Physical and chemical characteristics of particles produced by laser ablation of biogenic calcium carbonate
Physical and chemical characteristics of particles produced by laser ablation of biogenic calcium carbonate
LA-ICP-MS analysis of the chemical composition of biogenic carbonate has many applications in the environmental sciences but the characteristics of the material produced by the ablation process are largely unknown. To fill this gap, we have undertaken a study of the chemical and physical nature of particles produced by laser ablation of biogenic carbonates. SEM imaging suggests that laser ablation produces two distinct particle populations, one consisting of microsize particles and the other of nanosize particles. A 213 nm laser gives rise to a higher proportion of microsize particles than a 193 nm laser, probably because the 213 nm laser couples less completely with carbonate material. The microsize particles appear to form by photomechanical fracturing along lines of cleavage or weakness, rather than by hydrodynamic sputtering (as is generally observed for silicates). Chemical analysis of the carbonate particles suggests that little chemical fractionation of biogenic carbonates occurs during the ablation process or during transport to the plasma. This is supported by the constancy of the fractionation factor ([X/Ca]measured/[X/Ca]true) during the course of an ablation of a carbonate standard. In contrast, changes in the fractionation factor during the first few seconds of ablation of the NIST 612 are observed for some elements. This difference in fractionation is likely to result from the different formation mechanisms of the microsize particles.
240-243
Hathorne, Ed C.
e171d49c-e8ce-47d1-a316-8924886afef0
James, Rachael H.
79aa1d5c-675d-4ba3-85be-fb20798c02f4
Savage, Paul
295600ba-acc1-4596-ba56-b8e2b2770c95
Alard, Olivier
bb7f7f40-ae72-4921-9a20-9bca7963d834
2008
Hathorne, Ed C.
e171d49c-e8ce-47d1-a316-8924886afef0
James, Rachael H.
79aa1d5c-675d-4ba3-85be-fb20798c02f4
Savage, Paul
295600ba-acc1-4596-ba56-b8e2b2770c95
Alard, Olivier
bb7f7f40-ae72-4921-9a20-9bca7963d834
Hathorne, Ed C., James, Rachael H., Savage, Paul and Alard, Olivier
(2008)
Physical and chemical characteristics of particles produced by laser ablation of biogenic calcium carbonate.
Journal of Analytical Atomic Spectrometry, 23 (2), .
(doi:10.1039/b706727e).
Abstract
LA-ICP-MS analysis of the chemical composition of biogenic carbonate has many applications in the environmental sciences but the characteristics of the material produced by the ablation process are largely unknown. To fill this gap, we have undertaken a study of the chemical and physical nature of particles produced by laser ablation of biogenic carbonates. SEM imaging suggests that laser ablation produces two distinct particle populations, one consisting of microsize particles and the other of nanosize particles. A 213 nm laser gives rise to a higher proportion of microsize particles than a 193 nm laser, probably because the 213 nm laser couples less completely with carbonate material. The microsize particles appear to form by photomechanical fracturing along lines of cleavage or weakness, rather than by hydrodynamic sputtering (as is generally observed for silicates). Chemical analysis of the carbonate particles suggests that little chemical fractionation of biogenic carbonates occurs during the ablation process or during transport to the plasma. This is supported by the constancy of the fractionation factor ([X/Ca]measured/[X/Ca]true) during the course of an ablation of a carbonate standard. In contrast, changes in the fractionation factor during the first few seconds of ablation of the NIST 612 are observed for some elements. This difference in fractionation is likely to result from the different formation mechanisms of the microsize particles.
This record has no associated files available for download.
More information
Published date: 2008
Identifiers
Local EPrints ID: 65585
URI: http://eprints.soton.ac.uk/id/eprint/65585
ISSN: 0267-9477
PURE UUID: 41299cea-0581-4b1c-8210-7bdecce12741
Catalogue record
Date deposited: 23 Feb 2009
Last modified: 14 Mar 2024 02:53
Export record
Altmetrics
Contributors
Author:
Ed C. Hathorne
Author:
Paul Savage
Author:
Olivier Alard
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics