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Abstract

We give a new proof of the Adams-Riemann-Roch theorem for a smooth
projective morphism X — Y, in the situation where Y is a scheme of char-
acteristic p > 0, which is of finite type over a noetherian ring and carries
an ample line bundle. This theorem implies the Hirzebruch-Riemann-Roch

theorem in characteristic 0. We also answer a question of B. Kock.

1 Introduction

Let Y be a scheme, which is of finite type over an affine noetherian scheme.
Suppose that there is an ample line bundle on Y. Let X be a scheme and let
f X — Y be asmooth projective morphism of schemes. Let k > 2 be a natural
number and E an element of Ky(X). A particular case of the Adams-Riemann-

Roch theorem asserts that

VMR fAE)) = R f(08(Q) 7 @ ¢ (E)) (1)

in KO(Y)[%] = Ko(Y) ®z Z]

are defined as follows.

%] The various symbols appearing in this formula
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The Grothendieck group of locally free coherent sheaves (resp. coherent sheaves)
on a scheme Z is denoted by K(Z) (resp. K((Z)).

For f : X — Y as above there is a unique group morphism R* f, : Ko(X) — Ko(Y),
which sends the class of an f-acyclic locally free coherent sheaf £ on X to the

sheaf f.(F) (see [13, Par. 4, Cor. 3, p. 103]). Recall that a locally free sheaf F

on X is called f-acyclic if R'f,FF = 0 for all | > 0. If E is any locally free sheaf
on X, one can show that the image of the element R*f,(E) € Ky(Y) under the

natural map Ko(Y) — Ko(Y) is 3,50 (=1)'R f.(E).

To define the symbol ", recall that for any scheme Z the tensor product ® of

Oz-modules makes the group Ky(Z) into a commutative unitary ring and that

the inverse image of coherent sheaves under any morphism of schemes 7' — Z

induces a morphism of unitary rings Ko(Z) — Ko(Z') (see [10, Par. 1]).

In particular, Ky(-) may be viewed as a contravariant functor from the category
of quasi-compact schemes to the category of commutative unitary rings. The
symbol ¢* refers to an endomorphism of this functor (sic!) that is uniquely

determined by the further property that
YH(L) = 1

for any invertible sheaf L (see [10, Par. 16]).

The symbol 6% refers to a different operation associating an element of Ky(Z)
to any locally free coherent sheaf on a quasi-compact scheme Z. It is uniquely

determined by the properties:
(i) for any invertible sheaf L on Z we have

OF(L)y=1+L+---+LF 1,

(ii) for any short exact sequence 0 — E' — E — E” — 0 of locally free coherent

sheaves on Z we have
0" (E) = 0"(E") @ 6" (E"),

(iii) for any morphism of quasi-compact schemes g : Z — Z and any locally free

coherent sheaf F¥ on Z we have

g (0"(E)) = 0°(g"(E)).



If Z is of finite type over a noetherian ring and carries an ample line bundle,
it is known that 0%(E) is invertible in Ko(Z)[}] for every locally free coherent
sheaf £ on Z (see [8, Lemma 4.3]). In that case 6% extends to a unique map
Ko(Z) — Ko(Z)[}] satisfying

Qk(E) — Qk(E/) ® Qk(E”)
whenever £ = E' + E” in Ky(Z).
As usual, ; denotes the sheaf of differentials of X over Y.

This explains all the ingredients of the formula (1).

The formula (1) is classically proven using deformation to the normal cone and

considering closed immersions and relative projective spaces separately (see [1]).

Our aim in this text is to provide a new and more direct proof of the formula
(1) in the specific situation where & is a prime number p and Y is a scheme of

characteristic p.

The search for this proof was motivated by the fact that for any quasi-compact
scheme Z of characteristic p, the endomorphism ¢ : Ky(Z) — Ky(Z) coincides
with the endomorphism F} : Ky(Z) — Ky(Z) induced by pullback by the abso-
lute Frobenius endomorphism F : Z — Z. This is a consequence of the splitting
principle [10, Par. 5]. We asked ourselves whether in this case 67(€2s) can also be
represented by an explicit virtual bundle. If such a representative were available,
one might try to give a direct proof of (1) that does not involve factorisation.

The proof given in Section 3 shows that this is indeed possible.

In the article [7, sec. 5] by B. Kock, a different line of speculation led to a
question (Question 5.2) in the context of a characteristic p interpretation of the
Adams-Riemann-Roch formula. Our Proposition 2.6 and Proposition 3.2 show

that the answer to this question is positive. See the Appendix for details.

Fix k > 2 and suppose that Y is the spectrum of a finite field. The formula
(1) then formally implies the Hirzebruch-Riemann-Roch theorem for X over that
field. This is explained for instance in [12, Intro.]. On the other hand, a special-
ization argument shows that the Hirzebruch-Riemann-Roch theorem for varieties
over any field follows from the Hirzebruch-Riemann-Roch theorem for varieties
over finite fields. Thus by reduction modulo primes our proof of (1) in posi-
tive characteristic leads to a proof of the Hirzebruch-Riemann-Roch formula in

general.



The structure of the article is the following. In Section 2, we construct a canonical
bundle representative for the element 67(E) for any locally free coherent sheaf
E on a quasi-compact scheme of characteristic p. In Section 3, we give the
computation proving (1) in the situation where £k = p and Y is a scheme of

characteristic p.

After this article was completed, the second author discovered an unpublished
text by M. Rost, where part of the material presented in this article is also
described. Furthermore, M. Rost explains that some of these results were orally
communicated to him by P. Deligne. See the proof of Proposition 3.2 below for

references and details.

Acknowledgments. The second author thanks Reinhold Hiibl for explanations
on the relative Frobenius morphism. Both authors thank the referee for his work

and for his suggestions.

2 A bundle representative for 67(F)

Let p be a prime number and Z a scheme of characteristic p. Let F be a locally
free coherent sheaf on Z. For any integer k > 0 let Sym”(E) denote the k-th

symmetric power of E. Then
Sym(E) := €D Sym*(E)
k>0

is a quasi-coherent graded Oz-algebra, called the symmetric algebra of E. Let
Je denote the graded sheaf of ideals of Sym(F) that is locally generated by the

sections e? of SymP(FE) for all sections e of F, and set
7(E) = Sym(E)/Jg.

Locally this construction means the following. Consider an open subset U C Z
such that E|U is free, and choose a basis ey, ..., e,. Then Sym(E)|U is the poly-
nomial algebra over O in the variables eq,...,e,. Since Z has characteristic p,

for any open subset V' C U and any sections ay, ..., a, € Oz(V) we have
(a161 +...+ arer)p =alel + ...+ alel.

It follows that Jg|U is the sheaf of ideals of Sym(E)|U that is generated by

el,...,el. Clearly that description is independent of the choice of basis and
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compatible with localization; hence it can be used as an equivalent definition of
Jg and 7(FE).

The local description also implies that 7(F)|U is free over Oz|U with basis the
images of the monomials €’ - - - e¥r for all choices of exponents 0 < 1; < p. From

this we deduce:

Lemma 2.1. If E is a locally free coherent sheaf of rank r, then T(F) is a locally

free coherent sheaf of rank p”.

Now we go through the different properties that characterize the operation 6°.

Lemma 2.2. For any invertible sheaf L on Z we have

(L) 20z L@ LP .

Proof. In this case the local description shows that J; is the sheaf of ideals of
Sym(L) that is generated by Sym”(L) = L®?. The lemma follows at once. []

Lemma 2.3. For any morphism of schemes g : Z' — Z and any locally free

coherent sheaf E on Z we have

Proof. Direct consequence of the construction. [

Lemma 2.4. For any two locally free coherent sheaves E' and E” on Z we have
T(E'® E") = 7(E') @ 7(E").
Proof. The homomorphism of sheaves
E' ® E" — Sym(E') ® Sym(E"), (") —e @1+1x¢"
induces an algebra isomorphism
Sym(E' @ E") — Sym(E') ® Sym(E").

The local description as polynomial rings in terms of bases of F'|U and E”|U

shows that this is an isomorphism of sheaves of Oz-algebras. Since
@1+l =e?01+1®™P
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for any local sections ¢’ of E' and e” of E”, this isomorphism induces an isomor-

phism of sheaves of ideals
jEl@Eu — jEl & Sym(Eﬂ> NP Sym<El> X jE”'
The lemma follows from this by taking quotients. [

Lemma 2.5. For any short exact sequence 0 — E' — E — E" — 0 of locally

free coherent sheaves on a quasi-compact scheme Z we have
T(E) =7(E) @ 7(E")

Proof. Let £/ and E” denote the inverse images of E/ and E” under the projec-

tion morphism Z x P! — Z. Then there exists a short exact sequence
0= E - E—E' -0

of locally free coherent sheaves on Z x P! whose restriction to the fiber above
0 € P! is the given one and whose restriction to the fiber above oo € P! is split
(the construction is given in [2, I, Par. f)]). Thus the respective restrictions
satisfy Ey~Fand B, 2 E' & E". Using Lemmata 2.3 and 2.4 this implies that

T(E) = 7(Ey) = 7(E)o

and
T(E) @ 7(E") 2 7(E' @ E") 2 7(Ex) = 7(E)x.

But the fact that Ky(Z x P!) is generated by the powers of O(1) over Ky(Z) (see
[13, chap. 8, Th. 2.1, p. 134]) implies that the restriction to 0 and oo induce the

same map Ko(Z x P!) — Ky(Z). Thus it follows that 7(E)y = 7(F)s in Ko(Z),

whence the lemma. O

Remark. Lemma 2.5 can also be proved by an explicit calculation of sheaves.
For a sketch consider the decreasing filtration of Sym(FE) by the graded ideals
Sym‘(E’) - Sym(E) for all 4 > 0. One first shows that the associated bi-graded
algebra is isomorphic to Sym(FE’) ® Sym(E”). The filtration of Sym(FE) also
induces a filtration of 7(F) by graded ideals, whose associated bi-graded algebra
is therefore a quotient to Sym(£’) ® Sym(E”). To prove that this quotient is
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isomorphic to 7(E") @ 7(E") one shows that the kernel of the quotient morphism
Sym(E") ® Sym(E") — Gr(r(E)) is precisely Jg @ Sym(E") & Sym(E’) @ Jgn.
But this is a purely local assertion, for which one can assume that the exact
sequence splits. The calculation then becomes straightforward, as in Lemma 2.4.

Note that this argument does not require Z to be quasi-compact.

Proposition 2.6. For any locally free coherent sheaf E on a quasi-compact
scheme Z we have 7(E) = 0P(E) in Ko(Z).

Proof. Combination of Lemmata 2.2, 2.3, 2.5 and the defining properties (i),
(ii), (iii) of #7(-) in Section 1. [

3 Proof of the Adams-Riemann-Roch formula

Let us now consider the morphism f : X — Y of the introduction. Let p be
a prime number and make the supplementary hypothesis that Y is a scheme of
characteristic p > 0. Let r be the the rank of €. This is a locally constant

function on Y.

Consider the commutative diagram

Fx

N

X - x -t X

N, ke

y -y
where F'x and Fy are the respective absolute Frobenius morphisms and the square
is cartesian. The morphism I’ = Fly,x/ is called the relative Frobenius morphism
of X over Y. The following lemma summarizes the properties of F' that we shall

need.

Lemma 3.1. The morphism F is finite and flat of constant degree p”.

For lack of a better reference, see [3, 1.1, p. 249].

Let I denote the kernel of the natural morphism of Ox-algebras F*F,Ox — Oy,
which by construction is a sheaf of ideals of F*F,Ox. Let

Gr(F*F.0x) = @ 1*/1*"!

k>0



denote the associated graded sheaf of Ox-algebras.

Proposition 3.2. ' There is a natural isomorphism of Ox-modules
I/1* =y
and a natural isomorphism of graded Ox-algebras

T(I/1%) = Gr(F*F,Ox).

Proof. Since F is affine (see Lemma 3.1), there is a canonical isomorphism
Spec F*F*OX =X X xr )(7

for which the natural morphism of Ox-algebras F*F,Ox — Ox corresponds
to the diagonal embedding X — X xx, X. We carry out these identifications
throughout the remainder of this proof. Then I is the sheaf of ideals of the
diagonal, and so I/I? is naturally isomorphic to the relative sheaf of differentials
Q2. On the other hand we have F*Qp = F*J*Qy = F ()¢, which yields a natural
exact sequence

FxQp — Qp — Qp — 0.

Here the leftmost arrow sends any differential dz to d(z?) = p - 2P~! - dz = 0.
Thus the exact sequence yields an isomorphism Qy = Qp = I/I? proving the

first assertion.

For the second assertion observe that, by the universal property of the sym-
metric algebra Sym(-), the embedding I/1? — Gr(F*F,Ox) extends to a unique

morphism of Ox-algebras
p: Sym(I/I?) — Gr(F*F.Ox).

We want to compare the kernel of p with J7,r2. For this recall that I, as the
sheaf of ideals of the diagonal, is generated by the sections s ® 1 — 1 ® s for all

local sections s of Ox. The p-th power of any such section is

(s@1-1®s)P="®1-10s" =0

'The special case of Proposition 3.2 where Y is assumed to be a field can be found
in an unpublished text by M. Rost (see Lemma 2, p. 5 in the text Frobenius, K-
theory, and characteristic numbers, available at the web address http://www.mathematik.uni-
bielefeld.de/~rost/frobenius.html), who attributes it to P. Deligne. The authors discovered
Proposition 3.2 independently.



in F*F,Ox, because s = Fys is the pullback via Fx of a section of Ox and
hence also the pullback via F' of a section of Ox-. Thus p sends the p-th powers
of certain local generators of I/I? to zero. But in Section 2 we have seen that
Ji/r2 is locally generated by the p-th powers of any local generators of /1 2,
Therefore p(J;/12) = 0, and so p factors through a morphism of Ox-algebras

p:7(I/I*) — Gr(F*F,Ox).

From the definition of Gr(F*F,Ox) we see that p and hence p is surjective.

On the other hand the smoothness assumption on f implies that [/ = Q;
is locally free of rank r. Thus Lemma 2.1 shows that 7(I/I?) is locally free of

rank p".
We shall now prove? that p is also injective.

Let x € X and let 2’ = F(x). A local computation shows that O, ~ X x x Spec O,.

Thus, in the natural morphisms of rings
OFX(:L") - Ox’ - OCE

the morphism on the right-hand side is injective and makes O, a finite O,-
algebra. Furthermore, the image of Op,(;) in O, is OF by construction. This
allows us to apply [9, Prop. 6.18, p.107], which implies that O, has a p-basis of
order r over O,. By definition, this means that there exist xq,...x, € O, and
&1,...& € Oy such that

Op = Oy[Ty, ... T]/(I7 = &, ..., TV = &)
via the O, -algebra morphism sending T; on z;. With this identification, the ideal
I is given by the equations
in the ring
O, ®o0,, Op =~ Op[Ty,...T,,51,... S /(T7 = &1y, TP = 6,57 = &1, ..., SE—E).
If we apply the O,/-algebra automorphism given by the formulae

T, — T+ 5

2This argument is a variant of an argument communicated to us by Reinhold Hiibl.



and

tothering O[Ty, ...T,,S1,. .. S;], we obtain the following equivalent description:
OuTy,... TSy, ... S /(TY +SY =&y, TP+ SP — &, 87 =&, ..., SP = &,)
= OyTh,... T, S,... S|/ (TF, ..., TP, SV — &, ..., 5P = &)

) T

Furthermore, the O,-modules I'/I'*! (I € N*) then have a O,-basis given by
the monomials
Th... Tl g5 ... gsr

with [y +---+ 1, = [ and [;,s; < p. This shows that Gr(F*F.Ox), is locally
free as an Oy -module. Its rank as an O,-module must coincide with the rank
of (F*F.Ox), as an Oy-module, which is p*" by construction. Furthermore,
7(I/I?), is also of rank p*" over O,. We deduce that p is injective at = and

hence an isomorphism at x. Since x was arbitrary, we can conclude. [J

Remark. The assumption that f is projective was not used in the proof of

Proposition 3.2. In particular, its conclusion is valid without this assumption.

Lemma 3.3. Let Z be scheme, which has an ample sheaf and is of finite type
over a noetherian ring. Let E be a locally free coherent sheaf of rank r on Z.
Then the class of E is invertible in the ring Ko(Z)[2].

Proof. The infinite sum in KO(Z)[%]
1/r+ (r = E)/r?+ (r — E)**/r® + ...

only has a finite number of non-vanishing terms. This can be proved directly
if Z is a Grassmann scheme and the general case is a consequence of this. A

direct calculation with geometric series shows that this sum is an inverse of E in
Ko(Z)[;]. O

Remark. In [7, Question 5.2], B. Kock in particular asks the following question:
is the equation

E(07(Qy)7) =1

valid in KO(Y)[%] ? Proposition 3.2 implies that the answer to this question is

positive. Indeed, using the projection formula in Ky-theory, we compute

F(0P(Q,) ") = F.(F*F.Oz) ™) = F.(F*(F.0z) ") = (F.O2) @ (F.Oz) ' = 1.
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This computation is partially repeated below.

We now come to the proof of the Adams-Riemann-Roch formula, which results
from the following calculation in Ky(X) [%] This calculation is in essence already
in [7, Prop. 5.5]. It did not lead to a proof of the formula (1) there, because

Proposition 3.2 was missing.

(R f(E)) = FyRf(E)
= R°fU(J(E))
= R.fl((F*OX) ® (F.Ox) ' ® J*(E))
= RfIF.(F*(F.Ox)"' @ F*J*(E))
= Rf((FR.Ox)™' ® Fx(E))
= R°f.(07(Q) ' @ yP(E)).

Here the first equality uses the fact that ¢* = Fy in Ky(Y'). The second equality
follows from the fact that the formation of the relative Euler characteristic com-
mutes with any base change (see [6, III, 7.7.5, 7.7.10, 7.8.4] or [11, chap. 0, par.
5, p. 19]). The third equality is the definition of (F,Ox)™! in KO(X’)[%] using
Lemmata 3.1 and 3.3. The fourth equality is justified by the projection formula
in Ko-theory (see [10, Prop. 7.13]). The fifth equality is just a simplification.
Finally, Proposition 3.2 and Proposition 2.6 imply that

F*F.Ox = Gr(F*F.Ox) = 7(I/I*) = 0°(1/1*) = 6°(Q;) = 6P (Ly)
as elements of Ky(X). This and the fact that ¥? = F§ in Ky(X) prove the last
equality, and we are done.
Appendix : Another formula for the Bott element

by Bernhard Kock?

The object of this appendix is to give another formula for the Bott element of a
smooth morphism. This formula is analogous to the final displayed formula in the
main part of this paper and extends a list of miraculous analogies explained in

Section 5 of [7]. Tt is probably needless to say that this appendix is inspired by the

3School of Mathematics, University of Southampton, SO17 1BJ, United Kingdom. e-mail:
B.Koeck@soton.ac.uk
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elegant approach to the Adams-Riemann-Roch theorem in positive characteristic

developed by Richard Pink and Damian Rossler in the main part of this paper.
We begin by setting up the context. Let [ be a prime and let f : X — Y

be a smooth quasi-projective morphism between Noetherian schemes of relative
dimension d. We furthermore assume that there exists an ample invertible Ox-
module. Let €y denote the locally free sheaf of relative differentials and let
0'(Qf) € Ko(X) denote the I-th Bott element associated with Qf (see Introduc-
tion). Furthermore let A : X — X' denote the diagonal morphism from X into
the [-fold cartesian product X! := X xy ... xy X. We view A as a Cj-equivariant
morphism where the cyclic group C; of order [ acts trivially on X and by per-
muting the factors on X'. In particular we have a pull-back homomorphism
A* 1 Ko(Cy, XY — Ko(Cj, X) between the corresponding Grothendieck groups
of equivariant locally free sheaves on X' and X, respectively. As the closed im-
mersion A is also regular we furthermore have a push-forward homomorphism
A, : Ko(Cp, X) — Ko(Cp, XY (see Section 3 in [8]). Let finally ([Ox[C)]]) denote
the principal ideal of K(Cj, X) generated by the regular representation [Ox[C}]].
We have a natural map Ky(X) — Ko(C;, X) — Ko(Cj, X)/([Ox[C]]) which is
in fact injective under certain rather general assumption (see Corollary 4.4 in
[7]). The following theorem should be viewed as an analogue of the formula
6P(Qy) = F*F,(Ox) proved at the very end of the main part of this paper.

Theorem. We have

0'(2f) = A"(A(Ox)))  in Ko(Cr, X)/([Ox[Cil))-

Proof. Let Za denote the ideal sheaf corresponding to the regular closed immer-
sion A : X — X'. Then we have

A*(AL(Ox)) = A1(Za/T3)  in Ko(Cr, X)

by the equivariant self-intersection formula (see Corollary (3.9) in [8]); here
A_1(€) denotes the alternating sum [Ox] — [E] + [A*(E)] £ ... for any locally
free Ci-sheaf £ on X. Furthermore we know that Za/Z% is Cj-isomorphic to
Qf ® Hx,; where Hx,; = ker(Ox[C] T Ox) denotes the augmentation rep-
resentation (see Lemma 3.5 in [7]). Finally we have A_;(£ ® Hx,) = 0'(€) in
Ko(Cy, X)/([Ox[C]]) for any locally free Ci-module £ on X (see Proposition 3.2
and Remark 3.9 in [7]). Putting these three facts together we obtain the desired
equality of classes in Ko(Cj, X)/([Ox[C1]]).
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Remark. The statements used in the above proof can also be found in Nori’s

paper [12].

The following table summarizes the astounding analogies mentioned at the be-
ginning of this appendix. While the left hand column refers to the situation of
the main part of this paper, the right hand column refers to the situation of this
The entries in the table are of a very sym-
bolic nature; more detailed explanations can be found in Section 5 of [7]. For
instance, 7' : Ko(X) — Ko(Cy, X) and 7, : Ko(X) — Ko(Cj, X') denote the I-th

ext
tensor-power operation and [-th external-tensor-power operation, respectively.

appendix and of Section 4 in [7].

wp:F)*( wl:Tl

relative Frobenius F : X — X' diagonal A : X — X!

f is smooth f is smooth

= F'is flat = A is regular
= We have F, : Ko(X) — Ko(X') | = We have A, : Ko(Cy, X) — Ko(Cj, X1)
X =Y floxt -y
J* Ko(X) — Ko(X') 7l Ko(X) — Ko(Cp, XY
Base change: Fy f, = (f').J* Kiinneth formula: 7'f, = flrl,
Fy =F*J* = A7l

07 (2y) = F*(F.(Ox))

0'(Qy) = A*(A(Ox))

F(07(Q) ) = 1

A (0°(2) ) = 1

The statements displayed in each of the two columns imply the Adams-Riemann-
Roch theorem, see Section 3 of this paper and Section 4 of [7]. These two im-
plications are entirely analogous to each other (see also [7, Proposition 5.5]) and

they are purely formal, i.e. no further ingredients are needed.

All these analogies suggest that there should be a common reason or a general
framework both of the two situations are special cases of. This hope is however

tarnished by a certain discrepancy we are now going to explain.

While it is fairly easy to prove that F,(Ox) is invertible in Ko(X)[p~!] (see
Lemmas 3.1 and 3.3), the corresponding statement that A,(Ox) is invertible in
Ko(Cy, XH{I71]/(Ox:[C1]) follows in the absolute case (i.e. when Y = Spec(k),
k a perfect field) from rather involved K-theoretical results (see Section 2 of

Nori’s paper [12]) which unfortunately don’t have a counterpart in the situation
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of the left hand column and which seem not to generalize to the general (relative)

case. While the last statement in the left hand column of the above table is an

immediate consequence of the penultimate formula and of the fact that F,(Ox)

is invertible in Ky(X)[p~!] (see Remark after Lemma 3.3), the analogous proof of

the last formula in the right hand column (see [7, Theorem 3.1]) is in particular

not (yet?) available in general.
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