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Design optimization methods using high-fidelity computational fluid dynamics simulations are becoming 

increasingly popular in the area of aerodynamic design, sustaining the desire to make these methods more 

computationally efficient. Such design strategies typically define the aerodynamic product using a 

parametric model of the geometry, but this can often require a large number of design variables, 

increasing the computational cost. This thesis proposes that a parametric model of aerodynamic flow 

features, rather than geometry, can be a parsimonious method of representing designs, giving a reduction 

in the number of design parameters required for optimization. The parameterization of flow features is 

coupled with inverse design, in order to recover the corresponding geometry. While an expensive analysis 

code is used in evaluating design performance, computational cost is reduced by using a low-fidelity code 

in the inverse design process. This newly presented method is demonstrated using four case studies in 2-D 

airfoil design, in which the parameterized flow feature is the surface pressure distribution, and two case 

studies for 3-D wing design, in which the spanwise loading distribution is parameterized. These strategies 

are consistently compared against a benchmark design search method which uses a conventional 

parameterization of the geometry. The two methods are described in detail, and their relative performance 

is analysed and discussed. The newly presented method is found to converge towards the optimum design 

significantly more quickly than the benchmark method, providing designs with greater performance for a 

given computational expense. A parameterization of flow features can generate designs with higher 

quality and detail than a geometry-based method of the same dimensionality. 
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Nomenclature 

Listed below are the definitions commonly used in this thesis. 

 

x = geometrical ordinate in the streamwise direction, for two-dimensional flow 

z = geometrical ordinate in the vertical direction, for two-dimensional flow 

X = geometrical ordinate in the streamwise direction, for three-dimensional flow 

Y = geometrical ordinate in the spanwise direction, for three-dimensional flow 

Z = geometrical ordinate in the vertical direction, for three-dimensional flow 

Μ = flow speed Mach number 

Re = flow Reynolds number 

α = angle of attack 

Cp = pressure coefficient 

cd = airfoil drag coefficient, normalized with respect to chord 

cl = airfoil lift coefficient, normalized with respect to chord 

c = airfoil chord 

zt max = airfoil maximum thickness 

zc max = airfoil maximum mean thickness (maximum camber) 

rLE = airfoil leading edge radius 

CD = wing drag coefficient, normalized with respect to wing projected area 

CL = wing lift coefficient, normalized with respect to wing projected area 
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Chapter 1. Introduction 

“As we have moved from the great pioneers, such as Lanchester, to the modern age of sophisticated 

computational methods and integrated ways of working, so we have moved from the ‘art of compromise’ 

to the ‘science of optimisation’.” 

 

The above quotation is taken from a lecture given by Jeff Jupp of Airbus (Jupp [2001]). It portrays 

succinctly that the process of design is one of compromise. In a modern aircraft design project, these 

compromises can be vastly complex, but they are not beyond reasoning when modern computational 

methods are employed in the design process. This design process, and indeed this thesis, is multi-faceted, 

and concerns aerodynamics analysis, parametric modelling techniques and optimization. 

 

 

1.1 The Role of Aerodynamics in Design 

Historically, the study of aerodynamics has been motivated to a large extent by the dream of achieving 

and perfecting the act of manned powered flight. As recently as the late 19
th
 century, the flight of birds 

and insects was thought by some to rely on a mythical “vital force”, and fierce debate raged amongst the 

scientific community as to whether such motion could be achieved by an inanimate object. Wilbur Wright 

commented similarly in 1901 “nobody will fly for a thousand years”, but two years later thanks to their 

persistence the Wright brothers achieved their dream. Aerodynamics concerns the prediction of forces and 

moments acting on a body, when the body is immersed in a fluid (usually air) with relative velocity. The 

motion of a fluid over a solid body gives rise to two basic flow phenomena: the pressure distribution 

acting normal to the surface and the shear stress distribution acting tangential to the surface due to the 
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viscosity of the fluid. Knowledge of these flow phenomena permits the prediction of the net forces and 

moments on the body, and this is the key interest of an engineer. Engineers strive to use their knowledge 

of aerodynamics in order to design improved products. However, design decisions are rarely based on 

experience alone, and rely additionally on the use of some form of analysis. The Wright brothers built 

their own wind tunnel in their bicycle shop, performing a series of methodical experiments with airfoil 

and planform geometries in the quest for a more efficient wing design. The scale and complexity of 

modern aircraft design projects and analysis techniques far exceeds the efforts of the Wrights, but after 

more than 100 years the same principles of engineering design practice still apply. 

Classical analysis of finite wings and airfoils (infinite wings) began with the solution of potential flow 

equations, i.e., the closed form solution for inviscid, irrotational, incompressible flow. This was 

performed with hand calculations until the arrival of the modern digital computer, which allowed large 

calculations to be rapidly performed. By the 1960’s, computational fluid dynamics (CFD) approaches 

such as the source panel method were standard tools of the aerospace industry. Further development of 

CFD solution schemes allowed the iterative solution of transonic potential flow, the Euler equations, and 

subsequently the Reynolds averaged Navier-Stokes (RANS) equations. Modern research into design 

oriented CFD focuses on turbulence simulation and accurate drag prediction, as well as reducing 

computational expense. 

CFD simulations are relied upon heavily in modern aircraft design projects. Because this is a relatively 

inexpensive task compared to experimental wind-tunnel testing, CFD can be performed on a large scale 

and can be easily accessed by all the designers. Typically, varying levels of CFD fidelity and capability 

are used at different stages in the design process. At the concept design stage, the objective is to assess the 

technical and economic feasibility of the potential product as a whole, and this consideration should 

encompass all aspects of the design and its impact on the user. This study is often based on previous 

designs, and so empirical and calibrated CFD analyses are commonly employed. At the preliminary and 

detailed design stages the product is broken down into the design of its component parts; higher fidelity 

analysis methods are used in order to model the relevant flow features in more detail, and obtain a more 

accurate figure for the predicted drag. The use of more expensive and complex flow simulations in 

preliminary design means that much of the engineering time is spent in pre-processing and post-

processing the analysis. The decision of what modifications should be made to the design is typically a 

manual one, and this is not always obvious based on the results of CFD. There are invariably 

compromises to be made with each design decision; there could be conflicting aerodynamic load 

requirements, and structural issues often lead to further compromises in the aerodynamic performance. 
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Thus, the need to perform a more systematic exploration of engineering compromises, and accelerate the 

design process, has lead to the increasing use of automated optimization methods. 

Optimization as a subject in mathematics is very old, but its application in aerodynamic design problems 

only began in earnest following the widespread use of the modern digital computer. At its most 

fundamental, optimization is the search for a set of inputs to a function, known as the objective function, 

that result in that function taking its minimum possible value, or, conversely, its maximum possible value 

for a maximization problem. Despite the optimization techniques being carried over into an aerospace 

design context, such functions are rarely optimized per se. Rather, the non-linear nature of CFD analysis 

and the requirement for a large and multi-dimensional search space means that this is an exercise in 

design improvement, hence the term design search and optimization (DSO) is used. This line of reasoning 

is shared by van Egmond [1990]: “Expectations of achieving the absolute best design invariably lead to 

maximum disappointment”. In addition, the inputs to an objective function and the computational model 

can never be all-encompassing, i.e., there will always be real life factors not taken into account in the 

design search process. Therefore, automated optimization processes are used in industrial situations to 

complement and accelerate the work of the engineer. A fundamental requirement for performing 

optimization is a parametric description of the design; for aerodynamic design this parameterization 

typically involves inputs relating to the external geometry. The selection of an appropriate 

parameterization is a key factor in the successful application of DSO methods, and this is the focus of this 

thesis. 

 

 

1.2 The Role of Parameterization in Design 

The basic process of design has been described as the making of decisions that change the product 

definition (Keane and Nair [2005]). In aerodynamic design, these decisions are made based on the results 

of the aforementioned aerodynamic analysis. The product definition, in its most traditional form, is an 

engineering drawing communicating the physical dimensions and geometrical features of the product. 

However, such a primitive description does not readily allow measured and reproducible changes, and 

certainly prevents automated changes using an optimization algorithm. The need for an efficient and 

systematic approach to aerodynamic design was recognized in the 1930’s by the designers of the NACA
1
 

                                                 
1
 National Advisory Committee for Aeronautics, which subsequently became the National Aeronautics and Space 

Administration (NASA). 
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4-digit airfoils (Jacobs et al. [1933]). The designers used a series of successful airfoil shapes to generate 

one of the earliest examples of a parametric model, i.e., a mathematical description which allows a design 

to be defined using one or more design variables. Among these design variables are the airfoil thickness 

and camber quantities. This model facilitates intuitive and precisely measured changes to the shape, and 

leads to a methodical design process. 

In many fields of modern engineering design, the required product definition is becoming increasingly 

more complex, and designers are forced to adhere to ever more demanding time and budget constraints. 

The former is particularly true in aerodynamic shape design, where detailed and subtle design changes are 

often necessary to minimize drag or control a separation point, for example. Thus, a significant research 

effort has gone into investigating more sophisticated techniques for representing and manipulating 

designs. At present, the parameterization techniques used in aerospace design can be split into two broad 

classes: computer aided design (CAD) based methods, and analytical techniques. Modern CAD software 

is becoming increasingly sophisticated, and is typically capable of quite complex parametric modelling 

tasks using non-uniform rational B-spline (NURBS) curves and surfaces. CAD is also very accessible to 

the designer, allowing the input of design data from external software and the export of geometry and 

mesh data to a CFD pre-processor. There are also many powerful analytical methods which have not yet 

been adopted in CAD packages. These include basis function methods, partial differential equation 

methods and free-form deformation. An introduction to the most commonly used parameterization 

techniques follows in Chapter 2.  

A parameterization scheme can be set up to perform global changes in shape or local modifications, or in 

some cases, both (Hoyle [2006]). In the design process, a global method is typically used in the initial 

concept stage, while increasingly local techniques are employed at subsequent stages (Keane and Nair 

[2005]). 

An example of a global technique is a NURBS representation of a full aircraft wing-body configuration; 

this can typically perform large modifications to the design and is not constrained with respect to its 

overall form. The ability to perform global shape modifications is a key attribute for parameterization 

schemes employed for conceptual design tasks. An ability to consider radically different designs is 

becoming increasingly important, as designers are forced to consider new concepts in a bid to reduce the 

environmental impact of passenger aircraft. The main aircraft emissions targets set out by the European 

commission to be achieved by 2020 are a 50% reduction in carbon dioxide emissions per passenger 

kilometre, and an 80% cut in nitrous oxide emissions (Reneaux [2004]). Drag reduction can contribute 

significantly to this effort. Aircraft manufacturers therefore have a responsibility to pursue revolutionary 
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concepts such as the blended wing-body and the supersonic biplane (Yamashita et al. [2007]), which are 

illustrated in Figure 1-1 (a) and (b), respectively. Both of these concepts promise to dramatically reduce 

drag; the blended wing body could greatly improve the lift to drag ratio, while the supersonic biplane 

features very little wave drag at cruise conditions. These examples emphasize the importance of 

considering a global range of designs at the conceptual stage. 

 

             
(a)       (b) 

Figure 1-1 Future aircraft concepts. (a) A blended wing-body aircraft. (b) The supersonic biplane. 

 

In addition to providing global shape manipulation, a parameterization can be used to perform more local 

surface modifications. Local techniques are able to apply detailed modifications to a specific area of the 

product. Examples include the use of NURBS control points and bump functions. Provided the 

constraints on a design problem allow it, local modifications can also result in radically different designs. 

However, some techniques, such as the above NACA airfoil definition, are based on a set of existing 

designs, and thus the generated designs are generally evolutionary relative to the input set. 

Parameterization and shape control techniques have undergone extensive development, and an impressive 

level of local control can be achieved. However, increasing the degree of surface control usually entails 

an increase in the number of design variables. This increase in dimensionality increases the complexity of 

the design task, and when automatic optimization is employed this equates to an increase in the 

computational cost of a design search. Thus, there is a need for parsimonious parameterization techniques 

in order to minimize this cost. 

 

 

 

Original in colour 



Introduction  6 

 

 

1.3 The Need for Efficiency in Design 

Despite advances in CFD simulations, computing power and optimization strategies, the computational 

expense of high-fidelity CFD means that more efficient design optimization methods are still sought after 

for use in aerodynamic design. A reduction in the number of input parameters as a result of improved 

parametric modelling is a common contributor to this efficiency. As previously mentioned, this number of 

input parameters can be large when manipulating geometry, in order to obtain the detail and smoothness 

required for high-fidelity flow analysis. Additionally, many large-budget, state-of-the-art aerospace 

design projects result in highly complex and intricate geometries. However, an increase in model 

complexity usually comes with an increased cost in performing the design search. Thus, the setup of a 

parameterization scheme is an interesting compromise between achieving a sufficient level of detail and 

local control, and minimizing the complexity of the design task.  

Figure 1-2 illustrates this compromise, by considering the problem of minimizing the drag of an airfoil. A 

design search is set up in which the airfoil is parameterized using a spline curve method, where the design 

variables are the positions of control points on the airfoil surface. The drag is determined using a low-

fidelity potential flow solver and a genetic algorithm (GA) is employed to search for low-drag designs; 

note that any optimization algorithm could be used in this example problem. This design search is run ten 

times, using a different number of variables to define the airfoil shape at each attempt and using the same 

number of GA iterations, representing a fixed computational budget. Figure 1-2 plots the number of 

variables used versus the best drag result obtained during the search, also showing some of the optimized 

airfoil geometries. It can be seen that when 2 design variables are employed the poor degree of local 

control severely limits the ability to generate low drag designs, but the airfoil shape is regular and smooth. 

In contrast, when the airfoil is defined using 20 variables, it is clearly possible to achieve very good local 

control, but the immense complexity of this design search has resulted in a best design which lacks 

smoothness, and therefore it too has a rather high drag. Many thousands of design iterations, and a large 

computational budget, would be required for this design search to converge onto a truly optimal design. In 

this design example, the best compromise is achieved when 10 variables are employed for optimization, 

since this provides sufficient local control but also converges sufficiently quickly to reach a low-drag 

airfoil shape. This simple example demonstrates the need for efficient parameterization schemes, which 

are able to generate detailed and complex changes in shape, but which use a relatively small number of 

design variables to minimize the cost of a design search. 
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Figure 1-2 An airfoil design parameterization example. As the number of design 

variables is increased, there is an increase in both the level of local control and the complexity of the 

optimization task. 

 
A great advantage of CFD is the ability to calculate pressure and velocity data at any point in the 

discretized domain, be this on the body surface or in the off-surface flow. This data can be used to extract 

information relating to individual flow features such as induced vortices, separation, or the variation of 

surface pressure or aerodynamic forces. These flow features can be implicitly linked to the analysed 

geometry. However, while the definition of geometry can be very complex, one can imagine that when 

subjected to a flow field the resulting flow features are not necessarily so complex. For example, in 

minimizing the induced drag of a wing one might aim for a simple elliptical lift distribution, while the 

corresponding shape, for a given flow field, could turn out to be rather more complicated. In such 

situations, one can postulate that the flow features surrounding the component are potentially simpler to 

represent parametrically than the geometry. Also, since varying the flow features is likely to have an 

effect on the entire geometry under analysis, a simple parameterization of flow features may be able to 

produce quite complex geometrical modifications. Further, such a parameterization will perceivably have 

an intuitive effect on aerodynamic forces, such as lift and drag. 

Of course, by specifying flow features, the designer is then tasked with determining the geometry which 

realizes these flow features for the given flow conditions. The specification of flow features and 

subsequent realization of the required geometry is not a new idea. So-called inverse design methods have 

been used widely, particularly in the context of designing an airfoil which generates a prescribed surface 

pressure distribution; see for example, Dulikravich [1990] or Drela [1989]. The design of flow features is 
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not an intuitive concept, perhaps because aerodynamic effects are invisible whereas engineers are more 

familiar with geometry manipulation. However, the design of flow features is in some senses more 

logical; after all, it is the flow features which uniquely establish the forces on a body. The geometry is 

simply the means of achieving the required flow features. Despite the increasing importance of aesthetics, 

engineers are concerned rather less by what their product looks like; instead their efforts are focused on 

improving its performance. Inverse design has been used for various flow feature specifications (for 

example Qin et al. [2005] used the spanwise lift profile), but not principally as a means of reducing the 

dimensionality of design optimization problems. 

The aim of the work described in this thesis is to investigate the use of flow feature parameterization as a 

means of improving the efficiency of the design process. It is proposed that this technique can generate 

detailed and localized geometrical modifications while reducing the total number of defining design 

variables. The research does not focus on optimization algorithms or CFD techniques, but rather a method 

in which shape control, inverse design and optimization methods are combined in an attempt to accelerate 

the process of design. In this work, the application of such methods is to the aerodynamic design of 3-D 

aircraft wings and 2-D wing sections. Consistently, a comparison is made between two design strategies. 

The first is treated as a benchmark in aerodynamic shape optimization, in which the geometry is defined 

parametrically using a representative number of input parameters, and each design selected by the 

optimization process is analysed using high-fidelity CFD to give a measure of performance. The 

alternative approach uses a parameterization of flow features, since they can potentially be described 

using fewer inputs, combined with an inverse design step to recover the required geometry. Following 

inverse design, each design is evaluated identically to those in the benchmark process. This work is 

therefore a comparison between these two approaches to parameterization, and investigates the design 

performance of these methods given a fixed computational budget. 
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1.4 Thesis Outline 

The purpose of thesis is to compare two different parameterization approaches for aerodynamic design, 

and to demonstrate their relative performance using practical examples. Therefore, the work makes 

frequent references to the disciplines of parametric modelling, CFD analysis, optimization algorithms and 

design strategies including inverse design. A background to these items is given in Chapter 2. 

In Chapter 3, the concept of flow feature parameterization is introduced, and areas of related work are 

identified. The proposed parameterization technique is first applied to the design of 2-D airfoils, and is 

evaluated relative to the benchmark process. The parameterized flow feature for this application is the 

airfoil surface pressure distribution. The setup of a comparison between the two design methods is 

described, detailing the parameterization techniques, optimization strategy, CFD analysis setup and 

inverse design. Chapter 4 reports the results of four case studies for 2-D airfoil design. The objective of 

the design searches is to minimize the total drag of the airfoil at a single operating point. Drag is 

calculated using RANS analyses; in the first two case studies a subsonic flow regime is specified, and in 

two further case studies a transonic flow regime is used. The results from these case studies are analysed 

in detail and conclusions are drawn. 

In Chapter 5, the proposed parameterization method is implemented in a 3-D design scenario. The task is 

to design a wing-tip device with the objective of minimizing drag. A background to the use of wing-tip 

devices is documented. Following this, a study is described which investigates an appropriate flow feature 

to parameterize for this 3-D design problem. The chosen geometry description is the trailing edge chord 

distribution, and the parameterized flow feature is the spanwise lift distribution. The setup of a 

comparison between design searches using the flow feature based parameterization and the geometry-

based parameterization is described. Chapter 6 reports two case studies for this 3-D wing-tip design task; 

in one the drag is calculated using Euler simulations, and the other uses RANS simulations. The results 

from these design searches are analysed and conclusions are drawn. 

In Chapter 7, the findings reported in Chapters 4 and 6 are scrutinized in a general sense. Key conclusions 

and contributions are listed. To finish, recommendations for future work are given describing how the 

work in this thesis could be taken further. 
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Chapter 2. Current Practices in 

Aerodynamic Design 

The purpose of this thesis is to present a new approach to the design of components subjected to 

aerodynamic flows. The work exploits many other computational techniques which are well established 

and used routinely in design exercises. Before any alternative concept is presented, these current practices 

are discussed, forming a background to the methods used in later chapters. One of the key themes of this 

work is parameterization techniques; a number of examples are given below and their relative advantages 

and disadvantages are discussed. This chapter also outlines the key areas of CFD analysis and 

optimization algorithms, and introduces the concept of inverse design. 

 

2.1 Parameterization Techniques 

Parameterization is the representation of the chosen physical characteristics of a design in terms of one or 

more numerical parameters, known as design variables. These design variables can be either continuously 

varying or discrete. Typically, such a parameterization is applied to geometry, describing changes to all or 

part of the design under scrutiny. Using a parametric description of a design, the job of the designer, or 

indeed, an optimization algorithm, is to select the values of the design variables which give an improved 

design performance. In engineering design, this selection process is based on the results of analysis, be 

this computational or experimental. Each variable has a range associated with it; collectively these ranges 

form the design space, with each design taking up a point in this space. At its lowest level, the NACA 

definition (described below) allows an airfoil to be described using only its camber and thickness 

quantities, allowing rapid design studies to be performed. In this case the use of only two variables 

permits a thorough search of the design space, but may not be able to manipulate the airfoil shape in 

sufficient detail to give the required performance gains. Conversely, a more detailed parameterization 

may yield improved performance but result in a more lengthy design search due to the higher dimensional 

search space. Thus, as demonstrated in Chapter 1, the choice of parameterization technique is often a 

trade-off between the detail and complexity required for a design and the budget of analysis calls 
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afforded. This has been the subject of extensive research, seeking for representations which reduce the 

number of design variables while retaining the ability to capture a global range of designs. A survey of 

many techniques used in the aerospace sector is given by Samareh [1999]. Below is an outline of a 

number of geometric parameterization techniques relevant to the current work. 

 

2.1.1 NACA Airfoils 

During the 1930’s, NACA (National Advisory Committee for Aeronautics, which later became NASA) 

developed one of the earliest examples of geometric parameterization. The experimentally developed 

definition gives smooth and efficient airfoil shapes, and forms a family known famously as the NACA 4-

digit series. These airfoils have been heavily used in the aircraft industry, but are rarely used today having 

been replaced by more advanced CFD developed shapes. The 4-digit airfoil definition is described in the 

landmark NACA Report 460 (Jacobs et al. [1933]), and is summarized here. 

In this definition, the airfoil is specified using an expression for the camber line plus a thickness 

distribution either side of this line, forming the upper and lower surfaces in two-dimensional (x,z) co-

ordinates. The camber line, zc, consists of one parabola from the leading edge to the point of maximum 

camber, and another parabola extending from this point to the trailing edge: 
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Here, zc max is the maximum camber and xm is the position of maximum camber as a fraction of the chord, 

c. The thickness distribution, zt, is a simple irrational polynomial function, the coefficients of which were 

found by fitting to a number of popular airfoils of the time: 
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where xzc ddtan =θ . Using the NACA 4-digit formulation, there are three design variables: the airfoil 

maximum camber (first digit, as a percentage of chord), position of maximum camber (second digit in 

tenths of chord) and maximum thickness (last two digits, as a percent). This simplicity means that the 

resulting shapes are inherently smooth and allow significant flexibility while always giving sensible 

shapes. However, the definition is unable to provide detailed control over the shape and surface curvature, 

and so is unsuitable for modern airfoil design. The capability of this parameterization could be improved 

by using more complex expressions for the camber and thickness; for example, the camber line could be 

determined by the position of the maximum camber point, and one or more other interpolated points. 

 

2.1.2 CAD Based Techniques 

The use of computer aided design (CAD) software is now commonplace in all engineering disciplines. 

Initially, this was the tool of a draughtsman in the design office, but it is being used increasingly in the 

conceptual and preliminary design phase as a tool for parametric design and as an input deck for 

computational analysis. Using a fully parametrically coupled CAD model of a component, a change can 

be made to the dimensions of a certain geometrical feature, and the changes to the whole component are 

updated automatically. A key tool within modern CAD software is the generation of complex parametric 

curves and surfaces, and in line with contemporary design needs these items can be controlled very 

precisely in terms of shape and curvature. Typically, the designer specifies a curve by requiring that it 

interpolates a number of points in space. Two popular curves of this type are now summarized: the 

polynomial spline and the B-spline. 

Polynomial curves have often been used for data representation due to their ease of computation, and their 

behavior is simple and well understood. However, in order to pass through n data points a curve of order 

)1( −n is required, and if n is high this can lead to numerical instability. An alternative and well behaved 

approach is to use a segmented curve, i.e., a spline, where a polynomial curve is placed between two 

adjacent data points to be interpolated. A single segment of the polynomial spline of order (n-1) describes 

the variation of z with x in the form: 
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The constants x1 and x2 are the extents of the spline segment in x, and ai are coefficients to be determined 

by specifying boundary conditions for the segment. These boundary conditions arise by requiring adjacent 
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spline segments to have the same value of first and second derivatives at the point at which they join. The 

gradient is specified at the start point of the first segment and the end point of the last segment of the 

complete spline; this completes the curve. An advantage of this polynomial curve is the ability to readily 

control the gradient of the curve at the boundary. By specifying the co-ordinates of the segment joins, or 

data points, the coefficients of the polynomials are found and thus the curve is defined. 

The polynomial spline is simple to implement, but as a result it is somewhat rudimentary. A more 

complex representation, rather more tailored to geometric shape design, is the B-spline curve. This is a 

generalizataion of the Bézier curve, which was originally developed for use in the automobile industry. 

The Bézier is a single-segment parametric curve, for a degree n curve it is defined by 

∑
=

=
n

i

ini uBu

0

, )()( PC  10 ≤≤ u ,    (2.5) 

where C(u) is a vector-valued function of the independent variable u. This is similar in form to the 

polynomial segment in Eq. 2.4; in this case the basis functions Bi,n are the nth degree Bernstein 

polynomials, and the coefficients Pi are called control points. The control points are such that they define 

the shape of a control polygon. Figure 2-1 shows an example of a third order (cubic) Bézier curve. 
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Figure 2-1 Example of a cubic Bézier curve. 



Current Practices in Aerodynamic Design  14 

 

 

The Bézier curve has useful properties, but, as with any polynomial, it consists of a single segment and as 

such it lacks detail and local control. Development of the Bézier representation resulted in the segmented 

B-spline curve. For a vector curve C in the variable u, a p-th order B-spline is defined by 

∑
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, )()( PC  bua ≤≤ ,    (2.6) 

for a curve on the interval [a,b]. Pi are the (n+1) control points, as in a Bézier curve, and Ni,p(u) are the p-

th degree B-spline basis functions. The knot vector, U, containing (m+1) knots, is defined as 
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in which m=n+p+1. Now the i-th B-spline basis function is defined recursively as 
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Eq. (2.8) is referred to as the Cox-de Boor recursion formula (detailed in de Boor [1968] and de Boor 

[1972]). When evaluating the curve C(u), for each u one finds the knot span in which u lies, computes the 

relevant basis functions, and multiplies these by the corresponding control points using Eq. 2.6.  

What remains is to devise a method of calculating the control point locations that cause the B-spline curve 

to interpolate the data points in the given order, as this is the feature so useful in CAD software. If the 

(n+1) data points to be interpolated are Dk, these correspond to values of u, or parameters, tk. Then for the 

data points, Eq. 2.6 becomes 

∑
=

==
n

i

ikpikk tNt

0

, )()( PCD  for nk ≤≤0 .   (2.9) 

Here, the basis functions Ni,p(tk) collectively form a (n+1)×(n+1) matrix, N. Dk and Pi are both vectors in 

s-dimensional space, and are rows of the (n+1)×s matrices D and P. The above relation can therefore be 

written as the linear system 
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PND ⋅=  ,     (2.10) 

which can be solved for the matrix P. Calculation of the corresponding curve then proceeds as normal 

using Eq. 2.6. An example of such an interpolating B-spline is shown in Figure 2-2. 

B-spline curves are more complex to implement and require more information than simple polynomial 

splines, but they permit finer shape control. They also have the useful property that changing the position 

of control point Pi only affects the curve on the interval [ui, ui+p+1], allowing highly local modifications. 

An excellent description and background to B-spline curves is given by Piegl and Tiller [1997].  

From a geometric parameterization viewpoint, spline curves give excellent shape control and facilitate a 

large design space incorporating detailed and radical designs; this, however, gives a correspondingly large 

number of design variables. Also, the curves described here are inherently polynomials and therefore 

cannot represent some simple shapes such as circles and ellipses, and may lack the complex curvature 

control required for the detailed manipulation of shock waves on an airfoil surface, for example. For such 

cases, the more generalized non-uniform rational B-spline (NURBS) can be used; NURBS are described 

in detail by Piegl and Tiller [1997]. 
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Figure 2-2 Example of an interpolating B-spline of degree three. 
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2.1.3 Analytical Methods 

Outside of the domain of CAD software, various analytical functions and methods have been applied to 

the geometry manipulation problem. The use of linear combinations of functions is popular, including 

straight line, polynomial, ellipse and the more advanced Wagner functions (Xing and Damodaran [2005]), 

for example. Shape modifying functions are also commonly used, such as Hicks-Henne functions (Hicks 

and Henne [1978]). These are essentially local bumps, and since their curvature decays to zero at the 

extremities they can readily be patched onto an existing shape. A single Hicks-Henne bump takes the 

form 
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π  for 10 ≤≤ x ,   (2.11) 

where A is the bump height, xp is the location of the peak and w varies its width. There are therefore three 

design variables associated with each bump. Typically a number of bumps are manipulated 

simultaneously during a design search procedure. 

An alternative analytical approach for geometry parameterization is to define it as a solution to a set of 

partial differential equations (PDEs). This method was first used by Bloor and Wilson in order to provide 

smooth blending between surfaces, but has been applied to conceptual parameterization of complete 

aircraft configurations; see for example, the works by Bloor and Wilson [1995] and Smith et al. [1995]. 

By using an existing body, a number of boundary conditions are derived from the position and slopes at 

the boundary. This requires relatively few variables; solution of the PDEs gives the new surface. This 

description results in excellent smoothness and global control, but cannot perform the local variations in 

shape that are necessary for preliminary and detailed design tasks. 

In order to incorporate more detailed shape changes into an analytical description, some methods utilize 

combinations of existing shapes. For airfoil design, existing shapes have been used in linear 

combinations, but a more efficient technique uses them to derive a series of orthogonal shape functions, 

as described in the work by Robinson and Keane [2001]. In this work, a family of nine NASA 

supercritical airfoils were analyzed and decomposed into six orthogonal functions, which, when 

appropriately combined, are able to re-capture the original airfoils. These orthogonal functions benefit 

from an intuitive description, similar to the NACA 4-digit series; i.e., the first function controls airfoil 

thickness, the second is camber and third is a form of twist, etc. This means that a model of varying 

complexity can be used, depending on the desired control and model dimensionality. However, while this 
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description is very concise, it is fundamentally derived from existing airfoil shapes and therefore gives a 

design space leading to evolution rather than innovation. 

 

 

2.2 Computational Fluid Dynamics 

Computational aerodynamics analysis of components can be performed using a wide variety of 

approaches of varying fidelity and capability. Each has advantages and disadvantages depending on the 

computational budget afforded and the level of accuracy and detailed modelling required. The capability 

of computational analysis has increased dramatically in recent years, but the latest RANS solvers require 

significant computational effort, and so are not suitable for conceptual design, for example. In this case 

the classical empirical and potential flow based analyses are more useful. The key types of flow analysis 

codes are summarized below. 

 

2.2.1 Panel Methods 

Panel methods are so-called because the geometry surface, be this in two or three dimensions, is 

discretized into a series or rectangular panels. The analysis proceeds by solving the linearized potential 

equation for inviscid, irrotational, incompressible flow for each of the geometry panels. To a limited 

extent, compressible flows can be modelled if a compressibility correction is employed, such as the 

famous Prandtl-Glauert model. Such approximations break down, however, in the transonic regime, 

meaning that panel methods cannot model flows for a free-stream Mach number greater than around 0.7 

or for flows with even weak shocks. However, it is possible to estimate the wave drag of a wing by using 

prior knowledge of the wave drag of individual sections coupled with simple sweep theory (Petruzzelli 

and Keane [2001]); such a method can be used in conjunction with a panel CFD solution. The great 

advantage of panel methods is their rapid solution time. Additionally, the requirement for only a surface 

mesh (and sometimes a wake mesh) means that pre-processing for panel methods is often minimal. 

 

2.2.2 Full Potential Methods 

Full potential methods provide solutions for inviscid, irrotational, compressible flows. This full solution 

requires a computational mesh to be generated for the entire flow domain, but the inclusion of 
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compressibility terms means that solutions can be obtained for high Mach number flows. This means that 

the solver can to some extent model shocks, but because irrotational conditions are imposed the solution 

does not apply across strong shocks. The position of the shock can therefore be predicted incorrectly, 

leading to overestimations for wave drag and lift. However, a designer will typically tolerate only a weak 

shock in an airfoil design, for example; in this case the full potential equation can provide acceptable 

accuracy. Since a potential model is used, these solvers provide very rapid solution convergence. It is 

possible to incorporate quite accurate viscous models, but these do not model separated flows. 

 

2.2.3 Euler Methods 

The Euler equations represent inviscid, rotational, compressible flow. Since rotational flow is considered, 

a potential flow regime can no longer be assumed. The following succinct description of the governing 

equations is given by Jameson [1989]. For a three-dimensional flow, the variables x, y, z, u, v, w, ρ, E and 

p are the Cartesian co-ordinates, Cartesian velocity components, density, total energy and pressure, 

respectively. The Euler equation can be written in vector form as 
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In Eq. (2.13), the total enthalpy, H, is given by 

ρ
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EH += ,      (2.14) 

and p is obtained from the equation of state,  
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where γ is the ratio of specific heats. The entire flow domain is discretized, reducing the Euler 

calculations to the solution of a large system of coupled linear equations. These equations are then solved 

iteratively, using a variety of different schemes. Since an iterative scheme is used on such a large set of 

equations, the solution is computationally more expensive than for the potential equation solvers. The 

advantage of this solver over a full potential code is the ability to more accurately predict the strength and 

position of shocks, since rotational flows are calculated. Relative to potential methods, reasonably 

accurate drag predictions can be obtained if additional far-field momentum thickness calculations, for 

example, are implemented. 

 

2.2.4 Reynolds-Averaged Navier-Stokes (RANS) Methods 

RANS solvers attempt to solve the complete viscous, rotational, compressible equations of fluid flow, i.e., 

the Navier-Stokes equations. The Euler equation, Eq. (2.12), is extended to include the viscous stresses, τ, 

forming the matrix system 
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In this form, the Navier-Stokes equations describe the general turbulent flow of a fluid in thermodynamic 

equilibrium. However, Jameson [1996] reports that, to resolve all turbulence scales in three dimensions, a 

computational mesh size of the order Re
9/4
 is required, which is obviously too large for a design situation. 

Thus, an approximation is used to provide time-averaging of the six rapidly fluctuating viscous stresses, τ. 

This results in the Reynolds equations (hence the name Reynolds-averaged), which are non-linear in 

nature and require some form of turbulence model for closure. As with the Euler equations, the flow 

domain is discretized and the RANS equations are reduced to a large linear system of equations which are 

solved iteratively. 
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The advantage of modelling viscous effects is the ability to predict and simulate separated flows, and 

potentially, obtain more accurate drag estimates. The principal disadvantage with the RANS method is the 

requirement for a very fine spacing of mesh cells in the direction normal to the body surface in order to 

resolve the extreme gradients encountered in the boundary layer flow. The resulting mesh generally 

contains a very large number of cells, often of the order of millions for a large three-dimensional study. 

The use of turbulence models significantly reduces the required number of cells, but the assumptions 

made inevitably limit the behaviour and accuracy of the turbulent flow. However, for the purposes of 

design, simulating fluid flows with extreme accuracy is less important than reproducing the trends in 

performance for a given change in the design parameters. Therefore, the loss of a certain degree of 

accuracy is accepted, with the knowledge that the associated speed-up considerably reduces the cost of 

performing a design exercise. 

Two methods representing the state-of-the-art in CFD and turbulence research are LES and DNS. Large 

eddy simulations (LES) solve the large turbulent eddies directly, and model the small eddies. Direct 

numerical simulation (DNS) aims to directly solve all scales of turbulence. At present, neither of these 

approaches is employed for design applications due to the prohibitive computing power required. 

Therefore, in this thesis the RANS simulation is the most advanced solution approach used as part of the 

design search applications. 
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2.3 Optimization Methods 

Presently, a vast array of design search and optimization (DSO) techniques are available to the designer, 

and these are suited to many different design problems. In the current study, the range of methods is 

limited to those dealing with continuous and numeric variables, with non-linear and deterministic 

objective functions (a given set of inputs always gives the same output). Four categories of optimization 

are considered below, all of which can be portrayed at their most basic level by the flowchart in Figure 

2-3. The component geometry is discretized into a number of continuous design variables, and for each 

set of variables the shape is analyzed using CFD giving a measure of performance. The job of the 

optimization algorithm is to manipulate the design variables in an efficient search for improved designs 

and performance. 
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Figure 2-3 Flowchart illustrating the design search and optimization process. 

 

2.3.1 Gradient Based Methods 

The gradient-descent methods, also known as hill-climbers, were the first mathematical algorithms to be 

used for engineering design optimization problems. Fundamentally, these involve the calculations of local 

gradients of the objective function in order to determine the direction of highest potential improvement; a 

line search tool is then used to find the optimum in the chosen search direction. Often, the gradients are 

calculated using finite differencing, but they can also be obtained directly from the analysis code. So-

called adjoint CFD methods can provide a faster, more accurate calculation of the gradients. Development 

of such methods, led to a large extent by Jameson (see Jameson [1988] or Jameson [1999]), has advanced 

to the stage where the sensitivities of the solution to orders of 1000’s of variables can be calculated at a 

cost of only a few objective function calculations. However, optimization methods are in less demand 

compared to direct CFD analysis software. Further, if the optimization is to be used with the types of 

design (CAD) parameterization discussed above, the adjoint must be integrated with the geometry and 

meshing tools. Thus, adjoint methods are generally not available commercially. In general, gradient-based 
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methods are simple to implement but the determination of the gradient for multi-dimensional design 

problems can be very costly, particularly if the objective function involves the use of CFD. In addition, 

the presence of noise in the objective function can result in inaccurate calculations for the search 

direction, delaying convergence of the algorithm. 

 

2.3.2 Gradient Free and Global Optimization 

There are optimization algorithms which work without the need to calculate the gradients. These can be 

grouped into two classes: pattern searches and evolutionary algorithms (Keane and Nair [2005]). Pattern 

searches operate by sampling points in the region of the current best design. A trial step is made in some 

direction from the current point. If the new point yields better performance then a further step is made in 

this direction, but if it is worse then an alternative direction is trialled. If steps in all directions yield 

poorer performance, the step size is modified in some way. The search is often deemed to be converged 

when the step size falls below a threshold. Since the step can take place in any direction, pattern searches 

are very often convergent, but only to the nearest optimum; they are not suitable for searching multi-

modal landscapes in a global sense, unless the process is restarted in multiple locations. 

Evolutionary algorithms are a class of the more general field of stochastic optimization, in which the 

selection of designs to be tested has a random element. This is in contrast to deterministic methods, in 

which a given set of initial conditions will always cause the optimizer to follow the same path. The 

random design perturbations are termed pseudo-random, since they are generated by a numerical 

algorithm and not a true normal distribution. However, this has the advantage that if a search is run with 

the state of the random number algorithm held constant, the optimization will proceed along the same 

path, i.e., the search is repeatable. Introducing a pseudo-random element means that evolutionary methods 

are able to avoid getting stuck on local optima, and instead can give a more global search of the design 

space. The genetic algorithm (GA) is a popular member of the evolutionary methods, and attempts to 

imitate the process of Darwinian evolution observed in nature. Each vector of design variables represents 

genetic material, and each design is a member of the population. The process starts by evaluating the 

objective function for an initial population (the first generation), and these are subjected to rules similar 

to those of natural selection; in particular, fitness and crossover. The higher achieving the individual, the 

more likely it is to contribute genetically to the next generation, i.e., survival of the fittest. Individuals that 

contribute to the next generation are paired up, and their offspring have attributes common to both 

parents, i.e., crossover. These rules ensure that the optimizer carries forward only the promising designs 

whilst also exploring the search space. Many GA’s also feature mutation, whereby small random changes 
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are introduced into new individuals, in theory allowing any point in the design space to be searched. In 

summary, evolutionary optimizers give a thorough and global search of the design space, but require a 

relatively large number of objective calculations in an attempt to converge onto the optimum. 

 

2.3.3 The Trust-Region Approach 

The optimization algorithms listed above all require a large number of objective function evaluations, 

which makes a design search prohibitively expensive when the objective function involves high-fidelity 

CFD analysis. To improve the computational efficiency, it is possible to replace the objective function 

with a computationally cheap surrogate model when searching for a point with potentially improved 

performance. The model is trained to fit the collected response data; in some cases, particularly for simple 

function models, such a surrogate is only a valid approximation in a small region of the design space. The 

trust-region is an area of the design space surrounding the current best design point, over which the 

surrogate model is considered to be a close approximation to the true objective function. The surrogate is 

used to predict the location of the optimum within the reduced area, and the true objective function is 

calculated for this point. The trust-region algorithm adapts the size of this searchable space after each 

evaluation, theoretically guaranteeing convergence to a local optimum. Typically, the surrogate function 

is a second-order polynomial. While this approach is computationally efficient compared to a hill-climber 

or GA, for example, it is not suitable for global optimization. 

 

2.3.4 Response Surface Model Methods 

The trust-region method considers only a small region of the design space, and uses a surrogate model 

which approximates only the measured responses within this area. In contrast, the term response surface 

model (RSM) is used here to refer to a general surrogate which can be used to represent the entire design 

space and which can in general be multi-modal. The application of this RSM approach to design 

optimization problems is comparatively new. The optimization is performed in two stages. In the first 

stage, the objective function is evaluated at a series of design points distributed in an attempt to efficiently 

populate the design space; this is best accomplished using a formal design of experiments (DoE) array, 

examples of which are given by Grove and Davis [1992]. The second stage involves constructing a curve 

fit, called the response surface, through the collected response data. The choice of response surface model 

often depends on the nature of the objective function; a taxonomy of RSM’s is given by Jones [2001]. 

The RSM method is therefore not an optimizer in its own right, but by mimicking the real objective 
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function surface, calls to the full function can be replaced by calls to the RSM, which is particularly 

advantageous when the objective function calculation requires the use of an expensive analysis code. The 

RSM is searched for areas of promising designs using an optimization method. Since many types of RSM 

are able to accurately model multiple local optima, a global optimization method, such as a GA, can 

perform a global search over the design space. Most commonly, the full objective function is then 

calculated for the optimum point predicted by the RSM, and the surface is updated. Successive searching 

and updating of the surface continues until convergence is reached. The RSM method is a popular choice 

for global optimization using expensive functions since it can be used to predict promising areas of the 

design space with relatively few objective function calls, compared to other design search methods (Jones 

et al. [1998]). Further savings in overall time can be made by constructing the RSM with simultaneous 

calls to the objective function, something that is not always possible in other approaches to design 

optimization. Not only does this speed up the optimization procedure by allowing the update points to be 

evaluated simultaneously, it also reduces the chances of stalling on a local minimum in the surface 

(Sóbester et al. [2004]). 

 

 

2.4 Approaches for Aerodynamic Design Optimization 

2.4.1 Direct Design Search 

As has been previously discussed, the computational approach to aerodynamic design is a process of 

decision making, performed either by the designer or by an optimization algorithm, that changes the 

product definition based on the results of CFD analysis. Traditionally, these decisions involve the 

manipulation of a component’s geometry in order to maximize a certain performance metric. The 

fundamental design search and optimization process is encapsulated in Figure 2-3, above. The component 

geometry is parameterized, and optimization of a performance scalar, calculated using CFD, is automated 

using an optimization algorithm. Such design search methods are here termed direct, because the desired 

direction of calculation is always from geometry to flow field variables; this is also referred to as the 

analysis approach in classical inverse design theory. 
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2.4.2 Inverse Design 

The alternative to a direct design search is to specify a set of flow features, and search for a geometry 

which produces flow features matching those specified. This is the so-called inverse design method, 

referred to as simply the design approach in classical inverse design theory since the result of calculations 

is geometry. The objectives of the inverse and direct design methods are quite different. Inverse methods 

require that the flow features of the intended design are specified a priori, and traditionally this 

specification is the task of an experienced aerodynamic designer. Knowledge of the required flow features 

allows inverse methods to produce the corresponding design with very little computational expense, but 

the resulting design is only optimal if the specified flow features are also optimal for a given set of flow 

conditions. In contrast, the objective of a direct method is to systematically search for this optimal design. 

For the inverse method to be effective, the flow features specified by the designer should also be realistic, 

i.e., it must be possible for a shape to be designed which realizes the target flow features. The background 

and current use of inverse design within the aerospace community is summarized in what follows. 

Inverse methods have been used extensively in the context of airfoil and wing design, where the target 

flow feature is the pressure or velocity distribution in the chordwise direction. The well established 

analytical solutions for airfoil theory have allowed inverse methods to be exploited to great effect. The 

literature on this subject is vast, and the reader is directed to the survey-type papers by Sobieczky [1990], 

Labrujere and Slooff [1993], Drela [1989], Volpe [1989] and Dulikravich [1990], and also to a book by 

Elizarov et al. [1997]. The formulation of a well-posed inverse problem for airfoil design is not at all 

trivial, as has been demonstrated in the pioneering work by Lighthill [1945]. Since that time, the 

following three variations of inverse method have been used for airfoil and wing design. 

• Coupled solution methods 

• De-coupled solution methods 

• The optimization approach 

Coupled solution methods are classed as non-iterative, but this is something of a paradox. The geometry 

is calculated directly via the solution of a boundary value problem, without the need for an iterative 

update scheme on this shape. However, since the inverse boundary value problem is non-linear in nature, 

its solution requires the use of an iterative process, such as Newton iteration (Giles and Drela [1987]). In 

this approach, the flow variables and the unknown geometric variables are solved as one set of unknowns, 

hence the name coupled. 
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For de-coupled (iterative) solution methods, the flow variables and geometric parameters are solved in a 

de-coupled fashion. The great advantage of this approach is that it allows the use of existing direct flow 

analysis codes, something which is not possible with coupled methods. The iterative methods start with 

an initial guess of the geometry, and at each subsequent iteration the geometry is derived via the solution 

to a boundary value problem. Nearly all of these methods aim to solve either the Dirichlet boundary value 

problem, or a Neumann type problem. In the Dirichlet problem, the boundary condition is the tangential 

velocity, derived from the prescribed surface pressure distribution; the solution then proceeds by updating 

the geometry aiming to achieve zero transpiration (normal) velocity. Neumann or residual-correction 

methods proceed by providing a pressure distribution for each iteration of the geometry, which is 

compared with the target pressure distribution. The difference between these profiles is the residual, and 

this must be minimized by the inverse process. The main challenge is to relate the residual at each point 

on the surface to the required changes in geometry; this is typically achieved by the use of linearized 

potential theory (Labrujere [1994]). For Neumann type methods, existing flow analysis codes can be 

utilized as a black-box, allowing alternative solvers to be substituted with minimal modification to the 

inverse code. In developing a residual-correction based method, a compromise must be found between the 

computational effort required in the correction calculations, and the number of iterations needed to reach 

a converged solution. This iterative process is illustrated as a flowchart in Figure 2-4. 
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Figure 2-4 Flowchart illustrating a residual-correction type inverse design process. 
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The optimization approach to inverse design involves the perturbation of the shape using a parametric 

description of geometry coupled with a numerical optimization method. For example, LeGresley and 

Alonso [2000] use proper orthogonal decomposition to calculate gradients for the minimization of the 

sum-of-squares error between the target and computed pressure profiles. This method does not make use 

of analytical inverse theory, and since the surface pressure residual is converted into a scalar objective 

function for optimization, a large computational effort is required for sufficient convergence. However, 

the method is relatively simple to implement in practice, and can provide a good starting point for an 

inverse design study. 

From a practical point of view, inverse design methods have proven to be popular because once the target 

flow feature is specified, the use of linearized potential or other analytical theory allows the required 

geometry to be obtained with very few CFD evaluations. For example, the residual-correction method of 

Takanashi [1985] uses an integral formulation of the full potential equations solving the Neumann 

problem, and is able to provide a converged solution in around 10 iterations. Of course, the inverse 

process always requires a construction of the geometry in order to perform CFD analysis. However, in 

contrast to optimization, the number of variables perturbed by the inverse process is not limited. The 

knowledge of the pressure (or velocity) at each surface point allows the geometry to be modified at each 

point. Thus, the geometry is typically described using a large set of co-ordinate data. 

While its main application has been for airfoil and wing geometries, inverse design has been used for the 

design of various aerodynamic components, such as turbine blades (for example, by Goto and Zangeneh 

[2002]), and for various target flow features. In the current work, the term inverse design is not used to 

describe the airfoil design problem alone; rather it is used to refer to a general computational process 

which determines a geometry corresponding to the prescribed target flow feature, which may or may not 

be the surface pressure. 

As stated above, inverse design has typically been used to determine the optimized design once the final 

target flow feature has been established. Traditionally, the optimum target pressure distribution is 

specified by an experienced aerodynamicist, a task which is fraught with difficulty. However, such a 

specification can also be the result of an optimization on these flow features, a concept first described by 

van Egmond [1990]. A similar concept is used in the design approach proposed in this thesis. Using an 

optimization algorithm to manipulate the target flow feature, development using high-fidelity CFD 

analysis is accelerated without requiring the specification of the target flow feature ab initio, which is the 

hallmark of classical inverse design and one of its principal drawbacks. In this work, the proposed method 

is used in both 2-D and 3-D applications, starting with the design of 2-D airfoils. 
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Chapter 3. Optimization Using Flow 

Feature Parameterization: 

Concept and Implementation 

3.1 Introduction 

The preceding chapter has given a summary of some of the current practices associated with aerospace 

design using CFD. The capability of computational analysis has increased dramatically in recent years, 

but while computational efficiency has improved there is also a desire to perform ever more accurate and 

detailed flow simulations. This has led to sustained research into more efficient optimization methods for 

use in aerodynamic design. It has been noted that, typically, designers choose to manipulate the geometry 

of a component and monitor the effect this has on performance, while it is also prudent to check the 

characteristics of relevant flow features. For example, in designing an airfoil one might manipulate the 

shape in an attempt to minimize drag, while also checking the position and strength of any shock waves in 

order to avoid flow separation close to the design point. Unfortunately, when performing automatic 

optimization in such a manner, an inherent limitation is the requirement for a large number of design 

variables in order to define, in sufficient detail, the geometry of the component being studied. The 

resulting process can be very expensive computationally, particularly when using high-fidelity CFD. As 

well as designing a component via the relationship between its geometry and its overall performance, it is 

also possible to design by matching flow features with a set specified by the designer, i.e., inverse design. 

For example, when designing an airfoil using inverse design, one starts with a target pressure distribution 

and obtains the corresponding airfoil shape. The inverse process is far more rapid than a direct search, but 

does not aim to optimize the performance; an optimum design is only obtained if the specified target flow 

features are also optimal for a given set of boundary conditions. 

Thus far, a need has been identified for more efficient design optimization strategies involving high-

fidelity CFD simulations, and that a reduction in the number of design variables as a result of improved 

parameterization methods can contribute to this. As introduced in Chapter 1, this thesis proposes that a 

concise and efficient parameterization can be achieved if the design variables describe key flow features 
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rather than the geometry directly. The proposed parameterization technique consists of two elements: a 

parametric model of flow features and an inverse design method to recover a corresponding geometry. 

Inverse design is therefore used as a tool and is called upon repeatedly within a more complex direct 

design optimization search. In the present chapter, the concept of the proposed parameterization method is 

detailed. The application of this method to the design of two-dimensional airfoil sections for reduced 

drag, and the associated computational setup, is described. 

 

 

3.2 Embedded Multi-Fidelity Inverse Design (EMFID): The Concept 

The design search method introduced here uses a parameterization of flow features coupled with inverse 

design. The motivation for investigating this strategy is a desire to reduce the number of design variables 

used in optimization while maintaining the ability to produce detailed and varied geometries. The flow 

features associated with aerodynamic flows can be rather complex, but in certain situations they may be 

simpler to represent, parametrically, than the corresponding geometry. The success of the proposed 

strategy is based on the prediction that a simple and low-dimensional parameterization of a key flow 

feature may result in a wider range of geometries, after inverse design, than a geometrical 

parameterization with the same number of dimensions. This supposition arises from two observations in 

aerodynamic design. First, it is known that a change to a flow characteristic in one geometrical region can 

have a global effect on the entire corresponding design. As an example of this, Figure 3-1 shows two 

airfoil surface pressure coefficient (Cp) distributions, for which the lower surface pressure differs aft of 

the 60% chord point, and which are otherwise identical. When each of these profiles is used as a target for 

inverse design, the airfoil shapes in the lower half of Figure 3-1 are obtained. It can be seen that the two 

airfoils are quite different, and the two upper surfaces differ significantly despite the pressure on these 

surfaces being identical. An exception to this regime is seen in transonic aerodynamics, since downstream 

flow perturbations are not felt upstream of a shock. However, in the majority of situations it is possible to 

influence a geometry globally using rather more subtle changes to the flow features. 
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Figure 3-1 A localized change in surface pressure has a global effect on the corresponding airfoil shape. 

 

The second aerodynamic observation supporting the proposed parameterization is that the flow features, 

such as shocks or vortex flows, can have a direct and strong coupling with body forces and, therefore, 

performance measures such as drag. For example, it is known that wave drag for an airfoil is a function of 

the strength and position of the shock on the upper surface, with a stronger shock resulting in increased 

drag. The shock wave details have an intuitive effect on drag, and hence one would expect them to be 

effective when used as design variables. This is in contrast to geometry variables, which typically have a 

more complex relationship with drag. 

A parameterization of flow features can potentially allow detailed geometrical changes whilst giving a 

reduction in the number of design variables. This lower dimensionality means that the number of calls to 

the expensive CFD solver required to populate the design space can be reduced considerably compared to 

an optimization method acting directly on the geometry. However, for each call to the objective function 

an inverse design step must be performed, requiring additional computational expense. The effectiveness 

of this method relies on the saving made in reducing the number of high-fidelity CFD evaluations being 

greater than the relative cost of the inverse design steps. Increasingly, multi-fidelity approaches to design 

optimization are being used both to improve the reliability of the analysis and reduce the computational 

expense of a design search (Keane and Nair [2005]). Multiple levels of CFD model complexity have been 

Original in colour 
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used simultaneously in an automated way in previous research, for example, by Keane [2003] and 

Alexandrov et al. [2000]. While high-fidelity aerodynamic optimization is desired and hence an expensive 

solver is used to evaluate the design metric, the key to the effectiveness of the proposed strategy is the use 

of a lower-fidelity CFD solver for the inverse design steps; thus we have a multi-fidelity search 

procedure. 
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Figure 3-2 Flowchart illustrating the proposed EMFID design search process. 

 

The proposed design search and optimization strategy is illustrated as a flowchart in Figure 3-2. A key 

flow feature is discretized into a number of design variables. Each iteration of these variables produces a 

target flow feature, and a geometry which achieves this target is determined using an inverse design 

method, making use of a low-fidelity CFD code. Following this, a performance metric is calculated for 

this geometry via high-fidelity CFD analysis. Throughout this thesis, the performance metric used as the 

objective function in all case studies is total drag (or coefficient of drag) at a fixed level of lift (or 

coefficient of lift). An optimization algorithm is used to minimize the drag, in an identical manner to the 

procedure shown in Figure 2-3, but in this case manipulating the design variables defining the target flow 

feature rather than the geometry itself. This design search procedure is referred to as embedded multi-

fidelity inverse design (EMFID) from this point forward. 

In order to effectively evaluate the design performance of an optimization process, comparisons must be 

made with an existing and established method. In the work described in this thesis, the operation of the 

EMFID method is compared with a conventional approach using a geometry-based parameterization, and 

which is considered to be a current benchmark in design optimization. This benchmark optimization 

process can be described by the flowchart shown in Figure 2-3. The method focuses purely on the 

geometry of a component and its resulting aerodynamic forces, namely drag. In the case studies given in 

later chapters, the EMFID and benchmark methods are run with equal computational expense, simulating 

the fixed computational budget that an aircraft design team may be afforded in an industrial situation. 

 



Optimization Using Flow Feature Parameterization: Concept and Implementation 32 

 

3.3 Related Work 

Fundamentally, the proposed method is a form of reduced order modelling, a concept which itself has 

been applied extensively. The purpose of reduced order modelling is to construct a lower-dimensional 

model which comprises fewer unknowns than the original high-dimensional model. Reduced basis 

methods decompose the field variable set, which could make up a surface pressure distribution, into a 

linear combination of known basis vectors and unknown coefficients (Keane and Nair [2005]). The basis 

vectors are typically from the relatively simple Lagrange subspace, and the coefficients are computed 

using a numerical scheme such that they approximately satisfy the discrete form of the governing 

equations characterising the physical system. The resulting system allows the field variables to be 

approximated using the known basis vectors and for a given selection of the coefficients. However, the 

basis vectors can be linearly dependant, reducing the efficiency of the approximation. Hence, principal 

component analysis, or proper orthogonal decomposition (POD), can be used instead to compute an 

optimal set of bases (principal modes) and coefficients that most efficiently reconstructs the original field 

variable data. Such analyses have been referred to as reduced-reduced basis methods (Burkardt et al. 

[2003]). POD has been used to great effect in aerospace design to provide approximate solutions to the 

Euler and Navier-Stokes equations and to perform inverse design, for example. The reader is referred to 

the articles by LeGresley and Alonso [2000], LeGresley and Alonso [2003], Bui-Thanh et al. [2004] and 

Burkardt et al. [2003]. The design approach investigated in this thesis relates to the subject of reduced 

order modelling in that it attempts to transform the geometry field variables into a more compact set of 

variables, by mapping them into the flow feature domain. Similar to POD, the proposed method uses 

variables which are dominant, although these are not necessarily orthogonal or independent. 

The proposed optimization approach makes use of both low- and high-fidelity CFD analyses, and in this 

sense it is a multi-fidelity design search. Notable past research into multi-fidelity optimization is that of 

Robinson and Keane [1999], Alexandrov et al. [2000] and Keane [2003]. These authors exploit a cheap 

analysis by using it to approximate the same objective as the expensive solver and thus reduce the overall 

computational cost. However, the method proposed here does not use the low-fidelity CFD to calculate 

the design objective (drag); instead it is used purely for the purposes of inverse design. 

In this work, the flow features are parameterized, and each call to the objective function requires the use 

of inverse design. As part of inverse design, the flow features are extracted from the results of low-fidelity 

CFD analyses and compared with the target flow features. Flow feature extraction ranges in complexity, 

from the simple task of computing surface pressure in potential flow, to determining the location of 

topological elements such as vortices and separation surfaces. The use of automated algorithms for these 
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complex tasks is well documented; examples include research by Jeong and Hussain [1995], Kenwright et 

al. [1999] and Haimes and Kenwright [1999]. Such flow feature extraction is implemented in subsequent 

chapters, although the techniques are not developed. 

In previous research using inverse design, the airfoil pressure distribution is commonly used as the target 

flow feature, in order to optimize the airfoil shape or the sections of a three-dimensional wing; some 

relevant works are now listed. Parameterization of the airfoil pressure distribution was first attempted by 

van Egmond [1990], who formulated a set of aerodynamic shape functions which actually used a larger 

number of design variables than the geometrical models of the time; this was justified because the inverse 

design process employed required evaluation of the flow in the boundary layer only, meaning that a large 

number of evaluations could be afforded in manipulating the target pressure profile. Obayashi and 

Takanashi [1996] used aerodynamic design relationships and constraints to relate the surface pressure 

distribution to certain airfoil performance parameters. A genetic algorithm (GA) was used to optimize the 

pressure profile for minimum drag, after which an inverse design code was employed to recover the 

corresponding airfoil shape. Jameson [1999] optimized an airfoil shape using Euler based CFD analyses, 

and used the pressure distribution of the resulting airfoil as a target for inverse design using a RANS 

solver, since this gives more accurate viscous drag predictions. Ahn et al. [2001] used lift and drag 

relations together with CFD analyses on a series of airfoil geometries to build a response surface model 

(RSM), able to relate the surface pressure distribution to predictions for airfoil lift and drag. The target 

pressure distribution could then be optimized by using a GA search over the RSM, and an inverse design 

method (detailed by Kim and Rho [1998]) was used to determine the resulting airfoil shape. For each 

spanwise station of their three-dimensional wing, the number of design variables for the optimization of 

the pressure distribution was 15. Ahn et al. recognize that replacing airfoil section shape parameters with 

section pressure distributions gives a saving in computational cost. They report the computational cost of 

their work to be one-sixteenth of the cost of direct design methods, although no detailed comparisons are 

made. 

Note that in the references given above, a single inverse design operation is performed once the target 

pressure distribution has been optimized by some means. The EMFID method, however, makes repeated 

use of the inverse step, and for every resulting geometry the drag is calculated using high-fidelity CFD. 

Hence, the method does not rely on empirical relationships or approximations in calculating the optimum 

target pressure distribution and airfoil shape for minimum drag. In the sections that follow, the application 

of EMFID to the design of two-dimensional airfoils is described. 
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3.4 Application of EMFID for 2-D Airfoil Design 

The subject of airfoil section design is well known and understood, having been applied routinely in the 

aircraft industry for many years. As a preliminary assessment, the EMFID method is applied to the design 

of two-dimensional airfoil shapes, as this simplifies the comparisons between the method under 

investigation and existing technology. The distribution of pressure over the surface is chosen as the flow 

feature to be parameterized. As mentioned above, small perturbations in pressure distribution can often 

require large variations in the entire geometry, for a given set of flow conditions. Also, changes in surface 

pressure can be related directly to changes in geometry using simple aerodynamic approximations, which 

can be used to accelerate the inverse design process as described in Section 2.4.2. Initially, a wholly 

subsonic flow regime is used for analysis, allowing a more straightforward parameterization of the 

pressure distribution in EMFID. Subsequently, EMFID is applied to transonic airfoil design, and thus a 

parameterization is developed which incorporates a shock. 

In using a simple design problem, the intention is to demonstrate that the EMFID approach can be an 

effective method in aerodynamic design. Since aircraft designers do not yet use high-fidelity RANS 

simulations universally for preliminary design, the method demonstrated here is unlikely to replace the 

existing airfoil design methods in the short term. Indeed, design packages such as XFOIL1 (Drela [1989]) 

are now commonplace and facilitate very rapid airfoil design and analysis. However, once the proposed 

method has been verified for a simple problem, it will then be applied to a more complex three-

dimensional problem in which the advantages of the approach are potentially more attractive. 

As stated above, the EMFID method must be compared against a more conventional benchmark method. 

In both cases, the design objective is to minimize the drag coefficient (cd) of the airfoil for a fixed level of 

lift (cl), while allowing the angle of attack to float. Such a criteria is typically used in aircraft design 

situations, in which a fixed payload is usually specified. The setup and configuration of the two design 

methods is now described in full. Both methods employ the same high-fidelity flow solver, while EMFID 

additionally calls upon a low-fidelity code; the setup of the CFD analyses for this 2-D application is 

described next. 

 

                                                 
1
 Information can be found on the world wide web at http://raphael.mit.edu/xfoil/ (cited April 2006). 
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3.5 Airfoil Analysis: CFD Solver Setup 

In the current work, the high-fidelity solver used is a RANS analysis using FLUENT®
1
 and the low-

fidelity code, used by the EMFID method, is the full potential flow solver VGK (ESDU [1996]). 

Calibration of the CFD solvers involves verification with respect to the dependence of the results on mesh 

size, and validation against a set of experimental results for a standard airfoil. For the newly proposed 

design method in particular, it is important that the airfoil pressure distribution must be reproduced 

accurately by both flow solvers. As already stated, in the current work design studies are carried out using 

both subsonic and transonic flow regimes; each condition requires a different computational mesh setup. 

In the following sub-sections, the general setup of the FLUENT and VGK flow solvers is explained, and 

following this the validation of the CFD solvers for both flow conditions is described. 

 

3.5.1 FLUENT 

A FLUENT RANS analysis is used to calculate the airfoil performance metric, i.e., total drag, in both the 

benchmark and EMFID design methods. The model is set up with the aim of minimizing the 

computational effort required for the analysis, giving robust convergence, while providing accurate results 

in close agreement with the experimental data. A commercial meshing tool, GRIDGEN®, is used to mesh 

the flow domain to be solved by FLUENT. The airfoil geometry is imported into GRIDGEN in the form 

of a data file containing a matrix of 206 (x,z) co-ordinate pairs, and the airfoil is normalized to a chord of 

one metre. The airfoil has a sharp, i.e., zero thickness, trailing edge. An O-mesh topology is employed 

(Steinbrenner and Anderson [1989]), where the mesh cell size is increased with distance from the airfoil 

surface. The details of the mesh size are different for the subsonic and transonic cases, and are given 

below. 

In the FLUENT CFD model, the equations of momentum and continuity are solved in a coupled manner 

and the Spalart-Allmaras turbulence model (Spalart and Allmaras [1992]) is employed, as this is known to 

be a relatively accurate method for external flow over an airfoil, and provides robust convergence in the 

sense that a converged solution can be obtained for a large range of input geometries. This latter feature is 

desirable in conceptual design search processes when a large number of airfoils are analysed, some of 

which may be unusual or even nonsensical designs. The cell size adjacent to the wall is arranged such that 

the non-dimensional distance, y
+
, over the airfoil surface lies in the range suitable for a log-law wall 

function representation of the boundary layer, i.e., between 30 and 60. 

                                                 
1
 Information can be found on the world wide web at www.fluent.com (cited April 2006). 
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In the design studies to follow, for each airfoil design analyzed using FLUENT, the desired performance 

metric is drag at a fixed value of lift. This is determined by running the analysis at three values of the 

angle of attack until the desired lift is achieved. The analysis is run to convergence at two initial angles; 

following this, the correct angle is calculated by assuming a linear lift-angle curve and the analysis is run 

at this angle, providing a converged solution at the desired value of lift to within ±1%. 

Note that, although throughout this thesis the FLUENT analysis is termed high-fidelity, this solver is not 

necessarily very accurate compared to the latest state-of-the-art techniques such as LES and DNS solvers. 

The purpose of this work is to develop a process which works efficiently with expensive CFD solvers; 

however, the expense of this high-fidelity analysis must be limited since several hundred analyses may be 

required for a complete design search. The FLUENT RANS analysis is used since it is typical of the type 

of solver currently used for aerospace design, and it is available to run on the Microsoft compute cluster. 

 

3.5.2 VGK 

The method presented in this thesis requires a computationally inexpensive CFD solver to compute the 

airfoil pressure distributions during the inverse design step. The low-fidelity software used here is VGK, 

written by DRA Farnborough and distributed by the Engineering Sciences Data Unit (ESDU). VGK is a 

two-dimensional viscous coupled finite difference code which solves the full potential equations, written 

specifically for the analysis of airfoils. The airfoil geometry is input as a matrix of co-ordinates, following 

this a computational mesh is built in the flow domain using a series of radial and circumferential grid 

lines. The full potential equations are solved iteratively over the grid using a finite difference approach.  

The full potential equations are exact for shock-free inviscid flows, but are only approximate for flows 

with significant shock strength, since such flows are rotational. However, the finite difference scheme 

utilized by the VGK code has undergone extensive development in an attempt to approximate the correct 

Rankine-Hugoniot relations, and the selection of suitable input parameters results in reasonable surface 

pressure predictions across weak shocks. The use of a potential formulation also means that VGK cannot 

produce results for flows where the boundary layer has separated from the surface. However, the viscous 

flow element of the code has been calibrated against experimental data which gives it the ability to 

estimate the location of the separation boundary and which also results in more accurate surface pressure 

and drag estimations.  
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The VGK CFD model is set up as a viscous solve and, in the first instance, using the same Reynolds 

number and flow speed as used in running FLUENT. Typically, each airfoil analysis takes around 2 

seconds when running on a Xeon 2.8GHz compute node with 2Gb memory. 

 

3.5.3 Subsonic CFD Validation 

The task of verifying and validating the results of the FLUENT analysis requires an assessment of the 

numerical accuracy of the computational mesh and a comparison of the results with experimental data. In 

order to perform these assessments, an existing airfoil design, for which experimental results have been 

published, must be selected to form a baseline. The NASA low-speed (LS) airfoil family (McGhee et al. 

[1979]) provides geometries which are ideal for such a baseline. These airfoils have undergone extensive 

development and have been used as wing sections on low speed civil aircraft such as the Stoddard-

Hamilton Glassair and the Adam Aircraft A500 and A700, as well as in experimental research (see, for 

example, Zerihan and Zhang [2000]). The low-speed family are designed to operate at a lift coefficient of 

0.4, and typically a flow speed Mach number of 0.15 and Reynolds number of 4×106. These flow 

conditions are used in the present verification and validation studies. The NASA Technical Memorandum 

4003 (Ferris et al. [1987]) contains detailed experimental data for the symmetrical NASA LS(1)-0013 

airfoil. This data has been collated such that comparisons can be made with results from FLUENT and 

VGK for this same airfoil. Because the flow solvers are validated with the flow conditions specified in the 

NASA report, these conditions are used in calculating the design objective for the two design methods; 

this also allows any resulting airfoil designs to be compared directly with the NASA low-speed airfoils. 

Note that throughout this thesis, validation of CFD simulations is performed at the design conditions and 

using standard geometries, which are not only sensible but also perform well. One could perform 

validation for a nonsensical shape, or for off-design conditions such as when separation occurs, provided 

that reliable and published experimental or computational data exists. Knowledge of the accuracy of the 

solution for a good design at sensible conditions is thought to be sufficient in this thesis; it is assumed that 

the optimization algorithm avoids poor designs and therefore the accuracy of such results is less 

important. What is important is that the CFD predicts the design trends to a good level of accuracy. 

The baseline NASA 0013 airfoil has a blunt (finite-thickness) trailing edge; since the above CFD solvers 

are set up to operate on a sharp tailing edge, this NASA shape must be modified. The modified upper and 

lower airfoil contours, zu and zl, are generated from the original NASA 0013 contours, 
0013

uz  and 
0013

lz , 

using the following expression. 
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The resulting shape is shown in Figure 3-3 with the original NASA airfoil. The modified airfoil is 

analysed using FLUENT and VGK for the purposes of validation. 
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Figure 3-3 The NASA LS(1)-0013 airfoil, and a variation of this shape featuring a sharp trailing edge. 

 

The subsonic FLUENT analysis has been verified with respect to the dependence of the results on the 

mesh setup. This setup is now summarized, and full details can be found in Appendix A1. The boundary 

of the O-mesh is a circle with a radius of approximately 29 metres. There are 398 cells defining the airfoil 

surface and 53 rows, giving a total of 21094 mesh elements. The cells are grown in size from the surface, 

with a first cell height of 0.045% airfoil chord. In this configuration an increase in the mesh size gives a 

negligible variation in the resulting force coefficients, indicating good numerical accuracy. On studying 

the convergence history of the solver using this setup, it is observed that 3000 iterations of the RANS 

calculations are sufficient to provide a converged solution. At this point the variation in the drag 

coefficient for the airfoil is within ±0.1 counts (±0.00001 cd) of the fully converged value. Calculating the 

drag using the current CFD setup takes on average 19.6 minutes when running on four 2.4GHz 

processors; this includes the time required to iterate the angle of attack when a target lift is specified. 

Further details relating to the parallel processing management are given below in Section 3.9. 

Figure 3-4 shows the FLUENT surface Cp distribution for the NASA LS(1)-0013 airfoil predicted using 

the above setup and for the flow conditions specified by Ferris et al. [1987], i.e., a flow speed Mach 

number of 0.15, a Reynolds number of 4×106 and an angle of attack of 4.1°. Also shown is the result 
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predicted by the VGK code and the experimental results (but with a blunt trailing edge), for the same 

airfoil and operating conditions. Figure 3-4 confirms the strong similarity between the pressure profiles 

from FLUENT, VGK and the experimental data. The increase in surface pressure predicted by the two 

CFD solvers is partly due to a small reduction in airfoil thickness, compared to the original NASA shape, 

as a result of closing the trailing edge (Figure 3-3). 
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Figure 3-4 Comparison of pressure distributions generated using the FLUENT and VGK CFD solvers, 

for the NASA LS(1)-0013 airfoil. These are also compared against experimental data. 

 

3.5.4 Transonic CFD Validation 

For the purposes of evaluating the FLUENT analysis to be used for transonic flows, it is logical to use an 

airfoil designed to operate at high Mach numbers. The RAE 2822 airfoil is commonly used as a test case 

geometry for the validation of transonic CFD simulations. This is a cambered shape of 12% thickness and 

features a sharp trailing edge. Cook et al. [1979] have published experimental surface pressure 

measurements for this airfoil, for various flow Mach numbers and incidences. For the present CFD setup 

exercise and the design studies, a Mach number of 0.73 and Reynolds number 6.5×106 are selected. 

As with the subsonic analysis, the mesh for the transonic case has been setup in an attempt to achieve 

sound numerical accuracy. Again, an O-mesh topology is used; the flow boundary has a radius of 

approximately 12 metres, with the airfoil normalized to a chord of one metre. Note that the external 

boundary is closer to the airfoil compared to the subsonic analysis setup, however this radius was found 

to be sufficient to provide the required accuracy (see Appendix A2). As in the subsonic mesh, there are 

398 surface cells with a surface cell height of 0.045% chord, in this case giving 19104 mesh cells in total. 
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Full details of the mesh-dependency study are given in Appendix A2. Using this setup, a converged 

result, in terms of drag, takes on average 22.6 minutes when running on four 2.4GHz processors, 

including the time required to iterate the angle of attack when a target lift is specified. Note that this run 

time is higher than for the subsonic analysis, for an identical solver setup and number of iterations, 

despite the number of mesh cells being marginally higher in the subsonic case. This increased cost is 

associated with solving the flow in the region of the compression wave, as there is a greater level of 

numerical instability. 

Figure 3-5 shows the surface pressure predictions using FLUENT and VGK, compared against the 

experimental data. The angle of attack used is 3.19° (case number 9 in Cook et al. [1979]). The surface 

pressure results from FLUENT are in good agreement with the experimental data. There is slightly higher 

compression aft of the shock on the upper surface, and lower pressure on the rooftop, but the shock 

position is predicted accurately. In the case of VGK, the solver setup used above for the subsonic analysis 

is not suitable for flows containing moderate strength shocks, since this causes the calculations to diverge. 

For this reason, the solver relaxation factors have been modified in order to assist convergence when 

transonic flow is encountered. It can be seen from Figure 3-5 that the surface pressure predictions from 

VGK closely match the FLUENT results, except in the region of the shock. The shock position is slightly 

too far aft and excessive compression is predicted, followed by an expansion. Nevertheless, these results 

are deemed to be accurate enough for the purposes of inverse design, and using this setup the solver 

convergence is improved. 
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Figure 3-5 Comparison of pressure distributions predicted by the FLUENT and  

VGK solvers for the RAE2822 airfoil, shown with experimental data. 
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3.5.5 Determination of Drag 

As already noted, the design objective for the airfoil optimization search is total drag for a fixed level of 

lift. The drag on the airfoil comprises two components: tangential or skin-friction forces, due to viscosity, 

and pressure drag. The pressure drag component arises from the boundary layer displacement effect and, 

in the case of flows with a Mach number higher than around 0.7, wave drag due to the presence of shocks. 

Predicting this drag accurately using CFD is significantly more challenging than the prediction of 

accurate surface pressures, since its value is numerically small and therefore prone to error during the 

calculations. It has been estimated that a 1% increase in lift-to-drag ratio during takeoff is equivalent to a 

2800lb increase in total payload, for a civil aircraft (van Dam [1999]). The prediction of drag using CFD 

is therefore vitally important to aircraft manufacturers, but simultaneously to gain a reduction in drag is 

technically difficult and improvements are always incremental. Accurate methods of drag prediction are 

therefore of great interest to industry and academia. 

Progress with drag prediction using CFD is reported frequently in the literature; examples cited here are 

the articles by Giles and Cummings [1999], Lock [1986], van Dam [1999] and Levy et al. [2003]. The 

two most popular methods used for calculating drag are surface force integration and far-field integration 

methods. Surface force integration simply integrates the normal and shear stresses over the body surface. 

This results in good predictions for lift, but errors in the prediction of the leading edge stagnation point 

can result in inaccurate drag estimations. This approach does not allow the calculation of individual 

viscous and wave drag components. The alternative is to use far-field methods, which calculate the 

momentum deficit over a control volume a large distance from the body surface. Since this does not rely 

on greatly accurate or detailed surface pressure measurements, it generally produces more accurate 

predictions. The wave drag contribution can be calculated separately by integrating flow properties before 

and after the shock, however this requires the shock location to be found. 

In the present design studies drag is calculated by the high-fidelity analysis, FLUENT, while the low-

fidelity code, VGK, is used only to calculate surface Cp distributions in EMFID. The drag in FLUENT is 

calculated via surface force integration. While this approach is not the most accurate, for the purposes of 

design the requirement is not necessarily for supremely accurate drag predictions. As previously stated, 

the requirement is to predict accurate trends in the performance, and the simple algorithm used in 

FLUENT is therefore likely to be adequate. Further, since the design objective is total drag, calculation of 

the individual drag components is not required. 
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3.6 The Benchmark Optimization Method 
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Figure 3-6 Flowchart illustrating the benchmark (direct) design search strategy. 

 
A traditional design optimization method which makes use of a geometry-based parameterization is used 

here to act as the established and accepted practice in aerodynamic shape optimization. This is the so-

called benchmark method, against which the EMFID parameterization method is compared. The 

benchmark method takes the same form as the strategy described in Figure 2-3, and this is shown again in 

Figure 3-6. The airfoil geometry is parameterized and design iterations, requiring high-fidelity CFD 

analysis, are automated using an optimization algorithm. 

 

3.6.1 Parameterization Techniques 

As already discussed, the choice of parameterization method is a critical factor in the performance of 

direct searches such as the benchmark design method used here. Song and Keane [2004] compared an 

interpolating B-spline method with an orthogonal shape function based method, and reported that while 

the spline approach is computationally expensive it is able to capture a larger range of geometries 

accurately; Samareh [1999] also reports that the use of polynomial splines is well suited to a two-

dimensional study. Spline approaches also have the advantage that they are available in any CAD 

package. In selecting an appropriate parameterization, the logic used here is twofold. First, a parametric 

model is required which is typical of the current approaches used by academia and industry for airfoil 

conceptual design. This must be able to generate a large range of detailed shapes, using a representative 

number of design variables. Second, in addition to the aforementioned model, it is useful to investigate a 

parameterization which uses the same number of variables as the EMFID model (described later). 

Therefore, two geometry-based models are described here, the first uses 13 design variables, and the 

second uses six variables. 
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For the higher-dimensional benchmark model, an interpolating segmented cubic polynomial spline is 

chosen to parameterize the airfoil. This technique is described in Section 2.1.2. The curve is commonly 

used in design situations; however, when the representation is applied to an airfoil shape, problems arise 

at the leading edge where the gradient often approaches infinity. The use of a cubic polynomial in this 

region is unnatural; the designers of the NACA airfoil sections (Jacobs et al. [1933]) overcame this by 

using a polynomial expression which included an additional x  term. Thus, for the leading edge segment 

of the airfoil the terms with x of order two and three have been replaced with a x  term. Therefore, the 

gradient at the start of the spline does not have to be specified; the singularity at the leading edge gives an 

infinite gradient. 

The airfoil shape is defined by ten cubic spline segments, or eleven data points in (x,z) space which are 

interpolated by the curve (Figure 3-7). The design variables are selected from the possible x and z 

movements of the data points, with the aim of minimizing the number of design variables while retaining 

the ability to produce smooth and varied airfoil shapes. The airfoil is separated into upper and lower 

surfaces, while the leading edge point (0,0) is shared by both surfaces and remains fixed. Of the 

remaining five points on the upper surface, the near leading edge point (point A in Figure 3-7) is free to 

move in both x and z directions and the trailing edge point (B) is fixed, while the other three points are 

constrained to movement in the z direction only. The same applies to the lower surface, with the 

exception of the point adjacent to the trailing edge point (C), which is free to move in both directions. The 

trailing edge point is fixed at the position corresponding to the initial design in the search process. 

Additionally, the gradient of each surface at the trailing edge is added to the list of design variables, since 

the exit angle is important in the governing aerodynamics. Thus, there are 13 design variables in total 

defining the geometry of the airfoil, which must be manipulated by the optimizer and analyzed using CFD 

software. It is thought that 13 is a reasonable number of variables for an airfoil design problem of this 

nature; it is not uncommon for such a problem to make use of 22 or more variables; see, for example, 

Song and Keane [2004], Lépine et al. [2001], Li et al. [2004] and Painchaud-Ouellet et al. [2006]. 
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Figure 3-7 13-variable airfoil geometry parameterization for the benchmark method using polynomial 

splines, showing control point degrees of freedom. 

 

The EMFID parameterization (described later) uses six design variables in total. It is desirable to make 

comparisons with a benchmark method which also considers six variables. For this purpose, a second 

geometry parameterization is employed, in which the airfoil is represented by a B-spline curve for each 

airfoil surface. These curves are cubic in form, and are calculated by requiring that the curve interpolates 

a number of data points. In this case there are five data points on each surface, positioned at x/c= [0 0.03 

0.32 0.74 1]. In order to facilitate the singularity at the leading edge, i.e., an infinite gradient, the first and 

second B-spline control points are both fixed to be on the z axis. As a result of this action, the defining 

data points are not exactly interpolated, but the degree of control afforded by manipulating these points is 

only marginally affected. The leading edge point is fixed at (0,0) and the trailing edge point is fixed at the 

value corresponding to the initial design, while the vertical translation of the three remaining points are 

the parametric variables, giving the total of six design variables for the complete airfoil profile (Figure 

3-8). Since there are fewer defining data points, this model is less capable of performing localized 

changes to the surface curvature, compared to the 13-variable model, and it cannot be used to specify the 

trailing edge angle. However, the use of fewer variables should make the process of optimization more 

straightforward. 
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Figure 3-8 Six-variable airfoil parameterization for the benchmark method using B-splines, showing 

control point degrees of freedom. 

 

3.6.2 Benchmark Optimization Setup 

Using the high-fidelity CFD solver (FLUENT), for each airfoil design iteration the lift and drag 

coefficients (cl and cd) are calculated, which are then used as metrics of performance. As already noted, 

the design objective of the optimization procedure is to minimize cd calculated at a constant value of cl, 

allowing the angle of attack to float. For optimization using high-fidelity CFD, it is imperative to 

minimize the number of objective function calls. Therefore, the optimization strategy in the benchmark 

design method uses a response surface model (RSM) approach. The RSM optimization routine is 

implemented using the OPTIONS
1
 design exploration system, operating in the MATLAB®

2
 environment 

using the GEODISE
3
 toolkit. The setup of this procedure is described next. 

The DoE used to seed the initial data-base is a Latin hypercube, which has good coverage of the design 

space and has the advantage of representing each variable’s range equally. Additionally, OPTIONS 

allows the random number sequence to be changed giving different, but repeatable, initial DoE sets. The 

response surface model used is an interpolating cubic spline radial basis function (RBF). Once the RSM 

has been built, it is searched using a genetic algorithm (GA), implemented in OPTIONS. The GA gives a 

relatively thorough search of the whole design space, which can be tolerated since calls to the response 

surface are very fast; here 5000 search evaluations are used. Instead of searching for a single optimum 

point on the surface, parallel update points are extracted from the search. For this method, five parallel 

                                                 
1
 Information can be found on the world wide web at http://www.soton.ac.uk/~ajk/options (cited April 2006). 
2
 Information can be found on the world wide web at http://www.mathworks.com/ (cited April 2006). 
3
 Information can be found on the world wide web at http://www.geodise.org (cited April 2006). 
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update points are requested, taken from a cluster analysis of the final population in the GA search. After 

evaluating the new design points, the RSM is updated. 

For a given iteration of the design variables and call to the CFD analysis, it is possible that the 

calculations may fail for some reason (if the CFD calculations diverge, for example). An important 

decision concerns the handling of these failed design points. For the current method, design points which 

fail are not included when constructing the RSM. When updating the response surface, however, if all of 

the requested update points fail then one of these (the first) is included in the RSM and given an objective 

function value equal to the average of the objective values recorded so far. In this way, the coverage of 

the data set is statistically unaltered, while the RSM is altered such that the optimization algorithm does 

not stall, i.e., it does not request the same five update points repeatedly. 

 

 

3.7 The EMFID Method 

The EMFID design search strategy is illustrated in Figure 3-2. In summary, a call to the objective 

function in EMFID takes the design variables, generates the corresponding target pressure distribution 

and uses an inverse design process (low-fidelity CFD) to calculate an airfoil geometry which realizes the 

specified pressure variation. This shape is then passed to the high-fidelity CFD analysis (FLUENT) for 

calculation of cd at the required value of cl. In order to make fair comparisons between the alternative 

method and the benchmark direct search method described above, the high-fidelity CFD analysis and 

implementation of the optimization algorithm are set the same for both methods. Therefore, the RSM 

approach described for the benchmark strategy is also used as the optimization method for EMFID, 

shown in Figure 3-2. The EMFID method requires a parametric model of the Cp distribution, and 

additionally makes use of an inverse design method; these items are described next. 

 

3.7.1 A Parameterization Technique for Subsonic Airfoils 

The representation of the pressure (or velocity) distribution for an airfoil has been attempted by various 

authors using different approaches, almost invariably applied to the design of transonic airfoils. van 

Egmond [1990] formulated a set of aerodynamic shape functions for a transonic pressure distribution, 

capable of representing a wide range of airfoil flows (this was also used by Ahn et al. [2001]). Obayashi 

and Takanashi [1996] used B-spline curves to represent the pressure profile. Gopalarathnam and Selig 
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[2002] chose to parameterize the velocity distribution, by splitting the surfaces into segments over which 

the velocity difference was specified. All of these methods use in excess of 12 design variables, partly 

owing to their ability to represent transonic as well as subsonic flow regimes. Regarding this rather large 

dimensionality, it must be noted that the aforementioned authors do not use such a parameterization for 

the purpose of reducing the number of design variables for the optimization process, the EMFID raison 

d’être. In what follows, a parametric model is described for a subsonic, i.e., shock free, Cp profile; an 

evolution of this model for flows with a shock is discussed in the next section. 

Similar to the benchmark parameterization method, the objective here is to allow the generation of a wide 

range of realistic subsonic Cp distributions, while also limiting the dimensionality of this model. Here, the 

Cp distribution is parameterized using a B-spline curve for each airfoil surface, extending from 1.5% 

chord to the trailing edge. Each B-spline curve contains four knots and four control points. These are 

constructed on a knot vector of four zeros and four ones, giving a cubic Bézier curve. The control point 

locations are determined by specifying that the curve must interpolate four data points. The chordwise 

positions of these data points are x/c=[0.015, 0.6, 0.85, 1]. The height of the trailing edge point is fixed 

while the heights of the three remaining points are the profile design variables, giving a total of six 

variables for the complete Cp distribution. Recall that the benchmark parameterizations, described above, 

use 13 and six design variables. The first 1.5% of this target Cp profile is used to represent the decay from 

stagnation pressure. On each surface, a straight line is constructed from Cp=1 to the start of the B-spline 

curve at 1.5% chord. Figure 3-9 shows an example of a Cp profile represented using this parameterization, 

illustrating the positions of the defining data points and the B-spline polygon. 
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Figure 3-9 Parameterization of a subsonic Cp distribution using B-spline curves. 

 
Using this parameterization technique, the EMFID design search involves manipulation of the shape of 

the Cp distribution, and since the integral of surface pressure in x equates to the normal lift this results in a 

different target lift depending on the variable values. To begin with in the current work, a direct coupling 

is maintained between the low-fidelity and high-fidelity analysis of each airfoil design. In other words, 

the inverse design (using VGK) and the performance calculation (using FLUENT) are performed for 

identical flow conditions and seeking to achieve the same target lift. Therefore, the target pressure 

coefficient values are scaled such that the enclosed area is equal to the required target cl. Of course, this 

enclosed area is equal to the normal force and not the airfoil lift per se; however for small angles of attack 

this method provides a close approximation to the required target cl. 

For each iteration of the target pressure distribution generated by the optimization procedure (Figure 3-2), 

a geometry which realizes this target at the chosen flow conditions must be found by inverse design; this 

is the subject of Section 3.7.3. Following the inverse design step, the airfoil geometry is analyzed using 

the same high-fidelity CFD as used for the benchmark method. There are therefore three forms taken by 

the airfoil pressure distribution during an objective calculation in EMFID: the parameterized target, the 

profile which most closely matched this target during inverse design (VGK, see Section 3.7.3), and the 

profile generated in the final performance calculation (FLUENT). Figure 3-10 shows these three forms 

for the analysis of the NASA LS(1)-0413 airfoil (McGhee et al. [1979]). Since the flow conditions and 

target lift are the same in all three cases, the pressure distributions are the same (or at least very closely 

matched), confirming the direct coupling between the results of the analysis codes. It is not immediately 
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apparent how the EMFID method would perform if the design conditions in each analysis were different; 

this subject is to be investigated in Chapter 1. 
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Figure 3-10 Pressure distributions generated in an objective calculation in EMFID, for the NASA LS(1)-

0413 airfoil. 

 

3.7.2 A Parameterization Containing a Shock 

At high subsonic Mach numbers above around 0.7, the flow over an airfoil can become locally 

supersonic. On encountering an adverse pressure gradient the flow decelerates to a subsonic Mach 

number and in doing so a compression or shock wave is produced. Aircraft routinely fly in this transonic 

regime to improve engine efficiency, and mitigation of the associated wave drag has led to research into a 

new type of supercritical airfoil; see for example, the work by Harris [1990] and Sobieczky and Seebass 

[1984]. The shock manifests itself in the surface Cp profile as a sudden step in pressure, the strength and 

position of which can vary dramatically. In order to design transonic airfoils using EMFID, it seems 

logical at this stage to propose a parametric model for a Cp profile with a shock. To represent such a 

distribution parametrically must inevitably require more design variables than the model described above, 

while the geometry-based benchmark parameterization can remain unchanged. This could potentially be a 

shortcoming with the EMFID method. However, the ability to specify the position and strength of the 

shock in EMFID could allow the optimizer direct control over the wave drag. This direct coupling is not 
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present in the benchmark method, since there is a more complex relationship between the geometry 

variables and drag. 

The transonic Cp distribution is parameterized using the aforementioned B-spline model as a starting 

point. Two variables are added to this description, these are the shock chordwise position, xshock, and the 

pressure rise across the shock, ∆Cp. The total number of variables is therefore increased from six to eight. 

The original upper surface target pressure distribution given by a cubic B-spline curve, 
)(s

pC , is modified 

as follows. 

shock
)()( 0     allfor         ,)()( xxCxCxC p

s
p

t
p <<∆+= .    (3.2) 

)(t

pC  is the upper surface pressure distribution used as a target for inverse design under transonic 

conditions. An example of a pressure distribution generated using this method is shown in Figure 3-11. 

This is a rather simple technique, and always generates a discontinuous step in pressure when ∆Cp is 

finite. This is somewhat restrictive, since it is known that weak shocks in particular often feature a more 

gradual pressure recovery. However, it is not obvious what advantage such a flow feature would bring, 

and so this simple model may be sufficient. 
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Figure 3-11 An example of a parameterized target pressure distribution, showing the two variables 

defining a shock. 
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3.7.3 Inverse Design 

The EMFID method requires an inverse design process to derive an airfoil geometry which produces the 

specified target pressure distribution, or at least a reasonable approximation to it, at each iteration of the 

design search. Here, the full potential CFD code VGK is used to calculate the pressure distributions for 

this inverse process. To begin with in the airfoil design case studies to follow, VGK uses the same flow 

conditions as are used for the high-fidelity CFD calculation. It must be able to accurately converge onto 

the target pressure distribution while minimizing the number of calls to VGK used to do this. For the 

present airfoil design studies, the aim is to evaluate the EMFID method using both subsonic and transonic 

flow conditions, hence the inverse method employed must also be capable of running under these 

conditions. 

The inverse design approach adopted here is principally the same as the method proposed by Davis 

[1980]. The method is based on the iterative residual-correction concept, illustrated in Figure 2-4. For a 

given chordwise station, the residual is the difference between the target and computed pressure 

distributions. The magnitude of this residual determines the amount of surface alteration performed for 

each station. Under certain assumptions, for a local Mach number, ML, below unity the local surface 

pressure is proportional to the local curvature, and so for subsonic flows the corrections are performed on 

the surface second derivatives. At the k-th iteration the second derivatives, )(xz ′′ , of the airfoil shape are 

corrected according to the following expression: 
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For inverse design under transonic flow conditions, in regions where the local Mach number is greater 

than unity, the surface first derivatives, )(xz′ , are corrected: 
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For each chordwise ordinate, T
pC  is the target pressure coefficient and 1−k

pC  is the design pressure 

coefficient computed by the flow solver (VGK) at iteration k-1. The gradient terms ( )pCz dd ′′  and 

( )pCz dd ′  are calculated using approximate flow formulae, which can be relatively crude given the 

iterative nature of the design process. The flow formulation adopted here is the same linearized potential 

theory used by Davis [1980]. Thus, the inverse design process proceeds as follows: 1) the pressure 
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distribution is calculated for an initial airfoil using the potential flow solver VGK, and the difference to 

the target pressure distribution is calculated; 2) an approximation to the pressure distribution is calculated 

using linearized potential flow theory, allowing the gradients ( )pCz dd ′′  and ( )pCz dd ′  to be determined; 

3) the surface derivatives are corrected using Eq. (3.3) and Eq. (3.4); 4) integration yields the 

corresponding airfoil surface. The process is repeated until convergence is reached, i.e., when the 

computed Cp profile is satisfactorily close to the target profile. 

The integral of the square of the pressure error, I, between the target and computed profile is used as a 

measure of the convergence of the inverse design process, i.e., 
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where S represents the airfoil surface. This error measure is also described by Jameson [1996]. The 

magnitude of I diminishes rapidly as the iterative procedure converges onto the desired pressure profile. 

Eventually, the computed pressure profile is unable to match the target any closer, and the error increases 

fractionally; at this point the process is deemed to be converged and is halted. Note that the initial airfoil, 

used to start the inverse process, is always the symmetrical NASA LS(1)-0013 shape (Ferris et al. 

[1987]). 

The inverse design procedure requires calculation of surface first and second derivatives, and these must 

also be integrated twice once they are corrected. The procedure used here is a central differencing scheme 

for differentiation, and following correction of the surface derivatives a simple first order interpolation 

quadrature is employed. Regarding this integration calculation, for purely subsonic flows the specified 

boundary conditions are the positions of the leading edge and trailing edge; for flows with a shock the 

boundary conditions impose surface and first derivative continuity at the surface point immediately 

upstream of the shock. A number of authors have described problems in the leading edge region when 

performing the inverse design (as discussed by Milholen [2001]), largely caused by the high surface 

curvature in this region. This problem has also been encountered with the inverse process described here, 

i.e., the surface correction scheme is found to converge significantly more slowly in the leading edge 

region compared to the rest of the airfoil. However, the convergence can be greatly improved if the 

density of the defining co-ordinates is sufficiently high near the leading edge. 

The objective of the design strategies described in this Chapter is to minimize drag for a fixed level of lift 

while allowing the angle of attack, α, to be varied: α therefore becomes a variable in the inverse design 

process. Indeed, since the airfoil leading and trailing edge positions are fixed during all surface 
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alterations, α must be made a variable if the specified target Cp distribution is to be matched closely. 

Increasing α gives a monotonic increase in lift, and since this increases the area between the Cp curves for 

the upper and lower surfaces, α can be adjusted at each inverse design iteration using an expression 

similar to Eq. (3.3): 
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where αk denotes the angle of attack at iteration k and S represents the airfoil surface. 

In Eq. (3.6), θ is a relaxation factor applied at each iteration to prevent excessive corrections to the angle. 

A value for θ of 0.12° is used in the current study. The use of relaxation provides a facility to control the 

convergence of an iterative procedure, a bigger factor gives faster convergence but increases the risk of 

instability. The use of such factors is not uncommon in design optimization, although the appropriate 

magnitude is likely to depend on the problem setup. A relaxation factor is also applied to the pressure 

residual term in Eq. (3.3) and Eq (3.4), since experience with this inverse design method revealed that the 

surface corrections at each iteration can be overly large. The process likely requires the inclusion of 

relaxation factors because of its iterative nature and because of the simplicity of the surface pressure 

approximation. Thus, the surface alterations are expressed as: 
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φS and φT are the relaxation factors applied to the subsonic and transonic surface alterations, respectively. 

As with θ, these relaxation factors can be used to control the progress of convergence. Relaxation is also 

used by Davis [1980], although its magnitude is not specified. Experience with this inverse design method 

has shown that for transonic flows the magnitudes of φS and φT must be relatively small in order to 

provide robust convergence, while for a purely subsonic case φS can be significantly larger, accelerating 

convergence. Also, as previously mentioned, the VGK solver is setup differently for the transonic case in 

order to improve the CFD convergence for flows with strong shocks. For these reasons, it seems logical to 

use two distinct inverse design codes in this work. The subsonic code uses only Eq. (3.7), with a value of 

φS of 0.4. The transonic method employs both Eq. (3.7) and Eq. (3.8), using a more robust VGK setup 
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and relaxation factor magnitudes of φT=0.01, φS=0.05 on the upper surface and φS=0.3 on the lower 

surface. 

The relaxation factor magnitudes specified here have been found by monitoring the number of iterations 

required for convergence of the inverse design and the minimum pressure error (Eq. (3.5)) achieved, as 

the relaxation factor is varied. Figure 3-12 and Figure 3-13 illustrate the process of selecting the 

magnitude of φS (Eq. (3.7)) for the subsonic inverse process. While Figure 3-12 shows that a factor of 

around 0.35 gives a slightly smaller error than 0.4, Figure 3-13 shows that a factor of 0.4 requires fewer 

iterations (35 compared to 54). Experience has shown that the form of these graphs is largely independent 

of the target pressure distribution. 
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Figure 3-12 The error between the target and computed pressure distributions at the end of the inverse 

process, plotted against relaxation factor magnitude. 
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Figure 3-13 Number of iterations required for inverse design, plotted against relaxation magnitude. 
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Using the method described above, the subsonic inverse design step typically requires between 20 and 40 

VGK calls to capture the target pressure profile, while the transonic method needs around 70. An example 

of a converged inverse design result using the subsonic setup is shown in Figure 3-14 and Figure 3-15. 

The target Cp profile is for a NACA 0012 airfoil at cl =0.4, and for the flow conditions M=0.15 and 

Re=4×106. The converged Cp profile matches the target very closely, and this is reflected in the agreement 

between the corresponding geometries. A copy of the MATLAB code for the subsonic airfoil inverse 

design method is given in Appendix E. 
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Figure 3-14 A converged inverse design result. The target is the Cp distribution for NACA 0012. 

 

0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x/c

z/
c

 

 
Target, NACA 0012
Inverse design after 21 iterations

 

Figure 3-15 Comparison of geometries for a converged inverse design process, showing the design result 

and the shape corresponding to the target Cp profile. 
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3.8 Comparing the Two Methods 

The two design methods described above are evaluated side by side to assess their relative efficiency. The 

more efficient design method is the one which reaches the highest level of design performance (minimum 

cd) given a fixed computational budget. Also of interest is the rate of convergence of the search processes; 

do the methods converge, and, if so, to what level of design performance? In this work, as in any 

scientific investigation, it is fundamentally important to provide a fair test. That is, the control procedure 

and the experimental procedure should only differ in one variable, and one investigates the effect of this 

variable on the phenomenon of interest. In the present comparison this variable is the airfoil 

parameterization technique; the benchmark and EMFID procedures should ideally be identical in every 

other sense. The measures taken in attempting to provide a fair comparison are now outlined. 

As described above, the design space is initially populated using a random Latin hypercube DoE and the 

RSM is calculated based on the objective values at these points. The shape of this initial RSM is heavily 

dependant on the DoE set used, and as such the progress of the optimizer can be very different in each 

case. In order to account for this, each method is run five times using different Latin hypercube DoE 

seeds. It is recognized that, statistically, five is not a sufficient number of evaluations in order to gauge 

the DoE dependence of a design search procedure. However, a complete design search run is 

computationally expensive, and so one is averse to performing many otherwise identical runs if this is 

unnecessary. It is thought that five is a sufficient number to provide a representative comparison. 

The starting airfoil is the first point in the design search and is contained in the initial DoE set. Different 

initial designs are used for the subsonic and transonic design studies; in each case it is desirable to start 

the process with a design which performs poorly in terms of the objective function, thus testing the design 

improvement capability of the two methods. For the comparison between the benchmark and EMFID 

methods under subsonic flow conditions, the NACA 2414 four-digit airfoil (Jacobs et al. [1933]) is used 

as the initial design. This airfoil is designed for subsonic flow conditions, but is likely to perform poorly 

due to its primitive shape. For each parameterization technique used here, a set of design variables must 

be found which gives, to a reasonable approximation, the NACA 2414 geometry. This is achieved using a 

simple search technique which minimizes the difference between the parametrically computed airfoil and 

the NACA geometry. Figure 3-16 compares the original NACA geometry with the representations of this 

shape using the 13- and six-variable benchmark parameterizations. Both models align well with the target 

shape, the 13-variable definition matches particularly closely. The NACA 2414 pressure distribution for 

the subsonic design conditions is shown in Figure 3-17 (a), along with the EMFID parameterized 

representation of this Cp profile which is shown as a dotted line. On running the inverse design process 
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for this parameterized target, the Cp distribution shown by the dashed line in Figure 3-17 (a) is obtained. 

The corresponding airfoil geometry is shown in Figure 3-17 (b), along with the original NACA shape it is 

intended to emulate. It is observed that the shape resulting from the EMFID parameterization technique 

matches the target NACA 2414 airfoil with less precision than the two benchmark parameterizations. 

Ultimately, this is because the B-spline model is unable to exactly match the true NACA 2414 Cp 

distribution. 
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Starting airfoil for design studies at subsonic flow conditions 
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Figure 3-16 The NACA 2414 airfoil, and representations of this shape using the two benchmark 

parameterizations. 
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(a)       (b) 

Figure 3-17 (a) Pressure distribution for the NACA 2414 airfoil, calculated using VGK, the 

representation of this profile using the subsonic EMFID parameterization and the inverse design result.      

(b) The NACA 2414 airfoil and the shape resulting from inverse design on the parameterized target. 
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Starting airfoil for design studies at transonic flow conditions 
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Figure 3-18 The NASA LS(1)-0413 airfoil, and representations of this shape using the two benchmark 

parameterizations. 
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(a)       (b) 

Figure 3-19 (a) Pressure distribution for the NASA LS(1)-0413 airfoil, calculated using VGK, the 

representation of this profile using the transonic EMFID parameterization and the inverse design result.     

(b) The NASA LS(1)-0413 airfoil and the shape resulting from inverse design on the parameterized target. 
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In the case of the transonic airfoil design studies, the initial airfoil shape is chosen to be the NASA LS(1)-

0413 shape from the NASA low-speed family (McGhee et al. [1979]). This airfoil was designed using the 

same principles as the NASA supercritical airfoils and features a similar highly cambered aft lower 

surface. However, it is designed for subsonic conditions and is likely to perform poorly in terms of wave 

drag; this makes it a suitable starting design for evaluating the transonic design search processes. As for 

the subsonic design studies, a simple optimization search is run to determine the design variables which 

give a geometry closely matching the target initial shape. Figure 3-18 compares the target NASA 

geometry with the representations of this shape using the 13- and six-variable benchmark 

parameterizations. Figure 3-19 (a) compares the true 0413 Cp distribution with the EMFID 

parameterization of this profile and shows the inverse design result; Figure 3-19 (b) depicts the 

corresponding geometries. Similarly to the subsonic case, the 13-variable benchmark parameterization is 

able to represent the starting airfoil more closely than the EMFID model. However, in this case the six-

variable benchmark model actually gives a rather poor representation; this is largely because the x 

positions of the defining data points have been arranged to best fit the NACA 2414 airfoil (Figure 3-16), 

leading to a reduced capacity to emulate other shapes. This effect demonstrates the inadequacy of 

manipulating only six surface points, each with a single degree of freedom. 

The inferior ability to recreate standard airfoil shapes highlights a limitation of the EMFID method using 

the current B-spline model of the Cp distribution, because the 13-variable spline-based approach has been 

shown to do this more effectively. A more complex Cp distribution model could be configured such that 

the initial design is replicated more accurately, however such a model would involve more variables, 

defeating the object of the EMFID process. Moreover, it transpires that the current parameterizations are 

sufficiently flexible for the design of general subsonic and transonic airfoils. The minor discrepancy 

between the standard and recreated geometries does not disadvantage either method. Relative to the large 

range of possible airfoil shapes in the design space, the parametric benchmark and EMFID geometries 

align with the standard airfoils satisfactorily. Starting the two design search processes from these very 

similar shapes is thought to allow a fair comparison between the methods. 

Another important factor when comparing the two methods is the bounds placed on the design variables. 

These must be equivalent for each method such that one method is not forced to search a much larger or 

smaller design space than the other. It is also desirable to maintain a conceptual design approach and 

permit novel and radical designs. To allow a direct comparison, the EMFID method must have bounds in 

pressure profile terms which are equivalent to the geometrical bounds of the benchmark method. 

However, this is difficult to achieve since a modification to the shape of one surface affects the pressure 

over both surfaces. In order to constrain the two methods fairly, bounds must be placed on design 
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parameters which exist in both methods. In the current study, constraints are therefore placed on the 

airfoil shape directly, namely on the maximum thickness, maximum camber and leading edge radius. 

The variables for the benchmark method control the position of spline points on the airfoil surface, where 

those for the EMFID method control spline points which establish the shape of the target pressure 

distribution. These variables are therefore each given a relatively larger range, resulting in a large 

potential design space. For each set of variables selected by the optimization process of either method, if 

these variables generate an airfoil geometry which violates the constraints on thickness, camber or leading 

edge radius, the variable set and resulting geometry are rejected. The objective function is not calculated 

for rejected geometries, and they are not included when constructing the RSM. If, however, all five 

update points requested from the search of the RSM are rejected, one of these points is added to the 

surface and treated as a failed design point. This action prevents an identical RSM being generated which 

would stall the optimization process. With the bounds set up in this manner a direct comparison can be 

made between the optimization performance of the two methods, and their resulting geometries. 

Figure 3-20 shows a more detailed diagrammatic description of the benchmark and EMFID design search 

processes. The optimization strategy, shown in Figure 3-20 a), is the same for both the benchmark method 

and EMFID. In summary, the process calculates the objective function as dictated by a random DoE, 

starting from the design variables representing the NACA 2414/NASA LS(1)-0413 airfoil, before 

building a response surface in order predict promising update points. Update points are evaluated until the 

computational budget is exhausted. A call to the objective function in EMFID (Figure 3-20b) takes the 

design variables, calculates the corresponding pressure distribution, and then scales it to give the required 

total area and target lift. The inverse design code (low-fidelity CFD) is then used to calculate an airfoil 

geometry which realizes the specified pressure variation. Provided that it satisfies the geometrical 

constraints, this shape is passed to the high-fidelity CFD analysis for calculation of cd and α at the 

required value of cl. 
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Figure 3-20 Detailed flowcharts: a) The optimization strategy used by the benchmark and EMFID 

methods, b) an objective function evaluation in EMFID. 
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3.9 Computational Expense 

For the 2-D airfoil design work detailed in the next chapter, all CFD simulations and optimization are 

performed in the Windows environment on a cluster running Microsoft Windows Server 2003 and 

Microsoft Compute Cluster Server. This cluster consists of 2- and 4-processor nodes. All CPUs are dual 

core AMD Opterons, meaning that each node effectively has 4 or 8 processors, respectively. These nodes 

have 8Gb and 32Gb memory available, respectively, and all CPUs run at 2.41GHz clock speed. All the 

nodes operate with a 64 bit hardware/software interface and feature a 1 gigabit interconnect for the 

purposes of parallel computations. The FLUENT code includes in-built message passing interface (MPI) 

software, allowing efficient communication between CPUs during these parallel jobs. The computational 

mesh is split into a number of zones, with each CPU being assigned a different zone. 

The two design methods described above are run with equal amounts of computational effort; the one 

which is able to reach a higher level of design performance is deemed to be the more efficient method. A 

single FLUENT drag calculation takes on average 19.6 minutes and 22.6 minutes for the subsonic and the 

transonic analyses, respectively, when running on a four-processor compute node. Since the time taken to 

build and search the response surface approximation is in the order of seconds, and this expense is 

encountered by both design methods, it is not considered in the allocated computational budget. 

Therefore, the time for an objective function evaluation in the benchmark process is simply equivalent to 

the expense of the FLUENT drag calculation, i.e., 19.6 or 22.6 minutes. An objective function evaluation 

for the EMFID method uses this effort plus the effort required in the inverse design step. Each VGK 

evaluation requires approximately 2 seconds. An average of 47 iterations are used in the subsonic inverse 

design process, and therefore the total objective function call demands 21.1 minutes computational time. 

Thus, the ratio of computational expense for the two methods at subsonic flow conditions is 1:1.078 

benchmark to EMFID evaluations. Similarly, the transonic inverse design uses on average 55 iterations, 

resulting in an objective function time of 24.9 minutes and a ratio of computational expense of 1:1.099 for 

the transonic benchmark and EMFID evaluations. While, in both cases, an EMFID evaluation is only 

fractionally more expensive than a single FLUENT call, this can make a significant difference over the 

course of a full design search run. Nonetheless, due to the lower dimensionality in the EMFID search, 

fewer objective function calls should be required to minimize the drag. The assessment of the EMFID 

strategy relative to the benchmark method is the subject of the next chapter. 
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Chapter 4. Application of EMFID: Case 

Studies for 2-D Airfoil Design 

4.1 Introduction 

The setup of the EMFID and benchmark design search methods for the 2-D airfoil design problem has 

been described in full in the preceding chapter. These methods differ in their approach with respect to the 

parameterization of the airfoil. In EMFID a parametric B-spline model defines a target Cp distribution and 

inverse design is used to determine the airfoil shape, while for the benchmark process the airfoil geometry 

is discretized directly using a segmented spline approach. Each method employs the same high-fidelity 

objective function calculation and optimization algorithm. The purpose of the current chapter is to 

investigate the performance of these methods in minimizing the drag of an airfoil, for an equal amount of 

computational expense. A number of case studies are presented which are intended to demonstrate that 

the EMFID process can be effective for aerodynamic design problems. 

The case studies begin by considering airfoil design under wholly subsonic flow conditions, specifically a 

Mach number of 0.15 and Reynolds number 4×106. In Case 1, the benchmark model is one which is 

thought to be typical of a parameterization used in a true aircraft design scenario; this uses 13 design 

variables. The subsonic EMFID parameterization is applied, which uses six variables. Case 2 adds to the 

results of Case 1 by considering a benchmark model which adopts the same number of variables as used 

in EMFID, i.e. six. 

In case study 3, the objective function is calculated in transonic flow conditions, specifically a Mach 

number of 0.73 and Reynolds number of 6.5×106. Use of the six-variable subsonic pressure profile model 

is maintained, and hence inverse design is performed under subsonic conditions. Comparisons are drawn 

with the 13-variable benchmark parameterization. Finally, in Case 4, a parameterization of the pressure 

profile which permits the manipulation of the shock details is used in EMFID, and hence both the 

objective function and the inverse design are calculated under the same transonic conditions. 
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In each case study, key results are listed in the form of figures and tables. These results are discussed in 

detail and the conclusions pertinent to the EMFID concept are examined. 

 

 

4.2 Case 1 

In this case study, the five runs of the two methods are run side-by-side for the design of airfoils in 

subsonic flow conditions, using a starting design equivalent to the NACA 2414 airfoil as described in the 

previous chapter. Initially, the parameterizations employed are the six-variable subsonic B-spline model 

for EMFID, and the 13-variable cubic spline method for the benchmark process. The benchmark method 

is given a budget of 300 calls to the high-fidelity CFD code, which equates to 278 objective function 

evaluations in EMFID after taking into account the effort required for the inverse design. Based on the 

recommendation of Jones et al. [1998], the number of points in the initial DoE should be ten times the 

number of design variables. Hence, for the benchmark method this gives 130 design points, and for the 

EMFID method this requires 60 points. The methods use their remaining budget to evaluate designs 

during the update process, giving 170 update points for the benchmark method and 218 update points in 

EMFID. The design constraints on airfoil shape maximum thickness, maximum camber, leading edge 

radius and total lift, respectively, are:  

 12.5% ≤ cz maxt  ≤ 15%, 

0% ≤ cz maxc  ≤ 2.5%, 

rLE initial ≤ rLE , 

cl=0.4. 

 

 

 

(4.1) 

 

In these constraints rLE initial is the leading edge radius of the initial shape in the design process, i.e., the 

NACA 2414 airfoil. The constraints are arranged with relatively narrow ranges; experience has shown 

that if these ranges are large the convergence of the optimization is slow. The selected constraints allow 

both design methods to converge more quickly, and result in low-drag designs with conventional camber 

and thickness attributes. In addition to the above, a constraint is applied which states that the airfoil 

thickness at 95% chord shall be no smaller than 0.6% chord. As already noted, the target lift and flow 

conditions are the same as those used by McGhee et al. [1979], allowing comparisons to be made with the 

NASA low-speed airfoils. 
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The optimization-iteration histories for the two methods are shown in Figure 4-1. The progress of the 

optimizer in each case is plotted against the number of benchmark iterations; the number of iterations of 

EMFID has been scaled in this plot such that the x-axis can be interpreted as equal computational 

expense. The design objective is drag, which has been normalized by multiplying by the ratio of lift 

output from the CFD code to the target lift; this removes the numerical error generated if the airfoil cl is 

not exactly 0.4. From Figure 4-1 it is seen that for a given computational cost, the EMFID method finds a 

better design performance than the benchmark search method. The rate of convergence towards the 

optimum is faster for the EMFID method. This is because EMFID is able to find significantly better 

designs in its initial DoE, and this in turn is due to the reduced problem dimensionality. Conversely, the 

benchmark method does not find improved designs in the DoE evaluation stage. While neither method 

has provided convergence onto a single optimum design, the five runs of the EMFID method show a 

greater level of convergence, indicated by the reduced range of objective values at the end of the search 

process. 

0 50 100 150 200 250 300
95

100

105

110

Design iterations (benchmark method)

D
es

ig
n 

ob
je

ct
iv

e,
 c

d (
co

un
ts

)

 

 

Benchmark
EMFID

 

Figure 4-1 The five optimization histories for the benchmark and EMFID methods. 

 

The geometry which was found to give the best performance for each of the five runs of the benchmark 

procedure is shown in Figure 4-2. It is clear that each initial DoE set has given a very different final result 

for the computational budget used. The designs in this case are visibly not converged, with most of these 

shapes featuring an undesirable rippling. This unconverged state is possibly a result of the optimization 

procedure locating many local optima, and this is a symptom of the high dimensional design space. These 

erratic surfaces are also an artefact of the very low Mach number (M=0.15): the ripples have a small drag 
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penalty at this flow speed. Table 4-1 provides data for these geometries. Despite the apparent differences, 

all the designs are made to be around 12-13% thickness. 
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Figure 4-2 Final five geometries generated by the benchmark method. The lower figure shows the 

airfoils on equally scaled axes. 

 

Table 4-1 Airfoil design data for the best geometries resulting from the five benchmark design 

searches: maximum thickness, maximum camber, angle of attack, lift coefficient and drag coefficient. 

Airfoil design zt max/c (%) zc max/c (%) α (°) cl cd (counts) 

Best from run 1 12.55 2.27 2.01 0.4000 101.5 

 2 12.96 2.46 1.95 0.4005 98.5 

 3 12.62 1.55 0.88 0.4001 98.6 

 4 13.85 2.16 0.59 0.4000 99.5 

 5 12.59 1.93 0.46 0.4000 97.1 

      

NACA 2414 (initial 

design) 
14.00 2.00 1.63 0.3999 104.6 

NASA LS(1)-0013 12.63 0.00 3.49 0.4000 104.7 

NASA LS(1)-0413 12.72 2.32 -0.37 0.3981 98.4 

 

Original in colour 
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Figure 4-3 Final five geometries generated by the EMFID method. 

 

Table 4-2 Airfoil design data for the best geometries resulting from the five EMFID design searches: 

maximum thickness, maximum camber, angle of attack, lift coefficient and drag coefficient. 

Airfoil design zt max /c (%) zc max/c (%) α (°) cl cd (counts) 

Best from run 1 12.77 2.32 0.57 0.4001 96.0 

 2 12.79 2.45 1.21 0.4000 97.0 

 3 12.53 1.82 1.11 0.4003 96.5 

 4 12.63 1.82 0.64 0.4000 95.7 

 5 12.68 1.97 0.41 0.4001 95.4 

      

NACA 2414 (initial 

design) 
14.00 2.00 1.63 0.3999 104.6 

NASA LS(1)-0013 12.63 0.00 3.49 0.4000 104.7 

NASA LS(1)-0413 12.72 2.32 -0.37 0.3981 98.4 

 

The best geometries from the five computations using the EMFID method are shown in Figure 4-3. The 

more advanced state of convergence is made clear by the greater similarity in the five geometries than the 

benchmark method achieved, and this is possible because of the reduced dimensionality of the design 

Original in colour 



Application of EMFID: Case Studies for 2-D Airfoil Design 69 

 

space in EMFID. It is immediately apparent that these shapes are smoother than the benchmark designs, 

and this is inherent in the parameterization used. However, although the description of the Cp distribution 

is simple, the resulting geometry after inverse design can exhibit significant detail and complexity. Table 

4-2 lists the airfoil design data for the five geometries resulting from the EMFID method. Crucially, and 

rather predictably from looking at the airfoil shapes, the drag for the EMFID designed shapes is lower 

than those from the benchmark search method. In all five cases the maximum thickness is made to be 

almost as small as the constraints allow (12.5%), and this is to be expected since the objective is to 

minimize drag. The maximum camber of the EMFID designs is also very similar. The lower problem 

dimensionality in EMFID has allowed the optimization procedure to explore promising areas of the 

design space more thoroughly than is possible in the benchmark method for the same computational 

effort. 

Figure 4-4 compares the best two geometries from the five benchmark and EMFID searches. Two NASA 

low-speed airfoils are also shown: the initial design in the search process, NASA LS(1)-0413, which is 

12.95% thick, and NASA LS(1)-0013, with a thickness of 12.84%. The 0413 airfoil has 2.2% camber and 

is designed to give a cl of 0.4 at 0° angle of attack; the 0013 airfoil has zero camber and gives a cl of 0.4 at 

approximately 3.5° angle of attack. The two best airfoils resulting from the benchmark and EMFID 

methods are 12.59% and 12.68% thick with maximum cambers of 1.93% and 1.97%, respectively. The 

NASA 0413 airfoil features the highly cambered aft lower surface which is a characteristic of many 

supercritical airfoils (the LS series were developed by NASA in parallel with the supercritical designs). 

The best EMFID design clearly adopts this feature, exaggerating it further compared to the 0413 shape. 

The benchmark method also identifies the feature as beneficial, but incorporates it to a lesser extent due to 

the early state of convergence. The upper surface of the benchmark shape exhibits the undesirable 

rippling, associated with the incomplete convergence of the high dimensional search space. Both designed 

airfoils closely resemble the NASA 0413 shape at the aft upper surface, giving very similar trailing edge 

angles. Note also that the NASA 0013 upper surface features an inflection point which, according to 

Ferris et al. [1987], gives reduced drag. Although the best EMFID airfoil does not have this characteristic, 

it is seen on two of the other final geometries in Figure 4-3. 
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Figure 4-4 Comparison of the best performing geometry from each of the two methods, shown with two 

NASA low-speed airfoils of 13% thickness. 
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(a)       (b) 

Figure 4-5 (a) The optimized target pressure distribution, profile achieved during inverse design and 

profile output from FLUENT. (b) Pressure distributions due to the best performing EMFID and benchmark 

geometry, and the NASA LS(1)-0413 shape. 

 
Figure 4-5 (a) shows the best EMFID target pressure distribution, together with the converged inverse 

design result and the pressure distribution generated when the corresponding (best) airfoil is analysed 

using FLUENT. Figure 4-5 (b) compares the Cp distributions for the best benchmark and EMFID airfoils 

(i.e., those in Figure 4-4) with the NASA 0413 Cp distribution, all computed using FLUENT. Note the 

erratic profile of the benchmark airfoil, an effect of the aforementioned rippling. The harsh pressure 
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gradients may result in separation at higher Mach numbers. Note also that the pressure at the aft upper 

surface of the EMFID design closely follows that of the NASA shape. 

It is also useful to compare the performance of the designed airfoils in a more general sense. Figure 4-6 

illustrates this as a lift-drag polar plot, showing the best designs from the benchmark and EMFID 

processes along with plots for the NASA airfoils 0013 and 0413. Of the NASA examples, the 0013 gives 

the lowest drag; this is at zero angle of attack since it is symmetrical. However, the 0413 airfoil gives 

lower drag at values of cl greater than around 0.2, due to its improved lifting performance. The airfoils 

designed by the benchmark and EMFID methods give lower drag at their design lift coefficient, 0.4, but 

their drag increases more rapidly with lift compared to the NASA airfoils. Unsurprisingly, the designed 

airfoils have become specialized for cl =0.4. Figure 4-7 shows lift plotted against angle of attack, and 

further illustrates this design point dependence. While the EMFID airfoil has been shown to give the 

lowest drag at cl =0.4, it has a rather low maximum lift capability and exhibits very early stall compared 

to the other airfoils. The NASA 0413 shape has the highest camber line and therefore a higher lift for a 

given angle of attack, but it also performs well at high angles of attack and has the highest maximum lift. 

These observations are an artifact of the design objective used: the NASA airfoils are designed to perform 

well over a range of angles, whereas the geometries generated here are designed to minimize drag at a 

single angle of attack (or a single cl). It is not the purpose of this work to improve on the NASA airfoils; 

rather it is to demonstrate the use of the EMFID method for aerodynamic design. 
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Figure 4-6 Lift-drag polar plot for the best designs from the benchmark and EMFID methods, shown 

with FLUENT results for two NASA airfoils. 
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Figure 4-7 Lift vs. angle of attack for the best designs from the benchmark and EMFID methods, shown 

with FLUENT results for two NASA airfoils. 

 

 

4.3 Case 2 

The previous case study has shown that the EMFID method is able to find better designs in its initial 

DoE, and converge more quickly, compared to the benchmark method. These performance gains are due 

to the reduced dimensionality in the EMFID method, i.e., it is only required to search a six-dimensional 

design space compared to the 13-dimensional space for the benchmark method. In addition to this, 

because the EMFID DoE consists of a smaller number of objective evaluations (60 compared to 130), it is 

able to perform more evaluations during the RSM update stage than the benchmark process, for a given 

computational budget. The update phase of the design process is then clearly more likely to discover good 

designs, provided the design space is sufficiently populated to give accurate RSM predictions. These 

matters lead to the question: how much better would the benchmark process perform if its 

parameterization has the same dimensionality as the EMFID parameterization? This is the subject of the 

case study considered here. The benchmark method is run again, but in this case the six-variable B-spline 

model of the airfoil is used (Section 3.6.1), rather than the 13-variable model used in case study 1. It is 

desirable to compare the performance of the benchmark method, using this new parameterization, with 

the results from the first case study. For this reason, the design search is set up in the same way as 

previously discussed. In particular, the initial design (equivalent to NACA 2414), the constraints on 
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thickness, camber and leading edge radius, and the objective function calculation are all made to be the 

same. Again, five design searches are performed with different DoE seeds, but in this case there are 60 

points in each DoE. 

The optimization-iteration histories for the benchmark method in this configuration are shown in Figure 

4-8; for comparative purposes, the traces for the EMFID and benchmark methods obtained in case study 1 

are also shown. It can be seen that, compared to the 13-variable benchmark optimization, the method in 

this case has initially resulted in faster convergence, due to the reduced dimensionality of the design 

space. However, the traces for the 13-variable benchmark runs overtake the six-variable optimizations 

after 150-200 objective evaluations. For the simple airfoil parameterization employed here, it is difficult 

to achieve a drag force under 100 counts. The reduction in the number of degrees of freedom of the airfoil 

shape means that the detailed changes allowed by the 13-variable representation are no longer possible. 

This restricts the optimization process to the extent that it cannot provide the design improvement that is 

possible with the other parameterizations. Positively, the level of convergence achieved by the five 

searches is good, in fact this is better than the EMFID method attained; the region containing good 

designs in this case is clearly efficiently searched by the optimizer. 
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Figure 4-8 The five optimization histories for the benchmark method using the six-variable 

parameterization. 

 

The geometries resulting from the five runs of the six-variable benchmark method are shown in Figure 

4-9. These shapes are closely aligned, further emphasizing the relatively successful convergence of this 
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process. The airfoil shapes are smooth contours and do not exhibit the rippling seen in the previous 

benchmark geometries. However, this airfoil description cannot perform such localized changes. Thus, an 

efficient scheme might be to use the six-variable model for the DoE seed evaluations, map these points 

into the 13-variable space, and then perform the update process using the more detailed 13-variable 

parameterization. Such hierarchical systems are used routinely for industrial DSO problems (Keane and 

Nair [2005]). Table 4-3 lists the design data for the airfoils resulting from this case study. Curiously, the 

maximum thickness is not minimized to the 12.5% lower problem bound, as occurred with the previous 

parameterizations. This is due to the limited flexibility of this geometry model, and it is likely that the 

benefit of other curvature changes is greater than the penalty due to not minimizing the thickness. 
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Figure 4-9 Final five geometries generated by the six-variable benchmark method. 

 

Table 4-3 Airfoil design data for the five geometries resulting from the six-variable benchmark design 

search: maximum thickness, maximum camber, angle of attack, lift coefficient and drag coefficient. 

Airfoil design zt max/c (%) zc max/c (%) α (°) cl cd (counts) 

Best from run 1 14.43 2.43 0.62 0.4002 99.7 

 2 13.57 2.38 -0.13 0.4000 99.4 

 3 14.47 2.15 0.46 0.4002 100.2 

 4 14.40 2.18 0.36 0.4001 99.9 

 5 13.50 2.40 0.09 0.4002 99.5 

      

Original in colour 
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4.4 Case 3 

It has been shown that a parameterization of the airfoil subsonic Cp distribution can result in an efficient 

design search process, and while the parametric description is simple it is able to describe detailed 

changes in shape that produce high quality airfoil designs. Although this is a useful result in its own right, 

the natural extension is to apply the EMFID method to the design of airfoils in the more demanding 

transonic flow regime. Modern civil aircraft wings are required to operate in transonic conditions, and 

drag reduction is a major consideration in the design process; this is therefore a more useful application 

for any airfoil design method. In such cases, a shock is typically manifested in the airfoil Cp distribution 

as a step increase in pressure on the upper surface; representation of the Cp profile using simple functions 

is therefore more difficult for transonic flows. Since the position and strength of this shock can vary, this 

could require two or more additional design variables for the representation, whereas the geometry 

description could remain unaltered. A reduction in design variables is the raison d’être of the EMFID 

process, and to use a complex and high-dimensional description of the Cp profile may nullify any benefit 

of designing in the flow feature domain. 

It has previously been shown that there is good agreement between the parameterized Cp profile and the 

profile obtained during the high-fidelity objective calculation (see, for example, Figure 3-10 and Figure 

4-5 (a)). However, the question asked in this case study is: how does the EMFID process perform if the 

parametric description of the airfoil is for subsonic conditions, while the objective function (drag) is 

calculated for the transonic regime? In this case, EMFID no longer involves a parameterization of the 

flow features of the intended design per se. Rather, the Cp profile model becomes simply a means of 

arriving at an airfoil shape using a small number of variables, but by using the model in this way the 

direct mapping between the parametric model and the real flow features is lost. The current case study 

investigates the relative performance of the EMFID method when used in this way, compared to the 

benchmark design method. 

In this case study, the transonic FLUENT setup is used for the high-fidelity CFD (Section 3.5.4), i.e., 

specifying a flow speed Mach number of 0.73 and Reynolds number 6.5×106. This relatively modest 

Mach number is used as increasing this value reduces the robustness of the low-fidelity code (VGK), in 

terms of providing a converged solution. Therefore, in order to ensure that the flow is transonic and 

features a shock, a relatively high target lift of cl=0.8 is specified for this FLUENT drag calculation. The 

benchmark and EMFID methods are run with the parameterizations that were used for case study 1. The 

benchmark process uses a 13-variable cubic spline model of the airfoil shape. EMFID uses the 

parameterization of the subsonic pressure distribution, and hence the subsonic inverse design process 
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from Case 1 is utilized, i.e., the VGK code is run at M=0.15. Each method is run five times using a 

different DoE seed, in each case starting from a representation of the same design, NASA LS(1)-0413. As 

in the first case study, the benchmark method uses 130 DoE points and 170 update points. However, the 

EMFID method uses 60 DoE points with 221 update points; three more objective calculations can be 

afforded in the design search since a slightly more expensive FLUENT drag analysis is now employed. 

The design constraints on airfoil shape maximum thickness, maximum camber, leading edge radius and 

total lift, respectively, are: 

 12.5% ≤ cz maxt  ≤ 15%, 

0% ≤ cz maxc  ≤ 2.5%, 

rLE initial ≤ rLE , 

cl=0.8. 

 

 

 

(4.2) 

 

The optimization-iteration histories for this transonic case study are shown in Figure 4-10. Again, this is a 

plot of the design objective against the number of benchmark iterations, where the number of EMFID 

iterations has been scaled to allow a comparison for equal computational expense. The result is similar to 

the plot obtained in the first case study. The EMFID design searches are able to find significantly 

improved designs during the DoE evaluation phase, allowing them to converge more quickly. The 

reduced dimensionality again results in a greater level of convergence by the end of the search process, 

indicated by the smaller range of objective values. However, in this case the best achieving benchmark 

search yields an airfoil with lower drag than four of the five EMFID computations; i.e., the traces show a 

degree of overlap. It appears that in this transonic case the EMFID process does not exhibit the efficiency 

gains over the benchmark method that it did in the subsonic case study. 
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Figure 4-10 The five optimization histories for the benchmark and EMFID methods, for transonic airfoil 

design. 

 

Figure 4-11 shows the five airfoil designs generated by the benchmark process for the transonic flow 

conditions. As observed in case study 1, the shapes here are clearly not converged onto a single best 

design. However, the undesirable rippling, seen on the airfoils designed for subsonic flow (Figure 4-2), is 

not as prominent on these designs, i.e., the airfoils are smoother. At the present high Mach number of 

0.73, the flow is more prone to separation aft of any ripples than at Mach 0.15. Hence, there is a much 

higher drag penalty associated with the ripples in this case, and this explains why the optimization process 

has avoided such geometries. Figure 4-12 presents the best geometries generated by the five EMFID 

computations. While these shapes are all smooth, the level of similarity, i.e., convergence, between them 

is not as good as reported for case study 1 (see Figure 4-3). This is particularly true in the region of the aft 

lower surface, and this is known to be an important region in the design of supercritical airfoils. Again, it 

appears that the advantage of parameterizing the surface pressure profile is less evident in this transonic 

case. Table 4-4 gives the airfoil design data for the five best benchmark designs, and Table 4-5 lists this 

data for the best EMFID designs. Both sets of design searches have clearly associated thinner airfoils with 

reduced drag, and have minimized this thickness in each case.  
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Figure 4-11 Final five geometries generated by the benchmark method, for transonic airfoil design. 

 

Table 4-4 Airfoil design data for the five geometries resulting from the transonic benchmark design 

search: maximum thickness, maximum camber, angle of attack, lift coefficient and drag coefficient. 

Airfoil design zt max/c (%) zc max/c (%) α (°) cl cd (counts) 

Best from run 1 13.10 2.00 1.59 0.7994 165.4 

 2 12.90 1.90 3.08 0.8216 186.6 

 3 12.64 1.66 2.64 0.8020 170.3 

 4 12.75 1.84 2.30 0.8004 216.9 

 5 13.17 2.22 1.40 0.8051 170.7 

      

NASA LS(1)-0413 

(initial design) 
12.72 2.32 1.55 0.7981 304.3 

NASA SC(2)-0712 11.76 2.21 1.31 0.8004 161.8 

RAE 2822 12.10 1.27 2.95 0.8012 201.4 

 

Original in colour 
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Figure 4-12 Final five geometries resulting from the transonic EMFID method. 

 

Table 4-5 Airfoil design data for the five geometries resulting from the transonic EMFID design 

search: maximum thickness, maximum camber, angle of attack, lift coefficient and drag coefficient. 

Airfoil design zt max/c (%) zc max/c (%) α (°) cl cd (counts) 

Best from run 1 12.50 2.06 2.33 0.8001 181.3 

 2 13.17 2.34 1.97 0.8021 168.1 

 3 12.66 2.40 1.32 0.7994 161.3 

 4 12.79 2.46 1.57 0.7951 175.0 

 5 12.63 2.14 2.02 0.8043 176.4 

      

NASA LS(1)-0413 

(initial design) 
12.72 2.32 1.55 0.7981 304.3 

NASA SC(2)-0712 11.76 2.21 1.31 0.8004 161.8 

RAE 2822 12.10 1.27 2.95 0.8012 201.4 
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Figure 4-13 Comparison of the best performing geometry from each of the two methods, shown with 

supercritical airfoils NASA SC(2)-0712 and RAE 2822. 
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(a)      (b) 

Figure 4-14 (a) The optimized target pressure distribution , profile achieved during inverse design and 

profile output from FLUENT. (b) Pressure distributions due to the best performing EMFID and benchmark 

geometry, and the NASA SC(2)-0712 shape. 
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It is useful to compare the results of this transonic design study against existing established transonic 

shapes. Figure 4-13 compares the best design from the five runs of the benchmark and EMFID searches, 

with the supercritical airfoil NASA SC(2)-0712 published by Harris [1990] and the RAE 2822 airfoil 

used by Cook et al. [1979]. Data for these standard airfoils are given in Table 4-5. Note that, although 

their thicknesses are slightly smaller than is permitted by the constraint imposed in the EMFID and 

benchmark design methods (12.5%), these standard airfoils have similar attributes to the designed shapes, 

and are intended to operate under similar flow conditions. The benchmark designed airfoil features a 

raised upper surface, with a lower surface which closely follows that of the RAE 2822 shape. The EMFID 

optimization process has arranged the design variables defining the subsonic Cp profile, such that, 

following inverse design at subsonic conditions, the resulting airfoil is very similar to the NASA 0712 

shape, and performs very well when subjected to a high speed flow. The main difference between these 

designs is the thickness (12.66% and 11.76%, respectively), see Table 4-5. Figure 4-14 (a) illustrates the 

EMFID parameterization, showing the optimized parametric Cp distribution, converged inverse design 

result, and Cp distribution obtained on running the objective function. This demonstrates the distinct 

difference between the parameterized and real flow features. Figure 4-14 (b) shows the same Cp data for 

the best EMFID airfoil compared with the data for the best benchmark design and NASA 0712. 

Unsurprisingly, the EMFID and NASA 0712 profiles are closely matched. The designed airfoils have 

reduced the shock strength for the present flow conditions, compared to the NASA 0712 shape, although 

it is interesting to note that the shock position is the same in all three cases. The slight rippling on the 

lower surface of the benchmark shape is reflected in the Cp profile. As previously discussed, this lack of 

smoothness is likely to be associated with the unconverged state of the optimization process, which in 

turn is an artefact of the parameterization used. In addition to this, the benchmark method is 

disadvantaged since the designed airfoils have surfaces which are, mathematically, cubic polynomials in 

form. The position and strength of shocks is extremely sensitive to the local curvature, and since each 

segment of the airfoil has a linearly varying curvature, the ability of the benchmark method to control 

shocks is compromised. This limitation is not as prominent in the EMFID method since the geometry 

description is in the form of co-ordinates which are generated using a more complex formulation for the 

surface curvature during inverse design. 

This case study has established that the EMFID approach can be effective for the design of airfoils for 

transonic conditions. The five EMFID computations have all produced high performing airfoils, and the 

small spread of objective values in Figure 4-10 indicates more advanced convergence than the benchmark 

process achieved. However, the advantage is less convincing than was reported in Case 1, and although it 

is apparently more likely for a given design search using EMFID to produce a better airfoil, it has been 
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shown that the benchmark process may produce a superior design. The EMFID approach uses a transonic 

drag calculation, while the parameterization of the Cp distribution is subsonic. It is inferred that, because 

of the loss of the direct mapping between flow features, the shift in complexity brought about by the 

transonic drag calculation is felt more by EMFID than for the benchmark process, hindering the 

convergence of the EMFID optimization. The next step is to implement the parameterization of the 

transonic Cp profile, i.e., the profile containing a shock. In this way, EMFID again considers a parametric 

model of the true flow features. This investigation is the subject of the final 2-D case study. 

 

 

4.5 Case 4 

Previously, the EMFID method has made use of a parameterization of the subsonic Cp distribution. The 

subsonic model has the advantage of requiring the specification of only six design variables; it is therefore 

compact and has been shown to be a very effective representation for subsonic airfoil design. However, 

such a model is less effective when designing airfoils for transonic flow conditions. This result is not 

unexpected, since the high Mach number induces a shock which is not accounted for in the 

parameterization. The present case study reports the performance of EMFID when the parameterization 

includes the shock details. Although the representation requires two more design variables and involves a 

more complex inverse design process, the reinstatement of a parameterization of the true flow features 

may yield enhanced performance. 

The transonic parameterization of the Cp profile uses the six-variable B-spline model with an additional 

two variables controlling the height and chordwise extent of the rooftop region. This eight-variable model 

was described in Section 3.7.2. In order to allow a comparison with the results obtained in Case 3, the 

EMFID search here is set up in the same way. In particular, the initial design (equivalent to NASA LS(1)-

0413), the constraints on thickness, camber and leading edge radius, and the objective function 

calculation are all the same. In this case, the computational budget of 300 FLUENT calculations equates 

to 272 EMFID objective function calls. Five design searches are performed with different DoE seeds, 

with each search consisting of 80 points in the DoE and 192 update points. 

Figure 4-15 shows the optimization-iteration histories for EMFID in this setup, overlaid onto the results 

from case study 3. Although the new optimization traces overlap the previous results, one of these 

computations finds an airfoil with lower drag than any of the previous designs. Additionally, the level of 

convergence reached collectively by the five runs using this new setup is significantly improved 
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compared to the EMFID method using a subsonic parameterization. The convergence is also faster; 

significantly better designs are found during the DoE evaluation phase. It is evident that using a 

parameterization of the surface Cp distribution is more efficient when the parametric model, inverse 

design, and objective calculation are all set up to capture the same flow conditions. In this case, this has 

required the specification of the shock details, but despite an increase in the number of design variables 

this configuration yields improved performance. 
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Figure 4-15 The five optimization histories for the EMFID method using a transonic Cp 

parameterization, shown with the results from case study 3. 

 

Figure 4-16 shows the final five airfoils generated by the EMFID method using this setup, and Table 4-6 

gives the associated data for these geometries. The advanced level of convergence achieved is clear to 

see; the design searches have resulted in very similar geometries. This suggests that there is a global 

optimum in the response surface which is relatively straightforward to find using the present optimization 

algorithm.  

Figure 4-17 shows the best design from the EMFID searches using the present transonic parameterization, 

alongside the best result using the subsonic model and the NASA 0712 supercritical airfoil. The designed 

airfoil does not seem to follow the traditional supercritical shape of the 0712. The leading edge is similar 
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initially, in order to conform with the imposed constraints, but following this the lower edge has a high 

curvature giving it a rather pointed shape. This effect was also seen in the subsonic EMFID airfoil 

designed in case study 1, and suggests that the shape is specialized to operate well at the design 

conditions. This is in contrast to the NASA 0712 design, which has been designed in a multipoint fashion 

and therefore performs well over a range of operating conditions. Figure 4-18 (a) shows the target 

pressure distribution corresponding to the best EMFID result using the transonic parameterization, 

together with the converged inverse design result and the data from FLUENT for the same shape at 

cl=0.8. Except for the region of the shock, these profiles closely match. The target Cp profile features a far 

aft shock position, suggesting that the design process is attempting to pull the shock in this direction; this 

is known to increase the efficiency of transonic airfoils. The inverse design process (using VGK) was 

unable to match this target shock position, however, but arranged the geometry such that the shock is as 

far aft as possible. The disparity between the VGK and FLUENT Cp profiles is due to the incapability of 

VGK to accurately predict shocks; this was demonstrated in Section 3.5.4. Figure 4-18 (b) shows the 

FLUENT data for the same best EMFID design, compared with the Cp data for the NASA 0712 airfoil 

and the best EMFID design using the subsonic parameterization. It is seen that the new EMFID process 

has successfully moved the shock further aft and reduced the shock strength slightly compared to the 

other airfoils, which results in reduced drag for a given lift. Thus, the EMFID method, and indeed the 

process of airfoil design, seems to benefit significantly from using a parameterization which includes the 

specification of shock details. The shock position and pressure jump are likely to be strongly linked to 

wave drag, and thus the EMFID approach allows a very intuitive means of reducing drag. 
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Figure 4-16 Final five geometries resulting from the eight-variable transonic EMFID method. 

 

Table 4-6 Airfoil design data for the five geometries resulting from the eight-variable transonic 

EMFID design search: maximum thickness, maximum camber, angle of attack, lift coefficient and drag 

coefficient. 

Airfoil design zt max/c (%) zc max/c (%) α (°) cl cd (counts) 

Best from run 1 12.54 2.12 2.02 0.8003 163.3 

 2 12.68 2.08 1.80 0.7998 163.9 

 3 12.62 2.23 1.83 0.7997 160.3 

 4 13.08 2.49 1.63 0.7821 171.1 

 5 12.84 2.32 1.75 0.7720 169.2 

      

NASA LS(1)-0413 

(initial design) 
12.72 2.32 1.55 0.7981 304.3 

NASA SC(2)-0712 11.76 2.21 1.31 0.8004 161.8 

RAE 2822 12.10 1.27 2.95 0.8012 201.4 
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Figure 4-17 Comparison of the best performing geometry from the six-variable (subsonic) and eight-

variable (transonic) EMFID methods, shown with the NASA SC(2)-0712 supercritical airfoil. 
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(a)      (b) 

Figure 4-18 (a) The optimized target pressure distribution, profile achieved during inverse design and 

profile output from FLUENT. (b) Pressure distributions due to the best performing EMFID and benchmark 

geometry, and the NASA SC(2)-0712 shape. 
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Finally, it is interesting to observe the performance of the designed transonic airfoils over a range of 

operating conditions, i.e., varying the angle of attack. Figure 4-19 shows the FLUENT predicted lift-drag 

polars for the best design from the EMFID subsonic and transonic parameterization methods, shown with 

FLUENT results for the NASA SC(2)-0712 and RAE 2822 airfoils. It can be seen that the airfoil design 

using the transonic parameterization gives the lowest drag at the design lift of cl=0.8. However, this is the 

only condition at which the airfoil gives lower drag than the other airfoils; like the designs in Case 1, it is 

highly specialized for the single operating point it was designed for. The airfoil design using the subsonic 

parameterization is marginally better than NASA 0712 at the design lift coefficient. The NASA airfoil 

and, particularly, the RAE 2822 give better performance over a range of operating conditions including at 

typical cruise conditions, i.e., in the region of cl =0.5. Figure 4-20 shows plots of lift vs. angle of attack, 

for the same airfoils as in Figure 4-19. Interestingly, the design from the subsonic parameterization gives 

the same maximum lift as the NASA 0712 supercritical airfoil. However, it should be noted that the 

design lift of cl =0.8 is not that far from the maximum lift, which is approximately cl =1.05. The transonic 

parameterization design has a poorer maximum lift capability, and this is consistent with the above 

statement that this airfoil is highly specialized for cl =0.8. 
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Figure 4-19 Lift-drag polar plot for the best designs from the six- and eight-variable EMFID methods, 

shown with FLUENT results for the NASA SC(2)-0712 and RAE 2822 airfoils. 
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Figure 4-20 Lift vs. angle of attack for the best designs from the six- and eight-variable EMFID methods, 

shown with FLUENT results for the NASA SC(2)-0712 and RAE 2822 airfoils. 

 

 

 

 

 

4.6 Corollaries from 2-D Airfoil Design 

A design approach has been proposed in this thesis which uses a parameterization of the airfoil pressure 

distribution coupled with inverse design, with the aim of achieving a powerful but concise method of 

describing a design and thus a more efficient design optimization process. This EMFID method has been 

applied to 2-D airfoil design in a series of case studies; the purpose of the remainder of this chapter is to 

consider the wider implications of these results with respect to the concept of flow feature 

parameterization. The four case studies detailed in this chapter are summarized in Table 4-7. References 

are made to these case studies throughout the following discussion, and pertinent conclusions are drawn. 

The lessons learnt from this analysis are applied to a 3-D design problem in the next chapter. 
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Table 4-7 Summary of the 2-D airfoil case studies. 

Case studies Flow equations Flow speed Mach number Case description 

 1 RANS 0.15 Comparison of EMFID and benchmark methods 

2 RANS 0.15 Benchmark run using a low dimensional model 2-D 

Airfoil 

design 3 RANS 0.15 VGK, 0.73 FLUENT 
Comparison using a transonic drag calculation 

with a subsonic Cp model in EMFID 

 4 RANS 0.73 EMFID run using a transonic Cp model 

     

 

 

4.6.1 An Increase in Efficiency 

In case study 1, the EMFID and benchmark design strategies are applied to the design of airfoils in a 

subsonic flow regime (M=0.15). The EMFID method uses a six-variable B-spline parameterization of the 

airfoil subsonic Cp distribution coupled with inverse design, while the benchmark process employs a more 

traditional 13-variable spline parameterization of the airfoil geometry. Each method is run five times 

using different DoE seed arrays, and each time starting from a design equivalent to the NACA 2414 

airfoil, which is known to perform relatively poorly at the chosen flow conditions. It is found that, for a 

given computational cost, the EMFID method is able to return airfoil geometries which perform 

noticeably better than those of the benchmark method, in terms of drag. The EMFID design search 

converges significantly more quickly onto promising designs, and the five computations produce a greater 

level of convergence than the five benchmark runs, i.e., the best five EMFID designs show greater 

similarity. The consequences of this study are threefold. First, it can be concluded that a B-spline 

parameterization of the Cp distribution can yield, after inverse design, airfoil shapes of high quality and 

detail. The airfoils designed in this way out-perform the benchmark shapes, and have been shown to be 

competitive with at least two of the NASA low-speed airfoils, at the design conditions. Second, because 

the specified Cp profile model is relatively simple, it is noted that the resulting airfoils are inherently 

smooth in their shape. In contrast, the behaviour of the cubic-spline, used to define the airfoil in the 

benchmark method, means that a large proportion of the design space consists of shapes which exhibit 

ripples or are generally nonsensical in their shape. The absence of non-smooth designs accelerates the 

convergence of the EMFID design process. Note that there are many other parameterization methods 

which enforce airfoil-like shapes, but these invariably assume some fore-knowledge of successful airfoil 
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shapes and thus lead to an evolutionary design method. Third, the use of just six variables compared to 13 

in the benchmark method allows the EMFID procedure to converge significantly more quickly. This low 

dimensionality results in a more thorough exploration of promising areas of the design space for a given 

computational expense. Thus, the objective of creating a more efficient design optimization process, via a 

reduction in the number of design variables, is realized. 

Case study 2 augments the results from Case 1. An alternative benchmark method is run, using a B-spline 

parameterization of the airfoil which uses only six variables, i.e., the same number of dimensions as used 

in the EMFID process demonstrated in case study 1. It is observed that, although the reduction in 

dimensionality allows faster convergence, the ultimate level of performance achieved using this method is 

poorer than the previous computations using the 13-variable benchmark model. The manipulation of just 

six surface control points is apparently insufficient to facilitate the subtle and detailed changes that are 

possible with the previous benchmark parameterization, or indeed, the EMFID model. The interest in the 

EMFID concept is motivated by the claim that a low-dimensional parameterization of the airfoil pressure 

distribution can generate airfoil shapes of higher quality and complexity than a geometry-based 

parameterization with the same number of dimensions. While the results presented in case study 2 are not 

unequivocal proof, they emphatically support this claim. 

While a parameterization of the pressure distribution has been shown to be very effective, the EMFID 

approach in this guise benefits significantly from the observation that the pressure distribution 

corresponding to the optimum airfoil, or at least a very good airfoil, is simple in its form. This is not to 

say that the pressure distribution itself is simple; airfoil pressure profiles can be vastly complex on a 

microscopic scale, and the prediction of such fine details can be difficult despite constant advances in 

simulation techniques and computing power. However, for the purposes of providing a target for inverse 

design, it is sufficient to capture the overall shape and curvature of the pressure profile. Hence, the 

pressure distributions of interest, i.e., those corresponding to very good airfoils, can be represented simply 

using B-spline functions, and this allows these airfoils to be generated by the current six-variable 

parametric model through the use of inverse design. In contrast, if it so happened that the optimum 

pressure distribution were more complex, it might not be possible to approximate it using such a low-

dimensional model. It follows that the choice of flow feature to parameterize in EMFID should take into 

account the likely simplicity or complexity of the optimum flow features. 

The parameterization of surface pressure has been shown to produce higher quality airfoil geometries than 

a geometrical model of the same dimensionality. However, this parametric model is not capable of 

achieving the level of detail permitted by the 13-variable benchmark model. Evidence of this can be seen 
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in Section 3.8, in which the 13-variable cubic spline was shown to reproduce the standard NACA and 

NASA airfoils with greater accuracy. Therefore, it may be assumed that if the two methods were run on 

for more than 300 FLUENT calls, the benchmark search would eventually result in a better performing 

airfoil than the EMFID method. However, in a design situation the objective is rarely to achieve ultimate 

performance. Rather, the aim is to maximize the design improvement for a fixed computational budget, 

i.e., to perform efficient optimization. It is these efficiency gains which make the EMFID approach 

attractive. 

 

4.6.2 The Importance of Flow Feature Coupling 

Case study 3 applies the EMFID and benchmark methods to the design of airfoils in a transonic flow 

regime, enforcing the existence of a shock which is manifested in the surface pressure distribution. The 

design objective function is total drag, calculated using FLUENT and specifying M=0.73 and cl=0.8. To 

begin with, the EMFID and benchmark methods are run in the same way as in case study 1, with the 

exception of the higher Mach number and target lift. This means that the EMFID parameterization of the 

pressure distribution (and subsequent inverse design) corresponds to a much lower Mach number 

(M=0.15) than the objective function calculation (M=0.73), i.e., these flow features are decoupled. In case 

study 3 the EMFID method generated the best performing airfoil, but the performance of the method was 

not as good, relative to the benchmark method, as observed in the first (purely subsonic) case study. In 

particular, the level of convergence between the five EMFID searches is poor, and the five final 

geometries are rather different, especially in the region of the aft lower surface. Case study 4 considers a 

more complex eight-variable parameterization, which includes the specification of the shock position and 

pressure jump, and uses a transonic inverse design code at the correct Mach number M=0.73. The direct 

flow feature coupling is therefore restored in this case. Using this configuration, the convergence of the 

five computations is noticeably improved, and the five final geometries exhibit significantly greater 

similarity. It is therefore inferred that the EMFID method benefits from a direct coupling between flow 

features calculated using the low- and high-fidelity CFD. A number of possible explanations of this effect 

are offered in what follows. 

First, as already mentioned, the relationship between the six subsonic variables and the drag calculated at 

M=0.73 is likely to be somewhat more complex than the relationship existing between the eight transonic 

variables and drag. This statement is surmised because the specified six parameters defining the subsonic 

pressure profile are weakly associated with the true (FLUENT) pressure profile. This can be observed in 

Figure 4-14, since the parametric (B-spline) pressure distribution is quite dissimilar to the profile 
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predicted using FLUENT. Because the design variables are weakly coupled with the real surface 

pressure, it follows that there is a rather complex relationship with drag. 

The preceding discussion infers that the relationship between the design variables and drag is made to be 

more complex when the low- and high-fidelity flow regimes are very different. This might explain why 

the EMFID method performs poorly when the objective function contains a wave drag component but the 

parameterization of the pressure profile is subsonic. A second possible cause for this is that the six-

variable subsonic model is simply less able to specify the airfoil shape in sufficient detail to achieve a 

good shape for the transonic conditions. In case study 2, it was observed that a simple six-variable B-

spline representation of the airfoil was unable to produce such detailed changes as the more complex 13-

variable model. Similarly, it may be that the parameterization of the subsonic pressure distribution is not 

able to perform sufficiently detailed changes in shape, for the purposes of designing an airfoil for 

transonic flows. Such detailed changes might be made possible with the eight-variable transonic pressure 

profile model, because the inverse design process is performed for transonic conditions. The inverse 

process in this case applies a boundary condition for surface modifications at the predicted shock location, 

and thus the airfoil is tailored very specifically for the transonic flow conditions which are subsequently 

used to calculate the objective function (drag) using FLUENT. Conversely, the subsonic inverse design 

process applies a single surface alteration scheme to the entire upper surface, and is run at much lower 

Mach number than the objective drag calculation, and this leads to difficulty in arriving at an efficient 

shape.  

The eight-variable transonic pressure profile parameterization is able to generate airfoil shapes using the 

correct transonic flow conditions, but a further advantage of this approach is the ability to specify, and 

therefore strongly influence, the position and strength of the shock. These shock details are two of the 

eight design variables, and these variables therefore offer a direct means of controlling the wave drag. It is 

likely that these two variables dominantly control the wave drag, with the remaining six variables having 

little effect. Indeed, according to Inger [1993], under certain assumptions the wave drag can be expressed 

simply as a function of the preshock Mach number. Such a direct coupling between the design variables 

and drag can perceivably yield an objective function landscape which is more readily searched by the 

optimizer. The subsonic parameterization does not permit such direct control over wave drag; rather each 

of the six variables affects the total drag in a complex function involving all variables. 

In summary, it has been found that, when using a parameterization of the airfoil pressure distribution, it is 

beneficial if the flow conditions of the parameterization correspond to those of the final objective 

function. In particular, it is important to include shock details in the parametric model if the design flow 
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regime is transonic. While such a result is intuitive, the specific reasons for this effect are complex, and 

there may be a number of contributing factors involved.  

 

 

4.7 Towards a 3-D Application 

The EMFID strategy has proved to be successful for 2-D airfoil design, since the anticipated gains in 

efficiency have been realized. It is desirable, therefore, to attempt to apply the concept to a 3-D design 

application, since the gain in computational effort is potentially much greater. The objective of the 

following chapters is to apply the EMFID approach to a 3-D problem, departing from the subject of airfoil 

section design and the use of the pressure distribution as the target flow feature. Thus, the efficacy of the 

EMFID strategy for a wider range of applications is assessed. In taking EMFID forward to a more 

complex design task, it is important to heed the results of the 2-D airfoil study discussed in this chapter. 

In particular, it is desirable to parameterize a flow feature which is simple in form when corresponding to 

high performing designs. Also, there should ideally be a strong coupling between the flow features 

predicted by the low- and high-fidelity CFD codes. 
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Chapter 5. Setup of EMFID for Wing 

Design in 3-D 

5.1 Introduction 

In the preceding chapters of this thesis, the EMFID method has been proposed and applied to the design 

of 2-D airfoil shapes. A number of useful conclusions have been drawn from this study. However, while a 

2-D application is viewed to be valuable research, a more useful application is one which makes use of 

three-dimensional CFD simulations. The increasing capability of digital computers is allowing 3-D flow 

analyses to become more accessible in the design office, and such simulations are frequently coupled with 

parametric 3-D CAD software (Trapp and Sobieczky [1999]). Fundamentally, the aerodynamic 

component to be designed exists physically in three dimensions, and so designers are interested in, and 

increasingly aware of, complex 3-D flows. The significant computational cost of 3-D analyses arises from 

the requirement for a large number of mesh cells for which the fluid flow equations are calculated. 

Jameson [1996] suggests that around 3×105 cells are sufficient to give an accurate Euler solution, but this 

may take several hours to compute in practice. Thus, a design strategy such as EMFID, which can 

potentially make more efficient use of the CFD calls, is more attractive for an application which considers 

3-D flows since the cumulative reduction in computational cost for a design search process is likely to be 

greater than for a 2-D study. 

The present chapter describes the application of EMFID to the design of aircraft wings. As before, the 

design objective is to minimize drag for a fixed level of lift, and design studies are performed using Euler 

or RANS CFD analyses. In the preceding chapters, the parameterized flow feature was the surface Cp 

distribution, and this was shown to be an effective design approach for airfoils. One would expect that the 

strategy would be equally effective when the airfoils are used to make up sections of a wing. However, to 

avoid repetition and arriving at similar conclusions, alternative flow features are considered for the 

present wing design studies. It is hoped that this exploratory approach enhances the findings of the current 

work. 
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Recently, a reduction of aircraft drag has been achieved by the development of wing-tip devices. These 

passive geometries are designed to reduce the induced drag of a lifting wing by modifying the trailing 

vortex system. Since the wing-tip vortex is such a prominent flow feature, designing in the wing-tip 

region provides an interesting application for the EMFID method. Thus, the benchmark and EMFID 

methods are here applied to the design of a wing-tip device. In the sections that follow, induced drag and 

current practice with respect to the design of wing-tip devices is described. Following this, the 

parameterization of flow features for the design of such a device is investigated, and the setup of the 

benchmark and EMFID methods for this design study is detailed. 

 

 

5.2 The Drag on a Finite Wing 

As previously stated, the two drag components acting on an aerodynamic body are the skin friction drag 

and pressure drag. For an airfoil, the pressure drag consists of contributions from form drag and wave 

drag. For a wing of finite span, there is a third contribution to the pressure drag, namely the induced drag. 

For a lifting wing there exists a pressure imbalance between the upper and lower surfaces which results in 

a component of velocity in the spanwise direction, and generates flow around the wing tips towards the 

lower pressure region on the upper surface. As a result, the flow tends to establish a rotational motion 

which extends downstream from the wing, forming the wing-tip vortex. Wing-tip vortices can roll up into 

a large body of rotating air; Figure 5-1 shows such a wake structure generated as part of a study 

performed by NASA. The presence of these trailing vortices can cause a small plane to lose control in the 

wake of a large airliner, which is why aircraft must maintain a separation of several nautical miles during 

take-off and landing (Spalart [1998]). 
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Figure 5-1 An aircraft wake vortex study performed by NASA. 

 

In addition to producing a rather disruptive wake, wing-tip vortices adversely affect the drag of the 

aircraft from which they emanate. The vortex induces a downward component of velocity at each point 

along the wing adjacent to the trailing edge, which reduces the local angle of attack seen at each wing 

section. This inclines the lift vector, creating an additional force component in the direction of the 

freestream velocity, i.e., adding an extra component to the drag. This drag component is the induced drag. 

The trailing vortex has the effect of modifying the wing surface pressure, and hence the Cp distributions at 

each wing section are not the same as for the corresponding 2-D airfoil. By using Prandtl’s classical 

lifting line theory, the induced drag can be shown to be proportional to the square of lift, L (Anderson 

[1991]). The total drag, D, can therefore be approximated as 

q

Lk
qkD

2

2
1 += ,      (5.1) 

where q is the dynamic pressure and k1 and k2 are constants relating to geometry (Kroo [2001]). The first 

term arises from viscous drag, while the second term is due to induced drag. From Eq. (5.1) it can be 

shown that the minimum drag for a given lift occurs when these two terms are equal. Therefore, the 

induced drag amounts to approximately half of the total drag at the conditions of minimum drag. In 

practice the induced drag can make up as much as 40% of cruise drag and 80-90% of the total drag in 

take-off configuration (Kroo [2005]), and so the induced component has a substantial effect on the 

performance and ultimately the design of wing geometries. It is because of induced drag that some large 

migratory birds fly in ‘V’ formation; by transferring the downwash of shed vortices to the wing-tips of 

adjacent birds, the flock can travel for longer distances than the individual. 

Original in colour 
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One of the key results from Prandtl’s classical lifting line theory (Anderson [1991]) states that the induced 

drag coefficient, CD,i, is related to the lift coefficient according to 

eAR

C
C L

iD
 

2

, π
= ,     (5.2) 

where AR is the wing aspect ratio and e is the span efficiency factor. Eq. (5.2) implies that the induced 

drag can be reduced in two ways. First, the aspect ratio can be increased by increasing the span relative to 

the average chord. However, increases in span are limited by requirements for structural weight and 

airport gate restrictions. Second, classical lifting line theory predicts that the minimum induced drag for a 

given span occurs when e takes its maximum value of 1, which happens to be when the spanwise 

distribution of sectional cl is elliptic in form. Further, for a wing with no geometric or aerodynamic twist, 

an elliptic lift distribution is achieved using an elliptic wing planform shape. An attempt to minimize 

induced drag was one of the reasons why the elliptic planform was adopted in early aircraft design; the 

most famous example of which is the Supermarine Spitfire. However, due to structural constraints, 

manufacturing difficulties and the desire to operate at high Mach numbers, contemporary aircraft do not 

feature elliptic wings and neither do they feature an exactly elliptic lift profile. In modern wing design, 

once the wing span is specified the induced drag can be minimized by optimizing the spanwise loading 

subject to the aforementioned constraints. This can be achieved by varying the wing twist, airfoil section 

camber and chord distribution. Additionally, wing-tip devices have recently been shown to provide 

further improvements in drag reduction. 

 

 

5.3 Wing-Tip Devices 

Wing-tip devices have been studied and applied to aircraft designs since the mid-1970’s. The primary 

motivation for incorporating a wing-tip device is to modify the trailing vortex flow beneficially to reduce 

lift-induced drag. Aircraft manufacturers are under increasing pressure to improve efficiency due to rising 

operating costs and environmental issues, and this has led to some innovative developments. Several 

different types of wing-tip device have been born out of this drive for efficiency. 

It was Frederick Lanchester who first attempted to address the problem of wing-tip vortices (Jupp 

[2001]). In 1897 he proposed the idea of capping planes, now more commonly known as end plates, 

which were designed to minimize the spanwise component of flow across the wing. Unfortunately, the 
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concept of end plates never showed improvements in practice because the increase in drag due to 

viscosity and separation outweighs any induced drag benefit. End plates are therefore not used on aircraft, 

but are used routinely on racing car wings (Figure 5-2), since these wings have a very low aspect ratio and 

are often designed to maximize lift (downforce), with less interest in drag reduction. 

 

Figure 5-2 A racing car front wing, featuring end plates. 

 

A breakthrough in wing-tip devices came with the development of the winglet by Whitcomb at NASA in 

the 1970’s. Like the end plate, the Whitcomb winglet was vertically positioned, but unlike the end plate 

this was a lifting surface which was designed to generate a flow field which mitigates the flow around the 

wing tip. This resulted in a net improvement in overall drag. At present, this improvement is relatively 

small, but the canted winglet is being increasingly adopted on commercial airliners, such as the 

McDonnell Douglas MD-11 and the Boeing 747-400 (Figure 5-3). Further advantages of using winglets 

are the potential for improved handling characteristics and opportunities for marketing, exploiting the 

high visibility of the upper surface of winglets to passengers. A modern variant of the winglet is the 

blended winglet (Figure 5-4), which features smoother upward sweep and is used on many Boeing aircraft 

(Faye et al. [2002]). 

  

(a)       (b) 

Figure 5-3 Examples of winglets on modern commercial aircraft (a) McDonnell Douglas MD-11 (b) 

Boeing 747-400, with a B747 freighter in the background. 

 

Original in colour 
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Figure 5-4 Example of a blended winglet on the Boeing 737-800. 

 

The wing-tip fence (Figure 5-5) can be seen as an advancement of the end-plate, with surfaces extending 

vertically above and below the wing main plane. This device is small relative to a winglet, but has been 

shown to be very effective in terms of drag reduction. It has been used principally on Airbus aircraft, such 

as the A300, A319/20 and the A380 (Jupp [2001]). 

 

Figure 5-5 Example of a wing-tip fence on the Airbus A319. 

 

A feature on some Boeing aircraft is raked wing-tips (Figure 5-6). The tip of the wing is in the same plane 

as the main wing but exhibits significantly higher sweep, both at the leading and trailing edges. This 

seemingly simple modification can yield significant drag reductions; a 5.5% reduction has been reported 

for raked wing-tips compared to between 3.5-4.5% for conventional winglets (Faye et al. [2002]). In fact, 

there are many examples of successful application of aft swept wing tips in nature, for example, the 

albatross and the common swift (Burkett [1989]). However, due to span restrictions, winglets or wing-tip 

fences are often used in preference to raked wing-tips when retro-fitting to existing aircraft. 

 

Original in colour 
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Figure 5-6 Illustration showing the planform geometry of the raked wing-tip on the Boeing 767-400. 

 

Further research into wing-tip devices has resulted in some radical proposals. Wing tip sails (Spillman 

[1987]) are small wing devices which extend from the wing tip at various dihedral angles, which have the 

effect of producing a small thrust component which partially offsets the lift-induced drag. A similar 

device is the multiple winglets concept (Smith et al. [2001]), while the Wing-Grid (La Roche and Palffy 

[1998]) can be described as a cascade of small wing elements with end plates. The spiroid tip (Reneaux 

[2004]) is a spiral loop obtained when joining the tips of a vertical winglet extending from one half of the 

tip chord, with a horizontal extension from the other half of the chord. Finally, the C-wing and boxplane 

are two of a range of non-planar aircraft concepts gaining acceptance (Kroo [2005]). All of these devices 

are in an early research stage, and are unlikely to be adopted by aircraft manufacturers in the short-term. 

However, such innovative concepts must be considered seriously if efficient and therefore affordable air 

travel is to continue into the 21st century. 

 

 

5.4 A Wing-Tip device for the ONERA-M6 Wing 

The design of a wing-tip device is chosen as the application used to evaluate the EMFID method for 3-D 

flows. The problem of minimizing induced drag and the nature of EMFID as a flow-feature based 

parameterization means that wing-tip design represents a fitting and interesting assessment. For this 

study, a main wing geometry is required, onto which the wing-tip feature is designed. It is desirable that 

this initial wing should be a standard CFD test case so that the CFD results can be validated. The DLR-F4 

(Redeker [1994]) and the DLR-F6 (Vassberg et al. [2005]) wing-body configurations are popular 

geometries which have been used as test cases for the AIAA drag prediction workshops (Levy et al. 
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[2003]); however, these are rather complex and published results are for flow simulations over the entire 

wing-body. A more simple wing-alone test case is the ONERA-M6; this is a swept wing with a constant 

symmetrical airfoil section, linear taper, zero dihedral and zero twist. Experimental surface pressure 

measurements for this wing have been published by Schmitt and Charpin [1979] for various flow Mach 

numbers from 0.7 to 0.92. Examples in the literature of the use of this wing as a CFD test case include the 

works by Nielson and Anderson [2002] and Frink [1996]. The M6 is not a particularly realistic aircraft 

wing geometry and has a relatively small span; an extension of the span by the addition of a wing-tip 

device is therefore likely to yield greater design improvement than for a more realistic starting geometry. 

The ONERA-M6 is therefore chosen as the baseline wing for modifications. 

As a result of the 2-D airfoil design case studies described in the preceding chapters, it was inferred that 

the EMFID method benefits from the existence of a strong coupling between the parameterized flow 

feature and the objective quantity, drag. In the 2-D airfoil case, this requires the specification of shock 

details when designing for a transonic regime, since wave drag is present. Consequently, if wave drag is 

to be considered in the present 3-D design problem then this should be accounted for in the EMFID 

parameterization of the wing-tip device. However, the low-fidelity CFD code, described next, is unable to 

calculate flows for shocks, and for this reason a subsonic flow regime is used for the 3-D design studies. 

A Mach number of 0.7 is employed, as this is the lowest speed used by Schmitt and Charpin [1979], 

whose experimental data are used for the validation of the CFD analyses. A Mach number of 0.7 is low 

enough to avoid the occurrence of shocks, provided that the target lift coefficient is typical of aircraft 

cruise conditions. Since the M6 is swept back, one would not normally use it as a baseline for a subsonic 

wing design study, although previous design studies have considered the analysis of a swept transonic 

wing at Mach 0.7 (Chandrasekharan et al. [1985]). In the present investigation the Mach number is 

limited by the incapability of the low-fidelity CFD, while it is desirable to use a starting point for 

modifications for which the CFD is known to be valid. The analysis of the swept M6 wing at Mach 0.7 is 

therefore not illogical. Further, although in the aerospace industry the primary motive for incorporating 

sweep is to mitigate wave drag, there are many examples of wing sweep in nature (Liu et al. [2006]), and 

such geometries have been shown to be beneficial in terms of drag reduction (van Dam et al. [1991]).  

In the 3-D case studies to follow, the task of designing a wing-tip device for the ONERA-M6 is 

performed using Euler simulations, and subsequently using RANS simulations. As in the case of the 2-D 

design studies, the EMFID and benchmark methods make use of the same high-fidelity CFD, while 

EMFID additionally makes use of a low-fidelity code.  
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5.5 Wing Analysis: CFD Solver Setup 

For the present 3-D wing design studies, the high-fidelity analysis employed uses the FLUENT software 

and the low-fidelity solver is VSAERO, also a commercially available CFD code. The setup of these 

solvers in preparation for the design exercises is described below. The 3-D analysis setup is subjected to 

similar accuracy verification and validation assessments as performed for the 2-D analysis. Full details of 

the CFD validation and verification can be found in Appendix B. 

 

5.5.1 FLUENT 

Both the benchmark and the EMFID method call on FLUENT to calculate the drag as the design 

objective. Separate drag minimization studies are performed using Euler calculations, i.e., considering 

only the induced drag, or using the RANS equations, i.e., calculating the total drag including viscous 

effects. The FLUENT setup is different in each case, but in both cases the aim is to minimize the 

computational expense of an objective function call, while maintaining an acceptable level of accuracy. 

The meshing software, GRIDGEN, is used to generate the wing geometry and to mesh the flow domain to 

be solved by FLUENT. A multi-block structured mesh is used, where the hexahedral cells follow a C-H 

topology (Steinbrenner and Anderson [1989]). The ONERA-M6 wing planform is reproduced using the 

data supplied by Schmitt and Charpin [1979], i.e., the geometry is constructed at wind-tunnel model scale. 

The finite trailing edge thickness of this wing is retained, and the wing tip is capped using a half body of 

revolution which is truncated at the leading edge to match the leading edge sweep of 30°. The (X,Z) plane 

containing the wing root is designated a symmetry-plane boundary condition. 

A verification exercise has been performed using the baseline M6 wing, to assess the dependence on the 

mesh setup of the drag result; this is detailed in Appendix B. The mesh used for RANS analyses has a 

total of 1.3M cells. This comprises 123 cells chordwise over the wing section and 70 cells in the spanwise 

direction. The distance of the far-field boundary from the wing is approximately 8 spans. For analysis 

using the RANS equations, the height of the first cell adjacent to the surface is 0.15mm, as this gives a 

wall y
+
 between 30 and 60, i.e., in the range suitable for a log-law representation of the boundary layer. 

The k-ε turbulence model (Shih et al. [1995], Fluent [2003]) is employed, since this is known to be a 

robust and accurate method for 3-D flows containing vortical flow structures. A coupled solver is used to 

solve the continuity, momentum and energy equations. For simulations using the Euler equations, the 

configuration is the same as above, but since viscosity is not considered a turbulence model is not 
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required. Also, a slightly different mesh setup is used, as the absence of the boundary layer means that a 

lower cell density can be used normal to the wall. A first cell height of 1.5mm is used for this Euler mesh, 

reducing the number of cells to 800K. 

For the purposes of validation, the results from FLUENT for the ONERA-M6 have been compared 

against the experimental data provided by Schmitt and Charpin [1979]. Figure 5-7 shows this comparison 

for the 99% span station of the wing; similar plots for six other spanwise stations along the wing are given 

in Appendix B. The FLUENT results appear to agree well with the wind-tunnel data, although there is a 

slight disparity towards the trailing edge. This point is very close to the aft corner of the wing where the 

pressure is strongly affected by the predicted vorticity. 
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Figure 5-7 Surface pressure distribution for the ONERA-M6 wing at 99% span,  

showing the experimental data with viscous and inviscid results from FLUENT and VSAERO. 

 

Using the above FLUENT setup, CL and CD are calculated using surface force integration, with a 

reference area equal to the projected area of the ONERA-M6 wing. For the design studies, the drag must 

be calculated for a fixed value of lift. In the 2-D analyses, the FLUENT solution was run to convergence 

at three angles of attack including the angle which produces the required target cl. To reduce the 

computational cost of the 3-D analyses, the drag and lift are calculated at two angles of attack, the first 

gives a converged solution after 4000 iterations and the second after a further 3000 iterations. Following 
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this, the drag for the required lift is determined via linear interpolation using the two predicted CL and CD 

results. Since the wing geometry is only varying over the wing-tip device, variations in lift and angle of 

attack between designs is small, and hence the present interpolation method is sufficient for the drag 

calculation. In the design studies to follow a target CL of 0.4 is used throughout, as this is a typical value 

at cruise conditions for a transport aircraft (Heffley and Jewell [1972]). 

 

5.5.2 VSAERO 

VSAERO is a CFD code based on the subsonic panel method, and is able to calculate the non-linear 

aerodynamic characteristics of an arbitrary geometry (Nathman [2003]). The program solves the 

linearized potential equation for inviscid, incompressible, irrotational flow using the Morino formulation 

(Letcher [1989]), i.e., a distribution of known source and unknown doublet singularities over the surface 

panels. The approach adopted is a low-order panel method, i.e., a piecewise constant distribution of 

singularities, which leads to only a single unknown potential on each panel (Maskew [1982]). The non-

linear effects of the wake roll-up are considered using an iterative wake relaxation procedure, which 

attempts to align the wake panels with the local streamlines. Although the underlying calculation is for 

inviscid and incompressible flow, the effects of viscosity can be modeled using integral boundary layer 

calculations, while compressibility corrections can also be included, such as the Prandtl-Glauert 

linearization. The major computational expense in the VSAERO solution procedure arises from the 

determination of influence coefficients for the matrix equation, and the subsequent solution of this large 

linear system of equations. Nonetheless, a single analysis call is very quick, requiring approximately 30 

seconds on a Xeon 2GHz processor. 

In the current work, the VSAERO code is used in the inverse design process for EMFID. An inviscid 

flow configuration is used in the case studies where Euler FLUENT analyses are used, and similarly a 

viscous setup is used in RANS design studies since the presence of the boundary layer has an effect on 

the wing loading. In the viscous case, two iterations of the integral boundary layer equations within 

VSAERO are found to give sufficient convergence of accuracy. For the purposes of determining the 

spanwise loading on a wing, no wake iterations are used, but in cases where the details of vorticity are 

required a single iteration of the wake relaxation procedure is found to give improved accuracy. The panel 

configuration used is the same as that used by Robinson and Keane [1999] and Petruzzelli and Keane 

[2001]. Further details of the setup of the VSAERO analysis can be found in Appendix B. 
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Figure 5-7 shows a pressure distribution predicted by inviscid and viscous runs of VSAERO, which 

include the wake calculation, compared against the experimental data and the FLUENT results. In 

general, the surface pressure is predicted accurately except in the region near to the trailing edge. As 

previously mentioned, the pressure in this region is affected by the tip vortex. The flow in VSAERO is 

irrotational, and so off-body vorticity can only exist on the wake panels. This departure from the physical 

flow phenomenon is the likely reason for the discrepancy in surface pressure. 

 

 

5.6 Investigating an Appropriate Flow Feature for EMFID 

For the 2-D airfoil design studies, the distribution of surface pressure coefficient was chosen as the flow 

feature to be parameterized in EMFID. This decision was relatively straightforward because there exists a 

strong relationship between pressure and geometry, and this has been exploited by a large range of 

extensively researched inverse design methods. For the present 3-D case the choice is less obvious. The 

parameterization of a pressure surface over the wing is discarded for two reasons. First, the pressure 

profile has already been shown to be effective for 2-D section design, and to pursue this path would likely 

lead to similar conclusions. Second, such a parameterization would require a complex and high-

dimensional parameterization scheme, resulting in a lengthy design search. Thus, an alternative flow 

feature is sought for use in EMFID for the design of a wing-tip device. In the current work, two such 

alternatives are considered: the details regarding the wing tip vortex, and the shape of the spanwise lift 

distribution. In what follows the geometry parameterization approaches used to investigate these two flow 

feature types are detailed and the feasibility of an EMFID parameterization of such flow features is 

considered. 

 

5.6.1 Geometric Description of the Wing-Tip Device 

In order to perform inverse design, a geometric description of geometry is required. In the 2-D airfoil 

design work, the geometric description used in EMFID was different to that used by the benchmark 

method because the inverse design process made corrections to the airfoil second derivatives directly. 

Here, the same geometry model can potentially be used by both design methods, i.e., the inverse design 

process in EMFID searches the benchmark geometry definition in an attempt to match the target flow 
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feature. Two parameterization approaches are described; the first considers five gross wing planform 

parameters which are distinct, the second uses a single variable which is varied along the span. 

The first parameterization is one which might be used by an aircraft design team during a conceptual 

design exercise. There are five design variables, denoted here by the vector X, describing the wing-tip 

device and these are listed in Table 5-1 along with their upper and lower bounds. Figure 5-8 shows a 

diagram of these variables. The wing-tip device is an extension of the ONERA-M6 wing, where the total 

span of the device is fixed (if the span is made a variable then the optimization process always maximizes 

it, since the present analysis does not consider structural constraints). Using these five gross variables, a 

design search process can result in planar devices, such as a raked wing-tip or twisted wing-tip, or it can 

produce a highly non-planar device such as a winglet. 
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Table 5-1 Gross wing-tip device design variables. 

Design variable Description Lower bound Upper bound 

X1 Dihedral angle, ° 0 70 

X2 Leading edge sweep, ° 0 70 

X3 Tip section incidence (washout), ° -20 20 

X4 Tip section chord length, m 0.1 0.41 

X5 Tip airfoil section maximum thickness, m 0.01 0.05 
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Figure 5-8 Diagram illustrating the five gross wing-tip design variables, as listed in Table 5-1. 

 

The second geometry parameterization method describes the distribution of a single sectional variable 

along the span. Such a distribution could be the spanwise twist, chord or sectional camber distribution. 

The logic behind this approach is to benefit the EMFID method, as it is thought that this spanwise 

distribution is strongly coupled with the wing cl profile. This is more akin to the EMFID setup for 2-D 
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airfoil design, in which the chordwise distribution of the position of the airfoil surface was varied and this 

is strongly linked to the Cp profile. In this work, the distribution of chord over the wing-tip device is 

varied, as this limits the number of failures when building the computational mesh and such a design 

search is likely to produce an interesting result. The chord is varied at six equispaced spanwise stations 

along the wing extension, including at the wing tip, giving six design variables. The chord at these 

stations is bounded in the range 0.35-0.5m. The dihedral is set to zero, i.e., constraining the problem to a 

planar wing-tip device, and the leading-edge sweep is maintained from the main wing, i.e., 30°. A typical 

example of a wing-tip device generated using this parameterization is shown in Figure 5-9. 
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(a)      (b)  

Figure 5-9 An example of a wing-tip device generated using a parameterization of the trailing edge 

chord distribution. (a) Planform view on equally scaled axes. (b) A close-up view of the wing tip region. 

 

5.6.2 Target Wing Tip Vortex Properties 

Having described the geometry parameterization methods for the design of a wing-tip device, in what 

follows these representations are used to investigate an appropriate flow feature to parameterize for the 

EMFID design strategy. In EMFID, the parameterized flow feature must act as a target for an inverse 

design process utilizing the low-fidelity VSAERO code. As stated in the above discussion, it is known 

that the occurrence of lift-induced drag is due to the energy lost in the wing-tip vortex. It seems 

reasonable, therefore, that to minimize the induced drag requires a change to the trailing vortex system. 

Hence, a parameterization of the vortex details in the EMFID search could perceivably provide efficiency 

gains for a design search procedure. The suitability of such an approach has been assessed by comparing 

the vortex predictions of the VSAERO and FLUENT CFD codes. This study is documented in Appendix 

Original in colour 



Setup of EMFID for Wing Design in 3-D  109 

 

C since it employs quite different analysis techniques and thus it interrupts the main direction of this 

section. However, a summary of the investigation and the key conclusions are described here. 

The vortex details which are considered as design parameters are the (Y,Z) position of the vortex centre on 

a plane downstream from the wing, the maximum vorticity, and the total crossflow circulation on the 

same plane. First in Appendix C, the techniques used to extract these vortex parameters from the 

FLUENT and VSAERO velocity data are described. A crossflow plane at X=4m is used. The position of 

the vortex centre is determined using the VORTFIND method of Pemberton [2003], the vorticity field is 

calculated as the curl of the velocities and circulation is computed by integrating the vorticity over the 

crossflow plane. Next, in order to compare the predictions of the FLUENT and VSAERO solvers, 

simulations are run for different geometries. The five-variable gross wing-tip parameterization (Figure 

5-8) is used to generate 50 designs as dictated by a Latin hypercube DoE plan. The aforementioned vortex 

parameters, and induced drag, are computed for each of these geometries using VSAERO and Euler 

FLUENT simulations. 

It is found that the predictions of the vortex position from FLUENT and VSAERO agree to an acceptable 

level of accuracy; however, the position parameters correlate poorly with drag. The peak vorticity of the 

tip vortex also correlates poorly with drag. Since these parameters do not have a strong relationship with 

the design objective, they are unsuitable as design variables. The crossflow circulation exhibits a much 

closer correlation with drag, for both CFD codes. However, it is noted that this parameter is physically 

equivalent to induced drag, and therefore a stronger correlation is expected. A parameterization of the 

circulation in EMFID would therefore be an exercise of minimizing the induced drag predicted by 

VSAERO, an approach used in many multi-fidelity or zoom optimization strategies. A parameterization 

of circulation is therefore not appropriate. 

Ultimately, the wing tip vortex properties investigated here are not suitable as design variables because of 

the poor correlation with drag. Further, the ability of the VSAERO code to simulate the tip vortex is 

fundamentally limited because it considers potential flow, and therefore vorticity is everywhere zero 

except on the wake lines. More detailed tip-vortex properties can be obtained using higher-fidelity 

solvers, but the EMFID concept requires a low-fidelity code for the inverse design step, and even an Euler 

simulation with a coarse mesh is likely to make the EMFID method prohibitively expensive. The 

parameterization of the tip vortex is therefore discarded. Instead, the EMFID method may benefit from a 

parameterization of the spanwise lift distribution; this is described next. 
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5.6.3 Target Spanwise Lift Distribution 

The distribution of aerodynamic loading in the spanwise direction from root to tip is of fundamental 

importance in the design of aircraft wings, and is considered from the outset in conceptual design. The 

related discussion in Section 5.2 introduced the outcome that the spanwise lift distribution is intrinsically 

linked to induced drag. A parameterization of the wing lift profile therefore holds potential for providing 

efficient reduction of drag using EMFID. As with the 2-D parameterization of the Cp profile (i.e., 

chordwise loading), it is expected that a parameterization of the wing spanwise loading will allow a 

reduction in the number of design variables, relative to a geometry parameterization, for a given range of 

geometric variation. The current section appraises the suitability of this flow feature for the design of the 

wing-tip device described by gross wing parameters (Figure 5-8). In this work, the measure of lift at a 

given wing section is determined by the product cl×c. References to the wing spanwise lift distribution, 

loading distribution and cl×c profile are used interchangeably. 

In the previous section related to wing-tip vortex parameters, it was concluded that the vortex predictions 

from VSAERO do not sufficiently approximate those of FLUENT in order to provide a meaningful 

design search process. However, the predictions for the spanwise lift distribution are expected to agree 

much more closely, since it is known that the section Cp distributions are accurately predicted by both 

CFD solvers (see Section 5.5). Figure 5-10 compares the lift profiles generated using VSAERO and 

FLUENT for the ONERA-M6 geometry, each giving the same total wing CL. Some disparity can be seen 

between the two predicted results. In particular, at this level of lift VSAERO predicts higher loading 

towards the tip, and this removes some of the load from the root. The deficiency towards the tip is due to 

an inaccurate representation of the tip vortex, which in turn affects the wing surface pressure. However, 

the average percentage difference between the sectional cl×c is less than 1%, and such similarity is 

certainly sufficient for the present design studies. 
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Figure 5-10 Comparison of lift profiles generated using FLUENT and VSAERO for the ONERA-M6 

wing. These are compared with the elliptic distribution. 

 

Figure 5-10 also shows an elliptic lift distribution, which, according to classical lifting line theory, gives 

the minimum induced drag for a given span. This concept was introduced in Section 5.2. Consequently, if 

it is known that an elliptic loading is optimum, manipulating this loading profile in a search for improved 

drag is a futile exercise. Instead, one could use an inverse design method with the elliptic profile as a 

target, and always reach an optimum design. However, as previously mentioned, the elliptic profile is not 

adopted in aircraft wing design, owing to structural and aerodynamic reasoning. 

First, while the elliptic profile gives the minimum drag for a given span, designers are more often 

interested in finding the optimum for a specified maximum wing weight (Jupp [2001]). This is equivalent 

to keeping constant the integral of the bending moments across the span due to the aerodynamic loading. 

Thus, for a given maximum bending moment, the wing design with minimum induced drag has a larger 

span and a more triangular lift profile, compared to the elliptic case. Such an optimum features higher 

loading towards the wing root compared to the ellipse (Figure 5-10 shows that the ONERA-M6 in fact 

has a slightly lower inboard loading than the elliptic case, for the same wing CL, further confirming the 

fact that this wing is a CFD test case and not a true aircraft geometry). The departure from a pure ellipse 

through the consideration of complex structural constraints means that the form of the spanwise loading 

curve is a pertinent issue. 

Second, aside from structural issues, there are authors who claim to have found genuine improvements in 

induced drag compared to the elliptic case. For example, van Dam [1987] used numerical simulations to 
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show that tapered and aft-swept wings can produce less induced drag than the theoretical elliptic case, 

quoting an 8% improvement. In later work, these results were validated using wind-tunnel experiments. 

(van Dam et al. [1991]). van Dam highlights that classical lifting line theory assumes a planar, horizontal 

wake, and neglects the influence of trailing wake deformation. The panel code used by van Dam performs 

calculations for the wake roll-up, and this is thought to have a favourable effect on drag for some 

configurations. Other work, such as that of Eppler [1997] and Phillips et al. [2006], neglects the wake 

rollup and consequently the minimum achievable drag corresponds to an elliptic load profile. Both CFD 

solvers used in the current work perform calculations for non-planar shed vorticity; therefore, if the 

conclusions of van Dam are followed, the elliptic loading is likely to be non-optimal. 

Third, classical lifting line theory assumes inviscid flow, but in viscous flow the spanwise loading giving 

minimum total drag is actually modified relative to an ellipse, as described in the work by Rokhsaz 

[1993]. The spanwise lift distribution is based on circulation which is partly generated in the boundary 

layer, and thus the viscous drag is affected. Rokhsaz [1993] concludes that the optimum compromise 

between induced and viscous drag requires a small modification to the elliptic lift profile. In the present 

work analyses are initially performed for inviscid flow, but following this the effects of viscosity are 

considered. While the elliptic profile can be used as a reference case, it should not be considered as a 

known optimum. The lift profile, like an airfoil pressure distribution, must therefore be specified or 

optimized in some way; in this work it is parameterized for optimization using EMFID. 

Given that the design problem demonstrated here is focused in the region of the wing-tip, it seems logical 

that the parameterization should consider only the lift distribution over the wing-tip device. Since the 

main wing geometry is fixed (as the ONERA-M6), the lift distribution over the wing is affected only by 

changes to the geometry of the wing-tip device. The aim is to parameterize the cl×c profile over the wing-

tip device, and using the parametric profile as a target for inverse design a wing-tip geometry can be 

found whose loading curve closely matches this target. However, using the five gross winglet design 

variables (Figure 5-8), for a given target wing-tip cl×c profile one can imagine that there might be more 

than one geometry which realizes this target. Such non-uniqueness was not encountered in the 2-D airfoil 

design work because the entire pressure distribution was varied by the optimizer and specified as a target. 

Here, since only a portion of the geometry is varied, it is tempting to consider only a portion of target 

flow feature as this may reduce the number of design variables. As a primary study, the occurrence of this 

non-uniqueness and its potential effect on the performance of EMFID is investigated. 

In the previous section related to wing-tip vortex properties, a 50 point DoE plan was used to generate a 

set of test geometries based on the variable bounds listed in Table 5-1. The best of these designs, in terms 
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of the drag at CL=0.4, is shown in Figure 5-11 (a). This best design is a rather large winglet device; such a 

design can perform well since the drag objective in this case contains no viscous component. The lift 

profile over the winglet for this target design can be found using VSAERO. This portion of lift curve is 

then used as a target for inverse design using VSAERO, producing a new geometry which may or may 

not be the same as the target geometry. 

 

 
(a)       (b) 

Figure 5-11 (a) The best geometry from the 50 point DoE set. (b) Geometry resulting from inverse 

design, in which the target flow feature is the winglet lift profile of the geometry in (a). 

 

The inverse design method used here is an optimization search using the method of response surfaces. 

The variables of this search are the five gross wing geometry parameters, and the objective function is the 

square of the difference between the target and computed spanwise lift profiles over the wing-tip device. 

The objective is calculated using the inviscid VSAERO setup at a fixed level of lift (CL=0.4), which 

requires three calls to the solver. The optimization procedure is similar to the 2-D benchmark search 

described in Chapter 3. The objective function is calculated for a DoE array of 50 designs (i.e., 10 times 

the number of variables), and a response surface is fitted to the data which is searched using a genetic 

algorithm in order to find promising update points. The process is repeated until 100 update points are 

reached. In this case, the RSM function employed is the Kriging model (Jones [2001]), which can be 

tuned by optimizing the hyper-parameters. Since this is a computationally costly process, the hyper-

parameter tuning is performed only on building the first Kriging prediction (after the initial DoE is 

evaluated), after which the parameters are held fixed for the remaining design search, accelerating the 

process of building the RSM. Even so, the inverse design method in this form is lengthy, requiring 150 

objective function calls plus the effort required to build and search the RSM; this amounts to a 

computational cost per inverse design call of the same order as a full FLUENT drag calculation. 

The aforementioned inverse design method is used to assess the uniqueness of the present design 

problem. The spanwise lift profile over the winglet of the geometry in Figure 5-11 (a) is used as a target 
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for inverse design. The resulting new geometry is shown in Figure 5-11 (b). It can be seen clearly that the 

geometry is rather different from the target geometry, and this confirms the suspicion that the mapping 

between the winglet cl×c profile and the five gross winglet geometry variables is non-unique. What must 

be established is how the non-unique inverse mapping might affect the performance of EMFID. The 

differing geometry of two designs sharing the same flow feature is unimportant, provided that their 

performance in terms of drag is the same. Figure 5-12 shows the spanwise lift profiles, over the entire 

wing, for the two geometries in Figure 5-11. It is seen that the profiles match well over the winglet 

portion of the span, since this is the objective of the inverse design. However, there is a distinct difference 

between the profiles over the main wing, despite the geometry in this region being constant. 

Consequently, the drag calculated using FLUENT is different for the two designs; the target design (the 

best design in the 50 point DoE) has a CD,i of 135.7 counts at CL=0.4, while the new design has a CD,i of 

141.1 counts. Unfortunately, this difference in performance is detrimental if EMFID were to operate on a 

portion of the lift profile. For a given target cl×c profile, there can in general be a number of solutions, 

each with different levels of drag. The resulting design search process would not be systematic, and 

would additionally lead to a rather tortuous response surface which is difficult to search. 
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Figure 5-12 The spanwise lift profile for the best winglet design in the DoE. Also shown is the inverse 

design result when the winglet portion is used as a target. 

 

Of course, the problems caused by the non-uniqueness could be eliminated by specifying the entire lift 

distribution as a target for inverse design. In this case, even if more than one solution exists for the 

inverse problem, because their lift profiles are the same, their downwash and therefore induced drag 
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would also be identical. However, it is thought likely that to parameterize the entire profile would require 

too many design variables, and for this test case any EMFID parameterization must have less than five 

variables in order to be competitive. Additionally, the inverse design method is prohibitively expensive. 

The optimization search takes around three hours, which is 50% of the time for an Euler FLUENT 

evaluation. The use of a scalar objective function means that the information stored in the shape of the lift 

profile is not used. The optimization approach does have the advantage that the data from all VSAERO 

calculations, in all preceding inverse design operations, in a design search can be appended to the data set, 

therefore accelerating the optimization. However, despite this, for the present application the inverse step 

is too costly, and the resulting EMFID design search would not be competitive with a simpler geometry-

based method. 

In summary, this section has evaluated the feasibility of a parameterization of the spanwise lift profile 

over the wing-tip device, when the geometry is described using the gross winglet parameters. It has been 

shown that, although this flow feature is reproduced with acceptable accuracy using both flow solvers, the 

non-unique inverse mapping from the flow feature to the five geometry variables prevents a meaningful 

design search process. This problem stems from the nature of the design variables; the five variables are 

distinct, and their effects can be made to cancel each other. For example, the effect of increasing the 

winglet dihedral may cancel the effect of reducing the twist angle or sweep. In the next section, the use of 

the spanwise lift profile is maintained but the geometry description is simplified, considering only a 

single design variable which is distributed in the spanwise direction. 

 

 

5.6.4 Design of the Chord Distribution Using a Target Spanwise Lift Distribution  

Thus far, the investigations into an appropriate flow feature for EMFID have made use of the gross wing 

design parameters shown in Figure 5-8. The representation of tip-vortex properties has been shown to be 

ineffective due to the incompatibility between the CFD solvers; predictions for the spanwise lift profile 

are in closer agreement, but the inverse mapping is non-unique. The present section investigates an 

alternative geometry description, for which the mapping is unique from the wing-tip device cl×c profile to 

the shape.  

For a given spanwise wing station, there are a number of parameters that can be used to change the locally 

generated lift. These include the local section incidence (twist), thickness, and chord length. In the 

geometry description used previously, all these parameters were modified at every station using a linear 
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variation along the span of the wing-tip device, and this lead to the non-uniqueness of the inverse 

problem. The present geometry description (introduced in Section 5.6.1) considers only a single variable, 

namely the chord, and the spanwise distribution of this chord is parameterized. This is somewhat akin to 

the 2-D airfoil shape representation, in which a local change in shape is directly related to the change in 

local surface pressure. In the same way, it is expected that a change in chord at a section is directly related 

to a change in the local lift, and thus a given wing-tip device cl×c profile is uniquely mapped to a single 

chord distribution. In the present section, the uniqueness of this setup is demonstrated using an inverse 

design example. 

The inverse design method adopted here for the determination of the chord distribution is similar to the 

method used by Qin et al. [2005], who focus on the twist distribution. The method is based on the 

assumption that the change in local section lift coefficient is linearly proportional to the change in local 

chord (or indeed, local incidence or camber). Thus, like the 2-D airfoil inverse method, there exists an 

approximation formula allowing local surface alterations to be made in an iterative residual correction 

fashion. The configuration of this inverse method is described in full in the following sections related to 

the setup of EMFID; in this section it is used to demonstrate the uniqueness of the present design 

problem. For this demonstration, a simple extension of the ONERA-M6 wing, with 20% additional span, 

is used as a target geometry. The spanwise lift distribution over this 20% wing extension is the target for 

the inverse design operation. The starting design for the process is the point where all six variables take 

their lower bound, i.e., a chord of 0.35m all the way along the wing-tip device, giving a trailing edge 

sweep equal to the leading edge sweep of 30°. The progress of this inverse design task is shown in Figure 

5-13. While there are initially large disparities, after 27 iterations it can be seen that the process has 

converged onto both the target flow feature and the target geometry. The entire spanwise lift profile is 

matched closely, even though the target for inverse design is only the last 20% span of this curve. This 

indicates that the inverse mapping is unique, and further, it can be shown that different starting points and 

different targets all give a similarly unique result.  

In summary, by using the distribution of chord as the geometry description a one-to-one mapping can be 

achieved relative to the wing spanwise lift profile; thus, a parameterization of the lift profile can be used 

to control the drag of the wing. This statement concludes the current investigation into an appropriate 

flow feature to parameterize in EMFID. The spanwise cl×c profile over the wing-tip device is selected as 

the design flow feature for EMFID, while the chord distribution is chosen to describe the geometry of the 

wing-tip device. The setup of the benchmark and EMFID methods for the design of this 3-D component 

is the subject of the following sections. 
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Figure 5-13 Design and target geometries, and corresponging lift profiles, after 1, 10 and 27 inverse 

design iterations. 
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5.7 Benchmark Configuration 

The following sections of this chapter focus on the setup of the two design methods. As in the 2-D 

studies, a benchmark design search method is required which uses a more traditional geometry-based 

parameterization. The aim is to compare the performance of this approach with that of the EMFID 

method, which uses a parameterization of flow features coupled with inverse design. The benchmark 

design search method follows the same form as shown in Figure 3-6; for convenience this is shown again 

in Figure 5-14. The geometry of the wing-tip is parameterized, and for every iteration the high-fidelity 

CFD analysis is used to calculate drag; an optimization algorithm is used to automate the design iterations 

in the search for improved drag. In the wing design case studies given in the next chapter, design studies 

are performed using either Euler or RANS calculations as the high-fidelity CFD. 
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Figure 5-14 Flowchart illustrating the benchmark design search method. 

 

In the present 3-D design problem, the same parameterization of the chord distribution is used both in the 

benchmark method and for inverse design in EMFID. As previously stated, the wing-tip device is planar, 

i.e., having zero dihedral, has a leading edge sweep equal to that of the main wing, and has a span of 20% 

of the span of the main wing. The chord distribution is discretized by specifying the chord at six 

equispaced stations along the wing-tip device, where one of these stations is at the wing tip. There are 

therefore six design variables for the benchmark parameterization. As the chord at each station is varied, 

the local airfoil section details are scaled proportionally. For the 2-D airfoil benchmark discretization, a 

cubic polynomial spline was used to represent the airfoil surface at the points not specified. In the present 

case, the trailing edges of the six spanwise stations are linked, via the GRIDGEN software, using a 

Catmull-Rom spline curve. Such a smooth definition is not a strict requirement for the wing trailing edge, 

as it is for an airfoil shape, but using this curve improves the quality of the resulting mesh and avoids the 

possibility of small vortices emanating from sharp corners. Figure 5-15 shows an example of the 

benchmark shape definition for an arbitrary set of variables; Figure 5-15 (c) shows the detail of the 
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interpolating curve. Note that continuity of the first derivative of chord is not imposed at the point where 

the wing-tip geometry joins the main ONERA wing, but this is certainly achievable with a suitable 

selection of the design variables. 

 

     
 (a)     (b)    (c) 

Figure 5-15 (a) Parameterization of the wing-tip chord distribution, (b) Discretization of the chord 

function and linear intepolation, (c) interpolation using a Catmull-Rom spline in GRIDGEN. 

 

The optimization algorithm used for the following design studies is the method is response surfaces. The 

approach is similar to the benchmark optimization algorithm used in the 2-D airfoil design searches. The 

objective function is initially calculated for 60 designs, i.e., 10 times the number of design variables, as 

dictated by a Latin hypercube DoE plan. The design points in this initial database are selected such that 

the design space is populated efficiently, in theory allowing global optimization via a surrogate response 

surface model. The RSM used in this case is the Kriging technique (Jones [2001]), implemented using the 

OPTIONS design system. Kriging is used in preference to a RBF surface, since the number of design 

variables and objective function calls is small for the present 3-D design problem and this significantly 

reduces the expense of calculating the Kriging prediction. The Kriging hyper-parameters are tuned 

whenever new points are added to the dataset and a new RSM is required; since this contributes to a large 

proportion of the computational cost, a relatively quick multi-start simplex search is used for the 

optimization. Once the Kriging predictor is built, it is searched using a 5000 iteration GA, returning five 

cluster centroids from the final GA population which are used as update points. The true objective 

function (FLUENT drag) is calculated for the update points and the RSM is re-built, in theory providing a 

more accurate representation of the true objective function surface. The process of building, searching and 
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updating the RSM is continued until a fixed budget is reached. Objective function calculations which fail 

are not included in the RSM training data, unless a situation arises where all five update points fail, and in 

this case the first of these points is added to the training data and given an objective function value equal 

to the average of the objectives calculated so far. 

 

 

5.8 EMFID Configuration 

The EMFID design search strategy is shown in Figure 3-2, which is repeated in Figure 5-16 for 

convenience. The target flow feature for the present 3-D problem is the spanwise lift distribution over the 

wing-tip device, and the corresponding chord distribution is found using inverse design which utilizes the 

low-fidelity CFD, VSAERO. This inverse design process uses the benchmark chord profile 

parameterization (described in Section 5.7, above). As in the previous studies, in order to make fair 

comparisons between the benchmark and EMFID methods, the high-fidelity CFD analysis and 

implementation of the optimization algorithm are the same in both cases. Therefore, the RSM approach 

described for the benchmark strategy is also used as the optimization method for EMFID. The differences 

in the EMFID approach are the parameterization technique and use of inverse design; these items are 

detailed in the following sections. Appendix F gives further detailed information about the computational 

setup of this EMFID search, including a detailed flowchart diagram depicting the optimization strategy. 
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Figure 5-16 Flowchart illustrating the EMFID parameterization and design search process. 
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5.8.1 Parameterization Techniques 

In previous work involving the representation of the spanwise lift distribution, an elliptic profile has 

commonly been employed, but such a shape is non-optimal in many cases. Alternative functions have 

been shown to be effective, such as the triangular or hybrid elliptic-triangular curves proposed by Qin et 

al. [2005]. Here, the requirement is for a function which can be used to represent a small portion of the 

end of the lift profile, and such a function should be defined using very few variables. The number of 

variables should be five or less, since the purpose of EMFID is to reduce the dimensionality of the design 

space compared to the benchmark method, which uses six variables. Strictly, the section cl at the tip of the 

wing should be zero, and, as in the case of an ellipse, the lift profile function should feature a singularity 

at this point. However, the VSAERO code deals with discrete surface panels which are relatively large in 

the spanwise direction, and since the flow variables are calculated at each panel center the lift on the wing 

at the tip station is not calculated. Therefore, the point of zero lift and singularity do not need to be 

modeled, and the parameterized curve can end at the position of the last panel center on the wing surface. 

From the outset, it is not obvious what form the optimum lift profile assumes. However, it is likely that it 

can be described using a function which is smooth and decreases the lift monotonically with span. For 

simplicity, polynomial curves are employed. 

In this work, two parameterization techniques are used and compared. One is a quadratic curve defined 

using three variables, and one is a cubic polynomial utilizing four variables. The lift profile 

parameterization starts at Y1=1.19m, i.e., the ONERA-M6 wing tip station, and ends at Y2=1.43m, i.e., the 

position of the last VSAERO panel centroid for a total span of 120% of the M6 span. The quadratic and 

cubic curves are determined by specifying the cl×c values of three and four points, respectively, which are 

equispaced between y1 and y2 and are interpolated by the curve in each case (Figure 5-17). The cl×c values 

are the profile design variables, and hence for EMFID there are three and four variable parameterizations. 

Since only the wing-tip portion of the lift profile is specified, the loading on the main wing can float 

depending on the wing-tip loading. The parametric quadratic or cubic lift curve for the wing-tip is used as 

a target for the inverse design procedure, which yields the wing-tip chord distribution while keeping the 

total wing lift constant at CL=0.4. This inverse step is described next. 
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Figure 5-17 Parameterizations of the wing-tip device lift profile using (a) a quadratic and (b) a cubic 

polynomial. 

 

 

5.8.2 Inverse Design 

The inverse design method employed in the 3-D EMFID design searches makes use of the same wing-tip 

device geometry description as used for the benchmark method (Section 5.7). However, this need not 

necessarily be so; for EMFID the detail afforded by the geometry description is not limited, since the 

geometry is not parameterized. This is why, in the 2-D EMFID searches, the geometry description was a 

series of 206 co-ordinate pairs which were perturbed directly by the inverse process. Conversely, in the 

benchmark airfoil design search, a small number of discrete surface points were perturbed in order to give 

a reasonable number of design variables, which necessitated an interpolating function to define the airfoil 

at all other points. However, for the present 3-D inverse design method, a finely detailed geometry 

description for the wing-tip device is not necessarily desirable since the number of defining points is 

translated into the number of CFD panel nodes for the VSAERO analysis. Increasing the number of 

surface panels raises the computational cost of each VSAERO analysis, and this can be significant if 

many CFD calls are required for convergence of the inverse design process. In fact, a chord distribution 

with six points across the wing-tip gives a sufficiently narrow panel width in the spanwise direction, and 

for this reason the benchmark chord parameterization is used during this inverse design. Also, using the 

benchmark geometry description facilitates a fair comparison between the benchmark and EMFID 

methods, since the variables bounds can be made the same in both cases. 
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The 3-D inverse method is similar to a method used by Qin et al. [2005], and uses a residual correction 

approach comparable to the 2-D inverse method. Since it uses a linearized surface alteration scheme, it is 

significantly more rapid, and more capable of matching the target lift profile, than the optimization 

approach to inverse design used in Section 5.6.3 above. The method makes the assumption that an 

increase in section chord is linearly proportional to an increase in sectional lift. Thus, at iteration k of the 

inverse process, the chord, c, at a given section is adjusted according to the simple expression 
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where 
t

lc  is the target lift coefficient at the given spanwise station and 
1−k

lc  is the lift coefficient at this 

station computed in iteration k-1. The scalar φ is a relaxation factor which takes a value of 3; this 

magnitude is established following a process identical to that described in Section 3.7.3. Eq. (5.3) is 

applied to each of the six spanwise stations at every iteration of the inverse process. The starting design is 

a chord distribution which is a simple 20% span extension of the sweep and taper of the ONERA-M6. 

As previously stated, the present inverse method provides a solution for a fixed total wing lift of CL=0.4, 

since this is the design CL at which the drag is calculated using FLUENT. Since only the wing-tip 

geometry is altered, changes in lift and angle of attack between designs are small, but in order to 

guarantee that the target lift is achieved, the angle of attack, α, of the VSAERO analysis is iterated at each 

iteration using the expression 
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where θ is a relaxation factor which is assigned a value of 2°. 

For the inverse design approach described above, a number of (rather heavily relaxed) iterations are 

required because of the crude nature of the linear local approximation used for alterations. The measure of 

convergence used is the sum of the square of the differences between the six target and six computed 

section cl’s. The criteria for convergence is the point when this measure falls below 10
-7
. Convergence in 

this sense is usually achieved in less than 100 iterations; if 100 iterations are performed then the inverse 

process is terminated and the design giving the closest matching lift profile, of all 100 iterations, is used 

as the final result. However, if an inverse design convergence metric of less than 10
-6
 is not achieved, the 

process is deemed to be insufficiently converged, and the FLUENT drag calculation is not performed for 

the resulting design. This measure is taken to avoid calculating the objective function for a geometry 
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whose cl×c profile does not correspond to the specified design variables, as this would result in inaccurate 

RSM predictions. 

 

 

5.9 Comparing the Two Methods 

The preceding sections of this chapter have detailed the setup of the benchmark and EMFID methods for 

the design of the geometry of a wing-tip device. The next chapter describes a number of case studies 

which compare the relative performance of these methods. As with the 2-D case studies, several measures 

are implemented here in order to achieve as fair a comparison as possible. 

The initial design, i.e., the first of the initial DoE evaluations, is ideally made to be the same for both 

methods. This initial point is chosen to be a simple extension of the ONERA-M6 wing, with a linear 

chord profile. In order to reproduce this initial shape using the EMFID parameterizations, a set of lift 

profile variables must be found such that the corresponding geometry, resulting from inverse design, 

closely matches this extended ONERA wing. The lift profile for the true initial shape is calculated using 

VSAERO and the quadratic and cubic curves are fitted to this in a least squares sense; this determines the 

required variables. The inverse design process is run using each of these fitted lift profiles as a target; the 

resulting geometries are shown in Figure 5-18. As expected, there are disparities between the desired 

ONERA-M6 extension and the designs achieved by the EMFID parameterizations, but these differences 

are relatively small. 
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Figure 5-18 Comparison of initial geometries used in the design searches, showing the benchmark 

parameterization and representations of this using the two EMFID parameterizations. 

 

The two design methods are run for an equal total computational expense. The CFD simulations for the 3-

D case studies described in the next chapter are run using the Microsoft compute cluster, for FLUENT 

calls, and a Linux cluster for VSAERO. In the case of the benchmark method the computational effort is 

considered to be expended entirely in the FLUENT drag calculations, which require, on average, 6.64 

hours for an Euler solution and 16.59 hours for a RANS solution when running on two four-processor 

compute nodes. An objective function evaluation in EMFID additionally requires effort for the inverse 

design. A call to VSAERO takes approximately 35 and 41.5 seconds when using the inviscid and viscous 

configurations, respectively, and running on a Xeon 2.8GHz Linux node with 2Gb memory. An average 

of 84 VSAERO calls are required for the inverse design process, giving a total time of 49.8 and 58.1 

minutes for the inviscid and viscous runs, respectively. Therefore, the ratio of computational expense for 

the EMFID and benchmark methods is 1.12:1 when Euler simulations are used, and 1.06:1 for RANS 

simulations. In addition to this, for either design method, if a design point causes errors in the 

computational mesh, the design is treated as a failed point and the cost of running FLUENT for this point 

is not taken out of the total computational budget. Equally, if the sum-of-squares error in an EMFID 

inverse design solution is greater than 10
-6
, the inverse process is deemed to be insufficiently converged 

and the design is treated as a failed point; in such cases the objective function cost is that of the inverse 

design only, and does not include the expense for running FLUENT. 

It is fundamentally important that the two methods are run with the same size of design space. Since the 

EMFID inverse design step uses the benchmark parameterization as its geometry description, the methods 

can be constrained via the same common variables. The chord at each spanwise station must lie between 
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0.35-0.5m. The EMFID inverse design process may result in a geometry in which the chord at one or 

more of the six stations is outside of this required range. In such a case, the offending chord values are 

repaired such that they equal the upper or lower bound, depending on which is nearer to the original 

value. 

As observed in the 2-D airfoil studies, the location in the design space of points in the initial DoE seed 

has a significant effect on the convergence of the design search. As before, each method is run five times, 

using a different initial DoE set at each attempt. In doing so, the dependence on the DoE seed is reduced 

and a greater understanding of the level of convergence is established. 

 

In summary, this chapter has introduced the area of wing-tip device design and has described the setup of 

the EMFID and benchmark methods for this 3-D application. In the next chapter, the relative performance 

of these parameterization strategies is demonstrated using the results from two case studies. 
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Chapter 6. Application of EMFID: Case 

Studies for 3-D Wing Design 

6.1 Introduction 

In this chapter, the concept of flow feature parameterization is applied to the design of a wing-tip device 

for the ONERA-M6 wing. The setup of the EMFID and benchmark methods for this 3-D problem is 

described in the preceding chapter. The objective is to minimize the total drag force by varying only the 

chord distribution of an extension of the standard ONERA wing. The benchmark and EMFID methods 

are compared for an equal computational expense. The benchmark method uses a geometry-based 

parameterization of the chord distribution, while the EMFID strategy uses a parameterization of the wing 

lift (or specifically, cl×c) distribution and inverse design is used to determine the chord profile. Two case 

studies are considered here, which differ in the high-fidelity CFD formulation used. The first case uses the 

solution to the Euler equations, and the second uses a RANS approach for solving the Navier-Stokes 

equations. In both cases, the flow Mach number is M=0.7 and the design lift coefficient is CL=0.4, 

eliminating the possibility of shocks and the associated wave drag component. Therefore, the Euler case 

computes only induced drag while in the RANS case the drag includes the induced, skin friction and 

profile components. As in Chapter 4, for each case study key results are listed in the form of figures and 

tables. Following this, the results of the work are analysed and conclusions are drawn. 
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6.2 Case 5 

In this first 3-D case study the high-fidelity objective function is calculated using Euler simulations. The 

two design methods are run side-by-side, using a starting design which closely approximates a simple 

extension of the ONERA-M6 wing of 20% additional span. The benchmark process employs the six-

variable Catmull-Rom spline model, while EMFID is run for both the three-variable quadratic and four-

variable cubic discretizations of the cl×c profile; these parameterizations are detailed in Sections 5.7 and 

5.8.1. Therefore, this case study effectively considers three parameterizations: the benchmark and two 

EMFID variants. Each of these methods is run five times using a different initial Latin hypercube DoE 

seed at each attempt, and using an equal computational budget of 120 calls to the FLUENT analysis. To 

begin with, the methods calculate the objective function at 10d points as dictated by a Latin hypercube 

DoE, where d is the number of problem dimensions. The benchmark method therefore has a DoE size of 

60, and evaluates an additional 60 design points in updating the RSM. In the EMFID process, the DoE 

consists of 30 and 40 points for the quadratic and cubic parameterizations, respectively, and the remaining 

budget is used to evaluate update points. Because the FLUENT analysis is not run for design points for 

which the inverse design is insufficiently converged, the budget used in evaluating the DoE points, and 

also the budget expended in the update phase, is not fixed. However, because of the additional expense of 

the inverse design, it is known that the maximum number of EMFID objective function calls permitted by 

the computational budget is 107 (compared to 120 in the benchmark process). 

The optimization-iteration histories for the two methods are shown in Figure 6-1, showing the design 

objective (drag) plotted against the number of iterations for the benchmark method. The EMFID traces 

have been scaled for each design point according to its computational cost; the cost of those design points 

for which the FLUENT analysis is not run is only the average cost of running the inverse design. Thus, 

the abscissa can be viewed as computational expense. At first glance, it appears that the two EMFID 

parameterizations are able to converge more quickly than the benchmark method, and all design searches 

settle at a very similar level of performance. A number of observations are reported in what follows. 

First, as has been previously shown in the 2-D case studies, the EMFID method is able to find better 

performing wing-tip designs in the initial DoE phase than the benchmark process. This is likely to be 

because the EMFID parameterizations of the cl×c profile are inherently smooth, while the benchmark 

geometry description can result in rippled designs. This is an advantage of the EMFID method, and was 

also found to be the case in the 2-D airfoil design studies, as described in Section 4.6.1. 
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Figure 6-1 Optimization-iteration histories for the benchmark and EMFID methods, showing traces for 

the three- and four-variable EMFID computations. Drag is calculated using the Euler FLUENT analysis. 

 

Second, in the case of the benchmark method once the DoE phase is complete the selected update points 

very quickly yield high performing designs, and this explains the sudden drop in drag at just after 60 

iterations. Consequently, it is clear that the RSM optimization could proceed successfully with fewer than 

10d=60 DoE points, and that using fewer DoE points could allow the benchmark method to converge 

faster, perhaps as effectively as EMFID. However, it is true to say that prior to beginning a conceptual 

design study, the complexity of the objective function landscape and therefore the density of points 

required to efficiently populate the design space are not known from the outset. Hence, 10d points have 

been used in the DoE, following the recommendation of Jones et al. [1998]. Conversely, having found 

efficient designs in the DoE phase, the EMFID searches find little improvement during the RSM update 

phase. 

Third, comparing ultimate performance, the benchmark method generates the wing-tip design with the 

lowest drag. Further, two of the benchmark searches produce a better design than any of the EMFID 

computations produced. Therefore, it appears that the EMFID parameterization is unable to generate the 

low drag shapes that are possible with the higher-dimensional benchmark model. However, the range of 

drag values for all final designs is less than 0.1 drag counts. Indeed, the total design improvement 
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achieved by the best design, starting from a simple extension of the ONERA-M6 wing, is approximately 

1 drag count. Because the chord function modifications are only performed in a small region close to the 

wing-tip, the drag reductions are relatively small; this is despite the dependence of induced drag on the 

wing-tip geometry. Such small gains would be equally encountered if one were to vary twist or airfoil 

section details over the same span extension, and this perhaps highlights the marginal advantage that is 

afforded through the use of wing-tip devices. However, as previously mentioned, the designer generally 

does not know the outcome of the design process until it is undertaken. Understanding the potential 

improvement to be gained by certain modifications is one of the purposes of such systematic design 

procedures. Since the drag convergence of the design methods is within a fraction of a drag count, it is 

also likely that the results are affected by the accuracy of the FLUENT solver. However, the results in 

Figure 6-1 suggest that the benchmark method is more likely to achieve a better design by the end of the 

search process. 

The fourth and final observation is related to the level of convergence achieved by the five runs using 

each of the three parameterizations. Table 6-1 gives the drag coefficient values for the five final designs 

generated using the benchmark and EMFID methods, i.e., for the designs at the end of the search process 

shown in Figure 6-1. Although Figure 6-1 shows that the convergence rate of the two EMFID variants is 

very similar, a closer level of convergence, i.e., a smaller range of final objective values, is attained using 

the three-variable parameterization than using the four-variable model. This is to be expected since the 

extra variable in the cubic representation increases the complexity of the search space. However, this 

four-variable method results in a greater spread of final design objectives than the six-variable benchmark 

method; this is unexpected behaviour. Recall that the EMFID geometries are repaired if they lie outside 

the bounds of the benchmark search space, while the benchmark designs undergo no such constraints. It is 

likely that this action disadvantages the EMFID optimization in its search for improved designs. Despite 

this, as previously discussed, the relative level of objective values achieved by the end of the design 

search processes is similar for all the traces in Figure 6-1. For comparison, the FLUENT drag coefficient 

for the original M6 wing with no wing-tip device is 168.6 counts. As expected, this is higher than the drag 

of the 20% extended M6 geometry which is used as the initial design in the search process. 
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Table 6-1 Design objective (drag coefficient calculated using FLUENT Euler simulations) for the five 

best designs resulting from the benchmark and EMFID methods. 

 FLUENT (Euler) CD, counts 

Best design from run Benchmark EMFID - 3 variables EMFID - 4 variables 

1 141.008 141.061  (max) 141.032 

2 141.022 141.053 141.017  (min) 

3 140.999  (min) 141.053 141.053 

4 141.036  (max) 141.046  (min) 141.070 

5 141.016 141.059 141.073  (max) 

    

Initial design 141.954   

ONERA-M6 (no wing-

tip device) 
168.557   

 

Comparing the computed wing-tip designs, Figure 6-2 shows the best five geometries resulting from the 

five runs of the benchmark method. All of these designs feature a highly swept back trailing edge 

compared to the main wing; indeed, the chord at the tip station has in all five cases been maximized 

within the search bounds. Further analyses have been performed which verify that this aft-swept tip 

reduces drag; this study is documented in Appendix D. However, moving inboard, rather than converging 

onto a single design there appears to be two modes of optimum designs. Two of the five searches have 

resulted in an almost linear trailing edge up to the 1.4m span station, with a sweep very similar to that of 

the main wing. These runs have therefore brought about very little change to the starting design in this 

inboard region. Two other designs, including the best design of these five, are also modified little from 

the initial shape up to Y=1.4m, although these shapes are less linear. Finally, one of the searches has 

resulted in a rather radical geometry, exhibiting a hook-like shape with small chord values in the inboard 

region and the maximum allowable chord at the tip station. 
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(a)       (b) 

Figure 6-2 (a) Planform view of the best geometry resulting from each of the five benchmark 

computations (shown on equally scaled axes). (b) A close-up view of the wing-tip region. 
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(a)       (b) 

Figure 6-3 (a) Planform view of the best geometry resulting from each of the five EMFID computations 

using the three-variable (quadratic) parameterization (shown on equally scaled axes). (b) A close-up view of 

the wing-tip region. 

 

Figure 6-3 presents the five best geometries resulting from the EMFID computations using the three-

variable parameterization of the cl×c distribution. Table 6-1 gives the corresponding drag coefficient 

values. All of these designs exhibit the distinctive hook-like shape, and there is strong similarity between 

them. Due to the smaller dimensionality of this parameterization, the region of the design space 
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containing the optimum is more readily searched, resulting in more advanced convergence. However, it is 

likely that this parameterization is unable to perform the complex changes that are possible with the direct 

(benchmark) representation of the chord profile. Consequently, better designs are generated by both the 

benchmark process and the four-variable EMFID parameterization. 

The final geometries resulting from the EMFID design searches using the four-variable (cubic curve) 

parameterization are shown in Figure 6-4, and their drag coefficient values are listed in Table 6-1. These 

designs are rather different to those shown in Figure 6-2 and Figure 6-3. Again, all designs feature a 

highly aft swept tip section, but in this case four of the five shapes exhibit an inboard bump in the chord 

distribution. It is interesting to note that this bump was not produced by the two previously described 

parameterizations. It is known that the cubic polynomial model of the cl×c profile is able to generate 

geometries similar to those shown in Figure 6-2 and Figure 6-3, and yet the design searches have 

converged, in four out of five cases, onto a radically different shape. Although two of the benchmark 

designs produce marginally lower drag, these designs all perform comparably. Of course, if these designs 

were optimal then it is likely that the benchmark process would also have converged to give these shapes. 

However, this result shows that EMFID is able to generate intricate geometries using a four-variable 

parameterization of the cl×c profile. 
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(a)       (b) 

Figure 6-4 (a) Planform view of the best geometry resulting from each of the five EMFID computations 

using the four-variable (cubic) parameterization (shown on equally scaled axes). (b) A close-up view of the 

wing-tip region. 
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The wing-tip chord distributions designed in this case study have resulted in an improvement in the wing 

drag coefficient of approximately 1 count. The overriding feature of all of these designs is the highly aft-

swept tip, and this supports the conclusions of van Dam [1987] and Burkett [1989] who claim that aft-

sweep can give a reduction in induced drag. However, while the aft-swept tip seems to be strongly related 

to drag, the more inboard chord function appears to have a more complex relationship with drag. Figure 

6-5 compares the best geometries generated using the benchmark and two EMFID parameterizations, 

illustrating the clear distinction between them. There are two possible explanations for the range of 

geometries seen in this case study. First, there could be a number of basins of attraction, i.e., local optima, 

in the design space containing similarly performing designs in terms of drag. The three parameterizations 

have varying abilities to exploit these local optima; in particular the EMFID three- and four-variable 

methods seem to favour hook- and bump-like distributions, respectively. Despite this, it is interesting to 

note that the two EMFID parameterizations produce geometries which are similar to two of the 

benchmark designs (Figure 6-5). Second, the gradient of the objective function, with respect to the 

inboard chord variables, is likely to be rather shallow. This leads to a large area of the design space 

containing designs with similar performance. In this case, the induced drag has a low dependence on the 

inboard chord function. 
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Figure 6-5 Comparison of the best designs generated using the benchmark and EMFID 

parameterization methods. 

 

This case study has compared the benchmark and EMFID methods for the design objective of minimizing 

the drag calculated using Euler simulations, i.e., induced drag. As previously demonstrated, the reduced 

dimensionality of the EMFID parameterizations allows promising designs to be found during the DoE 

phase, and this helps to accelerate the convergence of the design search. Although the benchmark method 
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generated the lowest drag design, all design searches converged to a similar level of drag. An aft-swept 

tip station is clearly associated with lower induced drag, but the inboard chord distribution is not 

converged, and it is likely that the geometry of this region has a much smaller effect on induced drag. 

However, this region is more likely to influence the drag due to viscosity, and therefore the design search 

methods are next run using RANS simulations. 

 

 

6.3 Case 6 

In this case study, the high-fidelity objective function, drag, is calculated using FLUENT RANS 

simulations. As in Case 5, the benchmark and EMFID methods are run side-by-side starting from a 

geometry equivalent to a 20% extension of the ONERA-M6 wing. However, since the computational cost 

of the RANS simulations is significantly higher than Euler computations, only the four-variable cubic 

curve is used as a cl×c profile parameterization and the quadratic model is not employed. The benchmark 

process uses the six-variable Catmull-Rom spline representation of the chord distribution as before. In 

case study 5, it was observed that the benchmark method finds significantly improved designs 

immediately upon starting the update phase, and therefore may benefit from using a smaller database of 

DoE points. Hence, in this case study a reduced DoE size of 5d=30 points is used for the benchmark 

method, where d is the problem dimensions. The total budget of objective function calls is 60, allowing 

an additional 30 update points to be evaluated. Equivalently, the EMFID method uses a DoE size of 

5d=20 points, with the remaining budget used to evaluate update points. Recall that the FLUENT drag 

calculation in not performed for design points which result in insufficient convergence of the inverse 

design process. As in Case 5, since the budget expended in the DoE phase is not fixed, the number of 

objective function calls in the update phase can vary, but it is known that the maximum number of 

objective function calls which include the FLUENT analysis is 57 (compared to 60 in the benchmark 

process). 
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Figure 6-6 Optimization-iteration histories for the benchmark and EMFID methods. Drag is calculated 

using the RANS FLUENT analysis. 

 

The optimization-iteration histories for the present comparison are shown in Figure 6-6. As in Figure 6-1, 

the EMFID search traces have been scaled according to the computational expense of individual design 

points. In particular, the expense of the EMFID design points for which the FLUENT analysis was not 

run is only the average cost of running the inverse design. This allows the abscissa to be viewed as 

computational cost. As has been previously observed, the EMFID search method is able to converge more 

quickly than the benchmark method, and this is due to the lower dimensionality of the cl×c profile 

parameterization. The EMFID search process is able to find better performing geometries in the initial 

DoE phase because the smooth nature of the cl×c profile prevents the rippled geometries which can occur 

using the benchmark parameterization. As a result of the relatively poor performance of its DoE points, 

the benchmark method again shows a sharp reduction in drag corresponding to the start of the update 

phase. The method may benefit from a still smaller initial database, but this may result in insufficient 

exploration of the design space. The improvement in drag coefficient as a result of the new designs is 

approximately 1.5 counts, and both design methods converge to a similar level of drag. However, the 

EMFID searches show a noticeably closer level of convergence, i.e., a smaller range of final objective 

values, than those of the benchmark method. This is the expected behaviour, given that the EMFID 

method uses fewer variables. Recall that this result was not observed in case study 5; this reaffirms the 

notion that calculating the drag using Euler simulations, as in Case 5, results in an objective function 
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landscape with many local and shallow optima and which is difficult to search, and where various designs 

have similar drag. For the DoE seeds used here, the EMFID method generates the wing-tip geometry with 

the lowest drag overall; Table 6-2 gives the drag coefficient values for the five best designs from the 

benchmark and EMFID methods. For comparison, the original ONERA-M6 wing corresponds to a drag 

coefficient of 235.9 counts. 

 

Table 6-2 Design objective (drag coefficient calculated using RANS FLUENT) for the five best designs 

resulting from the benchmark and EMFID methods. 

 FLUENT (RANS) CD, counts 

Best design from run Benchmark EMFID - 4 variables 

1 217.926  (max) 217.822  (max) 

2 217.808  (min) 217.799  (min) 

3 217.835 217.801 

4 217.853 217.801 

5 217.836 217.800 

   

Initial design 219.118  

ONERA-M6 (no wing-

tip device) 
235.979  
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(a)       (b) 

Figure 6-7 (a) Planform view of the best geometry resulting from each of the five benchmark 

computations (shown on equally scaled axes). (b) A close-up view of the wing-tip region. 
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Figure 6-8 Illustration of the best chord distribution resulting from the benchmark method, showing 

the control points and the interpolating Catmull-Rom spline. 

 

Figure 6-7 displays the best wing-tip chord distribution generated by each of the five runs of the 

benchmark method. It can be seen that these geometries are closely converged, indicating a clear design 

trend for reduced drag. This is in contrast to the results from case study 5, in which a range of inboard 

geometries were encountered. In all cases the tip station has been highly aft-swept in an attempt to 

minimize the induced drag (see also Appendix D). In addition, all of the design searches have identified a 

low wetted surface area with reduced viscous drag, and hence the inboard section has a much smaller 

chord giving the distinctive hooked shape. Indeed, the chord at the tip section has been maximized within 

the problem bounds, while the chord in the inboard region has been minimized. Figure 6-8 shows the 

Catmull-Rom spline interpolating the control points for the best benchmark design; the chord has been 

minimized at points 2, 3, 4 and 5, and maximized at point 6. Figure 6-8 also explains why there is a bump 

in the chord distribution between points 4 and 5: the nature of the Catmull-Rom spline means that the 

gradient of the curve at point 5 must be equal to the gradient of the line between points 4 and 6. Despite 

the unusual shape, this bump further reduces the wing wetted area, and therefore (rather fortuitously) 

gives lower drag. Interestingly, the chord at the furthest inboard control point (point 1 in Figure 6-8) has 

not been minimized, but its position gives a gentle curve up to the end of the main wing; this is 

investigated further in Appendix D. 
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(a)       (b) 

Figure 6-9 (a) Planform view of the best geometry resulting from each of the five EMFID computations 

(shown on equally scaled axes). (b) A close-up view of the wing-tip region. 

 

Figure 6-9 shows the best geometries generated by the five runs of the EMFID method. These designs 

show strong similarity, further illustrating the advanced state of convergence between the five 

computations. The design trends are the same as observed in the results from the benchmark method, i.e., 

the maximum possible sweep at the tip station and minimized chord values inboard. The best designs 

found by the EMFID process are on the boundary, defined by the benchmark design space, for five of the 

six geometric variables. Thus, both design methods have revealed that the optimum chord distribution is 

on the problem bounds, and as a result the best designs from the two methods are very similar (Figure 

6-10). Only the first chord variable (point 1 in Figure 6-8) shows some variation. However, it is likely that 

the EMFID geometries meet the bounds of the benchmark problem only because of the repair action, 

which is used if an EMFID geometry, resulting from the inverse design step, violates the bounds of the 

benchmark problem. Therefore, although Figure 6-6 shows that the EMFID process reaches the optimum 

design with significantly less computational expense, the parameterization used may not be able to 

represent this design exactly. The consequences of this result are discussed in the section to follow. 
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Figure 6-10 Comparison of the best geometry generated using the EMFID and benchmark methods. 

 

 

6.4 Representing the Optimal Flow Features Set 

One of the conclusions of the 2-D airfoil design study (Section 4.6.1) was that the EMFID method 

benefits from the relatively simple shape of the pressure distribution corresponding to the optimum (or 

best) airfoil design. This simplicity allows the pressure distribution to be represented using a low-

dimensional B-spline parameterization. It follows that the parameterization of the cl×c profile for a 3-D 

wing-tip device should be able to represent, in sufficient detail, the cl×c profile corresponding to the 

optimum chord distribution. The effectiveness of the EMFID parameterization, used in the case studies in 

this chapter, is evaluated in what follows. 

In case study 5, in which the drag was calculated using FLUENT Euler simulations, both the quadratic 

and cubic EMFID parameterizations facilitated rapid convergence of the design search. The four-variable 

cubic representation of the lift distribution resulted in the best EMFID design; however, this did not 

achieve the level of drag of the best benchmark designs (Figure 6-1). Figure 6-11 shows the cl×c profile 

corresponding to the best design found by the benchmark method in case study 5. Also shown is a cubic 

polynomial, fitted to the best benchmark curve in a least-squares sense. Although the benchmark result 

appears to be relatively simple, the cubic representation is not sufficiently flexible to match it; in 

particular, the inflection point in the curve is too far inboard. This observation suggests that the EMFID 
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parameterization is not able to reproduce the best design from the benchmark process. If one assumes that 

the benchmark design is optimal, an EMFID search would not find this optimum. 

It is interesting to determine the geometry corresponding to the fitted cubic curve in Figure 6-11, and 

obtain the FLUENT drag prediction for this shape. Figure 6-11 additionally shows the cl×c profile giving 

a converged inverse design result when the cubic profile is used as a target. Figure 6-12 compares the 

benchmark geometry with the chord distribution resulting from this inverse process. Since their lift 

distributions are different, some disparity between the geometries is expected. However, the geometries 

show good similarity, and exhibit the same rearward sweep of the tip section. The FLUENT Euler 

analysis for the inverse designed wing gives a drag coefficient of 141.04 counts. For comparison, the best 

benchmark design has a drag of 141.00 counts, and the best EMFID design from Case 5 using the cubic 

parameterization has a drag of 141.02 counts (Table 6-1). Thus, the newly generated design performs 

comparably with the best benchmark design, despite the apparent mismatch between the spanwise lift 

profiles. However, as previously discussed, the dominant geometry variable is the tip chord, while the 

chord distribution inboard of the tip has a lesser effect on the induced drag. Given that the geometries in 

Figure 6-12 have the same tip chord, their similar induced drag performance is understandable. The fitted 

cubic curve has resulted in a relatively good design, even though the benchmark cl×c profile has not been 

exactly matched. Thus, the results from case study 6 may provide a better evaluation of the EMFID 

parameterization, since the drag includes the viscous component and therefore has a greater dependence 

on the inboard geometry. 
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(a)       (b) 

Figure 6-11 Lift distributions predicted by VSAERO, showing the lift profile for the best benchmark 

design from Case 5, a least-square fit of the cubic curve, and the inverse design result. (a) The entire wing lift 

distribution. (b) A close-up view of the profile over the wing-tip. 

 



Application of EMFID: Case Studies for 3-D Wing Design 142 

 

0 0.5 1 1.5
0

0.5

1

1.5

Wing span, Y

X

 

 

Best benchmark design
Inverse design result

     
1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Wing span, Y

X

 

 

Best benchmark design
Inverse design result

 
(a)       (b) 

Figure 6-12 The best benchmark geometry from Case 5, and the geometry resulting from inverse design. 

(a) Shown on equally scaled axes. (b) A close-up view of the wing-tip region. 

 

In case study 6 the drag was calculated using RANS simulations, and as a result the best designs feature a 

lower wetted area than the designs from Case 5. Again, it is desirable to assess the capability of the 

EMFID parameterization in emulating the flow features of the optimum (best) designs. Figure 6-13 shows 

the cl×c profile for the best performing benchmark design found in case study 6. Also shown is the lift 

distribution obtained when the cubic parameterization is fitted to the benchmark profile in a least-squares 

sense. As previously shown, the cubic curve is not sufficiently flexible to represent the benchmark curve 

in great detail. Indeed, the fit is made more difficult in this case because the benchmark curve has two 

inflection points, and this is of course not possible for a cubic. The inverse design process has been run 

using the fitted cubic as a target; the resulting geometry is shown by the dashed line in Figure 6-14, and is 

plotted with the best benchmark design. Figure 6-14 shows a large dissimilarity between these two 

designs; the error between the lift profiles at approximately Y=1.25m has resulted in a significantly higher 

chord at this station on the newly generated design. The associated increase in the wetted area adversely 

affects the drag; the drag coefficient for the inverse designed wing, calculated using the RANS FLUENT 

solver, is 218.2 counts, which can be compared with 217.8 for the best benchmark design. Thus, an 

attempt to emulate the optimum (best) flow features using the EMFID parameterization has yielded a 

design with rather higher drag. This is explained by the relatively poor fit of the cubic curve combined 

with a higher drag penalty for a non-optimal inboard chord distribution. 
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(a)       (b) 

Figure 6-13 Lift distributions predicted by VSAERO, showing the lift profile for the best benchmark 

design from Case 6, a least-square fit of the cubic curve, and the inverse design result. (a) The entire wing lift 

distribution. (b) A close-up view of the profile over the wing-tip. 
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(a)       (b) 

Figure 6-14 The best benchmark geometry from Case 6, and the geometry resulting from inverse design. 

(a) Shown on equally scaled axes. (b) A close-up view of the wing-tip region. 

 

It has been shown that the EMFID parameterization of the cl×c distribution over the wing-tip device is not 

able to represent the optimum chord distribution, and yet the EMFID and benchmark methods have 

resulted in almost identical geometries, as shown in Figure 6-10. The EMFID method is only able to 

generate this geometry because of the repair operation which is used to ensure that both methods have 

access to the same range of geometries. Recall that for a given call to the EMFID objective function, if 



Application of EMFID: Case Studies for 3-D Wing Design 144 

 

the geometrical variables, output from the inverse design process, lie outside the bounds of the benchmark 

problem then the variables are repaired such that they take the value of the nearest bound. For the 

optimum design in case study 6, five out of the six geometry variables are on the boundary of the design 

space. Thus, the repair operation in EMFID allows access to this optimum, even though the 

parameterization is not able to represent it. 

Figure 6-15 shows the parametric lift profile optimized by the EMFID method, together with the 

converged inverse design result. It can be seen that this best target profile is very different from the 

profile corresponding to the best benchmark design. However, after the EMFID geometry is repaired, i.e., 

after the geometric variables have been corrected such that they lie within the bounds of the benchmark 

problem, the resulting lift profile is very similar to the benchmark curve. Thus, the designs which have 

been generated by the EMFID method in this guise prove little about the capability of a parameterization 

of the wing spanwise lift distribution. What has been shown is that the optimum benchmark lift profile 

cannot be represented accurately using the EMFID parameterization, but the use of fewer design variables 

in EMFID facilitates rapid convergence towards promising designs, and ultimately, has allowed the 

EMFID method to generate the best design in case study 6. 
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Figure 6-15 The lift profile optimized by the EMFID process, shown with the profile obtained after the 

geometry is repaired. Also shown is the best benchmark profile. 

 

It is also useful to establish how close geometries, resulting from the EMFID parameterization and 

inverse design, can get to the optimum geometry. As previously shown, the best geometry from case 

study 6 was generated using the EMFID method; the corresponding VSAERO lift profile is shown in 

Figure 6-16. A design search has been run on the four-variable EMFID parameterization, in which the 
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objective function calculation runs the inverse design process using the parametric lift profile as a target. 

The objective is to minimize the difference between the geometry output from inverse design and the 

known optimum geometry (best EMFID design). The repair operation is not applied to the geometries. 

The cubic lift profile, optimized in this way, is shown in Figure 6-16 along with the converged inverse 

design result. The inboard region of the lift profiles in Figure 6-16 is very similar, but the profiles differ at 

the two stations nearest the tip. The geometry which was found to be the closest match to the previously 

located optimum is shown in Figure 6-17. The newly generated design and the best EMFID design from 

Case 6 show good similarity. The drag coefficient for the new design is 217.79 counts, which is very 

similar to, and slightly better than, the drag of the best EMFID design from Case 6, which is 217.80 

counts. Despite this, the six geometry variables defining this new design do not match the target variables 

exactly, and in fact two of these variables violate the constraints used in the benchmark design search. 

Therefore, from these observations it can be concluded that the EMFID parameterization of the lift profile 

can represent the best designs from Case 6 to a reasonable degree of accuracy and the resulting shape has 

a similarly low drag, but this design is not within the original design constraints. However, this problem is 

an artefact of the desire to provide a fair comparison between the EMFID and benchmark methods, and it 

should not detract from the apparent capability of a parameterization of the lift profile. 
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Figure 6-16 VSAERO lift profile for the best EMFID design from case study 6, shown with the cubic 

target profile optimized to minimize the difference to the optimum design. 
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(a)       (b) 

Figure 6-17 The EMFID geometry which was found to most closely match the best EMFID design. This 

was generated using the EMFID parameterization but without implementing the repair operation. (a) Shown 

on equally scaled axes. (b) A close-up view of the wing-tip region. 

 

This section has described the capability of the EMFID parameterization in relation to the optimal flow 

features set, with and without the repair operation. Finally, the design search ability of the EMFID 

method is demonstrated with the geometry constraints and repair discarded. The EMFID design search 

has been run on, from the point when the best design was found, with the geometry constraints removed. 

Figure 6-18 shows the optimization-iteration history for this unconstrained design search. The search 

quite quickly finds improved designs, and achieves an additional drag coefficient reduction of 1 count, 

compared to the geometrically constrained optimization. Figure 6-19 displays the final geometry from this 

design search plotted with the best EMFID design from Case 6; the design trends are clearly similar, since 

the new design exhibits a further increase in the tip sweep and a further reduction in wetted area. Despite 

the removal of the geometric constraints, the tip sweep is not significantly greater than shown in previous 

designs, perhaps indicating that this level of sweep is optimal. However, two of the four cl×c variables are 

close to their lower bound in the EMFID search space, i.e., the design space containing the parametric 

cl×c profiles, and one of the four is close to its upper bound. Thus, this design search has not been 

bounded using the six geometrical variables, but the design search has instead arrived at a design which is 

on the EMFID problem bounds, due to the significant drag benefit brought about by minimizing the 

wetted surface area. Interestingly, the chord distribution between Y=1.24m and Y=1.34m is swept 

forward, rather than being swept back as featured in the previous designs. 
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Figure 6-18 Optimization-iteration histories for the EMFID and benchmark methods, showing the result 

when the EMFID search is run without the constraints on geometry. 
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(a)       (b) 

Figure 6-19 The best design found when the EMFID method is run without the constraints on geometry, 

shown with the best result from case study 6. (a) Shown on equally scaled axes. (b) A close-up view of the 

wing-tip region. 
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6.5 Improving Efficiency by Reducing Dimensionality 

The preceding analysis has described how the EMFID parameterization of the lift profile is insufficiently 

detailed to represent the lift distributions of the best benchmark designs, but despite this the method can 

yield high performing geometries. In addition, the use of just four design variables (compared to six in the 

benchmark process), combined with the inherent ability to generate only sensible shapes, allows the 

EMFID method to converge rapidly towards promising designs. Recall that the EMFID concept is 

motivated by the notion that a parameterization of flow features can result in designs of higher detail and 

quality than a geometrical parameterization which uses the same number of variables. Therefore, it is 

prudent to consider how the four-variable EMFID parameterization of the lift profile performs in 

comparison to a four-variable benchmark model. Having applied the EMFID and benchmark methods to 

the design of the chord distribution, the design features which constitute a good design, in terms of the 

drag calculated using Euler and RANS simulations, are known. Thus, the expected performance of a four-

variable benchmark model can be acknowledged. 

In case study 5, the use of Euler simulations as the high-fidelity drag calculation meant that the design 

searches generated a relatively large range of final geometries, suggesting that the induced drag is 

insensitive to the inboard chord function. However, common to all the final designs is a high (maximized) 

chord at the tip section, giving rearward sweep, which appears to be strongly linked with a reduction in 

induced drag (see Appendix D). Therefore, a four-variable Catmull-Rom spline representation of the 

chord function would serve as a perfectly adequate parameterization for the application in case study 5, 

producing equally low drag designs. The convergence of a design search using such an approach would 

likely be faster than the six-variable computations demonstrated, and perhaps as effective as the EMFID 

runs. 

Since the high-fidelity drag calculation in case study 6 uses a RANS solver, there is apparently an 

optimum design which achieves the best compromise between viscous and induced drag. Figure 6-20 

shows the best design generated using the EMFID parameterization without the constraints on geometry, 

as described in the previous section. In attempting to represent this optimum using a four-variable 

geometry-based parameterization, the defining control points should be arranged assuming no knowledge 

of what constitutes a good design; the four Catmull-Rom spline control points are therefore equally 

spaced along the spanwise axis. Using this formulation, the four-variable spline which was found to most 

closely match the best EMFID geometry is shown as a dashed line in Figure 6-20. The two designs are 

similar, but the four-variable model lacks the detail required to optimize the wetted area. The FLUENT 

drag coefficient for the four-variable design is 217.01 counts, which is slightly higher than the drag of the 
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best EMFID design, which is 216.79 counts. From this comparison it can be seen that, when the full 

RANS analysis is employed, a four-variable benchmark method cannot achieve such low drag designs as 

the EMFID approach. 
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Figure 6-20 The best wing-tip design generated using the EMFID method, shown with a representation 

of this design using a four-variable Catmull-Rom spline. 

 

It is important to look beyond the preceding case studies and consider the effectiveness of the EMFID 

parameterization in a more general sense. Although there are just four variables defining the target 

spanwise lift profile, the underlying geometry description uses a six-variable spline curve. The use of six 

control points in the spline facilitates finer control, and potentially higher quality designs, than a spline 

curve with four control points. Thus, in this sense the EMFID parameterization acts as a reduced order 

model, and, in general, can provide more detail than a geometrical model of the same dimensionality. 

However, the geometrical variation is limited by the flexibility in the shape of the defining lift profile, 

which, in this work, is a low-order polynomial. Thus, as in the 2-D case studies, the effectiveness of the 

EMFID concept relies on the ability to represent the optimal flow features using the chosen 

parameterization. Further, a parameterization of flow features is truly advantageous when the optimal 

flow features are relatively simple, while at the same time the optimal geometry is complex and difficult 

to describe using few variables. 
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6.6 Corollaries from the 3-D Case Studies 

In summary, the case studies in this chapter have described the application of the EMFID and benchmark 

methods to the design of the chord distribution for a 3-D wing-tip device. The design objective is to 

minimize the drag predicted by high-fidelity Euler and RANS simulations in case studies 5 and 6, 

respectively. In Case 5, the EMFID method converged rapidly but did not produce the best design. A 

large range of geometries were generated, but all designs featured a highly aft-swept tip. In Case 6, when 

the CFD considered viscous effects, the generated designs again featured a highly aft-swept tip, but there 

was also a clear trend to minimize the wetted area inboard. The EMFID design search runs converged 

more rapidly and with closer convergence between the resulting designs than the benchmark method 

achieved. However, the EMFID parameterization is only able to represent the optimum Case 6 design 

because of the repair process which constrains all geometries to lie within the bounds of the benchmark 

problem. Further analysis of these results has revealed that without this repair process the EMFID 

parameterization can generate a design very similar to the optimum Case 6 design, and this approach may 

prove to be more effective than a geometrical description of the same dimensionality. The key results of 

this chapter, pertinent to the evaluation of the EMFID concept, are listed in what follows. 

First, it has been shown that the lift distribution corresponding to the optimum wing-tip design is rather 

too complex to be represented by a low-order polynomial. Despite this, in both case studies the EMFID 

design search generated high performing geometries. In Case 5, this can be explained since there are a 

range of acceptable inboard chord distributions which can result in low induced drag, provided that the tip 

chord is maximized. In Case 6, the drag is more sensitive to the inboard chord profile, but the EMFID 

process achieves the optimum because the repair operation forces the geometry variables onto the 

boundary of the design space. The intention of the repair process was to ensure a fair comparison between 

the EMFID and benchmark methods, but in Case 6 it has (rather ironically) favoured the EMFID search. 

In subsequent analysis, the EMFID cubic parameterization has been shown to represent the optimum 

design to a reasonable degree of accuracy, and with a similar drag result. Given the result of Case 6, the 

comparison might benefit from an alternative means of bounding the two methods. In this sense, the 

parameterization of the spanwise lift profile is a promising but unproven concept. 

Second, although the range of geometrical change afforded by the EMFID approach is limited compared 

to the aforementioned benchmark method, the EMFID parameterization can result in finer detail and 

complexity than a geometry based description of the same dimensionality. This is because, although the 

target lift profile is defined using four variables, the underlying geometry description, used for inverse 

design, is defined using six variables. 



Application of EMFID: Case Studies for 3-D Wing Design 151 

 

Third, the EMFID strategy has been shown to converge more rapidly towards promising designs 

compared to the benchmark method. The first reason for this is the reduction in the number of design 

variables. The second reason is that the specified lift profile is inherently smooth, and hence there is an 

inability to generate the nonsensical rippled shapes that the benchmark method evaluates, particularly in 

its DoE phase. 

The application of the EMFID and benchmark methods to the design of the chord distribution for a wing-

tip device has revealed that the EMFID strategy can potentially provide gains in computational efficiency. 

Although the EMFID strategy has not always produced the lowest drag designs in the results presented 

here, it achieves design improvement more quickly. Also, it has been shown that the parameterization of 

the wing spanwise lift distribution can be an effective technique for aerospace design. 
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Chapter 7. Conclusions and 

Recommendations 

The process of design can be described as the manipulation of the product definition, based on the results 

of analysis, with the aim of achieving improved performance. In the field of aerodynamic design, the 

product definition traditionally employs a parameterization scheme based on geometry, and such an 

approach facilitates a systematic search of the design space using an optimization algorithm. However, 

when calculation of the design objective requires analysis using high-fidelity CFD, the computational cost 

of such a design search can be prohibitive, and this has led to research into more efficient methods for 

design. This thesis proposes that a geometry-based parameterization, such as a spline-curve technique, is 

not always the most efficient method of representing a design for the purposes of optimization. A novel 

approach has been proposed which uses a parameterization of flow features coupled with inverse design, 

with the aim of reducing the number of design variables used in the optimization process. The work 

documented in this thesis has evaluated the embedded multi-fidelity inverse design (EMFID) concept in 

comparison with a method which represents a benchmark in geometry-based parameterization. The 

EMFID and benchmark methods have been applied to the 2-D airfoil design problem and to the design of 

a 3-D wing-tip device. 

This chapter reports the conclusions of the work described in the thesis. The progress and achievements 

of the EMFID concept are detailed, and specific contributions are listed. Finally, future avenues of 

research are highlighted, offering alternative applications of the work in this thesis. 
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7.1 Experience with a Parameterization of Flow Features 

In Chapter 2, an array of computational techniques currently employed in the field of aerodynamic design 

was outlined, and a distinction was made between two design approaches: direct design optimization and 

inverse design. The EMFID process combines these two methods, with the aim of improving the 

efficiency of performing design optimization using high-fidelity CFD analyses. The underlying prediction 

is that a low-dimensional parameterization of flow features can, following inverse design, result in a 

larger range of geometrical variation and higher quality designs than a geometry-based parameterization 

of the same dimensionality. This reduces the number of design parameters required for optimization, 

leading to a more efficient search process. The EMFID method has been demonstrated in this thesis using 

four case studies in airfoil design and two further case studies considering wing design. Table 7-1 briefly 

describes these case studies, augmenting Table 4-7 with the 3-D cases from Chapter 6. The conclusions 

drawn from the six case studies are described next. 

 

Table 7-1 Summary of the case studies reported in this thesis. 

Case studies Flow equations Flow speed Mach number Case description 

 1 RANS 0.15 Comparison of EMFID and benchmark methods 

2 RANS 0.15 Benchmark run using a low dimensional model 2-D 

airfoil 

design 3 RANS 0.15 VGK, 0.73 FLUENT 
Comparison using a transonic drag calculation 

with a subsonic Cp model in EMFID 

 4 RANS 0.73 EMFID run using a transonic Cp model 

     

     

5 Euler 0.7 
Comparison of EMFID and benchmark methods 

– minimizing induced drag 3-D 

wing-tip 

design 6 RANS 0.7 
Comparison of EMFID and benchmark methods 

– minimizing total (induced and viscous) drag 

     

 

In Chapter 3, the concept of flow feature parameterization was introduced and the practicalities in 

implementing the method for 2-D airfoil design were detailed. Following this, in Chapter 4, the EMFID 

process was applied to 2-D airfoil design in case studies 1 to 4. The conclusions from this work are 

fourfold. 
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• First, it has been shown that a B-spline representation of the airfoil surface pressure distribution can 

be an effective parameterization technique and is able to generate high-performing designs. 

The low-dimensionality of this method results in rapid convergence of the design search. In addition, the 

smooth nature of the B-spline representation means that the resulting airfoils are inherently sensible 

shapes, and this further accelerates the design search towards promising designs.  

• Second, it has been demonstrated that a geometrical parameterization, using the same number of 

variables as the EMFID process, is unable to generate such high-quality and detailed shapes, and the 

corresponding design search finds poorer designs than the EMFID method. 

Thus, it is apparent that a parameterization of the pressure profile can result in a more efficient design 

search than a geometrical parameterization of the same dimensionality. However, it is noted that the 

EMFID method benefits from the relatively simple shape of the pressure distribution corresponding to the 

optimum (or at least, very low drag) airfoil design. This simplicity means that a low-dimensional 

parameterization can perhaps more effectively represent the pressure distribution than the geometry.  

• Hence, the third conclusion states that, to be successful, the choice of flow feature to parameterize in 

EMFID should take into account the simplicity or complexity of the flow features corresponding to 

the optimum design. 

• Fourth, and finally, the EMFID concept has been applied to the design of transonic airfoils, and it was 

found that the method benefits from using the same flow conditions for the parameterization, inverse 

design, and the final drag calculation. 

In particular, it is important that the parameterization of the pressure profile includes the specification of 

the shock. Incorporating the shock strength and position into the design variable set provides the 

optimizer with a direct means of controlling the wave drag, and gives a simpler objective function 

landscape. Conversely, if the target pressure distribution is specified for subsonic flow conditions, the 

relationship between the design variables and (transonic) drag is likely to be complex. In addition, the use 

of a transonic inverse design procedure means that the resulting airfoils are inherently tailored for the 

transonic regime. 

 

A parameterization of the surface pressure distribution has been shown to be an effective approach for 

subsonic and transonic airfoil design. Although, ultimately, higher-dimensional schemes may be able to 

represent finer detail, a design search using the six-variable EMFID parameterization is a highly efficient 

practice, producing higher performing designs than a 13-variable geometry-based method for a given 
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computational expense. Following the success of the EMFID concept in the latter guise, a logical 

progression was to attempt to apply the method to 3-D wing design. Chapter 5 introduces the application 

of wing-tip device design, and reports a study examining an appropriate flow feature to parameterize in 

EMFID and a suitable geometric representation for the wing-tip device. The details associated with the 

wing-tip vortex are a novel choice of flow feature, but the vorticity predictions of the panel code and 

high-fidelity CFD code do not agree sufficiently to provide a meaningful design search. Consequently, the 

spanwise loading distribution was chosen as the design flow feature. Concerning the geometry 

description, a set of five distinct geometrical wing-tip device parameters are inappropriate because these 

are mapped non-uniquely to the spanwise loading over the wing-tip. Thus, the spanwise variation of 

chord over the wing-tip is used, since each design corresponds to a unique lift distribution. 

Chapter 6 presents two case studies in which the EMFID and benchmark methods are applied to the 

design of the chord profile over a wing-tip device. The use of a quadratic or cubic polynomial to represent 

the lift distribution over the wing-tip device allows the EMFID process to converge more quickly than the 

six-variable benchmark method. As in the 2-D airfoil case studies, this is due to both a lower 

dimensionality in EMFID and an inability to generate nonsensical shapes. When the objective function, 

drag, was calculated using Euler simulations, a large range of final geometries were generated using the 

design searches. The induced drag is relatively insensitive to the chord function inboard of the tip, but is 

more dependant on the chord at the tip station, and hence all final designs feature highly aft-swept tips. 

However, the benchmark method produced marginally better performing designs, and it was found that 

the lift distribution corresponding to the best benchmark designs is too complex to be represented using 

the EMFID quadratic or cubic curve. When the drag objective is calculated using RANS simulations, 

there is a clear trend to minimize the wetted area while maintaining the tip sweep. Although the EMFID 

design search only reached the optimum design because of the geometry repair process, it converged 

significantly more quickly to this optimum than the benchmark method. Again, the EMFID 

parameterization is not sufficiently detailed to be able to represent the optimum lift distribution. However, 

when the method is not forced to conform to the benchmark constraints, the EMFID scheme can produce 

geometries closely matching those that are repaired. 

There are four key conclusions resulting from the 3-D application of EMFID.  

• First, it is important that the flow feature to be parameterized in EMFID must map uniquely to 

geometry, i.e., each wing-tip lift profile should correspond with a single geometry. 
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• Second, the parameterization of the lift profile has been shown to be effective in the sense that it 

facilitates rapid convergence of the design search through a reduction in the number of design 

variables. 

• Third, the loading distribution corresponding to the optimum design must be sufficiently simple that 

it can be represented using a low-dimensional parameterization. In the 3-D design scenario presented 

in this work, the optimum flow feature is rather too complex. If the optimum lift profile were simpler 

then perhaps a quadratic or cubic would be sufficient to reproduce it. However, because the optimum 

geometry is relatively complex, it remains the case that the EMFID approach has generated better 

performing designs than would be possible with a benchmark search using the same number of 

variables. 

• Thus, fourth, it can be concluded that a parameterization of the lift profile is able to produce finer 

detailed designs than a geometrical-based scheme of the same dimensionality. 

 

The significance of the EMFID concept as a design tool for aerospace design should be considered. 

Fundamentally, the method can be used as a low-dimensional means of representing any surface 

subjected to fluid flow, provided that there exists a suitable flow feature to parameterize. Crucially, due to 

the expense of performing inverse design at every iteration, the method is only likely to be 

computationally efficient when high-fidelity CFD analyses are used to calculate the design objective. 

From a practical point of view, implementation of the EMFID method requires more computational setup 

time than the benchmark method; in particular the method requires an inverse design procedure which 

calls upon a low-fidelity CFD code. 

Referring to the initial discussions in Chapter 1 surrounding parameterization and Figure 1-2, a need has 

been identified for a design approach which uses a small number of design variables but which can 

generate high-performing designs. The concept of flow feature parameterization has been shown to 

address this need. However, to be successful there must exist a prominent flow feature which exhibits a 

simple variation. Further, the EMFID process is only advantageous when the flow feature variation is 

simple but the geometrical shape is complex. Thus, a parameterization of the surface pressure distribution 

for 2-D airfoil design is very effective, while a parameterization of the lift profile for 3-D wings has been 

shown to be promising in terms of efficiency but unproven in ultimate performance. Nonetheless, in all of 

the case studies demonstrated here, the EMFID strategy has provided gains in computational efficiency; 

for this reason, it can be a useful tool in the arsenal of an engineer. 
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Finally, the major contributions of this thesis are listed below. 

• A low-dimensional parameterization of flow features can produce high quality geometries 

following inverse design. Further, such a parameterization can produce finer detail and local 

control of the shape than a geometry-based parameterization of the same dimensionality. 

• For a given level of design improvement, a parameterization of flow features uses fewer design 

variables, and, combined with an inherent ability to generate smooth designs, this leads to a highly 

efficient optimization process. 

• The flow feature parameterization concept is most advantageous when a flow feature can be 

represented simply while the corresponding geometry is relatively complex. 

• The parameterized flow features, the inverse design operation, and the design objective should all 

be calculated for the same flow conditions, such as Mach number. 

 

 

7.2 Recommendations for Further Research 

There are a number of possible avenues for further research as a result of this thesis. For example, it 

would be desirable to examine alternative flow feature parameterizations, and to further investigate the 

mapping between the geometry and flow feature domains, for the purposes of reducing dimensionality for 

design. Also, there are many interesting applications to which the EMFID process could be applied, such 

as the parameterization of flow features for duct or nacelle flows, or for the design of wings in ground 

effect. In this section, two areas for future work of particular interest are outlined. These are: the design of 

airfoils for multiple operating conditions and the design of a full aircraft wing. 

 

7.2.1 Application of EMFID to Multipoint Design of Airfoils 

In the 2-D airfoil design case studies reported in this thesis, the design objective has been to minimize 

drag at a single value of lift. Consequently, the design searches have resulted in highly specialized 

airfoils, i.e., airfoils which yield very low drag at the specified level of lift, but give poor drag when 

operating at a different condition. This result can be seen clearly in the polar plots in Figure 4-6 and 

Figure 4-19. An interesting application of the EMFID strategy would concern the design of airfoils at 

multiple design conditions. In practice, this would involve calculating the drag at a number of different 
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incidence angles, and the design objective might be the sum, or weighted sum, of these drag values. This 

would require very little modification to the existing optimization framework. 

The comparison between the EMFID and benchmark methods is interesting for such multipoint design. It 

is predicted that the benchmark process would be largely unaffected by the change to the design 

objective. However, the EMFID strategy is likely to be affected, since the parametric Cp distribution is 

specified for one design condition (lift) while there are a number of different pressure distributions, 

calculated using the high-fidelity solver, contributing to the design objective. This situation is akin to the 

configuration considered in case study 3 (Section 4.4), where the parameterization of the Cp profile was 

subsonic but the objective calculation was at transonic conditions, and hence the flow features were de-

coupled. It would be interesting to investigate how significantly this de-coupling affects the EMFID 

design search for multipoint design. Clearly, parameterizing the pressure profile at each design condition 

is not practical, both because of the prohibitive number of design variables this would require, and 

because each design point would then yield a different airfoil shape. 

For reference purposes, a copy of the subsonic airfoil inverse design code is given in Appendix E. 

 

7.2.2 Application of EMFID to Wing Design 

The 3-D case studies documented in this thesis have focused on the design of a wing-tip device, as this 

was thought to be an interesting application for a design method based on flow features and their 

extraction. However, the approach used in the design of the wing-tip chord distribution could equally be 

applied to the design of the full wing. Also, a rather small number of variables were used in case studies 5 

and 6, to reduce the total computational expense when the two design searches are run using five different 

DoE seeds. A more interesting, and realistic, study would make use of a larger number of design 

variables. For the benchmark method, the trailing edge chord distribution along the entire wing might be 

described using a spline curve using ten design variables. In the EMFID method, the entire wing spanwise 

lift profile would be parameterized using perhaps five variables. This comparison would likely favour the 

EMFID process. 

Also, recall that in the 3-D wing design studies the use of surface pressure as a design flow feature was 

avoided, as its effectiveness had already been demonstrated in 2-D. Indeed, if the EMFID method was run 

for wing design using a parameterization of the pressure distribution at the wing sections, this search 

would likely perform very well. Further, a surface pressure scheme could be used simultaneously with a 

parameterization of the lift distribution; the lift at the specified wing sections would then determine the 
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required area for the Cp distributions. The number of design variables required for such a procedure 

would be rather large, but, following the above conclusions, this would require fewer variables than an 

equivalent geometry-based scheme. 

Finally, further benefit may be gained by investigating the parameterization of different flow features. 

While alternative flow features have been considered in this work, the aerodynamic loading has always 

been the flow feature of choice for the case studies demonstrated. The determination of forces is the 

objective of aerodynamics; their prediction is relatively straightforward and all CFD codes provide 

facility for their calculation. Also, detailed calculations regarding off-surface flow structures, such as 

vortices, are currently only possible using high-fidelity CFD codes. Thus, the loading distribution is an 

obvious flow feature to use as a target for an inverse design method utilizing low-fidelity CFD. In this 

thesis, the properties associated with the wing-tip vortex were discarded as a candidate flow feature 

because of the discrepancy between the predictions of the low- and high-fidelity CFD codes. However, if 

the panel code was replaced with Euler simulations using a coarse mesh, for example, then the vorticity 

predictions may agree to sufficient accuracy to provide a meaningful design search. As things stand, the 

method of flow feature parameterization is a promising tool on which to base future applications and 

research. 
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Appendix A1: CFD Verification and 

Validation for Subsonic Airfoil Analysis 
When employing computational simulations, it is essential to perform an assessment of the accuracy that 

can be expected from the results. In general, such a study consists of two contributions. First, validation is 

a comparison of the computational predictions with established experimental data. Second, verification is 

used to quantify the dependence of the solution on internal error, i.e., software, numerical or 

discretization errors. In the case of CFD simulations, it is important to minimize the dependence of the 

solution with respect to the mesh size and topology, or at least to gain knowledge on this dependence. A 

verification procedure has been applied for all FLUENT mesh configurations used in this thesis. This 

appendix documents the mesh verification study for the subsonic 2-D airfoil analysis; similar procedures 

for the transonic airfoil CFD setup and the 3-D wing setup are given in Appendices A2 and B, 

respectively. 

As stated in Section 3.5.3, the mesh dependence and validation studies for the subsonic FLUENT analysis 

are performed using the NASA LS(1)-0013 airfoil, for which experimental results at subsonic flow 

conditions have been published by Ferris et al. [1987]. The CFD is configured for the same flow 

conditions so that the predicted surface pressure results can be compared with the experimental 

measurements. The flow conditions are M=0.15, Re=4×106, and α=4.1°; these are used for the subsequent 

design studies thus retaining a valid mesh and CFD setup. For the case of mesh dependence, it is desirable 

to use a mesh whereby any increase in cell density gives a small change in the cd prediction. For the 

verification studies reported in this thesis, the target accuracy is ±1 cd count relative to the largest mesh 

evaluated; the largest mesh is taken to be the most accurate. The mesh verification for the subsonic airfoil 

FLUENT analysis is now described. 

The FLUENT computational mesh is constructed using the commercial geometry generation and meshing 

tool, GRIDGEN. The topology used for the 2-D airfoil analysis is a fully structured O-mesh, i.e, a series 

of radial grid lines, traced from the airfoil surface to the circular outer boundary, and circumferential grid 

lines. The CFD is setup as a RANS solution, using the coupled-implicit solver, Spalart-Allmaras 

turbulence model and enabling second order accuracy in terms of flow and the turbulence model. For this 

RANS configuration, the first step in the mesh setup process is to ensure the correct density of cells 

normal to the wall. The non-dimensional distance, or y
+
, over the airfoil surface should either be less than 
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1, i.e., resolving the viscous sub-layer, or between 30 and 60, in which case FLUENT employs a log-law 

wall function. For the analysis used here, the target is a wall y
+
 of 30, in order to reduce the computational 

expense. An initial mesh was constructed, and the first cell height was perturbed until the surface y+ was 

approximately 30; a first cell of 0.45mm was found to be suitable. Figure A1-1 shows the corresponding 

variation of wall y
+
 over the airfoil surface. 
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Figure A1-1 Wall y
+
 for the subsonic airfoil FLUENT analysis. 

 

The structured mesh cells are grown in height from the airfoil surface to the external boundary, and the 

rate of growth of these cells can be controlled in GRIDGEN. A growth factor of 1.2 is selected, as this 

gives a sufficient cell density to capture the boundary layer growth (Figure A1-2) and reduces the total 

number of mesh cells. 
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Figure A1-2 Velocity in the x direction versus z co-ordinate at x=0.4, showing the growth of cells normal 

to the airfoil surface. 

 

In this 2-D analysis, the pressure-far-field boundary condition is used for the outer flow domain, which 

models the freestream conditions at infinity. In order to assume infinite-extent conditions, the flow 

boundary must be placed far enough away from the airfoil surface such that the solution is not affected. A 

number of CFD evaluations were performed using different values for the domain size, i.e., different 

mesh sizes. Figure A1-3 shows the resulting drag predictions plotted against the total number of cells in 

the mesh. As the boundary is moved away from the surface, the change in cd prediction generally 

decreases. As previously mentioned, it is desirable to select a mesh for which the cd is within ±1 count of 

the most accurate result recorded. In this case, the largest domain size evaluated was approximately a 

100m radius, and this is taken to be the most accurate result. Figure A1-3 shows dotted lines 

corresponding to ±1 cd counts from this 100m result. Just within this range is the mesh with 21094 cells, 

corresponding to a domain size of 28.7m radius (28.7 airfoil chord lengths). Therefore, this domain size is 

chosen for the final CFD configuration. 
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Figure A1-3 Variation of drag as the domain size is increased, showing the tolerance of acceptable 

accuracy. 

 

The number of mesh cells along the airfoil surface has a significant effect on the solution. Figure A1-4 

shows the variation of the predicted drag as the number of cells is increased. Again, a coarse mesh gives 

an inaccurate solution, and as the mesh is refined the rate of change of drag decreases. From this graph, it 

is seen that a surface cell density corresponding to a total mesh size of between 35000 and 40000 cells 

should be used, as this would give an error of less than 1 drag count relative to the largest mesh evaluated. 

However, such a mesh would result in a prohibitively expensive analysis for the purposes of a 2-D airfoil 

design study. Therefore, a smaller mesh size of 21094 cells is used, which corresponds to 200 cells over 

the chord of the airfoil. While this mesh is not ideal, it is seen to be adequate for a design study. Further to 

this, in performing the mesh dependence study the error in the solution has been quantified. 



Appendix A1  164 

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

103

104

105

106

107

108

109

110

Total mesh cells

F
LU

E
N

T
 c

d (
co

un
ts

)

+/− 1 count from largest mesh result

 

Figure A1-4 Variation of drag as the number of surface cells is increased, showing the tolerance of 

acceptable accuracy. 

 

 

Figure A1-5 The final 2-D subsonic airfoil mesh. 

 

The final subsonic 2-D mesh configuration has 398 cells defining the airfoil surface and 53 rows, giving a 

total of 21094 mesh elements (Figure A1-5). On studying the convergence history of the solver using this 

setup, it is observed that 3000 iterations of the RANS calculations are sufficient to provide a converged 

solution to within ±0.1 counts (±0.00001 cd) of the fully converged value (Figure A1-6). Note that 

although this mesh setup is used for widely varying geometries during a design search, no grid quality 

checks are performed. This is because the mesh topology is sufficiently simple to avoid adverse affects, 
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such as skewed cells, in the vast majority of cases. On studying the robustness of the mesh, it is found that 

highly cambered airfoils can cause the mesh at the trailing edge to overlap itself. However, this is not 

deemed to be problematic since this causes a failed FLUENT result rather than an anomalous drag result, 

and in any case such cambered geometries are known to perform poorly and are therefore avoided by the 

optimization algorithm. 
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Figure A1-6 Convergence of the drag coefficient during the FLUENT solution procedure. 

 

Table A1-1 details the setup of the mesh and CFD solver used for the subsonic RANS analysis. The 

surface pressure predictions for the NASA LS(1)-0013 airfoil using this setup have been compared 

against the experimental data given by Ferris et al. [1987]; this is shown in Figure 3-4.  

 

Table A1-1 Information regarding the setup of the subsonic 2-D airfoil CFD solver. 

GRIDGEN v15.08 

Mesh 2-D structured, quadrilateral 

First cell thickness 0.045% chord 

Total mesh elements 398 columns × 53 rows = 21094 cells 

Wall y
+
 range (approx.) 30-60 

  

FLUENT v6.3.19 

Solver 
Coupled implicit formulation of RANS 

equations, also solving the energy equation 
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Solver boundary condition Pressure =101325Pa, M=0.15 

Solver Courant number 5 

Turbulence model Spalart-Allmaras 

Turbulence boundary condition Modified turbulent viscosity νt=0.001m
2
s
-1
 

Turbulence model constants:     Cb1 0.1355 

Cb2 0.622 

Cv1 7.1 

Cw2 0.3 

Cw3 2 

Prandtl number 0.667 

Energy Prandtl number 0.85 

Wall Prandtl number 0.85 

Discretization scheme Second order upwind 

Flow medium Air as an ideal gas 

Flow Mach number 0.15
 

Viscosity 1.53×10-5kgm-1
s
-1
 

Reference temperature 300K 

Reference density 1.177kgm
-3
 

  

Table A1-1 (continued) 

Finally, below is a copy of the input journal file used for running the FLUENT simulations in batch 

mode. This includes the specification of all solver settings. 

file 
set-batch-options 
yes 
yes 
no 
quit 
file 
read-case 
"Airfoil2D.cas" 
quit 
grid check 
def mod 
solver density-based-implicit y 
energy yes 
visc spal-all yes 
quit 
 
def mat 
change-create air air yes ideal-gas yes constant 1006.43 no yes constant 0.000015315… 
…no no no no no no 
quit 
 
def o-c 
op-pres 0.0 
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quit 
 
define 
boundary-conditions 
pressure-far-field 
pressure-far-field-5 
no 
101325 
no 
0.15 
no 
300 
no 
0.99744 
no 
0.071497 
yes 
no 
 
quit 
quit 
solve 
set 
courant-number 
5 
discretization-scheme 
amg-c 
1 
nut 
1 
quit 
quit 
monitors 
residual 
n-save 10000 
n-display 10000 
check-convergence? 
yes 
yes 
no 
yes 
no 
convergence-criteria 
0.0000001 
0.1 
100 
plot? 
no 
print? 
yes 
scale-by-coefficient? 
yes 
quit 
force 
drag-coefficient 
yes 
wall-4 
 
no 
yes 
"cd_history.txt" 
no 
no 
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0.99744 
0.071497 
lift-coefficient 
yes 
wall-4 
 
no 
yes 
"cl_history.txt" 
no 
no 
-0.071497 
0.99744 
moment-coefficient 
yes 
wall-4 
 
no 
yes 
"cm_history.txt" 
no 
no 
12.0 
0.0 
quit 
quit 
quit 
report 
reference-values 
compute 
pressure-far-field 
pressure-far-field-5 
quit 
area 
1 
quit 
quit 
solve 
initialize 
compute-defaults 
pressure-far-field 
pressure-far-field-5 
quit 
initialize-flow 
quit 
quit 
solve/iterate 
3000 
quit 
file 
write-case 
"Airfoil2D_run.cas" 
yes 
write-data 
"Airfoil2D_run.dat" 
yes 
quit 
exit 
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Appendix A2: CFD Verification and 

Validation for Transonic Airfoil Analysis 
Case studies 3 and 4, reported in Chapter 4, consider the design of airfoils for transonic flow conditions. 

Because this flow regime is very different to the subsonic regime, a slightly different mesh configuration 

is required for the analysis. This appendix describes a similar mesh dependence study to the one reported 

in Appendix A1, in this case using the RAE 2822 airfoil and the flow conditions specified by Cook et al. 

[1979]. 

The transonic airfoil mesh is an O-mesh topology consisting of quadrilateral cells. The CFD solver setup 

is identical to the subsonic configuration described in Appendix A1, except for the flow Mach and 

Reynolds numbers. Again, the target wall y
+
 is between 30 and 60. A first cell height of 0.45mm was 

found to satisfy this criterion. Figure A2-1 shows the variation of the wall y+ over the airfoil surface; the 

large variation is because of the large difference in near-surface velocity, but most of the points lie 

between 30 and 60. The height of the cells is increased as they are grown from the surface to the outer 

boundary; a growth factor of 1.2 is employed as this gives a significant reduction in the total number of 

mesh cells while maintaining a sufficient number of grid points in the region of the boundary layer flow. 
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Figure A2-1 Wall y
+
 for the transonic airfoil FLUENT analysis. 

 



Appendix A2  170 

 

As in the case of the subsonic airfoil mesh, it is desirable to achieve a mesh configuration whereby any 

increase in cell density gives a small change in the cd prediction. The target is that the mesh should give a 

cd result no more than ±1 count from the prediction using the largest mesh evaluated. First, the domain 

size is selected. Figure A2-2 shows the change in cd as the domain size is increased. The largest domain 

size evaluated is a radius of 100m; this is taken as the most accurate result. The point just within the 

tolerance of 1 count corresponds to a radius of approximately 12m; this size is selected for the final mesh.  
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Figure A2-2 Variation of drag as the domain size is increased, showing the tolerance of acceptable 

accuracy. 

 

Next, the density of cells along the chord of the airfoil is configured. Figure A2-3 shows the variation of 

drag as the number of mesh cells defining the airfoil surface is varied. The smallest and largest meshes 

correspond to 100 and 400 surface cells, respectively; the mesh with 400 surface cells is taken to give the 

most accurate drag result. The smallest mesh within 1 drag count of this point is the mesh with 200 

surface cells. It is important that the density of cells is sufficiently high on the upper surface of the airfoil, 

in order to accurately predict the position of shocks. Figure A2-4 shows the surface pressure distributions 

predicted by FLUENT for three meshes with 100, 200 and 400 surface cells. The profiles generated using 

200 and 400 surface cells align very closely, including in the region of the shock, while the profile 

generated using 100 surface cells shows some disparity. Thus, the use of 200 surface cells results in 

sufficient accuracy in terms of the prediction of drag and shock details, and hence this cell density is used 

for the final mesh. 
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Figure A2-3 Variation of drag as the number of surface cells is increased, showing the tolerance of 

acceptable accuracy. 
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Figure A2-4 Surface pressure distributions for different FLUENT mesh configurations, varying the 

number of cells defining the airfoil surface. 
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Figure A2-5 Convergence of the drag coefficient during the FLUENT solution procedure, for the 

transonic airfoil analysis. 

 

The final transonic 2-D mesh configuration has 398 cells defining the airfoil surface and 48 rows, giving a 

total of 19104 mesh elements. The drag convergence history of the solver using this setup is shown in 

Figure A2-5. The convergence is rather oscillatory at the end of this trace, but it can be seen that 3000 

iterations are sufficient to provide a converged solution to within ±0.1 counts (±0.00001 cd) of the fully 

converged value. Table A2-1 details the mesh and solver setup for this transonic airfoil analysis. 

Table A2-1 Information regarding the setup of the transonic 2-D airfoil CFD solver. 

GRIDGEN v15.08 

Mesh 2-D structured, quadrilateral 

First cell thickness 0.045% chord 

Total mesh elements 398 columns × 48 rows = 19104 cells 

Wall y
+
 range (approx.) 30-60 

  

FLUENT v6.3.19 

Solver 
Coupled implicit formulation of RANS 

equations, also solving the energy equation 

Solver boundary condition Pressure =101325Pa, M=0.73 

Solver Courant number 5 

Turbulence model Spalart-Allmaras 

Turbulence boundary condition Modified turbulent viscosity νt=0.001m
2
s
-1
 

Turbulence model constants:     Cb1 0.1355 

Cb2 0.622 
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Cv1 7.1 

Cw2 0.3 

Cw3 2 

Prandtl number 0.667 

Energy Prandtl number 0.85 

Wall Prandtl number 0.85 

Discretization scheme Second order upwind 

Flow medium Air as an ideal gas 

Flow Mach number 0.73
 

Viscosity 4.59×10-5kgm-1
s
-1
 

Reference temperature 300K 

Reference density 1.177kgm
-3
 

  

Table A2-1 (continued) 

Additionally, as stated in the main thesis text, the full potential solver (VGK) is run using non-default 

values for the relaxation factors when solving transonic flows. The values of the VGK relaxation factors 

which are changed from the default values are: GVISCC=0.03, NVISCC=20, GVISCF=0.015, 

NVISCF=20. 

Finally, a copy of the FLUENT input journal file, used in the verification and design studies, is listed 

below. 

file                                                                             
read-case 
"Airfoil2D.cas" 
quit 
grid check                                                                             
def mod  
solver c-i y  
energy yes 
visc spal-all yes 
quit 
 
def mat 
change-create air air yes ideal-gas yes constant 1006.43 no yes constant 0.0000458674… 
…no no no no no no 
quit 
 
def o-c 
op-pres 0.0 
quit 
 
define 
boundary-conditions                                                              
pressure-far-field                                                               
pressure-far-field-5                                                                      
no 
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101325 
no                                                                      
0.730                                                                           
no                                                                               
300 
no                                                                               
0.998450491 
no                                                                               
0.055647243 
yes 
no 
 
quit                                                                             
quit                                                                             
solve                                                                            
set                                                                              
courant-number                                                                   
5                                                                               
discretization-scheme                                                            
amg-c                                                                            
1                                                                                
nut 
1 
quit                                                                             
quit                                                                             
monitors                                                                         
residual                                                                         
n-save 10000 
n-display 10000 
check-convergence?                                                               
yes                                                                              
yes                                                                              
no                                                                               
yes                                                                              
no 
convergence-criteria                                                             
0.0000001                                                                            
0.1                                                                              
100                                                                              
plot?                                                                            
no                                                                              
print?                                                                           
yes                                                                              
scale-by-coefficient?                                                            
yes                                                                               
quit                                                                             
force                                                                            
drag-coefficient                                                                 
yes                                                                              
wall-4 
                                                                                 
no                                                                               
yes                                                                              
"cd_history" 
no 
no                                                                               
0.998450491 
0.055647243 
lift-coefficient                                                                 
yes                                                                              
wall-4 
                                                                                 
no                                                                               
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yes                                                                              
"cl_history" 
no 
no                                                                               
-0.055647243 
0.998450491 
moment-coefficient                                                                 
yes                                                                              
wall-4 
                                                                                 
no                                                                               
yes                                                                              
"cm_history" 
no 
no                                                                               
12.0 
0.0 
quit                                                                             
quit                                                                             
quit                                                                             
report                                                                           
reference-values                                                                 
compute                                                                          
pressure-far-field                                                               
pressure-far-field-5                                                                        
quit                                                                             
area                                                                             
1 
quit                                                                             
quit                                                                             
solve 
initialize 
compute-defaults 
pressure-far-field 
pressure-far-field-5 
quit 
initialize-flow 
quit 
quit 
solve/iterate                                                                   
3000 
quit 
file                                                                             
write-case                                                                       
"Airfoil2D_run.cas" 
yes 
write-data                                                                       
"Airfoil2D_run.dat" 
yes 
quit 
exit 
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Appendix B: CFD Verification and 

Validation for 3-D Wing Analysis 
This appendix details the setup of the 3-D wing analysis codes, FLUENT and VSAERO. This includes 

the configuration of the FLUENT mesh and the associated mesh size verification study, the setup of the 

VSAERO code for viscous and wake-relaxation solutions, and a comparison of the results from both 

codes with experimental data. 

 

Verification of RANS Analysis 

The 3-D case studies reported in Chapter 6 use the FLUENT solver to calculate drag as the design 

objective. This required the construction of a computational mesh for the solution of the RANS equations. 

A verification study has been performed to assess the accuracy of this 3-D wing analysis with respect to 

the mesh size and configuration. As in the 2-D airfoil mesh verification studies, the aim is to generate a 

mesh whereby any increase in the number of cells gives a small increase in drag. The target is to achieve 

an accuracy of ±1 CD count relative to the largest mesh evaluated. The design studies documented in 

Chapter 6 consider the design of a wing-tip device as an extension to the ONERA-M6 wing. For the 

purposes of verification and validation of the CFD solvers, the ONERA-M6 wing alone is employed. 

Geometry and surface pressure data for the M6 wing can be found in the work by Schmitt and Charpin 

[1979]. The M6 wing is analysed at wind-tunnel model scale; it has a total span of 1.19m and a mean 

aerodynamic chord of 0.64m. 

The 3-D wing mesh is generated using the commercial software GRIDGEN. The mesh employs a multi-

block structured topology using hexahedral cells. A C-mesh block is used to surround the main wing 

planform, and an H-mesh block extends from the wing trailing edge; this topology is shown in Figure B-

1. The plane parallel to the wing root is designated a symmetry boundary, while the remaining external 

boundary uses the pressure-far-field condition. The CFD setup for this RANS solver uses the coupled-

implicit formulation of the governing equations, realizable κ-ε turbulence model and enabling second 

order accuracy in terms of flow and the turbulence model. 
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(a)       (b) 

 

 

      

(c)       (d) 

Figure B-1 Final 3-D wing RANS analysis mesh. (a) View of constant εεεε planes through the flow domain. 

(b) View of constant η η η η  planes through the flow domain. (c) View of constant ζζζζ planes through the flow 

domain. (d) Planform view of the wing surface mesh. 
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The first step in the mesh setup process is to ensure the correct density of cells normal to the wing wall. 

The non-dimensional distance, or y
+
, over the wing surface should be greater than 30, but ideally close to 

30 in order to improve the accuracy of the log-law relationship. Thus, the first cell height was perturbed 

until the surface y
+
 was approximately 30; a first cell of 0.15mm was found to be suitable. Figure B-2 

shows the corresponding variation of wall y
+
 over the wing surface. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

120

140

X

W
al

l y
+

 

Figure B-2 Wall y
+
 for a FLUENT analysis of the ONERA-M6 wing. 

 

The hexahedral cells are grown in size with distance from the wing surface, as this significantly reduces 

the computational expense of the analysis. A growth factor of 1.13 is used in this case, as a higher growth 

rate causes the meshing algorithm to fail. Three other key parameters have been used to control the mesh 

configuration, and these have been varied in order to asses their effect of the predicted drag. Figure B-3 

shows the variation of drag as the distance of the outer domain from the wing surface is increased. It is 

seen that, apart from the smallest domain distance equal to 3m, increases in the domain distance have 

very little effect on the predicted drag. However, the second smallest mesh in Figure B-3, corresponding 

to a domain distance of 5m, results in undesirable oscillations in the drag convergence. Thus, a boundary-

to-wing surface distance of 8m is chosen, which equates to approximately 12 chord lengths. The number 

of cells on the wing surface in the chordwise direction is chosen according to the results shown in Figure 

B-4(a). The smallest mesh which was found to predict CD to within 1 count of the largest mesh has 123 

chordwise cells. Finally, the number of cells in the spanwise direction is primarily chosen to satisfy the 

requirements of the wing-tip device. Figure B-4(b) shows the variation in the predicted drag as the 

number of spanwise cells is increased. Again, the change in the drag results is small, and all of the 

evaluated meshes predict the drag to within 1 CD count. However, subsequent to these mesh evaluations 
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an additional wing-tip device block was appended to the tip of the ONERA-M6 wing mesh. Because the 

chord distribution of this wing-tip device is varied in the 3-D case studies in Chapter 6, the density of 

spanwise cells must be sufficient to resolve the curvature of the chord profile. The number of spanwise 

cells over the wing-tip device is 20. Consequently, the meshes with fewer than 50 spanwise cells show a 

large discontinuous jump in cell density between the wing and wing-tip device, and this can produce 

anomalous results. Thus, 50 spanwise cells are used to construct the main wing mesh. 
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Figure B-3 Variation of drag as the domain size is increased, showing the tolerance of acceptable 

accuracy. 
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(a)       (b) 

Figure B-4 (a) Variation of drag as the number of chordwise cells is increased. (b) Variation of drag as 

the number of spanwise cells is increased.  
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Figure B-5 Convergence of the drag coefficient during the FLUENT RANS solution procedure. 

 

Figure B-1 shows the topology and mesh structure of the final mesh used for the RANS-based wing-tip 

design studies described in Chapter 6. The figure shows the blocking arrangement for the wing-tip device; 

in this case the wing-tip is simply an extension of the ONERA-M6 planform. The mesh setup described 

above is employed for all wing analyses performed during the design search, and for each new design 

point the mesh is generated by GRIDGEN in batch mode using a .glf file as input; see Appendix F for 

further details. Because the mesh is used for a wide range of geometries, a number of measures have been 

applied in an attempt to make it robust, in the sense that a good quality mesh is obtained for the vast 

majority of designs. For example, GRIDGEN’s PDE solver is run during the batch run operation to 

improve the mesh quality. Also, for each new mesh generated during the design search, a check is 

performed to ensure that the total number of cells in the mesh is correct (1313520 cells for the RANS 

mesh). If the mesh does not contain the correct number of cells, the objective function evaluation is 

aborted. This check avoids some mesh generation errors. Other mesh errors may occur, and this is an 

inherent problem with automatic aerodynamic optimization processes. However, the mesh configuration 

described here is found to be of good quality for a large range of designs. 

When the FLUENT RANS simulation is run for this mesh configuration, the drag convergence history 

shown in Figure B-5 is obtained. It can be seen that the drag is converged to within a small fraction of a 

drag count after 4000 iterations (note the small scale on the vertical axis). Because the change in the drag 

objective when manipulating the wing-tip chord distribution is small, 4000 CFD iterations are used in the 

analyses for the 3-D design studies in Chapter 6. In addition, in order to calculate drag at a fixed level of 

lift, the RANS analysis is run at two incidence angles consecutively; the first uses 4000 CFD iterations 
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and the second uses 3000 iterations. The time taken for these 7000 iterations is, on average, 16 hours 35 

minutes when running on eight 2.4GHz processors. Table B-1 details the setup of the mesh and FLUENT 

solver for this 3-D wing RANS analysis. 

 

Table B-1 Information regarding the setup of the 3-D wing RANS analysis. 

GRIDGEN v15.08 

Mesh 3-D structured, hexahedral 

First cell thickness 0.15mm 

Total mesh elements 1313520 cells 

Wall y
+
 range (approx.) >30 

  

FLUENT v6.3.19 

Solver 
Coupled implicit formulation of RANS 

equations, also solving the energy equation 

Solver boundary condition Pressure =26500Pa gauge, M=0.699 

Solver Courant number 5 

Turbulence model Realizable  κ-ε model (two equations) 

Turbulence boundary conditions κ=1, ε=1 

Turbulence model constants:     C2-ε 1.9 

TKE Prandtl number 1 

TDR Prandtl number 1.2 

Energy Prandtl number 0.85 

Wall Prandtl number 0.85 

Discretization scheme Second order upwind 

Flow medium Air as an ideal gas 

Flow Mach number 0.699
 

Viscosity 2.38×10-5kgm-1
s
-1
 

Reference temperature 300K 

Reference density 1.484kgm
-3
 

  

 

Finally, a copy of the FLUENT input journal file, used for the 3-D wing design studies using RANS 

analyses, is listed below. 

file 
set-batch-options 
yes 
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yes 
no 
quit 
file                                                                            
read-case 
"3D_grid.cas" 
quit                                                                  
def mod  
solver density-based-implicit yes 
energy yes 
visc ke-realizable yes 
visc near-wall-treatment non-equilibrium-wall-fn yes 
quit 
 
def mat 
change-create air air yes ideal-gas yes constant 1006.43 no yes constant 2.38441e-5… 
…no no no no no no 
quit 
 
define 
boundary-conditions                                                              
pressure-far-field                                                               
pressure-far-field-5 
no                                                                               
26500 
no                                                                      
0.699                                                                          
no                                                                               
300 
no                                                                               
%COS_ALPHA% 
no                                                                               
%SIN_ALPHA% 
no 
0 
yes 
no 
 
no 
 
quit                                                                             
quit                                                                             
solve 
set 
discretization-scheme 
amg-c 
0 
epsilon 
0 
k 
0 
quit 
quit                                                                            
monitors                                                                         
residual                                                                         
n-save 10000 
n-display 10000 
check-convergence?                                                               
yes                                                                              
yes                                                                              
no 
no                                                                         
yes                                                                              
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no 
no 
convergence-criteria 
0.0000001 
0.0000001 
0.0000001 
scale-by-coefficient yes 
plot?                                                                            
no                                                                              
print?                                                                           
yes                                                                              
scale-by-coefficient?                                                            
no                                                                               
quit                                                                             
force                                                                            
drag-coefficient                                                                 
yes                                                                              
wall-4 
                                                                                 
yes                                                                             
yes                                                                              
"cd_history.txt" 
no 
no                                                                               
%COS_ALPHA% 
%SIN_ALPHA% 
0 
lift-coefficient                                                                 
yes                                                                              
wall-4 
                                                                                 
yes                                                                             
yes                                                                              
"cl_history.txt" 
no 
no                                                                               
%NEG_SIN_ALPHA% 
%COS_ALPHA% 
0 
moment-coefficient                                                                 
yes                                                                              
wall-4 
                                                                                 
yes                                                                               
yes                                                                              
"cm_history.txt" 
no 
no 
                                                                           
0.0 
0.0 
0.0 
quit                                                                             
quit                                                                             
quit                                                                             
report                                                                           
reference-values                                                                 
compute                                                                          
pressure-far-field                                                               
pressure-far-field-5                                                                       
quit                                                                             
area                                                                             
0.75322 
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quit                                                                             
quit                                                                             
solve 
initialize 
compute-defaults 
pressure-far-field 
pressure-far-field-5 
quit 
initialize-flow 
quit 
quit 
solve/iterate                                                                          
1000 
quit 
solve 
set 
discretization-scheme 
amg-c 
1 
epsilon 
1 
k 
1 
quit 
quit 
iterate 
3000 
quit 
file                                                                             
write-case                                                                       
"wing2.cas.gz" 
yes 
write-data                                                                       
"wing2.dat.gz" 
yes 
write-profile 
CpData.prof 
wall-4 
 
pressure-coefficient 
quit 
write-profile 
y-plusData.prof 
wall-4 
 
y-plus 
quit 
 
quit 
parallel timer print 
quit 
exit 
yes 
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Euler Analysis Configuration 

The design case studies reported in Chapter 6 make use of an Euler solver for the calculation of the 

induced drag of the wing. Since the Euler equations do not consider the effects of viscosity, the 

computational mesh can employ less densely spaced cells adjacent to the wing surface in the normal 

direction, compared to the mesh used for the RANS analysis. The mesh described above for the RANS 

analysis is used as a baseline for the Euler mesh; this mesh configuration is sound for solving the RANS 

equations, and therefore should be sound as an Euler mesh. 

Figure B-6 shows the variation of the drag predicted by the FLUENT Euler solver, as the size of the first 

cell adjacent to the wing is increased. Because the growth factor of the cells and the external domain size 

is constant, increasing the first cell size reduces the total number of cells in the mesh. Surprisingly, 

increasing the first cell height has a significant effect on the induced drag, despite the absence of the 

boundary layer flow. However, this loss of accuracy is accepted in favour of a lower computational cost 

of this Euler analysis. The first cell height is increased to 1.5mm (compared to 0.15mm in the RANS 

mesh), giving a total mesh size of 796720 cells. 
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Figure B-6 Variation in the FLUENT Euler drag as the first cell height is increased (this reduces the 

total number of mesh cells). 

 

In order to calculate drag at a fixed level of lift, the Euler analysis is run at two incidence angles 

consecutively; the first uses 4000 CFD iterations and the second uses 3000 iterations. The time taken for 

each complete Euler analysis is, on average, 6 hours 38 minutes when running on eight 2.4GHz 

processors. A summary of the Euler analysis setup is given in Table B-2. 
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Table B-2 Information regarding the setup of the 3-D wing Euler analysis. 

GRIDGEN v15.08 

Mesh 3-D structured, hexahedral 

First cell thickness 1.5mm 

Total mesh elements 796720 cells 

  

FLUENT v6.3.19 

Solver 
Coupled implicit formulation of Euler 

equations, also solving the energy equation 

Solver boundary condition Pressure =26500Pa gauge, M=0.699 

Solver Courant number 5 

Discretization scheme Second order upwind 

Flow medium Air as an ideal gas 

Flow Mach number 0.699
 

Reference temperature 300K 

Reference density 1.484kgm
-3
 

  

 

 

For completeness, below are the input commands from the start of the log file used to execute the 

FLUENT Euler analysis. These commands differ from the RANS input log file. Apart from these 

commands, the remainder of the Euler input file is the same as in the RANS input file. 

file 
set-batch-options 
yes 
yes 
no 
quit 
file                                                                            
read-case 
"3D_grid.cas" 
quit                                                                  
def mod  
solver density-based-implicit yes 
energy yes 
visc inviscid yes 
quit 
 
def mat 
change-create air air yes ideal-gas yes constant 1006.43 no no no no no no 
quit 
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VSAERO Setup 

VSAERO is a CFD code based on the vortex panel method, and is able to calculate the non-linear 

aerodynamic characteristics of an arbitrary geometry. In this thesis, VSAERO is used for the purposes of 

inverse design as part of the EMFID parameterization strategy. An advantage of this code is the very low 

computational cost of running each analysis. The code can predict the wing surface pressure to a 

reasonable degree of accuracy, but since the flow is irrotational the flow vorticity is limited to the surface 

panels. 

A further advantage of the VSAERO code is that it requires discretization of only the body and wake 

surfaces, and not the entire flow domain. The surface panelling scheme used in this work is the same as 

that used by Robinson and Keane [1999] and Petruzzelli and Keane [2001]; this is shown in Figure B-7. 

The wing surface is discretized using 17 panels in the spanwise direction and 103 chordwise panels on 

both the upper and lower wing surfaces. The wake panels are constructed on the horizontal plane, with 38 

panel rows densely spaced near the wing and a further 11 rows extending downstream. 

 

      
(a)       (b) 

Figure B-7 Panelling scheme used in VSAERO. (a) Planform view. (b) Front isometric view. 

 

VSAERO includes a wake relaxation procedure to provide corrections to the wake panel structure, and a 

viscous-coupled element for predicting the effect of the boundary layer. Each of these schemes is 

performed iteratively. Figure B-8(a) shows the number of wake relaxation iterations plotted against the 

VSAERO predicted induced drag. It is seen that after just 1 iteration the drag prediction is dramatically 

improved, and is within 1 drag count of the prediction using 10 wake iterations. Thus, a single wake 

relaxation iteration is used when predictions of the trailing vorticity are required. Similarly, Figure B-8(b) 
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shows the number of viscous iterations plotted against the predicted total drag. It is seen that 1 iteration 

has no effect on the solution. This is because VSAERO performs the integral boundary layer calculations 

after the drag computation. Therefore, 2 viscous iterations have an effect on the drag, resulting in a much 

improved drag figure; hence, 2 iterations of the viscous scheme are used when viscosity is to be 

considered in the inverse design. Each call to VSAERO takes, on average, 41.5 seconds when the 2 

viscous iterations are required, and 35.1 seconds for an inviscid solution. 
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(a)       (b) 

Figure B-8 (a) Number of wake relaxation iterations vs. VSAERO drag. (b) Number of viscous 

iterations vs. VSAERO drag. 

 

 

3-D Wing Analysis Validation 

The FLUENT and VSAERO solvers have been validated using the experimental data for the ONERA-M6 

wing published by Schmitt and Charpin [1979]. In addition to the comparison shown in Figure 5-7, 

Figure B-9 shows the surface pressure distributions at six other spanwise stations along the M6 wing. 

Note that, for clarity, only the RANS FLUENT and viscous VSAERO results are compared in Figure B-9. 

The Euler and inviscid VSAERO surface pressure results, respectively, are almost identical to the results 

shown. 



Appendix B  189 

 

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2
ONERA−M6 at 20% span  M=0.7  Re=11.74x106 alpha=3.06

x/c

−
C

p

Experimental data

RANS FLUENT

Viscous VSAERO

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−
C

p

ONERA−M6 at 44% span  M=0.7  Re=11.74x106 alpha=3.06

Experimental data

RANS FLUENT

Viscous VSAERO

 
 

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−
C

p

ONERA−M6 at 65% span  M=0.7  Re=11.74x106 alpha=3.06

Experimental data

RANS FLUENT

Viscous VSAERO

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−
C

p

ONERA−M6 at 80% span  M=0.7  Re=11.74x106 alpha=3.06

Experimental data

RANS FLUENT

Viscous VSAERO

 
 

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−
C

p

ONERA−M6 at 90% span  M=0.7  Re=11.74x106 alpha=3.06

Experimental data

RANS FLUENT

Viscous VSAERO

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−
C

p

ONERA−M6 at 95% span  M=0.7  Re=11.74x106 alpha=3.06

Experimental data

RANS FLUENT

Viscous VSAERO

 

Figure B-9 Surface pressure distributions over the ONERA-M6 wing at six spanwise stations, predicted 

by the FLUENT RANS analysis and viscous VSAERO simulations. 
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Appendix C: Investigating the Wing Tip 

Vortex as the Parameterized Flow Feature 

in EMFID 
 

In addition to the discussion in Section 5.6, this Appendix reports an investigation into the feasibility of 

using a parameterization of wing tip vortex properties to design a wing-tip device for minimum drag. 

The subject of wing-tip vortex production and suppression has seen significant research, largely 

motivated by the desire to minimize induced drag and reduce the safe distance between passenger aircraft 

to increase airport capacity (Spalart [1998]). Recent research has made use of classical lifting line theory 

(an example is the work by Rossow [2006]), numerical computation (Murayama et al. [2001]) and wind-

tunnel testing (Gerontakos and Lee [2006a]; Zhang et al. [2006]). Notable research specific to winglet 

configurations is that of Gerontakos and Lee [2006b], who investigated experimentally the effect of 

winglet dihedral on the vortex strength, and found that the dihedral can reduce induced drag; also Eppler 

[1997] used a development of classical lifting line theory which considers induced lift, and concluded that 

winglets up is much better than winglets down. Unfortunately, the relationship between the vorticity and 

geometry is non-linear in nature, and this complexity is increased when one considers the roll-up of the 

wake. It is therefore likely that a more accurate prediction of the vortex position and strength is to be 

achieved by means of numerical simulations, such as those performed using VSAERO, rather than 

analytically. 

In order to manipulate the wing design using the tip vortex, the properties of the vortex must first be 

identified. There is a large number of flow parameters associated with a real vortex, but the VSAERO 

code assumes all vorticity lies on the wake lines and therefore assumes a point vortex. Although the 

vortex structure is simplified somewhat, one can extract useful information in the form of the vortex 

strength and position; further, the integration of these point vortices gives the cross-flow circulation. 

Therefore, the properties considered to be of interest here are the tip vortex (Y,Z) position at a constant X 

plane downstream of the wing, the maximum vorticity of the vortex and the total circulation on the (Y,Z) 

plane. As a primary study, these flow features should be extracted from the VSAERO and FLUENT 
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results and compared, as this provides an indication of the potential for a vortex-based parameterization in 

EMFID. The flow feature extraction technique for each of these variables is now considered in turn. 

The position of a vortex centre can be found using a number of techniques, as reviewed by Jeong and 

Hussain [1995]. These include finding the point of minimum pressure, maximum vorticity or regions 

featuring closed or spiraling streamlines. The method used here is the VORTFIND method described by 

Pemberton [2003]. A 2-D slice of the flow on a (Y,Z) plane downstream from the wing-tip is considered, 

and using the velocities at each data point the resultant velocity vectors on this cross-flow plane are 

determined. Strictly, the plane should be normal to the axis of rotation of the vortex; however, it is 

assumed to be normal for small angles of attack. The angle, α, of each velocity vector relative to the Y 

axis is calculated. Each data point is then assigned a value of β according to the inequalities 
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     (C.1) 

Next, for each data point the two nearest points with different values of β, relative to each other and itself, 

are found. The distances to the nearest values of β=0, 1, and 2 are p, q and r, respectively. Thus, one of p, 

q or r is always zero. Then, for each point the expression  

222 rqpl ++=       (C.2) 

is computed. The vortex centre is defined as the point where l is minimum, i.e., the point which is closest 

to points with different values of β. This approach is used to locate the vortex centre as predicted by the 

VSAERO and FLUENT solvers. The cross-flow plane is taken at X=4m in all cases; this position is 

chosen as it is approximately equidistant from the wing and the FLUENT far-field boundary, and at this 

plane the FLUENT mesh cells are acceptably dense in the (Y,Z) region of the vortex. 

The point of maximum vorticity is not, in general, at exactly the same location as the vortex centre as 

defined above. Therefore, the vorticity, ξ, is calculated across the entire cross-flow plane as the curl of the 

velocity, V, 
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where v and w are the point velocities in the spanwise and vertical directions, respectively. Because the 

gradient terms on the right hand side of Eq. (C.3) are computed by finite differencing, the velocities given 

at the mesh points over the cross-flow plane are interpolated onto a regular grid. Cohn and Koochesfahani 

[2000] describe the accuracy of various approaches for remapping velocity fields; a simple polynomial 

interpolation is used for this study. From this, Eq. (C.3) is evaluated for every data point and the 

maximum vorticity is found. Using the vorticity field, the total circulation, Γ, over the same cross-flow 

plane is computed using 

∫∫∫ ⋅−=⋅×∇−= ZYAVΓ
A

ddd)( ξ ,    (C.4) 

where A is an area of 5m×5m in the plane of integration, enclosing the wake of the whole wing. The 

integration is performed numerically using first-order quadrature. 

Having discussed the techniques used to identify the vortex position and strength, the predictions of 

VSAERO and FLUENT are now compared. In this study, the VSAERO and FLUENT solvers are run for 

a set of geometries generated using the gross winglet parameterization shown in Figure 5-8. The total 

half-wing span is 1.35m, or a span extension of 0.15m due to the wing-tip device. 50 different geometries 

are generated, whose defining variables are dictated by a random Latin hypercube DoE based on the 

variable bounds given in Table 5-1. Both CFD solvers are run in inviscid mode at a fixed angle of attack 

of 3°, and VSAERO additionally performs the wake roll-up calculation. The aim is to compare the 

relative performance trends with respect to vortex strength, vortex position and drag for the two codes. 

The first of the 50 evaluated designs is a simple extension of the ONERA-M6, i.e., a wing-tip which 

continues the sweep and taper and has zero dihedral. From the outset, it is interesting to compare the 

predictions for this initial geometry with those corresponding to the best and worst of the 50 designs 

generated using the DoE plan. The best wing-tip design, in terms of the drag predicted by FLUENT, 

incorporates significant twist (washout), an increase in sweep and a very small dihedral angle. The worst 

design (with the highest FLUENT drag) has a large dihedral angle and negative twist (washin). Figure C-

1, Figure C-2 and Figure C-3 show the geometry, velocity vectors and vorticity contours for the initial, 

best and worst geometries, respectively. In all three cases, the velocity and vorticity data are from the 

FLUENT (Euler) simulations, and a black cross on the vorticity plots indicates the vortex core centre as 

predicted by VSAERO. Table C-1 additionally gives the maximum vorticity, circulation and drag data 

from both solvers, for the three designs. Note that the VSAERO velocity data is normalized by dividing 

by a reference velocity, and hence the vorticity and circulation magnitudes for VSAERO are relative. 
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Figure C-1 The initial extended 

ONERA-M6 wing geometry (above). 

FLUENT prediction of velocity 

vectors in the region of the tip vortex 

at X=4m (above right). Vorticity 

contours (right) from FLUENT at the 

X=4 plane, showing a black cross 

corresponding to the vortex centre 

predicted by VSAERO. 

 

Figure C-2 The best geometry 

from the 50 point DoE set (above). 

FLUENT prediction of velocity 

vectors in the region of the tip vortex 

at X=4m (above right). Vorticity 

contours (right) from FLUENT at the 

X=4 plane, showing a black cross 

corresponding to the vortex centre 

predicted by VSAERO. 

 

Original in colour 
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Figure C-3 The worst geometry 

from the 50 point DoE set (above). 

FLUENT prediction of velocity 

vectors in the region of the tip vortex 

at X=4m (above right). Vorticity 

contours (right) from FLUENT at the 

X=4 plane, showing a black cross 

corresponding to the vortex centre 

predicted by VSAERO. 

 

Table C-1 Data relating to the wing-tip vortex for the initial, best and worst designs in the 50 point DoE 

set, as predicted by FLUENT and VSAERO. 

(Y,Z) plane at X=4m 

DoE design point 
Vortex 

centre Y  

Vortex 

centre Z  
Max. ξξξξ ΓΓΓΓ    

CD 

(counts) 

FLUENT 1.2414 0.18276 808.934 22.6546 73.884 1 (extended 

ONERA-M6) VSAERO 1.3175 0.2102 187.875 0.088132 102 

       
FLUENT 1.175 0.20 471.2886 22.3097 67.474 26 (best 

FLUENT CD) VSAERO 1.2033 0.1555 45.75 0.086989 87.34 

       
FLUENT 1.3081 0.3798 921.150 23.9952 129.25 10 (worst 

FLUENT CD) VSAERO 1.3126 0.3858 364.5 0.091761 112.9 

 

Figures C-1 to C-3 illustrate that VSAERO predicts the location of the vortex centre with reasonable 

accuracy compared to FLUENT. The Euclidean distance between the vortex positions predicted by the 

two CFD codes ranges between 7.5-80mm, for the three illustrated designs. However, based on the 

Original in colour 
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vertical positions given in Table C-1, it can be concluded that the vortex position has a weak coupling 

with drag and is therefore unlikely to be suitable as a design variable in EMFID. The maximum vorticity 

and circulation in the cross-flow plane are likely to be more suitable, and one would expect an increase in 

these parameters might increase the drag. Indeed, Table C-1 shows that, for both FLUENT and VSAERO, 

an increase in the peak vorticity and circulation follows a monotonic increase in drag. Investigating these 

effects further, Figure C-4 shows the drag and peak vorticity calculated using FLUENT for all 50 designs 

evaluated. For clarity, the data has been sorted in ascending order with respect to the FLUENT drag data. 

With the benefit of more data, it becomes apparent that, in general, there is no correlation between the 

peak vorticity and drag. This can be explained, since there can exist a vortex flow which contains a 

hotspot of vorticity but for which the cumulative vorticity across the wake (i.e, the circulation) can be 

rather low. Conversely, it is possible for a large and energetic vortex to have a low peak vorticity. 

Therefore, this quantity would not be suitable when used as a design variable; rather it makes sense to use 

an integrated quantity, such as circulation. 

 

Figure C-4 FLUENT predictions for drag and maximum vorticity for all 50 designs, sorted by the drag 

values. 

 

Figure C-5 (a) gives the same FLUENT drag curve as Figure C-4, but in this case it is shown with the 

circulation, also from FLUENT, for all designs. It can be seen that there is a correlation between total 

circulation and drag, and this is expected since the calculation of circulation (an integration of vorticity 

over the cross-flow plane) is directly related to the calculation for induced drag (integration of cross-flow 

velocities). Given this fact, the similarity between the curves in Figure C-5 (a) is not as close as one 

would expect. This is likely to be due to the numerical dissipation of the Euler solution as the flow moves 

away from the wing trailing edge, which does not affect the drag because drag is computed using the 

wing surface pressure. Also, the mesh cells in the region of the vortex are inevitably coarser than those on 
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the wing surface; hence, the process of interpolating the velocities onto the integration grid suffers a loss 

of accuracy. Nevertheless, if the circulation from FLUENT was made to be a design variable and one was 

to minimize this variable, the resulting wing design would give good performance in terms of drag. 

However, for efficiency EMFID requires the use of low-fidelity CFD for inverse design. Figure C-5 (b) 

shows the circulation results from VSAERO for all 50 designs, shown with the same FLUENT drag 

curve. While the similarity between these curves is not as strong as shown in Figure C-5 (a), both show a 

similar upward trend. Design iterations 18, 21, 24 and 28 are rather anomalous, but it can be seen that 

minimizing the circulation predicted by VSAERO would result in a design with relatively low FLUENT 

drag. However, since the circulation is broadly equivalent to induced drag, an EMFID design search 

which uses a parameterization of circulation would result in an exercise of minimising the drag predicted 

by VSAERO. This effectively amounts to a multi-fidelity zoom approach to optimization. Thus, a 

parameterization of the crossflow circulation is not suitable for the EMFID design search process. 

 

 
(a)      (b) 

Figure C-5 (a) FLUENT predictions of drag and circulation for all 50 design points, where the points 

have been sorted in ascending drag order, (b) FLUENT drag predictions and VSAERO circulation results for 

the same designs. 

 

In summary, this section has described the extraction of flow features relating to the wing tip vortex. 

These flow features have been simulated using FLUENT and VSAERO for a range of geometries. It is 

found that the predictions of the vortex position from the two codes agree to acceptable accuracy. 

However, the VSAERO predictions for these position parameters and the peak vorticity do not correlate 

well with the design objective, drag, and are therefore not suitable design variables for use in the EMFID 

design search process. 
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Appendix D: Design Trends from the 3-D 

Case Studies 
In Chapter 6, case studies 5 and 6 reported the results of a comparison between the EMFID and 

benchmark methods for the design of a wing-tip device. This section examines the geometrical features of 

the designed wing-tip devices in more detail. One of the reasons for performing systematic design search 

studies using computational analyses is to identify and understand how the design features of interest are 

related to aerodynamic forces, and how the design could be manipulated in order to achieve improved 

performance. The case studies described in Chapter 6 focused on the design of the trailing edge chord 

distribution in a region close to the wing tip, with the objective of minimizing drag. The EMFID and 

benchmark methods, which differ in the approach used to manipulate the design, have resulted in similar 

conclusions in the sense that the best designs all share common geometrical features. In particular, a large 

chord is applied at the wing tip, and, when the analysis considers the drag due to viscosity, the wing 

wetted area is strictly controlled in the region further inboard. Figure D-1 shows the best design generated 

using the benchmark method in case study 6, as well as two modified versions of this geometry. In what 

follows, the effects of these two design changes are investigated in turn using additional CFD analyses. 
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(a)       (b) 

Figure D-1 The best benchmark geometry from case study 6 (RANS simulations), shown with two 

variants of this design. (a) On equally scaled axes. (b) A close-up view of the wing-tip region. 

 

Table D-1 Drag coefficients calculated using FLUENT Euler and RANS analyses for the three designs 

in Figure D-1. 

Drag coefficient, CD, computed using FLUENT analysis at CL=0.4  

Design Euler RANS 

Case study 6 – best benchmark 141.173 217.808 

Variant 1 (Figure 6-11) 141.923 218.397 

Variant 2 (Figure 6-11) 141.387 217.929 

 

 

Sweeping back the tip section of the wing has the effect of reducing the lift-induced drag, a result also 

reported by van Dam [1987] and Burkett [1989], among others. This design feature is common to the 

final (best) geometries resulting from the two design search methods in both case study 5, which used 

Euler FLUENT drag calculations, and in Case 6, which employed RANS simulations. It is useful to be 

able to quantify the change in drag when the tip section is swept back. The variant 1 design (Figure D-1) 

is defined as follows. Design variables 1 to 5, which define the five inboard chord values, are set to be the 

same as the optimized benchmark design, while variable 6, defining the tip chord, takes the value of the 

lower problem bound. Thus, the sweep at the tip station is reduced considerably. The FLUENT analysis 

has been run for both the benchmark design and variant 1, using both the Euler and RANS solvers; Table 

D-1 gives the resulting drag coefficient values. From the results generated using the Euler solution, it is 

6

6



Appendix D  199 

 

seen that removing the aft-swept tip increases the induced drag by 0.75 counts, or 0.5%. The RANS 

analyses additionally consider viscous and boundary layer effects. Since removing the tip sweep reduces 

the wetted area, the increase in induced drag is partially offset by a reduction in viscous drag. However, 

overall there remains a net increase in drag of 0.59 counts, or 0.27%. It is interesting to visualize the 

influence of an aft-swept tip on the trailing vortex flow; Figure D-2 and Figure D-3 show streamlines 

emitted from the trailing edge of the benchmark design and variant 1, respectively. Since the relative drag 

levels are similar, the changes to the vorticity are subtle. However, it can be seen that when the tip sweep 

is removed the streamlines adjacent to the tip-cap are more perturbed, and the trailing vortex grows in size 

more quickly with distance from the wing. 
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(a)       (b) 

Figure D-2 Flow visualization showing streamlines emitted from the trailing edge of the wing-tip device, 

for the best design from case study 6. (a) planform view, (b) front isometric view. 
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(a)       (b) 

Figure D-3 Flow visualization showing streamlines emitted from the trailing edge of the wing-tip device, 

for a design with the tip chord minimized. (a) planform view, (b) front isometric view. 

 

Original in colour 
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The second design trend scrutinized here is the link between the chord distribution inboard of the tip and 

drag. In case study 5, it was found that there are a range of geometries which can yield good performance, 

suggesting that there is no dominant design trend. In Case 6, in order to minimize the skin friction drag 

the chord over the wing-tip device was minimized, except at the tip and at the furthest inboard control 

point. As previously described, the tip chord is maximized in order to reduce the induced drag. However, 

although the trend is that minimizing the inboard variables gives lower drag, the chord at the furthest 

inboard control point (design variable 1) takes a value in the middle of the bounding range. This suggests 

that further reducing the chord at this station results in higher drag. To confirm this, an additional design 

is analysed; variant 2 in Figure D-1 is the same as the benchmark design, except that variable 1 takes the 

value of the lower problem bound. The FLUENT drag data for this modification are listed in Table D-1. 

As expected, the Euler (induced) drag for variant 2 is higher than for the unmodified benchmark design, 

resulting in an increase of 0.21 drag counts, or 0.15%. The RANS analysis also predicts higher drag for 

variant 2 compared to the benchmark design. The increase in induced drag is partially offset by a 

reduction in viscous drag, and hence the difference is less (0.12 counts), but this difference is clearly 

sufficient to drive the optimization away from this sub-optimal design. 
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Appendix E: Inverse Airfoil Design Code 
Listed below is the MATLAB inverse design code used for inverse design of subsonic airfoils. The 

function additionally calls the external files create_datX.m, which generates the VGK .DAT (geometry) 

file, and vgkgo_win.m which executes the VGK solver for the calculation of surface pressure 

distributions. 

 

function [x,zu,zl,alpha_in,I_vec]=Inverse_Airfoil(x,Xut,cput,Xlt,cplt) 
 
% Inverse design for subsonic airfoils 
% Xut, cput, Xlt, cplt, are the upper and lower surface data defining the  
% target pressure distribution. 
% x is the desired output distribution of points, zu and zl are the z 
% ordinates of the output airfoil. alpha_in is the output angle of attack, 
% i.e., the angle requried to achieve the target pressure profile. I_vec is 
% the convergence history of the inverse process. 
% Uses a residual correction method, where VGK is used to calculate the 
% surface pressure distributions. 
 
%%% fname is the filename for all VGK run files 
fname='Foil2EMFIDv2'; 
 
x_original=x; 
 
%%% VGK is sensitive to the input x vector, this one works well 
xt=linspace(0,1,101); 
xt(1)=(0.005*1); 
xt=[0 (0.002*1) xt]; 
x=[0.2.*((exp(0.3.*linspace(0,10,100))-1)/(exp(3)-1)) xt(24:end)]; 
 
[Xut,cput]=interp(Xut,cput,x); 
[Xlt,cplt]=interp(Xlt,cplt,x); 
 
%%% As an initial design, start with the NASA LS(1)-0013 airfoil, with the same 
resolution as new x 
load NASA_0013_200.DAT 
[a,b]=size(NASA_0013_200); 
xn=NASA_0013_200(1:a/2,1)'; 
zu=NASA_0013_200(1:a/2,2)'; 
zl=NASA_0013_200((a/2)+1:end,2)'; 
[x,zu]=interp(xn,zu,x); 
[x,zl]=interp(xn,zl,x); 
 
%%% Constrain the TE point 
zu2_end=0; 
zl2_end=0; 
 
%%% initial angle of attack 
alpha_in=0; 
 
Ib=10; 
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xb=x; 
zub=zu; 
zlb=zl; 
alpha_inb=alpha_in; 
 
I_vec=[]; 
for g = 1:60 
 disp(['%%%%% ITERATION ' num2str(g) ' %%%%%']) 
 
    %%% fac is used to accelerate the convergence, after 10 iterations the  
    %%% size of the corrections is doubled 
 fac=0.5; 
 if g>10 fac=1; end 
 [x,zu,zl,cperr,status,CL,CD,I,Udiff,Ldiff]=GetGeom(x,zu,zl,fname,Xut,cput,Xlt,c
plt,zu2_end,zl2_end,alpha_in,fac); 
 I 
 I_vec=[I_vec I]; 
 if I>Ib | status==0 
  x=xb; 
  zu=zub; 
  zl=zlb; 
  alpha_in=alpha_inb; 
  break 
 else 
  xb=x; 
  zub=zu; 
  zlb=zl; 
  Ib=I; 
  alpha_inb=alpha_in; 
 end 
 
 if cperr==1 break; end 
 
 %%% alpha correction, uses alpha relaxation factor of 0.12 
 alpha_in=alpha_in-Ldiff*0.12; 
 alpha_in=alpha_in+Udiff*0.12 
end 
 
 
%%% interpolate the result onto the desired x vector, and exit 
xn=x; 
[x,zu]=interp(xn,zu,x_original); 
[x,zl]=interp(xn,zl,x_original); 
 
return 
 
function 
[x,zu,zl,cperr,status,CL,CD,J,Udiff,Ldiff]=GetGeom(x,zu,zl,fname,Xut,cput,Xlt,cplt,zu2
_end,zl2_end,alpha_in,fac) 
%%% RUNS VGK TO OBTAIN A CP PROFILE FOR THE CURRENT AIRFOIL 
 
x_stag=0.015;    
 
%%% create the VGK .DAT (geometry) file 
create_datX(x,zu,zl,fname); 
 
%%% Run VGK! 
[CL,CD,status]=vgkgo_win(fname,alpha_in,0.15,4000000,0.075)  
if status==0 disp('Cp profile gives invalid airfoil geometry'); x=x; zu=zu; zl=zl; 
cperr=0; J=1; Ldiff=1; Udiff=1; return; end 
 
[Xu,cpu,Xl,cpl]=getpress(fname); 
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if Xu(2)==0 Xu=[Xu(1) Xu(3:end)]; cpu=[cpu(1) cpu(3:end)]; end % With a very fine 
LE x vector, sometimes VGK gives X(2)=0, 
if Xl(2)==0 Xl=[Xl(1) Xl(3:end)]; cpl=[cpl(1) cpl(3:end)]; end % causing a 
singularity. 
[Xu,cpu]=interp(Xu,cpu,x); 
[Xl,cpl]=interp(Xl,cpl,x); 
 
%%% Check the convergence of the inverse design process 
%% cperr=1 for a converged cp plot 
cperr=0;  
J=0; 
 
%% for alpha correction 
Udiff=sum(cpu(3:20)-cput(3:20)); 
Ldiff=sum(cpl(3:20)-cplt(3:20)); 
 
%% for Cp error measure (discard the stagnation region) 
diff{1,1}=(cpu(x>x_stag)-cput(x>x_stag)).^2; 
diff{2,1}=(cpl(x>x_stag)-cplt(x>x_stag)).^2; 
diff{1,2}=x(x>x_stag); 
diff{2,2}=x(x>x_stag); 
 
for i = 1:2 
    for j=2:length(diff{i,1}) 
        J = J+0.5*(diff{i,2}(j)-diff{i,2}(j-1))*(diff{i,1}(j)+diff{i,1}(j-1)); 
    end 
end 
 
%%% The convergence criterion here is 0.00005 - this is a very tight match 
if J < 0.00005 cperr=1; return; end 
 
%% NUMERICAL DIFFERENTIATION %% 
[x,zud]=Diffate4(x,zu); 
[x,zudd]=Diffate4(x,zud); 
[x,zld]=Diffate4(x,zl); 
[x,zldd]=Diffate4(x,zld); 
 
%%% Upper Surface geometry correction %%% 
Cpu=Cpcalc(zudd); 
CpuO=Cpu; 
[Cpu,I]=sort(real(Cpu)); 
zudd_=zudd(I); 
[Cpu,dzdCp]=Diffate4(Cpu,zudd_); % NUMERICAL DIFFERENTIATION USING FUNCTION 
zudd2 = zudd + fac.*0.4.*dzdCp.*(cput-cpu); 
 
%%% Lower Surface geometry correction %%% 
Cpl=Cpcalc(zldd); 
CplO=Cpl; 
[Cpl,I]=sort(real(Cpl)); 
zldd_=zldd(I); 
[Cpl,dzldCp]=Diffate4(Cpl,zldd_); % NUMERICAL DIFFERENTIATION USING FUNCTION 
zldd2 = zldd - fac.*0.4.*dzldCp.*(cplt-cpl); 
 
 
 
%% NUMERICAL INTEGRATION %% 
[x,zud3]=integrate4(x,zudd2,0); 
[x,zld3]=integrate4(x,zldd2,0); 
 
[x,zu3]=integrate4(x,zud3,0); 
[x,zl3]=integrate4(x,zld3,0); 
 
%% calculate the constant of the first integration 
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const_u=zu2_end-zu3(end); 
const_l=zl2_end-zl3(end); 
 
zu = zu3 + const_u.*x; 
zl = zl3 + const_l.*x; 
 
%%% PLOTTING 
% figure(11); 
% plot(x,zu,'b',x,zl,'b') 
% axis([0 1 -0.1 0.1]); 
% figure(12); 
% plot([0],[1.12471],'k+',[Xu Xl(end:-1:1)],[cpu cpl(end:-1:1)],'k--',[Xut Xlt(end:-
1:1)],[cput cplt(end:-1:1)],'k:') 
% myax=axis; 
% axis([myax(1:2) -1.5 1]); 
% set(gca,'YDir','reverse') 
 
return 
 
 
function Cp=Cpcalc(zudd) 
%%% Approximation of surface pressure distribution 
gam=1.4;%ratio of specific heats 
M=0.15; %freestream mach 
c=1; %airfoil chord 
Cs=(2/gam*(M^2))*(((   ((gam+1)/2)     /(1+((gam-1)/2)*(M^2)    ))^(gam/(gam-1)))-1); 
Ms=1/(1-(((gam+1)/2)*Cs)); 
 
Cp=(-2/((Ms^2)*(gam+1))).*((1-(Ms^2))-((1-
(Ms^2))^(1.5)+0.75*(Ms^2)*(gam+1)*(c/pi).*zudd).^(2/3)); 
return 
 
function [x,Yi]=integrate4(x,y,y0) 
Yi(1)=y0; 
 
for k=2:length(y) 
 Yi(k)=Yi(k-1) + ((y(k-1)+y(k))/2).*(x(k)-x(k-1)); % trapezium rule 
end 
return 
 
function [X,Yd]=Diffate4(x,y) 
%% Forward/backward difference on first/last points 
%% Use central difference with remaining points 
%% Also uses functions dif and centdiff  
 
Yd(1) = dif(x(1),y(1),x(2),y(2)); 
 
Yd(length(y)) = dif(x(length(y)-1),y(length(y)-1),x(length(y)),y(length(y))); 
 
Yd=centdiff(y,x,Yd); 
 
X=x(1:end); 
Yd=Yd(1:end); 
return 
 
function yd=dif(x1,y1,x2,y2) 
yd=(y2-y1)/(x2-x1); 
return 
 
function yd=centdiff(y,x,yd) 
for k=2:length(y)-1 
 yd(k)=(y(k+1)-y(k-1))/(x(k+1)-x(k-1)); 
end  
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return 
 
function [X,Y]=interp(x,y,X) 
%LINEAR interpolation 
%for positive x. Assumes values in x increase along its length 
xs=(1/10000).*round(x.*10000); 
for i=1:length(X) 
    if X(i)<xs(1)|X(i)-xs(length(x))>0.01 disp(i); disp(xs); disp(X); 
error('interp');end 
    for t = 1:length(x)-1 
        if X(i)>=xs(t) & X(i)<=xs(t+1) break; end 
    end 
    Y(i)=((((y(t+1)-y(t))/(x(t+1)-x(t))))*(X(i)-x(t)))+y(t); 
end 
return 
 
function [Xu,cpu,Xl,cpl]=getpress(fname) 
% Get pressure distribution from VGK .BRF file 
 
%check for the existence of the .BRF file 
fid=fopen([fname '.BRF']); 
if fid == -1 error(['Vgk output file ' fname '.BRF not found']), end 
c=0; 
%% Extract the data 
while feof(fid) == 0 
    myline=fgetl(fid); 
    h = sscanf(myline,'%s'); 
    if strcmp(h,'XCP')==1 
         
        while c>=0 
            c=c+1; 
            myline =fgetl(fid); 
            if strcmp(myline,'')==1 break;end 
            S=sscanf(myline,'%f'); 
            if isempty(sscanf(myline,'%f'))==1 
                c=c-1; 
                I=c; 
                continue 
            end 
            X(c)=S(1); 
            cp(c)=S(2); 
        end 
    end 
end 
 
Xl = X(I+1:length(X)); 
cpl = cp(I+1:length(cp)); 
Xu = X(1:I); 
cpu = cp(1:I); 
return 
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Appendix F: Problem Solving 

Environment Setup 
This appendix provides further detailed information relating to the practical computational setup of the 

design search process described in this thesis. The information is presented in the form of flowchart 

diagrams and examples of MATLAB code. The setup described is for the 3-D EMFID design search 

process, but a very similar system is used for all optimization work. 

 

The Optimization Strategy 

 START 

Input: Starting variables, variable bounds, target lift 

OBJFUN 

OBJFUN 

OBJFUN 

OBJFUN 

OBJFUN 

OBJFUN 

OBJFUN 

OBJFUN 

OBJFUN 

DoE objective function 

evaluations (parallel) 

Build Kriging 

predictor RSM 

Search RSM 

(OPTIONS GA) 

OBJFUN 

OBJFUN 

OBJFUN 

Parallel update objective 

evaluations 

Computational 

budget exhausted? 

YES 

NO 

END 

Output: Best design point found 

… 

… 

… 

 

Figure F-1 The optimization strategy. 
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Figure F-1 shows the optimization strategy employed in the 3-D EMFID and benchmark design search 

methods. As stated in the thesis, this framework has been coded using the MATLAB language and 

operates under the Windows environment. All FLUENT simulations are run on the Microsoft compute 

cluster. The design search process is executed by running a MATLAB function, which specifies all of the 

starting parameters and which performs the actions shown in Figure F-1. The first step is to evaluate the 

objective function as dictated by a Latin hypercube DoE sample plan. These objective function calls are 

run in parallel, with typically five to 10 evaluations being run simultaneously. Each evaluation submits a 

new job to the compute cluster (see below). Note that the FLUENT jobs themselves are also run in 

parallel, in the sense that the calculation is performed using a number of processors (eight CPUs for the 3-

D runs) utilizing MPI. Hence, with this doubly parallel capability, up to 80 CPUs are working 

simultaneously. After the DoE evaluations, the Kriging RSM is built and searched using OptionsMatlab
1
 

to predict update points, and the objective function is evaluated in parallel for these points. The process of 

building, searching and updating the RSM is repeated until the limit of the computational cost budget is 

reached. 

 

The Objective Function 

As stated above, the objective function is called for multiple design points simultaneously. This parallel 

objective function is implemented in MATLAB using three MATLAB functions. The first takes the input 

design variables and submits the job to the compute cluster, returning a unique job identifier (including 

the working directory for the job). The second uses this job identifier to poll the job; i.e., wait until the job 

has finished by checking for the existence of the output file. The third uses the job identifier to retrieve 

the job data from the output file and return the objective function value. The MATLAB syntax is 

therefore: 

% Submit the parallel jobs 
Job_ID_1=Objective_Fun(VARS1); 
Job_ID_2=Objective_Fun(VARS2); 
Job_ID_3=Objective_Fun(VARS3); 
Job_ID_4=Objective_Fun(VARS4); 
Job_ID_5=Objective_Fun(VARS5); 
... 
 
% Poll the jobs 
Job_Poll(Job_ID_1) 
Job_Poll(Job_ID_2) 
Job_Poll(Job_ID_3) 
Job_Poll(Job_ID_4) 

                                                 
1
 Part of the GEODISE toolkit, for which information can be obtained on the world wide web at 

http://www.geodise.org/ (cited April 2006). 
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Job_Poll(Job_ID_5) 
... 
 
% Parse the jobs to obtain the objective function value 
obj1=Objective_Fun_Parse(Job_ID_1); 
obj2=Objective_Fun_Parse(Job_ID_2); 
obj3=Objective_Fun_Parse(Job_ID_3); 
obj4=Objective_Fun_Parse(Job_ID_4); 
obj5=Objective_Fun_Parse(Job_ID_5); 
... 
 

 

Listed below is the code for these three MATLAB functions, for the 3-D EMFID objective function. 

 
 
function retrievalID = Fun_EMFIDWingTip(VARS) 
% Objective function for 3-D EMFIDv9 
% Input VARS, submits job to the cluster, output retID 
 
global todaydate RUNNUMBER EMFIDNUMBER local_path 
 
RUNNUMBER = RUNNUMBER + 1;  % RUNNUMBER is a unique number for each parallel run 
EMFIDNUMBER = EMFIDNUMBER + 1; % EMFIDNUMBER is used for linux running of VSAERO 
 
VARS=VARS'; 
 
% Create the unique directory for running the job 
RUNDIR = [local_path  todaydate '_' num2str(RUNNUMBER) '_' num2str(VARS(1))... 
num2str(VARS(2)) num2str(VARS(3)) num2str(VARS(4)) '\']; 
RUNDIR = strrep(RUNDIR,' ',''); 
RUNDIR = strrep(RUNDIR,'.','d'); 
dos(['mkdir ' RUNDIR]); 
retrievalID.uniquedir = RUNDIR; 
 
retrievalID.RUN = RUNNUMBER; 
retrievalID.VARS = VARS'; 
 
% copy the required files to the new directory 
make_spawn_EMFID('Spawn_EMFID_Base.m',RUNDIR); 
dos(['move ' local_path 'EMFID3D\Spawn_EMFID.m ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\make_winglet_glyph_dir.m ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\Base_Wingletv4_Win.glf ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\make_winglet_log.m ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\Test_Log.log ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\Base_Log.log ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\Restart_Log.log ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\getlift.m ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\getdrag.m ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\GetJobID.m ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\GetJobStartTime.m ' RUNDIR]); 
dos(['copy ' local_path 'EMFID3D\GetJobStartTime_10.m ' RUNDIR]); 
save([RUNDIR 'VARS.mat'],'VARS','RUNNUMBER','EMFIDNUMBER','todaydate'); 
 
% Spawn a new MATLAB process for executing FLUENT 
wd=cd; 
cd(RUNDIR); 
dos('matlab -nodesktop -nosplash -minimize -r Spawn_EMFID -logfile fluent_out.log &'); 
cd(wd); 
return
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function job_poll(retrievalID) 
% wait for the existence of OUT_DATA.mat 
 
f=exist([retrievalID.uniquedir 'OUT_DATA.mat']); 
if f==1 return; end 
pause(5); 
 
return 

 

 

 

function I = Fun_FluentWingTip_parse(retrievalID) 
% Objective function _Parse for 3-D EMFIDv9 
% retrieve objfun for job with retID retrievalID 
 
global todaydate errorI local_path EMFIDNUMBER 
 
EMFIDNUMBER=EMFIDNUMBER - 1;    % for emfid inverse design runs 
RUN=retrievalID.RUN; 
ERROR=0; 
 
% Load output data file  
local_path2 = retrievalID.uniquedir; 
if exist([local_path2 'OUT_DATA.mat'])~=0 
 results=load([local_path2 'OUT_DATA.mat']); 
 CD=results.CD3 
 CL=results.CL 
else 
 disp('Results file not found'); 
 ERROR=1; 
end 
 
% Calculate the objective function 
if ERROR==1 
 I=0; 
else 
 I=CL/CD; 
end 
 
return 
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As can be seen in the Fun_EMFIDWingTip function, the objective function calculations are performed in 

a new (spawned) MATLAB process for each parallel evaluation. The .m file script Spawn_EMFID.m is 

created containing the correct run directory, and this is run in the spawned MATLAB process; an example 

of this code is listed below. 

 

% Spawn_EMFID.m 
% Runs in spawned matlab process and submits inverse design and fluent jobs 
 
RUNDIR='Z:\EMFID3D_11\110507EVI2_14_0d176880d149880d118150d077163\'; 
cd(RUNDIR); 
 
% First, perform the inverse design (Linux) 
load([RUNDIR 'VARS.mat']);          %loads VARS, RUNNUMBER, EMFIDNUMBER, todaydate 
 
date=[todaydate '_' num2str(RUNNUMBER)]; 
EMFIDDIR=['V:\EMFID3D_' num2str(EMFIDNUMBER) '\vsaero_top\'];% V:=home1\utp-10\trb100 
 
 
% Place the input data in the remote (Linux) directory 
% A daemon running in Linux detects this and executes inverse design 
if exist([RUNDIR 'InvDes_DATA.mat'])==0 
    while 1 
        if exist([EMFIDDIR 'OUT.mat'])==0 
            save([EMFIDDIR 'IN_DATA.mat'],'VARS','date','-v4'); 
            while 1 
                if exist([EMFIDDIR 'OUT.mat'])~=0 delete([EMFIDDIR 'OUT.mat']); break; 
end 
                pause(60); 
            end 
            break 
        end 
    end 
 
 
% Once inverse design has finished 
    n=dos(['move ' EMFIDDIR 'OUT_DATA.mat ' RUNDIR 'InvDes_DATA.mat']); 
    if n==0 PASS=1; else PASS=0; disp('Problem in inverse design step'); end 
else 
    PASS=1; 
end 
 
 
if PASS==1 
A=load([RUNDIR 'InvDes_DATA.mat']); 
VARSg=A.VARSg   % VARSg = geometrical (i.e. benchmark) variables 
 
OBJ=A.I; 
disp(['Inverse design objective Function value ' num2str(OBJ)]) 
 
if OBJ>0.000001 save([RUNDIR 'OUT.mat']); exit; end  % if Inv Des not converged 
 
% Now run fluent 
targCL=0.4; 
alpha1=3.06;  %%%% sensitive to these 
alpha2=4;    %%%% 
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% Build the mesh using Gridgen, first generate the glyph script 
RUNDIR2=strrep(RUNDIR,'\','/'); 
make_winglet_glyph_dir('Base_Wingletv4_Win.glf',VARSg,RUNDIR2); 
while 1 
 
    % Run gridgen 
    [status,output]=dos('"C:\Program Files (x86)\Pointwise\GridgenV15\Win32\bin\ ... 
 Gridgen" -b Work_Glyph.glf'); 
 
    if isempty(findstr('FLEXlm error',output))==1 break; end 
end 
 
 
% Test the mesh size by running a quick fluent 
if exist([RUNDIR '3D_grid.cas'])>0 
    make_winglet_log('Test_Log.log',alpha1,RUNDIR) 
 
    [s,test]=dos(['C:\Fluent.Inc\ntbin\win64\fluent 3d -r6.3.19 -t4 -ccp ... 

msnode-001 -hidden -i ' RUNDIR 'Work_Log.log']); 
 

    A=findstr(test,'hexahedral'); 
    B=findstr(test,'cells'); 
    if isempty(A)==0 & isempty(B)==0 
        test=test(A-9:A-1); 
            cells=str2num(test); 
    else 
            cells=1; 
    end 
 
 
% Run the two FLUENT evaluations 
    if cells==1313520 
        disp('mesh ok'); 
        make_winglet_log('Base_Log.log',alpha1,RUNDIR); 
 
        dos(['C:\Fluent.Inc\ntbin\win64\fluent 3d -t8 -r6.3.19 -ccp msnode-001 ... 

-hidden -i ' RUNDIR 'Work_Log.log']) 
 

        [CL1,ERROR1]=getlift(4000,RUNDIR) 
        [CD1,ERROR2]=getdrag(4000,RUNDIR) 
        make_winglet_log('Restart_Log.log',alpha2,RUNDIR); 
 
        dos(['C:\Fluent.Inc\ntbin\win64\fluent 3d -t8 -r6.3.19 -ccp msnode-001 ... 

-hidden -i ' RUNDIR 'Work_Log.log']) 
 
        [CL2,ERROR3]=getlift(7000,RUNDIR) 
        [CD2,ERROR4]=getdrag(7000,RUNDIR) 
        CD3=((CD2-CD1)/(CL2-CL1))*(targCL-CL1)+CD1 
 
% Save the output file containing lift and drag, and exit 
        if ERROR1 + ERROR2 + ERROR3 + ERROR4 ==0 save([RUNDIR ... 

'OUT_DATA.mat'],'CD3','targCL','time'); end 
    end 
     
    dos(['del ' RUNDIR '3D_grid.cas']); 
end 
end % end PASS if 
 
exit 
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As seen above, FLUENT is executed using a call to DOS. The FLUENT version used for the work in this 

thesis is v6.3.19. While the FLUENT host process is run on an interactive machine, the ccp flag -ccp 

msnode-001 is used to tell FLUENT to request the eight node processors from the compute cluster. 

MATLAB waits for this DOS command to finish before continuing the execution of the script. 

The geometry and mesh generation software, GRIDGEN, is run on the local interactive machine and its 

operation not submitted as a job on the cluster. GRIDGEN version 15.08 is used for the work in the 

thesis. As seen above, the software is run using a call to DOS. The flab -b is used for batch execution, and 

all commands are stored in the specified .glf file, in this case Work_Glyph.glf. Using the commands in the 

.glf file, GRIDGEN takes the input design variables for the wing-tip device, generates the geometry and 

mesh for this design, and outputs the mesh (.cas) file. MATLAB waits for this DOS call to finish, i.e., it 

waits for GRIDGEN to finish exporting the mesh file, before continuing the execution of the 

Spawn_EMFID.m script. 

The .glf file for the generation of the 3-D wing mesh is very long, and so it is not listed here. However, an 

example of the 2-D airfoil .glf file is given below. This is run in a very similar way, in the sense that 

GRIDGEN takes the input design parameters and outputs the .cas file. 

# Gridgen Journal File V1 (Gridgen 15.08 REL 1) 
# Created Tue May 30 15:11:52 2006 package require PWI_Glyph 1.6.8 
gg::memClear 
gg::aswDeleteBC -glob "*" 
gg::aswDeleteVC -glob "*" 
gg::aswSet "FLUENT" -dim 2 
gg::defReset 
gg::tolReset 
# Delay screen updates and checking for user input until script is finished. 
gg::updatePolicy DELAYED 
 
# Import data files 
gg::dbImport "Z:/EMFID2D_TT1/parallel1/Gridgen_Lower.dat" -type SEG 
gg::dbImport "Z:/EMFID2D_TT1/parallel1/Gridgen_Upper.dat" -type SEG 
set _DB(-1) [gg::dbGetByName -- {Gridgen_Upper-pcurve-1}] 
set _DB(-2) [gg::dbGetByName –- {Gridgen_Lower-pcurve-1}] 
 
# Fit a curve to LE points, using data file co-ords 
gg::dbCurveBegin -type CUBIC 
  gg::dbCurveAddPt [list 0.005137 0.012663 0] 
  gg::dbCurveAddPt [list 0.0035 0.0095058 0] 
  gg::dbCurveAddPt [list 0.002179 0.0063424 0] 
  gg::dbCurveAddPt [list 0.001188 0.0035921 0] 
  gg::dbCurveAddPt [list 0.000511 0.0015691 0] 
  gg::dbCurveAddPt [list 0 0 0] 
  gg::dbCurveAddPt [list 0.000511 -0.0016107 0] 
  gg::dbCurveAddPt [list 0.001188 -0.0036874 0] 
  gg::dbCurveAddPt [list 0.002179 -0.0065229 0] 
  gg::dbCurveAddPt [list 0.0035 -0.0097895 0] 
  gg::dbCurveAddPt [list 0.005137 -0.012955 0] 
set _DB(3) [gg::dbCurveEnd] 
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set _ggTemp_(1) [ggu::utilMergeDefaults [list 0 ] ""] 
unset _ggTemp_(1) 
set _ggTemp_(2) [list 0.005137 0.012663 0] 
set _ggTemp_(3) [gg::dbSplit $_DB(-1) -u $_ggTemp_(2)] 
set _DB(4) [lindex $_ggTemp_(3) 0] 
unset _ggTemp_(3) 
unset _ggTemp_(2) 
set _ggTemp_(4) [list 0.005137 -0.012955 0] 
set _ggTemp_(5) [gg::dbSplit $_DB(-2) -u $_ggTemp_(4)] 
set _DB(5) [lindex $_ggTemp_(5) 0] 
unset _ggTemp_(5) 
unset _ggTemp_(4) 
 
gg::conOnDBEnt [list \ 
    $_DB(3) \ 
    $_DB(4) \ 
    $_DB(5) \ 
  ] 
gg::dbEnable $_DB(-2) FALSE 
gg::dbEnable $_DB(-1) FALSE 
gg::dbEnable $_DB(3) FALSE 
gg::dbEnable $_DB(4) FALSE 
gg::dbEnable $_DB(5) FALSE 
set _CN(3) [lindex [gg::conGetAll] 2] 
set _CN(1) [lindex [gg::conGetAll] 0] 
set _CN(3) [gg::conJoin $_CN(3) $_CN(1)] 
set _CN(2) [lindex [gg::conGetAll] 0] 
set _CN(3) [gg::conJoin $_CN(3) $_CN(2)] 
set _CN(4) [gg::conSplit $_CN(3) [gg::conGetPt $_CN(3) -arc 0.5]] 
 
# No. points on each surface 
gg::conDim $_CN(3) 200 
 
# Upper LE spacing 
gg::conBeginSpacing $_CN(3) -sub 1 0.001 
gg::conEndSpacing $_CN(3) -sub 1 0.003 
gg::conDim $_CN(4) -dimension $_CN(3) 
gg::conBeginSpacing $_CN(4) -sub 1 0.003 
gg::conEndSpacing $_CN(4) -sub 1 0.001 
 
set _CN(4) [gg::conJoin $_CN(4) $_CN(3)] 
 
gg::domExtrusionBegin $_CN(4) -edge  -default HYPERBOLIC 
  gg::domExtrusionAtt -local 1 -flip 
  gg::domExtrusionAtt -local 1 -s_init 0.00045 
  gg::domExtrusionAtt -local 1 -growth_geometric 1.1 
  gg::domExtrusionAtt -stop_height 15 
  gg::domExtrusionStep 1 
  gg::domExtrusionAtt -local 1 -growth_geometric 1.2 
  gg::domExtrusionStep 200 
set _ggTemp_(1) [gg::domExtrusionEnd] 
set _DM(1) [lindex $_ggTemp_(1) 0] 
unset _ggTemp_(1) 
 
# Enforce **FIRST_CELL on TE 
set _CN(5) [lindex [gg::conGetAll] 1] 
gg::conBeginSpacing $_CN(5) -sub 1 0.00045 
 
# Run the pde solver on the domain to remove any negative volumes 
set _ggTemp_(1) [list $_DM(1)] 
gg::domEllSolverBegin $_ggTemp_(1) 
  gg::domEllSolverAtt $_DM(1) -edge [list 1] -spacing_calc 0.00045 
  gg::domEllSolverStep -iterations 1 -nodisplay 
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gg::domEllSolverEnd 
unset _ggTemp_(1) 
 
gg::blkBegin -type STRUCTURED 
  gg::faceBegin 
    gg::faceAddDom $_DM(1) 
  gg::faceEnd 
set _BL(1) [gg::blkEnd] 
gg::aswSetBC [list \ 
    $_CN(4) \ 
    ] \ 
  "Wall" 
set _CN(6) [lindex [gg::conGetAll] 2] 
gg::aswSetBC [list \ 
    $_CN(6) \ 
    ] \ 
  "Pressure Far Field" 
 
gg::aswExport "Z:/EMFID2D_TT1/parallel1/Airfoil2D.cas" -merge_blocks 
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