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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Christopher Laurie Buckley

This thesis focuses on the phenomena of neuromodulation — these are a set of diffuse

chemical pathways that modify the properties of neurons and act in concert with the

more traditional pathways mediated by synapses (neurotransmission). There is a grow-

ing opinion within neuroscience that such processes constitute a radical challenge to the

centrality of neurotransmission in our understanding of the nervous system. This thesis

is an attempt to understand how the idea of neuromodulation should impact on the

canonical ideas of information processing in the nervous system.

The first goal of this thesis has been to systematise the ideas immanent in neuromodula-

tion such that they are amenable to investigation through both simulation and analyti-

cal techniques. Specifically, the physiological properties of neuromodulation are distinct

from those traditionally associated with neurotransmission. Hence, a first contribution

has been to develop a principled but minimal mechanistic description of neuromodula-

tion. Furthermore, neuromodulators are thought to underpin a distinct set of functional

roles. Hence, a second contribution has been to define these in terms of a set of dynami-

cal motifs. Subsequently the major goal of thesis has been to investigate the relationship

between the mechanistic properties of neuromodulation and their dynamical motifs in

order to understand whether the physiological properties of neuromodulation predispose

them toward their functional roles?

This thesis uses both simulation and analytical techniques to explore this question. The

most significant progress, however, is made through the application of dynamical sys-

tems analysis. These results demonstrate that there is a strong relationship between the

mechanistic and dynamical abstractions of neuromodulation developed in this thesis. In

particular they suggest that in contrast to neurotransmission, neuromodulatory path-

ways are predisposed toward bifurcating a system’s dynamics. Consequently, this thesis

argues that a true canonical picture of the dynamics of the nervous system requires

an appreciation of the interplay between the properties of neurotransmission and the

properties immanent in the idea of neuromodulation.
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Chapter 1

Introduction

1.1 Introduction

In 1943 Warren S. McCulloch and Walter Pitts published their now seminal pa-

per (McCulloch and Pitts, 1943). This pioneering work presented an extremely

abstract but hugely insightful model of the logico-computational abilities of the

neuron and is the primogenitor of all modern artificial neural networks (ANNs).

It opened up a whole new vista in the research on cognition and suggested that

a unification between the fields of artificial intelligence (AI) and neuroscience was

not only possible but could posses the elegance of major theories in the more es-

tablished physical sciences. This work still has a privileged influence on modern

modelling paradigms and has, perhaps unintentionally, resulted in a premature

canalisation of the conception of the physical processes underpinning cognition.

Modern neuroscience has mounted a serious attack on the centrality of the neuron

in models of the nervous system. There are increasing calls within the neuroscience

community to move “beyond the neuron doctrine” and this is already impacting

on the focus of a good deal of empirical work. However, as of yet, a similar chal-

lenge to some of the assumptions inherent in the canonical ANN has not been

forthcoming. The title of this thesis deliberately emulates the title of McCulloch

and Pitt’s original work. In part this is a homage to the profound impact that

their paper has had on modern science but also because this work attempts to re-

connect with and readdress these original ideas, in the light of recent work within

modern neuroscience.

Before this thesis explores the relationship between the ANN and the neuron

doctrine this chapter will first provide some theoretical background to the role

1
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of ANNs in studies of cognition. Particulary this introduction provides a brief

review of major developments that have led to modern neuro-inspired approaches

to cognition, focusing on aspects that are important to the theoretical origins of

this work.

Early in the 19th century behaviourism largely dominated all enquiries into the

nature of cognition (Boden, 1996). Behaviourism cast humans as predominantly

reactive systems solely driven by immediate environmental input and proposed

that “the environment not autonomous man is really in control” [p. 96](Boden,

1996). The brain was studied as a “black box” and there was an attendant de-

emphasis on the physical and mechanistic nature of cognition.

In the 1940’s two pioneers of modern computing, Alan Turing and John von Neu-

mann set down the foundations of the field that would be later named artificial in-

telligence (AI) some year later by John McCarthy at the Dartmouth conference in

1956. AI heralded a new approach to psychology that focused on the nature of the

logical conditions that were necessary to transform input into behavioural output.

AI researchers championed synthetic approaches to intelligence as an alternative,

not only to behaviourism but to the analytical approaches of contemporary neu-

roscience. Unlike neuroscience which involved “the anatomical, physiological and

physiological examination of the structures and process involved” they focused on

“theoretical investigations of the basic principles” (Boden, 1996).

Much of this landmark work in Good Old fashioned AI (GOFAI) had been in-

fluenced by the technological constraints imposed by the computers of the time

(Marr, 1977). As such GOFAI practitioners before the 1980’s framed the idea

cognition in terms of the serial processing and discrete representations of compu-

tational hardware . This manifested as models that relied on the storage and for-

mal manipulation of symbolic elements with syntactic rules, the so called physical

symbol systems hypothesis (PSSH) (Newell and Simon, 1976). The computational

metaphor, perhaps unintentionally, rose above merely a technological medium and

became the language of their hypothesises. This had defining consequences for not

only how cognition was described but also on the types of question they asked (Bo-

den, 1996).

A bio-inspired alternative to GOFAI in the form of connectionism was founded

on McCulloch and Pitt’s (1943) pioneering work and was subsequently developed

by Rosenblatt (1958) in his work on the perceptron. The perceptron was based on

the most notable aspects of the experimental and modelling studies of biological

neurons conducted by Hodgkin and Huxley (1952). However, the publication of
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Minsky and Papert’s (1969) damning critique of the computational power of the

perceptron halted research for almost two decades even though these criticisms

were later comprehensively rejected. It took until the 1980’s before connectionism

was successfully revived with Rumelhart and McClelland’s (1986) seminal text.

Connectionists disliked the high-level representations of GOFAI practitioners and

cast cognition as emergent properties “that depend on lower-level phenomena in

some systematic way” (Churchland and Sejnowksi, 1992). They argued that as

the brain is made up of many relatively slow processing elements it is hard to con-

ceive how fast cognitive processes could be achieved in serial processing paradigms

(Lashley, 1951). Hence they argued that the parallel and distributed nature of the

brain and indeed all biological processes, was key to understanding the foundations

of cognition.

Connectionists studied networks of very simplified neuron-like elements that in-

herited all their core assumptions from the perceptron. Such system are not only

computationally powerful but, like biological neural networks, exhibit graceful

degradation, are capable of soft constraints (i.e. the ability to generalise) and can

sustain processes similar learning (Pollack, 1989).

While one goal of connectionism was the production of advanced computational

applications, many connectionists had more scientific aspirations. They claimed

that their models were a good substrate for investigations into the relationship be-

tween physiology and cognition. Furthermore, they hoped that these studies would

produce mathematical principles and theory that would uncover deep truths about

the way that biological matter processed information. Connectionism became a

sophisticated mathematical endeavour developing its own ‘in house’ problems and

formalisms (Bechtel and Abrahamsen, 1991).

Some believe that the connectionists preoccupation with mathematical elegance

led them astray (Cliff, 1990). Connectionists were consistently willing to flaunt

known biological constraints and ignore advances in neuroscience in favour of main-

taining an intrinsic mathematical consistency within their own field. They were

heavily criticised by neuroscientists who argued that their abstractions were so di-

vorced from biological data that they had little chance of addressing the biological

basis of cognition1.

1 Some modern variations of connectionism are beginning to reconnect with neuroscience.
Work on the biophysics of neurocomputation has inherited the mathematical legacy of early
connectionism but claims legitimacy by its attendance to biological constraints and a close re-
lationship with experimental neuroscience. This field is comprehensively summarised by Koch
(1999)
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Modern adaptive behaviour (AB) research has moved away from both GOFAI

and connectionism. While connectionists shunned the use of high-level conceptual

proxies, it did inherit a GOFAI methodology that focused on pipeline processes

that start with sensory transduction and end in motor actuation. In contrast,

AB research stresses the importance of embedding behaviour in an environment

and advocates a closure of the sensorimotor loop (Cliff, 1990). Work focuses on

constructing holistic agent architectures that incorporate body, brain and environ-

ment. These notions have been neatly summarised in modern times by the situated

embodied and dynamic (SED) movement (Beer, 2000). Situatedness refers to the

fact that an agent does not deal with abstract descriptions, but with the here and

now of the world directly impinging on the behaving system (Brooks, 1991). Em-

bodiment emphasises that the brain is not the only resource for a cognitive agent

and that the intrinsic dynamics of the body are integral in cognitive processing.

“Dynamics” stresses the notion that behaviour is an ongoing process that emerges

from the continuous reciprocal interaction of an agent with its environment (Beer,

2000).

Much of the incipient work in AB did not directly address the physiological de-

tails of nervous systems but drew from wider systemic biology, e.g., subsumption

architectures borrow from notions of incremental evolution (Brooks, 1999). How-

ever, in the early 1990’s the theoretical foundations of a field that united both

neuroscience and AB was set out by Cliff (1990) in provisional manifesto for com-

putational neuroethology.

Computational neuroethological approaches have flourished and diversified over

the last 10 years but vary in the level of abstraction that they take and the ques-

tions that they ask. They have condensed into a set of distinct, but united, fields

which include biorobotics (Webb and Consi, 2001), biomimetics (Ayers et al.,

2002) and behaviour based robotics (BBR). For a comprehensive review, see Webb

(2001).

While many computational neuroethologists conduct investigations at the same

level of abstraction as the connectionist’s Cliff (1990) has made a convincing

argument which claims that the adoption of SED principles affords the field a

theoretical legitimacy. However, computational neuroethology has not employed

mathematical approaches to the same extent that its predecessor connectionism

did. This is largely because the closed sensorimotor paradigm of AB demands a

new style of neural networks that are recurrent and consequently state-holding.

These recurrent neural networks (RNN) are highly nonlinear, exhibiting complex
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dynamics and are not amenable to the mathematical analysis used on simple feed-

forward networks.

However, recently, Randal Beer has pioneered a highly analytical approach to

BBR. Beer has adopted the formal mathematical framework of dynamical systems

(DS) theory (Beer, 2003). With this Beer has been able to strengthen and advance

pre-theoretic dynamical notions of cognition in adaptive agents.

DS theory is studied as a pure and applied branch of mathematics. It has its

roots in Newtonian mechanics, but only really matured into its modern form in

the 1950’s (Strogatz, 1994). Since then many tools and techniques have been

developed to allow researchers to gain both qualitative and quantitative insight

into dynamics.

Beer’s work lies in the subfield of BBR called evolutionary robotics. Here the

modus operandi is to evolve networks with a genetic algorithm (GA) (Mitchell,

1996) on simple tasks Beer then applies post hoc DS analysis on the solutions.

In order to facilitate this process he simplifies wherever possible using a very

stripped down GA , a simple network on a minimally cognitive task (one that is

simple but still cognitively interesting). His goal is to determine the manner in

which the brain (network) body (sensors and motors) and environment (the task

formulation) interact to produce cognitive behaviour (Beer, 2003).

Beer’s focuses on the qualitative dynamics of the evolved solution and is not par-

ticulary interested in the relationship between the dynamics and biological in-

spiration behind the networks that underpin them. Consequently, he employs

a simple and parsimonious RNN known as the continuous time recurrent neural

network CTRNN that has only nominal biological plausibility. The CTRNN ac-

tually originates in neuroscience and embraces the core principals of original ANN

formulations of connectionism and, consequently, embodies the neuron doctrine.

Beer’s work, and the work it has influenced, has increasingly drawn away from

interpreting the CTRNN as a “neural” network. Instead its is enough that the

CTRNN has been proven to be capable of universal smooth function approxima-

tions (Siegelmann and Sontag, 1995).

In contrast many other researchers use a host of biological augmentations on top of

the more traditional neural networks paradigm. For example evolutionary robotics

has studied network formulations that include Hebbian learning (Floreano and

Urzelai, 2001), homeostatic plasticity (Williams, 2004) and neuromodulation (Hus-

bands et al., 2001). Rather than being satisfied with a simple network formulation
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that is in theory capable of all dynamical behaviour, an emerging question from

these studies is how easily different network paradigms sustain different behaviors.

For example there has been a great deal of work concerned with how easily cer-

tain networks can be trained, e.g, studies of evolvability in evolutionary robotics

(Smith et al., 2001).

In particular, a set of processes grouped under the umbrella term neuromodulation

are among the current challenges to the neuron doctrine. One can visualise neu-

romodulation as waves of gases and liquids diffusing from neurons and affecting

volumes of neural tissue and changing the functionality of the neurons they en-

compass. Neuromodulators are ubiquitous throughout the nervous system (Katz,

1999), existed well before the advent of neurons and synapses (Buckle, 1983) and

have been directly implicated in both lifetime (Doya, 2002a) and evolutionary

adaptation (Katz and Harris-Warrick, 2005). Some have even suggested that the

centrality of neuromodulatory processes in nervous function demands a shift from

the “electrical circuitry” metaphors that have arisen from the neuron doctrine to

the idea of the “liquid brain” (Changeux, 1993). Moreover, recent work in evolu-

tionary robotics has begun to incorporate very abstract model neuromodulation

into more traditional ANNs and have claimed that this confers a suite of adaptive

advantages (Husbands et al., 2001).

To date, a Beer style DS analysis of these biologically augmented, SED networks

has been largely absent from the literature. Consequently, a first goal of this work

is to advance one such analysis. However, more interestingly, this approach should

provide an arena within which to address how the canonical formulation of the

ANN impacts on the generic dynamics and adaptive potential of a network.

However, the grander goal of this work relates to the opening ideas of this in-

troduction and is an attempt to understand whether new ideas in neuroscience,

particularly the idea of neuromodulation, should force us to reconsider the as-

sumptions of the canonical neural networks originally laid down by McCulloch

and Pitts (1943).

1.2 Thesis Outline and Publications

The next chapter, Chapter 2, provides a more detailed introduction to the phenom-

ena of neuromodulation. In particular, it will outline exactly how neuromodulation
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differs from the ideas inherent in the neuron doctrine and why some neuroscien-

tists believe they constitutes such a radical challenge to more traditional notions

of information processing in the nervous system. Chapter 3 then conducts a rel-

atively broad review of the neuroscience of neuromodulation. Chapter 4 reviews

a set of attempts in neuroscience to define neuromodulation. This work moves

beyond the detailed biological perspective of Chapter 3 and begins to explore and

develop a more systemic notion of neuromodulation. Chapter 5 provides a general

introduction to dynamical systems theory and also serves as a technical reference

for the analytical techniques employed in the rest of this work. Chapter 6 attempts

to frame the definitions of neuromodulation in the context of artificial neural net-

works and dynamical system theory. Chapter 7 then outlines the central research

questions of this thesis.

Chapter 8 is the first results chapter of this thesis and uses an evolutionary method-

ology employed in GasNet research to explore the relationship between the mech-

anisms of neuromodulation and evolutionary performance.

Chapter 9, Chapter 10 and Chapter 11 constitute the major theoretical contri-

butions of this thesis. Chapter 9 uses dynamical systems analysis to analyse one

particular subcircuit of a successfully evolved artificial neural network that in-

cludes and abstraction of neuromodulation, this work was published in Buckley

et al. (2004). Chapter 10 attempts to formalise the idea that neuromodulation

is not excitatory/inhibitory. Chapter 11 was submitted as Buckley and Bullock

(2007a) and explores some of the consequences of the theory set out in Chapter 10.

Chapter 12 was published in Buckley et al. (2005a) and explores the idea that

neuromodulation is generally modelled as slow processes within more typical neural

networks.

Chapter 13 is to be published in Buckley and Bullock (2007b) and moves away

from the dynamical systems theory used in the majority of this thesis. Instead it

uses an information theoretic measure to explore the idea that neuromodulation

is a spatiality embedded process.

Finally Chapter 14 summarises the arguments and results of this thesis and out-

lines the future research direction of this work.



Chapter 2

Beyond The Neuron Doctrine

2.1 The Origin of The Neuron Doctrine

Speculations on the physiological roots of behaviour began in early antiquity. Aris-

totle commented on the presence of nerve fibres and their importance in sensation

and motion, however, he believed they originated in the heart (Carlson, 1991).

In the eleventh century Moses Maimonides and others began to perfect the art of

dissection and correctly deduced that these fibres actually stemmed from the brain

(Carlson, 1991). For many centuries relatively little progress was made such that

before the 20th century the function of the nervous system was still thought to

be solely underpinned by complex networks of nerve fibres (Bullock et al., 2005).

Information in these networks was understood to flow freely in any direction, coa-

lescing and disseminating at the junctions between fibres. The nervous system was

pictured as a single unit or syncytium1 surrounded by a single membrane. While

the possibility of discrete nerve cells was often remarked upon, even before their

discovery as the neuron, there was little understanding how they they related to

nerve fibres.

Current understanding of the nervous system really began through the work of

Ramon y Cajal (1911). With the help of advanced staining and microscopic tech-

niques he was able to make the first detailed observations of the interactions of

the nerve fibres and cells. This led him to envision the neuron as a discrete infor-

mation processing unit communicating through a network of nerve fibres (Bullock

et al., 2005).

1A syncytium is a multinucleated mass of cytoplasm that is not separated into individual
cells.

8
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Figure 2.1: An archetypal neuron.

Modern experimental studies have continued in the spirit of Cajal’s work and

focused on the description of neuronal structure. While neurons differ between

species and even between anatomical regions within a single organism they, nev-

ertheless, exhibit a remarkable degree of commonality. The canonical neuron is

depicted in Fig. 2.12. They generally consist of a cell body, the soma (∼ 10µm

in diameter), situated between the dendrites and the axon hillock. Within the

soma sits a nucleus which is responsible for the synthesis of proteins used for de-

velopment and repair. Dendrites, (∼ 1µm in diameter), are a series of cellular

extensions that converge onto the soma. The axon (∼ 1µm in diameter) is a con-

ductive cable that meets the soma at the axon hillock and runs away from the cell

body. The axon rapidly arborises projecting to multiple sites across the nervous

system. The axonal branches meet the dendrites, soma, or axon hillocks of other

neurons at axon terminals. While Cajal named the junction between axon termi-

nal and other neurons as the synapse, a detailed understanding of its structure

was not produced until nearly half a century later (Bullock et al., 2005).

In the 1950’s physiological studies culminating in work by Hodgkin and Huxley

(1952) on the squid giant axon suggested the idea that neuronal state is under-

pinned by changes in potential differences. Hodgkin and Huxley discovered that

electrical activity in the neuron is sustained via ionic currents across the cell mem-

brane at many points along the soma and axon. Their paper is still regarded as

seminal work and is the progenitor of the large majority all modern neuronal

2Adapted from http://subtlebraininjury.com/neuron.html
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models. Potential differences across the membrane are mediated by the differ-

ent concentrations of three cations, sodium (Na+), potassium (K+) and calcium

(Ca2+) and the anion chloride (Cl−). The consequent currents and dynamics of

the membrane potential are then defined by sets of conductance’s of each ionic

species. The archetypal response of a neuron is to produce a rapid change in

membrane potential, known as an action potential or spike, when the incoming

electrical stimulation from the dendrites exceeds a certain threshold. These spikes

then propagate down the axon, to the axon terminal, and terminate at the synapse.

The small diameter of the axon and the presence of the insulating myelin sheath

ensure economic and relatively fast propagation of electric signals along the axonal

branches.

Fig. 2.23 shows a stereotypical synapse at the junction of the axon terminal and a

dendrite. A slight gap exists between the terminal and the dendritic spine known

as the synaptic cleft (∼ 20nm wide). Action potentials from the presynaptic cell

stimulate the endogenous release of molecules (neurotransmitters) which diffuse

rapidly across the narrow synaptic cleft. Effects on the postsynaptic cells are

thought to be predominantly mediated by two processes. First, so-called iontropic

receptors in the dendritic spine of the postsynaptic cell bind to the neurotrans-

mitter molecules causing several neurotransmitter dependent ion channels to open

and allowing the influx of ions. This effect can be either excitatory or inhibitory

depending on whether it increases or decreases the potential of the postsynaptic

cell, respectively. The nature of the effect depends on the nature of the ionic

channels involved which in turn depends on the types of neurotransmitters and

receptors at the synapse. Second, the neurotransmitter does not have to directly

bind to receptors in the postsynaptic cell but can cause the production of so called

second messenger molecules from the postsynaptic cell that stimulate the action

of an enzyme class called protein kinase. These enzymes impact metabotropic re-

ceptors and effect the size and shape of the proteins that form the ion channels.

The exact effect of the enzyme on the ion channel protein is dependent on the type

of second messenger. However, again it is possible to have both excitatory and

inhibitory effect on the postsynaptic cell. This set of processes, starting from the

production of an action potential and ending in the innervation of a postsynaptic

neuron membrane is a form of inter-neuronal signalling that is commonty referred

to as neurotransmission.

Intuitively, the vast number of neurons, over 10 billion in the human cortex, and

their rich interconnectedness through synapses, of the order of 10,000 connections

3Adapted from http://en.wikipedia.org/wiki/Synapse
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Figure 2.2: An archetypal synapse

per neuron, makes neuronal systems a convincing candidate substrate for the rich

tapestry of organismic behaviours. Consequently, Cajal’s work formed the bedrock

of a so-called neuron doctrine that places the neuron at centre stage of all studies

of nervous function, and consequently behaviour. In its incipient form, the neuron

doctrine merely states that “a neuron is an anatomically and functionally dis-

tinct unit” (Bullock, 1977). The main impact of this physiological statement was

to move neuroscience beyond the ideas of an undifferentiated syncytium. How-

ever, within the modern literature, the neuron doctrine has tended to incorporate

functional aspects, thereby constituting a prescriptive notion of how information

processing takes place within the nervous system.

At this point, it is necessary to disambiguate two uses of the term “neuron doc-

trine” that are present in the literature. One version simply states that a theory

of mind will be a “cognitive and neuroscientific theory” (Gold and Stoljar, 1999).

In this form, the neuron doctrine is an explanatory gambit that embraces both

biological and psychological levels of description, and suggests that the role of neu-

roscience is to provide a mechanistic account of cognitive phenomena. As such, it

is uncontroversial, merely endorsing current modes of study across the cognitive

sciences. More radically, the term can be used to suggest that cognitive function

can and should be reduced to, and described purely in terms of, the physiological

substrate. This is more controversial in that it denies the validity of understand-

ing drawn from other branches the cognitive sciences. To conform to this doctrine

is to assume that mind, cognition, and behaviour will only be explained via a

neuroscientific account. However, such a position is silent on what form such an
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account will necessarily take, and what neuroscientific structures or concepts will

be involved.

By contrast, within neuroscience the neuron doctrine tends to take a different,

more physiological, form. Here, the neuron doctrine asserts that there are par-

ticular aspects of neuroanatomy that will be found to underpin the majority of

functionality in the nervous system. Roughly, this form of the neuron doctrine can

be summarised by the assumption of several extra tenets on top of Cajal’s basic

assumptions.

First, and following directly form Cajal’s work, the neuron is a structurally and

functionally discrete unit. Second, and again deriving directly from Cajal’s work,

the neuron is directional, information flows in from the dendrites and out through

the axon. Third, the neuron is the seat of all information processing, with other

processes simply subserving communication between neurons. While only specu-

lative in Cajal’s original work, this notion was later championed and compounded

by work on artificial neural networks (McCulloch and Pitts, 1943). Fourth, com-

munication between neurons is solely mediated by nerve fibres, with chemical

transmission confined to the synaptic cleft. The bias toward this view perhaps

has it roots in an understanding of the limited size of the synaptic cleft and the

constrained nature of some chemical species involved in synaptic transmission that

arose partly as a result of chemical concentrations outside the cleft being ignored.

Fifth, and deriving from work culminating in Hodgkin and Huxley (1952), in-

formation within the neuron is solely sustained by membrane potentials and is

transmitted down nerve fibres as discrete pulses. While these tenets are not ax-

ioms and only really serve as guiding principles they are entrenched in much of the

work in both computational and experimental neuroscience (Bullock et al., 2005).

The dominating metaphor here is that of an electrical circuit, i.e. the nervous

system is cast as a set of hardwired digital units communicating through electrical

pulses. Some have commented that the emergence of this metaphor may have been

due to the fact that the electrical circuit was very much the dominating paradigm

of the era (Katz, 1999).

2.2 Beyond the Neuron Doctrine

The inception, and consequent dominance, of the neuron doctrine is not merely a

product of an incomplete picture of neural tissue. Even very early work noted that
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some aspects of neural function do not fit easily within this picture. For example,

even Hodgkin and Huxley (1952) remarked that processing in neurons is not solely

underpinned by discrete events but involves electrical events graded in amplitude

that are spatially and temporally distributed across the neural body. Yet citations

of this work tend to omit this detail.

The dominance of this simplified picture of neuronal function perhaps started quite

innocently and may have been a response to the need to simplify ideas such that

they were amenable to computational and theoretical investigations. Given the

ubiquity of electrical activity and the richness of neuronal connectivity it was not

hard to conceive of other biological features as just constituting a slight amendment

to this picture rather than a radical overhaul. However these simplifications may

have fed back on the focus of future experimental work reinforcing an impoverished

picture.

More recently, driven by new experimental findings, there is an increasing call

within the neuroscience community for a re-examination of the neuron doctrine

(Bullock et al., 2005). For example the discovery of the electrical gap junction

(Dermietzel and Spray, 1993) and its newly reported ubiquity throughout the

nervous system comprehensively challenges the idea of the neuron as the compu-

tational unit. By contrast to the synaptic cleft in a chemical synapse, gap junctions

allow neurons to mechanically impinge upon one another, allowing a direct flow

of ions between them. Gap junctions have the potential to couple many neu-

rons into a single unit and have been postulated to have several unique functional

capabilities, e.g., the synchronisation of neuronal firing (Bullock et al., 2005). In-

terestingly, the idea of the gap junction resonates with pre-20th Century notions

of the syncytium. Furthermore, dendrites, long thought to be passive mediators

of spiking potentials, have been shown to posses ion channels themselves and may

produce action potentials in their own right (Bullock et al., 2005). It has also been

demonstrated that action potentials may not be simply monodirectional flowing

from dendrites to axon, but may flow in reverse. Many believe this is crucial to

our understanding of synaptic plasticity (Koch, 1999).

2.3 Beyond Neurotransmision: Neuromodulation

In this thesis we will concentrate on one particular departure from the neuron

doctrine. It has become increasingly clear from modern experimental work that

nerve fibres are not the only form of inter-neuronal communication and in fact
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there are many other chemically mediated processes unconstrained by the pat-

terns of neural connectivity. The idea of neurotransmission is the aspect of the

neuron doctrine that holds that “the communication between neurons is solely

mediated by synaptic pulses along nerve fibres” (Katz, 1999). While these pulses

are chemically mediated at the synapse their associated chemical messengers were

not thought to flow outside of the synaptic cleft. Communication between neurons

was thus private, specific and directed (Carlson, 1991).

Functionally, neurotransmission is held to be the amalgamation of three dominat-

ing ideas. Neuron communication is

1. Fast: pulses or on-off responses act on the 10 millisecond timescale.

2. Point-to-point: a neuron’s neighbourhood is completely specified by the in-

coming synaptic connections and the outgoing neuronal branches of its den-

dritic tree.

3. Inhibitory/excitatory: synaptic connections either increase or decrease the

activation of a target neuron.

Note: like most of the important words in neuroscience there are many different

detailed definitions of neurotransmission. In this work, however , we shall stick to

the above definition which was suggested by (Katz, 1999).

Recently this aspect of the doctrine is being comprehensively challenged. Ronald

M. Harris-Warrick, in particular, has become one of the major voices of dissent

against the exclusivity of neurotransmission. Harris-Warrick was one of the key

developers of the “patch clamp” (Harris-Warrick et al., 1992) an experimental

technique which has generated an avalanche of very detailed data on neuronal

activation. He argues that many phenomena do not fit easily into the picture

provided by neurotransmission. Consequently, Harris-Warrick remarks that “it is

no longer possible to discuss sensory processing or motor coordination without

considering the role that non-traditional forms of neuronal communication play”

(Harris-Warrick et al., 1992).

We now know that much of the communication between neurons is diffuse in

nature. Chemicals emitted from one neuron can diffuse through the extra cellular

space (ECS) over relatively large distances and affect the properties of distant

neurons. Unlike neurotransmission these processes are not solely confined to the

synaptic cleft, e.g., one neuron may affect another even in the absence of synaptic
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connection (Bach-y-Rita, 2001), see §4.1.1. Furthermore some of these chemicals

can be transported by the cerebral blood flow, distributing them more widely

across the nervous system (Carlson, 1991).

Unlike synaptic transmission these chemicals are not thought to simply innervate

the membrane potentials of the neurons that they influence in an excitatory or

inhibitory fashion. Instead, they can change many properties of the neural tissue

that they come into contact with, affecting synaptic efficacies, rates of synap-

tic growth and intrinsic properties of neurons (Turrigiano, 1999). There is also

evidence that they are able to affect gene expression, protein synthesis and other

mechanisms underlying growth and development (Bullock et al., 2005; Katz, 1999)

Unlike the postulated short 10ms timescales of neurotransmission these chemicals

can act over a range of temporal scales. For example, neurohormones are large

macromolecular chemicals that can persist within nervous tissue in significant

levels anywhere from minutes, to hours to days. In comparison, small molecules

such as nitric oxide (NO) can pass freely through lipid tissue. Consequently they

act over small volumes of tissue and while still much slower than neurotransmission

are much faster than neurohormones (Dyro, 1989). Furthermore, the postulated

role of these chemicals in development would imply that their effects are felt long

after they have dispersed (Marder and Thirumalai, 2002).

Processes of this ilk have been collectively grouped under the term neuromodu-

lation. Although the word has been used for over 20 years, the ubiquity of such

processes has only just begun to be incorporated into modern theoretical under-

standings of neural processing. A working definition of neuromodulation is sug-

gested by Katz (1999), casting neuromodulation as the antithesis or complement

of neurotransmission:

“Any communication between neurons, caused by the release of a

chemical that is either not fast, or not point-to-point or not simply

excitation or inhibition” [p.3](Katz, 1999)

Crudely, whereas neurotransmission has been conceived of as analogous to the

operation of an electrical circuit, one can visualise neuromodulation as waves of

gases and liquids diffusing from neurons or perhaps neuronal modules. They affect

volumes of neural tissue and change the functionality of the neurons within it. By

contrast with the dominating paradigm of electrical circuitry, a colourful term

sometimes used to convey this alternative idea is “the liquid brain” (Changeux,

1993; Husbands et al., 2001).
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2.4 The Importance of Neuromodulation

The idea of neuromodulation has caused a deal of excitement within the modern

neuroscience community (Koch, 1999). It has become something of a zeitgeist

driving a sudden flurry of studies linking neuromodulatory systems to many dif-

ferent roles in the nervous system. The idea that diffuse chemicals are present in

nervous function is not new, e.g., the presence of hormones had been known since

the 1800’s (Buckle, 1983). However, the notion that they may play an integral role

in processing at many temporal and spatial scales is novel. Previously, hormonal

effects had been conceived in rather one dimensional terms as a parameterization

of neural circuitry and their spatial and temporal dynamics was largely ignored

(Fellous and Linster, 1998). With the discovery of small inert neuromodulators

such as NO (see below) the possible roles of neuromodulators has been vastly

broadened

It is thought that most neural tissue within the mammalian brain is subject to

neuromodulatory influence (Katz, 1999). In general, neuromodulation appears

to be a ubiquitous attribute of neuronal communication rather than just feature

of specialised brain regions (Katz, 1999). This is also true of the invertebrates

and Marder and Thirumalai (2002) states that almost all the circuitry within the

invertebrate nervous system comes under the influence of neuromodulatory signals

at some point.

Neuromodulators are critically involved in normal brain function. Understanding

the uptake and release plays a crucial role in the treatment of many psychiatric,

motor control and drug dependency disorders (Doya, 2002a). Indeed, modern

psychopharmacology focuses on the effects of drugs upon chemical signalling sys-

tems at the level of behaviours such perception, learning and memory, and motor

control. Evidence from pharmacology and medical studies of diseases such as

schizophrenia and epilepsy provide a direct link to behaviour. Furthermore, as

we will see later, studies of invertebrate systems have revealed an integral link

between neuromodulatory processes and higher level behaviours. Indeed, Fellous

and Linster (1998) claim that the study of “neuromodulation may help to bridge

the gap between elementary neural principles and behaviour”.
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2.5 A Theory of Neuromodulation

The Dahlem conference was held in the early 1990’s and set out to address the

feasibility of theory in neuroscience (Poggio and Glaser, 1993). While the difficulty

of such a task was acknowledged, a drive toward it was cast as the one of the major

challenges to be overcome if neuroscience was to mature. Many types of theory

were considered from the kinetics of ionic channels to broader more nebulous ideas

of cognition. However, neuromodulation was identified as the physical mechanism

most needing to be brought within a modern theoretical conception of the brain.

It featured heavily in the work of a group focusing on learning mechanisms and

again in the discussions of a group concerned with the biophysics of information

processing, (Poggio and Glaser, 1993). In both cases researchers acknowledged

that a greater understanding of neuromodulatory roles “forms a core part of future

understandings of information processing in the brain”.

However, as it stands, the rallying call of the Dahlem conference has not been fully

met and neuromodulatory processes have been generally absent from models and

neglected in experimental work (Dickinson, 1998). Moreover Doya (2002a) claims

that “there is a vacuum in computational thinking that ties neurobiological details

of neuromodulation to their system level and behavioural roles”. What little

modelling has taken place has been very specific to particular neuromodulatory

pathways and there is little work that attempts to draw out commonalities across

different neuromodulatory species and across vertebrate and invertebrate systems.

This thesis is an attempt to fill this theoretical vacuum surrounding neuromodu-

lation. However, before a theory of neuromodulation can even be approached it

will be first necessary to generalise and systematise the ideas of neuromodulation

across a disparate set of neuroscience literatures. Furthermore, it will also have to

highlight and justify the types of questions that a putative theory of neuromod-

ulation could answer. Only when this process is completed will it be possible to

begin to model and analyse the ideas immanent in neuromodulation.

The next chapter presents the first step of this process by conducting a relatively

broad review of the physiology of neuromodulation.



Chapter 3

The Neuroscience of

Neuromodulation

3.1 Overview

In the last ten years there has been an avalanche of studies concerning neuromodu-

latory pathways which have resulted in an broad understanding of the physiological

properties of these system. This chapter conducts a fairly extensive review of this

work. In particular it will attempt to draw out the commonalities across a range

of neuromodulatory pathways.

The chapter is organised into three main sections. The first two sections address

the biochemical characteristics of neuromodulatory pathway. These include their

production and transport and their effect on biological tissue. The third will

review a representative set of behavioural/functional roles that neuromodulators

are thought to subserve.

Each of these sections will deal with two different chemical classes of neuromod-

ulatory species. First, the macromolecular neuromodulators, which include the

neurohormones and neurotrophines, are distinguished by their large atomic sizes

and slow diffusion rates. Second, a set of small, reactive and toxic molecules that

were discovered only relatively recently. Gaseous neuromodulators are typified by

nitric oxide (NO) but also include carbon monoxide (CO) and hydrogen sulphide

(H2S).

This chapter will draw on work dealing with both the invertebrate and vertebrate

nervous systems. While the biology of some neuromodulators is well established

18
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in both systems, where work is specific to one or the other class of organism, this

will be indicated.

In the conclusion it will be argued that neuromodulators exhibit a distinct set

of biochemical commonalities and, in addition, that neuromodulators serve a de-

fined set of behaviourial/functional roles distinct from those normally associated

with neurotransmission. The chapter will finish by suggesting that the relationship

between the biochemical characteristics of neuromodulators and the behavioural/-

functional roles they subserve merits further investigation. Indeed, the investiga-

tion of this relationship will constitute the main focus of this thesis.

3.2 Sources and Transport of Neuromodulators

3.2.1 The Neurohormones

The neurohormones are perhaps the largest and most well known set of neuromod-

ulators. They belong to the superset of hormones, a set of chemical messengers

that allow the cell and organs of the body to communicate1 . Hormones are rel-

atively large carbon-based molecules composed of from amino acids. While the

internal secretion of these chemicals was first noted by Claude Bernard in 1855

their role as intercellular messengers was not properly understood until the early

19th century (Carlson, 1991).

In the vertebrate system specialized glands and ducts have developed that release

hormones into the blood supply allowing them to circulate throughout the whole

body and facilitate communication between distant cells. This is known as the

endocrine system and is responsible for a host of physiological functionalities,

including the regulation of pH, the control of reproductive cycles, arousal states

in general (fighting, fleeing, feeding and reproduction) and many other properties

at the organism level, see Fig. 3.12. However, all cells in the body are possible

sources and targets of chemical signals; not just the discrete ducts and glands of

the endocrine system. Cells can release chemicals which diffuse, affecting cells in

nearby locations. In biology this form of intercellular signalling is referred to as

paracrine signalling, see Fig. 3.23. It is thought that paracrine signalling is a much

1Within biology any dynamic interaction between cells is typically talked about as communi-
cation. It is debatable whether or not ideas such as regulation and modulation fit within a strict
definition of communication (Millikan, 1993, Ch. 1)

2Adapted from http://www.accessexcellence.org/RC/VL/GG/endocrineWin.html
3Adapted from http://www.accessexcellence.org/RC/VL/GG/paracrineWin.html



Chapter 3 The Neuroscience of Neuromodulation 20

Figure 3.1: The endocrine system allow cells to communicate through via
circulatory system.

Figure 3.2: Paracrine signalling allows cells to through local chemical diffusion.

older pathway than the endocrine system (which is dependent on the presence of a

circulatory system) and probably developed with the first multi-cellular organisms

to allow local cellular interactions (Buckle, 1983).

Neurohormones are hormones that can be released from neural tissue and play a

role in the function of the nervous system. Again they derive from amino acids.

They include the neuroamines such as serotonin, dopamine and adrenaline and

neuropeptides such as protoclin and glicagon. They can be produced by localised

sets of specialised neurosecretory cells analogous to the ducts and glands of the

hormonal endocrine system. For example, in the mammalian brain serotonin is

synthesised in the raphe nucleus, a set of serotinergic neurons grouped into nine

pairs distributed along the entire length of the brainstem. Dopamine is secreted

from the substantia nigra a dark dense set of cells present in the midbrain and the

hypothalamus. Localised groups of neurosecretory cells have also been observed

in almost all higher invertebrates (Bullock, 1977).
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The secretion of neuromodulatory chemicals has also been observed outside these

specialised areas. Indeed the local release of such chemicals is thought to be

ubiquitous through the nervous system. Many synapses release chemicals that

leak from the synaptic cleft in significant concentrations. Furthermore, unlike

neurotransmitters, neurohormones are not only produced at the synaptic cleft 4

but are also released from varicosities (swellings) along the axon.

Like the hormonal endocrine system, neurohormones can also be transported

through the brain via the cerebral circulatory system, allowing them to reach

almost all parts of the brain. Furthermore many of them also double as hormones

and have wider effects outside of the brain. In general neurohormones are thought

to provide strong coupling to the hormonal endocrine system and mediate many

of the interactions between nervous and non-nervous organs (Carlson, 1991).

Once in the cerebral circulatory system neurohormonal concentrations can persist

for periods measured in minutes, hours, days or indefinitely if they are continually

synthesised. Even in the absence of new synthesis it may take hours for them to

leave the blood stream (Carlson, 1991).

Neurohormones also allow neurons to communicate locally via paracrine signalling

by diffusing across the intervening extra cellular space (ECS). How far they flow

through the ECS is somewhat controversial (Garris et al., 1994). However, detailed

measurements of dopamine concentrations in the ECS found that neurohormonal

concentrations are maintained, at significant levels, at relatively large distances

from the synapse despite the intervening cellular structure and removal processes

(Garris et al., 1994). Similar studies have also been performed on serotonin sig-

nalling (Bunin and Wightman, 1998), this work suggests that it has the potential

to diffuse ≥ 20µm enough to interact with many extra-synaptic elements. Af-

ter only short periods of synthesis, serotonin persists for many minutes in the

ECS before it is eventually oxidised or removed through re-uptake5 (Bunin and

Wightman, 1998). In contrast to the private, specific and directed communica-

tion mediated at the synapse both paracrine and endocrine signalling are public,

broadcast and diffuse in nature (Bunin and Wightman, 1998).

Most of the above information pertains to the vertebrate system, however, almost

identical endocrine and paracrine projections have been observed in invertebrate

systems. For example in the lobster central nervous system neuromodulators are

4Some are not synthesised in the synaptic cleft at all e.g. serotonin.
5Re-uptake denotes the re-absorption of some chemical species such that they can be released

again



Chapter 3 The Neuroscience of Neuromodulation 22

released from neurosecretory structures and can have both local and circulating

hormonal effects (Marder and Thirumalai, 2002).

3.2.2 Nitric Oxide: A Radically New Neuromodulator

Work in the late 1980’s on a radically different class of neuromodulator has opened

up whole new vistas for neuromodulatory signals in the nervous system. In 1988

Garthwaite suggested Nitric Oxide (NO) may play a significant role in intracellular

communication and constitute a novel new neuromodulator (Garthwaite et al.,

1988). NO is a very small molecule in comparison to the macromolecular amino

acid derived structures of the neurohormones. In addition to this it carries no

charge allowing it to pass freely through lipid tissue. Consequently it diffuses

three dimensionally away from the site of synthesis enveloping volumes of neural

tissue like a gas, earning the name gaseous neuromodulator (Philippides, 2001).

Originally the NO hypothesis6 was met with a great deal of scepticism (Garth-

waite and Boulton, 1995), but now NO is a recognized neural signalling molecule.

Further studies by Garthwaite have also revealed that carbon monoxide (CO)

and hydrogen sulphide (H2S) have similar signalling potentials (Garthwaite and

Boulton, 1995). As with the neurohormones, the synthesis, release, transport and

effects of gaseous neuromodulators do not fit easily with the traditional notions of

neurotransmission.

NO is synthesised from the precursor molecule NO synthase (nNOS), a soluble

enzyme distributed across the surface of the soma and axon. Consequently, NO can

be released from any point on the surface of the neuron. Furthermore nNOS has

been observed in almost all neuronal types making it likely that every neuron

is a potential source (Garthwaite and Boulton, 1995). The dynamics of NO are

critically linked to its synthesis as it rapidly disperses and decays in lipid tissue.

NO events are believed to persist on the order of 10’s of seconds (Philippides, 2001),

which while much shorter than the neurohormones is several orders of magnitude

longer than a typical action potential (Garthwaite and Boulton, 1995).

In essence gaseous neuromodulators provide a novel signalling system that com-

pliments the spatial and temporal range of macromolecular neuromodulators. It

constitutes a radically different form of paracrinic signalling, at a timescale closer

6The NO hypothesis simply states that NO, and its subsequent diffusion, is critically related
to aspects of nervous system function
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to that of synaptic action, and which is less constrained by the structure of the sur-

rounding lipid tissue. Furthermore, new research has also postulated that NO can

be produced along fibres that extend away from the soma including the axon and

dendrites (Philippides, 2001). This system of fibres allows the spatially extended

emission of NO and provides the basis of a global signal that loosely compares

with endocrine signalling.

3.3 The Affects of Neuromodulators

3.3.1 The Neurohormones

Neurohormonal chemical species can have effects like neurotransmitters in the

synaptic cleft. In particular they act as second messenger affecting metabotropic

neurotransmission (Carlson, 1991). Unlike neurotransmitters, however, neurohor-

mones can bind to receptors located at many sites across the neuron including the

soma, the axon and even the dendrites (Katz, 1999).

They are typically thought to target ion channel conductances and other mem-

brane properties of the neuron. They can strengthen or weaken these conductances

or even activate channels that where previously dormant (Katz, 1999). This can

alter a neuron’s response to subsequent neurotransmission. For example, in the

neural circuitry of the lobster (Dickinson, 1998) and turtle (Harris-Warrick and

Marder, 1991), neuromodulatory input is able to sensitise a neuron to synaptic

input, lowering the threshold at which the neuron fires.

In general, neurons can exhibit a wide range of innate behaviours even without

input e.g. tonic firing or bursting. For a good summary of typical behaviours see

(Izhikevich, 2004). The behaviour of a neuron is largely dependent on the mixture

of across the membrane surface. Neuromodulators are thought to affect coordi-

nated arrays of conductances simultaneously (Marder and Thirumalai, 2002). For

example, in the sea hare Aplysia, eight different conductances are thought to con-

tribute to the dynamics of an identified neurons. The neurohormone serotonin

targets the calcium and potassium channels synergistically, switching the system

between tonic firing and bursting dynamics. Such mechanisms act over multiple

dimensions and provide a rich way of altering a neurons innate properties and

modes of response (Katz, 1999).
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Neurons also posses a range of voltage dependent conductances, where the effective

conductance is dependent on the activity of the neuron. Neuromodulators can

alter how a conductance varies with the neuronal activity, or as before, simply

change its magnitude. Consequently, this mechanism provides, albeit indirectly,

linkage between the current activity and the effect of a particular neurohormone,

rendering them sensitive to context (Katz, 1999).

Another common target of neuromodulators is the efficacy of synaptic connections.

This is thought to be achieved by altering the amounts of transmitters that are

released in the synaptic cleft. Synaptic modulation can then impact on the effective

anatomical connectivity of a circuit and has the potential to produce large changes

in the dynamics at the network level (Marder and Thirumalai, 2002).

The timing and intensity of neuromodulatory signals is often vital to their func-

tional effects. This has led researchers to ask what factors affect the characteristics

of neuromodulatory pathways. One possible mechanism that has come to light is

that neuromodulatory pathways can be modulated themselves, constituting so

called metamodulation. This is readily apparent in the mammalian nervous sys-

tem in which there is thought to be strong interaction between the dopamine and

serotonin systems (Katz, 1999). Metamodulatory effects include suppressing the

release or changing the effect or sensitivity of neurons to other neuromodulators.

Katz (1999) postulates that these modulations may be even slower than the neu-

romodulators that they act upon, mediating very long rhythms such as circannual

or menstrual cycles.

Neurohormones have also been observed to have long term plastic effects on neu-

ronal tissue that endure even when their concentrations have been reduced to

negligible levels. For example, they can interfere with synaptic depression and

facilitation as well as neurogenesis (Carlson, 1991). In fact, most of the studies

of neuromodulation in the mammalian nervous system focus on these types of

effects. Additionally, another set of macromolecular diffuse chemicals signallers

called the neurotrophines, such as nerve growth factor (NGF) and brain-derived

neurotrophic factor (BDNF), are directly associated with the survival of neural

tissue. It is only relatively recently that the neurotrophines have been also been

shown to have acute short term effects like the neurohormones (Katz, 1999).
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3.3.2 Nitric Oxide

NO (like H2S and CO) is a highly toxic gas and can have numerous harmful

effects on biological tissue. For example, it has been identified as an antagonist

in liver failure and septic shock (Philippides, 2001). Nevertheless, NO has also

been implicated in the functionality of almost every organ in the body (Snyder

and Ferris, 2000).

NO can have variety of non-trivial effects on neuronal dynamics (Kiss and Vizi,

2001). In general these are qualitatively similar to the actions of neurohormones,

outlined above. Again a common idea underlying these effects is that they lie

outside simple ideas of excitation and inhibition via neurotransmission (Garthwaite

and Boulton, 1995). Specifically, like the neurohormones, they can change intrinsic

properties of the neuron, i.e., altering the effects of subsequent neurotransmission.

Furthermore many of NO ’s effects are thought to be directly context sensitive and

integrally dependent on the current state of the membrane potential and ionic

channels (Garthwaite and Boulton, 1995).

One emerging role for NO is as a signalling molecule modulating or perhaps even

mediating synaptic depression and potentiation (thought to underlie synaptic plas-

ticity) (Araujo et al., 2001). NO has also been seen to effect synaptogenesis and

could possibly play a role in directing axonal growth toward their target neurons

(Gally et al., 1990).

NO is also capable of metamodulation and can impinge on the neurohormonal

system mentioned above. For example, in the hypothalamus NO can effects local

serotonin concentration levels (Prast and Philippu, 2000) and the re-uptake of the

neurohormones serotonin and dopamine (Kiss and Vizi, 2001).

3.4 The Behavioural Role of Neuromodulators

3.4.1 Neurohormones in the Vertebrate Nervous System

One of the biggest drivers of research into vertebrate neurohormonal systems is

the interest shown by pharmaceutical companies. Neurohormones are thought to

play a crucial role in many psychiatric disorders (Snyder and Ferris, 2000). For

example, dopamine plays a key role in movement, attention and learning. Under-

standing its action is crucial in modern treatments of attention deficit disorder
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(ADD). Dopaminergic neurons have also been strongly link to Parkinson’s disease

and schizophrenia (Carlson, 1991). Serotonin is thought to regulate, mood, hunger

and arousal states. The neuropeptide acetylcholine is also receiving a great deal

of attention as a result of its proposed role in dementia, particularly Alzheimer’s

disease. Furthermore, neurohormones are central to the understanding of drug

addiction. Serotonin and dopamine are the major pathways on which recreational

drugs such as 3,4-methylenedioxymeth-amphetamine (MDMA), d-lysergic acid di-

ethylamide (LSD) and the crystalline tropane alkaloid (Cocaine) work (Carlson,

1991).

Drugs that treat psychiatric disorders are delivered directly into the patients blood

stream, cross the blood-brain barrier7 and enter the cerebral circulatory system.

Their effects are diffuse, acting over large regions, if not all, of the nervous system.

Concentrations of these drugs can persist in the blood stream from minutes and

hours to days, having a temporally extended effect on nervous function and ulti-

mately behaviour. Some are only claimed to have palliative effects which subside

as their concentrations decrease. Others purport to engender plastic irreversible

effects that aid in long term rehabilitation (Snyder and Ferris, 2000).

Research of this ilk is largely trial-based and serves to postulate causal links be-

tween certain chemicals and behaviour with only limited understandings of the

underlying mechanisms at the neural level. Furthermore, the interactions between

different neurohormonal systems are not well understood complicating things even

further. However, within neuroscience, there does exist a suite of work that fo-

cuses on the effect of neurohormones on learning. This work is just beginning to

make concrete links between low-level mechanisms and behaviour. Examples of

this work include studies of the mammalian midbrain dopamine system and its

role in reward conditioning (Schultz, 1998) and the role of noradrenaline in many

aspects behavioural plasticity in the monkey locus correlus (Aston-Jones et al.,

1997)

One particularly promising avenue of research involve studies of how certain neu-

rohormones control the transition between tonic firing and bursting of neurons

in the mammalian thalamus. The voltage dependent ion channel Ca2+ controls

the ability of a neuron to exhibit slow wave bursting8 (Izhikevich, 2006). This

7A membrane that controls the passage of substances from the blood stream into the central
nervous system. Note: some chemicals are unable to traverse this barrier and delivery must be
mediated by precursor molecules.

8Bursting dynamics consist of extended periods of spiking events followed by periods of qui-
escence.
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ion channel is directly modulated by diffuse norepinephrine and serotonin signals.

This transition is thought to be associated with the sleep-wake cycle and more

generally arousal status (Marder and Thirumalai, 2002) providing a concrete link

between neural mechanisms, neuromodulatory signals and behaviour.

3.4.2 Neurohormones in the Invertebrate Nervous System

While the studies of the vertebrate nervous system are crucially important for

the understanding of many diseases, links between low-level mechanisms and be-

haviour are limited by the size and concomitant complexity of such systems. In

contrast, studies of primitive invertebrate species shows a greater potential for

elaboration of the linkage between physiology and behaviour. As we will see be-

low, many of the key neuromodulatory chemicals play key roles in both vertebrates

and invertebrates and many aspects of their study have considerable overlap. For

these reasons we will spend the rest of this section dealing with the particulars of

several well known invertebrate systems.

STG The stomatogastric ganglion (STG) of the decapod crustaceans (e.g. lob-

sters, crabs and crayfish) is a widely studied invertebrate neural circuit. It func-

tions as a pattern generator, controlling the motion of the crustaceans’ digestive

system, which comprises of a gut and fore-gut. The STG is an extremely small

circuit consisting of only 26−30 neurons and is one of the best understood pattern-

generating networks to-date (Hooper, 2001). Studies of the STG reveal the pres-

ence of three primary rhythmic networks. The cardiac sac network, where the

food is stored, the gastric system, where the food is macerated and the pyloric

network which sieves and sorts the food. Neuromodulators, including dopamine

and serotonin, play an integral role in function of the STG. They are produced

in sets of neurosecretory cells, as well as other non-nervous structures, and are

transported though the circulatory system as endocrine signals, or diffuse through

the extra cellular space as paracrine signalling), affecting multiple neuronal sites

(Hooper, 2001).

The neuromodulators dopamine and serotonin and the muscarinic agonist pilo-

carpine target the synaptic efficacies of the circuit (Harris-Warrick and Marder,

1991). Consequently, they are all able to change the phase the STG rhythm.

Furthermore, the application of serotonin can alter the frequency of biting in the

gastric mill rhythm. These neuromodulators quantitatively alter the dynamics of
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the network but do not actively take part in the “cycle by cycle activity” (Harris-

Warrick and Marder, 1991) i.e. they are much slower than the pattern generator’s

period.

Neuromodulatory effects may be dependent on the state of the system. For exam-

ple, the neuropeptide protoclin can affect both the intrinsic membrane properties

of neurons and their synaptic efficacies. The intrinsic release, or external applica-

tion, of protoclin, in isolation, has no effect on STG dynamics. However, if released

after the application of serotonin or dopamine, it can strongly excite the pyloric

rhythm (Dickinson, 1998; Katz, 1999), initiating the feeding motor programme. In

this case, changes in synaptic efficacies reconfigure the circuit,effectively rewiring

the system.

Other neuromodulators can have more radical effects on the morphology of a

network. For example, some neuromodulators cause neurons to switch allegiance,

e.g., from one rhythmic network to another. For instance, from the pyloric to the

cardiac sac network. Alternatively, two originally independent networks can be

fused into a single system (Hooper, 2001).

These neuromodulators act on many neurons within these networks and on a num-

ber of synaptic and voltage dependent-currents within each neuron. Consequently,

changes in dynamics are seen as an “emergent feature of the distributed action”

of neuromodulators. (Marder and Thirumalai, 2002)

Tritonia The nudibranch mollusc Tritonia Diomedia (a sea slug) has been

studied for over three decades and posseses another well understood neural circuit

underlying rhythmic behaviour (Brown, 2001). Tritonia is preyed upon by sea

stars and when touched, produces one of two escape behaviours. Chemical stim-

ulation results in an escape swimming behaviour whereas, mechanical stimulation

results in an escape withdrawal reflex (Hooper, 2001). Work by Getting (1989)

revealed that the same neural circuitry underpins both behaviours. However, the

output of the circuit cannot be predicted by appraisal of the synaptic efficacies

alone and neuromodulatory influences must be taken into account (Marder and

Thirumalai, 2002). In the resting state, the circuit exhibits a reflexive withdrawal

response. However, the stimulation of serotinergic neurons, or the external ap-

plication of serotonin, alters multiple synaptic efficacies across the circuit. Con-

sequently, chemical stimulation produces an escape swimming behaviour rather

than the escape withdrawal. This behavioural configuration can last many min-

utes such that any further mechanical or chemical stimulation produces the same
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escape swimming behaviour. This was one of the earliest concrete examples of

a neuromodulator that allows the same circuit to sustain qualitatively different

behaviours.

Aplysia A great deal of work has also been done on the syphon withdrawal reflex

in the sea hare Aplysia Californica. Application of the neuromodulator serotonin,

dopamine or some neruopetides can target calcium and potassium conductances

synergistically in identified neurons (Marder and Thirumalai, 2002; Katz, 1995).

While the application of serotonin does not induce any activity directly it increases

the probability that synaptic input will evoke the syphon withdrawal reflex (Katz,

1999). In essence, serotonin primes the system such that it is sensitive to sensory

input without actually initiating the behaviour.

3.4.3 Nitric Oxide

In contrast to the neurohormones, it has been discovered only relatively recently

that NO may play a role in neural information processing. As such, while spec-

ulations as to its possible roles abound, there are relatively few experimentally

corroborated resutls. Progress is also hindered because NO concentrations are

hard to measure since it corrodes the probes commonly used in experimental neu-

roscience (Philippides, 2001).

Studies of the vertebrate nervous system have have produced some evidence link-

ing it to the mediation and activation of synaptic depression and potentiation

(Philippides, 2001). This suggests that it may be involved in many of the same

disease as the neurohormones. In particular, NO’s precursor molecule, NOS, has

been experimentally linked to the onset of Alzheimer’s and Huntingdon’s disease

(Dawson and Snyder, 1994).

Proof of the functional presence of NO in invertebrates came some ten years after

it was identified in vertebrates (Martinez, 1995). Again, its potential to play roles

in many aspects of neural function is widely recognized. Perhaps one of the most

concrete examples is the activation of feeding in the mollusc (Elphick et al., 1995).
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3.5 Conclusion

The phenomena grouped under the heading of neuromodulation span a rich set

of biological processes and there is a wealth of scientific literature concerning

them. An initial contribution of this thesis has been to organize these in a way

that conveys this diversity but also in a way that begins to highlight the deep

commonalties between them.

To do this we have had to look across a diverse set of literatures and look past

the biases and assumptions within them. First we drew on ideas from work on

both the paracrine and endocrine systems. Historically, neuroscience research con-

cerning the chemical signalling processes that typify neuromodulation have been

dominated by the ideas inherent in the neurohormonal endocrine system. This is

largely because the flow of neuromodulatory chemical through the cerebral circu-

latory system was well established even in the early 19th century yet their ability

to flow through the ECS, and thus perform paracrine signalling, has long been

controversial (Bullock, 1977). Nevertheless paracrine signalling was recognised as

early as the 1940’s and Theodore Bullock remarked that nervous activity across

electrical networks takes place within a soup of chemical communication (Bullock,

1977). He evoked the metaphor of synaptic connections as long range shouts which

act on top of a medium comprising of cells whispering to each other through local

chemical communication.

It is now widely accepted that neurohormonal paracrine signalling is a valid and

ubiquitous form of inter-neuronal communication. However, most researchers

would perhaps agree that given the relatively large size of neurohormones is likely

to be a highly stochastic and “unsafe form of communication” (Zoli and Agnati,

1996). Recently, rhetoric surrounding the significance of paracrine signalling ex-

ploded in the neuroscience literature in the wake of the discovery that NO (and

other related chemical species e.g., CO and H2S) can mediate neural communica-

tion. NO, by virtue of its size, is able to pass freely through lipid tissue. Unlike

the neurohormones it is not constrained by surrounding biological structure and

is free to diffuse in a relatively isotropic and homogenous manner. This has vastly

expanded the potential and possible roles of paracrine signalling systems.

Second this chapter generalised across work on both vertebrate and the inverte-

brate nervous systems despite differences in the physiological details of each and

even the types of questions they ask. However, such generalisation are not just
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important for building a broader picture but are crucial to other aspects of re-

search. For example, while the relative simplicity of invertebrate nervous systems

allows stronger linkage between physiology and behaviour there are greater incen-

tives to study vertebrate nervous systems because of their potential to shed light

on the neurological basis of behaviour and disease in the human nervous system.

Consequently how research from one can be applied to other is an important issue.

A summary of the commonalities between the physiological mode of action and

their functional/ behavioural roles are given in tables 3.1 and 3.2 respectively.

These table are organised in the same way as the above text and are designed

to convey the commonalties across disparate systems. Table 3.1 shows how the

sources, transport and target of neuromodulators exhibit commonalities across

both the neurohormones and the gaseous neuromodulators. All neuromodulators

are, more often than not, produced at non-synaptic sites, characterised by diffu-

sive processes and act on properties of the neuron that are not well characterised

by the simple inhibitions or excitations of the membrane potentials. Table (3.2)

shows that while functional/behavioural roles are somewhat different in vertebrate

and invertebrate nervous systems they can all be defined in terms of an organising

processes that act on lower level behaviours. For example neuromodulators recon-

figure, prime and tune dynamics in the invertebrate nervous system and regulate

learning in the vertebrate system. One particulary strong commonality here is

that both are thought to underpin arousal behaviour in both systems.

What, hopefully, arises is the sense that there is a relationship between biochemical

and functional/behavioural aspects of neuromodulation that needs to be investi-

gated. Specifically, this work is beginning to hint at a question which we will place

at the centre of this thesis — to what extent do the biochemical characteristics of

neuromodulation prefigure their functional/behavioural roles?

The next chapter will explore these aspects of neuromodulation in greater detail.

However, in order to make progress it is necessary to move beyond the detailed

biological perspective reviewed here and to explore and develop more systemic

notions of neuromodulation. In particular, one rich source of systemic think-

ing derives from a set of attempts by neuroscientists to define neuromodulation.

Consequently, the next chapter conducts a thorough review of this literature. Fur-

thermore, as we will see, at the heart of this literature lies a deep tension between

the biochemical and functional/behavioural nature of neuromodulation.
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Neuromodulator Chemical Type Source Transport Target
Neurohormones

Serotonin
(amine)

C10H12N2O
(large)

Varicosities along the
axon

ECS diffusion (Bunin
and Wightman, 1998)
Circulatory system

Targets synaptic efficacies
(Harris-Warrick and Marder,
1991)
Ion channel dynamics (pri-
marily Ca2+ and k+) (I)
(Harris-Warrick and Marder,
1991)

Dopamine
(amine)

C8H11NO2

(large)
The axon terminal
Non-nervous sources
(the adrenal gland)
(V)

ECS diffusion (Garris
et al., 1994)
Circulatory system

Targets synaptic efficacies
(Harris-Warrick and Marder,
1991)
Intrinsic neuronal properties
(I) (Marder and Thirumalai,
2002)
Mechanisms of LTP and LTD

Noredrenaline
(amine)

C8H11NO3

(large)
The axon terminal
Non-nervous sources
(the adrenal gland)
(V)

ECS diffusion (Garris
et al., 1994)
Circulatory system

Targets Ca2+ ion channel
(I) (Marder and Thirumalai,
2002)
Mechanisms of LTP and LTD

Proctolin
(peptide)

C29H46N8O8

(large)
Many sites along the
neuron (soma, axon
and dendrites)

ECS diffusion (Zoli
and Agnati, 1996)

Synaptic efficacies (I)
(Marder and Thirumalai,
2002)
Membrane properties (I)
(Marder and Thirumalai,
2002)

Gaseous signalling molecules

Nitric Oxide, Car-
bon Monoxide and
Hydrogen Sulphide

NO, CO and H2

(very small)
Neuronal bodies
(axon and soma)
(Garthwaite and
Boulton, 1995)

Flow freely in lipid
environment (Garth-
waite and Boulton,
1995)

Synaptic efficacies (Edelman
and Gally, 1992)
Ionic channels and other
properties (Edelman and
Gally, 1992)

Table 3.1: The physiological characteristics of a selection of neuromodulators. (I) and (V) denotes if the information is specific to
invertebrates or vertebrates respectively.
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Neuromodulator Invertebrate Nervous System Vertebrate Nervous System
Neurohormones

Serotonin
(amine)

Configures syphon withdrawal in Aplysia
and swimming in the leech (Turrigiano, 1999)
Arousal states (Marder and Thirumalai,
2002)
Gates biting frequency in STG (Katz, 1995)
Initiates flight in the locus (Pearson, 1993)

Gates visual input in the thalamacortical system (Katz,
1999)
Regulates sleep-wake cycle (Portas et al., 2000)
Mood and motivational states (Carlson, 1991)
Development and plasticity (Carlson, 1991)

Dopamine
(amine)

Tunes phase of biting in the STG (Harris-
Warrick and Marder, 1991)

Role in movement (Parkinson’s disease) (Fellous and
Suri, 1998)
Attention and concentration (Fellous and Suri, 1998)
Pleasure and motivation (Fellous and Suri, 1998)
Development and plasticity (Fellous and Suri, 1998)

Noreadrenaline
(amine)

Arousal states in many species (Marder and
Thirumalai, 2002)

Stress and the “fight or flight” reflex (Carlson, 1991)
Attention and concentration (Carlson, 1991)

Proctolin
(peptide)

Configures pyloric rhythm in the STG (Pog-
gio and Glaser, 1993)

No information

Gaseous Neuromodulators

Nitric Oxide,
Carbon Monoxide
and Hydrogen Sul-
phide

Roles in snail and possibly the STG (Garth-
waite and Boulton, 1995)

Synaptic properties in development and learning
(Philippides, 2001)
Psychiatric disorder via actions on neurohormones (Kiss
and Vizi, 2001)

Table 3.2: Examples of the behavioural roles for a selection of neuromodulators for invertebrates and vertebrates.



Chapter 4

Neuromodulatory systems

The interplay between the biochemical nature of neuromodulation and its function-

al/behaviorual roles is reflected in a tension between the many different definitions

of neuromodulation. Katz (1999) remarks that given the details of a neurobiologi-

cal process most neuroscientists would agree on what constitutes neuromodulation

yet a precise definition of the term is lacking in the literature and is subject to a

deal of confusion and even controversy (Katz, 1999).

In practice most neuroscientists identify neuromodulators with a set of similar

biochemical processes that share common biological motifs. In this context at-

tempts to define neuromodulation have focused on the isolation of a minimal set

of mechanistic traits that are common to the suite of neuromodulatory processes.

In contrast, some researchers have attempted to define neuromodulation in terms

of the roles they play in the nervous system. These are often described in terms

of a top-down command-signal organizing (e.g. tuning or qualitatively changing)

dynamics and behaviour. Indeed, the etymology of the word neuromodulation

suggests it has functional and behavioural origins rather than mechanistic ones.

Specifically it is a conjunction of the prefix neuro (relating to the neuron) and

the generic verb, “to modulate”. These attempts to define neuromodulation have

forced neuroscientists to directly confront systemic ideas, i.e., ideas that draw away

from contingent biological details of the substrate. As such this work provides a

rich source of systemic notions that will aid the modelling investigations in later

chapters.

The first section of this chapter reviews attempts to define neuromodulation, start-

ing with the mechanistic definitions and proceeding to consider neuromodulation

in a purely functional/behavioural context.

34
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The second section conducts a brief review of neuromodulation in an evolutionary

context. This attempts to shed light on the salient mechanistic differences be-

tween neuromodulation and neurotransmission. Moreover it will give us space to

explore some of the conjectures concerning the adaptive role of neuromodulation

in invertebrate systems.

4.1 The physical character of neuromodulation

4.1.1 Neuromodulation as the antithesis of neurotransmis-

sion

The neuron doctrine holds that neuronal chemical transduction is completely con-

fined to the synaptic cleft. Communication between neurons is completely private

in character and, consequently, connectivity has the potential to be directed and

specific (Carlson, 1991). Zoli and Agnati (1996) describes this mode of communi-

cation as wiring transmission (WT) because of it parallels with electrical circuitry.

In contrast, neuromodulatory chemicals endure in significant concentration out-

side of the synaptic cleft. As such, a single chemical event can potentially affect

a number of distal receptors and not just those of the post-synaptic neuron. As

opposed to the private nature of neurotransmission, this mode of communication

is often described as public in nature (Carlson, 1991). Zoli and Agnati (1996)

label this kind of signalling as volume transmission (VT)1, referring to the notion

that neuromodulatory chemicals can affect volumes of nervous tissue and sustain

a one-to-many signalling modality (Zoli and Agnati, 1996). A similar idea is also

described by Bach-y-Rita (2001) as non-synaptic diffusion neurotransmission.

The endocrine system provides a medium in which a chemical signal can circulate

to large portions, if not all, of the nervous system, constituting a completely

public or global signal. Paracrine signalling, on the other hand, affects a volume

of nervous tissue centered around the source of the neuromodulatory chemical.

The size of this volume depends on the species of neuromodulatory chemical and

the intensity of the source. As such the extent to which a paracrine signal is public

is dependent on the nature of the source and also on the dynamics of the signal

driving the cell.

1There is also speculation on whether the potential differences across neural membranes can
have effect on neighbouring neurons. This has many analogous properties to VT and is termed
volume conduction (VC) (Zoli and Agnati, 1996).
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Another defining aspect of neuromodulators is that they do not merely innervate

the membrane potential in an inhibitory or excitatory fashion. That is, they do

not simply increase or decrease the membrane potential. Instead they have range

of effects on the intrinsic neuronal properties and thereby on present and future

behaviour of neurons

Furthermore, the neuron doctrine claims that the majority of neuronal commu-

nication takes place on the 10ms timescale. This is the estimated characteristic

timescale on the three main ionic channels responsible for spiking generation. Dy-

namical features that last for longer than this are left to indirectly arise from the

reverberation of recurrent activity. However, even very early on in neuroscience

this was known not to be the complete picture (Bechtel and Abrahamsen, 1991) as

neurons have ionic channel that are not directly involved in spike generation that

nevertheless can have non-trivial effects on their dynamics and retain state for a

time interval considerably longer than 10ms. Furthermore, neuromodulatory pro-

cess are constrained by diffusion processes and as such are relatively slow, both

to build and dissipate. They constitute communication channels on a radically

different timescale than synaptic transmission.

Properties such as these have led to a mass of informal of statements that attempt

to summarise the mechanistic attributes of neuromodulatory processes. For ex-

ample Kaczmarek and Levitan (1987) defines neuromodulation as occurring when

“a substance released from one neuron alters the synaptic properties of another

neuron”. The large majority of such statements tend to stem from some partic-

ular suite of experimental studies and often fail to generalise adequately across

the full gamut of neuromodulatory process. Katz (1999) conducts a survey of the

literature and concludes that an agreed upon definition of neuromodulation would

be difficult. Instead he suggests that a modest first definition of neuromodulation

as neural communication that is the antithesis of neurotransmission:

1. not fast

2. not point-to-point

3. not simply excitation or inhibition

At first glance it is easy to dismiss this statement as rather information free. In

theory it could refer to any number of extraneous processes because it it doesn’t

capture many of the detailed commonalties of neuromodulation. For example it
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does not capture very specific knowledge concerning VT or the way in which a

neuromodulator acts on ionic conductances. However, what it does do is identify

a set of dimensions at the boundary of which the salient difference between neu-

rotransmission and neuromodulation can be brought into sharp relief. Progress,

perhaps, can then be made defining neuromodulation as the simplest departure

from the definition of neurotransmission. In the next chapter we will attempt to

do this by exploring how a characterisation of neuromodulation contrasts with the

idea of neurotransmission inherent in traditional ANN models.

4.1.2 Neuromodulation as an extrinsic signal

Another systemic idea that pervades the literature casts neuromodulation as a top

down extrinsic control signal. All the biological system discussed thus far have

been examples of extrinsic neuromodulations. In fact, almost all understanding

of neuromodulatory systems in the mammalian nervous system are extrinsic in

nature (Fellous and Linster, 1998). Extrinsic neuromodulation can be thought of as

brought about by external signals originating from separate loci to the modulated

circuit. In a sense extrinsic neuromodulatory signals can loosely be considered as

optional, such that in their absence the circuit can still perform some aspects of its

function. However, this is relative to the time course of the neuromodulator with

respect to its behavioural role. For example, while the chemicals that induce sleep

may not be necessary for the minute-to-minute behaviours their absence would be

fatal after several days.

While some coupling between the neuromodulatory signal and the modulated cir-

cuit is assumed, either directly through nervous tissue or indirectly through the

environment, the character of the neuromodulatory signal is thought to be largely

independent of the modulated system (Katz, 1995).

Extrinsic neuromodulations are able to manipulate the dynamics of the target

circuit e.g., tuning the phase, amplitude and frequency, mediating aspects of plas-

ticity or reconfiguring circuits into qualitatively different modes of operation. They

usually act on many sites simultaneously, across large volumes of nervous tissue.

These signals can affect many different functional circuits simultaneously. For

instance, dopamine signals affect both the visual and olfactory systems of the

mammalian brain. Furthermore, circuits can receive several neuromodulatory sig-

nals acting from different sources, and involve non-trivial interactions between

them (Katz, 1999).
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However, in some cases it is not possible to separate the neuromodulatory phenom-

ena from the substrate in question. In such cases neuromodulation is an intrinsic

part of the function of the network and is tightly coupled to its dynamics. In

contrast to extrinsic neuromodulation, intrinsic neuromodulation is tightly bound

to the moment-to-moment operation of a circuit and it could not operate in its

absence. The level of the neuromodulation within the circuit is controlled by its

own internal dynamics rather than a distant locus.

It is often hard to demarcate a circuit’s dynamics, separating those arising from

synaptic connectivity from the neuromodulatory signals internal to it. As such,

intrinsic neuromodulation is difficult to study and there are very few models of

the phenomenon (Fellous and Linster, 1998; Katz, 1995).

One example of intrinsic neuromodulation has been studied in Tritonia, §3.4.2.

Here the extrinsic release of serotonin across a sub-circuit allows it to sustain

both escape swimming and a defensive withdrawal reflex. Recent studies have

highlighted the fact that neurons internal to the escape swim circuit also release

serotonin (Katz, 1995). They are triggered at the onset of escape swimming and

enhance the excitability of neurons increasing the length and duration of the swim

(Marder and Thirumalai, 2002). This is thought to “jump start” the circuit, main-

taining activity long after the initiating stimulus has died away, and sensitizing

the circuit to subsequent input (Marder and Thirumalai, 2002).

Intrinsic neuromodulation has been observed in other invertebrate circuits. Almost

all of which involve episodic behaviours such as the escape reflexes or short term

respiratory reaction in Lymanae. This has led neuroscientists to conjecture that

intrinsic neuromodulation may play a role in altering the duration of episodic

behaviours (Marder and Thirumalai, 2002).

Furthermore, the ubiquity of NO has raised the possibility that the intrinsic mod-

ulation may be more pervasive than first thought (Garthwaite and Boulton, 1995).

Recent experiments on the spinal motor CPG of the lamprey have demonstrated

ongoing and complicated co-interaction of neurons through NO signalling and

synaptic connections in tandem (Schmidt and Walter, 1994).

4.1.3 Neuromodulation and polymorphism

Many attempts to define neuromodulation go beyond its biochemical nature and

incorporate aspects of its functional contribution to nervous function. In order
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to understand these it is first necessary to review some aspects of the conceptual

progress in neuroscience over the last 50 years. In the 1960’s neuroscience was

of the opinion that nervous function arises from the complex interconnection of

relatively simple building blocks (Getting, 1989). Furthermore, neural networks

where thought of as “hardwired electrical circuits”. All the properties, except

electrical potential, were fixed over the typical time span it takes to transduce

sensory input to motor output, precluding synaptogenesis.

Nervous function was thought to be completely specified by the patterns of anatom-

ical connectivity. Here, anatomical connectivity simply refers to knowledge of the

presence or absence of a connection between neurons adequately represented by a

binary graph (Getting, 1989).

Furthermore, early neuroscientists held that for each function there was only a

limited number of ways of implementing it in terms of neural circuitry and, con-

versely, that circuitry is conserved such that similar functions underpin similar

networks. In effect it was assumed that there was a simple one-to-one mapping

between structure and function (Getting, 1989). Researchers focused on unravel-

ling the unique properties of different configurations of anatomical connectivity to

understand the functions they underpinned.

In the mid 1970’s studies of the invertebrates nervous system began to radically

challenge this opinion. The size and accessibility of the invertebrate nervous sys-

tems, alongside the maturation of experimental techniques, allowed researchers

to isolate relatively small circuits responsible for simple behaviors. The findings

seeded a paradigm shift in the way neuroscience perceived the structure-function

relationship. It became quickly evident that the relationship between anatomical

connectivity and function was not conserved. Radically different circuits could sus-

tain qualitatively similar functions. Conversely, circuits with similar connectivity

can produce dramatically different motor output patterns (Pearson, 1993).

The reason for this, of course, is that networks are extremely heterogenous. Neu-

rons exhibit a diverse set of intrinsic properties that interplay with anatomical

connectivity. Consequently, anatomical connectivity alone does not provide suf-

ficient information to adequately prescribe nervous function. It is also necessary

to take into account intrinsic properties of neurons and the sign and magnitude

of their synaptic connections. Specifically, experimental evidence from the study

of qualitatively similar circuits across invertebrate species (Getting, 1989) showed

that anatomically indistinguishable circuits could perform dramatically different

functions if their intrinsic properties or synaptic efficacies differed. Conversely,
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studies of different but homologous circuitry within a single species showed that

radically different circuitry could sustain qualitatively similar function if the in-

trinsic properties or synaptic efficacies in some way corrected for anatomical dif-

ferences.

Perhaps, even more surprising to researchers at the time was the observation that

circuits could sustain a range of different functions within an organisms lifetime.

Furthermore in vitro experiments on synaptically isolated circuits could still ex-

hibit multi-functionality. That is, synaptic input did not seem to be responsible

for observed changes in function. Instead they discovered that these functional

changes where implemented by set of chemical afferents that acted on the in-

trinsic properties and synaptic efficacies of neural circuits. Many definitions of

neuromodulation arose from these findings. Neuromodulators where defined as

processes that could allow “changes in the function of the circuit without changes

in the anatomical connectivity” (Getting, 1989). From this perspective the dis-

tinctiveness of neuromodulation lies not in terms of its physiological nature, but,

instead, in terms of the effects it has on the neural substrate. In essence neu-

romodulators are considered as the pathways that allow the moment-to-moment

reconfiguration of a single network such that they can produce several different

motor patterns (Arbas et al., 1991). This was later labelled by (Getting, 1989) as

neural “polymorphism”.

Getting (1989) also provided an additional criterion in order to distinguish neu-

romodulation from other more common changes in synaptic efficacies such as the

facilitation, depression and potentiation normally associated with synaptic plastic-

ity. He defined synaptic plasticity as homosynaptic, because they result from the

activity at a single synapse, whereas neuromodulation is heterosysnatic because

its influence is mediated by events external to the synapse.

4.1.4 The modulation of behaviour

Description of neuromodulation are often inseparably bound with discussions of

behaviour. For example Harris-Warrick and Marder (1991) remark that

“All animals need to shape their behaviour to the demands posed

by their internal and external environments. Our goal is understand

how the modulation of neural networks that generate behaviour occurs

so animals can change their behaviour when necessary.”
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Note: the word modulation is more often used when describing processes with

limited reference to the underlying physiological substrate. However, more often,

than not modulation and neuromodulation are used interchangeably.

While this interaction between organism and environment is incredibly rich, we are

used to describing actions in terms of discrete behaviours, walking jumping running

fighting etc. Many such behaviors are often thought of as variants on a common or

base behaviour. For example walking forwards, backwards or upstairs all involve

the same muscle groups and have qualitatively similar movement patterns. Other

behaviours may exhibit qualitative differences in their dynamics but still involve

the same muscle groups. For example walking/jumping or swimming/burrowing.

In theory every behaviour could be performed by a specialised network. However,

consonant with observations in §4.1.3, in practice, it is thought that organisms can

use the same circuit to underpin several behaviours. More accurately, however,

they are thought to exhibit a mixture of specialisation and generalisation. For

example, several discrete neural circuits are present in the lamprey indicating a

degree of specialisation but a single circuit is known to underlie both swimming

and burrowing (Katz, 1999). Furthermore, these behavioral shifts are thought to

be mediated by neuromodulatory pathways (Harris-Warrick and Marder, 1991).

4.2 Evolution and neuromodulation

4.2.1 From chemical to nervous activity

There is a great deal of literature that argues for the recognition of both the

ubiquity and importance neuromodulation (Katz, 1999; Marder and Thirumalai,

2002; Bullock et al., 2005; Poggio and Glaser, 1993). However, a strong and often

neglected argument for its significance is the fact that the biochemical signalling

pathways that characterise neuromodulation almost certainly pre-date nervous2

activity (Buckle, 1983). The advent of canonical nervous activity was not abrupt

and researchers have postulated that there have been series of intermediate stages

constituting a set of “proto-nervous systems” (Arbas et al., 1991). Examining

2 Nervous here is used in its strictest sense i.e. as pertaining to nerves and neurons. However
one exception to this usage is the phrase “nervous system” which is often used as a collective
term encompassing nerves, neurons, neuromodulation and the other physiological mechanisms
of information processing.
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inferred evolutionary lineages spanning the advent of well defined nervous sys-

tems has the potential to highlight the differences between neuromodulation and

neurotransmission.

In the mainstay, studies of adaptation in higher invertebrates and vertebrates

have focused mainly on lifetime adaptation through developmental and plastic

processes. It is much harder to get a handle on evolutionary adaptation over gen-

erations3. Paleoneurology is the study of fossils in order to derive information

about the evolution of the nervous system. Although this discipline provides di-

rect evidence of evolutionary change it is severely constrained by a limited fossil

record and the lack of preservation of neural structures (Arbas et al., 1991). Con-

sequently, comparative neurology constitutes one of the most feasible approaches

to the study of phylogenetic changes in nervous systems. However, it is important

to note that comparative neurology comes with its own constraints, namely, lim-

ited coverage of the appropriate taxons and obfuscation through convergent and

parallel evolutionary trees (Arbas et al., 1991).

Comparative neurology, in general, has concentrated on anatomical differences in

neural connectivity at different levels of phylogeny. However, many of the lower-

level biochemical mechanisms underlying neural substrates in higher invertebrates

and vertebrates were laid down early on in their evolutionary history and have been

largely conserved in their ancestors (Arbas et al., 1991). Consequently, studies of

organisms that preceded those with developed nervous systems can shed light on

the early development of the biological basis of information processing.

One of the major transitions in evolution was the change from single to multi-

cellular organisms (Smith and Szathmry, 1995). Cells joined together to describe

new, anatomical and functional, levels of individuality. Something akin to our

modern understanding of paracrine transmission was almost certainly the first

mode communication between early cells. Local constraints on diffuse chemical

signalling ensure that functional unity was dependent on anatomical proximity.

This is perhaps one of the major reasons why functional and anatomical unity are

synonymous, if not interchangeable throughout much of the literature.

As the size and complexity of these early organisms increased one can imagine

that the ability to signal with efficiency and rapidity over larger distances became

paramount. It is thought that it was these pressures that precipitated the evolution

of nervous systems (Buckle, 1983).

3Notable exceptions include work on Drosophila.



Chapter 4 Neuromodulatory systems 43

Early theories of evolution have that the evolution of biochemical signaling pro-

gressed through three main stages (Nilsson and Holmgren, 1994),

1. Development of “non-nervous” independent muscle effectors

2. Development of “non-nervous” receptors and resulting in receptor/effectors

mechanisms

3. Development of proto-neurons leading to nerve nets, ganglions, and eventu-

ally a central nervous system

In this hypothesis, early function was thought to be solely mediated through dif-

fuse chemical processes i.e. the spatio-temporally constrained process of paracrine

and endocrine transmission. after which the advent of electrical signalling and the

localised synapse gave rise to specialised communication. In this context “spe-

cialise” is used to denote the idea of the private long-range connections that are

not spatio-temporally constrained and are synonymous with electrical circuitry

metaphors of the neuron doctrine.

More recent work, however, has complicated this picture. Researchers have demon-

strated the presence of electrical conduction systems even in the absence of lo-

calised synaptic machinery in very primitive organisms. Jellyfish of hydrozoan

order Siphonophora have neither nerves nor muscles, yet depolarising potentials

have been recorded in large sets of cells and implicated in their behavioural func-

tion (Nilsson and Holmgren, 1994). These cells directly impinge upon one another,

rather like gap junctions (Dermietzel and Spray, 1993), forming large conductive

sheets. This gives them the ability to drive ions, and even nutrients, through the

jellyfish’s body. Many researchers have suggested that this system constitutes a

strong candidate for a precursor to more developed nervous systems. In particu-

lar, neurons are thought to have derived from neurosecretory cells present in this

order. These cells respond to stimulation, conduct electrical potentials via gap

junctions and secrete chemicals. Thus, they perhaps constitute the first electri-

cally mediated paracrinic system and even endocrinic transmission via primitive

circulatory systems.

The localised synapse is thought to be later specialization of neurosecretory cells

through development of localised receptor surfaces (Nilsson and Holmgren, 1994).

Again, some believed that this major development was a response to evolutionary

pressure for specialised cellular interactions. However, so called nerve nets are
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thought to be the earliest example of a recognisable nervous system. The most

primitive example of nerve nets is manifest in the phylum coelenterate which in-

clude early jellyfish and sea anemones (Nilsson and Holmgren, 1994). While they

contain well developed nerve cells and synapses they only interact locally form-

ing extended lattice meshes that cover considerable tracts of an organisms body.

Communication between neurons is effectively diffuse as there are many different

pathways betweens cell. One consequence of this architecture is that the behaviour

it instantiates lacks directionality and exhibits stereotypical responses to stimuli

no matter where it is received on the organism’s body (Bullock, 1977).

Specialised and directed communication only really developed with the advent of

primitive ganglions comprising of several localised regions of neural tissue. This

was a first example of preferential attachment between neurons. Eventually a fully

fledged central nervous system is thought to have arisen as these localised clumps

merged and produced a single central hub.

Arbas et al. (1991) remarks that the evolution of the nervous system has been

“serial rather than parallel, progressively elaborating on a conservative plan”. So

it is likely that many aspects of these proto-nervous will be present in modern

nervous systems. In particular, it is thought that much of the purely chemical

communication of early organism may still play a significant role in interneuronal

communication. This is evidenced by the fact that many of the chemical commu-

nication processes in early organism have been conserved through evolution. For

example amino acids and amine neurotransmitters and neurohormones may have

arisen in the first unicells (Katz and Harris-Warrick, 2005). Acetylcholine has been

found in many plants and protists and is probably widespread throughout the ani-

mal kingdom. Peptides seem to have been exploited by the first metazoans (Arbas

et al., 1991). Even NO signalling has been observed in very primitive organism

(Garthwaite and Boulton, 1995).

4.2.2 The adaptive properties of neuromodulation

Given the conjecture on role of neuromodulation in behaviourial change, see §4.1.3,

it is not hard to understand why some researchers believe neuromodulation plays

a central role in lifetime adaptation of an organism. Indeed, the vast majority

of research on neuromodulation concerns lifetime processes (Doya, 2002a). How-

ever, work on the invertebrate nervous system is even beginning to suggest that

neuromodulatory pathways are integral to evolutionary adaptation.
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In particular studies of the decapod crustaceans have spearheaded understandings

of the phylogenetic changes in nervous systems. This is primarily because they

constitute a well understood and easily accessible set of phyla and because the rel-

ative simplicity of their nervous system allow strong links between their physiology

and behaviour.

While it is clear that anatomical connectivity is not the only factor that determines

the function of a neural circuit in invertebrates it is still thought to be a primary

determinant of network function in evolution. Changes to this connectivity are

the major factor governing the emergence of new functions in neural circuits (Ar-

bas et al., 1991). Nevertheless, the evolution of invertebrate neural circuitry has

been relatively conservative in comparison to their physical morphologies. Many

individual neural elements, and even entire circuits, exhibit a large degree of com-

monality across species and even phylogenetic orders. Yet, there still exists a large

degree of disparity in behavioural traits across species.

Harris-Warrick notes that in the absence of changes in neural topology these differ-

ences may have arisen one of two ways. From differences in the action of peripheral

body parts to the same signal, or different acquisition of sensory signals (Arbas

et al., 1991). However, Katz argues that these type of changes are generally ac-

companied by changes in circuitry and they do not arise independently (Katz

and Harris-Warrick, 2005). Instead, it is now generally accepted these behavioral

difference arose from changes at the level of neuronal parameters e.g, synaptic

efficacies and intrinsic neuronal properties. However, the fact that organisms use

the same circuit for several different behaviours and for different task at differ-

ent points in development is expected to have constrained the kind of neuronal

parameter changes that evolution could get away with — what is advantageous

for one behaviour may be disastrous for another. Consequently, instead, there

is a growing body of evidence that suggests these species-specific differences in

behaviour may primarily result from changes in neuromodulatory pathways (Katz

and Harris-Warrick, 2005).

One proposed evolutionary advantage of altering neuromodulatory systems rather

than the neuronal parameters directly is that it may not be necessary to evolve

new circuitry for additional behaviours. Instead, producing a unique set of chem-

ical afferents to a given circuit may be sufficient to produce distinct additional

behaviours. Or, given that neuromodulatory input can tune circuits, some have

suggested that neuromodulators may be able to effect slight modifications of be-

haviour. Still others have suggested that neuromodulators may stabilize network
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function in the face of radical evolutionary changes (Katz and Harris-Warrick,

2005). In summary, there is a growing body of thought suggesting that a large

portion of “evolutionary tinkering” may have taken place not by changing anatom-

ical connectivity but by acting properties of the neuromodulatory systems (Arbas

et al., 1991).

4.3 Conclusion

This chapter has suggested that the ubiquity, ancestral primacy and evolutionary

significance of neuromodulation are strong reasons to give neuromodulation a more

central role in modern studies of the nervous system. Furthermore, the work

reviewed here seems to suggests that the development of deeper understanding of

neuromodulation has the potential to have a significant impact on contemporary

conceptions of processing in the nervous system.

This chapter also reviewed several pieces of work that suggest definitions of neu-

romodulation. Such work is necessary because any attempt to understand the

properties of the class of neuromodulatory processes must be predicated on defini-

tions that do justice to it’s many variegated forms. Indeed, one goal of this thesis

is to make at least a small contribution to this effort.

Furthermore, this chapter has highlighted the fact that the neuroscience literature

exhibits a dichotomy between mechanistic and functional/behavioural definitions

of neuromodulation. This further suggests that the relationship between the two

is in need of clarification and is an important topic of investigation.

Chapter 6 attempts to frame these different definitions of neuromodulation in the

context of artificial neural networks. First it will explore how Katz’s mechanistic

definition of neuromodulation as the antithesis of neurotransmission (see §4.1)

should impact on the canonical formulation of the ANN. Second, it will examine,

in much greater detail, the role of neuromodulation as an extrinsic signal that

primes, tunes and reconfigures neural circuits. It will then attempt to frame these

roles in terms of the dynamics of ANNs in preparation for a more formal dynamical

systems description developed in later chapters.

However, before we proceed with this analysis, the next chapter will conduct a

brief review some of the basics of DS theory. It will also introduce one particular

technique used within the field of DS theory known as linear stability analysis and,

consequently, serve as a technical reference for the rest of this thesis.



Chapter 5

Linear stability analysis

This chapter provides some background and context to ideas of DS and will also

serve as a technical reference for the rest of this work. In particular this chapter

concentrates on one aspect of DS theory known as linear stability analysis.

5.1 Dynamical systems theory

A dynamical system (DS) is one in which its constituent variables change through

time. Mathematically, they are usually defined by a set of dynamic laws. These

are typically represented as a set of first order differential equations of the form

F

(

y,
dy

dt
, η

)

= 0 (5.1)

where y ≡ [yi, ...., yn] is vector of n variables constrained by a set of r parameters

η ≡ [η1......ηr]. Variables are dynamic and change through time. In contrast,

parameters are fixed and scaffold the interaction of the variables. Note: DS’s can

also involve discrete states, e.g., random boolean networks (Kauffman, 1993), or a

mixture of discrete and continuous dynamics, e.g., the GasNet (Husbands et al.,

2001).

A large portion of the work in biology employs a subset of DS’s that are time

independent, first order, ordinary differential equations. The general form of which

is given by
dy

dt
= F (y, η) (5.2)

47
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They are first order because the dynamic behaviour is expressed in terms of first

order derivatives. Ordinary denotes the fact that they only include derivatives

with respect to one variable, i.e., time. They are time independent because their

dynamics are not explicitly a function of time1, i.e., there is no time dependence on

the RHS of Equation (5.2). This set of properties not only simplifies the analysis,

specification and implementation of DS but is held to be a good model of many

biological processes (Glass and Mackey, 1988). Thus, for the rest of this thesis we

will exclusively concern ourselves with equations of this type.

The states (y) of a DS can be visualised as a phase space in which every axis

corresponds to the value of a variable. If the dynamical laws are sufficient to

describe the system fully, i.e. the system has no input, then the system is said to

be autonomous. In contrast if the system receives external input not accounted for

by these dynamical laws it is non-autonomous. A trajectory of a given systems,

starting from some initial condition (y at t = 0) can be represented as path

through the phase space. In an autonomous system every point in phase space

has a unique velocity associated with it, the direction and magnitude of the next

transition, and can be represented as a vector map.

Dynamics is the study of the asymptotic long term behaviour of the system de-

scribed by a limit set. A limit set is described as an attractor if for some set of

initial conditions (the basin of attraction), after some transient period, the vari-

ables of the system tend towards a finite region of phase space. Attractors are

often associated with a discrete point in phase space known as the equilibrium po-

sition. Perhaps the simplest type of attractor are fixed points, here, every variable

terminates at a some fixed value which correspond to the equilibrium position.

Cyclic attractors, on the other hand, are limit sets in which the variables cycle

through a closed set of states. If the trajectory never exactly repeats then this is

known as a chaotic or strange attractor (Strogatz, 1994).

Perturbation or bifurcation theory is the study of how an attractor changes as the

parameters (η) of the system are altered. If a smooth change in the parameters

causes an attractor to lose stability such that the system switches to another

attractor, then the system is said to have undergone a bifurcation.

Bifurcations can be classified as either local or global. Local bifurcations are well

described by the behaviour in an infinitely small region around an equilibrium

1Note time independence is somewhat confusing as all DS are implicitly dependent on time
through the first order derivative. However this definition simply implies that the parameters
are not explicitly dependent on time.
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position. For example, a local bifurcation is judged to have occurred if for some

parameter change a previously stable fixed point becomes unstable. Typical local

bifurcation include saddle-node, transcritical, pitchfork or Hopf bifurcations. For

a good review see Strogatz (1994) and Izhikevich (2006). In contrast global bi-

furcations involve qualitative changes in the dynamics of a DS that are not well

described by the dynamics around a single equilibrium and require knowledge of

the extended system, for example a homoclinic bifurcation where a limit cycle and

saddle node collide (Izhikevich, 2006).

Bifurcation theory is an extremely involved and thriving research field and there

are a suite of theoretical techniques that allow insight into DS (Strogatz, 1994).

This thesis, however, focuses on linear stability analysis which provides insight

into the dynamics of local bifurcations.

5.2 Linear stability analysis: A small system

5.2.1 Theory

Consider a two variable, non-linear, time independent, first order, ordinary differ-

ential equation given by

ẏ1 = F (y1, y2) (5.3)

ẏ2 = G (y1, y2)

In general, by virtue of its non-linearity, analytical solution to this type of equation

cannot be found. However, progress can often be made by investigating the limit

sets of this model. Furthemore, it is possible to determine how the nature of the

systems limit sets depend on its parameters.

Specifically, equilibrium positions of this system corresponds to points in phase

space where all the derivatives with respect to time of the system are equal to

zero. Setting the LHS of each of Equations (5.3) to zero and plotting the resulting

curves yields Fig. 5.1, which are known as the nullclines of the system. The

equilibrium positions of the system are given by the intersection of the curves.

In general there may be multiple equilibria however we can inspect the dynamics

around one particular equilibrium (y1 = y∗

1, y2 = y∗

2). At equilibrium the following
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Figure 5.1: A schematic of the nullclines of Equation (5.3) plotted in phase
space. The lefthand panel shows both nullclines intersecting at three points.
(A) is an unstable equilibrium and (B) and (C) are stable equilibria. The
dotted line marks the system trajectory through the phase space which starts
from an initial condition very close to (A) and then diverges toward (B). The
righthand panel shows a enlargement of the region marked by the dotted box

in the lefthand panel. In this region the nullclines are approximately linear.

conditions are satisfied

F (y∗

1, y
∗

2) = 0 (5.4)

G (y∗

1, y
∗

2) = 0

The system’s behaviour around equilibrium depends on its stability. An equilib-

rium is stable if, when perturbed from it, the system quickly returns, or equiva-

lently, the trajectories from initial conditions close to the equilibrium converge to

it. In this case the limit set is said to be a fixed point. In contrast, it is unstable if,

when perturbed from this point, it does not return, or equivalently, the trajectory

from initial conditions close to equilibrium diverge from it. Divergent trajectories

may eventually end up at another equilibrium, or a local cyclic attractor, or, in

theory, diverge for ever. For example in Fig. 5.1 the system diverges from an un-

stable equilibrium (A) to a stable one (B). In order to determine the stability of

the system let us look at the dynamics of the system at some small displacement

(u, v) from equilibrium. Let

y1 = y∗

1 + u, y2 = y∗

2 + v (5.5)
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Substituting this into Equation (5.3) and noting that y∗

1 is constant such that

ẏ1 = u̇ (and similarly for y2) we obtain

u̇ = F (y∗

1 + u, y∗

2 + v) (5.6)

v̇ = G (y∗

1 + u, y∗

2 + v)

Applying a multivariate Taylor expansion around the equilibrium position yields

u̇ = F (y∗

1, y
∗

2) + u
∂F

∂y1

+ v
∂F

∂y2

+ O(y2
1, y

2
2, y1y2) (5.7)

v̇ = G (y∗

1, y
∗

2) + u
∂G

∂y1
+ v

∂G

∂y2
+ O(y2

1, y
2
2, y1y2)

Given that the displacements u and v are small we can neglect the quadratic terms

O(y2
1, y

2
2, y1y2). In addition by substituting Equation (5.4) we can obtain

u̇ = u
∂F

∂y1

+ v
∂F

∂y2

(5.8)

v̇ = u
∂G

∂y1
+ v

∂G

∂y2

Using Equation (5.5) and expressing the result in vector form gives

(

ẏ1

ẏ2

)

=

(

∂F
∂y1

∂F
∂y2

∂G
∂y1

∂G
∂y2

)

y∗
1
,y∗

2

(

y1

y2

)

(5.9)

In essence what these equations represent is a linear system that describes the

dynamics of a nonlinear system around an equilibrium, (y∗

1, y
∗

2) (see the right hand

panel of Fig. 5.1. Such linear systems are analytically tractable and have solutions

of the form

y1(t) = A1e
λ1t + B1e

λ2t (5.10)

y2(t) = A2e
λ1t + B2e

λ2t

Where the constants (A1, B1, A2, B2) and (λ1, λ2) depend on the eigenvectors and

eigenvalues of the Jacobian, which is given by the matrix in Equation (5.9) i.e.

J =

(

∂F
∂y1

∂F
∂y2

∂G
∂y1

∂G
∂y2

)

y∗
1
,y∗

2

(5.11)

The stability of the system depends on the nature of the exponents in Equa-

tion (5.10) and, thus, the eigenvalues of Equation (5.11). In 2D systems its is
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possible to construct an analytical expression for these. To do this we must first

construct the characteristic equation

|J − λI| = 0 (5.12)

where I is the identity matrix and the vertical delimiters represent the determinant

function. Expanding this we obtain

λ2 − tr(J)λ + |J | = 0 (5.13)

where

|J | =
∂F

∂y1

∂G

∂y2
− ∂F

∂y2

∂G

∂y1
(5.14)

is the determinant of the Jacobian and

tr(J) =
∂F

∂y1

+
∂G

∂y2

(5.15)

is the trace of the Jacobian. Using the normal quadratic formula we can solve

Equation (5.13) to get an expression for the eigenvalues as

λ1, λ2 =
1

2

[

tr(J) ±
[

(tr(J))2 − 4|J |
]1/2
]

(5.16)

In a 2D system an equilibrium is unstable if the real parts of the eigenvalues

are both positive, i.e., Re(λ1) > 0 and Re(λ2) > 0, and stable if neither are

positive nor zero. If they have opposite signs then the equilibrium in known as a

saddle point (Beer, 1995). Furthermore, the character of the trajectory to or from

equilibrium can be determined by the imaginary parts of the eigenvalues. The

equilibrium trajectory is spiral in character if Im(λ1) 6= 0 and Im(λ2) 6= 0 (Beer,

1995). In contrast the equilibrium is said to be a node if Im(λ1) = Im(λ1) = 0.

Note: a nodal equilibrium is characterised by a lack of curvature in the system

trajectory as it converges or diverges from it. See table (5.1) for a summary of the

above classifications.

Using Equation (5.16) we can determine some necessary and sufficient conditions

for stability. Specifically, in order for the real parts of this equation to be negative

then

tr(J) < 0, |J | > 0 (5.17)
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Re(λ1) < Re(λ2) < 0 Re(λ1) < 0 < Re(λ2) Re(λ1) > Re(λ2) > 0

Im(λ1) = 0

Im(λ2) = 0

Stable Node Saddle Unstable Node

Im(λ1) 6= 0

Im(λ2) 6= 0

Stable Spiral Saddle Unstable Spiral

Table 5.1: How the nature of a equilibrium depends on the real imaginary
parts of the eigenvalues of the characteristic equation. Note: equilibria where
the real parts are zero are a rare and special case and are ommited from the

above classification scheme.

Similar necessary and sufficient conditions can be constructed to determine whether

an equilibrium is a node or a spiral2 but are not given here, see (Strogatz, 1994).

5.2.2 An example of a local bifurcation

A typical bifurcations occurs when the real parts of the eigenvalue change sign

under some smooth parameter change. This indicates that stability of a system

equilibrium has changed, i.e, the system has either been stabilised or destabilised.

The analysis of such bifurcations is central to this thesis so we will present a brief

example here.

Consider a 2D system with one parameter γ.

ẏ1 = −y1 + tanh (γy1 − y2) (5.18)

ẏ2 = −y2 + tanh (y1 − y2)

2Unstable spiral trajectories are often indicative of a local cyclic attractor however they are
not a sufficient condition. It is important to reiterate here that this analysis only describes the
behaviour in the vicinity of the equilibrium.
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Fig. 5.2(a) shows the nullclines and the dynamics for γ = 0.4. Using Equa-

tion (5.11) we can calculate the Jacobian of this system as

J =

(

∂[tanh(γy1−y2)]
∂y1

− 1 ∂[tanh(γy1−y2)]
∂y2

∂[tanh(y1−y2)]
∂y1

∂[tanh(y1−y2)]
∂y2

)

x∗,y∗

(5.19)

Now we know that
d [tanh(x)]

dx
= sech2x

Moreover, the equilibrium position is at the origin (y∗

1 = 0, y∗

2 = 0) and as (y1 → 0)

then (sech2x ≈ 1). Thus we can simplify the Jacobian to

J =

(

γ − 1 −1

1 −2

)

(5.20)

Using Equation (5.16) we calculate the eigenvalues of Fig. 5.2(a) as (λ1 = −0.3 + 0.9i)

and (λ2 = −0.3 − 0.9i). Inspecting table (5.1) we see that this predicts a stable

spiral.

Fig. 5.2(b) shows how the nullclines, and dynamics, change when the free pa-

rameter is perturbed to γ = 1.1. Now the eigenvalues are (λ1 = 0.05 + 0.99i)

and (λ2 = 0.05 − 0.99i). Both real parts of the eigenvalues have become posi-

tive. Inspecting table (5.1) we see that it predicts an unstable spiral and thus the

trajectory spirals away from the equilibrium position. In this system the global

behavior settles to a stable cyclic attractor.

5.3 Linear stability analysis: An n-dimensional

system

It is possible to apply LSA to larger systems. For example consider the general

n-dimensional time independent, first order, ordinary differential equation given

by

ẏ1 = F1 (y1, ..., yn) (5.21)
...

...

ẏn = Fn (y1, ..., yn)
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Figure 5.2: A plot of the nullclines and trajectories of the DS given in Equa-
tion (5.18). The solid and dashed lines are the y1- and y2-nullclines respectively.
The cross and the dotted line denote the initial positions and subsequent tra-
jectory of the systems respectively. In fig (a) γ = 0.4 and the system displays
stable dynamics. In fig (b) γ = 1.1 and the system displays unstable dynamics.

which is just the n-dimensional extension of Equation (5.3). The nullclines of this

system can be obtained by setting the LHS’s of Equations (5.21) to zero. Plotting

the resulting curves would yield a set of (n−1)-dimensional manifolds with a set of

equilibria at their intersections (Strogatz, 1994). Visualisation of these nullclines is

extremely difficult and not central to the work of this thesis. Consequently, we will

not attempt to represent them here. Like the 2D case, however, we can linearise

the system around some arbitrary multidimensional equilibrium point (y∗

1, ..., y
∗

n).

The corresponding Jacobian around this equilibrium is

J =









∂F1

∂y1

... ∂F1

∂yn

...
. . .

...
∂Fn

∂y1

... ∂Fn

∂yn









(y∗
1
,...,y∗

n)

(5.22)

Like the 2D case the solution to these equations are a superposition of exponential

functions. Furthermore the dynamics of these exponential solutions, and hence the

stability of this system, is determined by the eigenvalues of its Jacobian. Specifi-

cally, an n-dimensional linear system will be stable if all real parts of its eigenvalues

are negative and unstable otherwise (Mehta, 1967).

It is prohibitively difficult, if not impossible, to find a closed form equation for

the eigenvalues of this system. However, it is possible to numerically calculate

the Jacobian and hence stability. Furthermore, we can examine the relationship
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between the parameters of the linearised system and its stability by turning to

some work originally developed for ecology.

5.3.1 The May-Wigner threshold

In a now classic study, Gardner and Ashby (1970)3investigated stability criteria

for large complex systems in terms of the effect of size, connectivity and weight

strength on the tendency of a system to exhibit a stable point attractor. The rela-

tionship between a network’s structure and its stability has been of long standing

importance, particularly in the field of ecology (McCann, 2000)—at the time, bi-

ologists typically assumed that the stability of an ecosystem would increase with

its biodiversity.

In particular Gardner and Ashby (1970) considered the stability of the general

linear system

ẏi = −yi +
N
∑

j=1

ωijyj in vector form :
dy

dt
= (Ω − I)y (5.23)

where y, Ω and I are the vector of variables, a matrix of weight values and the

identity matrix respectively. The Jacobian of this system is just (Ω − I). Note:

these equations can interpreted as either a linear system or the linearisation of a

nonlinear system around an equilibrium.

Gardner and Ashby (1970) employed a numerical method to study networks of

varying network size, n, and network connectivity, C (the probability that any

entry of the weight matrix Ω is non-zero or, equivalently, the probability that any

two elements interact). They drew the entries of Ω from a statistical distribution

with zero mean and a mean-square value, α.

To aid future discussion we shall repeat this study here. For some n, C and α,

1000 random matrices are constructed. Note: all self-connections, ωii, are set to

a small negative value −0.01 such that each node is weakly intrinsically stable.

The eigenvalues of the Jacobian for each network are calculated using Matlab’s4

singular value decomposition (SVD) package. A system’s stability or instability

is determined by checking for absence or presence of positive real parts to the

3Solow et al. (1999) point out an error in this paper. However, this error only constitutes
a quantitative correction to the paper’s numerical results and does not impact on the overall
message of the paper.

4http://www.mathworks.com/
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Figure 5.3: Probability of stability vs. (a) the root mean square of network
weights, α, and (b) network connectivity, C, for networks of size 4, 7, 10, 20,
50 and 100 nodes (reading right to right). For (a), C = 50%. For (b), α = 1.
Vertical lines denote the stability threshold as predicted by the May-Wigner
hypothesis. Each data point represents the mean of a 1000 random networks.

The variance of all data poitns was less 1%.

eigenvalues respectively. Subsequently the probability of stability (p) is measured

as the proportion of networks that are stable. Fig. 5.3(a) and (b) show how

the probability of stability varies with the mean square weight value α and the

connectivity C, respectively, for a selection of network sizes.

The probability of stability, p, falls with the increasing network size. This result

allowed Gardner and Ashby (1970) to successfully argue that we should not nec-

essarily expect to observe stability as systems grow in size. Furthermore, they

observed at low α or C, networks have a high probability of stability, which de-

creases as α or C increase. Their numerical results characterised the way in which
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networks of interacting elements become less stable as the coupling between the

elements increased.

Later May (1972) was able formalize these findings using analytical results from

random matrix theory a branch of statistical mathematics which was originally

developed within particle physics (Wigner, 1959; Mehta, 1967). He was able to

derive a critical threshold above which any network has a high probability of

instability. Explicitly, he stated that in the limit of large system size (N � 1), a

system is almost certainly unstable if

NCα2 > 1 (5.24)

This result, generally referred to as the May-Wigner stability theorem, corresponds

well with Gardner and Ashby’s original findings and still holds as a very important

threshold (Sinha and Sinha, 2005). The vertical dotted lines in Fig. 5.3 mark the

critical threshold predicted by May-Wigner theorem. Predictably, the correspon-

dence between the (asymptotically derived) threshold and the numerical results

increases with network size, as does the steepness of the numerically derived “phase

transition”.

May attempted to use this result to comment on nonlinear ecosystems and as such

has been criticised because it relies on a linearisation around equilibrium. This is

thought to make it inapplicable where perturbations are large or systems exhibit

limit sets of higher dimension than a fixed point. However, recent results do suggest

its universality with respect to the arbitrary global dynamics of a system (Sinha

and Sinha, 2005). For now we shall leave this analysis here, however, we shall

return to it later in Chapter 10 where we attempt to interpret the May-Wigner

theorem for one particular non-linear system.

Note: several papers have claimed that some of the conclusions in May (1972) are

incorrect. These concern the observations about the stability of modular systems

(Solow et al., 1999) or the fact that there are exceptions to the prediction of

instability in the limit of large system size (Cohen and Newman, 1985). These

criticisms do not alter the overall message of the paper nor the derivation of the

May-Wigner threshold and consequently are not considered in the work presented

here.



Chapter 6

Neuromodulation and Artificial

Neural Networks

The relationship of experimental and modeling work is highly reciprocal. Theories

inform models, which drive hypotheses, which are subsequently tested experi-

mentally in order to revise theories. This process tends to combine to form a

self-reinforcing suite of studies with a self-contained agenda.

Nervous systems consist of large ensembles of inhomogeneous and widely intercon-

nected nonlinear processes. Their complexity renders them largely unassailable to

pen-and-paper models that are typical of other physical sciences. Instead, compu-

tational modelling studies often provide the only route that can bridge the gap be-

tween experimental results and theory. As such, unlike other scientific disciplines,

where recourse to explicit mathematical formulations of a particular phenomenon

serves to guide a suite of modelling approaches, the formalisation of neural models

embodies theory itself. Consequently, in some sense, modeling and theory have

become largely synonymous, if not interchangeable (Koch, 1999).

It is this reciprocal loop that best describes the relationship between the neuron

doctrine and the formalisation of the ANN paradigm. The doctrine represents a

subset of physiological processes that have been focused upon in investigation of

the nervous system and are reflected in the operational and mechanical biases of the

the canonical ANN. While the interplay between modelling and experiment work

is invaluable, the fact that any “theory of neuroscience” is likely to be dependent

on the dominating modelling paradigm means that regular re-appraisal of the

assumptions it embodies is vital.

59
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Modern calls in neuroscience for a reappraisal of the neuron doctrine (see Chap-

ter 1) are perhaps a manifestation of a need to readdress the modelling/experiment

loop. However, while the hyperbole surrounding novel physiological mechanisms,

such as gap junctions and neuromodulation, has set in motion empirical neuro-

science work which is beginning to move beyond the neuron doctrine a correspond-

ing re-appraisal of the ANN paradigm has been much more low-key.

In particular, it is often necessary to strip away and simplify the biological de-

tails of the neural elements in order reduce their computation cost and allow the

simulation of large ensembles of neural units. This process is particularly neces-

sary in modelling studies that attempt to relate neural properties to behaviour.

Some researchers hold that the notion of neuromodulation constitutes only a slight

amendment to notion of neural processing. In this sense neuromodulation is no

different to any other biological detail omitted from typical neural network models.

As such, it need only be included in more detailed models of neural function and

can be safely ignored in more abstract models. However, increasingly in the neu-

roscience literature researchers cast neuromodulation not as a slight amendment,

but a radical upheaval to the canonical picture of neural processing inherent in

the ANN (Zoli and Agnati, 1996; Changeux, 1993; Katz, 1999).

Given that the role of simplifying models is to bring greater conceptual clarity and

capture important principles, how should notion of neuromodulation manifest in

these models? What is the simplest and most parsimonious way of adding the

idea of neuromodulation? In essence, does a characteristic and canonical notion

of neuromodulation exist?

This section attempts to frame the biochemical nature and functional/behavioural

roles of neuromodulation in terms of ANNs. First it presents a review of the

canonical ANN and discusses how this relates to the neuron doctrine. It then

develops a mechanistic characterisation of neuromodulation that reflects existing

models of neuromodulation but more importantly constitutes an extremely simple

departure from the typical ANN paradigm.

6.1 ANNs and the Neuron Doctrine

6.1.1 Basic Neural Units
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Figure 6.1: A simple neural unit. The input is summed, modified by a bias,
and passed through a transfer function to produce the output.

McCulloch and Pitts (1943) were the first to conceive of the ANN. While their

work was ostensibly a pen and paper exercise, dealing with mathematical aspects

of neural function, its allusion to logic strongly suggests that computational con-

cerns were not far from the authors’ minds. Since this early work many different

formulations of ANNs have been studied, however, the core ideas of neural net-

works have remained largely unchanged.

The canonical ANN consists of a set of simple homogenous units that have the

form given by Equation (6.1) and Equation (6.2), see Fig. 6.1.

ui =

j=N
∑

j=1

ωijyj + θi (6.1)

yi = F (ui) (6.2)

Where ui is the activation of the ith unit, yj is the input from of the jth afferent

connection, ωij is the weight on the connection between unit i and j, and θi is the

threshold or bias of the ith unit. In equation (6.2), the summed input (activation)

of a node is passed through a transfer function, F , yielding the node’s output yi.

Before we consider the organisation of units such as these into networks, we can

already identify the influence of the neuron doctrine (introduced in Chapter 2).

Perhaps its most obvious manifestation is that the neuron, modelled as a func-

tionally and structurally discrete unit, is given sole responsibility for information

processing. All state information is held by the activation of the neural units.
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This leaves no role for other potentially state holding processes such as chemical

concentrations or the electrical activity within glial cells (Bullock et al., 2005).

Second, units interact in a highly directed and specific manner. That is, each pair

of units is associated with a unique parameter, the synaptic weight ωij , encoding

the strength of their interaction. This design decision derives from the observation

that dendrites and axons mediate highly specific interactions between neurons and

that the chemical aspect of the interactions are completely confined to the synaptic

cleft. As such, given that each value ωij is independent of any other, pairwise

relationships are privileged within the paradigm, and any phenomena that take

place across larger set of units must to be implemented in terms of these pairwise

interactions.

Third, the (simple) summative behaviour of each individual unit also reflects the

idealisation of neural function laid down in the neuron doctrine. Work on the mech-

anisms of neurotransmission had revealed that the electro-chemical transductions

involved could either attenuate or amplify electrical signals passed between neu-

rons. The consequent focus on attenuation/amplification (excitatory/inhibitory)

within the neuron doctrine is captured by both the use of negative/positive weights

and the summative mode of combination of synaptic inputs in ANNs.

Whether driven by biological modelling considerations or machine learning, key

developments in ANNs have almost without exception left these three aspects

untouched. Instead, they have tended to concentrate on the effect of novel for-

mulations of the neurons’ transfer function, F . For example in the perceptron

(McCulloch and Pitts, 1943) the transfer function is simple a binary step func-

tion returning 1 if ui > 0 and 0 otherwise. While McCulloch and Pitts (1943)

demonstrated that many logical functions could be implemented by such a simple

non-linearity it is far removed from details of biological neurons where non-linearity

arises from a complex interplay of the membrane potential and several voltage de-

pendent ion channels that lead to the production of an action potential. Hodgkin

and Huxley (1952) constructed the first model that made a serious attempt at

incorporating a biologically inspired representation of this process. They captured

this non-linearity through a set of coupled differential equations where a neuron’s

activation is interpreted as its membrane potential. This interacts with a dynami-

cal system of three variables, representing ionic currents. The output of the system

is then represented in terms of discrete spiking events that impinge on downstream

neurons. The Hodgkin and Huxley equations actually pre-dated the work of Mc-

Culloch and Pitts by some ten years. However, both were influenced by the same
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neuroscientific research. While the Hodgkin and Huxley model constitutes a signif-

icant departure from the perceptron, its basic formulation is equivalent. All that

has changed is the transfer function. All other assumptions derived from the neu-

ron doctrine, e.g., homogeneity, specificity and excitatory/inhibitory interactions,

are equivalent to the perceptron.

Modern ANNs more rightly derive from the Hodgkin-Huxley model rather than

the perceptron. For example the “integrate and fire model” retains the idea of

spiking events but dispenses with the complexity of ion channel dynamics. In

this formulation spikes are produced when the membrane potential reaches some

threshold after which it returns to a resting level. This simplification reduces the

computational demands and allows researchers to build simulations that address

the implications of spiking dynamics in larger networks of elements but again does

not transgress the strictures of the neuron doctrine.

By far the most pervasive class of ANN are those that abstract away from the

finer resolution of spiking events. Instead they concentrate on the information

contained in spike trains, which is idealised as a single value or “rate” representing

the number of spikes produced in a given time interval. The advantage of this

encoding is that the transfer function can be written as a continuous function that

returns a continuous output value conferring convenient mathematical properties

such as differentiability (Haykin, 1999). We examine formulations of this type

in more detail from Chapter 8 onwards. Again, these representations retain the

canonical characteristics inherent in the neuron doctrine and differ only in the

details of the system’s transfer function.

This variety of transfer functions suggests that the neuron doctrine is less pre-

scriptive where the idealisation of neural firing is concerned. Whether modelled

as spikes trains, spike rates, perceptrons, Hodgkin and Huxley equations, or rate-

based models differ only in the formulation of their transfer function, rather than

in the degree to which they conform to other aspects of the canonical formational

of the neuron doctrine.1 This holds for models intended strictly for engineering

purposes as well as those aiming for biological fidelity.

1The term “transfer function” is sometimes taken just to refer to rate-based formulations,
but here we use it to refer to mappings between neural input and output in general.



Chapter 6 Neuromodulation and Artificial Neural Networks 64

6.1.2 Network architectures

So far, we have considered the impact of the neuron doctrine at the level of individ-

ual units. However, by conceiving of a nervous system as comprising a network of

relatively fast elements linked by fast interconnections, see §2.3, it has also exerted

an influence on the development of ANN architectures.

Much of the work on ANNs before the 1970’s concentrated on feedforward net-

works. These comprise layers of neural elements, each of which receives informa-

tion from the preceding layer and disseminates it to the succeeding layer. Thus, in-

formation is processed in a unidirectional pipeline performing a mapping between

sensory input and motor output. While feedforward networks are not without

biological correlates (e.g., the visual pathway of the mammalian nervous system

consists of several distinct and descending layers (Arbib et al., 1997)), they neglect

a considerable amount of evidence for, e.g., re-entrant neural connections (Edel-

man, 1987). Perhaps more significantly, such systems are essentially atemporal,

in that the timescale of their behaviour was typicaly divorced from that of the

“world” with which they interacted (often just a series of learning/test trials).

Work by John Hopfield in the 1980’s on memory storage with attractors heralded a

new paradigm in ANN architectures (Hopfield, 1982). Instead of the pipeline flow

of feedforward networks, recurrent neural networks (RNNs) allow the incorpora-

tion of feedback loops that can support reciprocal and cyclical network pathways2.

The connection possibilities and the dynamic potential of these networks is greatly

expanded, and in fact constitutes a more general dynamical system which more

closely reflects the structure of biological nervous systems.

RNNs allow information to be retained for an arbitrary number of time-steps in

either an explicit or implicit manner. Some RNN formulations contain mecha-

nisms at each node that explicitly hold state. For example, leaky integrator RNNs

simultaneously sum the input over many time steps, and allow it to gradually leak

away. State can also be held implicitly in the form of a reciprocal flow of activation

around cyclic pathways. The simplest form of this is the idea of a self-connection

that concatenates information from the previous time step with the current one.

In this way, essentially arbitrary behavioural timescales can arise through the

reverberation of recurrent activity. However, the relatively fast dynamics of each

unit mean it is not straightforward to configure networks with slow characteristic

2For the rest of this thesis we will use the term ANN where the issue at hand applies to both
feedforward and RNNs.
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timescales. Here, the neuron doctrine’s restrictive focus on neurotransmission and

the ionic channel dynamics necessary for spike generation neglects other dynamic

processes that can endure for considerably longer timescales.

6.1.3 Plasticity and Adaptation

At the heart of many ANN models is an attempt to understand lifetime adaptation

or learning. How is the nervous system able to change plastically in a way that

benefits its own survival?

In physics, plasticity is the property of materials to undergo non-reversible change

under an applied force. Similarly, neuroplasticity (from now on we will simply refer

to this as plasticity) is the ability of neural tissue to sustain permanent change.

It is the natural complement of elasticity where the properties of a material (e.g.,

shape) are recovered after the applied force is removed.

It is common within the literature to conflate plasticity with learning. However,

learning implies an adaptive change to behaviour, implying intentional change for

the good of an organism. Plasticity, on the other hand, merely implies irreversible

change and is independent of any adaptive utility. So while plasticity does not

imply learning, some form of plasticity is integral to learning.

A popular candidate mechanism thought to underpin learning is synaptic plasticity.

Biologically, it is thought to arise through changes in the amount of neurotrans-

mitter released at the pre-synaptic cleft, or how the neurotransmitter affects the

post-synaptic neuron. In terms of ANNs it is brought about via changes in synap-

tic weights. Donald Hebb (Hebb, 1949) proposed that synaptic strengthening was

dependent on the correlation of the activities in the pre- and post-synaptic neurons

(“neurons that fire together, wire together”). Since then many variations of this

rule have been developed. However, as a consequence of the neuron doctrine, all

have tended to concentrate on pair-wise interactions between neural elements.

It is interesting to note that the explicit addition of this pair-wise synaptic mech-

anism is not necessary for plasticity (Tuci et al., 2002). In general, many RNNs

can sustain plastic processes by virtue of hysteresis in their dynamics. The dis-

tinction between these two mechanisms closely parallels the implicit and explicit

mechanisms for state retention described in the previous section.
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6.2 How should neuromodulation be modeled in

ANNs

In this section we will review how the idea of neuromodulation has begun to

impinge on more traditional computational neuroscience models. In particular we

will review how researchers have idealised the idea of neuromodulation and how

it is contrasted with the ideas inherent in ANN architectures.

6.2.1 Defining neuromodulation as dynamic parameter change

Crudely, neuromodulatory effects are often cast as dynamic alterations to the

parameters of an ANN. Indeed, Fellous and Linster (1998) note that the majority

of computational models distinguish neuromodulatory processes from more typical

neural interactions in this way. This conception may originate from the nature

of computational modelling work in neuroscience. Typically, neural models are

associated with a set of parameters, e.g., the learning rate in models of Hebbian

plasticity. Such parameters are fixed quantities that scaffold the interaction of

the variables, and are often not specific to each neural element but are true of the

system as a whole. Consequently, in some sense they may be considered external to

the circuit being modelled. In contrast, variables are defined as dynamic quantities

describing the state of (elements of) the system.

Changes to the values taken by a model’s parameters can radically alter its dy-

namics, tuning parameters is often crucial to the construction of successful models.

Further there is often a prior modelling decision that determines, and is determined

by, the scope of the modelling venture: should a particular aspect of the system

to be modelled be treated as a parameter or a variable. Consider a situation in

which an attribute of a neuroscience model that historically has been treated as a

parameter becomes, in a new set of models, a quantity of interest, i.e., a variable.

How this property changes over time as the result of the action of various mech-

anisms will now be determined by the behaviour of the model, not the manual

control of the modeler. However, apparently, a community of modelers may per-

sist with identifying such an attribute as a parameter of sorts, despite the fact that

it is no longer fixed or “external” to the model, and may even resort to invoking

“meta-parameters” or processes such as “metaplasticity”, or “metamodulation”

(Katz, 1999) in describing its behaviour. For example, Doya (2002b), moves be-

yond models that treat learning rates as parameters, by including the dynamic
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change in learning rates associated with Hebbian plasticity. Consequently, it is

perhaps natural for a reader from the neuroscience community to equate neuro-

modulation with parameter change. In effect, for such a reader neuromodulation

constitutes a dynamic change to what was originally considered to be fixed. How-

ever, neuromodulation, while dynamic, is treated as somehow distinct from the

dynamics of the systems being modulated.

As might already be clear, while defining neuromodulation in terms of parameter

change has intuitive appeal, it runs into a set of conceptual difficulties. First,

if neuromodulation is cast as parameter change then its very identity becomes

problematic. In some sense the notions of variables and parameters only make

sense in contraposition to one another—referring to something that changes and

something that does not. In this strict sense, neuromodulatory mechanisms must

be considered as driving changes to variables, not parameters.

Second, while neuromodulation is phenomenologically associated with specific neu-

ral systems, what is and what is not a parameter is model specific and subjective.

For example, in one model synaptic weights may be considered to be parameters,

and thus valid targets for neuromodulation, in others the same synaptic weights

are cast as variables subject to learning processes and would not count as neuro-

modulation (Hebb, 1949). Under this reading, the very same process either counts

as neuromodulation or does not count, dependent on the level of description at

which a model is interpreted.

Lastly, in terms of biological plausibility, defining neuromodulation as parameter

change could be criticised because parameters are often used as “abstract place

holders to make up for lack of information” (Fellous and Linster, 1998) and have

no real biological correlate. This perhaps will only really be a problem if a modeler

seeks to directly compare the results of simulation with a specific biological system.

However, there is a danger that what is convenient (for a modeler) to modulate

can become confused with deeper questions about the biology.

As such, this definition of neuromodulation fails to provide objective criterion to

distinguish neuromodulatory processes from others taking place in the nervous

system. In fact, defining neuromodulation solely as a parameter change is some-

what of a category error and it is perhaps a mistake to associate an ostensibly

epistemological distinction (parameter vs. variable) with a notion that we wish to

deal with in a mechanistic way.
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6.2.2 The mechanistic dimensions of neuromodulation

A better route to modeling neuromodulation is not to merely equate it with pa-

rameter change but rather to model it as a combination of mechanistic attributes.

Indeed, this approach is often pursued even in work that officially identifies neu-

romodulation with “dynamic parameter changes” and manifests as a set of deep

commonalities running through the majority of models of neuromodulation. Fur-

thermore, these mechanistic abstractions strongly resonate with the ideas that

arise from placing Katz’s definition of neuromodulation as the antithesis of neu-

rotransmission in the context of ANNs. Specifically, in §4.1 we suggested that

the salient differences between these two processes lie at the boundary of three

systemic dimensions. The first derives from the neuron doctrine’s adherence to

excitation/inhibition, the second from the fast synaptic behaviour of neurons and

the third from the point-to-point pair-wise nature of neuronal interaction. Conse-

quently, in this section we examine how each of these dimensions manifest in ANN

models that include abstractions of neuromodulation. The ostensible goal here is

to arrive at a principled and canonical set of mechanicistic properties with which

to model neuromodulation in the context of very simple ANNs.

6.2.3 Not excitatory or inhibitory

Input from one neuron to another is generally modelled as having an additive/sub-

tractive influence on neural activations, see Equation (6.1) and §6.1.1. In contrast,

a number of studies, in neuroscience and adaptive behaviour model neuromodula-

tion as a multiplicative effect (Fellous and Linster, 1998). For example, it is often

modelled as a dynamic change to a variable that multiplies the sum of the synaptic

inputs (Husbands et al., 2001). Specifically, Equation (6.1) becomes

ui =

j=N
∑

j=1

ki (ωijyj + θi) (6.3)

where ki is now a neuromodulatory variable sometimes known as the gain, as it

scales the magnitude of the input.

Identifying the dynamic change of ki with a neuromodulation could be qualified

by the fact that it has been cast as a parameter in prior models. However, a

more objective interpretation is to identify it as neuromodulatory because its has a
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qualitatively different character to additive/subtractive input and, hence, is outside

the canonical ideas of inherent in ANNs.

There are many other parameters that could be dynamically altered that involve

multiplicative affects. For instance, neuromodulation has been modelled as dy-

namic changes to synaptic weights (Araujo et al., 2001) or to a neuron conduc-

tances (Fellous and Linster, 1998). Remember: we can always distinguish such

modulations from Hebbian learning because they are heterosynaptic rather ho-

mosynaptic, see §4.1.3.

It is interesting to note that the utility of multiplicative connections has often been

remarked upon. Pollack (1989) addressed the idea of multiplicative interaction, in

the context of connectionism, in the 1980’s. He argued that greater computational

power would come through the use of multiplicative connections. Typically the

output of a particular node is calculated as a function of the sum of its synap-

tic inputs. However, Pollack thought that connections that multiplied the sum

of the synaptic inputs were equally as important. Furthermore, he believed that

full Turing-complete computability could not be realised without such connec-

tions. This was later shown not to be the case because multiplicative-like effects

can be introduced indirectly via the transfer function (Siegelmann and Sontag,

1995). This is addressed in more detail in Chapter 10. However, Pollack’s claim

that explicit “multiplicative connections remain a critical and under appreciated

component of neurally inspired computing” (Pollack, 1989) is arguably true even

today.

In summary, initially, we shall idealise the investigation of this dimension as an

exploration of the difference between additive/subtractive and multiplicative in-

teractions. However, we shall generalise this distinction to the difference between

zeroth order and higher order interactions in Chapter 10.

6.2.4 Not simply point-to-point communication

Neuromodulatory chemicals endure in significant concentration outside of the

synaptic cleft. As such, a single chemical event can potentially affect a number

distal receptors and not just those of the post-synaptic neuron. In the modelling

literature, endocrine signalling is, almost without exception, characterised as the

dynamic change of some property which is identically associated with every neural

unit. For example, as we have already talked about, an entire system’s learning

rate is often put under neuromodulatory control (Doya, 2002a). There are many
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other examples of this across computational neuroscience spanning many levels

of abstraction (Fellous and Linster, 1998). These process constitutes a global or

broadcast signal which acts system wide.

Like multiplicative connections, the utility of global processes was remarked upon

well before its modern association with neuromodulation. For example, Braiten-

berg (1984) evokes the idea of a so called “special wire” which attaches to all

nodes in one of his “vehicleA” as a solution to the run-away saturation problems

of Hebbian learning. Or, in the context of connectionism, Pollack (1989) notes

that there is a connectivity constraint inherent in connectionist architectures that

isolates knowledge of each neural unit’s state to a small subset of other units and

there is “no global memory or blackboard”. He claimed that this constraint limits

their processing capabilities and that the presence of a global signal may be vital

for some aspects of functionality, e.g., synchronisation problems. Indeed there are

a suite of modern studies that investigate the role of endocrine signal in achieving

synchronous dynamics (Fellous and Linster, 1998).

Early reticence of neuroscientist toward paracrine signalling has meant it has had

a much smaller impact on the modelling mainstream. However, in recent times

NOhas inspired a host of provocatively entitled article such as “Nitric Oxide: Link-

ing Space and time” (Edelman and Gally, 1992) or “Shifting Network: Volume

Signalling in Real and Robot Nervous Systems” (Husbands et al., 2001). Further-

more, it has led some to claim it is paradigm shift in the way we think about neural

processing (Zoli and Agnati, 1996). For example Husbands et al. (2001) believes

that the paracrine form of volume transmission (see §4.1.1) in concert with the

other ideas inherent in neuromodulations is “outside the connectionist paradigm”.

Common to all models of paracrine signalling is the idea of spatiality. That is,

it is often described as acting on “volumes” of neural tissue or affecting “local”

regions of neural tissue. While all aspects of biological nervous systems are spa-

tially extended, the graphs with which traditional ANNs are typically represented

often neglect to capture their spatial character. Similarly, endocrine signalling

is generally modeled without explicit reference to the idea of physical location

and the spatial and temporal character of chemical flow through the the cerebral

circulatory system are largely ignored.

Consequently, in order to address paracrine signalling researchers have found it

necessary to embed more traditional RNNs in a spatial domain (Husbands et al.,

2001). This is done by giving every node a co-ordinate within a d-dimensional Eu-

clidean space. The strength of neuromodulatory interactions between two nodes
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is then dependent on the distance between them. This formulation has two major

consequences for the architecture of nodal interactions. First, unlike synaptic in-

teractions in ANNs where the interaction between units can altered independently,

changing the position of one unit alters its neuromodulatory relationships with all

other units. In effect the interaction between units can no longer be considered to

be pairwise because the parameters of the system describe interactions between

larger group of units. More generally spatial embedding places constraints on the

types of connection architectures that are attainable. That is the set of all possible

architectures that respects space is much smaller that the full set configuration

allowed with pairwise interactions. We shall comeback to this idea in Chapter 13.

Second, the effective radius of influence of a paracrine signal is characterised by the

physical properties of neuromodulatory mechanisms and the strength of the source.

This allows the number of affected neural units to be altered. In general, this is

modeled as radius of influence of the neuromodulatory source. By altering the

radius of influence the number of affected network units can vary between zero and

the whole network. Consequently this allows the projections of a neuromodulatory

source to smoothly transition from a completely private signal to a completely

public one.

Furthermore, the radius of influence is dependent on the dynamics of the stimula-

tion of the source. The longer and stronger the stimulation the greater the volume

the signal will span. Some believe that it is the introduction of this spatio-temporal

dynamic that is key to the utility of neuromodulation. For example some claim

that conventional synaptic transmission is essentially two-dimensional, whereas

NO acts four-dimensionally in space and time affecting volumes of the central ner-

vous system (Philippides, 2001; Gally et al., 1990; Husbands et al., 2001). However,

claims such as these, while enigmatic, have not, as of yet, been suppoted with any

theoretical backbone.

In summary, for the purposes of this thesis, this dimension of neuromodulation will

be explored by assessing the utility of a bias toward global signalling (one-to-many)

and the significance of neuronal interaction constrained by spatial embedding.

6.2.5 Not fast

The neuron doctrine claims that the processes underlying neuronal communication

takes place on the 10ms timescale. This is the estimated characteristic timescale

of the three main ionic channels responsible for spiking generation. Dynamical
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features that last for longer than this are left to indirectly arise from the reverber-

ation of recurrent activity. However, even very early on in neuroscience this was

known not to be the complete picture. It had been discovered that neurons have

ionic channels that are not directly involved in spike generation but, nevertheless,

can have non-trivial effects on their dynamics and retain state for time intervals

considerably longer than 10ms (Bechtel and Abrahamsen, 1991).

Moreover modern understandings of neuromodulation demand the inclusion of

slow processes in models of neuronal communication. Neuromodulatory processes

are constrained by diffusion and as such are relatively slow, both to build and dis-

sipate, see §3.2. They constitute communication channels on a radically different

timescale than synaptic transmission.

Most models of neuromodulation use rather informal temporal ideas. However, the

size of the temporal separation between the modulator and the modulated process

may be functionally significant. As we have alluded to above, many researchers

consider neuromodulatory factors as effectively parameterizing to the underlying

system. This conception may be partially rescued by assuming that the “parame-

ters” influenced by neuromodulation change over a much slower timescale. Specif-

ically, neuromodulation could be considered to be parameter change if changes

were so slow that they could be effectively considered to be constant, and as such,

factored out of the short-term dynamics.

This still begs the question of what magnitude of temporal separation make this

a good approximation. One possible criterion for this to be a good assumption is

perhaps that the temporal separation (the ratio of the timescales of the fast and

slow processes) is such that the fast variables reach equilibrium before the slow

parameters have changed significantly. This idea is closely related to the notion

of adiabatic elimination3 (Haken, 1983).

The idea of temporal separation is not unique to neuromodulation and is also

central to synaptic plasticity. However, neuromodulation is often distinguished

synaptic plasticity because it is, first, a heterosynaptic (see §4.1.3) processes.

That is, while synaptic plasticity is confined to act on the pairwise parameters

(the weights) between the pre- and post synaptic neurons neuromodulators are

slow processes that implement wider and more complicated patterns of interac-

tion between neurons across a network. For example, a neuromodulator emitted

3An adiabatic process is one in which a system transitions through a sequence of states that
are infinitesimally close to equilibrium. In such a system the fast out of equilibrium dynamics
can be adiabatically eliminated (neglected) and the system can be described solely in terms of
the movement and change of an equilibrium.
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from one neuron can act as a slow variable, and effectively a parameter, to a large

number of neuronal elements.

Second, synaptic plasticity is generally modelled by including explicitly plastic

processes, see §6.1.3. In contrast, neuromodulation is more often modelled as an

elastic reversible process more akin to synaptic interactions. That is their effects

on neural elements is directly proportional to their activity or concentration.

In summary, for the purposes of this thesis, we will consider this dimension via the

inclusion of explicitly slow, elastic, heterosynaptic mechanisms that are temporally

separated from the modulated substrate.

6.3 Neuromodulation and network dynamics

In Chapter 3 we briefly surveyed the neuroscience literature and highlighted some

of the typical behavioural/functional roles that neuromodulatory pathways are

thought to underpin. In Chapter 4 we went on to discuss how these ideas have

influenced the many attempts to define neuromodulation. What is clear form

this work is that neuroscientists often talk about neuromodulation in terms of

organizing functions rather than directly implicating it in any particular behaviour.

Specifically, neuromodulators switch a system between behaviours or qualitatively

tune aspects of a behaviour. In this section we will make some first attempts to

frame these behaviours in the language of DS theory.

6.3.1 Reconfiguration

Perhaps the most common organizational property associated with neuromodu-

lation is reconfiguration. Reconfiguration is defined as a change to a network’s

specification that produces a qualitative change in its functional operation. In

terms of neuromodulation , “specification” most naturally applies to the intrinsic

properties or synaptic efficacies of a neuron or network and “functional operation”

to the behaviour it subserves. So, for example, in Tritonia neuromodulators act on

the intrinsic properties of neural elements such that under stimulation it produces

escape swimming rather than a defensive withdrawal behaviour (Harris-Warrick

et al., 1992).

In the language of DS this is consistent with the idea of a bifurcation i.e. perturbing

a system produces a qualitative change in the dynamics, see Chapter 5.
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Figure 6.2: Schematics of the type of reconfiguration and priming behaviours
present in the literature. (S) and (N) symbolise sensory and neuromodulatory
input respectively. A, B and C denote three qualitatively different types of

dynamics.

However, a closer examination of literature reveals a subtle distinction between

the types of reconfiguration behaviour that researchers describe. The first, which

we shall call a Type I reconfiguration, is straightforward. Consider a system X

exhibiting dynamics A. If we now apply a neuromodulatory signal N , the system

now exhibits dynamics of the form B ,see Fig. 6.2. A Type I reconfiguration is

described in work on the STG. Here, the systems is switched between two gastric

rhythms by an external neuromodulatory input, see §3.4.1.

A Type II reconfiguration is somewhat more complicated and requires an extra

dimension to the input. Again consider a system X exhibiting dynamics of the

form A. Applying a neuromodulatory input N alone leaves the dynamics un-

changed. If a sensory input S is applied in the absence of neuromodulation then

the system undergoes a qualitative transition and exhibits dynamics of the form

B, see Fig. 6.2. However, if the same sensory input is applied in the presence of

the neuromodulator then the system transitions to dynamics of the form C. Here

the neuromodulatory input does not initiate the dynamics but rather alters the

parametrization such that subsequent sensory stimulate have different effects on

the circuit.

A Type II reconfiguration is described in the Tritonia. Specifically, we can inter-

pret A as a rest state, B as an escape swim reflex and C as an escape withdrawal
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reflex. Here the circuit is reconfigured between the escape withdrawal and the es-

cape swim reflex but neither are initiated until external sensory signal is applied.

In Chapter 10 we will address the relationship between neuromodulation and re-

configuration in more detail. However, we will only consider reconfiguration of

Type I which are commensurate with a straightforward bifurcation and we will

leave the investigation of Type II reconfigurations for future work.

6.3.2 Priming

The idea of priming has much in common with the idea of reconfiguration. Again,

consider a system X exhibiting dynamics of the form A. Now imagine applying

one of two possible sensory inputs, one with a relatively small magnitude and one

with a relatively large magnitude. In the absence of the neuromodulatory signal N

the system remains unchanged when the signal of small magnitude is applied but

qualitatively change under the influence of the large magnitude signal, see Fig. 6.2.

If a neuromodulator is applied, however, both signals can initiate a transition to

dynamics of form B. Like a Type II reconfiguration the neuromodulatory input

does not initiate the dynamics. Instead, it primes or sensitises the dynamics to

external sensory input.

Descriptions of system exhibiting these kinds of priming dynamics are common

in the neuroscience literature. For example, in the turtle, neuromodulatory input

sensitises an identified neuron’s dynamics to synaptic input, lowering the threshold

at which the neuron fires (Harris-Warrick and Marder, 1991). Priming has also

been explicitly described at the behavioural level. For example, neuromodulators

are thought to sensitise the syphon withdrawal response in Aplysia (Marder and

Thirumalai, 2002). In the leech, serotonin increases the likelihood of a swimming

reflex (Katz, 1995). While these behaviours are not elicited by the presence of the

neuromodulator they change the organism’s response to subsequent stimulus.

More generally, the idea of priming is implicity bound up with the idea of arousal

status in both the vertebrate and invertebrate systems. Here, an animal’s be-

havioural response can be sensitised to environmental cues in some context. The

stress response, triggered malign environmental cues (a cat approached by a dog is

usually quite stressed), produces a set of physiological response such as increased

lung and heart action and pupil dilation which hold the animal in readiness for a

flight of flight response (Carlson, 1991). The animal also becomes more sensitive

to external sensory cues which can rapidly switch it between its present behaviour
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and qualitatively different survival behaviour. For example, a stressed cat will

initiate a fleeing response with any sharp sound (which it would otherwise ignore)

whether it is connected with the onset of an attack or not. In this case it is the

endocrine system that is thought to play the key role both by priming the body

and the nervous system (Buckle, 1983).

In order to instigate a qualitative change in dynamics both priming and Type II

reconfigurations require the presence of two input signals, the neuromodulators

N and an initiating signal S. This concept is often tightly bound to some puta-

tive definitions of neuromodulation. Fellous and Linster (1998) remark that often

neuromodulation performs an AND function in which the neuron can only pass

information if both the synaptic and neuromodulatory effects are present. Or, dy-

namically speaking, neuromodulators are said act on properties of the neuron that

“serve to modify the response of the neuron to a given input signal” (Fellous and

Linster, 1998) such that effect of subsequent neurotransmission is altered (Katz,

1995; Pearson, 1993; Harris-Warrick and Marder, 1991). In terms of bifurcation,

neuromodulatory signals in priming and Type II reconfigurations are effects that

can take a system close to a bifurcation with actually causing the bifurcation

themselves.

6.3.3 Tuning and Gating

Many neuromodulatory signals are thought to tune or gate the dynamics of the

circuit that they affect. Unlike reconfiguration and priming, they are associate

with only quantitative rather than a qualitative changes to the dynamics. For

example the diffuse release of serotonin can quantitatively change both the phase

and frequency of biting in the gastric mill rhythm (Harris-Warrick et al., 1992). In

the invertebrate system (Marder and Thirumalai, 2002) norepinephrine can gate

the flow of information across the visual cortex changing the sensitivity of the sys-

tem to external input. Neuromodulators are also widely thought to gate plastic

mechanisms mediating the onset and strength of learning. Loosely speaking, in

contrasts to reconfiguration and priming, tuning and gating dont involve bifurca-

tions. Instead, they act on the quantitative aspects of the dynamics such as the

size of the basin of attraction, the length of a cyclic attractor or the position of

an equilibrium point.
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6.4 Conclusion

This chapter constitutes the penultimate phase of an attempt to abstract the ideas

of neuromodulation. Starting from a review of the work on neuromodulation in

neuroscience (Chapter 3) we moved to the systemic ideas inherent in work that

attempts to define neuromodulation (Chapter 4) and then to this review of neu-

romodulation in ANNs. The final phase of this abstraction process, and a major

novel contribution of this thesis, is to begin to formally describe neuromodulation

in terms of DS theory. However, before we do this, the next chapter will first sum-

marise and conclude the work thus far as well as explicitly defining the research

questions that are the concern of the rest of this thesis.



Chapter 7

Research Questions

The purpose of this chapter is to, first, summarise what this thesis has achieved

thus far; second, to explicitly state the central research question of this work; and

lastly to introduce a set of key questions about neuromodulation posed by leading

neuroscientists.

7.1 Summary

Chapter 1 briefly discussed a growing disquiet in neuroscience toward the neuron

doctrine. This stems a set of novel biochemical phenomena that impact on cur-

rent conceptions of neural information processing but have been hitherto largely

ignored in both experimental and modelling work (Bullock et al., 2005). Central

to this disquiet is the phenomenon of neuromodulation which is cast as a form of

inter-neuronal communication that radically differs from more typical ideas of neu-

rotransmission. Furthermore, it outlines a growing consensus in the neuroscience

community that neuromodulatory pathways are not just a slight amendment to

way we think about nervous function but instead constitute a paradigm shift.

Chapter 3 provides a relatively broad review of both the biochemical nature and

the postulated functional roles of neuromodulatory processes. It attempts to make

explicit the idea that neuromodulation in both the vertebrate and invertebrate

nervous systems and across neurohormonal and gaseous signalling molecules (e.g.

NO), constitutes a single unified class of processes. It also argued that not only

are the biochemical characteristics of neuromodulation distinct from neurotrans-

mission but that they also subserve a distinct set of functional roles. Furthermore,
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it argued that the relationship between the biochemical properties and functional

roles of neuromodulation is in need of further investigation.

Chapter 4 reviewed the systemic content in some attempts by neuroscientist to

define neuromodulation. It settled on a definition suggested by Katz that casts

neuromodulation as the antithesis of neurotransmission. This definition identifies

three core dimensions at the boundaries of which the differences between neuro-

modulation and neurotransmission are brought into sharp relief and suggests that

insights into neuromodulatory processes could be made by examining minimal

departures along these dimensions.

It then reviewed some work that defines neuromodulation at the behavioural level.

Here, neuromodulation is defined as the ability of an organism to, adaptively

switch between qualitatively different behaviours, or, tune existing behaviours,

playing an organizational role that differs from the moment-to-moment dynamics

of a particular behaviour. This chapter goes on to identify three representative

organisational functions that neuromodulator are thought to subserve, reconfigu-

ration, priming and tuning/gating.

The second section of this chapter addressed the phylogenetic roots of paracrine

and endocrine signalling. It constructs an often neglected argument for both the

ubiquity and importance of neuromodulation. It argued that the chemical pro-

cesses that typify neuromodulation almost certainly predate electrical nervous ac-

tivity. Given that evolution proceeds in a largely serial manner, tinkering with

conservative designs set down in previous generations, this suggests that any ner-

vous activity may take place on top of rich medium of chemical signalling processes.

Chapter 6 attempts to place the systemic notions of neuromodulation derived from

neuroscience in the context of work on ANNs. It began by describing how the

canonical form of the ANN arose from the ideas imminent in the neuron doctrine.

It then re-introduces Katz definition and suggests abstracting neuromodulation

as set of minimal augmentations to the canonical ANN model. This abstraction

process is also guided by the commonalities evident across models of neuromod-

ulation in the computational neuroscience and robotics literature. Specifically it

suggested a minimal representation of neuromodulation as:
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Definition 7.1. A mechanistic definition of neuromodulation

1. Not excitatory or inhibitory: Neuromodulation involves “higher order”

(see Chapter 10) interactions than neurotransmission .

2. Not simply point-to-point communication: Neuromodulation involves

interactions that are not well described by the pairwise parametrizations

(weights) that describe neurotransmission.

3. Not fast: Neuromodulation operates on a much slower timescale than

neurotransmission.

Similarly it suggests a simple, but still rather loose, characterisation of the func-

tional/behavioural properties of neuromodulation in terms of dynamics of ANNs.

Specifically neuromodulatory processes are conjectured to underpin:

Definition 7.2. The functional/behavioural roles of neuromodulation

• Reconfiguration: Idealised as an external signal that bifurcates a systems

dynamics.

• Priming: Idealised as an external signal that takes a system close to a

bifurcation boundary without producing a bifurcation itself.

• Tuning and Gating: Idealised as the absence of bifurcation. Instead it

involves an external signal that alters quantitative aspects of systems

dynamics. For example, the size of a basin of attraction, the length of a

cyclic attractor or the position of an equilibrium point.

7.2 The primary research question

The goal of this thesis is to explore the relationship between the mechanistic char-

acterisation given in Definition 7.1 and the functional/behavioural roles given in

Definition 7.2. In particular it asks the question: do the mechanistic dimensions of

neuromodulation predispose them toward their functional/behavioural roles? and,

thus, make systems that posses such mechanistic dimensions more adaptive than

ones without? Furthermore, if so, should the canonical idea of neural information
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processing embodied by the ANN be updated in light of a modern understanding

of neuromodulation?

7.3 Questions from neuroscience

Alongside this central question we shall try to be sensitive to the questions and

concerns of neuroscientists. Below we list a set of very broad conjectures and

questions that are the most prominent in the literature on neuromodulation. These

are roughly split between questions concerning the stability of neural dynamics in

the presence of neuromodulatory processes and more general question about the

adaptive significance of neuromodulation.

Neuromodulation and stability.

• “...massive circuit reconfigurations that depend on changes in membrane

properties of neurons are likely to be ubiquitous. This has raised an impor-

tant question for the future: what factors stabilize network operation so that

multiple neuromodulatory influences do not lead to the loss of the networks

ability to function?” (Poggio and Glaser, 1993).

• “Much computational work will be needed to understand how it is possi-

ble for biological circuits to be so richly modulated while retaining stable

function” (Marder and Thirumalai, 2002).

• “How do networks retain their essential characteristics and continue to op-

erate stably despite all their modulation?” (Harris-Warrick and Marder,

1991).

The adaptive potential of neuromodulation.

• “By allowing cellular and synaptic properties to vary under the control of

neuromodulation, circuits become reprogrammable instead of single hard

wired devices and, thus, are infinitely more useful to the organisms” (Katz,

1995).

• “What is the functional significance of the numerous neuromodulators known

to exist in some motor systems?” (Pearson, 1993).
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• “Can neuromodulators reorganize motor system in mammalian nervous sys-

tem in the same manner as in the STG or Tritonia?” (Pearson, 1993).

• “Of the many changes induced in a network by a neuromodulator, which are

the most important in determining the final function and which provide only

subtle alterations” (Harris-Warrick and Marder, 1991).

• “It is critical that the next generation of network models enable us to develop

a better understanding of how the dynamics of network function arises from

the fast, slow and very slow process in neurons” (Poggio and Glaser, 1993).

In the rest of this thesis we investigate the primary question given in §7.2 through

two different methodologies. First, in the next chapter, we start by extending

work done in evolutionary robotics on the novel neuromodulator NO (Husbands

et al., 2001). In particular we investigate empirically the relationship between

the mechanistic dimensions of neuromodulation and the evolvability of artificial

neural control systems. In contrast, from Chapter 9 onwards we take a more

analytical approach toward the primary research question. Chapter 9 starts by

conducting a thorough dynamical systems analysis of one particular subcircuit

of a neuromodulatory system. Chapter 10 and 11 then present a set of abstract

analytical models which explore the relationship between higher order interactions

(item 1 of Definition 7.1) and bifurcations (item 1 of Definition 7.2). Chapter 12

then examines the relationship between slow processes (item 3 of Definition 7.1)

and stability. Lastly Chapter 13 introduces some information theory measures to

explore the relationship between spatial embedding (item 3 of Definition 7.1) and

a measure of dynamical complexity developed in theoretical neuroscience.



Chapter 8

Neuromodulation and

Evolutionary Robotics

While prior chapters have largely drawn on work in neuroscience to motivate this

thesis the original inspiration behind it comes from evolutionary robotics. In

particular it comes from work on a novel network formulation called the GasNet

(gas modulated network). The GasNet was originally conceived by Husbands

et al. (2001) at Sussex university and has been around in the literature for some

ten years now. This chapter will start by briefly reviewing the GasNet formulation

and highlight how it fits with the mechanistic characterisation of neuromodulation

given by definition (7.1). It will then attempt to use the GasNet architecture, and

its associated methodology, to address the central research question of this thesis.

8.1 GasNet Research

The GasNet comprise of a fairly standard RNN augmented by an abstraction of

the gaseous neuromodulator NO. To date most investigations of neuromodulation

in robotics have involved macromolecular neuromodulators. In particular the role

of endocrine system in learning (Doya, 2002a). They have tended to focus on the

details of a particular neuromodulatory pathway and consequently many of their

design decisions are subordinated to biological considerations. In contrast, work

on GasNets is to some extent motivated by engineering consideration. That is

they investigate whether the inclusion of certain biological augmentations within

more traditional networks can improve there ability to be constructed by an artifi-

cial evolutionary process. Thus, while the GasNet formulation is nominally based
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on an abstraction of NO it comprises a relatively general and simple model of

neuromodulation. Consequently, as we shall see, by casting neuromodulation as

a minimal augmentation of an RNN, the GasNet model strongly resonates with

a definition of neuromodulation as the simplest departure from neurotransmis-

sion. Furthermore, in the last few years GasNet researchers have made a set of

pre-theoretical claims about the functional utility of including abstractions of neu-

romodulation within more typical RNNs (Philippides et al., 2002). Consequently,

the GasNet methodology provides an arena within which the relationship between

the mechanisms of neuromodulation and their functional roles can be addressed.

The GasNet consists of a simple RNN of the form,

yi(t + 1) = F

(

ki

∑

ij

ωijyj(t) + θi + Ii

)

(8.1)

where yi(t) is the state or activation, at time t of node i. Each node possesses a

threshold (bias), θi, a gain term ki and receives stimulation from any neighbour, j,

weighted by a synaptic link, ωij, and external input, Ii. F is the transfer function

which is generally of sigmoidal form, i.e., approximately linear in its mid range

with saturating limits. This equation is one of the simplest recurrent extensions of

the feed-forward McCulloch-Pitts perceptron, see §6.1.1. This RNN is embedded

in a 2D space1 (Fig. 8.1) where each neuron has the potential to emit a gas under

certain conditions — e.g., when either gas concentration at the node’s location, or

the node’s neural activation, exceeds some fixed, node-specific threshold. The gas

slowly diffuses through the 2D space affecting the properties of the gas-sensitive

neurons that it comes into contact with. The radius of the spread is proportional

to the strength and duration of emission of the source. It affects all nodes within

this radius. Unlike synaptic interactions the gas affects the gain parameter ki.

Thus, as the gas ebbs and flows across the plane in which the nodes are embedded

it modulates the sum of the inputs in a multiplicative fashion, deforming the

network’s “weight space”. Equivalently, this can be visualized as changing the

slope of the linear portion of the sigmoidal transfer function (Husbands et al.,

2001). The temporal dynamics of the gas diffusion are much slower than the

dynamics of the underlying synaptic units.

1Presumably the GasNet is embedded in a two dimensional space because this allows evolved
solutions to be easily visualised. However ,there is no a priori why this could not be one or even
three dimensions.
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Figure 8.1: Gas diffuses across an RNN embedded within a 2D plane. Neuron
1 emmits a gas (grey area) which modulates neurons 2 and 4. This happen in

conjunction with the underlying synaptic connectivity (black arrows).

The GasNet constitutes a very simple model of paracrine signalling. It suc-

cinctly embodies the three core mechanistic aspects of neuromodulation (see Def-

inition 7.1). First the influence of the gas on each node is not simply excitato-

ry/inhibitory, instead it is multiplicative. Second, the gas interactions between

each node are not point-to-point. Instead of a simple pairwise connectivity matrix

the interaction strength between nodes depends on their relative spatial locations.

Lastly the dynamics of the gas are not fast and act on a much slower timescale

then the electrical connections.

The performance of the GasNet has been compared with that of the NoGasNet,

a more standard RNN, on a number of evolutionary robotic tasks to date. One

benchmark task in evolutionary robotics is so called active categorical perception.

For example an agent is evolved to distinguish between a square and triangular

shapes placed within a circular arena. The set up consists of simple mobile agent

that receives spatial information from two photoreceptors. Initially the agent is

placed in the centre of the arena in variety of orientations and variable lighting

conditions. From here it must move toward the square shape.

The GasNet consistently outperforms the NoGasNet on this, and other tasks, and

is claimed to be more evolvable. That is successful GasNet controllers evolve in

fewer generations and produces better quality solutions (Smith et al., 2002). Gas-

Net researchers claim that this greater processing power is because the inclusion of

an artificial gas confers an adaptive benefit over more traditional neural network

architectures. However, despite some recent analytical work by Smith et al. (2001,

2002), there is little understanding of why this should be the case.
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Nevertheless, loose conjectures on the source of the GasNets evolvability abound.

Interestingly these conjectures have many similarities to the roles that neurosci-

entists suggest neuromodulators play, see Definition 7.2. For example, Philippides

et al. (2002) conjectures that the reason for the increased evolvability of the GasNet

is that it can readily tune dynamics to the needs of the environment, a property

he calls “temporal adaptivity” referring to the ability of an agent to support be-

haviour over a wide range of time courses. Relatedly, Husbands et al. (2001) claims

the GasNet paradigm can easily support flexible and reconfigurable systems.

In this chapter we shall explore the GasNets functionality in more detail by inves-

tigating the relationship between the mechanistic aspects of neuromodulation and

evolutionary performance at a pattern generation task. Along the way we shall

highlight a set of problems associated with comparative evolutionary robotics ap-

proaches, but also present some loose evidence suggesting a link between one par-

ticular aspect of the GasNet paradigm and the ability to evolve patterned output.

8.2 Pattern generation task

8.2.1 The Network

Successful solutions to the active categorical perception task mentioned in the

last section make use of an active scanning behaviour in which an agent rapidly

oscillates its visual field (Philippides, 2001). Smith et al. (2002) conducted an

investigation into the production of this scanning behaviour. He noted that the

frequency of the scanning behaviour was central to the success of a GasNet so-

lution. To explore this further he constructed an experiment that compared the

ability of a simple RNN without Gas (NoGasNet) to sustain pattern generating

behaviour across a range of oscillatory frequencies with that of a GasNet. Smith

et al. (2002) reported that the GasNet paradigm more readily produced patterned

output than the NoGasNet.

Here we employ an extremely reduced and simplified version of the GasNet formu-

lation. Note: there is always a worry that moving from the original formulation

could result in some important aspect of the GasNet being inadvertently excluded.

However, given that the utility of the GasNet is attributed to the inclusion of a

mechanistic representation of NO and not the minutiae of its formulation one

would hope that the performance would be robust to minor changes.
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Figure 8.2: A schematic depicting how nodes interact through gas emission.
The effect of the gas emitted by node yi on node yj is dependent on the distance
between them, |rj − ri|, and the radius of influence, di. Node yi has no effect

on node yk which is outside the radius of influence.

The NoGasNet consists of a simple discrete RNN, identical to the original NoGas-

Net, (Smith et al., 2002). Networks are autonomous and receive no sensory input,

i.e., Ii = 0, ∀i. The weights ωij and biases θi for each node are constrained to lie in

the range [−1, 1] and [−4, 4] respectively. The transfer function F (x) is a simple

hyperbolic tangent function (tanh). In the NoGasNet the parameter ki is fixed at

k0
i and lies in the range [−4, 4]. Thus the parameter set for the NoGasNet class is

G ≡ [ωij θi k0
i ] (8.2)

which for a network of size N contains N2 + 2N values.

In the modified GasNet (henceforth simply referred to as a GasNet) ki is no longer

a parameter and is dynamically altered by the presence of an artificial gas. Gas

diffusion is simulated by embedding the network in a 2D plane2 and associating

each node with a cartesian coordinate ri and radius of influence di, both of which

are constrained to lie in the range [0, 1]. Every node in the network has the

potential to emit a gas. The gas concentration falls away as an inverse Gaussian

away from the source but falls to zero at the radius of influence, di, see Fig. 8.2.

The type of gas a node emits is denoted by the parameter GT i which takes values

−1, 0 or 1 for and inhibitory gas, no gas or excitatory gas respectively. The

2Presumably the original GasNet is embedded in a two dimensional space because this allows
evolved solutions to be easily visualised. However ,there is no a priori why this could not be one
or even three dimensions.
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concentration of an excitatory and an inhibitory gas at node i is given by

CE
i =

∑

j

TE
j e

(−
|rj−ri|

dj
)2

(8.3)

CI
i =

∑

j

T I
j e

(−
|rj−ri|

dj
)2

The growth and decay of excitatory and inhibitory gases emitted from node i is

given by

˙TE
i = H(yi, Ci)Gi + [(H(yi, Ci) − 1)]Di (8.4)

Ṫ I
i = H(yi, Ci)Gi + [(H(yi, Ci) − 1)]Di

H(yi, Ci) =

{

1, if yi > 0.1 or Ci > 1

0, otherwise
(8.5)

Ci = CE
i + CI

i (8.6)

where Gj and Dj are the growth and decay constants, respectively, and lie in

the range [1, 20]. Ci denotes the total gas concentration irrespective of whether

it has an excitatory or inhibitory affect on a given node. H(x, y) is a function

that determines whether a node is emitting gas. It returns 1 (emitting) if either

the electrical potential yi or total gas concentration, Ci, exceed some threshold

otherwise it returns 0 (not emitting).

The value of ki is proportional to the gas concentration at that node

ki = k0
i + CE

i (kmax − k0
i ) − CI

i (k0
i − kmin) (8.7)

where k0
i is a genetically set default value of ki and lies in the range

[kmin = −4, kmax = 4]. The parameter set for the GasNet class is then

G ≡ [ωij θi k0
i ri di Gi Di GTi] (8.8)

which for an N node network has N2 + 7N values. Note: for networks of equal

size the ensemble space of NoGasNet is completely subsumed within the space of

GasNets and can be retrieved by setting GTi = 0, ∀i.
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Figure 8.3: A schematic of how fitness is calculated in the pattern generation
task. The thick solid line gives the required output pattern of the network. The
curved lines gives the actual output of the network. The grey filled regions mark

times when network accrues a positive contribution to its fitness.

8.2.2 The Task

Here we develop a generalized form of the simple pattern generation task employed

by Smith et al. (2002). Each pattern consists of a series of positive and negative

values, see Fig. 8.3. The total period T of the pattern is chosen from the interval

[5, 35]. The number of negative values, ν, in each period is chosen uniformly

from the interval [1, T ], the number of positive values is then (T − ν). This

process produces a randomly generated asymmetric waveform containing a range

of frequencies. After a brief transient period (≈ T for all evaluations) each network

is asked to produce the correctly signed output, i.e, irrespective of the absolute

magnitude. Note: the output is always taken from an electrical node and never

from a gas concentration variable. Performance is measured as the sum of the

number timesteps that the network outputs the correct sign normalised by the

total number timesteps. In this task each network is run for 10 × T timesteps.

8.2.3 The GA

Evolutionary robotocists use a plethora of genetic algorithms to optimise neural

network control systems, see Mitchell (1996) for an introduction to different types

of GA. Here, following the GasNet methodology, we employ an extremely simple

GA which works thus:

An initial population of P = 100 individuals is created by assigning parameters

randomly across their ranges. The parameter set of each network is represented

as string of real numbers (the genotype). Fitness is calculated by constructing

the network (the phenotype) specified by each genotype, randomly initialising all
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electric activations over the interval [−1, 1], setting all initial gas concentrations

and evaluating it in on a pattern generation task.

Once every member of the population is assessed tournament selection is performed

by selecting 3 competitors at random from the population. The competitor with

the highest fitness is copied with mutation into the next generation. This is re-

peated P times to produce a new generation.

We employ a simple point mutation operator whereby each locus on the genotype

is mutated with a probability of 0.04%. If a locus is selected for mutation then

a random increment, drawn from a Gaussian distribution with a zero mean and

variance of 1% of the parameter range, is added. Each locus also has a very small

probability 0.0001% of being reassigned a value drawn at random from a uniform

distribution over the parameters entire range.

Over the course of this work many different GA specifications were explored. While

some differences in performance where observed the relative fitness differences

between network types was largely preserved. This GA was chosen because it

is the simplest to implement and produced solutions consistently with the least

computational expense.

Initial explorations with crossover did not deliver significant performance differ-

ences and in an effort strip away as many complications as possible it was omitted

from the GA. Furthermore, we have no a priori reasons why it would be beneficial,

i.e., the task is not modular to our knowledge nor does it exhibit a problem with

convergence.

The GA employed has many similarities to a hillclimber. The GA implements a

population search that converges on regions of parameter space while hillclimbers

implement multiple parallel and independent searches. Again we have no a priori

reason to choose one over the other and so we conservatively followed the same

methodology as the original GasNet research (Husbands et al., 2001).

Networks were evolved for maximum of 4000 generations, MaxGen. The perfor-

mance of a given network formulation is measured over a set of 200 randomly

generated patterns. It is reported in terms of the number of failed runs, a normal-

ized mean completion time (mean generations
MaxGens

) and a normalized median completion

time (median generations
MaxGens

). Note: the mean is averaged over successful runs only.

Consequently, the quoted value is optimistic. In contrast the median will be un-

affected by the premature termination of the GA if less than half the runs are

unsuccessful otherwise the normalised median will be 1 (worst case).
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Figure 8.4: The average performance of the 4-GasNet versus a 4-NoGasNet
over 200 runs. The data shows a normalized mean completion time
mean generations

MaxGens , a normalized median completion time median generations
MaxGens and the

number of runs that failed

8.3 GasNet v No GasNet

“How does the GasNet performance compare to the NoGasNet performance on a

pattern generation task?”

An obvious first step is to investigate the claim that the GasNet paradigm consti-

tutes a superior pattern generator in comparison to the NoGasNet. Fig. 8.4 shows

the the performance of a 4 node NoGasNet (4-NoGasNet) and a 4 node GasNet

(4-GasNet) on the pattern generation task. The results corroborate the original

findings and the GasNet significantly outperforms the NoGasNet. The GasNet

achieves maximum fitness solutions faster and more consistently. This is encour-

aging suggesting that we have captured the appropriate aspects of the GasNet in

our modified formulation, and, furthermore, that the source of the GasNets in-

creased performance is not critically dependent on the minutiae of its formulation.

However, as an objective statement about the GasNet’s functional superiority this

comparison is somewhat naive. Here we have simply equated one network with

another based on the number of neural units, four in both cases. Even a cursory

examination of the GasNet and NoGasNet architectures reveals several problems.

First, each GasNet node involves two variables, one for the electrical activation

and one for the gas concentration. The 4-GasNet employs 8 variables, twice as



Chapter 8 Neuromodulation and Evolutionary Robotics 92

i

Gas Concentrations (k )i

Electrical Network (y )

Figure 8.5: A pictorial representation of the interaction of the variables in a
4-GasNet. The graph depicts a full connected electrical network (NoGasNet)
and a fully connected gas concentration network with no self-connections. The
gas concentration effects on the electrical nodes are depicted by the downward
dotted lines. The electrical activations effects on the gas concentrations are

depicted by the upward vertical lines.

many as a 4-NoGasNet. Fig. 8.5 presents a pictorial representation of a 4-GasNet.

Second, the the more involved formulation of the GasNet requires 44 parameters

in contrast to only 10 parameters for a 4-NoGasNet. Furthermore the NoGasNet is

included within the space of every GasNet, i.e., setting GTi = 0, ∀i reduces the 4-

GasNet to a 4-NoGasNet. Consequently, the search space of these two formulation

are vastly different and, hence, not really comparable.

There are several steps that can be taken to reduce the impact of these differences.

The most obvious problem is the disparity in the numbers of variables. It is well

known that the characteristic dynamics of a system are extremely sensitive to the

number of variables( we shall see one particular example of this in Chapter 5).

Consequently, as a first attempt to provide a fairer comparison we compare a

4-GasNet and a 8-NoGasNet. While there is still some disparity in the number

of parameters, 72 versus 44 for the NoGasNet and GasNet respectively, it seems

somewhat fairer. Furthermore, it is not really clear how one could control for

both parameters and variables simultaneously. Note: here an 8-NoGasNet is not

included within the 4-GasNet space The original GasNet attempts to sidestep
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Figure 8.6: The performance of a 4-GasNet, a 4-NoGasNet and an 8-
NoGasNet on a pattern generation task.

these issues by using a variable length genotype which puts the number of variables

and their parameters under evolutionary control. However, the presence of such a

mechanism only adds another tier of complexity and threatens to make any results

even harder to interpret. Moreover, it became clear from other work, not published

here, that allowing a variable length genotype does not necessarily provide the

flexibility one might hope. Evolutionary performance is highly sensitive to the

initial network size and even the initial values of parameters. Even if a formulation

has the possibility to explore a more comprehensive parameter domain, including

networks of different sizes, this does not necessarily mean there is an evolutionary

route from the initial population to the optimum parametrization.

Fig. 8.6 depicts the performance of a 4-GasNet, a 4-NoGasNet and a 8-NoGasNet.

The 8-NoGasNet performs slightly better than the 4-NoGasNet and the number

of variable has an appreciable impact on the evolvability of the system. However,

the GasNet still outperforms the 8-NoGasNet. This result is still not perfect but it

makes a stronger statement about the GasNet architecture than the original com-

parison and suggests it is not just the number of variables that was responsible for

its improved performance. However, in general these kind of comparative studies

of neural networks are fraught with difficulties. Given the radical difference be-

tween many formulations it is never clear what would constitute a fair comparison

and it often feels like comparing apples with oranges.
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In the end, perhaps, the only objective way of conducting a comparison is to is in

completely hands off engineering domain which is used as a benchmark for many

competing formulations. Here the exact details of the control system are irrelevant

and there no constraints except those of the real world medium, for example the

size of a network will we be limited the processing power needed to run it in real

time.

8.4 Eliminating aspects of the GasNet

“What is the source of the GasNets evolvability?”

The motivations of this work come from a scientific perspective not an engineering

one. Consequently, we are not really interested in empirical comparisons of perfor-

mance. If we are to learn anything from the GasNet we need to understand why

it performs better than the NoGasNet. Given that the GasNet’s performance is

attributed to the three mechanistic properties of neuromodulation, another possi-

ble approach is to eliminate these systematically and observe how they impact on

performance. Rather than an empirical comparative study this approach is more

akin to radical form of sensitivity analysis. Another benefit of this approach is

that keeping changes to the formulation sufficiently small has the potential to cir-

cumvent issues concerning the number of variables and parameters of each network

type.

Let us briefly recap. The GasNet embodies three characteristics abstracted from

the action of NO, and, as we have argued earlier, from a wider notion of neu-

romodulation. Namely, it involves temporal separation between the gas and the

electrical network, multiplicative influences of the gas on the electrical network and

a spatially dependent gas influence. Here, we will systematically eliminate each of

these aspects from a 4-GasNet and run each variation on the pattern generation

task. Let us start by detailing each eliminations.

Eliminating multiplicative interactions The multiplicative nature of the

gas can be eliminated by simply changing the effect of the gain variable, ki, from

multiplicative to additive. Equation (8.1) now becomes

yi(t + 1) = tanh

(

ki + k0
i

∑

ij

ωij yj(t) + θi

)

(8.9)
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Note: this alteration does not change the number of parameters in the GasNet

formulation.

Eliminating the spatial embedding As it stands the gas mediated coupling

between electrical nodes is dependent the relative positions of each node. This

can be removed by replacing the spatially dependent term in Equation (8.3) by

an explicit connectivity matrix. This equation now becomes

CE
i =

∑

j

TE
j αij (8.10)

CI
i =

∑

j

T I
j αij

where αij is a connectivity matrix denoting the effect of the gas produced by node

j on node i. This alteration adds N2 − 3N parameters to the original GasNet

formulation. For a 4-GasNet this incurs an additional 4 parameter which is much

smaller than the parameter disparities incurred in the last section.

Eliminating the slow gas range The GasNet growth (Gi) and decay (Di)

constants lie in the range [1, 20] whereas the electrical nodes nominally work at

a timescale of a single timestep (i.e., they do not retain any state from previous

time steps, see Equation (8.1)). We can eliminate this temporal separation by

setting the growth and decay rates equal to one, Gi = 1 and Di = 1. The number

of parameters in this variation is reduced by 2N . Again this difference is much

smaller than the parameter disparities of the last section.

Fig. 8.7 presents the performance of a 4-GasNet, an 8-NoGasNet and a 4-GasNet

with multiplicative interactions, spatial embedding and slow gas range eliminated

respectively. Eliminating either the slow gas range (Sl) or the spatial embedding

has a beneficial effect on performance. However the most significant effect comes

from eliminating multiplicative interactions (M) which has a large detrimental

impact on performance.

Fig. 8.8 presents the performance of the 4-GasNet with two of the three mechanism

eliminated leaving multiplicative interactions, spatial embedding or slow gas range

respectively. The figure shows that networks with only the slow gas range (Sl) or

the spatial embedding present (Sp) perform considerably worse than the full 4-

GasNet. In contrast, the presence of multiplicative interactions (M) is sufficient

for good performance.
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Figure 8.7: Multiplicative interactions (M), spatial embedding (Sp) and slow
gas range (Sl) are alternately eliminated from the GasNet architecture and

evolved on the pattern generation task.

These result suggest that both the slow gas range (Sl) and spatial embedding (Sp)

have a detrimental impacts on performance while multiplicative interactions (M)

play a central role in the increased performance of the 4-GasNet on this task.

These elimination experiments allow us to pair down the possible root cause of the

GasNets performance. The fact that spatial embedding had a slightly detrimental

affect on the GasNet’s performance was not a surprise. Given the simplicity of

the above task, the relatively small network sizes and basic intuition from working

with such networks, it is hard to conceive of role for spatial embedding. For

these reasons the notion of spatial embedding is omitted from the rest of the

work in this chapter. However, its presence may play a more important role in

large networks. For example, consider an N node network which employs N2

connectivity values. Now consider the same network but where the interaction

between node are determined by a 2D spatial embedding. Specifically, the strength

of the weight between each unit is set as proportional to the distance between

them and some intrinsic parameter such as a radius of interaction. In this case

the formulation would employ 3 ∗ N parameters (2 cartesian coordinates and the

radius of interaction). In small networks the parameter difference is small but

in larger networks it will be significant because the number of parameters in the

non-spatial case increases polynomial but only linearly in the spatial case. It also
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Figure 8.8: A GasNet with only multiplicative interactions (M), spatial em-
bedding (Sp) or a slow gas range (Sl) is evolved on a pattern generation task.

may play some part in more complicated tasks. We will comeback to the issue of

spatial embedding in Chapter 13.

The fact that the slow gas range had a slightly detrimental impact on performance

was more of a surprise. Work on the GasNet often claims that the temporal

separation between electrical network and artificial gas is core to tuneable pattern

generation (Philippides et al., 2002). Intuitively one would think that the slow

build and decay rate would be directly involved in the generation of patterns on

longer timescales. Yet it does not seem to have a significant effect on performance.

8.5 The GasNets versus the constrained CTRNN

The kind of sensitivity analysis employed in the last section provides insight into

the GasNet formulation, however, it is hard to see how it could inform any work

outside research concerned with the GasNets. Any findings are significant weak-

ened because there are so many details of the formulation that are not accounted

for by its systemic description. This is even more true of the original GasNet which

involves a host of additional, elaborate, albeit biologically inspired, mechanisms.

Consequently, it is not clear how results from GasNet research should inform other

work in evolutionary robotics.
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An alternative approach is to start from a more widely used, and well under-

stood, network paradigm and minimally modify it in a way that reflects the sys-

temic notions inherent in the GasNet. An obvious choice for a base formulation

is the so called continuous time recurrent neural network (CTRNN) which has

become a network paradigm of choice throughout much of evolutionary robotics.

The strength of CTRNN is that while it has been proven to be capable of uni-

versal smooth function approximations (Siegelmann and Sontag, 1995) it is also

extremely simple in formulation. If we can cast the mechanistic notions of neu-

romodulation in terms of minimal constraints/augementation to the CTRNN this

could provide a touchstone between this work and a good deal of other work in

the evolutionary robotics community. Furthermore, in recent times Beer (1995)

has begun the analysis of CTRNN dynamics in some detail which could provide a

starting point for analytical studies of the mechanism of neuromodulation.

Furthermore this approach also fits more naturally with our attempts to define

the mechanistic nature of neuromodulation, given in Chapter 6. There we recast

Katz’s definition of neuromodulation as a minimal departure from the canonical

ANN paradigm along three systemic dimensions. The CTRNN is often thought of

as archetypal neural network model. It employs additive interactions, a pairwise

connectivity and no explicit timescale separation. Consequently, we can investigate

the notion of neuromodulation as the simplest departure from this formulation and

investigate its functional consequences.

The CTRNN, or leaky integrator equation, as it is more often known in neuro-

science, is given by

ẏi =
−yi + tanh

[

∑

j ωij yj + θj

]

τi
(8.11)

Here yi represents the activation at the ith neuron, ωij is the weight on the connec-

tion between neurons i and j, θi is the bias value at the ith neuron. This equation

is similar to Equation (8.1). The the only addition is the variable τi defining

the rate of leakage or decay of the activation synonymous with the characteristic

timescale of a given node. Note: while we inherit this form of the CTRNN from

the original GasNet (Husbands et al., 2001) it differs slightly from the type typi-

cally employed, see Beer (1995). However, it can be shown that there is a formal

equivalence between all leaky integrator equations interacting through sigmoidal

transfer functions see Haykin (1999, pp. 678).

Here we start with an 8 node CTRNN (8-CTRNN) and, compare its evolutionary

performance against an 8-CTRNN constrained/augmented to reflect the GasNet
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formulation. We will do this by letting half of the 8-CTRNN nodes play the role

of the electrical network and the other half play the role of the gas concentrations.

We then apply a set of additional modifications which are detailed below.

Structured interactions (St) In contrast to a CTRNN, the interactions be-

tween variables in the GasNet are somewhat structured. While this structure is

not included in the mechanistic descriptions of neuromodulation it is a noticeable

difference. Consequently, it is important to explore its impact on performance.

Fig. 8.5 gave a schematic representation of the interaction of the 8 variables in a

4-GasNet. Fig. 8.9 show how this structure manifests in the connectivity matrix on

an 8 variable system. Specifically the GasNet involves three structural constraints

1. The gas produced by an electrical node does not effect itself. In the top right

quadrant of Fig. 8.9 all entries along the diagonal are zero.

2. The gas concentrations at a given electrical node only affect that node. In

the bottom left quadrant of Fig. 8.9 all entries are zeros except those along

the diagonal.

3. Gas nodes are not self-recurrent and they do not stimulate themselves to

produce gas. In the bottom right quadrant of Fig. 8.9 all entries along the

diagonal are zero.

This structure can be built into our CTRNN models by eliminating the appropriate

entries of an 8-CTRNN connectivity matrix.

Multiplicative Interactions (M) Multiplicative interactions in the GasNet

act along the dotted line in Fig. 8.5 and correspond with the λ entries of the

bottom left quadrant in Fig. 8.9. The simplest way of introducing them to the

CTRNN is to adjust its formulations so that it includes two species of interaction

i.e., Equation (8.12) is replaced with

τiẏi = −yi + tanh

(

ki

∑

j∈a

ωijy
a
j + θi

)

(8.12)

and

ki = k0
i +

∑

j∈m

ωijy
m
j (8.13)
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Figure 8.9: A representation of the interaction between the variables in a
4-GasNet as a connectivity matrix. The matrix shows the internal interactions
between electrical nodes (top left quadrant), the internal interactions between
gas concentrations (bottom right quadrant), the effects of the gas concentration
on the electrical nodes (bottom left quadrant) and the effects electrical nodes

on the gas concentrations (top right quadrant).

where ya
j and ym

j are the activations of nodes that have an additive or a multi-

plicative effects on node yi respectively.

Temporality (Sl) The electrical network underlying the GasNet is discrete, see

Equation (8.1). We can incorporate this aspect by setting τi = 1 on the assigned

electrical nodes. It is easy show that this makes Equation (8.12) identical to

Equation (8.1).

Fig. 8.10 and Fig. 8.11 show the performance of an 8-CTRNN with various com-

binations of augmentation/constraints. The equivalent of a 8-NoGasNet is con-

structed by setting τi = 1 on all nodes of 8-CTRNN and the results are presented

in Fig. 8.11 for comparison. The fully constrained CTRNN (marked GasNet in

Fig. 8.10) outperforms the simple recurrent neural network (marked Recurrent in

Fig. 8.11). This result is strongly analogous to the comparison between the perfor-

mance of a 4-GasNet and a 8-NoGasNet give in §8.3. However, a simple CTRNN

(marked CTRNN in Fig. 8.10) outperforms the fully constrained CTRNN, this
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suggests that, empirically speaking, the GasNet architecture does not seem to

represent any advance on the CTRNN framework.

A close inspection of these results does reveal something interesting. While the

constraints/augmentations have both beneficial and detrimental effects on perfor-

mance and there are non-trivial interactions between them, a CTRNN augmented

with multiplicative interaction has the best performance overall, see [M, ST, 0]

in Fig. 8.10 and [M, 0, 0] in Fig. 8.11. This tallies with the GasNet elimination

experiments which showed that removing multiplicative interaction has the most

significant detrimental impact on performance. In conclusion the results of this

and the previous section suggest that multiplicative connections are central to the

success of the GasNet for pattern generation at least.

8.6 Conclusions

GasNet research is largely exploratory in the sense that it is not yet clear where

the pay off will be. It could end up telling us about the biology of neuromodulation

if the GasNet model became more empirically grounded. It could turn out be a

handy engineering methodology if the GasNet’s performance was more objectively

assessed. It could just end up providing generic ideas about network interactions

that apply to many domains. If any of these frontiers are to be pushed forward

it will be necessary to get a more principled grip on the details of the GasNet

formulation. This chapter has outlined a set of different comparative approaches

that could potentially do this.

This chapter started by stripping the original GasNet formulation of everything

that did not seem core to central idea of NO neuromodulation . However, it was

not clear which aspects of the GasNet were critical. While we were only really

interested in those aspects that relate to the mechanistic definition of NO we could

not be sure that they did not interact with other details of the original GasNet

formulation e.g the original GasNet includes a developmental phase. Nevertheless,

our first runs preserved the relative performances of the GasNet and NoGasNet

which reassured us that we were at least including some important aspects of the

GasNet formulation.

However, a closer inspection of our comparisons revealed a set of problems con-

cerning the best way to compare disparate formulations. These included concerns

about the size of the network to be compared. For example, while the NoGasNet
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Figure 8.10: The figure shows a CTRNN network with different combinations
of the multiplicative interactions (M), structured interactions (St) and fast sub-
network (F) properties. A CTRNN with all three factors closely resembles core

aspects of the GasNet architecture.
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Figure 8.11: The figure shows the performance of a CTRNN with different
combinations of the multiplicative interactions (M), structured interactions (St)
and fast subnetwork (F) properties on a pattern generation task. The figure also

show the results for a simple discrete recurrent network.
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uses a single variable to represent a node the GasNet effectively uses two. Fur-

thermore, the number of parameters necessary to encode each formulation was

significantly different. The original GasNet employs a variable length encoding

that allows the GA to explore different network sizes. This at least superficially,

seems to sidestep the problem. However, in reality, this is just likely to introduce

another set of problems concerning the sensitivity of performance to the initial

conditions of the parameters in the GA searchspace.

In general, because of the vast differences between many network formulations it

is not clear how one should proceed on this issue and direct comparisons like this

never feel completely fair. Perhaps the only way to compare very different archi-

tectures would be with the benchmark engineering tasks like the robocup. Here

issue of architecture comparability are surrendered to constraints of processing

power and performance is assessed by explicit empirical comparisons.

The second set of studies suggested that sensitivity analysis would be perhaps

a more fruitful avenue of exploration. Here we incrementally eliminated aspects

of one formulation and explored how they impacted on performance. If these

perturbations are kept small then this analysis promises to sidestep the problems

of comparability because it can minimize the differences between the numbers of

parameters and nodes. Furthermore, this type of investigation allowed us to focus

on the mechanistic dimensions of neuromodulation individually.

However, throughout this investigation it became clear that there were a number

of ways to implement each elimination and these often impacted differently on

performance. Furthermore analysis of the results could be difficult because the

eliminations often interacted in complex ways.

Nevertheless, this analysis suggested that both spatial embedding and the explicit

temporal separation between the recurrent networks and gas mechanism had a

detrimental impact on performance. In contrast the inclusion multiplicative inter-

actions was well correlated with high performance.

The last set of experiments was perhaps the most satisfying. It took a more

widely used neural network paradigm and augmented/constrained it to reflect as-

pects of the GasNet. This allowed us to sidestep some of the more esoteric parts

of the GasNet formulation and ground the systemic description of neuromodu-

lation within more well understood theoretical territory. This approach has the

potential to provide a touchstone between this work and a good deal of other work
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in evolutionary robotics. Furthermore, this approach resonates with the descrip-

tion of neuromodulation as a minimal departure from the canonical ANN along

the three mechanistic dimensions given by Definition 7.1. However, even in these

experiments there are a host of complications that could radically affect the re-

sults. For example, there were numerous ways in which the mechanistic ideas of

neuromodulation could have been introduced.

Nevertheless, both including slow CTRNN nodes, see §8.5, and the connectivity

structure that the GasNet implies, see §8.5, had a detrimental impacts on perfor-

mance. Indeed a plain CTRNN network considerably outperformed the GasNet.

However like the elimination experiments the introduction of multiplicative inter-

actions had a beneficial effect on performance and CTRNNs augmented with gain

interactions (through ki, see §8.5) had the best performance overall. Thus far it

not clear why this should be. However, we will tentatively suggest some reasons

for this following the analysis conducted in §10.3.

8.7 Problems

Empirical comparison between different architectures based on performance are

fraught with difficulties. In essence all the experiments presented here have been

attempts to map and describe interesting regions of formulation space. In this

context we can cast our first comparisons of the GasNet to the NoGasNet as a

comparison of two different points in formulation space. In contrast, the elimi-

nation experiments can be seen as exploring the region between the GasNet and

NoGasNet through a series of perturbations. Lastly, the CTRNN augmentation/-

constraint experiments can be seen as perturbing away from a more well under-

stood region in formulation space. Perhaps, the major problem with this kind of

work is that while the notion of parameter space is common and well understood

the idea of formulation space is less tangible. At best, formulation spaces are

highly nonlinear, at worst they are ill-defined and it is not really clear what it

means to move through such a space. While the perturbation experiments on the

CTRNN seemed to be the most effective methodology it became clear that even

small movements from this formulation where not smooth nor straightforward.

Moreover, even if all the above problems were satisfactorily resolved their util-

ity is further challenged because of the simplicity of the task, the specifics of the

GA, and a host of other necessary design decisions. In the end it is not clear

what investigations like these could convincingly add to the current investigations
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of neuromodulation. Consequently, while we shall carry forward the idea that

multiplicative interactions seem to be somehow beneficial for pattern generation

we shall employ a qualitatively different analytical route to the understanding of

neuromodulation in the rest of this thesis. Specifically, in next chapters we shall

explore how we can use the analytical techniques of dynamical system theory to ex-

plore whether differences between the mechanistic definitions of neuromodulation

and neurotransmission can impact on the types of dynamics they underpin.



Chapter 9

Dynamical system analysis of a

pattern generation circuit

This chapter makes some first attempts to apply the DS tools and analysis de-

scribed Chapter 5 to a neuromodulatory system.

Smith et al. (2002) made the first attempt to apply DS analysis to the GasNet

formulation. In particular they identified a frequently occurring subcircuit of suc-

cessfully evolved GasNet solutions that they believed was responsible for their

ability to sustain tuneable pattern generation. There, analysis revealed that the

dynamical pattern generator (DPG) circuit used the gas mechanism to slowly bi-

furcate a fast NoGasNet node between oscillation and quiescence. Moreover they

found the utility of this circuit stemmed from the fact that that the slow envelope

of this bifurcation was easily tuned. However, the discrete nature of the GasNet

system hindered the completion of a more comprehensive DS analysis.

This chapter will attempt to extend and generalise this analysis by developing

and analysing a simple, idealised, continuous version of the DPG circuit. It will

use the well-known FitzHugh-Nagumo (FHN) equation (Murray, 1989, p.161-166),

which exhibits a range of behaviours including both oscillation and quiescence. In

conjunction, it will employ a mechanism based on the original GasNet architecture

to slowly drive the system back and forth across a bifurcation between oscillation

and quiescence. The continuous nature of the FHN equation should allow us to

readily apply DS analysis as well allowing us to make use of a body of existing

analysis concerning the FHN system. Furthermore, the ubiquity of the FHN model

in neuroscience ensures that we have at least some chance of relating any findings

to not only the adaptive behaviour but also neuroscience community.

106
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The goals of this chapter are twofold. First, to shed some light on the reasons

why the GasNet evolves more readily than NoGasNet on the pattern generation

task presented in the last chapter. Although this work draws away from evolu-

tionary robotics methodology, and, as such, cannot provide final answers to this

question it should play a vital role in a reciprocal loop between future empirical

and analytical work. Specifically, it is hoped that the results of this analysis will

shed light on the results of the last chapter and also serve to guide subsequent

evolutionary investigations of the GasNet mechanism. Second, at a more general

level, it will begin to explore how the boundary between neuromodulation and

neurotransmission should be described in the language of DS theory and whether

the differences between these mechanisms impact on the dynamics they underpin.

9.1 The FitzHugh-Nagumo Equation

The generation of electrical pulses in the neuron derives from the differential per-

meability of the neural tissue to chemical ions. This process has already been

briefly outlined in §2.1. The dominant ionic species are potassium and sodium,

but in general there are many ionic species acting over many timescales. Hodgkin

and Huxley (1952) were able to construct a set of equations that successfully re-

produced key experimental data from this process. However a deep understanding

of the underlying dynamics was hindered by their inherent complexity. In 1962

two originally independent pieces of work by FitzHugh (1961) and Nagumo et al.

(1962) joined together to construct a simple, analytically tractable, yet non-trivial

reduction of neuronal dynamics. They achieved this by assuming that sufficiently

fast variables settle to their equilibrium values almost instantaneously. This al-

lowed them to eliminate two variables from the Hodgkin Huxley equations and

derive the FHN equation,

F (v, w) ≡ dv

dt
= f(v) − w + Iα, f(v) = v(a − v)(v − 1) (9.1)

G(v, w) ≡ dw

dt
=

bv − γw

τ
(9.2)

Here, v is the membrane potential, while w plays the role of the ionic currents.

The remaining terms, a, Iα, b, γ and τ are all positive constants. Note: afferent

synaptic input is represented as contribution to Iα which acts additively on the

membrane potential, v.
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This model has been extraordinarily successful and displays many of the key

phenomena discovered in the original Hodgkin and Huxley model. For exam-

ple FHN readily exhibits excitable, oscillatory and quiescent behaviour (Murray,

1989, p.164). Consequently, the FHN seems a natural choice for investigating some

of the issues raised by the idea of neuromodulation.

9.1.1 Dynamics in the FitzHugh-Nagumo Equation

Let us start by examining the dynamics of the FHN equations. Although the

FHN equation involves only two free variables we cannot solve it directly. Instead,

progress can be made by investigating the equilibrium states of the model using

the linear stability analysis presented in Chapter 5.

The w and v-nullclines for this system are given by

w = f(v) + I (9.3)

w =
b

γ
v (9.4)

respectively. The FHN equations exhibit three classes of behaviour which are

determined by the number and stability of the equilibrium points. Fig. 9.1a and

Fig. 9.1b have a single intersection which is locally stable. In fact the system is

also globally stable and all initial conditions of the equations relax to this point.

In this case global stability is guaranteed because the system is bounded and

possesses only a single equilibrium (Strogatz, 1994). Configurations of this sort

represent excitable systems—perturbations generate short-lived spiking followed

by a return to quiescence. Alternatively, if the nullclines cross at their centres the

system has the potential to exhibit both fixed point (Fig. 9.1c) or cyclic behaviour

(Fig. 9.1d) depending on the parameters of the system. Fig. 9.1c exhibits both

local and global stability. The equilibrium in Fig. 9.1d is locally unstable and

the system settles into a cyclic attractor with both w and v oscillating. Fig. 9.1e

presents a multistable configuration of the nullclines. It exhibits three equilibrium

points with two stable (E1 and E3) and one unstable but not cyclic (E2). While

equilibrium positions E1 and E3 are locally stable they are not globally stable

because large perturbations may result in the system transiting from one to the

other. Cyclic behaviour is not possible in this configuration (Murray, 1989).
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Figure 9.1: Modes of FHN behaviour. In the top set of panels the straight and
curved lines are the w- and v-nullclines respectively. In the bottom set of panels
the dotted and solid lines are the w- and v-trajectories respectively. Panels
(a) and (b) represent non-oscillatory fixed-point behaviour but are excitable
under perturbation. If the nullclines cross at their centres then the system can
exhibit a fixed point (c) or cyclic behaviour (d). (e) shows a configuration with
multiple equilibrium points. In general E1 and E3 are locally stable but globally
unstable, while E3 is unstable. The circles mark the region within which the

system equilibrium is unstable ,see §9.1.3.

The rest of this work will focus on perturbations the configuration of the sort

given in Fig. 9.1c and d, where the nullclines cross at their centers. This is the

only configuration able to support both oscillatory and quiescent dynamics.

9.1.2 Linear Stability Analysis of the FHN

In the FHN configuration considered here, i.e., Fig. 9.1c and d, all unstable dy-

namics relax into a cyclic attractor, that is, in all cases the eigenvalues of the

system have nonzero imaginary part (Murray, 1989). Consequently, a bifurcation

between oscillation and quiescence can be characterised simply in terms of loss of

stability at its equilibrium position.

Now, the Jacobian (see Equation (5.11)) for the FHN equations is

J =

(

f(v)
∂v

−1
b
τ

−γ
τ

)

v∗,w∗

(9.5)
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where (v∗, w∗) are the values of the variables at equilibrium. From Equation (5.17)

we can find necessary and sufficient conditions for stability in terms of the trace

and determinant of the Jacobian

tr(J) ≡ ∂f(v∗)

∂v
− γ

τ
< 0 (9.6)

|J | ≡ −∂f(v∗)

∂v

γ

τ
+

b

τ
> 0 (9.7)

Moreover, a closer inspection of these equation allows us to eliminate the second

of these conditions. Specifically, rearranging Equation (9.7) we obtain

b

γ
>

∂f(v∗)

∂v
(9.8)

Now the LHS and RHS of this equation are simply the gradients of the w- and

v-nullclines respectively, see Equation (9.3) and Equation (9.4). Consequently, we

can reinterpret this condition in terms of these gradients. Specifically, for stability,

the gradient of the w-nullcline must be greater than that of the v-nullcline at

intersection. Since this will always be the case for configurations of the type

shown in Fig. 9.1c and d we can safely ignore this condition. Thus, a necessary

and sufficient condition for stability can be written solely in terms of the trace of

the Jacobian, i.e., Equation (9.6).

9.1.3 A Hopf bifurcation in the FHN

Let us take a look how the FHN can be made to bifurcate between an oscillatory

and a quiescent system.

The DPG circuit implements a bifurcation by modulating the gain parameter

ki of the system. In the FHN a closely analogous effect can be implemented

by modulating the γ parameter. Like ki this has a multiplicative effect on the

variables of the system. Fig. 9.2 shows the dynamics of a system changing from

oscillation to quiescence as γ is decreased. Fig. 9.2 shows the impact of decreasing

γ on the nullclines. The circles drawn all plots represent the bifurcation points of

the system. They mark the region within which the value of v∗ is such that the

first term in Equation (9.6) makes the trace positive and hence unstable (which

produces oscillations in this system). Outside this region the trace is negative and

stable. The size of this region is altered by the second term in Equation (9.6).

Originally the equilibrium position, the intersection of the curved and grey line,
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Figure 9.2: How the dynamics a FHN system changes as γ is decreased. Panel
(a) shows the v-nullcline, the curved line, and the movement of the w-nullcline,
from the grey to the straight black line. It also shows the the expansion of
the oscillatory region, from the crosses to the circles. Panel (b) shows the
dynamics of the FHN bifurcating from oscillation (top panel) to quiescence
(bottom panel), here, the dotted and solid line are the w and v variables ,

respectively.

lies within the bifurcation region (the crosses) and hence the system oscillates, see

the top panel of Fig. 9.2b . If γ is decreased the new equilibrium position (the

intersection of the curved and straight black line) lies outside the new bifurcation

region (denoted by the circles) and hence is the system is quiescent, see the bottom

panel of Fig. 9.2b . The bifurcation in this particular case is known as the Hopf

bifurcation and has been the focus of a great deal of investigation, both in its

own right (Strogatz, 1994) and as a model for biological systems (Rinzel and

Ermentrout, 1989).

9.2 A Dynamical Pattern Generator

The DPG circuit utilizes the gas dynamic to modulate electrical oscillation such

that rhythmic patterns of activity are generated. In order to explore a similar

system using the FHN equation, we add a modulatory mechanism analogous to

that employed in the GasNet, see §8.2.1.

Our simple system comprises one node governed by the FHN equation that emits

a modulator, M1, when its electrical activation rises above a fixed threshold, Tv. A

second node is modelled in a much more simple fashion. Should the concentration

of M1 at this node rise above a fixed threshold, TC , it emits a second modulator,

M2. The first node is sensitive to M2, in that concentration of this modulator

affects the parameters of the node’s FHN equation. Note that no electrical activity

is modelled for the second node, which is merely a source of modulator that can
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Figure 9.3: A dynamical pattern generator circuit: The electrical behaviour
of node 1 is described by the FHN equation. It releases a modulator, M1,
when its electrical potential, v, rises above its electrical threshold, Tv. Node 2
is triggered to release a second modulator, M2 when the concentration of M1

rises above its modulator threshold TC . Reciprocally, the concentration of this
second modulator affects the parameters of node 1’s FHN equation.

be switched on and off (see Fig. 9.3). Our equations for modulator growth and

decay at both nodes are given by

dC1

dt
= H1(v)Se1 + (H1(v) − 1)Sne1 (9.9)

H1(v) =

{

1, if v > Tv

0, otherwise
(9.10)

dC2

dt
= H2(C1)Se2 + (H2(C1) − 1)Sne2 (9.11)

H2(C1) =

{

1, if C1 > TC

0, otherwise
(9.12)

The concentration of each modulator is represented by Ci, with their specific

growth and decay rates denoted Sei and Snei, respectively. Each node’s Heaviside

function returns unity when it is emitting and zero otherwise.

Increasing concentration of M2 decreases the γ parameter of node 1 in the manner

described by Equation (9.13), where C2max represents a ceiling concentration value

for M2, and [γmin, γmax] describes a legal range of values for γ.

γ = γmax −
C2

C2max
(γmax − γmin) (9.13)

The system is initialised in an oscillatory configuration. The initial nullclines of

the system are depicted by the grey line and crosses (the bifurcation points) in

Fig. 9.5b. Fig. 9.4a and Fig. 9.4b represent the v and w components of the system.
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Fig. 9.5a shows the build-up and decay of modulators M1 and M2, while Fig. 9.5b

displays how the nullclines change as a result of modulation.

The w-nullcline dynamically oscillates between two configurations presented in

Fig. 9.2. The general effect is to produce a beating/bursting system, with fast

oscillation of the v and w variables within a low-frequency, modulated packet.

Initially, as the system oscillates, M1 builds, stimulating the emission of M2. As

the concentration of M2 rises, it decreases γ such that node 1’s equilibrium position

lies outside the oscillatory region. The delay between the build up of M1 and M2

produces the low frequency packet. There is also a smoothing effect on M2, since

while M1 displays small amplitude, high-frequency oscillations as it builds, these

are not present in the dynamic of M2.

This behaviour strongly resembles that of the DPG circuit identified within an

evolved GasNet solution (Smith et al., 2002). Furthermore, it is relatively easy to

tune the amplitude and frequency of the slow packet by altering the speed and

maximum concentration of the modulators.

There are also strong parallels between this behaviour and bursting dynamics

referred to in the neuroscience literature (Rinzel and Ermentrout, 1989; Izhike-

vich, 2006). Furthermore, biological bursting systems are often implicated in au-

tonomous pattern generation and underpin the rhythm in the respiration, loco-

motion cardiac systems (Rinzel and Ermentrout, 1989). All biological bursting

systems involve the interaction of a slow and a fast subsystem. However, they are

subcategorized depending on the number of variables and the type of dynamics

involved. This system sustains so called slow wave bursting (Izhikevich, 2006).

This is characterised by the presence of two active slow variable (M1 and M2) that

drive fast system (the FHN) between oscillatory and quiescent dynamics. Here

bursting packets result form the delay between the the two slow variable rather

than the hysteresis of the fast variable (Izhikevich, 2006). However, bursting sys-

tems in the neuroscience literature are often though to be implemented by slow

intrinsic ion channels such the as calcium Ca2+ channels (Rinzel and Ermentrout,

1989) rather than NO neuromodulation. Consequently, the extent to which this

model can be used to explore NO systems remains an open question.
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Figure 9.4: The figure shows the output of the system under γ modulation.
Panels (a) and (b) show the dynamics of v and w variables, respectively.
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Figure 9.5: The figure shows the output of the system under γ modulation.
Panel (a) depicts the growth and decay of modulators M1 and M2. Panel (b) dis-
plays the movement of the nullclines and bifurcation points—the grey nullclines
and crosses depict their positions in the absence of M2. Note: the v-nullcline
does not move. The black line and circles denote their locations in the presence

of a maximum concentration of M2.
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9.3 Different kinds of modulation in the FHN

Given the tractability of our model we are now in a position to explore which of

the mechanistic attributes of neuromodulation are necessary for the DPG circuit.

One dimension of the mechanistic definition of neuromodulation is the fact that

they are much slower than the the dynamics of the systems they modulate. This

dimension is integrally bound up in dynamics of the DPG circuit, i.e., bursting

dynamics do not exist without temporal separation. Furthermore the only reason

that the bifurcation analysis conducted in this chapter can provide insight into

the DPG is because the neuromodulator dynamics are much slower than the elec-

trical oscillations. This is necessary to identify ki as a parameter even though

it is dynamically changing. If the dynamics of the oscillator and the modula-

tor had a comparable timescale then this kind of interpretation would not work

i.e. we would not be able to recognise relatively clean epochs of oscillation and

quiescence. Ultimately the justification for this approximation is evidenced by the

explanatory purchase bifurcation analysis gives us on the dynamics in Fig. 9.5, i.e,

we can see relatively clean epochs of oscillation and quiescence in the output of

the system. See §6.2.5 for more discussion of this issue. Consequently apart from

noting that temporal separation is necessary the DPG we cannot really investigate

this dimension much further.

However, another key dimension of neuromodulation is the fact that it “is not

simply excitatory or inhibitory” but modulatory—i.e., it alters behavioural pa-

rameters, rather than merely activation levels. In the DPG circuit this aspect is

synonymous with the fact that the modulatory signal acts on the gain parame-

ter γ which has as a multiplicative effect on Equation (9.1). Contrast this with

the merely additive character of synaptic input (Iα). Furthermore, this dimension

seemed to be strongly correlated with good performance in Chapter 8

What we will attempt to do here is determine whether this aspect is crucial to the

DPG circuit’s operation and, hence, could be implicated in the performance the

GasNet. First let us examine whether other types of parameter modulation, can

put the system through a bifurcation. Fig. 9.6 shows the change in the nullclines

under various parameter modulations of Equations (9.1) and (9.2). Here the grey

and black lines make the positions of the nullclines before and after the modulation

respectively. The circles mark the oscillatory region on the v-nullcline. Each

system successfully bifurcates between an oscillatory and quiescent system.
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Figure 9.6: A transition from oscillatory to non-oscillatory behaviour caused
by three types of modulation: (a) γ modulation, (b) Iγ modulation, and (c)
τ modulation. Each panel displays the movement of nullclines and bifurcation
points—grey lines and crosses depict their positions in the absence of modu-
lation, while black lines and circles denote their locations in the presence of

modulation. See text for details.

There are two ways in which changes to the parameters can affect the configuration

of the nullclines. First, the nullclines can change shape, moving the location of

their intersection, v∗, the system’s equilibrium point. Second, changes to the

nullclines can affect the size of the region of phase space associated with oscillatory

behaviour, indicated by bifurcation points shifting along the v-nullcline.

Fig. 9.6a shows the effect of modulating γ which we have discussed above. The

trace is affected in two ways, because γ changes the gradient of the w-nullcline, it

changes the equilibrium position, v∗, and hence the first term of Equation (9.6).

Furthermore, it also changes the second term of Equation (9.6), which scales the

oscillatory region (note the difference between the locations of crosses and circles).

In contrast the size of the oscillatory region does not change under Iγ modulation,

which merely translates the nullclines (see Fig. 9.6b). The only change to the trace

is due to the first term of Equation (9.6). Perturbing Iγ is analogous to raising

or lowering a GasNet node’s electrical threshold, i.e., increasing or decreasing its

level of activation. Hence, this type of change is not traditionally associated with

neuromodulation since, at root, it is merely “excitatory or inhibitory”.

Fig. 9.6c shows how the system can be bifurcated via modulating the parameter τ .

Perturbing this parameter produces no change in the configuration of the nullclines
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Figure 9.7: The figure shows the output of the system under Iγ modulation.
Panels (a) and (b) show the dynamics of v and w variables, respectively.

and hence no change in the position of the equilibrium position, v∗. Nevertheless,

this kind of modulation affects the second term of the trace equation, and as a

result alters the size of the portion of the v-nullcline associated with oscillatory

behaviour.

In general there are two ways the nullclines can change, first the equilibrium point

can be translated, which corresponds to a change in the fist term of Equation (9.6).

Second, altering certain parameters can change the size of the oscillatory region,

which corresponds to a change in the second term of equation Equation (9.6).

While γ (gain) modulation achieves a mixture of both effects, Iγ (threshold) mod-

ulation produces pure translation, and τ (time constant) modulation achieves pure

scaling of the oscillatory region, leaving the equilibrium position of the system un-

changed.

Given that each of these modulations was able to take the system through a bifur-

cation let us see if they can be used to instantiate a dynamical pattern generator

circuit.

Fig. 9.7 and 9.8 shows our FHN model system under Iγ modulation is modified

such that the γ terms are replaced by equivalent Iγ terms). It successfully produces

beating behaviour analogous to that seen under γ modulation. Variation in M2

causes a vertical translation of the v nullcline such that the equilibrium point,

v∗, lies at times inside, and at other times outside, the region associated with

oscillatory behaviour. The size of the oscillatory region remains unchanged.
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Figure 9.8: The figure shows the output of the system under Iγ modulation.
Panel (a) depicts the growth and decay of modulators M1 and M2. Panel (b) dis-
plays the movement of the nullclines and bifurcation points—the grey nullclines
and crosses depict their positions in the absence of M2. Note: the w-nullcline
does not move. The black line and circles denote their locations in the presence

of a maximum concentration of M2.
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Figure 9.9: The figure shows the output of the system under τ modulation.
Panels (a) and (b) show the dynamics of v and w variables, respectively.
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Figure 9.10: The figure shows the output of the system under τ modulation.
Panel (a) depicts the growth and decay of modulators M1 and M2. Panel (b)
displays the movement of the bifurcation points—the crosses depict their posi-
tions in the absence of M2. Note: neither of the nullclines move. The circles

denote their locations in the presence of a maximum concentration of M2.

Fig. 9.9 and 9.10 and shows the system under τ modulation. Again, it successfully

exhibits beating behaviour. However, this is not achieved by translation of the

nullclines, but rather by a scaling the region of the v-nullcline associated with

oscillatory behaviour. In the absence of M2, oscillatory behaviour is associated

with the portion of the v nullcline spanned by the two crosses. As the concentration

of M2 increases, these points move together, reducing the size of the oscillatory

region, until they collide at a point indicated by the open circle. At or above this

level of M2 concentration, no oscillatory behaviour is possible.

In both cases (as well as the case of γ modulation described earlier), modulating a

particular system parameter achieves beating by allowing the system to alternate

between non-oscillatory and oscillatory modes of behaviour. The manner in which

this alternation is achieved is all that varies. Thus, even though we have discovered

some fundamental differences between the different forms of modulation, each

remains able to support a dynamical pattern generator circuit. In particular, we

have shown that threshold modulation (that is merely inhibitory/excitatory) is

sufficient in this regard, despite not satisfying our definition of neuromodulation.
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9.4 Conclusion

Through constructing a simple model of neuromodulation based on the FHN equa-

tion we were able to obtain a very similar dynamic to that produced by the DPG

circuit in Smith et al. (2002). This lends weight to the idea that the dynamic motifs

exhibited by the GasNet DPG circuit are not completely specific to its formulation

and can be instantiated using more generic notions of neuromodulation.

The dynamics of the DPG circuit constructed here were reminiscent of the beat-

ing/bursting systems often described in the neuroscience literature (Rinzel and

Ermentrout, 1989). In particular all the models of in this chapter instantiated

slow wave bursting systems that depended on the delay between two slow vari-

ables to repeatedly bifurcate a fast subsystem. This raises the question of whether

bursting dynamics is an effective mode for pattern generation for robot control

systems.

We then went on to explore which aspect of neuromodulation were necessary for

the operation of the DPG circuit. Temporal separation between the modulatory

signal the modulated system was necessary for the operation of the DPG circuit

but was also intrinsically bound up with the analytical technique. Consequently,

while it was crucial to the DPG circuit’s operation (i.e., no temporal separation:

no bursting) we could not really explore it any further than this.

However, gain modulation in the GasNet is concordant with the idea that neu-

romodulation is neither excitatory nor inhibitory, but rather modulatory. Conse-

quently, we could explore the role of this in the DPG circuit by replacing it with

other parameter modulations which are not traditionally considered neuromodu-

latory. In particular, we explored the effects of replacing it with additive input,

i.e., Iγ modulation, which we argued was analogous to modulation of electrical

threshold or synaptic input. In addition we also examined the modulation of the

τ parameter. We investigated what these changes meant for our model system,

observing how the system’s nullclines changed under different kinds of parameter

modulation. We conclude that different parameter modulations exhibited key dif-

ferences in their mechanics but all could take the system through a bifurcation. Iγ

modulation could only translate the nullclines. In contrast γ modulation, which is

analogous to gain modulation, could translate the nullclines and also effect the size

of the oscillatory region. Lastly τ modulation affected the size of the oscillatory

region but preserved the configuration of the nullclines.
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Given these differences we explored their effect on the ability of the system to re-

produce the behaviour of a dynamical pattern generator subcircuit. We discovered

that each type of modulation was able to produce the dynamic pattern generation

behaviour even though they did it in a different manner. Thus this doesn’t seem to

provide any insight into why gain modulation is beneficial for pattern generation.

However, while we explored what was possible with each modulation we have not

explored what is likely, i.e., one could ask, is it easier for some types of neuromod-

ulation to put a system through a bifurcation than others? Consequently, in the

next chapter we shall address this by taking a very detailed look at the differences

in the way that gain and other types of modulation bifurcate both 2-dimensional

and n-dimensional systems.



Chapter 10

Not excitatory or inhibitory:

Neuromodulation and bifurcation

The last chapter began to explore the relationship between a mechanistic definition

of neuromodulation and bifurcation. This chapter will take a much closer look at

this relationship. However, it will move away from framing this investigation solely

in the context of the GasNet. Instead, it will attempt to connect more strongly

with the central question of this thesis by broadening the biological context of

bifurcation.

Sharp qualitative changes in dynamics are observed throughout biology (Glass

and Mackey, 1988). For example the change of behaviour in a fight or flight

reflex (Hooper, 2001) or the cessation of breathing as CO2 levels drop (Glass and

Mackey, 1988). In theory these qualitative shifts in dynamics could be modeled by

several different types of mechanism. They could result from a simple switching

mechanism. Where a switch is conceived of as an external, discrete and abrupt

change in the parametrization of a system. Consequently, here, the discontinuous

changes in behaviour may reflect the discontinuous character of the perturbation.

Less straightforwardly sharp qualitative changes in dynamics can result from

smoothly changing perturbations that bring about a bifurcation, see Chapter 5

for a general mathematical description of a bifurcation. While switching mecha-

nisms exist in nature, bifurcations are thought to be a more biologically plausible

way of modeling many phenomena. Bifurcations are best understood by examining

endogenous organisation of a system rather than the nature of the perturbation.

122
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Bifurcation theory is employed throughout computational neuroscience (Arbib,

1998). It is used to describe aspects of the dynamics at many levels of description

from ionic, to neuronal, network, to behaviour (Rinzel and Ermentrout, 1989).

Furthermore, there is a growing interest in the relationship between neuromod-

ulation and bifurcation. Specifically, as we have already suggested in §6.3.1, bi-

furcations are often used to describe the changes in dynamics brought about by

neuromodulators (Marder and Goaillard, 2006).

§3.3 already briefly described how neuromodulators impact on intrinsic neuronal

properties qualitatively changing their autonomous dynamics or response proper-

ties. In summary, neuromodulators can trigger bifurcations between quiescence

and oscillations, or between simple proportional firing and bistability (Harris-

Warrick et al., 1992). These changes in neuronal dynamics often lead to gross

behavioural changes. For example the neuromodulator adrenaline is thought to

control the bifurcation between tonic firing and bursting at the neuronal level

which manifests as a transition between sleep and wake states at the network and

behavioural levels (Marder and Thirumalai, 2002). Indeed, the importance of bi-

furcations in many aspects of neuronal function led Guckenheimer et al. (1993) to

suggests that “it may be advantageous for a neuron to live close to a bifurcation

thus making it sensitive to neuromodulatory input”.

Bifurcations also easily accommodate the idea of reconfiguration (see §6.3.1) de-

fined as changes in network specification that result in a change of its functional

operation. Again, one could use a switch analogy to describe them, however,

Hooper (2001) notes that many reconfigurations are “an emergent property of the

network” and are not “well described by the character of the external trigger or

its effect on a small number of neurons”. Consequently, many have adopted the

formal language of bifurcation theory to describe reconfigurations (Marder and

Goaillard, 2006). Despite this there has been little work that explores whether

there is something about the biochemical nature of neuromodulation that predis-

poses them toward bifurcations.

This chapter will attempt to address this by exploring how the mechanistic char-

acterisations of neuromodulation and neurotransmission (distinguished along the

dimensions in Definition 7.1) impact on their relative potentials to put nonlinear

systems through bifurcations. To do this, we will employ the LSA described in

§5.2. However, in contrast to the last chapter this work will move away from the

details of the FHN paradigm back to the CTRNN introduced in §8.5. The CTRNN

is a more perspicuous and general dynamical system. Moreover, it can be more
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readily extended to the network level which will allow for an investigation of the

impact of neuromodulation on larger systems.

Again, like the last chapter, and in keeping with the majority of work in compu-

tational neuroscience, neuromodulation will be idealised as a slow and extrinsic

influence on a neural circuit. This simplification allows neuromodulation to be

modeled as dynamic changes to the parameters of a system. This chapter will

also employ a very simplified idea of bifurcation. First, it will only look at local

bifurcations and will not deal with global bifurcations directly. Second, it will

only focus on transitions between stable and unstable dynamics, or vice versa.

Specifically it will focus on changes in the real parts of the eigenvalues of the Ja-

cobian and ignore changes in its imaginary parts. Note: this means the notion of

bifurcation is rather underspecified, i.e., it will not distinguish between nodal and

spiral trajectories.

The two complicating factors that form a barrier to the analysis of any dynam-

ical system are their nonlinearity and their size. Consequently, this work starts

by analysing a small linear system and then gradually introducing complexity.

Specifically, it will start by understanding the modulation of a small linear system

and then attempt to generalise these results to a small nonlinear system. It then

addresses the modulation of large (n-dimensional) linear systems. It finishes by

pooling all results and attempting to draw conclusions on the effects of different

types of modulation on an n-dimensional nonlinear system.

10.1 Small systems

10.1.1 A small linear system

Let us start by linearising a simple 2D CTRNN by replacing the sigmoidal function

with a simple linear function (this is equivalent to removing the sigmoidal function

completely).

τ1ẏ1 = −y1 + ω11y1 + ω12y2 + θ1 (10.1)

τ2ẏ2 = −y2 + ω21y1 + ω22y2 + θ2
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The nullclines of this systems are

y1 =
ω12y2

1 − ω11
+

θ1

1 − ω11
(10.2)

y2 =
ω21y1

1 − ω22
+

θ2

1 − ω22

which are linear and as such posses a single equilibrium at their intersection, see

Figs. 10.1-10.3. Note: given that there is only one equilibrium in this system its

local and global stability are equivalent, see Chapter 5 for definitions of local and

global stability. Using Equation (5.11) we can construct the Jacobian around this

equilibrium as

J =





ω11−1
τ1

ω12

τ1

ω21

τ2
ω22−1

τ2





y∗
1
,y∗

2

(10.3)

Like the FHN equations in the last chapter this system can be modulated in

several different ways. However, a closer inspection reveals that each modulation

lies within one of two categories depending on their effect on the stability and the

position of a systems equilibrium.

First, altering the parameters θi has an additive effect on the system’s equations,

see Equation (10.1). This simple additive interaction is representative of the idea

of inhibitory/excitatory input that characterise ANNs, see Definition 7.1. Specif-

ically, it is possible to consider such modulation as the effect of a slow external

synaptic input.

The modulation of θi (θi-modulation) changes the constant term in Equations (10.2)

translating the nullclines and subsequently the equilibrium position, see Fig. 10.1.

However, given that it enters as a constant term in Equation (10.1) it disap-

pears under all partial derivatives and does not appear in the Jacobian, see Equa-

tion (10.3). Consequently, in this linear system, this type of modulation is unable

to affect the stability of the system and is unable to take the system through a

bifurcation.

Henceforth, we will classify modulations of this ilk as zeroth order modulations

because they act on the prefactors of zeroth order variables in the RHS of the

Equation (10.1) i.e the terms (y1)
0 ≡ 1 and (y2)

0 ≡ 1. This idea is taken from the

idea of zeroth order parameters in simple series expansions. For example consider

the general series expansion given by

F (x) =
∑

k

ak xk ≡ a0 + a1 x1 + a2 x2 + ... (10.4)



Chapter 10 Not excitatory or inhibitory: Neuromodulation and bifurcation 126

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

y1
y2

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

y1

θ
1
  = 0.0

θ
2
  = 0.0

Stable

θ
1
  = 0.2

θ
2
  = 0.2

Stable

Figure 10.1: A 2D linear system undergoing a simple zeroth order (additive)
modulation through the parameter θi. The modulation is only able to translate
the position of the equilibrium position but cannot affect the stability of the
system. The dashed and solid lines correspond to the y1- and y2-nullclines
respectively. The grey lines in the righthand panel corresponds to the positions
of the nullclines before modulation. The cross marks the initial conditions of

the system and the dotted line the subsequent trajectory.
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Figure 10.2: A 2D linear system undergoing a higher order modulation
through the parameter ω22. The modulation translates both the equilibrium
position and changes gradient of the nullclines. Furthermore the modulation

bifurcates the system between a stable and an unstable system.

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y1

y2

τ
1
 =  1

stable     
−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y1

τ
1
 =  6

unstable

    

Figure 10.3: A 2D linear system undergoing a higher order modulation
through the parameter τi. The modulation bifurcates the stability of the system

but does not effect the equilibrium position.
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where a0 is the prefactor of zeroth order term i.e. x0 ≡ 1.

Note: zeroth modulations are distinguished from synaptic input because they act

on much slower timescales than the dynamics of the neural substrate and thus can

be equated with parameter changes.

In contrast many parameters feature as prefactors to higher order variables. Where

a higher order variable just refers to all terms above zeroth order, e.g., these include

(y2)
1, (y2)

2, y1y2 etc. Specifically, in this system ωij and 1
τi

feature as prefactors

to the first order variable terms in Equation (10.1). In general most CTRNN

formulations involve only first order parameters i.e. in this case (y1)
1 and (y2)

1.

However we shall refer to them as higher order parameters because all the following

arguments apply generally across this catergory.

Higher order modulations cover a host of interactions that do not fit easily with

the simple notions of inhibition/excitation within traditional ANNs. For example

gain modulation, which we met in both Chapter 8 and Chapter 9, is a higher order

modulation. We suggest that the idea of higher order modulation constitutes a

more formal notion of the idea of “not excitatory or inhibitory” that is core to the

definition of neuromodulation.

In contrast to zeroth order modulations higher order modulations can both change

the gradient and translate the nullclines resulting in a relocation of the system’s

equilibrium position. For example consider ω11-modulation depicted in Fig. 10.2.

Furthermore, because they are prefactors to higher order variables they remain

after some partial derivative operations and feature in the Jacobian, see Equa-

tion (10.3). Consequently, they have the potential to change the stability of the

system.

Note: τi-modulations are a special case of higher order modulations. They feature

as pre-factors to the whole LHS of ODE components, consequently, they have

no affect on the equilibrium position, see the nullclines in Equations (10.2) and

Fig. 10.3. However, they feature in the Jacobian of the system and have the

potential to change stability.

In summary, in this small linear system there is a qualitative difference between

the effect of inhibitory/excitatory input that is characteristic of the canonical

ANN those suggested by an understanding of neuromodulation. Specifically, in-

hibitory/excitatory input, formally characterised as zeroth order modulations, are

unable to change the stability of system and, hence, unable to produce a bifur-

cation. However, all modulations that are nominally neuromodulatory, formally
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characterised as higher order modulations, have the potential to change stability

and bifurcate the system. On the face of it, this result suggests a framework within

which there is a systemic difference between abstractions of neuromodulation and

neurotransmission. Furthermore, it suggests that the property of higher ordered-

ness that defines neuromodulation may be positively correlated with their ability

to bifurcate a systems dynamics.

10.1.2 A small nonlinear system

Of course, biological systems are not generally linear and it is likely that nonlin-

earity will have a significant impact on this result. Indeed, in the last section we

saw that even zeroth order input (Iα-modulation) could take the nonlinear FHN

equation through a bifurcation, see Fig. 9.6.

To examine this issue let us reintroduce the sigmoidal nonlinearity to Equa-

tion (10.1). This gives the 2D CTRNN

τ1ẏ1 = −y1 + tanh(ω11y1 + ω12y2 + θ1) (10.5)

τ2ẏ2 = −y2 + tanh(ω21y1 + ω22y2 + θ2)

The nullclines of this system are

y2 =
atanh(y1) − ω11y1

ω12

− θ1

ω12

(10.6)

y1 =
atanh(y2) − ω22y2

ω21
− θ2

ω21

where atanh(x) is just the inverse of the hyperbolic tangent function (tanh(x)).

In nonlinear systems, LSA no longer provides information about global behaviour.

In general there will be multiple equilibria and as such LSA can only provide

information around one particular equilibrium, see Chapter 5. However, let us

continue and linearize the system around a general equilibrium (y∗

1, y
∗

2). Using

Equation (5.11) we can construct the Jacobian of the system as

J =





ωeff
11

−1

τ1

ωeff
12

τ1

ωeff
21

τ2

ωeff
22

−1

τ2





y∗
1
,y∗

2

(10.7)
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where for notational ease we have have made the following substitutions

ωeff
ij ≡ ωij

d[tanh(Ui)]

dUi
(10.8)

and

U1 = ω11y1 + ω12y2 + θ1 (10.9)

U2 = ω21y1 + ω22y2 + θ2

The Jacobian now consist of a set of effective weights (ωeff
ij ) that comprise a matrix

that constitutes the operator of a linearised system describing the dynamics in

a local region around the equilibrium (y∗

1, y
∗

2). These effective weights not only

depend on the actual weights but are also modified by the parameter θi and,

more generally, by the equilibrium position (y∗

1, y
∗

2) through Equation (10.8) and

Equation (10.9). Intuitively one can think of this as a modification of the linearised

interaction of the variables that depends on the slope of their transfer functions

around the equilibrium position. For example if the equilibrium of a system lies

at the extremities of two units transfer functions (e.g. y∗

1 = 0.9 and y∗

2 = 0.9 )

then they would interact in a much weaker way than if the equilibrium were at

the centres of their transfer functions (e.g. y∗

1 = 0 and y∗

2 = 0 ). Consequently the

former would have low effective weights while the latter would have high effective

weights.

Let us look at how different modulations affect the position and stability of a

given equilibrium. Before we do this it us important to note that, unlike the linear

system, the mathematical classification of zeroth and higher order modulations is

not straightforward. That is θi can no longer be cleanly classified as a pre-factor to

zeroth order variable because it features in the argument of a nonlinear function

(the transfer function), see Equation (10.5). However, the distinction between

zeroth and higher order still demarcates a broad qualitative difference between

types of modulations and as such we will retain these classifications here.

In terms of the movement of the nullclines, θi-modulation and zeroth order mod-

ulations generally have an analogous effect to the linear case. They translate the

position of the nullclines and consequently the position of the equilibrium, see

Equations (10.6) and Fig. 10.4. However, the relationships between the trans-

lation of the nullclines and the actual translation of the equilibrium position is

complicated because of their curvature, see Fig. 10.4.



Chapter 10 Not excitatory or inhibitory: Neuromodulation and bifurcation 130

−1.5 −1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y1

unstable

−1.5 −1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

y1
y2

θ
1
 =   0.5

θ
2
 =  −1.5

unstable       

θ
1
 =   0.5

θ
2
 =  −0.5

stable          

Figure 10.4: A 2D non-linear system undergoing a zeroth order modulation
through the parameter θi. The modulation translates the position of the equi-
librium and bifurcates the system between stable and unstable dynamics. The
dashed and solid lines correspond to the y1- and y2-nullclines respectively. The
grey lines in the righthand panel corresponds to the positions of the nullclines
before modulation. The cross marks the initial conditions of the system and the

dotted line the subsequent trajectory.
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Figure 10.5: A 2D non-linear system undergoing a higher order modulation
through the parameter ω22. The modulation changes the equilibrium position
and the gradient of the nullclines bifurcating the system between stable and

unstable dynamics.
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Figure 10.6: A 2D non-linear system undergoing a higher order modulation
through the parameter τi. The modulation bifurcates the stability of the system

but does not affect the equilibrium position.
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In contrast to the linear case, zeroth order modulations are now able to alter

the entries of the Jacobian by changing Equations (10.8) and (10.9). That is,

θi-modulation alters the Jacobian by translating the intersection of the nullclines

and potentially changing the slope of the transfer functions at equilibrium.

Consequently, zeroth order input now has the potential to bifurcate the system,

for example see Fig. 10.4. This bifurcation is equivalent to the way Iγ modu-

lates the FHN system shown in Fig. 9.6b of the last chapter. There, the crosses

and circles denoted the position on v-nullcline inside of the which the gradient of

the transfer function at equilibrium was sufficient to produce unstable dynamics.

Iγ-modulation bifurcated the system by translating the systems equilibrium out-

side the this oscillatory region. This type of bifurcation is mediated by an effect

analogous to altering Equation (10.8) and Equation (10.9).

Higher order modulations like the linear case, can both change the shape of and

translate the nullclines, changing the position of the equilibrium. Fig. 10.5 shows

how the nullclines move under ω11-modulation. Again, like the linear case, they

feature explicitly in the Jacobian and have the potential to directly effect the

stability of the system. Additionally, however, they can affect the Jacobian indi-

rectly in the same manor as zeroth order modulations by changing the position of

equilibrium. These effects are analogous to γ-modulation in Fig. 9.6a of the last

chapter. Unlike Iγ-modulation, the system was bifurcated by not only moving the

equilibrium position outside the oscillatory region, an effect analogous to altering

Equation (10.8) and Equation (10.9), but by also changing the size of this region,

this is analogous to affecting parameters that feature directly in the Jacobian.

Fig. 10.6 shows how a system can be taken through a bifurcation with τi modula-

tion. This is a special case of higher order modulation and demonstrates that it is

possible to alter the stability of the system without changing the equilibrium po-

sition. This is equivalent to τ modulation in the last chapter, see Fig. 9.6c. There

τ modulation changed the size of the oscillatory region but not the position of the

intersection of the v- and w-nullclines. This is analogous to affecting parameters

that only directly impact the Jacobian.

In summary, in contrast to the purely linear case, zeroth order modulations have

the potential to alter the stability and hence take the nonlinear system through a

bifurcation. Indeed, this is exactly why we were able to construct DPG circuits

with all modulation types, see last chapter. However, the way zeroth and higher

order modulations change the stability of the system is qualitatively different. To

examine this more closely let us take a closer look at the conditions for stability.
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Note: the next set of arguments we construct in this chapter apply to all higher

order modulations. However the timescale parameter τi plays a unique role in a

system’s dynamics. Consequently, we shall omit this parameter from the following

discussions by setting them all to unity. However, we will return to examine the

impact of these timescale parameters on a systems dynamics, in more detail, in

the next chapter.

Using Equations (5.17) we can construct necessary and sufficient conditions for

stability

tr[J ] ≡ (ωeff
11 − 1) + (ωeff

22 − 1) < 0 (10.10)

|J | ≡ (ωeff
11 − 1)(ωeff

22 − 1) − ωeff
12 ωeff

21 > 0 (10.11)

Both zeroth and higher order modulation can affect this value. However using the

result
d [tanh(x)]

dx
= sech2(x)

we can re-write the effective weights as

ωeff
ij ≡ ωij sech2(Ui) (10.12)

Now the effect of zeroth order modulations act through the terms Ui and hence

is constrained by the function sech2(x) which is just the firsts derivative of the

hyperbolic tangent function. Fig. 10.7 shows how a hyperbolic tangent function,

and its first derivative, sech2(x), vary with their arguments. The latter reaches

a maximum value of one when x = 0 and then tends toward zero either side. In

fact this is the general form of the first derivative of all sigmoidal functions. Thus

the maximum absolute values of the effective weights will be when this function

evaluates to one such that they are equal the actual weights i.e.

Max[|ωeff
ij |] = |ωij| (10.13)

Note: here the vertical delimiters perform an absolute value operation rather than

a determinant.

Consequently, as we have already commented on above, the strongest coupling

in this system will be when the equilibrium position exists at the centre of the

transfer function. The nullclines of such a system will cross at their centres and

hence this configuration is often called a centre crossing system (Mathayomchan

and Beer, 2002).
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Figure 10.7: The top panel shows a typical sigmoidal function, here a hy-
perbolic tangent function. The bottom panels show the the first derivative of
this function which in this case is the function sech2x). This function reaches
a maximum when x = 0 which coincides with the maximum gradient of the

sigmoidal function.

Now, given zeroth order modulations can only affect the Jacobian by translat-

ing the equilibrium they can never make the value of the effective weights exceed

their values in the centre crossing configuration or, indeed, change the sign of the

effective weights. Basically, the weights, and higher order parameters more gen-

erally, define the boundary of an envelope within which zeroth order modulation

(θi-modulation) can act.

Given this constraint it is possible to identify a set of systems which are inert

to zeroth order modulations. Specifically, it is possible to define a set of stable

systems which can never be destabilised (bifurcated) by zeroth order modulations

alone.

Note: destabilisation and stabilisation are both types of local bifurcation, see §5.2.

The reverse of this is never true, i.e., it is always possible to stabilise a previously

unstable system with zeroth order modulation by driving each variable to the

extremities of its transfer function such the effective interactions tend to zero.

Let us consider one simple example. Using the stability conditions we can con-

struct Fig. 10.8 which depicts the impact of zeroth order modulation in the inter-

weight plane, i.e. the ω12 and ω21 plane, for a system with negative self-weights,

i.e. ω11 = −0.01 and ω22 = −0.01. The curved lines (bifurcation boundaries) in the

top right and bottom left quadrant denote the region beyond which the system
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is unstable. The rest of the plane is stable. The circles mark the values of the

actual weights of three example system A, B and C. The squares mark the values

of the effective weights around one particular equilibrium (y∗

1, y
∗

2) for each system.

The greyed rectangular regions marks all the possible values of effective weights

for each system, i.e., the boundary defined by the actual weights. Note: each sys-

tem may possess more than one equilibrium and the effective weights around each

equilibrium may be different. However, all equilibria must lie within the greyed

rectangles.

Moreover, the greyed area defines a region within which zeroth order modulation

can move, i.e., zeroth order modulations can never make the absolute value of

effective weights exceed the absolute value of the actual weights. Consequently,

the zeroth order modulations are bound by both the absolute values of the actual

weights and the axes. The dotted arrowed lines denote the possible trajectories

of zeroth order modulations. Let us take a look at three example systems more

closely.

In Fig. 10.8 the actual weights of system A lie below the bifurcation boundary,

consequently, the system will be stable for all possible values of effective weights.

Moreover, zeroth order modulations can never take the system into the unstable

region, i.e., there are no trajectories that cross bifurcation boundaries. Further-

more, even if the the system was in the centre crossing configuration such that

the square coincided with the circle (effective = actual weights) it would still be

stable.

In Fig. 10.8 the actual weights of the system B are in a quadrant where the inter-

weights have opposite sign. No systems in this quadrant are unstable, thus, given

that zeroth order modulations are bound by the axes they can never take the

system across a bifurcation boundary.

In Fig. 10.8 the actual weights in system C lie in the unstable region, consequently,

the centre crossing configuration (where the square is coincident with the circle) for

this system would be unstable. However the equilibrium of this system is displaced

from the centre crossing configuration and, consequently, the effective weights of

this system lie in the stable region. Nevertheless, zeroth order modulations have

the potential to move the system across the bifurcation boundary.

It is important to reiterate that while this analysis describes the constraints of

zeroth order modulation on a single equilibrium it extends to all equilibria in
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Figure 10.8: The plots show how stability of 2D CTRNN varies with its
inter-weights (i.e. ω12 and ω21) for weakly stable nodes (i.e. ω11 = −0.01 and
ω22 = −0.01). The curved lines in the top right and bottom left quadrant
denote the region beyond which the system is unstable. The rest of the plane
is stable. The circles denote the position in the parameter plane of the actual
weights and the squares the effective weights around some putative equilibrium
(y∗1 , y

∗

2) for three systems A, B and C. The greyed rectangles show the region of
possible values of the effective weight as well as defining the the region within
which zeroth order modulations can move. The dotted lines show the a set of

possible trajectories of the effective weights under zeroth order modulation.

these systems. That is, if a system’s actual weights exist below the bifurcation

boundary then no equilibria in the system could be unstable.

Let us take a look at more of the parameter of this 2D system. Using Equa-

tion (10.10) and Equation (10.11) we can calculate how stability depends on effec-

tive weights for different slice through weight space. Fig. 10.9 show how stability

varies with inter-weights for several different value of self-weights and Fig. 10.10

shows how stability changes with the self-weights for several different values inter-

weights. Here the black and white regions denote stable and unstable system
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respectively. While these figures do not give a comprehensive picture of the pa-

rameter space its is representative of the major qualitative regions.

From Equations (10.10) and(10.11) and Fig. 10.9 and 10.10 we can deduce that

system that are inert to zeroth order modulation must have small, or negative,

self-weights in combination with inter-weights that are small or of opposite sign.

Slices of regions that meet these criterion are those to the top left of the grey

dotted line in Fig. 10.9 and between the grey dotted lines in Fig. 10.10. It should

be possible to analytically derive the boundaries of these regions but given time

constraints we will not do this here.

In contrast to zeroth order modulations, higher order modulations, can move more

freely throughout parameter space because they can act directly on the effective

weights. Their effects are not constrained in magnitude nor sign. Consequently,

there will be always some higher order modulation that can destabilise the system.

However, it is possible to construct stable systems that can never be destabilised

by higher order modulation if we artificially constrain their extent. For example

we could stop higher order modulation from changing sign, place constraints on

there maximum and minimum values or only modulate a subset the higher order

parameters (e.g. only the self-weights). By doing this we could constrain higher

order modulations to only act within some region in weight space. This region

could be made comparable to the one that naturally arises from a consideration

of zeroth order modulations. However, this would involve the rather arbitrary

introduction of artificial externals constraints.

So let us reiterate, while it is possible to construct systems that cannot be desta-

bilised by some subset of the class of higher order modulations it is not possible

to construct systems that cannot be destabilised by the full class of higher order

modulations. In contrast, we have shown it is possible to construct systems that

cannot be destabilised by the full class of zeroth order modulations.

The distinction between zeroth and higher order modulations resonates with the

distinction we made between switches and bifurcations at beginning of this chap-

ter. Specifically the inability of subset of higher order modulations to destabilise

a certain set of systems cannot be thought of as an intrinsic property of the sys-

tem but rather is more rightly a property of the modulatory input. In contrast

the inability the full class zeroth order modulations to destabilise a certain set of

systems arises naturally from the intrinsic properties of those systems.
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Figure 10.9: How stability depends on the inter-weights for several different
values of self-weights. White and black regions denote stable and unstable
regions, respectively. The slices to the top left of the grey dotted line have

regions that are inert to zeroth order modulations.

Figure 10.10: How stability depends on the self-weights for several different
vales of inter-weights. White and black regions denote stable and unstable
regions, respectively. The slices between the grey dotted lines have regions that

are inert to zeroth order modulations.
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10.2 An n-dimensional system

Neural systems are not only non-linear but generally involve the interaction of a

large number of variables, e.g, the interaction of neurons at the network level or

ionic channels at the neuronal level. Consequently, in this section we will attempt

to extend the above results and observations to explore the impact of different

types of modulation on n-dimensional systems.

Let us start by honing our understanding on a n-dimensional linear system. Con-

sider

ẏi = −yi +
n
∑

j=1

ωijyj + θi (10.14)

which is just an n-dimensional version of Equation (10.1). Visualisation of the

associated nullclines is prohibitively difficult. Furthermore, they are not central

to the following arguments. Consequently, we will not attempt to represent them

here. However, using the theory in Chapter 5 we can construct the Jacobian of

this system as

J =









ω11 − 1 . . . ω1n

...
...

ωn1 . . . ωnn − 1









y∗

(10.15)

where y∗ = y∗

1 . . . y∗

n is the equilibrium position in vector form. Without a visual-

ization of the nullclines we cannot easily picture how they move under each type

of modulation. However, we can be fairly confident that the type of movement

will be strongly analogous with the 2D case. Specifically, zeroth order input will

translate the multidimensional equilibrium position while higher modulations will

have more complicated affects changing both the gradients and the positions of

the nullcline manifolds.

As for the 2D system zeroth order parameters are absent from the Jacobian. Thus,

without any further analysis we can deduce that they are unable to bifurcate the

system. Similarly, as with the 2D case higher order modulations (e.g., ωij) have

the potential to bifurcate the system.

Let us reintroduce the sigmoidal function to Equation (10.14) to obtain equations

similar to the CTRNN equations,

ẏi = −yi + tanh

(

n
∑

j=1

ωijyj + θi

)

(10.16)
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Now there may be multiple equilibria and the analysis cannot say anything about

the global behaviour of system. Instead we can view LSA as providing insight in

to the local behavior around some general equilibrium point y∗.

Again we will not attempt to represent the nullclines here as it is both extremely

difficult and irrelevant to the following arguments. Using the theory in §5.3 we

can write the Jacobian for an n-dimensional non-linear system as

J =









ωeff
11 − 1 . . . ωeff

1n

...
...

ωeff
n1 . . . ωeff

nn − 1









y∗

(10.17)

where we have made the following substitutions

ωeff
ij ≡ ωij

d[tanh(Ui)]

dUi
(10.18)

and

Ui =
n
∑

j=1

ωijyj + θi (10.19)

Again the results from the linear case are seemingly overturned and now zeroth

order modulations can affect the Jacobian. For example θi-modulation will trans-

late the equilibrium position changing the values of Equations (10.18) and (10.19)

altering the Jacobian. Again, however, the way that zeroth and higher order mod-

ulations do this is different. The impact of zeroth order modulation is constrained

in exactly the same way as we described above. That is, zeroth order modulation

can only change the absolute magnitude of the effective weights because its bound

by the first differential of a sigmoid, Equation (10.18). Thus, given this constraint,

it is possible to identify a set of systems that are unable to be destabilised by zeroth

order modulations alone.

Unlike the 2D system we cannot construct a set of closed form expressions for

the stability of an n-dimensional system. Instead what we can do is turn to some

statistical techniques that were developed in the field of random matrix theory

and introduced in §5.3.

Let us briefly recap the theory given in §5.3. Gardner and Ashby (1970) employed

a numerical method to discover the stability of an ensemble of random networks

of varying network size, (n), and network connectivity, (C) (the probability that
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any entry of the weight matrix Ω is non-zero or, equivalently, the probability

that any two elements interact). The inter-weights were drawn from a statistical

distribution with zero mean and a mean-square value, α. The self-weights were set

to small, or negative, values. Specifically, their theory asserts that, if the variance

of the distribution of the inter-weights is smaller than the May-Wigner threshold,

αMW =
1√
nC

, (10.20)

the system will have a high probability of being stable. Indeed, the probability of

stability will tend to 1 as the size of the system increases, see §5.3.

Let us interpret what this result can tell us about the dynamics around some

equilibrium y∗ in a non-linear system. Now, as we have argued, the effective

weights around this equilibrium cannot exceed the maximum absolute values of

their corresponding actual weights. In addition, appendix A proves the conjecture,

Conjecture 10.1. For a normal distribution with zero mean, it is impossible to

increase the variance by any reduction of the absolute magnitudes of any of the

data points that comprise it.

Consequently, the variance of the effective weights αeff will always be less than

the variance of the actual weights αact, i.e., for all possible y∗

αeff < αact (10.21)

Now, if the variance of the actual weights is less than the May-Wigner threshold,

i.e., if

αact < αMW (10.22)

then the variance of the effective weights must be less than than May-Wigner

threshold

αeff < αMW (10.23)

Consequently, all the equilibria in a system that satisfy Equation (10.22) will

have a high probability of stability. Indeed, all equilibria, in all possible systems,
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Figure 10.11: The plot shows the probability of stability P versus the variance

of the effective weights (αeff ) for size, n = 50, and connectivity, C = 50%. The
dashed lines depict the numerical calculated probability of stability and the
analytically calculated May-Wigner threshold. The solid grey and solid black
lines depict the modulation of two systems A and B, respectively. The variance
of the actual weights of system A (αact

A ) lie below the May-Wigner threshold
(αMW ) and hence zeroth order modulation has a low probability of bifurcating
(destabilising) the system. In contrast, the variance of the actual weights of
system B (αact

B ) lie above the May-Wigner threshold (αMW ) and hence zeroth
order modulation has a higher probability of bifurcating the system.

with actual weights which satisfy Equation (10.22) will have a high probability of

stability.

Note: this analysis cannot describe a region where the system is definitely stable

but only where the systems have a high probability of stability. However, a region

within which systems are definitely stable almost certainly exists. But we do not

do this here and leave it for future work.

Systems that exist in this region of weight space are often called weakly coupled sys-

tems and are studied throughout computational neuroscience. They are thought

to be a good model of the dynamics of network of neurons in many parts of the

nervous system (Hoppensteadt and Izhikevich, 1997). Note: the weakly coupled

region lies in the central portion of the parameter slice presented in Fig. 10.8.

Moreover, it follows that zeroth order modulations have a very low probabillity of

destabilising systems that satisfy Equation (10.22). A caricature of this is depicted

in Fig. 10.11 which is closely analogous to Fig. 10.8. Here we see how zeroth order

modulations are bound by the variance of the actual weights.
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Figure 10.12: A contour map of how stability depends on both the mean of the
weights, ω̄ij, and the variance, α, for size n = 50, and connectivity, C = 20%.
The stable region exists in the bottom left of the figure. The vertical solid grey
line marks the May-Wigner threshold, αMW . The horizontal dotted grey line
fits the data and predicts a similar threshold for the mean ω̄ij

MW , however,
there is no analytical expression for this value. The circle and square mark
the positions of the ensemble properties of the actual and effective weights,
respectively, for an example system. The impact of zeroth order modulation
on the variance effective weights, αeff , is bound by the variance of the actual
weights, αact. Zeroth order modulations could, in theory destabilise, the system
by changing the mean of the effective weights (zero to start) but this is highly

improbable.

There is at least one problem with this argument. While zeroth order modulations

cannot increase the variance of a weight distribution in theory this can alter the

mean and the May-Wigner theorem only deals with distributions that have zero

mean. So let us conduct a brief numerical investigation to see how much of a

problem this is. Fig. 10.12 shows how stability depends on both the mean, ω̄ij,

and the variance, α of the inter-weight distribution. It shows that while the

effective weights are still bound by the variance of the actual weights they could

be destabilised by a positive increase in the mean.

Nevertheless, increasing the mean of distribution by only decreasing the absolute

values of the data points that comprise it is rather difficult. Any zeroth order

modulation that did this would have to be highly targeted and would rely on

making use of outliers in the weight distribution. For example, simply scaling all

the θi values or adding an arbitrary increment to them all is unlikely to increase
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the mean because these operations are as likely to increase as many effective weight

values as they decrease.

Moreover, by inspection, it is likely that the maximum possible value of the mean

after any zeroth order modulation will just be the mean of the positive data points.

That is we can conjecture,

Conjecture 10.2. Consider a normal distribution with zero mean. The maximum

positive mean value that can be obtained by an arbitrary reduction of the absolute

magnitudes of the data points of this distribution will be equal to the mean of the

positive data points that comprise it.

We will not prove this in this thesis and leave it for future work. If this conjecture

is true, however, in addition to condition Equation (10.22), if mean of the positive

actual weight values is below some threshold, e.g call this (ω̄ij
MW ), see Fig. 10.12,

it would highly improbable that the system could be destabilised by zeroth order

modulations alone. It should be possible to go back to the original work by May

and derive and expression for ω̄ij
MW . However, we will leave this for future work.

In contrast to zeroth order modulation destabilising the system with higher order

modulation is relatively straightforward. This could be achieved by simply multi-

plying enough of the weights by a simple prefactor value to push the variance of

the effective weights over the May-Wigner threshold. It is interesting that such a

modulation would not only have to be higher order but must also act on multiple

weight values simultaneously in order to increase the variance. This resonates

with one aspect of the second dimension of the definition of neuromodulation ,

see Definition 7.1, i.e., neuromodulators are often thought one-to-many effect on

neural tissue, see §6.2.4.

Lastly, using our intuitions from 2D system we can conjecture that there is an-

other region in n-dimensional system space that is inert to zeroth order modula-

tion. Fig. 10.8 exhibited another stable region when the weights were of opposite

sign, i.e. ωij = −ωji, and the self-weights where small or negative. This suggests

that the analogous region in n-dimensional systems parameter space may also be

stable. In fact they are and this region of weight space was utilized by John Hop-

field for his attractor networks exactly because it guarantees stability (Hopfield,

1982).However, unlike the weakly coupled region it is not possible to explore the

stability of this region in an n-dimensional system with linear stability analysis.

Instead one would have to look toward Liapunov functions and global stability

(Haykin, 1999) . We will not attempt to do this here and leave it for future work.
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Interestingly this region bare close resemblance to ideas in the neuroscience lit-

erature that suggest that regions of the nervous system balance excitation and

inhibition. It has been well known for a long time that imbalance between exci-

tation and inhibition can cause serious neurological diseases such as epilepsy (?).

It would be interesting to see how the results in this chapter could connect with

this literature.

10.3 Summary

In this chapter, in line with a good deal of computational neuroscience models (see

Chapter 6), we modeled neuromodulation as a slow external input to a nonlinear

system. This allowed us to idealise neuromodulatory input as changes to a system’s

parameters and hence investigate the impact of neuromodulation in terms of the

LSA introduced in Chapter 5.

One of the core mechanistic differences between neuromodulation and neurotrans-

mission derives from the idea that neurotransmission is often cast as inhibitory/ex-

citatory while neuromodulation is cast as the antithesis of this, see Definition 7.1.

A simplistic interpretation of this idea involves equating neurotransmission with

additive/subtractive input and neuromodulation with multiplicative input, see

§6.2.3. However here we constructed a more formal distinction in terms of the

parameters of a simple series expansion. Specifically we equated neuromodulatory

input with changes to the prefactors of higher order terms and slow synaptic input

with changes to the prefactors of zeroth order terms. Thus we arrived at a more

formal classification of neuromodulation as a higher order modulation while slow

synaptic input was equated with zeroth order modulation.

We the attempted to determine whether there were any difference between the

potential of zeroth and higher modulations to put a nonlinear systems through

bifurcation (and necessary property of the first item of Definition 7.2).

Within a 2D linear system we found that zeroth order modulation could never take

the system through a bifurcation because they did not feature in the Jacobian.

In contrast, higher order modulations could bifurcate the system because they

featured directly in the Jacobian. At least superficially this difference strongly

resonates with the relationship between neuromodulation and bifurcation apparent

in the neuroscience literature. However, this clean distinction between zeroth

and higher order modulation disappeared when we introduced nonlinearity to the
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2D system. Now zeroth order modulations could bifurcate the system because

they acted through a nonlinear transfer function and consequently featured in the

Jacobian.

Nevertheless, the way that zeroth and higher order modulations impacted on the

Jacobian was qualitatively different. Specifically, in a nonlinear system the inter-

actions around equilibrium are defined not only by the weights of the system but

also by the equilibrium position. This is because the equilibrium position deter-

mines which part of the transfer function the systems variables interact at. This

in turn impacts on the strength of the coupling at equilibrium. Consequently,

the dynamics around equilibrium in a nonlinear system are defined by a Jacobian

comprising of a set of effective weights. While higher order modulation have the

potential to impact directly on the effective weights, zeroth order modulations

are constrained to act through the first order differential of the transfer function

which for a sigmoidal functions has a maximum value of 1 at its center and drops

to zero either side, see Fig. 10.7. Using this distinction we were able to describe

a set of stable systems that could not be destabilised (bifurcated) by zeroth or-

der modulations alone. This region occurs when the self-weights of system were

small or negative, and the inter-weights where either small or of opposite sign. An

analogous region did not exist for higher order modulations.

We then attempted to extend this analysis to n-dimensional non-linear systems.

However, unlike the 2D system in an n-dimensional system it is not possible to

construct a set of inequalities describing stability. Instead, we had to turn to some

statistical analysis originally developed in particle physics. While this analysis did

not describe a region in which zeroth order modulations could never bifurcate a

stable system it could describe a region within which this was highly improbable.

Such a region occurs when self-weights are small or negative, and the inter-weights

have a zero mean and a variance smaller than the May-Wigner threshold. This

is the so called weak coupling regime which we shall label Sw henceforth. How-

ever while zeroth order modulation could never increase the variance of the inter

weights in this region it could in theory destabilize the system by affecting the

mean. However, a simple inspection of the impact of zeroth order modulation on

the inter-weight distribution suggested that this is highly improbable.

In contrast, destabilisation with higher order modulation is relatively straightfor-

ward and simply involves scaling enough of the inter-weights such that the variance

of inter-weight distribution exceeds the May-Wigner threshold. We also noted an-

other property that is necessary for any modulation to have a high probability
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of bifurcating a system that lies below the May-Wigner threshold. Specifically,

not only must such a modulation be of higher order it must also act on enough

weight values such that it can change their variance. This requirement resonates

with one interpretation of the second dimension of the mechanistic definition of

neuromodulation given inDefinition 7.1, i.e., neuromodulators are often idealised

as having one-to-many effects on neural tissue, see §6.2.4.

We also conjectured there was another region of stable systems that could not

be bifurcated by zeroth order modulations. This was the when self-weights were

small or zero but the inter-weights where of opposite sign. Networks with this

architecture have already been employed by (Hopfield, 1982). We shall label this

region SH from henceforth.

This work has begun to build a framework within which we can distinguish between

neuromodulation and neurotransmission. Furthermore, this distinction resonates

with the proclivity of neuromodulators to produce bifurcation in neural systems.

Furthermore, the regions Sw and SH are used extensively in neuroscience models

and are thought to model certain neural region and possess a range of interesting

properties see (Hoppensteadt and Izhikevich, 1997). However, to our knowledge

these regions have never been described in terms of LSA, in particular in terms of

May-Wigner threshold, nor has the difference between the impacts of zeroth and

higher order modulations on these region been highlighted.

This work has moved away from our original concerns with the details of the

GasNet (see Chapter 8). However, before we move on, it is possible to stop

and and make some informed conjectures about the results of Chapter 8. Smith

et al. (2002) postulated that a dynamical pattern generator circuit is central to

the successful evolution of pattern generation networks. They suggested that the

DPG circuit depends on the bifurcation of a 2D system, comparable to the one

studied here, between stable (fixed point) and unstable (cyclic attractor) dynamics.

Moreover, the results presented in Chapter 8 suggest that network formulations

that include gain modulation, a higher order modulation, perform better than

those without. Consequently it is tempting to conjecture that network formulation

that include higher order interactions are more evolvable because they have a

greater potential to produce the bifurcations that are a core part of the DPG

circuit. These conjectures would need a lot further investigation to substantiate,

however, this is outside the scope of this thesis and is left for future work.
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Thus far we have focussed on the distinguishing between neurotransmission and

neuromodulation along the second dimension of Definition 7.1. In the next chapter

we will take closer look at some of the functional properties of stable regions Sw

and SH .



Chapter 11

Properties of the Weakly Coupled

Region

The description of the stable regions Sw and SH in the last chapter arose as a

corollary following our attempt to formally distinguish between neurotransmission

and neuromodulation along the second dimension of Definition 7.1. However,

we then went to suggest that these regions are also used to model important

properties of the nervous system, e.g, weakly coupled networks (Hoppensteadt and

Izhikevich, 1997) and Hopfield networks (Hopfield, 1982). In this section we shall

take a much closer at the properties of these regions and address their relationship

to some work from in both neuroscience and adaptive behaviour. We start by

describing some of the properties of the weakly coupled region Sw in relation to

signal propagation across recurrent neural networks. We then go on to address

the relationship between the size of the stable region Sw and ideas of homeostasis.

We finish by outlining a picture of nervous dynamics that this understanding of

neurotransmission and neuromodulation suggests.

11.1 Centre-crossing systems and Signal trans-

mission

Signal propagation is central to the control systems of all adaptive agents in that it

is crucial for the effective transduction of sensory input into motor output. Biolog-

ical systems seem to achieve successful signal propagation over extended networks

of neurons with relative ease (Carlson, 1991). Feed-forward neural architectures

148
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have been employed to investigate how signals propagate across networks and can

construct complex mappings between input and output (Rumelhart and McClel-

land, 1986). However, in general, biological neural networks are recurrent, even

in systems that have previously been idealised as feed-forward in nature, e.g., the

columns within the visual cortex have recurrent connections within and between

layers (Carlson, 1991). Signal propagation across such recurrent networks is likely

to be more complex than in feed-forward networks, where is taken for granted.

There has been a deal of speculation in neuroscience concerning mechanisms that

could promote signal propagation across a sequence of neurons (Turrigiano, 1999).

One set of ideas involves the behaviour of nodes that tend to interact at the centre

of their operating ranges. In general, networks of such neurons are thought to

be computationally rich. More specifically, in this regime, nodes are maximally

sensitive to input, potentially facilitating more efficient signal propagation across

extended networks. Moreover, Turrigiano (1999) describes how homeostatic pro-

cesses (HPs) might actively “keep neurons at the centre of their operating ranges”

(Turrigiano, 1999).

Inspired by this work, Williams (2006) studied how an abstraction of these HPs

affected the ability of a continuous time recurrent neural network (CTRNN) to

propagate signals. In this work, HP provided a simple feedback mechanism that

altered the gain and bias of a node such that its input tended to lie at the centre

of its transfer function. He hypothesized that networks composed of such nodes

would be better able propagate signals, because local HP at the level of individual

nodes would drive networks into the most sensitive region of their dynamics.

Williams found that HP drove systems toward a configuration that has been iden-

tified as significant within the CTRNN literature. In this so-called “centre cross-

ing configuration” all nodes in a CTRNN interact at the centre of their sigmoid

transfer functions (Mathayomchan and Beer, 2002), a mathematical property that

bears close resemblance to the biological ideas highlighted by Turrigiano, amongst

others. Williams also demonstrated that signal propagation was improved within

such centre crossing networks.

However, this signal propagation was impoverished within larger networks, and did

not approach the performance achieved by an equivalent feedforward architecture

even for small networks (pers. comm.). One possible reason for these results can be

induced from the original work on centre crossing CTRNNs (Mathayomchan and

Beer, 2002). Here, it was demonstrated that the generation of rhythmic patterns

evolved more readily in such networks. This is due to the fact that centre crossing
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networks are likely to produce oscillatory dynamics. Such oscillatory behaviour is

likely to corrupt the transmission of signals across extended networks and explain

why such networks would be outperformed by feed-forward networks that do not

exhibit such autonomous oscillations.

There seems to be deep conflict between these two accounts of the utility of the

centre crossing configuration. One possible reconciliation of this conflict arises

naturally from the analysis given in the last chapter. Specifically, networks whose

parameters lie in the region Sw have guaranteed stability. Specifically, even if

networks in this region are in the centre crossing configuration they would still be

stable, see discussion in §10.1. Intuitively speaking, systems of this sort promise to

underpin both sensitive signal propagation without the interference of oscillatory

dynamics.

To explore these ideas further here we will examine how signal propagation varies

inside and outside Sw (recall: this region is demarcated by the May-Wigner thresh-

old, see §10.2) for a number of CTRNN topologies. We consider these results in

relation to “centre crossing ideas“ developed by Mathayomchan and Beer (2002)

and discussed in the last chapter.

11.1.1 Signal Propagation in a Recurrent Sheet of CTRNN

Nodes

Here we examine signal propagation across laminar sheets of CTRNN nodes utilis-

ing the tools developed within the previous section. Each sheet consists of N = 60

nodes arranged in a L×W = 15×4 rectangular array. The networks are connected

according to various topologies, see Fig. 11.1. Each connection within the network

(i.e., the value of each entry in the weight matrix, Ω) is drawn from a Normal dis-

tribution with zero mean and variance α. Similarly, the biases of the network are

again drawn from a Normal distribution with zero mean and variance var(Θ). All

networks are forward integrated with an Euler step of δ = 0.05 . Note: this way of

randomly constructing CTRNNs resembles the way in which an initial population

of neural networks is constructed prior to some period of artificial evolution, see,

e.g., Beer (2003).

A square wave signal is applied to the input node i = 1. This comprises intervals

of low stimulation, I1 = 0, for periods uniformly distributed over the interval

[50, 400], and high stimulation, I1 = 1, with length uniformly distributed over the
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Figure 11.1: A laminar sheet of N CTRNN nodes arranged in an array with
width, W , and length, L, is driven by a square wave input signal at one corner
node. The correlation between this input signal and the output taken from
the diametrically opposed node is measured for three different topologies: (a) a
rectangular lattice, (b) the same lattice randomly rewired such that every node
is assigned k = 4 incoming edges at random, but out degree is free to vary, (c)

a fully connected network.

interval [50, 200] time steps, see the top two panels of Fig. 11.3. We measure the

correlation between the input signal and the output signal from the diametrically

opposite node, see Fig. 11.1. Note: calculating correlation involves scaling each

signal by its variance and is therefore insensitive to the absolute magnitude of

the signal. However, here we apply a small magnitude noise signal to each node

(≈ 10−6) at every time step, which effectively masks any correlation between

the input and extremely small output signals. Finally, the phase delay between

input and output signal imposed by the shortest path length separating the input

node from the output node is corrected for such that, for every measurement, the

correlation is maximised, see the top left panel of Fig. 11.3.
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First we consider networks in which all bias values, θi, are set to zero. Note:

this ensures that network equilibria occur where all node activations are zero.

Furthermore, at such equilibria, all nodes interact at the centre of their sigmoidal

transfer functions such that Ωeff = Ω. Hence all such CTRNNs can be considered

to be very simple examples of centre crossing networks.

Fig. 11.3 shows typical traces of the input, output and inter node activations for

a lattice network (see Fig. 11.1a). The two left-hand panels depict the dynamics

of such a network parameterised to lie within the weakly coupled region below

the May-Wigner threshold. The output signal closely maps the input with some

consistent delay, but the absolute magnitudes of the node activations are very

small, since the signal is significantly attenuated as it traverses the lattice. As a

result, signal propagation performance is critically dependent on the scale of any

noise within the system. For systems with small weight values, the output signal is

so small that it is washed away by the internal noise injected at each node. The two

right-hand panels depict the dynamics associated with a lattice parameterised to lie

above the May-Wigner threshold. Networks in this region exhibit high magnitude

complex dynamics unrelated to the input signal. In general the absolute value of

the propagated signal increases with weight variance. Note the difference in scale

on the y-axes of the lower panels.

Fig. 11.2 shows how the correlation between input and output, corr(Input/Output),

varies with the log of the variance of the weights, log10(α) for the three different

network connection topologies given in Fig. 11.1. The left-hand panel presents

results for a lattice network (see Fig. 11.1a), and shows that the correlation be-

tween input and output rises and then falls with the variance of the weights. More

specifically, there is an intermediate region where the coupling between nodes is

high enough to resist signal attenuation, but low enough to avoid instability. This

“sweet spot“ is located just below the May-Wigner threshold.

The right-hand panel of Fig. 11.2 presents results for a rewired lattice (Fig. 11.1b)

and a fully connected network (Fig. 11.1b). For these topologies, the short path

length between input and output nodes ensures that the signal attenuation prob-

lem suffered by the lattice is not as significant. As a result, high correlation be-

tween input and output can be achieved with low weight variance. However, the

figure confirms that signal propagation still falls sharply above the May-Wigner

threshold for these networks, despite the potential advantage conferred by their

short minimum path lengths.
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Figure 11.2: The correlation between input and output signal,
corr(Input/Output), versus the log of the variance of the weights, log10(α)
for rectangular laminar networks with length (L = 15) and width (W = 4) and
all biases, Θ, set to zero. The solid line in the left-hand panel and the circles
and squares in the right-hand panel show the correlation for a lattice network
(see Fig. 11.1a), randomly rewired lattice network (see Fig. 11.1b) and fully
connected network (see Fig. 11.1c), repsectively. The dot-dashed lines are the
respective numerically calculated probabilities of stability, and the vertical lines
represent the analytically derived May-Wigner thresholds. Each data point is
calculated as the average if 50 network realisations with the error-bars in the

left-hand plot representative of standard deviations throughout.

Note that the different topologies of the rewired lattice and fully connected network

lead to differences between the results of both the numerically predicted probabil-

ity of stability and the position of the analytically derived May-Wigner threshold.

This fall in performance is well predicted both by the numerically calculated prob-

ability of stability and the analytically calculated May-Wigner threshold, further

supporting the arguments made in section 2. Specifically, as the weight variance

exceeds this threshold, reverberant oscillation and node saturation associated with

the unstable regime destructively interferes with the transmission of information.

How do these results generalise to networks that are not in a centre crossing

configuration? Fig. 11.4 shows how the input/output correlation varies with the

log of the variance of the biases, log10(var(Θ)), for the three different network

topologies. In each case, the variance of the weights, α, is set according to Fig. 11.2

such that it maximises signal propagation for unbiased networks. In all cases,

increasing variance damages signal propagation. Nominally, this result is in line

with (Williams and Noble, 2007).
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Figure 11.3: Plots of network activity over time for the lattice network re-
ported in Fig. 11.2 parameterised below the May-Wigner threshold (left-hand
panels) and above it (right-hand panels). The two top panels show the input
signal and the scaled output signal, solid and dashed lines respectively. The
bottom two panels show a representative selection of the absolute activation
values for all nodes. Note the difference in scale of y-axes on the bottom pair
of graphs. The delay between the input and output signal is marked on the

top-left panel.

Interestingly, effective signal propagation in both the fully connected network and

the rewired lattice is more resistant to increasing variance in Θ. This is likely

to stem from the involvement of fewer nodes in the path along which the signal

propagates. However, the key observation here is that departure from centre

crossing configurations does damage signal propagation.

11.1.2 Conclusion

Not only is signal propagation across CTRNNs, and recurrent networks in general,

maximised when they are in a centre crossing configuration, but that they must

also lie within the weakly coupled regime bounded by the May-Wigner threshold.

More accurately, while the May-Wigner threshold speaks to ensembles of networks

with Normally distributed weights, a more general stability criterion derived nu-

merically via linear stability analysis provides a similar bound that can apply to

networks in general. Furthermore, signal propagation is robust to internal noise to

the extent that a networks nodes are strongly coupled. These two factors combine
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Figure 11.4: The correlation between input and output signals,
corr(Input/Output), versus the log of the variance of the biases, log10(Θ), for
networks with length, L = 15, and width, W = 4, connected as a lattice (solid
line), rewired lattice (circles) and fully connected (squares). All networks have
weight variance, α, which maximises the signal propagation across unbiased net-
works. Each data point is calculated as the average of 50 network realisations
and representative standard deviations are given by the error bars on the solid

line.

to ensure that a region just below the May-Wigner threshold is optimal for sig-

nal propagation in recurrent networks since it combines stability with low signal

attenuation.

While it was apparent that network topologies resulting in short path lengths

between input and output nodes (e.g., fully connected networks) achieved high

performance in signal propagation, this performance was also bounded by the

same thresholds on stability. In fact, since we are interested in signal propagation

as a proxy for signal transduction, a requirement for the involvement of interme-

diate nodes that can provide a substrate for successive computational operations

is implied, ruling out short path length as a solution to signal transduction in

general.
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11.2 Homeostasis and the size of the stable re-

gion

One concern regarding the stable region Sw is that its size shrinks rapidly with

system size. Specifically, from Equation (10.20) we can see that the value of the

variance of the inter-weights necessary for stability decreases with the inverse root

of the the number of nodes. Even in the presence of low connectivity it would be

hard to argue that the networks within this region could play a significant role

when the system size approaches that of biological nervous systems.

However, we can hypothesize on possible solution by again looking to HP’s. In

particular, neuroscientists not only conjecture that HP’s drive systems toward

sensitive regions in their dynamics but that they are also able to stabilise dynamics

(Marder and Goaillard, 2006).

Let use briefly investigate whether HP’s could stabilise an n-dimensional systems

dynamics. To do this, let us extend the network given in Equation (10.16) by

associating each node with a simple homeostatic negative feedback loop. For

example, Fig. 11.5 shows a simple 4-node network with and without a set of

idealised HP’s. The dynamics of this system are given by the equations

ẏi = −yi + tanh

(

n
∑

j=1

ωijyj + θi − ωhhi

)

(11.1)

ḣi = −hi + tanh (−0.1hi + ωhyi)

where hi is a homeostatic variable associated with each node yi and ωh is the

magnitude of the homeostatic feedback loop. The homeostatic variable is weakly

stable. This is indicated by the small negative self-weight (0.1) opposing the

change of the variable yi.

We shall focus our investigation around a single equilibrium in this nonlinear

system and use LSA to determine its stability. Specifically, let us look at the

dynamics around the centre-crossing point of this system by setting θi = 0, ∀i.

This produces an equilibrium at y∗ = 0̄, see §11.1.1. Using the theory in §10.2 we
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Figure 11.5: Panel (a) shows 4 node network with weakly negative self-
weights. The solid lines denote the set of inter-weights of the system. Panel (b)
shows an identical network save that every node is augmented with a homeo-
static variable (hi) which completes a simple negative feedback loop. The self-
weight of each homeostatic unit is small and negative and the external weights

are ±ωh

can construct the Jacobian of this system as

J =



















ωeff
11 − 1 ωh . . . ωeff

1n 0
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



y∗=0̄

(11.2)

Using the theory discussed in §5.3 we can now calculate and compare the stability

of this system and a system without HP’s (see Equation (10.16) and (10.19)).

Fig. 11.6 shows how the stability of networks with 50 nodes and 50% connectivity

depends on the variance of the inter-weights (α) for networks with and without

HP’s. The stability is calculated in the same way as in §5.3.

Homeostatic networks exhibit a greater degree of stability than plain networks.

That is, the transition to instability takes place at a much greater variance in

the homeostatic network. This demonstrates that, in principle, it is possible to

increase the size of the stable region by employing certain dynamical structures.

This result is interesting because it both agrees with neuroscientist’s intuitions

about one role of HP’s but, furthermore, it suggests that the stable region could

be made large enough to play a role in nervous dynamics.

Superficially, this result seems to contradict the arguments given in the previous

section. There we cited work that suggest that HP’s promote oscillation and

hence unstable dynamics. However, these two scenarios are subtly different and it
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Figure 11.6: Plot (a) shows the probability of stability P versus the variance
of the weights for networks of size, n = 50, and connectivity, C = 50%. The
vertical dotted line shows the predicted May-Wigner threshold for this network.
Plot (b) shows the same network but now augmented with a homeostatic unit
on each variable. Each HP have inter-weights of ±4 and small negative self-
weights. The transition to instability happens at a much greater variance in

this network.

is possible that HP can both make more system parametrizations oscillate while

increasing the size of the stable region. This is because many equilibria in a

nonlinear system will be unstable but not oscillatory. So while HP can increase

the size of the stable region it can also ensure that more unstable systems result

in oscillations. Indeed this phenomena is at the heart of the conflict between the

dynamics observed by Williams and Noble (2007) and the belief of neuroscientists

that HP stabilises systems. This conflict needs a good deal more explanation and

investigation but we shall leave this for future work.

11.3 Neuromodulation and transitions between

stable and unstable dynamics: Intermittent

Nonlinearity

While we have argued that systems in the stable region are computationally im-

portant the oscillatory and even chaotic dynamics of systems outside these regions
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will be equally important. Fairly obviously oscillations have a role in pattern gen-

eration. Less obviously, perhaps, chaos has been suggested as a mechanism to

allow systems to decide quickly between attractors, e.g., the side to side move-

ments of a tennis player receiving a serve are thought to be chaotic in order to

allow them to quickly move for the ball.

Hence one possible role of neuromodulators is perhaps as signals that allow a

system to elastically intermit between periods of stable and unstable dynamics.

This could allow periods of relatively linear dynamics, which we conjecture are

conducive to signal propagation, and periods of oscillatory or chaotic dynamics

for other functions. Echoes of this dynamic intermission are present in work that

describes thalamacortical systems in which neuromodulators allow the system to

transition between sleep and wakefulness (Marder and Thirumalai, 2002).

We must not forget that it is always possible to build any of the above dynamical

motifs out of the purely zeroth order interactions in a CTRNN. However, it is the

parsimony with which the above systems achieve useful dyanmics allied with the

way it resonates with neuroscience that makes it so intuitively appealing.

In the next two chapters we move away from a focus on the relationship between

neuromodulation and bifurcation and look more closely at the second and third

dimensions of Definition 7.1. However, we shall return to summarise the work of

this and the last chapter in the conclusion, see Chapter 14.



Chapter 12

Not fast: Timescale and stability

While timescale separation is one of the core dimensions of neuromodulation it has

only featured indirectly in the investigations thus far. This chapter will examine

the issue of timescale separation more directly.

The models in the last two chapters and the majority of computational neuro-

science models idealise neuromodulation as an extrinsic effect. However, this

chapter will explore the idea of neuromodulation as intrinsic part of a systems

dynamics. In particular, it will examine how the timescale parameter, τi, which

was omitted from the models of the last chapter, impacts on the generic dynamics

of a system.

12.1 Introduction

Temporal separation between slow neuromodulatory pathways and fast neuro-

transmission is a core dimension of our mechanistic definition of neuromodulation,

see Definition 7.1. Furthermore there is growing recognition that this aspect of

neuromodulation is key to the ability of networks to tune, regulate and reconfigure

adaptive behaviour (Poggio and Glaser, 1993; Katz, 1999; Turrigiano, 1999). This

has led many researchers to place temporal separation central stage in investiga-

tions of neuromodulation. For example Poggio and Glaser (1993) remark “it is

critical that the next generation of network models enable us to develop a better

understanding of how the dynamics of network functions arise from the fast, slow

and very slow process in networks and neurons”.

160
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Many of the model systems central to artificial life are networks of simple inter-

acting elements. Cellular automata (CA), random Boolean networks (RBNs) and

of course ANNs and RNNs, for instance, have become key tools in understanding

what it is for a system to exhibit complex adaptive behaviour. These models tend

to be the subject of very different kinds of question. For example, the generation

of different classes of dynamic behaviour (fixed, cyclic, complex, chaotic) has been

of interest to CA and RBN researchers (Kauffman, 1993), whereas those work-

ing with RNNs have been interested in questions of evolvability, problem solving

and autonomous agent control, amongst others (Beer, 1995). Interestingly, in

answering these questions, the role of timescale within these systems has often

been neglected. CA and RBNs typically comprise elements that share the same

timescale (are updated with the same frequency), and have sometimes, partly as a

result, suffered from synchrony-related artifacts (Di Paolo, 2000). In fact, Kauff-

man (1993) provides a justification for adopting a discrete, synchronous update

scheme, which relies on assuming a separation between the slow timescale over

which interactions take place and the fast (instantaneous) timescale over which el-

ements respond to these interactions. Similarly, while CTRNNs comprise neurons

with explicit and varied timescales, this property has not received as much atten-

tion as others. For example, Beer (1995) presents an extensive examination of the

behaviour of CTRNN neurons, but only briefly mentions the impact of their time

constants. This tendency to downplay timescale is somewhat surprising, since the

natural adaptive systems that inspired these models typically involve processes

and mechanisms that operate at multiple timescales.

By contrast, some neural architectures explicitly encode a variety of timescales at

the level of the individual neurons, e.g., Hebbian and homeostatic plasticity. In

particular neuromodulatory mechanisms constitute one interesting class of neural

interactions that exhibit explicitly separated timescales. Indeed work on the Gas-

Net places temporal separation centre stage to conjecture on the adaptive benefits

of neuromodulatory chemicals (Husbands et al., 2001).

Of course, the presence of explicitly slow elements or processes is not necessary to

allow a system to exhibit responses or activity over multiple timescales. For exam-

ple, as we saw in Chapter 8, although the NOGasNet performed much worse than

the GasNet it was still able to sustain dynamic patterns with a period much longer

than the timescale of each node. This is because the flow of activation through

a large recurrent network of fast elements may allow activity over many different

timescales to arise. For instance, Harvey and Thompson (1997) evolved circuitry

to discriminate between slow oscillatory inputs where the intrinsic timescale of the
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components (a few nanoseconds) is five orders of magnitude shorter than that of

the behaviour exhibited by the evolved circuit. Furthermore, even in small sys-

tems, saddle node bifurcations can give rise to slow dynamics even if the underlying

nodes are intrinsically fast. For example, although most models of spiking neurons

represent membrane dynamics as fast, usually on the order of 10ms, in many cases

the dynamics of interest extend well beyond these characteristic timescales. How-

ever, given that neural substrates support adaptive behaviour at many different

temporal scales and that neuromodulators act on a range of timescales outside

that of neurotransmission, it seems intuitive that there may be some value in this

explicit combination of multiple timescales.

In particular, one common question asked by neuroscientists is “how is it possible

for biological circuits to be so richly modulated while retaining stable function”

(Marder and Thirumalai, 2002) or “what factors stabilize network operation so

that multiple neuromodulatory influences do not lead to loss of the networks abil-

ity to function?” (Poggio and Glaser, 1993). One possible way of interpreting this

question is in terms of the ideas of Gardner and Ashby (1970) and May (1972)

presented in §5.3. Here we saw how the stability of a system decreases as the cou-

pling (i.e connectivity and average weight strength) increases. Consequently the

question becomes, how do biological circuits retain stability when neuromodula-

tion provides coupling between large numbers of elements, increasing the effective

connectivity over and above synaptic connectivity, and increasing the probability

that the system is unstable?

One possible answer to this question is tacit in the neuroscience literature. Specif-

ically it is often conjectured that stability is retained because neuromodulatory

interactions are somehow weak and as such the extra of tier of coupling they pro-

vide between neural elements can be largely ignored. But weak in what way?

One could interpret this as implying that neuromodulation provides only weak

coupling in the sense of small weight values. As we saw in §5.3 this could re-

duce the impact of the extra tier of connectivity provided by neuromodulation.

However, this interpretation is far from satisfactory; neuromodulators can have a

significant impact on the dynamics of a neuron and it would be hard to consider

them as weak in this way. Furthermore, as we saw in the last chapter, the higher

order interactions that we argued were characteristic of neuromodulation had a

particulary significant impact on the dynamics of a system.

Another interpretation common in the literature is that neuromodulators provide

weak coupling because they are slow (Katz, 1999). But what does this mean? In
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the last two chapters we disregarded the impact of the timescale parameter τi on

the stability in large linear systems. Consequently one obvious question that arises

here is how does this timescale parameter impact on the stability? Note: a related

question to this was explored by Jirsa and Ding (2004) who investigated how time

delays impacted on the stability of systems. However, as yet, the influence of

timescale, as opposed to time delay, has not been explored. Furthermore, could

timescale somehow decouple a system in the same way that low weight values or

sparse connectivity do and thus be part of the reason why neuromodulators do

not destabilise biological systems?

Before we proceed, it is important to note that the strict DS notion of stability is

somewhat different to its colloquial use in neuroscience. In neuroscience stability

typically refers to the idea of stable function. That is, it usually refers to some de-

fined but subjective function, (e.g., providing the correct CPG rhythm or mapping

input to output in a certain way) that persists under perturbation. Contrast this

with the notion of stability provided in this work, i.e., as the ability of a system

to return to a fixed point under small perturbations. These two definitions could

be roughly reconciled if one assumed that fixed points have some subjective func-

tional currency. Indeed, this is not out of the question, as we argued in the last

chapter stable fixed points may provide a better medium for signal propagation.

Nevertheless, we shall not progress this issue here and concern ourselves only with

the strict DS notion of stability.

12.2 Timescale and stability in linear systems

Consider the n-dimensional linear equations of the form

τiẏi = −yi +
n
∑

j=1

ωijyj + θi (12.1)

which is identical to (12.1) except that we have re-introduced the timescale pa-

rameter τi.

Using the theory in Chapter 5 we can construct the Jacobian of this system as

J =


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Figure 12.1: Variation in the behaviour of a simple two-node circuit with
recurrent links (parameterized as shown in top figure), due to manipulating the
timescale of its component elements. In each case the system is perturbed from
the equilibrium at ȳ1 = ȳ2 = 0. (a) τ1 = 1, τ2 = 1: The system is unstable and
diverges from equilibrium. (b) τ1 = τ2 = 1: The system is stable and converges

to equilibrium.

Let us start in same way as the last chapter and first hone our intuitions on a small

2D linear system. The top panel of Fig. 12.1 provides a schematic representation

of the system with the values of the weights, biases and timescale parameters

indicated. The bottom panels of Fig. 12.1 depict the behaviour of the coupled

system after a small perturbation from equilibrium for τ2 = 1 (panel (a)) and

τ2 = 10 (panel (b)). Note: τ1 = 1 in both cases. For τ2 = 10 the system is locally

stable, converging to equilibrium after the perturbation. In contrast, for τ2 = 1

the equilibrium at y1 = y2 = 0 is unstable.

In this simple case at least, it seems that timescale, as well as connectivity and

weight strengths, can affect system stability. Moreover, it is interesting to note

the direction of this influence—increasing timescale separation has resulted in

increased system stability.

Now let us look at a larger system using the theory given in §5.3. Specifically, an
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n-node linear network is constructed by wiring each pair of nodes together with

probability C and assigning the weights from a normal distribution with a zero

mean and variance α. For each parametrization a 1000 networks are constructed

and the probability of stability is quoted as the percentage that are stable. Note:

these systems are not sensitive to the absolute values of timescale, τi, for exam-

ple a network with all timescales set to 1 or set to 100 are equivalent. Rather,

as one would expect, the system is sensitive to the relative value of timescale.

Consequently, we will compare networks stability with unitary timescale against

networks where timescales uniformly spread over three orders of magnitude. This

is implemented by setting τi = 10n where n is drawn at random from a uniform

distribution over the interval [0, 3]. Fig. 12.2 depicts stability versus connectiv-

ity and variance for several different network sizes with and without timescale

separation.

The general trends of these graphs were explained in §5.3 and thus we will not re-

peat it here. There appears to be little difference between the stability of networks

comprising elements with shared, unitary timescale and networks comprising ele-

ments with widely varying timescale. In contrast to the example given in the last

section, multiple timescales have little effect on the stability threshold, or on the

general character of the relationship.

Our paired design allows us to confirm that if a network below the May-Wigner

threshold is stable with unitary timescale elements, the same network will gener-

ally be stable if those timescales vary widely. However, for networks above the

May-Wigner threshold and with n > 4, in all plots the probability of stability in

timescale-separated networks is slightly, but systematically, lower than the prob-

ability of stability in equivalent unitary networks. This may indicate that the

presence of multiple timescales encourages the transition to instability. This ef-

fect is small, less than 1% for all network sizes. Although this difference seems

negligible in the context of the overall character of the relationship, it would be

interesting to investigate its root cause since it is in opposition to the effect of

timescale separation demonstrated in the last section. However, given time con-

straints we will not explore this here.

It seems that, unlike connectivity or weight values, timescale separation cannot

decouple a systems variables and, hence, does not promote stability. While this

result conflicts with out original reasoning and the intuition from the small example

circuit it agrees with Jirsa and Ding’s (2004) investigation of time delays. In this

work it was found that, like timescale, time delay had no effect on system stability.
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Figure 12.2:

Probability of stability vs. (a) the variance of the network weights, α, and (b)
network connectivity, C, for networks of size 4, 7, 10, 20, 50 and 100 nodes. For
(a), C = 50%. For (b), α = 1. Solid curves depict results for networks with unitary
τ values, dashed curves for the same networks with τ values uniformly distributed
across three orders of magnitude. Vertical lines denote the stability threshold as
predicted by the May-Wigner hypothesis for networks of 100, 50, 20 and 10 nodes
(reading left to right). Each data point represents 1000 random networks.

12.3 An alternative interpretation of timescale

separation

So far, we have concerned ourselves only with the real part of a network’s eigen-

values, since these reveal the presence of local stability. While the introduction

of multiple timescales has little effect on the probability that these real parts are

all negative (indicating local stability), it does have an effect on the imaginary
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parts of these eigenvalues, which are far more likely to be non-zero in this case.

In a simple coupled system, these imaginary parts indicate the manner in which

the system transitions to or from equilibrium. If the imaginary parts are zero, the

equilibrium is said to be a node, otherwise it is a spiral (Beer, 1995).

The increase in the number of non-zero imaginary parts in the eigenvalues that

is brought about by the introduction of multiple timescales implies that trajecto-

ries around the equilibrium have little or no curvature. We can understand this

in terms of the strength of the effects of the different elements that comprise a

network. Because each element’s entry in the Jacobian matrix, Equation (12.2), is

scaled by its timescale, i.e., by 1
τi

, slower elements will have a weaker instantaneous

influence. Weakening or strengthening an element’s influence will not tend to af-

fect local stability, since even a weak effect can displace a system from equilibrium.

However, the short-term behaviour of the system will appear to be dominated by

fast elements, although slow elements may have a large effect in the long term.

This observation bears a resemblance to the notion of temporary independence

introduced by Ashby (1960), who described how trajectories in the phase space

of a complex system may evolve over low-dimensional manifolds if certain vari-

ables remain practically constant over some period of time. Note: the following

discussion is taken from (Buckley et al., 2005b) which is given in its entirety in

appendix B. Ashby noted that dependencies in a system are not merely equiva-

lent to the lack of physical connections, but are related to the causal relationships

between processes. Of course, this is cybernetics in its essence (Klir, 1991), being

concerned with relations between things rather than the actual physical instanti-

ation of those things. With respect to the brain, this enforces a notion that we

must go beyond topological considerations (i.e., the arrangements of neurons and

synapses) in order to gain a complete understanding of network interactions

To further clarify his notion of causal independence, Ashby gives an example. Con-

sider two variables A and B that may influence each other in a state-determined

system. At time t, A = A1 and B = B1. At the next time step, A = A2. If it is the

case that A makes this transition irrespective of B’s state, A and B are said to be

causally independent at time t. However, if the state change of A is influenced by

the initial state of B, the two variables are said to be dependent to some degree.

If a system is to successfully accumulate adaptation Ashby believed that there must

be some causal independence between the adaptive processes involved. Ashby goes

further in noting that this definition of dependence is an immediate phenomenon

defined over one timestep. Given further timesteps, the dependencies may look
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Figure 12.3: The interaction of nodes within a network. The right hand
figure shows the full connectivity of the network. The left hand figure shows
the actual interaction between nodes at a particular time. Links from nodes

that are inactive are removed from the diagram of immediate effects.

very different. At this point he introduces diagrams contrasting immediate and

ultimate effects. His depiction of immediate effects closely resembles a pruned

version of the standard diagram of neural network connectivity. It tells us which

elements effect each other at the next timestep. It is thus fully constrained by

network topology in that no neuron can immediately affect another unless they

share an appropriate weighted connection. However, not every weighted connec-

tion in the wiring diagram will be present in the diagram of immediate effects,

since inactive neurons have no effect on their downstream network neighbours, see

Fig. 12.3.

By contrast, the diagram of ultimate effects reflects longer term neural dependen-

cies. For example, if, over some period of time, element A causally effects B, and,

subsequently, B causally effects C, then the diagram of ultimate effects for this

time period would contain a direct link between A and C, see Fig. 12.4.

The idea of immediate and ultimate effects is based around the notion of time delay,

however, it is possible to reinterpret it in terms of timescale. For example consider

a system in which there are three qualitatively different physiological processes

acting on timescales separated by orders of magnitude e.g. milliseconds, seconds,

and minutes. Over timescales of the order of milliseconds all other timescales

could be roughly approximated as fixed and temporally removed from the causal

representation of a network, see Fig. 12.5. Similarly on timescales of seconds slower

timescales (minutes) can be eliminated from a causal representation of a network,
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Figure 12.4: The interaction of nodes within a network. The immediate effects

between nodes are constrained by the physical linkage between them and their
state at t = 0 (left most diagram). Note: here, for simplicity, all nodes are
active at every time step . After one time step causal links are assigned between
nodes that are linked by a single bridging node (dotted lines in middle diagram).
Eventually the diagram of ultimate effects will link all nodes that have a possible
path between them (the right most diagram). Note: the node marked with a
dotted line has no outgoing arrows and has no impact on any of the other nodes

even in the diagram of ultimate effects.

see Fig. 12.6. Of course on the longest timescales all process would be included in

the causal interaction of the networks, see Fig. 12.7.

12.4 Conclusion

LSA is, perhaps, not the most appropriate tool to look at issues of timescale. In

theory it can only really tells us about the instantaneous behaviour around some

equilibrium and only indirectly tell us about the long term behaviour of the system.

However, in this chapter we were able to make some rather crude arguments about

the relationship between stability and timescale through the idea of temporary

independence. This kind of account of the role of timescale in stability would need

a deal of work to progress past the rather anecdotal arguments presented here.

However, the idea of temporary stability is intuitively appealing. It suggests that

one answer to the question “how do networks retain stability in the face of so

much neuromodulation?” is, perhaps, that they don’t! Instead the system may

be stable over short timescales but unstable over longer timescales. Specifically,

over short timescales the effective casual connectivity and the effective number of

units is reduced, consequently, the system could be effectively stable. However,

over longer timescales the whole system may be destabilized.

Moreover, we saw in the last chapter how feedback mechanisms can stabilise sys-

tems. Consequently, it is likely that the opposite of the above scenario may also
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Figure 12.5: τ ≤ milliseconds. The reduced effective connectivity and num-
ber of units at this timescale means that this system is stable.
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Figure 12.6: τ ≤ seconds. Again the effective connectivity and number of
units is such that the system is stable.
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Figure 12.7: τ ≤ minutes. At these timescale the system becomes unstable.
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be true. Specifically, systems could be unstable over the short term but stabilised

over longer timescales. In fact this resonates with some ideas the suggest that

neuromodulators act as a stabilising influence on circuits, Katz (1999).

A similar phenomenon may act at the neuronal level. For example the abstract

homeostatic processes we mentioned in the last chapter act on much slower timescales

than those of a typical neuronal spiking event. For example, calcium channel

(Ca2+) dynamics which are thought to underpin them work over timescale of sec-

onds in contrast to the millisecond of spike dynamics (Turrigiano, 1999). This

suggests that they may only maintain stability in the long term not affect the

short term dynamics involved in processing.

Perhaps a more appropriate tool with which to look at ideas of timescale is through

information theory, a techniques that is being increasingly used in modern neu-

roscience (Tononi et al., 1998). We have made some first attempts at applying

information theory to ideas of timescale and neuromodulation but we will not

present them here and instead include them as an appendix, see appendix B.

However, in the next chapter we shall make a foray into information theory in or-

der to look at another dimension of neuromodulation that we have hitherto largely

ignored: the idea that neuromodulation is not point-to-point.



Chapter 13

Not point-to-point: Mutual

information and spatial

embedding

This chapter outlines some preliminary efforts to understand the third dimen-

sion of the mechanistic definition of neuromodulation given in Definition 7.1; i.e,

neuromodulatory pathways are not well defined by the point-to-point targeted

communication associated with neurotransmission. To achieve this, this chapter

moves away from the dynamical systems analysis employed thus far and instead

utilises a set of information theoretic measures recently developed in computa-

tional neuroscience.

To briefly recap, neuromodulation involves liquid or gaseous plumes emanating

from sources and diffusing over volumes of neural tissue. In the case of macro-

molecular neuromodulators the shape of a diffusing cloud may be constrained by

the structure of the underling lipid tissue. Nevertheless, the probabilistic diffusion

front will grow to incorporate a volume of neural tissue (Bunin and Wightman,

1998). In contrast the relatively small size of NO molecules render it insensitive

to the underlying lipid tissue. Consequently, the shape of the gas plume is largely

dependent on the nature of the source (Philippides, 2001). Suffice to say that

understanding this aspect of neuromodulation requires modelers to embed more

traditional ANNs in low dimensional spaces bringing into sharp relief the fact the

neuromodulatory coupling between neural elements is constrained by space.

However, this idea is not unique to the idea of neuromodulation and even neuro-

transmission is heavily spatially constrained. While long-range connections are a

172



Chapter 13 Not point-to-point: Mutual information and spatial embedding 173

ubiquitous feature of neural tissue, for example see the postulated nature and role

of reentrant connections (Edelman, 2004), the majority of synaptic connections

are relatively local. It appears clear, then, that the functional organisation of the

nervous system will owe much to any structural properties resulting from spatial

embedding of its constituent neurons.

More generally, most natural and engineered complex systems are spatially ex-

tended systems. Like neural systems, the spatial structure of these systems is

likely to impact on their dynamics, i.e., the behaviour that they exhibit. De-

spite this, the graphs with which such systems are typically represented, in which

interactions between components are indicated by the presence of connections be-

tween them, often neglect to capture their spatial character. These models tend

to concentrate on reflecting the logical form of the interactions rather than any

contribution of the medium within which the system is embedded (see, for exam-

ple, recent networks science approaches to characterising natural and engineered

systems: Newman (2003).

Before we can understand the role spatial embedding plays in neuromodulation

its is first necessary to gain a deeper undersanding of its impact on network dy-

namics in general. Consequently, in this chapter we explore spatial embedding

(this is an aspect of item 2 of Definition 7.1, see §6.2.4) in isolation from the other

mechanistic dimensions of neuromodulation. Given the preliminary nature of the

work presented here the relationship between spatial embedding and the other di-

mensions of neuromodulation considered in Chapter 9-Chapter 12 is left as future

work.

As a first step toward the understanding of spatial embedding this chapter at-

tempts to explore its relationship to a measure of dynamical complexity. It starts

by discussing the ways in which spatial embedding has contributed to current net-

works science, particularly with respect to small world structures. It then presents

a measure of behavioural complexity developed within neuroscience, intended to

reveal the influence of neuroanatomical constraints on neural function. By ap-

plying this measure to a number of simple networks this chapter attempts to

characterises the relationship between structural properties conferred by spatial

embedding and any attendant functional complexity.
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13.1 Networks in Space

The recent explosion of interest in the “new science of networks” has focused

attention on the application of graph-theoretic approaches to the characterisation

of natural and engineered systems. While the influence of space is at least implicit

in certain of the graph structures discussed and employed in this literature, its

contribution has yet to be systematically explored.

For instance, Stanley Milgram’s now infamous demonstration of the “six degrees of

separation” that apparently link members of society to each other through mutual

acquaintance relies upon space. His instruction to each experimental subject was

to deliver a package to a person identified only by name and place of residence (a

specific location in Cambridge, MA). Subjects were clearly required to combine

their social and geographical knowledge to meet this challenge.

Likewise, when Watts and Strogatz (Watts and Strogatz, 1998) went on to for-

malise their notion as the “small world property”, they also made explicit use of

spatial embedding. First, they construct a lattice where the pattern of connectiv-

ity reflects the regular (isotropic, homogeneous) spatial organisation of the nodes.

Specifically, each node is connected to its K nearest neighbours in a Euclidean

space. Such a graph will exhibit a high degree of clustering and a long characteris-

tic path length. From this starting point, repeated application of random rewiring

events gradually erodes the structure originally imposed by spatial organisation

until a random graph results. Intermediate between the ordered lattice and the

disordered random graph, Watts and Strogatz characterised small world structures

that simultaneously exhibit a small characteristic path length and a high degree of

clustering. Interestingly, measurements on some real-world networks (e.g. social,

geographical, neural, biological) also appeared to exhibit this small world property

(Watts, 1999).

This work departed from previous random graph theory where the probability

of two nodes being connected was identical for all pairs of nodes (a property

that does not hold for a lattice, for instance). More generally, this departure

can be formally described by the introduction of an arbitrary set of relationships

between a network’s nodes that influence connectivity. The network’s connection

probabilities can then be specified by entries in a matrix reflecting these inter-node

relationships. While this matrix could be arbitrary, Watts explored the effect of

constructing matrices that reflected the relationships between nodes embedded
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in a metric space.1 These are spaces for which there is a well-defined notion of

distance satisfying four basic properties (Watts, 1999), e.g., symmetry and the

triangle inequality.

Given some spatial embedding, the spatial matrix is the set of all distances between

nodes. The adjacency matrix is then constructed from this information. For

example, the probability of connection might be inversely proportional to distance,

yielding a lattice. Note that all properties of the graph are still strictly specified

by the adjacency matrix. The metric space merely influences its construction.

Metric spaces can take many forms. For example, in social networks, a notion

of distance can be defined by social closeness, in terms of status, occupation,

ethnicity, etc. (Watts, 1999). So, while true spatial embedding is not required in

the construction of a small world, it has played a significant role in the development

of the theory of the small world property.

The small world property is a structural property. But, for the most part, interest

in it stems from an assumption that the structural organisation that it implies will

confer properties of interest on a system’s behaviour. Next, we consider one such

behavioural property.

13.1.1 Complexity Measures in Computational Neuroscience

Central to cognitive processing within the nervous system is the ability of the

brain to integrate distributed information in order to produce coherent cognitive

behaviour. For example, information from audio, visual and olfactory input must

be successfully integrated and used to inform subsequent motor output (Tononi

et al., 1994). This is exemplified by the studies of the binding problem (Arbib,

1998). While neural processing may be distributed across many quasi-autonomous

functional units, the end result is far more unitary, integrating across relevant

neuronal groupings spanning distributed tracts of the nervous system.

In contrast, a great deal of experimental work demonstrates that separate neural

regions specialise, e.g., in the mammalian brain different neural areas are function-

ally specialised for detection of visual attributes such as shape, motion and colour.

Furthermore, recently it has been demonstrated that separate neural groupings

within the brain are differentially triggered dependent on cognitive task or specific

stimulus attributes (Sporns et al., 2000). In order to sustain such specialisation

1Relational graphs are also considered by Watts.
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it would seem necessary that neural tissue be to some extent segregated in order

to maintain some independence between individual functional units. This re-

quirement is seemingly in direct conflict with the need for functional integration.

Nervous organisation must somehow balance these two opposing pressures. The

tension between functional integration and segregation is reflected within opposing

bodies of thought on neural information processing. The balance between holistic,

Gestalt, ideas and the need for specialisation and hence segregation has become

an increasingly important debate within the neuroscience community (Edelman,

2004).

This tension between integration and segregation resonates with issues involved

in attempts to define complexity. Complexity measures seek to characterise the

nature of systems that are neither completely random nor completely regular. A

popular illustrative example is taken from the statistical mechanics of gases and

crystals. While the low-level behaviour of a gas can be idealised as random and

that of a crystal can be idealised as regular, the aggregate behaviour of both is

readily derivable. For intermediate systems at the phase transition between solid

and fluid, however, this relationship is less clear. Complexity, it is claimed, exists in

this middle ground between order and disorder (Kauffman, 1993). Consequently,

(Tononi et al., 1994) have suggested that some form of complexity measure might

reconcile the notions of neural segregation and integration within a single theoret-

ical framework.

Their notion of intrinsic complexity is derived by considering a network of n ele-

ments comprising a system X where the intrinsic activity on each element is well

described by a stationary Gaussian processes or Gaussian white noise (Tononi

et al., 1994).

The level of dependence and independence between sets of elements can be mea-

sured through the concept of mutual information. The mutual information be-

tween the jth subset of X composed of k components, Xk
j , and its complement

X −Xk
j is given by Equation (13.1) where the entropy of the subset is determined

by Equation (13.2).

MI(Xk
j ; X − Xk

j ) = H(Xk
j ) + H(X − Xk

j ) − H(X) (13.1)

H(Xk
j ) = 0.5 ln((2π exp)k

∣

∣cov[Xk
j ]
∣

∣) (13.2)
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Note: the entropy is derived from consideration of the determinant of the covari-

ance between the activity of each of the elements |cov[Xk
j ]| (Tononi et al., 1994).

An estimate of the integration (i.e., the shared information) between the elements

of a subset is given by Equation (13.3). This measures the difference between the

sum of the deviations from independence of each element taken independently,

and the entropy of system as a whole.

I(X) =

n
∑

i=1

H(xi) − H(x) (13.3)

Integration is high where each element taken alone exhibits and high degree vari-

ation but entropy of the system as a whole is low. Complexity is then given by

Equation (13.4), which measures the integration within network subsets of differ-

ent sizes, denoted by k, see Fig. 13.1. Complexity is proportional to the difference

between the average value of integration for a subset Xj (over all it permutations)

and the integration expected for a linear increase in system size summed over all

subset sizes. Equivalently complexity can be thought of as the area between the

line that marks a linear increase of integration with system size and the actual

integration of the the system, see Fig. 13.2.

CN(X) =
n
∑

i=1

[(k/n)I(X)− < I(Xk
j ) >] (13.4)

Like other notions of complexity, this measure is low when either all elements

are independent and hence completely segregated, or the system is completely

integrated. Complexity is maximal in a system that is globally integrated at the

level of large subsets, but simultaneously exhibits a high degree of segregation in

smaller subsets.

Tononi and Sporns have been successful in using this measure to explain the impact

of some kinds of neuroanatomical constraint on neural function. By comparison

with control data, real neuroanatomical systems score highly on their measure

(Tononi et al., 1998). Furthermore, neuroanatomical models have shown that cer-

tain postulated structural constraints increase neural complexity when measured

in this way.

In particular, four organising principles of the cerebral cortex have been put for-

ward, (Tononi et al., 1994):
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k=1 k=2 k=n/2

......

......

......

......

Figure 13.1: Complexity is measured as the average integration over all sub-
sets of size 1 < k < n/2. This is measured over increasingly large groups neural

elements.

=C  (X)

k

I(
k)

N

Figure 13.2: Complexity is measured as the area (the shaded region) between
an expected linear increase of average integration with subset size k (the dashed

line) and the actual average integration (the solid line).
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1. strong local connections between neurons of similar specificity forming neu-

ronal groups

2. weak local connections between groups belonging to different functional sub-

domains

3. preferential horizontal connections between groups belonging to the same

functional sub domain

4. limited spatial extent of axonal arborization, characterised by a marked fall-

off of the connection density with distance

It is interesting that although space is at least implicit in the first three of these

principles and made explicit in the fourth, spatial embedding has so far not been

the subject of systematic enquiry (but see Sporns et al. (1991); Tononi et al.

(1998)). These ideas from neuroscience are beginning to influence adaptive be-

haviour research. In addition to the GasNet work discussed in Chapter 8, it has

recently been shown that successfully evolved neural controllers exhibit high com-

plexity by this measure (Seth and Edelman, 2004). Here, we explore the extent to

which spatial embedding might directly influence the intrinsic complexity of neural

networks with the expectation that results might lead to greater understanding of

the substrates underpinning adaptive behaviour.

13.2 Simple Models

Perhaps an obvious first step toward understanding the impact of spatial embed-

ding on complexity is to investigate how a measure of complexity changes as we

move smoothly from a lattice to a random graph. The illustrative example from

statistical mechanics introduced above (hereafter termed the gas-crystal analogy)

suggests that an interim structure between these two extremes could exhibit high

complexity. Furthermore, in Watts’s work it is clear that gradually perturbing

a purely spatial structure (a lattice) via random rewirings induces a transition

through a regime exhibiting the small world property. Superficially at least, sys-

tems combining strong clustering with short characteristic path lengths would

seem commensurate with high complexity. Specifically, clustering suggests seg-

regation, while the sparse web of more global connectivity resulting from small

amounts of rewiring could encourage integration in larger subset sizes.
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Before we begin, the complexity measure employed here requires some technical

assumptions to be in place. In order to measure complexity, we need to determine

the covariance matrix of the system, COV. This can be calculated numerically

by constructing and simulating a weakly coupled system. However, this route in

computationally demanding for large ensembles of networks. Instead, here, we

employ a method that allows us to an analytically calculate COV directly from

the adjacency matrix. This can done by assuming that nodes of the network

interact in a linear manner. This was shown Tononi et al. (1994) to be good

approximation for several nonlinear models. Furthermore, this approximation can

also be justified by assuming the network parameters are such that they exist in

the weakly coupled region, Sw, described in §10.2. In this region low amplitude

dynamics around equilibrium are well approximated by linear interactions. Indeed,

as we outlined in §10.3, weakly coupled systems such as this are thought to be a

good approximation to the dynamics in many regions of the nervous system.

Lastly, for large networks, calculating mutual information measures over all subset

sizes is also computationally demanding. Here, unless otherwise stated, we cal-

culate the complexity as an average over subset sizes i ≤ 4, see Equation (13.4).

This was observed to give a good approximation to the full complexity by (Tononi

et al., 1994).

In addition to measuring behavioural complexity, we make use of two standard

graph theoretic measures: clustering and characteristic path length. The nodal

clustering coefficient is defined as the number of connections between the neigh-

bours of a given node divided by the total number of possible connections be-

tween them (Watts and Strogatz, 1998). The graph clustering coefficient, γ, (sim-

ply referred to as the clustering coefficient henceforth) is calculated as the mean

nodal clustering coefficient over a network’s nodes. A network’s characteristic path

length, λ, is the average length of the shortest paths connecting all pairs of nodes

(Watts and Strogatz, 1998). In contrast to the clustering coefficient this is a global

property of the graph.

All results reported here are averaged over no less than 30 networks per data point,

and standard deviations were consistently lower than 0.5%.
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Figure 13.3: How complexity, integration, path length and clustering vary
as a one-dimensional ring lattice is gradually eroded by random rewiring. The
ring comprises N = 256 nodes connected to their k = 10 nearest neighbours.
The left-hand panel shows the scaled characteristic path length, λ/λ(0) and the
scaled clustering coefficient, γ/γ(0), versus the log of the probability of rewiring,
log10(p) (circles and crosses, respectively). The right-hand panel shows the
scaled complexity, C/C(0), and scaled integration, I/I(0), versus the log of the
probability of rewiring, log10(p) (solid and dashed lines respectively). Where

λ(0), γ(0), I(0) and C(0) are measures taken on a ring lattice with p = 0.

13.2.1 Small-worlds

Intuitively, the small-world effect, where systems combine strong clustering with

short characteristic path lengths, would seem commensurate with high complex-

ity. Clustering suggests functional segregation, while a sparse web of longer-range

connections could encourage functional integration at a global level. Furthermore,

the small-world property and high complexity have been shown to be coincident

in biological neural systems (Sporns, 2006).

Initially, we replicate the original small-world experiment presented in (Watts and

Strogatz, 1998). Commencing with a one-dimensional ring comprising N = 256

nodes, each connected to their k = 10 nearest neighbours, and representing these

interactions as a binary connection matrix, each connection (edge) has probability

p of being randomly rewired to another node while preserving the in degree at

each node. Note: unlike Watts we use directed graphs. For a range of rewiring

probabilities, we calculate the resulting values of γ, λ, and also calculate the

complexity, C, and integration, I.

Fig. 13.3 presents these measurements scaled by the values associated with the

original ring lattice, see caption for further details. While a low probability of

rewiring generates a small-world effect in reducing characteristic path length with-

out damaging clustering, both complexity and integration fall monotonically with
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p (as mentioned recently in (Sporns, 2006)). Essentially, the spatial organisation

of the lattice is being eroded by rewiring.

However, perhaps this result is specific to a rewired lattice which only exhibits a

single topological scale of organisation. Note: while clustering coefficient seems to

refer to an intuitive idea of distinct clusters in fact this is not the case and even

a homogenous lattice has a high clustering coefficient. Instead consider Watts’

connected cave world (Watts, 1999), for example, which exhibits two topological

scales, that of the tightly intra-connected local clusters (caves), and a global level

of loose inter-cluster connections.

To explore this we examine four different structures: a one-dimensional ring is

presented for comparison with Fig. 13.3; a toroidal structure represents extend-

ing such a ring into a second spatial dimension; a “connected cave-world” (Watts

and Strogatz, 1998) consists of a set of 32 fully-connected caves of 8 nodes each

arranged on a ring with 8 connections between each pair of caves, representing a

simple clustered network, see Fig. 13.4; a fractal structure similar to those em-

ployed in (Sporns, 2006), see Fig. 13.5. To build this fractal structure we start

with a fully-connected clique of 8 nodes, duplicate it, and connect nodes from one

cluster with nodes in the other according to some connection probability. The

resulting structure is again duplicated and connections between the new pair are

added. This process repeats until there are 256 nodes. Note: the probability of

inter-cluster connections is reduced exponentially over fractal levels (see Sporns

(2006)).

Here we plot the small word index, S, given by the ratio of the clustering coefficient

and pathlength both scaled by there values measured in a random graph, i.e, p = 1.

S =
γ/γ(p = 1)

λ/λ(p = 1)
(13.5)

Fig. 13.6 shows how the small-world index (S) and scaled complexity, C/C(p = 1),

vary with the log of the rewiring probability, log10(p), for these network structures.

Note: in contrast to Fig. 13.3 above all measurements are scaled by the values

associated with fully randomised networks, i.e., p = 1. This highlights the relative

differences between the impact of the different network structures in the absence

of re-wiring. Again, the small-world effect is not enough to scaffold complexity.

Rather, as in Fig. 13.3, complexity appears to be correlated with the clustering

coefficient, both falling monotonically with the increasingly probability of rewiring.
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Figure 13.4: An example of a connected cave world. The diagram shows 6
fully connected networks of 6 nodes arranged on a 1D ring.

Figure 13.5: An example of a fractal structure. A fully connected networks of
4 nodes is copied and random connection are then assigned between the origi-
nal and the duplicate. This whole structure is then copied again and random
connections are again assigned between itself and the duplicate. In this exam-
ple this process is repeated 4 times. The dashed boxes surround the units of

duplication at each fractal level.
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Figure 13.6: The left-hand panel shows how the small-world index, S, varies
with the log of the probability of rewiring, log10(p), for four network structures.
The right-hand panel shows how the scaled complexity, C/C(p = 1), varies
for the same network structures. All networks comprise N = 256 nodes with
identical connection densities (N/K ≈ 0.03). (The different network structures
necessitate that different degree distributions must be compared.) Here C(p =
1) is the value of complexity associated with a random graph (i.e., when the

probability of rewiring is unity).

By contrast, the consonant variation in characteristic path length appears to have

little or no influence.

13.2.2 Spatial Length Scales

The impact of spatial embedding is not limited to its effect on clustering coef-

ficients and characteristic path lengths. Rather, (at minimum) it is capable of

bringing about structural organisation over a particular length scale. Here, we

explore ensembles of spatially constrained networks constructed over nodes dis-

tributed uniformly in hypercubes of varied dimensionality (d), varying the length

scale of the interaction between the nodes. Note: in order to preserve the mag-

nitude of spatial relationships between pairs of nodes over different numbers of

dimensions all distances are scaled by 1/
√

d. Instead of the binary connection ma-

trixes used above, here we employ continuous-valued entries to represent weighted

connections between pairs of nodes given by ωij = exp(−dij/σ). Where, dij is the

distance between nodes i and j. Connection weights between pairs of nodes fall

exponentially with distance at a rate which is defined by the interaction length,

σ. Note: this function is identical to the way the strength of the gas coupling
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Figure 13.7: Networks are embedded in in 1-, 2- and 3-dimensions. The

length scale of the space is scaled by 1/
√

d to preserve the magnitude of spatial
relations between nodes. The distance between pairs of node, dij , is marked for

each case.

between nodes is determined for the GasNet, see Chapter 8. Fig. 13.8 shows how

complexity, C, varies with the log of the interaction strength, log10 (σ).

The graph theoretic measures that we have used to characterise network structure

up to this point can only be applied directly to binary (unweighted) networks. In

order to calculate these measures here, we discretise each weighted network by

reinterpreting each entry in the weight matrix as the probability that a pair of

nodes will be connected. Consequently, each continuous matrix can be mapped

to an ensemble of binary networks from which a random sample can be drawn

and their properties calculated. For each network, we enumerate the number of

disconnected components. As this value approaches unity, the graph is becoming

completely connected, indicating the onset of a single component or super-cluster

(Watts, 1999).

For comparison, all plots in Fig. 13.8 also present values of complexity for two null

models. First, the dotted line represents the complexity of networks where each

node has the same distribution of afferent connection strengths, but the identity

of neighbours is randomly assigned. To achieve this, the entries of each row in the

weight matrix are shuffled, preserving the sum of afferent weights. The dashed

line represents the complexity of networks for which connections are shuffled in a

way that preserves reciprocity, i.e., where a shuffle swaps elements ωij and ωi′j , it

must also swap elements ωji and ωji′. Note: in this case the sum of the magnitude

of the afferent weights may not be preserved.

The first point to note is that for low-dimensional spaces, complexity rises and

falls with interaction length.2 As the dimensionality of the space increases, peak

complexity falls. The reciprocal nature of spatial interactions clearly accounts for

2Since the covariance matrix of a 1D lattice is of Gaussian Toeplitz form, this agrees with
previous results demonstrating that scaling in such matrices is associated with a rise and fall in
complexity (Tononi et al., 1994).
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Figure 13.8: Plots of complexity C versus the log of the interaction length,
log10(σ), for 1, 2, 3, and 128 dimensions are presented in the top left, top
right, bottom left and bottom right panels, respectively. All networks comprise
N = 128 nodes. The solid curves represent the mean complexity, C, of spatially
embedded systems with continuous weights. The dotted and dashed lines indi-
cates the complexity of networks derived from two null models (see text). The
grey vertical lines mark the peaks of complexity for discretised networks with
the same interaction length, which agree well with the peak in complexity for
the associated continuous system (the solid line). The scaled number of network
components is also presented (circles), falling from N (a totally disconnected

system) to unity (a super cluster).

this effect to some extent (and to a larger degree than the mere distribution of

afferent weights). However, particularly in low dimensions, the impact of spatial

constraints exceeds that of mere reciprocity, suggesting that higher-order struc-

tures are significant. As the dimensionality of the space increases, and the strength

of spatial constraints weaken, peak complexity falls, until the contribution of space,

and even reciprocity disappears.

Interestingly, the peak in network complexity is correlated with the onset of the

super cluster in the discretised versions of the networks presented in Fig. 13.8. Al-

though the graph theoretic measure does not directly translate into the continuous

domain, this result suggests that complexity is associated with the achievement

of a single strongly coupled component in a continuous network. Furthermore the

interaction length required for onset of the strong component (and thus high com-

plexity) falls with the dimensional order. The significance of this is discussed in

the conclusion to this chapter.
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Figure 13.9: Complexity, C, varies with cluster width for networks with spatial
structure within and/or between each of 12 regularly arranged clusters of nodes
distributed in two-dimensional space according to a normal distribution with
variance, σspace. The complexity of equivalent non-spatial random networks is

shown for comparison.

13.2.3 Spatial Structure

Thus far, we have only considered uniform spatial distributions of points. However,

spatio-temporal processes naturally bring about structured distributions. Here we

consider how the introduction of community structure, in the form of randomly

distributed clusters of equal size, impacts on network complexity. In contrast

to clustering coefficient, community structure provide a more intuitive notion of

clustering (Girvan and Newman, 2002). That is, while clustering coefficient is

high even in a lattice community structure requires the presence of discrete and

recognisable clusters of nodes.

Here N = 126 nodes are divided into 9 groups of 14 points. The group foci are

regularly arranged as a 3 × 3 grid in the unit square. The points of each group

are then normally distributed around each focus with a variance σspace (note:

this is distinct from the interaction length, σ). For increasing σspace, distinct,

tight clusters (communities) initially spread, then merge, and eventually overlap

to form a virtually uniform distribution of nodes. The connection weight between

each pair of nodes is determined as per the previous model with a fixed interaction

length σ = 10−3.

We wish to distinguish the contribution to complexity made by within-cluster spa-

tial correlation structure from that contributed by between-cluster organisation.
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We achieve this by selectively extinguishing the spatial correlations at each scale,

either shuffling the afferent weights of each node’s intra-cluster connections, or

each node’s inter-cluster connections, or both. All three shuffling processes pre-

serve the degree density within each cluster and between each pair of clusters.

Lastly, by shuffling every row of the weight matrix, we generate fully randomised

networks for which only the distribution of weight strengths is preserved.

Fig. 13.9 shows that as the cluster width increases and clusters merge, complexity

falls, suggesting that non-uniform spatial distributions impact on network com-

plexity. Here network complexity can be partitioned into contributions due to

inter-cluster spatial constraints, intra-cluster spatial constraints, and the resid-

ual community structure arising from the fact that, to the extent that clusters

are spatially distinct from one another, there will tend to be stronger weights on

within-cluster connections than between-cluster connections. The latter contribu-

tion dominates until cluster widths approach the width of the space, resulting in

an approximately uniform distribution. By contrast, the contribution of within-

cluster spatial organisation is minimal until nodes approximate a uniform distri-

bution. Inter-cluster spatial constraints make a consistent but relatively small

contribution to complexity across the range of cluster widths.3

13.3 Discussion & Conclusion

Given the picture of complexity suggested by the gas-crystal analogy employed

above, how can we reconcile the observation that a lattice is more complex than

an equivalent random network? The analogy assumes that we are concerned with

the positions of the particles of a gas or crystal, rather than their interactions,

per se. In an ideal gas, no amount of knowledge about the positions of particles

can allow accurate prediction of the positions of the remainder. In contrast, in a

lattice all the information about the locations of the other particles can be inferred

from the positions of a small subset. In the cases explored here, the relevant

information is not positional, but concerns the activation levels of the system’s

elements as they interact—we are interested in function rather than structure.

Unlike positional information, complete information about the activation levels

across a lattice cannot be derived from knowledge of a small subset of activation

values.

3These results are redolent of the differences in complexity between ordered and non-ordered
fractal mappings presented in (Sporns, 2006).
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Moreover by systematically exploring the relationship between the small-world

effect on a networks topology and the consequent behavioural complexity that the

network exhibits, we have shown that although these two properties may co-occur

in natural systems (Sporns, 2006), it is not the case that small-world structures

alone straightforwardly imply complex network behaviour (see Fig. 13.3 and 13.6).

However, as intimated in recent work (Sporns, 2006), results here demonstrate

that spatial constraints on connectivity contribute directly to complexity. Even in

the absence of the community structure or fractal organisation that is known to

generate complex network behaviour (Sporns, 2006), networks merely comprising

uniform random distributions of locally connected nodes enjoy increased complex-

ity as a result of the strong spatial constraints imposed by low dimensionality (see

Fig. 13.8).

The nature of the contribution to complexity made by spatial embedding is not

straightforward. Neither the shape of the distribution of afferent weights (dotted

lines, Fig. 13.8) nor their reciprocity (dashed lines, Fig. 13.8) are sufficient to

account for its impact on complexity. Rather, the property stems from space

imposing correlations at several topological scales. This is evidenced by the gradual

erosion of the influence of space as dimensionality is increased (see fig. 3).

Fig. 13.8 also suggests that high network complexity is correlated with the onset

of strongly coupled super cluster. The coupling strength required for its onset

is much smaller in networks embedded within low-dimensional spaces suggesting

that strong spatial constraints may make high complexity easier to achieve despite

sparse or weak connections.

Finally, we have shown that the structure of the underlying spatial distribution

of nodes can impact on network complexity. For example, results suggest that

clusters of nodes randomly distributed in space bring about network topologies

that exhibit high complexity stemming from both inter-cluster and intra-cluster

correlations, but mostly by the residual community structure that distinct clusters

impose (perhaps justifying the current focus on hierarchical and fractal organisa-

tion with respect to neural systems (Sporns et al., 2000; Tononi et al., 1994)).

In summary the results presented in this chapter suggest that rather than viewing

spatial embedding as a constraint to be overcome by evolution, it may actually

enable adaptive properties by promoting substrates with rich dynamical properties,

i.e, ones that exhibit a balance between integration and segregation. This resonates

with the work by Philippides et al. (2002); Husbands et al. (2001) which claims that
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the low-dimensional embedding of the artificial gas within the GasNet architecture

contributes to its evolvability. More generally it suggests that the idea of spatial

embedding, which was brought into sharp relief by neuromodulation, may perhaps

be an important operating principle in the nervous system.

To what extent the properties of spatially embedded network disused here interact

with the other mechanistic dimensions of neuromodulation is an open question.

However, an investigation of this issue is left as future work.
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Conclusion

The brain is predominantly a chemical device (Bullock et al., 2005). Waves of

liquids and gases flow across the nervous system, and throughout the body in

general, providing a rich set of information processing pathways. These chemical

signalling processes almost certainly predate electrical nervous activity. This is

evidenced by their centrality in primitive nervous systems, see §4.2.1. Moreover,

the fact that evolution has proceeded in a largely serial manner suggests that these

chemical pathways still play significant role even in developed nervous systems

(Arbas et al., 1991).

Despite this, many believe that the full functional potential of these chemical sig-

nalling pathways has not been fully appreciated. This is perhaps because the early

success of the neuron doctrine, which focused almost exclusively on electrical cir-

cuitry metaphors of nervous function, resulted in a premature canalisation of the

conception of the physical processes underpinning cognition. However, in recent

times there are an increasing number of calls to move beyond the neuron doctrine,

see Chapter 2. In particular recent excitement surrounding the phenomenon of

neuromodulation has begun to challenge this neuron centric view and promote

the inclusion of chemical processing paradigms in models of the nervous system.

Indeed some have even suggested that a full appreciation of the role of neuromod-

ulation will facilitate a paradigm shift from electric circuitry metaphors of nervous

function to the idea of the “liquid brain” (Changeux, 1993).

A comprehensive inclusion of neuromodulatory pathways in a modern picture of

the nervous system is not only important from a scientific perspective. Neuro-

modulatory pathways play a central role in psychiatric disorders and the action of

drugs on the nervous system. Given the centrality of drugs to modern society and

191
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the consequent growth of the pharmaceutical industry it is likely that the number

of studies that take neuromodulation as their focus will only increase.

Neuromodulation has already been the focus of experimental investigations and

has been included within the realistic models driven by this work. However, ideas

of neuromodulation have yet to penetrate the canonical idealised models of neural

systems either within neuroscience itself, or in its satellite disciplines (e.g., ANN

research). The major goal of this thesis is to begin to remedy this situation by

developing a canonical abstraction of neuromodulation which could be included

in idealised conceptions of neural dynamics. In a direct reference to McCulloch

and Pitts (1943), this thesis attempts to abstract the ideas immanent in neuro-

modulation and explore the consequences of including these for the dynamics of

more traditional neural networks. In doing so, we argued that an appreciation

of the interplay between neuromodulation and neurotransmission is an important

operating principle for the nervous system.

This last chapter will review the arguments and results this thesis has presented

thus far and then summarise the possible implications of this work for neural

network research. It then discusses future research directions.

14.1 Summary

14.1.1 Abstracting Neuromodulation

Chapter 3 reviewed and synthesized a diverse range of literatures that concern

neuromodulation. It drew out a deep set of commonalities between both the phys-

iological properties and functional roles across a diverse range of neuromodulatory

pathways. It then identified a tension between the mechanistic and functional

levels of description which seemed to be at the heart of any understanding of

neuromodulation.

The centrality of the relationship between biochemical properties and functional

roles to the idea of neuromodulation became even more clear in Chapter 4. This

chapter attempted to state a physiological definition in terms of three core mech-

anistic dimensions, suggested by Katz (1999) at the boundaries of which the dif-

ference between neuromodulation and neurotransmission are brought into sharp
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relief. Specifically neuromodulation is not point-to-point, not fast and not sim-

ply excitatory or inhibitory. It also highlighted three representative organisa-

tional functions that neuromodulators are thought to subserve, i.e., reconfigura-

tion, priming and tuning/gating.

Chapter 6 was the penultimate phase in this abstraction process and attempted

to address the idea of neuromodulation in the context of the ANN literature. It

suggested that the mechanistic definitions of neuromodulation could be practically

modelled by exploring minimal departures from the assumptions inherent in the

canonical ANN. It arrived at these by organizing the mechanistic ideas of neuro-

modulation already present in the ANN literature along the three core dimensions

suggested by Katz (1999). This gave

Definition 14.1. A mechanistic definition of neuromodulation

1. Not excitatory or inhibitory: Neuromodulation involves “higher order”

(see Chapter 10) interactions than neurotransmission.

2. Not simply point-to-point communication: Neuromodulation involves

interactions that are not well described by the pairwise parameterizations

(weights) that describe neurotransmission.

3. Not fast: Neuromodulation operates on a much slower timescale than

neurotransmission.

This chapter also suggested a simple, but rather loose, characterisation of the func-

tional properties of neuromodulation in terms of the dynamical systems language

reviewed in Chapter 5. Specifically neuromodulatory processes are conjectured to

underpin:

Definition 14.2. The functional/behavioural roles of neuromodulation



Chapter 14 Conclusion 194

• Reconfiguration: Idealised as an external signal that bifurcates a system’s

dynamics.

• Priming: Idealised as an external signal that takes a system close to a

bifurcation boundary without producing a bifurcation itself.

• Tuning and Gating: Idealised as the absence of bifurcation. Instead it

involves an external signal that alters quantitative aspects of the system’s

dynamics. For example, the size of a basin of attraction, the length of a

cyclic attractor or the position of an equilibrium point.

14.1.2 The research question of this thesis

Chapter 7 explicitly stated the central goals of this thesis as an exploration of

the relationship between the mechanistic characterisation given in Definition 14.1

and the functional/behavioural roles given in Definition 14.2. In particular it asks

the question: do the mechanistic dimensions of neuromodulation predispose them

toward their functional/behavioural roles? Furthermore does this make systems

that possess such mechanistic dimensions more adaptive than those without?

14.1.3 Evolutionary Methodology

Chapter 8 introduced some work by GasNet researchers that claim that the in-

clusion of abstractions of the neuromodulator NO within a more traditional RNN

improves their evolvability. The abstraction of NO that the GasNet researchers

uses embodied all three core mechanistic dimensions of neuromodulation given

in Definition 14.1. Furthermore, while there is little real understanding why the

addition of the NO mechanism increases evolvability (Smith et al., 2001) the pre-

theoretical claims made by the GasNet researchers strongly parallel aspects of the

functional definition given in Definition 14.2. Consequently, this work allowed us

to begin to explore the relationship between Definition 14.1 and Definition 14.2

through the proxy of evolvability. However, this chapter identified several short-

comings of this methodology. These included concerns with the comparability of

different formulations and the subjective nature of any results. Nevertheless, these
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investigations did reveal a positive correlation between the introduction of multi-

plicative interactions (the first dimension of Definition 14.1) and performance at

a pattern generation task.

14.1.4 The first mechanistic dimension of neuromodula-

tion : Not excitatory or inhibitory

Chapter 9 took a very different approach to the questions of this thesis. It used dy-

namical systems analysis (dynamical systems theory was introduced in Chapter 5)

to determine which aspects of Definition 14.1 were necessary to the operation of

a dynamical pattern generator (DPG) circuit.

This investigation revealed that the dynamics of this circuit bear close resemblance

to slow wave bursting systems identified in neuroscience. This raised the question

of whether bursting dynamics is an effective mode for pattern generation for robot

control systems.

It then went on to show that multiplicative input (consistent with the first dimen-

sion of Definition 14.1) was not necessary for the DPG’s operation, however, it

did reveal that the way different types of input (e.g, additive input) bifurcated a

coupled system was qualitatively different.

Chapter 10 attempted to formalise the notion of not excitatory or inhibitory (the

first dimension of Definition 14.1). It formally equated the additive character of

excitatory/inhibitory input with the idea of zeroth order interactions. In contrast

neuromodulation (not excitatory/ inhibitory) was formally equated with the idea

of higher order interactions.

Chapter 10 then examined the ability of each class of modulation to bifurcate

a nonlinear system. It discovered that there was a set of stable nonlinear sys-

tems that could never be bifurcated (destabilised) by the class of zeroth order

modulations. In contrast all nonlinear systems had the potential to be bifurcated

(destabilised) by the class of higher order modulations. This result suggested a

strong relationship between higher order interactions (the first dimension of Defi-

nition 14.1) and bifurcation (the first item of Definition 14.2).

It then went on to describe one region of a CTRNN’s parameter space which con-

tained systems that could not be bifurcated by zeroth order modulations alone.

The weakly coupled region, Sw, within which all nodes were intrinsically stable
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and interacted with small absolute weight values. It also conjectured a second,

the Hopfield region, SH , (so called because it coincides with the formulation of

Hopfield networks) within which all nodes where intrinsically stable and interac-

tions between them where asymmetric, i.e., |ωij| = −|ωji|. Both regions are of

interest to neuroscientists and are thought to be good models of certain regions of

the nervous system.

Chapter 11 went on to describe one particular property of the weakly coupled

region Sw. Specifically, it was found that this region could support efficient signal

propagation because it contained stable centre-crossing networks. Stable centre-

crossing networks consist of nodes that interact at the centres of their sigmoidal

transfer function, producing sensitive dynamics, but are also stable and hence

avoid reverberant oscillations which impoverish signal propagation.

This chapter also introduced the idea of homeostasis. It was suggested that the

inclusion of homeostatic processes can not only push networks toward the centre

crossing configuration but it can also stabilise networks and effectively increase

the size of the weakly coupled region Sw.

14.1.5 The third mechanistic dimension of neuromodula-

tion : Not fast

Chapter 12 took a much closer look at the third dimension of the mechanistic defi-

nition of neuromodulation given in Definition 14.1, i.e., neuromodulatory pathways

are not fast. In particular it attempted to address a question asked by a num-

ber of neuroscientists: “how is it possible for biological circuits to be so richly

modulated while retaining stable function?” (Marder and Thirumalai, 2002). It

suggested that one possible answer to this question is because neuromodulators are

temporally separated from underlying neurotransmission which counteracts their

destabilising effects. The results of this chapter showed that timescale separation

did not straightforwardly promote stability. Despite this negative result this chap-

ter was able to make some conceptual progress by considering the idea of temporary

dependence set out by Ashby (1960). Specifically it concluded that while neuro-

modulatory pathways could destabilise neural systems over long timescales they

could still be stable over shorter timescales and hence exhibit temporary stability.
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14.1.6 The second mechanistic dimension of neuromodu-

lation : Not simply point-to-point communication

Chapter 13 took a much closer look at one aspect of the third dimension of the

mechanistic definition of neuromodulation given in Definition 14.1, i.e, neuromod-

ulatory pathways are not well defined by the point-to-point targeted communica-

tion associated with neurotransmission. Specifically it focused on the implication

of spatial constraints on connectivity for the dynamics of neural networks. In or-

der to achieve this Chapter 13 moved away form the dynamical system analysis

employed in prior chapters and introduced a set of information theoretic measures

recently developed in neuroscience. This work revealed that rather than viewing

spatial embedding as a constraint to be overcome it may enable the construction

of natural and engineered systems with complex generic dynamics.

14.2 The Bigger Picture

So far, we have presented a conservative account of the contributions made within

each chapter. Here, we consider the prospects for a more radical contribution that

could follow from the work presented in this thesis. Three significant conceptual

advances are suggested (but not yet substantiated) by the work presented here.

• First, by developing a novel and principled way of distinguishing neuro-

modulation from neurotransmission, a powerful solution to the problem of

reconciling stability and instability in neural systems is suggested.

How can a nervous system exhibit stable, coherent, robust behaviour over signif-

icant periods of time while simultaneously being capable of exploiting instabil-

ity in order to transition between a wide range of behavioural attractors? Mere

modular organisation does not solve this problem. Real neural modules are multi-

functional, but even if there were a separate module for every behaviour, regu-

lating their interaction would require complicated external control signals. Here

neuromodulation has been shown to be capable of priming and inducing just such

transitions intrinsically (via bifurcation) in systems that are otherwise stable in

the face of any additive input.

The first hints at this picture followed from the distinction between switches and

bifurcations introduced at the beginning of Chapter 10. Specifically, unlike an
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external switch the idea of bifurcation places the onus of qualitative shifts in

dynamics on the intrinsic organisation of a system. Consequently, this suggests the

dynamic transitions of a neural module are somewhat independent of the detailed

character of the external signal. That is, bifurcation of these modules does not

require targeted and discontinuous changes to specific combinations of parameters.

This means that the functional modes of a neural module are, to some degree,

independent of external triggers. Instead, we suggested the propensity of external

signals to take a system through a bifurcation depends on a broad qualitative

difference between two classes of external signal, i.e., the zeroth order properties of

neurotransmission and the higher order properties of neuromodulation. This broad

division provides a robust way of interacting with the dynamics of neural modules

and could constitute an important design principle for incremental adaptation.

The above picture requires us to assume that the local bifurcation analysis em-

ployed here is representative of a more general idea of bifurcation, i.e., this work

has not considered the more complex ideas of global bifurcations. However, this

work has also suggested a more detailed picture of neural dynamics directly in

terms of local bifurcation analysis and stability. Specifically, consider a neural

circuit whose parameters reside within the region Sw. From the work in Chap-

ter 11 we claim that if such a circuit is in region Sw then it will be conducive to

efficient signal propagation. Furthermore, the stability of system will be inert to

both synaptic input and zeroth order modulations1. Consequently, zeroth order

input has the potential to quantitatively tune change the dynamics of the system

without threatening qualitative changes, i.e., there is no danger that it will desta-

bilise the system. In particular this suggests that zeroth order neuromodulatory

signal could provide the ability to robustly tune the dynamics of neural circuits

as set out in item three of Definition 14.2.

In contrast the class of high order modulations provide a means by which to

destabilise a system by pushing its parameters outside the regions Sw and SH .

Outside these regions a system can exhibit nonlinear dynamics including oscillation

and chaos which are equally important to the function of biological systems. If

a neuromodulator’s impact on the system is reversible, i.e., if it is concentration

dependent and any effects recede as the concentration dissipates, then higher order

modulations could allow neural circuits to elastically intermit between periods of

stable linear dynamics and unstable nonlinear dynamics.

1Recall: In our model the difference between synaptic and zeroth order modulations is merely
a matter of timescale.
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• Second, this thesis encourages a reconception of the relationship between

neurotransmission and neuromodulation.

Throughout this thesis we have tacitly treated zeroth order interactions as a ubiq-

uitous and typical property of the nervous system and higher order interaction

as a special case used to augment them. However, in the space of all dynamical

system the opposite is true and zeroth order interactions are the special case. In

general most interactions in a randomly constructed dynamical system will be of

higher order because these just refer to the majority of interactions that are not

zeroth order.

Given this observation it is interesting to speculate whether a similar picture is

true of biological systems. Specifically are the physico-chemical processes involved

in biological systems generally zeroth order (additive)? If they are not it raises

the question whether zeroth order interactions have been selected for and, if so,

whether this is because they provide the stability properties described in this

thesis?

In addition, Chapter 4 discussed how the biochemical signalling pathways that

characterise neuromodulation almost certainly pre-date the electro-chemical mech-

anisms of neurotransmission. We then briefly outlined some conjectures on the

adaptive significance of the introduction of neurotransmission. Specifically, some

have suggested that it allows for the fast and efficient propagation of signals over

long distances. Others have suggested that it allows specialised and private point-

to-point communications between neural elements. However both points could

be dismissed because the first electro-chemical nervous systems were nerve nets

and lattices of neuronal elements interacting via gap junctions. Such systems are

largely unspecialised and lack long range connections and instead are comprised

of diffuse locally connected neural elements; see Chapter 4. In contrast this work

suggested an alternative to these two properties. Specifically perhaps the signifi-

cant adaptive contribution of electro-chemical neurotransmission was the fact that

it allowed for effective zeroth order interactions which provide stable dynamical

systems.

Furthermore, returning to the opening questions of this thesis, let us address the

implications of this for the neuron doctrine, in particular for the canonical no-

tion of neural processing suggested by McCulloch and Pitts (1943). McCulloch

and Pitts demonstrated how logico-computational operation could emerge from a

simple, plausible but contingent model of thresholded excitation/inhibition. One
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common assumption drawn from this work is that neurons are inhibitory/excita-

tory by biological, not functional, necessity. That is, one message of this work is

interpreted as: under the constraints of biology it is possible to organise simple

neuronal elements such that they underpin complex operations. In contrast, this

thesis suggests a re-conception of the role of inhibitory/excitatory interactions.

Specifically, here we have the zeroth order property associated with inhibitory/ex-

citatory interactions perhaps not as a contingent property of the neuron but as

a necessary one to enable the stable dynamics that are central to a good deal of

functionality e.g., efficient signal propagation in recurrent neural networks.

• Third, this thesis argues that the abstraction of neuromodulation developed

here should augment the canonical picture of information processing in the

nervous system.

How should the conceptual reorganisation implied in the previous two points im-

pact on the formulation of the canonical ANN?

The previous point has argued for a new appreciation of the inhibitory/excitatory

interactions entailed by the canonical ANN because they provide a stable dynam-

ical substrate which we have suggested is central to the system’s functionality.

However unstable dynamics are also crucial to the nervous system. As we outline

in the first point the combination of higher order modulations and zeroth order

interactions allow a system to easily intermit between both stable and unstable

dynamics. While it would be possible to construct such a system out of purely ze-

roth order interactions, the parsimony with which the above systems do this, allied

with the way they resonate with neuroscience, makes them intuitively appealing.

Consequently this suggests that a true canonical picture of the dynamics of the

nervous system requires an appreciation of the interplay between the zeroth order

properties of neurotransmission and the higher order properties immanent in the

idea of neuromodulation .

14.3 Future Work

There have been several issues throughout this thesis that have been left for future

work. In this section we briefly summarise these. We then conclude this thesis in

the next section by talking about the future research directions of this work.
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The evolutionary comparisons in Chapter 8 suggested that both spatial embedding

and temporal separation had a negative impact while the inclusion multiplicative

gain interactions had a positive impact on performance. However, the reason for

this needs to be explored more fully. §10.3 suggested a relationship between multi-

plicative gain interactions and the bifurcation at the heart of successful dynamical

pattern generation circuit described in §9.2. One natural way of following this up

would be to do some post hoc dynamical systems analysis on the evolved solutions

produced in Chapter 8.

More generally, if any of the results in Chapter 8 are going to have any empirical

currency then this kind of comparative analysis needs to be done on a less trivial

task such as active categorical perception (Husbands et al., 2001).

Chapter 10 had several technical issues relating to the description of the weakly

coupled region Sw in an n-dimensional nonlinear system. First, while conjecture

(10.1), given in §10.2, is fairly intuitive it needs to be formally derived in the same

way as conjecture (10.2). More generally it should be possible to look further into

random matrix theory and extend the derivation of the May-Wigner threshold

such that it accounts for non-zero means. Another possible way of extending

this analysis would be to circumvent the use of random matrix theory altogether

and follow the analytical route proposed in Beer (2006). Here Beer was able to

construct analytical expressions for different dynamical regions in an n-dimensional

CTRNN parameter space. It should be possible to describe both sw and SH in a

similar way.

In Chapter 6 a review of the neuroscience literature revealed a subtle distinction

between Type I and II reconfigurations and the idea of priming. Only reconfig-

urations of Type I were considered in this thesis. It would interesting to see if

Type II reconfigurations and priming dynamics could be incorporated within the

theoretical framework given in Chapter 10.

In Chapter 11 we began some first descriptions of the impact of homeostasis on the

weakly coupled region Sw. This work needs be to be more thoroughly explained

and investigated. In particular, the relationship between the propensity of home-

ostatic feedback mechanisms to promote oscillation as well as local stability needs

to be explored.

In Chapter 13 we made some first attempts to explore the relationship between

spatial embedding and complexity. This work was rather preliminary and needs

to be broadened to consider the other dimensions of neuromodulation.
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14.4 Future Directions

During the final stages of writing this thesis Marder and Goaillard (2006), one of

the main proponents of neuromodulation in neuroscience, published a comprehen-

sive position piece concerning the role of and interplay between neuromodulators

and homeostatic processes in the nervous system (Marder and Goaillard, 2006).

Their work ties together a set of experimental and computational studies and

constructs a coherent research agenda for future work on neuromodulation. The

systemic picture promoted in their paper is encouraging from the perspective of

the research presented in this thesis.

Marder and Goaillard (2006) describe the way in which neuromodulators act on

properties of neural systems that predispose them towards qualitative changes

in function. Furthermore, Marder and Goaillard (2006) also describes how ho-

moeostatic processes allow neuronal networks to retain stable functionality under

perturbation.

More fully, they suggest that one of the greatest challenges facing modern neu-

roscience is to understand how “chemical systems” such as neuromodulation and

homeostasis compete and cooperate in order to mould the more familiar electri-

cal dynamics of neurotransmission in order to achieve a coherent set of distinct

behavioural modes.

Independently this thesis has arrived at a very similar perspective. However we

have gone further by suggesting that the relationship between such chemical pro-

cesses and system stability is predicated on the physiological nature of the pro-

cesses themselves. Furthermore, this relationship is also implicit within funda-

mental properties of nonlinear systems.
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Proof of a bounded variance.

In this appendix we shall prove the conjecture stated in §10.2, namely

Conjecture A.1. For a normal distribution with zero mean, it is impossible to

increase the variance by any reduction of the absolute magnitudes of any of the

data points that comprise it.

Consider a data set (S) of N points with mean and variance given by

x̄ =
1

N

N
∑

i=1

xi σ2 =
1

N

N
∑

i=1

(xi − x̄)2 (A.1)

respectively. Consider a transformation of this data set (S) to another (Ŝ) with

mean and variance given by

¯̂x =
1

N

N
∑

i=1

tixi σ̂2 =
1

N

N
∑

i=1

(tixi − ¯̂x)
2

(A.2)

respectively. Where now each data point is scaled by a value ti which is constrained

over the interval 0 ≤ ti ≤ 1. Consequently, this transformation can only reduce

absolute values of data points. We can now restate conjecture (A.1) as

σ2 − σ̂2 ≥ 0

Substituting in Equations (A.1) and Equations (A.2) we can obtain

1

N

N
∑

i=1

(xi − x̄)2 − 1

N

N
∑

i=1

(tixi − ¯̂x)
2 ≥ 0
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Collecting and rearranging terms gives

1

N

N
∑

i=1

x2
i (1 − t2i ) − 2

x̄

N

N
∑

i=1

xi + 2
¯̂x

N

N
∑

i=1

tixi − ¯̂x2 + x̄2 ≥ 0

Using Equations (A.1) and Equations (A.2) this becomes

1

N

N
∑

i=1

x2
i (1 − t2i ) − x̄2 + ¯̂x2 ≥ 0

which can be rewritten as

1

N

N
∑

i=1

x2
i (1 − t2i ) − (x̄ − ¯̂x)(x̄ + ¯̂x) ≥ 0

Now, again, using Equations (A.1) and Equations (A.2) we can rewrite this as

1

N

N
∑

i=1

x2
i (1 − t2i ) −

(

1

N

N
∑

i=1

xi(1 − ti)

)(

1

N

N
∑

i=1

xi(1 + ti)

)

≥ 0

Using the substitutions

ai = xi(1 − ti) and bi = xi(1 + ti)

and rearranging we can and obtain

1

N

N
∑

i=1

aibi ≥
1

N2

(

N
∑

i=1

ai

)(

N
∑

i=1

bi

)

Which is always true by the Chebyshev sum inequality1.

QED

1http://mathworld.wolfram.com/ChebyshevSumInequality.html



Appendix B

An Information Theoretic

Analysis of Neuromodulation

Understanding what type of neural control system is appropriate for the genera-

tion of rich adaptive behaviour is an important question in bio-inspired approaches

to robotics. One ubiquitous, and perhaps universal feature of complex systems in

general and adaptive control systems in particular is the presence of modularity.

A module is often loosely defined as a set of units that exhibit an abundance of

strong internal interactions, but sparse or weak interactions with other modules.

As a result, the dynamics within a module are extremely sensitive to the states

of its constituent units but relatively insensitive to the state of units within other

modules. This type of organisation allows a system to individually encapsulate

multiple aspects of functionality such that they act with a certain degree of inde-

pendence from one another. This property would appear to be necessary in order

for any kind of sophisticated adaptive control, since it is difficult to conceive of an

agent that could successfully accumulate useful adaptation without a degree of in-

dependence between its repertoire of behavioural responses. Some understanding

of modularity can often be obtained through graph theoretic measures of system

organisation (e.g., clustering or assortativity in the topology of a neural network).

However, while such measures capture structural interaction between subsystems,

they tell us nothing about their temporally extended dynamics. In general, adap-

tive systems are highly nonlinear and, consequently, even a relatively small control

circuit can have very complex dynamics in which one sub-set of system elements

can be profoundly sensitive to another despite only weak or sparse connections be-

tween them. Of primary interest for adaptive behaviour is the ability of modular

systems to respond to inputs on a wide range of time scales. There is some evidence

205
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that natural neural systems achieve this in part by employing (neuromodulatory)

mechanisms that operate across a wide range of timescales. These mechanisms

have been implicated in modulating the functionality of neural subsystems. Like

sparseness and strength of connectivity, could the timescale over which a system’s

components interact be important in identifying and characterising modularity?

B.1 Introduction

The styles of control system used in evolutionary robotics are legion. Understand-

ing what type of artificial neural network architecture readily exhibits rich adap-

tive behaviour is a non-trivial problem. Particular control systems are adopted by

roboticists for many different reasons. Some researchers wish to model a particular

biological phenomenon (e.g., plasticity) and place emphasis on incorporating this

particular aspect in their scheme (Alexander and Sporns, 2002). Others, choose

controllers for their perspicuity, attempting to incorporate as few a priori as-

sumptions as possible (Beer, 2000; Tuci et al., 2002). In general, control systems

in evolutionary robotics are small, rarely involving more than ten nodes, yet they

still do not yield easily to modern analytical techniques. While one ostensible role

of evolutionary robotics is as a novel engineering paradigm, it is also hoped that

studies in this area can deliver to the natural sciences, in particular to the neuro-

science community. To facilitate a better fusion with neuroscience it is important

to gain a deeper theoretical understanding of robotic substrates. By understanding

idealised neural network properties through statistical and DS analysis, we hope

that we can cut through the esotericism of individual biological neural mechanisms

and discover commonalties across the many robot control architectures inspired

by neuroscience.

B.2 Modularity

Modularity is a ubiquitous characteristic within natural systems. As a result, the

notion of modularity has received numerous treatments within a diverse set of

disciplines. Even within neuroscience, there are multiple definitions of modularity,

referring to, for instance, either anatomical primitives or patterns of activation

(Arbib et al., 1997). Fodor (1983) understanding of cognitive modularity, on

the other hand, is concerned with a third level of description: the informational
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encapsulation of cognitive mechanisms. In this paper, we will employ a cybernetic

perspective exemplified by, for instance, the work of Simon (1969) and Ashby

(1960).

Modularity is thought to play a key role in natural adaptive behaviour. Organisms

do not merely react to their environment. Their behavioural responses are also a

function of their own ongoing activity. Similarly, adaptation is not simply reactive.

An agent must accumulate adaptation, whether within their own lifetime in form

of learning, or over a lineage on evolutionary timescales. Ashby was perhaps one of

the first to explore some theoretical problems with the accumulation of adaptation.

He noted that if an agent adapted to one set of environmental stimuli in order to

produce an appropriate behaviour and then, faced with a different environmental

circumstance, adapted again, it would most probably lose all “knowledge” of the

first adaptation (Ashby, 1960). To circumvent this, Ashby postulated that the

adaptive mechanisms within a single organism must maintain a certain degree of

independence. He noted that “for the accumulation of adaptation to be possible,

the system must not be fully joined . . . For this to be possible, it is necessary that

certain parts of the system should not communicate to, or have effect on, certain

other parts”,

Structurally speaking, modules may be defined as sets of interacting units that

have many and/or strong interactions within themselves, but sparse and/or weak

connections to other modules. In functional terms, the dynamics within a module

are extremely sensitive to the state of its constituent elements but insensitive to the

state of (elements within) other modules. This allows an organism to encapsulate

aspects of functionality within modules such that they can act with a certain

degree of independence from each other. In terms of adaptation, this property

seems intuitively necessary in order for behavioural sophistication. In a complex

evolving agent one would hope that adaptive changes within one module could

occur without drastically affecting the action of other modules.

In recent work, Watson (2003) addresses the role of modularity in evolutionary

adaptation. An initial understanding of modularity can be derived in graph-

theoretic terms. In this formulation, variables are denoted by vertices and their

interactions by edges. A module can therefore be represented as a set of highly

interconnected vertices on the graph with few incoming/outgoing edges linking

it to other modules. There are a host graph-theoretic measures that can give in-

sight into this take on modularity, e.g., measures such as clustering and assortivity

(Newman, 2003). Unfortunately, with respect to neural networks, graph-theoretic
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measures have some serious limitations. In general, they are best suited to bi-

nary rather than weighted connections (Seth and Edelman, 2004), i.e., vertices

are either connected or not. Furthermore, while these kinds of measure capture

the structural aspect of the interaction within a system, they do not deal with

the temporally extended dynamics that the system gives rise to during behaviour.

The number of connections between units can only give insight into the likeli-

hood of immediate effects between modules, but does not necessarily tell us about

consequent state changes over time.

Ashby (Ashby, 1960) explicitly addresses this difference between short- and long-

term effects within networks. First, he notes that independence is not merely

equivalent to the lack of physical connections, but is related to the causal rela-

tionships between processes. Of course, this is cybernetics in its essence (Klir,

1991), being concerned with relations between things rather than the actual phys-

ical instantiation of those things. With respect to the brain, this reinforces the

notion that we must go beyond topological considerations (i.e., the arrangements

of neurons and synapses) in order to gain a complete understanding of modularity

in neural networks.

To further clarify his notion of causal independence, Ashby gives an example. Con-

sider two variables A and B that may influence each other in a state-determined

system. At time t, A = A1 and B = B1. At the next time step, A = A2. If it is the

case that A makes this transition irrespective of B’s state, A and B are said to be

causally independent at time t. However, if the state change of A is influenced by

the initial state of B, the two variables are said to be dependent to some degree.

If a system is to successfully accumulate adaptation Ashby believes that there must

be some casual independence between the adaptive processes involved. Ashby goes

further in noting that this definition of dependence is an immediate phenomenon

defined over one timestep. Given further timesteps, the dependencies may look

very different. At this point he introduces diagrams contrasting immediate and

ultimate effects. His depiction of immediate effects closely resembles a pruned

version of the standard diagram of neural network connectivity. It tells us which

elements effect each other at the next timestep. It is thus fully constrained by

network topology in that no neuron can immediately effect another unless they

share an appropriate weighted connection. However, not every weighted connec-

tion in the wiring diagram will be present in the diagram of immediate effects,

since inactive neurons have no effect on their downstream network neighbours.
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By contrast, the diagram of ultimate effects reflects longer term neural dependen-

cies. For example, if, over some period of time, element A causally effects B, and,

subsequently, B causally effects C, then the diagram of ultimate effects for this

time period would contain a direct link between A and C. At this point, Ashby

introduces the idea of thresholded variables, equivalent to standard thresholded

neurons. If a variable fails to exceed its threshold value, then it will have no

influence. Elements solely bridged by such units become (temporarily) causally

independent and will not be directly (or even indirectly) connected on the diagram

of ultimate effects with respect to some duration. Ashby notes that the degree of

influence exerted by such a bridging element is free to change over time; the ele-

ment may propagate signals during some periods, but be canalizing during others.

It is clear that the diagram of ultimate effects will be sensitive to such changes.

However, if the system is characterised over a long enough timescale, then it is

likely that the diagram of ultimate effects will reflect the perfect transitive closure

of the underlying network (Segdewick, 2001). Over shorter timespans, it will have

fewer edges. In this fashion, Ashby begins to hint at how to characterise the dif-

ference between structural and functional interactions, and the difference between

immediate dependence and long-term dynamics.

Watson (Watson, 2003) considers two extremes of modular interaction. In the first

case, a module’s dynamics are completely independent of the rest of the system.

This is a trivial form of modularity. The second case concerns modules that are

wholly dependent i.e., fully determined by the state of other modules. In such a

case, we would appear to have wrongly described the system as modular. Modular-

ity implies some form of independence, yet must allow for non-trivial interaction.

Intuitively, and logically, natural systems must occupy the mid-ground between

these two extremes. The goal of Watson’s work was to develop a description of

modularity that could accommodate the presence of strong inter-module depen-

dencies, yet could still tolerate certain forms of independence. To do this, Watson

makes use of Simon’s (Simon, 1969) early work on modularity in natural systems.

Simon describes so-called ”nearly decomposable” systems as those for which “the

short-run behaviour of each of the component subsystems is approximately inde-

pendent of the short-run behaviour of the other components” and in “the long

run the behaviour of anyone of the components depends only in a aggregate way

on the behaviour of the other components”, [6, p.193]. This definition allows for

the possibility of a certain degree of independence between modules, i.e., inde-

pendence of the short-term dynamics while sustaining a non-trivial dependence at

longer timescales.
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Watson goes on to develop a simple discrete probabilistic model based on a genetic

regulatory network with which he can demonstrate that a system that appears

structurally modular may still exhibit non-trivial dependencies between modules.

The model’s non-linear interactions ensure that even weak or sparse incoming

connections are able to radically influence the dynamics of a module. Moreover,

despite such non-trivial interdependencies, modules were also able to exhibit a

certain degree of independence with respect to the location of the most stable

state. For Watson, the fact that the location of the most stable state was an

aspect of the long-term dynamics of the system was key to the applicability of

modular decomposition.

Recently neuroscience has begun to develop a set of statistical techniques designed

to measure this type modularity. Work by Tononi and colleagues (Tononi et al.,

1998) addresses a long-standing tension between ideas of functional localization

(many brain functions are largely the product of well-defined tracts of neural mat-

ter), and holistic approaches to Gestalt phenomena, i.e., neurons must integrate

information across the whole nervous system and information processing is the

result of neuronal mass action. Functional segregation is apparent at many levels

of organization, e.g., developmental events produce localized neuronal groups that

share many input and output response properties. On the other hand, brain ac-

tivity is globally integrated, an essential property for unified behaviour. Cortical

pathways guarantee that any two neurons, whatever their location, are separated

from each other by only a few synaptic steps. Efficient information processing

must balance these two tendencies. Tononi suggests that this balance is main-

tained within the brain through so-called re-entrant pathways. These are recipro-

cal synaptic pathways between distinct neuronal groups, providing wide patterns

of correlation between modules of neural tissue.

To investigate these ideas Tononi et al. (Tononi et al., 1998) have developed a

set of statistical tools that measure the dependencies between neuronal groups.

Different neuronal groups are said to be functionally segregated if they exhibit low

statistical dependence, and functionally integrated if they exhibit high statistical

dependence. A measure of complexity is used to identify the midground separating

these two extremes. Loosely speaking, a system has low complexity if all units

are either statistically independent or completely dependent. High complexity is

achieved when neurons exhibit high integration when considered many at a time,

but simultaneously exhibit segregation when considered few at a time. Intuitively,

this condition could be met by non-trivial modularity in the sense outlined by

Watson. While it is unclear how this method could be extended to deal with the
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temporality, it is clear that Tononi et al. believe that it will play a vital role. For

example, Tononi notes that his measures “are also dependent on both temporal

and spatial scale that determine the repertoire of states available to the sytem”,

[Ch 13].

Crucial to the concerns of this paper is the shared reliance of Ashby, Simon and

Watson on the role of multiple timescales in defining modularity, and the concerns

expressed by Tononi and co-workers on the impact of temporality on their statis-

tical measures of complexity and modularity. A system’s components can only be

said to influence each other once a window on their temporally-extended behaviour

is specified. A distinction between the short-term, instantaneous effect (or lack of

effect) of elements upon each other and the longer-term, “ultimate” influence of

the same elements appears to be crucial to our notions of modularity. However,

explicit consideration of systems comprising elements that operate on different

timescales is absent from all three treatments of the issue. Like sparseness and

strength of connectivity, could the timescale over which a system’s components

interact be important in identifying and characterising modularity?

B.3 Timescale

Timescales may arise within artificial neural networks in a variety of ways. Even

where each unit within a network has the same explicit temporal properties, the

system may exhibit behaviour over a range of timescales. Most models of spiking

neurons encode time parameters with a restricted range, usually of the order of

10ms, but in many cases the dynamics of interest extend well beyond these char-

acteristic timescales. Typically the flow of activation through a large ensemble of

neurons allows many different timescales to arise as a result of propagation de-

lay, an effect that is key to Ashby’s distinction between immediate and ultimate

effects. Furthermore, even in small systems, saddle node bifurcations can sup-

port slow dynamics even where the time parameters on the underlying nodes are

intrinsically fast.

By contrast, some neural architectures explicitly encode a variety of timescales

at the level of the individual neurons, e.g., Hebbian and homeostatic plasticity.

Furthermore, neuromodulatory mechanisms are one interesting class of neural in-

teractions that exhibit explicitly separated timescales. These mechanisms act in

parallel, and in concert, with standard synaptic neurotransmission, instantiating a

second layer of connectivity. Neuromodulatory chemicals released by certain loci
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within the brain (including neurons themselves) have a slow and modulatory influ-

ence on vast tracts of neural tissue that would not otherwise be directly connected

(Katz, 1999). Typically, neuromodulators are conceived of as instantiating weak

influences which have little affect on the underlying neural matter, but this could

not be further from the truth. Neuromodulatory influences act on many intrinsic

neuron parameters, radically affecting their behaviour.

If the naive conception of structural modularity held, then the presence of such

signals would compromise the modular nature of the underlying tissue, strongly

connecting everything with everything else. Intuitively, the notion that the neu-

ronal coupling that neuromodulators engender is weak stems from the fact they

are slow. But how does this fit with or understanding of modularity? Is it possi-

ble that neural matter in the presence of neuromodulatory coupling may still be

modular so long as interactions are slow? While the link between modulatory and

temporality has been commented on as described above, it still unclear how they

are related.

B.4 A Simple Model

We will start by examining a general non-linear network that is ubiquitous in

the field of evolutionary robotics. Continuous-time recurrent neural networks

(CTRNNs) are arguably the simplest non-linear, continuous dynamical neural

network equations (Beer, 1995). They are universal smooth dynamics approxi-

mators and are theoretically capable of generating any arbitrary dynamic pattern

or input/output mapping (Funahashi and Nakamura, 1993). They are particularly

suitable for our studies because they explicitly encode a timescale parameter at

each unit, which allows us to directly specify the timescale of interaction between

units:

ẏi =
−yi

τi

+
tanh

[

∑

j ωijyj + θi + Ii

]

τi

(B.1)

Here, yi is the activation at the ith neuron, ωij is the weight value on the connection

from neuron i to neuron j, and θi is the bias value at the ith neuron. Parameter

τi is the time constant of the leak current at the ith neuron, which defines the rate

of leakage or decay of activation. Here, this set of equations is forward integrated

with a simple Euler step method with time slices of dt = 0.005. Note that τ scales
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Figure B.1: Two simple non-linear oscillators driving a build and decay unit

the time slice step such that the effective Euler step is dt
τ
. For this reason, τ is

never less than unity, ensuring that the lower limit on the effective integration step

is just dt. In this formulation, the sigmoidal transfer function is the hyperbolic

tangent rather than the more familiar sigmoid used in Beer’s work (Beer, 1996).

This is in line with Husbands’ formulation (Husbands et al., 2001) and does not

effect the generality of the results shown here.

In this section, we wish to gain insight into the notion of temporal decoupling. To

do this, we will examine signal propagation across a single CTRNN unit. Here, we

drive a CTRNN unit with two rhythmic signals of differing frequencies, see figure

B.1.

The oscillations are produced by two non-linear oscillators, each described by the

following equations:

ȧ1 =
−a1

τa1

+
tanh [a1 − 2a2]

τa (B.2)

ȧ2 =
−a2

τa2

+
tanh [−2a1 + a2]

τa
(B.3)

The timescale of each non-linear oscillator can be tuned by altering its τ value. In

general, the relationship between the period of the oscillation and τ is dependent

on the internal coupling of the non-linear oscillators. However, these systems are

constructed such that the period of oscillation is exactly equal to τ for each unit.

These oscillations drive a second unit representing a slow temporal process:
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Figure B.2: A simple build/decay unit driven by a signal with two non-linear
frequency components under three different weighting/timescale conditions (see
text). The dotted and solid lines on each of the left-hand plots represent the

driver and response signals, respectively.

ṅ =
−n

τn
+

tanh [ωn(a1 + a2)]

τn
(B.4)

Here, ωn is the weighted synaptic input from the non-linear oscillators. For the first

set of experiments, we will assume a linear interaction between the input signal

and the node. We ensure this by requiring interaction to lie within the linear

portion of the sigmoidal transfer function, i.e., in the range [−0.5, 0.5]. For results

shown here, the slow temporal process is driven by two frequencies of 0.014Hz and

0.066Hz corresponding to τa = 70 and τb = 15.

The left-hand plots on figure (B.2) show the driving and response signals, dotted

and solid lines respectively, under different timescale/weighting regimes. Each of

the right-hand plots shows the associated power spectrum of the Fourier transform

of these signals. In figure B.2A, unit n is driven by the superposition of two

frequencies. In this case, τn = 10, lower than τa and τb, and the coupling weight
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ωn = 1. Unit n responds to both frequencies equally and there is little signal loss.

Large peaks in the power spectrum are present at both driving frequencies.

In figure B.2B, the coupling weight is reduced, ωn = 0.1, resulting in a loss of

signal power in which both frequencies are attenuated similarly. In this simple

linear system, this is in line with a notion of structural modularity, i.e., low weight

values weaken the coupling between elements in distinct modules.

On the other hand, in figure B.2C ωn = 1 but τa < τn = 20 < τb. In structural

terms, this confguration is equivalent to that depicted in figure B.2A as it has

the same number of connections and the same weight value. But in this case the

lower frequency driver is maintained at approximately full single strength, whereas

the higher frequency driver is attenuated. Unlike the weight decoupling shown in

figure B.2B, the timescale parameter τ has decoupled certain frequencies but left

others intact. In effect, unit n is acting as a low band pass filter, decoupling fast

timescale input but leaving longer timescales intact.

While this is an extremely simple system, it does shed some light on Simon’s ideas

of modularity. The presence of explicit timescale separation between the nodes

has allowed the system to decouple the short term dynamics (high frequencies)

but retain nontrivial dependencies on slower timescales (low frequencies). While

the typical idea of modularity considers weight strength and connection density,

this form of decoupling, while extremely simple, is rarely mentioned.

B.5 Measuring Temporal Decoupling

How might we develop Tononi’s measures in order to cope with both decoupling

through both τ and ω? Two important assumptions inherent to the approach must

be appreciated. First, model neurons are assumed to interact linearly. Tononi

notes that factors affecting maximum firing rates, firing duration, synaptic effi-

cacy, and neural excitability can radically alter information integration even if

the anatomical connectivity is unchanged. For evolutionary robotics architectures

these factors are crucial. An assumption of linearity will not hold because, in

general, many properties of the adaptive agents we are concerned with rely heav-

ily upon non-linear effects. Furthermore, Watson explicitly notes that one reason

structural modularity is not commensurate with functional modularity is because

of strong non-linearity within neural units.
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Figure B.3: A contour plot of mutual information as it varies with weight
strength, ω, and input wavelength at τ = 10 on a singleCTRNN unit. Each

measurement in the plane is an average of ten measures.

Second, and particularly relevant here, Tononi’s approach assumes stationarity

within the networks that he analyzes. Stationarity requires that the statistical

properties of the neural units do not change in time. Furthermore, it implies that

all the neural units act on the same timescale. This is not the case in many natural

systems where, in general, variables can change on many different timescales. As

we have discussed above, in the nervous system many neuromodulatory processes

act over a range of timescales. Within certain robot control systems, e.g., Gas-

Nets (Philippides et al., 2002), a fast synaptic network interacts with a simulated

neuromodulatory gas that acts over a significantly slower timescale.

To some extent, we can bypass these problems if we limit our consideration to

linear systems and concern ourselves with a single timescale at a time. Here, we

consider a system consisting of a simple linear decay node, which we will drive

with a range of frequencies. Noise of magnitude 0.01 is added to the output of the

driven node, and the mutual information is measured by deriving the covariance

of the input signal with the output signal. For further details of this procedure.
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Figure B.4: A contour plot of mutual information as it varies with timescale,
τ , and input wavelength at ω = 1 in a single CTRNN unit. Each measurement

in the plane is an average of ten samples.

Figure B.3 presents a contour plot of mutual information for systems sampled from

the input weight, ω, and input wavelength plane, for τ = 10. We note that if the

input wavelength exceeds the driven node’s τ value, mutual information increases

with increasing ω, but is generally independent of the input frequency. That is, all

frequency components and hence timescales are decoupled similarly. By contrast,

figure B.4 shows mutual information for systems sampled from the τ versus input

wavelength plane, at unitary ω. Note that now the mutual information for a

system of given τ is dependent on the input frequency. Again, it is clear that the

τ parameter is acting as a low pass filter, decoupling high frequencies but retaining

strong coupling at low frequencies.

While the measurement of mutual information is relatively trivial in the above

case, its application becomes far less straightforward for larger networks. These

measures have been successfully applied to an artificial neural network control

system (Seth and Edelman, 2004). However, in this case the recurrent neural

network was discrete. Applying such measures to continuous-time recurrent neural

networks is non-trivial since they depend on estimates of the covariance between

the time series characterising different parts of the system.

Phase differences between the activation values of nodes can yield spuriously low

values of mutual information, and are directly linked to the timescale parameters

on each node. As well as acting as a low band pass filter, slow nodes retard the

phase of the activation values proportional to their τ values. This is easy to correct
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for in the presence of a single input, but it is not clear how these phase differences

would be resolved in the presence of multiple neural inputs. Measures of covariance

in large networks may also suffer form spurious correlation between units that are

not connected yet exhibit similar neural dynamics as a result of their tendency to

filter noise in a similar way. Furthermore, it is not clear to us whether the original

theory for this estimation of statistical dependence (Papoulis, 1984) even applies

to continuous systems with leak currents.

B.6 Conclusion

In this work we reviewed several cybernetic ideas of modularity. In particular we

highlighted that both Ashby and Simon state the importance of timescale in there

definitions of modularity. We then developed a simple model to highlight that

explicit timescale separation allowed systems to decouple high and low frequency

components. In essence explicitly slow variables acted as low band pass filter on

high frequency input. This effect we believe is important part of neuromodulatory

interactions and important to non-trivial ideas of modularity.

We briefly reviewed the complexity measure developed by Tononi and co-workers.

This measure seemed the most appropriate to understand the idea of non-trivial

modularity in neural systems. However we highlighted some theoretical problems

with as they apply to non-linear temporally rich systems. Nevertheless we made a

first attempt to understand the idea of temporal modularity with them. Although

our preliminary results concurred with our original model applying them to larger

proved to be difficult.

Our future work will attempt resolved some of the problem we found with these

statistical techniques such that they can be used to measure modularity within

temporally rich and non-linear system. We intend to do this by investigating more

sophisticated methods of time-series analysis. Furthermore frequency filters and

phase model have been studied in depth in neuroscience e.g. (Hoppensteadt and

Izhikevich, 1997). We hope to get a more thorough understanding of this work

and how it applies to non-trivial idea of modularity to the styles of artificial neural

system used in evolutionary robotics.



Bibliography

W. H. Alexander and O. Sporns. An embodied model of learning, plasticity, and

reward. Adaptive Behavior, 10(3/4):143–159, 2002.
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