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We show numerically that a synchronously pumped optical parametric
oscillator can show giant noise amplification of the order of 10°. We use
pseudospectra to identify the parameter region for giant noise amplification

and to estimate its magnitude. (¢) 2008 Optical Society of America
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Noise plays a very important role in synchronously pumped optical parametric oscillators
(SPOPOs). For example, these devices (see [1] for a description) have been suggested as
tunable source of short pulses [2-4]. However, in Ref. [1] it was shown that in the pulse
compression regime the signal pulses may suffer from considerable noise-induced jitter. In
the context of quantum optics, optical parametric oscillators have been suggested as a tool to
amplify and detect quantum fluctuations [5]. However, this requires very large amplification
factors.

In order to make full use of SPOPOs for either of these applications, we need to quantify
noise amplification. This will allow us to optimize device parameters in order to achieve,
for example, cleanest pulse compression or maximal amplification of quantum fluctuations.
In this letter we introduce the SPOPO pseudospectrum [6] as a tool to quantify noise am-
plification. We show that this can be of the order of 10° in a sub-threshold SPOPO under
standard operating conditions. This value is so high that a noise-driven, non-zero signal field
appears even for sub-threshold pump values.

This phenomenon is considerably different from non-resonant optical parametric amplifi-
cation because the presence of the cavity introduces feedback in the system. This, by itself,
is unable to sustain a non-zero signal field. However, in the presence of noise amplification,
the feedback allows the signal to develop in a form that is optimal for energy extraction from
the pump. In some respects the output is similar to that of an above threshold SPOPO. For
example, the power spectrum of the noise-driven signal field is double peaked and asymmet-
ric as is the case for standard SPOPO pulses [7]. On the other hand, the signal field reported
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here is very different from the standard above threshold SPOPO output: firstly, should noise
be switched off, the signal field would rapidly decay to zero, i.e. to the stable solution; sec-
ondly, if the pump is not saturated, then the amplitude of the signal is proportional to that
of the noise.

Giant noise amplification is not restricted to optics [8], where it is often called “excess
noise” [6,9,10]: it is, for example, used to explain hydrodynamic turbulence in a laminar
flow [11].

The structure of this paper is as follows: we first introduce a standard SPOPO model
and define the pseudo-spectrum of a linear operator (matrix). We then combine the two to
measure the noise amplification factor for a few representative values of the parameters.

The SPOPO equations for plane wave fields in suitable dimensionless variables are [1]:

8ZE1 = —Ul_lﬁtEl — (pl — ZAI{Z)El + iﬂlﬁttEl — E2E3,
8ZE2 = —U2_18tE2 — p2E2 -+ ’iﬂg&ttEQ + E1F3, (1)
0.E3 = —v3'0,E3 — p3E3 + 13304 E3 + E1 Eo,

where F;, j = 1,2,3 are respectively the pump, signal and idler amplitudes, v; are their
group velocities, 3; their dispersion coefficients, p; their losses during propagation. Ak is the
phase mismatch between the three fields. The over-bar symbol denotes complex conjugation.
In these equations the coordinate along the cavity, z, is scaled to the crystal length, while
time is scaled to the time taken by the signal field to cross the crystal; in these units vy = 1.
The fields at the entrance of the crystal are

Ey(0,t) = P(t), Es(0,t) =0, (2)
E5(0,t) = exp(—if)VREy(1,t — T, + 1),

where P(t) = P, exp(—t*/77) is a Gaussian pump profile of amplitude P, and width 7,. We
assume that the pump profile is periodic with period Tx, P(t) = P(t+Tg), with 7, < Tg. T.
is the cavity round-trip time for the signal field, R is the total intensity reflection coefficient
of the cavity and 6 is the phase shift acquired per pass by the signal field. These equations
admit a zero signal and idler solution: Ey(z,t) = E3(z,t) = 0, while the pump is broadened
by dispersion as it propagates through the crystal, but is otherwise unaltered.

It is convenient to study the stability of this solution by recasting equations (1,2) as a
map. We indicate with Eé")(z, 7) the signal field at the n-th pump pulse (approximately the
n-th cavity round-trip), i.e. at time ¢t = nTx — 7. Equations (1,2) can be written as a relation
(map) between signal pulses at successive round-trips: E§"+1)(2, ) =N [Eén)], where N is
a suitable nonlinear operator that depends, in particular, on the pump amplitude P, and the
detuning between cavity and pump periods, 7. = Tr — T.. The zero signal and idler solution

of equations (1) is equivalent to Eé")(z,f) = 0 for all values of the round-trip number n.
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Small perturbations egn) of this solution evolve from one round-trip to the next according to

the linear map eén) =L eén_l), where £ is a linear operator (ultimately a matrix) obtained

by linearizing A" around E{” = 0. The zero signal and idler solution is stable if all the
eigenvalues of £ have modulus less than one. We indicate with A, the largest modulus: the
zero signal and idler solution is stable if A\, < 1.

We expect that the signal may be noise-sensitive for sufficiently negative values of 7., even
in the case when Eé") = 0 is stable (see Figure 1). If the pump repetition time is shorter
than the cavity round trip time, the (noisy) leading edge of the signal pulse is amplified
because it arrives at the crystal when the pump field and, hence, the available gain are very
large. On the other hand, the main part of the signal pulse arrives at the crystal when the
pump pulse is waning and thus sees little amplification, but only the losses occurred during
propagation through the cavity: it decays to zero because the system is below threshold.
The new signal pulse is the result of the giant amplification of the noisy leading edge of
the previous signal pulse: its dynamics is entirely noise-driven. For positive values of 7. the
signal arrives when the pump is waning and relatively little amplification can be expected.
This rough explanation does not take into account the role of the group velocities and of the
other OPO parameters. It is possible that large amplification can be seen in other parameter
regimes.

The tool that allows us to quantify this description is the pseudospectrum of L. We
introduce this concept by first discussing the properties of linear maps. Consider the scalar
map "D = rz(™  with all the 2 and r real numbers. If |r| < 1 then |2| form a
decreasing sequence. Now consider the SPOPO map eé") = £e§"_1): we could expect that
the norm of perturbation e™ would decrease monotonically if A\y; < 1. However, while it
is true that the perturbation will asymptotically decay to zero if Ay < 1, it is not true
that the decay is necessarily monotonic: in other words, the perturbation can first grow
and only at a later stage decay. If the growth is sufficiently large and there is continuous
injection of noise, macroscopic noise-driven structures may appear. It can be shown [6] that
the maximum growth possible is related to the e-pseudospectrum (or pseudospectrum) of L.

This is defined for any real number € > 0 as [6]
ALy ={z€C:l(z - L)' ="} (3)

For e = 0 this is just the standard spectrum; for € > 0, A, consists of patches of the complex
plane that surround the eigenvalues of L, i.e. contain its spectrum. The boundary of A, gives
graphical and quantitative information on the maximum growth possible. This is at least
equal to Kreiss constant [6],
(L) —1
K=supK,, with K. = &, (4)

e>0 €



where p.(L£) is the radius of the smallest circle that contains A.(L£). We have computed
numerically the spectrum, pseudo-spectrum and Kreiss constant of the linear operator £
using the material parameters for periodically poled lithium niobate [1,3,12]. We have also
assumed that the pump pulse is a Gaussian of FWHM of 4ps. Typical results are shown in
Figure 2 and Table 1. For all the values of 7. used in this paper the pump amplitude P, has

been chosen so that A\y; ~ 0.87, i.e. the zero signal and idler solution is stable: the asymptotic

parametric amplitude gain at each pass is approximately 2.3, not enough to compensate for
the losses at the mirrors (R = 0.37 for the cases in Figure 2). For a small positive value
of 7. (i.e. the pump repeat time is longer than the cavity round trip time) there is a small
transient amplification, by approximately a factor of 20, but it is not sufficient to allow the
formation of noise sustained structures. As can be seen from the panel (A-2) of Figure 2 an
initial perturbation of the signal displays transient growth, but ultimately decays to zero.
As 7, becomes negative, the pump value is increased by a factor of almost two in order to
keep Ay =~ 0.87. At the same time, the transient amplification factor increases from 20 to
5-10° and a non-zero signal field, entirely noise-driven, develops, even though the zero signal
field solution is nominally stable. There is no significant drift in the signal field, indicating
that it has the same repetition period of the pump, even though the cavity round-trip time
is slightly longer. The pump pulse energy corresponding to this last case is 0.8 nJ for a
4 ps FWHM pulse focused on an 33 pm diameter spot [12], corresponding to 80 mW power
with 100 MHz repetition rate (equivalent to a cavity length of 3 m). As can be seen from
Figure 2(B-2) the peak intensity of the corresponding signal pulse is approximately nine
times that of the pump.

In conclusion, we have shown that SPOPOs are capable of enormous amplification ratios,
of the order of 10%: in these regimes SPOPOs emit a signal field, even though the zero signal
field solution is stable. The emitted signal is entirely noise driven and is expected to be
correlated to the photon fluctuations in the cavity. The correct representation of quantum
fluctuations in a semiclassical framework [5], like the one used here, is a natural extension
of the preliminary results presented in this paper and will be reported elsewhere. Whatever
the source of noise, pseudospectra offer a computationally efficient manner to quantify the
transient amplification factor and determine the best parameters to observe the remarkable
phenomenon of giant noise amplification.

We thank F. Papoff, G.-L. Oppo and A. Scroggie for their help. We were partly supported
by a Nuffield Foundation Undergraduate Research Bursary (URB/34177).
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| P,=20& 7.=041ps | P,=3.6& .= —0.96ps

logyo(€) | pe(£) | Ke logy(€) | pe(£) | Ke

-1 1.29 |29 -9 1.26 | 2.6-108

-2 1.11 | 11 —10 1.14 | 1.4-10°

-3 1.02 | 20 —11 1.05 | 5-10°
KX =20 K =5-10°

Table 1. Estimate of Kreiss constant for the two examples shown in Figure 2.
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aries of A (L) for e = {10°,...,107!%} in the complex plane. (A-2) and (B-2)
show the corresponding signal amplitude, obtained by numerically integrat-
ing eq. (1), as a function of round trip and 7. The (dimensionless) parameter
values correspond to those for lithium niobate [1,3]: vj_l = {1.0166, 1, 1.0049},
B; = {-1.29,-0.343,1.47} x 1077, p; = {0,0,0}, Ak =0, 6 =0, R = 0.37,
7, = 0.0244. A d-correlated noise with amplitude A; = 107® was added to
the equations. One unit of dimensionless time is equivalent to 137 ps and the
length of the crystal is 20 mm. . . . . . . . . . ... .. ... L.
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Fig. 1. The noisy leading edge of the signal pulse (dashed line) arrives at the crystal when
the pump pulse (solid line) is very large and is amplified together with the idler (dot-dashed
line). Losses during propagation quench the non-amplified tail of the signal pulse.
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Fig. 2. Numerical pseudo-spectra of £ and corresponding evolution of the signal field for
two values of the pump amplitude P, and detuning 7.. (A-1) and (B-1) show the eigenvalues
of £ (dots), the unit circle (thick circle) and boundaries of A.(L) for e = {10°,...,1071°}
in the complex plane. (A-2) and (B-2) show the corresponding signal amplitude, obtained
by numerically integrating eq. (1), as a function of round trip and 7. The (dimensionless)
parameter values correspond to those for lithium niobate [1, 3]: vj_l = {1.0166, 1,1.0049},
B; = {—1.29,-0.343,1.47} x 1077, p; = {0,0,0}, Ak =0, 6 = 0, R = 0.37, 7, = 0.0244.
A $-correlated noise with amplitude A; = 107® was added to the equations. One unit of
dimensionless time is equivalent to 137 ps and the length of the crystal is 20 mm.



