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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

MICROMAGNETIC SIMULATIONS OF MAGNETIC EXCHANGE
SPRING SYSTEMS

Jürgen Peter Zimmermann

Magnetic exchange spring systems are multi-layers or composites of magnetically
hard and soft materials that are exchange-coupled across their interfaces. In recent
years, research into exchange spring systems has flourished, with potential for ap-
plication in high-performance permanent magnets, GMR spin devices, magnetic
MEMS technology, and in magnetic data storage.

We investigate the magnetic properties of MBE grown superlattices with alter-
nating layers of magnetically hard rare earth-iron (DyFe2, ErFe2) and soft yttrium-
iron (YFe2) compounds. They are ideal model systems to study exchange spring
phenomena. We develop numerical models of the investigated systems and apply
micromagnetic simulations. The simulation code OOMMF is extended and used to
solve Landau-Lifshitz-Gilbert and Brown’s equations. This allows us to determine
the microscopic configuration of the magnetisation that is not directly accessible by
experiment.

Magnetic field-sweep measurements of a multilayered DyFe2/YFe2 system
show an unexpected triple switching of the magnetically hard DyFe2 layers. The
magnetisation of the hard magnetic layers reverse before the soft magnetic layers.
We reproduce the experimental hysteresis loops of the net and compound-specific
magnetisation by means of simulations and explain the switching behaviour.

Using similar numerical methods, we interpret experimental data on ErFe2/YFe2

multilayers. At sufficiently high fields, applied perpendicular to the multilayer film
plane, the energy is minimised by a multilayer spin flop. This is a particular spin
configuration where the magnetisation aligns with a direction perpendicular to the
applied field.

Taking the preceding findings further, we investigate multilayers of ErFe2/YFe2/
DyFe2/YFe2. We gain insight in the complex spin configurations in systems of dif-
ferent magnetically hard materials, with a pre-strung domain wall in the soft YFe2

layers. Varying the thickness of the YFe2 layers, we study the changing mutual
interference of the switching patterns in the ErFe2 and DyFe2 layers.
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Nomenclature

X Calligraphic capitals generally denote operators

x̂X̂ Bold hatted characters generally denote unit vectors, or spinors

xX Bold characters generally denote vector quantities

xX Normal non-bold characters generally denote scalar quantities

(nmo) Plane perpendicular to crystal direction [nmo]

[nmo] Crystal direction, e.g. [110] , page 35

αL/αG Landau-Lifshitz/Gilbert damping parameter, see equation (2.21), page 13

αn Cosine of an angle γn enclosed by a vector and the coordinate axis xn, page 31

m Magnetic moment

χ Spin part of quantum mechanical wave function of an electron, see equa-
tion (3.1), page 17

δ Bloch domain wall width, see equation (5.1), page 57

ε Strain tensor, see equation (3.83), page 36

γ Gyromagnetic ratio, see equation (2.4), page 10

γL/γG Gyromagnetic ratio for Landau-Lifshitz/Gilbert equation, see equation (2.21),
page 13

~ Reduced Planck’s constant; Planck’s constant h divided by 2π

H Hamiltonian operator

J Quantum mechanical exchange constant, see equation (3.20), page 20

|↑〉, |↓〉 Eigenfunctions of the one-electron spin system

µ0 Magnetic constant, permeability of free space

M̂ Unit vector pointing in the direction of the magnetisation
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S Spinor of spin angular momentum

∇ Napla operator

B Magnetic field (induction)

Bapp Applied field (induction)

H Magnetic field (strength)

Happ Applied field (strength) , see equation (2.23), page 14

Hd Dipolar or demagnetising field, see equation (2.23), page 14

J Resulting total angular momentum of a multi-electron system, see equa-
tion (2.7), page 11

j Total angular momentum (spin plus orbital momentum), page 11

L Resulting orbital angular momentum of a multi-electron system, see equa-
tion (2.7), page 11

l Orbital angular momentum

M Magnetisation vector

r Position vector

S Resulting spin of a multi-electron system, see equation (2.7), page 11

T Torque, see equation (2.9), page 12

∂xi Partial derivative in the direction of xi

Φ Potential function, see equation (3.105), page 41

φ Spherical coordinate, azimuth angle

φi,j Angle enclosed by vectors êi and êj , see equation (3.28), page 22

Ψ Quantum mechanical wave function of an electron, see equation (3.1), page 17

ψ Spatial part of quantum mechanical wave function of an electron, see equa-
tion (3.1), page 17

θ Spherical coordinate, zenith angle

K̃ ′′
nmo Second-order coefficients of the multipolar decomposition base functions of

the strain energy, see equation (3.85), page 36

K̃ ′
n First-order coefficients of the multipolar decomposition base functions of

the strain energy, see equation (3.84), page 36
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K̃n Coefficients of the multipolar decomposition base functions of the cubic
anisotropy energy, see equation (3.78), page 34

4 Laplace operator

ε0 Permittivity of free space

εa Anisotropy energy density, see equation (2.23), page 14

εd Dipolar or demagnetising energy density, see equation (2.23), page 14

εex Exchange energy density, see equation (2.23), page 14

εme Magnetoelastic energy density, see equation (3.84), page 36

εz Zeeman energy density, see equation (2.23), page 14

A Exchange constant, page 24

a Crystal cell base length

b2 Magnetoelastic coefficient, see equation (3.83), page 36

C Exchange constant, see equation (3.40), page 24

dxy, d242 Strain terms, page 37

E Total energy of a system

e Electron charge

E0 Constant energy contribution

Eex Exchange energy

g Landé factor or general g-factor, see equation (2.3), page 10

h Computational cell base length

Hb Characteristic bending field, see equation (5.4), page 60

J Resulting total angular momentum quantum number of a multi-electron
system, see equation (2.7), page 11

kB Boltzmann constant, see equation (A.2), page 111

Kn Uniaxial or cubic phenomenological anisotropy constants of order n

L Resulting orbital angular momentum quantum number of a multi-electron
system, see equation (2.7), page 11

l Orbital angular or azimuthal quantum number, see equation (2.6), page 10
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me Electron mass

ml Magnetic quantum number, see equation (2.6), page 10
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Chapter 1

Introduction

1.1 Nanotechnology — a historical context

Nanotechnology is the field of applied science and engineering that deals with the
control of matter on length-scales of nanometers, that is 1× 10−9 m. The word nano
is derived from the Greek νάνoς , meaning dwarf or tiny.

The hour of birth of nanotechnology arguably is marked by the talk There’s
Plenty of Room at the Bottom Nobel Prize winner Richard P. Feynman held on 26th

December 1959 at the American Physical Society meeting at the California Insti-
tute of Technology (Feynman, 1992). Feynman pondered the question of whether
it was possible to write the entire of the 24 volumes of the Encyclopaedia Britan-
nica on the head of a pin. He laid out the problems, and how they possibly could
be overcome, i.e. by use of electron beams. Going one step further, he envisioned
high performance computers built from miniaturised components, mass fabricated
by means of myriads of microscopic machines. The machines themselves should
be manufactured in a sequence of self-reproduction of iteratively downscaled and
multiplied copies of macroscopic originals. An advanced version of this concept
is now known as the bottom-up approach of nanotechnology: tiniest mechanical
or electromagnetic units like gears or coils are assembled from individual atoms as
smallest building blocks, and more complex structures or machines with unprece-
dented properties are then facilitated from these units.

In the following decades, tremendous progress was made in the field of nan-
otechnology, manifested e.g. in the exponential performance increase of computer
processors or hard disk drives. A selection of the most significant milestones that
enabled this progress is given subsequently: In the 1970s, Dehmelt (1989) invented
the Penning trap, a device to confine charged particles in an electric and a magnetic
field. This device enabled him to experiment on individual atomic elements at rest
(shared Nobel Prize in Physics in 1989). Binnig and Rohrer (1982, 1987) (shared No-
bel Prize in Physics in 1986) developed the Scanning Tunnelling Microscope (STM)
around 1982. A precursor version of the STM was built by Young et al. (1972). In
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Figure 1.1: Manipulation of individual atoms: cobalt atoms on a copper surface
forming the NIST logo. Courtesy of J. Stroscio, R. Celotta/NIST.

Figure 1.2: Visualisation of a carbon nanotube. The carbon atoms are located at
the vertices of the hexagons forming the tube. Courtesy of I. Fernandez
Rodriguez, University of Southampton.

an STM, a sharp tip is scanned over the metal surface of a probe. Weak electric
tunnelling currents flow from the surface to the tip, highly sensitive to the distance
in between. The detected currents are used to obtain an atomic-scale image of the
surface. The STM is widely used in both industrial and fundamental research.

In 1989, IBM researchers Eigler and Schweizer (1990) managed to write the letters
IBM on a nickel surface by locating and repositioning 35 individual xenon atoms,
proving that atoms —in spite of their quantum mechanical nature— can be bod-
ily manipulated. An image of individually processed cobalt atoms on a copper
surface resulting from a similar experiment by National Institute of Standards and
Technology (NIST) researchers Stroscio and Celotta (2004) is shown in figure 1.1.

Fullerenes are a family of carbon allotropes forming molecules of geometric
objects like spheres (Buckminsterfullerenes, or Buckyballs) and cylinders (Carbon nan-
otubes). Their discovery by Kroto et al. (1985) (Nobel Prize in Chemistry in 1986)
and Iijima (1991), respectively, opened up paths to new materials with properties
like high tensile strength, high electrical conductivity, high ductility, high resistance
to heat, and relative chemical inactivity. With an abundance of potential applica-
tions utilising these properties, carbon nanotubes (see figure 1.2 for a visualisation)
have become a focal point of popular science.

Generally, the achievements of nanotechnology have already found their way
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Figure 1.3: Components of a hard disk drive: Maxtor 80 Gbyte 3.5 inch model

into everyday life. To name a few applications existing or close to fruition,

• in automotive industry, car paint is used containing ceramic nano-particles in
order to increase resistivity against abrasions from car wash.

• microelectromechanical systems (MEMS) are used as accelerometers in airbag
deployment systems.

• latest digital cameras feature image stabilisation based on MEMS dual-axes
gyroscopes to detect and counteract natural hand jitter.

• with respect to clothing, fabrics are treated with nanotechnology to be water-
repellent as well as wrinkle, spill, stain, smell, and wear resistant.

• in medicine, the magnetic properties of nanoparticles are exploited in Mag-
netic Resonance Imaging (MRI), with high contrast efficacy for each particle;
diagnostics are enhanced by MEMS laboratory-on-a-chip technology; drug
delivery benefits from nano-particles functioning as molecular carriers; tis-
sue engineering can help to reproduce or to repair damaged tissue.

Another important application sector of particular interest in the context of this
thesis are magnetic storage media. They are described in more detail in the next
section.

1.2 Magnetic storage media

1.2.1 Hard disk drives

The hard disk drive is a magnetic storage device with a long history: the first com-
mercially viable product, the RAMAC (Random Access Method of Accounting and
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Figure 1.4: Sketch of a GMR read/write head in a hard disk drive while storing
information in the magnetic medium layer.

Control) was released 50 years ago in 1956 by IBM as a part of the IBM 305 RAMAC
computer (Albrecht et al., 2003). Since then, the basic design has hardly changed. In
figure 1.3, the components of a standard hard disk drive are depicted: a single disk,
the platter, or a set of platters, rotate around a spindle at high speeds (usually 5,400
to 7,200 rpm). An integrated read/write head flies over the spinning platter sur-
face. It is attached to the tip of an actuator arm, mounted on an actuator axis and
controlled by the actual actuator in diametrical opposition. Due to the high rota-
tional speed of the platter in relation to the tiny distance between platter and head,
impurities on the platter would result in a fatal head crash. The case seals the in-
terior of the drive and keeps it dust-free. Further hard drive components are the
drive electronics and the interface to the computer.

The platters are coated with a magnetic film on which the data are stored. The
read/write head follows circular tracks on the spinning platter. Figure 1.4 sketches
the read/write head in operation on a section of the track: to record information
bitwise, the write head magnetises successive areas along the track to one or the
opposite direction by generating a strong local magnetic field (perpendicular to
the film plane, or longitudinal, as in 1.4). The read head later retrieves the stored
information by detecting the stray field of a magnetised area. Strictly speaking,
modern read/write heads use an encoding method that translates zeros and ones
into patterns of magnetic flux reversals, and vice versa.

The magnetic film has a crystalline grain structure, where each grain is effec-
tively a single-domain nanomagnet of a size about 5 to 8 nm. A bit area typically
consists of 100 to 1000 grains with mostly homogeneous magnetisation. Fewer
grains in a bit area correspond to a worse signal-noise ratio, and a minimum num-
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ber of grains per bit area is required.
In spite of the unchanged overall design, progress in magnetic and spintronics

research has boosted the storage density. Most effective was the discovery of the
giant magnetoresistance (GMR) in 1988 by Fert and Grünberg (Baibich et al., 1988,
Binasch et al., 1989). A GMR device consists of a pinned and a free ferromagnetic
(FM) layer, separated by a thin non-ferromagnetic spacer, and an antiferromagnetic
(AFM) pinning layer, with sidewise contacts. The electrical resistance of a current
flowing through the layers strongly depends on the relative orientation of the mag-
netisation in the two ferromagnetic layers, that is, the magnetisation direction of the
free layer. Hence, the device is an extremely sensitive field detector. IBM became
the first licensee of GMR in 1995 and launched its first product in 1997.

The development of new hard disk drives with increased storage densities faces
the problem of the superparamagnetic limit: with shrinking bit sizes (and, in-
evitably, shrinking grain sizes because of noise issues), the magnetisation of the
grains becomes thermally unstable, with random reversal processes and loss of
data. So far, the hard disk manufacturers have been able to push the limits by
means of perpendicular recording and other advanced techniques: in September
2007, Toshiba Corporation (2007) boosted capacity to a record-breaking 120 Gbyte on
a single 1.8-inch platter, taking the storage density to 333 Gbits per square inch.
Nonetheless, the superparamagnetic limit ultimately promotes an intensified re-
search towards new approaches.

1.2.2 Magnetoresistive random access memory

Magnetoresistive random access memory (MRAM) is a new generation of memory
that combines the advantages of conventional dynamic random access memory
(DRAM) and hard disk drives: information is stored in a non-volatile way — bits
stay persisted without requiring an electric current — and is written and retrieved
directly without any mechanically moving parts (Koltsov and Perry, 2004). This is
achieved by exploiting the spin properties of matter rather than the charge, as in
the case of DRAMs.

In an MRAM, information is stored bitwise in magnetic tunnelling junctions
(MTJs), the memory cells (see left side of figure 1.5 on the next page): each cell
consists of a FM layer with a magnetisation pinned by an adjacent AFM layer, a
thin insulating spacer, and another FM layer that adapts its magnetisation to an
external field (the storage layer). The magnetisation direction of the storage layer
encodes the information bit. It is written by close-by electric currents that induce a
sufficiently high inductive field to adjust the magnetisation direction. The read-out
works on the basis of spin-current effects. When a current is directed through the
memory cell, the pinned FM layer acts as a spin filter, and the storage layer as a
spin detector. The resistance depends on the direction of the magnetisation in the
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Figure 1.5: MRAM. Left: a single memory cell, consisting of an AFM pinning
layer (black), a pinned FM layer (red), a spacer layer (light blue), and
a free FM layer (yellow), sandwiched between a word line and a bit
line. Right: 2D grid of word lines (running from front left to back right)
and bit lines (running from front right to back left), with memory cells
at each crosspoint. The circle marks the memory cell depicted in a close-
up view to the left. The white arrows indicate the path of the read-out
current through a given memory cell.

storage layer. In contrast to the GMR head of subsection 1.2.1, where the current is
applied in-plane and the spacer layer is metallic, the current is applied through the
layers for an MTJ and the spacer layer is an insulator.

The complete MRAM is a 2D grid of nanowire contacts — the criss-crossing
word and bit lines (see right side of figure 1.5), with memory cells at each cross-
point. An individual cell is addressed by use of the corresponding word and bit
line (in an xy coordinates fashion).

In July 2006, Freescale, a leading semiconductor company, started selling the
first commercial MRAM module, with 4 Mbits of memory. At this stage, it is a
niche product. However, it is the first realisation of a spintronics device, and next-
level modules are targeted for the coming years.

1.2.3 Magnetic racetrack memory

The magnetic racetrack memory is a third concept of a magnetic storage device.
It also utilises magnetic and spin-current effects for non-volatile data storage, but
unlike the hard disk drive and the MRAM, the magnetic racetrack memory stores
information in a three-dimensional fashion to greatly expand the storage capacity.

The racetrack is a thin U-shaped magnetic nanowire standing on end above the
surface of a silicon wafer (see figure 1.6 on the next page). Along the nanowire
are magnetic domains, separated by domain walls that effectively encode the in-
formation. The domain walls are moved up and down the racetrack by applying
pulses of spin-polarised current to either end of the racetrack (1.6a and b). The
domain wall motion, also referred to as massless motion, is a consequence of the
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Figure 1.6: Magnetic racetrack memory: U-shaped nanowire (racetrack) on a sili-
con base with the read and the write head. The blue and red areas on
the racetrack relate to magnetic domains magnetised in one or the oppo-
site direction. a) spin current pulses applied from the left — clockwise
domain wall motion. b) spin current pulses applied from the right —
anticlockwise domain wall motion.

so-called spin-torque effect. Equidistant notches (not visible in 1.6) along the race-
track keep the magnetic domains the same size, and the current pulses move them
along from notch to notch. Information is written and read by a read and a write
head at the bottom of the race track on the silicon base. The read head is a magnetic
tunnel junction that incorporates a small adjacent section of the racetrack as its free
FM layer. A current applied through the read head then varies with the magnetic
domain in the adjacent racetrack section. Bits are written into the racetrack by a
magnetic fringing field from moving domain walls in the write head. The single
racetrack is part of an arrangement of numerous interconnected nanowires, form-
ing a 3D storage medium with capacities beyond existing 2D storage devices.

The magnetic racetrack memory was proposed by Dr Stuart Parkin and col-
leagues at IBM’s Almaden Research Center in San Jose, USA, who hold several
patents for the technology (Parkin, 2004). First prototypes exist, but the project is
still in an early development phase, several years away from a commercially viable
product.
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1.3 Summary

Rapid progress was made in the field of nanotechnology through a succession of
landmark discoveries, laying the foundations for the development of variety of
nano-products and applications. At the intersection of nanotechnology and mag-
netism is the development of magnetic storage devices: hard disc drives represent
an indispensable element of modern computer systems. Their storage density has
substantially increased in the last 50 years, but is gradually approaching a physi-
cal upper limit. Alternative concepts are already devised, two of them being the
MRAM and the magnetic racetrack memory.

Exchange spring systems have been proposed to enhance the characteristics of
magnetic data storage. The objective of this work is the research into multilayered
exchange spring systems of compounds of rare earth and transition metals, namely
DyFe2, ErFe2, and YFe2. Below we list the structure of the thesis.

In chapter 2, the quantum mechanical origin of the magnetic moment of atoms
is discussed. The equations are recapitulated that determine the quasi-static equi-
librium state and the evolution of a magnetic system.

Chapter 3 highlights the concept of micromagnetics and the relevant interac-
tions and energies controlling the magnetic behaviour of matter on a nanometre
length-scale. This knowledge is required for the use and understanding of a micro-
magnetic simulation code, and for the interpretation of results obtained by numer-
ical simulations.

Chapter 4 presents a simulation code for discrete molecular dynamical mag-
netism, molesim, and the standard simulation code used in this thesis, OOMMF.
Both codes are applied to a number of test cases, and the results are compared.

In chapter 5, magnetic exchange spring systems are introduced and the relevant
key findings are outlined.

Unexpected reversal modes of multilayered DyFe2/YFe2 systems observed in
experiments are unravelled by means of micromagnetic simulations in chapter 6.

Chapter 7 investigates the switching modes of multilayers of ErFe2/YFe2 by
means of measurements and micromagnetic simulations.

In chapter 8, a configurable multilayered system of ErFe2/YFe2/DyFe2/YFe2

with a variable YFe2 separation layer thickness is considered. Aspects of the sepa-
rate ErFe2 and DyFe2 systems of the preceding two chapters are taken to a gener-
alised form. A mapping of the switching regimes concludes this chapter.

The overall results are finally summed up in chapter 9, and an outlook for future
research is provided.
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Chapter 2

Computational micromagnetics

2.1 Introduction

The simulations presented in this thesis are based on a theory called micromagnetics.
The central idea of micromagnetics is the transition from a discrete atomic structure
to a continuous material. Rather than expressing the energy by considering the
magnetic interactions of discrete particles inside a lattice with each other and with
an external applied field, the magnetisation — and subsequently the energy — is
defined on every point inside a domain. Thus, the magnetisation can be taken as
a continuous function of space, and numerical methods can be applied (Aharoni,
2000, p. 174).

The relevant equations in this context are the equivalent Landau-Lifshitz and
Gilbert equations, and Brown’s static equations, discussed in sections 2.3 and 2.4,
respectively. A proper understanding of the electron magnetic moment is a key is-
sue in the derivation of the equations. For this reason, we first elucidate the quan-
tum mechanic origin of the magnetic moment in section 2.2

2.2 Quantum mechanic origin of the magnetic moment

The classical Bohr consideration of an electron (charge e, mass m0) orbiting around
a nucleus results in an equation defining the relationship between the magnetic
moment m and the orbital angular momentum l (Haken and Wolf , 1990):

m = − e

2m0
l . (2.1)

The magnetic moment can be expressed in terms of the Bohr magneton µB, which
is defined as the magnetic moment of an electron with an angular momentum |l|
equal to the reduced Planck’s constant, ~ = h

2π = 1.054571 · 10−34 Js. This is the
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magnetic moment of an electron on the first Bohr orbit of a hydrogen atom:

µB =
e

2m0
~ ≈ 9.274078 · 10−24Am2 . (2.2)

Equation (2.1) can be rewritten in terms of µB. We allow for arbitrary types of
angular momenta (spin or orbital), and replace l by the general orbital momentum
j:

m = −g µB
j

~
. (2.3)

This equation contains the so-called general g-factor, or Landé factor, g, which mea-
sures the ratio of the magnetic moment (in Bohr magnetons) to the angular mo-
mentum (in terms of ~). The Landé factor reflects the different nature of the types
of angular momenta in j, and provides the generality of equation (2.3) for spin as
well as orbital momenta we permitted earlier. When a specific Landé factor for a
given angular momentum is stated, a subscript is used for g: for an orbital angular
momentum of an electron, gl is 1, so that equation (2.1) holds.

By introducing the gyromagnetic ratio γ with

γ = g
µB

~
, (2.4)

equation (2.3) can be rewritten as

m = −γj . (2.5)

As γ depends on g, it also depends on the type of the angular momentum, i.e. spin
or orbital.

If an external field is applied (e.g. in z direction), then the orbiting electron
reacts like a mechanical gyroscope: the angular momentum of the electron starts
a precession movement around the direction of the external field (and so does the
magnetic moment). The direction of the angular momentum of the electron, as
well as the direction of the corresponding magnetic moment, is not arbitrary due
to quantum physical effects. Instead, it must be aligned to the reference direction
of the external field in a way that for the z component lz of the orbital angular
momentum l

lz = ml~ with ml = 0,±1,±2...± l . (2.6)

While ml is the magnetic quantum number, l denotes the orbital angular or az-
imuthal quantum number, which is the maximum lz value of the orbital angular
momentum vector with l2 = l(l + 1) ~2.

For a single electron with spin only, the Landé factor g is≈ 2. However, usually
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one has to consider a mixture of spin and orbital angular momenta, where both
momenta couple to a total angular momentum j. The method of coupling is deter-
mined by the strength of the applied magnetic field. For a comparatively weak field
acting on a multi-electron atom, the angular momenta of the electrons show LS

coupling: first, the individual electron spins si couple to a total spin S. The same
way, the individual orbital angular momenta li couple to a total orbital angular
momentum L . Finally, S and L couple to an overall total angular momentum J .
The corresponding quantum numbers, S,L, J are the lengths of the projection of
the momenta on a preferred direction z, stated in units of ~. The specific Landé
factor gj then is

gj = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.7)

As matter in general is considered in this context, it is not possible to derive the
Landé factor by means of quantum physics from quantum numbers. Instead, it is
assumed to be a constant whose value is taken from experiments.

2.3 Landau-Lifshitz and Gilbert equations

The Landau-Lifshitz equations (as well as the equivalent Gilbert equations) de-
scribe the dynamical behaviour of a magnetisation M which is exposed to an ef-
fective field Heff . The original paper of Landau and Lifshitz (Landau and Lifshitz,
1935) presented a theory of the domain wall behaviour. However, their approach
was completely general and could be applied to micromagnetics, a concept which
did not emerge before 1963, roughly 28 years after the paper of Landau and Lifshitz
was published. The approach is to generalise the equilibrium condition of a van-
ishing torque, T = µ0 [M ×Heff ], and to introduce a damping term. The resulting
equations are (Kronmüller and Fähnle, 2003)

dM

dt
= −µ0 γL [M ×Heff ]− αL

|M |
[M × [M ×Heff ]] , (2.8)

where µ0 = 4π · 10−7 N/A2 denotes the permeability of free space (also known
as the magnetic constant), αL the Landau-Lifshitz damping parameter, and γL is
the gyromagnetic ratio that fits with the equation. The movement of the magneti-
sation vector is a precession around the magnetic field direction, with a gradual
relaxation of M towards Heff as a result of the damping. Given an initial state, the
Landau-Lifshitz equations are suitable for a temporal evolution. The remainder of
this section derives equation (2.8) and shows the equivalence of Landau-Lifshitz
and Gilbert equations.
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2.3.1 Derivation of the equations

The torque T acting on a magnetic dipole moment m in an effective field Heff is
given by (Jackson, 1999)

T = µ0 [m×Heff ] =
dJ

dt
, (2.9)

with the magnetic constant µ0 and a total angular momentum of the system J .
Recalling that the magnetisation M is defined as the total dipole moment m in a
volume V ,

M =
m

V
, (2.10)

equation (2.9) reads

T = µ0 [M ×Heff ] V =
dJ

dt
. (2.11)

The torque T results in a change of the angular momentum J . For an equilibrium
condition, one normally demands the torque to vanish. However, for a dynamic
view, this is not required. We relate the angular momentum to the magnetisation
by the gyromagnetic ratio γ. For one electron, the relation is given by equation (2.5)
with an explicit γ. Since we want to keep generality, we write the relation in terms
of an arbitrary angular momentum J rather than a specific electron momentum j:

m = −γ J

J = −1
γ

m = −1
γ
VM . (2.12)

We define

γ̄ = −γµ0 = −gµB

~
µ0 ≈ −1.1051 g 105 m

As
(2.13)

using equation (2.4) and apply equation (2.12) to (2.11). This results in

dM

dt
= γ̄ [M ×Heff ] , (2.14)

a precessional movement of the magnetisation around the effective magnetic field.
In order to consider damping processes, Landau and Lifshitz introduced a term
that is orthogonal to the term [M ×Heff ] and drags M into the direction of the
effective field (Landau and Lifshitz, 1935). With the damping term, the equation
becomes the previously stated Landau-Lifshitz equation (2.8).

In the Landau-Lifshitz formulation (2.8), the relaxation motion of the magneti-
sation vector is accelerated when the damping parameter αL is increased. Gilbert
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found this counterintuitive and proposed an alternative damping term which is
orthogonal to the precessional movement of M (Gilbert, 1955):

dM

dt
= γG [M ×Heff ]− αG

M

[
M × dM

dt

]
, (2.15)

where an alternative damping term αG
M and gyromagnetic ratio γG is used. The way

how this formulation complies with Gilbert’s original intention will be explained
at a later stage after deriving equation (2.21).

2.3.2 Equivalence of the equations

We will now prove that the Landau-Lifshitz and the Gilbert equations are consis-
tent despite the use of differing damping terms. For this, we insert the complete
equation (2.15) into the term dM

dt on the right hand side of the equation (2.15),

dM

dt
= γG [M ×Heff ]

−αG

M
γGM × [M ×Heff ] +

αG
2

M2
M ×

[
M × dM

dt

]
, (2.16)

applying the linearity properties of the vector product,

a× [b + c] = a× b + a× c . (2.17)

With Lagrange ’s formula

a× [b× c] = (a · c) b− (a · b) c (2.18)

we get

dM

dt
= γG [M ×Heff ]− αG

M
γG [M × [M ×Heff ]]

−αG
2

M2

[
M2 dM

dt
−
(

dM

dt
·M

)
M

]
. (2.19)

As |M | is constant, it follows that dM
dt ⊥ M , and the last scalar product vanishes.

Finally, dM
dt is isolated on the left side of the equation, and the final state is

dM

dt
=

γG

1 + αG
2

[M ×Heff ]− αGγG

(1 + αG
2)M

[M × [M ×Heff ]] . (2.20)

With the replacements

γL =
γG

1 + αG
2

, αL =
αGγG

1 + αG
2

= αGγL , (2.21)
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the Gilbert equation (2.15) is transformed to the Landau-Lifshitz equation (2.8).
From (2.21), we see that Gilbert’s original motivation to use a damping term that
slows down the relaxation is reflected in the reciprocal relationship of αL and αG.

2.4 Brown’s equations

By writing down the magnetic Gibbs free energy, which is composed of a set of en-
ergies listed below, Brown derived a set of equations under the assumption of mi-
cromagnetics (Brown, 1963). In other words, Brown’s equations express the energy
E as a function of a continuous magnetisation M(r) with a constant magnitude
|M | (Aharoni, 2000, chap. 8.3):

E =
∫
V

[εex + εa + εz + εd] dV (2.22)

=
∫
V

[
1
2

C

|M |2
(∇ ·M)2 + εa − M ·Happ − 1

2
M ·Hd

]
dV .(2.23)

The integral runs over the volume of the ferromagnetic body. The constituent en-
ergies will be discussed in detail in chapter 3. They are (from left to right)

• exchange energy (density εex) due to the interaction of the spins of the next
neighbours (section 3.2)

• volume anisotropy energy due to the crystal structure with easy/hard axes,
with εa denoting the energy density inside the specimen (section 3.3)

• Zeeman energy (density εz) due to an applied external field Happ (section 3.4)

• stray field energy or demagnetising energy (density εd) due to the dipolar
nature of the individual magnetic particles that produce the stray field Hd

(section 3.4)

The anisotropy energy term εa can be specified for a given symmetry, i.e. uniaxial
or cubic symmetry. This depends on the crystal type of the specimen material. The
demagnetising energy is the only long-ranging interaction and is computationally
most demanding.

Expression (2.22) determines the energy if M(r) is known. However, the objec-
tive usually is to find the configuration M(r) that minimises the energy and that
corresponds to the thermodynamic equilibrium. One approach is to apply varia-
tional methods on (2.22). When small variations of the magnetisation are consid-
ered, the following equation can be derived (Aharoni, 2000, chap. 8.3):
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M ×
(

C

|M |2
(∇ ·M)2 + |M | (Happ + Hd)− |M | ∂εa

∂M

)
= 0 . (2.24)

Equation (2.24) is known as Brown’s differential equation. In an equilibrium state,
the magnetisation is parallel to an effective field that points into the direction of the
vector term enclosed by the brackets.
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Chapter 3

Magnetic interactions

The findings on the anisotropy of MBE-grown rare earth compounds described in
sections 3.3.4 and 3.3.6 have been published in Journal of Physics: Condensed Matter
(Bowden et al., 2006, Martin et al., 2006a). The thesis author’s contribution lies in
the verification of the calculated anisotropy constants by means of micromagnetic
simulations.

3.1 Introduction

In this chapter, we go into details about the different energy constituents of Brown’s
equation (2.22). Thus, we provide the foundations to program, use, and extend
micromagnetic simulation code, and to interpret and understand the results.

First, the exchange energy is considered in section 3.2. An equation is derived
from quantum mechanical principles that describes the exchange energy of a pair
of electrons (3.2.1). This equation is transformed into a form that is suitable in the
context of micromagnetics, where the relevant quantities are continuous functions
of space (3.2.2). Next, the energy equation is discretised for application in finite
difference simulation codes (3.2.3).

In section 3.3, we explain different types of magnetic anisotropy, uniaxial and
cubic (3.3.1 to 3.3.4), and point out the implications for the cubic anisotropy when
the magnetic material is grown by molecular beam epitaxy (MBE) with a [110]
growth direction (3.3.5). We find that an additional strain term has to be taken
into account (3.3.6).

Finally, the relevant equations for the Zeeman and dipolar energies are dis-
cussed in section 3.4.

3.2 Exchange energy

The conduction energy band and the energy band of the valence electrons overlap
in conductors, so that a fraction of the valence electrons can freely move around
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the solid state as conduction electrons (Kittel, 1996, chap. 7). The remaining va-
lence electrons are bound to the ions inside the lattice. Their quantum mechanical
wave functions extend to a distance of the respective nucleus depending on the or-
bital they are allocated at. Thus, they overlap with electrons of neighbouring ions,
causing an additional energy term that is purely of quantum mechanical nature
and that has no classical equivalent.

It will be shown that the exchange interaction favours alignment of neighbour-
ing electron spins. This energy is extremely short-ranged, as the electron wave
function decays exponentially. Together with the long-ranged dipolar interaction,
the exchange interaction is responsible for the formation of domains, a phenomenon
that stretches to almost macroscopic length-scales. In this respect, the observation
of domains reveals the quantum mechanical foundation of nature.

3.2.1 Quantum mechanic origin

The fundamental reason for the existence of exchange interaction is the nature of
the electrons: electrons are fermions — particles, whose spin is

(
n+ 1

2

)
~, with ~

being the reduced Planck’s constant, and n being a non-negative integer. This im-
plies that the wave function is antisymmetric, and that the Pauli exclusion principle
applies. Keeping this in mind, we can now derive the relevant equations for the en-
ergy associated with the exchange interaction (Blundell, 2001, chap. 4). In the first
instance, the interaction of two electrons is considered.

Let us assume Ψa(r1) and Ψb(r2) are the wave functions of separated electrons,
being in spin state a, and b, respectively. Each wave function Ψ(r) consists of a
spatial part ψ(r) and a spin part χ,

Ψ(r) = ψ(r)χ . (3.1)

The normalised wave function of a two-electron system must still be antisymmet-
ric, and thus is either

ΨS(r1, r2) =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1) ]χS , (3.2)

with a symmetric spatial part and an antisymmetric spin part, or

ΨT(r1, r2) =
1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1) ]χT , (3.3)

with an antisymmetric spatial part and a symmetric spin part. The index S stands
for singlet, because an antisymmetric spin part χS corresponds to a vanishing total
spin (total spin quantum number S = 0). Accordingly, the index T denotes a triplet
state with symmetric spin part χT and S = 1.
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Now we want to describe the energy of a two-electron system. The Hamiltonian
for the electron pair is

Hpair = − ~2

2me
∇2

1 −
~2

2me
∇2

2 + V1 + V2 +
e2

4πε0|r1 − r2|2

= H0 +
e2

4πε0|r1 − r2|2

= H0 +Hex (3.4)

with ε0 being the permittivity of free space, e the electron charge, and me the elec-
tron mass. The Hamiltonian fragment H0 contains the kinetic energies as well as
the potential energies of the electrons in the electric field of the nuclei - the energies
of two isolated electrons. The part of the Hamiltonian representing the electron
interaction, Hex, is the interesting one in this context. It is supposed to be small
compared to H0, and is treated by perturbation methods.

Generally, the energy of a wave function is the expectation value of the Hamil-
ton operator H:

E =
∫ ∑

spin states

Ψ∗(r)HΨ(r) dr (3.5)

When we apply (3.5) on the Hamiltonian Ĥpair, the summation over all the spin
states can be isolated, and results in a factor of 1. This is because the Hamil-
tonian does not act on the spin function, and the spin functions are normalised
(
∑

states χ
∗χ = 1). We get

E = E0 +
∫
ψ∗(r)Hexψ(r) dr = E0 + Eex . (3.6)

It is emphasised that the remaining spatial wave function still depends on the spin
state (singlet or triplet) because of the symmetry assumptions of (3.2) and (3.3).

In the following, we are only interested in the energy term Eex, as only this
term describes the interaction of the two electrons. In order to evaluate this energy
term for the given wave functions (3.2) and (3.3), a brief recap of some essentials of
spinor theory is necessary.

The spin angular momentum operator S is defined as a spinor

S =


Sx

Sy

Sz

 (3.7)
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with the components being matrices

Sx =
1
2

(
0 1

1 0

)
, Sy =

1
2

(
0 −i
i 0

)
, Sz =

1
2

(
1 0

0 −1

)
. (3.8)

The operator components of S are used to determine the observables of a spin
system, which are the eigenvalues of the operators. For example, the observable
ms of a spin pointing along the z direction is

ms = ±1
2

, (3.9)

corresponding to the eigenfunctions |↑ 〉 =

(
1

0

)
and |↓ 〉 =

(
0

1

)
, because

Sz|↑ 〉 =
1
2
|↑ 〉, Sz|↓ 〉 = −1

2
|↓ 〉 . (3.10)

In this spinor notation, the Hamiltonian Hspin of two electrons a and b is given by

Hspin = ASa · Sb . (3.11)

The constant A of the spin interaction will be substituted later by means of the
singlet and triplet state energies. The total spin Stot is represented by

Stot = Sa + Sb . (3.12)

The square of Stot is

(
Stot

)2 =
(
Sa
)2 +

(
Sb
)2 + 2Sa · Sb , (3.13)

and the Hamiltonian finally is

Hspin =
A

2

((
Stot

)2 − (Sa
)2 − (Sb

)2)
. (3.14)

In order to find the eigenvalues of this Hamiltonian, we determine the eigenvalues
of each constituent of equation (3.14). Since

S2
x = S2

y = S2
z =

1
4

(
1 0

0 1

)
=

1
4
1 , (3.15)

the eigenvalue of S2
x , S2

y , S2
z is 1

4 , and the eigenvalue of S2 = S2
x + S2

y + S2
z is 3

4 . The
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eigenvalue of Stot2 is S(S + 1), so that the eigenvalues of Hspin are

Espin =
A

2

[
S(S + 1)− 3

2

]
. (3.16)

This leads to the energy levels for the singlet (S = 0) and triplet (S = 1):

ET =
1
4
A, ES = −3

4
A , (3.17)

and the spin Hamiltonian (3.11) can be written in terms of the singlet and triplet
energies,

Hspin = (ET − ES) Sa · Sb . (3.18)

Under the assumption of localised electrons in orthogonal orbitals, it is legitimate
to assume that the Hamiltonian Hex of weakly interacting electrons (3.4) provides
the same eigenvalues as an effective Hamiltonian of the form (3.18) (Herring, 1963)
with

Heff = −2J Sa · Sb , (3.19)

whereJ is the exchange constant, being defined as one half of the energy difference
of singlet and triplet:

J =
ES − ET

2
= −1

2
A . (3.20)

Now we express J in terms of the wave functions. Therefore, it is necessary to
rewrite the exchange energy of a singlet and triplet by using equations (3.2), (3.3),
and (3.6):

Eex
S =

∫∫
ψ∗S(r1, r2)HexψS(r1, r2)dr1dr2

=
1
2

∫∫
[ψ∗a(r1)ψ∗b(r2)Hexψa(r1)ψb(r2)

+ψ∗a(r1)ψ∗b(r2)Hexψa(r2)ψb(r1)

+ψ∗a(r2)ψ∗b(r1)Hexψa(r1)ψb(r2)

+ψ∗a(r2)ψ∗b(r1)Hexψa(r2)ψb(r1)] dr1dr2 , (3.21)
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Eex
T =

∫∫
ψ∗T(r1, r2)HexψT(r1, r2)dr1dr2

=
1
2

∫∫
[ψ∗a(r1)ψ∗b(r2)Hexψa(r1)ψb(r2)

−ψ∗a(r1)ψ∗b(r2)Hexψa(r2)ψb(r1)

−ψ∗a(r2)ψ∗b(r1)Hexψa(r1)ψb(r2)

+ψ∗a(r2)ψ∗b(r1)Hexψa(r2)ψb(r1)] dr1dr2 . (3.22)

Hence the energy difference can be written as

Eex
S − Eex

T =
∫∫

[ψ∗a(r1)ψ∗b(r2)Hexψa(r2)ψb(r1)

+ ψ∗a(r2)ψ∗b(r1)Hexψa(r1)ψb(r2)] dr1dr2 . (3.23)

As the exchange Hamiltonian (3.4) is symmetric regarding exchange of r1 and r2,
we get the energy difference

Eex
S − Eex

T = 2
∫∫

[ψ∗a(r1)ψ∗b(r2)Hexψa(r2)ψb(r1)] dr1dr2 , (3.24)

and the exchange constant J finally is

J =
∫∫

[ψ∗a(r1)ψ∗b(r2)Hexψa(r2)ψb(r1)] dr1dr2 . (3.25)

According to the definition of J in (3.20), a positive value of J means that the
triplet state (S = 1) with spins in parallel alignment is favoured, and vice versa.
Equation (3.19) was derived for two electrons. For atoms with many electrons, the
valence electrons provide the vast majority of the exchange interaction, as electrons
of inner shells are tightly bound to the nucleus and do not overlap with electrons
of other atoms. Still, the problem usually involves more than two electrons, but the
assumption is that the overall Hamiltonian is made up by the Hamiltonians of the
interacting pairs, resulting in the so-called Heisenberg Hamiltonian

HH = −
∑
i,j

Jij Si · Sj , (3.26)

where Jij is the exchange constant of the electron pair (i,j) with spins Si and Sj .
The factor of 2 is omitted because the summation accounts twice for each pair.

3.2.2 Continuum approximation

The considerations of section 3.2.1 were based on the existence of individual atoms
and the associated spins of their electron wave functions. However, there is the
necessity to transform the discrete equation (3.26) to a form that is applicable to a
continuous material. This transition is the core of micromagnetics: the atomic struc-
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ture of matter is ignored and the magnetisation vector is taken as a continuous
function of space (Brown, 1963).

Since the exchange interaction is strong on short ranges, and since the exchange
interaction tries to align spins, the difference of the spin directions of neighbour-
ing particles is assumed to be sufficiently small. For the derivation, it is further
assumed that the material is homogeneous, or in other words, the spin magnitude
does not differ (but the spin direction does).

The spins of N particles, Si with i ≤ N , are regarded as classical vectors (hence
the omission of the calligraphic operator font for the Si). The spins interact and pro-
vide an additional energy term which is represented by the Heisenberg exchange
Hamiltonian HH in equation (3.26). Under the assumption of a constant J = Jij ,
this equation reads

HH = −J
∑
i,j

Si · Sj . (3.27)

Knowing that the exchange energy is extremely short-ranged, only nearest neigh-
bour pairs are included for a good approximation. The energy Eex is the expecta-
tion value of HH,

Eex = 〈HH〉 = −J S2
∑

neighbouring i,j

cosφi,j , (3.28)

with φi,j being the angle formed by the classical spin vectors Si and Sj , and S being

|Si| = |Sj |. The cosine is approximated by cosφi,j ≈ 1− φ2
i,j

2 for φi,j � 1, so that

Eex = const +
1
2
J S2

∑
neighbouring i,j

φ2
i,j . (3.29)

We disregard the constant energy term, because only relative energy differences
matter, rather than the absolute energy. Next, we substitute the angle φi,j . For any
small angle, the length of a circle segment can be approximated by the length of the
direct connection of the segment points. So for all unit vectors êi, êj enclosing an
angle φi,j ,

|êij | = |êj − êi| ≈ |^(êi, êj)| = |φi,j | . (3.30)

We now introduce unit vectors M̂ i = M̂(ri) = M (ri)

|M (ri)|
. These are vectors which

are defined at the locations of the particles, where they are aligned with the respec-
tive spin directions. However, we generalise the discrete vectors by introducing a
vector function M̂(r), which is defined everywhere within the material, and the
vector at the particle location is parallel to the particle spin (micromagnetic ap-
proach). The vector function M̂ j at a point rj can be expressed by a Taylor expan-
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sion around a particle location ri (Bronstein and Semendjajew, 1989, p. 565):

M̂ j = M̂ i + (rij ·∇)M̂ i + . . . (3.31)

where rij = rj − ri. Inserting (3.31) into (3.30), we get

|φi,j | ≈ |M̂ j − M̂ i| ≈ | (rij ·∇) M̂ i | , (3.32)

and equation (3.29) becomes

Eex =
1
2
J S2

∑
neighbouring i,j

[
(rij ·∇) M̂ i

]2
. (3.33)

This summation includes each pair of particles twice. Alternatively, the summation
can consider each interacting pair once, and a factor of 2 compensates for this:

Eex = J S2
∑

i

∑
neighbouring j

[
(rij ·∇) M̂ i

]2
. (3.34)

Making use of the acronym ∂x,y,z = ∂
∂x,y,z , the addend

[
(rij ·∇) M̂ i

]2
is expanded:


rij,x∂xM̂i,x + rij,y∂yM̂i,x + rij,z∂zM̂i,x

rij,x∂xM̂i,y + rij,y∂yM̂i,y + rij,z∂zM̂i,y

rij,x∂xM̂i,z + rij,y∂yM̂i,z + rij,z∂zM̂i,z

 ·


rij,x∂xM̂i,x + rij,y∂yM̂i,x + rij,z∂zM̂i,x

rij,x∂xM̂i,y + rij,y∂yM̂i,y + rij,z∂zM̂i,y

rij,x∂xM̂i,z + rij,y∂yM̂i,z + rij,z∂zM̂i,z



= r2ij,x(∂xM̂i,x)2 + r2ij,y(∂yM̂i,x)2 + r2ij,z(∂zM̂i,x)2

+2rij,xrij,y∂xM̂i,x∂yM̂i,x + 2rij,xrij,z∂xM̂i,x∂zM̂i,x + 2rij,yrij,z∂yM̂i,x∂zM̂i,x

+r2ij,x(∂xM̂i,y)2 + r2ij,y(∂yM̂i,y)2 + r2ij,z(∂zM̂i,y)2

+2rij,xrij,y∂xM̂i,y∂yM̂i,y + 2rij,xrij,z∂xM̂i,y∂zM̂i,y + 2rij,yrij,z∂yM̂i,y∂zM̂i,y

+r2ij,x(∂xM̂i,z)2 + r2ij,y(∂yM̂i,z)2 + r2ij,z(∂zM̂i,z)2

+ 2rij,xrij,y∂xM̂i,z∂yM̂i,z + 2rij,xrij,z∂xM̂i,z∂zM̂i,z + 2rij,yrij,z∂yM̂i,z∂zM̂i,z .

(3.35)

In order to proceed with explicit calculations, we assume a specific grid type, in
this case a simple cubic lattice. Each grid point i has six next neighbours j which
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are located at the relative positions rij

ri1 =


a

0

0

 , ri2 =


−a
0

0

 , ri3 =


0

a

0

 ,

ri4 =


0

−a
0

 , ri5 =


0

0

a

 , ri6 =


0

0

−a

 , (3.36)

where a is the nearest neighbour distance. With this choice of rij , all the mixed
terms in (3.35) vanish, and only the square terms are left. Applying (3.36) and
(3.35) to (3.34) finally results in

Eex = 2 a2 J S2
∑

i

[
(∂xM̂i,x)2 + (∂yM̂i,x)2 + (∂zM̂i,x)2

+(∂xM̂i,y)2 + (∂yM̂i,y)2 + (∂zM̂i,y)2

+(∂xM̂i,z)2 + (∂yM̂i,z)2 + (∂zM̂i,z)2
]

= 2 a2 J S2
∑

i

[
(∇M̂i,x)2 + (∇M̂i,y)2 + (∇M̂i,z)2

]
. (3.37)

For different lattice types, the derivation works accordingly, but one has to take
into consideration additional next neighbours with different rij . By using a lattice
parameter z denoting the number of particles entirely assigned to one crystal unit
cell, the generalised form of (3.37) is

Eex = 2 a2 zJ S2
∑

i

[
(∇M̂i,x)2 + (∇M̂i,y)2 + (∇M̂i,z)2

]
. (3.38)

A simple cubic lattice implies z = 1, a body-centred cubic lattice z = 2, a face-
centred cubic lattice z = 4. In the continuum limit, the summation is replaced by
an integral with an integration volume cell a3. This leads to

Eex =
C

2

∫
V

[
(∇M̂x)2 + (∇M̂y)2 + (∇M̂z)2

]
dV (3.39)

=
C

2

∫
V

(∇ · M̂)2 dV , (3.40)

where C is the exchange constant, given by

C = 2J S2 z

a
. (3.41)

Occasionally, an alternative exchange constant A is used with A = 2C. Both A and
C are associated with the unit Joule/meter (J/m), and are of the order of magnitude
10−11 to 10−13J/m.
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3.2.3 Discretised formulation

We now derive a discretised form of the exchange energy equation (3.39) that is
suitable for usage in finite difference simulations, as it takes regard to the under-
lying computational lattice (Donahue and Porter, 2004). The resulting equation is
implemented in the OOMMF code, one of the standard micromagnetic simulation
packages (Donahue and Porter, 2003, 1999).

The transformations in section 3.2.2 started with an atomistic view on the crys-
tal lattice, and then derived equations for a continuous material. For the finite
difference method, this strategy is inverted, projecting the continuous formulation
onto an artificial computational cubic lattice for discretisation. It is important to
understand that the finite difference lattice is of a completely different nature than
the crystal lattice, and that the respective lattice constants do not comply.

We start with equation (3.39). From the product rule of differential calculus for
products with differentiable functions f and g, (fg)′ = f ′g + fg′, we find that

(∇f) · (∇f) = ∇ · (f∇f)− f4f (3.42)

with g = ∇f . Applying this to equation (3.39) results in

Eex = A

∫
V

[
∇ · (M̂x∇M̂x)− M̂x4M̂x +

∇ · (M̂y∇M̂y)− M̂y4M̂y +

∇ · (M̂z∇M̂z)− M̂z4M̂z

]
dV

= A

∫
V

[
∇ · (M̂x∇M̂x + M̂y∇M̂y + M̂z∇M̂z)− M̂(4M̂)

]
dV

= A

∫
V

[
∇ ·


M̂x∂xM̂x + M̂y∂xM̂y + M̂z∂xM̂z

M̂x∂yM̂x + M̂y∂yM̂y + M̂z∂yM̂z

M̂x∂zM̂x + M̂y∂zM̂y + M̂z∂zM̂z


−M̂ · (4M̂)

]
dV . (3.43)

From the normalisation of M̂ , it follows that M̂ · ∂xM̂ = 0, and correspondingly
for y and z:

M̂x∂xM̂x + M̂y∂xM̂y + M̂z∂xM̂z = 0

M̂x∂yM̂x + M̂y∂yM̂y + M̂z∂yM̂z = 0

M̂x∂zM̂x + M̂y∂zM̂y + M̂z∂zM̂z = 0 . (3.44)
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We expand the last term of equation (3.43),

M̂ · (4M̂) = M̂x∂
2
xM̂x + M̂x∂

2
yM̂x + M̂x∂

2
zM̂x +

M̂y∂
2
xM̂y + M̂y∂

2
yM̂y + M̂y∂

2
zM̂y +

M̂z∂
2
xM̂z + M̂z∂

2
yM̂z + M̂z∂

2
zM̂z

= M̂ · ∂2
xM̂ + M̂ · ∂2

yM̂ + M̂ · ∂2
zM̂ . (3.45)

Using equations (3.44) and (3.45), equation (3.43) takes on the form

Eex = −A
∫

V
M̂ ·

[
∂2

xM̂ + ∂2
yM̂ + ∂2

zM̂
]

dV . (3.46)

This integral is now approximated by standard methods of numerics. Generally, a
one-dimensional integral of a function f(x) from a to b can be approximated by a
discrete sum: ∫ b

a
f(x)dx = h

n∑
i=1

ωifi +O(hα) , (3.47)

with sample points xi = a + (i − 1
2)h of equidistant spacing h = (b − a)/n and

fi = f(xi) (Bronstein and Semendjajew, 1989, p. 762). The choice of the sample point
weights ωi determines the convergence order α of the sum. For a three-dimensional
integral, the approximation is

∫
V
f(x)dV = h3

mno∑
ijk=1

ωx
i ω

y
j ω

z
kfijk +O(hα) , (3.48)

with weights ωx
i , ωy

j , ωz
k along the x, y, z axes, and fijk = f(xi, yj , zk). Application

to the first term of equation (3.46) results in

Eex,x = −h3A
∑
jk

ωy
j ω

z
k

∑
ii′

ωx
i dii′M̂ ijk · M̂ i′jk +O(hα) , (3.49)

where dii′ is a discrete representation for the operator ∂2
x and M̂ ijk = M̂(xi, yj , zk).

We use a simple second order (α = 2) scheme where all ω equal 1 (trapezoidal rule).
Furthermore, we apply a second-order central difference scheme for the second
derivative in x,

f ′′ijk =
f(i−1)jk − 2fijk + f(i+1)jk

h2
+O(h2)

=
∑

i′∈(i−1,i+1)

fi′jk − fijk

h2
+O(h2) , (3.50)
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and we get

Eex,x = −hA
∑
ijk

∑
i′∈(i−1,i+1)

M̂ ijk · (M̂ i′jk − M̂ ijk)

= hA
∑
ijk

∑
i′∈(i−1,i+1)

(M̂ ijk · M̂ i′jk − 1) . (3.51)

Proceeding accordingly with the ∂2
y and ∂2

z terms of equation (3.46), the discretised
exchange energy equation finally is

Eex = hA
∑

η

∑
η′

(M̂η · M̂η′ − 1) , (3.52)

with η running over all cells in the computational domain, and η′ being the list of
next neighbours of η.

3.3 Anisotropy energy

When a physical property of a material is a directional function, this property is
said to exhibit anisotropy. The preference for the magnetisation to lie in a partic-
ular direction of a sample is called magnetic anisotropy. There are different kind
of anisotropies in the context of magnetism: magnetocrystalline, strain induced,
shape, and surface anisotropy. One anisotropy considered here, the magnetocrys-
talline anisotropy, has its origin in the crystal symmetry of the sample and the LS

coupling (or spin-orbit coupling) of the electron angular momenta: the crystallo-
graphic structure influences the shape and orientation of the electron orbits. These,
in turn, affect the electron spins via the LS coupling in a way that the spins tend
to align along the crystallographic axes. Different sample materials with different
crystal symmetries show different anisotropy types. The anisotropy types are now
discussed (O’Handley, 1999).

3.3.1 Phenomenology of anisotropy

Experiments reveal the character of the anisotropy for different materials: when an
external field is used to magnetise a probe, the magnetisation process depends on
the angle between the applied field and a crystal reference direction. E.g. in iron,
the magnetisation process is said to be easy in the [100] direction (along the edge
of the crystal cell), and hard in the [111] direction (along the body diagonal of the
crystal cell); that is, the field needed to magnetise iron to saturation is smaller in
[100] than in any other direction (figure 3.1 on the following page).

The anisotropy energy density εa is defined as the energy density difference
required to saturate a sample ( saturation magnetisation Ms ) alongside a given
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Figure 3.1: Schematic hysteresis loops of a material with an easy axis in [100] and
a hard axis in [111], e.g. iron. The left plot shows the function of the
magnetisationM over the applied fieldHa along the easy axis, the right
plot along the hard axis. The shaded area in each plot indicates the
energy required to magnetise the sample up to saturation.

direction and alongside the hard axis (shaded areas in the plots of figure 3.1),

εa = µ0

Ms∫
0

Hhard
a (M) dM − µ0

Ms∫
0

Hany
a (M) dM

= −µ0

Ms∫
0

Hany
a (M) dM . (3.53)

For the second equation, the energy is scaled in such a way that the saturation
energy along the hard axis is zero. The field Ha in this formulation is a function of
a given magnetisation. As we only consider anisotropy energy contributions here,
this field is called the anisotropy field. It can be determined by

Ha = − 1
µ0

∂εa
∂M

= − 1
µ0

∇M εa . (3.54)

For specific crystal symmetries, equations for the anisotropy energy and field are
now derived for usage in numerical computation codes.

3.3.2 Uniaxial anisotropy

The simplest case is a uniaxial anisotropy, as observed in cobalt: magnetic mea-
surements for different directions suggest the existence of an axis that minimises
the anisotropy energy. Plotting the anisotropy energy as a function of the angle
θ enclosed by this easy axis (defined as the z axis, without loss of generality) and
the magnetisation, shows a onefold symmetry (figure 3.2a). The anisotropy energy
does not depend on the azimuthal angle φ in this system, and it is maximal in the
basal plane (θ = 90◦), the hard plane. A 3D plot of the uniaxial anisotropy energy
is depicted in figure 3.2b.
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Figure 3.2: Sketches of the anisotropy energy, as a 2D plot over θ (left), and as a 3D
parametric plot (right), with an easy axis along ± z.

We now find an expression for the uniaxial anisotropy energy density as a func-
tion of θ. The most general approach is a Fourier series with coefficients Ks

n and
Kc

n of the form

εa = −
∞∑

n=0

Ks
n sinn(θ)−

∞∑
n=0

Kc
n cosn(θ) . (3.55)

Taking into account the onefold symmetry evident in the measurements of uniaxial
anisotropy, all odd powers of sin(θ) and cos(θ) in the Fourier series can be dropped.
Of the remaining terms, the sin2n(θ) are expressed by cos2m(θ) (m ≤ n) plus irrele-
vant constants, as in sin2(θ) = 1− cos2(θ). After discarding the constant terms and
recollecting the coefficients Kc

n into Kn, we get

εa = −
∞∑

n=1

Kn cos2n(θ) . (3.56)

Positive coefficients Kn correspond to an easy axis and a hard basal plane. This is a
consequence of the minus signs in equation (3.55), and sometimes used differently
in literature.

For most applications, the first term cos2(θ) is sufficient. However, some spher-
ical problems require an additional order, so that the following approximation in-
cludes fourth-order terms:

εa = −K1 cos2(θ)−K2 cos4(θ) . (3.57)

With ê being the normalised vector in the direction of the anisotropy field, and M̂

being the normalised vector in the direction of the magnetisation,

Ha = Haê (3.58)

M = MM̂ , (3.59)
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the equation reads

εa = −K1|ê · M̂ |2 −K2 | ê · M̂ |4 . (3.60)

If fourth-order terms are ignored (i.e. K2 = 0), we have

εa = −K1|ê · M̂ |2 . (3.61)

For numerical purposes, an alternative form of the fourth-order approximation
(3.60) is advantageous at times, obtained from (3.57) via

|ê× M̂ |2 = |ê|2|M̂ |2 sin2(θ) = sin2(θ) = 1− cos2(θ) (3.62)

|ê× M̂ |4 =
(
1− cos2(θ)

)2 = 1 + cos4(θ)− 2 cos2(θ) (3.63)

cos4(θ) = |ê× M̂ |4 − 2|ê× M̂ |2 + 1 , (3.64)

and dropping constant terms:

εa = (K1 + 2K2) |ê× M̂ |2 −K2|ê× M̂ |4 , (3.65)

or, with second-order terms only ( i.e. K2 = 0 ),

εa = K1|ê× M̂ |2 . (3.66)

Next, we derive the anisotropy field which corresponds to this anisotropy energy
(3.60). Therefore, equation (3.54) is used. To calculate the gradient of the energy,
the previous assumption is recalled that aligned the anisotropy in the z direction
without loss of generality:

|ê · M̂ | = 1
M
|ê ·M | = 1

M
Mz , (3.67)

and the field components are

Ha,x = − 1
µ0

∂εa
∂Mx

= 0 (3.68)

Ha,y = − 1
µ0

∂εa
∂My

= 0 (3.69)

Ha,z = − 1
µ0

∂εa
∂Mz

= 2
K1

µ0M2
Mz + 4

K2

µ0M4
M3

z

= 2
K1

µ0M
|ê · M̂ |+ 4

K2

µ0M
|ê · M̂ |3 = |Ha| = Ha . (3.70)

This is in compliance with the fact that Ha was chosen to be in the direction of the
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anisotropy, and of the z axis (3.58):

Ha =
(

2
K1

µ0M
|ê · M̂ |+ 4

K2

µ0M
|ê · M̂ |3

)
ê . (3.71)

If fourth-order terms are ignored ( i.e. K2 = 0 ), the length Ha is approximated by

Ha = 2
K1

µ0M
|ê · M̂ | , (3.72)

so that

Ha = 2
K1

µ0M
|ê · M̂ | ê . (3.73)

The fourth-order terms are important for cases with two uniaxial anisotropies
in perpendicular directions. Then, the second-order terms for the two directions
compensate each other, so that the resulting second-order anisotropy is a constant
energy term of irrelevance. An angular dependence of the resulting anisotropy is
obtained only by inclusion of fourth-order terms.

3.3.3 Cubic anisotropy

Most materials, e.g. iron and nickel, do not feature the simple and easy-to-handle
uniaxial anisotropy due to the nature of their crystal lattice structure. Experiments
reveal that these materials bear a cubic anisotropy. Here, the energy depends on the
three angles γ1, γ2, γ3 (see figure 3.4 on page 33) rather than one angle θ. Measure-
ments of the anisotropy in the basal plane show a fourfold symmetry (figure 3.3,
left), with either an easy axis for φ = 0◦ (e.g. iron, 3.3a)), or a hard axis (e.g. nickel,
3.3b)). A complete 3D mapping of the anisotropy provides a function as shown on
the right side of figure 3.3: the easy axes of iron are the crystal cell base directions,
the easy axes of nickel the crystal cell body diagonals.

The symmetry axes of the cubic anisotropy are chosen to be aligned with the
basis of the coordinate system (êi), i ∈ {1, 2, 3}, without loss of generality, so that

γi = ^(êi,M̂) . (3.74)

The angle cosines αi = cos γi (see figure 3.4) are the projections of a unit vector onto
the corresponding coordinate axes. The correlation to the Cartesian and spherical
coordinates is

α1 = cos γ1 = M̂x = cosφ sin θ

α2 = cos γ2 = M̂y = sinφ sin θ

α3 = cos γ3 = M̂z = cos θ . (3.75)
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Figure 3.3: Schematic result of an in-plane measurement of the anisotropy energy
as a function of the azimuthal angle φ (left), and a 3D parametric plot of
the anisotropy energy (right) for the materials Fe (a) and Ni (b).

32



o

2

1

3

2

x

z

3

1

y

o

Figure 3.4: Definition of αi in a Cartesian coordinate system (black): the αi are the
projection lengths of a unit vector (red) onto the coordinate axes. The
angles enclosing the unit vector and the coordinate axes are named γi.
The spherical coordinates φ and θ are depicted as well. Projection lines
and angles are displayed in blue colour.

The energy density is expressed in terms of linear combinations of powers of the
αi:

εa =
∞∑
i=0

∞∑
j=0

∞∑
k=0

Ki+j+k α
i
1 α

j
2 α

k
3 . (3.76)

Many of the contributing terms vanish due to the symmetries involved (O’Handley,
1999, p. 214):

• cyclic permutation

• mirror reflection

• rotation

• time reversal invariance.

As usual, constant energy terms are ignored. The remaining terms up to eighth
order are

εa = K1

(
α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3

)
+K2

(
α2

1α
2
2α

2
3

)
+K3

(
α4

1α
4
2 + α4

1α
4
3 + α4

2α
4
3

)
. (3.77)

The indices of the anisotropy constants Ki from equation (3.76) are relabelled in
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order to start with the lowest numbers. Again, anisotropy constants depend on the
temperature.

The phenomenological constants Ki of rare earth metals can be derived from
Mößbauer spectroscopy studies in a cumbersome process by analysis of spin-orientation
diagrams (SODs) (Atzmony and Dariel, 1976). Alternatively, theKi of rare earth met-
als can be derived from first principles by the Callen and Callen model of magnetic
anisotropy (Callen and Callen, 1965, 1966) with a first-order expansion of the cen-
tral field Hamiltonian, or by the extended Callen and Callen model (Martin et al.,
2006a) up to second order. The resultingKi are in accordance with the values given
by Atzmony and Dariel (1976).

3.3.4 Multipolar decomposition

Atzmony and Dariel (1976) have specified the phenomenological parametersK1, K2,
K3 as a function of the temperature T for the most important rare earth materials.
Very surprisingly, some higher order terms do not decay with rising T ; at times K3

exceeds K2, and even changes sign. The explanation for this behaviour was given
by Martin et al. (2006a) who calculated anisotropy coefficients K̃j (j = 2, 4, 6, ...)
with regard to the multipolar basis functions, the spherical harmonics Y n

m. These
K̃j coefficients are the mathematically correct higher order decomposition (and not
the Ki). They decrease monotonically with T without changing sign, and higher
order terms decrease faster than lower order terms. The phenomenological Ki pa-
rameters are a superposition of the multipolar coefficients K̃j , where higher order
terms up to K̃8 cannot be neglected (equation (24) in Martin et al. (2006a)):

K1 = − 15
2
√
π
K̃4 −

21
4

√
13
π
K̃6 − 9

√
17
π
K̃8

K2 = +
231
4

√
13
π
K̃6 + 39

√
17
π
K̃8 (3.78)

K3 = +
65
2

√
17
π
K̃8 .

In appendix A.2, temperature dependent values of K̃j are listed for Er and Dy, so
that the Ki values can be calculated using equation (3.78).

3.3.5 Cubic anisotropy in a [110] MBE grown film

In the previous section 3.3.3, we assumed that the x, y, z axes of the coordinate sys-
tem coincide with the base directions of the crystal cell (labelled [100], [010], [001]).
Equation (3.77) is only valid in this reference system. However, when a crystal film
is grown by molecular beam epitaxy, the film coordinate directions are not nec-
essarily identical to the crystal directions. For the multi-layered REFe2 films (RE
= rare earth element) investigated in chapters 6, 7, and 8, the growth direction of
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the film (z axis) coincides with the crystallographic [110] direction. Any crystallo-
graphic direction [abc] can be made up by a superposition of a [100]+b [010]+c [001],
and a barred number d̄ corresponds to a negative sign of the coefficient d. In the
following, we derive an equation of the cubic anisotropy energy that is applicable
to the [110] grown films.

By crystallographic convention, the [110] growth direction is defined in a way
that links the two coordinate systems as

• x axis ≡ [001̄]

• y axis ≡ [1̄10]

• z axis ≡ [110].

We now need to know the coordinate transformation that maps the two systems.
The base vectors of the crystal cell system can be transformed onto the the base
vectors of the film system by two Euler rotations: first, a rotation of 45◦ about the z
axis (→ x’y’z’), and second, a rotation of 90◦ about the new y’ axis (→ x” y” z”).

The Euler rotations are represented by the following matrix operations:
x′

y′

z′

 =


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1




x

y

z

 (3.79)

and 
x′′

y′′

z′′

 =


0 0 −1

0 1 0

1 0 0




x′

y′

z′

 . (3.80)

These transformations determine how the coordinates of a fix point, given the in
system (xyz/x’y’z’), appear in the rotated system (x’y’z’/x”y”z”).

The corresponding back transformation is obtained by matrix multiplication
and inversion: 

x

y

z

 =


0 − 1√

2
1√
2

0 1√
2

1√
2

−1 0 0




x′′

y′′

z′′

 . (3.81)

The equations derived in section 3.3.3 refer to (xyz) coinciding with the crystal sys-
tem . Replacing the αi by x, y, z in the cubic anisotropy (3.77), applying the inverse
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transformation (3.81) and dropping the ” for simplification results in

εa = K1

(
1
4
(
y2 − z2

)2 + x2
(
y2 + z2

))
+K2

(
1
4
x2
(
y2 − z2

)2)
+ K3

(
1
16
(
y2 − z2

)4 +
1
2
x4
(
y4 + z4 + 6y2z2

))
. (3.82)

It is reminded that the direction (x,y,z) must be normalised: point (x,y,z) is located
on the unit sphere around the origin.

3.3.6 Strain energy

Magnetic measurements (Mougin et al., 2000) have shown that REFe2 (RE = rare
earth element) superlattice films grown by molecular beam epitaxy are strained
compared to bulk compounds. The strain is caused by differential thermal contrac-
tion between the film and the substrate. It can be treated as an additional energy
term and affects the directions of the easy axes. For low temperatures, the cubic
anisotropy is dominant, and the easy axes are identical for bulk compounds and
films. Over a specific temperature threshold, the easy axes of the films start to ro-
tate, and can be offset by 90◦ for room temperature.

Following Bowden et al. (2006), the magnetoelastic Hamiltonian generally can be
written as

Hme = b2
(
εxxα

2
x + εyyα

2
y + εzzα

2
z

)
+

b2 (εxyαxαy + εxzαxαz + εyzαyαz) , (3.83)

where εij with i, j ∈ {x, y, z} is the strain tensor and b2 is the magnetoelastic coef-
ficient. For the investigated [110] grown films, only εxy is relevant. The first-order
change to the free energy per formula unit due to the magnetoelastic term Efirst

me is
the expectation value of the Hamiltonian, and we get an energy density

εfirst
me = b2 εxyαxαy

= K̃ ′
2

√
15
2π
αxαy , (3.84)

with the rank 2 multipole coefficient K̃ ′
2 =

√
2π
15 b2 εxy in units of J/m.

Out of the second-order contributions εsecond
me , only one term has considerable

weight, and we ignore the other terms:

εsecond
me = K̃ ′′

242

√
15
2π
αxαy , (3.85)

with the same functional form as εfirst
me . The comprehensive calculation of K̃ ′

2 and
K̃ ′′

242 is detailed in Bowden et al. (2006), and values for Er and Dy are given in the
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appendix A.3 for the temperature range 10 K to 400 K. This leaves us with a second-
order total energy approximation

εme =

√
15
2π

(K̃ ′
2 + K̃ ′′

242)αxαy . (3.86)

It is emphasised that the frame of reference so far are the crystal lattice direc-
tions. As for the cubic anisotropy in the previous chapter, the magnetoelastic en-
ergy has to be transformed to the film plane system. Thus, we apply transformation
(3.81) (skipping the ”) and get

εme =
1
2

√
15
2π

(K̃ ′
2 + K̃ ′′

242)(z
2 − y2) , (3.87)

or, in polar coordinates,

εme =
1
2

√
15
2π

(K̃ ′
2 + K̃ ′′

242)(cos2 θ − sin2 θ sin2 φ) . (3.88)

Occasionally, the strain terms dxy = 2
√

15
2π K̃

′
2 and d242 = 2

√
15
2π K̃

′′
242 are used

instead of K̃ ′
2 and K̃ ′′

242. A comparison of equation (3.87) with the second-order
uniaxial anisotropy energy (3.61) shows that the strain energy can be considered
a superposition of uniaxial anisotropies in y and z. The corresponding anisotropy
constants ky and kz have the same modulus but opposite signs,

ky = −kz =
1
4
(dxy + d242) . (3.89)

This relation is helpful for the OOMMF simulation package, as OOMMF provides
an option to input uniaxial anisotropies, but not strain terms directly.

3.4 Zeeman and dipolar energy

There are two approaches to consider magnetic phenomena inside matter: a mi-
croscopic one is to resolve the matter into its constituents, a very large number of
individual particles, and to see how each of them individually reacts on an exter-
nally applied field and on the field produced by the other particles. The particles
— tiny magnets themselves — align with the external field, and produce an addi-
tional field that is opposed to the external field. This is the so-called demagnetising
or dipolar field. The second approach is a macroscopic view, based on the obser-
vation of a reduced effective field inside matter. The reduction of the field is ac-
counted to the magnetisation inside the magnetic body as a reaction to the applied
field, without considering the atomic origin of the field reduction. Usually, the first
option is not feasible, as far too many interacting particles would have to be taken
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Figure 3.5: Schematic of a dipolar magnetic field, with the field lines running from
the north pole to the south pole

regard to. Still, it is useful to introduce the demagnetising field for the macroscopic
approach, knowing about its atomic origin.

3.4.1 Microscopic approach: dipolar energy of particles

For the microscopic approach, we assume that the magnetic body is made up by
a lattice of dipolar particles, each dipole representing the magnetic moment m of
one molecule (figure 3.5). Each individual dipole generates its magnetic field, thus
acting on all the other dipoles, and vice versa. The field of a dipole j at position r

is known as (Jackson, 1999, p. 186)

Bj(r) =
µ0

4π

[
3n̂j(n̂j ·mj)−mj

r3j

]
, (3.90)

where n̂j is the unit vector pointing from the dipole j to r, and rj is the distance.
Another dipole i at position ri will then feel the field contributions of all other
dipoles:

B(ri) =
µ0

4π

∑
j 6=i

[
3n̂ji(n̂ji ·mj)−mj

r3ij

]
, (3.91)

where n̂ji is the unit vector pointing from j to i, and rij is the distance between
i and j. The energy of a dipole i with the magnetic moment mi in an external
magnetic field B(ri) is

Edipole,i = −mi ·B(ri) . (3.92)
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For the complete ensemble, the total energy is the sum of the energy of the individ-
ual dipoles,

Edipoles = −1
2

∑
i

mi ·B(ri) = −1
2
µ0

4π

∑
i

mi ·
∑
j 6=i

[
3n̂ji(n̂ji ·mj)−mj

r3ij

]
. (3.93)

The factor 1
2 is required to avoid double counting the interactions, as the double

summation runs over each pair of (i, j) twice.

3.4.2 Macroscopic approach: energy of an external field and a de-
magnetising field in a magnetic body

The standard equations for the magnetic field H and the flux density B in a mag-
netic body are (Blundell, 2001, p. 216)

H(r) = Hz(r) + Hd(r) (3.94)

B(r) = Bz(r) + Bd(r) , (3.95)

where both H and B are made up by externally applied contributions (subscript z
for Zeeman) and demagnetising contributions (subscript d). It is recalled that the
demagnetising flux density inside the body is related to the field by

Bd(r) = µ0(Hd(r) + M(r)) , (3.96)

where M(r) is the magnetisation. For the applied field,

Bz(r) = µ0Hz(r) . (3.97)

The energy of the ferromagnetic body itself is the energy where the body is placed
in overall space minus the energy of overall space without any matter. This corre-
sponds to the energy difference between the total field

∫
1
2µ0H

2dV and the applied
field

∫
1
2µ0H

2
zdV in overall space (Jackson, 1999, p. 214):

E =
µ0

2

∫
allspace

(
H2 −H2

z

)
dV . (3.98)

From (3.94) it follows that

H2 = H2
z + 2Hz ·Hd + H2

d , (3.99)
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so that

E =
µ0

2

∫
allspace

(
2Hd ·Hz + H2

d

)
dV

=
µ0

2

∫
allspace

Hd · (2Hz + Hd) dV . (3.100)

By use of (3.96) we get

E =
µ0

2

∫
allspace

(
Bd

µ0
−M

)
· (2Hz + Hd) dV

= −µ0

2

∫
allspace

M ·HddV − µ0

∫
allspace

M ·HzdV

+
∫

allspace
Bd ·HzdV +

1
2

∫
allspace

Bd ·HddV . (3.101)

The last two terms in (3.101) vanish. This is because of the vanishing rotation ∇×
Hd = 0 and ∇×Hz = 0, and because of the vanishing divergence ∇ ·Hd = 0 and
∇ · Hz = 0. The complete proof is shown on (Blundell, 2001, p. 216) or (Aharoni,
2000, p. 146). Finally, the energy equation becomes

E = −µ0

2

∫
volume

M ·HddV − µ0

∫
volume

M ·HzdV (3.102)

and contains a demagnetising term and a Zeeman term. The integral is restricted
to the volume of the ferromagnetic body now, because the magnetisation vanishes
outside the body. Still, the equation implicitly includes the energy of overall space.
The factor 1

2 for the demagnetising term reflects the fact that the particles had to
produce their demagnetising configuration themselves, whereas the Zeeman term
is due to an outer applied field that is kept permanently and does not feel any
repercussion from the system inside. An alternative strategy to explain the origin
of the factor 1

2 is to refer to the microscopic equation (3.93), where the factor 1
2

compensates for double counting, and to substitute the summation by an integral.
However, the macroscopic concept provides a clear insight into the interaction of
the applied field and the resulting demagnetising field.

3.4.3 Calculation of the demagnetising field

The difficulty with equation (3.102) is that we do not know the demagnetising
field per se. It is possible to analytically calculate this field for a number of sim-
ple cases (like a homogeneously magnetised sphere or cube), but generally a Pois-
son/Laplace equation derived from Maxwell equations with appropriate boundary
conditions has to be solved.

We assume that there are no free currents. Then, one of the Maxwell equations
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states that the curl of a magnetic field H vanishes:

∇×H = 0 . (3.103)

It is emphasised that the absence of free currents refers to macroscopic currents, as
equation (3.103) is valid for the macroscopic field H only, but absolutely invalid for
B. Another Maxwell equation embodies the absence of magnetic monopoles:

∇ ·B = 0 . (3.104)

The next bit needed in this context is the interrelation of H and B, which was
already given in equation (3.96). The fact that H is curl-free (3.103) allows us to
define a potential Φ in a way that

H = −∇Φ (3.105)

holds. Putting the pieces together, we can write the Laplace operator of Φ as a
Poisson equation,

4Φ = ∇ ·∇Φ = ∇ · (−H)

= ∇ ·
[

1
µ0

(M −B)
]

=
1
µ0

∇ ·M . (3.106)

Outside the magnetic body, M is zero, and we get the Laplace equation

4Φ = 0 . (3.107)

At the surface of the magnetic body, appropriate boundary conditions have to be
applied to (3.106). The same applies to (3.107) at an infinite distance. This actually is
the problem with the combined Poisson/Laplace equation: the function Φ ranges
over the complete space and not only the magnetic body, due to the far-ranging
character of the dipolar interaction. It is an ’open boundary problem’.

Several approaches to solve the Poisson/Laplace equation (3.106)/ (3.107) exist:
One option is to encapsulate the magnetic body in a sufficiently large area, with
area boundaries far away from the magnetic body, so that the potential Φ is constant
to a good approximation outside this area (Ridley, 2000, Spargo, 2002). Then solving
the Poisson/Laplace equation, e.g. by using finite elements, can be restricted to this
area with an acceptable error.

Another approach is the hybrid finite element/boundary element method, which
requires no finite elements outside the magnetic body (Fredkin and Koehler, 1990,
Scholz, 2003). The idea of this method is to split the potential Φ in two parts Φ1 and
Φ2, so that Φ1 vanishes outside the magnetic body, and Φ2 solves the homogeneous
Laplace equation for the complete space. The resulting Poisson equation for Φ1 can
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then be solved by means of finite elements. By applying the proper boundary con-
ditions, we can express Φ2 by Φ1 and the Green functions. The total potential Φ is
finally retrieved by adding Φ1 and Φ2.

A third option to tackle the problem is applied by OOMMF. Its regular finite
difference lattice with equally shaped cuboidal cells allows OOMMF to calculate a
homogeneous demagnetising field inside each of the cells by use of demagnetising
tensors (Aharoni, 1998, Newell et al., 1993). The global demagnetisation is then deter-
mined by convolution of the individual cells via the Fast Fourier Transformation.

3.4.4 Thin film approximation for the demagnetising energy

For many thin film applications, it is a feasible approach to assume an infinite flat
slab for each film layer. In this case, we can express the demagnetising energy in
terms of a uniaxial anisotropy that is numerically easy to handle.

The magnetisation M in the slab is split into one component perpendicular to
the film plane (M⊥), and another component in the film plane (M‖):

M = M⊥ + M‖ . (3.108)

With θ denoting the angle that encloses the normalised magnetisation direction M̂

and the unit direction ê⊥ perpendicular to the slab, the perpendicular component
M⊥ can be written as (M = |M |)

M⊥ = M cos θ ê⊥ . (3.109)

While M⊥ excites magnetic charges on the top and bottom of the slab and subse-
quently a demagnetising field Hd,⊥ = −M⊥, M‖ generates infinitely small mag-
netic charges on the sides of the slab that are negligible, with vanishing demag-
netising field Hd,‖. In conclusion, we get the total demagnetising field Hd:

Hd = Hd,⊥ = −M⊥ = −M cos θ ê⊥ . (3.110)

Applying (3.110) on (3.102), the energy of a thin film layer becomes

E = −µ0

2

∫
layer

M ·Hd dV

= −µ0

2

∫
layer

(M⊥ + M‖) · (−M cos θ ê⊥) dV

=
µ0

2

∫
layer

M⊥ · (M cos θ ê⊥) dV

=
µ0

2

∫
layer

M2 cos2(θ) dV

=
µ0

2

∫
layer

M2 |M̂ · ê⊥|2 dV . (3.111)
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Recalling equation (3.61), we realise that this is the energy of a uniaxial anisotropy
with K1 = −µ0

2 M
2 and the hard axis in ê⊥. This result will prove valuable for

various simulations of thin film samples presented in upcoming chapters.
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Chapter 4

Discrete molecular dynamic
magnetic simulation code

4.1 Introduction

The micromagnetic simulation code OOMMF has become a standard in magnetic
research, successfully used by the community in a multitude of projects. Our own
research is based on OOMMF simulations as well. In spite of its strong uptake in
the community, it is a necessity to assess the quality and reliability of OOMMF our-
selves. Therefore we have developed an alternative code on the basis of discrete
dipolar magnets with discrete magnetisation vectors: discreteMag. DiscreteMag
allows real-time monitoring of the magnetisation dynamics. The magnetisation
vectors are displayed and updated at runtime, making the program suitable for
educational purposes.

In the next section 4.2, we briefly describe OOMMF and the other programs
used to run simulations and evaluate the results. In section 4.3, we explain the im-
plementation of the discreteMag code and the energy equations used. DiscreteMag
and OOMMF are then applied on a set of simple test scenarios (section 4.4), com-
prising of tests of the individual energies (4.4.1 to 4.4.4) and the Stoner-Wohlfarth
model (4.4.5), and results are compared.

4.2 OOMMF and the software environment

The Object Oriented MicroMagnetic Framework (OOMMF) is an open source soft-
ware package created by the National Institute for Standards and Technology (NIST).
It uses finite difference methods to solve the relevant micromagnetic equations. Its
advantages are stability and reliability, availability, support by NIST, and relative
ease-of-use. Extensions are possible up to some degree. For these reasons, it is
widely used by micromagnetic researchers.

Micromagnetic simulations are specified to the OOMMF solvers by a problem
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definition file in the Micromagnetic Input Format (MIF): the geometry and resolu-
tion is defined, the relevant energies selected, the physical and material parameters
as well as technical execution variables set. Position dependent quantities can be
defined as functions by plug-in Tcl/Tk code.

The open source programming language Python (Python community, 2007, van
Rossum and Drake, 2001) is an all-purpose tool extensively used in this project. It is
object oriented and portable, with powerful support of various toolkits, libraries,
and mathematical packages. Thus, it serves as a scripting language for generating
MIF files and controlling their execution, calculating physical quantities as an input
for the MIF files, as a tool to convert between different file formats of the simulation
output, and to process data, e.g. by determining average magnetisations. Python
offers an interactive interpreter mode for quick calculations and tests, but can also
precompile and run program files.

For the visualisation of the simulation results, the tool of our choice is MayaVi
(Ramachandran, 2001), based on the Visualisation ToolKit VTK (Schroeder et al., 1996).
These are open source tools as well. VTK is an integrated image processing toolkit
which has 3D algorithms and makes use of hardware accelerated graphics adapters.
MayaVi offers multiple rendering and filtering modalities, e.g. enabling the presen-
tation of vector fields, scalar fields, or isosurfaces. The latter option is combined
with a python program in order to plot 3D graphs for analytically known functions
like the anisotropy energy (e.g. right side of figure 3.3 on page 32).

4.3 DiscreteMag implementation

A cubic lattice is assumed, with the particles being located at the lattice nodes. We
choose a cuboidal simulation geometry. For the energy and field calculations, the
following equations are applied:

• exchange energy: equation (3.26), where J is calculated from the exchange
constant by equation (3.41)

• Zeeman energy: equation (3.92)

• anisotropy energy: equation (3.61)

• dipolar energy: equation (3.93).

The following parameters can be set in a configuration file:

• material parameters like saturation magnetisation, exchange constant, uni-
axial anisotropy constant and direction

• geometry parameters

• lattice constant
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• initial configuration of magnetisation vectors — random configuration possi-
ble

• energies to be considered

• applied field — field sweep from a start value to an end value in a number of
steps in order to generate a magnetisation curve

• visualisation options

• numerical parameters (e.g. accuracy of the integrator).

For the temporal evolution, the Landau-Lifshitz equation (2.8) is used. The code is
implemented in Python. Integration is performed in temporal slices, and for each
slice, the resulting magnetisation configuration is displayed via the 3d graphics
Python module Visual (Chabay et al., 2005). The VODE package (Hindmarsh and Pet-
zold, 1995) is used to perform the integration for each time slice. VODE is part of
the Python package scipy.integrate for scientific computing (SciPy community, 2007),
and as such ready to use. Its algorithms are implemented in C and provide suffi-
cient performance. As a stopping criterion, the overall change of the magnetisation
vectors between successive time slices is compared to a stopping value.

4.4 Results

Both programs, OOMMF and discreteMag, perform simulation runs on correspond-
ing test scenarios, for each interaction separately, and on a Stoner-Wohlfarth setup.
For every test scenario, the trajectory of the magnetisation vectors is depicted as
obtained by discreteMag to outline the dynamics of the individual interactions.
The consistency of the results is checked by plots of energy and spatially averaged
magnetisation components as a function of evolution time.

The parameters used for the simulations are:

parameter value

lattice constant 1.0 · 10−9m

magnetisation M 1.4 · 106A/m

anisotropy constant K 5.2 · 105J/m3

exchange constant A 1.5 · 10−11J/m

The material parameters stated correspond to the values of cobalt. The time slicing
is chosen in a way that it sufficiently resolves the dynamics of the precession and
damping movement of the magnetisation vectors.
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Figure 4.1: Comparison of the energy dynamics as a result of OOMMF and dis-
creteMag for sole Zeeman interaction. The inset depicts the trajectory
(red curved tube) of the magnetisation vector (red arrow) for a damp-
ing factor of α = 1.6. The applied field direction is represented by the
green arrow (only tip visible), the coordinate axes by the white arrows
(x axis covered). The magnetisation vector finally settles in the direction
of the applied field.

4.4.1 Dynamics of Zeeman

When applying an external field in x direction on a single cell, the discreteMag sim-
ulation results show the expected behaviour of a damped precessional movement
for the magnetisation vector (see inset of figure 4.1). At the end of the relaxation, the
magnetisation is aligned with the applied field. A comparison of the discreteMag
dynamics of the energy and of the magnetisation components with correspond-
ing OOMMF results is given in figures 4.1 and 4.2 on the next page. The energy
values and the relaxation time fit well: both energy curves match to a degree that
they practically overlay each other. Sufficient agreement on the dynamics of the
magnetisation components is achieved, too.

The latter simulations were performed for a Landau-Lifshitz damping param-
eter α = 1.6. With a smaller α = 0.1 corresponding to reduced damping, the
precession persists for a longer time with additional orbits (figure 4.3 on the fol-
lowing page).
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Figure 4.2: Comparison of the dynamics of the x, y, z magnetisation components as
a result of OOMMF and discreteMag for sole Zeeman interaction.

Figure 4.3: Magnetisation trajectory with reduced damping parameter α = 0.1 for
sole Zeeman interaction. The red curved line is the trace of the tip of
the magnetisation vector, spiralling towards the applied field direction
(green arrow, only tip visible).
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Figure 4.4: Comparison of the energy dynamics as a result of OOMMF and dis-
creteMag for sole uniaxial anisotropy interaction. The inset depicts the
trajectory (red curved tube) of the magnetisation vector (red arrow) for
α = 1.6. The easy anisotropy axis is represented by the blue arrow
(only tip visible), the coordinate axes by the white arrows (x axis cov-
ered). The magnetisation vector finally settles in the direction of the
easy axis.

4.4.2 Dynamics of anisotropy

When applying a uniaxial anisotropy with an easy axis in x direction, the dis-
creteMag simulation results show the expected behaviour for the magnetisation
vector: it gyrates towards the easy axis (see inset of figure 4.4). At the end of the re-
laxation, the magnetisation is aligned with the easy anisotropy axis. A comparison
of the discreteMag dynamics of the energy and of the magnetisation components
with corresponding OOMMF results is given in figures 4.4 and 4.5. Again, energy
dynamics and magnetisation dynamics are in satisfactory accordance.

4.4.3 Dynamics of exchange

In order to validate discreteMag and OOMMF with regard to exchange interaction,
both simulations start from the same random spin configuration of an ensemble
of 3 × 3 × 3 = 27 particles or cells. Naturally, the exchange interaction aligns the
spins, in accordance to the discreteMag simulation results (see inset of figure 4.6
on page 51). The final common direction of the spins is not obvious from the start
configuration. A comparison of the discreteMag dynamics of the energy and of the
magnetisation components with corresponding OOMMF results is given in figures
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Figure 4.5: Comparison of the dynamics of the x, y, z magnetisation components as
a result of OOMMF and discreteMag for sole uniaxial anisotropy inter-
action.

4.6 and 4.7 on the next page. Again, energy dynamics and magnetisation dynamics
are in satisfactory agreement.

4.4.4 Dynamics of demagnetisation

For the dipolar interaction, 2 × 2 particles were simulated, starting from a given
spin configuration. Here, the spins are expected to form a vortex, minimising dis-
tances between different magnetic poles and maximising distances between iden-
tical magnetic poles. The inset of figure 4.8 on page 52 as a result of discreteMag
confirms the expectation. The energy dynamics and magnetisation dynamics for
OOMMF and discreteMag, depicted in figures 4.8 and 4.9 on page 52, match well.
All three magnetisation components in figure 4.9 converge to zero — the correct
value for a vortex.

4.4.5 Stoner-Wohlfarth model

Another approach for assessing the quality of a simulation code is the applica-
tion to a scenario where an analytic solution is known. A famous representative
of this class of systems in the field of magnetism is the Stoner-Wohlfarth model.
It describes a ferromagnetic particle of a size that is large enough to ignore the
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Figure 4.6: Comparison of the energy dynamics as a result of OOMMF and dis-
creteMag for sole exchange interaction. The inset depicts the trajecto-
ries (red curved tubes) of 3× 3× 3 = 27 spins (red arrows) for α = 1.6.
The coordinate axes are represented by the white arrows far behind the
spins. In the final equilibrium state, all spins are aligned.
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Figure 4.7: Comparison of the dynamics of the x, y, z magnetisation components as
a result of OOMMF and discreteMag for sole exchange interaction.
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Figure 4.8: Comparison of the energy dynamics as a result of OOMMF and dis-
creteMag for sole dipolar interaction. The inset depicts the trajectories
(red curved tubes) of 2×2 = 4 spins (red arrows) for α = 1.6. The coor-
dinate axes are represented by the white arrow. In the final equilibrium
state, the spins form a vortex.
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Figure 4.9: Comparison of the dynamics of the x, y, z magnetisation components as
a result of OOMMF and discreteMag for sole dipolar interaction.
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atomic structure of the material, but small enough to neglect demagnetising effects
in comparison to exchange interaction and uniaxial anisotropy. The dimensions
are thought to be smaller than the exchange length, so that the system behaves as
a single domain. The exchange energy is constant then, and is ignored. We apply a
field Happ along the z direction and sweep it from +z to -z. The uniaxial anisotropy
direction (constant K) is in the xz plane, off the ± z direction by an angle θanis. We
find a total energy density

εSW = −K cos2(θanis − θmag)− µ0MsatHapp cos(θmag) , (4.1)

with the angle θmag enclosed by the magnetisation M and the +z direction, and the
saturation magnetisation Msat = |M |. Details can be found in Blundell (2001, chap.
6.7.8). We consider two cases:

Case A: θanis = 90◦

When the uniaxial anisotropy direction is perpendicular to the direction of the ap-
plied field (θanis = 90◦), the magnetisation can be derived analytically as a function
of the applied field. For this, the relevant magnetic energies, Zeeman energy plus
anisotropy energy, as stated by εSW in equation (4.1), are minimised. Introducing a
dimensionless applied field parameter h(Happ) as

h =
µ0MsatHapp

2K
, (4.2)

the z component of the magnetisation, M(h) = Msat cos(θmag(h)), is

M(h) = const = ±Msat for |h| > 1

M(h) = Msat h for |h| ≤ 1. (4.3)

The magnetisation stays aligned with the applied field for |h| > 1 (|Happ| > 2K
µ0Msat

),
and then rotates towards the opposing direction at a constant pace. The simu-
lation data can be seen in figure 4.10 on the following page. Both OOMMF and
discreteMag practically match the analytical solution (4.3). A marginal deviation is
visible in the slightly rounded edges at h = ±1, contrary to the sharp edge of the
analytical solution. The sequence of dynamic steps of the complete field sweep can
be seen in the inset of 4.10 as a result of discreteMag: the trajectories for each field
step are short, linking the metastable states of the magnetisation in a straight way
to form a half circle that indicates the gradual reversal path.

Case B: θanis = 30◦

The angle between the uniaxial anisotropy direction and the ± z direction (the di-
rection of the applied field) is now set to θanis = 30◦. No closed analytical form of
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Figure 4.10: OOMMF and discreteMag magnetisation curves for the Stoner-
Wohlfarth 90◦ case. The inset shows the coordinate system (white ar-
rows), the uniaxial anisotropy direction (blue arrow) in +x, as well as
the applied field vector (green arrow) in -z and magnetisation (red ar-
row) as at the complete field reversal from left to right. The winding
red line marks the successive trajectories of the magnetisation when
advancing to the next field sweep state.
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Figure 4.11: OOMMF and discreteMag magnetisation curves for the Stoner-
Wohlfarth 30◦ case. The uniaxial anisotropy direction (blue arrow) is
now at an angle of 30◦ off the z direction in the xz plane. The vector
representation of the coordinate axes, applied field, and magnetisation
is unchanged to figure 4.10 on the previous page.

the magnetisation function M(h) exists in this case to solve equation (4.1). How-
ever, numerical treatment reveals the qualitative behaviour: at high applied fields
(h > 1), the magnetisation is almost saturated (M ≈ Msat), gradually declining
for lower fields to M ≈ 0.5Msat at h & −0.5. Then, the magnetisation switches to
almost negative saturation, manifested in a sharp step of the magnetisation loop
at h ≈ −0.5. In figure 4.11, the simulation results of OOMMF and discreteMag
expose the right properties. Again, the inset shows the sequence of trajectories for
one field sweep based on discreteMag data. The magnetisation gradually rotates
into the easy direction of the anisotropy. Then the reversed field yanks the mag-
netisation to the other side, producing the one large gyrating trajectory. From there
on, the magnetisation steadily wanders into its final direction.

4.5 Conclusions

DiscreteMag reproduces data generated by OOMMF for simple test cases, building
confidence in the abilities of OOMMF and justifying its usage for scientific applica-
tions as demonstrated in chapters 6 to 8 of this thesis.
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Chapter 5

Magnetic exchange spring
systems

5.1 Introduction

We now discuss general aspects of the so-called exchange spring systems. This
provides the foundations for the understanding of the results that are presented in
chapters 6 to 8.

We distinguish between different types of exchange spring systems in section
5.2: systems with rigidly coupled hard and soft layers (5.2.1), systems with an inho-
mogeneous magnetisation configuration during the reversal (5.2.2), and a special
case of the latter, systems with antiferromagnetically coupled layers (5.2.3). The
historical key results are discussed for each case. Finally, potential applications are
outlined in section 5.3.

5.2 Basic concept of exchange spring systems

Exchange spring systems are magnetic heterostructures that consist of magneti-
cally hard and soft compounds that are exchange coupled across the compound in-
terfaces. Various nanostructures have been devised, typically clustered structures
where soft inclusions are embedded into a hard matrix (figure 5.1a), or multilay-
ered systems of alternating hard and soft layers (figure 5.1b). In the following, we
will focus on the latter.

The nature of the magnetic reversal processes depends on the geometry of the
system, the dimensions of the compounds, and their intrinsic material properties.
However, it has been theoretically shown that the crucial factor is the dimension
of the soft compound (Fischer et al., 1998, Leineweber and Kronmüller, 1997). For a
layered model system with a thickness of the soft layers ts, the magnetisation of
the soft compound is rigidly coupled to the hard compound as long as ts does not
exceed a critical value that is roughly the Bloch domain wall δh width of the hard
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a) b)

Figure 5.1: Types of exchange spring systems, with magnetically hard (blue) and
soft (red) material. a) clustered structure b) multilayered structure

compound:

ts . δh = π

√
Ah

Kh
, (5.1)

where Ah is the exchange constant and Kh the uniaxial anisotropy constant of the
hard compound. The soft and hard layers switch together, and the hysteresis loop
is a rectangle. For systems with sufficiently thick soft layers, i.e. ts & δh, the soft
layers start nucleating and reverse inhomogeneously before the hard layers switch.
Next, both scenarios are described in more detail.

5.2.1 Rigidly coupled systems

The interest in nanostructured systems with rigidly coupled hard and soft layers
stems from the prospect of permanent magnet materials with huge energy storage
capacities. This capacity is described by the maximum energy product (BH)max

which is subsequently introduced.
A hysteresis loop characterising the magnetic behaviour of a ferromagnetic ma-

terial is either depicted as a plot of the magnetisationM as a function of the applied
field Happ

1 (normally used in this thesis), or as a plot of the magnetic induction B
as a function of Happ (see figure 5.2 on the following page). The plots are correlated
by the relation B = µ0(Happ + M), resulting in the inclination of the lines in the
B(Happ) plot. For a rectangular curve M = Msat for Happ > MHc and M = −Msat

elsewhere, the corresponding B(Happ) curve is a straight line with constant pos-
itive gradient in the second quadrant. The general energy density of a magnetic
field in matter is εmag = −1

2BHapp (Jackson, 1999). The point of maximum energy
density (BH)max on a hysteresis loop is then obtained by solving

d
dHapp

[BHapp] =
d

dHapp
[µ0(H2

app +MsatHapp)] = 0 (5.2)

1The applied field can refer to either magnetic induction Bapp (unit Telsla, T), or to magnetic
field strength Happ (unit amperes/meter, A/m). As the applied field is the vacuum field inside
the external magnet in absence of the magnetic probe, Bapp and Happ are proportionally related by
Bapp = µ0Happ, and are equally suitable for use as abscissa on a hysteresis loop.
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Figure 5.2: Representations of hysteresis loops: 1) Magnetisation M as a function
of the applied field Happ (black solid lines). For high applied fields,
the magnetisation converges to Msat, the saturation magnetisation. The
magnetisation for zero applied field is called the remanence MR. The
coercive field with respect to the magnetisation MHc is the applied field
where the magnetisation is zero. 2) Magnetic induction B as a function
of the applied field Happ (blue dashed lines). The coercive field with
respect to the induction BHc is the applied field where the induction
is zero. In this thesis, we refer to MHc by default for coercive fields.
The red box is the graphical representation of the maximum magnetic
energy density (BH)max during a magnetisation cycle.

58



for Happ. This maximum point is found at Happ = −1
2Msat with

(BH)max =
1
4
µ0M

2
sat , (5.3)

under the premise that the magnetisation reversal does not take place before the
point of maximum energy density is reached, or in other words, that MHc ≥ 1

2Msat.
Strictly speaking, (BH)max is negative, but we implicitly apply the modulus. The
maximum energy density for arbitraryM(Happ) curves is generally limited to 1

4µ0M
2
sat,

as obtained for a rectangular M(Happ) loop (Fullerton et al., 1999).
From equation (5.3) we derive that optimising the maximum energy product

involves identifying materials with high saturation magnetisation and sufficient
coercive fields. Research has focussed on developing high-performance magnets of
binary or ternary rare earth / transition metal / boride or nitride compounds like
NdFe14B or Sm2Fe17N3 (Long and Grandjean, 1991). The rare earth atoms with their
huge anisotropy provide the required coercivity at the cost of a reduced saturation
magnetisation of the compound material.

The approach of Kneller and Hawig (1991) is to use a nanocomposite of regions
of exchange-coupled magnetically hard and soft materials, the magnetic exchange
spring systems. The hard compound serves as the rigid skeleton against demag-
netisation while the soft compound provides the high saturation magnetisation. By
this construction, the fraction of the rare earth material is kept at a minimum, opti-
mising manufacturing costs and corrosion resistance. Coehoorn et al. (1988) was the
first to experimentally investigate such a system.

Skomski and Coey (1993) predicted a maximum energy product of 1 MJ/m3 =120
MG Oe for multilayers of hard SM2Fe17N3 and soft Fe65Co35 with an atomic rare
earth fraction of 5 %. Fullerton et al. (1998) performed simulations based on a model
where the bilayer structure is divided into a sum of atomic layers, and the bi-
layer is treated as a one-dimensional chain of spins, each spin representing one
layer. They confirmed the numerical results by experiments for Sm-Co/Fe and Sm-
Co/Co bilayers, estimating a maximum energy product of 80 MG Oe. Sabiryanov
and Jaswal (1998) conclude values for (BH)max of the same order of magnitude for
SmCo5/Co1−xFe1−x by ab-initio calculations. All these results highlight the poten-
tial of exchange spring systems to maximise (BH)max.

5.2.2 Systems with inhomogeneous reversal behaviour

For systems with sufficiently thick magnetically soft layers, eq. (5.1) does not hold
any more, and the magnetisation reversal in the soft compound takes place in an
inhomogeneous way at fields below that of the hard layers. Consequently, the co-
ercive field is reduced, deteriorating the hard-magnet properties. Instead, interest
focuses on the process of the exchange spring reversal itself.
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Goto et al. (1965) theoretically studied the reversal characteristics of a soft mag-
netic layer without anisotropy that is ferromagnetically coupled to an extremely
hard and rigid substrate. He found that the system stays in a ferromagnetic align-
ment as long as the opposing applied field is lower than the so-called characteristic
bending field Hb with

Hb = − π2A

2Msat t2s
, (5.4)

where A is the global exchange constant and Msat is the saturation magnetisation
of the soft layer. When the applied field exceeds the bending field, a differential
rotation in the soft layer sets in: a Bloch domain wall-like structure is formed, with
the magnetisation pinned to the hard layer at the interface, and relatively free to
wind towards the applied field direction in the interior of the soft layer.

Figure 5.3 on the next page illustrates Goto’s findings, generalised to a soft layer
sandwiched between two hard layers. The magnetisation curve shows a flat part
with values close to Msat for positive applied fields and negative applied fields
up to Hb, according to the ferromagnetic spin structure 5.3 À. For H < Hb, the
increasing differential rotation in the soft layer 5.3 Á Â is reflected in the reversible
area of the hysteresis loop. Finally, the system becomes unstable, and the hard
layer switches into the opposite easy axis direction at the switching field Hs. All
spins are then aligned with the applied field direction, resuming a ferromagnetic
configuration in 5.3 Ã.

Goto also coined the term exchange spring by designing the mechanical ana-
logue of dual uniaxial films in form of a torsion spring. Both the simplified mag-
netic bilayer system and the torsion spring analogue obey energy equations of cor-
responding structure.

Bowden et al. (2000) recalculated the bending field based on the model of discrete
atomic layers earlier used by Fullerton et al. (1998). He found a layer thickness
dependence of the bending field corresponding to eq. (5.4), Hb ∝ 1

N2 , with the
number of atomic layersN . Asti et al. derived magnetic phase diagrams in terms of
layer thicknesses by calculating the differential susceptibility at a nucleation field.
In their one-dimensional models, uniaxial anisotropies were assumed with easy
axes either in (Asti et al., 2004) or perpendicular to (Asti et al., 2006) the film plane.

5.2.3 Antiferromagnetically coupled layers

When the interface coupling of the soft and hard layers is antiferromagnetic in-
stead of ferromagnetic, the sequence of the spin states during a reversal changes.
Figure 5.4 on page 63 sketches hysteresis loop and spin states for a trilayer model
system. Here, the exchange spring configuration with the Bloch domain wall-like
structure occurs at high applied fields. The hard top and bottom layers are aligned
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Figure 5.3: Model hysteresis loop and spin schematics of a FM exchange spring
system. Two blue shaded areas in the hysteresis loop are marked FM
to indicate a ferromagnetic spin configuration, a red shaded area is
marked Exchange Spring as the spin configuration in the soft layer is
wound towards the applied field direction like a torsion spring. The cir-
cled numbers on the top of the hysteresis loop refer to the spin schemat-
ics in the bottom row. In either plot, the horizontal planes are depicted
as blue glass discs, and the arrows represent the homogeneous magneti-
sation in each plane. The longer golden coloured arrows are the mag-
netisation vectors in the soft layer, the shorter copper coloured arrows
in the hard layer.
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with the applied field, pinning the interface area in the sandwiched soft layer into
an antiferromagnetic direction. In the interior of the soft layer, the magnetisa-
tion gradually twists towards the applied field. The higher the applied field, the
stronger the twist in the soft layer, the larger the magnetisation — see states 5.4 À

and Á. Due to the antiferromagnetic coupling, the bending fieldHb is positive. This
implies that the remanent state is an antiferromagnetic alignment of the moments
as in 5.4 Â. The antiferromagnetic alignment holds until the negative applied field
exceeds the switching field Hs. Then the hard layers switch towards the applied
field and wind up the soft layers (state 5.4 Ã ).

The technical realisation requires identifying magnetically hard and soft mate-
rials that effectively couple antiferromagnetically at the interface. The approach by
the Magnetic Materials group at the School of Physics and Astronomy at the Uni-
versity of Southampton is to use single-crystal Laves phase (Laves, 1956) REFe2/YFe2

samples (RE = rare earth element, details in section 6.2) that are grown by Dr Roger
C. C. Ward, Clarendon Laboratory, University of Oxford, using molecular beam
epitaxy (MBE) methods. The material properties are described in detail in the sub-
sequent chapters 6 to 8. The relevant interactions are the dominant ferromagnetic
Fe-Fe exchange (≈ 600 T) inside and across the layers, the antiferromagnetic Fe-RE
exchange (≈ 100 T) in the REFe2 layers, and the RE crystal field anisotropy (≈ 10-
100 T) (Gordeev et al., 2001a). Consequently, the effective moments in the REFe2 and
YFe2 layers are subject to antiferromagnetic coupling across the interface.

Figure 5.5 on page 64 sketches the coupling behaviour for typical spin states,
depicting the magnetic moments of the constituent materials: Fe moments (red,
short) in both the YFe2 and REFe2 compounds, RE moments (blue, long) in REFe2,
and effective moments (green, bold) in REFe2 as a result of the geometrical addition
of the respective Fe and RE moments. When the applied field Happ is between the
negative switching field Hs and the positive bending field Hb (state 5.5a), the spin
coupling is obvious: the Fe moments align ferromagnetically inside and across the
compound interfaces. The RE moments are antiferromagnetically coupled to the Fe
moments in REFe2, and the effective moments are antiferromagnetically oriented
with respect to the Fe moments as well. The ferrimagnetic state 5.5a corresponds
to figure 5.4 Â, and the state of exchange spring winding 5.5b to figure 5.4 Á. State
5.5c illustrates a spin flop structure, where the spins point perpendicular to the
film plane. This structure is caused by a complex crystal anisotropy that favours an
out-of-plane alignment of the magnetisation, and usually occurs at an intermediate
applied field Hsf . The extreme case of an almost infinite applied field is shown in
figure 5.5d. All Fe spins in the YFe2 layer are aligned with the field, as are the RE
spins. According to the model used in subsequent chapters, the Fe-RE exchange is
approximated to be infinite, causing the Fe spins in REFe2 to align against the field
direction. Consequently, the neighbouring Fe spins at the interface are frustrated
with regard to Fe-Fe exchange.
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The characteristics of antiferromagnetically coupled exchange spring systems
suggest usage for the design of novel applications as they can be engineered to
specific magnetic properties. In particular, DyFe2/YFe2 samples have been manu-
factured

• to a specified coercive field Hc in the range Hc(DyFe2) ≤ Hc ≤ ∞ (Sawicki
et al., 2000a)

• to a target bending fieldHb, following the dependenceHb ∝ 1
d2
s
, with ds being

the thickness of the soft layers (Sawicki et al., 2000b)

• at the magnetic compensation point (Msts = Mhth), withMs andMh denoting
the saturation magnetisation of the soft and hard material, and ts and th the
according layer thicknesses (Sawicki et al., 2000c)

• with tailored negative coercivity (Beaujour et al., 2001a,b, Gordeev et al., 2001a).

5.3 Applications

The usage of exchange spring systems as high-performance permanent magnets
was already explained in subsection 5.2.1. One area that could strongly profit from
such magnets is the development of microelectromechanical systems (MEMS).
MEMS are widely used as actuators and sensors already, with the the automo-
tive airbag deployment sensor as the most prominent representative. The ongoing
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miniaturisation of MEMS promotes the development of magnetic MEMS (Mag-
MEMS) devices as microsensors and microactuators, since magnetostatic interac-
tions dominate over electrostatic effects on a nanometre scale. Several topical re-
views exist (Cugat et al., 2003, Gibbs et al., 2004, Niarchos, 2003). Coils are economi-
cally and technically not viable as a magnetic flux generator in MagMEMS. Instead,
exchange spring magnets, when tailored for a giant energy product and magnetic
hardness, could create high displacement rates in actuators, or high signal output
in sensors, respectively.

Exchange spring systems also attract attention as potential candidates for novel
storage media with ultra high storage densities in the field of hard disk develop-
ment. Conventional hard disks store information in the magnetic orientation of
magnetically hard grains with a reversal mechanism of a Stoner–Wohlfarth particle.
Exchange spring magnets have additional degrees of freedom in form of domain
walls present in the soft layers, and the soft elements facilitate the switching of the
hard elements. This proves beneficial for use as storage media in various ways:
Ando and Nishihara (1997) implemented an exchange spring triple layer for perpen-
dicular recording media in order to achieve a high signal-noise ratio and signal
stability. Victora and Shen (2005) suggested the usage of exchange spring multilay-
ers as perpendicular magnetic recording media in order to facilitate the fabrication
and to improve magnetic switching properties. Suess et al. (2005a,b) showed that
the thermal stability of exchange spring recording media can be improved without
increasing the coercive field, which is limited by the maximum field of the write
head of roughly 1.7 T. For thermally assisted magnetic recording (TAR), Thiele et al.
(2003) used exchange spring media to allow for easier writing under a reduced
coercive field above a transition temperature.

In the field of spintronics, Kiselev et al. (2003) and Xi et al. (2005) reported on
magnetic motions in a nanomagnet driven by a spin-polarised current, possibly
serving as an easily tunable nanoscale microwave generator. With their well-defined
interlayer domain walls stretching over vast parts of the multilayer, exchange spring
systems are highly suitable for such devices, providing high spin torque yields.
They have been suggested for use as GMR spin devices (Gordeev et al., 2001b) and
as devices exploiting the magnetomechanical properties (Mougin et al., 2000). Fur-
thermore, the spin torque emerges useful in order to manipulate switching states
at comparably small applied fields (Zhang et al., 2002).
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Chapter 6

Magnetic DyFe2/YFe2 exchange
spring systems

The work on DyFe2/YFe2 exchange spring simulations described in this chapter
has been published in Journal of Applied Physics (Zimmermann et al., 2006).

6.1 Introduction

Magnetic measurements of [110] [50ÅDyFe2/200ÅYFe2] 1 reveal a rich switching
behaviour: the formation of exchange springs in this system of alternating hard
and soft layers can be observed for low temperatures. For high temperatures, the
appearance of the hysteresis loop changes significantly, implying a more compli-
cated reversal process.

First of all, the general crystalline and magnetic basics of REFe2 superlattices
are described in section 6.2. We focus on spin coupling aspects and the resulting
effective magnetisation (6.2.1), the exchange interaction (6.2.2), and the magnetic
anisotropy (6.2.3). The method for the investigation of the particular [50ÅDyFe2-
/200ÅYFe2] system is presented in sections 6.3 and 6.4. In section 6.5, we repro-
duce hysteresis loops for net and compound-specific magnetisation by means of
micromagnetic simulations and assess the quality by a direct comparison to recent
XMCD measurements. The high-temperature switching characteristics, showing
an unexpected magnetisation reversal of the hard magnetic layer before the soft
magnetic layer, are investigated and understood on the basis of detailed magnetic
configuration plots. The crossover of low- to high-temperature switching patterns
is explained by energy considerations, and the dependence on different parameters
is outlined.

1Multilayered system of alternating layers of 50 Å DyFe2 and 200 Å YFe2, with a crystallographic
[110] growth direction.
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6.2 Crystalline and magnetic basics of REFe2 superlat-
tices

In this and the following chapters, we investigate models of superlattices composed
of DyFe2, ErFe2, and YFe2 multilayers. Dysprosium (Dy) and erbium (Er) are rep-
resentatives of the element group of the rare earth metals. The term ’rare earth
metal’ is a trivial name for the lanthanides, the official name in accordance with
the IUPAC (International Union of Pure and Applied Chemistry) nomenclature.
The lanthanides comprise of the 15 elements with atomic numbers 57 to 71, a se-
quence from lanthanum to lutetium, with the additional electron placed into the 4f
orbitals. The 4f orbitals with their low spatial extension have little influence on the
resembling chemical properties of the lanthanides (Mortimer, 1987).

Confusingly, the term ’rare earths’ is also used to denote the lanthanides exclud-
ing promethium, together with the chemically similar transition metals yttrium and
scandium. In this thesis, we will stick to the former definition of rare earths.

A common property of those elements is the strong magnetocrystalline aniso-
tropy due to the effects of the crystal field on the rare earth’s 4f electron wave
function. The magnetocrystalline anisotropy will play a crucial role in the follow-
ing simulations. Yttrium (Y) and iron (Fe) are transition metals, bearing strong
exchange coupling as a consequence of the large spatial extend of the 3d wave
functions.

Bulk REFe2 (with RE = Dy, Er) and YFe2 crystallise in a Laves phase, a face-
centred cubic diamond structure with eight REFe2 units per cubic unit cell. A REFe2

unit cell is schematically depicted in figure 6.1 on the following page.

6.2.1 Effective magnetisation

REFe2 are ferrimagnets, and for the computational modelling we assume a rigid
ferromagnetic Fe-Fe and antiferromagnetic Fe-RE coupling inside a crystal cell.
This allows us to calculate an effective or net magnetisation of REFe2 by subtracting
the magnetisation of Fe from that of RE. In the YFe2 layers, the magnetisation of Y
is negligible, and Fe solely contributes to the net magnetisation of YFe2. The total
magnetisationMREFe2 of a REFe2 unit cell (cell base length a) can thus be calculated
as

MREFe2 = | (8mRE − 16mFe) | / a3 , (6.1)

and for YFe2 this simplifies to

MYFe2 = 16mFe / a
3 , (6.2)

67



Figure 6.1: Schematic of a REFe2 Laves phase unit cell, with RE being represented
by the large (blue) spheres and Fe by the small (red) spheres (Bentall and
R. C. C. Ward, 2003).

with a = 0.7363 nm for YFe2 and a = 0.7325 nm for both ErFe2 and DyFe2 (Bentall
and R. C. C. Ward, 2003). The magnetic momentsm are temperature dependent. The
values relevant for the simulations in chapters 6 and 7 can be looked up in table 6.1
on page 74. For a comprehensive listing, see appendix A.1.

6.2.2 Exchange interaction

Regarding the exchange interaction, we only consider the ferromagnetic coupling
of the Fe atoms across crystal cells. This results in a positive intra-layer exchange
coupling Ai for all compounds, a negative across-layer exchange coupling Aa(RE-Y)

between the effective REFe2 and YFe2 moments, and a positive across-layer ex-
change coupling Aa(RE-RE) between the effective ErFe2 and DyFe2 moments to be
discussed in chapter 8. The exchange constant used for pure iron is 2.5 × 10−11

J/m (Suess et al., 2000). For the exchange constants of the compounds, we apply
a finding from mean field theory: according to O’Handley (1999, page 121), the
Curie temperature can be calculated by the Curie constant CC and λ, TC = λCC.
The function λ is proportional to the Heisenberg exchange constant J of equation
(3.27). Hence, the exchange constants for the compound materials are obtained
by taking the value for pure iron scaled by the corresponding Curie temperatures,
stated in Buschow (1977). As the simulation results are robust with respect to mod-
erate variations of the exchange constants, we use the same intra-layer exchange
constant of Ai = 1.46 × 10−11 J/m for all three compounds, and the across-layer
exchange constants Aa(RE-RE) = −Aa(RE-Y) = Ai.

6.2.3 Magnetic anisotropy

For considerations of the magnetic anisotropy we introduce two coordinate sys-
tems: the laboratory system xyz and the system of the lattice cell with its basis
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Figure 6.2: (a) Lattice cell (yellow cube) with respect to the film plane (blue). The
lab system is spanned by the basis vectors x, y, z, the lattice cell by
[100], [010], [001]. The crystal is grown in the [110] direction. (b) In-
film plane body diagonals of the lattice cell in an xy cross section (c),
out-of-film plane body diagonals in an xz cross section.

vectors [100], [010], [001]. Both systems are interlinked by the crystal growth direc-
tion [110] which is the z direction of the lab system. The orientation of the lattice
cell in the lab system is outlined in figure 6.2. Please see figure 6.3 on the next page
for the correlation of film plane base directions, base directions of a [110] grown
crystal, and body diagonals of the crystal.

The RE magnetocrystalline (MC) anisotropy of the bulk with the phenomeno-
logical parameters K1, K2, K3 is described by the cubic anisotropy energy density
(eq. (3.77)) in the lattice cell system:

εa,MC = K1 [α2
100α

2
010 + α2

100α
2
001 + α2

010α
2
001] +

K2 [α2
100α

2
010α

2
001] +

K3 [α4
100α

4
010 + α4

100α
4
001 + α4

010α
4
001] , (6.3)

where α100, α010, α001 are the direction cosines of the magnetisation with respect to
the crystal lattice directions [100], [010], and [001], as defined in subsection 3.3.3 on
page 31 for arbitrary directions. The temperature dependent K1, K2, K3 values are
taken from calculations extending the Callen-Callen model to second order (Martin
et al., 2006a). The values relevant for the simulations in chapters 6 and 7 can be
looked up in table 6.2 on page 75. For a comprehensive listing, see appendix A.2.

6.3 DyFe2/YFe2 simulations

The system studied in this section is a model of a [110] [50ÅDyFe2/200ÅYFe2]×27
Laves phase superlattice. It is sketched on the left side of figure 6.4 on page 71.
Macroscopic magnetisation measurements as well as compound-resolved XMCD
analysis (Dumesnil et al., 2005, 2004) reveal a typical exchange spring magnetisation
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[50ÅDyFe2/200ÅYFe2]×27 exchange spring system (left), and closeups
showing the computational cells (centre) and the atomic spin coupling
(right).

reversal for low temperatures and an unexpected switching behaviour with three
irreversible switchings for high temperatures, where the hard magnetic layers re-
verse before the soft magnetic layers (figure 6.5 on the next page). We investigate
the spin configuration of this interesting reversal behaviour by means of micro-
magnetic simulations. The resulting compound-specific and net hysteresis loops
are presented and compared with experimental data. Good qualitative agreement
legitimates the simulation data and allows the interpretation of resolved configu-
ration plots that clarify the different switching behaviour.

6.4 Method

We use the OOMMF code to perform the micromagnetic simulations. The layer
structure and the direction of the applied field Bapp‖ [1̄10] correspond to Dumesnil
et al. (2005, 2004). A cell size of 1 nm3 provides sufficient resolution with respect
to an exchange length of 3.4 nm. For computational feasibility, the magnetisation
of each layer is represented by one cell (figure 6.4, centre). The simulations ac-
count for thermal effects by temperature-dependent magnetisation and anisotropy
parameters. Owing to the one-dimensional character of the model with its lim-
ited xy resolution, demagnetising effects cannot be considered by explicit OOMMF
methods as described in subsection 3.4.3. Instead, the thin film approximation of
subsection 3.4.4 is applied.

The spin coupling is schematically depicted on the right side of figure 6.4: the
Fe atoms are ferromagnetically coupled, effecting positive intra-layer and negative
across-layer exchange coupling between the net moments (subsection 6.2.2). The
magnetisation values are derived from equations (6.1) and (6.2), with input param-
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Figure 6.5: Experimental DyFe2 hysteresis loops of the net (top) and compound-
specific (bottom) magnetisation My for 100 K (left) and 200 K (right),
as measured by Dumesnil et al. (2004). The compound-specific data in
the bottom row was obtained by XMCD measurements at the Y and Dy
edges. The solid lines in the top row are magnetic measurements of the
net magnetisation, superimposed to a linear combination of the XMCD
loops.
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Figure 6.6: Dy anisotropy energy barrier dE (black squares) and the ratio of the net
magnetisation of DyFe2 to YFe2 (blue diamonds, based on Bleaney et al.
(1982), Bowden (2005), Bowden et al. (1968) ) for various temperatures T .
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Material Magn. moment per atom / 0 K Temperature normalisation
m0 [µB] T [K] rT[]

Dy 10 200 0.8762
350 0.6867

Fe 1.5 100 0.9835
200 0.9519
350 0.8634

Y 0.0 – –
Er 9.0 100 0.8905

200 0.7210
350 0.4884

Table 6.1: Magnetic moments for different bulk materials (Bleaney et al., 1982, Bow-
den, 2005, Bowden et al., 1968). To get an atomic magnetic moment for
a given temperature T , the zero temperature magnetic moment m0 has
to be multiplied with the dimensionless temperature normalisation rT:
m(T ) = m0 rT(T ).

eters listed in table 6.1. With increasing temperature, the magnetic moment of Dy
diminishes faster than that of Fe, and the DyFe2 and YFe2 magnetisations tend to
level (figure 6.6 on the previous page).

While we can ignore magnetic anisotropy for YFe2, the anisotropy of DyFe2

plays a crucial role in the understanding of the switching behaviour, bearing a
magnetocrystalline contribution of the bulk Dy and a strain energy due to epitax-
ial effects. The bulk Dy anisotropy is manifested in the phenomenological cubic
crystal constants K1,K2,K3 of eq. (6.3); the values are extracted from Atzmony and
Dariel (1976), with easy axes in 〈100〉. The strain term dxy of eq. (3.89) gets in-
creasingly important for higher temperatures: up to 170 K, the easy axis coincides
with the easy axis of a pure magnetocrystalline anisotropy, and above 170 K ro-
tates in the (001) plane towards [1̄10] (Bowden et al., 2006, Mougin et al., 2000). At
room temperature, the direction of the moments is located at an angle of 30o out
of the film plane. The strain parameters used in the simulations are derived from
a single-ion point charge model (Bowden et al., 2006) in qualitative agreement with
Mougin et al. (2000), as explained in subsection 3.3.6. In figure 6.7 on page 76, the
overall anisotropy shapes are depicted for 200 K (a) and 350 K (b). The magne-
tocrystalline anisotropy contributions fade comparably slowly for Dy (compared
to other rare earth materials) with rising temperature (Atzmony and Dariel, 1976),
and the cubic shape is pronounced for both temperatures. However, for 350 K, the
cubic symmetry is notably distorted towards the z direction, favouring directions
in the film plane. Figure 6.6 on the previous page shows the calculated values of
the anisotropy energy barrier in z direction separating the easy axes, indicating a
rapid decay of the barrier with rising temperatures.
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Compound Temperature Cubic anisotropy constants Strain term
T [K] K1 [K] K2 [K] K3 [K] dxy [K]

DyFe2 200 3.55e1 -1.00e1 3.16e0 8.75e0
350 6.27e0 -1.00e0 9.31e-2 4.68e0

ErFe2 100 -3.00e1 -4.50e1 4.50e0 -4.95e0
200 -4.50e0 -2.50e0 6.20e-2 -2.81e0
350 -4.84e-1 -1.29e-1 0.0 -1.13

Table 6.2: Anisotropy constants for different materials and different temperatures
(Bowden, 2005, Mougin et al., 2000). The first-order strain term dxy, occa-

sionally used instead of K̃ ′
2, is dxy = 1

2

√
2π
15 K̃

′
2. Second-order strain terms

are ignored.

The anisotropy constantsK1 toK3 as well as the strain term dxy used in the sim-
ulations are stated in table 6.2. The strain term cannot be plugged into OOMMF di-
rectly and has to be expressed by two uniaxial anisotropies according to eq. (3.89).

6.5 Results and discussion

Hysteresis loops have been computed for various temperatures T . The resulting
switching patterns can be divided into a low-temperature regime for T ≤ 300 K,
and a high-temperature regime for T > 300 K. Results for each regime are de-
picted in figure 6.8 on page 77, comprising of net hysteresis loops (upper row)
and compound-specific hysteresis loops (lower row). Starting off with high ap-
plied field and almost saturated magnetisation, the net hysteresis loop for 200 K
(a) shows an accelerated decline of the magnetisation, with a negative coercivity
of 0.65 T. At Bapp ≈ −1 T, the magnetisation curve turns almost flat. These are
the characteristics of an exchange spring system: with decreasing applied field, the
magnetically soft layers unwind until the system reaches an ordered ferrimagnetic
state (transition from figure 5.5(b) to 5.5(a)). For Bapp ≤ −11 T, the magnetisation
drops to almost negative saturation when the hard layers irreversibly switch into
the direction of the field. This is underlined by the compound specific hysteresis
loop (c), showing the soft YFe2 magnetisation MYFe2 forming an exchange spring
first at a small positive field, and the hard DyFe2 magnetisation MDyFe2 switching
subsequently at a high reversed Bapp.

For 350 K, the appearance of the hysteresis loop has changed drastically: the net
hysteresis loop (b) shows a first irreversible step at Bapp ≈ +5 T (∆M ≈ 0.7 × 105

A/m). Coercivity is positive (0.65 T), accompanied by a second irreversible step of
∆M ≈ 5× 105 A/m. A third irreversible step is at -7.6 T, with a similar appearance
as the first step. The compound-specific hysteresis loop (d) gives further insight:
it is the magnetically hard DyFe2 layer to switch first into a direction opposing
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Figure 6.7: Normalised anisotropy energy surface (green) and average net mag-
netisation directions (red) for the DyFe2 layers for 200 K (a) and 350 K
(b). The dotted lines mark the irreversible switchings under a varied ap-
plied field. The spin states of the DyFe2 layers are indicated by the cir-
cled numbers and can be looked up in figure 6.8 on the following page.
The base directions x, y, z of the film coordinate system are depicted,
showing the connection to the crystalline coordinate system 〈100〉.

Bapp. Both MDyFe2 and MYFe2 reverse at the second step, and MDyFe2 finally snaps
towards Bapp at the third step. A vanishing x magnetisation component for all
simulations indicates that the reversal processes take place in the (001) plane.

For both 200 K and 350 K, the sequence of irreversible switchings is outlined
by the average MDyFe2 in figure 6.7, represented by the arrows superimposed on
the anisotropy surfaces. It rests in the energy minimum between the [010] and [1̄10]
direction or the equivalent zx mirrored energy minimum, and is slightly elongated
from this position by the applied field and the exchange interaction of the MYFe2.
For 200 K, the average MDyFe2 switches once, for 350 K three times.

The shape of the hysteresis loops for low and high temperatures obtained by
micromagnetic simulations features all the characteristics of the experimental hys-
teresis loops (Dumesnil et al., 2005, 2004). The quantitative differences can be ac-
counted to the inability of the model to form complex magnetic structures in the xy
plane and to the underestimation of demagnetising effects. However, the qualita-
tive conformity of the hysteresis loops legitimates a further analysis of the simula-
tion data for a better understanding of the interesting high-temperature switching
behaviour.

In figure 6.9 on page 79, the high-temperature spin configurations are visualised
with the resolution of the finite difference grid (1 nm), showing the transitions of
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Figure 6.8: Hysteresis loops of the net (a,b) and compound-specific (c,d) magneti-
sation My as obtained by the simulations for 200 K (left) and 350 K
(right). The solid (red) lines mark the y magnetisation of the DyFe2

layers and the dashed (green) lines of the YFe2 layers in (c,d). Circled
numbers in (a, b) indicate the magnetisation states shown in figure 6.7
on the preceding page. For 350 K, spin configurations for states À to
Â are depicted in figure 6.9 on page 79. These loops correspond to the
experimental loops 6.5 on page 72. The lines are a guide to the eye.
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spin states À Á Â of figure 6.8(b). Note that the magnetisation vectors do not rotate
out of the yz plane, the plane of the graph. For high positive applied field (state
À), MYFe2 is mostly aligned with the field (+y direction). MDyFe2 is settled in the
anisotropy dip close to [010], towards Bapp, but frustrating the exchange energy
between the layers, giving a tight exchange spring. When the applied field is grad-
ually reduced (À→Á), the influence of exchange energy grows, turning MDyFe2 to-
wards a direction opposing MYFe2 that is still mostly aligned with the field. Next,
MDyFe2 overcomes the anisotropy energy barrier and flips into the minimum close
to [100] (state Á): first irreversible step. In remanence state, MDyFe2 rests in the latter
anisotropy minimum, and the exchange energy keeps MYFe2 in an opposing direc-
tion. Since the dominating MYFe2 vectors still point in the direction of the applied
field, the coercive field is positive. With Bapp reversing (Á→Â), MYFe2 gradually
rotates towards the -y direction. However, MDyFe2 is still locked in the anisotropy
dip, and exchange interaction keeps MYFe2 from aligning with the new field di-
rection. Consequently, a large interface wall is formed. The torque applied by the
increasing reversed applied field acts on MYFe2, which in turn drags MDyFe2 back
over the anisotropy energy barrier via the exchange interaction. MDyFe2 returns to
the anisotropy minimum close to [010] and allows MYFe2 to further rotate towards
Bapp. This is reflected in the second irreversible step to state Â, with a high mag-
netisation amplitude due to the synchronous reversal of both compounds. With
further increasing negative applied field, another switching occurs, based on the
same mechanism as the first switching (À→Á).

The reason for the existence of the observed high temperature reversal process
is apparent in the temperature dependence of the anisotropy barrier and the ratio
of the net magnetisation of the two compounds (figure 6.6 on page 73): for high
temperatures, the anisotropy barrier becomes sufficiently low to allow an isolated
switching of MDyFe2. Additionally, with the growing magnetic YFe2 dominance for
increasing temperatures, MYFe2 stays closely aligned with Bapp, and the exchange
spring is formed by the winding of MDyFe2.

6.6 Summary

Micromagnetic modelling of the DyFe2/YFe2 exchange spring system has proven
its ability to reproduce hysteresis loops with characteristics matching those of ex-
perimental work. It enabled a thorough analysis of the high-temperature switching
behaviour, explaining the unexpected magnetic reversal mechanism, with the mag-
netically hard DyFe2 layers reversing before the magnetically soft YFe2 layers. The
strong thermal dependence of anisotropy plays a key role for the reversal processes,
and the interplay with exchange and Zeeman energy is understood on a qualitative
level.
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Figure 6.9: Spin configurations of an inward double-layer for 350 K for states À to
Â as depicted in figure 6.8, and their transition states. The applied field
points along the ±y direction. The DyFe2 layer (red arrows) is located
below the YFe2 layer (green arrows), where the arrows indicate the net
magnetisation vector per computational cell of 1 nm3.
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Chapter 7

Magnetic ErFe2/YFe2 exchange
spring systems

The results of the work on ErFe2/YFe2 multilayers described in this chapter have
been published in Applied Physics Letters (Martin et al., 2006b). The experimental
measurements were obtained by Kevin N. Martin of the School of Physics and As-
tronomy (University of Southampton).

7.1 Introduction

In this chapter, we use micromagnetic simulations to interpret the data obtained
by magnetic measurements by Kevin N. Martin in Prof de Groot’s team of a [110]
[50ÅErFe2/150ÅYFe2]×20 Laves phase superlattice multilayer. The directions of
easy magnetisation for the Er layers differ substantially from those of the Dy layers
as described in chapter 6. We find three distinct switching patterns for different
temperature regimes. For medium temperatures, we observe a spin flop mode
where the average magnetisation in the ErFe2 layers align in a nominally hard di-
rection perpendicular to the field applied along [110]. The consideration of x, y,
z components of the compound-specific average magnetisation sheds light on this
unusual switching mode.

We start this chapter with a description of the basics of a vibrating sample mag-
netometer used for the magnetic measurements (section 7.2). Next, we outline the
numerical model and the anisotropy characteristics of Er (section 7.3). In section
7.4, the results of the magnetic measurements and micromagnetic simulations are
presented and discussed.

7.2 Vibrating sample magnetometer

The magnetic measurements were made by means of a vibrating sample magne-
tometer (VSM). The experimental technique of a VSM was invented in 1956 by

80



Figure 7.1: Vibrating sample magnetometer (VSM): the left photo of the complete
set-up shows the actual VSM in the middle, with the transducer unit
on the top and the cryostat vessel underneath. Adjacent are the helium
containers required for the cooling of the cryostat. On the right photo,
the vibration rod with the protruding sample holder can be seen on
the top. On the bottom, the cryostat tail is visible that houses the sam-
ple holder during operation. The superconducting magnet has been
removed.

Foner (1956, 1959). The basic idea is to mechanically vibrate a sample in a uniform
magnetic field with a known frequency. Two pick-up coils are placed next to the
sample. The movement of the magnetic sample creates a changing flux in the pick-
up coils, and, by Faraday’s law, an electrical signal is induced in the pick-up coils.
The signal has the same frequency as the sample vibration, and its amplitude is
proportional to the magnetic moment of the sample.

The VSM used here is an Aerosonic V.S.M. 3001 (figure 7.1). The sample is
attached to a sample holder at the end of a carbon fibre rod in a transducer (Martin,
2007). The transducer generates vertical vibrations of approx. 60-100 Hz. The
sample is inserted into the tail of an Oxford Instruments liquid helium cryostat,
which is exposed to the magnetic field of a superconducting magnet of up to 12 T.

7.3 Method

As in the studies on DyFe2/YFe2 in chapter 6, OOMMF is used for the micro-
magnetic simulations. The direction of the applied field is different here ( Bapp

‖ [110] ), whereas parameters like cell size (1 nm3), exchange length (3.4 nm), xy ex-
tension (1 cell), and antiferromagnetic coupling of Fe atoms (exchange coefficient
A = 1.46× 10−11 J/m) are unchanged. Thermal effects are taken into account via
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(b) marks the movement of the magnetisation for high reducing fields,
before it settles in state À.

temperature dependent magnetisation and anisotropy values as before (tables 6.1
and 6.2).

The anisotropy properties of Er are now discussed by means of figure 7.2. The
cubic MC anisotropy of Er has easy axes along the body diagonals 〈111〉 of the
crystal cell, in contrast to the Dy anisotropy favouring 〈001〉. This can be noticed
by the opposite sign of the dominant K terms for the two materials in table 6.2 on
page 75. The Er strain term prefers an out-of-film plane direction (negative sign of
dxy).

The strain term is almost negligible in comparison to the MC anisotropy for low
temperatures. However, it decreases significantly slower than the MC anisotropy
when temperatures rise. So the overall anisotropy is dominated by the MC con-
tribution for low temperatures, whereas the strain contribution prevails for high
temperatures, with a gradual transition for intermediate temperatures. In other
words, at low temperatures we find eight equally deep minima of the anisotropy
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energy in 〈111〉. When the temperature goes up and the strain term becomes im-
portant, the four easy axes pointing in out-of-film plane directions rotate towards
[110] and [1̄1̄0], respectively; the four in-plane anisotropy minima gradually flatten
and turn into saddle points. The characteristics can be followed in the plots of the
overall anisotropy shape, figure 7.2 on the preceding page, when proceeding from
100 K (a) to 200 K (b), and finally to 350 K (c).

7.4 Results and discussion

Three different switching patterns are observed in the simulations, with a low-
temperature (LT) regime for T ≤ 100 K, a medium-temperature (MT) regime for
100 K < T ≤ 250 K, and a high-temperature (HT) regime for T > 250 K. Figure 7.3
on the next page shows the hysteresis loops obtained by simulation (left) and ex-
perimental measurement (right). Temperatures of the corresponding experimental
curves are lower, a phenomenon already discussed in section 6.5. However, for all
three temperature regimes, there is a striking congruence of the hysteresis loops,
obtained by experimental measurements and by simulations.

The LT hysteresis loop (a) suggests a typical exchange spring behaviour: start-
ing from a large positive applied field, the magnetisation in the soft layers unwinds
into negative coercivity; the magnetisation in the hard layers irreversibly switch at
a negative applied field. The ErFe2 magnetisation stays in close proximity to the
easy axes of the anisotropy. These directions before and after the transition are
outlined in figure 7.2a).

In the MT regime, the hysteresis loop (b) indicates a more complicated switch-
ing behaviour, showing three irreversible steps and positive coercivity. This inter-
esting situation is analysed in detail later in this section.

Proceeding to higher temperatures, the MT triple switching scheme collapses
into a simpler HT picture with one sharp transition and little hysteresis (c). This is
well understood with our knowledge about the high-temperature anisotropy shape
of Er, visualised in figure 7.2c): the only easy axes left are [110] and [1̄1̄0], and the
ErFe2 magnetisation switches between these two directions. The spin configura-
tion stays in a ferrimagnetic state — the dominating magnetisation MYFe2 of the
YFe2 compound aligned with the applied field, and the magnetisation MErFe2 of the
ErFe2 compound pointing the opposite way — up to very high fields Bapp> 10 T,
where MErFe2 starts winding towards the field.

The medium-temperature regime

In the MT regime, the spins do not stay in one plane, as it has been the case for
the Dy multilayers. For this reason, we require all three spatial components of the
magnetisation to obtain the full 3D picture of the reversal process (figure 7.4).
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The magnetisation graph of the z component 7.4c) and figure 6.8d) on page 77
are similar in appearance, suggesting that the hard layers switch earlier than the
soft layers. The surprising part, however, is the y component of the magnetisation
7.4b). We follow the rotation of the Er magnetisation in figure 7.2b): very high fields
(15 T) wind the Er magnetisation towards the applied field direction (the position
is marked by a red dot on the green anisotropy surface). When gradually relaxing
the applied field, the Er magnetisation first unwinds along a trajectory that lies in
the xz plane. The trajectory is visualised by the red line starting at the red dot.
Consistently, the y component of MErFe2 in 7.4b) is zero for applied fields of 15 T to
13.5 T. Then it becomes energetically favourable for the magnetisation to unwind
sideways towards the [11̄1̄] direction in order to avoid the hard axis in [001̄]. So from
13.5 T on, the y component of the Er magnetisation decreases to negative values,
reflecting the sideways movement. At 6.5 T, the Er magnetisation has reached its
maximum y elongation in the configuration state À of 7.2b). This is a spin flop state,
visualised in figure 7.5 on the following page: the magnetisation in the ErFe2 layers
and in the adjoining parts of the YFe2 layers point to directions perpendicular to
the applied field. Nevertheless, the magnetisation in the interior of the YFe2 layers,
distant from the interfaces, bends towards the applied field, evident in a positive z
component of YFe2 in 7.4c).

When the applied field falls below 5.5 T, the pressure exerted by the domi-
nating YFe2 moments on the ErFe2 moments via the antiferromagnetic coupling
at the interfaces cannot be withstood by the now reduced Zeeman energy of the
ErFe2 moments and the Er anisotropy energy barrier. ErFe2 switches into the [1̄1̄1̄]
anisotropy minimum in the xz plane (state Á in 7.2b), where the y component of
MErFe2 vanishes in 7.4b). After the applied field reversal, at -1 T, the magnetisation
in all layers switches synchronously, with MErFe2 and MYFe2 staying in diametrical
opposition: the moments in the YFe2 layers follow the new applied field direction,
once more driving the ErFe2 moments into a direction opposing the applied field
via exchange interaction. State Â in 7.2c) for an applied field of -3.5 T is a snapshot
of this configuration. Under a further reducing negative field, the magnetisation in
the ErFe2 layers snaps into the spin flop state Ã at -6.5 T. Then it winds towards
the applied field direction, first rotating into the xz plane, and then in the xz plane
towards [1̄1̄0].

A prerequisite for the interesting spin flop state is the existence of an anisotropy
minimum 〈11̄1̄〉, halfway between the x and -y direction, to accommodate the ErFe2

magnetisation. Due to the strain term and the changing topology of the anisotropy,
both dependent on the temperature, this minimum disappears for temperatures
exceeding 250 K. On the other hand, the anisotropy must not be overly strong to
allow MErFe2 to slip into the spin flop direction without any blockage. The bottom
line is that the spin flop state can only occur for medium temperatures.

Another factor for the occurrence of the spin flop state is the thickness of the
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Figure 7.5: Medium-temperature regime: three-dimensional magnetic configura-
tion in the ErFe2 (upper left, red arrows), and YFe2 (lower right, green
arrows) layers for the spin flop state À in figures 7.2b) and 7.4, for an
applied field of 6.5 T. Directions of the film plane coordinate system and
the applied field direction Bapp are indicated.

composite layers which determines the ratio of YFe2 moments in proximity to the
interface to YFe2 moments in the interior of the layer. This has not been investigated
yet.

7.5 Summary

The simulation results explain the observed spin switchings and predict the exis-
tence of a quasi spin flop state. Future work — both on DyFe2/YFe2 and ErFe2/YFe2

models — will focus on an improved quantitative comprehension of the interacting
parameters, by means of three-dimensional modelling and by varying the layer ge-
ometry. The success of the simulations so far allows us to proceed to systems with
intertwined DyFe2/YFe2 and ErFe2/YFe2 multilayers with two hard magnetic ma-
terials and competing anisotropies.
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Chapter 8

Magnetic ErFe2/YFe2/DyFe2/YFe2

exchange spring systems

The work on ErFe2/YFe2/DyFe2/YFe2 exchange spring simulations described in
this chapter has been submitted to Physical Review B (Zimmermann et al., 2007). The
experimental measurements were obtained by Kevin N. Martin of the School of
Physics and Astronomy (University of Southampton), using samples manufactured
by Dr Roger C. C. Ward of Clarendon Laboratory (University of Oxford).

8.1 Introduction

In this chapter, we investigate the magnetisation reversal processes of exchange
spring systems with two different magnetically hard materials for varied thick-
nesses of the soft layers. Exemplarily, we focus on antiferromagnetically coupled
[10nm ErFe2/n YFe2/4nm DyFe2/n YFe2] exchange spring multilayers, harvesting
on the previous studies of the individual DyFe2/YFe2 (chapter 6) and ErFe2/YFe2

(chapter 7) systems. These Laves phase superlattices can be epitaxially grown in a
well-controlled and reproducible way, facilitating the production of samples with
varied layer thicknesses n, but otherwise epitaxially identical. The range of n from
2 nm to 40 nm corresponds to the typical length scales of exchange spring struc-
tures. The two RE compounds, ErFe2 and DyFe2, are among the materials with
the highest magnetic anisotropies. The YFe2 compound bears negligible magnetic
anisotropy. The thickness of the ErFe2 layers (10 nm) is set larger than that of the
DyFe2 (4 nm) layers to approximately compensate for the higher effective magneti-
sation of DyFe2 described later, giving the ErFe2 and DyFe2 compounds compara-
ble magnetic weight.

The Fe in either of the YFe2, ErFe2, DyFe2 compounds is responsible for the
exchange interaction within and across the layers, and the exchange stiffness is
widely homogeneous throughout the sample. Consequently, the ratio of the layer
thicknesses of hard and soft compounds represents a parameter which allows us to
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tune the impact of the RE anisotropy on the magnetic switching states independent
of intricacies imposed by the exchange interaction.

Another main aspect of the investigated system is the pre-strung magnetisation
configuration of the soft YFe2 compound: since the YFe2 layers are sandwiched
between two different magnetically hard layers ErFe2 and DyFe2 with differing
anisotropy properties, a built-in domain wall is present in the intermediate YFe2

layer even in the remanent state. For simpler systems with one hard compound as
descibed in chapters 6 and 7, the magnetisation in the soft compound is completely
relaxed in the remanence state.

In the following section 8.2, the numerical model (8.2.1) and the material pa-
rameters (8.2.2) used for the simulations are stated. In section 8.3, we present mag-
netisation measurements along the [110] direction of a sample with n = 20 nm for a
set of temperatures T between 10 K and 300 K. They are compared to the results of
micromagnetic simulations with OOMMF in section 8.4, and the observed switch-
ing modes with their respective spin configurations are explained on the basis of
the simulation data in section 8.5. In section 8.6, the thickness layer n is varied:
graphs of the direction cosines of the compound-specific magnetisations suggest
a quantifiable definition of the switching modes (8.6.1). The switching modes are
analysed and their regimes are mapped with regard to T and n (8.6.2). The bound-
aries of the regimes are understood by energy considerations.

8.2 Method

8.2.1 Numerical model

We use the OOMMF code for our simulations, with extensions for higher order
anisotropy energy terms (Computational Engineering and Design Group, University
of Southampton, 2004). For the time evolution, the Landau-Lifschitz-Gilbert equa-
tion is employed, determining quasi-static magnetisation configuration states by a
damped precession of the magnetisation.

For the underlying numerical model, we assume a homogeneous magnetisation
in the (110) film plane, allowing us to represent the system by a 1d chain of com-
putational cells along [110], according to the model used in chapters 6 and 7. The
computational cell size of 1 nm3 is sufficiently smaller than the exchange length of
either compound material. The spins of the RE and Fe atoms couple to an effective
magnetic moment meff, as described in section 6.2: we draw on the ferrimagnetism
of the REFe2 materials and assume a rigid exchange coupling of the magnetic mo-
ments of the 8 RE and the 16 iron atoms inside a lattice cell (figure 8.1 on the next
page). As the magnetic moments of Er and Dy outweigh that of Fe by at least a
factor of 2, the effective moments of ErFe2 and DyFe2 oppose the moment of the
atomic Fe.
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Figure 8.1: Sketch of the underlying numerical model, showing the layers of
ErFe2/YFe2/DyFe2/YFe2 compounds (left), and the rigid coupling of
the atomic moments to an effective magnetisation for each compound
(right). The arrows representing the atomic moments reflect the rela-
tive antiferromagnetic alignment of RE and Fe inside a crystal cell and
the relative ferromagnetic alignment of Fe across the cells, not the real
magnetisation directions.

Across crystal cells, we only consider the ferromagnetic coupling of the Fe
atoms, with a positive intra-layer exchange coupling Ai for all compounds, a nega-
tive across-layer exchange coupling Aa(RE-Y) between the effective REFe2 and YFe2

moments, and a positive across-layer exchange coupling Aa(RE-RE) between the ef-
fective ErFe2 and DyFe2 moments. Magnetostatic effects are taken into account in
form of the approximation for the demagnetising energy density

εd,i =
1
2
µ0 (M i · ê⊥)2 (8.1)

for homogeneously magnetised thin film slabs i with a magnetisation M i and an
out-of-film plane unit vector ê⊥, as explained in subsection 3.4.4. In our model,
each computational cell in the 1d chain represents one film slab, and ê⊥ is the [110]
direction.
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8.2.2 Material parameters

The exchange constants for the compound materials Aa(RE-RE) = −Aa(RE-Y) = Ai =
1.46 × 10−11 as stated in subsection 6.2.2 are used. The effective magnetisations of
the compound materials consist of the atomic magnetic moments of Er, Dy, and Fe
according to subsection 6.2.1, with values stated in appendix A.1. The result can be
seen in figure 8.2: for low temperatures . 200 K, DyFe2 and ErFe2 magnetisations
prevail, whereas for temperatures & 200 K YFe2 starts dominating over ErFe2 and
increasingly catches up with DyFe2. For all temperatures considered, the magneti-
sation of DyFe2 exceeds that of ErFe2.

The orientation of the lattice cell with its basis vectors [100], [010], [001] in the
lab system x,y,z for the crystal growth direction [110] is outlined in figure 6.2 on
page 69. The RE magnetocrystalline (MC) anisotropy of the bulk is described by the
phenomenological parameters K1, K2, K3 of the cubic anisotropy energy density
as defined in eq. (6.3). TheK1, K2, K3 values are taken from calculations extending
the Callen-Callen model to second order (Martin et al., 2006a), the results of which
are given in appendix A.2.

Additionally, a shear strain εxy is present due to the [110] MBE growth direc-
tion of the films (Mougin et al., 2000), incorporated in the strain energy density εme

(eq. (3.86)). εme is approximated in terms of the strain coefficients K̃ ′
2 and K̃ ′′

242; the
values from Bowden et al. (2006) are listed in appendix A.3. The strain term gen-
erally attenuates slower with rising temperature than the MC contribution. Con-
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sequently, the total anisotropy as a sum of MC anisotropy and strain term shows
temperature dependent characteristics (anisotropy directions as shown in figure 6.2
on page 69 and figure 8.4 on the previous page): ErFe2 has easy magnetisation di-
rections along the body diagonals of the lattice cell 〈111̄〉 for low temperatures (i.e.
10 K). For increasing temperatures, the out-of-plane easy axes move from [111] and
[111̄] towards [110], the in-plane easy axes from [11̄1̄] and [1̄11̄] towards [001̄] due
to the strain term becoming more pronounced. For DyFe2, the out-of-plane easy
axes gradually rotate from [1̄00] and [010] towards [1̄10] under rising temperature,
and the [001̄] easy axis eventually turns into a hard axis. Zhukov et al. (2004) mea-
sured an out-of-film plane angle of the easy directions θ ≈ 14◦ at 290 K. For our
simulations, we adjust the DyFe2 anisotropy parameters to take this into account:
the K̃ ′

2 of Bowden et al. (2006) seems to underestimate the strain. This is appar-
ent in an excessive θ determined by simulations of pure DyFe2 where the applied
field in [110] is gradually relaxed, and the magnetisation settles in the out-of-plane
anisotropy minimum. After multiplying the K̃ ′

2 values with a factor of 2.5 we are
able to replicate the findings of Zhukov et al. (2004)

We analytically determine the relevant anisotropy energy barriers for Er and
Dy (figure 8.3 on the preceding page). Both barriers fade with rising temperature,
facilitating switching processes.

The magnetisation characteristics of specific DyFe2/YFe2 and ErFe2/YFe2 sys-
tems have been described earlier. We will now focus on generalised [10nm ErFe2/n
YFe2/4nm DyFe2/n YFe2] systems with different n, and start with n = 20 nm.

8.3 Experimental data: the n = 20nm sample

A [10nm ErFe2/n YFe2/4nm DyFe2/n YFe2] superlattice with n = 20 nm is grown
by molecular beam epitaxy (MBE). The [110] growth direction of the Laves phase
materials is in accordance with the strain term contribution to the anisotropy of the
numerical model (eq. (3.86)). The samples are magnetically characterised along the
[110] direction by the use of a vibrating sample magnetometer VSM (section 7.2).

The resulting hysteresis loops for the total magnetisation are presented in the
left column of figure 8.5 on the next page for four temperatures (a to d). For 10 K
(8.5a) the loop features a typical exchange spring appearance insofar as the mag-
netisation smoothly slopes when the applied field relaxes from a maximum positive
value — the unwinding of the soft YFe2 magnetisation into a ferrimagnetic align-
ment. Whereas an exchange spring system with one magnetically hard material
shows one step-down indicating the switching of the hard compound, here we see
one larger drop at an applied field BS1 of -6 T, and a smaller one at an applied field
BS2 of -8 T. It seems obvious to identify the former with the switching of the ErFe2

compound into the applied field direction, the latter with that of DyFe2: in the case
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of DyFe2, higher anisotropy energy barriers have to be overcome before the switch-
ing takes place (figure 8.3). Furthermore, the different step amplitudes correspond
to the ratio of the RE layer thicknesses (4 nm:10 nm).

For 95 K (8.5b), the characteristics of the hysteresis loop are widely unchanged,
but the switching fields are substantially decreased, withBS1 around -2.5 T andBS2

around -4 T. In the hysteresis loop for 200 K (8.5c), the large drop attributed to the
ErFe2 switching has disappeared, with only the small DyFe2 switching step left at
BS2 of -2 T. At 295 K (8.5d), the hysteresis loop presents a small kink at a field BK

of approximately -3 T. Otherwise, the curve is smooth.
For all four temperatures, the coercive field is basically zero. This leaves us with

three different hysteresis loop appearances of the n = 20 sample: one for 10 K and
95 K, another for 200 K, and a third for 290 K.

8.4 Modelling of hysteresis loops

In order to gain further insight into the detailed spin configurations, we run mi-
cromagnetic simulations based on the numerical model outlined in section 8.2. The
applied field is swept along the [110] axis perpendicular to the film plane from +60 T
to -60 T, and back to +60 T with a resolution of 160 mT. Hysteresis loops are gener-
ated in order to compare them to the measurements and to confirm the numerical
model. The resulting hysteresis loops (10 K, 100 K, 200 K, 300 K) are placed next
to the experimental loops with the same or very similar temperatures on the right
column of figure 8.5 on the preceding page. For all four temperatures, the shapes
of the magnetisation curves of the simulations bear a striking resemblance to those
of the measurements, featuring all the characteristics described in section 8.3 on
page 93.

The modelled switching fields, however, are too large by a factor of 2 to 5. This
is a consequence of the 1d model that is unable to cope with nucleation processes
– a fact known as Brown’s paradox (Aharoni, 1962, Brown, 1963, Hubert and Schäfer,
1998, 2000). In spite of this inherent problem, the qualitative agreement of the sim-
ulation and measurement loops for n = 20 nm is formidable and justifies further
interpretation of the numerical data. Similar results are found for n = 10 nm.

The reversibility of selected sections of the hysteresis loop for a temperature of
100 K is elucidated in figure 8.6 on the following page in the case of the simulations:
the applied field is swept to a specific target value just beyond the section of inter-
est, and the field sweep direction is reversed. Irreversibilities are then recognisable
when the curves for the two different sweep directions are not congruent.

The exchange spring unwinding (figure 8.6a) turns out to be reversible, the two
steps for negative applied fields irreversible (figure 8.6bc), underpinning the inter-
pretation of the experimental hysteresis loops. The two hard compounds ErFe2 and
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(red dotted line, c), then back to +30 T to check the reversibility of the
corresponding hysteresis loop parts.

DyFe2 switch independently of each other.

8.5 Switching modes

We now explain the different magnetic reorientation processes underlying the three
appearances of the hysteresis loops. For this, we calculate the compound-specific
magnetisations, which are the magnetisations of each of the DyFe2, ErFe2, YFe2

compounds separately. Each numerical cell is represented by one magnetisation
vector, and the numerical compound-specific magnetisation is determined by av-
eraging the magnetisation vectors over all layers containing this compound.

The result is depicted in figure 8.7 on the next page. For each of the three
overall hysteresis loop appearances of figure 8.5 on page 94, one representative
is illustrated (100 K, 200 K, 300 K). Additionally, the compound-specific details for
350 K (8.7d) are given. The overall hysteresis loop for 350 K has the same appear-
ance as that of 300 K (8.5d). Each of the four graphs shows the compound-specific
magnetisation curves in the upper section. In the lower section, the Er and Dy
anisotropy energies are plotted. To the right, the characteristic switching states for
the specific ErFe2 and DyFe2 magnetisation are visualised as 3d vectors on top of
the anisotropy energy surfaces of Er and Dy.

For 100 K (figure 8.7a), the compound-specific magnetisation loops confirm the
interpretation given in subsection 8.3 suggesting individual switching of the RE
compounds and the exchange spring unwinding of the soft YFe2 compound. For
positive applied fields (⇒ state À), the RE moments are located in their respective
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Figure 8.7: Compound-specific magnetisation curves and switching states for the
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compound-specific magnetisation curves in the direction of the applied
field [110] (solid black line for ErFe2, dashed blue line for DyFe2, dotted
green line for YFe2) are shown as obtained by simulations. In the lower
section of the graphs, the corresponding anisotropy energy densities for
the RE compounds (same colour and line coding) are depicted. In the
insets, characteristic switching states are visualised (ErFe2 on the left,
DyFe2 on the right): the magnetisation of a compound is specified by a
red arrow on the green anisotropy surface. Each state is labelled with a
number referring to an applied field that is marked by a numbered red
horizontal line.
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anisotropy energy dips — ErFe2 at [111̄], DyFe2 at [010]. The YFe2 moments, antifer-
romagnetically coupled to the RE moments, oppose the applied field direction Bapp

at the interfaces, and wind towards Bapp in the interior. At state À, the majority of
the YFe2 moments is aligned with the strong field, and its magnetisation is positive.
When the field abates, the YFe2 moments gradually unwind and their magnetisa-
tion reverses at positive applied fields. In the remanent state, the YFe2 moments
are antiferromagnetically aligned at the interfaces, pre-strung towards [01̄0] at the
DyFe2 side, and [1̄1̄1] at the ErFe2 side, and uniformly swerve in between. Under a
field rising in the reversed direction, the RE moments are gradually dragged out of
their anisotropy dips, recognisable from the ascent in the anisotropy energy plots
of the compounds. ErFe2 is the first to switch at -8 T (⇒ state Á) , followed by
DyFe2 at -18 T (⇒ state Â). Each time, YFe2 stays aligned with the applied field
direction. Both switchings are accompanied by a sharp drop in the corresponding
anisotropy energy. We define this the independent switching mode, referring to
the independent RE switchings.

A new mode applies for 200 K (figure 8.7b). ErFe2 now reverses via the spin flop
direction [1̄11̄], embodied in the extra state Á. The ErFe2 moments rotate into the
spin flop state at a positive applied field of around 3 T. The process can be under-
stood by magnetic energy considerations. At high applied fields, both the majority
of YFe2 moments and ErFe2 moments are aligned with the field direction, with a
domain wall around their mutual interface. Exchange coupling tries to push one
compound into an antiferromagnetic alignment, but is outbalanced by the large
Zeeman energies. When the applied field is sufficiently reduced, the YFe2 mo-
ments at some point start to unwind. If beforehand the effect of the exchange inter-
action acting on ErFe2 exceeds the Zeeman energy of ErFe2 plus the Er anisotropy
barrier, then the ErFe2 moments rotate against the applied field direction into the
spin flop state. Whether this condition is fulfilled, depends on the temperature:
for rising temperatures the magnetic moment of ErFe2 decays sharply (figure 8.2
on page 91), and with it the corresponding Zeeman energy. Additionally, the Er
anisotropy energy barrier decreases exponentially as a function of increasing tem-
perature (figure 8.3 on page 92). Both effects together cause the energy condition
to be fulfilled above a critical temperature Tcrit,Er; a spin flop state is achieved for
the ErFe2 moments. Analysis of the anisotropy energy function shows that there
is a distinct minimum around [1̄11̄] for temperatures of around 200 K or lower, al-
lowing the ErFe2 moments to settle in this direction. When the field is increased in
the opposite direction to -3 T, ErFe2 is finally dragged out of the spin flop state into
state Â by Zeeman interaction. The DyFe2 magnetisation stays in the [010] direc-
tion until it switches into state Ã at [1̄00] for -8 T. We define this the ErFe2 spin flop
mode, found in simpler ErFe2/YFe2 systems by Martin et al. (2006b), and described
in chapter 7.

Under a further increase of the temperature to 300 K (figure 8.7c), the DyFe2 (at
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8 T) and ErFe2 (at 5 T) moments reverse for positive fields (⇒ state Á). Whereas
the ErFe2 moments reside in the spin flop state [1̄11̄] for 200K, they now rotate
further into [1̄1̄1̄], off the applied field direction. When the applied field is reversed,
both the YFe2 and the RE compounds switch (⇒ state Â): the REFe2 moments keep
opposing the applied field, the YFe2 moments stay aligned with the applied field.
Under a further decreasing applied field, the RE compounds switch a third time
towards the applied field direction (⇒ state Ã).

The reason why the ErFe2 moments do not settle in the spin flop direction is that
the anisotropy energy surface of Er has changed for 300K due to the strain term, and
the [1̄11̄] direction is now a saddle point. The new triple switching of DyFe2 can be
explained by energy considerations similar to those for ErFe2 at 200K, but unlike
that case, the anisotropy barrier obstructing access to the spin flop direction ([001̄]
for DyFe2) stays impregnable, and it is energetically favourable for DyFe2 to reverse
into [1̄00] over the more viable [1̄10] barrier. The critical temperature for the DyFe2

triple switching Tcrit,Dy is higher than Tcrit,Er because of the generally stronger Dy
anisotropy. The spin flop mode is observed for Tcrit,Er < T < Tcrit,Dy, and for T >

Tcrit,Dy the new mode applies. We call this the YFe2 dominated switching mode.
The name derives from the dominance of the YFe2 moments and their respective
Zeeman energy over the anisotropy energy barriers of the RE compounds, similar
to the high temperature DyFe2/YFe2 behaviour observed by Dumesnil et al. (2004).

It has to be emphasised that the YFe2 dominated switching mode is an extension
of the ErFe2 spin flop mode in a way that the ErFe2 moments still transit the spin
flop direction on their reversals.

Another example of the YFe2 dominated switching mode is given for 350K,
with displaced ErFe2 spin directions: in the states Á and Â, the ErFe2 moments
are largely pointing to the opposite field directions [1̄1̄0] and [110]; a ferrimagnetic
spin configuration with the prevailing YFe2. Furthermore, these directions are now
energetically favourable with regard to the Er anisotropy, due to the increased im-
portance of the strain term contribution.

8.6 YFe2 thickness dependence

So far, we have observed three switching modes for a sample with n = 20 nm.
The complex underlying reorientation processes were interpreted by micromag-
netic modelling. We now take this further and run simulations with a varied n in
order to establish a map of switching modes. The corresponding parameter space
is composed of a temperature range from 10 K to 400 K with a step resolution
of 10 K, and a separation layer thickness range n ∈ {2, 5, 7, 10, 12, 15, 17, 20, 22,
25, 27, 30, 32, 35, 37, 40} nm. The total number of simulations carried out is there-
fore 40× 16 = 640.
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Figure 8.8: Maximum direction cosine αx,Er,max in [001̄] of the ErFe2 magnetisation
as a function of the temperature for different YFe2 layer thicknesses.
The YFe2 layer thickness for each curve can be looked up in the legend.
The hatched area indicates an αx,Er,max smaller 0.6, signifying a distor-
tion of the ErFe2 magnetisation toward the DyFe2 moments.

8.6.1 Identification of switching states

As we investigate magnetisation curves on a large scale, we require quantitative
measures to efficiently identify magnetic switching states. The straightforward op-
tion is to analyse the compound-specific RE magnetisations, fixed by their direction
cosines αx,RE, αy,RE, and αz,RE with respect to the basis vectors [001̄], [1̄10], and [110]
of the lab system. Per magnetisation curve, the maxima αx,RE,max and αy,RE,max of
each of the compound-specific direction cosines are determined — a measure for
the range of the magnetisation trajectories of the compounds. We focus on αx,RE,max

and αy,RE,max as they provide suitable information about possible spin flop config-
urations. Plots of these observables as a function of T for a selection of n are given
in figures 8.8 and 8.10 to 8.12.

In figure 8.8, αx,Er,max is shown, where high values indicate orientation of the
ErFe2 magnetisation towards the [001̄] direction, a hard axis of the Er anisotropy.
The value at 10 K is around 0.8, independent of n. The huge anisotropy for very low
temperatures is the sole crucial factor here to keep the ErFe2 moment arccos(0.8) ≈
37◦ off from [001̄].

For intermediate temperatures between 100 K and 250 K, αx,Er,max generally
drops, with a larger gradient for smaller n, and barely notable for n of 15 nm or
more. As the anisotropy decreases with temperature, the exchange interaction of
the RE compounds becomes more important, amplified for thin YFe2 separation

100



5
M

 (
 1

0
  

 A
/m

 )

ε
 (

 1
0

  
 J

/m
  

 )
3

3

B     (T)app

3
4

1
1

2

34

2

110

110

001

ErFe2

DyFe2

−40 −20 0 20 40

0

2.5

5

0

5

−5

4 3 2 1
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layers: the ErFe2 moments are attracted by the DyFe2 moments toward the (001̄)
plane perpendicular to the [001̄] direction.

For αx,Er,max smaller than 0.6 ≈ cos(57◦), the ErFe2 moments are distorted be-
yond the direction of its in-plane anisotropy minimum in [1̄11̄]. We define this the
coupled switching mode, as the ErFe2 moments are now significantly coupled to
the DyFe2 moments. This mode is not observed in the n = 20 nm sample inves-
tigated in section 8.3 on page 93 due to the thick magnetic separation layer. An
illustration is given in figure 8.9 for a sample with n = 2 nm: the exchange inter-
action between the RE compounds is strong enough to force the ErFe2 moments
to reverse from state Á to state Â via the [1̄10] direction that is unfavourable with
regard to the Er anisotropy.

The maximum direction cosines of samples with n ≥ 10 nm converge to 0.9
for T reaching 400 K, and the n = 5 and 7 nm samples show a sharp increase
towards this value (unlike the n = 2 nm sample). The reason for this behaviour
is the dominance of YFe2 under a diminishing Er anisotropy (discussed earlier in
section 8.5) that causes ErFe2 to increasingly unwind toward the unfavourable [001̄]
direction. YFe2 starts prevailing at lower T when its layer gets thicker. For n = 2
nm, however, YFe2 never prevails, and αx,Er,max stays around zero up to 400 K.

Figure 8.10 on the following page pinpoints the spin flop states of the ErFe2

compound by depicting the maximum direction cosine αy,Er,max of the ErFe2 mag-
netisation with respect to [1̄10]. Low values of αy,Er,max correlate with ErFe2 mo-
ments staying in the (1̄10) plane during the complete magnetisation cycle. High
values suggest a spin flop state for at least one point in the hysteresis loop. For
temperatures below 100 K, the ErFe2 moments of all samples clearly do not fea-
ture a spin flop state. When the temperature surpasses a critical value Tcrit,Er, the
αy,Er,max sharply ascend to values of over 0.6, marked by the hatched area in the
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Figure 8.10: Maximum direction cosine αy,Er,max in [1̄10] of the ErFe2 magnetisation
as a function of the temperature for different YFe2 layer thicknesses.
The YFe2 layer thickness for each curve can be looked up in the legend.
The hatched area indicates an αy,Er,max larger 0.6, signifying a spin flop
state of the ErFe2 magnetisation.

graph, prevailing up to the maximum temperature of 400 K. This ledge confines
the regime of the ErFe2 spin flop mode at the low T side, whereas the boundary
to the YFe2 dominated switching mode at the high T side still has to be defined.
Interestingly, Tcrit,Er is considerably smaller for n = 2 nm than for larger n values:
the thin YFe2 separation layer transmits the exchange interaction between the RE
compounds. The DyFe2 moments attract the ErFe2 moments and assist ErFe2 in
switching into the [1̄11̄] spin flop state.

The occurrence of spin flop states for DyFe2 follows from plots of the maxi-
mum direction cosine αx,Dy,max of the DyFe2 magnetisation with respect to [001̄] in
figure 8.11 on the next page. The n = 2 nm sample shows a solitary DyFe2 spin
flop mode for T = 70 K: the plot intrudes into the hatched area of magnetisation
directions that are elongated from the (001̄) plane by more than 57◦. We presume
this solitary data point is an artifact. It occurs for the lowest n value, 2 nm, where
the different anisotropies of the RE compounds clash with little YFe2 between them
— a stress situation for the model and its assumption of rigid antiferromagnetic Fe-
RE coupling. Apart from this isolated case, no DyFe2 spin flop states are observed.
The Dy anisotropy energy barrier blocks access to the in-plane spin flop minimum.

Figure 8.12 on the following page with its plots of the maximum direction cosine
αy,Dy,max of the DyFe2 magnetisation with respect to [1̄10] suggests that the DyFe2

moments cannot be forced out of their natural (001̄) plane by exchange coupling
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Figure 8.11: Maximum direction cosine αx,Dy,max in [001̄] of the DyFe2 magneti-
sation as a function of the temperature for different YFe2 layer thick-
nesses. The corresponding YFe2 layer thickness for each curve can be
looked up in the legend. The hatched area indicates an αx,Dy,max larger
0.6, signifying a spin flop state of the DyFe2 magnetisation.
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Figure 8.12: Maximum direction cosine αy,Dy,max in [1̄10] of the DyFe2 magnetisa-
tion as a function of the temperature for different YFe2 layer thick-
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field.

with ErFe2. No plot intrudes into the hatched area of the graph marking the range
where the magnetisation resides in the vicinity of the (1̄10) plane throughout the
hysteresis cycle. With relevant exchange interaction of the RE compounds, DyFe2

takes control over ErFe2 (and not vice versa).
Finally, an unambiguous criterion is required to identify the YFe2 dominated

switching mode. Following the definition of this mode in chapter 8.5, both RE
compounds are required to switch against the applied field direction. This is easily
recognised for DyFe2 – a change of sign of the [110] magnetisation component for
positive Bapp. However, this condition is not sufficient in the case of ErFe2. In the
proximity of the in-plane spin flop state [1̄11̄], the [110] magnetisation component
of ErFe2 can change sign without switching. Figure 8.13 shows all three magneti-
sation components of the ErFe2 compound for T = 220 K (a, ErFe2 spin flop mode)
and T = 230 K (b, YFe2 dominated switching mode). While the [110] component
changes sign at Bapp ≈ 2.5 T for both 220 and 230 K, the [1̄10] component drops
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Figure 8.14: Switching modes for different temperatures and YFe2 separation layer
thicknesses as a result of simulations using the numerical model given
in figure 8.1 on page 90. The grey triangles represent the independent
switching mode, where the magnetisations of both RE compounds
hysteretically switch into the direction of the applied field. The red
circles indicate the ErFe2 spin flop mode. The black diamonds sig-
nify the YFe2 dominance mode with RE unwinding against the applied
field direction. Superimposed green crosses refer to a distortion of the
ErFe2 moments toward the DyFe2 switching plane (001̄), the coupled
switching mode. The solitary DyFe2 spin flop state is denoted by a
blue square.

only for T = 230 K when the ErFe2 moments snap into the [1̄1̄1̄] direction. Thus, the
magnetisation decline in [1̄10] in combination with the sign change in [110] marks
the ErFe2 reversal against the applied field.

8.6.2 Map of switching modes

We can now map the regimes of different switching modes on a T–n landscape
(figure 8.14). In a nutshell, the regime of the independent switching mode is in
the lower T half, the regime of the YFe2 dominance mode in the high T high n

corner, with the regime of the ErFe2 spin flop mode stretching between the two.
The regime of the coupled switching mode is located in the high T section of the
low n edge. It is not an independent mode but rather an extension to either the
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ErFe2 spin flop mode or the YFe2 dominance mode. We ignore the solitary DyFe2

spin flop mode at 70 K for n = 2 nm believed to be an artifact.
The divide between the independent switching regime and ErFe2 spin flop

regime runs along a roughly vertical line with temperatures around 150 to 170 K
for n > 2 nm. The increasing mutual RE exchange coupling for smaller YFe2 sepa-
ration assists the ErFe2 moments in reversing via the spin flop mode, and the ErFe2

spin flop regime stretches further out to 120 K for the smallest value of n, 2 nm.
The conditions for the YFe2 dominance are a sufficiently high temperature in

order to truncate the anisotropy barriers, and adequately thick YFe2 layers to out-
weigh the RE compounds. Consistently, the regime is found in the high T high n

corner, in a segment-like area delimited to T = 220 K for maximum n, and n = 5 nm
for maximum T .

The regime where the ErFe2 moments tend to couple to the DyFe2 moments is
located in the low n area where the magnetic separation barely impedes the mutual
RE exchange coupling. It extends to a peak n = 7 nm between T = 210 K and
T = 360 K. The decay of the Er anisotropy under a rising temperature facilitates the
distortion of the ErFe2 moments by exchange coupling with the DyFe2 moments;
this is reflected in the curved low T border of the coupled switching regime that
extends further to T = 160 K for n = 2 nm, compared to T = 210 K for n = 7 nm.

Complementary details on switching processes are given in attachment B, trav-
ersing through the n/T parameter space by variations of T ( figure B.1 on page 115),
and by variations of n ( figure B.2 on page 116).

8.7 Conclusion

Pre-strung exchange biased spring structures have potential for application in data
storage media. Their complex magnetic behaviour opens up a rich tapestry of
switching functionality. We have elucidated the switching modes for a specific sys-
tem in which the exchange spring in the soft YFe2 layer is pre-twisted by hard
layers of DyFe2 and ErFe2 with competing anisotropy properties. Consequently,
an exchange spring is present in this system even for zero applied field.

We have performed magnetic measurements of a [10nm ErFe2/20nm YFe2/4nm
DyFe2/20nm YFe2] system, revealing the diversity of switching modes evident
in the temperature dependent characteristics of the hysteresis loops. Micromag-
netic simulations have reproduced the experimental results, giving insight into
the detailed spin configurations. The simulation results were used to map the
switching modes of a configurable system with a variable YFe2 layer thickness. We
have found an independent switching mode for low temperatures, an YFe2 dom-
inated switching mode for high temperatures and sufficiently thick YFe2 layers,
and an ErFe2 spin flop mode for intermediate temperatures, or high temperatures
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with little YFe2 separation. In addition, we have discovered a coupled switching
mode. This mode becomes manifest for small n values when the DyFe2 and ErFe2

moments mutually attract each other by exchange interaction that is transmitted
through the sandwiched YFe2 layers. The boundaries of the respective switching
modes on the map of temperature and YFe2 layer thickness have been explained
by considerations of the relevant magnetic energies.

Understanding the manifold switching states present in this accurately repro-
ducible and configurable exchange spring system provides the foundation for the
design of next generation magnetic devices.
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Chapter 9

Summary and outlook

9.1 Summary

Micromagnetic simulations play an important role in magnetic research, helping
to interpret and understand experimental data and to optimise the design of novel
devices. An improved knowledge of magnetic processes in nanostructures is the
basis for the advent of new computer storage technologies and a diversity of appli-
cations in areas ranging from automobile industry to medical diagnostics.

We have investigated the magnetic properties of three representatives of a class
of nanostructures known as magnetic exchange spring systems. Using micromag-
netic simulations, we have reproduced the hysteresis loops that were obtained from
measurements. With this justification, we have evaluated the spatially resolved
spin configuration for the three systems considered.

Exchange spring systems owe their name to the magnetic configuration where
the magnetisation of the soft magnetic layers winds into the direction of the applied
field like a torsion spring. We have seen this switching behaviour in the studied
systems for low temperatures. With increasing temperatures, we have observed
a transition to different magnetic switching modes. The transition was attributed
to the particular temperature dependence of the rare earth anisotropies and of the
atomic magnetic moments in the compound materials.

For DyFe2/YFe2 multilayers, we have observed a remarkable reversal mode
where the hard layers switch against the direction of the applied field. For the mul-
tilayers of ErFe2/YFe2, the 3D characteristics of the Er anisotropy cause a spin flop
mode where the magnetisation points to a direction perpendicular to the applied
field.

The magnetic switching behaviour of the two samples is governed by the en-
ergy barrier heights and positions of the Er and Dy anisotropy. The shape of the
Er and Dy anisotropy energy in turn depends on the relative weight of the mag-
netocrystalline and strain anisotropy contributions, which shift with temperature.
The predictive power of the numerical model validates the underlying anisotropy
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energy constants on the basis of ab-initio calculations.
We have further studied a system of intertwined layers of ErFe2/YFe2 and

DyFe2/YFe2. The differing anisotropy characteristics of the hard ErFe2 and DyFe2

compounds produce a pre-strung domain wall in the intermediate soft YFe2 layers.
The YFe2 layer thickness represents a suitable control to adjust the magnetic ten-
sion between the hard layers and to regulate the mutual interference of the switch-
ing patterns of ErFe2 and DyFe2. We have fathomed the transition from individual
to coupled switching modes for a range of temperatures and mapped the results as
a prerequisite for future utilisation.

We overall conclude that our numerical model is a powerful and reliable instru-
ment that helps accelerating progress in the field of rare earth based magnetic mi-
crostructures. Using the results of our micromagnetic simulations, experimenters
can reduce the costly fabrication and evaluation cycles of specimens designed to
provide specific magnetic properties.

We further conclude that exchange biased spring structures have potential for
application particularly in data storage media. We have delivered a new set of
building blocks in form of unique controllable magnetic switching modes, and
hand over the baton to the electronic design engineers to assemble the building
blocks into novel devices.

9.2 Outlook

In a continuation of this work, the following aspects would be highly interesting to
study next:

• one assumption of our numerical model is the infinite exchange coupling of
RE and Fe magnetic moments to an effective moment in a computational cell.
The model could be enhanced to account for the magnetic moments of RE
and Fe separately.

• the simulations have so far considered thermal effects by using the temperature-
dependent magnetisation values and anisotropy energy constants. This could
be improved by taking the thermal activation into account directly in form of
the Langevin equation.

• the computational domain could be extended to cope with nucleation pro-
cesses in the film plane.

• another challenge to tackle in future is the research into current induced spin-
torque interaction. Under the influence of external currents, a supplementary
torque acts on the spin configuration, which in turn affects the electric resis-
tance.
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We would require enhancements to the numerical model and the simulation code
to face these issues. One approach might be the use of the alternative micromag-
netic simulation code nmag. Nmag is currently developed by the Computational
Nanomagnetism Group of Dr Fangohr at the University of Southampton. Based
on the method of finite elements, it is devised for high flexibility and implements
sophisticated micromagnetic algorithms. Some of the the required enhancements
to the simulation code are projected to be readily available with nmag.
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Appendix A

Material parameters

The magnetisation, magnetocrystalline anisotropy, and strain parameters for Dy,
Er, Fe, and Y are taken from Bowden (2005), Bowden et al. (2006), Martin et al. (2006a).
There, the values are obtained by first-principles calculations. Regarding the anisotropy
values, an extension of the Callen-Callen model to second order was applied.

A.1 Magnetisation

The magnetisation MREFe2 of a compound is calculated with equation (6.1). As an
input, we require the magnetic moments mFe(T ), mRE(T ), mY(T ) per formula unit
(f.u.) for a given temperature. These values are obtained using

m(T ) = m0 rT (T ), (A.1)

where the temperature normalisation value rT (T ) is looked up in tables A.1 and
A.2, and the zero Kelvin magnetic moment m0 is stated in table 6.1. The magnetic
moment of Y is negligible.

A.2 Magnetocrystalline anisotropy

In tables A.1 and A.2, the values for Ãl (in K/f.u.) with l ∈ {4, 6, 8} are stated.
These parameters are required to calculate the phenomenological parameters K1,
K2, K3 by eq. (3.78) in section 3.3.4. The values K̃l are obtained by

K̃l = 8 kB Ãl/Vcell, (A.2)

with the Boltzmann constant kB and the lattice cell volume Vcell as stated in 6.2.1.
The factor 8 reflects the number of RE atoms in a lattice cell. The magnetocrystalline
anisotropy of Fe and Y are negligible.
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A.3 Strain term

Similar to the considerations for the magnetocrystalline anisotropy, the magneto-
elastic strain energy density εme as introduced in section 3.3.6 can be expressed by
a decomposition with regard to the spherical harmonics Y n

m (Bowden et al., 2006).
The values of the most relevant coefficients, K̃ ′

2 and K̃ ′′
242, are obtained in units of

J/m3 by eq. A.2 with l ∈ {2, 242} and Ãl (in K/f.u.) from tables A.1 and A.2. Ã264

is stated for completeness. The strain terms of Fe and Y are negligible.

T [K] rT ,Fe [] rT ,Er [] Ã4 [K/f.u.] Ã6 [K/f.u.] Ã8 [K/f.u.] Ã2 [K/f.u.] Ã242 [K/f.u.] Ã264 [K/f.u.]

10 0.999103 0.999667 42.6036 -8.14857 4.29576 -1.40962 -0.321229 -0.0254644
20 0.997708 0.992963 41.0442 -7.62078 3.12186 -1.40922 -0.318772 -0.032212
30 0.996254 0.978949 36.0685 -6.04978 1.89705 -1.40475 -0.299256 -0.0343365
40 0.994729 0.961312 29.9688 -4.36759 1.11472 -1.39238 -0.270522 -0.0319587
50 0.993124 0.941848 24.2658 -3.02012 0.654709 -1.37225 -0.239666 -0.0277924
60 0.991426 0.921341 19.4392 -2.05313 0.386611 -1.34618 -0.210027 -0.0233198
70 0.989626 0.900169 15.5219 -1.39079 0.229846 -1.31593 -0.182968 -0.0191805
80 0.987712 0.878536 12.4007 -0.945569 0.13772 -1.28287 -0.158926 -0.0155982
90 0.985673 0.856568 9.93288 -0.647724 0.0832605 -1.24795 -0.137864 -0.0126059

100 0.983499 0.834367 7.98577 -0.447943 0.0508375 -1.21188 -0.119606 -0.0101565
110 0.981179 0.812023 6.44817 -0.313035 0.0313722 -1.17513 -0.103857 -0.00817503
120 0.978702 0.78963 5.23082 -0.221118 0.0195752 -1.13806 -0.0903133 -0.00658294
130 0.976057 0.767284 4.26352 -0.157861 0.0123523 -1.10092 -0.0786828 -0.00530825
140 0.973233 0.745078 3.49167 -0.113869 0.0078824 -1.06392 -0.0686976 -0.00428912
150 0.970219 0.723098 2.87295 -0.0829514 0.00508573 -1.0272 -0.0601195 -0.0034743
160 0.967005 0.701424 2.37462 -0.0609966 0.00331665 -0.990867 -0.0527411 -0.0028221
170 0.963579 0.680123 1.9713 -0.0452493 0.00218537 -0.955021 -0.0463835 -0.00229914
180 0.959931 0.659251 1.64331 -0.0338452 0.00145422 -0.919731 -0.0408942 -0.00187881
190 0.956049 0.63885 1.3753 -0.0255104 0.0 -0.885051 -0.0361435 -0.00154005
200 0.951924 0.618953 1.15527 -0.0193657 0.0 -0.851029 -0.0320218 -0.00126624
210 0.947544 0.599579 0.97382 -0.0147981 0.0 -0.817699 -0.0284364 -0.00104421
220 0.942898 0.580742 0.823524 -0.0113767 0.0 -0.78509 -0.0253091 0.0
230 0.937975 0.562446 0.698508 -0.00879506 0.0 -0.753224 -0.0225739 0.0
240 0.932764 0.544687 0.594098 -0.00683385 0.0 -0.722115 -0.0201752 0.0
250 0.927256 0.527459 0.506561 -0.00533448 0.0 -0.691776 -0.0180658 0.0
260 0.921438 0.510751 0.432902 -0.00418142 0.0 -0.662213 -0.0162059 0.0
270 0.915299 0.494547 0.370706 -0.00328981 0.0 -0.633428 -0.0145616 0.0
280 0.90883 0.478832 0.318016 -0.00259687 0.0 -0.605422 -0.0131043 0.0
290 0.902019 0.463586 0.273243 -0.00205582 0.0 -0.578192 -0.0118095 0.0
300 0.894855 0.44879 0.235088 -0.00163156 0.0 -0.551732 -0.0106562 0.0
310 0.887328 0.434424 0.202487 -0.00129758 0.0 -0.526034 -0.00962663 0.0
320 0.879426 0.420468 0.174561 -0.00103375 0.0 -0.501091 -0.00870545 0.0
330 0.871139 0.406901 0.150587 0.0 0.0 -0.476891 -0.00787948 0.0
340 0.862455 0.393703 0.129963 0.0 0.0 -0.453423 -0.00713734 0.0
350 0.853365 0.380856 0.112188 0.0 0.0 -0.430675 -0.00646922 0.0
360 0.843856 0.368339 0.0968425 0.0 0.0 -0.408634 -0.00586662 0.0
370 0.833919 0.356135 0.0835763 0.0 0.0 -0.387287 -0.00532216 0.0
380 0.823542 0.344225 0.0720932 0.0 0.0 -0.366622 -0.0048294 0.0
390 0.812714 0.332593 0.0621435 0.0 0.0 -0.346625 -0.00438273 0.0
400 0.801425 0.321222 0.0535157 0.0 0.0 -0.327283 -0.00397725 0.0

Table A.1: Parameter values for the magnetic moment, magnetocrystalline
anisotropy, and strain term of ErFe2 as a function of the temperature
T .
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T [K] rT ,Fe [] rT ,Dy [] Ã4 [K/f.u.] Ã6 [K/f.u.] Ã8 [K/f.u.] Ã2 [K/f.u.] Ã242 [K/f.u.] Ã264 [K/f.u.]

10 0.999103 0.999994 -64.46 -4.991 9.73415 6.35385 -0.88468 -0.0674954
20 0.997708 0.999085 -64.2228 -4.91386 9.20145 6.33655 -0.889326 -0.0737
30 0.996254 0.995003 -62.3579 -4.54491 7.62462 6.25923 -0.886601 -0.0858471
40 0.994729 0.987904 -58.5894 -3.94972 5.80686 6.12639 -0.864955 -0.0935648
50 0.993124 0.978796 -53.6975 -3.29716 4.24531 5.95897 -0.827931 -0.0950557
60 0.991426 0.9684 -48.401 -2.68749 3.04424 5.772 -0.781845 -0.0920265
70 0.989626 0.957146 -43.1502 -2.16016 2.16375 5.5746 -0.731504 -0.0863248
80 0.987712 0.945291 -38.1896 -1.7225 1.53272 5.37224 -0.680029 -0.0792854
90 0.985673 0.93299 -33.6354 -1.36769 1.08533 5.16834 -0.629336 -0.0717692

100 0.983499 0.920341 -29.5291 -1.08397 0.769622 4.96511 -0.580560 -0.0643007
110 0.981179 0.907406 -25.8703 -0.858871 0.547118 4.76403 -0.534338 -0.0571827
120 0.978702 0.894226 -22.6361 -0.68105 0.390174 4.56614 -0.490992 -0.050576
130 0.976057 0.880829 -19.7927 -0.540837 0.279242 4.37216 -0.450642 -0.044552
140 0.973233 0.867235 -17.302 -0.430309 0.200606 4.18265 -0.413283 -0.0391272
150 0.970219 0.853459 -15.1255 -0.343114 0.144673 3.998 -0.378828 -0.0342856
160 0.967005 0.839514 -13.2264 -0.274222 0.10474 3.81851 -0.347142 -0.0299924
170 0.963579 0.825414 -11.5707 -0.219684 0.07612 3.6444 -0.318065 -0.0262039
180 0.959931 0.811171 -10.1276 -0.176409 0.055526 3.4758 -0.291424 -0.0228726
190 0.956049 0.7968 -8.8697 -0.141986 0.0406484 3.31281 -0.267039 -0.0199511
200 0.951924 0.782316 -7.7728 -0.114534 0.0298581 3.15548 -0.244736 -0.0173939
210 0.947544 0.767733 -6.81575 -0.0925844 0.0220024 3.00381 -0.224346 -0.0151589
220 0.942898 0.753067 -5.98007 -0.0749879 0.0162619 2.85776 -0.205707 -0.0132072
230 0.937975 0.738335 -5.24975 -0.0608455 0.0120522 2.71726 -0.18867 -0.0115043
240 0.932764 0.723552 -4.6109 -0.0494511 0.00895462 2.58224 -0.173093 -0.010019
250 0.927256 0.708733 -4.05152 -0.0402489 0.00666815 2.45257 -0.158846 -0.00872392
260 0.921438 0.693891 -3.56123 -0.0328006 0.00497536 2.32813 -0.145812 -0.00759476
270 0.915299 0.679042 -3.13106 -0.0267592 0.00371865 2.20877 -0.13388 -0.00661029
280 0.90883 0.664196 -2.75328 -0.0218493 0.00278334 2.09433 -0.122952 -0.0057519
290 0.902019 0.649364 -2.42119 -0.0178519 0.00208565 1.98466 -0.112936 -0.00500337
300 0.894855 0.634557 -2.12901 -0.0145921 0.00156416 1.8796 -0.10375 -0.00435055
310 0.887328 0.619782 -1.87172 -0.01193 0.00117368 1.77896 -0.0953205 -0.0037811
320 0.879426 0.605046 -1.64499 -0.00975336 0.0 1.68259 -0.0875785 -0.00328433
330 0.871139 0.590357 -1.44507 -0.0079717 0.0 1.59032 -0.0804631 -0.00285091
340 0.862455 0.575717 -1.26867 -0.00651216 0.0 1.50199 -0.073919 -0.00247273
350 0.853365 0.561131 -1.11295 -0.00531576 0.0 1.41743 -0.0678959 -0.00214277
360 0.843856 0.546602 -0.975458 -0.00433468 0.0 1.33649 -0.0623486 -0.00185489
370 0.833919 0.532132 -0.854018 -0.00353004 0.0 1.25902 -0.0572361 -0.00160376
380 0.823542 0.517721 -0.746752 -0.00287018 0.0 1.18488 -0.0525211 -0.00138476
390 0.812714 0.50337 -0.652009 -0.00232925 0.0 1.11393 -0.0481703 -0.00119383
400 0.801425 0.489078 -0.568346 -0.00188608 0.0 1.04604 -0.0441531 -0.00102747

Table A.2: Parameter values for the magnetic moment, magnetocrystalline
anisotropy, and strain term of DyFe2 as a function of the temperature
T .
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Appendix B

Additional reversal diagrams for
[10nm ErFe2/n YFe2/4nm DyFe2/n
YFe2] samples

The [10nm ErFe2/n YFe2/4nm DyFe2/n YFe2] exchange spring systems have been
discussed in chapter 8 already. Here, we list additional details on the reversal
modes for a horizontal and a vertical cross section of the parameter space of the
switching mode mapping. This is illustrates how small isolated changes of tem-
perature (constant layer thickness, fig. B.1) or changes of layer thickness (constant
temperature, fig. B.2) influence the switching behaviour.
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Figure B.1: ]
Compound specific magnetisation curves and switching states for a set of different
temperatures and an YFe2 separation layer thickness 20 nm. The explanation of
the graphs follows FIG. 8.7. The temperatures are 100 K (a) / 150 K (b) / 160 K (c)
/ 200 K (d) / 220 K (e) / 230 K (f) / 280 K (g) / 350 K (h). The parameter space
is visualised by a horizontal slot on the switching mode mapping table in the first
row.
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Figure B.2: ]
Compound specific magnetisation curves and switching states for a set of different
YFe2 separation layer thicknesses and a temperature of 290 K. The explanation of
the graphs follows FIG. 8.7. The separation layer thicknesses are 40 nm (a) / 20 nm
(b) / 12 nm (c) / 10 nm (d) / 7 nm (e) / 5 nm (f) / 2 nm (g) / 0 nm (h). The
parameter space is visualised by a vertical slot on the switching mode mapping in
the first row. The 0 nm sample is not set on the map.
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Kronmüller H and Fähnle M. Micromagnetism and the Microstructure of Ferromagnetic
Solids. Cambridge University Press, 1st edition (2003).

Kroto HW, Heath JR, O’Brien SC, Curl RF and Smalley RE. C60: Buckminster-
fullerene. Nature, 318, 162–163 (1985).

Landau LD and Lifshitz EM. On the theory of the dispersion of magnetic per-
meability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion, 8(2),
153–169 (1935).

Laves F. Theory of Alloy Phases. American Society for Metals, Cleveland, Ohio (1956).

Leineweber T and Kronmüller H. Micromagnetic examination of exchange coupled
ferromagnetic nanolayers. Journal of Magnetism and Magnetic Materials, 176, 145–
154 (1997).

Long GJ and Grandjean F. Supermagnets, Hard Magnetic Materials. Kluwer Academic
Publishers Dordrecht, 1st edition (1991).

Martin KN. Private communication (2007).

Martin KN, de Groot PAJ, Rainford BD, Wang K, Bowden GJ, Zimmermann JP and
Fangohr H. Magnetic anisotropy in the cubic Laves REFe2 intermetallic com-
pounds. Journal of Physics: Condensed Matter, 18, 459–478 (2006a).

Martin KN, Wang K, Bowden GJ, Zhukov AA, de Groot PAJ, Zimmermann JP, Fan-
gohr H and Ward RCC. Exchange spring driven spin flop transition in erfe2/yfe2
multilayers. Applied Physics Letters, 89, 132511 (2006b).

Mortimer CE. Chemie. Georg Thieme Verlag Stuttgart New York, 5th edition (1987).

121



Mougin A, Dufour C, Dumesnil K and Mangin P. Strain-induced magnetic
anisotropy in single-crystal rFe2(110) thin films (r=Dy, Er, Tb, Dy0.7Tb0.3, Sm,
Y). Physical Review B, 62(14), 9517–9531 (2000).

Newell AJ, Williams W and Dunlop DJ. A generalization of the demagnetizing ten-
sor for nonuniform magnetization. Journal of Geophysical Research, 98(17), 9551–
9555 (1993).

Niarchos D. Magnetic MEMS: key issues and some applications. Sensors and Actu-
ators, A, 109, 166–173 (2003).

O’Handley RC. Modern Magnetic Materials: Principles and Applications. John Wiley
and Sons, Inc. (1999).

Parkin SSP. Shiftable magnetic shift register and method of using the same (2004).
United States Patent 6834005.

Python community. Python website (2007). http://www.python.org.

Ramachandran P. MayaVi: a free tool for CFD data visualisation. In 4th Annual
CFD Symposium, Aeronautical Society of India (2001).

Ridley PHW. Finite element simulation of the micromagnetic behaviour of nanoelements.
Ph.D. thesis, School of Informatics, University of Wales, Bangor (2000).

Sabiryanov RF and Jaswal SS. Magnetic properties of hard/soft composites:
SmCo5/Co1−xFex. Physical Review B, 58(18), 12071–12074 (1998).

Sawicki M, Bowden GJ, de Groot PAJ, Rainford BD, Beaujour JML, Ward RCC and
Wells MR. Engineering coercivity in epitaxially grown (110) films of DyFe2–YFe2

superlattices. Applied Physics Letters, 77(4), 573–575 (2000a).

Sawicki M, Bowden GJ, de Groot PAJ, Rainford BD, Beaujour JML, Ward RCC and
Wells MR. Exchange springs in antiferromagnetically coupled DyFe2–YFe2 su-
perlattices. Physical Review B, 62(9), 5817–5820 (2000b).

Sawicki M, Bowden GJ, de Groot PAJ, Rainford BD, Ward RCC and Wells MR. Mag-
netic properties of epitaxial (110) multilayer films of DyFe2 and YFe2. Journal of
Applied Physics, 87(9), 6839–6841 (2000c).

Scholz W. Scalable parallel micromagnetic solvers for magnetic nanostructures. Ph.D.
thesis, Fakultät für Naturwissenschaften und Informatik, Technische Universität
Wien (2003).

Schroeder WJ, Martin KM and Lorensen WE. The design and implementation
of an object-oriented toolkit for 3D graphics and visualization. In R Yagel and
GM Nielson, editors, IEEE Visualization ’96, pages 93–100 (1996).

122



SciPy community. SciPy website (2007). http://www.scipy.org/SciPy.

Skomski R and Coey JMD. Giant energy product in nanostructured two-phase
magnets. Physical Review B, 48(21), 15812–15816 (1993).

Spargo AW. Finite element analysis of magnetisation reversal in granular thin films.
Ph.D. thesis, School of Informatics, University of Wales, Bangor (2002).

Stroscio JA and Celotta RJ. Controlling the Dynamics of a Single Atom in Lateral
Atom Manipulation. Science, 306, 242–247 (2004).
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