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Bending losses in large mode area holey fibres

by Joanne Claire Baggett

The aims of the study presented here are to develop methods of accurately predicting bend loss

in arbitrary index fibres, to use these techniques to explore the potential offered by holey fibres in the

large-mode-area, single-mode regime, and to place their performance in context against conventional

step-index fibres.

Large-mode-area optical fibres are required in high power and transmission applications in which

low nonlinear effects and high damage thresholds are essential. For many of these applications,

good beam quality is also a critical issue and, as a result, single-mode guidance is desirable. Holey

fibres are an attractive route towards large-mode-area fibres due to their ability to remain endlessly

single-mode independent of the structure scale when the holes are small. In this regime, low values

of numerical aperture are an intrinsic fibre property, which has obvious merit for extreme mode

areas and short wavelength applications where single-mode operation is required. However, as with

any fibre, the fundamental limit on mode area for practical applications is bend loss.

At the time of this study, very little was understood about the factors that influence bend loss

in a holey fibre, or how the losses compared to those of similarly sized conventional solid fibres.

The novel waveguides properties of holey fibres result in bending losses that increase towards both

short and long wavelengths, while the bending losses of conventional fibres increase towards long

wavelengths only. Consequently, it is not obvious how these two fibre types will compare in terms

of bend loss.

In the study presented here, numerical and experimental techniques have been developed that are

capable of accurately evaluating the bending losses, the fundamental mode area and the modedness

of holey fibres. Note that these techniques are also applicable to conventional solid fibres, which is

essential in order to form accurate comparisons. These techniques are applied here to the problem of

understanding the bending losses of large-mode-area holey fibres and are successfully used to assess

the practical limits that bend loss imposes on large-mode-area holey fibres designed for single-mode

operation. These properties are also evaluated for a range of equivalent conventional fibres, the

results of which are used to benchmark the potential of holey fibre technology in this regime. The

results of this study reveal that the performance of large-mode-area holey and conventional fibres at

any given wavelength are similar, and that holey fibres offer advantages for broadband applications.

Methods of improving bend loss in holey fibres are also investigated, and it is shown that more

complex hole arrangements can be used to improve bend loss in a holey fibre.
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5.6 Thick black lines show contours of the critical bend radius of the fundamental mode (R
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5.23 (a) Near-field modal intensity profile for fibre F334Zeop, imaged with a CCD camera. (b)
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5.31 (a) Near-field modal intensity profile for fibre F409Ysop, imaged with a CCD camera. (b)

Modal intensity profile from the corresponding numerical simulation of the fundamental

mode. Cross-sections of the modal intensity in horizontal and vertical directions, which are

indicated by the dashed lines, are plotted along the bottom and left hand side of each figure
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5.38 Effective modal indices for fibres HFH and ESIH: The dotted lines represent the fundamental
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Background
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Chapter 1

Introduction to microstructured

fibres

1.1 Introduction

Over the past 25 years, conventional optical fibres have revolutionised communications and

have become vital components in many technologies, from sensing and medical imaging to

high power applications, including laser welding and machining and active devices such as

fibre lasers and amplifiers. In recent years, two new types of optical fibre have enlivened this

well-established field, bringing with them a wide range of novel optical properties. These

new fibres, known collectively as microstructured fibres, can be made entirely from one

type of glass as they need not rely on dopants for guidance. Instead, the cladding region is

peppered with many small holes that run the entire fibre length, creating a longitudinally

uniform air/glass microstructure. Although the first microstructured fibres were fabricated

in the early 1970’s by Kaiser et al. at Bell labs [1, 2], the current burst in activity stems

from the first demonstration of guidance within such structures in 1996 [3]. This explosive

growth is fuelled by the many unusual and useful optical properties exhibited by these

fibres, many of which are impossible to achieve using conventional methods.

Microstructured fibres are separated into two distinct categories, defined by the way

in which they guide light: (1) Holey fibres, which guide light due to average index effects,

and (2) Photonic crystal or Band-gap fibres, which guide light due to photonic band-gap

effects. Typical examples of these two fibre types are shown respectively in Figs 1.1 (a) and

(b). In both fibre types, the cladding is formed by an array of air holes that run the full

fibre length. These air holes are typically arranged on a hexagonal lattice and the defining

2



Section 1.1. Chapter 1. Introduction to microstructured fibres

(a) (b)

Figure 1.1: (a) SEM image of a typical index guiding Holey fibre and (b) SEM image of a typical Photonic

band-gap fibre. Both fibres were made at the ORC.

parameters are the hole-to-hole spacing Λ, and the hole diameter d.

In holey fibres, the air holes that define the cladding act to lower the average, or effective

refractive index of this region relative to that of the solid core. As a result, light is guided

within the core via a modified form of total internal reflection. Whilst this mechanism is

similar to the way in which conventional step-index fibres guide light, the wavelength scale

features in a holey fibre lead to a strongly wavelength dependent cladding index. This

property is responsible for the host of unusual optical properties unique to holey fibres,

including single-mode guidance at all wavelengths [4], which has great practical significance

for broadband and short wavelength applications, in addition to a host of novel dispersive

properties [5, 6, 7, 8]. Furthermore, simply by scaling the cladding geometry, single-mode

holey fibres with effective mode areas (A
FM

eff ) ranging from approximately 1.5 to 600 µm2

at 1550 nm can be created [9, 10]. Such small values of A
FM

eff have enormous potential for

highly nonlinear applications, whilst large-mode-area fibres are essential for applications

involving high optical powers.

In contrast to holey fibres, in which the mechanisms responsible for guidance share sim-

ilarities with conventional fibres, photonic band-gap fibres represent a fundamentally differ-

ent class of waveguide. In a photonic band-gap fibre, the cladding air holes are arranged in a

perfectly periodic fashion. For certain geometries the cladding can form a two-dimensional

photonic crystal with band-gaps at well defined optical frequencies [11]. Wavelengths within
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the band-gap cannot propagate in the cladding region and are thus confined to the core

of the fibre. The most attractive property of this fibre type arises from the fact that the

core need not be defined by a high index region, as is necessary in an index-guiding fibre.

Instead, the fibre core can be created by a low-index defect, and via careful design of the

cladding can result in a fibre in which light is guided within a hollow air-core [12]. Such

waveguides offer potentially lower values of loss and nonlinearity than is possible in con-

ventional solid core waveguides, which has obvious advantages for long-haul transmission

and high power applications.

Note that holey fibres are often referred to as photonic crystal fibres within the literature.

However, the average index effects responsible for guidance in holey fibres do not rely on

any periodicity within the air hole lattice [13]. Consequently, here the term photonic crystal

is reserved for band-gap fibres, in which periodicity is essential to the guidance mechanism.

In the following sections of this chapter, these two classes of microstructured fibre are

discussed in more detail. Holey fibres are considered within Section 1.2, in which the unique

modal properties and flexible fabrication techniques that give rise to a wide range of novel

fibre designs and optical properties are discussed. A summary of the numerical techniques

used to model the modal properties of holey fibres is presented in Section 1.4. The second

class of microstructured fibre, the photonic band-gap fibre, is discussed in Section 1.3.

However, please note that band-gap fibres are only discussed briefly and are not considered

in any detail in the work presented in this thesis.

1.2 Holey fibres

1.2.1 Introduction

The wide range of novel optical properties that can be realised using holey fibre technology

are possible as a result of two main factors: (1) the wavelength scale air-holes that define the

cladding result in an average, or effective cladding index that is strongly dependent on both

the wavelength of light and the geometry of the cladding; (2) the typical methods of holey

fibre fabrication are extremely flexible and thus permit a wide range of fibre geometries to

be created.

In the following section, the way in which these two factors combine to enable a whole

host of novel optical properties, many of which are impossible to achieve in conventional

fibres, is discussed. The novel cladding index of a holey fibre is explored in Section 1.2.2,
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and the directly related phenomenon of endlessly single-mode guidance is illustrated in

Section 1.2.3 via analogy with step-index fibres. In Section 1.2.4, the basic holey fibre

fabrication techniques are outlined, which facilitates the following description of the wide

range of fibre types and associated modal properties that can be engineered, as presented

in Sections 1.2.5, 1.2.6 and 1.2.7.

1.2.2 The effective cladding index

n doped

n air

>n core n clad

n silican clad =

=n core n doped

n silica=n core

n clad = n FSM(λ)
>n core n clad (λ)

n doped n silica n air> >

(b)

(a)

d

silica

Λ

n

a

Figure 1.2: Sketch of an idealised transverse refractive index profile for (a) a typical conventional step-

index fibre and (b) a typical holey fibre. Here, nsilica is the refractive index of silica glass, ndoped represents

the raised refractive index of a doped silica glass and nair is the refractive index of air. nFSM is the effective

refractive index of the holey fibre cladding, which is also known as the effective index of the fundamental

space filling mode (FSM) of the cladding.

Fig. 1.2 shows schematic representations of an idealised transverse refractive index pro-

file for (a) a typical conventional step-index fibre and (b) a typical holey fibre. A typical

conventional step-index fibre, as shown in Fig. 1.2 (a), consists of two uniform solid lay-

ers of silica glass; an inner core with a refractive index of ncore, surrounded by an outer
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cladding layer with a refractive index of nclad. Light is guided in the fibre core via total

internal reflection if the condition ncore > nclad is satisfied. Typically, the refractive index

of the core is raised by doping the glass in this region with elements such as germanium

or phosphorous. However, the condition ncore > nclad can also be satisfied by doping the

cladding glass with elements such as boron and fluorine, which act to lower the refractive

index of silica.

A typical holey fibre, as shown in Fig. 1.2 (b) is made entirely from pure silica and the

cladding region is defined by an array of air holes arranged in a triangular lattice. The

omission of one central air hole within this array forms the solid fibre core. The defining

parameters of a holey fibre are the hole-to-hole spacing, Λ, and the hole size, d. The air

holes in the cladding act to lower the average, or effective refractive index of this region

(nFSM) relative to that of the solid core (nsilica) and light is thus guided in the solid core

via a modified version of total internal reflection since (ncore ≡ nsilica) > (nclad ≡ nFSM).

Note that this mechanism does not rely on any periodicity of the air hole lattice and light

is guided even for a completely random hole distribution [13]. However, the cladding of a

holey fibre usually possesses a periodic geometry due to the typical method of fabrication,

as discussed in Section 1.2.4.

Due to the fact that the hole size and spacing in a holey fibre are both similar in scale

to the wavelength of light (Λ is typically of the order of 1 to 20 µm, and d is typically of the

order of 0.5 to 10 µm), the effective cladding index is strongly wavelength dependent. The

effective cladding index of a holey fibre, nFSM, is defined as the effective modal index of the

lowest-order cladding mode, which is often referred to as the fundamental space filling mode

(FSM) [14, 15], and can be evaluated by considering an infinite periodic structure with the

parameters of the cladding. As such, nFSM is determined by the spatial distribution of

the FSM, which becomes more confined to the silica regions as the wavelength decreases,

resulting in an effective cladding index that increases towards short wavelengths. One way

of evaluating nFSM is to solve the wave equation using periodic boundary conditions for a

single hexagonal unit cell that is centred on an air hole, as shown in the inset in Fig. 1.3. By

approximating the hexagonal boundary by a circular one of radius Λ/2 (indicated by the

dashed line inside the hexagonal until cell in Fig. 1.3), this problem can be vastly simplified,

enabling a general circular symmetric mode solution [4, 15, 16]. The effective index of the

lowest-order mode of this annular region of silica thus represents an approximate form of

nFSM of the (infinite) holey fibre cladding. Both scalar and vector versions of this approach
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have been developed [15, 16], the latter of which returns values of nFSM that are in agreement

with values calculated using a more rigourous numerical model to 2-3 significant figures for

a range of fibre structures and wavelengths (see Sections 1.4 and 3.5.1 for more details on

the numerical techniques commonly used to evaluate nFSM).

Calculated values of nFSM for a holey fibre with Λ = 7.5 µm are plotted in Fig. 1.3

as a function of Λ/λ, for a range of d/Λ as indicated on the figure. These values of nFSM

are calculated for each fibre as a function of wavelength using the vector approach of the

circular unit cell method described above [15]. The dashed line in Fig. 1.3 indicates the

(constant) refractive index of silica used in these calculations (1.444). A constant value

of refractive index is used here for simplicity, which enables results calculated for a single

structure to be scaled with wavelength (if the refractive index is a constant value at all

wavelengths, Maxwell’s equations become scale invariant). This assumption is approximate,

since the refractive index of silica is wavelength dependent (see appendix C). However, the

refractive index of silica is a weak function of wavelength, varying by approximately 3% in

the wavelength range 300−1600 nm and this approximation is often successfully used when

evaluating holey fibre properties [4, 16, 17]. This figure shows that the effective index of a

holey fibre cladding increases towards short wavelengths, and that in the short wavelength

extreme, nFSM tends towards the refractive index of silica itself. In addition, it can also be

seen from Fig. 1.3 that the overall value of nFSM increases as the relative hole size (d/Λ)

decreases. This results from the fact that the fraction of the modal field in the air depends

on the relative size of the wavelength of light and the cladding parameters, d and Λ. As

the cladding features become smaller with respect to the wavelength of light, the modal

field can penetrate further into each air hole, thus lowering the effective index of the mode.

Although not indicated by Fig. 1.3, in the long wavelength extreme, nFSM tends to an

asymptotic value close to the volume average refractive index.

1.2.3 Endlessly single-mode guidance

The wavelength dependence of the effective cladding index is the fundamental difference

between holey and conventional fibres, in which the cladding index is typically only weakly

dependent on wavelength, and it is this property that is responsible for the many novel

optical properties exhibited by holey fibres. The most notable of these unusual properties

is the ability of a holey fibre to guide a single-mode at all wavelengths, a phenomenon

known as endlessly single-mode guidance, which is explained here via analogy with step-
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Λ
d

Figure 1.3: The effective modal index of the fundamental space filling mode (FSM) of a holey fibre with

Λ = 7.5 µm for several different values of d/Λ (as indicated on the figure) as a function of Λ/λ, calculated

using the method from Ref. [15]. The refractive index of silica is assumed to be constant in this case, with

a value of 1.444 and is indicated on the figure by the dashed line.

index fibres.

Although the modal properties of holey fibres and step-index fibres are very different

spectrally, the modal properties of a holey fibre can, to first approximation, be evaluated by

considering an equivalent step-index (ESI) fibre at any given wavelength [4], as discussed in

Section 1.4.2. An ESI profile is typically determined by replacing the holey cladding with

a uniform material that possesses the same effective refractive index (nclad ≡ nFSM) and

approximating the holey fibre core by a circular region of pure silica. Due to the fact that

no clearly defined boundary between core and cladding region exists in a holey fibre, the

core diameter of an ESI fibre must be chosen arbitrarily. In most cases, the core radius is

defined to be 0.625Λ, which is found empirically via comparison with results obtained using

a more rigourous plane-wave technique [18]. Unfortunately, this choice is only valid over

a fairly limited range of fibre parameters and wavelengths, and as such cannot be used to

accurately model the modal properties of holey fibres. However, this simple ESI approach

can be used to provide useful insight into holey fibre operation. Indeed, in order to gain an

understanding of the basic modal properties of a holey fibre, the effective index approach is
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ideal as it enables these novel fibres to be evaluated using familiar terminology. Here, this

ESI approach is used to explain endlessly single-mode guidance.

The number of modes supported by a conventional fibre is related to the V-parameter,

which is defined as

V =
2πa

λ
NA, (1.1)

where a is the core radius and the numerical aperture, NA=
√

ncore
2 − nclad

2 . A step-index

fibre is single-mode for V < 2.405. In a conventional fibre, both ncore andnclad depend

only weakly on wavelength, and so the V-parameter, and hence the number of modes,

increases rapidly towards short wavelengths. However, in a holey fibre, the cladding index

is strongly wavelength dependent and acts to lower the NA towards short wavelengths.

This functionality balances the wavelength dependence of the V-parameter, resulting in a

nearly constant value of V over a large wavelength range. Indeed, if the cladding holes

are small enough, the NA can be low enough at all wavelengths to result in endlessly

single-mode guidance. This phenomenon is illustrated in Fig. 1.4, in which the effective

V-parameter (Veff) is plotted for holey fibres with Λ = 7.5 µm and increasing values of

d/Λ. These values of (Veff) are calculated using the values of nFSM plotted in Fig. 1.3

and assume a core radius of = 0.625Λ in the ESI fibre (as previously discussed) [18]. The

dashed line in Fig. 1.3 indicates the V=2.405 single-mode cut-off. Fig. 1.4 clearly shows how

the effective V-parameter rises to a constant value as the wavelength decreases in a holey

fibre. Furthermore, it can be seen that when the holes are small enough, the V-parameter

stays below 2.405 at all wavelengths, resulting in a fibre that is endlessly single-mode [4].

Note that the effective index approach used here (incorrectly) predicts that the endlessly

single-mode condition occurs for d/Λ <∼ 0.36. Note that more accurate numerical techniques

predict that this condition occurs for d/Λ <∼ 0.40 for n=1.444 [19].

The property of endlessly single-mode guidance is one of the many novel properties

exhibited by holey fibres. However, to explain these properties in detail it is useful to first

give an outline of the basic holey fibre fabrication techniques, as presented in Section 1.2.4.

A basic understanding of these techniques facilitates the description of the many and varied

holey fibre structures and associated modal properties reported to date, as discussed in

Sections 1.2.5, 1.2.6 and 1.2.7.
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Figure 1.4: The effective V-parameter (Veff) for holey fibres with Λ = 7.5 µm and d/Λ = 0.2, 0.3, 0.4,

0.5 and 0.6, plotted as a function of Λ/λ. The dashed line indicates the single-mode cut-off point given by

Veff = 2.405. The effective V-parameter is calculated using the values of nFSM obtained from the method in

Ref. [15], and the refractive index of silica is assumed to be constant, with a value of 1.444.

1.2.4 Fabrication

Holey fibres are typically fabricated by heating and pulling a preform into fibre using a

conventional fibre drawing tower. The fibre preform is typically constructed by stacking

many silica capillaries around a central, solid silica rod. In a typical holey fibre, all the

capillaries in the preform share the same dimensions and the central solid rod is of equal

diameter. In the final fibre, the central solid rod forms the core, and the surrounding glass

capillaries form the microstructured cladding. An idealised sketch of a typical holey fibre

preform and final fibre are shown in Fig. 1.5 (a) and (b) respectively. Note that small silica

rods are often used to fill in the gaps around the outside of the capillary stack to prevent

large air holes forming in this region in the final fibre.

The parameters of the final fibre depend both on the dimensions of the stacking elements

used in the preform and on the specific drawing conditions. The hole-to-hole spacing, Λ,

can be controlled during manufacture via the outer diameter of the final fibre, while the hole

size depends on many factors during fabrication. For example, if the ends of each capillary
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Figure 1.5: Idealised sketches of (a) a typical holey fibre preform and (b) the final holey fibre

in the preform are not sealed, the relative size of the air holes in the final fibre can be made

to be much smaller than those in the original preform by taking advantage of the fact that

surface tension effects act to collapse the capillaries as the fibre is drawn. However, this can

result in a run-away process that completely closes the air holes, resulting in a useless fibre

(note that this is especially true when small air holes are present, as in large-mode-area

holey fibres). To prevent this, the top of each capillary in the preform is often sealed. As

the air within the preform heats and expands, a pressure differential is obtained between

the air inside and outside the fibre, which counterbalances surface tension effects. As the

fibre is drawn, the volume of air remaining in the preform typically becomes less than that

inside the pulled fibre. This causes the pressure differential to decrease as the fibre is drawn,

resulting in smaller holes towards the end of the pull. By adjusting drawing conditions,

such as the pull/feed speed, the change in the pressure differential can be compensated for

to some extent. In this way, holey fibres with uniform cladding geometries can be reliably

fabricated in lengths of a few hundred metres. Conversely, the hole size can be radically

altered during the fabrication process by changing the drawing conditions, allowing many

different fibre structures to be created from the one preform. However, for a specific fibre

design it is generally considered best practice to start with capillary dimensions in the
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preform that, when scaled down, best match the target fibre parameters.

The finite extent of the cladding region in a holey fibre results in an intrinsically leaky

structure due to the fact that the core index is the same as that of the surrounding glass

(Note that this is discussed in more detail in Sections 1.2.5, 5.4 and 7.3). Consequently, no

true bound modes exist and only leaky modes are guided, each of which has an associated

confinement loss. However, these losses can be reduced to negligible values if a sufficient

number of rings of holes are used. Typically, six to seven rings of holes are required to

achieve negligible confinement losses in the fundamental mode of the fibre, which corre-

sponds to around 130 to 170 stacking elements respectively. Other propagation losses in

the final fibre result from the Rayleigh scattering and infrared absorption intrinsic to the

glass used to make the fibre. For silica glass these losses can be as low as 0.14 dB/km [20].

However, the propagation losses of early holey fibres were typically a few dB/km and result

from imperfections, such as scratches or surface roughness in the stacking elements used to

construct the preform, and also from OH contamination. In order to minimise these sources

of propagation loss, the stacking elements are usually made from high quality silica with

a low OH content (The fibres considered in detail within this thesis are made from F300

synthetic silica glass from Heraeus Tenevo AG), and are carefully polished, cleaned and

dehydrated to ensure smooth, contamination free surfaces in the preform. The lowest prop-

agation losses reported in a holey fibre to date are ≈ 0.28 dB/km at 1550 nm [21], which

compare favourably with the propagation losses of conventional step-index single-mode fibre

(losses of Corning SMF-28 are ≈ 0.2 dB/km at 1500 nm).

To date, most work on holey fibres has focussed solely on silica glass. However, holey

fibres have also been made from non-silica glasses, such as tellurite and chalcogenide glasses,

which offer optical properties not available in silica, such as mid-IR transmission and high

values of refractive index and non-linearity [22, 23, 24, 25, 26]. These so called soft-glasses

possess lower melting points than silica glass and can, as a result, be extruded to form a

preform in one step. This not only simplifies fabrication, but also enables the fabrication

of small-core holey fibres with high air filling fractions that are ideally suited for exploring

nonlinear effects. An example of this fibre type is shown in Fig. 1.6 (c) and is discussed in

detail in the following section.

The fabrication techniques described here have great flexibility and allow many different

types of holey fibre to be created by varying the type of elements used to construct the

preform and by varying the structure scale of the final fibre. A selection of holey fibres
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made at the ORC are shown in Fig. 1.6, which serves to illustrate the many different

holey fibre types that can be fabricated using the techniques described above. These fibres

are described briefly in the figure caption and are also used to illustrate the numerous

optical properties exhibited by the wide range of holey fibres in the following sections. This

description is divided into three categories: (1) Large-core holey fibres, (2) Small-core holey

fibres and (3) Non-silica holey fibres.

1.2.5 (1) Large core holey fibres

Large-mode-area single-mode holey fibres

The flexibility of holey fibre fabrication techniques can be used to create extremely large-

mode-areas, simply by creating fibres with large values of Λ. Such holey fibres can also be

fabricated with very small and very large values of NA, depending on the relative hole size.

Large-mode-area holey fibres with relatively small air holes can be endlessly single-mode,

which has obvious advantages for broadband applications, but also offers a unique way of

creating large-mode-area, single-mode fibres [30]. Large-mode-area fibres are required in

high power applications, for both passive and active devices, where the large mode size

is used to minimise nonlinear effects and increase the maximum power level that can be

tolerated without incurring damage. For many of these applications, good beam quality and

hence single-mode operation is also an essential requirement. In large-mode-area step-index

fibres, the single-mode condition (V<2.405) is met by lowering the dopant concentration

in the core or cladding glass as the core size is increased (recall that V=f2πaNA/λ). The

largest mode area reported in a single-mode conventional fibre to date is ≈ 400 µm2 at

1550 nm [31]. In a holey fibre, the condition for endlessly single-mode guidance is defined

by d/Λ<∼ 0.40, and is independent of the absolute value of Λ or λ. Since Λ defines the core

size, and hence the mode area, these novel fibres seemingly offer a simple route towards

unlimited mode-areas in the single-mode regime.

However, light guided in any waveguide is subject to bending losses, which, in general,

increase with mode size and decreasing NA and thus represent the fundamental limiting

factor on practical mode areas. In both conventional and holey fibres, the bending losses

increase towards long wavelengths as the modal field extends further into the cladding,

resulting in a larger and more weakly guided mode that is more susceptible to bend induced

loss. However, in holey fibres, bending losses also increase towards short wavelengths as a

direct consequence of their novel cladding structure [4]. The additional short wavelength
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Figure 1.6: A selection of holey fibres made at the ORC: (a) a pure silica, small-core holey fibre with a

core diameter of ≈ 1.2 µm and d/Λ ≈ 0.95; (b) a pure silica, highly multi-mode, large-core holey fibre with

a core diameter of ≈ 200 µm; (c) a small-core, non-silica holey fibre from Refs [23, 24], in which the core

(diameter ≈ 2 µm) is suspended by three 2 µm-long supports that are less than 400 nm thick; (d) a pure

silica, large-mode-area, endlessly single-mode holey fibre with Λ ≈ 11 µm, d/Λ ≈ 0.24. Note that the core

is formed by one solid rod in the preform; (e) a pure silica holey fibre with three similarly sized small cores

(diameter ≈ 1 µm), that are suspended by 2 µm long supports that are ≈ 200 nm thick; (f) a double-clad

Ytterbium doped holey fibre from Ref. [27]. The inner cladding is defined by the small, periodically arranged

air holes (Λ ≈ 10 µm, d/Λ = 0.3) and the outer cladding is defined by the double layer of large air holes; (g)

a pure silica, large-mode-area holey fibre with a triangular core that is formed by using three adjacent rods

in the preform. Fibre parameters: Λ ≈ 11 µm, d/Λ ≈ 0.2; (h) a hybrid holey fibre from Ref. [28], which is a

Ytterbium doped, cladding-pumped fibre laser with a conventional step-index central region (inner cladding

diameter is 28 µm) and a holey outer cladding; (i) a small-core, highly birefringent silica holey fibre laser

with an elliptically shaped, Ytterbium doped core that is 2.6×1.5 µm in size [29].

14



Section 1.2. Chapter 1. Introduction to microstructured fibres

bend loss edge exhibited by holey fibres results directly from the fact that the NA falls as

the wavelength decreases. As such, the bending losses of holey fibres not only define the

bandwidth of useful operation for a given fibre, but also define the upper limit on practical

mode size for a given wavelength. It has been shown empirically that the mid-point in

wavelength between the long and short bend loss edges in holey fibres is approximately given

by Λ/2 [32]. For large-mode-area holey fibres, in which 5µm < Λ < 25µm, all wavelengths

of light that are transparent in silica (≈ 0.3− 2 µm, see Section C.2 for more details) lie on

the short-wavelength side of this mid-point. As such, the bending losses of large-mode-area

silica holey fibres are expected to decrease with wavelength, for all wavelengths of interest,

and the maximum permissible mode area for single-mode operation will thus increase with

wavelength. Note that the maximum permissible mode size for this fibre type is explored

in Chapter 5 and 7 of this thesis, and that more details on bend loss in holey fibres can be

found in Section 2.3.

An example of a large-mode-area single-mode holey fibre is shown in Fig. 1.6 (d). Such

fibres are typically fabricated using a one-step stack-and-draw capillary approach as de-

scribed in Section 1.2.4, in which one solid rod is used in the preform to form the core

and typical fibre parameters are 5µm < Λ < 25 µm and 0.2 < d/Λ < 0.5. The largest

mode area in a single-mode holey fibre with practical bending losses reported to date is

A
FM

eff = 600µm2 at 1550 nm [10]. As mentioned above, large mode areas are required to

minimise nonlinear effects for transmission and high power applications. The effective fibre

nonlinearity is defined as γ = 2πn2/λA
FM

eff , where n2 is the nonlinear index coefficient. The

typical value of n2 for silica is 2.6×10−20m2W−1. In conventional single-mode step-index

fibre (Corning SMF-28), this equates to γ ≈ 1 W−1km−1. In contrast, the holey fibre with

A
FM

eff = 600 µm2 at 1550 nm has an effective nonlinearity of ≈ 0.16 W−1km−1 [10], which is

almost an order of magnitude less than that of a conventional step-index fibre.

Note that although the condition for endlessly single-mode guidance is defined for

d/Λ<∼ 0.4, in practice, broadband single-mode guidance can be observed in large-mode-

area fibres with values of d/Λ up to ≈ 0.5 (see Sections 5.3 and 5.4 and 7.3). This arises

from the fact that all modes of a holey fibre are leaky. In practice, the extent of the cladding

region in any holey fibre is finite and results in an intrinsically leaky structure due to the

fact that the core index is the same as that of the surrounding glass. In such a fibre no

true bound modes exist and only leaky modes are guided, each of which has an associated

confinement loss. The confinement losses are related to the size, spacing and number of
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rings of holes in a fibre. For large-mode-area, single-mode fibres, the confinement losses of

the fundamental mode can be reduced to negligible values by using at least 5-7 rings of

holes in the fibre1. However, the confinement losses of the higher-order modes are greater

than those of the fundamental. If a fibre is close to cut-off, the confinement losses of the

higher-order modes can be great enough to ensure that these modes are only observed in a

few cm of fibre. In this way, only the fundamental mode is observed for significant lengths

of fibre, and the fibre is defined as effectively single-mode. This is explored in detail in

Sections 5.3 and 5.4 and 7.3.

Large-mode-area multi-mode holey fibres

In addition to offering an attractive route towards single-mode fibres, holey fibre technology

also offers a simple way of creating fibres with large numerical apertures by taking advantage

of the large index contrast between air and glass. For example, by using large values of Λ

and values of d/Λ À 0.5, multi-mode fibres with large-mode-areas can be created. This

route has advantages over conventional techniques, in which large dopant concentrations

are required in order to create large values of NA (since large dopant concentrations may

reduce the power handling capabilities of the fibre). This type of fibre has applications in

high power delivery where beam quality is not a critical issue. However, note that even for

large values of d/Λ, a holey fibre will support only a finite number of modes towards short

wavelengths due to the fact that the effective V-parameter remains constant over a large

wavelength range, as shown in Figure 1.4. In addition, highly multi-mode large-core fibres

can also be fabricated by creating a preform from one large solid rod that is surrounded by

many thin-walled capillaries. When pulled to fibre, this type of preform creates an all silica,

high NA fibre like the one shown in Fig. 1.6 (b), which has a core diameter of ≈ 200 µm.

Such fibres have applications in extremely high power transmission where beam quality is

not an issue, and in ‘light pipes’ for endoscopy applications.

Multiple-rod holey fibres

The fabrication techniques described in Section 1.2.4 can be easily extended to produce

multiple core structures by replacing cladding capillaries in the preform with solid rods [33].

This has advantages over the conventional techniques used to produce multiple core fibres,
1For example, in a typical large-mode-area holey fibre with Λ = 12.0 µm and d/Λ = 0.4, the confinement

losses of the fundamental mode fall from ≈ 0.7 dB/m to ≈ 5×10−8 dB/m as the number of rings is increased

from 2 to 5 at 1064 nm.
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which involve drilling or fusing standard single core preforms together. In contrast to

these conventional methods, a multiple core holey fibre can be made in a simple one-step

process to a standard outer diameter, with each core accurately identifiable along the entire

length of fibre. This multiple-rod approach can also be used to create large-mode-area

holey fibres by using three, as shown in Fig. 1.6 (g), or even seven adjacent rods in the

preform [34, 35, 36, 37]. Using seven adjacent rods in the preform to create the fibre core,

an effective area of ≈ 1000 µm2 has been fabricated [37], which represents the largest mode

area reported in a single-mode fibre to date. However, the bending losses of this fibre, which

would determine its practicality, have not been reported. This multiple-rod approach to

large core fibres is explored in Chapter 6.

Active holey fibres

Although holey fibres are typically made from a single material and do not rely on dopants

for guidance, doped regions can be incorporated simply by using stacking elements made

from doped glass to create active fibre devices [38]. For example in Fig. 1.6 (i), an Ytter-

bium doped rod extracted from a conventional doped fibre preform was used to create an

active, small-core holey fibre, in which mode-locked lasing was demonstrated [29]. Another

advantage of the holey fibre fabrication technique is that it is simple to create different hole

sizes within the cladding by using different sized capillaries in the preform. This method

can be used to create double-clad holey fibre lasers, in which a secondary, high air-filling

fraction cladding is created using large, thin walled capillaries in the preform [27, 39, 35, 36].

An example of this fibre type is shown in Fig. 1.6 (f) [27], in which the inner cladding is

defined by the small, periodically arranged air holes (Λ ≈ 10 µm, d/Λ = 0.3) and the outer

cladding is defined by the double layer of large air holes. Due to the high refractive index

contrast between air and silica, this technique can be used to create high NAs in the inner

cladding region, allowing a greater acceptance angle for the typically highly multi-mode

pump light. Indeed, using this approach, NAs as high as 0.8 have been reported [39].

The main drawback to this double-clad approach in a holey fibre is that the secondary

cladding with a high air-fill fraction can act as a thermal insulation layer, interrupting heat

dissipation from the inner cladding to the outside of the fibre. Numerical work using a

finite-element technique to model heat flow in a double-clad holey fibre has shown that this

problem can be minimised by increasing the number and the width of the silica bridges that

connect the inner cladding to the outer portion of the fibre and have shown that by careful
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design, the temperature profile can be comparable to that of a conventional double-clad

fibre. [36]. Indeed, a cladding-pumped holey fibre laser in which three adjacent (doped)

rods form the core has been used to demonstrate a single-mode power output of 260 W

with 73% efficiency without any thermo-optical problems, reduction in beam quality or

degradation of the fibre coating [36]. This power level corresponds to a power per fibre

length of 65 W/m, which is in the same order of magnitude as some of the highest values

reported for conventional double-clad fibre lasers [40, 41, 42].

These techniques can also be extended to create hybrid fibre devices in which guidance

is achieved by means of a conventional fibre core and a microstructured region is included

to enhance the optical properties. For example, double-clad fibre lasers with conventional

fibre cores and inner cladding regions with high NAs have been created in this way [43, 28].

An example of this hybrid fibre laser type is shown in Fig . 1.6 (h) which is a Ytterbium

doped, cladding-pumped fibre laser with a conventional step-index central region (inner

cladding diameter is 28 µm) and a holey outer cladding [28]. In addition, ‘hole assisted’

designs have been used to tailor the dispersion properties in a fibre with a conventional

step-index core [44].

1.2.6 (2) Small core holey fibres

Highly nonlinear holey fibres

While the large-mode-area holey fibres discussed above are typically pulled from preform to

fibre in one step, smaller scale structures are generally achieved via a two-step process. In

the two step-process, a cm-sized preform is first pulled into a cane a few mm thick, which is

inserted inside a thick walled capillary. This second stage preform can then be drawn into

fibre with micron scale cladding features. Note that for small scale structures (Λ/λ ≈ 1),

holey fibres can be single-mode for quite high values of d/Λ (see Fig. 1.4). For example, for

Λ = 1.0 µm, a holey fibre is single-mode for d/Λ<∼ 0.9 at 1550 nm [19]. When the air-filling

fraction in these small scale structures is high, as shown in Fig. 1.6 (a), (c) and (i), these

fibres can exhibit highly nonlinear effects. Even though silica glass does not possess an

intrinsically high nonlinearity, the combination of small core sizes and high NA in these

fibres leads to tight mode confinement and high optical sensitivities even for modest powers.

As mentioned above, the effective fibre nonlinearity is defined as γ = 2πn2/λA
FM

eff , and in

conventional single-mode step-index fibres γ ≈ 1 W−1km−1. In conventional step-index

fibres this value has been increased to ≈ 20 W−1km−1 [45] by decreasing the core size and
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increasing the germanium concentration in the core (which acts to increase n2). In a holey

fibre, however, the effective fibre nonlinearity can be greatly increased simply by decreasing

the core size. To date, silica holey fibres with A
FM

eff as small as 1.5 µm2 at 1550 nm [46] have

been created. This equates to an effective fibre nonlinearity ≈ 70 W−1km−1, which is 3.5

times greater than the highest reported nonlinearity in conventional fibres.

In addition, holey fibres can also be made from non-silica glasses, such as tellurite and

chalcogenide glasses, which can offer intrinsically high values of nonlinearity [22, 23, 24, 25,

26]. These so called soft-glasses possess lower melting points than silica glass and can, as

a result, be extruded to form a preform in one step. This simplifies fabrication, especially

in the small core, high NA regime. An example of this fibre type is shown in Fig. 1.6 (c),

which is fabricated via an extrusion process from SF57; a commercially available highly

nonlinear silicate glass with a high lead oxide content (available from Schott glass) [24, 23].

The effective nonlinearity for this fibre is measured at ≈ 640 W−1km−1, which is more than

an order of magnitude greater than the highest nonlinearity ever reported in a silica fibre.

Furthermore, recent results from a similar fibre have exceeded 1000 W−1km−1 [47]. Such

fibres offer access to nonlinear effects at remarkably low powers and short device lengths.

As mentioned in Section 1.2.2, the wavelength dependent cladding index can be tailored

via the cladding parameters d and Λ to create a range of unique dispersive properties, such

as extremely high values of anomalous and normal dispersion at 1550 nm [5], anomalous

dispersion at short wavelengths [6, 7], broadband dispersion-flattening [8] and multiple

zero-dispersion wavelengths [48]. These unusual properties can be utilised in a variety of

ways. For example, anomalous dispersion at short wavelengths has made solitons at visible

and near IR wavelengths possible [49]. In addition, many nonlinear effects are highly

sensitive to the dispersive properties of the fibre, and so the ability to tailor dispersion,

combined with the extremely small mode areas that can be created in holey fibres, leads

to the possibility of realising highly efficient nonlinear processes such as supercontinuum

generation. Supercontinuum generation is the conversion of a single wavelength into a broad

spectrum as a result of complex interplay between a whole host of nonlinear effects [50, 51].

By tailoring the dispersion to optimise nonlinear effects for a given pump wavelength, this

cascade process can be used to generate a broad flat continuum spanning from the UV to

IR wavelengths [52].

However, it should be noted that there is a minimum possible effective area that is

possible to achieve in a holey fibre. If Λ is smaller than the wavelength of light, the
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fibre core becomes too small to confine light and the mode area broadens. In the most

extreme case, a holey fibre with a high air-filling fraction can be approximated by a solid

rod suspended in air. Using this analogy, the minimum possible mode area in a silica holey

fibre can be approximated as 1.5 µm2 at 1550 nm, which occurs for a rod of radius 1.2 µm

(calculated using the exact solutions for a step-index fibre, assuming an air cladding [53]).

Note also that in these small core designs, the confinement losses can be high due to the

fact that the extent of the cladding, even with many rings of air holes, is not large. For 6

rings of holes with Λ = 1.0 µm and d/Λ = 0.9, typical confinement losses at 1550 nm are

0.2 dB/km. However, for nonlinear applications, only short lengths of fibre are required

and loss values up to ≈ 1 dB/km can be tolerated. (The confinement losses quoted in this

section are calculated by Vittoria Finazzi using the multipole method [54], as outlined in

Section 1.4.)

Birefringence in holey fibres

For certain applications, such as device and sensor applications, highly birefringent struc-

tures are required as a way of discriminating or isolating particular fibre modes. Small core

holey fibres offer a way of creating highly birefringent fibres via asymmetric core/cladding

structures. This type of birefringence is known as form birefringence and can be large if the

index contrast between core and cladding regions is high and if the core and cladding fea-

tures are similar in scale to the wavelength of light. Various asymmetric cladding geometries

have been successfully used to create highly birefringent small core holey fibres [55, 56, 57].

For example, a fibre of this type is shown in Fig. 1.6 (i), which has a small elliptically

shaped core (2.6×1.5 µm) and a cladding region with a high air-filling fraction. A figure

of merit often used to quantify birefringence is the beat length, which is simply 2π/∆β,

where ∆β is the intrinsic birefringence. The beat length in the fibre shown in Fig. 1.6 (i)

has been measured to be 0.3 mm at 1550 nm, which represents the most highly birefringent

single-mode fibre reported to date [29]. However, due to the fact that even quite minor

imperfections in the fibre structure can lead to high values of form birefringence in holey

fibres of this type, it can be difficult to avoid such effects in these small scale structures.

Conversely, due to the fact that this effect decreases as the fibre core increases and as the

hole size decreases, form birefringence is typically low in large-mode-area, single-mode fi-

bres with minor imperfections, with beat lengths of order 3-5 m at 1064 nm [58]. Indeed,

this means that asymmetry cannot be used effectively to create birefringence in larger core
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holey fibres. However, for large-mode-area fibres, conventional approaches can be used to

create highly birefringent structures [59]. This has been demonstrated by the addition of

stress-applying rods into single-mode holey fibres with Λ = 3.2 − 6.0 and d/Λ = 0.48 to

create a relatively wavelength independent birefringence of the order of 1.5×10−4. However,

note that in applications such as data transmission, it is necessary to minimise the effects of

mode splitting that arise from birefringence. In conventional fibres this can be achieved by

spinning the fibre to average out any imperfections in the structure that would otherwise

lead to form birefringence. This has recently been demonstrated in holey fibres, where

significant reduction in the polarisation mode dispersion is reported in large-mode-area

structures [58].

Sensing

Another interesting property of holey fibres arises directly from the presence of air holes

close to the core. Although the modal field decays exponentially within the air holes, for

fibres with a small hole-to-hole spacing and a large air fill fraction, like the fibre shown in

Fig. 1.6 (a), up to 50% of the modal field can be located within the air holes [60]. This

overlap can be exploited for efficient evanescent sensing applications. For example, the

holes can be filled with gases or liquids, enabling the light to interact with the fluid over a

long path length, which can be coiled compactly. A short length of holey fibre similar to

the one shown in Fig. 1.6 (a), with a core diameter of 1.7 µm and d/Λ ≈ 0.9 (modal overlap

is ≈ 17%) has been filled with acetylene gas in a demonstration of this principle [61], and

has enabled the gas diffusion constant to be evaluated by monitoring the fibre attenuation

as a function of time. [62].

Another type of small core holey fibre is shown in Fig. 1.6 (e), which possesses three

small, near air-suspended cores of similar size. This type of fibre is fabricated by using

large, thin-walled capillaries within the preform. In this case, small cores can form at the

points where adjacent cladding capillaries meet due to surface tension effects that arise as

the preform is heated and drawn into fibre. In this type of fibre core, ≈ 20% of the guided

mode can be located in the air [63]. While this overlap is less than can be achieved in

small-core fibres of the type shown in Fig. 1.6 (a), it would be far easier to fill the large

air holes in the type of fibre shown in Fig. 1.6 (e) with gases or liquids to create a sensing

device.
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1.2.7 (3) Non-silica holey fibres

Non-silica glass holey fibres

Nearly all non-silica fibres fabricated to date have small cores of a few µm in diameter

designed to exploit the large non-linearities of these novel glasses [23, 24, 25, 26]. However,

non-silica glasses also offer advantages in terms of transmission wavelengths, enabling access

to the mid-IR. For transmission applications, the ideal fibre is single-mode and possesses

low nonlinear effects. The nonlinearities of non-silica glasses are typically high, but can be

reduced by increasing the mode area. However, the fabrication of large-mode-area, single-

mode non-silica fibres has, until recently, proven problematic. Extrusion techniques are not

suited to fabricating this type of structure in a single step, due to the many small holes

that are required in such a structure. In addition, previous attempts at stacking non-silica

glass capillaries have met with poor results due to glass fragility. However, recent results

suggest that by using only rods, the stack-and-pull approach may offer a practical route

towards large mode areas [64]. Furthermore, although extrusion techniques are not suited

to fabricating many-hole fibre structures in one step, this technique could still be used to

fabricate more complex stacking elements, which would minimise the number of elements

required in the preform.

Polymer holey fibres

Holey fibres have also been made from polymers [65, 66], which offer even greater flexibility

in design: in addition to capillary stacking, polymer holey fibres can also be fabricated

using techniques such as extrusion, drilling or injection moulding. This flexibility means

that it becomes straightforward to obtain arbitrary hole sizes, shapes and arrangements

within the preform. In this way, single-mode, highly birefringent, twin-core, graded-index

and hollow core band-gap structures have been demonstrated [66]. Due to the ease of

fabrication and the wide variety of fibre structures that can be created, polymer holey

fibres offer significant advantages over conventional plastic fibres. However, as a result of

the fact that the intrinsic attenuation losses of polymers is much higher than that of silica

glass, (typical polymer optical fibres have losses of a few 100 dB/km [67]), these fibres are

unlikely to rival holey fibres for applications that require more than a few metres of fibre.

However, in hollow core band-gap fibres, the light can be guided in the air, and the fibre

losses need not reflect the intrinsic material losses of the fibre [12, 68]. In this regime,

microstructured polymer fibres may offer significant advantages due to ease of fabrication.
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Band-gap fibres are discussed in more detail in Section 1.3.

Solid holey fibres

As mentioned in Section 1.2.4, fabricating long lengths of uniform holey fibre can be chal-

lenging due to the interaction between air pressure and surface tension within the fibre.

Indeed, in air/glass holey fibres drawn down to small dimensions, the cladding air holes

can be significantly distorted from their original circular geometry, as shown in Fig. 1.6

(a). This is not a problem in conventional solid optical fibres, and km-long lengths of fibre

with the parameters of the preform can be simply fabricated. However, the novel optical

properties of a holey fibre, which arise from the wavelength scale air holes in the cladding,

are not restricted to air/glass structures. In theory, two uniform solid materials could be

used to create a solid microstructured fibre with similarly unusual optical properties if the

refractive index contrast between the two materials is sufficiently high. The most chal-

lenging aspect of realising this type of microstructured fibre is finding two solid materials

that are both thermally and chemically compatible, and that also possess a sufficiently

large refractive index difference. A solid microstructured fibre made from two lead-silicate

glasses with refractive indices of 1.53 and 1.76 has recently been fabricated [69]. In this

solid holey (SOHO) fibre, the cladding is defined by a hexagonal arrangement of circular

low-index glass regions and the fibre geometry is shown to be essentially unchanged during

fibre drawing. Indeed, the relative size, shape and position of the low index regions are

shown to remain virtually identical even when the fibre dimensions are reduced such that

micron scale features are achieved in the cladding. In addition, solid microstructured fibres

possess several practical advantages in terms of polishing, angle cleaving and splicing.

Another type of solid microstructured fibre has been proposed in which angularly alter-

nating segments of high and low refractive index glass define the cladding region [70, 71].

Using an approximate effective index approach the authors show that this fibre type has

the potential to create large-mode-area fibres that are single-mode over broad wavelength

regions. However, the authors do not discuss what benefits this fibre type would offer over

more traditional air/glass designs (other than fabrication uniformity as discussed above).

Increased functionality

Previously in this section, the subject of filling the air holes inside traditional holey fibres

with gases or liquids was discussed. In this context, the emphasis was on exploiting the
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evanescent fields present in the holes to create efficient and compact sensing devices [60,

61, 62]. However, the air holes in holey fibres can also be filled with other materials to

increase fibre functionality in other applications. For example, a holey fibre in which a long

period fibre grating has been written is shown to exhibit temperature sensitive wavelength

shifts in the core/cladding resonances when the air holes in the fibre are filled with a

temperature sensitive polymer [72]. In addition, liquid crystals have been infused into

short lengths of holey fibre, in which thermally controlled optical switching behaviour is

demonstrated [73, 74, 75]. Note that liquid crystal infused holey fibres have also been shown

to demonstrate photonic band-gap effects that are highly temperature dependent.

1.3 Band-gap fibres

1.3.1 Introduction

In the sections below, recent progress in the field of photonic band-gap fibres is reviewed.

However, note that this is a brief summary intended only to give context to the holey fibre

work presented here.

1.3.2 Recent progress

Progress in the field of band-gap fibres, while rapid, has not matched the explosive activity of

holey fibre research. This is due in part to the necessarily high tolerances on fabrication for

these fibres, but also results from the challenges of accurately modelling modal properties,

which is an essential requirement in fibre design. Unlike holey fibres, in which relatively

simple scalar models can be used to evaluate modal properties (see Section 1.4), a full

vectorial representation of the electromagnetic fields is essential for band-gap fibres. The

techniques used to model the modal properties of band-gap fibres are not discussed in

any detail within this thesis. However, techniques based on a fully vectorial version of the

plane-wave technique outlined in Section 1.4.3 are capable of accurately modelling photonic

band-gap fibres and have been used to explore guidance within these structures [76]. These

techniques show that for a triangular hole arrangement, the mid-point of the band-gap is

defined by Λ and the spectral width of the band-gap is defined by the air-filling fraction

(the higher the air-fill, the wider the band-gap [77]). As a result, the majority of band-gap

fibres fabricated to date, which are designed for IR wavelengths, have Λ in the range of

≈ 2 − 5 µm, with a high air-filling fraction of ≈ 85 − 95% [78, 79, 80]. An example of
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this fibre type is shown in Fig. 1.1 (b), which has Λ ≈ 5 µm, with an air-filling fraction of

≈ 90%. This type of fibre is generally fabricated in a two-step process; the fibre preform

is typically formed by hexagonally-packed, thin-walled capillaries and a large air core is

formed by removing 7 or 19 central capillaries [78, 80]. (Supporting rods at either end of

the preform maintain this otherwise unstable structure). The preform is pulled into cane,

which is then jacketed inside a thick walled capillary, and re-drawn to fibre dimensions.

Note that the fabrication of perfectly periodic high air-fill structures is challenging, and

the first band-gap fibres were instead based on a ‘honeycomb’ arrangement of holes formed

by the gaps between hexagonally packed rods, [81], in which full two-dimensional band-

gaps can arise for air-filling fractions of only a few percent [82]. In this fibre type, the

core is created by substituting a capillary for a central rod in the preform, which forms a

low-index defect in the two-dimensional photonic crystal. However, both characterisation

and modelling has shown that the modes of these fibres are localised in the solid regions

of the fibre core and are typically non-Gaussian in shape [81, 82]. In contrast, band-gap

fibres with a triangular arrangement of large, closely spaced air holes in the cladding can

support Gaussian-like modes in a large hollow core. As a result, this type of band-gap fibre

is favoured despite the additional fabrication challenges.

Whilst losses in air-guided photonic band-gap fibres have the potential to be very low,

until recently reported losses were typically of the order of 100-200 dB/km, with fibres

manufactured in lengths typically no longer than ≈ 100 m. Attenuation losses in photonic

band-gap fibres can arise from the finite extent of the cladding and from imperfections

within the cladding structure. However, coupling between surface and core modes of the

structure has been identified as the most significant contributor to transmission loss in

hollow-core photonic band-gap fibres [79, 83, 84]. In recent months the transmission losses

of hollow-core band-gap fibres have been drastically reduced to a record low of 1.7 dB/km

at 1550 nm, measured over 800 m of fibre [85]. However, while this value represents great

improvements on the losses of the early fibres, it is still an order of magnitude greater

than the losses of conventional fibres, and much work is required before photonic band-gap

fibres can be considered to be truly low-loss waveguides suitable for long-haul transmission

and high power applications. In addition, while preliminary results suggest that photonic

band-gap fibres are far less sensitive to bend induced loss than either holey or conventional

fibres [80], which is an obvious advantage in large-mode-area high-power applications, no

comparative work has been presented in which the modal area of the fibre is considered.

25



Section 1.3. Chapter 1. Introduction to microstructured fibres

Whilst the damage threshold of an air-core fibre can potentially be high, large-mode-areas

would still be required in order to optimise coupling to large-mode-area sources and also to

minimise air-breakdown and nonlinear effects for pulsed sources.

1.3.3 Non-silica band-gap fibres

Another way of creating photonic band-gap air-core fibres has been recently demonstrated.

These so called ‘Omniguide’ or hollow multilayer photonic band-gap fibres guide light in

a large hollow core that is surrounded by concentric circles of alternating media [68]. An

example of this fibre type is shown in Fig. 1.7. The concentric circles are made of alternating

layers of high refractive index glass (n ≈ 2.8) and low refractive index polymer (n ≈ 1.55)

that are 5-10 µm thick. These layers are deposited onto a flat substrate, which is rolled

up into a hollow pipe and then drawn into fibre. The transmission windows of these fibres

can be scaled from 0.75 to 10.6 µm via the cladding layer dimensions. At 10.6 µm (CO2

laser light) losses are determined to be < 0.1 dB/m, which is many orders of magnitude

below that of the intrinsic fibre material, demonstrating that photonic band-gap materials

need not be selected for transparency at the guide wavelengths. However, the large core

dimensions (diameter> 300 µm) mean that these fibres are highly multi-mode and although

the observed fibre output is indicative of less than 10 excited modes, the fibre output is

consequently a sensitive function of the bend radius.

(a) (b)

Figure 1.7: (a) and (b) show SEM images of a hollow-core photonic band-gap fibre with a multilayer

cladding consisting of alternating layers of high index polymer and low index glass. The hollow core appears

black, the polymer (PES) regions, grey, and the glass layers (As2Se3) white. Figures taken from Ref. [68]

The fact that transmission losses in a band-gap fibre need not reflect the intrinsic
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material losses of the fibre material offers potential for low loss transmission in band-gap

fibres made from other materials, such as non-silica glasses and polymers. Microstructured

fibres with band-gap structures have been recently demonstrated in polymer, which offers

significant advantages in terms of ease of fabrication, as discussed in Section 1.2.7. In

addition, non-silica glasses, which have been proposed for low-loss band-gap fibres at mid-IR

wavelengths [77], may offer potential for larger band-gaps at a variety of other wavelengths

due to the typically high refractive indices of these glasses. Initial studies have shown that

increasing the refractive index can increase the width of the band-gap for low air-filling

fractions, but that it does not necessarily result in wider band-gaps for higher air-filling

fractions [77].

1.4 Modelling holey fibres

1.4.1 Introduction

The transverse refractive index profile of a typical holey fibre is complex. As a result,

the many tools that have been developed to aid understanding of conventional fibres are

not directly transferrable. However, in recent years, several techniques have emerged that

are capable of evaluating the modal properties of holey fibres. In this section, a selection

of these techniques are summarised. The techniques in this selection include those that

are most widely used and those that are most applicable to the large-mode-area holey

fibres considered within the study presented in the main body of this thesis. In general,

a combination of the techniques presented here is usually necessary to form a complete

picture of the modal properties of any given holey fibre. Note that modelling bend loss is

discussed separately in Chapter 2.

For holey fibres with small values of d/Λ, the weakly-guiding approximation is found to

produce accurate results despite the high index contrast between the air/glass regions in

the cladding [86]. (See Section 3.2.6 for more details). However, when the air-filling fraction

of a holey fibre becomes large (d/Λ>∼ 0.5), the effective index contrast between core and

cladding regions becomes sufficiently large to require the use of fully vectorial methods.

1.4.2 The effective index approach

In the effective index approach, developed by Birks et al. in 1997 [4], the complex refractive

index profile of a holey fibre is replaced by an equivalent step-index (ESI) fibre, whose modal
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properties can then be evaluated using well established techniques. The ESI profile is de-

termined by replacing the microstructured cladding with a uniform material that possesses

the same effective refractive index and approximating the holey fibre core by a circular

region of pure silica. The effective cladding index of a holey fibre, nFSM, is evaluated by

calculating the propagation constant, βFSM = nFSMk, of the lowest-order cladding mode,

often referred to as the fundamental space filling mode (FSM). Note that this quantity is

strongly wavelength dependent and must be reassessed for each wavelength at which the

holey fibre is to be modelled. A simple analytical method of evaluating nFSM was discussed

in Section 1.2.2. In this approach, nFSM is calculated by solving the wave equation for a sin-

gle hexagonal unit cell centred on an air hole, by approximating the hexagonal boundary by

a circular one of radius Λ/2 [16, 15]. Although more accurate methods of evaluating nFSM

exist (as described in the rest of this section), this simple analytical approach is typically

used in an ESI approximation due to the fact that the definition of core radius generally

represents a far larger source of error, as discussed in the following.

Due to the fact that no clearly defined boundary between the core and cladding region

exists in a holey fibre, the core diameter of an ESI fibre must be chosen arbitrarily. In

most cases, the core radius is defined to be 0.625Λ [18]. This value was determined as the

best choice for a holey fibre via comparison of results with those obtained using a more

rigourous plane-wave technique. However, this choice is valid for a fairly limited range

of fibre parameters and wavelengths. Indeed, it has been shown that both the core and

cladding regions of a holey fibre have effective indices that vary with wavelength and that

the effective index approach cannot be used to accurately model the modal properties of

holey fibres, especially properties such as dispersion or birefringence, which are sensitive

functions of the cladding geometry [87, 88, 89]. To accurately model the optical properties

of holey fibres it is important to consider the full complex refractive index profile, and

some of the techniques that have been developed to do this are discussed in the rest of this

section.

Despite these inaccuracies, this technique can offer many useful insights into the modal

properties of holey fibres. For example, properties such as the effective mode area can

be approximately evaluated, due to the fact that the modal field can be reasonably well

approximated by a Gaussian field [17]. In addition, as shown in Section 1.2.3, the effective

index approach correctly predicts the phenomenon of endlessly single-mode guidance for

fibres with relatively small holes. Furthermore, this approach can be used to demonstrate
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that bending losses increase towards both short and long wavelengths in a holey fibre, as

discussed in Section 2.3 [4, 16], although it cannot be used to examine the magnitude of

loss with any accuracy.

1.4.3 Expansion methods

Plane wave expansion

The modal properties of a holey fibre can also be modelled using an adaptation of the

full-vector technique developed by Silvestre et al. [90]. In this technique, the modal fields

and the refractive index profile are represented by a Fourier decomposition (i.e. plane

waves). The refractive index profile is defined over a restricted region and periodic boundary

conditions are used to extend the structure over all space. The wave equation can then be

solved to find the modes of the fibre and their associated propagation constants. Since this

technique accounts for the full complex refractive index profile of a holey fibre, it is capable

of accurately modelling the modal properties of holey fibres [91, 92, 14]. However, in order

to incorporate the fibre core adequately, the repeated region, called a supercell, must be

much larger than the guided mode such that each core within the repeated structure is

independent of one another. The larger the supercell required, the more inefficient this

approach becomes. In addition, an accurate description of the modal properties is only

possible when a sufficient number of terms are used in the expansions of the refractive

index and the modal fields. A plane wave expansion is an efficient way of representing the

typically periodic index profile of a holey fibre, but is not an efficient way of representing

the fibre modes of interest, i.e. those that are localised in the fibre core. Consequently,

many terms are required to form an accurate representation of the core modes and, as a

result, this method can be computationally intensive.

However, this method is an accurate and efficient way of calculating the modal fields

of an infinite, periodic cladding [91, 14]. For various reasons it is often necessary to have

knowledge of the fundamental space filling mode (FSM). This quantity is required in the

effective index approximation, as described above and is also needed in the methods used

here to calculate bend loss (see Section 3.5.1). Whilst this technique can be computationally

intensive for the large supercells required to accurately model the core defect, only a single

unit cell is necessary in order to calculate the properties of an infinite cladding structure

composed of a perfectly regular lattice. In addition, since the modal fields of a holey fibre

cladding are non-localised, a plane-wave expansion represents an efficient description of
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both the refractive index and the modal fields in this case.

Note that any optical fibre in which the refractive index profile is perfectly symmetric

with higher than 2-fold symmetry does not exhibit form birefringence [93]. However, due

to the fact that in this technique the transverse refractive index profile is typically defined

on a Cartesian grid, some small degree of (artificial) birefringence is always predicted. This

can be reduced (but not eliminated) by increasing the grid resolution.

Localised function expansion

In an alternative approach developed by Mogilevtsev et al. [88, 89] the refractive index pro-

file and the modal fields of a holey fibre are decomposed into a series of localised Hermite-

Gaussian functions. By describing the modal field in terms of localised functions, this

quantity can be accurately represented without requiring the use of too many terms. How-

ever, Hermite-Gaussians provide a poor description of the non-localised transverse refractive

index profile in holey fibres. Consequently this approach cannot represent the index profile

of a holey fibre in an efficient way, which severely limits the applicability of this approach.

Orthogonal function method

A hybrid approach that incorporates the best features from the plane-wave and localised

function expansion techniques described above has been developed by Monro et al. in

Refs [13, 86, 94, 95], in which both scalar and vector forms of this model are described.

In this approach, the functions used to describe the transverse refractive index and modal

fields of a holey fibre are chosen carefully to suit. In Refs [86, 94] the air-hole lattice

is decomposed using a series of plane-waves and the fibre core and the modal fields are

described using a series of localised Hermite-Gaussian functions. In this way, both the

transverse refractive index profile and the modal fields of a holey fibre can be accurately

represented without requiring the use of too many terms in each expansion. This allows for

an efficient description of the relevant modal properties.

This hybrid approach is particularly efficient for idealised periodic fibre structures, since

only symmetric terms are required in each expansion in order to accurately model the

fundamental mode. However, by using the complete basis set in each expansion (i.e. even

and odd terms), higher-order modes and holey fibres with asymmetric index profiles can

also be efficiently modelled using this technique [13]. Note that for more complex index

structures it becomes more efficient to describe the entire refractive index profile in terms
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of a plane-wave expansion. This implementation can be used to predict the properties of

actual holey fibres by using SEM images to define the index profile [96]. Note that this

method is not suited to calculations of the cladding modes of a holey fibre, as a direct result

of the fact that localised functions are used in the modal expansion.

1.4.4 Beam propagation methods

Techniques based on beam propagation methods (BPM) are capable of accurate represen-

tations of the modal properties of arbitrary index waveguides and as such are applicable

to holey fibres [97]. In a BPM technique, the modes of a fibre are calculated indirectly

by propagating light step-by-step through a full three-dimensional refractive index profile.

Such techniques have the advantage that non-periodic boundary conditions can be used al-

lowing the full complex propagation constant to be calculated, from which properties such

as confinement and bending losses can be directly extracted. However, these techniques

are typically computationally intensive. Indeed, this is further exacerbated by the high

grid resolution that is required in order to accurately represent the relatively small scale

features present in a holey fibre. Note that this technique also predicts some small degree

of (artificial) birefringence due to the cartesian grid onto which the index profile is typically

defined, as discussed in Section 1.4.3.

1.4.5 The finite element method

The finite element method can also be used to provide an accurate vector analysis of the

modal properties of holey fibres as this is also applicable to arbitrary index profiles [98].

In the finite element method, the transverse refractive index profile is split into distinct

homogeneous subspaces. This involves dividing the index profile into a mesh of triangles

and quadrilaterals (the finite elements), which decrease in size towards the centre of the

fibre. The classical Maxwell differential equations are then solved for these elementary

subspaces, taking into account the conditions of continuity of the fields. The Maxwell

equations are discretised for each element, which leads to a set of elementary matrices.

These elemental matrices are then combined to create a global matrix system for the entire

structure. This method can be used to evaluate the full, complex propagation constants of

the modal fields (and hence the confinement losses) of a finite structure, and is capable of

producing reliable numerical solutions, but is computationally intensive [98].
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1.4.6 The multipole method

In the multipole approach [99], the transverse refractive index profile of the fibre is approx-

imated by non-overlapping circular holes of arbitrary, but uniform refractive index. For

most holey fibres, in which an array of circular air holes define the cladding region, this

represents an excellent approximation. The modal fields and their associated complex prop-

agation constants are then calculated using decompositions based on cylindrical harmonic

functions localised in each of the circular air holes. Note that this method is also capable

of calculating accurate, complex values of the effective cladding index (nFSM) of a finite

cladding, by considering a structure without a core. This technique has one key advantage

over the other methods described in the section above: since the refractive index profile is

not defined on a cartesian grid, false birefringence is avoided, allowing an accurate descrip-

tion of the modal symmetries. However, this method can be computationally intensive due

to the fact that it is necessary to consider the entire extent of the fibre in this approach.

Furthermore, it is not possible to consider an arbitrary refractive index profile.
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1.5 Motivation and outline of thesis

Large-mode-area optical fibres are required in high power applications, for both passive

and active devices, where the large mode size is used to minimise nonlinear effects and

increase the maximum power level that can be tolerated without incurring damage. For

many of these applications, good spatial beam quality is also a critical issue and single-mode

operation is, therefore, desirable.

At the start of this project (July 2000), holey fibres had recently been identified as

an alternative route towards large-mode-area fibres, with the publication of a single pa-

per detailing the fabrication and characterisation of a holey fibre with Λ ≈ 10 µm and

d/Λ ≈ 0.12 [30]. Characterisation of this fibre validated the prediction that the property of

endlessly single-mode guidance is essentially scale invariant. This demonstrated the huge

potential that holey fibres could offer in the large-mode-area single-mode regime.

However, while bending losses were understood to be the largest single limiting factor

on the maximum mode size that could be tolerated in practice, little was known about

the factors that influenced bend loss in a holey fibre. Indeed, although basic theoretical

models could be used to illustrate that the bending losses of holey fibres were radically

different from those of conventional fibres, increasing towards both long and short wave-

lengths, no theoretical model had been developed that could accurately model even the

most basic aspects of bend loss in a holey fibre. As a result, little knowledge existed about

the magnitude of bend loss that one may expect for a given mode area in a holey fibre, or

how sensitive these losses were to the structural parameters and the wavelength of opera-

tion. The ability to predict the bending losses of holey fibres is essential both for future

fibre design and for assessing what benefits holey fibres may offer over their conventional

counterparts in the large-mode-area, single-mode regime. Furthermore, in order to gain a

good understanding of the parameters that influence bend loss in holey fibres it is essential

to develop a method of accurately predicting bend loss that can take into account the full

complex refractive index profile of a holey fibre. The aims of the study presented here

are thus threefold: (1) to develop methods of accurately predicting bend loss that can be

applied to both holey and conventional fibres, (2) to use these techniques to explore the

potential offered by holey fibres in the large-mode-area, single-mode regime, and (3) to

place their performance in context against conventional step-index fibres. In order to fulfil

these aims, it is also essential to be able to accurately predict the effective mode area and

modedness (i.e. whether a given fibre is single-mode or multi-mode) of both fibre types.
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Furthermore, reliable methods of characterising the bend loss, the effective mode area and

the bending losses of holey and conventional fibres are also essential to enable comparative

studies and also to validate the theoretical techniques developed here.

In the following chapter, an introduction into bend loss is presented that details the

mechanisms responsible for loss in a curved optical waveguide and introduces the common

terminology used in conventional fibres. The ways in which the bending losses of holey

fibres differ from those of conventional fibres and the models that have been developed to

model these losses are also discussed within this chapter. Finally, the requirements of the

model developed here to study bending losses in large-mode-area holey fibres is outlined.

The numerical models and experimental techniques that have been developed as part

of this study to characterise large-mode-area holey and conventional fibres are described in

detail in Chapter 3 and Chapter 4 respectively. Validation of the numerical models used

here via comparison with experimental results is presented within Chapter 4, 5, 6 and 7.

In Chapter 5, the modal properties of holey fibres are explored at 1064 nm, which is one of

the most widely used wavelengths in laser applications. The range of structural parameters

that give rise to single-mode, large-mode-area holey fibres with practical levels of bend loss

are evaluated numerically using the techniques from Chapter 3. The maximum tolerable

effective mode area in a single-mode holey fibre at 1064 nm is also investigated in this

chapter, and a comparative study of conventional fibres that aims to explore how these

two fibre types compare at this wavelength is also presented. Throughout this chapter,

experimental results from holey fibres fabricated as part of this study are used to validate

the numerical methods. In Chapter 6, the possibility of improving bend loss in holey fibres

at 1064 nm, by using different arrangement of holes in the cladding is explored numerically.

Experimental results are also presented. In Chapter 7 the spectral dependence on mode area

and bend loss in holey fibres is considered both numerically and experimentally. Within

this chapter, the maximum tolerable mode area is investigated as a function of wavelength

and the spectral behaviour of holey fibres is compared with those of equivalent conventional

fibres. Within this chapter, non-silica holey fibres made from Gallium Lanthanum Sulphide

(GLS) glass for mid-IR transmission applications are also briefly investigated in terms of

bend loss and nonlinearity.
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Chapter 2

Introduction to bend loss

2.1 Introduction

The focus of the work presented within this thesis is large-mode-area holey fibres. The aims

of this thesis are discussed in detail in Section 1.5, but are essentially to assess the potential

benefit offered by holey fibres in the large-mode-area, single-mode regime. Since the funda-

mental limiting factor for mode size in any optical waveguide is bend loss, understanding

the mechanisms responsible for bend loss is essential to the aims of this thesis. A brief

overview of the mechanisms responsible for bend loss in conventional optical waveguides,

and the classifications typically used are presented in Section 2.2.1. The differences between

the bending losses of holey and conventional fibres are discussed in Section 2.3.

At the time of this study (July 2000 - Dec 2003), there were no reported techniques

that could accurately model even the most basic aspects of bend loss in a holey fibre. As

a result, one of the first aims was to formulate a theoretical model capable of accurately

predicting bend loss in holey fibres. In addition, it was decided that any model should

be capable of including the full complex refractive index profile of a holey fibre in order

to gain a complete understanding of the factors that influence bend loss in these novel

fibres. Although the many techniques developed for conventional fibres are not directly

transferable to holey fibres due to the complex nature of the refractive index profile, it

may be possible to combine certain elements of these conventional techniques with models

developed for modelling straight holey fibres, as summarised in Section 1.4. Consequently,

a brief summary of some of the methods used to predict bend loss in conventional fibres and

waveguides is presented in Section 2.2. This summary also serves to illustrate some of the

bend loss characteristics observed in conventional fibres. This is followed by a discussion
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of some of the ways in which these techniques have been adapted to holey fibres via an

effective index approximation in Section 2.3.2. Finally, the techniques developed here to

model the bend losses of holey fibres are outlined. Note that these techniques are explained

in detail in Sections 3.4 and 3.5.

2.2 Conventional waveguides and fibres

2.2.1 Bend loss mechanisms and classifications

As light encounters a bend in an optical waveguide, the modal field distorts outward in the

direction of curvature to a degree that is related to the severity of the bend. The distorted

modal field propagates along the length of the curved section until returning to the straight

waveguide, where the modal field reverts back into that of the straight waveguide. During

this process, power is lost from the waveguide as a result of bend induced coupling from

the core mode(s) to any or all of leaky higher-order, cladding, radiation and backward

propagating modes. The interaction between all modes within a bent waveguide is complex,

and in conventional waveguide and fibre theory the mechanisms responsible for bend loss are

typically represented by two distinct components: Transition loss and Pure bend loss, which

can be considered separately. Transition loss, which is also referred to as mode-conversion

loss, is a one-off loss that results from the modal distortion induced by the change in

curvature at the beginning and end of a bend. The magnitude of this loss component is

directly related to the rate of change of curvature; for example, if the curvature changes over

a sufficiently long length scale, the mode shape can change adiabatically and no power is

lost from the mode. However, in most situations, the curvature changes over a short length

scale and this component of bend loss is often approximated as a conversion loss between

different waveguide sections, by evaluating the overlap between the modal fields of straight

and bent waveguide sections [100, 101, 102]. Pure bend loss is defined as the continual

loss of power that occurs as the distorted mode propagates along the curved waveguide

section. This component of bend loss is often considered in terms of the radiative loss from

the tails of the mode: as the mode propagates around the curved waveguide, the tails of

the modal field on the outside of the bend must travel faster than the rest of the mode

to maintain a flat phase front [103]. At some distance from the centre of the mode, the

velocity required to maintain a flat phase front will exceed the local speed of light. The

power in the tails of the mode beyond this point is thus unable to ‘keep pace’ with the rest
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of the mode and is lost as radiation. The magnitude of loss, for both transition and pure

bend loss components, increases towards long wavelengths, for decreasing values of NA and

increasing mode size.

Although this distinction between transition and pure bend loss may seem somewhat

artificial at first sight, this approach is frequently, and successfully, employed in studies

of both slab waveguides and optical fibres [100, 104, 101, 105, 106, 107, 108, 109, 110].

Indeed, by considering different types of bend, we can see that these components represent

relevant physical quantities. For example, bend loss in long lengths of spooled fibre will be

dominated by pure bend loss, while in lengths of fibre with many separate macro-bends,

the multiple transition regions can contribute significantly to the overall bend loss.

In addition to the transition and pure bend loss components described above, bend loss

is also traditionally separated into macro-bend and micro-bend regimes depending on the

relative scale of the bend [111]. Macro-bending losses result from long length bends that are

significantly greater in scale than the waveguide core, while micro-bending losses occur for

small-scale bends, along which the mode distorts continuously. In conventional fibres and

waveguides, macro-bend losses are found to be dominated by pure bend loss and micro-bend

losses are found to be dominated by transition losses. In conventional optical fibres, micro-

bends generally result from the processes of coating, cabling, packaging and installation

and can thus be reduced by refining these procedures. In addition, the magnitude of

loss attributed to micro-bends in conventional cabled fibre such as SMF-28 is typically

negligible [112]. In contrast, the macro-bend losses of a fibre are a fundamental factor in

defining its practicality and in this study we consider macro-bend losses only.

2.2.2 Modelling bend loss in conventional waveguides and fibres

Introduction

Over the years, numerous different approaches for calculating the modal fields and the

losses associated with bent waveguides and fibres have emerged. In the following, a brief

summary of some of these techniques is presented, which also serves to illustrate some of

the bend loss characteristics of conventional fibres. Note that single-mode fibres are the

focus of this study and macro-bend loss is considered to represent the major limiting factor

for practical mode areas in this regime (see Section 2.2.1). Consequently, all the approaches

described below deal only with macro-bend losses in single-mode waveguides and, unless

otherwise indicated, rely on analytical solutions to the wave equation with a weak guidance
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approximation. Within these approaches, transition loss is most often ignored due to the

fact that pure bend loss is found to dominate in the macro-bend regime. Furthermore, the

effect of field deformation is often ignored completely in the calculation of pure bend loss

in conventional fibres and waveguides in order to simplify the descriptions of the modal

fields. This approach is approximately valid for gentle bends, in which the field of the bent

waveguide is not greatly different from that of the straight waveguide, but does, obviously,

lead to some degree of inaccuracy in the predictions of bend loss.

Summary of theoretical approaches

The separation of macro-bend loss in an optical waveguide into the two components de-

scribed above was first proposed in Ref. [113], where these components are described as: (1)

A dissipative loss along the curved waveguide section (referred to in later literature as pure

bend loss), which results from the inability of the tails of the modal field to negotiate the

bend, and (2) A mode conversion loss (also referred to as transition loss), incurred by the

modal field on entering and leaving the bend, which is related to the fact that the modal

field distorts radially outwards in a bent waveguide. Approximate formulas to predict the

contribution from both of these bend loss components are calculated using analytical so-

lutions to Maxwell’s equations for slab waveguides. The pure bend loss is calculated by

evaluating the fraction of the guided mode that cannot travel fast enough around the bend

to keep phase with the rest of the mode and the transition loss is calculated via a gener-

alised coupled wave approach. However, in this approach, the field deformation induced by

the curved waveguide is ignored in the model of pure bend loss and the modal fields are

approximated by those of the straight waveguide.

One popular method of defining the modal fields of a bent waveguide is to transform the

refractive index of the straight waveguide such that it mimics the modal properties of the

bent waveguide. This approach is called conformal transformation and was first proposed as

a solution to this problem in 1975 [100]. In this conformal transformation approach, a curved

waveguide is approximately represented by a straight waveguide with an effective refractive

index distribution by expressing the wave equation in terms of a local coordinate system

that follows the curvature of the waveguide. Once defined, the transformed index profile

can then be used to evaluate the modal fields and the attenuation of the bent structure

using a variety of techniques. This technique was first applied to slab waveguides, where

the modal fields and complex propagation constants are found by breaking the transformed

38



Section 2.2. Chapter 2. Introduction to bend loss

index profile into a series of constant index steps and applying a Wentzel-Kramer-Brillouin

(WKB) approach [100]. The pure bend loss is then obtained from the imaginary part of the

propagation constant and the transition loss via an overlap integral used to calculate the

mode mismatch between straight and bent waveguide sections. Although no comparison

was made to experimental results in this first study, results from another report in which

the same technique was used showed excellent agreement with experimental results [101],

demonstrating the validity of the conformal transformation.

This conformal transformation technique can also be applied to optical fibres for which

the weak guidance approximation is valid [114], and was first implemented to calculate

the modal fields of bent step-index fibres in 1976 [115]. The effective refractive index

distribution for a bent optical fibre is given by Eq. 3.9, and essentially acts to superimpose

a gradient on the refractive index profile of the fibre, rising in the direction of the bend. The

full derivation for the conformal transformation for an optical fibre is given in Ref. [114],

and is discussed in detail in Section 3.3.1. A conformal transformation is a popular first

step to modelling the modal properties of bent step-index fibres and some of the various

approaches that can evaluate both pure bend and transition losses in this way are explored

in the following [111, 106, 108, 109, 116, 117, 114, 102].

For example, a simple approach to model the transition losses of step-index fibre is

proposed in Ref. [102]. In this technique, a first order perturbation method is used to

find approximate analytical expressions for the modal fields of the transformed refractive

index profile. The transition loss is then calculated as a splice loss using an overlap integral

that calculates the modal overlap between the mode of the straight and bent fibre. In

another method, coupled mode theory is used to evaluate the losses incurred due to mode

coupling within the transition region of a step-index fibre via the energy in, and interaction

between, the fundamental core mode and the lowest-order radiation mode as a function of

distance along the bend [118]. Using this model, the authors show that the power lost in

the transition region of a bend in an optical fibre oscillates as a function of distance and

that radiation is emitted in discrete beams in this region. This behaviour had previously

been observed experimentally for bent fibres immersed in index-matching liquid [119]. In

a following paper [120], oscillations in bend loss as a function of bend radius are studied

with the same technique, showing reasonable agreement with experimental results in terms

of peak positions. Note that various other approaches have also been used to successfully

predict the oscillations in bend loss that occur as a function of wavelength, which have
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been shown to arise from the wavelength dependent coupling between core and cladding

modes [121, 122].

A couple-mode technique together with a conformal transformation is also employed in

Ref. [111], to demonstrate how the rate of change of curvature in the transition regions can

influence the bend loss. In this technique, the power in the radiation field is calculated from

integrating the Poynting vector over the appropriate solid angle for a step-index fibre with

an infinite cladding. The authors demonstrate that the contribution from transition losses

to the overall bend loss decreases as the change in curvature becomes less abrupt.

Other techniques apply beam propagation methods (BPM) to model the bending losses

in both step-index and parabolic-index fibres [108, 106, 123]. Using BPM techniques, the

pure bend loss is evaluated via the imaginary part of the propagation constant of the

fundamental mode and the transition losses can be calculated by considering coupling to the

radiation modes of the bent fibre and the associated attenuation coefficients. In Refs [108]

offsetting the core and/or introducing a dip in the refractive index profile along the outside

of the bend are shown to considerably improve the losses. A similar approach to improving

bending losses in step-index fibres and waveguides is also proposed in Ref. [123], where

BPM techniques are used to show that introducing both depressed and increased index

regions on the outside of the core can reduce bend losses beyond that achievable with the

presence of a depressed region alone. Note that in Ref. [106], the authors show that an

equivalent step-index (ESI) approach is not an accurate method of assessing bending losses

in a graded-index fibres due to the arbitrary nature in which certain parameters, such as

the core radius of the ESI parameter, must be defined.

Other approaches towards modelling pure bending losses involve Fourier decompositions

of the modal field. In ref. [124] the fields near and far from the core are assumed to be

unperturbed, and the modal field between these two regions are expanded into a Fourier

series containing Airy functions. The coefficients of the backward propagating field are

determined by matching boundary conditions and the attenuation coefficient for pure bend

loss is then derived from the amplitude of the backward propagating field. In Ref. [125] a

model including the finite coating and cladding of a step-index fibre is developed, which

is essentially an extension of [124] and this approach shows reasonable comparison with

experimental results. Ref. [116] extends the theory in [125] so that the expansion includes

the whole of the cladding. In Ref. [117] a more generalised theory based on the same

approach is developed, which shows excellent agreement with experimental results.
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Approaches that do not use a conformal transformation typically ignore the modal

distortion in the bent fibre altogether. As mentioned before, this approach is approximately

valid for gentle bends, in which the field of the bent waveguide is not greatly different from

that of the straight waveguide, but does, obviously, lead to some degree of inaccuracy in the

predictions of bend loss. However, this approximation enables the problem of calculating

the bend loss to be greatly simplified and permits simple analytical models of bend loss

to be derived. For example, in Ref. [126], a loss formula for the fundamental mode of

infinitely clad step-index fibres is derived for weakly-guiding fibres. In this derivation, the

loss coefficient is determined by calculating the power outflow from the field in the cladding,

which is expressed in terms of a superposition of cylindrical outgoing waves. This technique

was later adapted to include the field deformation via conformal mapping [115]. However,

a comparison of results from these two techniques show that for single-mode fibres, the

effect of the field-deformation has a minimal effect on the predicted loss. Comparison

with experimental results shows that both techniques overestimate the bend loss in optical

fibre, although they do predict the correct parametric dependencies [127]. The approach of

Ref. [126] is also used in Ref. [128] in which an analytical expression for bend loss in optical

fibres with axially symmetric refractive index profiles is evaluated by approximating the

index profile by a staircase function and expressing the fields in a matrix representation. A

simplified version of this approach is also presented in Ref. [129].

One novel method uses a surface current analogy to determine pure bend loss in a step-

index fibre by replacing the effect of the core with fictitious currents on its surface [130]. The

formula for the attenuation coefficient derived using this technique is remarkably similar to

those derived using more conventional techniques [126], although the predicted losses are

significantly overestimated.

2.3 Bending losses in holey fibres

2.3.1 Differences between bend loss in holey and conventional fibres

The bending losses of holey fibres differ qualitatively from those of conventional step-index

fibres. Like conventional fibres, holey fibres exhibit a bend loss edge at long wavelengths

due to the fact that the mode extends further into the cladding, resulting in a more weakly

guided mode that will suffer a greater perturbation in response to bending. Holey fibres

also possess an additional bend loss edge at short wavelengths as a direct consequence of
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their novel cladding structure [4]. In a holey fibre the effective cladding index is strongly

wavelength dependent and increases towards short wavelengths (see Section 1.2.2). This

acts to decrease the NA towards short wavelengths, resulting in a more weakly guided mode

that becomes more susceptible to bend induced distortion and loss. This explanation is

sufficient to explain this phenomenon, however, since bending losses in holey fibres represent

the main focus of the work presented here, these losses are explained in a little more detail

in the following.

In a bent fibre, power is lost as a result of bend induced coupling from the core mode(s)

to any or all of leaky higher-order, cladding, radiation and backward propagating modes.

The amount of power lost in a bent fibre is dependent on the severity of the bend, the fibre

structure, and the wavelength of light, each of which influence the strength of coupling

between the modes present. To first approximation, the strength of coupling between two

modes can be gauged from the effective index difference of those modes: the closer they are

in effective index the more power is coupled from one to the other. Here this approximation

is used to illustrate the spectral dependence of bend loss in holey and conventional fibres.

To keep matters simple, we consider the coupling between the fundamental core mode and

the lowest-order cladding mode only. Note that in a step-index fibre the effective index of

the lowest-order cladding mode is taken to be the refractive index of the solid cladding,

nclad, and in a holey fibre is defined as the effective cladding index of the microstructured

region, nFSM. The relative change in bend loss with respect to wavelength can thus be

evaluated by considering the relative spacing of the cladding index (nclad or nFSM) and the

effective index of the fundamental core mode, nFM. This is illustrated in Figs 2.1 (a) and

(b), in which sketches of nFM and the cladding index are shown as a function of wavelength

for a holey and conventional fibre respectively. A sketch of the bend loss is shown as a

function of wavelength for these two fibre types in Figs 2.1 (c) and (d) respectively. These

graphs are explained in the following.

As can be seen in Figs 2.1 (a) and (b), in both fibre types, the effective index of the

core mode decreases towards long wavelengths as the mode extends further into the lower

index cladding, and tends asymptotically towards the refractive index of the core towards

short wavelengths. The differences in bend loss between the two fibre types arise from

the fact that the cladding indices in these two fibre types have different functionalities. In

a conventional fibre, the cladding index is weakly dependent on wavelength and can be

considered to be constant. The difference between the effective index of the core mode
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Figure 2.1: Schematic of the effective index for the fundamental core mode and the lowest-order cladding

mode in (a) a holey fibre and (b) a conventional step-index fibre. Here, nsilica is the refractive index of silica

glass, nav represents the volume average index of a holey fibre cladding and ncore and nclad are the core and

cladding indices of a step-index fibre respectively. nFM is the effective index of the fundamental core mode

and nFSM is the effective refractive index of a holey fibre cladding, which is also referred to as the effective

index of the fundamental space filling mode (FSM) of the cladding. A sketch of the bend loss is shown in

(c) and (d) for holey and conventional fibres respectively.

and the cladding index thus only ever decreases towards long wavelengths, and thus the

bending losses only ever increase with wavelength, as shown in Fig. 2.1 (d). In a holey fibre,

the fundamental core mode and the fundamental cladding mode share the same parametric

dependency on wavelength. For both of these modes, the effective index increases towards

short wavelengths as the mode becomes more confined to the silica regions, and decreases

towards long wavelengths as the light samples more of the air holes. The bending losses

therefore increase towards both long and short wavelengths, as shown in Fig. 2.1 (c).

Consequently, although a holey fibre can be single-mode at all wavelengths, the two

bend loss edges limit the bandwidth of useful operation and thus define the maximum

practical mode size for each wavelength in that range. It has been shown empirically that

the mid-point in wavelength between the long and short bend loss edges in holey fibres with a
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triangular arrangement of air holes is approximately given by Λ/2 [32]. For large-mode-area

holey fibres, in which 5µm < Λ < 25µm, all wavelengths of light that are transparent in

silica lie on the short-wavelength side of this mid-point. As such, the bending losses of large-

mode-area silica holey fibres are expected to decrease with wavelength, for all wavelengths of

interest. This is in direct contrast to conventional fibres, in which bending losses increase

towards long wavelengths only. As such, it is not obvious to see how these two fibre

types will compare in the large-mode-area single-mode regime. Consequently, the ability to

accurately predict these losses is essential in order to assess the potential offered by holey

fibres, relative to conventional fibres. In addition, another important difference between

conventional and holey fibres is the angular symmetry of the index profile. Conventional

fibres are typically circularly symmetric, whereas holey fibres are not. Holey fibres usually

possess a six fold symmetry, and this may be reflected in the bending losses. As a result, it

is important that any model of bending losses in holey fibres can incorporate the effect of

the complex refractive index profile.

In the following section, some of the models that have been developed to evaluate

bending losses in holey fibres are discussed. These models are all based on analogy with

conventional single-mode fibres and the limitations associated with this are explored. The

requirements for an accurate model of bend loss in a holey fibre is also outlined.

2.3.2 Modelling bend loss in holey fibres

Background

Predicting the bending losses of holey fibres is a challenging problem. Most of the meth-

ods developed for conventional fibres (as summarised in Section 2.2) assume a circularly

symmetric index profile and cannot be applied to holey fibres without first replacing the

complex refractive index profile with that of an equivalent step-index (ESI) fibre. This

approach has been used in a few studies on the modal properties of holey fibres with mixed

results. In Refs. [4, 16], the authors demonstrate that the short wavelength bend loss edge

in a holey fibre can be qualitatively described using an effective index approach together

with the conventional formula for predicting pure bend loss from Ref. [128]. In another

study, an ESI-based calculation of pure bend loss is shown to yield good agreement with

experimental data for a fibre with Λ = 7.8 µm and d/Λ = 0.30, but not for a fibre with

Λ = 10 µm and d/Λ = 0.55 [32, 131]. This poor agreement is due in part to the difficulties

in choosing certain ESI parameters, such as core radius, that are required to assign an

44



Section 2.3. Chapter 2. Introduction to bend loss

appropriate ESI profile [87].

In recent months, a different method based on a step-index analogy was proposed [132].

In this approach, an approximate formula for pure bend loss, developed for step-index

single-mode fibres, is expressed solely in terms of A
FM

eff , Ro, nFM and nFSM, where nFM

is the effective index of the fundamental core mode and nFSM is the effective index of

the fundamental cladding mode [129]. In this way, the conventional loss formula can be

evaluated for a holey fibre without having to define an ESI profile. However, the modal

properties A
FM

eff , nFM and nFSM of the holey fibre still need to be evaluated. Various methods

for calculating these properties in a holey fibre are discussed in Section 1.4. In general, these

methods involve numerical solutions to the wave equation and are all fairly computationally

intensive. The key to the simplicity of the method proposed in Ref. [132] is that the authors

use approximate formulas to define A
FM

eff and
√

nFM
2 − nFSM

2 in terms of λ, Λ and d/Λ only.

The approximate definitions are based on functions fitted to data generated for infinite,

perfectly periodic triangular lattice structures using a plane-wave approach. Where nFM

appears on its own in the approximate loss formula, the assumption nFM = nglass is made,

resulting in a bend loss dependent only on nglass, λ, Λ and d/Λ. The results presented

within Ref. [132] show good agreement with experimental data for the fibres considered.

However, the assumption of nFM = nglass is only valid for large values of Λ/λ and d/Λ.

These approximations lead to increasing inaccuracy as d/Λ decreases in the large-mode-

area regime, as demonstrated in Section A.2, and also means that this method cannot be

used to predict any properties of the long wavelength bend loss edge, which occur in holey

fibres for Λ/λ ¿ 1. In addition, this simple method is restricted solely to holey fibres with

a perfect triangular arrangement of air holes in which the core is formed by the omission of

a single hole due to the way in which the parameters A
FM

eff and
√

nFM
2 − nFSM

2 are defined.

This is a significant disadvantage since holey fibre geometry can vary significantly from

this basic design, as illustrated in Fig. 1.6 in Section 1.2.4, including different air/glass

geometries in addition to hybrid and solid microstructured fibre types. Furthermore, this

method ignores the symmetry differences between holey and step-index fibres: holey fibres

typically possess a 6-fold symmetric cladding geometry, but can be more complex, such as

the case of a triangular core formed by three adjacent rods in the preform [34]. This may

have an important influence on the bending losses of these novel fibres and needs to be

considered. Also, since this technique is based on a formula derived for single-mode step-

index fibres it cannot be used to evaluate the bending losses associated with higher-order
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modes. However, this method has the virtues of being both quick and simple to evaluate

and is accurate enough to gauge the practicalities of large-mode-area fibre design for simple

triangular lattice geometries. Note that the model presented in Ref. [132] is discussed in

more detail in Section A.2.

Bend loss model developed here

As mentioned in the introduction to this chapter, at the start of this project, there were no

theoretical techniques that could be used to accurately model even the most basic aspects

of bend loss in a holey fibre. Simple models based on the step-index analogy were in

existence and could be used to show that the bending losses increase towards both long

and short wavelengths in a holey fibre [4, 16], but were incapable of accurately assessing

the magnitude of these losses. (Note that in recent months, one model has emerged that

can be used to assess the magnitude of loss in large-mode-area holey fibres with large air

holes, but this method has several limitations, as discussed above [132]). Since the ability

to accurately predict bend loss in a holey fibre is essential to the aims of this thesis, the

first step was to develop such a model. Furthermore, due to the fact that models based on

approximating the holey fibre index profile by an equivalent step-index (ESI) fibre had so far

proved unreliable, it was decided that the model developed here should avoid all such ESI

approximations, and instead use the full geometrically complex refractive index profile of a

holey fibre in all calculations. This approach would remove any inaccuracy resulting from a

circularly symmetric representation of the transverse index profile, enabling the real mode

shape to be considered and allowing the angular orientation of the bend to be considered in

any calculation. The necessity for this is supported by experimental observations of bend

loss, in which a dependence on the angular orientation of the fibre has been observed (see

Section 4.5).

In addition, in the few studies of bend loss in holey fibres reported at the time of this

study [4, 16, 32], the contribution from transition loss is ignored, and calculations based

solely on the pure bend loss component are used to evaluate macro-bending losses. This may

seem perfectly reasonable, since in studies of macro-bending losses in conventional fibres,

pure bend loss is generally assumed to be dominant and transition loss is only considered to

be an important contribution for very short lengths of curved fibre [105, 133]. Indeed, the

effect of mode distortion is often ignored completely in the macro-bend regime [126, 128].

However, the relative contributions of these two components may well be different in a
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holey fibre. Indeed, mode distortion may play a more important part in the bend loss

of a holey fibre due to the fact that there is no well defined boundary between core and

cladding regions. Consequently, the core mode is free to distort out in the gaps between air

holes, and this may result in a higher level of mode distortion than in conventional fibres.

As a result, the model of bend loss developed here considers the contribution from both

transition and pure bend loss components in a holey fibre. The techniques developed to

predict these components of loss within a holey fibres are described in Chapter 3, within

Sections 3.1, 3.4 and 3.5.
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2.4 Overview

As mentioned in Section 1.5, the aims of the study presented here are threefold: (1) to

develop methods of accurately predicting bend loss that can be applied to both holey and

conventional fibres, (2) to use these techniques to explore the potential offered by holey fibres

in the large-mode-area, single-mode regime, and (3) to place their performance in context

against conventional step-index fibres. In order to fulfil these aims, it is also essential to

be able to accurately predict the effective mode area and modedness of both fibre types.

Furthermore, reliable methods of characterising the bend loss, the effective mode area and

the bending losses of holey and conventional fibres are also essential to enable comparative

studies and also to validate the theoretical techniques developed here.

The chapters in this part describe these experimental and numerical techniques. In

Chapter 3 the numerical techniques used here to calculate the effective mode area, the

bending losses and to assess the modedness of both holey and conventional fibres are de-

scribed. Chapter 4 details the procedures that have been developed here to measure these

modal properties in large-mode-area fibres. The numerical techniques presented here are

also validated via comparison with the experimental results presented in Chapter 4. Note

that the experimental and numerical techniques described in the following have been pur-

posefully designed to be suitable for both holey and conventional fibres, to enable direct

comparisons to be drawn between the two fibre types.
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Chapter 3

Modelling fibres

3.1 Introduction

As discussed in Section 2.4, in order to explore the potential offered by large-mode-area

single-mode holey fibres, and to place their performance in context against conventional

step-index fibres, methods of predicting the effective area, the modedness and the bending

losses of both holey and conventional fibre types are required. The numerical techniques

used here to model these three key properties are described in the following.

As discussed in Section 2.3.2, it was decided that the method of modelling bend loss

developed here should ideally avoid any ESI approximation, and should instead use the

full geometrically complex refractive index profile of a holey fibre in all calculations. In

addition, since little was known about the bending losses of holey fibres at the time of this

research, it was also decided that the model of bend loss developed here should consider

the contribution from both transition and pure bend loss components in a holey fibre.

In order to develop methods of predicting transition loss and pure bend loss in a holey

fibre, we look back to the methods that have been developed for conventional waveguides

and extract elements of these approaches that do not make any assumptions regarding

the nature of the modal fields. If we then assume that the modal fields and propagation

constants of the straight and bent holey fibres can be evaluated (as is discussed below),

the components of bend loss can be evaluated in the following manner: the transition

loss can be approximated as a splice loss between two different fibres, after the methods

presented in Refs [100, 101, 102], and the pure bend loss can be evaluated by calculating

the fraction of the modal field that cannot travel fast enough around the bend to maintain

phase with the rest of the mode, after the method presented in Ref. [113]. The methods
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from Refs [100, 101, 102, 113] are discussed in Section 2.2, and their adaptation to holey

fibres is presented in detail in Sections 3.4 and 3.5.

The biggest challenge with the above approaches to modelling bend loss is therefore the

calculation of the modal fields and propagation constants of the straight and bent holey

fibre. A selection of techniques capable of modelling the modal fields of straight holey

fibres and their associated propagation constants was presented in Section 1.4. However,

the method chosen here must also be capable of modelling the modal properties of the bent

fibre. In their current form, only methods based on a BPM approach would be capable of

this, as all other approaches start from a two-dimensional representation of the transverse

refractive index profile, which is assumed to be invariant in the direction of propagation.

As mentioned in Section 1.4, BPM approaches are extremely computationally intensive.

However, in conventional fibres and waveguides, a conformal transformation is often used

to alter the refractive index profile of the straight guide to create an index profile that is

invariant in the direction of propagation and that accurately mimics the modal properties

of the bent waveguide [114]. This process is described in more detail in Sections 2.2 and

3.3, but essentially involves superimposing a gradient onto the refractive index profile of

the straight waveguide. In studies on conventional waveguides, the transformed structure

can then be used to evaluate the modal properties of the bent waveguide using a variety

of techniques. However, holey fibres possess a complex transverse structure, and the addi-

tional gradient present in a refractive index profile transformed in this way precludes the

use of many models. For example, the multipole method is only capable of considering

circular regions of uniform index embedded in a uniform background material. Techniques

that are capable of modelling such a complex structure include those based on beam prop-

agation, finite-element and expansion techniques, all of which are outlined in Section 1.4.

However, bend loss is a sensitive function of the refractive index profile, which in a holey

fibre contains many wavelength scale features. As such, it is necessary to use a high level

of resolution in the numerical grid onto which the index profile is defined. Consequently,

techniques based on beam propagation, finite-element and plane-wave methods can become

prohibitively computationally intensive. Fortunately, the orthogonal function method de-

scribed in Section 1.4.3 takes advantage of the fact that the core mode(s) of a fibre are

localised to improve the efficiency of the calculations [86, 94, 95]. This technique is similar

to the plane-wave approach, in which the modal fields and the refractive index profile are

decomposed into plane waves. However, by using localised functions in the decomposition
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of the modal fields, this method requires far fewer terms to form an accurate description

and as a result can be computationally efficient. Since the modes of the bent fibre are

localised for all bend radii of practical interest, this method is chosen here to model the

modal fields and propagation constants of both straight and bent holey fibres, as discussed

in Sections 3.2 and 3.3.

Of course, the bending losses are not the only modal properties that require evaluation in

this study. In order to place any meaningful interpretation on the bending losses, knowledge

of the mode area and the modedness of the straight fibre is also required. The mode area

can be quite simply extracted from the modal field of the straight fibre via numerical

integration, as explained in Section 3.2. However, evaluating the modedness of a holey

fibre can be more complicated. Although the orthogonal function method calculates a

spectrum of modes in any given fibre, it is necessary to determine the effective index of

the holey fibre cladding (nFSM) in order to evaluate which of these modes are actually

guided in the core. Since the orthogonal function technique uses localised functions, it

is not capable of evaluating the effective index of the (extended) fundamental cladding

mode, and another technique must be employed. Here, a commercial plane-wave method

is chosen, which can be both accurate and efficient since only a single-unit cell of the

cladding microstructure needs to be considered in this case (as explained in Sections 1.4 and

3.5.1) [134]. However, this combination of orthogonal function and plane-wave techniques is

not sufficiently accurate for fibres close to cut-off. In this situation it becomes necessary to

consider a single method to evaluate the effective indices of both core and cladding modes

and the Multipole approach is used instead. Note that all calculations using this technique

presented within this thesis are performed by Vittoria Finazzi at the ORC [54], and that

the issue of determining modedness is discussed further in Section 3.6. The multipole

approach has the added advantage of being able to calculate the confinement losses of all

modes present in a holey fibre, something which the orthogonal function technique cannot

perform, due to the periodic boundary conditions used. The confinement losses of higher-

order modes can be high enough to render a fibre effectively single-mode, which is considered

in Section 5.13.

In summary, three different methods of modelling the modal properties of holey fibres are

used within this thesis: (1) The orthogonal function technique is used to model the modal

fields and propagation constants of both straight and bent holey fibres, with the addition

of a conformal transformation in the case of the bent fibre. (2) A commercially available
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plane-wave method is used to evaluate nFSM of the straight fibre, which is used to determine

the modedness of holey fibres far from cut-off and is also required in the description of

pure bend loss (see Section 3.5). (3) The multipole method (via Vittoria Finazzi) is used

to evaluate the modedness of holey fibres close to cut-off and to model confinement losses.

These techniques are described in the rest of this chapter. The orthogonal function method,

developed by Tanya Monro at the ORC [86, 94, 95] is modified slightly here for the study

of large-mode-area holey fibres, as described in Section 3.2. However, this description is

only designed to be sufficient to explain the basic principles of this technique. For more

detail please refer to Refs [86, 94, 95]. The extension of this technique to the bent fibre via

a conformal transformation is discussed in Section 3.3. The techniques used to model the

transition losses and pure bend losses are then described in Sections 3.4 and 3.5. The various

techniques used to determine the modedness of a holey fibre are discussed in Section 3.6.

For comparison purposes, conventional large-mode-area step-index fibres are also considered

in this study and the methods used to evaluate the parameters of equivalent structures and

to model the modal properties of these fibres are also described here, within Sections 3.7.

Note that the holey fibres studied here are typically large core structures with rela-

tively small holes and the scalar approximation is found to be suitable in most cases (see

Sections 3.2.6 and 3.3.4). However, note that the fully vectorial version of the orthogonal

function technique outlined in Section 3.2 is used to study the effect of polarisation in the

bent fibre in Section 4.5.5.
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3.2 Modelling the modal properties of straight holey fibres

3.2.1 Introduction

The model developed in Refs [86, 94, 95] is adapted here to calculate the modal properties of

straight and bent large-mode-area holey fibres. In this model, the transverse refractive index

profile and the modal fields are decomposed using carefully chosen orthogonal functions,

which enable the wave equation to be reduced to an eigenvalue equation that can be solved

to find the modes of the fibre and their corresponding propagation constants. The transverse

refractive index profile is described using a Fourier decomposition and the modal electric

field is described using Hermite Gaussian functions. Since the refractive index profile of

a holey fibre is typically periodic in nature and the modal field is localised in the centre

of the fibre, these functions are a natural choice allowing each quantity to be represented

accurately without requiring the use of too many terms. In the following sections, a full

vector version of the orthogonal function method is described.

3.2.2 Background

It is assumed that the holey fibre is uniform in the propagation (z) direction, and so the

modal electric field can be written as

Ej(x, y, z) = (et
j(x, y) + ez

j (x, y)ẑ) exp(iβjz) (3.1)

where βj is the propagation constant of the jth mode, and et = exx̂ + eyŷ and ez
j are the

transverse and longitudinal components of the modal electric field, respectively. Inserting

this ansatz into the full vector wave equation, the following pair of coupled equations for

the transverse modal electric field components ex(x, y) and ey(x, y) is obtained:
[
∇2

k2
− β2

k2
+ n2

]
ey =

−1
k2

∂

∂y

(
ex

∂ ln n2

∂x
+ ey

∂ lnn2

∂y

)
(3.2)

[
∇2

k2
− β2

k2
+ n2

]
ex =

−1
k2

∂

∂x

(
ex

∂ lnn2

∂x
+ ey

∂ ln n2

∂y

)
(3.3)

where k = 2π/λ is the wavenumber, n = n(x, y) is the transverse refractive index profile

and the subscript labelling the mode number (j) has been dropped for brevity [103]. To

solve Eqs 3.2 and 3.3, the transverse refractive index profile and the modal electric field

are decomposed using orthogonal functions. The choice of functions is crucial in making

this method efficient and accurate, as discussed in Sections 3.2.3 and 3.2.4. Note that it is

necessary to use both odd and even functions in these decompositions in order to accurately

model the asymmetric modes of the bent fibre.
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3.2.3 Transverse refractive index profile

The transverse refractive index profile, is described using a Fourier decomposition with 4P

terms performed over the entire fibre profile.

n2 =
P−1∑

a,b=0

pab cosX cosY +
P−1∑

a,b=0

qab sinX cosY +
P−1∑

a,b=0

rab cosX sinY +
P−1∑

a,b=0

sab sinX sinY

(3.4)

where

X =
2aπx

l
, Y =

2bπy

l
(3.5)

and l is the transverse extent of the structure. In all the calculations reported here, l = 10Λ,

which is determined by evaluating the convergence of the propagation constant as a function

of l. For any given holey fibre structure, the coefficients pab, qab, rab and sab are evaluated by

performing overlap integrals and need only to be calculated once for any structure. (Please

refer to Ref. [94] for more details).

Fig. 3.1 shows the reconstructed index profile for a fibre with Λ = 12.2 µm and d/Λ = 0.4

for increasing values of P (i.e. for an increasing number of terms in the Fourier expansion).

Figs 3.1 (a-f) correspond to cross-sections along x = 0 through the reconstructed index

profile for P = 50 to 350. The exact refractive index profile is shown by the dashed

line in each plot. These figures show that the refractive index profile can be represented

quite accurately using relatively few terms and that the reconstruction can be improved

by increasing the number of terms used. Note that the number of terms (P ) required to

describe the refractive index profile accurately increases towards small values of d/Λ due

to the fact that the higher frequency sine and cosine functions are needed to describe the

small air holes [86]. For the large-mode-area fibres considered here, with values of d/Λ

ranging from 0.2 to 0.5, P = 200 is found to be sufficient. This value is determined by

evaluating the convergence of the propagation constant (β) as a function of P . Note that

the number of points across the computational box used in all the calculations presented

here is 2801× 2801 (also determined by evaluating the convergence of β ).

Note that due to the fact that the transverse refractive index profile of a holey fibre

is a discontinuous function, an oscillatory behaviour known as the Gibbs phenomenon is

observed in the reconstructed refractive index profile. This artefact can be improved by

using more terms in the expansion, but as P increases, these oscillations do not decrease

significantly in amplitude. Instead, they increase in frequency, compressing in location

towards the edge of each air hole. It is not possible to gauge the impact of these oscillations
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Figure 3.1: (a) Cross-sections along x = 0 of the reconstructed refractive index profile for a holey fibre

with Λ = 12 µm and d/Λ = 0.4) for different numbers of terms used in the decomposition: (a) P = 50, (b)

P = 100, (c) P = 150, (d) P = 200, (e) P = 250, (f) P = 300. The exact refractive index profile is shown

by the dashed line in each plot and ranges from 1.0 (air) to 1.449631 (silica at 1064 nm).

since they cannot be removed and it is therefore difficult to state what effect they may

have on the overall result. However, the frequency of these oscillations is small relative to

the wavelength of light and the refractive index fluctuations ’seen’ by the light field will

therefore be averaged out. Further evidence that the effect of the Gibbs phenomenon on

the overall result is small is the excellent agreement between theoretical predictions and

measured quantities achieved using this approach [86].

As periodic basis functions are used to describe the refractive index profile here, this

method is most efficient for periodic structures. However, this is not a restriction and

56



Section 3.2. Chapter 3. Modelling fibres

non-periodic refractive index profiles can also be accurately represented [13].

3.2.4 Modal electric field

The modal electric field from Eq. 3.1 is expanded as

et(x, y) =
F−1∑

a,b=0

(εx
abψa(x)ψb(y)x̂ + εy

abψa(x)ψb(y)ŷ) (3.6)

where F is the number of terms in the expansion and the ψa and ψb are elements of the

following orthonormal set of Hermite-Gaussian basis functions which have a characteristic

width (wm = mwΛ) and are centred on the fibre core (x = y = 0):

ψi(x) =
2−i/2

4
√

π
√

i!wm
exp

(
−x2

2w2
m

)
Hi

(
x

wm

)
(3.7)

Here, Hi is the Hermite polynomial of order i. Note that the same functions can be used

for both x and y components in the expansion of the modal field in Eq. 3.6 because the

Hermite Gaussians are a complete basis set. Furthermore, due to the fact that the modal

fields of the fibres investigated here are typically symmetric structures (and the level of

asymmetry in the bent mode is not great) there is no compelling reason to choose different

functions for the x and y components in the field expansion.

3.2.5 Solving the wave equation

By substituting the decompositions for the refractive index profile and the modal fields into

the vector wave equation, the latter can be reduced to an eigenvalue problem by making use

of the orthonormality of the Hermite-Gaussian basis functions. This process is discussed in

detail in Ref. [86] and [94] for the case where only even functions are used in both of the

decompositions. In this case, the x and y-components of the wave equation (Eqs 3.2 and

3.3) decouple and the eigenvalue problem thus consists of two eigenvalue equations, repre-

senting the x and y-components of the modal field and associated propagation constants.

For the case described here, the x and y-components of the wave equation are coupled and

after substitution with each decomposition, reduce to a single, more complex, eigenvalue

equation. By numerically solving this eigenvalue equation at a particular wavelength, the

real part of the propagation constant(s) (βx and βy) and the coefficients in the field expan-

sion (εx
ab and εy

ab) can be calculated for the x and y-components of each mode present in the

fibre at that wavelength. The coefficients in the field expansion can then be used to con-

struct the modal fields of the fibre. The solution to the eigenvalue equation produces 2F 2
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eigenvalue/eigenvector pairs for each wavelength considered. However, only a few of these

pairs (or two for the case of a single-mode fibre) correspond to guided modes of the fibre

for each wavelength considered. The guided modes can be distinguished by extracting the

eigenvalues (β2
i /k2) that fall within the range allowed by the structure. These are given by

nFSM < β2/k2 < nglass, where nglass is the refractive index of glass (i.e. the core) and nFSM

is the effective index of the cladding region. Methods for evaluating nFSM are discussed in

Section 3.5.1.

Since the Hermite Gaussian functions used to describe the modal fields form a complete

basis set, the characteristic width (wm = mwΛ) can be chosen arbitrarily. However, if a

value of wm is chosen to suit the particular fibre geometry and operation wavelength, the

number of Hermite-Gaussian functions (F ) required to form an accurate description can be

minimised. For Λ ≈ 2 µm at a wavelength of 1550 nm, a characteristic width of 0.5Λ was

found to be optimal [86]. This seems physically reasonable, as the effective mode area should

be approximately that of the core. For holey fibres in which Λ is sub-wavelength, however,

the effective mode area can be considerably larger than the core size and wm must be larger

than 0.5Λ. By a similar argument, wm should ideally be smaller than 0.5Λ for holey fibres

with a large Λ. For the large-mode-area fibres considered here, with 7µm < Λ < 20µm

and 0.2 < d/Λ < 0.6, a characteristic width of 0.32Λ has been found to be optimal in the

wavelength range 308 − 1600 nm. For this value of wm, 12 Hermite-Gaussians are then

sufficient to produce a good description of the mode. However, the method of calculating

bend loss used here (described in Section 3.5) is extremely sensitive to the exact shape of

the mode and so the accuracy of the modal representation is particularly important. As a

result, 32 Hermite-Gaussians are used to describe the modal field in this implementation.

As before, these optimum values are determined by evaluating the convergence of the modal

effective index. (Note that for the triangular core fibres discussed in Chapter 6, the optimum

value of mw is found to be 0.31 and that for conventional step-index fibres, wm = 0.52Λ

is optimal.) Typical graphs of the effective modal index (shown for the x-polarised mode)

as a function of F and mw are shown in Figs 3.2 (a) and (b) respectively. Note that the

difference in the predicted values of R
FM

c for the large-mode-area holey fibres considered

here at 1550 nm is typically less than 1% for calculations of the bent modal field made with

F = 32 and F = 34, and mw = 0.32 and mw = 0.34.

Once the modal field has been constructed, the effective area (Aeff) can be calculated
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(a) (b)

Figure 3.2: (a) Effective modal index (for the x-polarised mode) for a holey fibre with Λ = 7.55 µm and

d/Λ = 0.23) at 1550 nm. (b) Effective modal index (for the x-polarised mode) for a triangular core holey

fibre with Λ = 7.4 µm and d/Λ = 0.2) at 1064 nm.

via numerical integration using the following expression from Ref. [135]:

Aeff =
(
∫∞
−∞

∫∞
−∞ |E(x, y)|2dxdy)2∫∞

−∞
∫∞
−∞ |E(x, y)|4dxdy

(3.8)

Note that only the effective area of the fundamental mode (FM) is considered within this

study and is referred to by A
FM

eff .

3.2.6 Discussion

Although the full vectorial version is outlined in the above description, the scalar approxima-

tion is found to be suitable for calculations of the straight mode for all the fibres considered

in this study, which possess low values of NA. For all fibres considered in this study there

is negligible difference between scalar and vector calculations of the fundamental mode of

the straight fibre. For example, for a fibre with Λ = 15.0 µm and d/Λ = 0.63, which repre-

sents the most highly multi-mode structure considered within this thesis, the propagation

constant for the x-polarised mode differs only in the 10th significant figure between scalar

and vector calculations at 1064 nm. Furthermore, the scalar version is also found to be

suitable for calculating the modes of the bent fibre, with similarly small differences in β

observed between scalar and vector calculations. As a result, the full vector model is only

used here when considering the effects of polarisation in detail. This is discussed further

in Section 3.3.4. Unless otherwise stated, all results presented here have been calculated
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using the scalar version of the modal model above.

3.2.7 Example calculation

Figure 3.3: (a) Contour plot of the calculated modal intensity for holey fibre HF1 at 1550 nm. Contours

are spaced by 2 dB. (b) and (c) show cross-sections of this modal intensity profile in the x and y directions

respectively (the y-axis for (b) and (c) has arbitrary units). In this calculation, 200 functions have been

used in the Fourier decomposition of the refractive index profile (P ) and 32 Hermite-Gaussians (F ) have

been used in the modal field expansion (each with a characteristic width (mw) of 0.32).

As an example, Fig. 3.3 shows the calculated intensity profile for the fundamental core

mode of the single-mode holey fibre HF1 (Λ = 7.55 µm and d = 1.71 µm) at 1550 nm.

Fig. 3.3 (a) shows a contour plot of the modal intensity profile and Figs 3.3 (a) and (b)

show cross-sections of the modal intensity in the x and y directions respectively. This fibre

has an effective area (A
FM

eff ) of 130 µm2 and an effective index (nFM) of 1.44233 (Note that

only the central region of the structure used in the calculation is shown). For all predicted

values, the effective area is calculated using the definition in Ref. [135].

3.3 Modelling the modal properties of bent holey fibres

3.3.1 Representing the bent fibre

To model the modal fields of a bent holey fibre, the above method is used together with a

conformal transformation [114]. The conformal transformation is used to replace the bent

fibre with a straight fibre that has an equivalent refractive index profile and is performed

before the mode calculation. The equivalent refractive index profile is found by expressing

the scalar wave equation in terms of a local coordinate system that follows the curvature of

the fibre [114]. (The scalar approximation is valid for the fibres considered here as discussed
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in Sections 4.5.3 and 4.5.5.) A fibre, bent in the y direction for example, can be represented

by a straight fibre with an effective refractive index distribution of

nb
2(x, y) = n2(x, y)(1 + 2y/Ro) (3.9)

where Ro is the radius of curvature and n(x, y) is the refractive index profile of the straight

fibre. Thus, by applying the transform in Eq. 3.9 to the refractive index profile of a straight

holey fibre, an index profile that mimics the modal properties of a bent holey fibre can be

defined. For example, the refractive index profile of holey fibre HF1, shown in Figs 3.4 (a)

and (b), is transformed using Eq. 3.9 for a bend radius of 14.5 mm, as shown in Fig. 3.4

(c). (Note that only the central region of the structure is shown).

(b)(a) (c)

Figure 3.4: (a) Cross-section through centre of holey fibre HF1. (b) Transverse slice along x = 0 through

(a), (c) Transverse slice along x = 0 for the refractive index profile in (a) transformed using Eq. 3.9 for a

bend in the y direction, Ro = 14.5 mm.

These figures show clearly that the transform in Eq. 3.9 superimposes a gradient onto the

refractive index of the straight fibre in the direction of the bend. One can see, intuitively,

that the mode will distort outwards in the direction of the bend, towards the region of

higher refractive index. Furthermore, since the gradient is, by definition, proportional to

the severity of the bend, one can see that the mode will become increasingly distorted

towards tighter bend radii. This can be seen in Fig. 3.6, which is discussed in Section 3.3.3.

3.3.2 Calculating modal properties

Once the equivalent index profile has been determined, the modal calculation is performed

as for a straight holey fibre, with the refractive index profile described using the Fourier

decomposition in 3.4. As for the straight holey fibres, P=200 in the Fourier decomposition

is sufficient to produce an accurate description. Figs 3.5 (a) and (b) show cross-sections
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through reconstructed index profiles using P = 200 for a holey fibre with Λ = 12 µm and

d/Λ = 0.4. Fig. 3.5 (a) shows the reconstructed index profile for the straight fibre and

Fig. 3.5 (b) shows the reconstruction of the same index profile that has been transformed

using Eq. 3.9 for a bend radius of Ro = 4.4 cm in the y direction. Although these profiles

look almost identical at first sight, the gradient imposed in (b) can be seen to be accurately

represented in the index decomposition by dividing (b) by (b), as shown in Fig. 3.5 (c).

(a)

1

1.2

1.4

1

1.2

1.4

(b)

0.999

1

1.001
(c)

-60 -40 -20 0 20 40 60

Figure 3.5: Cross-sections along x = 0 of the reconstructed index profile for a holey fibre with Λ = 12 µm,

d/Λ = 0.4 for (a) straight fibre and (b) bent fibre, with a bend of Ro = 4.0 mm in the y direction. In both

calculations P = 200. (c) The ratio of (b)/(a).

3.3.3 Example calculations

Example modal profiles for bent fibres are shown in Fig. 3.6 for fibre HF1 (Λ = 7.55 µm

and d/Λ = 0.23). Figs 3.6 (a) and (b) show the intensity distribution at 1550 nm for bends

in the x direction of radius 25 mm and 19 mm respectively. Fig. 3.6 (c) shows slices in the

x direction; the solid line corresponds to the mode of the straight fibre (shown in Fig. 3.3),

the dotted line to the mode in Fig. 3.6 (a) and the dashed line to the mode in Fig. 3.6

(b). Similarly, Figs 3.6 (c) and (d) show the intensity distribution at 1550 nm for bends in
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the y direction of radius 25 mm and 19 mm respectively. Fig. 3.6 (e) shows slices in the

y direction; as before the solid line corresponds to the mode of the straight fibre (shown

in Fig. 3.3), the dotted line corresponds to the mode in Fig. 3.6 (c) and the dashed line

corresponds to the mode in Fig. 3.6 (d).

These figures show clearly that, as is expected, the mode of the bent fibre is asymmetric

in shape and shifts away from the centre of the fibre towards the outside of the bend. We

can also see that the mode extends further into the cladding and becomes increasingly

distorted with decreasing bend radius. The asymmetry in the position and shape of the

mode means that the odd terms in the Hermite-Gaussian expansion (odd values of a and b

in Eq. 3.6) become essential in forming an accurate description due to the fact that Hermite

Gaussian functions used to describe the modal field (Eq. 3.6) are centred on the fibre core.

Indeed, the values stated previously (F = 32 and mw = 0.32) were chosen to represent the

modal field sufficiently accurately for our bend loss calculations.

Using this approach, the pure bend loss can also be studied as a function of wave-

length. As mentioned previously, holey fibres possess a short wavelength bend loss edge in

addition to a more conventional long wavelength loss edge. The increase in loss towards

short wavelengths results from the fact that the numerical aperture decreases strongly with

wavelength, causing the mode to suffer a greater perturbation in response to bending. This

is illustrated in the predicted mode profiles shown in Figs 3.6 (g) and (h), calculated for

fibre HF1 at 633 nm, bent in the x direction for Ro = 80 mm and Ro = 70 mm respectively.

Indeed, from the transverse cross-sections shown in Fig. 3.6 (i) for the bends at 633 nm,

and in Fig. 3.6 (c) for bends in the same direction at 1550 nm, it can be seen that the

overall degree of mode distortion is similar for the two wavelengths despite the fact that

the bend radii are significantly larger for the examples shown at 633 nm.

The modal model outlined here can consider arbitrary index profiles and the exact

refractive index profile of a real holey fibre can be extracted from a SEM to calculate the

modal fields. However, an idealised index profile is typically used for simplicity, in which

measurements of Λ and d are extracted directly from a scanning electron microscope image

of the real fibre. This is generally a fair assumption for large-mode-area fibres, in which

circular air holes are typically arranged on an almost perfectly regular triangular lattice.

Indeed, in these calculations it is possible to take further advantage of this symmetry

by considering only one half of the fibre, since even in the bent fibre the refractive index

profile possesses a two-fold symmetry. However, the model implemented here has been kept
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Figure 3.6: Parts (a), (b), (d), (e), (g) and (h) show calculated modal intensities for HF1. The contours

are spaced by 2 dB. The dashed line on each mode profile corresponds to the distance xr in our model of

pure bend loss, defined in Section 3.5. Figs (c) and (f) each show three transverse slices along the x and y

direction respectively. The solid line in each case corresponds to the mode of the straight fibre at 1550 nm

(shown in Fig. 3.3), the dotted line corresponds to the mode in (a) and (d) respectively (Ro = 25 mm) and

the dashed line corresponds to the mode in (b) and (e) respectively (Ro = 19 mm). Fig. (i) shows three

transverse slices along the x direction where the solid line corresponds to the mode of the straight fibre at

633 nm (not shown), the dotted line corresponds to the mode in (g) (Ro = 80 mm) and the dashed line

corresponds to the mode in (h) (Ro = 70 mm).

as general as possible to enable more complex fibre geometries to be considered. (However,

note that within this thesis, only results from idealised index profiles with at least a two-fold

symmetry are considered). Note also that the refractive index of silica is calculated using
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the Sellmeier Equation [135], which is given in Section C.

3.3.4 Discussion

Recall that the conformal transformation used to represent the transverse refractive index

profile of the bent fibre, as described in Section 3.3.1, is defined using the assumption

that the bend radius (Ro) is within the macro-bend regime, in which Ro À a, where a

is the core radius. Consequently, one may assume that the predicted modal properties

of the bent fibre, calculated using this conformal transformation, are valid for all bend

radii that satisfy the condition Ro À a, which represents all bend radii considered here.

However, we find that the macro-bend assumptions in the conformal transformation cause

the calculated effective modal indices to become non-physical at bend radii that are defined

as macro-bends, i.e. for Ro À a. This non-physical results occurs for the following reasons:

as the fibre is progressively bent, the gradient imposed on the refractive index profile by

the conformal transformation increases. This has a direct result on the effective modal

index of the fundamental core mode, causing it to increase as the bend radii is reduced. At

some radii, the effective index of the fundamental core mode thus becomes larger than the

index of silica, which is non-physical. However, for all the fibres considered here, we find

this non-physical result occurs at bend radii that are much smaller than the critical bend

radius (Rc), which is defined as the radius at which the bend loss of the fundamental mode

is equal to 3 dB per loop. Since Ro = Rc is typically used to mark the radius at which a

given fibre is no longer useful for transmission applications, the regime of Ro ¿ Rc is of no

interest in this study and none of the results presented within this thesis are significantly

affected by the macro-bend assumption within the conformal transformation.

Furthermore, we find that the scalar approximation can be applied to the bent fibre

for all the fibres considered in this study, which possess low values of NA and are only

considered in the macro-bend regime. Indeed, for the holey fibre with the largest core and

highest NA studied here (Λ = 15 µm and d/Λ = 0.63) there is less than 5% difference

between the critical bend radius of the fundamental mode calculated using the scalar and

vector version of the model presented above (see also Sections 4.5.3 and 4.5.5). This is

advantageous since 32 Hermite-Gaussians are used in the expansion of the modal field and

the numerical simulations are a approximately 6 times faster for the scalar approximation

than those for the fully vectorial approach (typical computation time for the scalar version

is ≈ 5 hours, compared to ≈ 30 hours for the fully vectorial version). However, the full
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vector version is used for studying the effects of the polarisation of the mode in detail in

Section 4.5.5.
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3.4 Modelling transition loss

Transition losses occur where the curvature of the fibre changes suddenly, such as at the

beginning and end of a macro-bend. As light travels into the curved fibre, the modal field

distorts radially outwards, evolving over some length scale into the mode of the bent fibre.

Power is lost in this transition if the length scale is too short for an adiabatic change in

mode shape to take place. In this model, a worst case scenario of an abrupt change of

curvature from R = ∞ to R = Ro is considered with the assumption that all power is lost

instantaneously to radiation. In this approximation, the transition loss is analogous to a

splice loss between the mode of the straight fibre and the mode of the bent fibre, and so

the transition loss (in dB) is;

TL = −10log10(σ) (3.10)

where

σ =

(
|∫∫ Eo · E∗

b dx dy|2∫∫
Eo · E∗

o dx dy
∫∫

Eb · E∗
b dx dy

)
(3.11)

where Eo = Eo(x, y) is the field distribution of the straight fibre and Eb = Eb(x, y) is the

field distribution of the bent fibre and
∫

implies integration from −∞ to +∞ [102].

The assumption that all power is lost as radiation, instantaneously, and the fact that

mode coupling is ignored, results in overestimated losses. In reality, power is lost through

coupling to higher-order, cladding, radiation and backward propagating modes, which is

neither an instantaneous or one way process as power can be coupled back into the core

mode(s). Despite this overestimation, this method can be used to gauge the order of

magnitude of this component of bend loss and to predict trends relating to the fibre design.

In addition, since the transition loss is calculated directly from the distorted modal field of

the bent fibre, this method can also be used to study the effect of the angular orientation

of the fibre in the bend.

3.5 Modelling pure bend loss

Pure bend loss is defined as the continual loss of radiation that occurs along any curved

section of fibre and is related to the inability of the tails of the mode to successfully navigate

the bend. The method used here to model the pure bend loss of a holey fibre is based on

a method developed for predicting the pure bend loss of slab waveguides [113]. Fig. 3.7

depicts a guided mode propagating in the z direction around a bend in the x plane that

has a radius of curvature Ro. For the mode to propagate along a curved trajectory without
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Figure 3.7: Mode propagating in the z direction around a bend of radius Ro in the x direction.

suffering loss, the local velocity along the phase fronts of the mode must decrease on the

inside of the bend and increase on the outside of the bend in order to maintain a constant

angular velocity across the mode. At some distance towards the outer tails of the mode

(defined as x = xr), the required phase velocity will exceed the local speed of light. Since

the tails of the mode propagate in the cladding of the fibre, this maximum speed is given

by c/nclad, where c is the speed of light in a vacuum and nclad is the refractive index of the

cladding region. In a holey fibre, the cladding index is assumed to be equal to the effective

index of the fundamental space filling mode (nclad = nFSM). Note that only the nFSM of

the straight fibre is required in this calculation since it is this quantity that represents

the maximum (effective) local speed in the microstructured cladding region. As such, the

distance from the centre of the fibre at which the phase fronts of the mode are required to

travel faster than the local speed of light is given by;

xr =
(

βb

βFSM
− 1

)
Ro (3.12)

where βb is the propagation constant of the mode of the bent fibre and βFSM = nFSMk, is the

propagation constant of the fundamental mode of the cladding structure, where k = 2π/λ.

Note that the derivation for xr is shown in Section A.1. We then assume that the fraction

of power in the guided mode at x > xr (fo) is lost as radiation over some length scale (L),

with a power decay rate of;

P = Poe
−2αz (3.13)
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where Po is the power in the guided mode before the bend, P is the power in the guided

mode at the end of the bend, z is the length of the curved section, and α is the pure bend

loss in units of Np/m (1 Np = −0.5ln(Pin/Pout)). At z = L, the remaining power in the

modal field is given by P = Po− fo. If this expression is substituted into Eq. 3.13, then the

attenuation constant is defined as α = (fo/Po)/(2L), where fo/Po is the fraction of modal

power lost and is given by;

fo

Po
=

∫∞
−∞

∫∞
xr

Eb · E∗
b dx dy∫∞

−∞
∫∞
−∞Eb · E∗

b dx dy
(3.14)

for a bend in the x direction, where Eb = Eb(x, y) is the modal field of the fibre in the

bend. The pure bend loss in units of dB/m is then given by:

PBL =
4.343

L

fo

Po
(3.15)

In Ref. [113], it was assumed that the length scale, L, was equal to one Rayleigh range

(L = ZR). However, from detailed calculations, this choice of L is found to produce an

non-physical dependency on mode size. For any waveguide, an increase in the NA results

in tighter mode confinement and hence lower bend loss. However, the Rayleigh range

decreases so rapidly with mode size that for L = ZR, small increases in NA (and hence

small decreases in mode size) can actually result in a larger value of predicted bend loss,

which is non-physical. Instead, an alternative length scale is proposed, which is based on

a simplified ray approach as described in the following. Fig. 3.8 shows a section of fibre

with a radius of curvature Ro. The propagation axis (z) is shown by a solid line and the

dashed line traces the position of x = xr around the fibre. D is the distance from the centre

of the core to the outermost hole in the cladding. The fraction of the modal field beyond

x > xr is assumed to be no longer guided by the fibre and instead travels along the tangent

to x at x = xr, leaving the fibre completely at the outer boundary of the micro-structured

cladding. The length scale, L, over which this occurs is then given by:

L =
√

((Ro + D)2 − (Ro + xr)2) ≈
√

2Ro(D − xr) (3.16)

Using this approximate ray approach, the predicted bend loss decreases with increasing NA

as expected. For all holey fibres in this study, 7 rings of holes are assumed, and D is taken

to be 7Λ + 0.5d.

Due to the fact that all mode coupling is ignored in this model of pure bend loss,

the magnitude of the loss is overestimated, as expected. However, via comparison with
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Figure 3.8: Section of curved fibre with radius of curvature Ro in the x direction.

experimental results (see Section 4.5), this inaccuracy can be remedied by introducing a

simple constant of proportionality (τ) into the definition of L:

L = τ
√

2Ro(D − xr) (3.17)

The constant of proportionality, τ , thus represents a first order correction to account for

mode coupling, which is otherwise ignored in this simplified model. Here τ is determined

via comparison with a series of experiential results from different fibres, as discussed in

Section 4.5.

3.5.1 Evaluating the effective cladding index of a holey fibre

In the following section, various methods for evaluating the effective cladding index, also

known as the fundamental space-filling mode (FSM), of a holey fibre are discussed. This

value is required in the modal model outlined in Section 3.2 to determine the solutions

that represent guided modes and is also required in Eq. 3.12 above (βFSM = nFSMk, where

k = 2π/λ). In order to accurately predict the bending losses, knowledge of βFSM is required

correct to at least 7 significant figures. (Numerical results show that changes in the 8 th

significant figure of βFSM produces changes in the 4 th significant figure of the pure bend loss,

while changes in the 7 th significant figure of βFSM can lead to changes in the 2 nd significant
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figure of the pure bend loss.) A simple, full vector analytical method of calculating βFSM

is proposed in Ref. [15], in which the microstructured cladding is approximated by a unit

cell with circular boundaries and periodic boundary conditions. In this study, results for a

holey fibre with Λ = 2.3 µm and d/Λ = 0.26 show good agreement with Ref. [91]. However,

this analytical approach returns values of βFSM that are in agreement with those calculated

using a more accurate plane-wave method to only 3-4 significant figures for a range of fibre

structures [134]. While this gives a good approximation for βFSM, the level of accuracy is

well below that required in the calculation of bend loss using the approach outlined here.

A better approach is to model the holey fibre cladding directly by considering a struc-

ture in which there is no core. One method that can be used to do this is the multipole

approach [99], in which the modal fields are calculated using decompositions based on cylin-

drical harmonic functions localised in each of the cladding holes. This method is capable

of producing accurate, complex values of βFSM for a finite cladding structure. However, it

is necessary to consider the entire extent of the fibre in this approach and it is, as a result,

computationally intensive. The plane-wave method, as discussed briefly in Section 1.4.3,

is also capable of producing accurate values of βFSM [91, 14]. Whilst this technique can

be computationally intensive, only a single unit cell is required in the calculation for an

infinite cladding structure composed of a perfectly regular lattice. In this way, βFSM for an

infinite cladding can be calculated in an efficient and accurate way. In the study presented

here, a commercially available software package called BandSOLVETM, which is based on

a plane wave approach, is used to calculate βFSM [134].

3.5.2 Example calculations and other insights

In Fig. 3.6 example modal profiles for fibre HF1 (Λ = 7.55 µm and d/Λ = 0.23) are shown

for various bend radii and directions at 1550 nm and 633 nm. In this section, the pure

bend loss calculations are described for some of the cases shown in Fig. 3.6, which highlight

some of the main trends predicted by our model of pure bend loss. The critical point (xr)

beyond which all power is lost as radiation is defined in Eq. 3.12 and depends only on the

propagation constant of the mode of the bent fibre (βb), the propagation constant of the

FSM of the straight fibre (βFSM) and the bend radius (Ro). The location of xr is indicated

on each plot in Fig. 3.6 by a dashed line. For HF1 at 1550 nm, βFSM = 5.844182× 106. For

a bend of Ro = 25 mm in the φ = 0o direction (Fig. 3.6 (a)), βb = 5.846873 × 106 and so

xr = 11.5 µm, which equates to 3% of the mode lost as radiation. For a bend of Ro = 19 mm
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in the φ = 0o direction (Fig. 3.6 (b)), βb = 5.847015× 106 and xr = 9.2 µm, which equates

to 10% of the mode lost as radiation. These results demonstrate that the predicted bend

loss increases with decreasing bend radius as expected. This method can also be used

to show that the bend loss at 633 nm is worse than the bend loss at 1550 nm, offering

confirmation of the presence of the short wavelength loss edge. For example, Figs 3.6 (g)

and (h) show the predicted modal intensity profiles for fibre HF1 at 633 nm for bend radii

of 80 mm and 70 mm respectively. Although these bend radii are much larger than the 25

and 19 mm previously considered at 1550 nm (shown in Figs 3.6 (a), (b), (d) and (e)), the

fraction of mode lost as radiation is larger for this shorter wavelength. At 633 nm, 9% of

the mode is lost as radiation for a bend radius of 80 mm and 15% of the mode is lost for

a bend radius of 70 mm. Since the bend loss increases with decreasing bend radius, it can

be seen that for similar values of Ro, the overall loss at 633 nm will be much greater than

that at 1550 nm for fibre HF1, demonstrating that the bend loss increases towards short

wavelengths as expected.

3.6 Determining the presence of higher-order modes

There are several approaches that can be used to determine the modedness of a holey fibre,

as discussed briefly in Sections 1.4 and 3.1. In this study, three approaches are used to

determine if a holey fibre is single-mode. The simplest of these takes advantage of the way

in which the modal fields and propagation constants of each of the holey fibres considered

here are calculated. The technique used here is the orthogonal function method (OFM), and

is described in Section 3.2. In this method, the wave equation is reduced to an eigenvalue

problem, requiring the solution of a 2F 2 × 2F 2 matrix (where F is the number of Hermite

Gaussian functions used in the decomposition of the modal electric fields). The solutions

of this eigenvalue equation thus correspond to 2F 2 eigenvalue/eigenvector pairs for each

wavelength considered (please refer to section 3.2 and references therein for more details).

The particular solutions that correspond to guided modes of the fibre can be distinguished

by determining the eigenvalues that lie within the range nFSM < β2/k2 < nglass, where nglass

is the refractive index of glass and nFSM is the effective index of the cladding region. In order

to determine how many modes are guided by the fibre, nFSM must therefore be calculated

for each wavelength of interest. However, the Hermite Gaussians used to describe the modal

fields in this model are localised functions. As such, the cladding modes are not accurately

represented and the effective index of the first cladding mode, (nFSM), must be calculated
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via another approach. Here a commercially available plane-wave approach is chosen (see

Section 3.3) [134]. While plane-wave techniques are, in general, computationally intensive,

only a single-unit cell needs to be considered in the calculation of nFSM (as explained in

Sections 1.4 and 3.5.1), making this an efficient method in this example. However, while the

orthogonal function and plane-wave techniques are both accurate methods, they contain

different assumptions, and are thus not entirely equivalent. This is only an issue for fibres

close to the single-mode cut-off, where the fundamental cladding mode and the (potential)

first higher order mode are close in effective index. In this situation it becomes necessary to

consider a single method to evaluate the effective indices of both core and cladding modes

and in this case, the multipole method (MM) is used. As mentioned previously, using the

multipole method it is possible to accurately determine the modal properties of holey fibres

with finite cladding structures. By considering fibre structures in which there is no core,

the cladding modes can also be accurately calculated. The multipole method also has the

advantage that it is possible to extract the confinement losses of any higher-order modes

present within the fibre. All calculations made using the multipole method presented in

this thesis have been performed by Vittoria Finazzi [54]. Another simple approach is to

evaluate the modedness of an equivalent step-index (ESI) fibre, the parameters of which can

be determined from the modal properties of the holey fibre, as discussed in Section 3.7.1.

The holey fibre is thus defined to be single-mode if the V-number of the ESI fibre, defined

as V = 2πaNA/λ, is less than 2.405. However, due to the arbitrary way in which certain

ESI parameters are chosen, we find that this method is also not sufficiently accurate for

holey fibres close to the single-mode cut-off, as demonstrated in the following.

Example calculations to determine the modedness of two fibres at 1064 nm, made using

the three methods described above, are shown in Fig. 3.9. Here the modal indices are

plotted for two fibres with effective areas of 190 µm2 at 1064 nm, one with Λ = 12.2 µm

and d/Λ = 0.42 and another with Λ = 12.7 µm and d/Λ = 0.45. For both fibres, three sets

of effective modal indices are plotted for the fundamental core mode, the first higher-order

core mode and the fundamental cladding mode (see figure caption for legend). Three sets

of calculations are presented for the three techniques described above, indicated on the

graph by the letters OFM, ESI and MM (note that here OFM indicates the combination of

orthogonal function and plane-wave techniques). We see that the OFM technique predicts

that both fibres are single-mode, while the ESI approach predicts that both fibres are

few-moded. However, the (more accurate) multipole approach shows that the fibre with
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d/Λ = 0.42 is single-mode, whilst the fibre with d/Λ = 0.45 is few-moded. In fact, the

confinement loss of the higher-order mode, calculated using the multipole technique is

found to be 0.46 dB/m, demonstrating that this mode would be observed in practice. Note

that at 1064 nm, the ESI approach predicts that the onset of higher-order modes occurs at

d/Λ > 0.41, the OFM predicts that this occurs at d/Λ > 0.48, while the multipole approach

predicts that higher-order modes appear for d/Λ > 0.43.

Figure 3.9: Effective indices for the modes of two fibres calculated using the orthogonal function method

(OFM) for the infinite structure, using exact solution for the ESI fibre, using the multipole method (MM)

for a structure with 6 rings of holes. The fancy open shapes represent the fundamental core mode, the filled

shapes represent the fundamental cladding mode and the smooth open shapes represent the first higher-order

core mode.
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3.7 Comparison step-index fibres

3.7.1 Choosing step-index parameters

In this study, the bending losses of several step-index fibres are evaluated theoretically in

order to benchmark the performance of the holey fibres considered here. The parameters

of the comparison fibres are chosen by finding an equivalent step-index fibre that best

matches the modal properties of the holey fibre for a given wavelength. The parameters

of each equivalent step-index (ESI) are determined using a similar approach to the ones in

Refs [4, 87], in which the core index of the ESI fibre is that of pure silica and the cladding

index is taken to be the effective cladding index of the holey fibre. Using this approach,

the core radius is defined empirically to be 0.625Λ. However, since the modal properties

of the corresponding holey fibre are already known, we are not restricted to this arbitrary

definition of core radius. Instead we choose to define the core radius of the ESI fibre by

matching the effective mode area of the holey fibre. (It has been shown in Section 4.1 that

the fundamental mode of a holey fibre can be well approximated by a Gaussian function.)

In this way, we can define a step-index fibre that is equivalent in effective area and numerical

aperture, which are the most important factors in determining the bend loss. This approach

is applied in Section 5.7, in which a comparative study between the bending losses of large-

mode-area holey and step-index fibres is presented at 1064 nm, and also in Section 7.2.2,

where the spectral dependency of bend loss is investigated for both fibre types.

3.7.2 Modelling modal properties and bending losses

Obviously the most efficient way to model the modal properties of straight step-index fibres

is to solve the exact solutions, such as those in Ref. [53]. There are also many reported

techniques that can be used to model the modal properties of the bent fibre and/or the

associated bend loss, as discussed in Section 2.2 and references therein. However, in order to

allow comparisons to be drawn between the bending losses of holey and conventional fibres,

we choose to apply the same methods to the step-index fibres as for the holey fibres where

applicable. As mentioned previously, the method developed here to calculate the modal

properties of holey fibres can be applied to almost any fibre profile, including step-index

fibres. By using the same approach as for the holey fibres, which contain the same set of

assumptions, we are able to make direct comparisons between the two fibre types. The

method followed for step-index fibres is identical to that outlined for the holey fibres above,
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with the exception of the characteristic width of the Hermite Gaussian functions wm used in

the decomposition of the modal field in Eq. 3.7. For step-index fibres wm = 0.52a, where a

is the core radius, is found to be optimal. Note that the same value for the cladding extent

(D), required in the definition of L in Eq. 3.16, is used for each pair of holey and ESI fibres.

However, when accurate values of bend loss are not required, for example, in Section 5.7.3

a quicker and more approximate approach is used. This is outlined in Section 5.7.3.

3.8 Summary and conclusion

The aims of this thesis, which are discussed more fully in Section 1.5, are essentially to

explore the potential offered by large-mode-area single-mode holey fibres, and to place their

performance in context against conventional step-index fibres. In order to do this, methods

of predicting the effective area, the modedness and the bending losses of both holey and

conventional fibre types are required. At the time of this study no suitable techniques

existed to model the bending losses of holey fibres, and so the first step was to develop such

a method. In addition, since little was known about the bending losses of holey fibres in

general, it was also decided that any model of bend loss should include contributions from

both transition and pure bend loss components. The methods that have successfully been

developed to model both of these components of bend loss in holey fibres are outlined in the

above sections of this chapter. Note that these techniques are also suitable for conventional

fibre types.

The models of transition loss and pure bend loss presented in this chapter have been

constructed by combining elements from methods developed for conventional waveguides

with established techniques that have been developed for modelling the modal properties of

straight holey fibres. Transition loss is modelled by approximating the mode conversion at

points of changing curvature as a splice loss between the straight and bent fibre [100, 101,

102], as described in Section 3.4. The modal fields required in this calculation are evaluated

using the orthogonal function technique developed by Tanya Monro [13, 86, 94, 95], with

the addition of a conformal transformation in the case of the bent fibre (see Sections 2.2

and 3.3). A description of this technique is presented in Section 3.2, and the adaption to

bent holey fibres is discussed in Section 3.3. This approach to modelling the modal field of

the bent fibre is also employed in the model of pure bend loss developed here. This method

is described in Section 3.5 and is based on the method presented in Ref. [113], in which

the bend loss is evaluated by calculating the fraction of the modal field that cannot travel
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fast enough around the bend to maintain phase with the rest of the mode. The effective

cladding index of the straight fibre is required in this calculation and this is evaluated using

a commercially available plane-wave technique [134].

The methods of modelling bend loss developed here involve several assumptions. The

assumptions inherent to the conformal transformation routinely used in conventional fibres

restricts modal calculations to bend radii in the macro-bend regime. The macro-bend

regime is defined for bend radii that are much larger than the core radius of the fibre.

However, via inspection of calculations, we find that this model breaks down within the

macro-bend regime. Fortunately, this break-down occurs at bend radii that are far smaller

than any required to evaluate the critical bend radius for all of the fibres considered here

(see Section 3.3.4). Furthermore, in the method developed for modelling transition loss,

the loss due to mode conversion is assumed to take place instantaneously, when in reality,

the mode changes shape over a finite length scale. In addition, mode coupling is ignored

in both the model of transition and pure bend loss. These assumptions mean that both

components of bend loss will be overestimated. For the case of transition loss, the model

presented here serves as an estimate of the maximum possible loss that can be attributed

to this component of loss. Indeed, as it turns out, this contribution is small and can be

neglected, as demonstrated experimentally in Section 4.5. In addition, we find that the

overestimation in the method of pure bend loss can be compensated for by introducing a

scaling factor. This is discussed in more detail in Sections 3.5 and 4.5.

For reasons of simplicity and computational efficiency it is preferable to use a scalar

version of the orthogonal function method to evaluate the modal fields and propagation

constants of holey fibres. However, the refractive index profile in a holey fibre contains

features with a large refractive index contrast and the conformal transformation, used

to model a bent structure, imposes an asymmetry on this profile. However, for large-

mode-area holey fibres with reasonably small holes, the effective cladding index creates

a low NA fibre and, in the macro-bend regime, the asymmetric distortion imposed by the

conformal transformation represents only a slight perturbation. As a result, we find that the

scalar version of the orthogonal function technique can indeed be used to model the modal

properties of both straight and bent holey fibres with large-mode-areas. For example,

for a fibre with Λ = 15.0 µm and d/Λ = 0.63, which represents the most highly multi-

mode structure considered within this thesis, the propagation constant for the x-polarised

mode differs only in the 10th significant figure between scalar and vector calculations at
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1064 nm. In addition, there is less than 5% difference between the critical bend radius of

the fundamental mode for this fibre calculated using the scalar and vector version of the

model presented above at 1064 nm (see also Sections 4.5.3 and 4.5.5). However, the fully

vectorial version of the orthogonal function technique outlined in Section 3.2 is used to

study the effect of polarisation in the bent fibre in Section 4.5.5.

As mentioned above, the bending losses are not the only modal properties that require

evaluation in this study. In order to place any meaningful interpretation on the bending

losses, knowledge of the mode area and the modedness of the fibre is also required. The

mode area can be quite simply extracted from the modal field of the straight fibre via

numerical integration, as explained in Section 3.2. In Section 3.6, the three methods used

here to evaluate the modedness of holey fibres are discussed: (1) The orthogonal function

technique can be used in conjunction with the calculation of the effective cladding index

nFSM using a plane-wave technique, (2) The V-parameter of an equivalent step-index (ESI)

fibre can be determined, and (3) the multipole method can be used. This last approach is

by far the most accurate and is used when considering fibres that are close to cut-off. Note

that all multipole calculations included in this thesis are performed by Vittoria Finazzi [54].

In conclusion, the methods listed in the above sections of this chapter can be used

to model mode area, pure bend loss, transition loss, and modedness, in both holey and

conventional fibres. In the next chapter, the experimental techniques developed to measure

these properties are presented, together with a comparative study between experimental

and numerically derived values that are used to validate these numerical models.
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Experimental methods

4.1 Introduction

As discussed in Section 2.4, in order to explore the potential offered by large-mode area

single-mode holey fibres, methods of characterising the effective area, the modedness and

the bending losses of both holey and conventional fibre types are required. Experiments

designed to measure these three key properties are described in the following.

As discussed briefly in Section 1.4.2, the effective mode area of holey fibres can be rea-

sonably well approximated by an equivalent step-index fibre at a given wavelength due to

the fact that the modal field can be approximated by a Gaussian function [17]. Indeed,

all the fibres considered in this thesis, which have 7µm <∼Λ<∼ 20µm and 0.2<∼ d/Λ<∼ 0.5,

have an overlap with a Gaussian function of optimum width that is greater than 95% in

the wavelength range of 300 to 1600 nm (this overlap is defined in Eq. 3.11, in which Eb

is replaced by a Gaussian function). As a result, we find that conventional methods for

measuring effective mode area can be adapted for the large-mode-area holey fibres consid-

ered in this study, as described in Section 4.3. However, we have found that conventional

techniques for measuring bending losses are not transferable to holey fibres. In part, this is

due to the fact that most reports of bend loss are vague in their description, but also results

from the fact that these measurements are designed for conventional fibres with mode areas

less than approximately 100 µm2 at telecommunications wavelengths. For such fibres, the

critical bend radii are typically less than 1 cm and the majority of techniques induce tension

on the fibre to ensure that the bent fibre describes a perfect circle [127, 136, 137, 122]. We

have found that using tension on large-mode-area fibres is not only unnecessary, since the

bend radii of interest are typically large, but that it can result in non-repeatable results
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for holey fibres. We suspect that this non-repeatability for the case of holey fibres results

from the fact that they are more sensitive to strain than their conventional counterparts.

Indeed, we have observed that the strain induced by the small magnets traditionally used

to hold the fibre in a V-groove can severely distort the modal field. However, it should be

noted that the holey fibres studied here have been shown to possess comparable levels of

mechanical strength to conventional solid fibres [138]. In addition, since step-index fibres

are typically circularly symmetric, conventional bend loss measurements do not consider

the effect of the angular orientation of the fibre. In contrast, holey fibres typically possess a

six fold symmetry, and this may influence the bend loss. In response to these requirements,

we have developed several techniques to measure the bending losses of large-mode-area ho-

ley fibres as a function of bend radius and the angular orientation of the fibre that ensure

minimal strain and tension on the fibre. In the following sections detailed descriptions are

presented for the experiments designed to study the following (1) the bend loss as a function

of bend radius, (2) the bend loss as a function of wavelength, (3) the relative impact of

transition loss and pure bend loss and (4) the effect of the fibre geometry on the bend loss.

Note that these experiments are also suitable for conventional fibres, enabling comparative

measurements.

Whilst the general procedures for each experiment are identical for both fibre types,

some basic experimental techniques such as fibre end preparation and measurements of the

refractive index profile must be approached differently for holey fibres. The details of these

basic techniques are briefly discussed in Section 4.2. A brief outline of the methods used

to launch light into the fibres studied here is also included in this section.

4.2 Basic experimental techniques

4.2.1 Measurement of the refractive index profile

For the conventional fibres considered here, the refractive index profile is measured directly

from the preform. However, as discussed in Section 1.2.4, the transverse structure of a

holey fibre can differ greatly from the preform. As a result, the refractive index profile is

determined via a scanning electron microscope (SEM) image of the fibre cross-section. At

the ORC, this technique has been found to be capable of resolving sub 100 nm features. Note

that a crude measurement of the refractive index profile of a holey fibre can be made using

an optical microscope. Although this is an invaluable technique for initial characterisation,
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diffraction effects mean that the hole size cannot be accurately determined in this way.

4.2.2 End preparation

The large-mode-area fibres considered here typically have outer diameters of between 150-

300 µm. As a result, the polymer coating is removed from the ends of the fibre using

solvent instead of a standard mechanical stripper. (Here a 50:50 mix of dichloromethane

and butanone is used). For holey fibres it is important to ensure that the fibre tip does

not come into contact with the solvent, since the liquid would be drawn up into the fibre

via capillary effects. This would significantly change the refractive index profile and hence

the guidance properties of the fibre. Once the polymer coating has been removed, the bare

fibre ends can then be cleaved using a suitable commercial fibre cleaver, or by hand with a

ceramic fibre tile. Note that small cracks or splits can form on the cleaved surface of holey

fibres, which can distort the mode shape [139]. However, we have found that this problem

can be eliminated by careful cleaving.

4.2.3 Launching light into large-mode-area fibres

In most cases, the bare fibres ends are mounted in front of the launch and detection optics

using standard V-grooves. If it is necessary to control the angular orientation of the fibre

end, a fibre chuck mounted in a fibre chuck rotator is used instead. When using a collimated

laser as a light source, a typical launch arrangement comprises 2 mirrors, to align the

collimated beam, and an aspheric lens to couple the light into the fibre. The choice of focal

length of this lens depends on the size of fibre mode and the numerical aperture of the

fibre. For the large-mode-area fibres used in this study, we find that Gel tech’s aspheric

lenses with focal lengths between 8− 15 mm produce good coupling for wavelengths in the

range 1−1.55 µm. For visible light sources we find that a x 10 microscope objective can be

used to achieve good coupling efficiency. The launch arrangement is similar for fibre based

sources, with a collimating lens used in place of the two mirrors. For a white light source,

we find that the best coupling is achieved with a x 10 microscope objective placed as close

to the light bulb as possible. More details of the process of coupling light into a fibre using

a white light source are given in Section 4.4.3.

In some of the experiments described below, it is necessary to rotate the fibre between

measurements. To do this, the fibre is removed from the detector and is replaced after the

fibre chuck has been rotated at the launch. By imaging the fibre ends in situ, we have found
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that the entire fibre maintains the orientation set at the launch, for fibre lengths ≤ 2 m.

4.3 Experiment 1: Effective area measurement

4.3.1 Introduction

The effective area of each fibre in this study is extracted directly from measurements of the

far-field divergence, obtained via a scanning knife-edge technique [140]. In this approach,

the far-field angle of divergence θ, shown in Fig. 4.1, is determined by measuring the width

of the diverging beam (w) as a function of the distance from the end of the fibre (z). If we

assume that the modal field can be approximated by a Gaussian function, the effective area

of the fibre mode can be extracted from the well known expressions for the propagation

of a Gaussian beam in free space [141] (see below for details). At first sight, it may seem

that a Gaussian mode profile is not an assumption appropriate to holey fibres, since the

transverse modal fields are somewhat hexagonal in shape. However, for the types of holey

fibre considered here, the hole size is small relative to the hole-to-hole spacing (d/Λ typically

<∼ 0.5) and the hole-to-hole spacing is much larger than the wavelength (λ/Λ ≈ 0.1). In this

regime, the hexagonal nature of the cladding structure is only subtly reflected in the shape

of the mode. Indeed, numerical calculations show that the fundamental mode of every holey

fibre studied in detail here has an overlap with a Gaussian function greater than 95%.

4.3.2 Experimental set-up

The experimental set-up for this measurement is shown in Fig. 4.1. Both ends of a length of

fibre are stripped of coating and cleaved (as described in Section 4.2.2). Light is launched

into one end of the fibre and the other end is firmly secured at one end of a long translation

rail in a rotating fibre chuck. The fibre is positioned so that the centre of the beam diverging

from the end of the fibre is aligned parallel to the translation rail. It is important that the

fibre remains in the same orientation for the duration of the measurement. It is also essential

that the cleaved bare fibre end is of excellent quality to ensure that the far-field image is

representative of the fibre mode. A rotating optical chopper is mounted on the translation

rail and is positioned so that the blades cut the diverging beam at 90o. The distance

between the centre of the chopper and the centre of the beam, x, (shown in the insert in

Fig. 4.1) is recorded. The light that passes through the optical chopper is then focused onto

a large area photo-diode using a large diameter lens (diameter ≈ 10 cm). This lens must
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Figure 4.1: Experimental set-up to measure mode field diameter

be far enough away from the end of the fibre to ensure that the optical chopper has at least

5 cm of translation, but it must also be close enough to the end of the fibre to ensure that

the tails of the far-field light emitted by the fibre are captured by the lens. Similarly, the

gaps between the blades of the optical chopper must be sufficiently large to allow the beam

to pass unhindered in the ‘on’ state of the chopper.

An oscilloscope connected to the photo-diode displays a (nearly) square wave, the sides

of which are slightly rounded due to the time taken for the chopper blade to cut through

the beam (See Fig. 4.1). It is this transit time that we wish to record. We define the beam

width, w, as the distance between the peak intensity (shown as Io on Fig. 4.2) and the

point at which the intensity drops to 1/e2 of its maximum. Here we choose to measure this

distance between the points −w/2 and w/2 across the beam, which corresponds to intensity

levels of Io/
√

e either side of the maximum intensity, Io, as shown in Fig. 4.2.

If we then define t1 and t2 to be the times at which the leading edge of the chopper

blade is at a position of r = −w/2 and r = w/2 respectively, then the time taken for the

blade to cut through the width of the beam, w, is given by ∆t = t2 − t1. At times t1 and

t2, 84 and 16% of the total power in the beam is incident on the photo-diode, respectively.
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Figure 4.2: Experimental set-up to measure mode field diameter

These percentages are given by:
∫∞
−w/2 I(r)dr
∫∞
−∞ I(r)dr

= 0.84

∫∞
w/2 I(r)dr

∫∞
−∞ I(r)dr

= 0.16 (4.1)

By setting the low and high clip levels on the oscilloscope to these percentages, the rise

time of the signal equals the time taken for the blade to cut through the beam (∆t).

The width of the beam w (defined as the 1/e2 width, or the distance between I =

−Io/
√

e and I = Io/
√

e) is then given by ∆t × v, where v is the speed of the chopper at

the centre of the beam and is given by:

v =
2πxf

n
, (4.2)

where x is the distance between the centre of the chopper and the centre of the beam, f is

the frequency of the chopper and n is the number of gaps in the chopper (In Fig. 4.1 n = 4).

Although this assumes that the speed of the chopper blade is a constant value across the

width of the beam, the error introduced by this assumption is small. By recording ∆t and

hence w, as a function of distance from the fibre end (z), the far-field angle of divergence

θ ≈ dw/dz is determined by the gradient of w graphed against z. A sample set of data

from the measurement of one of our holey fibres at 1064 nm is shown in Fig. 4.3. The angle

of divergence is ≈ 0.047 radians, which corresponds to an A
FM

eff of 170 µm2. Note that in

order to determine the far-field divergence it is not necessary to know the distance from

the fibre end to the chopper, only the relative distance between each width measurement

is required. Ideally, somewhere between 5 − 10 measurements of the beam width should

be taken, separated by approximately 0.5 − 1 cm depending on the level of divergence.

Assuming that the fibre orientation remains the same, a variation of ≈ 1% in the beam

84



Section 4.3. Chapter 4. Experimental methods

width is observed for repeat measurements. This corresponds to a variation of ≈ 2− 3% in

the final A
FM

eff for repeat measurements.

Figure 4.3: Example data from a MFD measurement of a large-mode-area holey fibre

Once the far-field divergence of the fibre has been determined, the spot-size of the fibre

mode, wo = w(z = 0), can be calculated using the following equations. For a Gaussian

beam there is a simple relationship between θ and wo. This is given by:

w(z) =
λ z

π wo
(4.3)

θ =
d w(z)

dz
=

λ

π wo
(4.4)

wo =
λ

π θ
(4.5)

For a circularly-symmetric Gaussian modal field, the effective area defined in [135] reduces

to:

A
FM

eff = π w2
o , (4.6)
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which is used here for all measured values. As mentioned above, this is a simplification

for the holey fibres considered here, which have slightly hexagonal-shaped modes, but both

theoretical calculations and direct measurements of the near-field mode profile show this to

be a reasonable approximation. In fact, theoretical modelling shows that the spot size varies

by ≈ 5−10% in different angular directions and by averaging repeated measurements taken

for several different angular orientations of the fibre, we find that a more representative value

of effective area can be obtained. Including all sources of error, such as those arising from

imperfect cleaves and alignment, in addition to that mentioned above, we estimate at most

a 5% variation in repeat effective area measurements for a given fibre.

4.3.3 Discussion

The method described here is best suited to large-mode-area fibres, which possess small

angles of divergence (limited by the diameter of the lens and the aperture size of the

optical chopper as discussed above) and is restricted to single-mode fibres in which the

field profile can be well approximated by a Gaussian function. This requirement means

that it is important to ensure that no cladding or higher-order modes are present at the

measurement end of the fibre. Any cladding modes will act to offset the zero level of the

transverse intensity profile, making the mode appear smaller. The presence of higher-order

modes will also cause the effective area measurement to be underestimated by introducing a

much higher angle of divergence. Indeed, we have found that even a very low level presence

of a higher-order mode can greatly perturb the measurement. Cladding modes can be

stripped from the fibre trivially, since they are typically very sensitive to bending and can

be completely removed with quite a gentle bend. Bending the fibre can also be used to

filter out higher-order modes, if there is a sufficient differential between the bend loss of

the fundamental and the first higher-order mode.

4.4 Bend loss Measurements

4.4.1 Introduction

This section describes in detail the experiments that we have used to characterise the bend

loss of the fibres considered in this study. The experiments shown here allow us to measure

bend loss as a function of bend radius and wavelength, to investigate the contributions

made by transition loss and pure bend loss to the overall bend loss and also to study the
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effect of the cladding geometry on the bend loss.

In any bend loss measurement it is important to ensure that any change in fibre cur-

vature is well defined and to ensure that the fibre lays flat along its entire length. These

precautions ensure that the measured loss can be attributed purely to the regions of curva-

ture that are deliberately imposed along the length of fibre and not from any other minor

perturbations in the straight fibre regions, ensuring a robust and repeatable method of

measurement. The bend loss is defined as the ratio between the power transmitted through

the straight fibre and the bent fibre, expressed in dB.

4.4.2 Experiment 2: Bend loss as a function of radius

φ

Fiber chuck

Fiber chuck rotator

Fiber

Detector

Translation rail

Raised platform

pins

(See inset)

Launch

Fibre Guide

V−groove

Figure 4.4: Experimental set-up to measure loss incurred due to one loop of radius Ro.

The experimental set-up for measuring bend loss as a function of radius for a single

wavelength is shown in Fig. 4.4. Both ends of a section of fibre approximately 2 m in

length are prepared as described in Section 4.2.2. One end of the fibre is secured at the

launch in either a fibre chuck, as shown, or onto a standard V-groove. The free end of the

fibre is mounted in a V-groove attached to a power detector, which is in turn mounted on

the translation rail so that the fibre end and the detector move as one. After the power

transmitted through the straight fibre has been recorded, the fibre is bent into a single loop

on the raised platform that holds the fibre at the same height as the launch and detection

optics to ensure that the fibre lays flat along its entire length.

Each bend radius is defined by a circle drawn on the surface of the raised platform,

which is comprised of stiff foam with an upper layer of thick cardboard. A straight edged
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guide at the beginning and end of the loop, together with a series of pins pushed into the

raised platform inside the bend, hold the fibre in place and ensure that the transition from

straight to bent fibre is sharply defined. The bend radius is decreased by moving the pins

into the next circle on the platform and translating the detector to take up any slack in the

fibre, with care taken to ensure that no strain is placed on the fibre. To extract the critical

bend radius, which is defined as the radius at which the loss is equal to 3 dB (50%) for one

loop of fibre, this measurement should be performed for about 5-10 different radii, spaced

by 0.5-1 cm in radius.

Note that in addition to the critical bend radius, this measurement can also yield infor-

mation regarding the number of modes present in the fibre. Higher-order modes experience

greater attenuation than the fundamental mode for a given bend radius, and the critical

bend radius is therefore larger for higher-order modes. If higher-order modes are present

to any significant degree, bend loss as a function of radius becomes step-like, instead of a

smooth curve, with each step representing the loss of one or more higher-modes. This is

discussed in more detail in Sections 5.13 and 5.4.

4.4.3 Experiment 3: White light bend loss measurements

x10 objective

analyser

pins

Guide

Bare fibre adapter

Translation rails

Test fibre

Raised platform

White light source

Fibre A

Spectrum

Figure 4.5: Experimental set-up to measure loss incurred due to one loop of radius R

The measurement described in Experiment 2 for measuring the bend loss as a function

of radius for a single wavelength can be adapted for a white light source as in Fig. 4.5.

Using a x 10 microscope objective, white light is focussed into fibre A, which is an endlessly

single-mode holey fibre with an effective area of around 300 µm2. Fibre A is then butt-

coupled to the fibre under characterisation. Fibre A is used here to reduce the spot-size

incident on the test fibre in order to avoid exciting the cladding modes. The rest of the
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experimental details are identical to the single wavelength example described above, except

for the power detector. In place of the power detector, a spectrum analyser is used in

conjunction with a bare fibre adaptor to record power levels in the wavelength range 350 to

1700 nm. Note that because the spectrum analyser is significantly bigger than the power

metre, two translation rails are used in place of the previous one.

As before, the data from this experiment can also be interpreted to reveal information

about the modedness of the fibre, as is described in Sections 7.3.2.

4.4.4 Experiment 4: Distinguishing transition loss and pure bend loss

As mentioned in Section 2.2.1, bend loss in any waveguide can be separated into two

components; transition loss and pure bend loss. Transition loss, which is also referred to as

mode-conversion loss, results from the modal distortion induced by the abrupt change in

curvature at the beginning and end of a bend. Pure bend loss is defined as the continual

loss of radiation from the distorted mode that occurs along any curved section of fibre. As

discussed in Section 2.2.1 it is essential to have knowledge of the contribution from these

two components in order to formulate a theoretical model of bend loss in a holey fibre. In

response to this requirement, the experiment described here was designed to determine the

relative contributions of transition loss and pure bend loss to the overall bend loss of the

fibre.

The experiment shown in Fig. 4.6 (a) was designed in Ref. [105] to distinguish transition

and pure bend loss in conventional step-index fibres. Both ends of a section of fibre ap-

proximately 2 m in length are prepared as described in Section 4.2.2. One end of the fibre

is mounted at the launch in either the fibre chuck and fibre chuck rotator, as shown, or in

a V-groove. The other end is mounted in a V-groove attached to a power detector, which

is in turn mounted on a rotating rail. The length of fibre is then progressively wrapped

around a drum of radius Ro by rotating the rail carrying the detector about the centre

of curvature. The fibre is carefully supported at points A and B with straight guides to

produce a sharp change in curvature without inducing any unwanted stresses on the fibre.

The guide at point A remains fixed and it is extremely important for the guide at B to

reproduce the same sharp change in curvature as the fibre is wrapped around the drum.

Fig. 4.6 (b) shows a sketch of typical results. Transition losses occur at the points A and

B where there is a sharp change in curvature from R = ∞ to R = Ro and back again. These

transition losses (TL) take place over a finite length of fibre, as shown by the curved section
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θ2TL
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Figure 4.6: (a) Experimental set-up to observe transition loss and pure bend loss in a bent optical fibre.

Loss is measured as the fibre is progressively wrapped around a drum of radius Ro (The wrap-around angle

= θ). The fibre chuck and rotator are used to control the angular orientation (φ) of the fibre in the bend.

(b) Schematic of results.

in graph Fig. 4.6 (b). The length of fibre between points A and B is of constant curvature

and suffers a continuous pure bend loss along its entire length. As the wrap-around angle

(θ) is increased, the length of the curved section of fibre (and the pure bend loss) increases

linearly. The pure bend loss can be extracted from the gradient of the straight line section

of the graph in Fig. 4.6 (b), which is offset by the two transition losses at the beginning and

end of the bend. The transition loss can then be extrapolated from the graph as sketched

in Fig. 4.6 (b).

4.4.5 Experiment 5: Bend loss as a function of angular orientation

As mentioned in Section 4.2.3, the fibre chuck and rotator can be used to control the

angular orientation (φ) of the fibre in the bend. Using the set-up in experiment 4, with the

wrap around angle set such that the majority of loss can be attributed to pure bend loss

without the overall loss value being too severe, we can study the effect of the geometry of

the cladding structure on the bend loss in detail. Although the effect of angular orientation

of the fibre in the bend can be studied with all of the bend loss experiments described here,

we choose the set-up in experiment 4 to study this in detail since this experiment can be

performed for a partial loop of fibre. This is advantageous as we can study the loss for

bend radii where the mode is significantly distorted into the cladding region, with losses
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low enough to be recorded accurately. (It is also easier to change the angular orientation

of the fibre in this set-up.) The results from this experiment are presented in Section 4.5.
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4.5 Experimental validation

4.5.1 Overview

In this section results are presented from an experimental study of bend loss in holey fibres

at 1550 nm together with theoretical predictions where appropriate. The aim of this section

is to demonstrate the effectiveness of the experimental techniques described in the above

sections of this chapter and to validate the theoretical methods described previously in

Chapter 3.

In the following sections, bend loss as a function of the radius of curvature, the relative

contributions of transition and pure bend loss, and the effect of the angular orientation of

the fibre in the bend are considered. Unless otherwise stated, all values of pure bend loss

are calculated using the scalar version of the modal model described in Section 3.2.

4.5.2 The fibres

In this section, results are presented for four large mode holey fibres (HF1, HF2, HF3 and

HF4) and one conventional fibre (C1), which I have characterised in terms of effective area

and bend loss. All of the holey fibres in this chapter were drawn from the same preform

and the smallest fibre, HF1, is shown in Fig. 4.7. In each of these fibres, the core is offset

from the centre of the fibre by one period. This offset was introduced because the same

cladding configuration was used to make a cladding pumped holey fibre laser, in which the

offset is used to enhance the modal overlap between the core and cladding modes [29]. Note

that the four holey fibres considered within this section are made entirely from silica glass,

but that a lower grade (higher OH content) glass was used for the outer jacketing tube in

the preform of these fibres.

The measured effective mode areas, extracted from divergence measurements as de-

scribed in Section 4.3, are listed in Table 4.1 for each fibre included in this chapter. The

effective mode areas range from 130 µm2 to 230 µm2 at 1550 nm. For comparison, conven-

tional Corning SMF-28 telecommunications fibre has a mode area of approximately 85 µm2

at 1550 nm [112], and the largest mode area (of a single-mode fibre) achieved with con-

ventional technology is around 400 µm2 at 1550 nm [31]. Although endlessly single-mode

holey fibres have been demonstrated with effective areas as large as 1000 µm2 [37], here we

choose to study holey fibres with more conservative mode areas, which possess reasonably

low bending losses. However, this work is extended to larger mode area holey fibres in
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Figure 4.7: Holey fibre HF1: the hole-to-hole spacing (Λ) is 7.55 µm and the hole diameter (d) is 1.71 µm.

further sections (see Chapter 5).

4.5.3 Bend loss as a function of radius of curvature

Loss was measured at 1550 nm as a function of the bend radius for fibres HF1, HF2 and

HF3 using the experiment described in Section 4.4 . These measurements were repeated for

several random angular orientations of the fibre and are shown in Figs 4.8 (a), (b) and (c), by

the open shapes. Superimposed on each graph is a curve fitted to all the experimental data

for each fibre. This enables us to average over the different angular orientations and thus

extract an average value for the critical bend radius, Rc. Note that the fibres considered in

this section are endlessly single-mode and that Rc ≡ R
FM

c , where R
FM

c is the critical bend

radius of the fundamental mode. This critical radius is found to be 21 mm, 46 mm and

66 mm for holey fibres HF1, HF2 and HF3 respectively, which increases with mode size as

expected.

In order to understand the relative contributions that transition loss and pure bend loss

make to the net observed loss, these results are compared to theoretical predictions. For

one full loop of fibre, there are two transition regions, one at the beginning of the bend and

another at the end of the bend, which result in two transition losses. Figs 4.9 (a), (b) and
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Table 4.1: Fundamental mode area (A
FM

eff ) for holey fibres HF1 − HF4 and the conventional step-

index fibre C1. The holey fibre parameters are extracted from scanning electron microscope im-

ages.

fibre NA a [µm] A
FM

eff [µm2] @ 1.55 µm

C1 0.11 4.0 126

fibre Λ [µm] d/Λ A
FM

eff [µm2]

@ 1.55 µm @ 633 nm

HF1 7.6 0.23 130 72

HF2 9.7 0.23 215 100

HF3 11.3 0.24 230 103

HF4 9.5 0.25 180 98

Figure 4.8: Loss for one loop of fibre as a function of bend radius. Open shapes represent measured bend

loss for (a) HF1, (b) HF2 and (c) HF3 for different random angular orientations of the fibre. The solid line

in each graph corresponds to the fitted curve from which the critical radius is extracted.

(c) show the measured bend loss for fibres HF1, HF2 and HF3, as in the previous graph,

together with predicted values for the transition loss and pure bend loss. The dotted lines

in Figs 4.9 (a), (b) and (c) show the predicted transition loss for one full loop of fibre bent

in the φ = 0o, 45o and 90o directions for HF1, HF2 and HF3 respectively. These predicted

values clearly show that transition loss is a small overall contribution to bend loss for these

holey fibres in the macro-bend regime at 1550 nm and implies that the majority of loss

must be attributed to pure bend loss.

The predicted pure bend loss is shown for each fibre by the solid lines in Figs 4.9 (a),

(b) and (c) for bends in the φ = 0o, 45o and 90o directions. Recall that in the model of

pure bend loss described in Section 3.5, a constant of proportionality (τ) was introduced
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Figure 4.9: Loss as a function of bend radius. Open shapes represent measured bend loss for (a) HF1,

(b) HF2 and (c) HF3 for different random angular orientations of the fibre, while the predicted pure bend

loss is shown by solid lines for bends in the φ = 0o, 45o and 90o direction. The predicted transition loss is

shown by dotted lines for bends in the φ = 0o, 45o and 90o direction.

in Eq. 3.16. Since the transition loss is a small contribution to the overall loss (Fig. 4.9),

this factor can be found by fitting the predicted curves to the experimental data. We find

that by choosing τ = 6, we achieve excellent agreement with experimental data for all

three fibres, as can be seen in Figs 4.9 (a), (b) and (c). For example, using our scalar

model, the critical bend radius of the fundamental mode (R
FM

c ), is predicted to be 23 mm,

44 mm and 58 mm for holey fibres HF1, HF2 and HF3 respectively. This compares well

with experimental values of R
FM

c (given above) of 21 mm, 46 mm and 66 mm for holey fibres

HF1, HF2 and HF3 respectively.

As mentioned above, the holey fibres considered within this chapter (HF1, HF2, HF3

and HF4) are not made from a single grade of silica. A lower grade (higher OH content)

silica glass was used for the outer jacketing tube in the preform of these fibres. In addition,

we find that the bend losses of these fibres are lower than those fibres made from a single

grade of silica. This may result from the fact that the refractive index of this lower grade

silica is slightly less than the silica used in the rest of the fibre. As a result, the lower index

region acts as a secondary cladding and, when the fibre is bent, may act to confine the bent

mode to the inner cladding more effectively, enabling the cladding modes to couple back

into the core mode more efficiently, resulting in lower bending losses. Consequently, we find

that the fitting factor τ is actually greater for these fibres than other holey fibres that have

been made entirely from a single, high grade of silica. For all other fibres considered in this

thesis, τ = 2.0 is found to produce the best agreement with experiment. For example see

Sections 5.4, 5.6, 6.2.4, and 7.3.3.

95



Section 4.5. Chapter 4. Experimental methods

4.5.4 Distinguishing transition loss and pure bend loss experimentally

In this section, we present results from the experiment designed to separate the relative

contributions of transition loss and pure bend loss, shown in Fig. 4.5.4. This experiment

was performed for the conventional fibre C1 (A
FM

eff = 126 µm2 at 1550 nm) and the similarly

sized holey fibre HF1 (A
FM

eff = 130 µm2 at 1550 nm) to enable comparisons to be drawn

between the two fibre types. For each fibre, the loss was measured as a function of θ for a

fixed radius of curvature. A radius of 14.5 mm was chosen to ensure that the loss due to

mode deformation was sufficiently large for the transition region to be clearly visible.

λ = 1550nm
R = 14.5mm
Conventional fiber

λ = 1550nm
R = 14.5mm
HF1

λ = 1550nm
R = 19mm
HF1

o o o

(a) (b) (c)

1 HF1HF1C

Figure 4.10: Results from experiment shown in Fig. 4.6 for λ = 1550 nm (a) conventional fibre C1,

Ro = 14.5 mm, (b) holey fibre HF1, Ro = 14.5 mm, (c) holey fibre HF1, Ro = 19 mm.

Figs 4.10 (a) and (b) show the measured loss at 1550 nm for Ro = 14.5 mm as a function

of angle for the conventional fibre C1 and holey fibre HF1 respectively, together with fitted

curves drawn to guide the eye. Unsurprisingly, we find that the overall loss values for HF1

are similar in magnitude to those of the similarly sized conventional fibre C1. In addition,

we find that, for both fibre types, two regions of loss can be distinguished: the curved

section at small values of θ is the transition region, while pure bend loss dominates as the

length of the bent fibre is increased. As expected, we find that a linear fit can be used to

describe the pure bend loss region. For the case of holey fibre HF1, data sets are shown

that correspond to two different angular orientations of the fibre relative to the bend (see

Fig. 4.10 (b)). These two data sets demonstrate that both the transition loss and the pure

bend loss depend strongly on the orientation of the holey fibre relative to the bend. Notice

also that the shape of the curve in the transition region for holey fibre HF1 is more complex

than that of the conventional fibre, which may reflect the more complex spatial modal field

distribution of a bent holey fibre
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The pure bend loss for one loop of fibre, extracted from the slope of the linear fit

to the pure bend loss regions in Figs 4.10 (a) and (b), is found to be 19.4 dB for the

conventional fibre C1 and 14.0 dB and 16.6 dB for the different orientations of holey fibre

HF1 for Ro = 14.5 mm. The range of values measured here for HF1 compare well with

predicted values of pure bend loss, which range between 13.9 dB and 16.8 dB depending

on the angular orientation of the fibre and the polarisation of the mode. (The variation in

bend loss as a function of angular orientation and polarisation is discussed in more detail

in Section 4.5.5.)

The transition loss for Ro = 14.5 mm, extracted from the y intercept of the straight

line fit, is found to be approximately 0.06 dB for the conventional fibre C1 and 4.5 dB

and -2.2 dB for the different orientations of the holey fibre HF1. This latter, apparently

non-physical, result may arise from the assumption that the pure bend loss is constant

within the transition regions at the beginning and end of the bend. This is true only if the

mode of the straight fibre transforms into the mode of the bent fibre instantaneously. From

the width of the transition region in Figs 4.10 (a) and (b) we can see that this is not the

case. As mentioned previously, on entering the bend, the modal field evolves, over some

length scale, into the mode of the bent fibre, which extends further into the cladding in the

direction of the bend. In the initial stages of distortion, the pure bend loss will thus be less

than for the fully distorted mode. By assuming a constant value of pure bend loss within

the transition region, we underestimate the transition loss from the intercept of the straight

line fit to the pure bend loss region. From this argument, we can see that the y intercept of

the straight line fit to the pure bend loss region may be negative, if the mode distortion is

significant. For fibre HF1 at 1550 nm, with a bend radius of 14.5 mm, the overall predicted

transition loss is equal to 2 dB, which is approximately consistent with the experimentally

derived values. Although this value is still small when compared to the pure bend loss, it

is significantly higher than the measured transition loss for the similarly sized conventional

fibre C1 for Ro = 14.5 mm.

Results for Ro = 19 mm for fibre HF1 at 1550 nm are shown in Fig. 4.10 (c) and

demonstrate that for this larger bend radius and lower overall loss, the transition region is

relatively less pronounced. The two data sets shown here were chosen to correspond with

the maximum and minimum observed loss orientations. The pure bend loss for one loop

of fibre, extracted from the slope of the linear fit to the pure bend loss regions in Fig. 4.10

(c) are 4.0 dB and 12.6 dB for the different orientations of holey fibre HF1. Again, this
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shows good agreement with our predicted values for pure bend loss, which are found to be

between 6.6 dB and 7.7 dB for one loop of fibre, depending on the angular orientation of

the fibre and the polarisation of the mode.

The effect of the short wavelength loss edge was also briefly investigated. Since the

midpoint between the long and short wavelength loss edges has empirically been shown

to be Λ/2 [32], we expect that the bend loss for all wavelengths below 1550 nm should

increase, despite the fact that the mode size decreases (A
FM

eff = 130 µm2 at 1550 nm and

A
FM

eff = 70 µm2 at 633 nm). This was confirmed experimentally by measuring the bend loss

of fibre HF1 at 633 nm, using the set-up shown in Fig. 4.6 for the two angular orientations

shown in Fig. 4.10 (b) (Ro = 14.5 mm, data not shown here for reasons of brevity). As

expected, we find that the losses at 633 nm are considerably higher than for this same bend

radius at 1550 nm, shown in Fig. 4.10 (b). The components of loss, extracted from a straight

line fit to the pure bend loss region, yield values of 9 dB for two transition losses and 50 dB

for one full loop of fibre. Although the transition loss is still a small overall contribution to

the overall loss, it is relatively higher than for the same fibre and bend radius at 1550 nm.

In addition, we also find that there is no significant difference in the bending losses for

the two angular orientations of fibre, which correspond to the maximum and minimum

loss orientations found at 1550 nm. Recall that our predictions show that for a given bend

radius, the modal field suffers a greater distortion at 633 nm relative to 1550 nm, increasing

the modal field intensity close to the boundary of the microstructured cladding. As a result,

we may expect the variation in loss as a function of angular orientation to increase at 633 nm

relative to 1550 nm. This is something that obviously warrants further investigation, but

is not considered in any more detail here.

In the next section, we investigate the effect of the geometry of the cladding structure

on the bend loss characteristics at 1550 nm in more detail.

4.5.5 Bending losses in holey fibres as a function of angular orientation

For the holey fibres considered in this chapter, we have shown that the measured bend loss

varies as a function of the angular orientation of the fibre in the bend (see for example

Fig. 4.10). In this section we look at this in more detail using both experimental and

theoretical techniques.

In Fig. 4.11 the predicted pure bend loss is shown for holey fibre HF1 as a function of

bend radius. For each bend radius, the loss is shown for bend directions of φ = 0o, 45o and
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90o, calculated using both the scalar and vector version of the modal model described in

Section 3.2. The relationship between the bend loss, the bend direction and the polarisation

of the mode is complex, and for simplicity we highlight the main trends shown in Fig. 4.11.

We can clearly see that the variation in bend loss for any given bend radius increases as the

bend becomes tighter. In addition, we find that for those bends that are tighter than the

critical radius, the variation in loss can be mainly attributed to the different polarisations

of the mode. (In addition, we also find that the degree of variation is most pronounced

for the y-polarised mode in this regime). Conversely, for those bends that are larger than

the critical radius, the loss variation is greatest for the different bend directions, and the

influence of the mode polarisation is small. Note also that while the results calculated using

the scalar version of the modal model in Section 3.2 predict a smaller variation in loss with

respect to the angular orientation of the fibre in the bend, the average loss values agree

well, demonstrating that the scalar version is perfectly adequate for a practical estimation

of R
FM

c .

From previous experiments we have seen that the observed variation in loss agrees well

with predicted values for pure bend loss. However, in the results presented in Section 4.5.4

only a few angular orientations of the fibre were considered. To evaluate the relationship

between bend loss and the angular orientation of the fibre in a more systematic manner,

we used the experimental set-up shown in Fig. 4.6. The wrap-around angle θ was fixed at

130o and the loss was measured as a function of angular orientation (φ) for holey fibre HF1

for a fixed bend radius of 14.5 mm and 19 mm at 1550 nm. A wrap-around angle of 130o

was chosen so that the majority of loss could be attributed to pure bend loss without the

overall loss value being too severe. The resulting loss curve for Ro = 14.5 mm (not shown

here for brevity) shows a variation in loss with angular orientation that is equivalent to a

loss of 41.5 dB in one full loop of fibre, with a minimum loss of 5.5 dB and an average loss

approximately equal to 19 dB for one loop. This value, averaged over 160 equally spaced

angular orientations, agrees well with our predicted values of pure bend loss, which range

between 13.9 dB and 16.8 dB depending on the angular orientation of the fibre and the

polarisation of the mode (from Fig. 4.11). However, the observed variation in loss per loop

is far greater than predicted by theory; 41.5 dB compared to the predicted value of 2.9 dB.

Similarly, we find that for a bend radius of 19 mm, the average observed loss values

agree well with predictions, but the degree of variation does not. Measured values of bend

loss vary between 4.0 dB and 12.6 dB, with an average value (averaged for 11 equally spaced
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Figure 4.11: Predicted pure bend loss as a function of bend radius for HF1 at 1550 nm for different bend

directions (φ) and polarisation states as indicated on the figure.

values of φ) of 8.7 dB for one loop of fibre, while predicted values vary from 6.6 dB to 7.7 dB

for one loop of fibre.

In order to understand this apparent discrepancy between the observed variation in loss

and our theoretically derived values, we investigated how the cladding structure of the fibres

used here differs from the idealised fibre profile used in our theoretical calculations. One

obvious difference is the slightly irregular nature of the outer boundary of the microstruc-

tured cladding, which results from the fact that the positions of the air holes deviate from

the perfect lattice in the 3 outermost rings of holes. Furthermore, in all of the fibres used

here, the core is offset from a central position by one lattice point and results in the fact

that the extent of the cladding (D) varies from seven to eight rings of holes around the
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core. Unfortunately, the loss curves for HF1 as a function of angular orientation at 14.5 mm

and 19 mm (both not shown here) have a complex shape, and it is difficult to correlate the

measured loss values with any of the features discussed above. However, we find that by

increasing the bend radius and thus decreasing the overall loss values, it becomes easier to

distinguish the effects of some of the cladding features.

The bend loss was measured as a function of the angular orientation of the fibre for

holey fibre HF4, which is larger in scale than HF1 (parameters shown in Table 4.1), but has

an almost identical cladding configuration. A bend radius of 30.5 mm was chosen for this

fibre to achieve low overall bending losses so that the effects of the cladding might be more

clearly distinguished. Fig. 4.12 (a) shows loss as a function of angular orientation for HF4

for a wrap-around angle of 130o and a bend radius of 30.5 mm at 1550 nm. Fig. 4.12 (b)

shows 1/D as a function of angular orientation, where D is defined as the distance from

the centre of the core to the centre of the outermost hole in the cladding. We can see that

these two graphs are strongly correlated, with the region of minimum loss coinciding with

the direction in which the extent of the cladding is greatest and the maximum region of loss

coinciding with direction in which the outermost hole is closest to the core. Indeed, these

results show that for this radius, one additional ring of holes in the cladding can reduce

the loss by approximately 1.5 dB for a wrap-around angle of 130o, which is equivalent to a

reduction of 20 dB/m. In addition to the overall shape of the two curves, we can also see

that some of the sharp features in the shape of the cladding boundary are reflected in the

loss curve. For example, around 140o and between 200o and 230o sharp increases in loss

can be seen to correspond to holes in the outermost cladding that are closer to the core

than their neighbours. This demonstrates that both the overall extent of the cladding and

the shape of the boundary are important factors in determining the bend loss and must be

considered in the design of future holey fibres.

4.6 Discussion and conclusion

The theoretical approaches to bend loss presented in Chapter 3 are validated via compari-

son with experimental results in the above sections. Results from an experiment designed

to separate the components of bend loss is presented in Section 4.5.4. The results from

this experiment, which was performed for several different bend radii and at different wave-

lengths, show, unsurprisingly, that both components of bend loss increase as the bend radius

is reduced. In addition, by comparing results for different wavelengths it can be seen that
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Figure 4.12: (a) Loss as a function of angular orientation for holey fibre HF4 Ro = 30.5 mm (b) 1/D as

a function of angular orientation for holey fibre HF4 where D = distance from the centre of the core to the

outermost hole in the cladding.

both the transition loss and the pure bend loss increase towards short wavelengths, despite

the fact that the mode area decreases, demonstrating the presence of the short wavelength

bend loss edge. These relationships are correctly predicted by the models for transition

loss and pure bend loss described in Sections 3.4 and 3.5, and show that the mode of the

bent fibre becomes increasingly distorted with decreasing bend radii and wavelength. In

addition, both experimental observations and theoretical predictions show that the transi-

tion loss is a small overall contribution to macro-bend loss in the holey fibres considered

here and that the bend loss for one full loop of fibre can be well approximated by pure

bending losses only, as in conventional fibres. Recall that in the model of pure bend loss
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described in Section 3.5, a constant of proportionality (τ) was introduced in Eq. 3.16. Since

the transition loss is a small contribution to the overall loss (Fig. 4.9), this factor can be

found by fitting the predicted curves to the experimental data. We find that by choosing

τ = 6, we achieve excellent agreement with experimental data for all three fibres, as can be

seen in Figs 4.9 (a), (b) and (c). Indeed, the model of pure bend loss proposed here predicts

the critical radius to within 4-12% of the observed value for the three fibres considered in

this chapter.

As mentioned previously, an important difference between conventional and holey fibres

is the complex nature of the transverse refractive index profile. Previous work on bending

losses in holey fibres has ignored the effect of the complex fibre structure for simplicity.

However, a strong variation in loss is observed as a function of angular orientation in the

holey fibres considered in this section, as demonstrated in Section 4.5.4. Calculations of

pure bend loss made using the full vectorial version of the orthogonal function method

(as described in Section 3.2), demonstrate that the bend loss does vary as a function of

the angular orientation of the fibre in the bend and also that the different polarisations

experience different losses. These calculations, which are presented in Section 4.5.5, show

that the variation in the predicted pure bend loss with respect to angular orientation and

polarisation increases as the bend is tightened. However, the maximum predicted variation

in loss with respect to different bend directions and different polarisation is an order of

magnitude less than the variation observed experimentally and thus the inner fibre geometry

cannot be responsible. Instead, it is found that the variation in bend loss with respect to

the fibre orientation is directly related to the extent of the cladding and, more specifically,

to the distance from the centre of the core to the outermost hole (for the fibres considered

here, the core is offset by one lattice point), as shown in Section 4.5.5. The fact that this

relatively subtle deviation from a perfect structure is so strongly reflected in the bend loss

indicates that the structure of the outer cladding is an important consideration in large-

mode-area holey fibre design. This variation in bend loss results from the fact that the

confinement of the bent mode is strongly dependent on the extent of the cladding. Due to

the fact that the model used here to calculate the modal fields of the bent fibre uses periodic

boundary conditions, we are not able to model the confinement losses of the distorted mode

that are associated with a finite holey cladding. Methods that could be used to study these

effects in holey fibres include the multipole approach and various BPM or finite element

techniques. However, BPM and finite element techniques are typically computationally
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intensive and the multipole approach is not capable of modelling the mode of a bent holey

fibre using the transformation in Eq.3.9, since it assumes a constant background refractive

index [99].

As mentioned in Section 4.8, the four holey fibres considered within this section are

not made from a single grade of silica and possess a lower refractive index region in their

outermost cladding layer due to the fact that a lower grade silica glass was used for the

outer jacketing tube in the preform of these fibres. Consequently, we find that the fitting

factor of τ = 6.0 is too high for other fibres that are made entirely from a single grade of

silica. For all other fibres considered in this thesis, which are made entirely from a high

grade silica, τ = 2.0 is found to produce excellent agreement with experimental results.

(For examples please refer to Sections 5.4, 5.6, 6.2.4, and 7.3.3).

Note that the decrease in τ from 6.0 to 2.0 corresponds to a 3-fold increase in bend

loss, and values of R
FM

c that are between 5 and 20% larger, depending on the particular

fibre structure. These results suggest that a second, lower-index cladding region may be an

effective way to reduce bending losses in large-mode-area holey fibres. This improvement in

bend loss may result from the fact that the lower index region confines the cladding modes

and couples power back into the core mode more efficiently, resulting in lower bending

losses. However, this is not pursed here for several reasons. The methods developed here

to predict bend loss in holey fibres are capable of modelling arbitrary index profiles, and

so can include a low index region in the outer cladding. However, initial calculations made

using the techniques described in Chapter 3 for structures with low index regions in the

outer cladding show minimal improvement in bend loss. This is thought to result from the

fact that coupling effects are ignored in the model of bend loss developed here. Moreover,

the main aim of the work presented here is to gain a good understanding of the way in

which the basic fibre parameters d and Λ influence the mode area, the bend loss and the

modedness of the fibre, which represent the three key fibre properties for large-mode-area

design. This study is presented in the following chapter, in which the trade-offs between

mode area and bend loss are investigated in the single-mode regime as a function of fibre

structure at a wavelength of 1064 nm. The way in which more complex cladding designs

can be used to improve bend loss in a holey fibre is discussed in more detail in Chapter 6.
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Chapter 5

Large-mode-area, single-mode

holey fibres at 1064 nm

5.1 Introduction

The aim of this chapter is to determine the maximum practical mode size that can be

achieved in a holey fibre for single-mode operation at 1064 nm. As with any fibre, the

maximum mode size that can be tolerated in practice is determined by the bending losses.

The upper limit for tolerable bend loss is defined here as a critical bend radius (Rc) of

15 cm, where Rc is defined as the radius at which the bend loss is equal to 3 dB for one

loop of fibre. This value is based on observations of the behaviour of various large-mode-

area fibres during experimental characterisations. I have found that fibres with a critical

bend radius greater than ≈ 15 cm become extremely sensitive to low level vibrations and

air-currents in the laboratory environment, and exhibit rapidly fluctuating power levels.

Of course, the definition of a tolerable bend radius will differ greatly depending on the

application and the way in which the fibre is packaged. For example, some applications

may require short lengths of near straight fibre that could be packaged in a robust and rigid

outer tube to protect from perturbations. In this case the maximum tolerable mode area

will obviously be greater than that predicted here, but for most applications, which require

coiled lengths of fibre in order to minimise device size, a bend radius of <15 cm may be

more practical. For comparison, the minimum recommended bend radius for conventional

single-mode step-index fibre with A
FM

eff ≈ 80 µm2 at 1550 nm is typically < 2 cm.

In order to predict the maximum practical mode size in a single-mode holey fibre at

1064 nm it is therefore necessary to understand the relationships between the structural
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parameters d and Λ, the mode size, the bend loss and the number of modes present in the

fibre. This task is undertaken here using the theoretical techniques described in Chapter 3

and is broken down into three calculation stages. Initially, the effective mode area of the

fundamental mode (A
FM

eff ) is calculated for a range of fibre structures at 1064 nm in order to

map out the range of fibre parameters that produce large-mode-areas (defined as any mode

area greater than 80 µm2, which is approximately that of standard conventional step-index

fibre). Once an appropriate range of structures has been identified, the critical bend radius

of the fundamental mode, R
FM

c , is then calculated for each structure within this range. The

third and final set of calculations determines which fibres within this range are single-mode.

In this way, it is possible to determine the subset of structures within the parameter space

studied that are both single-mode and possess practical bending losses. This three-step

process is split across two sections within this thesis. In an initial study, presented in

Section 5.2, fibres with A
FM

eff up to ≈ 400 µm2 are considered. In Section 5.5.2, this work is

extended to include structures with A
FM

eff up to ≈ 800 µm2 in order to determine the largest

practical mode size attainable in holey fibres at 1064 nm. Unless otherwise indicated, all

values of Rc presented within this chapter have been calculated for a bend in the x direction.

The calculations presented in Section 5.2 provide the basis for a more detailed study into

the effect of the fibre structure on modal properties for A
FM

eff = 190 µm2, which is presented

in Section 5.3. By focussing on a fixed value of A
FM

eff it is possible to look at the relationship

between the fibre structure and the modal properties for fibre close to cut-off in more detail.

Experimental results are presented in Section 5.4 and 5.6 for a selection of holey fibres that

were fabricated as part of this study. These experimental results illustrate the effectiveness

of the numerical techniques used here and demonstrate that the large-mode-area structures

considered here can be fabricated. In order to understand how holey fibres compare with

conventional step-index fibres in this large-mode-area, single-mode regime, a similar study

is also undertaken for conventional fibres and the results of this are presented in Section 5.7.

5.2 Defining the range of practical structures (1)

5.2.1 Effective mode area

In this section we investigate how the structural parameters Λ and d/Λ influence the ef-

fective area of the fundamental mode of holey fibres at 1064 nm. In the first of these

studies presented here, the range of fibre parameters evaluated is chosen with the aim of
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encompassing single-mode structures with 80 µm2 <∼A
FM

eff
<∼ 400 µm2, that are also practical

to fabricate. (The fabrication of holey fibres is discussed in Section 1.2.4.)

The minimum value of d/Λ is chosen to be 0.2 due to the fact that the modal properties

of large-mode-area holey fibres, such as A
FM

eff , become increasingly sensitive to the fibre

structure towards small values of d/Λ and this reduces tolerances during fabrication [31].

Moreover, we find that values of d/Λ < 0.2 result in impractically large bending losses (see

Section 5.1.) The maximum value of d/Λ is determined by considering the upper limit on

single-mode operation. Although there is much debate over how to determine the number

of modes present in a holey fibre, with the cut-off for single-mode operation quoted for

values of d/Λ ranging from 0.4 to 0.45 [142, 17, 143, 144, 145, 146, 147], all reports agree

that holey fibres are multi-mode for values of d/Λ > 0.5 at 1064 nm. As a result, structures

with 0.2< d/Λ < 0.5 are studied here. The range of values for Λ is then determined only

by the range of effective areas required. In this section I choose 7µm < Λ <14µm to take

a first look at the range of effective mode sizes this creates.

Fig. 5.1 shows a plot of effective mode area for the fundamental mode (A
FM

eff ) at 1064 nm

as a function of Λ, for 7µm < Λ < 14µm for 4 values of d/Λ: 0.2, 0.3, 0.4 and 0.5 at

1064 nm. For the range of structures considered here, A
FM

eff ranges from 56 to 410 µm2.

This plot shows that the mode size can be enlarged by increasing Λ, which acts to increase

the core size, or by using smaller holes, which acts to lower the numerical aperture. Note

that different fibre structures can result in the same values of A
FM

eff . For example, an effective

mode area of 155 µm2 can be achieved with Λ = 8.0 µm, d/Λ = 0.2 and with Λ = 12.0 µm,

d/Λ = 0.5, as shown in Fig. 5.1. The intensity profile of the fundamental mode for these

two fibres is shown in Fig. 5.2 (a) and (b) respectively. These modal profiles show clearly

that while these two fibres share the same value of effective mode area, the mode shapes

are significantly different, reflecting the geometry of each fibre. In Fig. 5.2 (a), the mode

extends past the first ring of air holes and as a result is filamented in shape. In contrast, the

mode in Fig. 5.2 (b) is well confined to the core and presents a neater, more Gaussian-like

mode shape. These differences arise from the different value of the effective cladding index

(nFSM) in each fibres. For the fibre in Fig. 5.2 (a) nFSM = 1.448697, and for the fibre

in Fig. 5.2 (b) nFSM = 1.448135 (see Fig. 6.1 (b) in Chapter 6), which corresponds to a

numerical aperture (NA) of 0.052 and 0.066 respectively. (the refractive index of silica is

taken from the Sellmeier equation to be 1.449631, as described in Section C). In the fibre

in Fig. 5.2 (a), the low NA allows the light to penetrate further into the cladding region
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Figure 5.1: Points show the predicted effective mode area of the fundamental mode (A
FM

eff ) as a function of

the hole-to-hole spacing, 7 µm < Λ < 14 µm, for a range of relative hole sizes: 0.2 < d/Λ < 0.5 at 1064 nm.

The solid line for each value of d/Λ is a fitted curve of the form y = ax3 + bx2 + c drawn to guide the eye.

than in the fibre in Fig. 5.2 (b), which has a higher NA. As a result, the mode areas of the

fibres are equal, despite the fact that the region of silica inside the inner ring of holes (i.e.

the core) is smaller for the fibre in Fig. 5.2 (a) than in Fig. 5.2 (b).

In order to better visualise the relationship between the fibre structure and the mode

size of the fundamental mode, I have used the data in Fig. 5.1 to create a contour plot of

A
FM

eff as a function of Λ and d/Λ, which is shown in Fig. 5.3. (Note that the accuracy in the

fit used to construct this contour plot is ≈ 2 − 3%). This plot shows how the mode area

increases with increasing values of Λ and decreasing values of d/Λ. It can also be seen that

the mode area increases more rapidly with decreasing d/Λ towards smaller values of d/Λ.
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(a) (b)

Figure 5.2: Modal intensity profile at 1064 nm for a holey fibre with (a) Λ = 8.0 µm, d/Λ = 0.2 and (b)

Λ = 12.0 µm, d/Λ = 0.5. Contours are separated by 2 dB.

This results from the fact that the modal field becomes less affected by each individual

hole as d/Λ decreases, allowing the modal field to penetrate further into the cladding. By

tracing the path of any given contour line on this plot it can also be clearly seen that a

wide range of structures can be used to create fibres with the same mode area. However,

as demonstrated by the above examples (shown in Fig. 5.2 (a) and (b)), each different

structure that results in the same mode area will correspond to a fibre with a different

mode shape and a different NA. (The effect of the fibre structure on mode shape, bend loss

and modedness is studied in detail for A
FM

eff = 190 µm2 in Section 5.3). The differences in

mode shape and NA may influence both the number of modes guided by the fibre and the

associated bending losses. The next step in this study must therefore be to determine the

bend loss and the modedness of each of the structures considered here in order to determine

the best way of creating single-mode fibres with the lowest bending losses for a given mode

area.

5.2.2 Bend loss

In this section, the critical bend radius of the fundamental mode (R
FM

c ) is calculated for

each of the fibres in Fig. 5.1 using the numerical techniques described in Chapter 3. The

results of these calculations are plotted in Fig. 5.4. As described in Section 4.5, R
FM

c is

evaluated for each fibre considered by calculating the bend loss for several values of bend
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Figure 5.3: Contour plot generated from the data in (a) showing effective mode area in µm2 as a function

of Λ and d/Λ.

radius above and below R
FM

c . The value of R
FM

c is then extracted by fitting a curve through

these points, as demonstrated in Section 4.5.3. The number of calculations performed for

any given fibre thus depends on the number of points required to ensure that a fitted curve

is representative, which is usually somewhere between 4-6. However, towards small values

of Λ and large values of d/Λ, the bend loss becomes a sharp function of bend radius and

a greater number of points are required to accurately determine R
FM

c (This is discussed

further in Section 5.3). Note that in Fig. 5.4, the critical bend radii of the smallest mode

area fibres with d/Λ = 0.5 are not shown. These calculations have been omitted for two

reasons: (1) the calculation of R
FM

c is time consuming for these fibres as described above

and (2) the critical bend radii of these fibres are small, each less than 2 cm, and so the
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bend loss is not a concern from a practical standpoint.

Figure 5.4: Points show predicted values of the critical bend radius of the fundamental mode (R
FM

c ) as a

function of the hole-to-hole spacing, Λ, for a range of holes sizes: 0.2 < d/Λ < 0.5 at 1064 nm. The solid

line for each value of d/Λ is a fitted curve of the form y = ax3 + b, drawn to guide the eye. The dotted line

marks the position of R
FM

c = 15 cm.

Fig. 5.4 shows R
FM

c for a selection of the fibres considered here at 1064 nm, which

range in A
FM

eff from 56 to 410 µm2. For the entire range of fibres, R
FM

c ranges from below

2 cm to as high as 45 cm. However, only those fibres with practical levels of bend loss

(R
FM

c < 15 cm) are indicated on Fig. 5.4. This plot shows that the bend loss improves

(i.e. R
FM

c decreases) with decreasing Λ and increasing d/Λ. These facts demonstrate that

the relationship between bend loss and the fibre structure in holey fibres is similar to that

of conventional fibres, in which the bend loss can be improved by decreasing the core size
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Figure 5.5: Thick black lines show contours of the critical bend radius of the fundamental mode (R
FM

c )

in cm (generated from the data in Fig. 5.4) as a function of Λ and d/Λ. The dashed red and black line

indicates the R
FM

c = 15 cm contour line. The graded colour contours correspond to A
FM

eff in µm2, repeated

from Fig. 5.3.

and/or increasing the numerical aperture. This is further discussed in Section 5.7, in which

the bending losses of holey and conventional fibres at 1064 nm are compared in detail.

As before, a contour plot of R
FM

c as a function of Λ and d/Λ is constructed in order to

better visualise the relationship between the fibre structure and the bend loss (note that the

accuracy of the fit that is used to construct this contour plot is ≈ 2−3%). Contour lines of

R
FM

c in cm are shown by the thick black lines in Fig. 5.5, which are superimposed onto the

contour plot of A
FM

eff , repeated from Fig. 5.3. As in Fig. 5.4, this contour plot demonstrates

that the bending losses increase towards larger values of Λ and decrease for larger values

of d/Λ. By plotting the A
FM

eff and R
FM

c together in this way it becomes easy to visualise
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how the A
FM

eff and R
FM

c both change with respect to the structural parameters. For example,

Fig. 5.5 demonstrates that for a given value of d/Λ, both A
FM

eff and R
FM

c increase with Λ.

Similarly, for a fixed value of Λ we see that both A
FM

eff and R
FM

c decrease as the relative

hole size is increased. Recall that in Section 5.1 the upper limit for tolerable bend loss was

defined as a critical bend radius of 15 cm (shown on Fig. 5.3 by the dashed red and black

contour line). By using this definition, the range of fibres that possess tolerable levels of

bend loss are located above the R
FM

c =15 cm contour line in Fig. 5.5. The largest mode area

fibre in this range has A
FM

eff ≈ 320 µm2. However, it can be seen that for any given value of

A
FM

eff , the bending losses improve as the relative hole size increases. This demonstrates that

the optimum way of creating large-mode-area holey fibres at 1064 nm, with low values of

bend loss, is to use large values of Λ and d/Λ. (This is intuitive, since it is equivalent to

using a large core and a high NA in a conventional fibre.) If this relationship holds true

for Λ > 14 µm, one can imagine following the contour lines of A
FM

eff > 320 µm2, across and

up to larger values of Λ and d/Λ, into a region of parameter space where R
FM

c < 15 cm.

However, as discussed in Chapter 1, the number of modes supported by a holey fibre

increase with increasing d/Λ. It is therefore essential to know the position of the boundary

between single-mode and multi-mode guidance on Fig. 5.5 before additional structures are

considered. This is explored in the following section.

5.2.3 Modedness

In the previous two sections, the effective mode area and bending losses of the fundamental

mode for a selection of holey fibres with structural parameters in the range 0.2 < d/Λ < 0.5

and 7 µm < Λ < 14 µm have been evaluated and the range of practical structures has been

determined. However, as mentioned in Section 1.5, in this study, I wish only to consider

single-mode structures. In order to assess the subset of structures in Fig. 5.5 that are

single-mode, I choose to use a simple analytical formula from Ref. [19] that is extrapolated

from numerical calculations made using a multipole technique. In Ref. [19], the modedness

is determined by evaluating the effective area of the first mode above the fundamental

mode in effective index, herein referred to as the second mode. The second mode is defined

to be a higher-order mode of the fibre if it is confined to the core region. If the second

mode is instead localised within the cladding, it is defined to be a cladding mode. At the

boundary between single and dual-mode guidance the effective area of the second mode

expands rapidly as the mode changes from being tightly confined to the core to filling the
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entire cladding region. As a result, the position of the single/dual-mode boundary can be

calculated by evaluating the effective area of the second mode for a range of structural

parameters. A fit to the numerical data yields the equation below that describes the

parameter subspace over which holey fibres are single-mode:

λ/Λ = α(d/Λ− 0.406)γ (5.1)

where α = 2.80±0.12 and γ = 0.89±0.02. The value of 0.406 represents the predicted value

of d/Λ for which a holey fibre is endlessly single-mode. This equation provides a quick and

simple way of evaluating the position of the single-mode/multi-mode boundary for a wide

range of fibre structures. The calculations within Ref. [19] are performed for a wavelength

of 1550 nm and the refractive index of silica is taken to be 1.444024. Compared with the

value of 1.449631 used here for calculations at 1064 nm, this corresponds to a difference of

less than 0.4% in index. Based on comparisons of (d/Λ)c made using a different technique

in Section 5.3, we deduce that this small difference in refractive index does not seem to

influence the predicted position of the single-mode/multi-mode boundary in any significant

way.

Eq. 5.1 can be rearranged to give an equation that defines the value of d/Λ at which

higher-order modes appear in holey fibres as a function of the structural parameters d and

Λ:

(d/Λ)c =
γ
√

λ/Λ
α

+ 0.406 (5.2)

The value of (d/Λ)c for λ = 1064 nm is indicated on Fig. 5.6 by the solid red line. Note

that (d/Λ)c flattens to an asymptotic value of 0.406 towards large values of Λ. This results

from the fact that the effective cladding index in a holey fibre asymptotically approaches

the refractive index of glass towards large values of Λ. The subset of fibres within the range

studied here that are both single-mode and that possess practical levels of bend loss are

therefore bounded by the solid red line and the dashed red and black R
FM

c = 15 cm contour

line on the contour plot of A
FM

eff in Fig. 5.6. The largest practical mode area in a single-mode

holey fibre at 1064 nm will thus be located at the point where the single-mode/dual-mode

boundary line and the R
FM

c = 15 cm contour line in Fig. 5.6 meet. It can be seen that

this will occur at somewhere in the range 0.3<∼ d/Λ<∼ 0.42 and Λ > 14 µm and is further

explored in Section 5.5.2.

In the next section, I present the results from a more detailed study of mode shape,

bend loss and modedness for a selection of fibres that lie along the 190 µm2 contour line of

A
FM

eff .
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Figure 5.6: Thick black lines show contours of the critical bend radius of the fundamental mode (R
FM

c )

in cm (generated from the data in Fig. 5.4) as a function of Λ and d/Λ. The dashed red and black line

indicates the R
FM

c = 15 cm contour line. The graded colour contours correspond to A
FM

eff in µm2, repeated

from Fig. 5.3. The solid red line indicates the value of (d/Λ)c from Eq.5.2

5.3 Numerical study of holey fibres with A
FM

eff = 190 µm2

5.3.1 Introduction

In this section, results are presented from a detailed numerical study of the modal properties

of a selection of fibres with different structural parameters that all possess A
FM

eff ≈ 190 µm2.

An A
FM

eff of 190 µm2 was chosen as this represents a reasonably large-mode-area for which

all fibres with d/Λ > 0.2 are practical in terms of their bending losses (R
FM

c < 15 cm),

as shown in Fig. 5.6. This range of structures thus encompasses both single-mode and

multi-mode fibres. The aim of this study is to evaluate how the modes of these fibres
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and their associated losses change as the relative hole size increases. By choosing a range

of fibres with the same A
FM

eff it is possible to make valid comparisons in terms of bending

losses. These results are also used to validate the use of Eq. 5.2 to determine the position

of the single-mode/multi-mode boundary shown in Fig. 5.6 and to help illustrate some

of the key findings in the above sections. This numerical study is complemented by the

experimental results presented in Section 5.4, which demonstrate the effectiveness of the

modelling techniques used here to predict the modal properties of large-mode-area holey

fibres.
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Figure 5.7: The effective area contour plot from Fig. 5.3 (b) is repeated here. The solid black lines

represent the R
FM

c lines, the dashed red and black line indicates the R
FM

c = 15 cm contour line and the solid

red line represents the value of (d/Λ)c from Eq.5.2. The dotted black line marks the value of d/Λ where the

A
FM

eff = 190 µm2 contour line intercepts the solid red line. The red dots show the structural parameters of

some holey fibres listed in Table 5.1.
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Table 5.1 lists the structural parameters and calculated modal properties for a selection

of holey fibres that possess A
FM

eff = 190 µm2 at 1064 nm. d/Λ ranges from 0.2 to 0.63 and Λ

ranges from 9.0 to 15.0 µm. The values of A
FM

eff and R
FM

c listed in Table 5.1 have once again

been calculated using the numerical methods described in Chapter 3. The parameters of

these holey fibres are shown by the red dots on the contour plot of A
FM

eff in Fig. 5.7. Note

that the slight deviation in the position of each red dot from the 190 µm2 line in Fig. 5.7 is

in part due to the accuracy of the contour plot itself (fitted curves used to construct contour

lines accurate to ≈ 2 − 3%) and also results from the fact that the effective area of each

fibre is only approximately equal to 190 µm2 in each case (see Table 5.1). However, for the

purposes of this study, the effective areas of each fibre are similar enough to be considered

identical.

5.3.2 Modedness

Table 5.1: Calculated modal properties for a range of holey fibre structures. SM stands for single-mode,

MM stands for multi-mode. FM refers to a property of the fundamental mode.

Fibre Λ d d/Λ A
FM

eff R
FM

c Modes

[µm] [µm] [µm2] [cm]

HFA 9.00 1.80 0.20 190 12.2 SM

HFB 10.70 3.04 0.28 190 7.7 SM

HFC 11.30 3.84 0.34 190 5.9 SM

HFD 12.00 4.80 0.40 188 4.4 SM

HFE 12.20 5.09 0.42 187 4.0 SM

HFF 12.56 5.53 0.44 189 3.7 MM

HFG 12.70 5.73 0.45 188 3.6 MM

HFH 13.40 6.70 0.50 190 3.0 MM

HFI 15.00 9.46 0.63 189 1.8 MM

Also included in Table 5.1 are predictions for the modedness of each fibre, in which

SM indicates a single-mode fibre and MM indicates a multi-mode fibre. This property has

been determined by Vittoria Finazzi from the ORC using a multipole approach [54] (this

approach is outlined briefly in Section 1.4). Note that this technique differs slightly from

the approach in Ref. [19] from which Eq. 5.2, used in the above calculation of modedness
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for a large range of structures, is taken. While both techniques make use of the multipole

approach to calculate the modal properties of a holey fibre, they differ in the way in which

the modedness of a fibre is determined. As mentioned in Section 5.2.3, in Ref. [19], the

modedness is defined by evaluating the localisation of the second mode. For the calcula-

tions reported in this section, the modedness of a fibre is determined by comparing the

effective indices of the second mode and the fundamental cladding mode (also known as

the fundamental space filling mode), which is calculated by considering the fibre structure

without a defect (i.e. no core). The fibre is defined to be single-mode if the effective index

of the second mode is lower than the effective index of the cladding as the second mode is

thus a cladding mode. In Fig. 5.8, the effective modal indices for the second mode (HOM)

and the fundamental space filling mode (FSM) are plotted as a function of d/Λ for the

fibres in Table 5.1 that are close to cut-off. The value of d/Λ at which the two curves

meet thus corresponds to cut-off for A
FM

eff ≈ 190 µm2 at 1064 nm. In Fig. 5.8, the curves

of effective modal index for the second mode and the fundamental space filling mode cross

at d/Λ = 0.4316 (shown by the dashed line). This cut-off value is in excellent agreement

with the value of 0.4287 given by Eq. 5.2 for A
FM

eff = 190 µm2, as shown in Fig. 5.7, which

demonstrates that Eq. 5.2 can be used to accurately define the single-mode/multi-mode

cut-off in holey fibres at 1064 nm.

5.3.3 Modal properties (1): Fundamental mode

Some of the information presented in Table 5.1 is also presented graphically in Fig. 5.9.

The main plot in Fig. 5.9 shows the critical bend radius of the fundamental mode (R
FM

c )

as a function of d/Λ at 1064 nm. The dots represent the calculated values of R
FM

c for each

of the fibres listed in Table 5.1. The red line is a fit to the values of R
FM

c of the form

y = a/(x2 + b) + c, which is drawn to guide the eye. This plot demonstrates that for a

fixed mode area, the critical bend radius of the fundamental mode decreases as the values

of Λ and d/Λ increase and once again confirms that the optimum route towards large-

mode-area fibres with low bending losses is to use large values of d/Λ. The vertical dashed

line in Fig. 5.9 marks the cut-off value of d/Λ ((d/Λ)c = 0.43) at which the fibres change

from being single-mode (SM) into multi-mode (MM) as predicted by both of the multipole

methods described above. The four insets on the right hand side of the main plot in Fig. 5.9

show the modal intensity profiles for fibres HFA, HFB, HFE and HFI from Table 5.1. As

seen previously in Section 5.1, these profiles illustrate how the shape of the mode changes

119



Section 5.3. Chapter 5. Large-mode-area, single-mode holey fibres at 1064 nm

Aeff = 190   m 2

0.42 0.43 0.44 0.45

n ef
f

1.44853

1.44854

1.44855

1.44856

1.44857

1.44858

1.44859

FSM
HOM

0.4316

SM MM

HF E

HF F

HF G

µ

Figure 5.8: Effective modal index as a function of d/Λ for fibres HFE, HFF and HFG at 1064nm. The

closed circles and solid line corresponds to the fundamental space filling mode (FSM), while the open circles

and dotted line corresponds to the second mode (HOM). The fibre parameters are shown in Table 5.1. The

dashed line shows the value of d/Λ at which the two curves of effective index cross.

as the relative hole size increases, with the modal field becoming more confined to the core

and less filamented in shape.

The effect of the relative hole size on the shape of the bent mode is illustrated in

Fig. 5.10, in which modal intensity profiles for 1064 nm are shown for a range of bend radii

for fibres HFA, HFB, HFE and HFI from Table 5.1. These four fibres have A
FM

eff ≈ 190 µm2

at 1064 nm and values of d/Λ = 0.20, 0.28, 0.42 and 0.63 respectively. For each fibre, the

first plot in the series shows the modal intensity profile for the straight fibre and the last

plot in the series represents a bend radius that is close or equal to R
FM

c (see figure caption

for details). As expected, these modes demonstrate that the mode of the bent fibre deforms

outward in the direction of the bend, with the degree of deformation increasing as the

bend becomes tighter. In addition, these modal profiles illustrate how the nature of the

mode deformation changes depending on the relative hole size. For fibre HFA, in which

d/Λ = 0.20, significant mode deformation (and hence bend loss) occurs for bend radii that

are large relative to R
FM

c . For example, for Ro = 15 cm (shown in Fig. 5.10 (b)), which is

23% larger than R
FM

c , the bend loss is ≈ 0.5 dB per loop (≈ 0.5 dB/m). Note that the bend

loss of each fibre considered in Fig. 5.10 is shown as a function of bend radius in Fig. 5.11.
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Figure 5.9: Main plot: Critical bend radius of the fundamental mode (R
FM

c ) as a function of d/Λ at

1064 nm. The black dots represent the values of R
FM

c for the fibres listed in Table 5.1, all of which possess

A
FM

eff = 190 ≈ µm2. The red line is a fit to these values of R
FM

c of the form y = a/(x2 + b) + c, drawn to

guide the eye. The vertical dashed line marks the cut-off position at which the fibres change from being

single-mode (SM) into multi-mode (MM). The four insets on the right hand side of the main plot show

modal intensity profiles of the fundamental mode for the straight fibre for four of the holey fibres studied.

The fibre parameters are shown adjacent to mode profiles. Contour lines are separated by 2 dB

The mode profiles in Fig. 5.10 (b), (c) and (d) and the corresponding bend loss curve in

Fig. 5.11 show that for fibre HFA, the mode deforms in a gradual manner as the bend

is tightened, steadily extending further into the cladding region and experiencing greater

loss. In contrast, for fibre HFI, which possesses considerably larger holes (d/Λ = 0.63), the

mode is well confined to the core even at bend radii close to R
FM

c . For this fibre, the mode

first extends past the first ring of holes for Ro ≈ R
FM

c . As a result, the bend loss occurs

suddenly and increases sharply. This is illustrated by the shape of the bend loss curve in

Fig. 5.11 and by the mode profiles shown in Figs 5.10 (o) and (p), which represent bend

radii of 1.9 cm and 1.8 cm respectively. Despite the fact that the bend radius depicted in

Fig. 5.10 (o) is only 6% larger than R
FM

c , the mode is still confined within the first ring of

holes and experiences losses of only ≈ 0.06 dB per loop (≈ 0.5 dB/m). In comparison, for

fibre HFA, the fibre experiences a loss of ≈ 2 dB per loop (≈ 2.4 dB/m) for a bend radius

that is 6% larger than R
FM

c . The sudden deformation of the bent mode in fibre HFI occurs
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Figure 5.10: Modal intensity profiles of the bent fibre for four of the holey fibres listed in Table 5.1: (a)-(d)

fibre HFA; (a) straight fibre, (b) Ro = 15 cm, (c) Ro = 14 cm and (d) Ro = 12 cm. (e)-(h) fibre HFB; (e)

straight fibre, (f) Ro = 9.4 cm, (g) Ro = 8.4 cm and (h) Ro = 7.4 cm. (i)-(l) fibre HFE; (i) straight fibre, (j)

Ro = 4.4 cm, (k) Ro = 4.2 cm and (l) Ro = 4.0 cm. (m)-(p) fibre HFI; (m) straight fibre, (n) Ro = 2.0 cm,

(o) Ro = 1.9 cm and (p) Ro = 1.8 cm. Contours are spaced by 2 dB.

as the bend radius is decreased from 1.8 cm to 1.9 cm, as in Fig. 5.10 (p), where the mode

becomes significantly deformed, extending well past the first ring of holes and experiencing

losses of ≈ 2.4 dB per loop (> 20 dB/m). The bent modes for fibres HFB and HFE, also

shown in Fig. 5.10, possess d/Λ = 0.28 and 0.42 respectively and demonstrate that the way

in which the mode deforms with respect to decreasing bend radius changes gradually as the

relative size of the holes within the fibre increases.

In summary, Fig. 5.10 and Fig. 5.11 together demonstrate that for a given mode area,

the bend loss improves as d/Λ increases and that the improvement in bend loss towards
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Figure 5.11: Points show bend loss for one loop in dB as a function of bend radius (Ro) for four of the

holey fibres listed in Table 5.1. The solid curves are drawn to guide the eye. The dashed line indicates the

3 dB loss level, which is defined as Rc.

larger values of d/Λ is reflected not only in the absolute value of R
FM

c , but also in the shape

of the bend loss curve. Fig. 5.11 shows clearly that the onset of bend loss in response to

decreasing curvature becomes much sharper as d/Λ increases. This demonstrates that it

is possible to operate close to R
FM

c without incurring significant bend losses in fibres with

large values of d/Λ. However, it should be noted that for radii at which bend losses are low,

the mode deformation can still significantly alter the mode shape and mode area. This is

most notable for fibre HFI in Figs 5.10 (m)-(p). For example, in Fig. 5.10 (o), the mode is

well confined to the core, and the bending losses are low. However, the mode is significantly

deformed, and is squashed against the inner ring of holes in the direction of the bend. This

reduces A
FM

eff by ≈ 15% to ≈ 160 µm2.

This effect is illustrated in Fig. 5.12, in which the relative change in mode area (defined

as A
bent

eff /A
FM

eff , where A
bent

eff is the effective mode area of the fundamental mode in the bent

fibre) for the fundamental mode is plotted as a function of bend radius for each of the
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holey fibres listed in Table 5.1. This graph illustrates that small values of d/Λ offer little

resistance to mode deformation. For small values of d/Λ, the mode of the bent fibre is

pushed gradually out into the cladding region as the bend radius is tightened, increasing

the mode area, but creating a more complex mode shape (as can be see in Figs 5.10 (a)-(d)).

From Fig. 5.12, it can be seen that this pattern of mode deformation holds for fibres HFA,

HFB and probably HFC, in which d/Λ = 0.20, 0.28 and 0.34 respectively. For these fibres,

A
FM

eff has increased by ≈ 5% to ≈ 220 µm2 at Ro = R
FM

c .

d/Λ

Figure 5.12: Relative change in effective mode area (A
FM

eff /A
bent

eff ) as a function of bend radius (Ro) for

the holey fibres listed in Table 5.1. The dashed red line indicates the direction in which the value of d/Λ

increases in this plot.

For each of the fibres with d/Λ ≥ 0.42 however, we see that for some range of bend radii,

the effective area of the bent mode drops below that of the straight fibre. As mentioned

above and illustrated by Fig. 5.10 (o), this reduction in mode area results from the fact that

the large holes strongly confine the mode to the core. Instead of extending into the cladding

region as the fibre is bent, the mode is squashed against the inner ring of holes. However,

Fig. 5.12 shows that as the bend radii is further reduced, the mode area of the bent fibre

reaches a minimum and then begins to increase. This turning point represents the radius

at which the mode starts to extend past the inner ring of holes as in Fig. 5.10 (p). For all

fibres except HFI, the mode area of the bent fibre is either greater than or equal to that

of the straight fibre at Ro = R
FM

c . For fibre HFI, A
FM

eff at Ro = R
FM

c is ≈ 6% smaller than
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the mode of the straight fibre at ≈ 180 µm2, with a minimum value of ≈ 160 µm2 (≈ 15%

smaller than the mode of the straight fibre) at Ro = 1.9 cm. Although the reduction in

A
FM

eff is only significant for the fibres considered here at relatively small bend radii, it may

become a consideration at larger radii in larger mode area fibres.

5.3.4 Modal properties (2): Higher-order modes

As described in Section 1.4, the multipole method is capable of accurately calculating the

confinement losses of the modes of a holey fibre. The confinement losses for the first higher-

order mode present in the multi-mode fibres included in this study have been calculated

by Vittoria Finazzi at the ORC and are listed in Table 5.2 for 6 rings of holes [54]. It has

been shown that in holey fibres with a six-fold symmetric cladding, the fibre modes can be

classified in an analogous way to the symmetry based classification used for the modes in

a step-index fibre [148]. As such, the first higher-order multiplet in a holey fibre is a linear

combination of modes that are equivalent to the TE01, the TM01 and the two degenerate

HE21 modes of a step-index fibre. In the large core, low NA regime, these four modes are

near-degenerate and possess similar levels of confinement losses. Here the confinement losses

are calculated for 6 rings of holes for the first higher-order mode with the highest effective

index, which represents the higher-order mode with the strongest level of confinement. The

modal intensity profiles for the first higher-order mode guided in each fibre are shown in

Fig. 5.13 (a), (b), (c) and (d). Transverse cross sections of these intensity profiles in the x

direction are shown in (e), (f), (g) and (h), and transverse cross sections of the intensity

profile in the x direction are shown in (i), (j), (k) and (l) respectively. Note that the higher-

order mode for the multi-mode fibre with the smallest holes (HFF, d/Λ = 0.44), is broad,

extending well into the cladding region. As d/Λ increases, the modal field of the HOM

becomes smaller and more confined to the core. This change in mode size is reflected in the

confinement losses of the HOM, which reduce dramatically with increasing values of d/Λ.

For the fibres shown here, the confinement losses of the HOM decreases from 3.4 dB/m to

less than 1×10−8 dB/m as the relative hole size is increased from 0.44 to 0.63 (both values

of confinement loss quoted for 6 rings of holes). The high value of confinement loss for the

higher-order mode in fibre HFF (C
HOM

loss = 3.4 dB/m for 6 rings of holes), means that it is

unlikely that this mode would be observed in lengths of fibre greater than a few 10’s of cm.

As as result, we define this fibre to be effectively single-mode and thus extend the range

of d/Λ that results in single-mode guidance in practice. The fact that fibres with values
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of d/Λ > (d/Λ)c can be effectively single-mode is confirmed by the experimental results

presented in Section 5.4.

Table 5.2: Calculated modal properties for a range of holey fibre structures. Note that SM stands for

single-mode, MM stands for multi-mode, FM refers to a property of the fundamental mode, and HOM refers

to a property of the first higher-order mode.

Fibre Λ d d/Λ A
FM

eff R
FM

c Modes C
HOM

loss for 6 rings R
HOM

c

[µm] [µm] [µm2] [cm] of holes [dB/m] [cm]

HFF 12.56 5.53 0.44 189 3.7 MM 3.40 > 14.5

HFG 12.70 5.73 0.45 188 3.6 MM 0.46 > 14.5

HFH 13.40 6.70 0.50 190 3.0 MM 1.75×10−5 14.5 -17.1

HFI 15.00 9.46 0.63 189 1.8 MM negligible 2.7 - 2.8

For fibres HFG, HFH, HFI listed in Table 5.2, the confinement losses of the higher-

order modes are low enough to ensure that these modes would be observed in lengths of

straight fibre of a few metres at least. However, it may still be possible to selectively guide

only the fundamental mode by exploiting the fact that the fundamental mode is the least

sensitive to bend induced loss and that the bend loss is exponentially dependent on the

radius of curvature. If the higher-order modes suffer a sufficiently greater bend loss than

the fundamental mode, it may be possible to selectively remove these modes by bending the

fibre. The technique of removing unwanted higher-order modes by bending the fibre is well

known in conventional fibres [149, 150] and can be evaluated by calculating the bending

losses of the first higher-order mode, since all other higher-order modes present in a fibre

will be less bend resistant. Whether this is also possible in holey fibres can be determined

by using the numerical methods outlined in Chapter 3, which are capable of calculating the

modal properties of higher-order modes. In the scalar version of the orthogonal function

method outlined in Section 3.2, the second and third solutions of the eigenvalue equation

approximate to the linearly polarised LPx
11 and LPy

11 modes, examples of which can be seen

in Figs 5.14 (b) and (c) for fibre HFH.

Unfortunately, whilst the method of calculating bend loss used here is applicable to

higher-order modes, it cannot be used for fibres HFF and HFG due to the fact that they

are so close to cut-off. As mentioned in Section 3.6, the modedness of a holey fibre is

most accurately determined by the multipole approach. However, the multipole approach
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Figure 5.13: Contour plots of intensity for the first higher-order mode in fibres (a) HFF, (b) HFG, (c)

HFH and (d) HFI. The contour lines are separated by 2 dB. Transverse cross sections of the intensity profile

in the x direction are shown in (e), (f), (g) and (h), and transverse cross sections of the intensity profile in

the x direction are shown in (i), (j), (k) and (l) respectively. The fibre parameters are listed in Table 5.1.

is incapable of considering the graded index profile that is required to generate the modes

of a bent fibre. Here we use an orthogonal function method to calculate the modes of the

bent fibre, which systematically produces modal effective indices that are slightly lower

than those calculated by the multipole method (also discussed in Section 3.6). As a result,

the orthogonal function method (incorrectly) predicts that fibres HFF and HFG are single-

mode at 1064 nm. The bend loss for the higher-order modes cannot be calculated in this

instance due to the fact that the point at which all radiation is lost from the fibre, defined

as xr = Ro( βb
βFSM

− 1) in Eq. 3.12, is a negative value for βb < βFSM, where βb and βFSM
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are the propagation constant of the bent fibre mode and the fundamental cladding mode

respectively. However, since the higher-order modes for fibres HFF and HFG, as calculated

by the multipole approach and shown in Fig. 5.13, have higher confinement losses and

extend further into the cladding region than those in fibre HFH, it is reasonable to assume

that the bending losses of the higher-order modes in fibres HFF and HFG will be greater

than those in HFH. Consequently, by calculating the bend losses for fibres HFH, a lower

bound can be placed on the critical bend radius for the higher-order modes of fibres HFF

and HFG.

The LPx
11 and LPy

11 modes, calculated for fibre HFH using the orthogonal function

method, are shown in Figs 5.14 (b) and (c) respectively together with the fundamental

mode for the same fibre, shown in Fig. 5.14 (a). The effective indices of the modes in

Figs 5.14 (a), (b) and (c) are 1.449167 1.448540 and 1.448538 respectively. The same

modes for the bent fibre are shown in Figs 5.15 (a), (b) and (c) for Ro = 15 cm. The

bending losses associated with the LPx
11 and LPy

11 modes for the four multi-mode holey

fibres listed in Table 5.1 are evaluated below.

(a) (b) (c)

Figure 5.14: Modal intensity profile for (a) the fundamental mode, (b) the LPx
11 and (c) LPy

11 for holey

fibre HFH, Λ = 13.4 µm, d/Λ = 0.5 at 1064 nm. Contours are separated by 2 dB.

The bend loss for each of the modes present in fibre HFH is shown in Fig. 5.16 (a) as a

function of bend radius. The solid line represents the bend loss of the fundamental mode

and the dotted and dashed lines represent the bend loss of the LPx
11 and LPy

11 respectively.

The critical bend radius for the LPx
11 and LPy

11 modes is extracted as 14.5 and 17.1 cm

respectively. The smallest of these is still ≈ 5 times larger than the critical bend radius

for the fundamental mode (3.0 cm), demonstrating that the LP11 modes can be stripped

without perturbing the fundamental mode. In Fig. 5.16 (b), the sum of the bend loss from
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(a) (b) (c)

Figure 5.15: Modal intensity profile for (a) the fundamental mode, (b) the LPx
11 mode and (c) the LPy

11

mode, for Ro = 15.0 cm for holey fibre HFH, Λ = 13.4 µm, d/Λ = 0.5 at 1064 nm. Contours are separated

by 2 dB.
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Figure 5.16: (a) Pure bend loss as a function of bend radius for the fundamental mode (solid line) and

the LPx
11 and LPy

11 modes in fibre HFH (dotted and dashed lines respectively) (Λ = 13.4 µm, d/Λ = 0.5).

(b) The sum of the loss from the fundamental and the two higher-order modes shown in (a), assuming a

ratio of 3:1:1 respectively.

the fundamental mode and the LPx
11 and LPy

11 modes is plotted as a function of bend radius

assuming a ratio of 3:1:1 respectively. This ratio is purely chosen to produce a graph of total

bend loss that best matches with some experimental results presented in the next section.

As such, the first rise in loss in Fig. 5.16 (b) represents loss from the LPx
11 and LPy

11 modes

and the second, sharper rise in loss corresponds to the loss from the fundamental mode.
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Note that the loss from the LPx
11 and LPy

11 modes appears as a single curve in Fig. 5.16

(b) due to the fact that the bending losses of the two modes are similar compared with the

fundamental mode. This plot of total bend loss for fibre HFH demonstrates that the LP11

modes can be stripped from the fibre using a few turns with a bend radius of ≈ 10− 15 cm

or a single loop of ≈ 8 cm, without suffering loss from the fundamental mode. Indeed, as

can be seen from Fig. 5.15 (a), the fundamental mode is not perturbed to any significant

degree for Ro = 15 cm. However, approximately 2 dB of power is lost from the fibre in this

process, which is less than ideal from a power handling perspective.

The numerical results presented above demonstrate that it is possible to remove higher-

order modes by introducing a bend in a holey fibres for d/Λ = 0.5. In the following, a

similar evaluation is performed for fibre HFI, in which d/Λ = 0.63, and hence possesses

lower overall bend loss, in order to determine the upper limit in which this approach can be

successfully used to eliminate higher-order modes. The LPx
11 and LPy

11 modes calculated

for fibre HFI using the orthogonal function method are shown in Figs 5.17 (b) and (c)

respectively together with the fundamental mode for the same fibre, shown in Fig. 5.17 (a).

The same modes for the bent fibre are shown in Figs 5.18 (a), (b) and (c) for Ro = 3.0 cm.

The bending losses associated with the LPx
11 and LPy

11 modes for the fibre HFI are evaluated

below.

(a) (b) (c)

Figure 5.17: Modal intensity profile for (a) the fundamental mode, (b) the LPx
11 and (c) LPy

11 for holey

fibre HFI, Λ = 15.0 µm, d/Λ = 0.63 at 1064 nm. Contours are separated by 2 dB.

The calculated bending losses for the first three modes present in fibre HFI are plotted

as a function of bend radius in Fig. 5.19 (a). The solid line represents the bend loss of the

fundamental mode and the dotted and dashed lines represent the bend loss of the LPx
11

and LPy
11 respectively. In contrast to the loss curve of the fundamental mode, in which
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(a) (b) (c)

Figure 5.18: Modal intensity profile for (a) the fundamental mode, (b) the LPx
11 mode and (c) the LPy

11

mode, for Ro = 3.0 cm for holey fibre HFI, Λ = 15.0 µm, d/Λ = 0.63 at 1064 nm. Contours are separated

by 2 dB.
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Figure 5.19: (a) Bend loss as a function of bend radius for the fundamental mode (solid line) and the

LPx
11 and LPy

11 modes in fibre HFI (dotted and dashed lines respectively) (Λ = 15.0 µm, d/Λ = 0.63). (b)

The sum of the loss from the fundamental and the two higher-order modes shown in (a), assuming a ratio

of 3:1:1 respectively.

the loss begins sharply at Ro ≈ R
FM

c , the bend loss for the higher-order modes increases

more gradually as function of bend radius, reflecting the fact that the modes are not so well

confined to the core. The fact that the higher-order modes become more distorted than the

fundamental mode for the same bend radius can be seen in Fig. 5.18 and Fig. 5.19. The

critical bend radius for the LPx
11 and LPy

11 modes is extracted as 2.7 and 2.8 cm respectively.
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Once again, the sum of the bend loss from the fundamental mode and the LPx
11 and LPy

11

modes is plotted as a function of bend radius assuming a ratio of 3:1:1 respectively in

Fig. 5.19 (b). The critical bend radii for the LP11 modes are ≈ 1.5 larger than the critical

bend radius of the fundamental mode, which is equal to 1.8 cm. From Fig. 5.19 (b) it can

be seen that the higher-order modes can be stripped from the fibre using several turns of

fibre with a bend radius of ≈ 2.5 − 3.0 cm or a single loop of ≈ 2 cm. However, although

the bend loss for the fundamental mode is not significant for Ro = 2 − 3 cm, the modal

distortion does affect the mode area of the fundamental mode in this range. As shown

above in Fig. 5.10 (n) for Ro = 2.0 cm and in Fig. 5.18 (a) for 3.0 cm, the fundamental

mode is somewhat squashed. For these radii, A
bent

eff of fibre HFI reduces to ≈ 96% and

85% of that of the straight fibre, reducing the power handling capabilities of the fibre. As

such, these results suggest that for the mode area of ≈ 190 µm2 considered here, fibre HFI

with d/Λ = 0.63, probably represents the upper limit in d/Λ in which the higher-order

modes can be successfully stripped by bending the fibre, without significantly perturbing

the fundamental mode.

5.3.5 Conclusion

In conclusion, the numerical work presented in this section explores, in detail, the effect of

the fibre structure on the bending losses and modedness of large-mode-area holey fibres at

1064 nm. Using the numerical techniques described in Chapter 3, the modal properties of

a selection of fibres in which the fundamental mode has an effective area of ≈ 190 µm2 are

evaluated. The fibres considered here possess values of Λ ranging from 9.0 to 15.0 µm and

values of d/Λ ranging from 0.2 to 0.63, which includes both single-mode and multi-mode

structures. The results from this study confirm that, for a given mode area, the bend loss

reduces as the relative hole size increases and that the onset of higher-order modes can

be accurately predicted by Eq. 5.1. Furthermore, by evaluating the bending losses of the

fundamental mode and the confinement and bending losses of the first higher-order modes

(when present), four regions of guidance are established: (1) True single-mode guidance for

d/Λ<∼ 0.43, in which only the lowest-order mode is guided within the fibre. (2) Effective

single-mode guidance for 0.43<∼ d/Λ <∼ 0.45, in which higher-order modes are guided by the

fibre, but possess such high confinement losses that they would not be observed in practice

for lengths of fibre greater than a few 10’s of cms. (3) Selective single-mode guidance for

0.45<∼ d/Λ<∼ 0.63, whereby higher-order modes that possess low confinement losses can be
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selectively stripped from the fibre by bending the fibre (without perturbing the fundamental

mode), if the critical bend radius of the first higher-order mode is sufficiently larger than

the critical bend radius of the fundamental mode. (4) Robust multi-mode guidance for

d/Λ>∼ 0.63, in which higher-order modes are present in the fibre and possess low values

of confinement and bend loss. Note that the defining ranges of d/Λ given in each case

refer only to fibres in which the fundamental mode has an effective area of ≈ 190 µm2 at

1064 nm. For smaller effective areas, these boundaries shift towards larger values of d/Λ

due to the fact that the smaller regions of solid silica that make up the holey fibre core

permit larger values of numerical aperture for true single-mode guidance. Towards larger

mode areas, the reverse is true and the boundaries for each region of guidance shift towards

smaller values of d/Λ. The boundary values of d/Λ quoted above therefore represent upper

limits for larger mode area fibres. The theoretical predictions summarised above are now

validated experimentally in the following section.

5.4 Experimental study (1): A
FM

eff ≈ 200 µm2

5.4.1 Introduction

Within this section, results are presented from an experimental study into the modal prop-

erties of four holey fibres with effective areas of ≈ 200 µm2 that have different structural

parameters, with µm11.7 < Λ < 13.8µm and 0.33 < d/Λ < 0.51. The fibres in this selection

include both single-mode and multi-mode structures that have been characterised in terms

of mode area, mode shape and bend loss at 1064 nm. Note that unless otherwise indicated

the experimental results presented in this section correspond to measurements made using

a single-mode CW laser with a wavelength of 1064 nm as the source illumination. These

measurements are used to demonstrate the validity of the numerical predictions made in

Sections 5.2 and 5.3. Note that all the numerical predictions presented within this section

are calculated using the scalar version of the model presented in Section 3.2, and that the

constant of proportionality, τ , defined in Eq.3.17, is taken to be 2.0 (see also Section 4.5.3).

Note that I have chosen this value of τ via comparison between numerical predictions and

experimental results for a large selection of holey fibres. Furthermore, this choice is found

to result in excellent agreement with experimentally measured values for every pure silica

holey fibre considered in this study and is the only free parameter in the model of bend loss

developed here.
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5.4.2 The fibres

In Table 5.3 the properties of some fibres that were fabricated and characterised as part of

this study are listed. The structural parameters of these fibres are also indicated by the

green dots on the contour plot in Fig. 5.20, which is repeated from Fig. 5.7. The red dots

on this figure refer to the fibre parameters studied in Section 5.1. Please refer to the figure

caption for more details. Fibres F334Zeop, F334Zsop and F334Ysop derive from the same

preform and were fabricated by John Hayes at the ORC. Fibre F200B2 was fabricated by

Kentaro Furusawa, also at the ORC. All of these fibres are made entirely from pure silica

rods and tubes of F300 synthetic silica glass from Heraeus Tenevo AG. SEM images of these

four fibres are shown in Fig. 5.21.

Table 5.3: Measured (m) and predicted (p) modal properties for a range of holey fibres (predicted values

correspond to the fundamental mode only). ∗ fibre is effectively single-mode at 1064 nm. ∗∗ fibre is selectively

single-mode for Ro <∼ 7 cm (i.e. higher-order modes can be removed for Ro <∼ 7 cm).

Fibre Λ d d/Λ Am
eff Ap

eff Rm
c Rp

c Modes

[µm] [µm] [µm2] [µm2] [cm] [cm]

F334Zeop 11.74 3.84 0.33 200 210 7.1 7.2 SM

F334Zsop 11.93 5.39 0.45 165 170 3.3 - MM∗

F334Ysop 12.63 6.48 0.51 165 170 < 2 - MM∗

F200B2 13.80 7.04 0.51 195 210 < 2 - MM∗∗

5.4.3 Results and discussion

The measured values of A
FM

eff for these four fibres range from 165 to 200 µm2. The measured

values of A
FM

eff agree with theoretical predictions to ≈ ±3-5%, which is consistent with the

estimated error of ≈ ±5% in the method of measuring the A
FM

eff , as described in Section 4.3.

SEM images of the fibres listed in Table 5.3 are shown in Fig. 5.21. Note that the innermost

ring of holes in the F334 fibres (shown in Figs 5.21 (a), (b) and (c)) are elliptical in shape,

as shown in Fig. 5.21. Fortunately, the nature of this ellipticity does not break the 6-

fold symmetry of the fibre and so it is reasonable to assume that it will not induce any

significant level of birefringence. As mentioned in Section 3.2, the method used here to

model the modal properties of holey fibres is capable of considering an arbitrary profile,

and the exact holey fibre structure from an SEM can be used in this calculation. However,
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Figure 5.20: The effective area contour plot from Fig. 5.7 is repeated here. The solid black lines represent

R
FM

c contour lines, the dashed read and black line shows the position of the R
FM

c = 15 cm contour line and

the solid red line indicates the value of (d/Λ)c from Eq. 5.2. The red dots show the structural parameters of

the holey fibres listed in Table 5.1, the green dots show the parameters of holey fibres characterised in this

section. Note that the y axis scale is increased to 0.52, in order to include fibres F334Ysop and F200B2.

in general, the refractive index profile of a real holey fibre can be well approximated by an

idealised refractive index profile with perfectly circular holes, and this approach is typically

used for simplicity. Whilst the ellipticity in the innermost ring of holes in the F334 fibres

means that the refractive index distribution deviates from the idealised profile, the level of

ellipticity (ratio of axis of ellipse ≈ 1.0 : 1.2) is not sufficient to radically alter the fibre

properties, and we find that it can be adequately compensated for by defining an ideal

fibre structure that has an equivalent air filling fraction to the real fibre. Note that the

F334 fibre parameters quoted in Table 5.3 refer to the equivalent, idealised, profiles used
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(a) (b) (c) (d)

Figure 5.21: SEM images of four holey fibres, (a) F334Zeop, (b) F334Zsop (c) F334Ysop and (d) F200B2.

The fibre parameters are shown in Table 5.3 and are also indicated on the figure.

in numerical calculations. The success of this representation is illustrated by the excellent

agreement between the measured and predicted values of R
FM

c for fibre F334Zeop, shown

in Table 5.3 and in Fig. 5.22 for 1064 nm. In Fig. 5.22 the bend loss for one loop of fibre

is plotted as a function of bend radius for fibre F334Zeop at 1064 nm. The experimental

data is shown by open circles and the theoretical predictions are shown by the closed circles

and the solid line. The predicted mode profile together with the idealised refractive index

profile used in these calculations are shown in the insert. This plot demonstrates the ability

of the numerical techniques to accurately predict the bend loss in holey fibres.

The excellent agreement between measured and calculated modal properties is further

illustrated in Fig. 5.23, in which the near field mode profile of fibre F334Zeop at 1064 nm

is shown at 1064 nm for: (a) the actual fibre and (b) the numerical simulation. In Fig. 5.23

(a), the near field is imaged by focussing the far field output from the fibre onto a COHU

7512 CCD camera. The contour levels are indicated on each plot. The contour lines in

Fig. 5.23 (b) have been chosen to match some of the camera levels from Fig. 5.23 (a) to

aid comparison. In both Fig. 5.23 (a) and (b), cross-sections of the modal intensity in the

horizontal and vertical directions, which are indicated by the dashed lines, are plotted along

the bottom and left hand side of each figure respectively. These two figures demonstrate

that the orthogonal function method (as described in Section 3.2) is capable of accurately

predicting the fundamental mode of a holey fibre.

As described in Section 5.3.4, the fundamental mode is the least sensitive to bend

induced loss and the bend loss for each mode is exponentially dependent on the radius of

curvature. When higher-order modes are present within a fibre, the loss as a function of

bend radius becomes staggered, with each step in loss representing a different mode, as
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Figure 5.22: Bend loss for one loop of fibre in dB as a function of radius for fibre F334Zeop. The

experimental data is shown by open circles, the theoretical predictions are shown by closed circles and the

solid line. The predicted mode profile together with the idealised refractive index profile used in calculations

is shown in the insert. The contour lines are separated by 2 dB and the width of the box shown is 50 µm.

The fibre parameters are shown in Table 5.3.

shown in Fig. 5.16 (b). As a result, the bend loss as a function of bend radius can be used

to infer information regarding the number of modes excited in the fibre. For a single-mode

fibre, the bend loss as a function of bend radius should increase in a smooth exponential-

like fashion. In this study, I have chosen to use Eq. 5.2 to determine if a holey fibre is

single-mode or multi-mode, as described in Sections 5.2.3 and 5.9. By this definition, fibre

F334Zeop is single-mode, which is confirmed by the measured bend loss, shown in Fig. 5.22

(and also in Fig. 5.24 (a)).

In Fig. 5.24 (b), (c) and (d), the measured bend loss is also shown for the other three
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Figure 5.23: (a) Near-field modal intensity profile for fibre F334Zeop, imaged with a CCD camera. (b)

Modal intensity profile from the corresponding numerical simulation. Cross-sections of the modal intensity

in the horizontal and vertical directions, shown by the dashed lines, are plotted along the bottom and left

hand side of each figure respectively. Contour levels are indicated on each figure.
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Figure 5.24: Measured bend loss (for one loop of fibre) at 1064 nm as a function of bend radius (Ro) for

the four fibres listed in Table 5.3.

fibres listed in Table 5.3. Fibres F334Zsop, F334Ysop and F200B2 are all, in theory, multi-

mode. However, the bend loss curves for fibres F334Zsop and F334Ysop are not typical of

multi-mode fibres. This could result from the fact that the higher-order modes were not

excited at the launch, but may also indicate that these fibres are effectively single-mode at

1064 nm. A fibre is defined to be effectively single-mode if the higher-order modes present in
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the fibre are not observed due to the fact that the confinement losses are high, as described

in Section 5.3. This is further discussed in Section 7.3, in which additional experimental

results are presented for fibres F334Zsop and F334Ysop.

Figure 5.25: Bend loss as a function of bend radius (Ro). The solid line represents the predicted total

loss from the fundamental and higher-order modes for fibre HFH (Λ = 13.4 µm, d/Λ = 0.50). The open

circles are measured values of bend loss for a similar fibre, F200B2 (Λ = 13.8 µm, d/Λ = 0.51).

In contrast to the F334 fibres, the measured bend loss for F200B2, shown in Fig. 5.24

(d) leaves no doubt that higher-order modes are present within this fibre. The shape of the

measured bend loss curve is remarkably similar to the predicted bend loss for the multi-mode

fibre HFH, shown in Fig. 5.16 (b). These two curves are shown together in Fig. 5.25, where

the measured bend loss for fibre F200B2 is shown by the open circles and the predicted

bend loss for fibre HFH is shown by the solid line. This solid line corresponds to the sum of
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the calculated bend loss arising from the fundamental mode and the LPx
11 and LPy

11 modes

of fibre HFH, which possesses similar parameters to fibre F200B2. Note that this predicted

loss curve for fibre HFH is obtained by assuming a power ratio of 3:1:1 for the fundamental

and the LPx
11 and LPy

11 modes respectively, chosen to provide the best agreement with this

experimental data. The validity of this choice is discussed in Section 5.3. For both these

fibres, the initial rise in loss at larger bend radii represents loss from the LP11 modes, and

the second sharper rise in loss corresponds to the fundamental mode. Fibre F200B2 has

Λ = 13.8 µm and d/Λ = 0.51 and fibre HFH has Λ = 13.4 µm, d/Λ = 0.50 and are both

indicated on Fig. 5.20. As these two fibres lie on the same contour line of R
FM

c in Fig. 5.20,

the fundamental mode in each fibre is expected to suffer similar levels of loss in both fibres.

This is confirmed by the experimental results. However, fibre F200B2 has a larger value

of Λ and d/Λ than fibre HFH. As a result, the higher-order modes in fibre F200B2 will

possess a stronger level of mode confinement relative to those in fibre HFH. This would

account for the fact that the higher-order modes in fibre HFH experience higher values of

bend loss than those in fibre F200B2. The overall similarities between the predicted bend

loss for fibre HFH and the measured bend loss for the similar fibre F200B2 demonstrate

that it is possible to model the effect of higher-order modes in bent holey fibres and also

that it is possible to strip all higher-order modes without perturbing the fundamental mode

by bending the fibre.

5.4.4 Conclusion

The experimental results in this section are presented from a study of four holey fibres

with effective areas of ≈ 200 µm2 that have different structural parameters, with µm11.7 <

Λ < 13.8µm and 0.33 < d/Λ < 0.51. The fibres in this selection include both single-

mode and multi-mode structures and have been characterised in terms of mode area, mode

shape and bend loss at 1064 nm. These results demonstrate three of the guidance regions

defined in Section 5.3: fibre F334Zeop is truly single-mode, fibres F334Zsop andF334Ysop

appear to be effectively single-mode, whilst fibre F200B2 can be selectively single-mode by

introducing a bend of radius 7 cm to remove all power from the higher-order modes. The

excellent agreement between these measurements and the numerical predictions made in

Sections 5.2 and 5.3 validate the numerical techniques used here and demonstrates that

they can be used to accurately determine the properties of the fundamental mode and to

study the effects of higher-order modes in bent holey fibres. This is further confirmed by
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the results presented in Chapter 7, in which spectral measurements are used to assess the

bend loss and modedness of some of the fibres shown here as a function of wavelength.

5.5 Defining the range of practical structures (2): Towards

larger mode areas at 1064 nm

5.5.1 Introduction

In Section 5.1, a study into the mode area, the bend loss and the modedness of a range of

holey fibres with 0.2 < d/Λ < 0.5 and 7µm < Λ < 14µm structures was reported. The

results of this study, summarised in Fig. 5.6, lead to the conclusion that single-mode holey

fibres with A
FM

eff ≈ 320 µm2 can possess tolerable levels of bending losses. In addition, the

results of this study strongly suggested that structures with Λ > 14 µm could be used to

create single-mode holey fibres with A
FM

eff > 320 µm2 and tolerable values of R
FM

c . In this

section I extend the numerical work presented in Section 5.1 in order to determine the

maximum tolerable effective area for a single-mode holey fibre at 1064 nm. This numerical

study is complemented by experimental results presented in Section 5.6, which once again

show the effectiveness of the numerical techniques developed here, and also demonstrate

that single-mode holey fibres with A
FM

eff ≈ 400 µm2 at 1064 nm are practical to fabricate.

5.5.2 Numerical results

Table 5.4: Predicted modal properties for a range of single-mode large-mode-area holey fibres.

Fibre Λ [µm] d [µm] d/Λ A
FM

eff [µm2] R
FM

c [cm]

HFD 12.00 4.80 0.40 188 4.4

HFJ 15.20 6.08 0.40 293 8.3

HFK 17.70 7.08 0.40 390 12.7

HFL 19.00 7.60 0.40 445 15.2

HFM 20.00 8.00 0.40 490 17.5

The aim of this section is to produce a graph similar to Fig. 5.6 in Section 5.1, which

encompasses all single-mode holey fibres with R
FM

c < 15 cm. In order to accomplish this, the

range of fibre parameters considered in Section 5.1 (0.2 < d/Λ < 0.5 and 7µm < Λ < 14 µm)

must be extended to include fibres with larger mode areas. However, only single-mode fibres
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(a) (b) (c) (d) (e)

Figure 5.26: Calculated Modal intensity profiles for fibres (a) HFD, (b) HFJ, (c) HFK, (d) HFL and (e)

HFM. Contours are separated by 2 dB. Fibre parameters are shown in Table 5.4.

are of interest. Since (d/Λ)c flattens to an asymptotic value of 0.406 towards large values

of Λ, it is not necessary to extend the range of d/Λ, only the range of Λ. Due to the fact

that calculations of R
FM

c are relatively time consuming, calculations of bend loss are first

performed for four fibres with d/Λ = 0.4 and increasing values of Λ in order to gauge the

maximum value of Λ that it is necessary to consider. A value of d/Λ = 0.4 is chosen so

that these fibres are single-mode, but close to cut-off, and hence possess values of bend loss

that are close to the lowest possible value for that given A
FM

eff in a single-mode fibre. The

structural and modal parameters of these four fibres are presented in Table 5.4 together

with repeated results for fibre HFD, shown for comparison.

The modal intensity profiles and structural parameters of these five fibres, which are

shown in Fig. 5.26 and Table 5.4 respectively, have 12.0µm < Λ < 20.0µm and possess

190µm2 <∼A
FM

eff
<∼ 490µm2. It is interesting to note that the shape of the mode for each of

these fibres (shown in Fig. 5.26) is almost identical, even though there is more than a factor

of 2 between A
FM

eff for the smallest and largest modes shown. The critical bend radii for the

fibres in Table 5.4 range from 4.4 cm up to 17.5 cm, the latter of which is greater than

the maximum tolerable R
FM

c , defined here to be 15 cm. These results show that extending

the range of Λ up to 20.0 µm should therefore encompass all single-mode holey fibres with

critical bend radii below 15 cm at 1064 nm.

By calculating A
FM

eff and R
FM

c for 0.2 < d/Λ < 0.5 and 14 µm < Λ < 20 µm a plot similar

to Fig. 5.6 that encompasses all single-mode holey fibres with R
FM

c < 15 cm can therefore

be created. In Section 5.1, numerical results from 32 fibres are used to produce Fig. 5.6

(calculations are spaced by 1 µm in Λ and 0.1 in d/Λ). To extend Λ to 20µm, using the

same resolution as before, would require the calculation of A
FM

eff and R
FM

c for a further 24

fibres. This is a reasonably quick calculation for A
FM

eff , and the results for the fibres within

the range 0.2 < d/Λ < 0.5 and 14 µm < Λ < 20 µm are shown in Fig. 5.27 (a) by the
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(a) (b)

Figure 5.27: (a) Dots show the predicted effective mode area of the fundamental mode (A
FM

eff ) as a function

of the hole-to-hole spacing, Λ, for a range of holes sizes: 0.2 < d/Λ < 0.5 at 1064 nm. The solid line for

each value of d/Λ is a fitted curve of the form y = ax3 + bx2 + c drawn to guide the eye. (b) Dots show

predicted values of the critical bend radius of the fundamental mode (R
FM

c ) of the fundamental mode as a

function of the hole-to-hole spacing, Λ, for a range of relative hole sizes: 0.2 < d/Λ < 0.5 at 1064 nm. The

solid line for each value of d/Λ is a fitted curve of the form y = ax3 + b drawn to guide the eye. The dotted

line marks the position of R
FM

c = 15 cm.

solid and open shapes. Fitted curves for each value of d/Λ are drawn to guide the eye.

These calculations are used to create the colour-graded contour plot of A
FM

eff in Fig. 5.28.

Note that the maximum A
FM

eff within this range is ≈ 800 µm2. However, in order to define

contour lines for the bend radii of interest (R
FM

c
<∼ 15 cm) it is only necessary to ensure

that R
FM

c is reasonably well defined for fibres in which R
FM

c
<∼ 20 cm, which dramatically

reduces the required number of calculations. This is advantageous as the calculation of R
FM

c

is fairly time consuming. In Fig. 5.27 (b) calculated values of R
FM

c are shown for a range

of fibres. The fitted curves of R
FM

c vs Λ for each value of d/Λ, shown by the solid lines in

Fig. 5.27 (b), demonstrate that R
FM

c can be well defined for the range 0.2 < d/Λ < 0.5 and

14 µm < Λ < 20 µm with the addition of only 6 further calculations of R
FM

c for structures

with Λ > 14 µm. These fitted curves of R
FM

c vs Λ are then used to create the (thick black)

contour lines of R
FM

c shown in Fig. 5.28. Note that the accuracy in the position of these

contour lines for R
FM

c
>∼ 20 cm cannot be accurately quantified, as they are based only on the

curve fitted to calculations performed for R
FM

c
<∼ 20 cm. However, fibres with R

FM

c
>∼ 20 cm

are of little interest and the additional contour lines on Fig. 5.28 serve only to illustrate
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this fact.
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Figure 5.28: Contour plot generated from the data in Fig. 5.27 (a) of effective mode area for the funda-

mental mode as a function Λ and d/Λ for holey fibres at 1064 nm. The solid red line shows the predicted

single-mode/multi-mode boundary using the approximate formula derived in Ref. [19]. The thick black

contour lines represent R
FM

c in cm (generated from the data in Fig. 5.27 (b)) and the dashed red and black

line shows the position of the R
FM

c = 15 cm contour line. The red dots show the parameters of some holey

fibres that are studied in this section. The green dots show the parameters of two holey fibres studied in

the experimental section below.

Also shown on Fig. 5.28 is the boundary between single-mode and dual-mode structures,

calculated using Eq. 5.2, represented by the red line. The red dots in Fig. 5.28 represent

the five fibres listed in Table 5.4 and the green dots represent the two fibres from the

next, experimental, section. This figure shows that for R
FM

c < 15 cm , the maximum A
FM

eff

attainable in a single-mode holey fibre is ≈ 450 µm2. Moreover, this figure is an invaluable
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design tool for single-mode structures at 1064 nm, in that it is possible to ascertain the

fibre parameters required to create any given value of A
FM

eff
<∼ 450 µm2 and determine the

R
FM

c for that fibre.

5.5.3 Discussion

In Sections 5.3 and 5.4 it was demonstrated, using both numerical and experimental results,

that for values of d/Λ > (d/Λ)c it is possible to make use of effectively and selectively single-

mode regimes, to achieve single-mode guidance within a multi-mode fibre. For A
FM

eff ≈
190 µm2 these regions were defined in terms of d/Λ. This has not been considered in

the numerical work presented in this section purely for reasons of time. As a result, the

predicted value for the maximum practical mode area of ≈ 450 µm is defined here for a

truly single-mode holey fibre and can be taken as a somewhat conservative estimate. The

experimental results presented in Section 5.6, demonstrate both effectively and selectively

single-mode guidance in holey fibres with A
FM

eff ≈ 300 − 450 µm2, and so give some idea of

the values of d/Λ for which effectively and selectively single-mode guidance can be achieved

for these larger mode areas.

5.6 Experimental study (2): A
FM

eff > 300 µm2

5.6.1 Introduction

Within this section, results are presented from an experimental study into the modal prop-

erties of two holey fibres with A
FM

eff > 300 µm2 at 1064 nm. Both fibres considered here

are technically multi-mode structures and have been characterised in terms of mode area,

and bend loss at 1064 nm. Note that unless otherwise indicated the experimental results

presented in this section correspond to measurements made using a CW single-mode laser

with a wavelength of 1064 nm as the source illumination. These measurements are used to

demonstrate the validity of the numerical predictions made in Sections 5.5.2, in addition to

providing information into the selectively single-mode regime for larger mode areas. Note

that all the numerical predictions presented within this section are calculated using the

scalar version of the model presented in Section 3.2, and that the constant of proportion-

ality, τ , defined in Eq.3.17, is equal to 2.0 (see also Section 4.5.3).
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5.6.2 The fibres

In Table 5.5 the properties of two fibres that were fabricated and characterised as part of

this study are listed. The structural parameters of these fibres are also indicated by the

green dots on the contour plot in Fig. 5.28. (please refer to the figure caption for more

details). Fibre F409Ysop was fabricated by John Hayes at the ORC and fibre F437Zeop

was fabricated by Marco Petrovich, also at the ORC. Both of these fibres are made entirely

from pure silica rods and tubes of F300 synthetic silica glass from Heraeus Tenevo AG.

SEM images of these two fibres are shown in Fig. 5.29.

Table 5.5: Measured (m) and predicted (p) modal properties for holey fibres. ∗ fibre is found to be

effectively single-mode at 1064 nm.

Fibre Λ d d/Λ Am
eff Ap

eff Rm
c Rp

c Modes

[µm] [µm] [µm2] [µm2] [cm] [cm]

F409Ysop 15.43 7.07 0.46 270 270 ≈ 5 5.5 MM∗

F437Zeop 19.64 8.67 0.44 430 440 ≈ 12 12.0 MM∗

5.6.3 Results and discussion

The measured values of A
FM

eff for fibres F409Ysop and F437Zeop are 270 and 430 µm2

respectively, which are in excellent agreement with theoretical predictions that are also

shown in Table 5.5. SEM images of these two fibres are shown in Fig. 5.29. Note that

the innermost ring of holes in both fibres shown in Fig. 5.29 are elliptical in shape. As

for the fibres detailed in Section 5.4, the nature of this ellipticity does not break the 6-fold

symmetry of the fibre and so it is reasonable to assume that it will not induce significant

birefringence. As before, we find that the ellipticity can be taken into account in the

modelling by defining an ideal fibre structure that has an equivalent air filling fraction to

the real fibre. Note that the fibre parameters quoted in Table 5.3 refer to the equivalent,

idealised, profiles used in numerical calculations.

The measured bend loss for fibres F409Ysop and F437Zeop is shown in Fig. 5.30. The

predicted bend loss for the fundamental mode is shown by the closed circles and the solid

line in each plot. The insets in Figs 5.30 (a) and (b) show the predicted mode profile

for the fundamental mode together with the idealised refractive index profile used in the

calculations of bend loss for each fibre. Although these two fibres are both technically
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(a) (b)

Figure 5.29: (a) SEM image of fibre F409Ysop. (b) SEM images of fibre F437Zeop. Fibre parameters

are shown in Table 5.5.

(a) (b)

Figure 5.30: Bend loss for one loop of fibre in dB as a function of radius for (a) fibre F409Ysop and (b)

fibre F437Zeop. The experimental data is shown by open circles, the theoretical predictions are shown by

closed circles and the solid line. The predicted mode profile together with the idealised refractive index

profile used in calculations is shown in the insert. The contour lines are separated by 2 dB and the width

of the box shown is 50 µm. The fibre parameters are shown in Table 5.5.
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multi-mode structures, we see that the predicted bend loss for the fundamental mode alone

is in excellent agreement with the measured bend loss. The absence of any evidence in the

bend loss for the presence of higher-order modes indicates that these fibres are effectively

single-mode at 1064 nm. A fibre is defined to be effectively single-mode if the higher-order

modes present in the fibre are not observed due to the fact that they are significantly lossy,

as described in Section 5.3. This is further discussed in Section 7.3.

704

640
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384

256

128

(a) (b)

Figure 5.31: (a) Near-field modal intensity profile for fibre F409Ysop, imaged with a CCD camera. (b)

Modal intensity profile from the corresponding numerical simulation of the fundamental mode. Cross-

sections of the modal intensity in horizontal and vertical directions, which are indicated by the dashed lines,

are plotted along the bottom and left hand side of each figure respectively. Contour levels are indicated on

each figure.

Further evidence that fibre F409Ysop is effectively single-mode at 1064 nm is presented

in Fig. 5.31, in which the near field mode profile of fibre F409Ysop is shown for: (a) the

actual fibre, with a bend radius of approximately 14 cm and (b) the numerical simulation

for the fundamental mode of the straight fibre. In Fig. 5.31 (a), the near field is imaged by

focussing the far field output from the fibre onto a COHU 7512 CCD camera. The contour

levels are indicated on each plot. The contour lines in Fig. 5.31 (b) have been chosen to

match some of the camera levels from Fig. 5.31 (a) to aid comparison. In both Fig. 5.31 (a)

and (b), Cross-sections of the modal intensity in horizontal and vertical directions, which

are indicated by the dashed lines, are plotted along the bottom and left hand side of each

figure respectively. These cross-sections are also plotted together in Fig. 5.32 (a). These

figures show that the observed near-field modal profile for fibre F409Ysop is an excellent
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Figure 5.32: Cross-sections of the near field modal intensity in horizontal and vertical directions (top

and bottom figures respectively). The crosses indicate the measured near-field modal intensity profile for

fibre F409Ysop, imaged with a CCD camera (shown in Fig. 5.31 (a)), and the solid line corresponds to the

modal intensity profile from the corresponding numerical simulation of the fundamental mode only (shown

in Fig. 5.31 (b)).

match to the theoretical prediction for the fundamental mode alone and confirms that fibre

F409Ysop is effectively single-mode at 1064 nm.

The fact that these two fibres can be considered to be effectively single-mode at 1064 nm

demonstrates that the estimate of 450 µm2 as the maximum tolerable effective area at

1064 nm is somewhat conservative. Fibre F437Zeop has A
FM

eff ≈ 430 µm2, d/Λ = 0.44, and

R
FM

c ≈ 12 cm, which indicates that holey fibres that are effectively single-mode at 1064 nm

with modes areas up to approximately 500 µm2 may be practical in terms of bend loss.
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5.7 Comparison with step-index fibres

5.7.1 Introduction

In the previous sections of this chapter, results from a detailed study into the modal prop-

erties of large-mode-area holey fibres at 1064 nm have been presented. Within this study,

the parametric dependencies of mode area, bend loss, and modedness have been established

using both experimental and numerical techniques. These results have enabled the practi-

cal limits of holey fibres for use in the large-mode, single-mode regime to be ascertained.

However, in order to properly evaluate the potential of these novel fibres, it is essential to

place their performance in context by comparing the modal properties of their conventional

counterparts.

In this section, the modal properties of step-index fibres in the large-mode, single-mode

regime at 1064 nm are evaluated numerically in order to assess the potential offered by

holey fibres in this same regime. In order to present a meaningful comparison between the

two fibre types it is important to consider fibres that are equivalent in both modedness

and mode size. Traditionally, an equivalent step-index (ESI) fibre is used as a crude way

of modelling the modal properties of a holey fibre at a given wavelength [4, 16]. (This

technique is discussed in more detail in Section 1.4.2). Typically, the core and cladding

indices of the ESI fibre equal the refractive index of pure silica and the effective refractive

index of the holey fibre cladding (nFSM) respectively. These are both representative choices,

but the core radius is then chosen rather arbitrarily. (A core radius of 0.625Λ has been

empirically shown to produce a reasonable approximation to the modal properties of a

holey fibre [18]). Whilst this technique has proven to be a useful tool for gauging certain

modal properties of a holey fibre, it is not an accurate way of creating an equivalent fibre

due to the arbitrary way in which the core radius is defined. However, in this study, the

modal properties of the holey fibres to which comparisons are to be made are already well

known. Consequently, the core radius of an ESI fibre can be better defined. For example,

the core radius of an ESI fibre can be selected such that the associated A
FM

eff is equal to that

of the comparison holey fibre. Since the aims of the study are to assess the potential offered

by holey fibres in the large-mode-area limit, it would seem sensible to consider holey and

conventional fibres with similar mode sizes. As a result, and unless otherwise indicated,

the parameters of the comparison step-index fibres are chosen to create structures that are

equivalent in terms of cladding index and mode area.

In Section 5.7.2, the bending losses of three holey fibres that have been studied in
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previous sections are compared with the bending losses of their ESI fibres, as defined above.

Section 5.7.3 then explores how the bending losses of these two fibre types can be optimised

via the fibre parameters. In Section 5.7.4 I aim to ascertain the maximum mode size that

is practical to use (i.e. R
FM

c < 15 cm) in a single-mode step-index fibre at 1064 nm. The

similarities between the modal properties of holey and conventional fibres at 1064 nm are

then discussed in Section 5.7.5.

5.7.2 Equivalent step-index fibres and their bending losses

The processes by which the ESI parameters are chosen is discussed within Section 5.7.1,

and are summarised in the following; ncore ≡ nglass, nclad ≡ nFSM and A
FM

eff (ESI)≡ A
FM

eff (HF).

The effective cladding index nFSM of each holey fibre is calculated using the commercial

software BandSOLVETM, as described in Section 3.5. The core size (a) of each ESI fibre is

calculated via the exact solutions for step-index fibres from Ref. [53]. The bending losses

of each ESI fibre are then calculated using the methods that have been developed here

to evaluate the bending losses of holey fibres, which are described in Chapter 3. In these

calculations, the distance from the centre of the core to the outer edge of the cladding (D)

is taken to be the same value as that used for the equivalent holey fibre, in which 7 rings

of holes are assumed. Although simpler techniques exist for evaluating the bending losses

of step-index fibres [106, 151, 152, 126], each involves various different assumptions and for

the purposes of a comparative study it is preferable to use the same set of assumptions for

every fibre considered.

In this section, the bending losses of three pairs of holey and ESI fibres are compared

at 1064 nm. The fibre parameters and modal properties of these six fibres are shown in

Table 5.6. The three single-mode holey fibres, HFE, HFJ and HFK have A
FM

eff ≈ 190, 290 and

390 µm2. The effective cladding indices (nFSM) of these holey fibres are 1.448606, 1.448989

and 1.449165 respectively, which are also, by definition, the cladding indices (nclad) of the

three ESI fibres, ESIE, ESIJ and ESIK. The core radii of these three ESI fibres are chosen

as 6.55, 7.84 and 8.55 µm respectively in order to create fibres with the same values of

A
FM

eff as their corresponding holey fibres. Note that the core index in each case is taken to

be 1.449631, which is equal to that of pure silica at 1064 nm, as defined by the Sellmeier

equation [135]. The NA, and the V-parameter, V , which are defined as NA=
√

n2
core − n2

clad

and V = 2πaNA/λ respectively, are also shown for each of the ESI fibres in Table 5.6. All

three step-index fibre satisfy the condition that V < 2.405 for a single-mode fibre. The
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Table 5.6: The predicted modal properties for a range of single-mode large-mode-area holey fibres and

their equivalent step-index (ESI) fibres at 1064 nm. All modal properties are calculated using the methods

developed here, which are described in Chapter 3.

Fibre Λ [µm] d [µm] d/Λ nFSM A
FM

eff [µm2] R
FM

c [cm]

HFE 12.20 4.00 0.42 1.448606 187 4.0

HFJ 15.20 6.08 0.40 1.448989 293 8.3

HFK 17.70 7.08 0.40 1.449165 390 12.7

Fibre a [µm] nclad NA V A
FM

eff [µm2] R
FM

c [cm]

ESIE 6.55 1.448606 0.055 2.11 187 5.2

ESIJ 7.84 1.448989 0.043 2.00 293 11.1

ESIK 8.55 1.449165 0.037 1.86 390 21.5

critical bend radius of the fundamental mode, R
FM

c , is calculated for each of the six fibres

in Tables 5.6 using the methods developed here for holey fibres (see Chapter 3). These

values are also shown in Table 5.6 and demonstrate that the bending losses of holey fibres

can be less than step-index fibres that are equivalent in terms of A
FM

eff and nclad at 1064 nm.

Indeed, the R
FM

c of each of the three holey fibres is ≈ 77, 75 and 59% of their ESI fibre

equivalents for the A
FM

eff ≈ 190, 290 and 390 µm2 fibre pairs respectively.

However, the values of R
FM

c presented in Table 5.6 do not correspond to optimum values

for either fibre type due to the fact that all six fibres are below cut-off at 1064 nm. Further-

more, it should be noted that the ESI fibres are relatively further from cut-off than their

holey fibre counterparts (this is explained in more detail in the following sections). As a

result, this does not represent a fair comparison of the performance of these two fibre types

in the single-mode regime and demonstrates that the ESI approach used here is not an

effective way of comparing these two fibre types. Consequently, we look towards comparing

the optimum bending losses in both fibre types: i.e. the bending losses for a given mode

area in fibres which are close to cut-off. In Section 5.7.3, the way in which the bending

losses can be optimised via the fibre structure are explored, in the single-mode limit, for

both holey and step-index fibres. The potential offered by holey fibres relative to their

conventional counterparts is then reassessed for these optimum values in the single-mode

limit.
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5.7.3 Optimising bend loss in single-mode fibres at 1064 nm

As mentioned above, the values of R
FM

c shown in Table 5.6 do not represent the lowest

possible bending losses for single-mode holey or step-index fibres for the particular values

of A
FM

eff considered. In Section 5.5.2 it was demonstrated that for a given value of A
FM

eff ,

the bending losses of a holey fibre improve as d/Λ increases (See Fig. 5.9). The optimum

bending losses in a single-mode holey fibre thus occur for d/Λ = (d/Λ)c, where (d/Λ)c

represents the maximum value of d/Λ for which a holey fibre is single-mode and is given

by Eq. 5.2. The optimum values of R
FM

c for A
FM

eff ≈ 200, 300 and 400 µm2 are extracted in

Section 5.7.3 below.

For step-index fibres, systematic studies have shown that macro-bending losses can be

minimised by increasing the NA and decreasing the core radius [153, 154]. Since the A
FM

eff

typically increases with core radius and decreases with NA, the obvious way of creating a

single-mode fibre with a specific value of A
FM

eff is to use the smallest core radius and highest

NA that results in single-mode guidance. This is analogous to using the smallest value of Λ

and the largest value of d/Λ that results in the desired mode area and single-mode guidance

in a holey fibre. However, at the low values of NA required for single-mode guidance at

1064 nm, the A
FM

eff of a step-index fibre does not always increase with core radius. This

phenomenon and the effect that this has on choosing optimum parameters for minimal

bend loss are illustrated in Section 5.7.3. The potential offered by holey fibres relative

to their conventional counterparts is then reassessed for optimal parameters in both fibre

types.

Holey fibres

Table 5.7: Predicted modal properties for a range of single-mode large-mode-area holey fibres.

Λ [µm] d [µm] d/Λ A
FM

eff [µm2] R
FM

c [cm]

12.3 5.68 0.43 190 ≈ 4

15.7 6.60 0.42 300 ≈ 8

18.2 7.64 0.42 400 ≈ 12

In order to assess the optimum values of R
FM

c for A
FM

eff ≈ 200, 300 and 400 µm2 a more

detailed version of Fig. 5.27 is plotted for a smaller range of parameters in Fig. 5.33. In this

graph, the black lines correspond to contour lines of A
FM

eff in µm2, the blue lines correspond
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Figure 5.33: Black lines correspond to contour lines of A
FM

eff in µm2 generated from the data in Fig. 5.27

(a). The red line shows the predicted single-mode/multi-mode boundary using the approximate formula

derived in Ref. [19]. The blue lines correspond to contour lines of R
FM

c in cm generated from the data in

Fig. 5.27 (b). The red circles along the red line indicate the parameters of the holey fibres in Table 5.7.

to contour lines of R
FM

c in cm and the red line shows the predicted single-mode/multi-mode

boundary using the approximate formula derived in Ref. [19]. The red circles in Fig. 5.33

show the optimum parameters for single-mode holey fibres with A
FM

eff ≈ 190, 300 and 400 µm2

at 1064 nm. The corresponding R
FM

c for these three fibres is ≈ 4, 8 and 12 cm respectively.

These parameters are listed in Table 5.7.

Step-index fibres

In order to determine how the bending losses of step-index fibres can be optimised in the

large-mode, single-mode regime at 1064 nm, it is helpful to visualise how the fibre para-
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meters influence A
FM

eff , R
FM

c and the modedness (given by the V-parameter defined above).

To accomplish this I choose to construct a graph of A
FM

eff and R
FM

c as a function of the fibre

parameters as this has proven to be a good way of visualising these relationships in holey

fibres (See Fig. 5.28). However, the construction of such a graph requires many calcula-

tions. For example, Fig. 5.27 was constructed using the results of modal calculations from

64 separate fibres. Whilst calculations of A
FM

eff are fairly quick, the methods developed here

to calculate bending losses are more time consuming. In order to calculate R
FM

c for a wide

range of fibre parameters more efficiently, I choose to use an approximate method developed

by Marcuse from Ref. [126], in which a loss formula for the fundamental mode of infinitely

clad step-index fibres is derived for weakly-guiding fibres. In this approach, which is briefly

discussed in Section 2.2, the loss coefficient is determined by calculating the power outflow

from the field in the cladding, which is expressed in terms of a superposition of cylindrical

outgoing waves. The loss coefficient is given as;

α =
√

πκ2e−
2
3
Roγ3/β2

4γ3/2V 2
√

Ro(ln γa)2
(5.3)

where κ =
√

n2
corek

2 − β2, γ =
√

β2 − n2
cladk

2, β is the propagation constant of the funda-

mental mode of the straight fibre, Ro is the radius of curvature and k = 2π/λ, where λ is

the wavelength of light in free space. Marcuse states that while the above formula gives

the correct parametric dependency on bend loss, the exact values of loss are not accurate.

However, the purposes of this particular study are to determine how the bending losses can

be optimised via the fibre parameters, and accurate values are not required to accomplish

this. Note that values of R
FM

c calculated using this approximate approach are compared

against those calculated using the techniques outline in Chapter 3 for a selection of fibres

in Section 5.7.4.

The fibre properties A
FM

eff , R
FM

c , and V are calculated for 80 separate fibres with parame-

ters at evenly spaced intervals of nclad and core radius (a) within the range 1.4485 < nclad <

1.4492, and 6 µm < a < 12 µm (ncore=1.449631). This corresponds to 0.035 <NA< 0.057

and 1.25 < V < 4.06 and was chosen to create single-mode fibres with 170 µm2 <∼A
FM

eff
<∼

500 µm2. The resulting data is plotted as a function of nclad and core radius in Fig. 5.34,

where the colour contour plot refers to A
FM

eff in µm2, the red line shows the V=2.405 single-

mode/multi-mode boundary and the thick black lines correspond to contour lines of R
FM

c

in cm. (Note that the small degree of oscillation present in the higher level contour lines of

R
FM

c is not a real phenomenon and is an artefact introduced by the fitting software used to

construct this graph.) The contour plot of A
FM

eff in Fig. 5.34 shows that A
FM

eff increases as the
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Figure 5.34: Colour contour plot of A
FM

eff in µm2 as a function of core radius (a) and nclad for conventional

step-index fibres at 1064 nm. The solid red line shows the V=2.405 single-mode/multi-mode boundary.

Both A
FM

eff and V are calculated using exact solutions [53]. The thick black lines correspond to contour lines

of R
FM

c in cm, calculated using the model in Ref.[126] and the dashed red and black line shows the position

of the R
FM

c = 15 cm contour line. The small red circles and triangles show the parameters of some step-index

fibres that are studied in this section.

value of nclad rises (as the NA decreases) and that there is a minimum value of A
FM

eff for any

given value of nclad. This minimum A
FM

eff increases with nclad (as the NA decreases). The

contour lines of R
FM

c , represented by the thick black lines on Fig. 5.34, show that the bending

losses improve as the core size is increased and as nclad decreases for all fibres in this range.

This demonstrates that for a given value of A
FM

eff in a single-mode fibre, optimal bending

losses can be achieved via the largest core size and smallest value of nclad (corresponding

to the largest NA) that results in V< 2.405 and the desired mode size. Essentially, this

means that for a given mode area, one should aim to create a fibre with V≈ 2.4. Note that
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the functional form of this graph is, at first sight, quite different from the graph shown in

Fig. 5.6, in which the same modal properties were plotted in a similar way for holey fibres.

This is discussed more in Section 5.37.

However, while the method used to construct the contour lines of R
FM

c in Fig. 5.34 gives

useful information about the parametric dependencies of bend loss in a step-index fibre

(see Eq. 5.3 and surrounding text), it is not sufficiently accurate to enable comparisons of

absolute values with similar holey fibres. As mentioned previously, for direct comparison, I

choose to calculate the bending losses of step-index fibres using the methods that have been

developed here for holey fibres, described in Chapter 3. To enable a comparison between the

optimal bending losses of single-mode holey and conventional fibres, I have included here

the predicted values of R
FM

c for step-index fibres ESIM, ESIN and ESIO. The parameters

of these fibres are shown in Table 5.8 alongside the parameters of fibres ESIE, ESIJ and

ESIK, which were shown in Section 5.7.2 to possess bending losses greater than equivalent

holey fibres. Note that these two sets of fibres comprise similar mode areas, but different

values of V. Fibres ESIE, ESIJ and ESIK have V≈ 2.0 and fibres ESIM, ESIN and ESIO

have V≈ 2.3 and are therefore closer to cut-off. Consequently, the bending losses of fibres

ESIM, ESIN and ESIO are less than the similarly sized fibres ESIE, ESIJ and ESIK. This

can be seen from Fig. 5.34, on which the six fibres in Table 5.8 are represented by solid

circles (fibres ESIE, ESIJ and ESIK) and triangles (fibres ESIM, ESIN and ESIO) and from

the predicted values of R
FM

c shown in Table 5.8.

The results presented in Table 5.8 show that fibres ESIM, ESIN and ESIO possess A
FM

eff ≈
190, 300 and 400 µm2 at 1064 nm, and R

FM

c = 4.6, 9.5 and 14.4 cm respectively. This is

similar to the lowest values of R
FM

c for holey fibres with A
FM

eff ≈ 190, 300 and 400 µm2 at

1064 nm, which were shown to be ≈ 4, 8 and 12 cm respectively in Section 5.7.3. Note

that fibres ESIM, ESIN and ESIO are the ESI fibres of three holey fibres from Chapter 6.

Whilst these step-index fibres have V≈ 2.3, and so do not represent the lowest possible

bending losses in the single-mode limit (minimal bend loss for single-mode fibre occurs

at cut-off, for which V= 2.405), the values of R
FM

c are not likely to dramatically decrease

between V= 2.3 and V= 2.4. As a result, one can see that the optimal bending losses

for single-mode operation are likely to be similar in similarly sized holey and conventional

fibres, despite the fact that the bending losses of holey fibres can be significantly less than

step-index fibres that are equivalent in terms of A
FM

eff and nclad at 1064 nm. This illustrates

that the practice of selecting ESI parameters by defining ncore ≡ nglass, nclad ≡ nFSM and
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A
FM

eff (ESI)≡ A
FM

eff (HF) does not result in an accurate representation of the modal properties

of a holey fibre even though the core radius is not chosen in an arbitrary manner. This is

consistent with studies that have shown that both the core and cladding regions of a holey

fibre have effective indices that vary with wavelength and that an ESI approach cannot be

used to accurately model the modal properties of a holey fibre [87].

Table 5.8: Predicted modal properties for a range of ESI fibres. Critical radius predicted using the

numerical methods outlined in Chapter 3.

Fibre a [µm] nclad NA V A
FM

eff [µm2] R
FM

c [cm]

ESIE 6.55 1.448606 0.055 2.11 187 5.2

ESIJ 7.84 1.448989 0.043 2.00 293 11.1

ESIK 8.55 1.449165 0.037 1.86 390 21.5

ESIM 7.07 1.448552 0.056 2.34 191 4.6

ESIN 8.95 1.448953 0.044 2.34 305 9.5

ESIO 10.25 1.449117 0.039 2.34 401 14.4

5.7.4 Maximum practical mode area in a step-index fibre at 1064 nm

Table 5.9: Predicted modal properties for a range of ESI fibres. Critical radius predicted using ∗ method

developed in Chapter 3 and ∗∗ method from Ref. [126].

Fibre a [µm] nclad NA V A
FM

eff [µm2] R∗
c [cm] R∗∗

c [cm]

ESIE 6.55 1.448606 0.055 2.11 187 5.2 7.1

ESIJ 7.84 1.448989 0.043 2.00 293 11.1 16.4

ESIK 8.55 1.449165 0.037 1.86 390 21.5 32.3

ESIM 7.07 1.448552 0.056 2.34 191 4.6 5.5

ESIN 8.95 1.448953 0.044 2.34 305 9.5 11.5

ESIO 10.25 1.449117 0.039 2.34 401 14.4 17.8

In Section 5.7.3 contour plots of A
FM

eff and R
FM

c as a function of nclad and core radius

were constructed in order to illustrate how the bending losses of step-index fibres can be

optimised in the large-mode area single-mode regime at 1064 nm. For reasons of time,

an approximate method was used to calculate R
FM

c for the large number of step-index
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Figure 5.35: Contour plot of A
FM

eff as a function of nclad and core radius (a) for conventional step-index

fibres at 1064 nm. The red line shows the V=2.405 single-mode boundary. The dashed red and black line

shows the contour line for which the critical bend radius of the fundamental mode is equal to 15 cm. The

red dots show the parameters of three step-index fibres that are equivalent to the three holey fibres indicated

in Fig. 5.36, in terms of A
FM

eff and nclad.

fibres required to form an adequate description of the bend loss over the parameter range

considered (≈ 80 fibres were considered at even spaced intervals of nclad and core radius).

Although this method, which is described by Eq. 5.3 and the surrounding text, gives the

correct parametric dependency on bend loss, the exact values of loss are not accurate and

R
FM

c is overestimated. This can be seen in Table 5.9, which lists values of R
FM

c for 6 step-

index fibres, calculated using both Eq. 5.3 and the more accurate methods developed here.

This demonstrates that Eq. 5.3 consistently overestimates R
FM

c relative to the predictions

made using the methods developed here by approx 20-50% (average of ≈ 34%). This

overestimation can be approximately corrected by scaling the values of R
FM

c calculated using
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Eq. 5.3 by 0.76 to better agree with the values of R
FM

c calculated using the more accurate

methods developed here. Due to the fact that this is a crude method of correction, only the

R
FM

c = 15 cm contour line is corrected in this way, and is shown by the thick black line in

Fig. 5.35 (See caption for further information). R
FM

c = 15 cm was previously defined as the

upper limit on practicality in Section 5.1 and so gives an approximate idea of the maximum

tolerable A
FM

eff in a step-index fibre at 1064 nm, which can be seen here to be ≈ 450 µm2.

This is the same value of maximum practical mode size as estimated for single-mode holey

fibres at 1064 nm in Section 5.5.2. However, despite this similarity, there are some striking

differences between Fig. 5.35 and the equivalent graph for holey fibres, shown previously

in Fig. 5.28 and repeated here in Fig 5.36. These differences are discussed in the following

section.

5.7.5 Comparing parametric dependence of modal properties in holey

and step-index fibres

The minima in the contour plot of A
FM

eff for the conventional fibres, shown in Figs 5.34 and

5.35 and the subsequent effect that this has on the bending losses arises from the fact that

the fibres within this range have low values of NA (0.035<∼NA<∼ 0.057), which causes the

fibres to become more weakly guiding as the core size is reduced. Whilst this behaviour

is well known in step-index fibres and results from the fact that the fibres are becoming

weakly guiding, it prompts the question of why this is not observed within the contour plot

of A
FM

eff and R
FM

c for the similar range of holey fibres, repeated here in Fig. 5.36. The three

red dots in Fig. 5.36 represent the parameters of three holey fibres that are equivalent in

A
FM

eff and nclad to the three step-index fibres represented by the red dots in Fig. 5.35. One

reason for these difference may be the way in which the results are presented. Indeed, if we

plot the holey fibre results as a function of nFSM instead of d/Λ, as for the step-index fibres,

we observe a more similar pattern of results. A rough plot of this is shown in Fig. 5.37

(a), in which the A
FM

eff is represented by the dashed contour lines and R
FM

c is represented

by the solid contour lines. Note that these contour lines are only approximate, since there

are fewer results within a grid defined by nFSM than d/Λ. However, even in this crude

form, we can see that for a constant value of nFSM, the bending losses improve as Λ (which

is approximately equivalent to the core diameter of a step-index fibre) is increased, as in

Fig. 5.35. However, a similar minimum in A
FM

eff is not observed. This may be due to the fact

that Λ in a holey fibre and the core radius of a step-index fibre are not entirely equivalent.
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Figure 5.36: Contour plot of A
FM

eff as a function Λ and d/Λ for holey fibres at 1064 nm. The red line

shows the predicted single-mode/multi-mode boundary using the approximate formula derived in Ref. [19].

The dashed red and black line shows the contour line for which the critical bend radius of the fundamental

mode is equal to 15 cm. The red dots show the parameters of three holey fibres that are studied in this

chapter.

A better approximation is to use Λ − (d/2) in place of Λ in the contour plot of A
FM

eff , as

shown in Fig. 5.37 (b). This plot of A
FM

eff is closer to the form for the step-index fibres than

Fig. 5.37 (a), but still does not exhibit a minimum at any point. This may again result

from the fact that even Λ − d/2 is a poor approximation of an equivalent core radius, or

it may represent some fundamental difference between holey and conventional fibres, or it

could simply result from the fact that the resolution is poor for this representation. Further

investigation would be required in order to determine this.
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Figure 5.37: (a) Dashed lines represent contour plot of A
FM

eff in µm2 as a function Λ and nFSM for holey

fibres at 1064 nm. Solid contour lines represent R
FM

c in cm. Contour lines are generated from the data

shown in Figs 5.27 and 6.1. Note that these plots are only approximate, due to the fact that are fewer

results within a grid defined by nFSM than d/Λ, as previously used.

5.7.6 Bending losses of higher-order modes

As discussed in Section 5.3, the technique of removing unwanted higher-order modes by

bending the fibre is well known in conventional fibres [149, 150], and can also be achieved

in holey fibres. This method exploits the fact that the fundamental mode is the least

sensitive to bend induced loss and that the bend loss is exponentially dependent on the

radius of curvature. As a result, for certain bend radii (R
FM

c < Ro < R
HOM

c ), the higher-

order modes suffer catastrophic loss, but the fundamental mode is unperturbed. This is a

useful technique as it enables larger mode area fibres to be used for a given bend radius,

due to the fact that the R
FM

c decreases as the fibre becomes multi-mode.

In this section I present a brief comparison between the bending losses of higher-order

modes in holey and step-index fibres by comparing the predicted results for the bending

losses of the multi-mode fibre HFH from Section 5.13 with the bending losses of an equivalent

multi-mode step-index fibre. As mentioned in Section 5.7.1 the equivalent step-index (ESI)

profile is determined by matching the A
FM

eff of the holey fibre with the condition that nclad =

nFSM and that the core index is equal to that of pure silica. This is accomplished by

calculating the modal properties of a step-index fibre using the exact solutions from [53].

Fibre HFH has Λ = 13.4 µm, d/Λ = 0.5 and nFSM = 1.448420 at 1064 nm. The effective

mode area for the fundamental mode of this fibre (A
FM

eff ) is ≈ 190 µm2. A core radius of
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7.52 µm is found to reproduce the A
FM

eff of holey fibre HFH (ncore = 1.446931). The critical

bend radii of each mode of this ESI fibre are calculated using the numerical techniques

outlined in Chapter 3. The results for fibre HFH and the equivalent step-index fibre, ESIH,

are shown in Table 5.10.

Table 5.10: Predicted modal properties for a multi-mode holey fibre, HFH (Λ = 13.4 µm and d/Λ = 0.5),

and the ESI fibre, ESIH (a=7.52 µm, nclad = 1.448420, NA=0.059 and V = 2.63), calculated using the

methods outlined in Chapter 3 in each case. FM refers to a property of the fundamental mode, HOM refers

to a property of the first higher-order mode

Fibre A
FM

eff nFM n
HOMx

n
HOMy

R
FM

c R
HOMx

c R
HOMy

c

[µm2] [cm] [cm] [cm]

HFH 190 1.449167 1.448538 1.448540 3.0 14.5 17.1

ESIH 190 1.449126 1.448491 1.448491 3.2 ≈ 38 ≈ 50

The results in Table 5.10 show that the critical bend radii of the fundamental mode

(R
FM

c ) of fibres HFH and ESIH are similar, as expected (See Section 5.7.3), but that the

critical bend radii of the higher-order modes are not. (Here HOMx and HOMy refer to the

two orthogonal LP11 modes.) Indeed, R
HOMx

c and R
HOMy

c are significantly smaller for holey

fibre HFH than for the ESI fibre, demonstrating that the removal of higher-order modes

could be achieved at larger bend radii in the step-index fibre. If this trend continues for all

multi-mode holey and conventional fibres, it has implications for the technique of selectively

guiding only the fundamental mode within a multi-mode fibre by inducing a bend. Based

on the preliminary results presented here, it would seem that conventional step-index fibres

have the advantage in this application.

The reason for this difference can be seen in the spacing of the modal indices, which

are given in Table 5.10 and plotted in Fig. 5.38. In a bent fibre, bending losses arise

due to coupling between the fundamental and higher-order and cladding modes, amongst

others. Consequently, the magnitude of the bend loss is inversely proportional to the spacing

between the modal indices of these various modes. The bending losses of the higher-order

modes in fibres HFH and ESIH, will therefore be inversely proportional to the distance

between their modal indices (n
HOMx

and n
HOMy

) and the cladding index (nFSM ≡ nclad). As

we can see from Fig. 5.38, the higher-order modes of the ESI fibre are closer to the cladding

index than for the holey fibre, and should thus result in greater loss, as predicted.

Note that the scalar version of the orthogonal function method (OFM) was used to
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Figure 5.38: Effective modal indices for fibres HFH and ESIH: The dotted lines represent the fundamental

mode, the short dashed lines represent the first higher-order mode. For HFH, the long dashed line represents

the effective index of the fundamental cladding mode and for ESIH the long dashed line represents the

cladding index. The fibre parameters and modal properties are shown in Table 5.10 and caption.

evaluate the higher-order modal fields and propagation constants in both of these fibres

and the bend loss predictions are, as a result, only approximate. However, fully vectorial

calculations made using the multipole method (via Vittoria Finazzi) for holey fibre HFH and

the exact solutions for the step-index fibre ESIH are in good agreement with the calculations

made using the scalar OFM, indicating that the scalar approach is appropriate in this

example.

164



Section 5.7. Chapter 5. Large-mode-area, single-mode holey fibres at 1064 nm

5.7.7 Conclusion

In this section, the aim was to explore how the bending losses of step-index fibres at 1064 nm

compare with holey fibres in the large-mode-area single-mode regime using numerical tech-

niques. The results presented in Section 5.7.1, demonstrate that the bending losses of holey

fibres can be significantly less than those of their equivalent step-index (ESI) fibres, whose

parameters were chosen by matching values of A
FM

eff and nclad assuming a core index of pure

silica. Section 5.7.3 illustrated how the bending losses of both fibre types could be optimised

via the fibre structure for a given mode area, and demonstrated that the bending losses

of holey and step-index fibres close to cut-off are similar. This has important implications

for bend loss techniques that use an ESI approach, and demonstrates that it is difficult to

define an ESI fibre that is truly equivalent. Making use of an approximate study presented

in Section 5.7.4, the maximum practical mode size (defined for R
FM

c < 15 cm) that it is pos-

sible to achieve in a single-mode step-index fibre at 1064 nm was estimated as ≈ 450 µm2,

which is identical to the estimate of the maximum practical A
FM

eff that can be achieved in

a single-mode holey fibre at 1064 nm, as discussed in Section 5.5.2. Furthermore, the re-

sults presented in Section 5.7.5 demonstrate that the parametric dependencies of A
FM

eff and

bending losses in holey and conventional fibre are similar, in general, in the large-mode,

single-mode regime at 1064 nm.

However, the same cannot be said for multi-mode holey and conventional fibres. In

Section 5.7.6, a brief comparison was made between the bending losses of a multi-mode

holey and an equivalent step-index fibre. While the bending losses of the fundamental mode

were found to be similar in the holey and conventional fibre, the higher-order modes are

significantly more susceptible to bending in the step-index fibre. If this is true for all multi-

mode fibres, it has implications for the technique of selectively guiding the fundamental

mode within a multi-mode fibre by inducing a bend. Based on the preliminary results

presented here, it would seem that conventional step-index fibres may have an advantage in

this application. However, note that these conclusions are drawn from only one fibre pair

and should be treated with caution since the method of defining an ESI profile has been

shown to be inaccurate.
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5.8 Conclusion

The main aims of this chapter were to evaluate the practical limits of holey fibres for use in

the large-mode-area, single-mode regime and to place their performance in context against

conventional step-index fibres at 1064 nm. Due to the fact that bending losses represent

the fundamental limiting factor on mode area in any optical waveguide, the first step of

this analysis was to gain an understanding of the relationships between the structural

parameters d and Λ, the mode size, the bend loss and the number of modes present in a

holey fibre. This was undertaken using the numerical techniques described in Chapter 3 and

was broken down into three calculation stages, in which the three key parameters; A
FM

eff , R
FM

c

and the modedness of the fibre were evaluated for the following range of fibre parameters:

7.0 µm < Λ < 20.0µm and 0.2 < d/Λ < 0.5. Note that in order to determine the modedness

of such a large range of structures, a simple analytical formula from Ref. [19] was employed.

This is discussed in detail in Sections 5.2.3 and 5.9. The lower limit on d/Λ is defined by

the observation that values of d/Λ < 0.2 can result in impractically large bending losses and

the maximum value of d/Λ is determined by considering the upper limit on single-mode

operation. The choice of Λ then determines the effective areas of the fibres considered,

which, for this parameter subspace, range from ≈ 60 µm2 to ≈ 800 µm2. By assessing the

subset of fibres within this parameter range that are both single-mode and possess tolerable

bending losses (the upper limit for tolerable bend loss is defined here as a critical bend radius

(R
FM

c ) of 15 cm), the range of holey fibre structures that result in practical large-mode-area,

single-mode fibres could be determined. Note that this three-step evaluation process is split

across two sections within this thesis: in an initial study, presented in Section 5.2, fibres with

A
FM

eff up to ≈ 400 µm2 are considered, and in Section 5.5.2, this work is extended to include

structures with A
FM

eff up to ≈ 800 µm2 in order to determine the largest practical mode size

attainable in a holey fibre at 1064 nm. The results of this study are best summarised in

Fig. 5.27, which demonstrates that the fundamental mode area increases towards increasing

values of Λ and decreasing values of d/Λ. This is somewhat intuitive, since it is equivalent

to increasing the core size and decreasing the NA in a conventional fibre. This figure also

shows how the bend loss worsens (i.e. R
FM

c increases) with increasing Λ and decreasing

d/Λ, presenting a trade off between mode area and bend loss. For any given mode area, the

bend loss decreases steadily as d/Λ is increased, demonstrating that the optimum structural

parameters are defined by the maximum value of d/Λ that results in single-mode guidance,

which can be determined from Eq. 5.2. In this section, the maximum tolerable mode area
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possible in a strictly single-mode holey fibre at 1064 nm is shown to be ≈ 450 µm2 (defined

for R
FM

c < 15 cm). In addition, the A
FM

eff and R
FM

c ‘map’ presented in Fig. 5.28 for fibres in

the range 7µm < Λ < 20µm and 0.2 < d/Λ < 0.5 is an invaluable design tool and enables

basic fibre properties to be determined at-a-glance.

The calculations presented in the initial study in Section 5.2 also provide the basis

for a more detailed study into the effect of the fibre structure on modal properties for

A
FM

eff = 190 µm2, presented in Section 5.3. By focussing on a fixed value of A
FM

eff it becomes

possible to gain detailed information regarding the relationships between fibre structure

and modal properties and enables valid comparisons to be made in terms of bending losses.

In this section, nine holey fibres with 0.2 < d/Λ < 0.63 and A
FM

eff ≈ 190 µm2 at 1064 nm are

considered in detail. An A
FM

eff of 190 µm2 was chosen such that the fibres within this range all

possessed practical levels of bend loss. For A
FM

eff = 190 µm2, the single-mode cut-off is shown

to occur at d/Λ ≈ 0.43. Consequently, the range of structures encompasses five single-mode

and four multi-mode fibres. The aim of this study was to evaluate how the modes of these

fibres and their associated losses change as the relative hole size increases. For the nine

holey fibres considered here in which 9.0µm < Λ < 15.0µm and 0.2 < d/Λ < 0.63, the

critical bend radius of the fundamental mode, R
FM

c , was found to decrease from 12.2 to

1.8 cm respectively. Inspection of the modal fields for this range of fibres reveals that the

shape of the fundamental mode changes as the relative hole size increases, with the modal

field becoming more confined to the core and less filamented in shape.

Furthermore, it can also be seen that the modal deformation in the bent fibre is depen-

dent on the relative hole size, as illustrated in Fig. 5.10. In holey fibres with relatively small

holes, the mode deforms in a gradual manner as the bend is tightened, steadily extending

further into the cladding region and experiencing greater loss. In contrast, in holey fibres

with large holes, the mode undergoes a sudden deformation for Ro close to R
FM

c , result-

ing in a sharp increase in bend loss as a function of bend radius. Due to the fact that

the onset of bend loss in response to decreasing curvature becomes much sharper as d/Λ

increases, it becomes possible to operate closer to R
FM

c without incurring significant bend

loss in fibres with large holes. However, we find that the mode deformation for Ro close to

R
FM

c can significantly alter the mode area, even at radii at which the bend loss is minimal.

This results from the fact that for large values of d/Λ, the mode of the bent fibre becomes

squashed against the inner ring of holes in the direction of the bend, which acts to decrease

the effective area of the mode. Although the bend loss can be minimal in this situation due
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to the fact that the mode is still confined to the core region, the effective mode area can be

reduced by as much as 15%, reducing the power handling capabilities of the fibre.

Of the nine fibres considered in Section 5.3, four are determined to be multi-mode struc-

tures. However, studies of the confinement and bending losses of the higher-order modes

present in these fibres demonstrate that multi-mode holey fibres can still be effectively or

selectively single-mode in practice. Within this section, four regimes of guidance are de-

fined and the range of d/Λ that results in single-mode guidance in practice is extended.

These four regimes are: (1) True single-mode guidance, which is defined for holey fibres in

which only the fundamental mode is supported. (2) effective single-mode guidance, which

is defined for multi-mode holey fibres in which the higher-order modes possess such high

confinement losses that they would not be observed for any significant length of fibre. (3)

selective single-mode guidance, in which higher-order modes can be selectively removed by

bending the fibre (a technique well established in conventional fibres, which relies on the

fact that the fundamental mode is the least sensitive to bend induced loss and that the

bend loss is exponentially dependent on the radius of curvature [149, 150]). (4) Robust

multi-mode guidance, in which the higher-order modes are well confined and possess sim-

ilar values of R
FM

c to the fundamental mode and so cannot be selective removed without

perturbing the fundamental mode. For A
FM

eff ≈ 190 µm2 at 1064 nm, these regimes are

defined by the following values of d/Λ: (1) < 0.43 < (2) < 0.45 < (3) < 0.63 < (4). Note

that the values of d/Λ that define these regimes will increase for mode areas larger than

190 µm2 and decrease for mode areas smaller than this value.

This numerical study is complemented by experimental results presented in Sections 5.4

and 5.6, which validate these numerical predictions and demonstrate that the large-mode-

area structures considered here are practical to fabricate. For the range of fibres studied

in this section, strictly, effectively and selectively single-mode guidance are all observed.

However, note that for the case of selectively single-mode guidance, a significant fraction

of power (≈ 2 dB) is lost when removing the higher-order modes by inducing a bend.

However, it may be possible to minimise this loss by adjusting the fraction of power coupled

into the higher-order modes, via the launch conditions for example. Whilst this is not

studied here for reasons of time, it is obviously an important consideration. Experimental

results in Section 5.6, also show that a holey fibre with d/Λ = 0.44, A
FM

eff = 430 µm2 and

R
FM

c = 12.0 cm is effectively single-mode at 1064 nm. This demonstrates that the predicted

value for the maximum practical mode area of ≈ 450 µm at 1064 nm, which is defined for a
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truly single-mode holey fibre, can be taken as a somewhat conservative estimate and that

mode areas up to approximately 500 µm2 could be practical in terms of bending losses for

silica holey fibres at 1064 nm.

In order to understand how holey fibres compare with conventional step-index fibres in

this large-mode-area, single-mode regime, a numerical study is also undertaken for similarly

sized conventional fibres and the results of this are presented in Section 5.7. In order to

present a meaningful comparison between the two fibre types it is important to consider

fibres that are equivalent in both modedness and mode size. This is achieved by defining

the equivalent step-index (ESI) profile in the following way: ncore ≡ nglass, nclad ≡ nFSM

and A
FM

eff (ESI)≡ A
FM

eff (HF) (see Sections 1.4.2, 5.7.1 and 5.7.2 for more details). Note that

several techniques are used to evaluate the A
FM

eff and the bend loss of the conventional

fibres considered in Section 5.7. For accurate comparisons between the two fibre types, the

models applied to holey fibres are applied to the conventional fibres also. Although simpler

techniques exist for step-index fibres, for the purposes of a comparative study it is preferable

to use the same set of assumptions for every fibre considered. However, for calculations

that involve a wide range of structures, conventional techniques are instead used to evaluate

these parameters, as discussed in Section 5.7.3. Initial results from this comparative study

show that the bending losses of holey fibres can be up to 60% less than step-index fibres

that are equivalent in terms of A
FM

eff and nclad at 1064 nm. However, further study indicates

that the practice of selecting ESI parameters by defining ncore ≡ nglass, nclad ≡ nFSM and

A
FM

eff (ESI)≡ A
FM

eff (HF) does not result in an accurate representation of the modal properties

of a holey fibre even though the core radius is not chosen in an arbitrary manner. By

instead considering holey and conventional fibres with similar mode areas that are both

close to cut-off, it can be seen that the optimal bending losses for single-mode operation

are similar in similarly sized holey and conventional fibres. Furthermore, it is shown that

the maximum practical mode area for strictly single-mode guidance is also found to be

≈ 450 µm2, as for holey fibres.

Despite these similarities, at first sight the structural dependencies on R
FM

c and A
FM

eff seem

very different in holey and conventional fibres as there are striking differences between the

contour plots of A
FM

eff and R
FM

c for holey and conventional fibres, shown in Fig. 5.36 and

Fig. 5.35 respectively. For example, at a given value of nclad in a conventional fibre, there

exists a minimum A
FM

eff . In addition, for the step-index fibres, the bend loss improves for

increasing values of core radius. This seems contrary to the situation observed in holey
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fibres, in which no minimum is observed for any particular value of d/Λ, and bend loss

is seen to worsen for increasing values of Λ. However, the majority of differences in the

contour plots of A
FM

eff and R
FM

c in these two fibre types arise from the fact that nclad and a

are not equivalent to d/Λ and Λ. Indeed, far more similar functionalities can be achieved by

instead using nFSM and Λ−d/2 as the axes for the contour plot of the holey fibre parameters,

demonstrating that the fundamental modes of holey and step-index fibres possess similar

parametric dependencies on A
FM

eff and bend loss.

The similarities between the bending losses of higher-order modes in holey and con-

ventional fibres are explored in Section 5.7.6. In this study, the bending losses of the

higher-order modes present in one holey and one approximately equivalent conventional

fibre are investigated. The results of this study demonstrate that the higher-order modes

of the ESI fibre suffer greater bending losses than those of the holey fibre, despite the fact

that the bending losses of the fundamental mode in both fibres are similar. For applications

in which it is necessary to selectively guide only the fundamental mode by inducing a bend,

step-index fibre may have an advantage. However, note that these conclusions are drawn

from only one fibre pair and should be treated with caution since the method of defining

an ESI profile has been shown to be inaccurate. Also note that the scalar version of the

orthogonal function method was used to evaluate the higher-order modal fields in both of

these examples and the bend loss predictions are, as a result, only approximate. However,

full vectorial calculations of the propagation constants of these fibres indicate that the scalar

approximation is valid.

In summary, the results presented in this chapter have shown that large-mode-area

holey fibres possess similar bending losses to their conventional counterparts at 1064 nm

and that the maximum tolerable mode area (defined for R
FM

c < 15 cm) is approximately

450 µm2 in both fibre types for strictly single-mode guidance. However, it is well known

that the bending losses of conventional fibre types can be improved by using a more complex

refractive index profiles [123, 155, 156]. In the following chapter this theme is explored for

holey fibres, in which the refractive index profile can be adjusted simply by altering the

stacking elements in the preform.
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Chapter 6

Improved holey fibre designs for

1064 nm

6.1 Introduction

As mentioned in Section 1.2.4, holey fibres are typically fabricated by heating and pulling

a preform into fibre using a conventional fibre drawing tower. The preform of a silica holey

fibre is typically constructed by stacking many silica capillaries around a central solid silica

rod. In the final fibre, the central solid rod forms the core, and the surrounding glass

capillaries in the preform form the microstructured cladding. This method of fabrication

permits a high level of design flexibility. For example, the fibre design can be radically

altered simply by choosing different stacking elements in the preform. This approach has

been used to create multiple-core holey fibres [33], in which multiple solid rods in the

preform form many separate cores in the final fibre, and birefringent holey fibres in which a

2-fold symmetric core is formed by two adjacent rods in the preform [56]. The multiple-rod

approach has also been used to create large-mode-area holey fibres with triangular shaped

cores by using three adjacent rods in the preform [34]. It has also been shown that this

triangular core fibre structure can be used to enlarge the mode area by ≈ 30% without

increasing the bending losses [34]. Due to the fact that bending losses limit the maximum

mode sizes that are practical to use, this preliminary work indicates that multiple-rod holey

fibres may offer a route towards practical single-mode fibres with larger mode areas than

can be created with traditional single-rod designs.

In this chapter, I aim to explore the reasons why multiple-rod holey fibres offer improved

bending losses relative to single-rod designs and to accurately quantify the magnitude of
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the improvement in bend loss in the single-mode regime at 1064 nm using the numerical

techniques described in Chapter 3.

6.2 Holey fibres with cores formed by multiple rods

6.2.1 Introduction

As mentioned above, results have shown that by using three adjacent rods to form the core

of a holey fibre, instead of the usual one, it is possible to enlarge the mode area by ≈ 30%

without increasing the bending losses [34]. In Ref. [34] this improvement is assessed via an

experimental study of the bending losses of two holey fibres: (1) a traditional single-rod

core holey fibre with Λ = 10 µm and d/Λ = 0.45 and (2) a triangular three-rod core holey

fibre with Λ = 6 µm and d/Λ = 0.25. The authors state that both fibres represent the

upper limit of endlessly single-mode guidance. The maximum permissable d/Λ for single-

mode guidance in holey fibres with multiple-rod cores decreases with each additional rod

due to the fact that the core size has increased relative to Λ. This is discussed in more

detail in Section 6.2.2. The triangular core holey fibre (4HF) has an A
FM

eff ≈ 30 % larger

than the conventional holey fibre (HF), but the bending losses of the two fibres are shown

to be similar for a bend radius of 16 cm. In Ref. [34] the authors also present a qualitative

theoretical analysis of the bending losses in these two fibre types, which further supports

these initial experimental results. However, the two fibres considered within the study from

Ref. [34], described above, are not endlessly single-mode. Using Eq. 5.1, which has been

validated against the theoretical methods used here, it can be seen that the conventional

holey fibre with Λ = 10 µm and d/Λ = 0.45 is only single-mode for wavelengths >∼ 1.7 µm.

There is currently no simple method of assessing the modedness of a4HF structure, but my

calculations presented in Section 7.5 show that higher-order modes are present at 308 nm

in 4HF structures with Λ ≈ 5 µm and d/Λ = 0.2. Since the 4HF reported in Ref. [34]

has larger values of both Λ and d/Λ, these results imply that this fibre cannot be endlessly

single-mode.

The study presented in Ref. [34] highlighted that these more complex holey fibre de-

signs have the potential to improve bend loss in single-mode structures, but the information

presented to date does not allow the advantages of these novel structures to be accurately

quantified, which is essential to enable this technique to be optimised for future fibre de-

sign. The theoretical methods developed in Chapter 3 have been shown to be capable of
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accurately predicting the bending losses of holey fibres (for example, see Sections 5.4 and

5.6). Since there are very few limitations on the types of fibre that can be modelled using

these techniques, these methods can be applied to 4HFs. My aim is to quantify the im-

provement in bending losses that these 4HF structures can offer for single-mode operation

by comparing the bending losses of pairs of holey fibres and 4HFs that are equivalent in

terms of A
FM

eff and nFSM at 1064 nm.

6.2.2 4HF structures: single-mode considerations

As mentioned in Section 6.2.1, the maximum value of d/Λ that results in single-mode

guidance, ((d/Λ)c), decreases in structures in which more than one rod is used to form the

core. For example, in order to create a single-rod and multiple-rod holey fibre with the

same mode area, a smaller value of Λ must be used in the latter. If the same value of

d/Λ is used in both fibres, the effective cladding index (nFSM) of the multiple-rod fibre will

be lower than that of the holey fibre for any given wavelength, even though the air-filling

fraction is identical, since the overall structure scale is smaller for the multiple-rod fibre

(and the wavelength of light has not changed). This fact can be seen in Fig. 6.1 (b), which

shows a contour plot of nFSM as a function of Λ and d/Λ at 1064 nm and demonstrates that

nFSM decreases towards larger values of d/Λ and smaller values of Λ for a fixed wavelength

(1064 nm). (Fig. 6.1 (b) was created from the data points of nFSM shown in Fig. 6.1 (a).)

Since the core index (pure silica) is identical in both fibre types, it is necessary to use

smaller values of d/Λ in a multiple-rod holey fibre relative to a single-rod holey fibre to

achieve single-mode guidance.

As an example, we consider the case of a holey fibre with Λ = 12.0 µm and d/Λ = 0.40,

which has an A
FM

eff of ≈ 190 µm2 at 1064 nm. In order to define a 4HF structure that is

equivalent to this holey fibre in terms of A
FM

eff and nFSM, both Λ and d/Λ must be decreased

from these original parameters, as explained above. The nFSM of the holey fibre with

Λ = 12.0 µm and d/Λ = 0.40 is indicated on Fig. 6.1 (b) by the circular blue point. To

maintain nFSM whilst decreasing Λ and d/Λ, one must follow the same contour level as the

original holey fibre down the graph, until the parameters of a 4HF fibre with an equivalent

A
FM

eff is reached. (Note that A
FM

eff is not indicated on Fig. 6.1 (b)). This is represented by

the blue triangular point on Fig. 6.1 (b), which represents an (approximately) equivalent

triangular-core holey fibre (4HF), in which three rods form the core, with Λ = 7.4 µm,

d/Λ = 0.2, and A
FM

eff ≈ 190 µm2.
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Figure 6.1: (a) Effective index of the fundamental space filling mode (nFSM) of the holey fibre cladding as a

function of Λ, for a range of holes sizes: 0.2 < d/Λ < 0.5 at 1064 nm (calculated using BandSOLVETM [134]).

(b) Contour plot of nFSM generated from the data in (a) as a function of Λ and d/Λ.

6.2.3 4HF: Theoretical comparisons with equivalent holey fibre struc-

tures

In this section, the bending losses of three pairs of holey fibres and 4HFs that are each

approximately equivalent in terms of A
FM

eff and nFSM are evaluated and compared. The

effective cladding index nFSM of the fibres are calculated using the commercial software

BandSOLVETM, as described in Section 3.5 [134]. The parameters of these six fibres are

shown in Table 6.1. The three holey fibres have Λ=12.0, 15.2 and 17.7 µm, with d/Λ = 0.4,

and the equivalent 4HFs have Λ = 7.4, 9.5 and 11.0 µm respectively, with d/Λ = 0.2. The

A
FM

eff of these three fibre pairs are ≈ 190, 300 and 400 µm2 respectively. The fundamental

modal intensity profile of each fibre is shown in Fig. 6.2. Note that the modes of the three

4HFs reflect the core geometry, being somewhat triangular in shape. However, these 4HF

modes can still be well approximated by a Gaussian function, with an overlap of ≈ 97.7%.

In comparison, the overlap between the three holey fibre modes in Fig. 6.2 and a pure

Gaussian function of optimum width is ≈ 98.0%. This overlap is evaluated numerically,

using the overlap integral defined in Eq. 3.11, where Eb is replaced by a Gaussian function.

Finding an equivalent 4HF is not a trivial process, and can involve the calculation of

A
FM

eff and nFSM for many structures. I have found that the nFSM of a holey fibre with d/Λ =
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Table 6.1: Predicted modal properties for a range of holey fibres. 4HF refers to triangular core structures.

Fibre Λ d d/Λ nFSM Modes C
HOM

loss for 5 rings A
FM

eff R
FM

c

[µm] [µm] [dB/m] [µm2] [cm]

HFD 12.0 4.80 0.40 1.448645 SM - 188 4.0

HFJ 15.2 6.08 0.40 1.448989 SM - 293 8.3

HFK 17.7 7.08 0.40 1.449165 SM - 390 12.7

4HFM 7.40 1.48 0.20 1.448552 MM 18.6 191 2.8-3.0

4HFN 9.50 1.90 0.20 1.448953 MM - 305 5.8-6.2

4HFO 11.00 2.20 0.20 1.449117 MM 8.10 401 8.8-9.3

(a) (b) (c)

Figure 6.2: Modal intensity profiles for some of the holey fibres and 4HFs listed in Table 6.1, together

with the refractive index profile of the fibre. Top row: (a) fibre HFD, (b) fibre HFJ and (c) fibre HFK.

Bottom row: (a) fibre 4HFM, (b) fibre 4HFN and (c) fibre 4HFO. The dimensions of the box in each

modal plot are 60 µm× 60 µm. The contour lines are separated by 2 dB

0.4 can be approximately matched by a4HF of similar mode area with d/Λ = 0.2. However,

the fibre pairs created in this way are only approximately equivalent in terms of nFSM.

Preliminary calculations (based on the V-number of an equivalent step-index fibre of each
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4HF), showed the 4HFs in Table 6.1 to be single-mode, with V=2.34. However, further,

more accurate calculations have shown that each of the4HFs are actually multi-mode. This

was determined by Vittoria Finazzi using the multipole technique described in Section 5.13.

However, the higher-order modes present in the 4HFs possess large confinement losses

for 5 rings of holes, and as such would not be guided in any significant length of fibre

(Confinement losses for fibres 4HFM and 4HFO are shown in Table 6.1 for 5 rings of

holes.). However, to ensure that the confinement losses are negligible for the fundamental

mode it is estimated that approximately 8− 9 rings of holes would be required for 4HFs.

This would, of course, also act to lower the confinement losses of any higher-order modes

present. However, the 4HFs considered here are only just multi-mode, and single-mode

guidance can be achieved with a modest reduction in hole size (early estimates indicate

d/Λ = 0.18 should be sufficient). As a result, the bending losses of the fundamental mode

of these structures should not be greatly different than those of truly single-mode 4HFs,

and as such should still give a reasonable approximation of the improvement offered by

using a 4HF structure instead of a single-rod core design at 1064 nm.

The critical bend radii of the fundamental modes (R
FM

c ) of the 6 holey fibres considered

here are shown in Table 6.1. Note that two values of R
FM

c are shown for the 4HFs in

Table 6.1, which correspond to bends in the φ = 60o and φ = 0o directions respectively. In

Section 4.5, a study into the bending losses of standard single-rod holey fibres at 1550 nm

as a function of the angular orientation (φ) of the fibre found that the bend loss varied

little with respect to φ. Indeed, for all the single-rod holey fibres considered in this thesis,

the variation in R
FM

c with respect to φ is calculated to be less than 2%. As a result, the

value of R
FM

c for holey fibres is only ever reported for a bend in the direction of φ = 0o.

However, the variation in R
FM

c with respect to φ is found to be greater in the 4HFs than

in the single-rod holey fibres as a result of the fact that the core geometry is less circularly

symmetric. The calculated bend loss as a function of φ is shown for holey fibre HFJ and the

equivalent triangular core fibre4HFN in Fig. 6.3 (a) and (b) for bend radii of 7.6 and 5.0 cm

respectively. Both fibres have A
FM

eff ≈ 300 µm2 at 1064 nm. The solid circles in Fig. 6.3 (a)

and (b) represent the bend loss in dB per loop, whilst the open circles indicate the relative

positions of the innermost ring of holes within the fibre. These plots demonstrate that the

bending losses reflect the refractive index profile and that the degree of variation in loss

is greater for the 4HF relative to the holey fibre. For the holey fibre HFJ, the calculated

values of R
FM

c vary by less than 1%, which is in agreement with all previous results and
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illustrates that the effect of φ on the bend loss may be safely ignored in single-rod holey

fibres. For the equivalent 4HF however, the calculated values of R
FM

c vary by ≈ 6% at

1064 nm. The maximum and minimum values of R
FM

c for this 4HF occur for bends in

the φ = 0o and φ = 60o directions respectively, which correspond to the values shown in

Table 6.1.
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Figure 6.3: Black points and line shows the bend loss as a function of angular orientation for (a) holey

fibre HFJ (R
FM

c = 8.3 cm) and (b) Triangular core holey fibre 4HFN (R
FM

c = 6.0 cm) at 1064 nm. The

respective bend radii for each data set shown in (a) and (b) are 7.6 and 5.0 cm. The red circles show the

relative positions of the innermost holes in each case.

Assuming that the triangular core fibres 4HFM, 4HFN and 4HFO are bent in the

φ = 0o direction, which represents the worst bend loss for these fibres, the R
FM

c is equal

to ≈ 75, 75 and 73% of that of the holey fibres HFD, HFJ, and HFK respectively. This

corresponds to a relative increase in A
FM

eff of ≈ 30% for a 4HF structure with the same

R
FM

c as a traditional single-rod holey fibre at 1064 nm. This is consistent with the results

presented in Ref. [34], in which a 4HF was shown to exhibit similar bending losses to a

single-rod holey fibre at 16 cm, despite a 30% larger A
FM

eff .

However, recall that the 4HFs considered here are not truly single-mode, and as such

represent values of R
FM

c lower than that of a truly single-mode 4HF. A better like-for-like

comparison can be made for the smallest of the three 4HFs using results from Section 5.3,

in which a detailed study into the bending losses of holey fibres with A
FM

eff ≈ 190 µm2 was

presented. The parameters of holey fibre HFF from Section 5.3 are a better match to fibre

4HFM than fibre HFD. Note that fibre HFF is a multi-mode structure in which the higher-
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order modes are found to suffer high confinement losses for 6 rings of holes. The details of

fibre HFF are included in Table 6.2.3 together with fibre 4HFM. For this more equivalent

fibre pair, we see that the R
FM

c of the 4HF is ≈ 81% of the holey fibre. Assuming a similar

ratio for all mode areas, this corresponds to a relative increase in A
FM

eff of ≈ 15− 20% for a

4HF structure with the same R
FM

c as a traditional single-rod holey fibre at 1064 nm.

Table 6.2: Predicted modal properties for holey fibre HFF and the equivalent 4HFM.

Fibre Λ d d/Λ nFSM Modes C
HOM

loss for 6 rings A
FM

eff R
FM

c

[µm] [µm] [dB/m] [µm2] [cm]

HFF 12.56 5.53 0.44 1.448566 MM 3.4 189 3.7

Fibre Λ d d/Λ nFSM Modes C
HOM

loss for 5 rings A
FM

eff R
FM

c

[µm] [µm] [dB/m] [µm2] [cm]

4HFM 7.40 1.48 0.20 1.448552 MM 18.6 191 2.8-3.0

Since fibre HFF and 4HFM possess similar mode areas and core and cladding indices,

the differences in the bend loss of these two fibres must result solely from the cladding

geometry, with the many smaller, closely spaced holes of the 4HF being more effective at

confining the bent mode to the core than the fewer, larger, and more widely spaced holes

of the single-rod holey fibre. By comparing the mode shape of the bent fibre for these

two fibres we see that this is indeed the case. The modal intensity profiles for fibres HFF

and fibre 4HFM, which both possess A
FM

eff ≈ 190 µm2 at 1064 nm are shown in Figs 6.4

(a) and (b) respectively for bends in the φ = 0o direction. The bend radius is 3.5 cm in

each case. The shape of the bent modes in Figs 6.4 (a) and (b) show conclusively that the

4HF structure is better able to confine the bent mode to the fibre core than the single-

rod holey fibre at a given bend radius. Based on the calculations in this section I would

estimate that the maximum practical A
FM

eff (defined for R
FM

c = 15 cm) for a 4HF at 1064 nm

is ≈ 550 µm2, which is ≈ 20% larger than the estimate of the maximum tolerable mode

size for a conventional single-rod holey fibre, which was determined to be ≈ 450 µm2 in

Section 5.5.2.

However, it is important to note that while the 4HF structure offers improved bending

losses, more elements are required in a 4HF preform in order to achieve the same level of

confinement losses as a similarly sized single-rod holey fibre. This results from the fact that

the confinement losses of the fundamental mode in any holey fibre are inversely proportional
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(a) (b)

Figure 6.4: Modal intensity profile for (a) fibre HFF (R
FM

c = 3.7 cm) and (b) fibre 4HFM (R
FM

c = 3.0 cm

for φ = 0o) at 1064 nm for bends in the φ = 0o direction. The bend radius is 3.5 cm in each case. Contour

levels are separated by 2 dB.

to the width of the cladding region and proportional to d/Λ. For example, the confinement

losses of the fundamental mode of a holey fibre with Λ = 12 µm and d/Λ = 0.4 at 1064 nm

are negligible (< 1 × 108 dB/m) for 6 to 7 rings of holes, which are typical. To achieve

a similar level of mode confinement in a similarly sized 4HF (Λ = 7.4 µm, d/Λ=0.2), 8

to 9 rings of holes are required. This equates to over 200 additional elements within the

preform. Consequently, the fabrication process is more time consuming for 4HFs, but as

shown in the following section, large-mode area 4HFs are practical to fabricate.

6.2.4 Experimental work

In this section, some preliminarily work is presented that demonstrates that large-mode area

single-mode 4HF fibres can be fabricated. The fibres in this section have been fabricated

by John Hayes at the ORC from rods and tubes of F300 synthetic silica glass from Heraeus

Tenevo AG.

As mentioned above, in a 4HF, more than 200 additional elements are required in order

to achieve similar levels of mode confinement as in a similarly sized single-rod holey fibre.

We initially thought that a good way of reducing the number of elements required may be

to use a double-clad structure, with larger values of Λ and d/Λ in the outer cladding. An

example of this structure is shown in Fig. 6.5 (a), which is an optical microscope image of
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(a) (b)

Figure 6.5: (a) Optical microscope image of fibre 4HF444. Inner cladding: Λ ≈ 11.4 µm and d/Λ ≈ 0.2

with 5 rings of holes. Outer cladding: Λ ≈ 19 µm and d/Λ ≈ 0.4 with 4 rings of holes. (b) Near-field modal

profiles for the two cores present in this fibre superimposed on a negative colour image of (a)

fibre 4HF444. In the preform of fibre 4HF444, 4 rings of capillaries with dimensions de-

signed to produce Λ ≈ 18 µm and d/Λ ≈ 0.4 in the final fibre were stacked around a central

region containing 5 rings of capillaries with dimensions designed to produce Λ ≈ 11 µm

and d/Λ ≈ 0.2 in the final fibre. In this way, the number of additional elements required

(relative to that in a typical single-rod holey fibre preform) is reduced to approximately 70.

The parameters of the outer cladding were chosen such that the nFSM remains constant (see

Fig. 6.1 (b)). As such, the modedness of the fibre should not be adversely affected by the

change in cladding parameters. The final fibre shown in Fig. 6.5 (a) has an inner cladding

with Λ ≈ 11.4 µm and d/Λ ≈ 0.2 with 5 rings of holes and a outer cladding with Λ ≈ 19 µm

and d/Λ ≈ 0.4 with 4 rings of holes. Whilst this method was successful in creating the

4HF fibre shown in Fig. 6.5 (a), the hole arrangement is somewhat disorganised due to

the fact that the two cladding parameters do not stack neatly together. In addition, note

that one hole in the penultimate ring in the inner cladding has collapsed during fabrication,

effectively creating an additional core. The near-field mode profiles of the two cores present

in this fibre are shown in Fig. 6.5 (b), superimposed on a negative colour image of the fibre.

Using the CCD camera to monitor the output from this fibre, as shown in Fig. 6.6, it was

established that the two cores could not be independently addressed via the launch condi-

tions at 1064 nm. As a result, it was not possible to perform quantitative characterisations

of A
FM

eff or R
FM

c using the techniques outlined in Section 4. However, the near-field modal
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profiles of the central, triangular, core can be used to demonstrate the similarities in mode

shape between the actual fibre and the numerical predictions, as shown in Fig. 6.7 (a) and

(b) for 1064 nm respectively.

(a) (b) (c)

Figure 6.6: Near-field modal profiles images with a COHU 7512 silicon CCD camera for different launch

conditions.

(a) (b)

Figure 6.7: (a) Near-field modal profile of central triangular core in fibre 4HF444, imaged with a COHU

7512 silicon CCD camera. (b) Predicted mode profile for similar 4HF with Λ = 11.0 µm and d/Λ = 0.2.

Due to the fact that the double-clad approach results in a somewhat disorganised hole

arrangement, a simple 9 ring 4HF structure was attempted. This involves stacking many

more capillaries in the preform (approximately 130 more) than the double-clad approach,

and is thus more time consuming. However, the uniformity of the final fibre is greatly

improved, as is shown by the SEM of 4HF498 in Fig. 6.8.

Fibre 4HF498, shown in Fig. 6.8 has Λ ≈ 11 µm and d/Λ ≈ 0.1 with 9 rings of holes.
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Figure 6.8: SEM image of fibre 4HF498 fabricated at the ORC with Λ ≈ 11 µm and d/Λ ≈ 0.06 − 0.1

with 10 rings of holes.

(a) (b) (c)

Figure 6.9: (a) SEM image of core region of fibre 4HF498 fabricated at the ORC with Λ ≈ 11 µm and

d/Λ ≈ 0.06 − 0.1. (b) Near-field modal intensity profile at 1064 nm imaged with a CCD camera. Mode

is superimposed on SEM image shown in (a). (c) Predicted modal intensity profile for Λ ≈ 11 µm and

d/Λ = 0.06. Contour levels are separated by 2 dB.

A larger scale SEM image of the core region of fibre 4HF498 is shown in Fig. 6.9 (a),

which shows that some of the holes in the innermost ring are smaller, with a minimum
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d/Λ ≈ 0.06. The A
FM

eff of this fibre is measured at 1064 nm to be ≈ 560 µm2. This is

consistent with numerical simulations, which predict an A
FM

eff in the range of 530-570 µm2

for d/Λ = 0.06−0.1. The mode profile of this fibre at 1064 nm, imaged with a COHU 7512

silicon CCD camera, is shown in Fig. 6.9 (b), which is superimposed on the fibre SEM of

the core region, shown separately in Fig. 6.9 (a). This mode profile demonstrates the effect

of the differing hole sizes in the inner ring of holes on the mode shape. Relative to the

idealised predicted mode, which is shown in Fig. 6.9 (c) for d/Λ = 0.06, we can see that the

differing hole sizes act to distort the mode shape, but that the mode is still well confined

to the core.

Unfortunately, only a short length of this fibre was available for characterisation due to

problems in the coating stage of fabrication during this trial. However, for the length of

fibre studied (≈ 70 cm), the power fluctuations that are often exhibited in large-mode-area

holey fibres with high bending losses were not observed. This suggest that this structure

is practical in terms of bend loss. However, more work is obviously required in order to

confirm this, which is currently ongoing at the ORC.

Note that preliminary results for a new 4HF fabricated at the ORC show that for a

single-mode 4HF with an A
FM

eff of ≈ 480 µm2 at 1064 nm, the R
FM

c is ≈ 13 cm. From

Fig. 5.33, it can be seen that the best possible value of R
FM

c for a single-rod holey fibre with

this mode area is expected to be ≈ 16 cm, demonstrating a ≈ 20% improvement in R
FM

c ,

which is in excellent agreement with the numerical predictions presented in Section 6.2.3

for the closely matched fibre pair HFF and 4HFM.
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6.3 Discussion and conclusion

Preliminary work has shown that multiple-rod holey fibres may offer a route towards practi-

cal single-mode fibres with larger mode areas than can be created with traditional single-rod

designs [34]. This study highlighted that more complex holey fibre designs, in which three

adjacent rods are used to form the core, have the potential to improve bend loss in single-

mode structures. However, the advantages of these novel 4HF structures have not been

accurately quantified, which is essential to enable this technique to be optimised for future

fibre design.

In order to quantify the improvement in bending losses that these 4HF structures can

offer for single-mode operation it is necessary to compare the bending losses of pairs of

holey fibres and 4HFs that are equivalent in terms of A
FM

eff and nFSM at 1064 nm. For

a given mode area, the overall scale of the microstructured cladding must be decreased

relative to a conventional single-rod holey fibre. As a result, the relative hole size in the

4HF must also decrease in order to maintain single-mode guidance. This is explained in

detail in Section 6.2.2. It is found here that holey fibres with d/Λ = 0.4 are approximately

equivalent in terms of A
FM

eff and nFSM to 4HF structures with d/Λ = 0.2 and values of Λ

approximately 60% that of the single-rod design. However, note that the fibre pairs created

in this way are only approximately equivalent in terms of A
FM

eff and nFSM and that finding

structures that are well matched in terms of these two parameters is not a trivial process.

In this chapter, the bending losses of three pairs of holey fibres and 4HF that are

approximately equivalent are evaluated using the methods developed in Chapter 3, which

have very few restrictions on the type of fibre profile than can be modelled. Initial results

demonstrate that 4HF structures offer a ≈ 30% improvement in mode area for the same

value of R
FM

c as a single-rod holey fibre at 1064 nm. This is consistent with the findings

presented in Ref. [34]. However, further investigation, considering more closely matched

structures, indicates that the level of improvement in mode area is probably less than this, at

around 15-20%, allowing the maximum tolerable A
FM

eff for strict single-mode operation to rise

to ≈ 500 µm2 at 1064 nm. In addition, the numerical methods used here, which are capable

of considering the effect on the bend loss of the angular orientation of the fibre structure,

show that for 4HFs, the R
FM

c can vary by ≈ 6% (Note that previous results quoted for

percentage improvements in loss are calculated assuming worst-case orientation). This is

much larger than the variation in bend loss with respect to angular orientation predicted

for single-rod holey fibres, which is typically less than 1% at 1064 nm.
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Furthermore, it is important to note that while the 4HF structure offers improved

bending losses, over 200 additional elements are required within the preform in order to

achieve the same level of confinement losses as a similarly sized single-rod holey fibre.

Consequently, the fabrication process is more time consuming for 4HFs, but as shown in

Section 6.2.4, large-mode area 4HFs are practical to fabricate. Preliminary results for a

single-mode 4HF with an A
FM

eff of ≈ 480 µm2 at 1064 nm show that R
FM

c is ≈ 13 cm. From

Fig. 5.33, it can be seen that the best possible value of R
FM

c for a single-rod holey fibre with

this mode area is expected to be ≈ 16 cm, demonstrating a ≈ 20% improvement in R
FM

c ,

which is in excellent agreement with the numerical predications presented in this chapter.

Note that it has been demonstrated that the bending losses of conventional solid fibres

can be improved by introducing a dip and subsequent rise in the refractive index profile

of the fibre cladding [123]. The dip in refractive index improves the bend loss of the fibre

and the rise in index compensates for the associated reduction in the cladding index. This

method has been shown to significantly improve the bending losses of step-index fibres and

could be applied to a holey fibre simply by using different sized capillaries in the preform.

In this way, it should be possible to create a holey fibre with different hole sizes that would

act to modulate the effective cladding index of the holey fibre. This is something that has

not been considered here for reasons of time, but will be investigated in future studies.

Up until this point, the work presented in this thesis has focussed on single-wavelength

characterisation of holey fibres at near-IR wavelengths, which has allowed our theoretical

methods to be validated. However, the novel property of endlessly single-mode guidance

offers obvious advantages for broad-band applications. In addition, this property may

also present a more practical route towards large-mode-area, single-mode fibres for short

wavelength applications, in which conventional fibre fabrication techniques are limited by

the low values of NA required to maintain single-mode guidance. However, while the

bending losses of holey and conventional fibres have been shown to be similar at 1550 nm

and 1064 nm, it is unclear how this relationship may change towards shorter wavelengths.

The relationships between holey fibre structure and bend loss as a function of wavelength

are explored in the following chapter.
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Chapter 7

Large-mode-area holey fibres for

UV to mid-IR wavelengths

7.1 Introduction

One of the most well known properties of silica holey fibres is their ability to remain

single-mode at all wavelengths [4]. This property, known as endlessly single-mode guidance

has been shown to occur in holey fibres for d/Λ<∼ 0.4 [19]. This property offers obvious

advantages for broad-band applications but also presents a practical route towards large-

mode-area, single-mode fibres for short wavelength applications. However, as discussed

in Section 2.3, the bending losses of a holey fibre increase towards both long and short

wavelengths, and it is these losses that limit the window of useful wavelength operation.

It has been shown empirically that the mid-point in wavelength between the long and

short bend loss edges in a silica holey fibre is approximately given by Λ/2 [32]. Each of

the large-mode-area holey fibres considered within this study possess Λ > 7 µm, which

corresponds to mid-point wavelengths >∼ 3.5 µm. However, the theoretical minimum loss

in silica glass is bounded by Rayleigh scattering in the short wavelength limit and infrared

absorption in the long wavelength limit, rising to ≈ 100 dB/km at ≈ 300 nm and ≈ 2.2 µm.

For high power and transmission applications, where fibre losses are critical, silica fibres

are therefore only useful for wavelengths between ≈ 300 nm and 2.2 µm [157, 158] (see

Section C.2 for some examples of spectral attenuation in silica glass). Consequently, we do

not expect to observe the long wavelength loss edge in any of the holey fibres considered

here. This implies that the maximum tolerable A
FM

eff decreases with decreasing wavelength

for large-mode, single-mode silica holey fibres for all wavelengths of interest. Whilst this is
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well known, it is not currently understood what impact this will have on the practicality

of fibres designed for UV transmission, which represents the shortest wavelengths that are

transparent in silica. In this chapter, I aim to use the numerical techniques developed in

Chapter 3, which have been shown to be capable of accurate predictions (see Chapter 5),

to investigate whether the bending losses in holey fibres at 308 nm are prohibitively large.

The results from this study are presented in Section 7.2.1.

As discussed in Section 2.3, conventional step-index fibres exhibit only one bend loss

edge at long wavelengths. This results from the fact that the NA decreases with increasing

wavelength as the mode extends further into the cladding, resulting in a more weakly guided

mode that suffers greater bend loss. Towards short wavelengths, the NA of a conventional

fibre increases, and the bending losses fall. At first sight, this suggests that conventional

fibres are more bend resistant than holey fibres towards short wavelengths. However, whilst

a holey fibre can guide a single-mode over a broad wavelength range, the number of modes

guided in a step-index fibre increases rapidly towards short wavelengths. In order to make

a meaningful comparison between the bending losses of the two fibre types in the single-

mode regime it is necessary to consider a different equivalent step-index (ESI) fibre for every

wavelength at which the holey fibre is considered. A comparison between the bending losses

of a holey fibre and a number of equivalent conventional fibres is undertaken in Sections 7.2.1

and 7.2.2 for a holey fibre with Λ = 7.5 µm and d/Λ = 0.4 in the wavelength range 308 nm

to 1550 nm.

The effect of the holey fibre structure on A
FM

eff and R
FM

c has been studied extensively at

1064 nm using both numerical and experimental techniques in Chapter 5. In Sections 7.2.3

and 7.3, some of this work is extended to consider the effect of wavelength also. In Sec-

tion 7.2.3, the results from a numerical study into the effect of the fibre structure on A
FM

eff and

R
FM

c for wavelengths between 308 to 1600 nm are presented for a selection of fibre structures

with 60 ≈ A
FM

eff
<∼ 400. This numerical work is complemented by the experimental results

presented in Section 7.3, which further validate the numerical technique developed here

and give additional information regarding the modedness of holey fibres as a function of

wavelength.

An approach that is often used when studying holey fibre properties as a function of

wavelength is to assume a constant refractive index of silica so that Maxwell’s equations

become scale invariant [4, 16, 17]. This approach is advantageous as it vastly reduces the

number of calculations required to evaluate a wide range of fibre structures over many
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different wavelengths. However, bend loss is a sensitive function of the fibre parameters

and this scaling approach has not previously been evaluated for bend loss. In Section 7.4,

numerical and experimental results from previous sections are used to evaluate the accuracy

of this scaling technique for bend loss in holey fibres.

In Chapter 6, the triangular core holey fibre (4HF) was shown to exhibit improved

bending losses relative to traditional holey fibre designs at 1064 nm. In Section 7.5, I

look briefly at how the improvement offered by the 4HF structure varies as a function of

wavelength and consider if this type of structure offers a way of accessing larger mode areas

towards short wavelengths.

Up until this point, all work in this thesis has focussed solely on silica holey fibres.

However, holey fibres can also be made from mid-IR transmitting materials such as tellu-

rite and chalcogenide glasses, also known as soft-glasses [22, 25, 24]. In Section 7.6 of this

chapter, I look briefly at the modal properties of large-mode-area holey fibres made from a

high index compound soft glass, called Gallium-Lanthanum-Sulphide (GLS). Conventional

fibre fabrication techniques have met with limited success due to problems matching core

and cladding materials and also due to crystallisation at the core/cladding interface. Since

holey fibres can be made from a single-material these problems can be minimised, allowing

the creation of GLS fibres for mid-IR applications. However, like most soft-glasses, GLS

is highly nonlinear. Indeed, GLS possesses an n2 that is approximately 100 times that of

silica glass [159]. For transmission applications nonlinear effects are an unwanted phenom-

ena. The nonlinear effects can be minimised by using large mode areas and it is therefore

necessary to assess the maximum practical mode sized that can be achieved in a GLS holey

fibre. In Section 7.6, I use the numerical techniques outlined in Chapter 3, to gain an un-

derstanding of the range of practical mode areas that can be created in holey fibres made

from GLS glass at a wavelength of 2.2 µm.

7.2 Numerical study of the bending losses of holey and con-

ventional fibres from UV to IR wavelengths

7.2.1 Holey fibres vs step-index fibres at 308 nm

As mentioned in the introduction above, although holey fibres can be endlessly single-mode,

the bend loss worsens towards short wavelengths, increasingly limiting the mode areas that

are practical to use. This will obviously have the greatest impact on fibres designed for
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UV transmission, which represents the shortest wavelengths that are transparent in silica.

In this section, I use the numerical techniques developed in Chapter 3, which have been

shown to be capable of accurate predictions (See Chapter 5), to investigate if the bending

losses in holey fibres at 308 nm are prohibitively large. A holey fibre with a modest A
FM

eff

of 66 µm2 at 308 nm is chosen for this study, as the bending losses at this wavelength are

expected to be much larger than those at 1064 nm, which have been studied in the previous

two chapters. A comparison between the bending losses of this holey fibre and equivalent

step-index fibres is also presented. Note that the bending losses of the ESI fibres within

this section are calculated using the numerical techniques developed in Chapter 3 to enable

direct comparison of the absolute values.

Note that the attenuation losses in silica glass increase sharply towards UV wavelengths

due to Rayleigh scattering. This intrinsic loss can be reduced by using a silica glass with a

high OH content, down to values of ≈ 0.1 dB/m for wavelengths around 300 nm [160] (see

Section C.2). This level of loss can be acceptable for lengths of fibre up to a few 10’s of

metres. However, this is not considered in any detail here.

The structural parameters and modal properties of the holey fibre HFP studied in this

section are listed in Table 7.1. Fibre HFP has Λ = 7.5 µm and d/Λ = 0.4 and as such is

endlessly single-mode. The critical bend radius of the fundamental mode, R
FM

c , is found to

be 10.6 cm at 308 nm. Whilst this is not prohibitive, it is considerably larger than would

be expected at 1064 nm, which would be < 2 cm. For example, from Fig. 5.33 we can see

that this value of R
FM

c would equate to A
FM

eff ≈ 370 µm2 at 1064 nm for a structure with

Λ ≈ 17.5 µm. This large value of R
FM

c indicates that mode areas greater than ≈ 100 µm2

are likely to be impractical at 308 nm.

Table 7.1: Predicted modal properties for the endlessly single-mode holey fibre HFP: Λ = 7.5 µm,

d/Λ = 0.4 and some step-index fibres at 308 nm.

Fibre Λ [nm] d/Λ nFSM NA A
FM

eff [µm2] R
FM

c [cm]

HFP 7.5 0.4 1.485420 0.025 66 10.6

Fibre a [µm] nclad V NA A
FM

eff [µm2] R
FM

c [cm]

ESIP 3.40 1.485420 1.76 0.025 68 > 20

SIFP 4.20 1.485374 2.40 0.028 66 11.8

As described in Section 5.7.1, the bending losses of holey fibres can be compared to those
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of conventional step-index fibres only by considering step-index fibres that are equivalent

to the holey fibres in question. Throughout this thesis the parameters of equivalent step-

index (ESI) fibres have been calculated by assuming nclad ≡ nFSM, ncore = nglass and by

choosing the core radius such that the ESI fibre possesses the same value of A
FM

eff as the

holey fibre to which the comparison is to be made. However, at this short wavelength it is

not always possible to create a step-index fibre that is equivalent to a holey fibre in terms

of A
FM

eff and nFSM. The reasons for this can be seen in Fig. 7.1, which shows a contour

plot of A
FM

eff as a function of core radius (a) and nclad for step-index fibres at 308 nm. The

red line in Fig. 7.1 indicates the V=2.405 boundary between single-mode and multi-mode

guidance and the two red dots correspond to the parameters of the two step-index fibres in

Table 7.1. As in Section 5.7, we see that there exists a minimum value of A
FM

eff for each value

of nclad. A direct result of this minimum in the A
FM

eff is that it is not possible to create a step-

index fibre with the same cladding index and A
FM

eff as holey fibre HFP (nFSM = 1.485420,

A
FM

eff = 66 µm2). From Fig. 7.1 it can be seen that the minimum A
FM

eff for a step-index fibre

with nclad = 1.485420 at 308 nm ≈ 68 µm2, which is represented by fibre ESIP in Table 7.1,

for which R
FM

c > 20 cm. This value of R
FM

c is significantly larger than for the equivalent

holey fibre, even though both fibres possess identical values of NA. (Note that the NA for

a holey fibre is defined here as
√

nglass
2 − nFSM

2).

However, the V-parameter of fibre ESIP is considerably less than 2.405, which is the

minimum requirement for single-mode operation in a step-index fibre. Since holey fibre

HFP is close to cut-off ((d/Λ)c ≈ 0.416 for this fibre at 308 nm) it seems more sensible

to compare the bending losses of holey fibre HFP with the bending losses of a step-index

fibre that is also close to cut-off. As a result, I choose a second method of defining an ESI

fibre for holey fibres close to cut-off; once again ncore = nglass, but nclad and the core radius

(a) are both free parameters. The core radius and nclad are then chosen to match the A
FM

eff

of the holey fibre with the condition that V=2.4. In this way, fibre SIFP is defined to be

roughly equivalent to holey fibre HFP and represents the best bending losses that can be

achieved in a truly single-mode step-index fibre. The R
FM

c of this second ESI fibre is 11.8 cm

and is comparable with the R
FM

c of holey fibre HFP, which is 10.6 cm at 308 nm, as shown

in Table 7.1. In addition, the fact that holey fibre HFP is endlessly single-mode, together

with the fact that the bending losses improve towards longer wavelengths, mean that fibre

HFP can be defined as a practical fibre for all wavelengths longer than 308 nm. The A
FM

eff

and the bend loss of this fibre is further explored in the following section.
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Figure 7.1: Contour plot of A
FM

eff as a function of nclad and core radius (a) for conventional step-index

fibres at 308 nm. The red line shows the V=2.405 single-mode boundary. The red dots show the parameters

of the step-index fibres ESIP and SIFP in Table 7.1.

7.2.2 Holey fibres vs step-index fibres at 308 to 1550 nm

In this section I aim to extend the work presented in Sections 5.7.3 and 7.2.1 to include

wavelengths within the range 308 nm to 1550 nm. In this way, I aim to investigate the

similarities in the spectral dependencies on mode area and bend loss for single-mode holey

and equivalent conventional fibres. This is accomplished by comparing the bending losses

of a holey fibre with Λ = 7.5 µm and d/Λ = 0.4 (fibre HFP), with those of equivalent step-

index (ESI) fibres in the wavelength range 308 to 1550 nm. An ESI fibre is, by definition,

only equivalent to any particular holey fibre at a single wavelength, and in order to make

a meaningful comparison between the bending losses of the two fibre types it is necessary

to consider a different equivalent step-index (ESI) fibre for every wavelength. Here, the
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bending losses of holey fibre HFP and a different ESI fibre are evaluated at five discreet

wavelengths of 308, 633, 1064, 1310 and 1550 nm. The parameters of each ESI fibre studied

in this section are found using the second ESI method described above, in which the V-

parameter is set to 2.4 and nFSM and the core radius are chosen to match the A
FM

eff to that

of the comparison holey fibre. (Note that the results for 308 nm are repeated from the

previous section.) This technique is chosen as a result of the fact that the usual method of

defining an ESI fibre, by matching the cladding index, can result in a very weakly guided

ESI fibre (as described in the previous section). Since a holey fibre with a d/Λ of 0.4 is

considered to be close to cut-off at all wavelengths, a fairer comparison is to consider step-

index fibres with similar mode area that are also close to cut-off. In this way, the bending

losses of holey fibre HFP can be compared to the best possible bend loss attainable in a

single-mode step-index fibre with similar values of A
FM

eff for each wavelength considered. As

in Section 5.7.3, the A
FM

eff and V-parameter for each ESI fibre is calculated using the exact

solutions from Ref. [53] and the bending losses are evaluated using an approximate model

from Ref. [126], which is described by Eq. 5.3 and the surrounding text. This method is

found to overestimate R
FM

c by ≈ 20 − 50% at 1064 nm. However, since the aim of this

section is not to compare absolute values, but to explore the similarities in the parametric

dependencies for these two fibre types, this technique is perfectly adequate.

The predicted modal properties for the endlessly single-mode holey fibre HFP, which

has Λ = 7.5 µm and d/Λ = 0.4, are shown in Table 7.2 for 5 wavelengths in the range 308

- 1550 nm. Note that the A
FM

eff is relatively constant over the wavelength range considered;

from 308 to 1550 nm, the A
FM

eff increases from 66 µm2 to 81 µm2, corresponding to an

increase of ≈ 20% over more than 1200 nm. (The A
FM

eff of this fibre is plotted as a function

of wavelength in Fig. 7.5). Also shown in Table 7.2 is the NA of holey fibre HFP, defined

here as
√

nglass
2 − nFSM

2. These values show that the NA increases with wavelength, from

≈ 0.03 at 308 nm to ≈ 0.12 at 1550 nm. This increase in NA leads to a dramatic drop in

R
FM

c towards long wavelengths, from 10.6 cm at 308 nm to 0.60 cm at 1550 nm.

The predicted modal properties for the five ESI fibres considered here are shown in

Table 7.1. Each ESI fibre corresponds to one of the five wavelengths at which the bending

losses of holey fibre HFP were evaluated, as shown in Table 7.2. The fibre parameters and

modal properties listed in Table 7.1 show that in order to match the A
FM

eff of fibre HFP

for V=2.4, the core radius of the ESI fibres must increase with wavelength. Note that

the choice of V=2.4 results from the desire to compare the bending losses of holey and
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Table 7.2: Predicted modal properties for the endlessly single-mode holey fibre HFP: Λ = 7.5 µm,

d/Λ = 0.4 at five different wavelengths. Modal properties are calculated using the numerical techniques

presented in Chapter 3.

λ [nm] nFSM NA A
FM

eff [µm2] R
FM

c [cm]

308 1.485420 0.025 66 10.6

633 1.456118 0.051 73 3.00

1064 1.447227 0.084 77 1.22

1310 1.443266 0.101 79 0.86

1550 1.439213 0.118 81 0.60

conventional fibres that are both close to cut-off, as discussed above and in Section 7.2.1.

In addition, we see that the NA increases from ≈ 0.03 to ≈ 0.13 from 308 to 1550 nm,

mimicking the behaviour of the holey fibre. Moreover, we find that the functional form of

R
FM

c is also imitated, decreasing from 14.8 cm at 308 nm to 0.58 cm at 1550 nm.

Table 7.3: Predicted modal properties for five different step-index fibres which possess V=2.4 and are

equivalent to holey fibre HFP (Λ = 7.5 µm, d/Λ = 0.4) in terms of A
FM

eff at five discreet wavelengths. A
FM

eff

and V are calculated using the exact solutions from Ref. [53] and R
FM

c is evaluated using Eq. 5.3.

λ [nm] a [µm] nclad NA V A
FM

eff [µm2] R
FM

c [cm]

308 4.20 1.485374 0.028 2.40 66 14.58

633 4.45 1.456000 0.054 2.40 73 3.52

1064 4.56 1.446890 0.089 2.40 77 1.23

1310 4.63 1.442750 0.110 2.40 79 0.80

1550 4.67 1.438500 0.130 2.40 81 0.58

The predicted values of R
FM

c for holey fibre HFP and the five ESI fibres are shown

in Fig. 7.2 as a function of wavelength (open and closed circles respectively). This plot

demonstrates that the bending losses for both the holey fibre and the ESI fibres are very

similar as a function of wavelength, indicating that the parametric dependencies on mode

area and bend loss are similar for these two fibre types as a function of wavelength. In

addition, the fact that comparative studies in Sections 5.7.3 and 7.2.1 have shown that

the absolute values of R
FM

c for fibres close to cut-off are similar at both 308 and 1064 nm,

indicates that the performance of single-mode holey and conventional step-index fibres, in
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terms of mode area and bend loss, is similar at any given wavelength.

Figure 7.2: Critical bend radius (R
FM

c ) as a function of wavelength. Open circles correspond to the

endlessly single-mode holey fibre HFP and the closed circles each correspond to a different ESI fibre at each

wavelength. At each wavelength, an ESI fibre is chosen that possesses V=2.4 and the same mode area as

the holey fibre HFP at that given wavelength. The holey and ESI fibre parameters are shown in Tables 7.2

and 7.3.

In this section the effect of wavelength has been considered on the bending losses of a

holey fibre with Λ = 7.5 µm and d/Λ = 0.4 which has a rather conservative mode area

of ≈ 70 µm2. This study has shown that this fibre is practical in terms of bending losses

(R
FM

c < 15 cm) in the range 308 to 1550 nm. In the following section I look at the effect of

wavelength on the bending losses of a selection of holey fibres with A
FM

eff up to 400 µm2.

7.2.3 The effect of the holey fibre structure

In this section the bending losses of seven different holey fibres are investigated as a func-

tion of wavelength using the numerical techniques developed in Chapter 3 in order to aid

understanding of how the fibre geometry influences the bend loss as a function of wave-

length. The fibre parameters of each of the seven holey fibres studied in this section are

listed in Table 7.4 together with the value of A
FM

eff at 1064 nm. The fibres in Table 7.4 have

been chosen in order to represent the range of holey fibres that has been considered within
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this thesis. These seven fibres have 7.5µm < Λ < 17.7 µm, 0.28 < d/Λ < 0.45 and A
FM

eff at

1064 nm ranging from 66 µm2 to 390 µm2. Note that all these fibres are endlessly single-

mode with the exception of fibre HFG, which has been shown to be effectively single-mode

at 1064 nm (and hence for all wavelengths greater than 1064 nm), in Section 5.3, due to

the fact that the higher-order modes possess high confinement losses.

Table 7.4: Predicted modal properties for a range of single-mode large-mode-area holey fibres.

Fibre Λ [µm] d [µm] d/Λ A
FM

eff @1064 nm [µm2]

HFP 7.50 3.00 0.40 66

HFB 10.70 3.04 0.28 190

HFC 11.30 3.84 0.34 190

HFD 12.00 4.80 0.40 188

HFG 12.70 5.73 0.45 188

HFJ 15.20 6.60 0.40 293

HFK 17.70 7.64 0.40 390

As previously discussed in Section 2.3, bending losses in a holey fibre increase towards

both long and short wavelengths, and it is these losses that limit the window of useful wave-

length operation. However, it has been shown empirically that the mid-point in wavelength

between the long and short bend loss edges in a silica holey fibre is approximately given by

Λ/2 [32]. For the fibres considered here this corresponds to mid-point wavelengths ranging

from ≈ 3.8 to ≈ 8.9 µm. Since even the smallest of these is well beyond those wavelengths

that are transparent in silica, we do not expect to observe the long wavelength loss edge in

any of the holey fibres considered here. This implies that the bend loss of every holey fibre

considered here should increase as the wavelength decreases, for all wavelengths considered.

The bending losses of these seven holey fibres are plotted in two graphs, Fig. 7.3, which

includes all fibres in the selection with A
FM

eff ≈ 190 µm2 shown for 600 nm<∼ λ <∼ 1600 nm

and Fig. 7.4, which includes all fibres in the selection with d/Λ = 0.4 shown for 300 nm<∼
λ <∼ 1600 nm. These two figures show that the bending losses increase towards short

wavelengths for each holey fibre considered here. In addition, it can be seen that as d/Λ

increases and as Λ decreases, the magnitude of bend loss decreases at all wavelengths,

widening the window of useful wavelength operation. This demonstrates that the optimum

way of creating a single-mode holey fibre with minimal bending losses is to use d/Λ = (d/Λ)c
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Figure 7.3: Critical bend radius (R
FM

c ) as a function of wavelength for four holey fibres with A
FM

eff ≈ 190 µm2

at 1064 nm. The dashed line marks the position of R
FM

c = 15 cm. The fibre parameters are shown in

Tables 7.4.

(where (d/Λ)c is the maximum value of d/Λ that results in single-mode guidance as defined

in Eq. 5.2) for any wavelength of interest. The value of Λ chosen then simply defines the

A
FM

eff . Note that these findings correspond to what may be expected intuitively, since it is

equivalent to using a high NA in a conventional fibre.

In Table 7.4, the A
FM

eff is given only for a wavelength of 1064 nm. This is a reasonable

approximation for all wavelengths considered here due to the fact that the mode size in large-

mode-area silica holey fibres is found to be weakly dependent on the wavelength [17],[132].

The A
FM

eff of the four fibres in Fig. 7.4 are plotted in Fig. 7.5 to illustrate this point. Over

the wavelength range shown, which spans more than 1200 nm, the A
FM

eff of each of the four
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Figure 7.4: Critical bend radius (R
FM

c ) as a function of wavelength for four holey fibres with d/Λ = 0.4

and increasing values of Λ and A
FM

eff . The values of A
FM

eff marked on the graph correspond to 1064 nm. The

dashed line marks the position of R
FM

c = 15 cm. The fibre parameters are shown in Tables 7.4.

fibres varies by less than 20%.

Fig. 7.4 shows that the wavelength at which the maximum tolerable value of R
FM

c is

reached, defined here as 15 cm, increases with the A
FM

eff of the fibre, as is expected. The

A
FM

eff of the fibre is plotted against this maximum tolerable wavelength in Fig. 7.6, in which

the open circles represent values extracted from Fig. 7.4 and Fig. 7.5, and the solid line is

a fit drawn to guide the eye. This demonstrates that the maximum tolerable A
FM

eff steadily

decreases towards short wavelengths, from ≈ 650 µm2 at 1550 nm to ≈ 80 µm2 at 308 nm.

This is consistent with the previous estimate from Section 7.2.1, which stated that A
FM

eff ≈
100 µm2 at 308 nm was likely to be impractical, and is also consistent with reports of a
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Figure 7.5: A
FM

eff as a function of wavelength for four holey fibres with d/Λ = 0.4 and increasing values of

Λ, and A
FM

eff . Values of A
FM

eff marked on figure correspond to 1064 nm. Note that the fibre parameters are

shown in Tables 7.4.

practical single-mode holey fibre with A
FM

eff ≈ 600 µm2 at 1550 nm [10]. Note however, that

the estimates of the maximum tolerable A
FM

eff shown in Fig. 7.6 correspond to d/Λ = 0.4.

Consequently, they represent conservative estimates, especially towards long wavelengths

due to the fact that (d/Λ)c increases with wavelength. Furthermore, it has been shown that

multi-mode fibres can be effectively single-mode in practice for d/Λ > (d/Λ)c. Experimental

results presented in Chapter 5 demonstrated that at 1064 nm, fibres with A
FM

eff ≈ 200 µm2

could be effectively single-mode for values of d/Λ up to 0.5. This work is extended in

Section 7.3, in which experimental results of bend loss measurements from a range of holey

fibres illuminated with a white-light source are used to infer information regarding the
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Figure 7.6: Maximum tolerable A
FM

eff as a function of wavelength for holey fibres. Maximum tolerable A
FM

eff

defined as the A
FM

eff at which R
FM

c = 15 cm. Open circles represent data extracted from Fig. 7.4 and Fig. 7.5.

The solid line is a fit to this data of the form y = a ∗ x2 + b ∗ x + c.

modedness of the fibre as a function of wavelength.

Note also that the values of the maximum tolerable A
FM

eff shown in Fig. 7.6 could be im-

proved by using a 4HF, in which three adjacent rods are used to form the core, as discussed

in Chapter 6. The benefits offered by the 4HF structure as a function of wavelength are

explored in Section 7.5.

7.3 Experimental results from white light bend loss mea-

surements

7.3.1 Introduction

In this section, experimental results are presented from a series of bend loss measurements

made on a selection of holey fibres using a white-light source of illumination. These mea-

surements are made using the experimental set-up described in Section 4.4.3 and have been

performed by Matteo Fuocci and Marco Petrovich at the ORC. Note that all results have

been obtained for one full loop of fibre. The results from these experiments, presented in

Section 7.3.2 below, can be used to infer information regarding the modedness of the fibres,

in addition to the bending losses as a function of wavelength, as explained previously in
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Sections 5.3 and 5.4.

These results are also used to further validate the numerical techniques developed here

to model the bending losses of holey fibres, as described in Chapter 3. In Section 7.3.3, the

R
FM

c as a function of wavelength is extracted from the white-light bend loss measurements

of a holey fibre with Λ = 12.1 µm and d/Λ = 0.34. Comparison with numerical predictions

of R
FM

c , calculated using the scalar version of the modal model in Section 3.2 for a range of

wavelengths, demonstrate the accuracy of these techniques as a function of wavelength.

7.3.2 Experimental clues to the modedness of holey fibres

To explain how information regarding the modedness of the fibre can be extracted we look

first at three fibres with A
FM

eff ≈ 200 µm2 and increasing values of d/Λ, which have been

studied in detail at 1064 nm in previous sections. The structural parameters and modal

properties at 1064 nm of these fibres are shown in Table 7.5 (repeated from Section 5.4).

SEM images of these fibres are shown in Fig. 5.21. The spectral response to bending for

each of these three fibres is shown in Figs 7.7, 7.8 and 7.9 as a function of wavelength. In

each of these three figures, (a) shows the power transmitted in dBm and (b) shows the data

from (a) which has been normalised against the power in the straight fibre. Please refer

to figure captions and legends for more details. For all fibres considered here, the bend

loss is expected to occur first at short-wavelengths for gentle bends, extending to longer

wavelengths as the bend radii are decreased. This is observed for all fibres considered.

Table 7.5: Measured (m) and predicted (p) modal properties for a range of holey fibres at 1064 nm. ∗

indicates that the fibre is effectively single-mode at 1064 nm.

Fibre Λ d d/Λ Am
eff Ap

eff Rm
c Rp

c Modes

[µm] [µm] [µm2] [µm2] [cm] [cm]

F334Zeop 11.74 3.84 0.33 200 210 7.1 7.2 SM

F334Zsop 11.93 5.39 0.45 165 170 3.3 - MM∗

F334Ysop 12.63 6.48 0.51 165 170 < 2 - MM∗

The modedness of the three fibres in Table 7.5 are determined using Eq. 5.2, as dis-

cussed in Section 5.3. Fibre F334Zeop is determined to be endlessly single-mode and fibres

F334Zsop and F334Ysop are determined to be multi-mode for all wavelengths transparent

in silica. Single-wavelength bend loss measurements at 1064 nm, presented in Section 5.4
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Figure 7.7: (a) Power transmitted through holey fibre F334Zeop for white light illumination at launch.

(b) The data from (a) normalised against the power in the straight fibre. The fibre parameters are shown

in Table 5.3.
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Figure 7.8: (a) Power transmitted through holey fibre F334Zsop for white light illumination at launch.

(b) The data from (a) normalised against the power in the straight fibre. The fibre parameters are shown

in Table 5.3.

confirmed that fibre F334Zeop was single-mode and indicated that fibres F334Zsop and

F334Ysop were effectively single-mode at 1064 nm. The lack of evidence for higher-order

modes in fibres F334Zsop and F334Ysop was attributed to the fact that the higher-order

modes possessed high levels of confinement loss (calculated to be ≈ 0.5 dB/m for simi-
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Figure 7.9: (a) Power transmitted through holey fibre F334Ysop for white light illumination at launch.

(b) The data from (a) normalised against the power in the straight fibre. The fibre parameters are shown

in Table 5.3.

lar structures in Section 5.3). Using the data from the white-light bend loss experiments

shown in Figs 7.7, 7.8 and 7.9 these conclusions can be confirmed and additional infor-

mation regarding the modedness at other wavelengths can be inferred, as discussed in the

following.

The transmitted power in Fig. 7.7 (a) for the endlessly single-mode fibre F334Zeop shows

a smooth reduction towards short wavelengths from one radius to the next, indicating that

power is lost steadily as the bend radius is reduced. In contrast, the transmitted power in

Fig. 7.9 (a) for the multi-mode fibre F334Ysop shows a marked reduction in power from

the straight fibre to the largest bend for wavelengths <∼ 1050 nm. This large power loss for

λ < 1050 nm is indicative of higher-order modes that possess low enough confinement losses

to be observed in the straight fibre for λ < 1050 nm, but possess such high bending losses

that they are stripped completely from the fibre for Ro < 13 cm. The fact that this loss can

be attributed solely to higher-order modes, and the fact that we deduce that all power is lost

from these higher-order modes for Ro < 13 cm is determined from the observation that the

subsequent few smaller bend radii show relatively constant power levels for λ < 1050 nm.

This indicates that the R
FM

c ¿ 13 cm¿ R
HOM

c , where R
HOM

c is the critical bend radius of

the higher-order modes. Fibre F334Ysop is therefore defined to be selectively single-mode

for Ro < 13 cm for λ<∼ 1050 nm and effectively single-mode for λ>∼ 1050 nm, which is
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consistent with the interpretation made at 1064 nm in Section 5.4.

Fibre F334Zsop lies in between fibres F334Zeop and F334Ysop in terms of fibre para-

meters and was determined to be effectively single-mode at 1064 nm in Section 5.4. Indeed,

the graph of transmitted power as a function of wavelength, shown in Fig. 7.8 (a), looks

similar to the equivalent plot for the endlessly single-mode fibre F334Zeop, which is shown

in Fig. 7.7 (a), indicating that fibre F334Zsop may be effectively single-mode across the

entire wavelength range shown. However, evidence of higher-order modes for λ<∼ 850 nm

is present in the data displayed in Fig. 7.8, but it is not easy to see. By extracting the

loss for individual wavelengths, as shown in Fig. 7.10, the characteristic ‘step’ in bend loss

that indicates the presence of higher-order modes can be clearly seen for the wavelength of

600 nm. In contrast, the bend loss at 850 nm shows no sign of higher-order modes. The on-

set of this ‘step’ occurs gradually between these two wavelengths, and only becomes clearly

representative of a single-mode fibre at 850 nm. As a result, fibre F334Zsop is defined to be

effectively single-mode for λ>∼ 850 nm. This fibre is also likely to be selectively single-mode

for λ<∼ 850 nm below some bend radius, but this is not obvious from the data presented

here.
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Figure 7.10: Bend loss (per loop) for holey fibre F334Zsop at 850 and 600 nm, extracted from the data

in Fig. 7.8. Fibre parameters are shown in Table 5.3.
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The critical bend radii (Rc) as a function of wavelength can be extracted for fibres

F334Zeop, F334Zsop and F334Ysop from the data shown in Figs 7.7 (b), 7.8 (b) and 7.9

(b) respectively, in which the power transmitted through each fibre is normalised against

the power transmitted through the corresponding straight fibre. These critical bend radii

are shown in Fig. 7.11 (the fitted curves in Fig. 7.11 are drawn to guide the eye). Note

that two different values of Rc are shown for fibre F334Ysop. The first of these corresponds

to the loss for all modes present in this multi-mode fibre, extracted from 7.9 (b). The

additional Rc curve correspond to the loss from the fundamental mode (FM) alone and is

extracted in the following way. Previously, fibre F334Ysop was defined to be a multi-mode

fibre that can be selectively single-mode for Ro < 13 cm, with negligible power lost from the

fundamental mode at this radius (i.e. R
FM

c ¿ 13 cm¿ R
HOM

c ). Therefore, by normalising

the loss spectra shown in Fig. 7.9 (a) against the power in the fibre at Ro = 13 cm, as

shown in Fig. 7.12, the loss due to the fundamental mode alone can be extracted.
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Figure 7.11: Rc for holey fibres F334Zeop, F334Zsop and F334Ysop as a function of wavelength. The

critical bend radius is shown for fibre F334Ysop for all modes of the fibre (solid squares) and for the

fundamental mode (FM) alone (open diamonds). The data shown here is extracted from the data shown in

Figs 7.7, 7.8 and 7.9. The fibre parameters are shown in Table 5.3.

Considering only the fundamental mode, the results presented in Fig. 7.11 illustrate how
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F334Ysop
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Figure 7.12: Power transmitted through holey fibre F334Ysop for white light illumination at launch,

normalised against the power in the fibre at Ro = 13 cm. The fibre parameters are shown in Table 5.3.

the R
FM

c increases towards short wavelengths and as d/Λ decreases, as is expected. However,

the collective Rc, which corresponds to all the modes present in fibre F334Ysop, increases

relative to the Rc of the fundamental mode as the wavelength decreases. This indicates

that towards short wavelengths, the fraction of power lost from higher-order modes in a

bent holey fibre increases relative to the fraction of power lost from the fundamental mode.

Consequently, for λ<∼ 645 nm, the overall Rc of fibre F334Ysop, which has d/Λ ≈ 0.51

and A
FM

eff ≈ 165 µm2 at 1064 nm, becomes larger than the Rc of fibre F334Zsop, which

has d/Λ ≈ 0.45 and A
FM

eff ≈ 165 µm2 at 1064 nm. This implies that a multi-mode holey

fibre can possess greater bending losses than a single-mode holey fibre, with a similar A
FM

eff ,

towards short wavelengths as a direct result of the fact that power is coupled into the

(more lossy) higher-order modes from the fundamental mode. However, note that it may

be possible to minimise the power lost through the bending losses of higher-order modes

via selective launch conditions. It was not possible to investigate this with the white-light

source of illumination used here, due to the fact that the spot size incident on the fibre at

launch was many times that of the fibre diameter. Single-mode sources would enable further

investigation in this area, which is necessary in order to properly evaluate the conditions

for selectively single-mode guidance in a holey fibre. This has not been performed here for

reasons of time, but is obviously something to consider in future investigations.
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(a) (b)

Figure 7.13: (a) Critical bend radius (R
FM

c ) as a function of wavelength for holey fibre F200D1 with

Λ = 12.1 µm and d/Λ = 0.34. (b) SEM of holey fibre F200D1. A
FM

eff ≈ 220 µm2 @ 1064 nm.

7.3.3 Comparison with numerical predictions

In this section the measured values of R
FM

c as a function of wavelength are compared with

numerical predictions for fibre F200D1, which has Λ = 12.1 µm and d/Λ = 0.34. Fibre

F200D1 was fabricated from pure silica rods and tubes of F300 synthetic silica glass from

Heraeus Tenevo AG, by Kentaro Furusawa, at the ORC. Note that for all the numerical

predictions presented within this section, the constant of proportionality, τ , defined in

Eq. 3.17, is equal to 2.0 (see also Section 4.5.3). As in the previous section, the values of R
FM

c

are extracted from bend loss measurements made using a white-light source of illumination

and show that the bending losses worsen towards short wavelengths. The predicted values

of R
FM

c are calculated using the techniques developed here, which are described in Chapter 3.

The SEM of fibre F200D1 is shown in Fig. 7.13 (b) and the A
FM

eff of this fibre at 1064 nm is

measured as 215 µm2. This is in excellent agreement with the predicted value of 220 µm2.

The measured values of R
FM

c for this fibre are shown in Fig. 7.13 (a) together with the

predicted values. The excellent agreement between experiment and theory demonstrates

that the numerical methods developed here can be used to accurately predict the bending

losses of holey fibres as a function of wavelength.
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7.4 Scaling predicted values of R
FM

c in silica holey fibres

7.4.1 Introduction

As mentioned briefly in Section 1.2.2, if a constant refractive index is assumed, Maxwell’s

equations become scale invariant. Consequently, for this assumption, the modal properties

of a holey fibre with a hole-to-hole spacing of Λ = Λ1 and a relative hole size of d1/Λ1 = δ are

exactly replicated in a structure with a different Λ (Λ2), if the relative hole size is maintained

(d2/Λ2 = δ) and if the wavelength is also scaled proportionately, i.e. λ2 = λ1(Λ2/Λ1). This

approach is advantageous as it vastly reduces the number of calculations required to evaluate

a wide range of fibre structures over many different wavelengths.

By assuming a constant refractive index for an air/silica holey fibre, the wavelength

dependence of the refractive index of silica is neglected. However, the refractive index of

silica is a weak function of wavelength, varying by approximately 3% in the wavelength

range 300 − 1600 nm (as illustrated in Section C) and this approximation is often used

successfully to evaluate certain holey fibre properties [4, 16, 17]. However, bend loss is a

sensitive function of the fibre parameters and this scaling approach has not previously been

evaluated for bend loss. In the following, results from previous sections are used to evaluate

the accuracy of this scaling technique for bend loss in holey fibres.

In the following two sections, the predicted values of R
FM

c presented in Chapter 5, which

were calculated for a range of holey fibre structures at 1064 nm, are used (via appropriate

scaling) to evaluate the R
FM

c for several holey fibres that have been considered previously

in this chapter as a function of wavelength. In Section 7.4.2, values of R
FM

c obtained via

this scaled approach are compared with predictions made using a wavelength dependent

refractive index (shown previously in Section 7.2.3) and in Section 7.4.3, predicted values of

R
FM

c obtained via this scaled approach are compared with experimentally measured values.

7.4.2 Comparison with other predicted values

In Sections 5.2 and 5.5.2, the A
FM

eff and R
FM

c for holey fibres with structural parameters in

the range 7.0µm < Λ < 20.0µm and 0.2 < d/Λ < 0.5 were evaluated numerically using the

methods developed in Chapter 3. These results were then used to construct contour plots

of A
FM

eff and R
FM

c over this range of Λ and d/Λ (see for example Fig. 5.28). For reference, the

refractive index used for the calculations presented in Chapter 5 was 1.449631. Here, these

results are recast to produce a scale invariant version of the same contour plot, as shown
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in Fig. 7.14.
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Figure 7.14: Contour plots from which A
FM

eff , R
FM

c and the modedness of the fibre can be extracted. The

colour contour lines show A
FM

eff /λ2. The solid black contour lines represent R
FM

c /λ and the solid red line

indicates the single-mode/multi-mode cut-off. These values are plotted as a function of Λ/λ and d/Λ.

In Fig. 7.14, the colour contours correspond to A
FM

eff /(λ2), the solid black contour lines

represent R
FM

c /λ and the solid red line indicates the single-mode/multi-mode cut-off (calcu-

lated using Eq. 5.2). These values are plotted as a function of Λ/λ and d/Λ. Values of A
FM

eff

and R
FM

c can thus be extracted from this graph for 6.6<∼Λ/λ<∼ 18.8 and 0.2 < d/Λ < 0.5.

By comparing these values with previously calculations in which the wavelength depen-

dence of the refractive index of silica was included, the accuracy of this scaling approach

for predicting R
FM

c can be evaluated. This is done here for the following two holey fibres;
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HFB and HFG, which have Λ = 10.7 µm, d/Λ = 0.28 and Λ = 12.7 µm, d/Λ = 0.45

respectively and the results are shown in Tables 7.6 and 7.7. In Tables 7.6 and 7.7, values

of R
FM

c and A
FM

eff that have been extracted from Fig. 7.14 are shown together with values

that have been calculated with the wavelength dependent refractive index of silica included,

via the Sellmeier equation. It has been previously shown that the A
FM

eff of a holey fibre can

be found with good accuracy using a scale invariant approach [17], and the values of A
FM

eff

in Tables 7.6 and 7.7 confirm this. In addition, the agreement between the two values of

R
FM

c demonstrates that scaling calculations made at other wavelengths can result in accu-

rate predictions of R
FM

c . In the following section, this scaling approach is further validated

against experimentally measured values of R
FM

c .

Table 7.6: Scaled R
FM

c and A
FM

eff for fibre HFB: Λ = 10.7 µm, d/Λ = 0.28.

λ Λ/λ R
FM

c /λ R
FM

c [cm] R
FM

c [cm] A
FM

eff /λ2 A
FM

eff [µm2] A
FM

eff [µm2]

[nm] ±0.2 (scaled) (Sellmeier) ±2 (scaled) (Sellmeier)

800 13.4 17.1 13.7 13.4 297 188 186

1064 10.0 7.2 7.7 7.70 171 192 190

1200 8.9 5.2 6.2 6.20 138 196 196

1400 7.6 3.3 4.6 4.72 103 198 201

1600 6.7 2.4 3.8 3.73 81 205 206

Table 7.7: Scaled R
FM

c and A
FM

eff for fibre HFG: Λ = 12.7 µm, d/Λ = 0.45.

λ Λ/λ R
FM

c /λ R
FM

c [cm] R
FM

c [cm] A
FM

eff /λ2 A
FM

eff [µm2] A
FM

eff [µm2]

[nm] ±0.2 (scaled) (Sellmeier) ±2 (scaled) (Sellmeier)

800 15.9 7.3 5.8 5.8 287 184 183

1064 11.9 3.4 3.6 3.6 166 188 188

1200 10.6 2.5 3.0 3.0 133 192 191

1400 9.1 1.6 2.2 2.2 100 196 196
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7.4.3 Comparison with measured values

In this section, values of R
FM

c measured as a function of wavelength are compared to pre-

dicted results extracted from Fig. 7.14, which has been constructed with the assumption

that the refractive index of silica is constant, as described above (in this case nsilica =

1.449631). Four fibres are considered here in detail and are listed together with their struc-

tural parameters in Table 7.8. With the exception of fibre F409Ysop, all the experimental

results shown here are repeated from Section 7.3, in which only the results for fibre F200D1

were compared to numerical predictions.

Table 7.8: Structural parameters of the four fibres shown in Fig. 7.15.

Fibre Λ [µm] d/Λ A
FM

eff @1064 nm [µm2]

F334Zeop 11.7 0.33 200

F334Zsop 11.9 0.45 165

F200D1 12.1 0.34 220

F409Ysop 15.4 0.46 270

The measured values of R
FM

c (open circles) are shown together with predicted values

(closed circles), extracted from Fig. 7.14, in Fig. 7.15. The insets in each part of Fig. 7.15

show the SEM of the appropriate fibre. The agreement between the (scaled) predictions

and measured values of R
FM

c in Figs 7.15 (a), (c) and (d) demonstrates that, for the holey

fibres considered here, R
FM

c is essentially scale invariant and a scaling approach can be used

to form accurate predictions of this parameter. For fibre F409Ysop, (Fig. 7.15 (a)), the

agreement between the scaled predictions and measured values of R
FM

c can be seen to diverge

for λ<∼ 850 nm. This results from the fact the bend loss in this fibre at λ<∼ 850 nm has

contributions from both the fundamental core mode and the higher order core modes of the

fibre (The scaled predicted values of R
FM

c correspond to the fundamental mode only). This

is supported by the results from Section 7.3, in which multi-mode behaviour was observed

in this fibre for λ<∼ 850 nm (the vertical dashed line in Fig. 7.15 (b) indicates λ = 850 nm).

7.4.4 Conclusion

In conclusion, the results in this section demonstrate that in calculations of R
FM

c , the as-

sumption of a constant refractive of silica can be used to produce accurate predictions for

holey fibres and that R
FM

c is essentially scale invariant. In addition, the contour plot of
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Figure 7.15: Critical bend radius (R
FM

c ) as a function of wavelength for four holey fibres studied exper-

imentally within this thesis. (a) F334Zeop, (b) F334Zsop, (c) F200D1, and (d) F409Ysop. Open circles

correspond to experimental measurements and solid circles correspond to predicted values, extracted from

Fig 7.14. The vertical dashed line in (b) indicates the wavelength at which this fibre was observed to be

multi-mode (see Section 7.3). A SEM of each holey fibre shown in the inset of each part. The structural

parameters of the four fibres considered in this figure are shown in Table 7.8.

A
FM

eff /(λ2) and R
FM

c /λ presented in Fig. 7.14 is an invaluable design tool and enables basic

fibre properties to be determined at-a-glance for 6.6<∼Λ/λ < 18.8 and 0.2 < d/Λ < 0.5.
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7.5 Bend loss of a 4HF as a function of wavelength: A nu-

merical study

As discussed in Chapter 6, experimental results have shown that by using three adjacent

rods to form the core of a holey fibre (referred to here as a4HF), instead of the usual single-

rod, it is possible to enlarge the mode area without increasing the bending losses [34]. In

Chapter 6, the improvement offered by single-mode 4HFs was evaluated in detail using

the numerical techniques developed in Chapter 3. These calculations demonstrated that at

1064 nm a4HF structure can be used to increase the A
FM

eff by ≈ 15−20% without increasing

the R
FM

c , relative to a traditional single-rod holey fibre at 1064 nm. In this section I aim

to further understand how this relative improvement in bend loss varies as a function of

wavelength. Here I choose to consider the largest fibre pair studied in Chapter 6; holey

fibre HFK and triangular core fibre 4HFO, which both possess A
FM

eff ≈ 400 µm2. Note that

the parameters of these two fibres were chosen to create approximately similar values of

nFSM and A
FM

eff at 1064 nm. However, this choice is a non-trivial process, and as a result,

the nFSM of 4HFO is slightly lower than that of HFK, resulting in the fact that fibre 4HFO

is just multi-mode at 1064 nm. This unfortunately means that the fibres are not as similar

as would be preferred for a direct comparison. However, via investigation of the bending

losses for a more closely matched HF/4HF fibre pair in Section 6.2.3, it has been shown

that the improvement offered by 4HF in terms of bend loss is real, and is not seen merely

as a result of non-equivalent structures. Furthermore, in this section, I aim only to look

at the functional dependence of the bend loss with respect to wavelength in the two fibre

types, and the absolute values of loss are less important. The structural parameters and

predicted values of A
FM

eff at 1064 nm for these two fibres are listed in Table 7.9.

Table 7.9: Structural parameters and predicted modal properties at 1064 nm for holey fibre HFK and

triangular core holey fibre 4HFO.

Fibre Λ [µm] d [µm] d/Λ A
FM

eff @ 1064 nm [µm2]

HFK 17.70 7.08 0.40 390

4HFO 11.00 2.20 0.20 401

In Chapter 6 the structural parameters of the fibre pair HFK and 4HFO were delib-

erately chosen to create approximately equivalent values of A
FM

eff and nFSM at 1064 nm to
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Figure 7.16: Effective modal index of the fundamental core and cladding modes of holey fibre HFK (round

shapes) and triangular core fibre 4HFO (triangular shapes) as a function of wavelength. Modal indices are

normalised against the refractive index of silica (calculated using the Sellmeier equation). Open shapes

correspond to the effective modal index of the fundamental mode (FM) and the closed shapes correspond

to the effective modal index of the fundamental space filling mode of the cladding (FSM). Fibre parameters

are shown in Table 7.9

enable a comparative study of bend loss. In order to consider the comparative bending

losses of these two fibres as a function of wavelength it is therefore important to under-

stand how the A
FM

eff and nFSM vary as a function of wavelength. This is necessary in order

to gauge the range of wavelengths over which any HF/4HF pair could be considered equiv-

alent structures. In Fig. 7.16, the effective modal indices of the fundamental mode (FM)

and the fundamental space filling mode of the cladding (FSM) are shown for fibre HFK and

4HFO as a function of wavelength. This plot shows that the degree of variation in nFSM as a

function of wavelength is very similar for the two fibres and that the degree of equivalence in
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Figure 7.17: A
FM

eff as a function of wavelength for holey fibre HFK and triangular core fibre 4HFO. The

fibre parameters are shown in Tables 7.9.

nFSM can therefore be considered approximately constant over the wavelength range shown.

The inclusion of the effective modal index of the fundamental core mode (FM) in Fig. 7.16

serves to illustrate the fact that the spacing between the FM and the FSM narrows towards

short wavelengths in both fibres, increasing the coupling between these two modes as the

wavelength is decreased. Since macro-bending losses arise from bend induced coupling be-

tween the core and cladding modes (amongst others), this demonstrates that the bending

losses of both fibres are expected to increase towards short wavelengths by approximately

similar amounts. Note that this can also be thought of in terms of the NA of the fibre: as

the wavelength reduces the cladding index increases, resulting in a lower NA and a more

weakly guided mode that is more susceptible to bend induced loss. Fig. 7.17 shows that

although fibre 4HFO has a slightly larger A
FM

eff than HFK, the degree of variation in A
FM

eff

with respect to wavelength is similar for both fibres. This fact, together with the nFSM

data from Fig. 7.16, demonstrates that the degree of equivalence of these two fibres can be

considered to be approximately constant over the wavelength range shown.

The R
FM

c for fibres HFK and 4HFO are shown as a function of wavelength in Fig. 7.18.

The solid shapes represent numerical calculations and the solid line represents a fit drawn

to guide the eye. This plot demonstrates that the R
FM

c of the 4HF is less than that

of the approximately equivalent holey fibre at all wavelengths considered. Part of this

reduction results from the fact that fibre 4HFO has a slightly higher NA than fibre HFK,
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Figure 7.18: R
FM

c as a function of wavelength for holey fibre HFK and 4HFO. Fibre parameters are shown

in Table 7.9

although the A
FM

eff of fibre 4HFO is also slightly larger then HFK and the numerical results

presented in Section 6.2.3 indicate that the majority of this improvement arises from the

more complex geometry of the 4HF structure and not the mismatch in NA. Moreover,

this plot demonstrates that the spectral dependency on bend loss in the two fibre types

is similar and that the relative improvement offered by the 4HF increases towards short

wavelengths. This suggests that 4HFs may offer a particularly attractive route towards

large-mode-area single-mode fibres in the short wavelengths extreme. Indeed, preliminary

investigations at 308 nm show that a 4HF with Λ = 4.65 µm with d/Λ = 0.2, which

possesses A
FM

eff = 68 µm2, has a low value of R
FM

c (< 2 cm). However, this fibre is found

to be robustly multi-mode at 308 nm. In order to assess the potential benefit offered by
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4HF structures towards short wavelengths it is necessary to first ascertain the conditions

required for single-mode guidance in these fibres and to determine if endlessly single-mode

guidance is possible in 4HFs. This work is continuing at the ORC.

7.6 Non-silica holey fibres for large mode areas at 2.2 µm

7.6.1 Introduction

Up until this point, all work in this thesis has focussed solely on silica holey fibres. However,

holey fibres can also be made from non-silica glasses, such as tellurite and chalcogenide

glasses, which offer unique optical properties, such as mid-IR transmission and high values

of nonlinearity. The majority of non-silica holey fibres fabricated to date are small-core, high

NA structures designed to maximise the high intrinsic nonlinearities of these glasses [24, 23,

25, 26]. However, for transmission applications, single-mode fibres with low nonlinearities,

and hence large-mode-areas are required. In this section, the aim is to investigate the

fundamental factors that limit practical mode sizes in non-silica soft-glass holey fibres. In

order to do this it is necessary to ascertain the structural parameters that result in large-

mode-areas, and to determine the subset of these structures that result in single-mode

guidance with practical levels of bend loss and low levels of effective nonlinearity. For

simplicity, one glass is considered here for one wavelength of transmission: a high index

compound soft glass, called Gallium-Lanthanum-Sulphide (GLS) which had a refractive

index of 2.37 is considered here at 2.2 µm.

The nonlinear figure of merit in an optical fibre is defined as γ = 2πn2/λAeff , where n2

the nonlinear index coefficient. The typically value of n2 for silica is 2.6×10−20m2W−1,

which in conventional single-mode step-index fibre (Corning SMF-28), equates to γ ≈
1 W−1km−1. The intrinsic nonlinearity of GLS glass is ≈ 100 times that of silica [159]. Con-

sequently, in order for a GLS fibre to have an equivalent level of nonlinearity, an effective

area of ≈ 6000 µm2 would be required. This is obviously fairly extreme, and higher values of

nonlinearity could be tolerated for short lengths of fibre. For example, for A
FM

eff = 600 µm2,

the nonlinear figure of merit γ, is of the order of 10 W−1km−1 at 2.2 µm in a GLS fibre.

The first step in assessing if GLS glass is a practical material to create holey fibres designed

for transmission at 2.2 µm, is therefore to evaluate the types of structures that result in

large-mode-areas and investigate the associated bending losses. A brief study of these fibre

properties in GLS fibres is presented in Section 7.6.2, using the numerical methods outlined
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in Chapter 3.

7.6.2 Practical effective areas in GLS holey fibres

The refractive index of GLS, at 2.37, is significantly larger than that of silica. In addition,

the wavelength of transmission studied here, which is 2.2 µm, is much longer than the

wavelengths at which silica glass is typically considered. Due to the fact that holey fibre

properties, such as mode area and bend loss are sensitive functions of both the fibre structure

and the wavelength of operation, it is difficult to gauge the types of structural parameters

that will result in large-mode-area, single-mode structures with practical levels of bend loss.

In this section, the effective area, modedness and bend loss of a few holey fibre structures

are evaluated in order to determine useful holey fibre parameters in GLS glass. These

results are presented in Table 7.10.

Table 7.10: Structural parameters and predicted modal properties at 2.2 µm for GLS holey fibres.

Fibre Λ [µm] d [µm] d/Λ A
FM

eff [µm2] R
FM

c [cm]

HFQ 10.00 4.00 0.40 133 1.6

HFR 12.00 4.80 0.40 188 2.7

HFS 15.20 6.08 0.40 293 5.1

HFT 17.70 7.08 0.40 391 7.7

The results in Table 7.10 shows calculated values of A
FM

eff and R
FM

c at 2.2 µm in GLS

holey fibre with 10.0µm < Λ < 17.7µm and d/Λ = 0.4. The choice of d/Λ results from

numerical work performed by Vittoria Finazzi using the multipole method, which shows

that GLS holey fibres are single-mode and close to cut-off for d/Λ < 0.4 at 2.22 µm. The

effective mode areas of these fibres range from ≈ 130 µm2 for Λ = 10.0 µm to ≈ 400 µm2 for

Λ = 17.7 µm. Note that this is astonishingly similar to the effective areas on would expect

in a silica holey fibre with similar parameters at 1064 nm (see Table 5.1 for comparison).

This similarity must result from the balance between the influences of the higher refractive

index, which results in a smaller mode that is more confined to the glass core, and the

longer wavelength, which acts to increases the mode size. However, while the values of A
FM

eff

are almost identical, the bending losses are lower in GLS, as a result of the higher index

contrast between the air/glass regions. For the range of fibres considered here, in which

130µm2 <∼A
FM

eff
<∼ 400µm2, 1.6 cm< R

FM

c < 7.7 cm. This represents values of R
FM

c that are,
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on average, ≈ 60% of those for similarly sized silica holey fibres at 1064 nm. In other words,

in a GLS holey fibre at 2.2 µm, the effective mode area can be ≈ 1.3 times larger than that

of a silica holey fibre at 1064 nm for a similar value of R
FM

c . Recall that in Section 5.5.2, it

was shown that an A
FM

eff = 450 µm2 represented the largest practical mode area that could

be achieved in a single-mode silica holey fibre at 1064 nm (practical mode area defined for

R
FM

c < 15 cm). Consequently, it can be seen that mode areas up to ≈ 600 µm2 should be

practical, in terms of bend loss in single-mode GLS holey fibres. Note that for d/Λ = 0.4

mode areas of ≈ 600 µm2 can be created using Λ ≈ 21− 22 µm.

7.7 Conclusion

Although holey fibres can be endlessly single-mode, the wavelength range of useful op-

eration is limited by the fact that the bending losses worsen towards short wavelengths.

This will have the greatest impact on fibres designed for UV transmission, which repre-

sents the shortest wavelengths that are transparent in silica. In the sections above, I have

demonstrated that the bending losses at 308 nm are not prohibitive for holey fibres with

A
FM

eff ≈ 80 µm2 and that the maximum tolerable A
FM

eff (defined for R
FM

c = 15 cm) increases

steadily with wavelength from ≈ 80 µm2 at 308 nm to <∼ 650 µm2 at 1550 nm. In addition,

the numerical results presented in the above sections show that for all wavelengths, optimal

bending losses in large-mode single-mode holey fibres are achieved by using the largest value

of d/Λ that results in single-mode guidance (d/Λ ≈ 0.4).

The numerical work presented in this chapter also demonstrates that although the

bending losses and the modedness of holey and step-index fibres are very different as a

function of wavelength, the performance of single-mode holey and conventional step-index

fibres, in terms of mode area and bend loss, are similar at any given wavelength. However,

holey fibres possess an advantage for broadband applications due to the property of endlessly

single-mode guidance. In addition, unlike conventional fibres, which require dopants to

create guidance, holey fibres can be single-material structures, which may be beneficial

from a power handling perspective.

In Section 7.3, experimental results presented from a series of bend loss measurements

made on a selection of holey fibres using a white-light source are used to infer information

regarding both the bend loss and the modedness of single and multi-mode holey fibres as

a function of wavelength. These results demonstrate that a multi-mode holey fibre can

possess greater bending losses than a single-mode holey fibre with a similar A
FM

eff towards
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short wavelengths. In addition, comparison between the measured and predicted values

of R
FM

c for a range of wavelengths demonstrates that the numerical methods developed

here can be used to accurately predict the bending losses of holey fibres as a function of

wavelength. Furthermore, it is shown in Section 7.4 that R
FM

c is essentially scale invariant

and a scaling approach can be used to form accurate predictions of this parameter. As a

result, the contour plot of A
FM

eff /(λ2) and R
FM

c /λ presented in Fig. 7.14 is shown to be an

invaluable design tool and enables basic fibre properties to be determined at-a-glance for

6.6 <∼Λ/λ < 18.8 and 0.2 < d/Λ < 0.5.

One interesting thing to note from the experimental observation of bend loss as a func-

tion of wavelength in the holey fibres considered here is that large oscillations in loss with

respect to wavelength are consistently not observed. This is in direct contrast to con-

ventional step-index fibres, in which oscillations in bend loss spectra are frequently ob-

served [137, 121, 136, 122]. The oscillations are attributed to the frequency dependence

of the coupling between core and cladding modes, and are often explained in terms of the

interference between the core modes and ‘whispering gallery’ modes of the cladding, which

are produced by reflection at the cladding/coating interface [137, 122]. In a holey fibre, the

cladding/coating interface is different. For example, the microstructured cladding and the

fibre coating are generally separated by a region of solid silica. In addition, and perhaps

most importantly, the outer boundary of the microstructured cladding region is not well

defined and is also typically irregular due to imperfections in the lattice placement of the

holes. It is most probable that these factors are responsible for the fact that these oscil-

lations in loss with respect to wavelength are not observed in the holey fibres considered

here. The lack of these spectral fluctuations in bend loss observed in holey fibres may

have advantages for applications such as wavelength filtering and sensing applications that

involve bend induced attenuation.

It has been previously shown that the bending losses of holey fibres can be improved

by using three adjacent rods to form the core, as discussed in Chapter 6 [34]. The benefit

offered by this 4HF structure is shown here to improve slightly towards short wavelengths.

However, conditions required to maintain single-mode guidance in 4HFs as a function of

wavelength are unknown and require investigation before further work can proceed.

Although the majority of work in this thesis focuses on silica holey fibres, holey fibres

can also be made from mid-IR transmitting materials such as tellurite and chalcogenide

glasses, also known as soft-glasses [22, 25, 24]. In Section 7.6 of this chapter, the modal
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properties of large-mode-area holey fibres made from a high index compound soft glass,

called Gallium-Lanthanum-Sulphide (GLS) were briefly considered. The work presented

in this section demonstrates that single-mode GLS holey fibres with A
FM

eff up to 600 µm2

should be practical structures in terms of bend loss (defined as R
FM

c < 15 cm). Note that

the effective nonlinearity of a GLS fibre with a mode area of 600 µm2 is of the order

of 10 W−1km−1, which is approximately 10 times that of conventional single-mode fibre.

Depending on the application, this may prove a suitable level of nonlinearity, but for high

powers a multi-mode solution may well be necessary in order to minimise nonlinear effects.

Note that this estimation is based on a very crude (wavelength independent) estimate of

the nonlinearity of GLS, a factor which is likely to be strongly wavelength dependent.
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Conclusion

In high power fibre applications, large mode areas are required in order to avoid damage to

the fibre and to minimise nonlinear effects that would otherwise distort the signal. Holey

fibre technology presents an attractive alternative to conventional technology, due to the

fact that it is possible to create extremely large-mode-area fibres that are single-mode over

a broad wavelength range. In a silica holey fibre, the condition of endlessly single-mode

guidance (d/Λ<∼ 0.4) is essentially scale invariant [4, 30], which offers huge potential in

the large-mode-area single-mode regime. However, as with any fibre, the macro-bending

losses place a fundamental upper limit on the mode sizes that are practical to use and are

therefore an important consideration in the design of large-mode-area holey fibres. At the

start of this project in July 2000, knowledge of the factors that influence bend loss in holey

fibres was limited and there had been little development towards theoretical techniques that

could be used to accurately predict these losses. Such techniques are essential for future

fibre design and for assessing what benefits holey fibres may offer over their conventional

counterparts in the large-mode-area, single-mode regime.

The aims of the study presented here were thus threefold: (1) to develop methods of

accurately predicting bend loss that can be applied to both holey and conventional fibres,

(2) to use these techniques to explore the potential offered by holey fibres in the large-mode-

area, single-mode regime, and (3) to place their performance in context against conventional

step-index fibres. In order to fulfil these aims, it is also essential to be able to accurately

predict the effective mode area and modedness of both fibre types. Furthermore, reliable

methods of characterising the bend loss, the effective mode area and the bending losses of

holey and conventional fibres are also essential to enable comparative studies and also to

validate the theoretical techniques developed here.
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The numerical models and experimental techniques that have been developed as part

of this study to characterise large-mode-area holey and conventional fibres are described in

detail in Chapter 3 and Chapter 4 respectively and focus on the three key properties required

when considering large-mode-area single-mode holey fibres: the effective mode area, the

bend loss and the number of modes supported by the fibre. The theoretical approaches to

bend loss developed here are adapted from methods designed for conventional waveguides

and, importantly, do not assume a circularly symmetric refractive index profile. These

methods do, however, require that the core modes (and associated propagation constants)

of the straight and bent fibre be known. Here these properties are calculated using the

orthogonal function method from Refs [86, 94, 95, 13], as described in Section 1.4.3 and

3.2. In the case of the bent fibre, a well established conformal transformation is applied to

the refractive index profile, which allows the mode of the bent fibre to be calculated in the

same way. The orthogonal function technique was chosen for this purpose as it is both an

efficient and accurate method for evaluating these properties, as discussed in Section 3.1

and references therein. Once the modal fields of the fibre are known, the transition loss is

calculated as a splice loss between the mode of the straight fibre and the distorted mode of

the bent fibre, as described in Section 3.4. The pure bend loss is calculated by evaluating

the fraction of the modal field in the bent fibre that has to travel faster than the local

speed of light to negotiate the bend, as described in Section 3.5. These techniques enable

the transition losses and the pure bend losses to be evaluated for any holey fibre, using the

full refractive index profile, and for any given angular orientation of bend.

The orthogonal function method is also used to evaluate the effective mode area of

each fibre considered via numerical integration of the modal fields. The modedness of

holey fibres can be evaluated using several techniques, as described in Sections 5.2.3 and

5.9, but the method of choice is a simple analytical formula from Ref. [19], which, via

comparison with other techniques used here, has proved to be sufficiently accurate for the

purposes of this study. Using these theoretical methods we have demonstrated excellent

agreement with experimentally measured values for a range of holey fibre structures over a

wide range of wavelengths, as shown in Chapters 4, 5, 6 and 7. Note that the experimental

methods developed in Section 4 have also proved to be robust and repeatable measurement

techniques. The numerical predictions and experimental results presented in Section 4

demonstrate that transition loss is a small overall contribution to macro-bend loss in a

holey fibre. These results also show that the 6-fold symmetry of the holey fibre cladding
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does influence the bend loss with respect to the angular orientation of the fibre in the bend,

but that this effect is an order of magnitude less than variations that arise as a result of

irregularities in the positions of the outermost holes in the fibre cladding.

In Chapter 5, the modal properties of holey fibres are explored at 1064 nm, which repre-

sents one of the most widely used wavelengths in laser applications. The range of structural

parameters that give rise to single-mode, large-mode-area holey fibres with practical levels

of bend loss are evaluated numerically using the techniques from Chapter 3. The effective

mode area, bend loss and modedness is evaluated for the following range of fibre parame-

ters: 7.0µm < Λ < 20.0µm and 0.2 < d/Λ < 0.5. The results from this study illustrate the

trade-offs between mode area and bend loss and show that the maximum tolerable effective

mode area in a strictly single-mode holey fibre at 1064 nm is ≈ 450 µm2. In this case,

the maximum tolerable mode area is defined by a maximum practical critical bend radius

of 15 cm. This upper limit is defined via experimental observations, in which fibres with

R
FM

c
>∼ 15 cm are seen to become extremely sensitive to low level vibrations and air-currents

in the laboratory environment, exhibiting rapidly fluctuating power levels. In addition, a

comparative study between holey and step-index fibres in the large-mode-area single-mode

regime at 1064 nm demonstrates that at this particular wavelength, the performance of the

two fibre types in terms of mode area and bend loss is similar. Throughout this chapter,

experimental results from holey fibres fabricated as part of this study are used to validate

the numerical methods and demonstrate that fibres with A
FM

eff up to at least ≈ 430 µm2 at

1064 nm are practical to fabricate.

In Chapter 6, the possibility of improving bend loss in holey fibres at 1064 nm, by using

different arrangement of holes in the cladding is explored numerically and experimentally.

The numerical results from this section lead to the conclusion that by using three rods in

the preform to form a triangular fibre core, the critical bend radius of the fundamental

mode can be reduced by ≈ 20%. This level of reduction is demonstrated experimentally

for a single-mode triangular-core fibre with an effective mode area of ≈ 480 µm2, which

possesses a critical bend radius of ≈ 13 cm. Numerical predictions also indicate that the

critical bend radius of the fundamental mode in these triangular-core fibres varies by ≈ 6%

at 1064 nm as a function of the angular orientation in the bend as a result of the shape of

the core and inner cladding. In conventional single-rod holey fibres the predicted variation

in the critical bend radius of the fundamental mode with respect to angular orientation is

typically less then 1%.
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In Chapter 7 the spectral dependence on mode area and bend loss in holey fibres is

considered both numerically and experimentally. Although holey fibres can be endlessly

single-mode, the wavelength range of useful operation is limited by the fact that the bend-

ing losses worsen towards short wavelengths. In this chapter, the numerical results demon-

strate that the maximum tolerable A
FM

eff (defined for R
FM

c = 15 cm) increases steadily with

wavelength from ≈ 80 µm2 at 308 nm to <∼ 650 µm2 at 1550 nm. It is also shown, in Sec-

tion 7.4, that R
FM

c is essentially scale invariant and a scaling approach can be used to form

accurate predictions of this parameter. The numerical work presented in this chapter also

demonstrates that although the bending losses and the modedness of holey and step-index

fibres exhibit very different spectral dependencies, the performance of single-mode holey

and conventional step-index fibres, in terms of mode area and bend loss, are similar at any

given wavelength.

The majority of work in this thesis focuses on silica holey fibres to enable the exper-

imental validation of the numerical techniques developed here. However, holey fibres can

also be made from other glasses that offer properties not available in silica glass, such as

mid-IR transmission. Such glasses include tellurite and chalcogenide glasses, which are also

typically highly nonlinear. As a result, it is important to evaluate whether sufficiently large-

mode-areas can be created with these materials in order to reduce nonlinear effects, which

are unwanted in transmission applications. The modal properties of large-mode-area holey

fibres made from a high index compound soft glass, called Gallium-Lanthanum-Sulphide

(GLS) were briefly considered in Section 7.6. The work presented in this section demon-

strates that single-mode GLS holey fibres with A
FM

eff up to 600 µm2 should be practical

structures in terms of bend loss (defined as R
FM

c < 15 cm). The effective nonlinearity of

a GLS fibre with this mode area is approximately 10 times greater than that of conven-

tional single-mode fibre due to the high intrinsic nonlinearity of GLS glass [159]. Depending

on the application, this may prove a suitable level of nonlinearity, but for high powers a

multi-mode solution may be necessary in order to sufficiently minimise nonlinear effects.

In conclusion, experimental techniques that have enabled robust and repeatable char-

acterisation of the basic components of bend loss in large-mode-area holey fibres have been

developed. Numerical techniques of modelling bend loss that retain the full refractive index

profile and include the effect of the angular orientation of the cladding have been devel-

oped and experimentally validated. Together, these techniques present us with powerful

tools that can be used to study the bending losses of any large-mode-area fibre, which is
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essential in the task of developing novel holey fibre structures with greater resistance to

bending. In this study these techniques have been applied to the problem of understanding

the factors that influence bend loss in a holey fibre. They have been used to determine the

range of practical structures and mode areas in the wavelength range 308 to 1550 nm and

have been used to show that, at any given wavelength, the performance of holey fibres and

step-index fibres are similar in terms of effective mode area and bend loss. However, holey

fibres possess an obvious advantage for broadband applications due to their unique ability

to remain single-mode at all wavelengths. In addition, unlike conventional fibres, which

require dopants to create guidance, holey fibres can be single-material structures, which

may be beneficial from a power handling perspective.

The research presented in this thesis has also illustrated several areas that warrant fur-

ther investigation. In Section 4.5, it is demonstrated that holey fibres with an outer region

of slightly lower index silica experience lower bending losses than single-material structures.

This improvement in bend loss probably results from the same process by which W-fibre

profiles in conventional fibres act to improve bend loss [155, 156]. In these structures a de-

pressed cladding region is used to more effectively confine the fibre mode to core, resulting

in a lower bend loss. However, numerical predictions of this type of structure, calculated

using the bend loss model developed here, do not indicate any improvement in bend loss.

This is thought to arise from the fact that the model of bend loss developed here neglects all

coupling effects between the various fibre modes. However, more computationally intensive

methods such as beam propagation or finite-element methods are capable of evaluating the

improvement offered by this approach [123].

In addition, in Sections 5.3.4, 5.4 and 7.3, it is shown that the higher-order modes

in multi-mode holey fibres can be removed without perturbing the fundamental mode by

bending the fibre. Unfortunately, for the fibres studied here, experimental observations

show that ≈ 2 dB of power is lost in this process of mode selection, which represents

a significant fraction of power in the fibre. However, it may be that this loss can be

minimised by reducing the fraction of power coupled into the higher-order modes at launch,

and further investigations are necessary in order to determine this. In addition, preliminary

numerical work presented in Section 5.7.6 indicates that the process of selectively guiding

only the fundamental mode by inducing a bend may be more efficient in step-index fibres.

However, this work involves the study of a single holey/conventional fibre pair and obviously

requires further investigation before anything more definitive can be inferred. Note that
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conventional fibres with a helical core geometry can exhibit preferentially higher bending

losses for higher-order modes in the same way as a bent conventional fibre. Holey fibre

technology offers an attractive route towards a helical core geometry due to the fact that

the process of offsetting the fibre core is simple to achieve during the holey fibre fabrication

process. Recent work has also shown that holey fibres can be successfully spun without

degrading the cladding structure [58].

The work presented in this thesis also demonstrates that analysis of the conditions for

single-mode and endlessly single-mode condition in more general holey fibres structures are

required. Numerical results presented in Section 7.5 indicate that holey fibres in which

the core is formed by multiple adjacent rods in the preform offer improved bending losses

relative to the more traditional single-rod core design, especially in the short wavelength

limit. However, the condition for single-mode guidance is not well established for this

more complex holey fibre design and it is not known if these multiple-rod designs will

exhibit endlessly single-mode guidance. As the number of rods used to form the fibre core

is increased, the value of Λ required to create a given core size decreases. In order to

maintain single-mode guidance, the value of d/Λ must also decrease due to the fact that

the overall scale of the cladding has been effectively reduced relative to the wavelength of

light. (This is discussed in detail in Section 6.2.2). In the extreme limit, as the number of

rods used approaches infinity, the refractive index profile can be seen to approach the case

of a step-index fibre, in which endlessly single-mode guidance is not observed. For example,

in a three-rod holey fibre core, the condition of single-mode guidance is met at 1064 nm

for d/Λ<∼ 0.20. However, numerical results show that this does not hold towards shorter

wavelengths and further investigation is required in order to determine if these fibres exhibit

endlessly single-mode guidance.

Large-mode-area fibres are required primarily for high power and transmission applica-

tions. The study presented here has focused on the practical limits that bend loss imposes

on large-mode-area holey fibres designed for single-mode operation. However, in order

to fully evaluate the potential offered by large-mode-area holey fibres for high power and

transmission applications it is just as important to consider the power handling capabil-

ities of these fibres. Preliminary high power laser tests have shown that large-mode-area

holey fibres show good performance in terms of damage for industrial applications [138].

Furthermore, holey fibres can be made from pure silica, which may have benefits in terms

of power handling that has yet to be assessed.
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Appendix A

Predicting bend loss

A.1 Derivation of the critical point xr

oo

x

z

I(x)

x=R x=R +x
r

clad

ncore

n

nclad

Figure A.1: Sketch of mode propagating in the z direction around a bend of radius Ro in the x direction.

Fig. A.1 shows a sketch of a guided mode propagating along a waveguide with a core

index of ncore and a cladding index of nclad. The mode is propagating in the z direction

around a bend in the x direction with a radius of curvature Ro. For the mode to propagate

along a curved trajectory without suffering loss, the angular velocity, Ω, of the modal phase
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front must be constant. The angular velocity is given by

Ω =
v

x
, (A.1)

where v is the local velocity of the modal phase front. Consequently, at some distance

towards the outside of the bend, defined here to be x = Ro + xr, the required velocity will

exceed the local speed of light and the fraction of power at x > Ro +xr is lost as radiation.

(Note that in the bend loss calculation the local coordinate system used defines the centre

of the fibre to be x = 0, as opposed to the centre of curvature.) At the centre of the mode,

x = Ro, the velocity of the phase front is defined by the propagation constant of the mode

such that

v = vo =
ck

βb
, (A.2)

where c is the velocity of light in free space, βb is the propagation constant of the bent

mode and k = 2π/λ. Since the tails of the mode propagate in the cladding of the fibre,

their maximum speed is given by c/nclad, where nclad is the refractive index of the cladding

region. In a holey fibre, the cladding index is assumed to be equal to the effective index of

the fundamental space filling mode (nclad = nFSM). Note that only the nFSM of the straight

fibre is required in this calculation since it is this quantity that represents the maximum

(effective) local speed of the microstructured cladding region. The maximum local speed

of light for the tails of the mode is thus given by:

vmax =
c

nclad
=

ck

βFSM
(A.3)

where βFSM is the propagation constant of the fundamental mode of the cladding. The

value of xr can then be determined in the following way:

Ω =
v

x
=

vo

Ro
=

vmax

Ro + xr
(A.4)

vmaxRo = vo(Ro + xr) (A.5)

voxr = Ro(vmax − vo) (A.6)

xr =
(

βb

βFSM
− 1

)
Ro (A.7)

which is Eq. 3.12.
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A.2 Modelling bend loss in holey fibres via an ESI approxi-

mation

As discussed in Section 2.3.2, a simple method of modelling bend loss in a holey fibre based

on a step-index fibre analogy was proposed in recent months [132]. A comparison of the

results obtained using this simple approach with those obtained using the numerical models

developed here is presented within this appendix in order to avoid interrupting the flow of

the rest of the material presented in this thesis. Note that the simple model proposed in

Ref. [132], is described here in some detail in order to highlight the many approximations

used and the associated limitations. However, I am keen to stress that this simple approach

represents a valuable way of estimating bend loss in large-mode-area holey fibres, and can

be reasonably accurate for fibres with relatively large air holes.

In this approach, a simplified formula developed to approximate the pure bend loss

of single-mode step-index fibres from Ref. [129] is applied to holey fibres. This simplified

formula can be expressed solely in terms of A
FM

eff , Ro, nFM and nFSM and the bend loss of

a holey fibre can be evaluated without the need to define an ESI refractive index profile.

The expression for the pure bend loss attenuation coefficient from Ref. [132] is:

α =
λ

8(
√

6π)nFMAFM

eff

F

[
Roλ

2

6π2n2
FM

(
VPCF

Λ

)3
]

(A.8)

where

F (x) =
exp(−x)√

x
(A.9)

and

VPCF =
2π

λ
Λ

√
n2

FM − n2
FSM (A.10)

Note that α is expressed in Np/m (see Section 3.5 for definition) and for conversion to

dB/m, α should be multiplied by 8.686. The key parameters in the above expressions, A
FM

eff

and
√

n2
FM − n2

FSM, are then approximated by analytical expressions in terms of λ, Λ and

d/Λ only. These approximate definitions are based on functions fitted to data generated

using a plane-wave approach and can be found in Refs [145] and [161]. The expression for

VPCF is given as:

VPCF ≈ A(d/Λ)
B(d/Λ)× exp [C(d/Λ)× (λ/Λ)] + 1

(A.11)

where

A = d/Λ + 0.457 +
3.405(d/Λ)

0.904− (d/Λ)
(A.12)

B = 0.200(d/Λ) + 0.100 + 0.027(1.045− d/Λ)−2.8 (A.13)
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C = 0.630× exp
0.755

0.171 + (d/Λ)
(A.14)

For λ/Λ < 2 and VPCF > 0.5 the expression return values of VPCF that deviate < 3% from

values obtained via a plane-wave approach. The expression for Aeff is given as:

Aeff = πw2 (A.15)

where

w/Λ =
A

V
2/(2+g)
PCF

+
B

V
2/3
PCF

+
C

V 6
PCF

(A.16)

where A = 0.7078, B = 0.2997, C = 0.0037 and g = 8. Maximal deviation between the

fit and actual values of Aeff calculated using a plane-wave approach are estimated to be

< 1%. Note that the parameter VPCF is defined to be the V-parameter of a holey fibre,

with the single-mode condition satisfied for VPCF < π. Note also that a fixed value of 1.444

is used for the refractive index of silica, which is necessary in order to preserve the scale

invariance of the wave equation. Where nFM appears on its own in the approximate loss

formula shown in Eq.A.8, the assumption nFM = nglass is made, which is approximately

equivalent in the large-mode-area regime. In this way, all parameters in Eq. A.8 can be

determined without the use of complex numerical models and require knowledge of nglass,

λ, Λ and d/Λ only.

The results presented within Ref. [132] show good agreement with experimental data

for the fibres considered. However, the assumption of nFM = nglass is only valid for large

values of Λ/λ and d/Λ and leads to increasing inaccuracy as d/Λ decreases in the large-

mode-area regime. This is demonstrated here via comparison with some of the numerical

results for holey fibres at 1064 nm presented in Section 5.3, which were calculated using

the numerical techniques developed in Chapter 3. These results are presented in Table A.1,

which lists the fibre parameters and modal properties for a selection of fibres at 1064 nm

for which 9.0µm < Λ < 15.0 µm and 0.2 < d/Λ < 0.63. Each of the fibres in this selection

has A
FM

eff ≈ 190 µm2 at 1064 nm. The modedness of each of these fibres, calculated using

the multipole method by Vittoria Finazzi [54], is indicted by the column labelled ‘modes’,

where SM indicates a single-mode fibre and MM indicates a multi-mode structure (see

Section 5.3 for more details). Properties labelled with [132] indicate values calculated using

the simplified method from Ref. [132]. All other results presented are calculated using the

numerical methods for holey fibres from Chapter 3. Note that the methods from Chapter 3

have been validated against experimental measurements (see Sections 4.5, 5.4, 5.6 and

7.3.3), and have been shown to be capable of accurate predictions. A comparison between
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these methods is best made graphically, as shown in Fig. A.2, which is discussed in the

following.

Table A.1: Calculated modal properties for a range of holey fibre structures. SM indicates a single-mode

fibre and MM indicates a multi-mode structure, evaluated by Vittoria Finazzi using the multipole method.

FM refers to a property of the fundamental mode. [132] refers to a calculation using the method from

Ref. [132].

Fibre Λ d d/Λ A
FM

eff R
FM

c Modes A
FM [132]

eff R
FM [132]

c V [132]
PCF

[µm] [µm] [µm2] [cm] [µm2] [cm]

HFA 9.00 1.80 0.20 190 12.2 SM 207 22.6 1.23

HFB 10.70 3.04 0.28 190 7.7 SM 207 11.0 1.66

HFC 11.30 3.84 0.34 190 5.9 SM 196 6.4 1.77

HFD 12.00 4.80 0.40 188 4.4 SM 192 3.7 2.17

HFE 12.20 5.09 0.42 187 4.0 SM 191 3.1 2.66

HFF 12.56 5.53 0.44 189 3.7 MM 192 2.6 2.72

HFG 12.70 5.73 0.45 188 3.6 MM 193 2.4 2.81

HFH 13.40 6.70 0.50 190 3.0 MM 195 1.5 3.68

HFI 15.00 9.46 0.63 189 1.8 MM 195 0.37 5.53

In Fig. A.2, the critical bend radii from Table A.1 (R
FM

c ) are plotted as a function of d/Λ.

The closed circles represent the values of R
FM

c calculated using the methods developed in

Chapter 3, while the open circles represent values calculated using the simplified expression

from Ref. [132], shown in Eq. A.8 above. Fitted curves to these values of R
FM

c are drawn

to guide the eye. The vertical straight lines mark the predicted cut-off position at which

the fibres change from being single-mode to multi-mode structures. The solid straight

line marks the position of d/Λ = 0.43, evaluated in Section 5.3. The dashed straight line

represents the predicted cut-off calculated using the condition VPCF = π from Ref. [132].

Note that the definition of VPCF = π for cut-off in a holey fibre overestimates the value of

d/Λ for which a holey fibre remains single-mode. This graph also shows that the simplified

method from Ref. [132] can be used to approximate the R
FM

c of holey fibre with fair accuracy

for large-mode-area holey fibres with large air holes (d/Λ>∼ 0.35), although the overall loss

is, in general, underestimated in this regime. However, for smaller hole sizes, this method

becomes increasingly inaccurate. This may result from the fact that the approximation

nFM = nglass becomes increasingly invalid for fibres with small values d/Λ due to the
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Figure A.2: Critical bend radius of the fundamental mode (R
FM

c ) as a function of d/Λ at 1064 nm. The

points represent the values of R
FM

c for the fibres listed in Table A.1, all of which possess A
FM

eff ≈ 190 µm2.

The closed circles represent the values of R
FM

c calculated using the methods developed in Chapter 3, while

the open circles represent values calculated using the simplified expression from Ref. [132], shown in Eq. A.8

above. Fitted curves to these values of R
FM

c are drawn to guide the eye. The vertical straight lines mark

the predicted cut-off position at which the fibres change from being single-mode to multi-mode structures.

The solid straight line marks the position of d/Λ = 0.43, evaluated in Section 5.3. The dashed straight line

represents the predicted cut-off calculated using the condition VPCF = π from Ref. [132]

fact that the mode can extend further into the cladding region, lowering nFSM. However,

one may expect this approximation to underestimate the losses, due to the fact that the

assumption of nFM = nglass results in an overestimated NA in the small d/Λ limit. Indeed,

this method contains many approximations, and it is therefore difficult to determine which

of these may contribute in what way to inaccuracy of the final result.
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In addition, and as discussed in Section 2.3.2, this simplified method is restricted solely

to holey fibres with a perfect triangular arrangement of air holes in which the core is

formed by the omission of a single hole. This is a significant disadvantage since holey

fibre geometry can vary significantly from this basic design, as illustrated in Fig. 1.6 in

Section 1.2.4, including different air/glass geometries in addition to hybrid and solid holey

fibre types. Furthermore, due to the approximations present in the original formula from

Ref. [129], this method ignores the symmetry differences between holey and step-index

fibres: holey fibres typically possess a 6-fold symmetric cladding geometry, but can be

more complex, such as the case of a triangular core formed by three adjacent rods in the

preform [34]. Indeed, the methods developed here, in which the full complex refractive

index profile of a holey fibre can be taken into account, predict an angular variation of

≈ 6% in R
FM

c for the triangular core holey fibres. Furthermore, since this technique is based

on a formula derived for single-mode step-index fibres it cannot be used to evaluate the

bending losses associated with higher-order modes. In Sections 5.13 and 5.4, the influence

of the bending losses of higher-order modes present in multi-mode holey fibres is assessed

using the techniques presented in Chapter 3. It was demonstrated that for d/Λ > 0.5, the

bending losses of higher-order modes can have a significant influence on the overall bending

losses of the fibre and so must be considered. However, the simplified method described here

has the virtues of being both quick and simple to evaluate and is accurate enough to gauge

the practicalities of large-mode-area fibre design for simple triangular lattice geometries

close to cut-off.
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Fibres studied experimentally

B.1 Introduction

This appendix contains details of the structural parameters (Λ and d/Λ), A
FM

eff and Rc of all

the single-rod holey fibres studied experimentally within the research reported in this thesis.

In case where these fibres have also been studied theoretically, the predicted values of A
FM

eff

and R
FM

c are also included. Note that predicted values correspond to the fundamental mode

only.

B.2 Summary of measurements

Table B.1: Structural parameters, fundamental mode area (A
FM

eff ) and critical bend radius (Rc)

for the endlessly single-mode holey fibres HF1 − HF4. Predicted values are indicated in brack-

ets.

fibre Λ [µm] d/Λ A
FM

eff [µm2] Rc [cm]

HF1 7.6 0.23 130 (140) 0.21 (0.23)

HF2 9.7 0.23 215 (212) 0.46 (0.44)

HF3 11.3 0.24 230 (259) 0.66 (0.58)

HF4 9.5 0.25 180 (190) -

Four holey fibres were studied experimentally in Section 4.5; HF1, HF2, HF3 and HF4.

The structural parameters, measured and predicted values for these four fibres are shown

in Table B.1. Predicted quantities are indicated in brackets. Note that these four holey

fibres were not made from a single-grade of silica. As a result, the modal properties are not
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consistent with those of all other holey fibres considered in this study, which are fabricated

from pure silica (see Section 4.5 for more details).

Seven holey fibres were studied experimentally in Chapters 5 and 7 and the structural

parameters, measured and predicted values for these seven fibres are shown in Table B.2.

Predicted quantities are indicated in brackets.

Table B.2: Structural parameters, fundamental mode area (A
FM

eff ) and critical bend radius (Rc) for a

selection of pure silica holey fibres studied at 1064 nm. Predicted values are indicated in brackets. ∗ fibre is

found to be effectively single-mode at 1064 nm. ∗∗ fibre is found to be selectively single-mode for Ro <∼ 7 cm

at 1064 nm.

Fibre Λ [µm] d/Λ A
FM

eff [µm2] Rc [cm] Modes

F334Zeop 11.7 0.33 200 (210) 7.1 (7.2) SM

F334Zsop 11.9 0.45 165 (170) 3.3 (3.0) MM∗

F334Ysop 12.6 0.51 165 (170) < 2 MM∗

F200D1 12.1 0.34 215 (220) 6.9 (6.8) SM

F200B2 13.8 0.51 195 (210) < 2 MM∗∗

F409Ysop 15.4 0.46 270 (270) ≈ 5 (5.5) MM∗

F437Zeop 19.6 0.44 430 (440) ≈ 12 (12.0) MM∗

The bend loss of five of the fibres in Table B.2 was also measured as a function of

wavelength using a white light source. These five fibres are F334Zeop, F334Zsop, F334Ysop,

F200D1 and F409Ysop. The results of these white light measurements can be found in

Sections 7.3 and 7.4 and are also summarised here in Fig. B.1. Fig. B.1 shows contour plots

of predicted values of A
FM

eff /(λ2) and R
FM

c /λ as a function of Λ/λ and d/Λ (assuming scale

invariance, as discussed in Section 7.4). Each solid circle in Fig. B.1 represents a value

of R
FM

c that has been extracted from measurements of bend loss made on the seven fibres

listed in Table B.2 (including those measured with a white source of illumination).
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Figure B.1: Contour plots from which predicted values of the fibre parameters A
FM

eff , R
FM

c and moded-ness

can be extracted as a function of Λ/λ and d/Λ (assuming scale invariance). The colour contour lines show

predicted values of A
FM

eff /λ2. The solid black contour lines represent predicted values of R
FM

c /λ and the solid

red line indicates the predicted single-mode/multi-mode cut-off. The filled circles indicate the range of holey

fibres and wavelengths that have been characterised experimentally as part of the research presented within

this thesis. The structural parameters of these holey fibres are listed in Table 7.8.
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Appendix C

Properties of Silica

C.1 Refractive index

The refractive index of silica glass varies with wavelength. This property is referred to a

chromatic dispersion and, on a fundamental level, originates from the resonance frequencies

at which the silica absorbs light through oscillations of bound electrons. Far from these

resonances, the refractive index of silica is well approximated by the Sellmeier equation:

nsilica = 1 +
m∑

j=1

Bjω
2
j

ω2
J − ω2

(C.1)

where ωj is the resonance frequency and Bj is the strength of the jth resonance. The

parameters ωj and Bj are found experimentally by fitting the measured dispersion curve to

Eq. C.1 with m=3. For bulk fused silica these parameters are found to be B1 = 0.6961663,

B2 = 0.4079426, B3 = 0.8974794, λ1 = 0.0684043, λ2 = 0.1162414, and λ3 = 9.896161,

where λj = 2πc/ωj and c is the speed of light in vacuum. The refractive index of fused

silica as determined by this equation with these parameters is shown in Fig. C.1. These

represent the values used in all calculations within this thesis.

C.2 Attenuation

Theoretical minimum loss in silica glass is bounded by Rayleigh scattering in the short

wavelength limit and infrared absorption in the long wavelength limit. In addition, large

peaks in the absorption spectrum of silica glass are also observed due to OH contamination.

The following two figures show typical attenuation for two types of silica glass as a function

of wavelength taken from Ref. [157, 158]. Fig. C.2, corresponds to F300 synthetic silica
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Section C.2. Chapter C. Properties of Silica

Figure C.1: Variation the refractive index of fused silica as a function of wavelength as described by

Eq. C.1.

glass from Heraeus Tenevo AG, which is used to make the holey fibres included in this

study. Fig. C.3, corresponds to F100 synthetic silica glass from Heraeus Tenevo AG, which

has a higher OH content and lower loss in the short wavelength limit.
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Section C.2. Chapter C. Properties of Silica

Figure C.2: Typical attenuation for F300 synthetic silica glass from Heraeus Tenevo AG taken from

Ref. [157].

Figure C.3: Typical attenuation for F100 synthetic silica glass from Heraeus Tenevo AG taken from

Ref. [157].
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