
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Encouraging collaboration
through a new data

management approach.

Steven Johnston1

Computational Engineering and Design Group
School of Engineering Sciences

University of Southampton
United Kingdom

Supervisors: Prof. Simon J. Cox2 , Dr. Hans Fangohr3

Date: August 2006

1sjj698@zepler.org
{2sjc , 3fangohr}@soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

ENCOURAGING COLLABORATION THROUGH A NEW DATA
MANAGEMENT APPROACH

Steven James Johnston

The ability to store large volumes of data is increasing faster than processing
power. Some existing data management methods often result in data loss, inac-
cessibility or repetition of simulations. We propose a framework which promotes
collaboration and simplifies data management.

In particular we have demonstrated the proposed framework in the scenario
of handling large scale data generated from biomolecular simulations in a multi-
institutional global collaboration. The framework has extended the ability of the
Python problem solving environment to manage data files and metadata associated
with simulations. We provide a transparent and seamless environment for user
submitted code to analyse and post-process data stored in the framework.

Based on this scenario we have further enhanced and extended the framework
to deal with the more generic case of enabling any existing data file to be post
processed from any .NET enabled programming language.

i

Contents

1 Introduction 1

2 Data and data management 5
2.1 Introduction . 5
2.2 Accumulation of scientific data . 5

2.2.1 Scientific data life cycle . 8
2.2.2 Storage versus repeat simulations 9
2.2.3 Limitations . 9
2.2.4 Data transmission costs . 10

2.3 Data complexity . 11
2.3.1 Natural unique identifiers . 12
2.3.2 Many-to-many relationships 13
2.3.3 Data traversals . 14
2.3.4 User defined data types . 15
2.3.5 Non-relational data . 16

2.4 Database systems . 17
2.4.1 Common database features and capabilities 21

Transactions and concurrency 23
Data retrieval . 25

2.4.2 Relational databases . 25
Structured query language . 26

2.4.3 Object databases . 27
2.4.4 XML databases . 28

XML Query and XPath . 29
2.5 Triple store . 29
2.6 File systems . 30

2.6.1 Transactional file systems . 30
Reiser file system . 31
New technology file system . 31

2.6.2 Database file systems . 32
Windows future storage . 33

2.6.3 Distributed file systems . 33

ii

Storage resource broker . 33
2.6.4 Object serialisation . 34

Memoisation . 35
2.7 Custom and hybrid databases . 36

SQL server and .NET . 37
2.8 Grid computing . 38

2.8.1 Web services and service-oriented architecture 39
2.9 Discussion . 40
2.10 Summary . 40

3 Method 42
3.1 Introduction . 42
3.2 Proposed workflow changes . 42
3.3 File object method specification . 43

3.3.1 User operations . 46
3.3.2 Programmatic view . 47

3.4 Features . 48
3.4.1 User data submission . 48
3.4.2 User code submission . 48

Language dependence . 49
Language independence . 49

3.4.3 Code association . 50
File method association . 50
File type method association 50
Directory method association 51
Code dissociation . 51

3.4.4 Dynamic method discovery . 51
3.4.5 Shell method execution . 51
3.4.6 Programmatic method execution 52

Results as files . 52
Results as objects . 52

3.4.7 Cascading methods . 52
3.4.8 Code quality assurance . 53

3.5 Discussion . 54
3.6 Summary . 54

4 File object method prototype 56
4.1 Introduction . 56
4.2 File object database . 56
4.3 Example scenario . 57
4.4 Features . 59

iii

4.4.1 User data submission . 60
4.4.2 User code submission . 62
4.4.3 Code association . 62

File method association . 63
File type method association 63
Directory method association 64

4.4.4 Shell method execution . 65
4.4.5 Programmatic method execution 66

Results as objects . 66
Results as files . 67

4.4.6 Cascading methods . 67
4.4.7 Code quality assurance . 68

4.5 Discussion . 68
4.6 Summary . 70

5 BioSimGrid 71
5.1 Introduction . 71
5.2 Motivation . 72
5.3 Example simulation . 74
5.4 BioSimGrid overview . 76
5.5 User perspective . 78

5.5.1 Work flow . 79
5.5.2 Scripting environment . 79

Simulation data . 83
5.6 Example simulation deposition . 83
5.7 Infrastructure . 84

5.7.1 BioSimGrid data file formats 85
Pickled frames . 86
Serialised frames . 87
Performance results . 88
Storage resource broker . 88

5.7.2 BioSimGrid file method implementation 89
5.7.3 BioSimGrid metadata and replication 90

Replication modes . 92
5.7.4 BioSimGrid analysis and data retrieval 92

5.8 Current user base . 93
5.9 Discussion . 94

5.9.1 Limitations . 95
Remote execution . 95
Network traffic . 96
Repetition . 96

iv

5.10 Summary . 97

6 Method adaptation 98
6.1 Introduction . 98
6.2 Motivation . 98

6.2.1 Proposed workflow . 99
6.3 Method modifications . 100

6.3.1 Data distribution . 100
6.3.2 Remote method execution . 100
6.3.3 Load balancing . 100
6.3.4 Security . 101

Data . 101
Code execution . 101
Transport security . 101

6.3.5 Method results cache . 101
6.4 The .NET framework . 102

6.4.1 Common language infrastructure 102
6.4.2 Message transmission optimisation mechanism 103
6.4.3 Security . 105
6.4.4 Managed code . 105
6.4.5 Alternative implementations 105

6.5 Active directory . 106
6.6 Discussion . 106
6.7 Summary . 107

7 Final method implementation 108
7.1 Introduction . 108
7.2 Overview . 108
7.3 Storage layer . 109

7.3.1 Storage service . 109
7.3.2 Storage manager . 110
7.3.3 File objects . 111

7.4 Client layer . 112
7.5 Example user code . 113
7.6 Client layer workflow . 114

7.6.1 Selecting an SPF method . 115
7.6.2 Executing an SPF method . 116

7.7 File object method features . 118
7.7.1 User data submission . 118
7.7.2 User code submission . 118
7.7.3 Code association . 118

v

7.7.4 Dynamic method discovery . 120
Results as objects or files . 120

7.7.5 Load balancing . 120
7.7.6 Security . 120

Data . 121
Code execution . 121
Transport security . 121

7.7.7 Method results cache . 121
7.7.8 Other features . 122

7.8 Discussion . 122
7.9 Summary . 123

8 Evaluation 124
8.1 Introduction . 124
8.2 Overview . 124
8.3 Implementation feature comparison 125
8.4 Objectives . 126

8.4.1 Data management framework 127
8.4.2 Resource utilisation management 127
8.4.3 Data organisation . 127
8.4.4 Locate data . 127
8.4.5 Promote collaborations . 128
8.4.6 Generic data . 128
8.4.7 Generic resources . 129
8.4.8 Utilise open standards . 129

8.5 Limitations and improvements . 130
8.5.1 Versioning . 130
8.5.2 Results caching . 130
8.5.3 Code and data security . 131
8.5.4 Portability . 131
8.5.5 Volatility of variables . 132

8.6 Summary . 132

9 Summary 133
9.1 Further work . 135
9.2 Summary . 136

Appendices 136

A Computing resources 137
A.1 BioSimGrid hardware . 137

vi

B BioSimGrid 138
B.1 Flat files . 138
B.2 BioSimGrid web portal . 147

Bibliography 153

vii

List of Figures

2.1 Moores law for HDD and CPU . 7
2.2 Current scientific data life cycle . 8
2.3 A graphical representation of complex metadata 12
2.4 Normalised relational database tables 13
2.5 Relationships between relational metadata and non-relational data . 16
2.6 Hierarchical database . 18
2.7 Overview of database components . 19
2.8 Two-phase commit . 24
2.9 Example of two tables with a common key 26
2.10 Storage resource broker infrastructure 34
2.11 Object serialisation . 35
2.12 Overview of a hybrid database system 37
2.13 Basic web service protocols . 39

3.1 Proposed method workflow . 43
3.2 User data manipulation . 44
3.3 Overview of the proposed File Object Method (FOM) 46

4.1 Example data file structure . 59
4.2 Overview of the File Object Database Prototype (FODB) 59

5.1 BioSimGrid collaboration sites . 72
5.2 GROMACS simulation data flow . 74
5.3 Trajectory visualisation . 76
5.4 Projects related to BioSimGrid . 77
5.5 BioSimGrid users workflow . 79
5.6 BioSimGrid infrastructure . 80
5.7 BioSimGrid analysis environment . 84
5.8 BioSimGrid general infrastructure . 85
5.9 BioSimGrid pickled flatfile format . 87
5.10 BioSimGrid custom flatfile format . 88
5.11 BioSimGrid SRB infrastructure . 89
5.12 Oracle single master replication . 92

viii

5.13 BioSimGrid data retrieval . 93

6.1 FOM workflow adaptation . 99
6.2 .NET framework infrastructure . 103

7.1 An overview of the SPF key components 109
7.2 The storage service key components 109
7.3 The storage manager key components 110
7.4 File objects and replication in the SPF 111
7.5 Client directory view . 111
7.6 SPF Client layer . 112
7.7 Client windows interface . 116
7.8 Execute SPF method interface . 117
7.9 Associating user code with .NET classes 119

B.1 BioSimGrid web portal login page . 148
B.2 Selecting a trajectory using the BioSimGrid web portal. 149
B.3 Web portal analysis tool selection . 150
B.4 Web portal frame selection . 151
B.5 Web portal script generation . 152

ix

List of Tables

2.1 Standard data units . 6
2.2 Network costs to move data . 11
2.3 Time to transmit data across a LAN . 11
2.4 Maximum database binary data size 17

5.1 Flatfile and RDBMS performance results 88
5.2 Methods implemented for BioSimGrid 90
5.3 BioSimGrid repository statistics . 94
5.4 BioSimGrid published trajectories . 94

8.1 Feature comparison between implementations 126

A.1 BioSimGrid hardware. 137
A.2 RAID configuration and specifications 137

x

List of Examples

2.1 XML schema . 21
2.2 SQL select statement . 27
2.3 XML document . 29
2.4 XPath and XQuery example . 29
3.1 Python FOM text file example . 47
3.2 User code submission example . 49
3.3 File method association example . 50
3.4 Shell FOM text file example . 52
3.5 Cascading method example . 53
4.1 File contents for a student . 57
4.2 Code to process student text files . 58
4.3 Example user defined Python class . 58
4.4 Direct file manipulation in the FODB 60
4.5 Command line interface to the FODB 61
4.6 Programmatic interface to the FODB 61
4.7 Command line user code submission 62
4.8 Python user code submission . 62
4.9 Command line FODB code association 63
4.10 Python interface FODB code association 63
4.11 Command line FODB data type association 64
4.12 Programmatic data type FODB association 64
4.13 Directory method mapping . 65
4.14 Python statistics class . 65
4.15 Teacher statistical class . 66
4.16 Shell command example . 66
4.17 FODB results as Python objects . 67
4.18 Returning FODB method data as a file 67
4.19 Cascading methods over whole directories 68
5.1 Generate simulation topology . 75
5.2 Generate simulation files . 75
5.3 Example simulation . 75
5.4 Visualise simulation results . 76

xi

5.5 BioSimGrid scripting environment . 80
5.6 BioSimGrid deposition environment 81
5.7 BioSimGrid analysis script . 82
5.8 BioSimGrid GID example . 83
5.9 Example trajectory deposition . 84
5.10 Flatfile metadata file contents . 86
7.1 Advanced file information example 113
7.2 Text file information example . 114
7.3 File tree on machine Formido . 115
7.4 File tree on machine Onerous . 115
B.1 Flatfile management code . 138
B.2 Pickled frames Python access code . 139
B.3 Serialised frames Python code . 145

xii

Authors declaration

I, Steven Johnston declare that this report entitled Encouraging collaboration through
a new data management approach and the work presented in it, are my own.

I confirm that:

• this work was done wholly or mainly while in candidature for a research
degree at this University;

• where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated;

• where I have consulted the published work of others, this is always clearly
attributed;

• where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself;

• parts of this work have been published in:

Arinaminpathy Y, Beckstein O, Biggin P, Bond P, Domene C, Pang A and San-
som M. Large scale biomolecular simulations: Current status and future
prospects. Proceedings of UK e-Science All Hands Meeting (2003).

Boardman RP, Johnston S, Essex JW, Ng M, Fangohr H, Tai K and Sansom
MSP. BioSimGrid on the desktop (2006). In preparation for submission.

Jiao Z, Wason J, Molinari M, Johnston S and Cox S. Integrating data manage-
ment into engineering applications,. Proceedings of UK e-Science All Hands
Meeting, Nottingham, UK, pages 687 – 694 (2003).

Johnston S. Storage resource broker (SRB), large scientific data and Python.
Europython 2005 (2005).

Johnston S, Boardman R, Fangohr H and Cox S. Managing large volumes of
distributed scientific data. Journal of Grid Computing (2006a). (Submitted).

Johnston S, Boardman RP, Ng M, Essex JW, Fangohr H, Tai K and Sansom
MSP. BioSimGrid: Infrastructure, performance and applications (2006b).
In preparation for submission.

Murdock S, Muan Hong Ng, Johnston S, Fangohr H and Essex J. Comparing
the performance of a database, specific binary files and netCDF for data
retrieval (2004). [Online; accessed 10-December-2005], www.biosimgrid.
org.

Murdock SE, Tai K, Ng M, Johnston S, Wu B, Fangohr H, Laughton CA, Es-
sex JW and Sansom MSP. Quality assurance for biomolecular simulations.
Journal of Chemical Theory and Computation (2006). Sumbitted.

Ng M, Johnston S, Murdock S, Wu B, Tai K, Fangohr H, Cox S, Essex JW,
Sansom M and Jeffreys P. Efficient data storage and analysis for generic
biomolecular simulation data. In Proceedings of UK e-Science All Hands Meet-
ing 2004, pages 443–450 (2004).

Ng M, Johnston S, Wu B, Murdock S, Tai K, Fangohr H, Cox SJ, Essex JW,
Sansom MSP and Jeffreys P. BioSimGrid: Grid-enabled biomolecular sim-
ulation data storage and analysis. Future Generation Computer Systems, 22,
657–664 (2006).

Tai K, Baaden M, Murdock S, Wu B, Ng M, Johnston S, Boardman R, Fangohr
H, Cox K, Essex JW and Sansom MSP. Three hydrolases and a transferase:
comparative analysis of active-site dynamics via the BioSimGrid database.
Journal of Molecular Graphics and Modelling (2006).

Tai K, Murdock S, Wu B, Ng M, Johnston S, Fangohr H, Cox SJ, Jeffreys P,
Essex JW and Sansom MSP. BioSimGrid: Towards a worldwide repository
for biomolecular simulations. Organic & Biomolecular Chemistry, 2, 3219–
3221 (2004).

Woods CJ, Ng M, Johnston S, Murdock SE, Wu B, Tai K, Fangohr H, Jeffreys P,
Cox S, Frey JG, Sansom MSP and Essex JW. Grid computing and biomolec-
ular simulation. Philosophical Transactions: Mathematical, Physical and Engi-
neering Sciences, 363(1833) (2005).

Wu B, Dovey M, Ng M, Tai K, Murdock S, Fangohr H, Johnston S, Jeffreys P,
Cox S, Essex J and Sansom MSP. A web / Grid portal implementation of
BioSimGrid: A biomolecular simulation database. Journal of Digital Infor-
mation Management, 2(2), 74–78 (2004a).

Wu B, Dovey M, Tai K, Ng M, Stuart, Murdock, Fangohr H, Johnston S, Jef-
freys P, Cox S, Essex JW and Sansom MS. Security and BioSimGrid: A
biomolecular simulation database. Proceedings of Workshop on Grid Security
Practice and Experience (2004b). Published as: University of York, Depart-
ment of Computer Science Technical Report YCS-2004-380.

xiv

www.biosimgrid.org
www.biosimgrid.org

Wu B, Tai K, Murdock S, Ng M, Johnston S, Fangohr H, Jeffreys P, Cox S, Essex
J and Sansom MS. BioSimGrid: A distributed database for biomolecular
simulations. Proceedings of UK e-Science All Hands Meeting 2003, pages 412–
419 (2003).

Wu B, Tai K, Ng M, Johnston S, Murdock S, Fangohr H, Sansom MSP, Essex
J, Jeffreys P and Cox S. Towards a Grid-enabled biomolecular simulation
database. In Proceedings of UK e-Science All Hands Meeting 2005, pages 577–
580 (2005).

The BioSimGrid project is a collaborative project involving the work of others of
which I developed and implemented the flatfile storage layer, consisting of con-
trolling software and data structures. The work involving the analysis tools and
metadata schema are the work of others.
The author recognises the work of the following:

Simon Cox and Hans Fangohr for suggesting some data management mech-
anisms and testing criteria, in particular, using flatfiles and object serialisation to
manage data.

Name :

Signature :

Date :

xv

Acknowledgements

I would like to thank Hans Fangohr and Simon Cox for their supervision and sup-
port throughout my research. Many thanks to Richard Boardman for his technical
expertise, proofreading and LATEX templates, Ian Hartney for the eTex project and
the valued members of the BioSimGrid team.

A special thanks to those who helped with proof reading and corrections, along
with the moral support required to finish.

Copyrights and trademarks

• Apple R© , Mac OS R© and Macintosh R© are registered trademarks of Apple
Computer, Inc.

• CORBA R© is a registered trademark of the Object Management Group (OMG).

• HTMLTM, XMLTM and W3C R© are trademarks or registered trademarks of
W3C R© , World Wide Web Consortium.

• IBM R© is a registered trademark of IBM in the United States of America and/or
other countries.

• JavaTM is a trademark of Sun Microsystems, Inc.

• J2EETM is a trademark of Sun Microsystems, Inc.

• Linux R© is a registered trademark of Linus Torvalds.

• Microsoft R© Software, Windows R© Operating system and Microsoft .NETTM

are either registered trademarks or trademarks of the Microsoft Corporation.

• Oracle R© is a registered trademark of the Oracle Corporation.

• PythonTM is a trademark of the Python Software Foundation.

List of Acronyms

ACID Atomicity Consistency Isolation and Durability
ADAM Active Directory Application Mode
AFS Andrew file system
API Application Programming Interface

BFS Be File System
BLOB Binary Large Object

CERN Conseil Européen pour la Recherche Nucléaire
CIFS Common Internet File System
CIL Common Intermediate Language
CLI Common Language Infrastructure
CLOB Character Large Object
CLR Common Language Runtime
COM Component Object Model
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CTP Community Technology Preview
CVS Concurrent Versions System

DBA Database Administrator
DBMS Database Management System
DCOM Distributed Component Object Model
DDL Data Definition Language
DFS Distributed File System
DIME Direct Internet Message Encapsulation
DLL Dynamically Linked Library
DNA Deoxyribonucleic acid
DOM Document Object Model
DQL Database Query Language
DS Digital Signal
DSL Digital Subscriber Line

EB Exabyte (1018 bytes)
EiB Exbibyte (260 bytes)

xviii

FAT File Allocation Table
FODB File Object Database
FOM File Object Method

GB Gigabyte (109 bytes)
GEODISE Grid Enabled Optimisation and Design Search for Engineering
GiB Gibibyte (230 bytes)
GID Globally unique Identifier
GPL GNU General Public License
GUI Graphical User Interface
Gnome VFS Gnome Virtual File System

HDD Hard Disk Drive
HFS Hierarchical File System
HPC High Performance Computing
HTTP HyperText Transfer Protocol

ID Identifier
iFS Internet File System
IPSec Internet Protocol Security
IRQL Information Retrieval Query Language
ISBN International Standard Book Number

JACS Journal of the American Chemical Society
JAX-WS Java API for XML Web Services
J2EE Java 2 Platform Enterprise Edition
JIT Just-in-Time
JVM Java Virtual Machine

KB Kilobyte (103 bytes)
KiB Kibibyte (210 bytes)

LAN Local Area Network
LOB Large Object
LUW Logical Unit of Work

MB Megabyte (106 bytes)
MCAT Metadata Catalog
MD Molecular Dynamics
MiB Mebibyte (220 bytes)
MIME Multipurpose Internet Mail Extensions
MMR Multi-Master Replication

xix

MTOM Message Transmission Optimisation Mechanism

NFS Network File System
NMR Nuclear Magnetic Resonance
NTFS New Technology File System

OASIS Organisation for the Advancement of Structured Information
Standards

OC Optical Carrier
ODBMS Object Orientated Database Management Systems
OFS Object File System
OLE Object Linking and Embedding
OO Object Oriented
OS Operating System
OSS Open Source Software

PB Petabyte (1015 bytes)
PCCP Physical Chemistry Chemical Physics
PDB Protein Data Bank
PiB Pebibyte (250 bytes)
PL/SQL Procedural Language/SQL
PNNL Pacific Northwest National Laboratory
PSE Problem Solving Environment

QoS Quality of Service

RDB Relational Database
RDBMS Relational Database Management System
RDF Resource Description Framework
RMI Remote Method Invocation

SDSC San Diego Supercomputing Center
SQL Structured English Query Language
SETI Search for Extraterrestrial Intelligence
SIS Single Instance Storage
SMR Single-Master Replication
SN Strong Name
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SPF Storage and Processing Framework
SQL Structured Query Language
SQL PL SQL Procedural Language
SRB Storage Resource Broker
SSCLI Shared Source Common Language Infrastructure

xx

SSL Secure Sockets Layer
SwA SOAP with Attachments

TB Terabyte (1012 bytes)
TiB Tebibyte (240 bytes)

UCSD University of California, San Diego
UDDI Universal Discovery, Description, Integration
URI Uniform Resource Indicator

WinFS Windows Future Storage
WSDL Web Services Description Language
WSE Web Services Enhancements
WS-RM WS-ReliableMessaging
WWW World Wide Web
W3C World Wide Web Consortium

XML Extensible Markup Language
XOP XML-binary Optimised Packaging
XPath XML Path Language
XQuery XML Query

xxi

Chapter 1

Introduction

Science and engineering are generating vast quantities of data. Each year these
volumes increase as advances are made in computer hardware and software. The
problems associated with managing these volumes of data are continually evolving
to cope with the ever growing data volumes.

Unlike industries such as banking or retail there are few purpose built infras-
tructures or applications specifically designed for scientific or engineering data.
This is partly because of the complexity and volume of the data, and partly because
of the specific applications. Although there exists a plethora of general data man-
agement tools which are capable of dealing with general data, such as databases.
They are unsuitable for scientific users as they often require a good understanding
of complex data management issues.

From this we can see that there is a need to bridge the gap between complex
data management applications and non-technical scientific users.

The following data properties and issues are important for the understanding
of this work:

• Data and information

Data and information are often incorrectly taken as synonyms, but their mean-
ings are different. Data is the representation of information, for example the
number two provides the same information regardless of the representation,
i.e. 2 , II , two.

Data may appear unorganised and without meaning and it is only when in-
terpreted or organised that it becomes information. Information passed on
without understanding becomes data, i.e. one person’s information may be
another person’s data (Date, 2000a).

• Large data volumes

Scientific datasets are continuously increasing in size, partly due to progresses
in hardware and partly due to increased accessibility of High Performance
Computing (HPC) resources. An entry level desktop computer can expect to

1

store data in the 100’s of Gigabytes (GB). Today most scientific data sets can
expect to require 100s of GB of data and some scientific datasets reach the
10s of Terabytes (TB). There are a few which are expected to reach multiple
Petabyte (PB) of data. For example at Conseil Européen pour la Recherche
Nucléaire (CERN) the Large Hadron Collider is expected to produce over a
PB of High Energy Physics data a year (Harbottle et al., 2003), amounting to
over 100 PB of data in its operational lifetime.

• Collaborations

As larger and larger problem spaces are investigated, the greater the impor-
tance of collaborations. Collaborations extend between individuals as well as
institutions and across disciplines. They enable large complex problems to be
approached and can help reduce repetition of work.

• Data generation lifecycle

The scientific data lifecycle starts with the creation of data, usually through
simulations or experiments. This data is then stored for future analysis. The
data life cycle raises issues about how long data should be stored and who
should have access.

In this thesis we investigate the existing technologies available for data manage-
ment and discuss why existing technologies are not readily adopted. With the rapid
increase in storage availability we investigate if there is a need to introduce more ef-
ficient data management methods. Processing power is increasing at a slower rate
than network bandwidth and storage capacity thus the emphasis is moving from
computation of data to the storage of data. Although storage is becoming abun-
dant, there is a need to efficiently utilise the processing power required to generate,
retrieve and store the data. For example, storing data is useless unless you can
retrieve it promptly. The processing required to store and retrieve the data needs
to be less that the processing power required to generate the data. We investigate
the current non-technical scientific users data workflow and investigate how future
data collaborations can be encouraged.

Data varies in complexity and therefore the techniques required to manage the
data differ. We investigate the issues which complicate data management and
demonstrate how these relate to the existing data management technologies. We
intend to use this investigation to highlight limitations in the existing workflow
and show how potential collaboration opportunities are hindered.

We use the findings to propose a new data management method, called the
File Object Method (FOM). This aims to introduce complex database features to the
average scientist. We propose a method to manage data without the user having to
learn complex new technologies. The proposed method can enhance the existing

2

users’ workflow and we outline the key features which the model provides end
users.

After introducing the implementation-independent method we consider a pro-
totype implementation of the new data management method, called the File Object
Database (FODB). We discuss how the model can work on sample data and show
how a specific implementation can implement the features discussed in the data
management method. The prototype provides a proof of concept highlighting the
advantages and disadvantages of the proposed method.

We use the proposed method and findings from the prototype to implement
a feature limited version implementation. This version is used to manage large
volumes of scientific data in an existing scientific project called BioSimGrid.

Using the findings, we suggest how the data management method can be im-
proved. These changes are then used to produce a final prototype of the data man-
agement method called the Storage and Processing Framework (SPF). We compare
and contrast the SPF with the FODB and the BioSimGrid project, showing how they
meet the objectives of this thesis.

The objectives of this thesis are as follows:

• Data management framework —To provide a framework capable of manag-
ing large volumes of scientific data.

• Resource utilisation management — To reduce the loss or inaccessibility of
computational data which results in the repetition of expensive computa-
tions.

• Data organisation — To organise data such that users can easily identify and
analyse the contents.

• Locate data — To enable users to efficiently locate data within the framework.

• Commodity systems — To utilise commodity systems and take advantage
of the power-to-price benefits and to minimise the requirements on the end
users.

• Promote collaborations — To enable the sharing of software algorithms and
code specific to the data sets, between users where appropriate.

• Generic data — To produce a data domain independent framework for man-
aging data.

• Generic resources — To provide a platform and hardware independent frame-
work for managing data.

• Utilise open standards — To produce a framework which both utilises and
supports open standards wherever possible.

3

This thesis is structured as follows:

• Chapter 1 — In this current chapter we introduce the existing data manage-
ment issues. We propose investigating the existing issues and outline a series
of objectives for this work.

• Chapter 2 — This chapter provides an outline of the issues faced when man-
aging large volumes of scientific data. We look at the data workflow and
provide an overview of the existing data management technologies.

• Chapter 3 — We introduce a generic framework concept to address the man-
agement of data with minimal interference to the existing users workflow.

• Chapter 4 — In this chapter we take the generic framework discussed in chap-
ter 3 and demonstrate its features and capabilities using an example imple-
mentation.

• Chapter 5 — In this chapter we show how the framework discussed in chap-
ter 3 is used to manage a large volume of scientific data. The framework is
demonstrated as part of a practical application to form a globally accessible
repository used by computational scientists.

• Chapter 6 — This chapter provides a critical analysis of the framework im-
plementations and recommends improvements to the proposed framework.

• Chapter 7 — In this chapter we use the recommendations provided in chapter
6 to produce an improved implementation of the framework.

• Chapter 8 — In this chapter we compare and contrast the various framework
implementations with the initial generic framework description. We show
how the objectives outlined in chapter 1 met.

• Chapter 9 — This chapter we summarise all the findings of this work.

4

Chapter 2

Data and data management

2.1 Introduction

In this chapter we look into the current life cycle of scientific data, we identify lim-
itations in the current model and show how collaborations could avoid repeating
simulations.

There are many existing technologies aimed at managing and maintaining data
but these are often misused; the reasons for this are discussed below.

We discuss the different technologies capable of dealing with data and outline
their basic capabilities. The relevant infrastructure and middleware components
are described including some of the most recent technologies.

The chapter closes with a summary of the limitations of the existing technolo-
gies. We provide an indication of the improvements that are possible. It concludes
with an emphasis on bringing database capabilities to the scientist and seamlessly
integrating them into their existing workflows. The overall aim is to leverage ex-
isting technologies to assist scientists without increasing the overall complexity of
the scientific workflow.

2.2 Accumulation of scientific data

In day to day conversation it is common to hear people discussing data volumes,
for example the number of emails received, music player capacity or even the num-
ber of pages in a book. These measurements are often open to interpretation and
introduce ambiguity. The international system of units, universally abbreviated
SI from the French Le Système International d’Unités, are also ambiguous when
related to computing.

Storage data capacity terms have popular use meanings which are different. For
example a Kilobyte (KB) of data is 210 bytes, i.e. 1024 characters, but is often referred
to as 103 bytes of data. In this example the difference is minimal and often ignored.
As the data volumes get very large, for example an Exabyte (EB) is 260 bytes and

5

Table 2.1: Shows the SI and IEC 60027-2 standard units utilised in this work to denote data vol-
umes.

SI units Bytes IEC 60027-2 units Bytes
Kilobyte (KB) 103 Kibibyte (KiB) 210

Megabyte (MB) 106 Mebibyte (MiB) 220

Gigabyte (GB) 109 Gibibyte (GiB) 230

Terabyte (TB) 1012 Tebibyte (TiB) 240

Petabyte (PB) 1015 Pebibyte (PiB) 250

Exabyte (EB) 1018 Exbibyte (EiB) 260

is often referred to as 1018 bytes. The difference between the two is vast enough to
make the difference important. In this work we utilise the IEC 60027-2 standard
to denote data volumes i.e. a KB is 210 bytes and written as Kibibyte (KiB), as shown
in table 2.1.

Moore’s Law (Moore, 1965) states that the number of transistors on a chip dou-
bles every 18 months and based on this it is often quoted that computing power
doubles every 18 months. Although not exactly correct as it does not take into
account the processor clock speed or the software algorithms it is, nevertheless a
good indicator of the future performance of hardware. It is generally accepted that
processing power doubles every 18 – 24 months and data storage density every 12
– 18 months (Stix, 2001). The result is that the cost per Gibibyte (GiB) (IEC, 2005)
to the end user is falling which indicates that the ratio of processing power to data
storage will decrease, as shown in figure 2.1. This opens up new opportunities to
consider more efficient methods of data management. This is already becoming ap-
parent for the average home user who is unable to manage the location and content
of files on a single local machine. The cost of storage has reduced so that it is eas-
ily possible to build a desktop machine with a Tebibyte (TiB) (IEC, 2005). Having
this volume of storage easily accessible gives rise to potential organisational issues.
For example, one TiB of holiday photos taken at high resolution is approximately
a quarter of a million photos. Managing these many photos easily would require
a photo management application. The same applies to scientific data although no
general scientific data management application exists.

Figure 2.1 shows that in the future a unit of processing power will be respon-
sible for managing a larger volume of storage space. This indicates that there is a
need to improve and rethink some of the current techniques used to manage data.

IBM (IBM, 2005) is currently working with CERN (CERN, 2005) on a system ca-
pable of dealing with a Pebibyte (PiB) (a million GiB) of data (Harbottle et al., 2003),
with the aim to provide scientists with access to their data, local or remote, using
any operating system. There are various solutions available today to organise large
amounts of data, ranging from file systems to databases. Each method requires a
certain amount of setup costs and has both strengths and weaknesses.

6

0.1

1

10

100

G
ib

ib
its

 p
er

 in
ch

2

1975 1980 1985 1990 1995 2000 2005
Year

104

105

106

107

108

Nu
m

be
r o

f t
ra

ns
ist

or
s

Intel 80486

Intel 80386

Pentium

Pentium III

Pentium IV

Ultrastar XP

Pentium II

Intel 80286

Intel 8086

Travelstar 6GN

Allicat

Corsair

Ultrastar 2XP

Deskstar 16GP

Deskstar 37GP

Deskstar 40GV

Travelstar
30GN

Travelstar
80GN

Deskstar
T7

CPU transistor density
HDD data density

Figure 2.1: Shows how the transistors density and data storage density has increased exponentially
in the past. Although this indicates that processing power and storage capabilities are
increasing exponentially, they are not increasing at the same rate. HDD capacity doubles
every 12 to 18 months while processing power increases every 24 to 36 months. (Tuomi,
2002, Grochowski, 2003, Thompson and Best, 2000)

Ideally it would make sense to have all results in a centrally located database
which is accessible by all the scientists in that field. Although the volume of the
data is a potential problem, organising the data and encouraging the scientists to
use a database is a key issue. Ignoring the privacy and copyright drawbacks of
having a shared database, there is potential to save time by not repeating experi-
ments. This would require a database that is easy to setup and populate, ideally
without the user having to change any coding practices.

However with all the organisational technology available to scientists, it is still
common to find experiment results being stored in files in a proprietary format.
Often experiment results are stored locally in flatfiles which are then processed us-
ing command line utilities, combined with custom programs. The net result is that
experimental data can only be accessed by users with access to the data files and an
understanding of the contents of each file. Often the data is large, and storing many
sets of results can consume large volumes of space which may not be available, so
the data is deleted. The overall result is that lots of data becomes inaccessible or
lost due to the storage practices used, resulting in the same experiment having to
be run multiple times.

One way to encourage users to make data accessible to others is to restrict or

7

Problem

Local
storage

Data
files

Analysis
script

Results

Simulation
script

Perform
experiment

Perform
analysis

User interfaceUser workflow Infrastructure

Figure 2.2: Shows the general life cycle of scientific data looking at the users workflow and interfaces
as well as the infrastructure used.

generalise the format in which the data is stored, but this is difficult to impose on
users. It is not possible to convince every scientific user to comply to a single data
standard, as no single standard is sufficient. For example if we look at Extensible
Markup Language (XML) (W3C, 2004a), it is a general data standard which forces
users to format data in a manner which can be read by any XML parser, however it
severely bloats the data and is impracticable for a large data set.

This section looks into the complexity of data and summarises the capability of
existing technology to manage different kinds of data.

2.2.1 Scientific data life cycle

Figure 2.2is divided into workflow, interface and infrastructure sections. The work-
flow section shows the tasks a user can perform. These are linked to the interface
section, which shows how the user would perform a task in the workflow. For ex-
ample this section will include any tools which the user uses and any custom code
created. The infrastructure section shows the physical management of data, includ-
ing the data files and hardware. The system is described in these three sections to
show that each section is independent.

In figure 2.2 the user begins by identifying a problem and then performs a simu-
lation using suitable applications or scripts. The data output from these simulations
is then analysed to address the initial problem.

The data files are stored on a local storage medium which is inaccessible to the
community at large. The simulation and analysis scripts are often specific to the
current data and are not subject to any formal storage or quality controls.

8

2.2.2 Storage versus repeat simulations

The need to store and share data within a community is only applicable for certain
types of data. Where the time taken to store and retrieve data is greater than the
time taken to recompute the data, recompute is favourable. The cost of Hard Disk
Drive (HDD) storage and processing time also has to be considered. A case where
data is more efficiently stored rather than recomputed can be shown as:

Chardware + C(Tstorage) + C(Tretrieval) + Cstorage < C(T ′
compute) + C ′

hardware (2.1)

where Chardware is the cost of hardware to compute the data, Tstorage is the time
taken to store the data, Tretrieval is the time taken to retrieve the data, Cstorage is
the cost of storing the data, T ′

compute is the time taken to recompute the data and
C ′

hardware is the cost of hardware to compute the data. C(Tstorage) and C(Tretrieval)
include the cost of storage and retrieval in terms of network cost and transmission
time.

As the cost of hardware shown in equation 2.1 varies over time and the hard-
ware used may vary depending on the urgency of a job. The values for Chardware

and C ′
hardware may not be the same.

Often programmers recalculate data where memory or bandwidth is constrain-
ed (Kandemir et al., 2005), but as shown in figure 2.1, future processing power is
expected to become the main constraint.

In the case of scientific simulations it is often the case that the simulation is
processor intensive and although the data is large it is beneficial to store the data.

In scientific research which involves intensive simulations, it is often beneficial
to store the data for reuse even if this requires large storage space.

Providing a mechanism to show how results are computed and providing ac-
cess to the data enables a comparison of different analysis techniques and algo-
rithms. This will further provide opportunities for peers to recalculate and confirm
findings without rerunning simulations.

2.2.3 Limitations

Looking at technology trends and the existing scientific data life cycle the following
limitations are observed.

• Collaborations are very difficult when data is stored locally. This is divided
into two problem areas, finding the data and accessing the data. Collabo-
rations cannot form if external parties are unaware of what data is stored.
Secondly when data is stored locally, access permissions and differences in
data formats are often enough to curb potential collaborative opportunities.

9

• Backing up large volumes of data is often expensive and not feasible. A
backup and restore can take longer than the data can acceptably be offline.
The best form of backup is data redundancy, either multiple copies per site or
across distributed sites. This ensures that the data is always available should
a site or copy become corrupted. The current method of local storage does
not easily adapt to convenient backup strategies.

• Storing data locally is no longer an accepted strategy to store valuable data,
even if it is replicated many times. HDD failures are common, making a single
instance of data very vulnerable. Even if the file system has some hardware
redundancy (Vadala, 2002a) as disks from the same batch tend to fail at the
same time. Even multiple copies on a single site are unacceptable as this is
exposed to site risks like power surges, fire and theft.

• Once the data is calculated it is then analysed using scripts or programs.
Users perform the analysis using scripts which they have written or acquired
from colleagues. It is not possible to assess the reliability of results published.
In order to validate results scientists have to either ask for the analysis scripts
or write their own in an attempt to reproduce the results. This leads to repeti-
tion of work and indicates the need for a mechanism for exchanging analysis
scripts.

2.2.4 Data transmission costs

The cost of moving data is often overlooked. When data volumes are small the cost
can safely be ignored. As data volumes become increasingly large the transmission
of data becomes a limitation both in terms of speed and cost. In table 2.2 we look
at some of the various network connections available. The modem or narrow band
connection is so slow that the rental charge becomes a dominant factor. One of the
most economical solutions is Digital Subscriber Line (DSL) which is easily available
and comparably inexpensive. The 3,600 hours taken to transmit one TiB of data
makes DSL unsuitable.

We then look at the cost of a Trunk or Digital Signal (DS) connection, the DS–1
is one of the more expensive per TiB and still takes an unacceptable 1,311 hours to
transmit one TiB. The DS–3 is the first practical connection suitable of dealing with
large volumes of data. It sets the transmission costs of data at around $2,000 per
TiB.

The Optical Carrier (OC) connection provides a suitable bandwidth but is ex-
pensive and is best utilised by large institutions with a constant high bandwidth
demand.

Moving data is expensive and the cost of high bandwidth connections can quick-
ly outweigh the cost of physically posting the data on a HDD. This option has a

10

Table 2.2: The speed, cost and time of data transmissions over various network connections. The
table includes a comparison of Digital Signal (DS) and Optical Carrier (OC) connections as
well as home connections like dial-up or narrow band and Digital Subscriber Line (DSL).
Data shown in USD and courtesy of Jim Gray at Microsoft.

Method Speed Rent $/Mbps $/TiB Time/TiB
(Mbps) ($/month) (sent) (hours)

Narrow band 0.04 40 1,000 3,086 52,560
Home DSL 0.6 70 117 360 3,600
DS–1 1.5 1,200 800 2,469 1,440
DS–3 43 28,000 651 2,010 48
OC–3 155 49.000 315 976 14
OC–192 9,600 1,920,000 200 617 0.23
Postal system – – – 50 24

high latency (≈ 24 hours), but it is capable of moving multi-TiB of data in a single
operation. Since the cost of moving data via a network exceeds $2,000 per TiB this
is often a viable solution.

In table 2.3 we look at the time taken to transmit one TiB of data over a LAN
at different speeds. Over a 100 Mbps Local Area Network (LAN) transferring one
TiB takes an entire day and on a high speed 1 Gbps LAN over 2 hours. Transferring

Table 2.3: Shows the expected time taken to transmit one TiB of data across a local area network.

LAN Time/TiB
(hours)

10 Mbps 250
100 Mbps 24

1 Gbps 2.2
10 Gbps 0.21

data is expensive and requires suitable quantities of storage at either location to
manage the large volumes of data. Even on a LAN the time is still significant. It is
for these reasons that moving the compute closer to the data is preferable to moving
the data to the compute.

2.3 Data complexity

There are many naturally occurring characteristics of data that make it difficult to
manage and it is this complexity that often determines how the data is stored. An
example of a complex dataset is given in figure 2.3 which shows the relationship
of experimental results with publications and authors. The complexity of data is
related to the number of relations between each data item; the more relations there
are, the more complex the data. There are also different types of relations, one-to-

11

Publication InstitutionAuthorExperiment Results

T4 lysozyme

Title
Name

JACS

Title
Date

PCCP

Title
Date

John

Title
Name

Jack

Title
Name

Jill

Title
Name

Bill

Title
Name

Fred

Title
Name

American
Chemical
Society

Name
Desciption

Royal
Society of
Chemistry

Name
Desciption

Figure 2.3: Shows a graphical representation of complex metadata. This metadata for a T4
Lysozyme experiment shows it has been published in two journals and some of the au-
thors worked on both publications

one which is the simplest, one-to-many which is more complex and many-to-many
which is the most complex. The relations between each data item complicates the
data due to the storage methods. Each relation has to be stored and managed so
that it can be traversed and retrieved.

Figure 2.3 shows how the example experimental results, T4 Lysozyme has
been used in two publications, one in the Journal of the American Chemical Society
(JACS) and the other in the Physical Chemistry Chemical Physics (PCCP) journal
(JACS, 2004, PCCP, 2004). Each of these publications has multiple authors and some
of the authors (Jack, Bill), worked on both publications. All of the authors be-
long to the American Chemical Society and some also belong to the Royal Society
of Chemistry.

It is common to find data with complex relationships and dependencies. In
order to address the issues that this poses, it is important to look at the reasons
why the data management is considered complex.

2.3.1 Natural unique identifiers

Complex data often lacks natural unique identifiers. When storing data it has to
be uniquely identified so that the correct data can be retrieved at a later date. The
unique Identifier (ID) can take many forms:

• ID unique to the current dataset.
For example a regional telephone number, 123456.

• ID unique to the current system.
For example a national telephone number, 023 123456.

• Globally unique ID, such as ISO 3166-2 (ISO, 1995).
For example an international telephone number, 44 023 123456.

12

Results

Name
Data

Results publication

Publication

Title
Name

Publication author

Author

Title
Name

Author institution

Institution

Name
Description

1

n 1

n

1

n 1

n

1

n

n

1

Figure 2.4: Shows how linking tables are required to represent many-to-many relations in a relational
database. These linking tables have one-to-many (1:N) relationships with the parent tables
resulting in a many-to-many relationship mapping.

Each of these identifiers adds complexity to the data as the uniqueness has to be
carefully managed or the data will become corrupted. Complex data often identi-
fies itself through relationships with other data and does not contain single unique
IDs. This means that the data storage layer has to allocate and manage IDs for all
the data that is being stored, resulting in more data needing to be stored.

Even the simple case of allocating integers to every record added can cause
problems in a volatile environment. It is possible to run out of numbers that can fit
into an integer field and hence ID recycling has to be introduced as well as the use
of multicolumn keys known as complex composite keys (Getz et al., 1994).

2.3.2 Many-to-many relationships

Complex data often contains large numbers of many-to-many relationships. It is
easy to manage one-to-one and one-to-many relationships and many systems are
built to deal with this. Most databases and file systems are designed with the one-
to-one and one-to-many model in mind but it poses limitations for many-to-many
relationships.

It is possible to model many-to-many relationships using only one-to-many re-
lations by adding an intermediate mapper that maps the relations. This is often un-
acceptable as it involves more work, more data and more processing. The mapper
has to be managed and the data either side of the relationship has to have unique
identifiers.

Using a mapper not only adds complexity at the data level but also at the re-
trieval level as the accessing applications have to be able to understand these map-
pings and be able to reconstruct the data using the unique IDs.

Many-to-many relationships do not naturally translate into a Relational Data-
base Management System (RDBMS) schema. For example, in figure 2.3 a publi-
cation can have many authors and an author can have many publications. This
is modelled by the relationship between these objects. If these relationships were
modelled in a relational database the schema would require additional tables to

13

manage the relationships as shown in figure 2.4.
Two unique IDs have to be created, Author.ID and Publication.ID to com-

plete the many-to-many relationship between the Author and Publication ta-
bles. These IDs are connected using an additional table (PublicationAuthor)
which requires an entry for every relationship between Author and Publication.

Any program that queries or stores data in the Relational Database Manage-
ment System (RDBMS) has to join the three tables together before any data can be
manipulated. If the tables become large and there are lots of complex relations then
there is the potential for a loss of performance. Figure 2.4 shows the additional
tables and IDs that are required for the simple object graph shown in figure 2.3.

2.3.3 Data traversals

If the data is accessed by traversing the relations between objects it is often an in-
dication of complex data. For example in figure 2.3 it would be common to locate
an author by traversing from an experimental result instance (T4 Lysozyme) to a
publication (PCCP) and finally to an author (Jack).

There are two ways to traverse the data shown in figure 2.3 if it is stored using
the schema shown in figure 2.4.

Each table has a unique identifier for each row, e.g. Results.ID which can be
used in another table, as a reference e.g. ResultsPublications.ResultsID.
This is called a foreign key. It is possible to combine these two tables producing
a row for each referenced identifier, replacing the ID with the data in the row of
the parent table. This process is called ‘joining’ and is used to link tables together
so they appear as one large table, enabling the user to reconstruct the relationships
between the data.

The easiest way to retrieve the data is to join all the tables together using the
appropriate foreign keys, ID and then filter the data. This requires that the data
access layer understands the additional joining tables and can also convert the re-
quest for data traversal into a Structured Query Language (SQL) statement (Gould
et al., 1999). Joining all the tables together can be undesirable if they are large and
could result in a slow response time.

It is only possible to join all the tables together if all the information is available
to create the SQL query. Often data traversals are progressive and the next traverse
depends on the previous data traversal. In this case it would not be possible to
produce a single SQL query. Alternatively it is possible to query the data for each
traversal, return the data and then produce the query to produce the next traversal.
Each traverse would translate into at least two queries and a join, one to get the
data and relations from the node, T4 Lysozyme then another to look up the corre-
sponding relations by joining ResultPublication and Publications. If there
are frequent many-to-many relations this can result in a vast number of database

14

queries. It also makes the data access layer complex and difficult to optimise.
The query and traversal optimisations of commercial databases can offer better

performance than naı̈ve proprietary implementations.
One way to optimise such data retrievals using relational databases is to utilise

the features of a triple store, as described in section 2.5

2.3.4 User defined data types

Simple data utilises data types often associated with programming languages, e.g.
Float, String and Integer but these are often too restricting. For example a publica-
tion can have an International Standard Book Number (ISBN) or reference number
often consisting of an alpha numeric combination. Using the simple data types
provided, it is often difficult to validate the data values. If a system utilises many
different custom data types it is up to the user to validate the data during deposi-
tion and retrieval.

It is even more complicated if the data types or codes are determined by data
type relationships. For example in an object orientated program it is common to use
inheritance to provide a data type with a base set of attributes and then override
some of these for the specific sub class. In a system that does not support user
defined data types it is up to the data access layer to manage these types and ensure
that the correct validation code is used.

RDBMS restrict users to a limited number of simple data types. Although it
is possible to add checks to ensure that, for example an integer is within a certain
range it is more difficult to deal with complex data types. The ISBN example would
prove to be more difficult. Any complex data type would have to be managed by
the data access layer and it is this detachment of data from the data access code that
can cause problems. Especially if the data types utilise inheritance, it can be very
difficult to match up a data type with its appropriate code.

There are extensions to permit extensible data types like XML (W3C, 2004a),
Character Large Object (CLOB) and Binary Large Object (BLOB) but searching
these are difficult (Microsoft, 2001). CLOBs and BLOBs are often not searchable
and there is a limited amount of functionality available. Storing data as Large Ob-
ject (LOB) breaks the relational structure of a database and bypasses any builtin
optimisations (Leyderman, 2002).

Many databases such as Microsoft SQL server 2005 (Microsoft, 2004), Oracle
9i,10g (Alapati, 2003) and IBM DB2 now ship with XML capabilities as standard.
These are mainly for converting result sets to XML and for storing XML into re-
lational tables. Additionally for example, Oracle permit the storage of XML in a
single column of a table and then enable XML Path Language (XPath) (Clark and
DeRose, 1999) queries.

15

Frame (n)
X
X
X

Y
Y
Y

Z
Z
Z

Frame (n +1)
X
X
X

Y
Y
Y

Z
Z
Z

Frame (n + 2)
X
X
X

Y
Y
Y

Z
Z
Z

Metadata

Non-relational dataRelational data

Figure 2.5: Shows how a frame is made up of a series of non-relational coordinates to form frames.
The frames link to the highly relational metadata.

2.3.5 Non-relational data

Not all data is complex; it is often the case that the data has very few relationships.
For example, figure 2.5 shows the T4 Lysozyme experiment result data. It consists
of a series of frames each containing X,Y,Z coordinates of a collection of atoms.
The metadata that describes the experiment is complex and is very relational, but
the coordinate data is simple and non-relational.

A frame is a large collection of X,Y,Z coordinates, which do not have any re-
lation to other data except that frame in which they belong. This non-relational
data is often read serially and does not need any relational data to indicate where
the user should obtain the next piece of data. The data should be kept in order to
assist with serial reads, otherwise the implied order of frames and atoms has to be
maintained using identifiers. If the data is not stored in order then a serial read can
involve a large amount of sorting and searching.

If the data is non-relational like the example shown in figure 2.5, it is very dif-
ficult to harness the capabilities of a RDBMS. There are two key ways to deposit
non-relational data into a Relational Database (RDB) (i) simply add it to a large ta-
ble using simple datatypes or (ii) add it as BLOBs in a single column. Using simple
types creates a large volume of data in a single table which makes joining tables
very expensive. Most non-relational data is read in a sequential manner which
can cause the database to constantly sort result sets resulting in poor performance
(Sears et al., 2006).

BLOBs are non-searchable data types and have no performance increase over
storing the data in files. For example, if a non-relational binary file is deposited into
a database table as a BLOB, the binary is copied and embedded into the database
proprietary data files. Since it is not possible to query and manipulate the data
the net result is an embedded version of the original data file which can only be

16

Table 2.4: Shows the maximum size of a single BLOB, stored in various databases. The maximum
number of BLOBs can also be limited by the maximum total database size. There are some
exceptions such as PostgreSQL which store large BLOBs as separate files on the local file
system.

Database Maximum BLOB size
Microsoft Access 97/2000 65,535 bytes
Microsoft SQL Server 2000 2 GiB
Microsoft SQL Server 2005 2 GiB
MySQL v4.1 1,048,576 bytes
MySQL v5.0 2 GiB
Oracle 10g R1 Standard edition 4 GiB
PostgreSQL OS file system limit

retrieved as a whole. This is an unnecessary process as the original binary file is
probably more useful as a single file where it can easily be accessed and read by
applications.

In cases where the data is non-relational or the data is to be used as a single
object, BLOBs or flatfiles should be considered. The maximum size of a BLOB is
database dependent and must be considered when flatfiles are not used. The file
size is limited by the operating system and is rarely a problem, table 2.4 shows the
maximum BLOB size for some key databases.

Using BLOBs can provide a useful mechanism for storing all data in a single
location. This is then easy to manage and manipulate using conventional database
tools. In some situations this may be appropriate but it can pose problems during
a restore. If the database contains many large BLOBs it will substantially increase
the restore time in the event of data loss. If the BLOBs are separate the database
can be brought on line whilst the bulk of the data is still being recovered. This
is advantageous when the data is not all required for the system to operate. For
example when adding new data, the existing BLOBs are irrelevant.

2.4 Database systems

The term data base was first used in the 1960s (SDC, 1963) where is was used to
describe a collection of entries containing item information; by the 1970s the term
had become a single word. The Oxford English Dictionary describes a database as
‘a structured collection of data held in computer storage’ and according to Michie
(1968) ‘a database is a generalised collection of data not linked to one set of func-
tional questions’.

It is this separation of data from the functions or operations that makes data-
bases useful. The data can be stored and organised without having a complete
knowledge of how it will be manipulated in the future. This is suitable for appli-
cations where the functions change or are unknown at the time when the data is

17

Company

Engagements Expenses

Customers

Demonstration
schedule

Projects

Figure 2.6: Shows an example topology of a hierarchical database.

collected, such as datamining (Han and Kamber, 2000).
In the early 1960s Charles Bachman, a great database pioneer, worked on more

efficient ways of dealing with direct access storage (Bachman, 1965, Ramakrishnan
et al., 2002). This work resulted in the network database model and led on to the
hierarchical database model. Charles Bachman received the Turing Award in 1973
for ‘his outstanding contributions to database technology’.

The first database to gain recognition in industry was the hierarchical database
(CERN, 2002), which provided a tree-like approach and allowed each record to
only have one parent or container and was mainly a mainframe technology. This
performed relatively well but the one-record-one-parent approach limited the data-
base’s usefulness in modeling real world scenarios.

For example, a project schedules demonstrations which are attended by clients,
as shown in figure 2.6. Although both parties are attending the same demonstration
it is not possible to link the two tables in a hierarchical database. This results in the
data (time, location) being stored twice wasting storage space and making updates
difficult.

The relational model was later proposed by Codd (1970) but remained of aca-
demic interest only until the late 1970s, due to the limitations of hardware. The
database market today is dominated by relational databases and section 2.4.2 de-
scribes their functionality and implementation.

Since the relational database model was introduced there have only been a few
alternatives proposed. The first is the object-orientated database which enables
objects with attributes to be retrieved and deposited as a single entity and is fur-
ther discussed in section 2.4.3. The second is the XML database which attempts to
bridge the divide between documents and data and is described in section 2.4.4.

Regardless of the type of database it can be broken into four key areas, each of
which is responsible for a particular feature or capability of a database. The four
key areas are shown in figure 2.7 and are described in detail below:

• Database and database management systems

The Database Management System (DBMS) is the program which is used to
manage the data in a database (Ramakrishnan et al., 2002). Most often the

18

Database Management System (DBMS)

Database

Persistent storage

Flat files
Tape

Database schema

SQL schema
XML schema

Database users

Programs
Users

Database administrators

MySQL,Oracle 10g, IBM DB2, Microsoft SQL 2005

Database Definition Language (DDL) Database Query Language (DQL)

XML Schema
SQL (create, alter)

XPath
SQL (select,update)

Figure 2.7: Shows the four key areas of database products and examples of each as shown in the
dashed boxes.

DBMS is a collection of programs which control the organisation, storage
and retrieval of data (objects, records, fields or files) within a database. The
database and the DBMS are often referred to as the same thing, but strictly
speaking a database is the collection of records and the DBMS is the software
which manages the database. Where the meaning is unambiguous this docu-
ment uses the term database to cover both meanings.

There are some properties that are generally expected from a collection of data
before it can be described as a database, however there is no agreed definition.
These properties include guarantees about the integrity and quality of the
data as well as the ability to share the data amongst a community of users.
Most databases have an internal structure or schema, and have the ability to
perform some sort of computation on the data using a query language.

• Databases schema

The database schema is a structural description of the type of data held in a
particular database. Designing the schema is one of the first tasks when de-
signing a database. It describes what types of data will be stored, how they
relate to each other and provides names which can be used to reference the
data (Adachi, 2001). In some databases additional items can be added to the
schema which do not alter the data but can improve performance. For exam-

19

ple it is common to add indices to tables or data objects which are frequently
used. These indices are a copy of frequently accessed columns, sorted for
quick access and linked into any related data.

Example 2.1 shows an XML Schema written in a Data Definition Language
(DDL). This schema describes the XML structure of an Experiment data
type. The schema states what data type is expected, the number of elements in
a sequence and the names of the attributes. A sample instance of a compliant
XML data document is shown in example 2.3.

• Data definition language

A DDL is a language for specifying the database schema (Ramakrishnan et al.,
2002). These are not standardised and often vary between database vendors
but they all provide commands to create and delete databases and tables.
Each database then provides a varying degree of commands to manipulate
the tables.

These commands are for creating and manipulating the structure of tables,
data types, rows, columns and are not for querying the actual data. Once a
database schema is decided the DDL is used to create the internal data struc-
tures in a database so that the data can be stored efficiently and optimised for
querying by the DBMS.

An XML Schema is an example of a pure DDL as it only defines the data,
unlike SQL where a subset is used for data definition and the rest for data
manipulation.

Example 2.1 shows an XML Schema written in a DDL.

• Query language

Query languages are computer languages which are used to get data into
and out of databases and fall into two categories; Database Query Languages
(DQL) and Information Retrieval Query Languages (IRQL).

DQLs follow a predefined syntax and are like a programming language. In
general the user has to have knowledge of the data contained in the database
as well as an understanding of the query language syntax. One of the most
common DQL is the Structured Query Language (SQL) (Mattos et al., 1999);
an example of this can be seen in section 2.4.2. SQL is often used by rela-
tional databases but it is important to note that DQLs are not limited to this
format and can often look very different. For example section 2.4.4 describes
an XPath query for querying an XML file. The overall objective is the same,
the query language provides a mechanism for letting users manipulate the
data in the database, perform calculations, and process results according to

20

Example 2.1: Shows an XML Schema which describes the XML structure of an Experiment data
type. The schema states what data type is expected, the number of elements in a se-
quence and the names of the attributes. A sample instance of a compliant XML data
document is shown in example 2.3.

1 <?xml version="1.0"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
3 <xsd:element name="Experiment">
4 <xsd:attribute name="UserID" type="xsd:string"/>
5 <xsd:attribute name="description" type="xsd:string"/>
6 <xsd:complexType>
7 <xsd:sequence>
8 <xsd:element name="Datafile" maxOccurs="unbounded">
9 <xsd:complexType>

10 <xsd:attribute name="uri" type="xsd:anyURI" use="
required"/>

11 <xsd:attribute name="size" type="xsd:byte" use="
required"/>

12 </xsd:complexType>
13 </xsd:element>
14 </xsd:sequence>
15 </xsd:complexType>
16 </xsd:element>
17 </xsd:schema>

certain criteria. This process lets users slice data in various different ways
whilst leaving the data manipulation up to the DBMS.

In contrast to a DQL an IRQL does not use a formal syntax but rather a best
match approach (Baeza-Yates and Ribeiro-Neto, 1999). IRQLs apply a weighting
or ranking to the results and are often used for searching bibliographic cat-
alogues and museum collection information. IRQLs are also used in search
engines where the data is often inconsistent or difficult to manage, for exam-
ple World Wide Web (WWW) search engines.

Some DDLs are combined with query languages, such as SQL where there are
DDL commands to create, alter and delete tables as well as DQL commands
to retrieve and insert data.

2.4.1 Common database features and capabilities

The features offered by databases vary between each implementation however
there are some standard features. Although these features do not define a database
they indicate how advanced databases have become since the 1960s. Any addi-
tional database features are used to distinguish database vendors from each other.
It is often these features which provide a particular database with most of its ap-
peal.

• Backup

Database backup is required so that the data can be recovered in the event
of a serious failure. More advanced databases have the capability to create a

21

backup without having to take the database offline. This means that update
queries can continue execution throughout the backup process. This is often
achieved by logging all transactions that occurred during the backup process
and replaying them after a restore. Restoring a database returns it to the exact
state it was in when the backup was performed.

Some databases (Oracle, 2005a) have the capability to query the database state
at a given point in time, without performing a backup. This process is called
‘flashback’ and it provides a type of online backup as the user can undo any
disastrous queries. This is managed by storing the state of the database for
any point in time and using the differences between data files or timestamps
to retrieve historical data (Oracle, 2005b).

In section 2.3.5 we discuss the availability of BLOBs and flatfiles as a possible
storage mechanism for large objects of data. This has backup implications as
a database backup will include all BLOBs but the flat files remain the users
responsibility.

Backing up a database which contains many BLOBs can take time as the vol-
ume of data grows. This can become a problem even if incremental backups
(Freeman and Hart, 2002) are used as a restore can become very time consum-
ing. Many file systems will support full and partial backup utilities. Dis-
tributed or clustered file systems and databases can provide quick failover
solutions to keep recovery time to a minimum.

• Distribution

A database can store data in more than one physical database, and still appear
as a single instance to the user. Section 5.7.3 shows how distributing data can
improve performance, availability and reliability.

• Pre-compiled queries

When a query is run, an execution plan (England, 2001) is generated and then
executed. For complex queries this execution plan is time-consuming and
can be reduced using pre-compiled queries. A pre-compiled query is often
called a stored-procedure (Henderson, 2001) and is mainly applicable to com-
mon queries as they can be generated in advance. The stored procedure is
usually stored within a database which provides opportunities for optimisa-
tion.

The stored procedures are usually written in a proprietary database language
such as T-SQL (Gould et al., 1999) and PL/SQL (Oracle, 2001, Feuerstein and
Pribyl, 2005), although some databases also support standard programming
languages. Microsoft SQL Server (Otey, 2004) described in section 2.7 permits

22

many commonly used programming languages, Oracle also supports Java
(Gallardo, 2002).

• Automation

When the database enters a certain state it is often useful to trigger a job, e.g.
when a new record is added or when storage or processing capabilities reach
a certain threshold. These events are called triggers, and can be applied to
many items in the schema (Adachi, 2001, Mullins, 1999). Triggers provide an
efficient event model for databases and have many uses which range from
disk space monitors to access permission violations. They can also react to
updated data values to trigger business logic processes.

Transactions and concurrency

A database transaction is a unit of work which is completed by a Database Man-
agement System (DBMS). Ideally it will execute in an independent, coherent and
reliable manner. These transactions often comprise more than one query and it is
important that they all are performed without interfering with other concurrent
transactions; they are referred to as Logical Units of Work (LUW).

A LUW has a beginning, execution and a commit stage; if either fail, the LUW
has to be rolled back. The behaviour of a database rollback is vendor-specific, some
rollback the whole query and some just the failed command. Most databases sup-
port user transactions and are often called transactional databases.

In order for transactions to successfully complete, most databases attempt to
follow a series of rules to ensue these properties. The rules can be summarised by
the ACID (Date, 2000b) properties. These properties are often used when deciding
whether or not a DBMS is adequate for handling transactions. Although it is of-
ten the case that databases will relax these criteria to varying degrees to improve
performance, the overall aim is to prove that LUW are processed reliably.

The Atomicity Consistency Isolation and Durability (ACID) terms are defined
below.

• Atomicity

The results of a transaction’s execution are either all committed or all rolled
back. All changes take effect, or no changes are apparent.

• Consistency

The database is transformed from one valid state to another valid state. This
defines a transaction as legal only if it obeys user-defined integrity constraints.
Illegal transactions are not allowed and, if an integrity constraint cannot be
satisfied, then the transaction is rolled back.

23

• Isolation

The results of a transaction are invisible to other transactions until the transac-
tion is complete. This prevents one transaction seeing the intermediate state
of another transaction, even when operating on the same data. A formal def-
inition states that the transactions should appear serial.

• Durability

Once committed (completed), the results of a transaction are permanent and
survive future system and media failures. It is often the case that all trans-
actions are written into a log which can be played back to recreate a system
state before any failures occurred. A transaction can only be deemed commit-
ted after it is written and confirmed in the transaction log.

Database
resources

Transaction
coordinator

Request to prepare

Commit

Prepared

Done

St
ag

e
on

e:
Pr

ep
ar

e
St

ag
e

tw
o:

Co
m

m
it

Figure 2.8: Shows the prepare and commit phase of the two-stage commit protocol. The transaction
coordinator manages the entire transaction over one or many different databases or re-
source managers. The first stage ensures that the databases are able to perform the change,
e.g. acquired write access to tables. The second stage only commits the data when all
resources are prepared to commit. This stage makes any changes take affect across all re-
sources. The transaction is finished when all resources confirm they have committed. An
error at any other stage will result in the transaction being rolled back (Gray and Reuter,
1993).

When data is distributed across more than one database a single commit phase
is insufficient to maintain the ACID properties. The traditional method for handling
distributed transactions is known as the two-phase commit, it breaks transactions
into two phases, the prepare and the commit. Figure 2.8 shows the two-phase com-
mit protocol.

24

Data retrieval

There are two methods of retrieving data from a database, the trivial and the non-
trivial.

The trivial method requires that users know the structure of the data and know
what information they wish to retrieve. For example, given a record ID the user
can retrieve information about that particular record. This is achieved by querying
the database tables to access the data required.

The nontrivial case is often called data mining (Frawley et al., 1992). This uses
techniques discovered from statistics and pattern recognition to extract data. The
aim is to extract information about the data, which was previously unknown but
potentially useful (Hand et al., 2001, Menzies and Hu, 2003).

This document deals with the creation of databases and repositories with the
intention to use them with trivial data retrieval techniques. Although once these
repositories are completed it is foreseeable that data mining could be useful.

2.4.2 Relational databases

RDBs (Codd, 1970) were developed to ensure that DBMS implementations were
independent from any features in the application layer. They use predicate logic
and set theory (Levesque and Lakemeyer, 2001, Date, 2000c) to define a mathematical
model of tables and relationships between tables. This permits data to be modelled
in a relational fashion. For example, allowing a table to be related to any other table
and vice versa.

The RDB stores data in tables and defines their relationships using keys. A
key is one or more columns that are in common between two or more tables. The
process of defining relations between tables is called normalisation (Date, 2000a,d).
It provides a set of rules indicating when to split a table and create two tables with
a relationship between them.

Figure 2.9 shows two tables, Experiment and Scientist which have a com-
mon key called ScientistID. If a user wants a description of all the experiments
by a particular scientist, the two tables can be combined using the key column and
the data extracted. Example 2.2 shows the SQL required to query these tables.

The queries are written in a proprietary database language, usually SQL (see
section 2.4.2) and are interpreted by the DBMS and executed. The results are re-
turned as a table showing the data requested in the query. It is this flexibility to
write unforeseen queries against data that provides support for future applications.

One serious limitation of the RDB is its ability to deal with different datatypes.
Tables can only store data of a type supported by the RDB and although there are
workarounds, storing dates as a string or integer is sometimes unacceptable. Sec-
tion 2.4.3 shows how object databases evolved to overcome this problem.

25

Scientist
ScientistID Name

Experiment
ScientistID Description

1 Test1
1 Test2
2 New Test

1 JOHN
2 JANE

1
M

Figure 2.9: Shows two database tables which have a common key; ScientistID. The Experiment
table records information about the experiments carried out. The Scientist table
records information about the scientists. Storing the data in two tables provides a one-
to-many relationship where a single scientists can have many experiments.

Relational databases have been well tuned and optimised over the years and
many new features added to increase the ability to deal with more complex data.
Today most RDBs support BLOBs (Microsoft, 2001) which are suitable for storing
pictures and other binary data (Stephenson, 2005).

This breaks the RDB data model as BLOBs cannot be queried like native data
types, therefore search capability of relations or individual data items inside a
BLOB is lost. If BLOBs are used frequently most RDBs tend to suffer from poor
performance. The RDB is unable to optimise or search BLOBs thus reducing the
effectiveness of a RDB to manage data.

Commonly used RDB implementations are very thoroughly tested and are ca-
pable of managing large volumes of data, this often makes them very complicated
to operate. Their installation and day-to-day maintenance is often complex enough
to warrant the employment of a Database Administrator (DBA). This adds to the
cost of ownership and discourages potential RDB uptake.

Structured query language

The Structured Query Language (SQL) originates from work done by Codd (1970)
and was originally called the Structured English Query Language (SEQUEL) (Cham-
berlin and Boyce, 1974) then later renamed due to a trade mark dispute; the most
recent SQL standard is ‘SQL:2003’ (Eisenberg et al., 2004, ISO, 2003).

SQL is both an ANSI and ISO standard but there are many vendor specific vari-
ations, the most common are:

• Procedural Language/SQL (PL/SQL) from Oracle (2001).

• SQL Procedural Language (SQL PL) from IBM (Janmohamed et al., 2004).

• Transact-SQL from Microsoft (Otey, 2004).

Although created for relational databases SQL is used in many other types of
databases, for example object databases (see section 2.4.3). SQL aims to provide a

26

data querying language specifically for managing data although it is not a program-
ming language by definition, and current implementations do not comply with the
standards. There are five applications of SQL:

• Data retrieval

The SELECT query is the most commonly used SQL command. It provides a
way to return data in a table and restrict the results on certain criteria.

• Data manipulation

Data manipulation enables users to INSERT and UPDATE data as well as al-
lowing removal and alteration of existing data.

• Data transaction

Section 2.4.1 describes how SQL permits the execution of a series of queries
and ensures they are all completed or an error is thrown.

• Data definition

SQL enables users to CREATE or DROP tables from the schema to define what
data should be stored or deleted.

• Data control SQL provides commands to GRANT or REVOKE user access per-
missions on schema objects.

Example 2.2: Shows how SQL joins two tables and extracts data from each whilst restricting the result
set to contain only data for a single person.

1 /* List the items to be returned */
2 select Scientist.Name , Experiment.Description
3 from
4 /* Show which tables to look in*/
5 Scientist , Experiment
6 where
7 /* Join the two tables */
8 Scientist.ScientistID = Experiment.ScientistID
9 and

10 /* Only show the results of a specific person*/
11 Scientist.Name = "Steven";

2.4.3 Object databases

Limiting data to simple datatypes has often been seen as a disadvantage of RDBs
and has spawned the production of Object Orientated Database Management Sys-
tems (ODBMS). An ODBMS integrates database capabilities with Object Oriented
(OO) programming concepts (Versant, 2001). The result makes database objects ap-
pear as programming language objects, accessible from one or more existing pro-
gramming languages.

27

The ODBMS extends the object programming language to include transparently
persistent data (Barry, 2004), concurrency control, data recovery and associative
queries, including some of the other database capabilities shown in section 2.4.1.
This capability enables database programming from within an OO language such
as Java, C++, C# and Python, without the use of a database sub-language such as
SQL (Peterson, 2001, Chan et al., 1998). They are suited to complex hierarchical data
that can easily be traversed and are not well suited to searches across large data
sets.

The transparent persistence of objects in the ODBMS provides the ability to
directly manipulate data stored using an object programming language. The ma-
nipulation and traversal of persistent objects is performed directly by the object
programming language in the same manner as in-memory, non-persistent objects.
This is achieved through the use of intelligent caching. So unlike RDBs where the
user searches for related data, an ODBMS user can retrieve an object which will
automatically contain the related data.

For example using a RDB to retrieve data about a user you would first find the
user in the user’s table to obtain the ID of that particular user. Having retrieved
this information, you can then proceed to get the user’s information using the ID
as an index into other tables for example the Address table. This is often the case
when you do not know what information will be required next about the user and
involves many queries to the database. Using an ODBMS once the user object has
been retrieved, all the information about that user can be accessed as properties on
that object resulting in the need for only one query to the database.

ODBMS are often used in web sites and XML applications because XML is es-
sentially an object model. It provides support for objects, properties and attributes.
The Document Object Model (DOM) is an example of how XML can be used as an
object model (W3C, 1998).

2.4.4 XML databases

XML (W3C, 2004a) can be used to store complex data and most programming lan-
guages have the capability of serialising objects to XML files (see section 2.6.4). An
XML document can be considered to be a database as it stores data in a structured
form where it can be queried using XPath (W3C, 1999).

Some database producers (Oracle, SQL Server 2005) have included support for
XML in their relational databases and even permit querying of the XML using
XPath (Microsoft, 2004). Some open source databases like MySQL (Darrow, 2004)
have additional modules to store and retrieve XML (DuBois, 2003). However XML
is verbose and slow due to the required parsing and text conversion. Even native
XML database performance cannot compete with a RDB (Borret, 2004).

Native XML databases either store XML in the original XML file format or re-

28

Example 2.3: Shows a sample XML data file and the files associated with a single experiment for the
user SJJ. The Experiment has attributes for a UserID and a short text description as
well as a sequence of DataFile types. Each DataFile has an attribute for a URI and
a data size. An associated XML Schema is shown in example 2.1.

1 <?xml version="1.0"?>
2 <Experiment UserID="SJJ"
3 description="Experiment Data Results"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:noNamespaceSchemaLocation="file://xmlSchemaExample.tex">
6 <Datafile uri=" file://myhost.example.com/exp1.dat" size="34535"/>
7 <Datafile uri=" file://myhost.example.com/exp2.dat" size="53636"/>
8 <Datafile uri=" file://myhost.example.com/meta.dat" size="4543"/>
9 </Experiment>

process it into an internal optimised data structure. In either case the fundamental
unit of storage is an XML document which is then searched using either XQuery or
XPath.

XML Query and XPath

XPath (W3C, 1999) is a language for defining parts of an XML document and is the
basis of XML parsing. XPath has over 100 inbuilt functions which often results in
XPath being used as a query language.

XML Query (XQuery) is the language designed to query data collections and
encompasses the XPath language. XQuery (W3C, 2005c) is the SQL for XML en-
abling users to manipulate data as shown in figure 2.4.

Example 2.4: Shows the XPath for the first DataFile entry in the Experiment element (line 2). Line
5 shows a simple XPath query to list all data files where the size is greater than 1 GiB.
Lines 8 and 9 show an XQuery to list the data files where the size is greater than 1GiB.
These queries are based on the XML document shown in example 2.3.

1 /* XPath Example */
2 /Experiment/DataFile[0]
3

4 /* XPath query */
5 /Experiment/DataFile[size>1024]
6

7 /* XQuery */
8 for $x in doc("XMLExample.xml")/Experiment/DataFile
9 where $x/size>1024

10 return $x

2.5 Triple store

The functionality of databases can be manipulated to operate in ways which they
were not designed. For example, a triple store is able to store data in the form
of a triplex collection. These take the form subject-predicate-object and provide an
alternative to a database schema which requires in-depth knowledge of the data

29

and provides limited extensibility. The triplex is similar to the Resource Descrip-
tion Framework (RDF) standard and many triple store implementations are RDF
compliant (W3C, 2004b).

A triple store provides a different method for storing data but is often built
upon a relational database. The main advantages are that new data predicates can
easily be added and the underlying database is easy to optimise for large numbers
of entries.

There are many triple store implementations, for example Jena (McBride, 2005,
Wilkinson et al., 2003) and Redland (Beckett, 2001). Scalability is often an issue, al-
though 3Store (Harris and Gibbins, 2003) provides a good insight into scalability,
demonstrating the ability to manage over 25 million RDF entries.

2.6 File systems

A file system is a database which permits storage of arbitrarily sized binary ob-
jects with a limited amount of metadata. They are the quickest method available
to archive and retrieve binary objects and are designed to scale without reducing
performance. Most operating systems support one or more different file systems
and it is for these reasons that flatfiles are often used to store data.

Most file systems limit the metadata (e.g. filename, creation date, modified date,
owner) that can be stored with a file and this reduces the search capability available
to users. It is this limitation that increases the requirement of an additional database
to manage the metadata.

There are many different file systems available, varying in performance and
features but often operating systems limit the variety of file systems available to
the users. Although most file systems store data on disks, others support virtual
data and network interfaces, e.g. Network File System (NFS) (Shepler et al., 2003).
This section looks into the capabilities of some of the more advanced disk based file
systems and discusses their capabilities.

2.6.1 Transactional file systems

Transactional file systems log the events for each file in a journal. This journal tracks
the transactions of the file system to ensure that updates are committed atomically
(Johnson, 2001) and is similar to the transaction logs (Gulutzan, 2003) that are used in
relational databases. They have the ability to execute related changes at the same
time to ensure that in the event of failure, the complete transaction can rollback
and appear as if none of the changes took place. Reiser and New Technology File
System (NTFS) are examples of transactional file systems (Nagar, 1997).

30

Reiser file system

The Reiser file system version 3 (Gowin, 2000) is currently the default file system
shipped with many Linux (Newman, 2003) distributions and the latest version, ver-
sion 4 has recently been released. Both are journalling file systems which store
metadata to avoid file system corruptions. These file systems have all the function-
ality associated with an advanced file system which protects against data corrup-
tions and responds in a timely fashion.

Version 4 (Reiser, 2004, 1984) is capable of supporting a plugin infrastructure
which can be used to extend the functionality of files. Currently there are limited
examples of how this works but it is similar to the NTFS (Nagar, 1997, Russinovich,
2000) file system stack which enables an experienced user to add a new layer in the
stack, for example a data encryption layer.

Version 4 claims to be the fastest file system available (Reiser, 2004) and is ca-
pable of dealing with millions of files per directory, even if the files are very small.
This is achieved using dancing trees (Reiser, 2004) rather than balanced trees (Stone-
braker, 1993) and ensures that small files are stored more efficiently.

The Reiser file systems have been proven to scale well and operate fast which
makes them a suitable choice for managing flatfiles. Additionally the journalling
and atomic features are similar to the functionality that most databases provide.

New technology file system

New Technology File System (NTFS) is the standard file system of most Microsoft
operating systems since Windows 2000 and originates from Windows NT (Custer,
1994, Nagar, 1997, Russinovich, 2000). NTFS replaces the previous 32 bit File Allo-
cation Table (FAT) file system and is currently at version 5.1. WinFS is expected to
replace NTFS when it is released (Rizzo, 2004, Foley, 2005).

Unlike ReiserFS, NTFS is proprietary which makes interoperability with other
operating systems difficult. The file system drive is programmed as a stack of
drivers. This enables the transparent insertion of features as they become avail-
able. Some of the advanced features supported are described below:

• Quotas

Version 5 and above permits the allocation of disk quotas for each user.

• Reparse points

Reparse points are used to replace files, when the file system driver reads
a Reparse point it looks up the associated metadata. The metadata is used
to point to a filter driver which is then executed. This is commonly used in
Single Instance Storage (SIS) where multiple copies of a file are only stored

31

once in the file system (William J. Bolosky and et al., 2000). Any further copies
are replaced with a reparse point.

• Volume shadow copy

Volume shadow copy creates a copy of modified files by using the copy-on-
write driver to ensure that the original data is maintained (Microsoft, 2003).

• Compression and Encryption

The file system has many additional filter drivers which modify the data
transparently to the user. For example files can automatically be encrypted
or compressed.

2.6.2 Database file systems

The limitations of many file systems lie in the hierarchical management structure.
A file resides in a directory and each directory can contain many files. It is not
possible for a file to easily reside in many directories. Many file systems permit the
linking (Rosen et al., 1999) of files between directories but this has limited uses.

Database file systems are capable of ordering files by their metadata. For exam-
ple files can be ordered by type, author and date. This enables users to search for
files in a similar way to querying a RDBMS. Gnome Virtual File System (Gnome
VFS), Be File System (BFS), and Windows Future Storage (WinFS) are all examples
of database based file systems (Nickell and Fergeau, 2004, Giampaolo, 1999, Rizzo,
2004).

As well as integrating database capabilities into file systems there are other at-
tempts to incorporate file system capabilities into existing database products. IBM
plans to incorporate search capabilities from a research project called WebFountain
(Edwards et al., 2002) in a forthcoming version of its DB2 Information Integrator
(Alur et al., 2005). Oracle introduced the Internet File System (iFS) into its Oracle
9i database (Oracle, 2003, Alapati, 2003). It was designed to let people search across
databases and data that are typically stored in file systems such as documents and
web pages.

Macintosh use the Hierarchical File System (HFS) Plus (Apple, 2004) file sys-
tem and supports the use of metadata searching through a product called Spotlight
(Apple, 2005b), available for Mac OS X version 10.4 (Apple, 2005a). Spotlight au-
tomatically builds indices of new and modified files storing a customisable set of
metadata about each file. Spotlight does not distinguish between files and other
objects such as email and calendar events. This provides users with the capability
of searching in real-time for objects such as email, preferences, images and audio.

32

Windows future storage

WinFS is the codename given the Microsoft’s most recent file system expected to
ship as part of newer versions of the Windows operating system (Microsoft, 2005a)
or as a patch for existing versions (Foley, 2005). The name WinFS is not expected
to be the final product name as it is expected to change when the product is re-
leased. WinFS originates from the Object File System (OFS) originally designed for
Windows NT 4.0 (Halfhill, 1995, Microsoft, 2000). OFS was never shipped, and later
abandoned.

WinFS uses a database engine to manage data which enables fast searches of
files based upon metadata. As the metadata is stored in an application indepen-
dent database users can search for content, independent of format. Rather than
representing a file with a single name, WinFS aims to represent individual data
objects, for example emails and address book entries, with searchable context and
keyword information. This allows a user to add metadata to any file and then
search across that metadata, hence avoiding having to use third party software to
produce indices of each data file. This metadata is exposed through two key inter-
faces, transactional SQL (T-SQL) (Gould et al., 1999) and .NET objects (Richter, 2002)
which enables users to programmatically search for data files and then manipulate
the content.

2.6.3 Distributed file systems

A Distributed File System (DFS) supports the sharing of resources across a net-
work interface providing transparent access to data. A few DFSs examples are the
Andrew file system (AFS) (Howard et al., 1988), the Common Internet File System
(CIFS) (Hertel, 2003) and the NFS (Shepler et al., 2003).

Although some DFSs implement the actual file system, many such as NFS just
provide the distributed component. NFS supports many file systems such as Reiser,
Ext2, Ext3 (Tweedie, 2000) and most other UNIX file systems. Another example is
Storage Resource Broker (SRB) which distributes data across different file systems.

Storage resource broker

The SRB is a client-server middleware that provides a uniform interface for con-
necting to heterogeneous data resources over a network and is developed and
maintained by the San Diego Supercomputing Center (SDSC) (Wan et al., 2003,
Moore et al., 1996). It enables the storage and replication of data files across many
resources and has been shown to scale for large volumes of data (Rajasekar et al.,
2002). Each machine runs its own SRB Server which is responsible for managing
the files in resources.

All the SRB servers store data about files in the Metadata Catalog (MCAT).

33

Local site

SRB Server

Flat
files

Client/Application

Master site

SRB Server

Flat
files MCAT

Figure 2.10: Shows how the Storage Resource Broker manages resources. The client requests a file
from the local SRB Server, the file is located using the MCAT and sent directly to the
requesting client.

This is responsible for managing the location, size and replication location of each
of the files stored in SRB. Figure 2.10 shows how the SRB infrastructure operates.
A client or application always communicates with its local SRB server, even to
retrieve a remote file. The local SRB server first sends the request to the master
site running the MCAT database. The location of the requested file is first looked
up in the MCAT. The SRB server which manages that file is located and returns
the file directly to the requesting client. This results in efficient peer-to-peer data
retrieval.

SRB supports many other features such as file replication and checksum val-
idation to assist with data integrity and availability. When a file is accessed the
most accessible replication is returned. The SRB client provides programming lan-
guage Application Programming Interfaces (API) e.g. Python, Perl , C++ and a
Windows and Macintosh Dynamically Linked Library (DLL). There are also Scom-
mands which provide a command line interface using a series of UNIX style com-
mands prefixed with a capital S for example Sls, Scd and Scat (Jagatheesan and
Moore, 2004).

2.6.4 Object serialisation

One of the simplest methods to store data objects is to use object serialisation. This
is the process of converting an object in memory into a byte stream (McMillan,
2004). It is also known as marshalling (Lundh, 2001a), pickling (Deitel et al., 2002)
and object persistence. It is available in a wide range of programming languages for
example C# (Richter, 2002), Python (PSF, 2005) and Java (Chan et al., 1998). The main
reason to convert an object in memory into a byte stream is to save or transport the
object before it is re-instantiated. This can be used to enhance the capabilities of file
systems by persisting complex objects in order to manage complex data structures.

Figure 2.11 shows how an object, Result Set is converted into a byte stream,

34

Object in memory

Result Set

Metadata
Record
Name

Address

Object in memory

Result Set

Metadata
Record
Name

Address

Serialised
byte

stream

Serialised
byte

stream

File

Network

Figure 2.11: Shows how an object in memory is serialised to a byte stream and then re-instantiated
later to produce the same object in memory.

saved or transmitted and then re-instantiated. All the child objects of the parent ob-
ject are also serialised; this results in an almost exact representation of the original
object in memory.

Not all data types can be serialised, for example files and sockets, as it is not
clear what should happen to them when the object is re-instantiated, i.e. there is no
guarantee that the same socket will still be active or that the re-instantiation occurs
on the same machine.

The internals of the serialisation methods look at the internal state of an object
and convert its variables into bytes and repeats the process for any of its child ob-
jects. For example in figure 2.11 the Records have name and address fields of type
string; these will both end up in the byte stream. When the object is re-instantiated
most programming languages require that the class code for that particular object
is available. The code must also have the same name as that used when the object
was serialised. Serialisation does not take into account the version of the class. This
can cause problems if internal variable states have changed as attributes are added
and removed as the class code evolves.

Object serialisation is a good method for storing data that can fit into memory
and ensures that it can be restored. When there are a large number of objects or an
object gets too large to be stored in memory it becomes more difficult to manage.
Section 2.4.3 looks into object databases which utilise serialisation to store data with
transparent persistence to overcome these problems.

Memoisation

Memoisation (Michie, 1968) is a technique which stores the results of computed
functions so that they can be used later. This process is used to speed up code
execution where functions are frequently used. The advantages become apparent

35

when the time taken to compute a function is longer than the overhead of storing
and retrieving the computed results. When a function is called, a check is per-
formed to see if the function has already been called with the same parameters, if
it has, then the stored results are returned. If the function has not been executed
then the result is computed and the results stored for later use, before being re-
turned. Some languages like Python (PSF, 2005) have modules which support this
behaviour (Martelli et al., 2005).

It is important that the function is referentially transparent (Mitchell and Apt,
2005) so the stored results remain accurate. A referentially transparent function
will always return the same result for a given parameter. Within mathematics most
functions are referentially transparent but it is not always clear with computer pro-
grams.

For example a function that reads a file and returns a result based on the con-
tents is not referentially transparent if the file contents change. It is more difficult
to use memoisation as the behaviour can be changed through global variables or
other side effects hence resulting in different results for the same set of parameters.

When a function returns an object it is possible to use serialisation to write the
objects to files. This ensures that the memoisation function is not limited by mem-
ory requirements. The serialisation of an object into a file is time consuming and
therefore only works where the time taken to calculate the results object is greater
than the time taken to store and return the serialised results.

2.7 Custom and hybrid databases

Custom databases are produced to address a particular problem or dataset (Benson
et al., 2004, Kelso et al., 2004, Berman et al., 2000, Britton et al., 2005, Szalay et al.,
2002, Plante et al., 1999). They are optimised to deal with a particular type of data
more efficiently than a standard commercial database. For example library and
museum databases often require inverted indices (Litwin, 1994) to look up related
texts based on a search criteria. In this case a custom product with inbuilt indices
is more preferable than a standard RDBMS.

Hybrid databases take many forms but are generally a combination of existing
database technologies used to leverage the best capabilities of each technology. For
example, the object-relational database is a type of hybrid database which provides
all the functionality of an ODBMS. It is accomplished with an object to relational
mapping layer built upon a relational database. This enables developers to produce
applications bases on ODBMS without having to retrain DBAs, as the underlying
database is still a RDBMS.

There exist projects which combine conventional database management sys-
tems with file systems to produce hybrid database systems. For example the Grid

36

Original data Hybrid database

Metadata

Non-relational
or large data

Backup utilities

 RAID

DBMS

File system

 Network File System

 Backup (Tape, CD,..)

Data redundancy method

Replication

Clustering

Figure 2.12: Shows an overview of a hybrid database system. The data is split between a database
management system and a file system.

Enabled Optimisation and Design Search for Engineering (GEODISE) (Cox et al.,
2002) project, which manages its metadata using Oracle and stores data files on a
file system. The aim is to leverage on the strong points of each system to produce a
database capable of dealing with large volumes of data.

Figure 2.12 provides an overview of a hybrid database and file system ap-
proach. The original data to be deposited into the database can be divided into
two parts; the metadata and the non-relational or large volume data. The metadata
is either present in the original data or has to be produced to describe the origi-
nal data. This metadata is then deposited into a DBMS such as an ODBMS or a
RDBMS. The large volume of data or non-relational data is then stored as a file, or
part of a file in a file system. In order for the data to become accessible the file name
or location is then stored in the DBMS. This enables users to search the database to
locate the location of the data they require then access the file system to retrieve the
data.

This approach keeps the DBMS smaller and easier to manage as well as ensur-
ing that the performance is not affected. To ensure data durability on the file system
several conventional approaches are used. These vary with a combination of hard-
ware and software backup techniques such as Shadowcopy (Microsoft, 2003), RAID
(Vadala, 2002b), network file systems (Ghemawat et al., 2003, Butler et al., 2004) and
data distribution layers.

SQL server and .NET

The .NET (Microsoft, 2006) platform enables users to code in over 24 programming
languages and the Visual Studio development environment supports advanced de-
bugging features across all supported languages.

Microsoft SQL server 2005 is a RDBMS with many of the standard database ca-
pabilities (Brown, 2004). It also supports database replication to enable greater scal-

37

ability and performance, and even permits synchronisation with database instances
that connect infrequently. Reliability and performance can also be improved by
utilising the fail-over clustering and enhanced multi-instance support.

In addition it has the capability to deal with non-standard data types like XML.
Users regularly format metadata using XML, being able to store and search XML is
useful. SQL Server has more advanced features for storing, searching and manag-
ing XML data.

Microsoft SQL Server has some hybrid database capabilities which deviate from
standard database features. For example it is also possible to create database ob-
jects using .NET languages such as C# and Visual Basic .NET, thus bringing the
database environment into the users preferred language. There are two new ob-
jects, user-defined types and aggregates, these help address the issue of user meta-
data. Users can create their own data types which are then stored in the database.
These datatypes can be searched and retrieved using SQL. The user defined aggre-
gates provide a mechanism to compare and sort the user defined data types. For
example a datatype User can be sorted using a defined aggregate, greaterthan.
For example the aggregate can return true or false depending on the users ID stored
within the User datatype.

2.8 Grid computing

The Grid is described as a service for sharing computer power and data storage ca-
pacity over the Internet (Foster and Kesselman, 1999a), Grid computing is the process
of utilising the Grid. The intention is to bring together disparate global computers
and turn them into a vast computing resource (Foster et al., 2002a,b).

As computational problems quickly outstrip the capabilities of desktop ma-
chines it is common to migrate the task to a compute cluster or collection of com-
pute resources. This ensures that the solutions are calculated quicker. As tasks out
grow even the biggest cluster, or the biggest available cluster there is a need for
more resources, this is where Grid computing plays a role (Jiao et al., 2003). An ex-
ample of an early Grid application is Search for Extraterrestrial Intelligence (SETI)
which utilises machines across the world to process data retrieved from radio tele-
scopes (SETI@home, 2006).

The Grid is a type of infrastructure which can take many forms of implementa-
tion but there are toolkits such as Globus (Foster and Kesselman, 1997, Foster, 2005)
which provide tools to build and interact with Grids.

An example of a Grid application is Condor (Litzkow et al., 1988), which is a
workload management system aimed at managing compute tasks. It can manage
resources and schedule tasks on a dedicated cluster or as a cycle stealing role across
idle workstations. Condor-G (Frey et al., 2001) utilises many Grid applications and

38

Service Registrar

Service providerService consumer

UDDI UDDI

WSDL

SOAP

Lo
ca

te
se

rvi
ce

Publish service

Describe service

Connect to service

Figure 2.13: Shows the basic web service protocols used to locate and connect to a web service
provider.

can operate on resources managed by Globus or as a web service (Cox et al., 2001).

2.8.1 Web services and service-oriented architecture

Web services provide machine-to-machine interoperability over a network, using
messages to communicate. The World Wide Web Consortium (W3C) and the Or-
ganisation for the Advancement of Structured Information Standards (OASIS) are
responsible for the web service standards. They are self describing, platform and
language independent and built upon open standards and protocols.

Web services have promoted the progress of Grid computing as they enable the
sharing of resources in a discoverable and self describing standard (Xue et al., 2003).

The messages can use many transport and format protocols but it is common
for messages to be stored in XML and transported via the HyperText Transfer Pro-
tocol (HTTP), mainly as HTTP is permitted through most firewall configurations.
The web services are self describing using a machine readable standard such as
Web Services Description Language (WSDL) (W3C, 2001). Figure 2.13 shows the
basic protocols used to locate and connect to a web service provider. The web ser-
vice provider first registers its service with the service registrar using the Universal
Discovery Description Integration (UDDI) protocol. A service consumer then con-
tacts the registrar using the UDDI protocol to locate the service required. Once the
consumer identifies a service it acquires a description of the service using WSDL.
The consumer then uses the Simple Object Access Protocol (SOAP) to connect to
the service provider.

The web service standards are not very mature and have several disadvantages
such as the inability to deal with transactions as well as performance issues. There
are attempts to support transactions through Quality of Service (QoS) standards
(Menascé, 2004) but the capabilities fall far short of existing technologies such as the
Java Remote Method Invocation (RMI) (Sun Microsystems, 2004) and the Common
Object Request Broker Architecture (CORBA) defined by the Object Management
Group (2004).

39

The performance issues mainly arise from the inefficiency of XML due to the
verbose angle brackets and text encoding (W3C, 2004a). Standards such as Mes-
sage Transmission Optimisation Mechanism (MTOM), discussed in section 6.4.2
and other binary formats are attempting to improve the network efficiently of web
service messages.

The introduction of web services has greatly enhanced the Service-Oriented Ar-
chitecture (SOA) programming concept. SOA is intended to scale applications to
the enterprise level by ensuring that each service is independent of its implemented
technology. The result is a dynamic collection of services, usually distributed across
a network (Jones and Morris, 2005).

2.9 Discussion

Looking at the available data management technologies it is clear that non-technical
users need to leverage existing technologies. We have shown that data volumes are
outstripping data processing power, demonstrating a need to utilise data storage
and processing capabilities more efficiently.

There are many technologies available to assist with efficient data management,
e.g. databases, file systems and hybrid approaches. These offer benefits and are
suitable for particular types of data but are often ignored by non-technical users.

The complexity of the current data management systems often restricts the up-
take. Users have to understand complex systems, and are required to understand
the benefits for their particular dataset. Often when users adopt database technolo-
gies, their implementation is unsuitable for their particular application. This results
in inefficient and often impractical systems.

For example storing large volumes of read once binary data in a database. This
makes backups large and slow, often a file system would be more appropriate.
Storing ordered data in large database tables can also severely impact performance.
Especially if the data has to be sorted every time it is accessed.

There is a need to bring data management applications into the non technical
user’s environment, where they can utilise the advanced features without needing
to learn vast amounts of new technology.

2.10 Summary

It has been shown that storage capacity is growing at a faster rate than processing
power. This indicates that there is a need to extend the current data management
methodologies so that they can easily manage the information stored within a large
dataset.

The current workflow used to manage experimental or simulation data is very

40

limited and does not promote collaborations. This can result in the loss or recal-
culation of data. From this we can see that the current workflow requires better
organisation in order to efficiently utilise compute resources.

Data storage and retrieval issues are often related to the complexity of data. We
outline the reasons which make data complex and address how existing technolo-
gies manage these scenarios.

We look at the origins and history of database systems as well as the features
offered by file systems. Although databases have matured they are not suitable for
all scenarios. This has led to the creation of custom and hybrid databases which
aim to address the shortcomings of conventional databases.

There is a need to make the database features more accessible to general scien-
tists in order to improve their current workflow.

41

Chapter 3

Method

3.1 Introduction

In chapter 2 we provide a background into the current data management technolo-
gies available. We describe the data workflow of the existing computational scien-
tists and outline the issues faced when managing large volumes of data.

Based on these challenges, we propose and describe in this chapter a method
to assist future scientific work. One of the key issues discussed in section 2.2 is the
repetition of work due to the loss or inaccessibility of data. This chapter proposes a
method to assist with the collaboration and management of data, particularly scien-
tific data. The proposed method aims to be non-intrusive to the existing workflow
but still introduces some of the advantages of databases to scientists. It attempts to
transparently bring the world of database features to the inexperienced database
user.

We propose a method of associating code with data files by treating them as ob-
jects. This provides users with additional functions or operations on a file, without
having to provide any code to process the file. Section 3.2 shows how the user’s
workflow can undergo minor changes to incorporate this method.

In this chapter we discuss the proposed method at an abstract level in an imple-
mentation and data domain independent way. Chapters 4, 5 and 7 discuss specific
implementations of the proposed method.

3.2 Proposed workflow changes

Figure 2.2, on page 8 shows the existing computational scientists data workflow.
Although this workflow has some serious limitations it is unacceptable to change
the workflow with which the users are familiar.

In the current workflow the user interacts with the data files using analysis
scripts. The user decides which analysis script is suitable for a particular data file.
The analysis scripts are unmanaged and often unusable by other users.

42

Problem

Local
storage

Data
files

Retrieve
results

Results

Simulation
script

Perform
experiment

Perform
analysis

User interfaceUser workflow Infrastructure

Analysis
scripts

Figure 3.1: Shows the modifications to the original workflow shown in figure 2.2; solid objects repre-
sent a change from the original.

Since an analysis script may only be applicable to one data file or data file type
the user should not be deciding which script is suitable for a data file, rather the
user should be provided with a list of suitable scripts which are appropriate to be
run on a specific data file.

We propose to change the workflow’s underlying structure to move the analysis
scripts into the storage infrastructure, away from the users interface as shown in
figure 3.1. When a user wants to analyse a data file they can now query the file to
find the associated analysis scripts and then retrieve the results required.

There is only one minor change to the existing workflow. Instead of running an
analysis script the user asks the infrastructure to run the analysis script.

The analysis scripts remain unchanged and users can add new analysis scripts
into the infrastructure.

3.3 File object method specification

In order to change the workflow as proposed in section 3.2 the infrastructure, cur-
rently a file system, has to be able to manage the user’s analysis scripts.

Most operating systems are capable of associating an application to a specific
data file type, e.g. files with the extension txt are often associated with a text editor.
This enables the user to open the file by ’double-clicking’ an icon and relying on the
operating system to open the appropriate application which is capable of reading
the file.

This mechanism is achieved either by associating the file extension, txt with
an application or by associating the Multipurpose Internet Mail Extensions (MIME)
(Freed and Borenstein, 1996) type with an application. Alternatively it is possible to
inspect the content of the file to determine its type using a file signature (Sammes

43

Text file

MIME type

File extension

User data Associated Application Data operations

Application
library

Save as
Count words
...

Text editor

Figure 3.2: Shows how a file extension or MIME type can be used to load an application capable
of understanding the data format. In this example a text file is opened using the user’s
‘favourite’ text editor. This has the capability to change the data format and count the
words in the file, amongst other operations.

and Jenkinson, 2007).
When a user loads an application associated with a data file, the application can

be thought of as a library of functions or methods which are capable of operating
on that file. In example shown in figure 3.2 the txt file is opened using an editor
which has features to count the words or change the data encoding, e.g. from ASCII
to UTF-8 (Yergeau, 2003).

We propose an infrastructure to extend this common functionality to support
custom ‘applications’, in the form of user defined code. Instead of a data file having
an associated application we propose that the data file has associated functions and
methods which originate from user code. For example a user with a script capable
of returning the word count of a file can associate this code to files of a specific type,
e.g. any file with the txt extension. Any user can then query any txt file to see the
associated methods, and then execute one of these methods. For example to return
the word count of a file by executing a user supplied script.

We propose treating files like programming objects in an infrastructure called
the File Object Method (FOM). The FOM associates code with files providing users
with the ability to execute these routines as methods on file objects. The aim of
the FOM is to extend the usefulness of flatfiles using object orientated program-
ming techniques. This can then be used by hybrid database systems, such as those
described in section 2.7 as well as by users who manage data using flatfiles, e.g.
scientists.

Extending files to appear as objects ensures users execute the correct methods
on the correct file types, thus removing the responsibility for users to ensure they
have the correct file format. Users can take advantage of methods supplied by
other users without having to request access to the code, as the FOM can list and
execute the available methods. As the methods are executed using the FOM users
do not require extensive Application Programming Interface (API) documentation

44

and are not required to setup or understand third-party code. This results in a
greater opportunity for users to reuse existing code.

There are two ways with which a user can associate methods to files in the FOM.
The first is to simply associate code with a single file i.e. its path and filename.
The second is to associate a type with each method or set of methods, and then
associate this with file types. This means that users can deposit a file into the FOM,
and without any intervention be able to list and execute methods that are associated
with that file type, using the data they have just deposited. In the text file example,
when a user adds a new text file to the file system they will be able to see that there
is a method to count the words in that file.

After consultation with a number of computational scientists, the three most
desirable features to make the FOM concept as simple as possible to adopt were
identified and are outlined below.

• Format preservation

Often large volumes of data are compressed using complex compression tech-
niques which make flatfiles an attractive option. This contrasts databases
which store all data in the same format i.e the native database format. The
FOM capitalises on proprietary data formats by leaving the original files un-
touched. Even if the files are not compressed there is an advantage of storing
the files in the user’s format. For example, if there was a corruption in the sys-
tem and the FOM becomes unusable, or the user decided not to use the FOM,
the original files are still available in the same directory structure and in the
same format as the user’s original data. This is similar to the Concurrent
Versions System (CVS) approach where the user’s data structure remains un-
changed. Additionally, users store data in different data formats as they have
applications to process the data. Changing the data format can complicate
the analysis of data i) as users have to be able to understand the new format,
ii) the new format has to provide an interface for users to access the data,
iii) defining a data format standard is complex and iv) it is slower to react
to application specification changes as many layers require modification. Of-
ten existing data formats take advantage of patterns in the information rather
than the data, thus making them more efficient at data compression and ran-
dom data access e.g. NAMD (Phillips et al., 2005).

• Code reuse

The aim is to avoid forcing users to rewrite existing code or create wrappers
to get existing code to interface with the FOM. This is achieved by permitting
users to add their existing code as an object type in the FOM. This relies on
the FOM being able to interpret the methods and its parameters so it can
display and execute them appropriately. This issue is discussed for each of

45

Deposit
data

Submit
code

Execute
code

Retrieve
data

simulationData1.bin

example.txt

File system view Programmatic viewUser operations

simulationData1.bin

Simulation1

example.txt

/home/user

simulationInfo.txt

Simulation1

wordCount()

getListOfFiles()

Figure 3.3: Shows the proposed File Object Method (FOM). The user operations provide an interface
to the FOM. The file system view shows the users data in its existing format and the pro-
grammatic view shows how the data structure is accessible from within a programming
environment.

the different implementations.

Reusing code had two advantages i) users can be assured of reliable code and
ii) users can utilise code of which they were previously unaware.

• Non-intrusiveness

To make the FOM as useful as possible it is necessary to bring the database
world to the user and not force the user to learn any new skills. The aim is
to enable users to continue using their existing code with their existing data
files. Although the user’s workflow may change, the FOM only extends it
with optional steps, leaving the user’s existing workflow unchanged.

The three key areas of the FOM are, i) the user operations, ii) the file system view
and iii) the programmatic view, of which the file system view remains unchanged.

3.3.1 User operations

Using the FOM, users have four operations available to them as shown in figure
3.3. These operations enable the user to interact with the FOM and are described
below.

• Deposit data

Depositing data is as easy as copying it to a local file system; this should not
be any different to the users current workflow. The files get associated with
methods based on the file extension, but users have the capability to associate
other methods with a file.

46

Example 3.1: Shows a programmatic Python example of the FOM model. First the user opens the
example text file, this creates a data object which supports the FOM methods. The user
can list the FOM methods that are available and execute the appropriate method to
return the data required.

1 #Load the FOM infrastrusture
2 import FOM
3

4 #Open a text file
5 f = open("Example.txt")
6

7 #List all the methods available on that text file.
8 f.getMethods()
9 #This output shows that there are three methods available.

10 [’wordCount’, ’saveAsUTF-8’, ’saveAsUTF-16’]
11

12 #Execute the method to count the words in a text file.
13 f.wordCount();
14 #This output shows that there are 15 words in the text file.
15 15

• Submit code

If users want to extend a file object with new methods, they have the ability
to submit code that will appear as a method for a specific file type. This
operation takes place independently of the data deposition.

• Execute code

Users have the ability to execute methods on files, this code execution de-
pends on the implementation, but users can initiate the execution from within
a programming language or command shell. Either files or data objects are
returned to the user.

• Retrieve data

There are various ways that users can get access to their data. One method
is to access it through the file system and not using the FOM. This direct
access ensures that any existing user requirements are met. The next is to
access it from within a programming language; this is where users will see
the FOM methods which are available for each file. This can then be used to
retrieve a data object or activate code to produce a data file with the required
information.

3.3.2 Programmatic view

Figure 3.3 shows the programmatic view of the example files shown in the file
system view. The structure remains the same except the files are treated as software
objects. The word count example described in the introduction is displayed as a
method on the Example.txt file.

47

A software object is created from the files in the file system and appear within
the programming environment as objects with methods. When a user opens a file
the FOM methods are added to the file object. Example 3.1 provides an example,
showing a Python script opening a file (line 5), listing the methods available on the
file (lines 7–10) and finally executing a FOM method on the file (lines 12–15).

There are two types of method: those created by the code submitted by the user
and those provided by the FOM framework. For example, the wordCount method
is from user defined code and the getMethods method is provided by the FOM.

The programmatic view is intended as the main interface into the FOM as it
enables users to locate data and execute methods to process the data contained
within a file.

3.4 Features

There are several advantages of associating methods with file objects and this pre-
viously unavailable feature opens up new opportunities for collaboration and op-
timisation.

The features supported by the FOM are described in sections 3.4.1 – 3.4.8. These
features are implemented to various degrees in chapters 4, 5 and 7, and the useful-
ness of each is discussed in chapter 8. An implementation-independent description
of each feature and its requirements are provided below.

3.4.1 User data submission

Users have to be able to manipulate data within the FOM; this includes the ability
to add, remove and alter data files. All implementations of the FOM have to permit
adding and removing data but there is no requirement for altering data files. As
data file alterations can be achieved by removing an existing file and replacing it
with an altered file. This is the most fundamental operation of the FOM as it has to
permit users to store data using an existing directory structure.

3.4.2 User code submission

The FOM aims to encourage code sharing and collaborations by providing a frame-
work which supports users’ existing code. For users to be able to take full advan-
tage of the FOM they have to be able to submit code which can then appear as
methods on files or file types.

For this to happen there has to be a mechanism to import users’ code. Users are
not expected to change their code at all and in the worst case they would have to
write a wrapper to ensure that it will work with the FOM.

Ideally there should be an automated mechanism for users to import their exist-
ing code, but as this has some security and reliability issues, it is sufficient to have

48

intervention by an administrator or maintainer of the FOM implementations. The
important factor is that users do not write code to fit the FOM but rather they take
existing code that would be used on the files and simply add it to the FOM so that
it can be accessible to other users.

The programming languages supported by the FOM are based on the imple-
mentation. All implementations will support command line programs, which can
easily be converted into a method with a lightweight wrapper. All methods that
write to the standard output are supported with either returning the data as a datas-
tream (Powers and Snell, 2002) or in a file.

Example 3.2: Shows how users can add existing code into the FOM. In this example a user adds a
wordCount script to all files with the extension txt.

1 #Python
2 FOM.addScript("wordCount.py", "txt")
3

4 #Shell
5 $ addScript wordCount.py txt

Example 3.2 shows two ways for a user to add a word count script into the FOM.
Lines 1–2 show how the user can associate a script with all text files from within a
programming environment. Lines 4–5 show how this can be accomplished on from
within a shell.

Language dependence

If the user’s code is language dependent and returns an object rather than writing
to a file, then that language has to be supported by the FOM. Support for different
languages is a problem as they are often incompatible. We look at several solutions
to this problem and the results are discussed in chapter 8.

A FOM implementation support is considered language dependent if it sup-
ports the returning of data objects in only one language.

Language independence

It is possible for the FOM to support users’ code in more than one language. A
FOM implementation is considered to be language independent if it supports many
programming languages.

The easiest way to support language independence is to force users to submit
code that only supports shell method execution. This is not acceptable as it restricts
the applications of the FOM.

It is possible to write a wrapper for user’s code to link it into the FOM. It would
be unacceptable for the users to write wrappers as the FOM should be transparent.

The FOM has to support the returning of objects regardless of the language in
which the user’s code is written. Although it is not possible to support any piece of

49

user code, the FOM aims to support the vast majority of programming languages
to manage and process data files.

3.4.3 Code association

Once the user’s code exists within the FOM there are various ways which it can get
associated with the data. The objective is to associate users’ code to data files in
such a way that it can easily be executed. Users already have code to process the
data files, and the FOM has to create a link between the data and the users’ code.
There are three different scenarios:

File method association

Users’ code can be associated with a single data file on a one-to-one basis. Although
this is not the most useful scenario, it does permit users with a mechanism to test
the capabilities of the FOM on a single file.

Example 3.3: Shows how users can add existing code into the FOM. In this example a user adds a
wordCount script to a specific file called Example.txt.

1 #Python
2 FOM.addScript("wordCount.py", "Example.txt")
3

4 #Shell
5 $ addScript wordCount.py Example.txt

Example 3.3 shows how the word count script can be associated with a text file
(Example.txt) on a one-to-one basis.

If all the files are different and have different code it is a very effective way to
ensure that the correct code is executed on the appropriate data file.

File type method association

User’s code can be associated with a single data file on a one-to-many basis. Each
piece of user’s code is given a namespace based on the namespace of the user’s
classes. This provides the FOM with code types which are then associated with the
file types.

Example 3.2 shows how a user can associate a method with all the text files in
the FOM.

Users can deposit data and automatically take advantage of the methods asso-
ciated with that file type. This is where the advantages of the FOM can be seen, a
user can benefit from methods provided by other users even on files they have just
added, providing that the data type is supported by the FOM.

The FOM has to support the association of more that one user script per file, or
file type.

50

Directory method association

The FOM treats directories and files in the same way, thus making it possible to
associate code with a directory. The main use of this feature is to help users manage
and order the files within a directory.

For example if all the data files in a directory make up a single data set, the user
may want to process all the data in a single directory as a single data set. This can
be accomplished by adding a method to the directory object.

Code dissociation

Once data files and code have been associated there may be a need to remove the
association. If a user deletes the data file or the associated code then the association
will also be removed.

There is also a need to be able to dissociate code and data without having to
delete data or code. This can be accomplished by providing the capability to list
code associations and remove any unwanted associations.

3.4.4 Dynamic method discovery

Dynamic method discovery enables users to retrieve a list of the methods and their
parameters for a given data file. This discovery has to be dynamic to cope with
recently added and updated user code. The methods come from two different loca-
tions: those associated with the file and those associated with the file type. Example
3.1 shows how the user can retrieve the list of methods for a data file, in this case a
textfile. The wordCount method is not associated with this particular text file but
is associated with all files of this type, these methods are dynamically discovered
when the file object is created.

3.4.5 Shell method execution

The shell method execution provides users with the capability of executing meth-
ods on files from within an Operating System (OS) shell. This is the simplest imple-
mentation of the FOM as it does not require the methods to return programming
objects.

The method can either return data or results directly to the shell, appearing
on the standard output or by writing them to a file. The FOM does not force any
standards on the users’ code but it is expected that the files would appear in the
working directory, a predefined directory or on the path supplied as a parameters
to the method.

The FOM is responsible for executing the method and returning the data to the
standard output, subsequently the user is responsible for capturing or storing the
data.

51

Example 3.4: Shows a shell example of the FOM model.

1 $ ls -al Example.txt
2 -rwxr-xr-x 1 sjj sjj 18420 Dec 19 16:19 Example.txt
3

4 $ lsMethods Example.txt
5 wordCount
6 saveAsUTF-8
7 saveAsUTF-16
8

9 $ executeMethod Example.txt wordCount
10 15

Example 3.4 shows a command line example. In lines 1–2 the user locates the
data file, lines 4–7 list the methods that are available on the selected file. Lines 9–10
execute the word count method and display the result on the standard output.

3.4.6 Programmatic method execution

The programmatic method execution feature is the basis of the FOM as it provides
users with the ability to execute methods on the file objects. Executing methods is
relatively simple but returning the data to the users is more complex. It is therefore
divided into the two following categories:

Results as files

One way to return the results of a method invocation is to write the results to a file.
This file is then returned to the user once the method has finished executing.

This method is simple and easy to implement for many languages. In many
cases users have code which writes the data into files already so integration into
the FOM requires little work.

Results as objects

Often returning the data in files is insufficient. Users require programming objects
to be returned which are then manipulated for further analysis. Returning the data
as an object is more difficult as it requires the user submitted code to either support
the querying programming language or to be able to produce objects which are
interchangeable between programming languages.

In example 3.1 lines 12–13 execute a FOM method using Python. This result
is returned as an integer object which can then be assigned to a variable and used
programmatically.

3.4.7 Cascading methods

The cascading methods feature takes advantage of the directory method mapping
to provide users with the ability to bulk execute methods on a set of files. If all the

52

Example 3.5: Shows how users can use the cascading method feature to map a method to many data
files. Lines 5–7 show the files in the data directory and lines 10–15 create a directory
object and show it has support of mapping. Line 18 executes the mapping method to
count the words in each file within the directory and the results are shown in line 20.

1 pwd
2 #Show the current working directory
3 /home/FOM/data/
4

5 ls
6 #Show the files in the data folder
7 Example1.tex Example2.tex Readme.tex
8

9 #create a directory object
10 d = open(".") # or d = open("/home/FOM/data/")
11

12 #List all the methods available on that directory.
13 d.getMethods()
14 #This output shows that this directory supports a mapping method
15 [’mapMethod’]
16

17 #To execute a method on all files in a directory
18 d.mapMethod(’wordCount’);
19 #This mapping returns the wordcount results for all the files
20 {’Example1.tex’: 15, ’Example2.tex’: 235, ’Readme.tex’: 534}

files in a directory have the same method a user may want to execute that method
on all files. The cascading feature will enable users to perform this as one single
function.

The FOM provides a mapping function which returns a list of method results
for every file in the directory which supports the FOM method as shown in example
3.5.

3.4.8 Code quality assurance

By reusing code, users can be assured of the quality of the code and accuracy of
its results. The FOM does not offer any inherent means to kitemark code, nor does
it set minimum requirements for submitted code. This means that erroneous code
can be added to the system.

There are two solutions offered for this problem. One is that users will quickly
identify faulty code and be able to remove the methods. This relies on the user com-
munity helping to continuously improve the code quality, but does not compensate
for malicious code.

The second option only permits the owner of a method to execute it until the
method has become mature enough to get released to the community. Establishing
when a method is mature and promoting users to publish methods is foreseen as
difficult and does not encourage the community spirit of the FOM. For this reason
the FOM does not have the ability to restrict methods to particular users or user
groups.

In order for implementations to support this feature they must guarantee that

53

all the code accessible to the user community is free from malicious code.

3.5 Discussion

The ability of the FOM to support many programming languages adds complexity
to the project. Wrapping or integrating different programming languages can often
be impossible or prone to errors. It is for this reason that this feature will never
be fully implemented, to support any programming language. To ensure that the
FOM is non-intrusive and of benefit to users we aim to support as many of the
key programming languages as possible. It is important that users are free to write
FOM methods their programming language of preference. It is for this reason that
the language independence feature remains in the FOM despite being impossible
to fully implement.

The issue of code quality will always be in dispute as it is not possible to check
all the code submitted. This feature remains in the FOM specification as the aim
is to provide some assurances, i) user’s code cannot compromise the host system,
ii) user’s code cannot corrupt the data stored in the FOM. As most of the security
issues rely on the implementation, the aim is to provide as many assurances as
possible and highlight the limitations.

The FOM data security comes from the underlying OS, providing a user has
permissions to change data the FOM permits the operation.

The FOM does not control the names that users provide for methods and classes,
hence naming clashes are expected. This could be overcome by using a namespace
similar to that used in Extensible Markup Language (XML) (W3C, 1999) or provid-
ing an internal FOM name. The end result has to ensure that the FOM is capable of
dealing with methods of the same name from different users.

3.6 Summary

This chapter proposes a concept, called FOM, where files are treated as objects, ex-
posing users’ code as methods on these file objects. The aim is to enhance the user’s
data management experience without drastic changes to the user’s existing work-
flow. We discuss how the proposed method can integrate with existing workflow.

The key objectives of the FOM are to preserve the user’s data format, and the
ability to reuse existing code such that the FOM is non-intrusive to the user.

The FOM provides operations which enable users to deposit and retrieve data
into the repository. Once the data is stored in the FOM, users have the ability to
submit and execute code on the data.

The FOM objectives and operations are discussed along with an implementa-
tion independent description of the FOM. The FOM provides a series of features

54

which are then described. These features are used in subsequent chapters to dis-
cuss different implementations of the FOM.

55

Chapter 4

File object method prototype

4.1 Introduction

In this chapter we present a prototype implementation, called the File Object Data-
base (FODB) based on the File Object Method (FOM) concept discussed in chapter
3. The File Object Database (FODB) prototype demonstrates some of the key FOM
features and provides a discussion into possible future implementations.

We provide insight into a Python implementation and demonstrate the FOM
concepts using a simple example. In this example we have chosen to store the
user’s data in a text file to show clearly how the FOM features operate on the data.
The example shows how users can discover methods related to a file, and explains
how user code can be submitted and executed using the FODB.

This prototype aims to be a proof of concept for the FOM, used to identify lim-
itations and test the feasibility of the model. From the findings in this chapter we
go on to produce production quality improved implementations, as discussed in
chapters 5 and 7.

We demonstrate the capabilities of the FODB using a simple example which
shows both the FODB implementation and its limitations.

4.2 File object database

The FODB is a proof of concept implementation of the FOM described in chapter
3. The aim is to show how users can discover and execute the methods associated
with a file. The FODB aims to test the FOM concept to ensure that it can manage
data and users’ code efficiently, without disruption to the users.

The FODB has two interfaces: a command line and a programmatic interface.
The command line enables users to deposit data as well as user code from a UNIX-
style shell. The programmatic interface enables users to programmatically control
data in the FODB.

Python (PSF, 2005) was selected as the programming language for the FODB

56

as it is popular within the scientific community. As a scripting language it permits
dynamic code execution which is important for executing user code.

The FODB works on a single directory on a local file system. Users allocate a
directory for the FODB to store data and are free to add or remove data as they
would on any local file system. There is one exception to this, the FODB has to
store metadata about files and user code; this is done using a special sub directory
in each of the users’ directories. This sub directory is always titled FODB and
can be thought of as a reserved directory name.

Those FOM features which are implemented by the FODB are described in sec-
tions 4.4.1 – 4.4.7.

4.3 Example scenario

To demonstrate the FODB capabilities let us announce the following example prob-
lem: a teacher keeps information about his students in text files, one file per stu-
dent. Each text file contains information about the student and the marks achieved
for previous exams. This file contains the student’s date of birth (DOB), firstname
(Firstname), surname (Surname) and the marks for three exams (Mathematics, En-
glish and Physics).

These files are stored within a directory on the local file system. Example 4.1
shows the contents of the text file john.student which stores information about
a student called John Smith. This example uses a text file to provide a clear un-
derstanding of the internal operations, but will work on binary data in standard or
non-standard formats.

Example 4.1: Shows the contents of a single student record (john.student).

1 SID: john2004
2 DOB: 28/05/1984
3 Firstname: John
4 Surname: Smith
5 Mathematics:55
6 English:63
7 Physics:B

The teacher has a Python script which is used to retrieve information from these
text files, i.e the mark for a specific exam, or the student’s age.

This user script can take two forms, non-object orientated or object orientated.
In this example we consider both options for the same example scenario.

Example 4.2 shows a non-object orientated Python script for processing student
text files. The example shows three methods, but the script is not limited to these
methods.

The first method, getFullName (lines 1–3) shows the code to retrieve the stu-
dent’s full name. This comprises of the student’s first name followed by the stu-

57

Example 4.2: Shows the code used to process the students text file (Student.py).

1 def getFullName(file):
2 ...
3 return Fname , Sname
4

5 def getAge(file):
6 ...
7 return age(DOB)
8

9 def getMark(file,exam):
10 ...
11 return lookup[exam]

dent’s second name, separated with a single white space.
The second method, getAge (lines 5–7) shows the code to calculate the stu-

dent’s current age. This is the age of the student at the time this method is executed
and is calculated using the current date and the student’s date of birth (see DOB in
example 4.1)

The third method, getMark (lines 9–11) returns the mark for a particular sub-
ject. The subject is provided as a string parameter when the method is called.
For example calling this method with Mathematics as the subject parameter for
John.student will return the exam mark, 55.

Example 4.3 shows an object orientated Python script for processing student
text files. The example shows a Python class (Student) which supports the same
methods outlined in example 4.2.

Example 4.3: Shows a user defined class capable of dealing with a data file (StudentClass.py).

1 c l a s s Student:
2 def __init__(self,fileName): #constructor
3 self.fileName = fileName
4 self.file = open(fileName)
5 ...
6 def getFullName():
7 ...
8 return Fname , Sname
9

10 def getAge():
11 ...
12 return age(DOB)
13

14 def getMark(exam):
15 ...
16 return lookup[exam]

Let us assume that the teacher has two data files, one for John and one for Fred,
stored in a directory titled StudentData. In the parent directory the teacher has
an information file to store any additional information required; figure 4.1 provides
a graphical representation of all the files required for this example.

58

John.student

StudentData

Fred.student

data

notes.info

Student.py

StudentClass.py

/home/teacher

code

Figure 4.1: Shows the data files required by the proposed example. In the users’ data directory
(/home/teacher/data) we can see a notes file and a directory (StudentData) con-
taining the data files for two students John and Fred. The code used in these examples is
stored in the teacher’s code directory (home/teacher/code).

4.4 Features

An overview of the FODB prototype is shown in figure 4.2. Each directory is rep-
resented by a directory object and each file by a file object. The code for each
is stored in the FODB subdirectory. All the user code is stored in the FODB

subdirectory and the data files are stored in the existing directory structure.

Deposit data

Submit code

Execute code

Retrieve data
getFullName()

getFullName()
John.student

Fred.student

File system view Programmatic view

StudentData

getMethods()
getListOfFiles()
mapMethod(method)

getAge()
getMark(exam)

Command line or programmatic
user operations

John.student

Fred.student

notes.info

Student.py

StudentClass.py

/home/FODB

__FODB__

getAge()
getMark(exam)

getFullName()
getAge()
getMark(exam)

StudentData

Figure 4.2: Shows the File Object Database(FODB) implementation of the File Object Method (FOM).
The user operations provide an interface to the FOM. The file system view shows the
user’s data and the programmatic view shows how the data structure is accessible from
within a programming environment. The file association information stored in FODB
directory is not shown for clarity.

When a user opens the directory in Python the open method is overridden by
the directory object class. This enables the directory to appear as an object with
additional methods, within a programming environment.

59

Example 4.4: Shows how to add and remove data in the FODB. In this example we create the example
directory and file structure discussed in the section 4.3. This is accomplished by directly
manipulating the file system using standard operating system commands.

1 #Show the users current directory
2 $pwd
3 /home/teacher/data/StudentData
4

5 #List the files in the current directory
6 $ls
7 John.student Fred.student
8

9 #List the files in the FODB repository (Empty)
10 $ls /home/FODB
11 . ..
12

13 #Create a student data directory in the repository
14 $mkdir /home/FODB/StudentData
15

16 #Copy the data files into the repository
17 $cp John.student /home/FODB/StudentData/
18 $cp Fred.student /home/FODB/StudentData/
19

20 #Copy a file from a different location
21 $cp /home/teacher/data/notes.info /home/FODB/
22

23 #Remove all the files and directories in the repository
24 $rm -r /home/FODB/*

This also applies to file objects, except instead of returning a file object, the
user’s class is instantiated and the user’s methods are made available as well as the
standard file methods. The programmatic view in figure 4.2 shows how a directory
appears to a Python user.

When the user at the programming level attempts to open the file, the file object
is extended using any code which is associated with that particular data file.

The FOM features described in section 3.4 are implemented in the FODB and
discussed below.

4.4.1 User data submission

There are three mechanisms supported by the FODB with which users can submit
and remove data from the repository. These provide the ability to i) manipulate the
file system ii) manage the FODB from the command line and iii) programmatically
manage the data. Using the example provided in section 4.3 we show how the
example data can be imported into the FODB repository, see example 4.1. For each
example we also show how a user can remove the example data from the repository

Most users are familiar with manipulating the file system. Using the FODB
users can add and remove data from the repository using standard Operating Sys-
tem (OS) commands. Example 4.4 shows a user adding and removing data files in
the FODB repository.

The FODB provides a command line interface which users can add and remove

60

data files from the repository. When adding data files, the interface copies the files
from their existing location into the FODB repository. To remove data, the files are
moved from the FODB repository to a temporary recycling directory. This directory
is emptied by the user depending on space requirements. Example 4.5 shows how
the FOM command line interface can be used to add and remove data.

Example 4.5: Shows how to add and remove data in the FODB. In this example we create the example
directory and file structure discussed in the section 4.3. This is accomplished using a
shell command (FODB) supplied by the FODB repository.

1 #Show the users current directory
2 $pwd
3 /home/teacher/data/StudentData
4

5 #List the files in the current directory.
6 $ls
7 John.student Fred.student
8

9 #Import the data using the FODB command.
10 $FODB import John.student /StudentData/
11 $FODB import Fred.student /StudentData/
12 $FODB import /home/teacher/data/notes.info /
13

14 #Remove all the data in the FODB.
15 $FODB remove /StudentData/John.student
16 $FODB remove /StudentData/Fred.student
17 $FODB remove /notes.info

Users who prefer to use a programming environment to manage data are pro-
vided with a Python interface to the FODB. This interface supports the same be-
haviour as the command line interface and can be scripted using Python; as shown
in example 4.6. This is convenient for large imports or automated data manage-
ment.

Example 4.6: Shows how to add and remove data in the FODB. In this example we create the example
directory and file structure discussed in the section 4.3. This is accomplished using a
Python module (FODB), imported from the FODB repository implementation.

1 #Import the FODB module.
2 import FODB
3

4 #Add the users data files.
5 FODB.import("John.student" , "/StudentData/")
6 FODB.import("Fred.student" , "/StudentData/")
7 FODB.import("/home/teacher/data/notes.info" , "/")
8

9 #Remove all the users data files.
10 FODB.remove("/StudentData/John.student")
11 FODB.remove("/StudentData/Fred.student")
12 FODB.remove("/notes.info")

61

4.4.2 User code submission

Users have the ability to import their code into the FODB repository and then asso-
ciate it with data files. The process of importing code and associating it with data
files can be accomplished in one operation. Here we describe the process of only
submitting code.

Example 4.7: Shows, both how to add Python scripts into the FODB repository and how to remove
existing user scripts from the FODB repository using the command line interface.

1 #Show the current working directory
2 $pwd
3 /home/teacher/code
4

5 #Command line user code submission
6 $FODB importCode Student.py
7 $FODB importCode StudentClass.py
8

9 #Command line user code removal
10 $FODB removeCode Student.py
11 $FODB removeCode StudentClass.py

Code submission is similar to data file submission, except users cannot provide
a location for their code within the FODB. All user code is stored in the FODB di-
rectory. Users are not provided with the ability to directly manipulate this directory
and have to use either the command line interface or the Python interface.

Example 4.8: Shows, both how to add Python scripts into the FODB repository and how to remove
existing user scripts from the FODB repository using the Python interface.

1 import FODB
2

3 #Python user code submission
4 FODB.importCode("Student.py")
5 FODB.importCode("StudentClass.py")
6

7 #Python user code removal
8 FODB.removeCode("Student.py")
9 FODB.removeCode("StudentClass.py")

Examples 4.7 and 4.8 show how the user interfaces with the FODB repository,
to add the user code provided in the example scenario described in section 4.3.

The metadata about users code is small and managed using Python serialised
objects. As the volume of data increases the metadata needs to be managed using
a database to ensure performance.

4.4.3 Code association

The code association feature enables users to link data files with user code in the
FODB repository. All the user’s code and associated metadata are stored in the
reserved FODB subdirectory. Users can first add either the code or the data files

62

to the FODB, in this case we assume that both have been added; using the methods
shown in sections 4.4.1 and 4.4.2.

The various methods used to associate user code with existing data in the FODB
repository are shown below:

File method association

Users are provided with the ability to associate code with data files on a one-to-one
basis. Using the example scenario shown in section 4.3, the teacher would want to
associate the student Python script (Student.py) with John and Fred’s data files
(John.student and Fred.student, respectively).

Example 4.9: Shows how the user can associate an existing data file (John.student) with a Python
script(Student.py), providing both already exist in the FODB repository. This exam-
ple uses the command line interface to the FODB repository.

1 #FODB associate <file|extension> <script|class>
2

3 $FODB associate StudentData/John.student Student.py

Assuming that both the data and Python script exist in the repository, examples
4.9 and 4.10 show how the user can associate the student Python script with the
appropriate data files.

Example 4.10: Shows how the user can associate an existing data file (Fred.student) with a Python
script(Student.py), assuming both already exist in the FODB repository. This exam-
ple uses the Python interface to the FODB repository.

1 import FODB
2

3 FODB.associate("StudentData/Fred.student","Student.py")

Once the Python script has been associated with data, users can discover and
execute methods on the data using the various techniques discussed in sections
4.4.4 and 4.4.5.

File type method association

In examples 4.9 and 4.10 we show how the teacher can associate the student Python
script with the student data files stored in the FODB repository. Associating files
on a one-to-one basis is time consuming and does not support the addition of sub-
sequent data files.

Users have the ability to associate code with data files on a one-to-many basis.
This is supported through the file type method association feature. It provides
users with the ability to associate code with a specific file type. In examples 4.11
and 4.12 we show how to associate a Python script with all student data files.

63

Example 4.11: Shows the command to associate all student data files in the repository with the stu-
dent Python script.

1 #FODB associate <file|extension> <script|class>
2

3 $FODB associate .student Student.py

In these examples if the teacher then deposits additional student data files, they
will automatically get associated with the student Python script.

The first parameter of the FODB code association function, shown in examples
4.9 and 4.10 can either be a file name or a file extension. If a file extension is supplied
then all files with this extension will be associated with the script provided in the
second parameter; as shown in example 4.11 and 4.12.

Example 4.12: Shows the Python code which associates all student data files in the repository with
the student Python script.

1 import FODB
2

3 FODB.associate(".student","Student.py")

Once the Python script has been associated with data, users can discover and
execute methods on the data using the various techniques discussed in sections
4.4.4 and 4.4.5.

Directory method association

In the FODB repository, directories and files are treated the same. This means that
users can also associate code with directories, on a one-to-one basis. This is partic-
ularly convenient for users needing to process many files within a directory.

The directory objects in the FODB are also provided with a set of inbuilt meth-
ods. These methods are so frequently used they are included in the FODB. For ex-
ample all directory objects have a getFileNames method to list all the files within
the directory. The FODB directory object also supports a mapMethod method
which takes the name of a method and attempts to execute it on all FODB objects
within the directory. Any objects not supporting the method are ignored and the
results are returned as a filename result tuple, see example 4.13.

Here we extend the example scenario provided in section 4.3. It is often the
case that users have a list of numbers, grades or scores, and they require some
statistics about the data, i.e mean, median, mode and standard deviation. These
are frequently utilised methods and it is not inconceivable that there exists Python
code to calculate these statistics on a numerical list.

We can assume that there exists a Python script which takes a numerical array
and returns the mean, median, mode and standard deviation of the data. Note
that this statistical code is not created by the teacher but by another user of the

64

Example 4.13: Shows how to utilise the FODB directory mapping method (mapMethod) to retrieve
the English exam marks for all students in the directory.

1 import FODB
2

3 #Create the FODB directory object
4 d = open("data/StudentData")
5

6 #Get an exam mark for all students in the directory
7 results = d.mapMethod("getMark(’English’)")
8

9 #Show the results
10 print results
11 ...
12 [["John Smith" , 63], ["Fred Blogs", 50]]

Example 4.14: Shows the Python class to calculate the statistics of data in a given directory. This class
executes the given method on all data files in a directory, these results are then used
to calculate the mean, median, mode and standard deviation. The method supplied
must return numerical value.

1 #Import the FODB and a statistical package
2 import FODB, statistics
3

4 c l a s s Statistics(self, directory, method):
5

6 def __init__(self,methodName):
7 self.results = FODB.open(directory).mapMethod(method)
8 self.stats = statistics.calculate(self.results)
9

10 def getMean(self):
11 return self.mean
12

13 def getMedian(self):
14 return self.median
15

16 def getMode(self):
17 return self.mode
18

19 def getDeviation(self):
20 return self.deviation

FODB. Using the mapMethod method we can see that the FODB directory object
can supply an array of numerical data, see example 4.13.

In example 4.14 we show how a simple Python script can incorporate the Python
statistical class and the FODB method mapper. This provides the FODB with a new
statistical class which takes the name of any FODB object method, executes it and
returns statistical data based on the results. For example users will now have the
capability to return the mean, median, mode and standard deviation of all the stu-
dents’ English exam results (see example 4.15).

4.4.4 Shell method execution

The FODB supports the execution of any methods from the command shell. Al-
though all FODB methods are supported there are two limitations: i) the method

65

Example 4.15: Shows how the teacher can calculate the mean mark for an English exam. This Python
script uses the statistical class described in example 4.14 to provide the mean of all
the students data which is retrieved using the mapping method described in example
4.13.

1 import FODB
2

3 #Open the data directory
4 d = open("data/StudentData")
5

6 #Calculate the statistics of all the English marks
7 stats = d.Statistics("getMark(English)")
8

9 #Show the mean mark
10 print stats.getMean()
11 56.5

Example 4.16: Shows the command line execution of the mapMethod method. This shows the shell
command version of the Python script shown in example 4.13.

1 $FODB executeMethod --help
2

3 $FODB executeMethod <file name|directory name> <method> <parameters*>
4

5 $FODB executeMethod data/StudentData mapMethod "getMark(’English’)"
6

7 [["John Smith" , 63], ["Fred Blogs", 50]]

parameters and ii) the method results.
The user’s inputs are limited to strings. All the parameters for a method are

added to the end of the shell command, in order. Simple objects like lists are sup-
ported on the command line. Line 5 of example 4.16 shows how a single parameter
is passed to the mapMethod method

All the results from FODB methods, executed from the command line are se-
rialised and printed to the standard output. Line 7 of example 4.16 shows how a
Python array is returned to the user.

4.4.5 Programmatic method execution

The FODB only supports the execution of Python code and we have provided ex-
amples showing how users can invoke methods. In section 4.4.4 we show how data
can be displayed using shell commands. The power of the FODB comes from exe-
cuting methods and retrieving the data into programmable objects. Using Python
there the FODB supports two mechanisms to retrieve data, as a file or as an object.
Both are discussed below.

Results as objects

Returning method results as Python objects is the most useful FODB feature. Users
can execute FODB methods and use the results in subsequent scripts; only Python

66

Example 4.17: Shows how users can retrieve method results as Python objects. This example is an
extension to the script shown in example 4.13. Here we show that the results object
can be processed in Python.

13 #Count the results
14 print len(results)
15 2
16 #Show the first result
17 print results[0]
18 [’John Smith’, 63]

objects are supported.
Example 4.17 shows the FODB method returning an array of data. The array is

a native Python array of which the users are familiar. In the example we count the
data returned and display the first result.

Results as files

Since the FODB only has native support for Python scripts it does not meet the
FOM language independence feature described in section 3.4.2 on page 48.

One of the easiest ways to integrate non Python code into the FODB, is to write a
wrapper. It is easy to execute shell commands or applications from within Python,
however returning complex data is not always possible.

For cases where the returned data is too complex or where the code is not native
Python, the FODB supports the returning of data as a file. The file is stored within
the FODB making it possible to associate methods with the results files.

Example 4.18: Shows how a user can execute an FODB method and store the results in a file. The file
name has to be provided on the command line.

1 $FODB executeMethod --file=results.dat StudentData
mapMethod "getMark(’English’)"

2

3 $cat results.dat
4

5 [["John Smith" , 63], ["Fred Blogs", 50]]

Users have to specify a file name for the results and any data output to the
standard output and the standard error are captured and stored in a file, as shown
in example 4.18.

4.4.6 Cascading methods

If all the data files in a directory support the same FODB method it is possible that
users will consider using the mapping method to execute these methods. It is for
this reason that any method which is common to all files in a directory will also
appear as a method on the directory. This mechanism permits methods to cascade
from the directory object, across all data files in the directory.

67

Example 4.19: Shows how common file methods are also mapped to the directory object. In this
example we show the methods available and execute one of the student methods to
retrieve the data from all the files in the directory.

1 # Move to data directory
2 $cd /home/teacher/data/StudentData
3

4 $FODB execute listMethods .
5 listMethods
6 getFullName
7 getAge
8 getMark
9 ...

10

11 $FODB execute getMark ’English’
12

13 [["John Smith" , 63], ["Fred Blogs", 50]]

For example, a teacher has a directory (StudentData) which stores all the stu-
dent data files. As all the files are the same in this folder, the common methods
will appear on the directory object. When the directory method is invoked, it uses
the mapper method to execute the required method on all files within the directory.
The results are returned using same tuple as the mapper method.

Example 4.19 shows how the methods from the student class also appear on the
student data directory.

4.4.7 Code quality assurance

The FODB implementation of the FOM does not impose any restrictions on sub-
mitted code. Therefore it is not possible to make any guarantees about the quality
of the methods supported within the FODB.

There are some implementation features which protect the integrity of the data.
For example because of file system permissions, only the owner can remove or alter
the data. All the data in the FODB is readable by all users.

The prototype requires each user to own a user account on the machine running
the FODB. Providing the user accounts are properly configured and managed this
can help limit the introduction of malicious code.

As users take advantage of the repository each method will be used more fre-
quently. Any errors in existing code are more likely to become visible.

4.5 Discussion

This FODB provides a proof of concept implementation of the FOM. Some of the
observations are discussed below:

• The FODB takes the user’s code and processes all the methods. When a user
invokes a method the user’s code is executed, at some point the FODB has

68

to pass the file name into the user’s method. This is accomplished by first
looking for a parameter called fileName, if this does not exist then the file
name is passed in as the first parameter.

This restricts the user’s methods or classes but it is unavoidable. In future
implementations the user should be able to indicate which parameter should
be the file name, either at code submission time or by stating a keyword.

• The FODB limits the user to Python, in future implementations support for
further languages would be beneficial. Although an expert user can create
Python wrappers for code in many languages.

• The data security model remains the same as all files are stored on the local
file system. Owners can control access to files using familiar OS user, group
access controls.

• As all the FODB code is stored in the FODB it can be difficult to link in
large applications. When users import code only the one file listed is copied
to the FODB repository. This means that all code has to be able to run from
either a single file, or has to link with code which the Python interpreter can
locate. Since most code will extend over many files the user has to manage
the environment path.

• We have demonstrated how the teacher in the example scenario can store and
access the existing data without changing the format or directory structure.
We then introduced a statistical class capable of calculating various statistical
data.

This demonstrates how the teacher can take advantage of other users’ code
to process the student’s data. The FODB enhances the user’s experience by
seamlessly integrating third party code. The user does not have to under-
stand how to interface to the statistical class as it appears as a method on the
student data files.

• All the information about the code associations and file extensions is stored
in the FODB directory. In chapter 2 we discussed the suitability of stor-
age mechanisms for particular data. Here we are using a file system to store
the user’s data, to which file systems are well suited. To store the metadata
about the data files we should be using a relational database. As metadata is
relational and searched often, it is best suited to a relational database.

• The file associations are stored in the FODB directory.

69

4.6 Summary

In this chapter we discuss a Python implementation of the FOM, called the FODB.
Using an example scenario we demonstrate the FODBs capabilities.

We show how users can submit data and code, either through Python scripts
or shell commands. After which we link users’ code to either specific files or file
types. This enables users to find and execute methods on data files stored within
the FODB.

Users can execute methods on data files through shell commands or Python
scripts. We demonstrate how the method results can be returned to the user as a
Python object or written to a file.

We demonstrate how the FODB can be used to enhance the user’s experience.
In this example we show how the user can take advantage of another user’s code
to obtain previously unavailable data results.

The FODB provides a proof of concept from which we discuss the advantages
and disadvantages of the FOM model.

70

Chapter 5

BioSimGrid

Preface

The BioSimGrid project is a collaborative project involving the work of others of
which I developed and implemented the flatfile storage layer, consisting of control-
ling software and data structures. This includes the integration of BioSimGrid with
the Storage Resource Broker (SRB) and the development of the deposition module
for the simulation package.

The work involving the analysis tools and metadata schema are the work of
others. Some parts of this work are published in the papers cited in the Authors dec-
laration. The SRB integration software was presented at Europython 2005 (Johnston,
2005b).

5.1 Introduction

As Molecular Dynamics (MD) simulations are becoming more and more popular
there arises a need to manage the simulation results, especially as they are time con-
suming and require expensive compute cycles. BioSimGrid (Ng et al., 2006, Murdock
et al., 2002, Tai et al., 2004) is establishing a worldwide repository for simulation
results using Grid (Foster et al., 2001, Foster and Kesselman, 1999b) technologies to
distribute and manage the large volumes of data. It aims to produce a transparent
repository to store distributed simulation results as well as providing a framework
to perform analysis (Tai et al., 2006). Each analysis tool is designed to encourage
user contributions and is based on an extensible framework. BioSimGrid is already
enabling new science by providing a mechanism for scientists to compare simula-
tion data which originates from different laboratories in different formats (Woods
et al., 2005).

This project provides a suitable platform to experiment with some of the con-
cepts described in chapter 3, in a production environment. This chapter describes
BioSimGrid from both a user’s viewpoint as well as discussing the underlying in-

71

The United States
(not to scale)

© Crown copyright 1999

0 50 100 km

Oxford
(4 TiB)

Birkbeck
(4 TiB)

Nottingham
(4 TiB)

York (4 Tib)

Bristol
(4 TiB)

Southampton
(4 TiB)

PNNL
(5 TiB)

UCSD
(2 TiB)

Notre Dame
(1 TiB)

Figure 5.1: Shows the location of the six collaborating institutions in the United Kingdom and the
three collaborating institutions in the United States of America.

frastructure. It then goes on to describe how features from chapter 3 have been
integrated into BioSimGrid and discusses the advantages and disadvantages.

5.2 Motivation

X-ray crystallography (Drenth, 2002) and Nuclear Magnetic Resonance (NMR) spec-
troscopy (Silverstein et al., 2005) are two common techniques used to gain an insight
into the molecular structure of many molecules and materials.

X-ray crystallography uses the diffraction of X-Rays passed through a sample to
determine the molecular structure. This process requires the growing of a crystal
for analysis, which is then frozen in liquid nitrogen to reduce radiation damage
and thermal motion. This sample is then subjected to X-rays which diffract off
the electrons in the crystal. A crystal is required to ensure that there is a regular
structure to diffract the X-rays as a single electron is insufficient. The diffraction
pattern emitted is recorded and used to built up a diffraction map of the electron
density. This is then used to calculate the molecular structure (Allen et al., 2004).

NMR spectroscopy uses the magnetic properties of the nuclei to build up a
model of the structure. In a constant magnetic field the nuclei resonate at a fre-
quency dependent on the strength of the magnetic field, this frequency is converted
into a field independent value called the chemical shift. Each nucleus has a differ-
ent chemical shift, providing a means to identify different atom types. NMR is the
most commonly used method to determine structure in modern chemistry and is
capable of dealing with complex molecules.

72

In the biological world these techniques are used to determine the structure of
many molecules which are then stored and distributed throughout the community.
Often once molecular structures are determined, they are stored for use by other
scientists, e.g. in the Protein Data Bank (PDB) repository (Berman et al., 2000).

Although these techniques have been used for over 50 years to determine the
structure of many biological components they have some drawbacks. They only
provide a snapshot of the molecule at a point in time and do not provide a means
to analyse the motion of the molecule. This is partly due to the temperature at
which the samples are subjected as most biological molecules are active around
room temperature.

This has given rise to biomolecular simulation methods such as MD which are
capable of simulating time-dependent molecular models (Haile, 1997, Stone et al.,
2001). MD uses classical equations of motion to predict the motion of the atoms
within a molecule.

As the position of each atom is calculated at every timestep using its previous
location and velocity, MD calculations are often limited by compute resource capa-
bility. If the timestep is too small the calculation will quickly consume too much
processing power, however if it is too large it becomes too inaccurate.

MD simulations require large volumes of data storage and compute resources.
Once calculated, they become valuable data that can be analysed by many different
techniques. Currently as MD simulation data is generated within research laborato-
ries throughout the world, they are stored and analysed locally. Once any findings
are published the data is then archived. In reality this often results in the loss of the
data. As the research laboratories have no means to share the simulation data many
MD calculations are repeated, consuming one of the most valuable resources, com-
puting power. Section 2.2.2 discusses the merits between re-computing and stor-
age and shows that storage is often not the optimal solution, however in the MD
situation the compute resources are the limitation and therefore storage is clearly
sensible.

For the biochemical community to discover tomorrow’s solutions using today’s
hardware, better compute resource management is required. This begins with the
community sharing existing MD simulation results, so that other laboratories can
perform analysis without first having to perform a simulation. This collaborative
approach also provides a kitemark process by which publication findings can be
validated using the same simulation data but with different analysis procedures.

This lack of collaboration ability means that the discovery of simulation data
in different institutions is very difficult. In addition it is nearly impossible to com-
pare sets of simulation data across institutions, as one set of data would have to be
copied to the other site. Even once the data resides at the same location it is com-
mon for different institutions to use different data formats, thus making a direct
comparison very difficult.

73

water.pdb pdb2gmx

grompp

topol.top

md.mdp water.tpr

mdrun

traj.xtc

output.pdb

Figure 5.2: Workflow to simulate a sample molecule to produce a trajectory suitable for analysis.

BioSimGrid addresses these issues by creating a freely available globally dis-
tributed repository to store simulation results. BioSimGrid allows users to deposit
simulation results, perform analysis and provides a kitemark procedure to guaran-
tee the quality of the data. This provides users with the ability to apply new science
to the existing data sets.

5.3 Example simulation

In this section we show how a chemist performs an MD simulation using a simple
example. We simulate the behaviour of water molecules over a period of time and
show which files are used and produced throughout the simulation. This simu-
lation is performed for five timesteps and for each timestep the positions and ve-
locities of each atom are recorded. The simulation starts with a structure of water
molecules which are then simulated to produce a trajectory. The trajectory can be
thought of as a video showing how the molecules move over a time period. The
simulation process is shown in figure 5.2 and described below.

• Step 1

The user starts with two files, the md.mdp and the water.pdb. The first
contains the parameters for the molecular dynamics simulation application
and is created by the chemist. For example it determines the number of steps
to simulate and the time, temperature and pressure for each step.

The second provides a 3D structure of the molecule (typically a peptide, pro-
tein or nucleic acid) to be simulated. These are obtained using experimenta-
tion such as X-ray crystallography (see section 5.2) and are available online
from sites such as the PDB website (Berman et al., 2000).

74

The scientist first generates a topology file from the coordinates contained in
the water.pdb file by calling the pdb2gmx executable, as shown in example
5.1. This provides two output files the output.pdb and the topol.top.
The first contains the corrected set of coordinates based on the water.pdb

file, i.e. any missing hydrogen atoms have been added. The second contains
the force field parameters and type of molecules present. These files describe
the topology of the molecule to be simulated.

Example 5.1: Shows how a user generates a topology file from a PDB file.

1 #Input water.pdb, output topol.top
2

3 $pdb2gmx -f water.pdb -o output.pdb

• Step 2

The md.mdp , output.pdb and topol.top files are then combined into a
single simulation file, water.tpr. This file contains all the information re-
quired to perform the simulation and is generated by calling the GROMACS
pre-processor executable grompp, as shown in example 5.2

Example 5.2: Shows how a user combines the input files to produce a single file containing all the
parameters to perform the simulation.

1 #Generate .tpr file
2

3 $grompp -p topol.top -c output.pdb -f md.mdp -o water.tpr

• Step 3

The water.tpr provides the starting simulation state and parameters to ini-
tialise and run the simulation. The simulation is performed using the com-
mand shown in example 5.3. The simulation state is written to the traj.xtc
file every timestep. The traj.xtc provides the coordinates of all the atoms
over a period of time.

Example 5.3: Shows how the user performs the simulation.

1 #Peform simulation
2

3 $mdrun -s water.tpr

• Step 4

Once users have the simulation or trajectory files they can then be analysed
using applications such as VMD , NAMD and GROMACS (Humphrey et al.,
1996, Phillips et al., 2005, Berendsen et al., 1995). It is often the case that the

75

trajectory is analysed many times and it is the goal of BioSimGrid to produce
a repository to store these trajectory files.

For example, using the traj.xtc file produced from the simulation and the
input structure file (output.pdb) a user can visualise the frames stored in
the trajectory. Example 5.4 shows how to visualise the trajectory and figure
5.3 shows the first frame in the simulation.

Example 5.4: Viewing the data output from the simulation.

1 #VMD structure file and trajectory coordinates
2

3 $vmd output.pdb traj.xtc

Figure 5.3: Shows the first frame of the example trajectory. The frame is comprised of water
molecules.

5.4 BioSimGrid overview

The BioSimGrid project (Johnston et al., 2006b, Boardman et al., 2006) attempts to ad-
dress the issues associated with managing simulation data and collaborating with
biological and chemical communities across the world (Wu et al., 2005, Tai et al.,
2004). The aim is to produce a worldwide repository to store and analyse sim-
ulation results. More importantly it provides public access to the analysis data
described in publications.

BioSimGrid is a collaboration between six universities in the United Kingdom
(Birkbeck College – University of London, Birmingham University, Nottingham
University, Oxford University, University of Southampton and York University)

76

BioSimGrid repository

Dynome
(Molecular dynamics)

vOM
(Outer membrane

proteins)
HPCx pilots

IntBioSim
(Multi-level
simulations)

Figure 5.4: Shows some of the projects that relate to BioSimGrid. Virtual outer membrane (vOM)
generates data of outer membrane proteins (Bond and Sansom, 2004). Dynome aims to
simulate the dynamics of a broad range of the most important protein shapes or folds
(Essex, 2005). IntBioSim aims to develop a framework with which to conduct biomolecu-
lar simulations, using BioSimGrid as the underlying storage repository for the simulation
data. There are other HPC pilots which can potentially utilise BioSimGrid (Bush and Sun-
derland, 2005, Sansom, 2005).

and three institutions in the United States of America (University of California, San
Diego (UCSD), Notre Dame and Pacific Northwest National Laboratory (PNNL)).
Each site has its own storage and processing resources to provide quick access to
simulation data providing over 26Tebibyte (TiB) of storage (see appendix A). The
repository is currently a working prototype open to users across the collaborat-
ing sites and used for biochemistry research (Woods et al., 2005). Figure 5.4 shows
how BioSimGrid relates to some of the ongoing projects such as Dynome (Essex,
2005), IntBioSim (Sansom, 2004), vOM (Bond and Sansom, 2004) and high perfor-
mance computing pilots High Performance Computing (HPC) (Sansom, 2005, Bush
and Sunderland, 2005).

We provide a brief description of the key features offered by BioSimGrid as
shown below:

• Distributed storage service

This provides BioSimGrid with the ability to manage and utilise storage re-
sources across the world. As demand increases storage can be added at any
location and is not dependent on a single storage center. This assists with data
management optimisation, as the data can reside close to where it is required.

• Transparent data access

Users are oblivious to the location of the data and an analysis script can run
on any BioSimGrid site. This abstracts the user from the underlying data
structure and offers accessibility to simulation results located throughout the
BioSimGrid repository.

• Multiple data format deposition

There are many MD software packages, as shown in section 5.5.2, each with
their own data format and capabilities. The BioSimGrid deposition manager

77

provides an extensible interface to support plugins for each format, currently
all the key MD software packages are supported. This provides support for
future and private data formats.

• Analysis tools

The BioSimGrid project provides a set of analysis tools, based on an extensible
interface. The base analysis tools double up as examples for users who want
to write their own tools. The aim is to provide a platform to leverage com-
munity contributions by providing a simple mechanism to write and share
analysis tools.

• Cross-site comparison

The repository facilitates sharing of simulation data through a uniform inter-
face which enables users to compare data regardless of its original format and
location. This ability to discover and compare simulation data from different
institutions provides the community with new, previously unobtainable ca-
pabilities.

• Data quality assurance

BioSimGrid provides a kitemark (Murdock et al., 2006) capability for simu-
lation data which provides users with assurances about the quality of the
simulation data.

• Data availability and persistence

There are assurances about the availability and persistence of deposited data,
ensuring that data is not lost and is available to users when required. This is
accomplished using data redundancy on a distributed data grid running on
fault tolerant hardware (see appendix A.1).

5.5 User perspective

Users are provided with tools to store and analyse trajectories in the BioSimGrid
repository. This is provided using the scripting environment described in sec-
tion 5.5.2. In addition there is a web portal which provides a demonstration of
the capabilities of BioSimGrid (Wu et al., 2004a,b). It enables users to search exist-
ing simulation data and execute simple analysis scripts, displaying the results in
a web browser (see figures B.1—B.5). The web portal is an extension to the un-
derlying scripting environment and is intended as an introduction to the scripting
environment.

78

Problem

Distributed
storage

BioSimGrid

Analysis
environment

Results

Deposition
environment

Check for
existing data

Perform
simulation

Perform
analysis

Tools
environment

Distributed
storage

Distributed
storage

User interfaceUser workflow BioSimGrid infrastructure

Figure 5.5: Shows the user’s workflow and how each item relates to BioSimGrid components.

5.5.1 Work flow

The current work flow results in the inaccessibility and repetition of simulation
data and is the motivation behind BioSimGrid as described in section 5.2.

Before a scientist performs a simulation he or she can first check to see if it or
something similar already exists within the repository. If the data already exists
then it can be analysed, otherwise the simulation will need to be performed. After
performing the simulation a user can then deposit the trajectory into the repository
regardless of location or storage requirements. Depositing simulation data means
that it can easily be shared amongst other users. A user can then perform analysis
on the data either by using the builtin analysis tools or a custom tool.

Most users have their own analysis scripts, which can be added to the BioSim-
Grid analysis environment, as show in figure 5.5.

5.5.2 Scripting environment

BioSimGrid is programmed in Python (PSF, 2005) as it is widely used by the collab-
orating sites and commonly used within the biochemical community. BioSimGrid
provides a Python scripting environment by adding modules to the existing Python
environment resulting in a powerful, familiar Problem Solving Environment (PSE).

The Python PSE provides users with the many of the tools, packages and mod-
ules to solve problems. This is important as it provides a single environment ca-
pable of solving complex problems (Black et al., 2003). Python also supports many
third-party applications and can interface to other programming languages such as
C.

79

BioSimGrid scripting environment

Web portal
(Demo)

Analysis
environment

Generic input object

Deposition environment
Custom

environment
Tools

Environment

BioSimGrid Infrastructure
Us

er
Pe

rs
pe

ct
ive

Figure 5.6: Shows how the user’s perspective is separated from the BioSimGrid infrastructure. All
the user components are built upon the Python scripting environment. This ensures that
the extensibility of BioSimGrid is separated from the underlying infrastructure. The ex-
isting components are themselves examples for users wishing to customise or create new
components.

The BioSimGrid scripting environment is the only interface exposed to the users,
it supports all the capabilities required to access and manipulate the data; all the
other user components are built upon this. Community support and contributions
are supported through the clearly defined interface.

Example 5.5: Shows the BioSimGrid scripting environment. After importing the necessary modules
and setting up the user’s credentials, the user is free to retrieve any coordinate or meta-
data they require using the supplied methods. This example shows how to retrieve
the coordinates of the atoms in the first frame of the sample trajectory. It also shows
how easily the metadata about the frame can be retrieved, showing how to retrieve the
temperature of the first frame.

1 from BioSim.DataRetrieval import FrameCollection, FCSettings, Frame
2 from BioSim.Settings import UserSettings
3

4 #Setup the user credentials
5 USettings = UserSettings("Bob")
6

7 #This selects frames 1,2,3 from trajectory BioSimGrid_GB-STH_1
8 datasettings = FCSettings(USettings,[["BioSimGrid_GB-STH_1",[1,2,3]]])
9

10 #A frameCollection is a BioSimGrid data structure
11 FC = FrameCollection(datasettings)
12

13 #Get first frame
14 frame1 = FC.getNextFrame()
15

16 #Get the first frames coordinates
17 xyz = frame1.getCoordinates()
18

19 #Get the first frames metadata (e.g. temperature)
20 temp = frame1.getFrameTemperature()

Example 5.5 shows how users can easily retrieve coordinate data as well as
metadata about the simulation. An interface provides access to the raw trajectory
data as well as the metadata, providing users with transparent access to the dis-
tributed data. This interface is the basis for all the components shown in figure 5.6.
Aside from the web portal there are four key environments which are accessible to
users, with the intention that these are to be used as examples for further features.

80

Example 5.6: Shows an example BioSimGrid deposition script. After importing the necessary mod-
ules and setting up the user’s credentials, the user creates a Python list of the files
containing the simulation data. In the last line the user calls the deposition module
required, depending on the data format.

1 from BioSim.Deposit.NAMDDeposit import NAMDDeposit
2 from BioSim.Settings import UserSettings
3

4 #Setup the user credentials
5 uSettings = UserSettings(’Bob’)
6

7 #Python list of simulation data files
8 sim_files = {’coordinates’:[’file1.crd’,’file2.crd’],
9 ’topology’:’file.pdb’,

10 ’parameter’:’file.par’}
11

12 #Envoke the NAMD deposition module
13 NAMDDeposit(uSettings, sim_files)

The four key areas are briefly discussed below.

• Deposition environment

There are currently deposition scripts for all the main data formats used by
existing users. Some of the different formats are discussed in section 5.5.2 and
each is built upon the Generic input object. The Generic input object
is intended to simplify deposition scripts, it provides all the functionality to
deposit simulation data independent of its format. The format specific de-
position scripts are a thin layer built upon the Generic input object. As
support for different data formats is required, it is sufficient to write a thin
plugin on top of the Generic input object.

Users are provided with all the main deposition format scripts but are free to
use them as a basis for custom formats. This ensures that users can deposit
proprietary and future data formats into the BioSimGrid repository. Deposit-
ing data into the repository is simple and the user does not have to under-
stand the underlying structure, this is demonstrated in example 5.6 where a
user deposits data using a very simple Python script.

• Analysis environment

BioSimGrid provides a set of over twenty analysis tools which are capable of
processing and/or comparing any trajectories (or part of) within the reposi-
tory.

The source code is provided so that users can modify or create their own tools
based on the scripting environment and are all written in Python. The tools
are also capable of leveraging existing programs such as GROMACS (Berend-
sen et al., 1995) and VMD (Humphrey et al., 1996) using Python wrappers. This
ability provides users with a simple but powerful means to integrate existing
applications into the BioSimGrid tool environment.

81

Example 5.7: Shows an example analysis script. After importing the necessary modules and setting
up the user’s credentials, the user selects the data to be analysed. Users have the ability
to restrict collections by frame, atom, residue and many other criteria. Once the user
has selected the data it is sufficient to call the analysis tool required; there are optional
parameters (e.g. file name shown on line 19).

1 from BioSim.DataRetrieval import FrameCollection, FCSettings
2 from BioSim.Analysis import AverageStructure
3 from BioSim.Settings import UserSettings
4

5 #Setup the user credentials
6 USettings = UserSettings(’Bob’)
7

8 #This selects frames 1,2,3 from trajectory BioSimGrid_GB-STH_1
9 datasettings = FCSettings(USettings,[[’BioSimGrid_GB-STH_1’

,[1,2,3]]])
10

11 #This restricts the selection to only residues 10 and 11
12 datasettings.setResidueSerialNo([10,11])
13

14 #A frameCollection is a BioSimGrid data structure
15 FC = FrameCollection(datasettings)
16

17 #Performs an an analysis on the given frame collection
18 myAS = AverageStructure(FC)
19 myAS.textFilename = ’averageStructure.txt’
20 myAs.createAsText()

Users can easily use the existing tools to analyse their data using a script
similar to that shown in example 5.7. Each of the tools has a similar interface
so once users have selected the data they wish to analyse, it is possible to pass
it into a number of consecutive analysis tools.

• Tools environment

BioSimGrid provides a set of tools for the users to assist with searching and
analysing the simulation metadata. The tools are capable of listing trajectories
and are designed to provide users with the global identifier for trajectories
that they wish to analyse. The Globally unique Identifier (GID) is used in
most analysis to identify the data and can be seen in examples 5.7 and 5.8 and
is described in section 5.5.2.

Most of the other tools perform maintenance or testing but are provided as
examples.

• Custom environment

All the user scripts and tools are written in Python using the packages im-
ported from the BioSimGrid scripting environment and are freely available
under the GNU General Public License (GPL) (GPL, 1991). This supports and
encourages user contributions and future extensibility.

82

Example 5.8: Shows an example of globally unique identifiers for trajectories deposited in Southamp-
ton and Oxford resources.

1 #Southampton GID Example
2 BioSimGrid_GB-STH_1234
3

4 #Oxford GID Example
5 BioSimGrid_GB-OXF_1234

Simulation data

BioSimGrid is a repository for biomolecular MD simulation data, each set of sim-
ulation data is called a trajectory and comprises of atom positions and velocities.
This data is stored for each timestep in the simulation and also contains data about
the overall simulation and atom types. A trajectory can store the positions and ve-
locities of every atom in a molecule e.g. Deoxyribonucleic acid (DNA) or proteins,
resulting in data in excess of 10 Gibibyte (GiB). This indicates the importance of
managing the storage and shipment of the data.

There are currently many MD simulation packages, each with their own data
format, e.g. AMBER (Weiner and Kollman, 1981), CHARMM (Brooks et al., 1983),
GROMACS and NAMD (Phillips et al., 2005). All of these main formats plus a few
more specialist formats are supported by BioSimGrid. The deposition environment
supports further development using a well-defined Application Programming In-
terface (API).

Each trajectory deposited into the repository is allocated a Globally unique
Identifier (GID) which is used to refer to the data in analysis scripts or between
users. The GID is guaranteed to be globally unique and has been selected so as to
be humanly understandable and future proof. The GID has three components each
separated by an underscore, the project name, an ISO 3166-2 (ISO, 1995) identifier
and a site unique number (see example 5.8). This format ensures that each site is
independently responsible for allocating GIDs without a centralised single point of
failure.

5.6 Example simulation deposition

In section 5.3 we show how an example simulation is performed by a scientist. The
example demonstrates how the data files are produced and what they contain. The
simulation results in the creation of a trajectory as shown in figure 5.7.

Before a user can analyse the trajectory in BioSimGrid it has to be deposited.
This process imports the data into BioSimGrid making it publicly accessible through
the API.

Example 5.9 shows the Python script to deposit the simulation data into BioSim-
Grid. The script provides BioSimGrid with the location of all the data files and an

83

Example 5.9: Shows the deposition script to deposit the trajectory shown in section 5.3.

1 from BioSim.Settings import UserSettings
2 from BioSim.Deposit.GromacsDeposit import GromacsDeposit
3

4 filenames = {
5 ’parameters’: "md.mdp",
6 ’topology’: "output.pdb",
7 ’pdb_code’: "NONE",
8 ’name’: "SJJ: Water simulation example, 4142 H2O",
9 ’coordinates’: ["traj.xtc"]

10 }
11

12 uSettings = UserSettings.UserSettings("sjj")
13 g = GromacsDeposit.GromacsDeposit(uSettings, filenames)

owner.
Once a trajectory is deposited into BioSimGrid it can be made publicly available

for others to analyse.
Figure 5.7 shows the current analysis workflow and the BioSimGrid analysis

workflow. Currently the trajectory data files are analysed using separate applica-
tions. Once they are deposited into BioSimGrid the same applications can be used
to perform the calculations. This ensures that specialist applications can still oper-
ate on the data. BioSimGrid also provides a set of inbuilt analysis tools.

output.pdb md.mdptraj.xtc

VMD

BioSimGrid
Analysis
Storage

Colaborations

Analysis
Visualisation

Figure 5.7: Shows the current analysis workflow and the BioSimGrid workflow. The data deposited
into BioSimGrid is fully accessible by other applications.

5.7 Infrastructure

BioSimGrid integrates storage resources across many distributed locations which
are geographically distant. As the project currently manages over 26TiB of data the
underlying structure has to be both intelligent in retrieving data as well as robust
enough to guarantee data integrity and availability.

84

SRB server
Oracle replica RAID

Array

Slave sites

Oracle replica Oracle master

Internet

SRB master SRB server
RAID
Array

RAID
Array

Birkbeck Southampton

Oracle replica
SRB server

RAID
Array

Oxford

Figure 5.8: Shows the key sites supporting the BioSimGrid infrastructure. Southampton and Birk-
beck run the master SRB and Oracle databases, respectively. There are many slave sites,
all of which run database replicas and provide data repositories for flatfiles.

The underlying infrastructure addresses these issues by separating the data into
two categories; data and metadata. Unknown to the user these are managed in two
very different manners so as to utilise the most appropriate technology in each
case. The metadata is managed using a Relational Database Management System
(RDBMS), Oracle 10g Oracle (2005) which is replicated across many sites and is
described in section 5.7.3. The data is managed using a distributed resource bro-
ker, SRB which is responsible for data access and replication, as described in sec-
tion 5.7.1.

As BioSimGrid expands the extra nodes are added as slaves which rely on repli-
cated data from the Oracle master, and utilise the MCAT for locating flatfiles. An
overview of the SRB and Oracle infrastructure is shown in figure 5.8.

In addition to the redundancy offered by BioSimGrid all the storage arrays lo-
cated at each site offer hardware and software redundancy. The hardware has a
spare hot standby Hard Disk Drive (HDD) and relies on RAID 5 (Patterson et al.,
1988). The hardware specifications are shown in appendix A.1.

5.7.1 BioSimGrid data file formats

The largest volume of the trajectory comprises of coordinates and velocities of
atoms as this information is required for every timestep. Each contains three double
precision numbers for velocity and position of each atom; the X, Y and Z compo-
nents. As this data is not relational by nature and is often accessed in chunks, it is
not very well suited to a RDBMS; non-relational data is discussed in section 2.3.5.

As discussed in section 2.6 file systems are databases for storing and retrieving
files and can be better suited to large volumes of data than databases. It is for these
reasons that the coordinates and velocities are stored in flatfiles.

There are two versions of the flatfiles which are currently supported. The first

85

Example 5.10: Shows the information stored in the metadata file for each trajectory. This information
is used for accessing the data files using the appropriate code methods.

1 {
2 ’NumberOfAtomsPerFrame’: 1855,
3 ’FrameSize’: 22260,
4 ’DataType’: ’f’,
5 ’MaxFileSize’: 524288000,
6 ’ArrayWidth’: 3,
7 ’FileNames’: [’BioSimGrid_GB-STH_8.met’],
8 ’FramesPerFile’: 23552,
9 ’DataTypeSize’: 4

10 }

uses Python to serialise objects to files and the second writes out the data purely as a
series of IEEE double precision floating point numbers (Parhami, 1999, IEEE, 1985).
The two formats have come about as an optimisation during the development of
BioSimGrid and both store the same data and support the same methods.

Both formats have the same structure for storing a trajectory. Each trajectory
resides in its own directory where there is a flatfile metadata file and a series of data
files. It is important to note that this is not the metadata which BioSimGrid stores
about the trajectory, rather it is information about the flatfiles. The flatfile metadata
file stores information about the size of frames, the number of atoms per frame,
the type of data used and a list of files which contain the data (see example 5.10).
This metadata file is used so that trajectory storage formats can change, but the
supporting code will still be able to read the original trajectories.

Each trajectory is split into many files with a maximum size of 500 Mebibyte
(MiB) for multiple reasons: i) to ensure that Operating System (OS) file size limits
are not reached, ii) to speed up checksum calculations, iii) to assist with the general
manageability of the data. The maximum filesize is set in the flatfile metadata file
and can be changed on a per trajectory basis.

Pickled frames

This method uses the inbuilt Python serialisation method to convert Numeric ar-
rays (Oliphant, 2006) to a bytestream. This bytestream is then written to a file.
The serialised object can easily be re-instantiated as a Python object by reading the
bytestream written from disk as shown in section 2.6.4. Figure 5.9 shows the con-
tent of a single frame as well as the content of a data file. The single frame contains
all the serialised data as well as some metadata so the serialiser knows the type and
size of the object when reading. The data file comprises of a series of frame objects.

Frame objects are never split across files and a file size is limited to a maximum
size. Which often results in the file being slightly smaller than the maximum size.
As all the frames are the same size it is easy to calculate the location of the nth frame
which makes access quick for any frame.

86

Metadata
X , Y , Z , /n

X , Y , Z , /n

X , Y , Z , /n
...

Metadata
X , Y , Z , /n

X , Y , Z , /n

X , Y , Z , /n
...

Metadata
X , Y , Z , /n

X , Y , Z , /n

X , Y , Z , /n
...

Metadata
X , Y , Z , /n

X , Y , Z , /n

X , Y , Z , /n
...

. . .

Frame
size

Actual file size
Maximum file size

Data file

Object
serialisation
metadata

Coordinates

Frame

Single frame

Figure 5.9: Shows the contents of a single pickled frame and shows how the frames are written in a
file. Each frame comprises of metadata and coordinate tuples, ending in a delimiter.

As each frame object is serialised using the Python inbuilt functions there is
no control over how this is implemented. This poses two limitations: i) there is
no guarantee how it will perform in the future and ii) the implementations vary
between operating systems.

For example each frame has some data stored at the beginning, essentially the
object name and its size. If this data were extended in the next implementation of
Python then it would not be possible to update this object as it may no longer fit
the allocated space; without having to rewrite the entire file. Although BioSimGrid
contains frame object size checks future implementations run the risk of corrupting
data if a frame size increases.

In some cases users require one atom from each frame in the whole file resulting
in the entire file having to be read, as each object needs to be reconstructed in mem-
ory; this is very time consuming. File methods were added to extract the required
atom coordinates from within the frame object. As the object serialisation meta-
data is a fixed data size calculating the position in a file is relatively easy, but this
breaks down between operating systems. As it is difficult to ensure that extracted
coordinates are accurate the decision was taken to rewrite the flatfile data format.

Serialised frames

An alternative to using the Python pickle functions is to implement a custom serial-
isation method. As each file only stores objects of the same type there is no need to
store the metadata for every frame. This saves space and simplifies the calculation
of the coordinates for a single atom. Figure 5.10 shows how this format differs from
pickled frames.

This format overcomes some of the limitations of the Python pickle method
and poses an interesting example of two different data formats which implement
the same file methods; this is discussed in section 5.7.2.

87

X , Y , Z

X , Y , Z

X , Y , Z
...

X , Y , Z

X , Y , Z

X , Y , Z
...

X , Y , Z

X , Y , Z

X , Y , Z
...

X , Y , Z

X , Y , Z

X , Y , Z
.... . .

Frame
size

Actual file size
Maximum file size

Data file

Coordinates

Single frame

Figure 5.10: Shows the custom format used to store data in flatfiles. Each frame only contains coor-
dinates, eliminating the need for per frame metadata. This reduces space requirements
and means that single atom coordinated can easily be extracted.

Performance results

The decision to store data using flatfiles rather than using an RDBMS to manage all
the data was based on a series of performance tests (Murdock et al., 2004, Ng et al.,
2004). The tests compared the performance of the BioSimGrid coordinate data in an
RDBMS, DB2 (Mullins, 2004) with the performance of the Python pickle approach.
To complete the test an existing standard for flatfiles, netCDF (Rew et al., 1997) was
also compared; a summary of the results can be seen in table 5.1.

Table 5.1: Shows the performance results between two flatfile approaches and one using a RDBMS
(Ng et al., 2004).

DB2 netCDF Python Pickle
Size (GiB) 7.5 3.0 3.0
Random access (Sec) 560.8 16.4 18.6
Sequential access (Sec) 389.0 4.9 5.5

Each test shows the storage requirements and the total time for a random and
sequential data access. The random access involved accessing and retrieving 1,000
frames from across a trajectory in a random order. The sequential access involved
accessing the first 1,000 frames in a trajectory. The performance of the serialised
frames described in section 5.7.1 is comparable to the Python pickled frames.

It is important to note that RDBMS are not slow, rather that the data is not suited
to the database methodology. The database was using non-clustered indices and
could potentially be optimised further. The large difference in time comes from
Structured Query Language (SQL) not guaranteeing the order of data returned,
thus forcing the results to be sorted in the result set.

Storage resource broker

BioSimGrid uses SRB to manage all its data files across the many distributed sites.
Section 2.6.3 describes the features and capabilities offered by SRB and this section
describes how BioSimGrid is implemented using SRB.

88

Local site

SRB Server

Flat
files

Client/Application

SRB Client

BioSimGrid
Application

SRBInterface

Master site

SRB Server

Flat
files MCAT

Figure 5.11: Shows how the Storage Resource Broker (SRB) manages resources. The client requests a
file from the local SRB Server, the file is located using the MCAT and sent directly to
the requesting client.

Each site has its own storage resource (≈ 4 TiB) which are managed by a single
Metadata Catalog (MCAT) database currently located at Southampton. The MCAT
manages all the data files in the entire BioSimGrid repository as shown in figure
5.11.

Since it is important to reduce the volume of data transported over the network
each site defaults to its own resource. This results in any data deposited at a site
being written to the local resource, thus reducing cross-site network traffic.

For availability and backup issues all data is replicated to at least one other
site. This is managed by a daily job executed at each site. This results in data
residing in many locations which helps balance load and eliminates the need to
backup such large volumes of data. The replication integrity is managed using
MD5 (Rivest, 1992, Schneier, 1996) hashes for each file to ensure that the data is
consistent throughout the repository.

SRB is accessed using a Python interface (Johnston, 2005a) which provides a
mechanism for accessing SRB files like local file system files. This results in the
same code existing on all sites providing location transparent access to the data.

The MCAT is a single point of failure for BioSimGrid which can be seen as a
limitation.

5.7.2 BioSimGrid file method implementation

Having the BioSimGrid data stored in two different file formats provides the op-
portunity to demonstrate the File Object Method (FOM) capabilities on a limited
data set, but within a production project.

89

Table 5.2: Shows methods which are implemented for both the pickle and serialisation file formats
described in section 5.7.1.

Method Description
setFrame
setitem

This method takes a frame in the form of a numeric array and
the frame ID, which is the nth frame in the trajectory. The nu-
meric array is then stored in the flatfiles. This method is imple-
mented using the inbuilt Python method setitem which
allows users to access the object using array operations.

getFrame
getitem

This method retrieves the entire contents of a frame given
the frame ID. This ID is the nth frame in the trajectory. This
method is implemented using the inbuilt Python method
getitem which allows users to access the object using ar-

ray operations.

getAtoms This method takes two parameters, a frame ID and a list of
atom ID’s. The data stored for the atoms whose ID’s are in
the atom ID list are returned. This method provides access to
single and multiple atom coordinates on a per frame basis.

The first version of the flatfile database code is capable of reading and writing
data to flatfiles stored locally using the Python pickle methods. The second version
of the code is capable of reading and writing data to flatfiles stored within SRB (see
section 5.7.1). Both versions of the code implement the same methods outlined in
table 5.2 and the relevant code is shown in appendix B.1.

The two versions of the code are managed using a flatfile manager class. This
is responsible for creating and returning the flatfile object. As the object returned
always implements the same methods the object type is irrelevant.

The BioSimGrid code creates an instance of the database by calling a method in
the flatfile manager; this returns an object which is then used to provide access to
the data stored in flatfiles. The user never knows which version of the underlying
code is used and is therefore oblivious to the functionality of the FOM. It provides
a good working example of how the FOM can be used on a limited dataset with
only a few functions.

5.7.3 BioSimGrid metadata and replication

Each trajectory stored in BioSimGrid contains metadata. This metadata stores in-
formation about the trajectory, frames and atoms as well as information about the
owner and data origin. Users use this metadata to search for trajectories or frames
that they wish to analyse, once these have been identified the flatfile manager is
used to retrieve the actual data.

The metadata is much smaller than the data stored in the flatfiles and is very
relational, thus making it suited to a RDBMS. This metadata will be queried fre-
quently by users so needs to have a high availability. To solve the issue of perfor-

90

mance and availability, BioSimGrid uses database replication.
Replication is the process of maintaining multiple database instances across a

distributed environment. Many databases offer replication either as a standard
or additional feature. It is important to note that there is a difference between
database replication and distributed databases. Replicated databases store more
than one copy of a table making it available at more than one location. Meanwhile
distributed databases are accessible from more than one location but a particular
table is stored at only one location.

The replicated tables are often a subset of all the tables in a database (excluding
site specific data and internal database data) and are often referred to as a materi-
alised view.

The main reasons for replicating the metadata are listed below:

• Availability

Replication increases the availability of data as it provides alternative sources
and access points to the data. If one database becomes unavailable users can
still access the data from any of the other sites providing good failover pro-
tection.

• Network and load balancing

The workload can be shared amongst the different sites providing good load
balancing. This assists with scaling up access to the data for large numbers of
users. As there are many sources of data, users can also select the optimum
server for their needs (usually the server geographically closest to them) thus
reducing network costs and latency. This reduces network load dramatically
which helps reduce overall data transmission time and costs. In section 2.2.4
we demonstrate the costs of transmitting large volumes of data.

• Disconnected computing

Materialised views enable users to work on a subset of a database while dis-
connected from the central database server. Later, when a connection is estab-
lished, users can synchronise (refresh) materialised views on demand. When
users refresh materialised views, they update the central database with all of
their changes, and they receive any changes that may have happened while
they were disconnected.

The process of replicating data objects (tables, indices, procedures and triggers)
can be implemented in many different ways depending on the application. The
databases at each site fall into two categories: master sites and materialised view
sites. A master site stores a complete copy of all the data objects. These are then
replicated to the materialised view sites at a given point in time.

91

Replication modes

There are two ways to accomplish database replication, Multi-Master Replication
(MMR) and Single-Master Replication (SMR).

MMR also known as peer-to-peer or n-way replication comprises many master
databases, each with read and write capabilities. As a master receives an update
it is then propagated to all the other masters. Oracle database servers operating
as master sites in an MMR environment automatically work to converge the data
of all table replicas, and ensure global transaction consistency and data integrity.
Conflict resolution is independently handled at each of the master sites providing
complete replicas of each replicated table at each of the master sites (Oracle, 2002).

SMR has one master read-write database and multiple read-only databases.
Users can read from any database but can only write to a single master database. As
changes are made to the master database they are replicated across to the read-only
databases. Since BioSimGrid does not require disconnected databases and MMR is
complicated to implement, BioSimGrid utilises SMR.

User application

Table (read-only)

Replicated
database

Master table
(read/write)

Master
database

Network

Local (replicated) site Master site

Replicate table data
(refresh)

Remote update

Local query

Other remote
read-only sites

Figure 5.12: Shows how the single master replication distributes data. The user application can query
the local site for data, any updates are directed to the master. The master is then respon-
sible for pushing out the data to each of the distributes read-only sites.

When a user deposits a trajectory the deposition modules write the metadata
to the single read/write master Oracle database. The bulk of the data is stored in
SRB hence only the metadata is transported across the network to the master site.
This works efficiently as the metadata is small. Each of the remote read-only sites
distributed across the UK then poll the master for updates.

5.7.4 BioSimGrid analysis and data retrieval

BioSimGrid provides an extensible set of analysis tools which are provided as a
basis for custom tools (Arinaminpathy et al., 2003, Wu et al., 2003). Each tool is built

92

Local SRB
repository

Local SRB
serverData PySRB

interface

Retrieve
simulation data

Query
metadata

Remote
SRB

repository

BioSimGrid scripting
environmentAnalysis script BioSimGrid infrastructure

Local Oracle Local
storage

Remote SRB
server

Figure 5.13: Shows how an analysis script retrieves data from the BioSimGrid repository. The meta-
data stored in Oracle is used to query the data files in SRB. The actual simulation data is
then returned from SRB back to the analysis script.

upon the scripting environment keeping them independent of the infrastructure.
There are currently over twenty tools available. Each tool accepts one or many
frame collection objects which provide access to the required frames. The
frame collection manages the data retrieval, providing a simple interface for
accessing data.

The simulation data retrieval is shown in figure 5.13. A frame collection

which requires frames from a trajectory, first queries the local RDBMS. This returns
information about the trajectory and frames, as well as information about the part
of a frame required.

The RDBMS provides information about the flatfile names and locations within
SRB; this is then used to access the appropriate data. Only the data that is required
and used is returned. SRB returns remote data using a peer-to-peer infrastructure
resulting in efficient use of the network bandwidth.

5.8 Current user base

BioSimGrid currently has over fifty users distributed across nine locations, three
sites in the United States of America and six sites in the United Kingdom. Each site
has multiple TiB of storage. All the storage is linked together and managed using
SRB which provides BioSimGrid with over 32 TiB of storage. Much of this storage
has hardware redundancy in the form of RAID 5. This results in a usable storage
capacity of ≈ 28 TiB.

In table 5.3 we detail the usage statistics for BioSimGrid at the time of publi-
cation. There is much ongoing work to deposit trajectories and the statistics are
constantly changing. Out of the 687 trajectories stored in BioSimGrid only 91 have
been published, i.e. are publicly accessible.

93

Table 5.3: Shows the statistics for all published and unpublished trajectories stored in BioSimGrid.

Total number of trajectories 687
Number of released trajectories 91
Total simulation time (ns) 42594065
Average simulation time (ns) 62000
Average frames per trajectory 8168
Average residues per trajectory 5911
Average atom count (inc solvent) 20979

Table 5.4: Shows the number of published trajectories in each category.

Number Category

40 scorpion toxin
33 outer-membrane protein
9 potassium channel
4 membrane protein (other)
3 amino-acid binding protein
3 acetylcholinesterase
2 calcium channel
1 glutamate receptor
1 lipid bilayer
1 Lysozyme

In table 5.4 we show the published trajectory categories. This provides an in-
sight into the different chemistry areas where BioSimGrid is proving useful.

5.9 Discussion

Using the FOM within the BioSimGrid project tests the concept in a limited and eas-
ily managed environment. Not all the FOM features are implemented in this ver-
sion as it runs on a production environment where data integrity is crucial. Those
features implemented are discussed below.

• Shell method execution

The flatfile manager can be executed using Python, which enables the data
to be queried and returned. It is the user’s responsibility to format the data
returned and this feature is not intended for use by the BioSimGrid users. The
feature was intended as an example of the FOM feature but has subsequently
been useful for testing results returned from the data queried.

The command line features are used to examine data and demonstrate the
usefulness of such a feature.

• Code quality assurance

94

Monitoring the code submitted by users is very difficult and assessing the
reliability and accuracy of such code is nearly impossible. The BioSimGrid is
probably the closest the FOM will get to having quality assurance on code as
users are not free to deposit code. This is seen as a disadvantage as the aim of
the FOM is to support code collaborations. It does provide the opportunity
to test and examine the scripts and provide a measure of quality.

As the scripts are used frequently and have limited functionality they are easy
to test and any bugs are quickly reported.

• Method execution – results as objects

Each of the methods shown in table 5.2 returns data as Python objects. These
objects are then passed to the calling code. As Python is a dynamically typed
language execution is simple, the calling function is provided with an object
which it can use (Lundh, 2001b).

• User code submission – language dependent

There is no mechanism for users to submit code but there are two different
file types supported. The code was added in at the administrator level as the
data storage layer of BioSimGrid is transparent to users.

This provides a controlled environment with which to introduce ‘user code’
and test the capabilities for two different scenarios. The BioSimGrid project
supports further code submissions.

• Code association – file methods

Each of the methods in table 5.2 is associated with the file containing the data.

• Code association – file type methods

As there are only two file types; those in SRB and those on the local file sys-
tem. The filename does not determine which code is invoked, rather it is the
location. This has come about as the file names and types are the same but
the code for managing each file depends on its locations.

5.9.1 Limitations

Applying the FOM to BioSimGrid highlighted some of the limitations of both the
FOM and the BioSimGrid project. These limitations are now discussed and are
used as the basis for changes to the FOM described in section 6.

Remote execution

As the data is distributed across many sites the next logical progression is to execute
the methods on the machine where the data resides. Shipping the processing closer

95

to the data is the most economical mechanism to extract data, especially where
the data returned is smaller than the data required to produce the results. Using
the FOM on a file remotely provides an excellent mechanism to load balance and
reduce bandwidth. SRB provides a command to remotely execute a shell script on
the machine where the data exists. The standard output and standard error (Rosen
et al., 1999) are then piped back to the calling machine.

In the current version of SRB used by BioSimGrid this feature is not fully devel-
oped and has some serious limitations, which make it unusable.

If this feature worked as expected the data which can be returned is limited to
text and shell scripts. This is not acceptable for the FOM and one of the advan-
tages is that users can retrieve objects compatible with their current programming
language.

This limitation indicates that although the concept is valid, the technology used
is inappropriate. As this feature was not in the original FOM discussed in chapter 3
a proposed change to the FOM is described in chapter 6 resulting in a change of
technology.

Network traffic

One limitation of BioSimGrid is the inefficiency of the transport of data. When sim-
ulation results are generated they are stored locally, these are then processed using
the deposition code and directly written into the BioSimGrid database, resulting in
the data residing at two locations.

Additionally as the simulations are not processed on the BioSimGrid machines
and are copied to a BioSimGrid node there are normally three copies of the simula-
tion data in up to three different locations (excluding any SRB replication). As each
simulation dataset is potentially large this is an inefficient use of resources.

Repetition

BioSimGrid has a core set of analysis tools described in section 5.7.4. As there are
only a few tools it is not inconceivable that users might run the same or similar
analysis scripts. One of the main disadvantages of the BioSimGrid project is that
users cannot see what analysis has already been processed and they do not have
access to any analysis results from other users.

As analysis is computationally expensive, it is more efficient to save the results
and make these available to other users. Section 6.3.5 describes how the FOM can
be adapted to meet this need.

96

5.10 Summary

In this chapter we have introduced the BioSimGrid project and described the moti-
vation behind the project. BioSimGrid provides a repository for scientists to deposit
simulation data in different formats making the data accessible to users.

The data within BioSimGrid can exist in two different formats, those stored in
flatfiles locally and those stored in SRB flatfiles. These two formats have come
about as part of the evolution of the BioSimGrid project and provides a controlled
environment to implement the FOM.

Using the FOM to implement a number of BioSimGrid functions highlights the
benefits and limitations of the model. The main limitations are the inability to work
in a distributed environment, inefficiency of network and resource usage and the
repetition of calculations.

Whilst these limitations do not affect the functionality of the FOM they are fun-
damental to its overall usability and efficiency aims. These limitations provide a
basis for modifying and adding features to the FOM and are discussed in chap-
ter 6.

97

Chapter 6

Method adaptation

6.1 Introduction

In chapter 3 we proposed the File Object Method (FOM) concept and outlined its
features and capabilities. The FOM has been explored using two different imple-
mentations: the prototype shown in chapter 4 and a production project, BioSim-
Grid, shown in chapter 5.

Both these implementations have provided an opportunity to examine how the
FOM performs on data in both test and production environments. The next logical
progression for the FOM is to look at the findings from these projects to see how the
method can be improved. Both implementations have provided valuable feedback
with which to recommend FOM modifications.

This chapter provides a list of enhanced features and capabilities of the FOM
aimed at meeting the objectives outlined in chapter 1.

6.2 Motivation

The prototype shown in chapter 4 provides an implementation of the FOM. This
implementation runs on a single machine and enhances the user’s data manage-
ment capabilities. For the FOM to meet the objectives set out in chapter 1 some
changes are required.

The FODB prototype does not fully support access to data across a distributed
infrastructure but supports the submission of user code. The BioSimGrid project
manages data across a distributed infrastructure but is very restrictive about sub-
mitting user code.

In this chapter we look at the advantages of both the FODB and the BioSimGrid
infrastructures in order to enhance the implementation-independent FOM specifi-
cation. Using this we describe additional features which future FOM implementa-
tions should incorporate to enhance the user’s data management capabilities.

98

Problem

Distributed
storage

Data
repository

Analysis
interface

Results

Data
files

Check for existing
data

Perform analysis

Repository
browser

Distributed
storage

Distributed
storage

User interfaceUser workflow Infrastructure

Analysis
results

repository

Check for
existing

analysis results

Perform
experiment

Figure 6.1: Shows the proposed changes to the FOM workflow. The FOM checks the analysis reposi-
tory to see if a FOM method has been executed previously and returns the cached results
if they exist.

6.2.1 Proposed workflow

In section 2.2 on page 5 we took the existing user’s workflow and proposed an
enhanced workflow based on the FOM as shown in figure 3.1 on page 43.

The FOM proposes moving the analysis scripts from the user’s space into the
infrastructure to facilitate collaborations. Figure 3.1 shows how the proposed FOM
keeps the user’s workflow consistent but assists with managing the data. The FOM
changes the underlying infrastructure and is implemented in the prototype de-
scribed in chapter 4.

This is the basis of the BioSimGrid workflow shown in figure 5.5 on page 79,
which supports distributed storage. It encourages users to check for existing simu-
lation data before performing a simulation.

We now propose to enhance the user’s workflow further by including a cache
of previously executed analysis operations, as shown in figure 6.1. The differences
appear in the infrastructure as the data is no longer stored on a local file system.

All the experimental data is deposited into a repository along with the results
from any analysis. When a FOM method is called the results are returned to the
user as well as stored in the FOM infrastructure. If the same method is executed
again, the FOM first checks the cache thus eliminating the recalculation of results.
If the underlying data changes, the cache is cleared of all related analysis results.

The perform experiment and perform analysis stages in the workflow remain un-
changed permitting users to continue with their existing workflow unhindered.

99

6.3 Method modifications

Using experiences gained from the prototype shown in chapter 4 and the produc-
tion project BioSimGrid shown in chapter 5, we propose modifications to the FOM
described in chapter 3. These experiences have suggested additional features which
are appropriate to add to the FOM and can be used to support the workflow de-
scribed in section 6.2.1.

The proposal is to adapt the FOM to work across multiple machines transpar-
ently to the user. The key motivation is to assist with collaborations and to acceler-
ate the exchange and sharing of code. An implementation-independent description
of these features is described below.

6.3.1 Data distribution

Distributing data across multiple machines and managing access, replication and
data integrity is a problem in itself. Data transmission and nodes can be unreliable
and any distributed environment has to be able to manage anomalies not found
in a standalone environment (Anderson, 2001). This feature enables the FOM to
work over a distributed environment so that data and code can easily be exchanged
between users. The FOM is not intended to implement a distributed environment,
rather it should be able to run on top of a distributed environment.

Each file cannot be split between resources as this would result in the user’s
code having to manage this, unless the distributed layer makes it transparent. All
the files available across the distributed FOM have to be visible to the user as if they
were locally stored. The users should not be able to distinguish if they are working
on a distributed repository or a local repository.

Each data file can exist on more that one location, resulting in redundant backup
copies which improve availability.

6.3.2 Remote method execution

As the data is to be distributed then the method execution has to be able to operate
remotely. This is more difficult for some features than others but the method has to
execute and return results as if it were run locally.

6.3.3 Load balancing

As a data file can exist on more than one resource there is an opportunity to load
balance method execution. This feature enables the FOM to select the most appro-
priate machine to execute a method based on the machine load.

100

6.3.4 Security

Security is an issue which should be included in any software design (Cwalina,
2005). The prototype shown in chapter 4 supports the standard file system per-
missions but as the data becomes distributed across sites there is a need to provide
assurances about the security of remote data as well as the transmission method.
The BioSimGrid project provides an insight into securing distributed data across a
network but does not offer any code execution security.

The FOM does not implement any security functionality as it is intended to
leverage existing technologies. As with most distributed systems if the physical
machine is compromised then it is assumed that the FOM security is also compro-
mised. Below we show how the FOM secures the data, code and transport layers.

Data

As all the data is stored in files, the permissions are the responsibility of the operat-
ing system. The FOM has to be able to support data access based on the operating
system permissions. This ensures that the data is secured using a mechanism with
which the users are familiar.

Code execution

The FOM enables users to submit code which is then executed on the machine
holding the data. Access to the data files are restricted at the operating system
level, ensuring the data is safe. For the FOM to be successful the code execution
has to be managed to ensure that it is not possible for malicious code to damage
data or disrupt services. This FOM feature is required to ensure that the user’s
code runs in an isolated environment such as a sandbox (Gong et al., 1997).

Transport security

The FOM has to guarantee that all data transmitted between machines is secured
and encrypted. The security is not performed by the FOM but by leveraging ex-
isting technologies. For example data communication can be secured using Secure
Sockets Layer (SSL) or Internet Protocol Security (IPSec) , both of which are widely
accepted across the technological community (Tiller, 2000).

6.3.5 Method results cache

Currently BioSimGrid users are unable to see which analyses have already been
calculated by other users and rerunning an analysis wastes resources. The cache
can compromise security as one user could work out what another is analysing.

101

When a FOM method is executed the results have to remain in a cache. This
cache serves as an automatic repository for analysis results which reduces recalcu-
lation times.

This has implications for the users as often they wish to keep their work private,
at least until published. In the FOM we propose to keep the cache running at all
times, but not making it possible for users to browse other users’ analyses.

For example if a user executes a method previously executed by another user
the results will be retrieved from the cache. A user has no mechanism to list which
methods have been executed previously by other users. The time taken for a cal-
culation to complete may provide users with an indication that the calculation has
previously been computed.

6.4 The .NET framework

In chapter 4, Python was selected as an appropriate language to implement the first
FOM prototype. As the FOM features have become more defined and the features
more demanding, there is a need to review the existing technologies.

The FOM features require that future implementations are both secure and ca-
pable of managing distributed data. To ensure that the FOM is successful it has to
support many languages.

It is for these reasons that the .NET framework (Richter, 2002) is considered for
the final FOM implementation.

The .NET framework is the next evolution of the Component Object Model
(COM) which has been extensively utilised in the past (Gordon, 2002). There are var-
ious variants of COM, mainly Object Linking and Embedding (OLE), Distributed
Component Object Model (DCOM) and ActiveX (Barry, 2003). The .NET frame-
work provides language independent interoperability between existing libraries
and promotes the implementation of secure code.

It is similar to the Java 2 Platform Enterprise Edition (J2EE), developed by Sun
Microsystems which supports multi-platform applications (Armstrong et al., 2005).
.NET has limited platform support as discussed in section 6.4.1.

The .NET framework supports over 23 programming languages and supports
many third-party languages. The ability to extensively support most programming
languages is due to the Common Language Infrastructure (CLI), described in sec-
tion 6.4.1. It is this support for the most common programming languages that
makes the .NET framework an attractive platform for the FOM.

6.4.1 Common language infrastructure

The CLI is the key .NET framework design feature, which provides support for
multiple programming languages. It is also responsible for exception handling,

102

C# Compiler

Common
intermediate

language

Common
language
runtime

Common language infrastructure

Machine
readable

code

Compiler

CompilerPython

VB.NET

Figure 6.2: Shows the Common Language Infrastructure implemented in the .NET framework.

resource allocation and garbage collection (Jones, 1996). The .NET implementation
of the CLI is called the Common Language Runtime (CLR), which is similar to the
Java Virtual Machine (JVM). The JVM takes the platform independent byte code
generated by the Java compiler and executes it by interpretation or Just-in-Time
(JIT) compilation.

Each programming language supported by the .NET framework has its own
compiler which produces platform-independent code, called the Common Inter-
mediate Language (CIL). The CIL ensures that any .NET compiled code can run on
the CLR. The CLR is platform-specific and it compiles the CIL into machine-specific
code as shown in figure 6.2.

6.4.2 Message transmission optimisation mechanism

The .NET framework supports remote code execution through web services and
.NET remoting (McLean, 2002).

Web services use Extensible Markup Language (XML) to pass messages be-
tween clients. This is inefficient when transferring binary data. It is for these rea-
sons that new standards have been developed and are discussed below.

Message Transmission Optimisation Mechanism (MTOM) is a standard which
has evolved to address the issue of efficiency and interoperability of XML message
transmission. The MTOM encoding of a document looks similar to the standard
XML document serialisation, but optimises large blocks of binary data by transmit-
ting them as binary attachments (W3C, 2005a).

MTOM is intended to replace the existing standards for attachments, Direct In-
ternet Message Encapsulation (DIME) (Microsoft, 2002a,b), WS-Attachments (Mi-
crosoft, 2002c,e) and SOAP with Attachments (SwA) (Microsoft, 2005b) as these have
limitations.

For example, SwA uses strings to denote the beginning and end of binary data.
This results in the entire dataset having to be searched to locate the end. SwA can-
not be represented in an XML infoset, unlike MTOM. This causes problems with

103

web service model and results in the inability to secure the data using standards
such as WS-Security (Microsoft, 2002d). DIME is more efficient than SwA, but can-
not be represented as an XML infoset.

One of the main advantages of MTOM is that it preserves the XML formatting
of a document ensuring that it is possible to combine MTOM messages with WS-
Security (Microsoft, 2002d) so that SOAP W3C (2003) messages can be signed and
encrypted even if they contain binary attachments.

MTOM leverages the XML-binary Optimised Packaging (XOP) standard which
provides a mechanism for serialising an XML infoset into an XOP Package, which
is an abstraction in the specification (W3C, 2005b). One implementation is to use
Multipurpose Internet Mail Extensions (MIME) Multipart/Relate to attach the bi-
nary data (Levinson, 1998).

At the time of writing MTOM is implemented in a few publicly-available beta
toolkits, the key implementations are:

• Indigo is a set of .NET (Chappell, 2005) technologies for building and running
connected systems. It is intended as a communications infrastructure built
around the Web Services architecture shown in section 2.8.1. The existing
beta version currently implements MTOM.

• Web Services Enhancements (WSE) version 3.0 is currently released as a Com-
munity Technology Preview (CTP) and implements MTOM. It is a .NET add-
on which provides the latest web service capabilities.

• Java API for XML Web Services (JAX-WS) version 2.0, currently released as
an early access product for Java (Chinnici et al., 2006) developers.

In addition to MTOM there are other web service standards which are appro-
priate for transmitting messages (data) between clients. To ensure reliable message
transmission we propose the use of WS-ReliableMessaging (WS-RM) (Bilorusets
et al., 2005).

Reliable messages are often not sufficient, for example as with databases, users
often want operations to be transactional. Either all messages arrive and are pro-
cessed or the system remains in the state before messages were sent. The WS-
Coordination (Cabrera et al., 2005a) framework provides support for protocols that
coordinate the actions of distributed applications. For example, for short duration,
ACID transactions it supports WS-AtomicTransaction (Cabrera et al., 2005b) and for
longer running transactions it supports WS-BusinessActivity (Cabrera et al., 2005c).

The messages transmitted between clients may contain sensitive information.
WS-Security (Atkinson et al., 2002) provides a mechanism for securely transmitting
these messages.

104

6.4.3 Security

The .NET framework has mechanisms to ensure that malicious code is either not
executed or has restricted operations.

When a .NET assembly is executed the CLR first obtains evidence about the
assembly, using its associated metadata. This is used to identify the code group to
which the assembly belongs. Each code group has a set of permissions determined
by the machine administrator. When the CLR detects an unauthorised operation, it
throws a security exception and halts execution.

Code downloaded from an untrusted source, e.g. the Internet, is automatically
stored in a sandbox (Gong et al., 1997).

The .NET framework provides users with the ability to digitally sign their code.
Code that is signed is said to have a Strong Name (SN)(Jones, 2003). This ensures the
authenticity and integrity of users’ code and ensures that it has a globally unique
name which helps prevent spoofing.

The .NET framework supports impersonation, which permits the execution of
code as if run by a different user. This is beneficial to the FOM where users’ code
needs to be executed with restricted capabilities.

6.4.4 Managed code

Managed code is a feature of the .NET framework which makes the CLR respon-
sible for the managed execution of user code. As shown in figure 6.2, the CIL
is executed by the CLR. This provides the CLR with the ability to determine what
operations the user’s code will perform. When the CIL is compiled the compiler in-
serts garbage collection hooks (Jones, 1996), array bounds, indices and other checks
to improve performance and security. The CLR can halt execution of a process if it
attempts to perform an illegal operation such as memory or file access.

This ability to ensure that malicious code cannot be executed is an attractive
option for the FOM.

6.4.5 Alternative implementations

The CLI has more than one implementation, of which the CLR is the most ad-
vanced. The other main implementations are aimed at porting the .NET framework
capabilities to other platforms. The three most popular are discussed below:

• The Shared Source Common Language Infrastructure (SSCLI), codenamed
Rotor is Microsoft’s shared source implementation of the CLI and is not in-
tended for commercial purposes. The first version comes pre-configured to
run on Windows, FreeBSD (McKusick, 2004) and Mac OS X (Apple, 2006). The
most recent version, v2.0 currently implements most of the .NET framework
classes.

105

• The DotGNU Portable .NET project implements the CLI for many different
architectures and platforms (DotGNU, 2006). It only supports two program-
ming languages, C and C#.

• Mono is very similar to the SSCLI implementation and is licensed as Open
Source Software (OSS) promoting contributions from interested parties (Ma-
mone, 2005).

6.5 Active directory

Many users can submit code to the FOM and they may want to restrict user access
to methods, code and data files. The FOM does not aim to implement any secu-
rity features, but prefers to leverage on existing technologies. All the access rights
and user management are controlled by the host operating system. This may not
provide a suitable security granularity. For example, it is difficult to restrict a sin-
gle FOM method to a user or group of users. Enterprise wide user management
systems already exist and may be suitable for future FOM implementations.

One existing, widely adopted mechanism for managing users across an enter-
prise infrastructure is Active Directory (Spealman et al., 2003). Active directory pro-
vides system administrators the ability to centrally manage many machines using
a role based policy.

These policies can be applied to resources (Storage) , services (FOM methods)
and users, thus providing a fine level of control.

Active directory requires a large infrastructure, i.e. a dedicated domain con-
troller. For small FOM implementations this may be too large an overhead, an
alternative such as Active Directory Application Mode (ADAM) may be more ap-
propriate. On a standalone machine, i.e. not belonging to a domain, it is possible to
apply local policy to restrict users to certain applications or data.

6.6 Discussion

The FOM is intended to promote collaborations across a wide variety of users. It
is for this reason that the FOM has to support distributed data resources. As with
BioSimGrid, users must have multiple entry points to the data. This hardens the
system in the event of failure but also assists with load balancing. If the data is
replicated, the analysis can be performed at multiple locations simultaneously. It is
important that the processing is moved to the data to reduce network load. Storing
the data in more than one location can also assist in making the data accessible to
more users and assists with data persistence.

In the BioSimGrid implementation it is common for a user to copy data files
many times, once from the machine where the data is created to the BioSimGrid

106

node. From here it is parsed and deposited thus copying it again into an internal
format. As the data gets large, copying becomes an expensive inconvenience. It is
therefore important that the FOM supports the direct copying or streaming of data
into the repository.

The FOM analysis results cache provides an opportunity to optimise the anal-
ysis of data. There are several implications with storing the analysis results. The
cache can get too large, as with simulations and experiments, where the data is
large it may be quicker to recalculate than to store the data. The FOM also has to
monitor the data files; when a file is changed the cache also has to be purged. Since
the cache is transparent to the users it can greatly enhance the users capabilities.
The cache size and the lifespan of data are left as implementation specific variables.

We discussed the capabilities of the .NET framework and highlighted the capa-
bilities which are beneficial to any FOM implementation. The main advantages are
the advanced security features and the support for multiple languages. The main
drawback is the limitation of supported platforms. A FOM implementation run-
ning on the .NET framework is restricted to the Windows platform. In section 6.4.5
we discussed some alternative CLI implementations which demonstrate ongoing
work to support additional platforms.

6.7 Summary

In this chapter we recommend modifications to the initial FOM described in chap-
ter 1. These modifications are based on findings from the two FOM implementa-
tions, the FODB and the BioSimGrid project.

The modifications include distributing the FOM repository across multiple re-
sources to provide better data accessibility and redundancy. We propose adding
a FOM caching repository to store all previously calculated analysis results. This
eliminates repeat calculations and optimises the user’s experience.

We discuss the key features of the .NET framework and some alternative im-
plementations which can benefit future implementations of the FOM.

107

Chapter 7

Final method implementation

7.1 Introduction

In this chapter we take the FOM concept shown in chapter 3 and use the recommen-
dations in chapter 6 to produce a final proof of concept prototype. This prototype,
called the Storage and Processing Framework (SPF) demonstrates all the FOM fea-
tures in a secure and distributed environment.

The SPF is implemented using the .NET framework and is based on a Service-
Oriented Architecture (SOA). The underlying infrastructure supports a secure and
distributed file system upon which we demonstrate the FOM features using two
examples. These examples are written in different .NET languages and used to
demonstrate the multi-language support of the SPF.

In this chapter we outline the infrastructure and capabilities of the SPF and in
chapter 8 we compare this prototype with previous implementations.

7.2 Overview

The SPF is a .NET implementation of all the FOM features (Johnston et al., 2006a). It
has three key components: the storage service, the storage manager and the client
layer as shown in figure 7.1.

The storage service manages the data, mapping it to a physical resource. The
SPF can have many storage services each controlling a single resource. All the
storage services are controlled by a single storage manager. The storage manager is
the point of entry for the client layer which exposes all the SPF features to the end
users. As each storage service has to register with the storage manager, the user
layer can locate any data in the SPF.

108

Storage instanceStorage instance

Storage instanceStorage instanceStorage instance

Client instance

Storage manager instance Network

Figure 7.1: Shows the three key components of the SPF. Each component runs as a web service pro-
viding interoperability across a distributed environment. A single storage manager sup-
ports many client and storage instances.

Storage API DLL manager

SQL databaseFile system

Webserver

DLL store
Network

Storage service

Figure 7.2: Shows the key components of the storage service. The storage API methods are all ex-
posed through a web service.

7.3 Storage layer

The key objective of the storage layer is to provide a mechanism for accessing files
on a given machine via a web service. By implementing the storage layer it is
possible to show how this File Object Method (FOM) model can be used to perform
calculations in a distributed environment. This storage layer is not intended to be a
substitute for a distributed file system and is merely a testing platform for the SPF.

The storage layer is responsible for making the files transparently accessible to
the client layer, regardless of location. The storage layer is built up with many
storage services and a single storage manager, both of which are web services.

7.3.1 Storage service

Each machine has one storage service which manages the data stored on that re-
source. The storage service is responsible for taking files and storing them on the
storage space provided by a resource. The service then responds to requests for
files and information about files.

The storage service instance has two key components: i) the storage API and
ii) the Dynamically Linked Library (DLL)manager, as shown in figure 7.2.

The storage API maps the SPF file requests to local files and is responsible for
invoking the DLL manager. When a file is deposited, it is stored in the local file
system and the name and file type are registered with the local SQL database.

The users .NET code is compiled into an assembly called a DLL. The DLL man-
ager stores all the user’s code and maps it to files and file types. When a file is

109

Storage manager API SQL database
Webserver

Storage manager service

Network

Figure 7.3: Shows the key components of the storage manager. The locations of all known storage
services and a cache of known file locations are all stored in an SQL database.

selected the DLL manager provides information about the user’s code associated
with that file and what methods are available. When a user executes a method the
DLL manager locates the code and executes the constructor using the local file as a
parameter. The results are returned back to the user through the storage API.

The DLL manager caches the results returned by an SPF method. These results
are stored in the DLL SQL database and are used to speed up SPF execution. The
DLL cache stores the last modified time of all SPF files. When an SPF method is
invoked the timestamps are compared. If an SPF file has been altered the SPF cache
is flushed.

7.3.2 Storage manager

Each storage service has to register itself with the storage manager which is respon-
sible for receiving file requests from the client layer and returning a list of storage
web services that store the requested data file. The storage manager stores the stor-
age service metadata in a SQL database as show in figure 7.3.

There are many storage services, one per machine and one storage manager in
the SPF. The FOM architecture can support more than one storage manager to allow
users to have more than a single point of entry. This can assist with load balancing
although the SPF implementation utilises a single storage manager.

The storage manager is not responsible for managing the locations of files or for
managing any metadata about the files. Its function is to provide a point of entry
for the client service. When a client requests a file it first asks the storage manager
to return the file providing the location of the client web service which requires the
file. The storage manager is a lightweight index of the files stored in the SPF; it
does not fully index all the files stored in the SPF. If a requested file is unknown
the storage manager polls all the known storage services requesting the file. The
location of files are cached in the storage manager and the client layer. This simple
mechanism provides a framework upon which it is possible to test the FOM.

110

SPF URL

Storage service

SPF:/data/John.student

data/John.student

Storage root

/home/FODB/

Relative path

Storage service

Storage service

Network

data/John.student

Storage root

/tmp/

Relative path

data/John.student

Storage root

/home/user/

Relative path

Figure 7.4: Shows how a single SPF URI maps to more than one replicated file. Each file is stored in
a separate storage service and the SPF URI is relative to the storage service root directory.

simulationData2.bin
examples

exampleDat.bin

Site 1

Storage service

simulationData1.bin
simulation2

simulationData3.bin

simulationData2.bin
examples

exampleDat.bin
simulationData1.bin
simulation2

simulationData3.bin

Storage service Client layer

Site2 SPF directory view

Figure 7.5: Shows how the files distributed across two storage services appear to the client layer. Files
with the same SPF URI are taken as replicas of the same file.

7.3.3 File objects

The storage layer identifies files using a SPF Uniform Resource Indicator (URI) as
shown in figure 7.4. The URI identifies a file to the end user which may reside in
many locations. In figure 7.4 the file John.student is stored in three locations.
Each storage service has its own root folder where all the SPF data files are located.
The SPF URI is relative to the root folder. Thus each file does not need to have
the same location on each storage service. The absolute filename is retrieved by
replacing the ‘SPF:’ prefix with the storage service root folder name.

The client layer treats a replicated file as a single file object. When a user re-
quests data from the file, the most appropriate storage service is selected. This is
based on Central Processing Unit (CPU) load but can be substituted for other ma-
chine parameters. If the file replications are not synchronised, the client layer flags
the file as dirty. If the user chooses to ignore this then the file with the most recent
time stamp is used. When the client layer marks a file as dirty it notifies all the
out-of-date replicas of the storage service where the most recent data is stored. The
replica storage services then synchronises the data files.

The client layer can query all known storage services for a list of files and direc-

111

Graphical user interface

Command line user interface

Client API

Client instance

Network

Figure 7.6: Shows a single client instance. The client API provides a complete interface to the SPF
across a network. The API currently supports a command line and graphical user inter-
face and is extensible for future applications.

tories contained within a specific SPF folder. Figure 7.5 shows how the data from
two storage services is merged to produce a client view.

7.4 Client layer

All the client features are accessible through the client Application Programming
Interface (API). This interface provides a .NET library upon which all the client
layers are built. Currently two layers have been implemented: i) the command line
user interface and ii) the Graphical User Interface (GUI) as shown in figure 7.6.

The client API must have a point of entry into the SPF. This is accomplished
by supplying the location of one storage manager web service. Once this is estab-
lished, the API can query the SPF for files, names, locations and associated user
code. If the API does not know of the storage service where a data file is located,
it first asks the storage manager to supply a list of valid storage services. The loca-
tions of files are cached in the API to speed up frequent access. The API can then
query one of the storage services to retrieve information about the associated code.

The client API provides methods to retrieve data files as well as query the as-
sociated user code. This provides a list of associated user classes which can in turn
provide a list of associated user methods.

Once the user’s method has been selected the API can call the storage service to
invoke the associated code on the selected SPF file. The results are then transferred
back to the API layer where users are free to manipulate the data. The results of a
user method invocation are returned as .NET objects which the users can then use
programmatically in future code.

The GUI provides a visual representation of the underlying API capabilities and
is intended as an example application of the SPF. In section 7.5 we demonstrate the
GUI capabilities using the examples show in section 7.6. All the features exposed
in the GUI can be programmatically utilised by the user.

112

Example 7.1: Shows an example C# class with methods to provide information about a file.

1 using System;
2

3 namespace AdvancedFileInfo
4 {
5 public c l a s s AdvancedInfo
6 {
7

8 public AdvancedInfo(s t r i n g FileName)
9 {

10 //Constructor
11 getInfo()
12 ...
13 }
14

15 public s t r i n g contact(){
16 return this.ownerContact;
17 }
18

19 public s t r i n g getFullLocalPath(){
20 return this.fileInfo.Name;
21 }
22

23 public System.DateTime getLastAccessTime()
24 {
25 return this.fileInfo.LastAccessTime;
26 }
27 }
28 }

7.5 Example user code

To demonstrate the FOM capabilities we provide two example pieces of user code.
These are used in sections 7.6 and 7.7 to demonstrate the user’s workflow and FOM
features within the SPF.

The first example consists of a C# class which provides metadata about a spe-
cific file as shown in example 7.1. The AdvancedFileInfo class takes a file name
as a constructor parameter and provides three methods to return information about
the selected file. Each of the methods are described below:

• The contact method returns a string indicating whom the user can contact
for further information about the class.

• The getFullLocalPath method returns the full path and file name of the
selected file. This is useful in a distributed environment as the SPF file name
masks the real location of the data files.

• The getLastAccessTimemethod returns a DateTime object showing when
the file was last accessed.

The second example provides information about text files. It is designed to
operate on any text file and is written in Visual Basic as shown in example 7.2.

113

Example 7.2: Shows a visual basic class which provides information about text files.

1 Public Class WordCount
2

3 Public Sub New(ByRef filename As String)
4 ...
5 End Sub
6

7 Public Function countWords()
8 Return txt.words
9 End Function

10

11 Public Function countLines()
12 Return txt.lines
13 End Function
14

15 Public Function countCharacters()
16 Return txt.chars
17 End Function
18

19 End Class

The WordCount class takes a filename as a constructor parameter and provides
the following methods to return information about the selected file:

• The countWords method returns the number of words in the selected text
file.

• The countLines method returns the number of lines in the selected text file.

• The countCharacters method returns the number of characters in the se-
lected text file

Both .NET classes are compiled into a .NET library (DLL) which are then im-
ported into the SPF so they become available to all users.

7.6 Client layer workflow

In this section we describe the user’s SPF experience using the client GUI interface
described in section 7.4 and the examples provided in section 7.5.

In this scenario we have two storage services running on machines called Formido
and Onerous. Examples 7.3 and 7.4 show the files stored in the storage service. The
two student data files are stored on separate machines but the SPF file view merges
the directories to appear as a single directory. The readme.txt file appears on
both machines and will appear as a replicated file.

Both of the example .NET libraries shown in section 7.5 have been added to the
SPF. The AdvancedFileInfo DLL is associated with all files and the TextInfo
DLL is associated with any file with the txt extension.

114

Example 7.3: Shows the files stored in the storage service running on Formido.

1 sjj@formido> tree .
2 .
3 |-- StudentData
4 | ‘-- Fred.student
5 ‘-- readme.txt
6 1 directory 2 files

Example 7.4: Shows the files stored in the storage service running on Onerous.

1 sjj@onerous> tree .
2 .
3 |-- StudentData
4 | ‘-- John.student
5 ‘-- readme.txt
6 1 directory 2 files

7.6.1 Selecting an SPF method

The SPF windows client is shown in figure 7.7 and is divided into five regions. The
lower region displays the properties of the currently selected object. In figure 7.7
this region displays information about the machine Formido.

The upper four regions are used to find and select methods associated with
data files. For example, to select the GetLastAccessedTime method on the
readme.txt file, the user’s four steps are shown in figure 7.7.

• Step 1

When the user interface loads, the client layer connects to a storage manager
web service. The client then requests that all storage services return a list of
all files and folders stored within the root SPF directory. These files are then
collated and displayed in the SPF file tree view of the user interface. In this
example the user has selected the readme.txt file.

• Step 2

When a file is selected in the SPF file tree, the packages tree is then populated.
This provides a list of all the packages (collections of classes) which are associ-
ated with the selected file. In this example the readme.txt file has two asso-
ciated packages, the AdvancedFileInfo and the TextInfo package. Not
all storage services have the capability to run all user code as the DLL may
not exist on a particular resource. The client layer will automatically select a
storage service to execute a method base on the machine’s load. In the GUI
a user can see which machines are capable of running particular user code.
Both the associated packages can run on either machine (Onerous or Formido).
In this example the user has selected the AdvancedFileInfo package on
the machine Formido.

115

Select SPF file

Selected item properties

Select package Select class Select SPF method
1 2 3 4

Figure 7.7: Shows the SPF Windows client GUI built upon the client API layer. The four steps show
how the user selects a method which is associated with a data file. As objects are selected
their properties are displayed in the lower region of the GUI.

• Step 3

When a package is selected in the packages tree, the classes tree is populated.
This is a list of all the classes contained within the selected package. In this
example there is just one class, AdvancedFileInfo.

• Step 4

When a class is selected in the classes tree, the methods tree is populated. When
the AdvancedFileInfo class is selected the three methods shown in exam-
ple 7.1 are displayed. The user can then select a method and execute it using
the process described in section 7.6.2.

7.6.2 Executing an SPF method

Once a user has selected the SPF method to execute, it can then be invoked and the
results returned. When a user selects a method in the SPF Windows client shown in
figure 7.7 the execute SPF method window appears as shown in figure 7.8.

The four steps required to execute a method and obtain the results shown are
described below:

• Step 1

Since a class can have many constructors the user can select the constructor.
This is an optional step as the SPF will select a constructor with a single input
parameter over others as the SPF can execute this without user intervention.
Where a constructor only takes one parameter, the file name is automatically
passed to the constructor. If more than one parameter is required the SPF

116

Check constructor parameters
1

Check method parameters
2

Execute the SPF method
3

View the results
4

Figure 7.8: Shows the GUI to execute an SPF method. When a user selects a method this window
provides the user with optional constructor and method parameter modifications. The
results of a method execution are displayed in the lower properties window.

will look for a suitable candidate, failing that it will resort to passing the file
name in as the first parameter. Subsequent parameters are the responsibility
of the user. In the GUI interface, users can supply primitive parameters using
the constructor parameters option. In this example the class only has one
constructor which takes the file name, thus the default options are used.

• Step 2

The default behaviour of the SPF is to execute a method without any pa-
rameters. However users can provide primitive parameters by selecting the
method parameter option. In this example the method does not take any pa-
rameters.

• Step 3

Once a user has set the optional constructor and method parameters it can be
invoked using the execute method button. This will cause the storage service
where the file is located to request the DLL Manager to create an instance of
the class and invoke the selected method. The results from this method are
then serialised and passed back to the client layer using web services. The
client layer returns the results object to the calling interface, in this example
the GUI.

117

• Step 4

To demonstrate that the results of the method are returned as an object we
display the properties of the object in the results view as shown in figure
7.8. It is expected that a user will take the return object and utilise it in a
calling application. The GUI is intended to demonstrate the capabilities of
the underlying API.

7.7 File object method features

In this section we look at all the FOM features and capabilities in turn and describe
how the SPF supports each. Where applicable we use the example code described
in section 7.5 and refer to the GUI discussed in section 7.6.

7.7.1 User data submission

All the storage services run on the host machine’s file system and the structure of
the files remain unchanged. Users are free to add and remove files from the storage
service’s root directory.

Simulation and experimental data can be written directly into the storage ser-
vice using the user’s preferred method. The API supports importing data files,
although users do not have any control over where the files are stored.

7.7.2 User code submission

User codes must be compiled into a class library (DLL) which is common practice
in the .NET framework.

The DLLs are stored in the DLL HOME directory located in each storage service.
Users can either manually copy the DLL into this directory or use the API to import
the DLL. This only makes the SPF aware of the DLL but does not associate it with
any files or file types. In section 7.7.3 we show how users can associate DLLs with
data files.

The user’s code can be written in any of the supported .NET languages resulting
in the SPF’s ability to support language independence.

7.7.3 Code association

Users have the ability to associate code with data files using the client API as shown
in figure 7.9.

118

All packages and classes
1

Selected class associations
2

Add specific file association Add file type association
3 4

Figure 7.9: Shows the GUI used to associate users’ code to data files and file types.

• Step 1

This tree view displays all the packages and classes stored in the SPF. Code
association is linked to the class and not the package. In this example the
AdvancedFileInfo package has one class of the same name.

• Step 2

When a class is selected in step 1, the associated files and file types are dis-
played. All the files and types shown in this window will automatically be-
come associated with the AdvancedFileInfo class; in this example all the
files with a txt extension.

• Step 3

To associate additional files with the currently selected class, users can add
full SPF file names, e.g. a user can associate the file SPF:/MyFile.dat with
this class and it will appear in the window shown in step 2. Users must enter
a full SPF file name and path, which can be obtained using the browse button
and by selecting the appropriate file. This method is used to associate user’s
code with data files on a one-to-one basis.

• Step 4

Users can associate the selected class with any file of a particular type. In this
example entering *.txt will associate the AdvancedFileInfo class with
all text files.

119

Directories and files are treated the same in the SPF, thus users can associate
code on a one-to-one basis with directories.

7.7.4 Dynamic method discovery

The example shown in section 7.5 demonstrates how users can discover methods
using the client API. All the methods associated with a data file can be listed,
queried and executed. Although the GUI shown in figure 7.7 provides a visual
insight into the SPF, all the features are programmable using a .NET language.

The FOM shell execution feature has been eliminated as the SPF permits the
returning of data from all .NET languages as objects.

Results as objects or files

When an SPF method is executed the results are returned as .NET objects as shown
in figure 7.8. These objects allow the user to programmatically integrate the SPF
into existing applications.

Users cannot directly return SPF method results as file objects. If the SPF method
creates a file when executed this will then appear in the same directory as the data
file. This mechanism can be used to retrieve data from SPF methods as file objects.

7.7.5 Load balancing

The load balancing is managed in the API layer. When an SPF method is called
the API looks at all the storage services and selects the one with the lowest CPU
load. The rules which determine how a machine is selected are stored in a single
class. Further SPF optimisations can include additional rules to manage the load
balancing. For example, rules which take the available RAM, network speed and
available storage can be added to the load balancing rules.

7.7.6 Security

All the SPF user accounts are created and managed by the Windows operating
system. The SPF security is managed at the operating system level ensuring that
the data and hosting machines remain robust against malicious users. Relying on
the host Operating System (OS) ensures that users do not have to learn any new
mechanisms and relies on tried and tested code. The security features built into
most OS are thoroughly tested and normally updated as new threats arise.

The security is only as good as the configuration of the host OS, but these are
well discussed issues. Users are often familiar with the pitfalls of configuring their
OS of choice or can acquire support from existing knowledge bases.

120

Data

When data is deposited it is marked as read-only for all users and read-write for
the depositing user. Other users can be given permission to alter data files using
the OS user permission settings. Users can change the file permissions to suit their
task using the methods currently used.

Code execution

All the code executed in the SPF framework runs as a restricted user. The SPF,
by default only supports managed code (see section 6.4.4). This reduces the users
ability to execute malicious code on any of the SPF storage services.

Users can see all the methods available any data file, the data file integrity is
managed using the OS file permissions. The users code is restricted by the OS user
account under which it is executed and the managed code only option reduced the
opportunity to compromise security, for example by using buffer overflow hacking
attempts.

Transport security

Users have the ability to turn on transport security features in the SPF. For example
the MTOM data encryption shown in section 6.4.2 can be used to encrypt data
sent to the storage services. The .NET framework supports Simple Object Access
Protocol (SOAP) extensions to encrypt web service data.

In addition the option to run reliable message transacted messages is available
using the web service standards shown in section 6.4.2.

These features can be enabled or disabled, as appropriate to the application.

7.7.7 Method results cache

When an SPF method is executed the results are requested from a storage service.
Each storage service is completely autonomous and is responsible for invoking the
DLL Manager. The storage service infrastructure is shown in figure 7.2. This pro-
vides a good opportunity to cache previously computed results.

Every time an SPF method is executed the calling parameters and the results are
stored by the DLL manager. If the method is executed with the same parameters
the cached results are returned.

The cache is only valid for a single storage service to ensure that data is kept
consistent. If the data in a file is changed all the cached method results are removed.

121

7.7.8 Other features

The remaining FOM features described in chapters 3 and 6 are discussed below.

• Code quality assurance

The SPF provides the same code quality assurance as the FODB prototype
shown in chapter 4. Users submit managed classes which are made available
to all users. A user can only change their own data or submitted code, but the
SPF relies on peer review and user accountability to avoid malicious code.

• Cascading methods

As with the FODB prototype shown in chapter 4 the SPF supports cascading
methods. Any SPF methods common to all files in a directory appear on the
directory object. This method will invoke all the methods on all files in the
directory, returning the result as a filename-result tuple.

• Data distribution

The SPF supports data distributed across many machines and is demonstrated
in section 7.5.

• Remote method execution

The location of any data is transparent to the SPF. This results in complete
support for any remote execution of queries.

7.8 Discussion

The SPF demonstrates all the FOM features and provides an in-depth look at their
capabilities.

When users submit code it is copied to a single storage service. Multiple sub-
missions are required if the user wishes to make the code available on many ma-
chines. The client API supports methods to copy user code to other machines. Cur-
rently this copies the user’s compiled library to a different machine. It is possible
to automatically copy all users’ code to all storage services but this does not deal
with code dependencies. It is for this reason that code exists only on the machine
where it is deposited. Determining what applications are available on each SPF ser-
vice and only replicating user code to machines with the appropriate applications
is beyond the scope of this research.

The SPF results cache is only flushed when a data file has been altered. Since
an SPF method may return large volumes of data the cache can quickly grow. Cur-
rently the cache is limited by available storage space. It would be beneficial to
change this cache so that only methods which are time consuming are cached.

122

There needs to be a mechanism to limit the size of the cache and rules dictating
which cached results are removed first.

The web service reliable transaction standards shown in section 6.4.2 are suit-
able for future SPF implementations. Currently the SPF layer manages the web
service messages, but the next logical progression is to move this logic from the
application layer to the transport protocol layer. This would reduce the need to
monitor, retry and handle messages. As the SPF gets larger these features would
be beneficial.

7.9 Summary

In this chapter we demonstrate all the FOM features using a fully-functional proto-
type called the SPF. This prototype is implemented using the .NET framework and
integrates data across a distributed environment.

We demonstrate the SPF capabilities using two user examples written in differ-
ent programming languages. The SPF provides the ability to execute methods on
remote machines and returns the results as .NET objects. The capabilities of the SPF
underlying client API are demonstrated with the use of a GUI.

Using this interface we show how users can locate data and view its associated
methods. The GUI can invoke SPF methods and display the results.

In chapter 8 the SPF prototype is compared with previous FOM implementa-
tions.

123

Chapter 8

Evaluation

8.1 Introduction

In chapter 3 we propose the File Object Method (FOM) as a mechanism for man-
aging data. This is implemented in the File Object Database (FODB) prototype
described in chapter 4 where we demonstrate the FOM capabilities.

In chapter 5 we utilise a limited set of FOM features to manage computational
chemistry simulation data in the BioSimGrid project.

Using the FODB and BioSimGrid implementations of the FOM we then propose
alterations to the FOM as described in chapter 6. These alterations are used to
produce a final implementation-independent specification of the FOM, which is
implemented in chapter 7 in a project called the Storage and Processing Framework
(SPF).

The FODB, BioSimGrid and the SPF implementations of the FOM all support
different features. The FODB implements all the basic FOM features, the BioSim-
Grid project supports a limited but distributed set of FOM features, whilst the SPF
implements all the FOM features.

Each implementation is architected differently, utilising different technologies,
programming languages and FOM features.

In this chapter we look at each of these implementations and compare their
supported features. We show how the FOM supports the objectives of this work
outlined in chapter 1 and discuss the limitations of the FOM.

8.2 Overview

The FOM is designed as a method to assist users with data management. It pro-
poses the concept of associating programming methods with data files. This con-
cept allows users to browse data files and view any appropriate methods that are
capable of processing the data. Users of the FOM can utilise code that they may
previously have been unaware. It also ensures that the methods shown are appli-

124

cable to the selected data file. The FOM is a concept which outlines the features to
which any implementation must adhere. All the FOM features are shown in table
8.1.

The first FOM implementation shown in chapter 4, called the FODB , imple-
ments a sub set of these features. The FODB is intended as a proof of concept and
aims to demonstrate the FOM features using sample data.

The BioSimGrid project is establishing a worldwide repository for simulation
results as well as providing a data analysis framework. BioSimGrid manages mul-
tiple Tebibyte (TiB) of data and is implemented using a reduces version of the FOM.
The FOM features implemented demonstrate the capability of the FOM to manage
large volumes of data in a distributed environment.

The FODB demonstrates the FOM capabilities and the BioSimGrid project de-
monstrates the importance of distributed data. Using the observations from these
projects, we proposed modifications to the FOM. These modifications include the
ability for the FOM to operate across a distributed environment. This includes
remote method execution, data security and a method results cache as shown in
section 6.3. These modifications complete the FOM concept and produce a generic
data management framework capable of managing large volumes of data , securely
across a distributed environment.

In chapter 7 we provide a full FOM implementation called the SPF. This differs
from the previous two implementations as it implements all the FOM features, in-
cluding the FOM modifications described in chapter 6. The SPF is implemented
using the Microsoft .NET framework and is capable of supporting user code in
many different languages.

The capabilities of these three FOM implementations are described below.

8.3 Implementation feature comparison

The three FOM implementations implement a different subset of FOM features.
The FODB demonstrates the key FOM features such as method discovery and the
ability for users to submit their own code into the framework. The main limitations
are to do with security, data distribution and support for multiple languages.

The BioSimGrid project provides a reduced FOM implementation capable of
managing a large volume of production data. The features are limited to provide
assurances about the data security and integrity. It provides an example of the
FOM in a production project utilised by scientists across the UK and USA. Users
are not able to submit their own code and there is no capability for caching method
execution results.

The SPF framework is the first implementation to fully support multiple lan-
guage user code submission. Using the .NET framework we can provide assur-

125

Table 8.1: Shows which of the features described in section 3.4 are implemented in each of the three
implementations of the FOM. Full support for a feature is indicated with a Xand partial
support is shown as ◦. Features left blank are not supported.

FOM feature FODB BioSimGrid SPF
User data submission X ◦ X

Dynamic method discovery X X

Shell method execution X X X

Cascading methods X X

Code quality assurance X

Data distribution X X

Remote method execution X

Load balancing X

Method results cache X

User code submission
— Language dependence X ◦
— Language independence X

Method execution
— Results as files X ◦ ◦
— Results as objects X X X

Code association
— File method association X ◦ X
— File type method association X X
— Directory method association X X

Security
— Data ◦ X X
— Code execution ◦ X
— Transport security ◦ X

ances about the security of the data, code and transmission of data. The SPF
also implements an example load balancing capability and a method results cache.
These features provide a secure, efficient mechanism for users to access data across
a distributed environment.

All the FOM features described in chapters 3 and 6 are listed in table 8.1. This
table provides an overview of the features supported by each FOM implementa-
tion.

8.4 Objectives

The objectives identified in chapter 1 provide a basis for the FOM. The objectives
are designed to ensure that any work utilises the appropriate technology and is

126

appropriate for the target community. In this section we look at each objective and
evaluate the FOM implementations.

8.4.1 Data management framework

Large volumes of data need to be managed. In this objective we aim to produce a
framework capable of managing large volumes of data.

The FODB does not manage data across distributed resources and is limited to
a single instance. The implemented framework is capable of managing users code
and is the basis for future implementations.

The BioSimGrid implementation currently manages multiple TiB of data across
resources scattered across the United Kingdom and United States of America. Al-
though this is a limited FOM implementation it provides a working example of a
large volume data management framework.

The SPF is based on the BioSimGrid and FODB implementations. The SPF man-
ages files using the native operating system file system to provide a secure scalable
data storage framework.

8.4.2 Resource utilisation management

One of the key FOM objectives is to optimise the management of existing resources
to promote the reuse of computation results. All data stored in the FOM can be
made available to other users reducing recalculation.

The SPF supports the caching of method results which can speed the user’s
calculations. If an SPF method is invoked with the same parameters the repeat
calculation is eliminated by using results from the cache.

8.4.3 Data organisation

The FOM organises data by associating related code to data files. The data can
be retrieved and manipulated using the framework. This linking of code to data
assists the user by ensuring that the code is suitable for the data.

8.4.4 Locate data

As data volumes increase, they become fragmented across many resources, loca-
tions and architectures. Locating data becomes more complex and time consuming.

In this work we aim to enhance the user’s ability to locate data. This has been
achieved in the SPF implementation of the FOM.

Users can view the structure of all the files stored in the SPF transparently of
their location. The FOM is designed to ensure that users can keep the original
directory structure, file names and data format.

127

The FOM improves the user’s ability to locate and manage data but has two
limitations:

• Users are unable to search files for content, i.e locate all text files in the FOM
containing a specific phrase.

• Users have to manage the directory structure of data files. Users are free
to deposit data into the FOM by directly accessing the FOM storage devices.
Thus two users can create files with the same name. The SPF will flag the data
as out of sync and prompt the user. Using a fully qualified directory structure
may be useful, e.g. SPF:\\<company name>\<project>\<data>

There is a need to specify which directory structure users should create, but due to
the distributed nature of the SPF implementation control is difficult. This can be
overcome using a different underlying distributed file system.

8.4.5 Promote collaborations

The FOM aims to promote collaborations between users. This is achieved by the
exposure of all data within the FOM to all users. The FOM ensures that the users
code is correctly executed on the associated data, negating the need for users to
understand, compile or install the users code. The FOM enables the sharing of data
and code seamlessly across a distributed environment.

The FOM differs from a distributed file system as users can process the data
using associated code. This is important as data in general is useless without an
understanding of the format or knowledge of applications to extract the informa-
tion from the data. In the FOM, users are automatically provided with code that is
capable of processing the data files. The code is already configured so the user can
easily execute and obtain results, i.e. the SPF provides a single click execution GUI.

8.4.6 Generic data

The FOM is data domain independent. Only the BioSimGrid implementation of
the FOM is domain specific. This is due to the nature of the project and the vast
quantity of data management required.

The FODB and SPF implementations of the FOM are capable of storing data
regardless of their domain. Any data that can be stored in a file or series of files
can be stored. The FOM specifies that the data is kept in the original format and
structure to ensure that any implementations are capable of dealing with any user
data.

128

8.4.7 Generic resources

The FOM definition is discussed independently from any implementation to ensure
that the proposed method is not fixed to any operating system or architecture. In
the three FOM implementations we show how the FOM can operate using a variety
of scenarios.

The FODB can operate on any machine supporting Python, i.e. Linux, Windows
and Mac OS X. This implementation is a standalone version which makes cross
platform support easier.

The BioSimGrid implementation is written in Python and supported on Linux
(SuSE 9.X, Open-SuSE 10.0 (Novell, 2006)). Portability is limited as the BioSimGrid
application requires many platform specific applications.

The SPF implementation is the most restrictive in terms of portability, but pro-
vides most support for FOM features. The restrictions originate from the .NET
framework which has limited cross-platform support. In section 6.4.5 we described
some of the ongoing work to provide better platform support. As the SPF is imple-
mented using web services it is possible to extend the client and storage manager
services to other platforms using a different programming language e.g. Java. Only
the storage service currently requires the full .NET framework support, in order to
support the user’s code. Section 8.5.4 discusses the portability limitations.

8.4.8 Utilise open standards

Wherever possible we have adopted open standards to maximise adoption of the
FOM. Below we list the key areas where open standards have been included

The FOM takes advantage of open standards wherever possible to maximise
the uptake and extensibility of the concept.

For example, below we list the key areas where open standards have been
utilised.

• Web services

The SPF is built using a Service-Oriented Architecture (SOA) resulting in a
Web Service for each package. Web Services use a series of open standards
to establish communication and transfer data. For example Web Services De-
scription Language (WSDL), Extensible Markup Language (XML), and Sim-
ple Object Access Protocol (SOAP). This web service architecture ensures that
alternative FOM implementations are capable of interfacing with the existing
architecture.

• MTOM

Message Transmission Optimisation Mechanism (MTOM) complies with open
standards and it utilised to transfer data between web services, as discussed

129

in section 6.4.2

• .NET Framework

The SPF is implemented using the .NET Framework which is itself an open
standard. Although many alternative implementations are not currently avail-
able we can expect to see alternatives in the future, as discussed in section 6.4.

8.5 Limitations and improvements

In this work we proposed the FOM as a data management concept and provided
implementations to demonstrate its features. In this section we discuss these im-
plementations and their limitations.

8.5.1 Versioning

When a user submits data or code it is stored and managed by the FOM. Users are
then free to make changes, providing they have the appropriate permissions. This
can lead to versioning issues. If code is being used by another user and the owner
updates the functionality, or if data changes during analysis, the results may be
inaccurate or confusing.

There is a need for the FOM to provide code and data versioning to ensure
that calculations are repeatable. Versioning data can consume large amounts of
storage and is not appropriate for volatile data. Tools like shadow copy, discussed
in section 2.7 may be appropriate for data versioning.

The FOM can be modified to version any user’s code by retaining previously
deposited versions instead of replacing them. Providing code versions compli-
cates the FOM and provides users with more options. The FOM aims to be sim-
ple and unintrusive, so versioning needs to provide users with appropriate default
behaviour and the versioning needs to be provided as an advanced option.

8.5.2 Results caching

The FOM cache implemented in the SPF provides users with an inbuilt automatic
optimisation capable of returning pre-computed results instantly. The current FOM
cache, implemented in the SPF has several limitations.

The cache is local to each storage service, the user only benefits if a service
with a cached result is queried. If another service is used then the result is re-
computed. The storage layer is de-centralised to assist with reliability and load
balancing. Storage services are selected based on a set of rules which require some
performance tuning. For example, if an SPF method takes one day to compute
a result and the result is already cached, the next invocation should result in the
cached copy being returned.

130

Currently a storage service with a high load is not selected even if there is a
cached copy, thus the result is recomputed. Storage nodes are not required to have
high availability but are compensated for with the use of data replications. It is
not clear what should happen when a storage service is scheduled for down time.
Should the removal of a storage service result in the migration of cached results,
particularly compute intensive results.

All method calls are cached. The cache size differs between storage services
but when it is full, the oldest results are deleted. This is not always the desired
behaviour, there is a need to calculate the optimal cached results. For example
should compute intensive results have priority over frequently retrieved results?
Caching all method calls is also not optimal. For example, a call to retrieve the raw
data will result in the data being copied to the cache. This consumes space and is
not compute intensive. The cache needs to take into account: i) the result size, ii)
time to compute and iii) frequency of cache hits.

The SPF provides the ability to change the load balancing and caching options.
In future work, it is beneficial to have an automatic caching formula as it is not
appropriate for users to manage the cache.

8.5.3 Code and data security

Securing data, code and analysis in the FOM is a big issue. Although the FOM
aims to exchange data and code, users require assurances about validity of any
data. Executing user’s code can be dangerous and pose a risk to FOM data.

Data is secure only if it is stored on a secure machine. The distributed FOM
implementation makes security difficult. If the data is processed on a machine, then
at some point the data will exist in an unencrypted state in memory. Therefore,
if the physical security of a machine is compromised, the data is compromised.
This makes securing a distributed network inherently impossible. Although there
are discussions about hardware encryption support in processors which may assist
with this issue (Becker et al., 2003).

8.5.4 Portability

The FOM aims to encourage collaborations and exchange of data between users.
Users often have an operating system and platform preference. If the FOM re-
stricted users to only particular platforms or operating systems this would alienate
many users. The aim is to bring advanced database features to the user without
changing the users preferred working environment. The FOM has to support most
operating systems, most platforms and the most common programming languages.

The final FOM implementation, the SPF is the most advanced but provides lim-
ited portability. This is based on the .NET framework, which has limited support

131

for non-Microsoft operating systems. In section 6.4 we describe the ongoing work
to support .NET framework portability.

8.5.5 Volatility of variables

The FOM does not deal with volatile variables or functions. For example if a user
were to submit code to return the local time of a machine. The FOM method results
cache would cache the results, rendering the results obsolete.

To overcome this we propose the option of disabling the results cache, or re-
stricting the caching of results to non-volatile results.

In C# as with many other programming languages, variables can be marked as
volatile by using the volatile keyword (Horstmann, 2005). The cache can then
avoid the caching of these results, however it relies on the programmer to markup
variables appropriately.

8.6 Summary

In this chapter we look at the different FOM limitations and compare the capabili-
ties of each. The FODB is a proof of concept which demonstrates the FOM features.
The BioSimGrid project demonstrates the FOMs capability to manage large vol-
umes of data. The SPF provides a final FOM implementation capable of supporting
all the FOM features, each implementation builds upon findings of the previous.

We demonstrate which of the FOM features are supported across the three im-
plementations. These are displayed in table 8.1 and show how the designs have
evolved.

Finally we discuss how the final proposed FOM meets the objectives described
in chapter 1.

132

Chapter 9

Summary

In this work we identify current data management challenges and investigate how
non-technical scientific users can benefit from existing data management technolo-
gies. Often existing data remains unpublished, stored inaccessibly and in propri-
etary data formats. This results in the loss and repetition of many calculations
which is an inefficient use of computational resources.

In this work we outlined a series of objectives to produce a data management
framework for scientific users, with the ability to leverage existing technologies.
These objectives show the requirements of a suitable framework concept. The pre-
vious chapter contained a detailed evaluation of the framework we have devel-
oped. Most notably the framework concept has to be platform and programming
language independent and require minimal effort from the users. We propose that
users retain computationally expensive data and encourage collaborations to reuse
data where possible.

Processing power and storage technologies are advancing at different rates. In
the future a single unit of processing power will be responsible for managing a
larger quantity of data. The existing scientific workflow needs to change to ensure
that resources are utilised optimally. We discuss the suitability of databases and
file systems for managing data and demonstrate where each technology is suitable.
For example small frequently accessed metadata is best suited to a database whilst
large binary data is best suited to a file system.

We propose the concept of a File Object Method (FOM) framework which as-
sociates users code with data files. This ensures that users can manipulate and
process any data file without the need for complex data format specifications. The
FOM provides a framework which is transparent to users and keeps existing data
and workflows unchanged. At any point in the FOM, users are able to access and
manipulate the data files. The FOM is implementation-independent and outlines
the features any implementation must support.

The FOM provides users with the ability to seamlessly share data manipulation
code. The FOM can discover code associated with any data file and subsequently

133

execute methods, returning data objects to the user. This ensures that appropriate
code is invoked on data files, regardless of their format. Users can add their existing
code into the FOM for the benefit of other users and browse the FOM for code
associated with any particular data file.

The first FOM implementation, called the File Object Database (FODB) provides
a working prototype which successfully demonstrates the FOM capabilities. The
FODB is implemented in Python, with which many scientific users are familiar. We
demonstrate how users can submit data and execute FODB methods. Users can
interface with the FODB using the commandline or programmatically from within
a Python script. The FODB restricts users to Python and operates on a stand-alone
machine.

Having demonstrated the feasibility of the FOM concept we introduce a limited
set of FOM features into the BioSimGrid project. The BioSimGrid project is estab-
lishing a globally accessible molecular dynamics simulation repository. The project
currently manages multiple Tebibyte (TiB) of data and supports users internation-
ally. We utilise the FOM capabilities to manage the underlying data files which are
distributed across nine geographical locations.

BioSimGrid provides a valuable insight into the capabilities of the FOM and
demonstrates its capabilities for managing large volumes of data.

Using the experiences gained from the FODB prototype and the BioSimGrid im-
plementation we propose changes to the FOM. For example, we propose that the
FOM must operate across distributed resources, support multiple programming
languages and is capable of caching results from previously executed FOM meth-
ods. Distributing data in the FOM enhances data accessibility and provides the
ability to support data redundancy.

We have identified the need to move computation closer to the data to avoid
expensive data transfers (both in terms of time and expense), the FOM provides
this transparently to the end user.

Using the FOM proposed changes and the existing FOM implementations we
introduce a final FOM implementation called the Storage and Processing Frame-
work (SPF). The SPF implements all the FOM features including results caching and
remote method execution across distributed resources. The SPF is implemented
using the .NET Framework which provides the SPF with the capability to manage
user code in over twenty different programming languages.

We demonstrate the FOM features using the SPF and an example scenario in
both C# and Visual Basic. The SPF method discovery, execution and retrieval of
results, from both local and remote resources is demonstrated using a graphical
interface built upon the SPF.

The SPF remote method execution capability utilises the .NET Framework re-
moting features which limits the SPF to serialisable objects. Using the .NET Frame-
work enhances the SPF by permitting the execution of SPF methods from any .NET

134

supported language. This ensures that the data objects are compatible with the
users language of choice. The SPF transparently supports remote data access and
returns data objects supported by any .NET Language.

The FOM produces a generic data management framework which is described
conceptually and implemented in various prototypes.

9.1 Further work

The current proposed FOM demonstrates an ideal framework to address the user’s
data management issues. The areas of interest for future work are highlighted be-
low.

• Currently user’s code is stored on a machine selected by the user. It would
be beneficial to copy the code to additional FOM storage services. Since the
code is small it is easy to replicate and improves the FOM load balancing.
Currently the FOM does not support user code prerequisites. For example,
user’s code requiring an installed package, library or tool cannot easily be
replicated to other storage services. There is a need to store any operating sys-
tem, hardware and other software requirements along with the user’s code.
This ensures that if any code is replicated, it is guaranteed to run on another
appropriately selected machine.

• Data replication is expensive and requires careful scheduling to ensure that
many FOM storage services do not attempt to replicate at the same time. An
alternative to scheduling is using a Quality of Service (QoS) to prioritise traf-
fic. As replications can take time, the users are exposed to a potential data
loss risk. The availability of nodes and time taken to replicate needs to be
considered when storing data with a high availability demand.

• The SPF implementation of the FOM is based on a basic distributed file sys-
tem. Distributed file systems are well researched and many well tested prod-
ucts exist. Future FOM implementations need to support existing distributed
file systems.

• The directory structure is managed by users creating and removing directo-
ries. As the volume of users increases it becomes increasingly more difficult
to control the directory structure. This may be overcome with the use of an
appropriate distributed file system.

• Many scientists are familiar with particular operating systems, for example
Linux, Mac OS X and many UNIX variants. The SPF is implemented using
the .NET framework which is mainly supported on the Windows platform.
For the FOM the become successful it will require support for other operating

135

systems. The various .NET framework implementations require investigation
and integration into future FOM implementations.

9.2 Summary

Scientists and engineers increasingly require the ability to archive, retrieve and
manage the ever growing data volumes generated by complex computational sim-
ulations.

By adopting data management frameworks, such as the one we have outlined
which, in this thesis provides seamless and transparent data management services
in the environments in which they perform their simulations. They will be better
able to tackle the next generation of complex problems.

Furthermore such technologies are the key to unlock greater scientific insight
from data.

136

Appendix A

Computing resources

A.1 BioSimGrid hardware

Each of the six BioSimGrid sites have identical production machines and Oxford
and Southampton have an additional testing machine.

Table A.1, shows the hardware used in each of the six BioSimGrid sites. Each
BioSimGrid site has storage attached, table A.2 shows the configuration and storage
capacity of each.

CPU 2 X AMD Athlon MP 2400 [2.00GHZ]
Motherboard MSI K7D Master Dual AMD MP
RAM 2 Gibibyte (GiB)
Hard disk Maxtor 250 Gibibyte (GiB) IDE

Table A.1: BioSimGrid hardware.

Hard drives 250GB Maxtor SATA
Number of HDD 16
Configuration RAID 5 + 1 Hot spare
Usable storage 3.6TiB

Table A.2: RAID configuration and specifications

137

Appendix B

BioSimGrid

B.1 Flat files

The FlatFileManager class manages the two versions of the flat file accessing
methods. The code utilised within the BioSimGrid project to manage all the data
files is listed below.

Example B.1: Shows the Python code used to manage the flatfiles, this version shows how the data
is spread across multiple files and how each file is managed.

1 ’’’
2 BioSimGrid http://biosimgrid.org/ team@biosimgrid.org
3 Copyright 2003, 2004, 2005 University of Oxford and
4 University of Southampton. If you use this software in any way, please

cite:
5 Kaihsu Tai, Stuart Murdock, Bing Wu, Muan Hong Ng, Steven Johnston,

Hans
6 Fangohr, Simon J. Cox, Paul Jeffreys, Jonathan W. Essex, Mark S. P.
7 Sansom (2004) BioSimGrid: towards a worldwide repository for
8 biomolecular simulations. Org. Biomol. Chem. 2:3219-3221
9 http://dx.doi.org/10.1039/b411352g

10 http://eprints.ouls.ox.ac.uk/archive/00000804/
11

12 This program is free software; you can redistribute it and/or modify
it

13 under the terms of the GNU General Public License as published by the
14 Free Software Foundation; either version 2 of the License, or (at your
15 option) any later version.
16

17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
21

22 You should have received a copy of the GNU General Public License
along

23 with this program; if not, write to the Free Software Foundation, Inc
.,

24 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
25 http://www.fsf.org/licensing/licenses/gpl.txt
26 ’’’
27 """
28 Author:
29 Steven Johnston <s.j.johnston@soton.ac.uk>
30 Descriptions:
31 This is the point of entry for flatFile data retrieval.
32 This class is here to manage the different Traj databases, as well and

138

33 manage the connections, it will return the flatDatabase object for a
34 given location.
35 $Header: /var/deposit/codebase/BioSim/Database/FlatFileManager.py,v

1.12 2005/06/23 13:38:35 sjj Exp $
36 """
37 from BioSim.Database.flatDatabase import FlatDatabase
38 from BioSim.Database import SRBFlatDatabase
39 import Numeric,logging , shutil,os, time
40 from BioSim.Settings import ServerSettings
41 from BioSim.Database.Importer import DbaseImporter
42 c l a s s FlatFileManager:
43

44 def __init__(self, userSettings):
45 self.CVS_REVISION=’$Revision: 1.12 $’
46 self.revision = self.CVS_REVISION.split(" ")[1]
47 self.log = logging.getLogger(’general’)
48 self.log.info("New flat file manager" + " Version : " + str(

self.revision))
49 self._userSettings = userSettings #input suer settings object
50 self.serverSettings = ServerSettings.ServerSettings()
51 self.gidPrefix = self.serverSettings.getGIDPrefix() # you will

need to change your settings file for your site, not this
!

52 self.userBasePath = self._userSettings.getOutputPath()
53 self.basePath = self.serverSettings.getDataFilesRootDir()
54 self.tempPath = self.serverSettings.getDataFilesTempDir()
55 #connection pool, has a max of about 200 files for all trajs
56 self.__connPool = {}
57

58 def getConn(self, gid):
59 """
60 Get flat database connection
61 """
62 try:
63 return self.__connPool[gid]
64 except KeyError:
65 sfDB = SRBFlatDatabase.SRBFlatDatabase(gid ,userSettings=

self._userSettings,serverSettings =self.serverSettings
)

66 self.log.debug("Hit connection cache..." + str(gid))
67 self.__connPool[gid] = sfDB
68 return sfDB
69

70 def __calcname(self,gid):
71 return self.gidPrefix+str(gid)
72

73 def getNewDatabase(self, gid):
74

75 """
76 Set New bioSim.Database connection
77 """
78 return SRBFlatDatabase.SRBFlatDatabase(gid , userSettings=self

._userSettings ,serverSettings =self.serverSettings,
create=True)

79

80 if __name__=="__main__":
81 #Commandline usage, example
82 from BioSim.Database import FlatFileManager
83 from BioSim.Logger import BioSimLog
84 from BioSim.Settings import UserSettings
85 BioSimLog.BioSimLog()
86 usr = UserSettings.UserSettings("sjj")
87 ffM = FlatFileManager.FlatFileManager(usr)

139

Example B.2: Shows the Python code to access the frames of data stored using the Python pickle
method.

1 ’’’
2 BioSimGrid http://biosimgrid.org/ team@biosimgrid.org
3 Copyright 2003, 2004, 2005 University of Oxford and University of

Southampton
4 If you use this software in any way, please cite:
5 Kaihsu Tai, Stuart Murdock, Bing Wu, Muan Hong Ng, Steven Johnston,

Hans
6 Fangohr, Simon J. Cox, Paul Jeffreys, Jonathan W. Essex, Mark S. P.
7 Sansom (2004) BioSimGrid: towards a worldwide repository for
8 biomolecular simulations. Org. Biomol. Chem. 2:3219-3221
9 http://dx.doi.org/10.1039/b411352g

10 http://eprints.ouls.ox.ac.uk/archive/00000804/
11

12 This program is free software; you can redistribute it and/or modify
it

13 under the terms of the GNU General Public License as published by the
14 Free Software Foundation; either version 2 of the License, or (at your
15 option) any later version.
16

17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
21

22 You should have received a copy of the GNU General Public License
along

23 with this program; if not, write to the Free Software Foundation, Inc
.,

24 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
25 http://www.fsf.org/licensing/licenses/gpl.txt
26

27

28 $Header: /var/deposit/codebase/BioSim/Database/flatDatabase.py,v 1.5
2005/06/09 13:24:20 muanhong Exp $

29

30 ’’’
31

32 import os, random, sys, tempfile, time,array
33 import Numeric as Num
34 from struct import unpack
35 import pickle
36 import logging
37

38 c l a s s FlatDatabase:
39

40 def __init__(self, fileName, create=False , userSettings=None):
41 """Sets the name of the database, if the database exists then

the metadata
42 is loaded, else the database is created"""
43 self.CVS_REVISION=’$Revision: 1.5 $’
44 self.revision = self.CVS_REVISION.split(" ")[1]
45 self._userSettings = userSettings
46 self.log = logging.getLogger(’general’)
47 self.log.debug("New flatDatabase created Filename: "+ str(

fileName)+ " Version : " + str(self.revision))
48 self.create = create
49 self.metaDataExt = ".dat"
50 self.binExt = ".bin"
51 self.path , self.shortFileName = os.path.split(fileName)
52 self.log.debug("Path: " + self.path)
53 self.fileName = fileName
54 self.__open(fileName)
55

140

56 def __open(self, fileName):
57 """Internal method! called by init() this method sets the max

file size and
58 initialises the internal data structures, checks to see if the

database exists
59 and calls the appropriate methods"""
60 #store name of database
61 self.databaseName = fileName
62 #Set max file size!
63 self.fileSizeLimit = 500000000 #bytes :-)
64 #create blank globals
65 self.metaData = {}
66 self.dataFileList= {}
67 #See if database exists or needs creating
68 if(os.path.isfile(str(self.databaseName)+self.

metaDataExt)):#idx is key file
69 self.__openExisting()
70 else:
71 if (self.create):
72 self.log.debug("Creating new database: " + str(self.

fileName))
73 self.__createNew()
74 else:
75 self.log.critical("Could not find database " + str(

self.fileName) + " Did you put the full path?, if
you are trying to create the database you need to
set the create flag in the constructor to TRUE")

76 raise str(self.revision) + "Invalid database Name : "
+ str(fileName)

77

78

79 def __createNew(self):#private
80 self.log.debug("Creating new bioSim.Database...")
81 self.numberOfAtomsPerFrame = -1
82 self.emptyDatabase = True
83

84 def __openExisting(self):#private!
85 self.log.debug("Database exists, opening...")
86 self.emptyDatabase = False
87 #load metadata
88 self.__loadMetaData()
89

90 def __loadMetaData(self):
91 """
92 This looks at the .DAT file and loads the hash table with the

metadata into memory (internal methos)
93 """
94 metaDataFile = open(self.databaseName+self.metaDataExt

, ’rb’)
95 self.metaData = pickle.load(metaDataFile)
96 self.frameSize = self.metaData["frameSize"]
97 self.framesPerFile = self.metaData["framesPerFile"]
98 self.fileSizeLimit = self.metaData["fileSizeLimit"]
99 self.numberOfAtomsPerFrame = self.metaData["

numberOfAtomsPerFrame"]
100 self.typeCode =self.metaData["typeCode"]
101 metaDataFile.close()
102 self.log.debug("Metadata loaded:"+ str(self.metaData)

)
103

104 def __saveMetaData(self):
105 """
106 This saves the metadata as the database is closing
107 """
108 metaDataFile = open(self.databaseName+self.metaDataExt

, ’wb’) #possible BUG, yes you were right

141

109 self.metaData["frameSize"] = self.frameSize #saves
time if in here and i use a global

110 self.metaData["framesPerFile"] = self.framesPerFile
111 self.metaData["fileSizeLimit"] = self.fileSizeLimit
112 self.metaData["numberOfAtomsPerFrame"] = self.

numberOfAtomsPerFrame
113 self.metaData["typeCode"] = self.typeCode
114 pickle.dump(self.metaData,metaDataFile)
115 metaDataFile.close()
116 self.log.info("MetaData saved" + str(self.metaData))
117

118 def __saveAll(self):
119 """
120 Insures that all open databases are CLOSED , used in

deconstructor
121 """
122 self.log.debug("List of file keys" + str(self.dataFileList))
123

124 for keys in self.dataFileList.keys():
125 self.log.debug("closing file: " + self.databaseName+ str(keys

)+self.binExt)
126 self.dataFileList[keys].close()
127

128

129 def __del__(self):
130 """
131 Deconstructor, saves metadata and closes all open files
132 """
133 self.log.debug("----Deconstructor----")
134 self.__saveAll()
135 try:
136 if self.create:
137 self.__saveMetaData()
138 except Exception , desc:
139 self.log.critical("Could not save the metadata for " +

self.fileName + " this could be because , no file
space, you did not add an y frames to a new database ,
therefore there is not metadata...")

140 #close all data files
141

142

143 def __calculateFrameMetaData(self,data):#private
144 """
145 Takes the first frame supplied as an example for all the rest,

calculates metadata from this.
146 """
147 self.log.debug("Empty database, taking this frame as example

for all rest")
148 tempFileName = tempfile.mktemp()
149 fil = open(tempFileName,’wb’)
150 try:
151 Num.dump(data, fil)
152 self.frameSize = fil.tell()
153 self.log.debug("Each frame is bytes long" + str(self.

frameSize))
154 finally:
155 fil.close()
156 os.remove(tempFileName)
157 self.emptyDatabase = False
158 x,y = Num.shape(data)
159 self.numberOfAtomsPerFrame = x* y
160 self.framesPerFile = self.fileSizeLimit / self.

frameSize
161 self.typeCode = data.typecode()
162 self.log.info("Number of frames per file :" + str(

self.framesPerFile) +"Number of atoms per frame:"+

142

str(self.numberOfAtomsPerFrame))
163 if(self.framesPerFile == 0):
164 self.log.critical("MaxFileSize has to be at least the

size of a single frame!")
165 exit
166 self. __saveMetaData()
167

168

169 def __getFileForFrame(self,frameID,readOnly):#private
170 """
171 This returns the file for containing the requested frame, it

also moves the pointer to that location in the file.
172 """
173 fileNumber = frameID / self.framesPerFile
174 #see if file exists
175 if ˜(fileNumber in self.dataFileList.keys()):
176 currFilename = self.databaseName+str(fileNumber)+".bin"
177

178 if(os.path.isfile(currFilename)):
179 if(readOnly):
180 self.dataFileList[fileNumber] = open(currFilename

, ’rb’) #sjj - +
181 else:
182 self.dataFileList[fileNumber] = open(currFilename

, ’r+b’) #sjj - +
183 else:
184 if(readOnly):
185 msg = "Cant find file and not able to create one (

create flag not set)"
186 self.log.debug(msg)
187 raise msg
188 else:
189 self.dataFileList[fileNumber] = open(currFilename

, ’w+b’)
190

191 #get position in the file where it should be/go
192 positionInFile = (frameID-(self.framesPerFile *

fileNumber))*self.frameSize
193 #print "Position:",positionInFile
194 #seek to location
195 self.dataFileList[fileNumber].seek(positionInFile)
196 self.log.debug("List of data files " + str(self.

dataFileList))
197 return self.dataFileList[fileNumber]
198

199 def __setitem__(self, frameID, data):
200 self.setFrame(frameID,data)
201

202 def setFrame(self,frameID, data):
203 self.log.debug("Setting frame: " + str(frameID))
204 if (self.emptyDatabase):
205 self.__calculateFrameMetaData(data)
206 if (self.numberOfAtomsPerFrame != -1):
207 x , y = Num.shape(data)
208 if (x * y != self.numberOfAtomsPerFrame):
209 msg = "Frame needs to be the same size, ignoring ADD"
210 self.log.error(msg)
211 msg = "expected : " + str(self.numberOfAtomsPerFrame) +

" got : " + str(Num.shape(data))
212 self.log.error(msg)
213 raise msg
214 if(data.typecode() != self.typeCode):
215 msg = "This data is not of the same type expected %c got

%c, ignoring data" %(self.typeCode , data.typecode())
216 self.log.error(msg)
217 raise msg

143

218

219 file = self.__getFileForFrame(frameID,False)
220 Num.dump(data, file)
221 file.flush()
222 self.log.debug("Dump, at no" + str(frameID))
223 #self.log.debug("Location " + str(file.tell()))
224 self.log.debug("CTR: " + str(frameID)+ "Getframe test" + str

(Num.shape(self.getFrame(frameID))))
225

226

227 def getFrame(self,frameID):
228 file = self.__getFileForFrame(frameID,True)
229 if(file == None):
230 self.log.debug("Invalid ID range, or file not there")
231

232 return None
233 try:
234 data = Num.load(file)
235 except EOFError, description:
236 self.log.debug("End of file , hence frame is invalid")
237 return None
238 return data
239

240

241 def __getitem__(self, frameID):
242 return self.getFrame(frameID)
243

244

245 def getAtoms(self,frameID, listOfAtomID): # ˜100 frames /sec
246 currFrame = self.getFrame(frameID)
247 output = Num.ones((len(listOfAtomID),3), self.typeCode)
248 for ctr in range(len(listOfAtomID)):
249 output[ctr] = currFrame[listOfAtomID[ctr]]
250 return output
251

252 def getAtom(self,frameID,aid):
253 return self.getAtoms(frameID,[aid])
254

255 def getFullMetFileName(self):
256 name = self.fileName
257 self.log.debug("Full meta file name : " + name)
258 return name
259

260 def getListOfFiles(self):
261 fileList = os.listdir(self.path)
262 returnList = []
263 for fileName in fileList:
264 currFileName = self.path + os.sep + fileName
265 if os.path.isfile(currFileName):
266 if currFileName.find(self.shortFileName):
267 self.log.debug("File name" + fileName)
268 returnList.append(currFileName)
269 self.log.debug("Full file List " +str(returnList))
270 return returnList
271

272 def getShortName(self):
273 ### this is the base traj name...
274 self.log.debug("Short filename for a traj : " + self.

shortFileName)
275 return self.shortFileName

144

Example B.3: Shows the Python code to access serialised frames of data from files stored in SRB.

1 ’’’
2

3 BioSimGrid http://biosimgrid.org/ team@biosimgrid.org
4

5 Copyright 2003, 2004, 2005 University of Oxford and University of
Southampton

6

7 If you use this software in any way, please cite:
8 Kaihsu Tai, Stuart Murdock, Bing Wu, Muan Hong Ng, Steven Johnston,

Hans
9 Fangohr, Simon J. Cox, Paul Jeffreys, Jonathan W. Essex, Mark S. P.

10 Sansom (2004) BioSimGrid: towards a worldwide repository for
11 biomolecular simulations. Org. Biomol. Chem. 2:3219-3221
12 http://dx.doi.org/10.1039/b411352g
13 http://eprints.ouls.ox.ac.uk/archive/00000804/
14

15 This program is free software; you can redistribute it and/or modify
it

16 under the terms of the GNU General Public License as published by the
17 Free Software Foundation; either version 2 of the License, or (at your
18 option) any later version.
19

20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24

25 You should have received a copy of the GNU General Public License
along

26 with this program; if not, write to the Free Software Foundation, Inc
.,

27 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
28 http://www.fsf.org/licensing/licenses/gpl.txt
29

30 ’’’
31 """Testing the storage of the database date in ’raw’ binary files to
32 reduce access time and storage requirements.
33

34

35 See log at end of file for details.
36 """
37

38 import Numeric , time, StringIO
39 from BioSim.Base import BsgBase
40 from SRBInterface import SRBFile, SRBCon
41 from BioSim.Database.BinaryFiles import FrameSerialise
42

43 c l a s s SRBFlatDatabaseFile(BsgBase.BsgBase):
44

45 def __init__(self,srbConnection, fileName, metData , create=False
, collection=’’, userSettings=None):

46 """Sets the name of the database, if the database exists then
the metadata

47 is loaded, else the database is created"""
48 self.CVS_REVISION=’$Revision: 1.15 $’ .split(" ")[1]
49 #init the base class
50 BsgBase.BsgBase.__init__(self)
51 self._userSettings = userSettings
52 self._collection = collection
53 self._create = create
54 self._srbConnection = srbConnection
55 self._metadata = metData
56 self._converter = FrameSerialise.FrameSerialise(self.

_metadata[self._metadata.ARRAY_WIDTH_STR],self._metadata[

145

self._metadata.DATA_TYPE_STR])
57 self.log.debug("SRB flatDatabase.. ")
58 self.log.debug("Data type in met: " + str(self._metadata[self

._metadata.DATA_TYPE_STR]))
59 self._fileName = fileName
60 self._srbFile = self.__openFile(self._fileName)
61

62 def __openFile(self, fileName):
63 self.log.debug("Opening file : " + str(fileName))
64 srbFile = SRBFile.SRBFile(self._srbConnection,fileName,

create=self._create,collection=self._collection)
65 if srbFile.created:
66 self._metadata[self._metadata.FILE_NAMES_STR].append(self.

_fileName)
67 self._metadata.saveMetadata()
68 return srbFile
69

70 def __setitem__(self,frameID, data):
71 self.setFrame(frameID, data)
72

73 def setFrame(self,frameID, data):
74 binData = self._converter.numericArrayToData(data)
75 offset = frameID * self._metadata[self._metadata.

FRAME_SIZE_STR]
76 self._srbFile.write(binData, offset)
77

78 def __getitem__(self,frameID):
79 return self.getFrame(frameID)
80

81 def getFrame(self,frameID):
82 frSize = self._metadata[self._metadata.FRAME_SIZE_STR]
83 offset = frameID * frSize
84 dat = self._srbFile.read(frSize, offset)
85 arr = self._converter.dataToArray(dat , self._metadata[self.

_metadata.NUM_ATOMS_STR])
86 return arr
87

88 def getAtoms(self,frameID, atomList):
89 frSize = self._metadata[self._metadata.FRAME_SIZE_STR]
90 offset = frameID * frSize
91 pairs = Numeric.reshape(atomList,(len(atomList)/2,2))
92 numberSize = self._metadata.DATA_TYPE_SIZES_DICT[self.

_metadata[self._metadata.DATA_TYPE_STR]]
93 data = StringIO.StringIO()
94 numAtoms = 0
95 for pair in pairs:
96 posInFrame = (pair[0] * numberSize*3)
97 atomOffset = posInFrame +offset
98 numAtoms += pair[1]
99 dataLen = pair[1] * numberSize * 3

100 if (posInFrame + dataLen) > frSize:
101 msg = "Hou have asked for an atom that is not in the

frame, Max frame size :" + str(frSize)
102 msg += " You asked for: " + str(posInFrame + dataLen)

+ " For frameInFileID : " + str(frameID)
103 msg += " Using atom list : " + str(atomList)
104 self.log.critical(msg)
105 raise msg
106 dat = self._srbFile.read(dataLen, atomOffset)
107 data.write(dat)
108 arr = self._converter.dataToArray(data.getvalue() , numAtoms)
109 self.log.debug(arr.typecode())
110 return arr

146

B.2 BioSimGrid web portal

The BioSimGrid web portal provides users with an online interface to the BioSim-
Grid analysis tools. Users can select the tools, trajectories and frames to be anal-
ysed. Figures B.1 —B.5 show the web portal capabilities from logging in, to gener-
ating a BioSimGrid analysis script.

147

Figure B.1: BioSimGrid web portal login page

148

Figure B.2: Selecting a trajectory using the BioSimGrid web portal.

149

Figure B.3: Each analysis tool can have many methods. The web portal displays the tool and its
description.

150

Figure B.4: Parts of a trajectory can be selected using the frame collection web page.

151

Figure B.5: The web portal generates a Python script which is capable of being run on any of the
BioSimGrid nodes. Users are able to alter this script before it is executed.

152

Bibliography

Adachi Y. Database schema design strategy in relational database. SECOM Co., Ltd.
Intelligent Systems Lab (2001).

Alapati SR. Expert Oracle 9i Database Administration. Apress (2003).

Allen DW, Coles SJ, Light ME and Hursthouse MB. Synthesis and X-ray crystal
structures of organotri(2- furyl)phosphonium salts: effects of 2-furyl substituents
at phosphorus on intramolecular nitrogen to phosphorus hypervalent coordina-
tive interactions. Inorganica Chimica Acta, 357, 1558–1564 (2004).

Alur N, Almaraz J, Meira PD and Yorita R. WebSphere Information Integrator Content
Edition: Planning, Configuration, and Monitoring Guide. IBM Redbook (2005).

Anderson R. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. John Wiley & Sons Inc. (2001).

Apple. Technical note TN1150 : HFS Plus volume format. Developer Connection
(2004).

Apple. Mac OS X v.10.4 Tiger overview: New features, APIs, and frameworks.
Developer Connection (2005a).

Apple. Spotlight overview. Developer Connection (2005b).

Apple (2006). [Online; accessed 1-June-2006], www.apple.com/macosx.

Arinaminpathy Y, Beckstein O, Biggin P, Bond P, Domene C, Pang A and Sansom
M. Large scale biomolecular simulations: Current status and future prospects.
Proceedings of UK e-Science All Hands Meeting (2003).

Armstrong E, Ball J, Bodoff S, Carson DB, Evans I, Green D, Haase K and Jendrock
E. The J2EE 1.4 Tutorial. Sun Microsystems (2005).

Atkinson B, Della-Libera G, Hada S, Hondo M, Hallam-Baker P, Kaler C, Klein
J, LaMacchia B, Leach P, Manferdelli J, Maruyama H, Nadalin A, Nagaratnam
N, Prafullchandra H, Shewchuk J and Simon D. Web services security. IBM
Developerworks (2002).

Bachman C. Integrated data store. DPMA Quarterly (1965).

Baeza-Yates R and Ribeiro-Neto B. Modern Information Retrieval. Addison-Wesley,
1st edition (1999).

Barry D. Transparent persistence (2004). [Online; accessed 1-August-2004], www.
service-architecture.com.

153

www.apple.com/macosx
www.service-architecture.com
www.service-architecture.com

Barry DK. Web Services and Service-oriented Architecture: The Savvy Manager’s Guide.
Morgan Kaufmann (2003).

Becker E, Buhse W, Günnewig D and Rump N. Digital Rights Management: Techno-
logical, Economic, Legal and Political Aspects, volume 2770. Springer (2003).

Beckett D. The design and implementation of the Redland RDF application frame-
work. Tenth International World Wide Web Conference (2001).

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J and Wheeler DL. Genbank:
update. Nucleic Acids Research, 32 (2004).

Berendsen H, van der Spoel D and van Drunen R. GROMACS: A message-passing
parallel molecular dynamics implementation. Comp. Phys. Comm. 91 (1995).

Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I and
Bourne P. The protein data bank. Nucleic Acids Research, 28 (2000).

Bilorusets R, Box D, Cabrera LF, Davis D, Ferguson D, Ferris C, Freund T, Hondo
MA, Ibbotson J and Jin L. Web services reliable messaging protocol. OASIS
Standards (2005). [Online; accessed 17-June-2006], schemas.xmlsoap.org/
ws/2005/02/rm/.

Black G, Schuchardt K, Gracio D and Palmer B. The extensible computational chem-
istry environment: A problem solving environment for high performance theo-
retical chemistry. 17th Annual ACM International Conference on Supercomputing
(2003).

Boardman RP, Johnston S, Essex JW, Ng M, Fangohr H, Tai K and Sansom MSP.
BioSimGrid on the desktop (2006). In preparation for submission.

Bond PJ and Sansom MSP. The simulation approach to bacterial outer membrane
proteins. Molecular Membrane Biology, 21(3), 151–161 (2004).

Borret R. XML database products (2004). [Online; accessed 1-August-2004], www.
rpburret.com/xml.

Britton D, Cass A, Clarke P, Coles J, Doyle A, Geddes N, Gordon J, Jones R, Kelsey
D, Lloyd S, Middleton R, Pearce S and Tovey D. GridPP: Meeting the parti-
cle physics computing challenge. UK e-Science All Hands Conference, Nottingham
(2005).

Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S and Karplus M.
CHARMM: A program for macromolecular energy, minimization, and dynamics
calculations. Journal of Computational Chemistry, 4, 187–217 (1983).

Brown E. An overview of SQL Server 2005 Beta 2 for the database administrator.
Journal (2004).

Bush I and Sunderland A. Scalable eigensolvers on hpcx: Case studies. HPC Re-
search Technical Report HPCxTR0510 (2005).

Butler GF, Baird WP, Lee RC, Tull CE, Welcome ML and Whitney CL. The Global
Unified Parallel File System (GUPFS) project: FY 2003 activities and results.
Lawrence Berkeley National Laboratory, 16, 49–61 (2004). Paper LBNL52456 2003.

154

schemas.xmlsoap.org/ws/2005/02/rm/
schemas.xmlsoap.org/ws/2005/02/rm/
 www.rpburret.com/xml
 www.rpburret.com/xml

Cabrera LF, Copeland G, Feingold M, Freund RW and Freund T. Web services
coordination. IBM Developerworks (2005a).

Cabrera LF, Copeland G, Feingold M, Freund RW and Freund T. WS-
AtomicTransaction specification . IBM Developerworks (2005b).

Cabrera LF, Copeland G, Feingold M, Freund RW and Freund T. WS-
BusinessActivity specification . IBM Developerworks (2005c).

CERN. Hierarchical databases (2002). [Online; accessed 21-December-2005], www.
db.web.cern.ch.

CERN. The world’s largest particle physics laboratory (2005). [Online; accessed
1-November-2005], www.cern.ch.

Chamberlin DD and Boyce RF. SEQUEL: A structured english query language. Pro-
ceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data description,
access and control, pages 249–264 (1974).

Chan P, Lee R and Kramer D. The Java Class Library. Addison-Wesley Professional,
2nd edition (1998).

Chappell D. Introducing Indigo: An early look. Chappell and Associates (2005).

Chinnici R, Hadley M and Mordani R. The Java API for XML-Based Web Services
(JAX-WS) 2.0. Sun Microsystems, Inc., 2nd edition (2006).

Clark J and DeRose S. XML Path language(XPath) version 1.0 (1999).

Codd E. A Relational Model of Data for Large Shared Data Banks, volume 13, pages
377–387. Communications of the ACM (1970).

Cox S, Chen L, Campobasso S, Duta M, Eres M, Giles M, Goble C, Jiao Z, Keane
A, Pound G, Roberts A, Shadbolt N, Tao F, Wason J and Xu F. Grid Enabled
Optimisation and Design Search (GEODISE). e-Science All Hands, Sheffield (2002).

Cox S, Fairman M, Xue G, Wason J and Keane A. The Grid: Computational and data
resource sharing in engineering optimisation and design search. International
Conference on Parallel Processing Workshops, page 207 (2001).

Custer H. Inside the Windows NT File System. Microsoft Press, 1st edition (1994).

Cwalina K. Framework Design Guidelines: Conventions, Idioms, and Patterns for
Reusable .NET Libraries. Addison Wesley (2005).

Darrow B. MySQL reference manual (2004). [Online; accessed 1-August-2004],
www.mysql.com.

Date C. An Introduction to Database Systems, chapter Further Normalisation I:1NF,
2NF, 3NF, BCNF, pages 348–379. Addison-Wesley, Reading , Massachusetts, 7th

edition (2000a).

Date C. An Introduction to Database Systems. Addison-Wesley, Reading , Mas-
sachusetts, 7th edition (2000b).

155

www.db.web.cern.ch
www.db.web.cern.ch
www.cern.ch
www.mysql.com

Date C. An Introduction to Database Systems, pages 150–198. Addison-Wesley, Read-
ing , Massachusetts, 7th edition (2000c).

Date C. An Introduction to Database Systems, chapter Further Normalisation
II: Higher Normal Forms, pages 389–416. Addison-Wesley, Reading , Mas-
sachusetts, 7th edition (2000d).

Deitel HM, Deitel PJ and Liperi JP. Python How to Program. O’Reilly & Associates,
book and CD-ROM edition (2002).

DotGNU (2006). [Online; accessed 12-June-2006], www.dotgnu.org.

Drenth J. Principles of Protein X-ray Crystallography. Springer, 2nd edition (2002).

DuBois P. Using XML with MySQL, document revision: 1.01 (2003). [Online; ac-
cessed 1-August-2003], www.kitebird.com/articles/mysql-xml.html.

Edwards J, McCurley K and Tomlin J. An adaptive model for optimizing perfor-
mance of an incremental web crawler. IBM Almaden Research Center (2002).

Eisenberg A, Melton J, Kulkarni K, Michels JE and Zemke F. SQL:2003 has been
published. SIGMOD Rec., 33(1), 119–126 (2004).

England K. Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook,
pages 163–173. Digital Press, 1st edition (2001).

Essex DJ. Towards the dynome: Adding a 4th dimension to the protein database by
terascale simulation. EPSRC Grant Reference: EP/D000173/1 (2005).

Feuerstein S and Pribyl B. Oracle PL/SQL Programming. O’Reilly Media, Inc. (2005).

Foley M. WinFS to be available on Windows XP. Microsoft Watch (2005). [Online;
accessed 7-February-2006], www.microsoft-watch.com.

Foster I. Globus toolkit version 4: Software for service-oriented systems. IFIP
International Conference on Network and Parallel Computing, pages 2–13 (2005).

Foster I and Kesselman C. Globus: A metacomputing infrastructure toolkit. Intl J.
Supercomputer Applications (1997).

Foster I and Kesselman C, editors. The Grid: Blueprint for a New Computing Infras-
tructure, chapter 2. Morgan-Kaufman (1999a).

Foster I and Kesselman C. The Grid: Blueprint for a new computing infrastructure.
Morgan Kaufmann (1999b).

Foster I, Kesselman C, Nick J and Tuecke S. The Physiology of the Grid: An open
Grid services architecture for distributed systems integration. Open Grid Service
Infrastructure WG, Global Grid Forum (2002a).

Foster I, Kesselman C and Tuecke S. The anatomy of the Grid: Enabling scalable-
virtual organisations. International Journal on Supercomputer Applications (2001).

Foster I, Kesselman C and Tuecke S. The anatomy of the Grid: Enabling scalable
virtual organisations. International J. Supercomputer Applications, 15 (2002b).

156

www.dotgnu.org
 www.kitebird.com/articles/mysql-xml.html
www.microsoft-watch.com

Frawley W, Piatetsky-Shapiro G and Matheus C. Knowledge discovery in
databases: An overview. AI Magazine, pages 213–228 (1992).

Freed N and Borenstein N. Multipurpose internet mail extensions. The Internet
Engineering Task Force, RFC-2045 (1996). [Online; accessed 20-February-2006],
www.ietf.org/rfc/rfc2045.txt.

Freeman RG and Hart M. Oracle9i RMAN Backup and Recovery, chapter Differential
vs. Incremental backups. McGraw-Hill Professional, 1st edition (2002).

Frey J, Tannenbaum T, Livny M, Foster I and Tuecke S. Condor-G: A computa-
tion management agent for multi-institutional Grids. In Proceedings of the 10th

IEEE Symposium on High Performance Distributed Computing (HPDC10), pages 55–
63 (2001).

Gallardo D. Java Oracle Database Development. Prentice Hall (2002).

Getz K, Litwin P and Reddick G. Microsoft Access 2 Developer’s Handbook. Sybex Inc,
paperback edition (1994).

Ghemawat S, Gobioff H and Leung ST. The Google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (2003).

Giampaolo D. Practical File System Design with the Be File System. Morgan Kaufmann
Publishers, Inc (1999).

Gong L, Mueller M, Prafullchandra H and Schemers R. Going beyond the sandbox:
An overview of the new security architecture in the java development kit 1.2.
USENIX Symposium on Internet Technologies and Systems (1997).

Gordon A. The .NET and COM Interoperability Handbook. Prentice Hall (2002).

Gould L, Zanevsky A and Kline K. Transact-SQL Programming. O’Reilly Media, Inc.
(1999).

Gowin J. Journalling file systems: An intro to Reiserfs (2000). [Online; accessed
1-August-2004], pro.linuxorbit.com.

GPL. GNU general public license (1991). [Online; accessed 7-December-2005],
www.gnu.org/copyleft/gpl.html.

Gray J and Reuter A. Transaction Processing : Concepts and Techniques, chapter 12.
Morgan Kaufmann, 1st edition (1993).

Grochowski E. MR/GMR read head evolution. San Jose Research center (2003).
[Online; accessed 21-December-2005], www.hitachigst.com/hdd/hddpdf/
tech/hdd technology2003.pdf.

Gulutzan P. Transaction logs (2003). [Online; accessed 1-August-2004], www.
dbazine.com.

Haile JM. Molecular Dynamics Simulation : Elementary Methods. Wiley-Interscience,
1st edition (1997).

Halfhill TR. A peek at OFS. BYTE Digest (1995).

157

www.ietf.org/rfc/rfc2045.txt
 pro.linuxorbit.com
www.gnu.org/copyleft/gpl.html
www.hitachigst.com/hdd/hddpdf/tech/hdd_technology2003.pdf
www.hitachigst.com/hdd/hddpdf/tech/hdd_technology2003.pdf
 www.dbazine.com
 www.dbazine.com

Han J and Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann,
1st edition (2000).

Hand D, Mannila H and Smyth P. Principles of data mining. MIT Press (2001).

Harbottle J, Darcy M and Gillies J. IBM to help CERN build massive data Grid to
understand origins of the universe. IBM Grid Computing (2003).

Harris S and Gibbins N. 3store: Efficient bulk RDF storage. Workshop on Semantic
Web Storage and Retrieval (2003).

Henderson K. The Guru’s Guide to SQL Server Stored Procedures, XML, and HTML,
chapter 1, pages 4–7. Addison-Wesley Professional (2001).

Hertel C. Implementing CIFS: The Common Internet File System. Prentice Hall (2003).

Horstmann CS. Core Java 2: Advanced Features, chapter 1. Prentice Hall (2005).

Howard J, Kazar M, Menees S, Nichols D, Satyanarayanan M, Sidebotham R and
West M. Scale and performance in a distributed file system. ACM Trans. on
Computer Systems, pages 51 – 81 (1988).

Humphrey W, Dalke A and Schulten K. VMD – Visual Molecular Dynamics. Journal
of Molecular Graphics, 14, 33–38 (1996).

IBM. IBM , website (2005). [Online; accessed 1-December-2006], www.ibm.com.

IEC. Letter symbols to be used in electrical technology - part 2: Telecommunications
and electronics. International Standard 60027-2 (2005).

IEEE. Ieee standard for binary floating-point arithmetic. Institute of Electrical and
Electronics Engineers, Inc (1985). ANSI/IEEE Std 754-1985 (IEEE 754).

ISO. Codes for the representation of names of countries and their subdivisions. Niso Press,
1st edition (1995). Part 2: Country subdivision code.

ISO. Information technology — database languages — SQL:Framework
(SQL/Framework) (2003). ISO/IEC 9075-1:2003.

JACS. Journal of the american chemical society (2004). [Online; accessed 1-
December-2005], http://pubs.acs.org/journals/jacsat.

Jagatheesan A and Moore R. Mass storage systems and technologies. 12th NASA
Goddard/21st IEEE Conference on Mass Storage Systems and Technologies (2004).

Janmohamed Z, Liu C, Bradstock D, Chong RF, Gao M, McArthur F and Yip P.
DB2(R) SQL PL : Essential Guide for DB2. IBM Press, 2nd edition (2004).

Jiao Z, Wason J, Molinari M, Johnston S and Cox S. Integrating data management
into engineering applications,. Proceedings of UK e-Science All Hands Meeting, Not-
tingham, UK, pages 687 – 694 (2003).

Johnson MK. Whitepaper: Red hat’s new journalling file system: ext3 (2001). [On-
line; accessed 1-August-2004], www.redhat.com/support/.

158

www.ibm.com
http://pubs.acs.org/journals/jacsat
www.redhat.com/support/

Johnston S. Python-SRB interface (2005a). [Online; accessed 15-December-2005],
http://sourceforge.net/projects/pysrb.

Johnston S. Storage resource broker (SRB), large scientific data and Python. Europy-
thon 2005 (2005b).

Johnston S, Boardman R, Fangohr H and Cox S. Managing large volumes of dis-
tributed scientific data. Journal of Grid Computing (2006a). (Submitted).

Johnston S, Boardman RP, Ng M, Essex JW, Fangohr H, Tai K and Sansom MSP.
BioSimGrid: Infrastructure, performance and applications (2006b). In prepara-
tion for submission.

Jones A. C# Programmer’s Cookbook, chapter 1, pages 17–28. Microsoft Press (2003).

Jones R. Garbage Collection: Algorithms for Automatic Dynamic Memory Management.
John Wiley and Sons Ltd. (1996).

Jones S and Morris M. A methodology for service architectures. OASIS SOA Adop-
tion Blueprints (2005).

Kandemir M, Li F, Chen G, Chen G and Ozturk O. Studying storage-recomputation
tradeoffs in memory-constrained embedded processing. Design, Automation and
Test in Europe, 2, 1026–1031 (2005).

Kelso RJ, Buszczak M, nones ATQ, Castiblanco C, Mazzalupo S and Cooley L. Fly-
trap, a database documenting a gfp protein-trap insertion screen in Drosophila
melanogaster. Nucleic Acids Research, 4 (2004).

Levesque H and Lakemeyer G. The Logic of Knowledge Bases, page 95. The MIT
Press, 1st edition (2001).

Levinson E. The MIME Multipart/Related Content-type. Network Working Group
(1998).

Leyderman R. Oracle C++ Call Interface, chapter 5. Oracle Corporation, 2nd edition
(2002).

Litwin W. Applications of Databases, chapter Text retrieval database applications,
page page 255. Springer (1994).

Litzkow M, Livny M and Mutka M. Condor - a hunter of idle workstations. In 8th
International Conference of Distributed Computing Systems, pages 104–111 (1988).

Lundh F. Python Standard Library. O’Reilly & Associates, book and CD-ROM edition
edition (2001a).

Lundh F. Python Standard Library, chapter 1, page 8. O’Reilly Media, Inc, 1st edition
(2001b).

Mamone M. Practical Mono. APress (2005).

Martelli A, Ascher D and Ravenscroft A. Python Cookbook, chapter 18, pages 656 –
657. O’Reilly (2005).

159

http://sourceforge.net/projects/pysrb

Mattos NM, Darwen H, Cotton P, Pistor P, Kulkarni K, Dessloch S and Zeiden-
stein K. SQL99, SQL/MM, and SQLJ: An Overview of the SQL Standards. IBM
Database Common Technology (1999).

McBride B. An introduction to RDF and the Jena RDF API (2005). [Online; accessed
17-June-2006], jena.sourceforge.net.

McKusick MK. The Design and Implementation of the FreeBSD Operating System. Ad-
dison Wesley (2004).

McLean S. .NET Remoting. Microsoft Press (2002).

McMillan G. Socket programming (2004). [Online; accessed 1-August-2004], www.
amk.ca/python/howto/.

Menascé D. Composing web services:a QoS view. IEEE internet comuting (2004).

Menzies T and Hu Y. Data mining for very busy people. IEEE Computer, pages
18–25 (2003).

Michie D. Memo functions and machine learning. Nature, 218, 19–22 (1968).

Microsoft. NTFS file system (2000). [Online; accessed 1-December-2005], www.
microsoft.com.

Microsoft. Microsoft SQL Server 2000 Resource Kit, page 166. Microsoft Publishing
(2001).

Microsoft. DIME: Sending Binary Data with Your SOAP Messages (2002a). [On-
line; accessed 1-August-2004], msdn.microsoft.com/library/default.
asp?url=/library/en-us/dnservice/html/service01152002.asp.

Microsoft. Direct Internet Message Encapsulation (DIME) (2002b). [On-
line; accessed 1-August-2005], msdn.microsoft.com/library/en-us/
dnglobspec/html/draft-nielsen-dime-02.txt.

Microsoft. Understanding DIME and WS-Attachments (2002c). [Online; ac-
cessed 1-December-2005], msdn.microsoft.com/archive/default.asp?
url=/archive/en-us/dnarxml/html/dimewsattch.asp.

Microsoft. Web Services Security (WS-Security) (2002d). [Online; accessed 1-
August-2004], www.verisign.com/wss/wss.pdf.

Microsoft. WS-Attachments (2002e). [Online; accessed 1-January-
2005], msdn.microsoft.com/library/en-us/dnglobspec/html/
draft-nielsen-dime-soap-01.txt.

Microsoft. Introduction to shadow copies of shared folders. Technical report, Mi-
crosoft Corporation (2003).

Microsoft. Microsoft SQL server 2000 resource kit (2004). [Online; accessed 1-
August-2004], www.microsoft.com/sql/.

Microsoft. Microsoft windows vista beta 1 fact sheet. PressPass (2005a). [Online;
accessed 1-February-2006], www.microsoft.com/windowsvista.

160

jena.sourceforge.net
www.amk.ca/python/howto/
www.amk.ca/python/howto/
www.microsoft.com
www.microsoft.com
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service01152002.asp
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service01152002.asp
msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-02.txt
msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-02.txt
msdn.microsoft.com/archive/default.asp?url=/archive/en-us/dnarxml/html/dimewsattch.asp
msdn.microsoft.com/archive/default.asp?url=/archive/en-us/dnarxml/html/dimewsattch.asp
 www.verisign.com/wss/wss.pdf
msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-soap-01.txt
msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-soap-01.txt
 www.microsoft.com/sql/
www.microsoft.com/windowsvista

Microsoft. Web Services Security – SOAP Messages with Attachments
(SwA) Profile 1.1 (2005b). [Online; accessed 1-December-2005],
www.oasis-open.org/committees/download.php/13288/wss-v1.
1-spec-pr-SwAProfile-01.html.

Microsoft. .net framework conceptual overview. .NET Framework Developer’s Guide
(2006). [Online; accessed 7-February-2006], http://msdn2.microsoft.com/
en-us/library/zw4w595w.aspx.

Mitchell JC and Apt K. Concepts of Programming Language, chapter 4. Addison
Wesley (2005).

Moore G. Cramming more components onto integrated circuits. Electronics, 38(8),
114–117 (1965).

Moore R, Marciano R, Wan M, Sherwin T and Frost R. Towards the interoperability
of web, database, and mass storage technologies for petabyte archives. Procs.
Fifth NASA Goddard Space Flight Center Conference on Mass Storage Systems and
Technologies (1996).

Mullins CS. Triggers and DB2 Version 6. DB2 Update — Xephon (1999).

Mullins CS. DB2 Developer’s Guide. Sams, 5th edition (2004).

Murdock S, Muan Hong Ng, Johnston S, Fangohr H and Essex J. Comparing the
performance of a database, specific binary files and netCDF for data retrieval
(2004). [Online; accessed 10-December-2005], www.biosimgrid.org.

Murdock S, Ng M, Johnston S, Fangohr H and Essex J. BioSimGrid: A distributed
database for biomolecular simulations (2002). [Online; accessed 1-January-2005],
www.biosimgrd.org.

Murdock SE, Tai K, Ng M, Johnston S, Wu B, Fangohr H, Laughton CA, Essex JW
and Sansom MSP. Quality assurance for biomolecular simulations. Journal of
Chemical Theory and Computation (2006). Sumbitted.

Nagar R. Windows NT File System Internals : A Developer’s Guide. O’Reilly, 1st edition
(1997).

Newman H. Choosing the right file system for linux clusters (2003). [Online; ac-
cessed 5-December-2004], hpc.devchannel.org/.

Ng M, Johnston S, Murdock S, Wu B, Tai K, Fangohr H, Cox S, Essex JW, Sansom
M and Jeffreys P. Efficient data storage and analysis for generic biomolecular
simulation data. In Proceedings of UK e-Science All Hands Meeting 2004, pages
443–450 (2004).

Ng M, Johnston S, Wu B, Murdock S, Tai K, Fangohr H, Cox SJ, Essex JW, Sansom
MSP and Jeffreys P. BioSimGrid: Grid-enabled biomolecular simulation data
storage and analysis. Future Generation Computer Systems, 22, 657–664 (2006).

Nickell S and Fergeau C. GnomeVFS — File system Abstraction library. The Free
Software Foundation (2004).

Novell (2006). [Online; accessed 1-June-2006], openSUSE.org.

161

www.oasis-open.org/committees/download.php/13288/wss-v1.1-spec-pr-SwAProfile-01.html
www.oasis-open.org/committees/download.php/13288/wss-v1.1-spec-pr-SwAProfile-01.html
http://msdn2.microsoft.com/en-us/library/zw4w595w.aspx
http://msdn2.microsoft.com/en-us/library/zw4w595w.aspx
www.biosimgrid.org
www.biosimgrd.org
hpc.devchannel.org/
openSUSE.org

Object Management Group. Common Object Request Broker Architecture: Core Speci-
fication. Object Management Group (2004).

Oliphant TE. Guide to numpy. Trelgol Publishing (2006).

Oracle. PL/SQL user’s guide and reference (2001). Release 9.0.1, Part Number
A89856-01.

Oracle. Oracle9i Advanced Replication (2002). Release 2, Part No. A96567-01.

Oracle. Oracle Internet File System installation guide release 9.0.1.1.0 for Microsoft
Windows NT/2000. Oracle Internet File System Archive Documentation (2003). Part
Number A85272-03.

Oracle. Oracle database 10g release 2 documentation library (2005). [Online; ac-
cessed 1-December-2005],www.oracle.com/technology/documentation.

Oracle. Oracle Database Backup and Recovery Basics (2005a). 10g Release 2 (10.2),
Doc No. B14192-02.

Oracle. Oracle Database Backup and Recovery Basics, chapter 1.7. Oracle, 2nd edition
(2005b). Part number B14192-03.

Otey M. Microsoft SQL Server 2005 New Features. McGraw-Hill Osborne Media, 1st

edition edition (2004).

Parhami B. Computer Arithmetic: Algorithms and Hardware Designs, chapter 17, pages
282–285. Oxford University Press (1999).

Patterson DA, Gibson GA and Katz RH. A case for redundant arrays of inexpensive
disks (RAID). SIGMOD Conference, pages 109–116 (1988).

PCCP. Physical chemistry chemical physics (2004). [Online; accessed 1-December-
2005], www.rsc.org/.

Peterson R. Database Development With Jdbc, Odbc and SQL/SQLJ. SAMS, 1st edition
(2001).

Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel
RD, Kale L and Schulten K. Scalable molecular dynamics with NAMD. Journal of
Computational Chemistry, 26, 1781–1802 (2005).

Plante RL, Crutcher RM and McGrath RE. The NCSA astronomy digital image
library: from data archiving to data publishing. Future Generation Computer Sys-
tems, 16, 49–61 (1999).

Powers L and Snell M. Visual Basic Programmer’s Guide to the .NET Framework Class
Library, chapter Reading and Writing to Files and Streams. Sams publishing, 1st

edition (2002).

PSF. Python Software Foundation home page (2005).

Rajasekar A, Wan M, Moore R, Jagatheesan A and Kremenek G. Real experiences
with Data Grids — Case studies in using the SRB. Proceedings of 6th International
Conference/Exhibition on High Performance Computing Conference in Asia Pacific Re-
gion (HPC-Asia) (2002).

162

www.oracle.com/technology/documentation
www.rsc.org/

Ramakrishnan R, Gehrke J, Ramakrishnan R and Gehrke J. Database Management
Systems, page 6. McGraw-Hill Science, 3rd edition (2002).

Reiser H. Future vision whitepaper (1984). Revised 1993, [Online; accessed 12-
December-2004], www.namesys.com/whitepaper.html.

Reiser H. Reiser4 is released (2004). [Online; accessed 1-August-2004], www.
namesys.com/.

Rew R, Davis G, Emmerson S and Davies H. NetCDF users guide for C (1997).

Richter J. Applied Microsoft .NET Framework Programming. Microsoft Press (2002).

Rivest R. The MD5 message-digest algorithm. RFC 1321, MIT LCS & RSA Data
Security Inc (1992).

Rizzo T. WinFS 101: Introducing the new Windows file system. Microsoft Corpora-
tion (2004).

Rosen K, Host D, Farber J and Rosinski R. Unix: The Complete Reference, chapter 7.
McGraw-Hill Osborne Media, 1st edition (1999).

Russinovich M. NT internals: Inside Win2K NTFS. Windows2000 Magazine (2000).
[Online; accessed 1-August-2005], www.msdn.microsoft.com.

Sammes AJ and Jenkinson B. Forensic Computing: A Practitioner’s Guide. Springer-
Verlag London Ltd (2007).

Sansom MS. E-science & biomolecular simulations:BioSimGrid & IntBioSim. BB-
SRC Grant holders workshop (2005).

Sansom PM. IntBioSim: An integrated approach to multi-level biomolecular simu-
lations. BBSRC Grant Reference: BBSB16011 (2004).

Schneier B. Applied Cryptography, chapter 18, pages 436–441. J. Wiley and Sons
(1996).

SDC. Development and management of a computer-centered data base (1963). Sys-
tem Development Corporation.

Sears R, Ingen C and Gray J. To BLOB or not to BLOB: Large object storage in a
database or a filesystem. Microsoft Research (2006).

SETI@home. Seti at home (2006). [Online; accessed 23-February-2006], http://
setiathome.ssl.berkeley.edu.

Shepler S, Callaghan B, Robinson D, Thurlow R, Beame C, Eisler M and Noveck D.
Network File System (NFS) version 4 Protocol. The Internet Engineering Task Force
(2003). RFC3530.

Silverstein RM, Webster FX and Kiemle D. Spectrometric Identification of Organic
Compounds. John Wiley & Sons, 7th edition (2005).

Spealman J, Hudson K, Craft M and Corporation M. Planning, Implementing, and
Maintaining a Microsoft Windows Server 2003 Active Directory Infrastructure. Mi-
crosoft Press (2003).

163

www.namesys.com/whitepaper.html
www.namesys.com/
www.namesys.com/
www.msdn.microsoft.com
http://setiathome.ssl.berkeley.edu
http://setiathome.ssl.berkeley.edu

Stephenson P. Oracle Database Lite 10g Technical White Paper. Oracle Corporation,
Redwood Shores, CA 94065, U.S.A., 1st edition (2005).

Stix G. The triumph of the light. Scientific American, 284(1), 69–73 (2001).

Stone J, Gullingsrud J, Grayson P and Schulten K. A system for interactive molecu-
lar dynamics simulation. In JF Hughes and CH Séquin, editors, 2001 ACM Sym-
posium on Interactive 3D Graphics, pages 191–194. ACM SIGGRAPH, New York
(2001).

Stonebraker M. Readings in Database Systems, chapter Access Methods: B-Trees,
R-Trees & GiSTs. Morgan Kaufmann Publishers, 2nd edition (1993).

Sun Microsystems. Java 2 Platform Standard. Sun Microsystems, 5th edition (2004).

Szalay AS, Gray J, Thakar AR, Kunszt PZ, Malik T, Raddick J, Stoughton C and
vandenBerg J. The SDSS SkyServer Public access to the sloan digital sky server
data. International Conference on Management of Data, pages 570 – 581 (2002).

Tai K, Baaden M, Murdock S, Wu B, Ng M, Johnston S, Boardman R, Fangohr H,
Cox K, Essex JW and Sansom MSP. Three hydrolases and a transferase: com-
parative analysis of active-site dynamics via the BioSimGrid database. Journal of
Molecular Graphics and Modelling (2006).

Tai K, Murdock S, Wu B, Ng M, Johnston S, Fangohr H, Cox SJ, Jeffreys P, Essex JW
and Sansom MSP. BioSimGrid: Towards a worldwide repository for biomolecu-
lar simulations. Organic & Biomolecular Chemistry, 2, 3219–3221 (2004).

Thompson DA and Best JS. The future of magnetic data storage technology. IBM J.
RES. DEVELOP., 44(3) (2000).

Tiller J. A Technical Guide to IPSec Virtual Private Networks, chapter Reading and
Writing to Files and Streams. Auerbach, 1st edition (2000).

Tuomi I. The live and death of moore’s law. First Monday, 7(11) (2002). [Online;
accessed 21-December-2005], http://firstmonday.org/issues/issue7
11/tuomi/index.html.

Tweedie S. Ext3, journaling file system. Ottawa Linux Symposium, Ottawa Congress
Center (2000).

Vadala D. Managing RAID on Linux, chapter 2, pages 31–32. O’Reilly Media, Inc.,
1st edition edition (2002a).

Vadala D. Managing RAID on Linux. O’Reilly Media, Inc., 1st edition edition (2002b).

Versant. Objects end-to-end: The ODBMS advantage (2001). [Online; accessed
1-August-2004], http://www.versant.com.

W3C. Document Object Model (DOM) level 1 specification
(1998). [Online; accessed 1-January-2006], www.w3.org/TR/1998/
REC-DOM-Level-1-19981001.

W3C. Namespaces in XML. World Wide Web Consortium (1999). REC-xml-
names-19990114, [Online; accessed 21-February-2006], www.w3.org/TR/1999/
REC-xml-names-19990114.

164

http://firstmonday.org/issues/issue7_11/tuomi/index.html
http://firstmonday.org/issues/issue7_11/tuomi/index.html
http://www.versant.com
www.w3.org/TR/1998/REC-DOM-Level-1-19981001
www.w3.org/TR/1998/REC-DOM-Level-1-19981001
www.w3.org/TR/1999/REC-xml-names-19990114
www.w3.org/TR/1999/REC-xml-names-19990114

W3C. XML path language (XPath),version 1.0 (1999). [Online; accessed 1-August-
2004], www.w3.org/TR/xpath.

W3C. Web Services Description Language (WSDL) 1.1 (2001). [Online; accessed
23-January-2006], www.w3.org/TR/wsdl.

W3C. SOAP Version 1.2 Part 1: Messaging Framework (W3C Recommendation)
(2003). [Online; accessed 1-June-2004], www.w3.org/TR/soap12-part1/.

W3C. Extensible markup language (XML) 1.0 (2004a). [Online; accessed 1-June-
2004], www.w3c.org/xml.

W3C. Resource Description Framework (RDF) schema specification. W3C
technical reports (2004b). [Online; accessed 12-June-2006], www.w3.org/TR/
PR-rdf-schema.

W3C. SOAP: Message Transmission Optimization Mechanism (2005a). [Online;
accessed 1-January-2005], www.w3.org/TR/soap12-mtom/.

W3C. XML-binary Optimized Packaging (2005b). [Online; accessed 1-January-
2005], www.w3.org/TR/xop10/.

W3C. XQuery 1.0: An XML query language, W3C working draft (2005c). [Online;
accessed 1-August-2004], www.w3.org/TR/2005/WD-xquery-20050915/.

Wan M, Rajasekar A and Schroeder W. An Overview of the SRB 3.0: the Feder-
ated MCAT (2003). [Online; accessed 1-January-2005], www.sdsc.edu/srb/
FedMcat.html.

Weiner PK and Kollman PA. AMBER: assisted model building with energy refine-
ment. a general program for modeling molecules and their interactions. J. Comp.
Chem, 2 (1981).

Wilkinson K, Sayers C, Kuno H and Reynolds D. Efficient RDF storage and retrieval
in Jena2. First International Workshop on Semantic Web and Databases, (2003).

William J. Bolosky and SC, Goebel D and Douceur JR. Single instance storage in
Windows 2000. Microsoft Research (2000).

Woods CJ, Ng M, Johnston S, Murdock SE, Wu B, Tai K, Fangohr H, Jeffreys P, Cox
S, Frey JG, Sansom MSP and Essex JW. Grid computing and biomolecular sim-
ulation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences,
363(1833) (2005).

Wu B, Dovey M, Ng M, Tai K, Murdock S, Fangohr H, Johnston S, Jeffreys P, Cox S,
Essex J and Sansom MSP. A web / Grid portal implementation of BioSimGrid:
A biomolecular simulation database. Journal of Digital Information Management,
2(2), 74–78 (2004a).

Wu B, Dovey M, Tai K, Ng M, Stuart, Murdock, Fangohr H, Johnston S, Jeffreys
P, Cox S, Essex JW and Sansom MS. Security and BioSimGrid: A biomolecular
simulation database. Proceedings of Workshop on Grid Security Practice and Experi-
ence (2004b). Published as: University of York, Department of Computer Science
Technical Report YCS-2004-380.

165

 www.w3.org/TR/xpath
www.w3.org/TR/wsdl
 www.w3.org/TR/soap12-part1/
 www.w3c.org/xml
www.w3.org/TR/PR-rdf-schema
www.w3.org/TR/PR-rdf-schema
www.w3.org/TR/soap12-mtom/
www.w3.org/TR/xop10/
www.w3.org/TR/2005/WD-xquery-20050915/
www.sdsc.edu/srb/FedMcat.html
www.sdsc.edu/srb/FedMcat.html

Wu B, Tai K, Murdock S, Ng M, Johnston S, Fangohr H, Jeffreys P, Cox S, Essex J and
Sansom MS. BioSimGrid: A distributed database for biomolecular simulations.
Proceedings of UK e-Science All Hands Meeting 2003, pages 412–419 (2003).

Wu B, Tai K, Ng M, Johnston S, Murdock S, Fangohr H, Sansom MSP, Essex J, Jef-
freys P and Cox S. Towards a Grid-enabled biomolecular simulation database.
In Proceedings of UK e-Science All Hands Meeting 2005, pages 577–580 (2005).

Xue G, Pound GE and Cox SJ. Performing Grid Computation with Enhanced Web Ser-
vice and Service Invocation Technologies, volume 2659, pages 297–306. Springer
Berlin / Heidelberg (2003). Lecture Notes in Computer Science.

Yergeau F. UTF-8, a transformation format of ISO 10646. The Internet Society (2003).
RFC3629.

166

