value k . If an intruder observes a match with a record with key value k , 

knows that the record is population unique and can make the no measurement error 

assumption then the intruder can infer that the match is correct.  

As a simple measure of disclosure risk, we might therefore consider taking some 

summary of the extent of population uniqueness. In survey sampling it is usual to define 

parameters of interest at the population level and this might lead us to define our measure 

as the population proportion 1 /N N , where ( )r kk
N I F r= =∑  is the  population 

frequencies of frequencies, 1, 2,...r = . From a disclosure risk perspective, however, we 

are interested in the risk for a specific microdata file it is natural to allow the risk measure 

to be sample dependent. Thus, we might expect the risk to be higher if a sample is 

selected with a high proportion of unusual identifiable units than for a sample where this 

proportion is lower. Thus, a more natural file-level measure is the proportion of 

population uniques in the sample. Let the sample counterpart of kF  be denoted by kf  

then this measure can be expressed as: 

 

Pr( ) ( 1, 1) /k kk
PU I f F n= = =∑ .     (2) 

 

It could be argued, however that the denominator of this proportion should be made even 

smaller, since the only records which might possibly be population unique are ones that 

are sample unique (since 
k kf F≤ ), i.e. have a key value k  such that 1kf = . Thus a more 

conservative measure would be to take: 
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1
Pr( | ) ( 1, 1) /

k kk
PU SU I f F n= = =∑ ,     (3) 

 

where 1n  is the number of sample uniques and, more generally, ( )r kk
n I f r= =∑  is  the 

sample frequencies of frequencies. For further consideration of the proportion of sample 

uniques that are population unique, see Fienberg and Makov (1998) and  Samuels (1998). 

It may be argued (e.g. Skinner and Elliot, 2002) that these measures may be over-

optimistic, since they only capture the risk arising from population uniques and not from 

other records with 2kF ≥ . If an intruder observes a match on a key value with frequency  

kF  then (subject to the no measurement error assumption) the probability that the match 

is correct is 1/ kF  under the exchangeability assumption that the intruder is equally likely 

to have selected any of the  kF  units in the population. An alternative measure of risk is 

then obtained by extending this notion of probability of correct match across different 

key values. Again, on worst case grounds, it is natural to restrict attention to sample 

uniques. One measure arises from supposing that the intruder starts with the microdata, is 

equally likely to select any sample unique and then matches this sample unique to the 

population. The probability that the resulting match is correct is then   the simple average 

of 1/ kF  across sample uniques:  

 

   1[ ( 1) / ] /s k kk
I f F nθ = =∑       (4) 

 

Another measure is  

 

( 1) / ( 1)U k k kk k
I f F I fθ = = =∑ ∑ ,     (5) 

 

which is the probability of a correct match under a scenario where the intruder searches at 

random across the population and finds a match with a sample unique.   

All the above four measures are functions of both the 
kf  and the 

kF . The agency 

conducting the survey will be able to determine the sample quantities 
kf  from the 

microdata but the population quantities 
kF  will generally be unknown.  It is therefore of 

interest to be able to make inference about the measures from sample data.   

Skinner and Elliot (2002) show that, under Bernoulli sampling with inclusion 

probability π , a simple design-unbiased estimator of Uθ  is 1

1 1 2
ˆ /[ 2( 1) ]U n n nθ π −= + − . 

They also provide a design consistent estimator for the asymptotic variance of ˆ
U Uθ θ− . 

Skinner and Carter (2003) show that a design-consistent estimator of 
Uθ  for an arbitrary 

complex design is 1

1 1 2 2
ˆ /[ 2( 1) ]U n n nθ π −= + − , where 1

2π −  is the mean of the inverse 

inclusion probabilities 1

iπ −  for units i with key values for which 2kf = . They also 

provide a design-consistent estimator of the asymptotic variance of ˆ
U Uθ θ−  under 

Poisson sampling. 

Such simple design-based inference does not seem to be possible for the other three 

measures in (2) - (4). Assuming a symmetric design such as Bernoulli sampling, we 
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might suppose that 
1 2, ,...n n  represent sufficient statistics and seek design-based moment-

based estimators of the measures by solving the equations: 

 

( )
r t rt

t

E n N P=∑ ,   1,2,...r =  

where the coefficients rtP  are known for sampling schemes such as simple random 

sampling or Bernoulli sampling (Goodman, 1949). The solution of these equations for tN  

with ( )rE n  replaced by rn  gives unbiased estimators of  K  and 1N  under apparently 

weak conditions (Goodman, 1949). Unfortunately, Goodman found that the estimator of 

K  can be ‘very unreasonable’ and the same appears to be so for the corresponding 

estimator of 1N . Bunge and Fitzpatrick (1993) review approaches to estimating K  and 

discuss these difficulties. Zayatz (1991) and Greenberg and Zayatz (1992) propose an 

alternative ‘nonparametric’ estimator of 
1N  but this appears to be subject to serious 

upward bias for small sampling fractions (Chen and Keller-McNulty, 1998). 

 One way of addressing these estimation difficulties is by making stronger 

modelling assumptions, in particular by assuming that the 
kF  are independently 

distributed as: 

| ( )k k kF Poλ λ∼        (6) 

 

where the kλ  are independently and identically distributed, i.e. that the kF  follow a 

compound Poisson distribution. A tractable choice for the distribution of  
kλ  is the  

gamma distribution (Bethlehem et al., 1990) although it does not appear to fit well in 

some real data applications (e.g. Skinner et al., 1994; Chen and Keller-McNulty, 1998). 

A much better fit is provided by the log-normal (Skinner and Holmes, 1993). Samuels 

(1998) discussed estimation of  Pr( | )PU SU  based on a Poisson-Dirichlet model.  A 

general conclusion seems to be that results can be somewhat sensitive to the choice of 

model, especially as the sampling fraction decreases, and that 
Uθ  can be more robustly 

estimated than the other three measures. 

 

3.3 Record-level measures of identification risk  

A concern with file-level measures is that the principles governing confidentiality 

protection often seek to avoid the identification of any individual, that is require the risk 

to be below a threshold for each record, and such aims may not adequately be addressed 

by aggregate measures of the form (2) - (5). To address this concern, it is more natural to 

consider record level measures, i.e.  measures which may take different values for each 

microdata record. Such measures may help identify those parts of the sample where risk 

is high and more protection is needed and may be aggregated to a file level measure in 

different ways if desired (Lambert 1993). While record level measures may provide 

greater flexibility and insight when assessing whether specified forms of microdata 

output are ‘disclosive’, they are potentially more difficult to estimate than file level 

measures. 

A number of approaches have been proposed for the estimation of record level 

measures. For continuous key variables, Fuller (1993) shows how to assess the record 



 13 

level probability of identification in the presence of added noise, under normality 

assumptions. See also Paass (1988) and Duncan and Lambert (1989). We now consider 

related methods for categorical variables, following Skinner and Holmes (1998) and 

Elamir and Skinner (2006).  

Consider a microdata record with key value X . Suppose the record is sample unique, 

i.e. with a key value k  for which 1kf = , since such records may be expected to be most 

risky. Suppose the intruder observes an exact match between this record and a known 

unit in the population. We make the no measurement error assumption so that there will 

be kF  units in the population which potentially match the record. We also assume no 

response knowledge (see section 2.1). The probability that this observed match is correct 

is  

  Pr(correct |match exact , , ) 1/k kmatch X k F F= =    (7) 

 

where the probability distribution is with respect to the design under a symmetric 

sampling scheme, such as simple random sampling or Bernoulli sampling. (Alternatively, 

it could be with respect to a stochastic mechanism employed by the intruder, which 

selects any of the  
kF  units with equal probability). This probability is conditional on the 

key value k and on 
kF .   

In practice, we only observe the sample frequencies 
kf  and not the 

kF . We therefore 

integrate out over the uncertainty about 
kF  and write the measure as  

 

Pr(correct |match exact , , ) (1/ | , 1)k k kmatch X k f E F k f= = =   (8) 

 

This expectation is with respect to both the sampling scheme and a model generating 

the 
kF , such as the compound Poisson model in (6). An alternative measure, focusing on 

the risk from population uniqueness, is: 

 

Pr( 1| , 1)k kF k f= =      (9) 

 

The expressions in (8) and (9) may be generalized for any record in the microdata with 

1kf > . A difference between the probabilities in (8) and (9) and those in the previous 

section is that here we condition on the record’s key value X k= . Thus, although we 

might assume | ( )k k kF Poλ λ∼ , as in (6), we should like to condition on the particular 

key value k  when considering the distribution of kλ . Otherwise, if the kλ  are identically 

distributed as in the previous section then we would obtain the same measure of risk for 

all (sample unique) records. A natural model is a log-linear model:  

 

log( )k kzλ β=       (10) 

 

where kz  is a vector of indicator variables representing the main effects and the 

interactions between the key variables 1,..., mX X  and β  is a vector of unknown 

parameters.  
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Expressions for the risk measures in (8) and (9) in terms of β are provided by Skinner 

and Holmes (1998) and Elamir and Skinner (2006). Assumptions about the sampling 

scheme are required to estimate β . Under Bernoulli sampling with inclusion probability 

π , it follows from (6) that  | ( )k k kf Poλ πλ∼ . Assuming also (10), β  may be estimated 

by standard maximum likelihood methods. A simple extension of this argument also 

applies under Poisson sampling where the inclusion probability kπ  may vary with respect 

to the key variables, for example if a stratifying variable is included among the key 

variables. In this case, we have | ( )k k k kf Poλ π λ∼ . Skinner and Shlomo (2008) discuss 

methods for the specification of the model in (10). Skinner (2007) discusses the possible 

dependence of the measure on the search method employed by the intruder.  

 

3.4. SDC methods 

In this section we summarize a number of SDC methods for survey microdata.  

Transformation of variables to reduce detail. Categorical key variables may be 

transformed, in particular, by combining categories. For example, the variable household 

size might be top coded by creating a single maximum category, such as 8+. Continuous 

key variables may be banded to form ordinal categorical variables by specifying a series 

of cut-points between which the intervals define categories.   The protection provided by 

combining categories of key variables can be assessed following the methods in sections 

3.2. and 3.3. See also Reiter (2005).  Provided the transformation is clear and explicit, 

this SDC method has the advantage that the reduction of utility is clear to the data user, 

who may suffer loss of information but the validity of analyses is not damaged.  

Stochastic perturbation of variables. The values of potential key variables are 

perturbed in a stochastic way. In the case of continuous variables perturbation might 

involve the addition of noise, analogous to the addition of measurement error (Sullivan 

and Fuller, 1989; Fuller, 1993). In the case of categorical variables, perturbation may 

consist of misclassification, termed the Post Randomisation Method (PRAM) by 

Gouweleeuw et al. (1998). Perturbation may be undertaken in a way to preserve specified 

features of the microdata, e.g. the means and standard deviations of variables in the 

perturbed microdata may be the same as in the original microdata, but in practice there 

will inevitably be unspecified features of the microdata which are not reproduced. For 

example, the estimated correlation between a perturbed variable and an unperturbed 

variable will often be downwardly biased if an analyst uses the perturbed data but ignores 

the fact that perturbation has taken place. An alternative is to provide users with the 

precise details of the perturbation method, including parameter values such as the 

standard deviation of the noise or the entries in the misclassification matrix, so that they 

may ‘undo’ the impact of perturbation when undertaking their analyses. See e.g. Van den 

Hout and Van der Heijden (2002) in the case of PRAM or Fuller (1993) in the case of 

added noise. In principle, this may permit valid analyses although there will usually be a 

loss of precision and the practical disadvantages are significant. 

Synthetic microdata: This approach is similar to the previous one, except that the aim 

is to avoid requiring special methods of analysis. Instead, the values of variables in the 

file are replaced by values generated from a model in a way that is designed for the 

analysis of the synthetic data, as if it were the true data, to generate consistent point 

estimates (under the assumption that the model is valid). The model is obtained from 
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fitting to the original microdata. In order to enable valid standard errors as well as 

consistent point estimators, Raghunathan et al. (2003) propose that multiple copies of the 

synthetic microdata are generated in such a way that multiple imputation methodology 

can be used. See Reiter (2002) for discussion of complex designs.  Abowd and Lane 

(2004) discuss release strategies combining remote access to one or more such synthetic 

microdata files with much more restricted access to the original microdata in a safe 

setting.  

Selective perturbation. Often concern focuses only on records deemed to be risky and 

it may be expected that utility will be greater if only a subset of risk records is perturbed. 

In addition to creating stochastically perturbed or synthetic values for only targeted 

records, it is also possible just to create missing values in these records, called local 

suppression by Willenborg and de Waal (2001), or both to create missing values and to 

replace these by imputed values, called blank and impute by Federal Committee on 

Statistical Methodology (2005). A major problem with such methods is that they are 

likely to create biases if the targetted values are unusual. The data user will typically not 

be able to quantify these biases, especially when the records selected for blanking depend 

on the values of the variable(s) which are to made missing.  Reiter (2003) discusses how 

valid inference may be conducted if multiple imputed values are generated in a specified 

way for the selected records. He refers to the resulting data as partially synthetic 

microdata.  

Record Swapping. The previous methods focus on the perturbation of the values of 

the variables for all or a subset of records. The method of record swapping involves, 

instead, the values of one or more key variables being swapped between records. The 

choice of records between which values are swapped may be controlled so that certain 

bivariate or multivariate frequencies are maintained (Dalenius and Reiss, 1982) in 

particular by only swapping records sharing certain characteristics (Willenborg and de 

Waal, 2001, sect. 5.6).  In general, however, it will not be possible to control all 

multivariate relationships and record swapping may damage utility in an analogous way 

to misclassification (Skinner and Shlomo, 2007). Reiter (2005) discusses the impact of 

swapping on identification risk. 

Microaggregation. This method (Defays and Anwar, 1998) is relevant for continuous 

variables, such as in business survey microdata, and in its basic form consists of ordering 

the values of each variable and forming groups of a specified size k  (the first group 

contains the k smallest values, the second group the next k smallest values and so on). 

The method replaces the values by their group means, separately for each variable.  An 

advantage of the method is that the modification to the data will usually be greatest for 

outlying values, which might also be deemed the most risky. It is difficult, however, for 

the user to assess the biasing impact of the method on analyses. 

SDC methods will generally be applied after the editing phase of the survey, during 

which data may be modified to meet certain edit constraints. The application of some 

SDC methods may, however, lead to failure of some of these constraints. Shlomo and de 

Waal (2006) discuss how SDC methods may be adapted to take account of editing 

considerations. 
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3.5 SDC for survey weights and other design information 

Survey weights and other complex design information are often released with survey 

microdata in order that valid analyses can be undertaken. It is possible, however, that 

such design information may contribute to disclosure risk. For example, suppose a survey 

is stratified by a categorical variable X with different sampling fractions in different 

categories of X.  Then, if the nature of the sampling design is published (as is common), it 

may be possible for the intruder to determine the categories of X from the survey weight. 

Thus, the survey design variable may effectively become a key variable. See de Waal and 

Willenborg (1997) and Willenborg and de Waal (2001, sect. 5.7) for further discussion of 

how survey weights may lead to design variables becoming key variables. Note that this 

does not imply that survey weights should not be released; it just means that disclosure 

risk assessments should take account of what information survey weights may convey.  

Willenborg and de Waal (2001, sect. 5.7.3) and Mitra and Reiter (2006) propose some 

approaches to adjusting weights to reduce risk.    

In addition to the release of survey weights, it is common to release either stratum or 

primary sampling unit (PSU) labels or replicate labels, to enable variances to be 

estimated. These labels will generally be arbitrary and will not, in themselves, convey 

any identifying information.  Nevertheless, as for survey weights, the possibility that they 

could be used to convey information indirectly needs to be considered. For example, if 

the PSUs are defined by areas for which public information is available, e.g. a property 

tax rate, and the microdata file includes area-level variables, then it is possible that these 

variables may enable a PSU to be linked to a known area.  As another example, suppose 

that a PSU is an institution, such as a school, then school level variables on the microdata 

file, such as the school enrolment size, might enable the PSU to be linked to a known 

institution.  Even for individual level microdata variables, it is possible that sample-based 

estimates of the total or mean of such variables for a stratum, say, could be matched to 

published values, allowing for sampling uncertainty.  

A standard simple approach to avoiding releasing PSU or replicate identifiers is to 

provide information on design effects or generalized variance functions instead. Such  

methods are often inadequate, however, for the full range of uses of survey microdata 

(Yung, 1997). Some possible more sophisticate approaches include the use of adjusted 

bootstrap replicate weights (Yung, 1997), adjusted pseudo-replicates or pseudo PSU 

identifiers (Dohrmann et al., 2002), or combined stratum variance estimators (Lu et al., 

2006). 

 

4. Conclusion 

The development of SDC methodology continues to be stimulated by a wide range of 

practical challenges and by ongoing innovations in the ways that survey data are used, 

with no signs of diminishing concerns about confidentiality. There has been a tendency 

for some SDC methods to be developed in somewhat ad hoc way to address specific 

problems and one aim of this paper has been to draw out some principles and general 

approaches which can guide a more unified methodological development. Statistical 

modelling has provided one important framework for this purpose. Other fields with the 

potential to influence the systematic development of SDC methodology in the future 

include data mining, in particular methods related to record linkage, and approaches to 

privacy protection in computer science and database technology.      
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