
On the Adams-Riemann-Roch theorem in

positive characteristic

Richard PINK∗ and Damian RÖSSLER†
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Abstract

We give a new proof of the Adams-Riemann-Roch theorem for a smooth
projective morphism X → Y , in the situation where Y is a scheme of char-
acteristic p > 0, which is of finite type over a noetherian ring and carries
an ample line bundle. This theorem implies the Hirzebruch-Riemann-Roch
theorem in characteristic 0. We also answer a question of B. Köck.

1 Introduction

Let Y be a scheme, which is of finite type over an affine noetherian scheme.

Suppose that there is an ample line bundle on Y . Let X be a scheme and let

f : X → Y be a smooth projective morphism of schemes. Let k > 2 be a natural

number and E an element of K0(X). A particular case of the Adams-Riemann-

Roch theorem asserts that

ψk(R•f∗(E)) = R•f∗
(
θk(Ωf )−1 ⊗ ψk(E)

)
(1)

in K0(Y )[ 1
k
] := K0(Y ) ⊗Z Z[ 1

k
]. The various symbols appearing in this formula

are defined as follows.
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The Grothendieck group of locally free coherent sheaves (resp. coherent sheaves)

on a scheme Z is denoted by K0(Z) (resp. K ′0(Z)).

For f : X → Y as above there is a unique group morphismR•f∗ : K0(X)→ K0(Y ),

which sends the class of an f -acyclic locally free coherent sheaf E on X to the

sheaf f∗(E) (see [13, Par. 4, Cor. 3, p. 103]). Recall that a locally free sheaf E

on X is called f -acyclic if Rlf∗E = 0 for all l > 0. If E is any locally free sheaf

on X, one can show that the image of the element R•f∗(E) ∈ K0(Y ) under the

natural map K0(Y )→ K ′0(Y ) is
∑

l>0(−1)lRlf∗(E).

To define the symbol ψk, recall that for any scheme Z the tensor product ⊗ of

OZ-modules makes the group K0(Z) into a commutative unitary ring and that

the inverse image of coherent sheaves under any morphism of schemes Z ′ → Z

induces a morphism of unitary rings K0(Z)→ K0(Z ′) (see [10, Par. 1]).

In particular, K0(·) may be viewed as a contravariant functor from the category

of quasi-compact schemes to the category of commutative unitary rings. The

symbol ψk refers to an endomorphism of this functor (sic!) that is uniquely

determined by the further property that

ψk(L) = L⊗k

for any invertible sheaf L (see [10, Par. 16]).

The symbol θk refers to a different operation associating an element of K0(Z)

to any locally free coherent sheaf on a quasi-compact scheme Z. It is uniquely

determined by the properties:

(i) for any invertible sheaf L on Z we have

θk(L) = 1 + L+ · · ·+ Lk−1,

(ii) for any short exact sequence 0→ E ′ → E → E ′′ → 0 of locally free coherent

sheaves on Z we have

θk(E) = θk(E ′)⊗ θk(E ′′),

(iii) for any morphism of quasi-compact schemes g : Z ′ → Z and any locally free

coherent sheaf E on Z we have

g∗(θk(E)) = θk(g∗(E)).
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If Z is of finite type over a noetherian ring and carries an ample line bundle,

it is known that θk(E) is invertible in K0(Z)[ 1
k
] for every locally free coherent

sheaf E on Z (see [8, Lemma 4.3]). In that case θk extends to a unique map

K0(Z)→ K0(Z)[ 1
k
] satisfying

θk(E) = θk(E ′)⊗ θk(E ′′)

whenever E = E ′ + E ′′ in K0(Z).

As usual, Ωf denotes the sheaf of differentials of X over Y .

This explains all the ingredients of the formula (1).

The formula (1) is classically proven using deformation to the normal cone and

considering closed immersions and relative projective spaces separately (see [1]).

Our aim in this text is to provide a new and more direct proof of the formula

(1) in the specific situation where k is a prime number p and Y is a scheme of

characteristic p.

The search for this proof was motivated by the fact that for any quasi-compact

scheme Z of characteristic p, the endomorphism ψp : K0(Z) → K0(Z) coincides

with the endomorphism F ∗Z : K0(Z) → K0(Z) induced by pullback by the abso-

lute Frobenius endomorphism FZ : Z → Z. This is a consequence of the splitting

principle [10, Par. 5]. We asked ourselves whether in this case θp(Ωf ) can also be

represented by an explicit virtual bundle. If such a representative were available,

one might try to give a direct proof of (1) that does not involve factorisation.

The proof given in Section 3 shows that this is indeed possible.

In the article [7, sec. 5] by B. Köck, a different line of speculation led to a

question (Question 5.2) in the context of a characteristic p interpretation of the

Adams-Riemann-Roch formula. Our Proposition 2.6 and Proposition 3.2 show

that the answer to this question is positive. See the Appendix for details.

Fix k > 2 and suppose that Y is the spectrum of a finite field. The formula

(1) then formally implies the Hirzebruch-Riemann-Roch theorem for X over that

field. This is explained for instance in [12, Intro.]. On the other hand, a special-

ization argument shows that the Hirzebruch-Riemann-Roch theorem for varieties

over any field follows from the Hirzebruch-Riemann-Roch theorem for varieties

over finite fields. Thus by reduction modulo primes our proof of (1) in posi-

tive characteristic leads to a proof of the Hirzebruch-Riemann-Roch formula in

general.
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The structure of the article is the following. In Section 2, we construct a canonical

bundle representative for the element θp(E) for any locally free coherent sheaf

E on a quasi-compact scheme of characteristic p. In Section 3, we give the

computation proving (1) in the situation where k = p and Y is a scheme of

characteristic p.

After this article was completed, the second author discovered an unpublished

text by M. Rost, where part of the material presented in this article is also

described. Furthermore, M. Rost explains that some of these results were orally

communicated to him by P. Deligne. See the proof of Proposition 3.2 below for

references and details.

Acknowledgments. The second author thanks Reinhold Hübl for explanations

on the relative Frobenius morphism. Both authors thank the referee for his work

and for his suggestions.

2 A bundle representative for θp(E)

Let p be a prime number and Z a scheme of characteristic p. Let E be a locally

free coherent sheaf on Z. For any integer k > 0 let Symk(E) denote the k-th

symmetric power of E. Then

Sym(E) :=
⊕
k>0

Symk(E)

is a quasi-coherent graded OZ-algebra, called the symmetric algebra of E. Let

JE denote the graded sheaf of ideals of Sym(E) that is locally generated by the

sections ep of Symp(E) for all sections e of E, and set

τ(E) := Sym(E)/JE.

Locally this construction means the following. Consider an open subset U ⊂ Z

such that E|U is free, and choose a basis e1, . . . , er. Then Sym(E)|U is the poly-

nomial algebra over OZ in the variables e1, . . . , er. Since Z has characteristic p,

for any open subset V ⊂ U and any sections a1, . . . , ar ∈ OZ(V ) we have(
a1e1 + . . .+ arer

)p
= ap

1e
p
1 + . . .+ ap

re
p
r.

It follows that JE|U is the sheaf of ideals of Sym(E)|U that is generated by

ep
1, . . . , e

p
r. Clearly that description is independent of the choice of basis and
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compatible with localization; hence it can be used as an equivalent definition of

JE and τ(E).

The local description also implies that τ(E)|U is free over OZ |U with basis the

images of the monomials ei1
1 · · · eir

r for all choices of exponents 0 6 ij < p. From

this we deduce:

Lemma 2.1. If E is a locally free coherent sheaf of rank r, then τ(E) is a locally

free coherent sheaf of rank pr.

Now we go through the different properties that characterize the operation θp.

Lemma 2.2. For any invertible sheaf L on Z we have

τ(L) ∼= OZ ⊕ L⊕ · · · ⊕ L⊗(p−1).

Proof. In this case the local description shows that JL is the sheaf of ideals of

Sym(L) that is generated by Symp(L) = L⊗p. The lemma follows at once.

Lemma 2.3. For any morphism of schemes g : Z ′ → Z and any locally free

coherent sheaf E on Z we have

g∗(τ(E)) ∼= τ(g∗(E)).

Proof. Direct consequence of the construction.

Lemma 2.4. For any two locally free coherent sheaves E ′ and E ′′ on Z we have

τ(E ′ ⊕ E ′′) ∼= τ(E ′)⊗ τ(E ′′).

Proof. The homomorphism of sheaves

E ′ ⊕ E ′′ ↪→ Sym(E ′)⊗ Sym(E ′′), (e′, e′′) 7→ e′ ⊗ 1 + 1⊗ e′′

induces an algebra isomorphism

Sym(E ′ ⊕ E ′′)→ Sym(E ′)⊗ Sym(E ′′).

The local description as polynomial rings in terms of bases of E ′|U and E ′′|U
shows that this is an isomorphism of sheaves of OZ-algebras. Since

(e′ ⊗ 1 + 1⊗ e′′)p = e′p ⊗ 1 + 1⊗ e′′p
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for any local sections e′ of E ′ and e′′ of E ′′, this isomorphism induces an isomor-

phism of sheaves of ideals

JE′⊕E′′ → JE′ ⊗ Sym(E ′′)⊕ Sym(E ′)⊗ JE′′ .

The lemma follows from this by taking quotients.

Lemma 2.5. For any short exact sequence 0 → E ′ → E → E ′′ → 0 of locally

free coherent sheaves on a quasi-compact scheme Z we have

τ(E) = τ(E ′)⊗ τ(E ′′)

in K0(Z).

Proof. Let Ẽ ′ and Ẽ ′′ denote the inverse images of E ′ and E ′′ under the projec-

tion morphism Z ×P1 → Z. Then there exists a short exact sequence

0→ Ẽ ′ → Ẽ → Ẽ ′′ → 0

of locally free coherent sheaves on Z × P1 whose restriction to the fiber above

0 ∈ P1 is the given one and whose restriction to the fiber above ∞ ∈ P1 is split

(the construction is given in [2, I, Par. f)]). Thus the respective restrictions

satisfy Ẽ0
∼= E and Ẽ∞ ∼= E ′⊕E ′′. Using Lemmata 2.3 and 2.4 this implies that

τ(E) ∼= τ(Ẽ0) ∼= τ(Ẽ)0

and

τ(E ′)⊗ τ(E ′′) ∼= τ(E ′ ⊕ E ′′) ∼= τ(Ẽ∞) ∼= τ(Ẽ)∞.

But the fact that K0(Z×P1) is generated by the powers of O(1) over K0(Z) (see

[13, chap. 8, Th. 2.1, p. 134]) implies that the restriction to 0 and ∞ induce the

same map K0(Z ×P1)→ K0(Z). Thus it follows that τ(Ẽ)0 = τ(Ẽ)∞ in K0(Z),

whence the lemma.

Remark. Lemma 2.5 can also be proved by an explicit calculation of sheaves.

For a sketch consider the decreasing filtration of Sym(E) by the graded ideals

Symi(E ′) · Sym(E) for all i > 0. One first shows that the associated bi-graded

algebra is isomorphic to Sym(E ′) ⊗ Sym(E ′′). The filtration of Sym(E) also

induces a filtration of τ(E) by graded ideals, whose associated bi-graded algebra

is therefore a quotient to Sym(E ′) ⊗ Sym(E ′′). To prove that this quotient is
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isomorphic to τ(E ′)⊗ τ(E ′′) one shows that the kernel of the quotient morphism

Sym(E ′)⊗ Sym(E ′′)� Gr(τ(E)) is precisely JE′ ⊗ Sym(E ′′)⊕ Sym(E ′)⊗ JE′′ .

But this is a purely local assertion, for which one can assume that the exact

sequence splits. The calculation then becomes straightforward, as in Lemma 2.4.

Note that this argument does not require Z to be quasi-compact.

Proposition 2.6. For any locally free coherent sheaf E on a quasi-compact

scheme Z we have τ(E) = θp(E) in K0(Z).

Proof. Combination of Lemmata 2.2, 2.3, 2.5 and the defining properties (i),

(ii), (iii) of θp(·) in Section 1.

3 Proof of the Adams-Riemann-Roch formula

Let us now consider the morphism f : X → Y of the introduction. Let p be

a prime number and make the supplementary hypothesis that Y is a scheme of

characteristic p > 0. Let r be the the rank of Ωf . This is a locally constant

function on Y .

Consider the commutative diagram

X
F //

f

  B
BB

BB
BB

B

FX

  
X ′

J //

f ′

��

X

f

��
Y

FY // Y

where FX and FY are the respective absolute Frobenius morphisms and the square

is cartesian. The morphism F = FX/X′ is called the relative Frobenius morphism

of X over Y . The following lemma summarizes the properties of F that we shall

need.

Lemma 3.1. The morphism F is finite and flat of constant degree pr.

For lack of a better reference, see [3, 1.1, p. 249].

Let I denote the kernel of the natural morphism of OX-algebras F ∗F∗OX → OX ,

which by construction is a sheaf of ideals of F ∗F∗OX . Let

Gr(F ∗F∗OX) :=
⊕
k>0

Ik/Ik+1
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denote the associated graded sheaf of OX-algebras.

Proposition 3.2. 1 There is a natural isomorphism of OX-modules

I/I2 ∼= Ωf

and a natural isomorphism of graded OX-algebras

τ(I/I2) ∼= Gr(F ∗F∗OX).

Proof. Since F is affine (see Lemma 3.1), there is a canonical isomorphism

Spec F ∗F∗OX
∼= X ×X′ X,

for which the natural morphism of OX-algebras F ∗F∗OX → OX corresponds

to the diagonal embedding X ↪→ X ×X′ X. We carry out these identifications

throughout the remainder of this proof. Then I is the sheaf of ideals of the

diagonal, and so I/I2 is naturally isomorphic to the relative sheaf of differentials

ΩF . On the other hand we have F ∗Ωf ′ = F ∗J∗Ωf = F ∗XΩf , which yields a natural

exact sequence

F ∗XΩf → Ωf → ΩF → 0.

Here the leftmost arrow sends any differential dx to d(xp) = p · xp−1 · dx = 0.

Thus the exact sequence yields an isomorphism Ωf
∼= ΩF

∼= I/I2, proving the

first assertion.

For the second assertion observe that, by the universal property of the sym-

metric algebra Sym(·), the embedding I/I2 ↪→ Gr(F ∗F∗OX) extends to a unique

morphism of OX-algebras

ρ : Sym(I/I2)→ Gr(F ∗F∗OX).

We want to compare the kernel of ρ with JI/I2 . For this recall that I, as the

sheaf of ideals of the diagonal, is generated by the sections s ⊗ 1 − 1 ⊗ s for all

local sections s of OX . The p-th power of any such section is

(s⊗ 1− 1⊗ s)p = sp ⊗ 1− 1⊗ sp = 0

1The special case of Proposition 3.2 where Y is assumed to be a field can be found
in an unpublished text by M. Rost (see Lemma 2, p. 5 in the text Frobenius, K-
theory, and characteristic numbers, available at the web address http://www.mathematik.uni-
bielefeld.de/∼rost/frobenius.html), who attributes it to P. Deligne. The authors discovered
Proposition 3.2 independently.
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in F ∗F∗OX , because sp = F ∗Xs is the pullback via FX of a section of OX and

hence also the pullback via F of a section of OX′ . Thus ρ sends the p-th powers

of certain local generators of I/I2 to zero. But in Section 2 we have seen that

JI/I2 is locally generated by the p-th powers of any local generators of I/I2.

Therefore ρ(JI/I2) = 0, and so ρ factors through a morphism of OX-algebras

ρ̄ : τ(I/I2)→ Gr(F ∗F∗OX).

From the definition of Gr(F ∗F∗OX) we see that ρ and hence ρ̄ is surjective.

On the other hand the smoothness assumption on f implies that I/I2 ∼= Ωf

is locally free of rank r. Thus Lemma 2.1 shows that τ(I/I2) is locally free of

rank pr.

We shall now prove2 that ρ̄ is also injective.

Let x ∈ X and let x′ = F (x). A local computation shows thatOx ' X ×X′ Spec Ox′ .

Thus, in the natural morphisms of rings

OFX(x) → Ox′ → Ox

the morphism on the right-hand side is injective and makes Ox a finite Ox′-

algebra. Furthermore, the image of OFX(x) in Ox is Op
x by construction. This

allows us to apply [9, Prop. 6.18, p.107], which implies that Ox has a p-basis of

order r over Ox′ . By definition, this means that there exist x1, . . . xr ∈ Ox and

ξ1, . . . ξr ∈ Ox′ such that

Ox ' Ox′ [T1, . . . Tr]/(T
p
1 − ξ1, . . . , T

p
r − ξr)

via the Ox′-algebra morphism sending Ti on xi. With this identification, the ideal

I is given by the equations

(Ti − Si)i∈{1,...,r}

in the ring

Ox⊗Ox′ Ox ' Ox′ [T1, . . . Tr, S1, . . . Sr]/(T
p
1 − ξ1, . . . , T

p
r − ξr, S

p
1 − ξ1, . . . , S

p
r − ξr).

If we apply the Ox′-algebra automorphism given by the formulae

Ti 7→ Ti + Si

2This argument is a variant of an argument communicated to us by Reinhold Hübl.
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and

Si 7→ Si

to the ringOx′ [T1, . . . Tr, S1, . . . Sr], we obtain the following equivalent description:

the ideal I is given by the equations (Ti)i∈{1,...,r} in the ring

Ox′ [T1, . . . Tr, S1, . . . Sr]/(T
p
1 + Sp

1 − ξ1, . . . , T
p
r + Sp

r − ξr, S
p
1 − ξ1, . . . , S

p
r − ξr)

= Ox′ [T1, . . . Tr, S1, . . . Sr]/(T
p
1 , . . . , T

p
r , S

p
1 − ξ1, . . . , S

p
r − ξr)

Furthermore, the Ox′-modules I l/I l+1 (l ∈ N∗) then have a Ox′-basis given by

the monomials

T l1
1 · · ·T lr

r · S
s1
1 · · ·Ssr

r

with l1 + · · · + lr = l and li, si < p. This shows that Gr(F ∗F∗OX)x is locally

free as an Ox′-module. Its rank as an Ox′-module must coincide with the rank

of (F ∗F∗OX)x as an Ox′-module, which is p2r by construction. Furthermore,

τ(I/I2)x is also of rank p2r over Ox′ . We deduce that ρ̄ is injective at x and

hence an isomorphism at x. Since x was arbitrary, we can conclude.

Remark. The assumption that f is projective was not used in the proof of

Proposition 3.2. In particular, its conclusion is valid without this assumption.

Lemma 3.3. Let Z be scheme, which has an ample sheaf and is of finite type

over a noetherian ring. Let E be a locally free coherent sheaf of rank r on Z.

Then the class of E is invertible in the ring K0(Z)[1
r
].

Proof. The infinite sum in K0(Z)[1
r
]

1/r + (r − E)/r2 + (r − E)⊗2/r3 + . . .

only has a finite number of non-vanishing terms. This can be proved directly

if Z is a Grassmann scheme and the general case is a consequence of this. A

direct calculation with geometric series shows that this sum is an inverse of E in

K0(Z)[1
r
].

Remark. In [7, Question 5.2], B. Köck in particular asks the following question:

is the equation

F∗(θ
p(Ωf )−1) = 1

valid in K0(Y )[1
p
] ? Proposition 3.2 implies that the answer to this question is

positive. Indeed, using the projection formula in K0-theory, we compute

F∗(θ
p(Ωg)−1) = F∗((F

∗F∗OZ)−1) = F∗(F
∗(F∗OZ)−1) = (F∗OZ)⊗ (F∗OZ)−1 = 1.
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This computation is partially repeated below.

We now come to the proof of the Adams-Riemann-Roch formula, which results

from the following calculation in K0(X)[1
p
]. This calculation is in essence already

in [7, Prop. 5.5]. It did not lead to a proof of the formula (1) there, because

Proposition 3.2 was missing.

ψp(R•f∗(E)) = F ∗YR
•f∗(E)

= R•f ′∗(J
∗(E))

= R•f ′∗
(
(F∗OX)⊗ (F∗OX)−1 ⊗ J∗(E)

)
= R•f ′∗F∗

(
F ∗(F∗OX)−1 ⊗ F ∗J∗(E)

)
= R•f∗

(
(F ∗F∗OX)−1 ⊗ F ∗X(E)

)
= R•f∗

(
θp(Ωf )−1 ⊗ ψp(E)

)
.

Here the first equality uses the fact that ψp = F ∗Y in K0(Y ). The second equality

follows from the fact that the formation of the relative Euler characteristic com-

mutes with any base change (see [6, III, 7.7.5, 7.7.10, 7.8.4] or [11, chap. 0, par.

5, p. 19]). The third equality is the definition of (F∗OX)−1 in K0(X ′)[1
p
] using

Lemmata 3.1 and 3.3. The fourth equality is justified by the projection formula

in K0-theory (see [10, Prop. 7.13]). The fifth equality is just a simplification.

Finally, Proposition 3.2 and Proposition 2.6 imply that

F ∗F∗OX = Gr(F ∗F∗OX) = τ(I/I2) = θp(I/I2) = θp(Ωf ) = θp(Lf )

as elements of K0(X). This and the fact that ψp = F ∗X in K0(X) prove the last

equality, and we are done.

Appendix : Another formula for the Bott element

by Bernhard Köck3

The object of this appendix is to give another formula for the Bott element of a

smooth morphism. This formula is analogous to the final displayed formula in the

main part of this paper and extends a list of miraculous analogies explained in

Section 5 of [7]. It is probably needless to say that this appendix is inspired by the

3School of Mathematics, University of Southampton, SO17 1BJ, United Kingdom. e-mail:
B.Koeck@soton.ac.uk
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elegant approach to the Adams-Riemann-Roch theorem in positive characteristic

developed by Richard Pink and Damian Rössler in the main part of this paper.

We begin by setting up the context. Let l be a prime and let f : X → Y

be a smooth quasi-projective morphism between Noetherian schemes of relative

dimension d. We furthermore assume that there exists an ample invertible OX-

module. Let Ωf denote the locally free sheaf of relative differentials and let

θl(Ωf ) ∈ K0(X) denote the l-th Bott element associated with Ωf (see Introduc-

tion). Furthermore let ∆ : X → X l denote the diagonal morphism from X into

the l-fold cartesian product X l := X×Y . . .×Y X. We view ∆ as a Cl-equivariant

morphism where the cyclic group Cl of order l acts trivially on X and by per-

muting the factors on X l. In particular we have a pull-back homomorphism

∆∗ : K0(Cl, X
l) → K0(Cl, X) between the corresponding Grothendieck groups

of equivariant locally free sheaves on X l and X, respectively. As the closed im-

mersion ∆ is also regular we furthermore have a push-forward homomorphism

∆∗ : K0(Cl, X)→ K0(Cl, X
l) (see Section 3 in [8]). Let finally ([OX [Cl]]) denote

the principal ideal of K0(Cl, X) generated by the regular representation [OX [Cl]].

We have a natural map K0(X) → K0(Cl, X) → K0(Cl, X)/([OX [Cl]]) which is

in fact injective under certain rather general assumption (see Corollary 4.4 in

[7]). The following theorem should be viewed as an analogue of the formula

θp(Ωf ) = F ∗F∗(OX) proved at the very end of the main part of this paper.

Theorem. We have

θl(Ωf ) = ∆∗(∆∗(OX))) in K0(Cl, X)/([OX [Cl]]).

Proof. Let I∆ denote the ideal sheaf corresponding to the regular closed immer-

sion ∆ : X → X l. Then we have

∆∗(∆∗(OX)) = λ−1(I∆/I2
∆) in K0(Cl, X)

by the equivariant self-intersection formula (see Corollary (3.9) in [8]); here

λ−1(E) denotes the alternating sum [OX ] − [E ] + [Λ2(E)] ± . . . for any locally

free Cl-sheaf E on X. Furthermore we know that I∆/I2
∆ is Cl-isomorphic to

Ωf ⊗ HX,l where HX,l := ker(OX [Cl]
sum−→ OX) denotes the augmentation rep-

resentation (see Lemma 3.5 in [7]). Finally we have λ−1(E ⊗ HX,l) = θl(E) in

K0(Cl, X)/([OX [Cl]]) for any locally free Cl-module E on X (see Proposition 3.2

and Remark 3.9 in [7]). Putting these three facts together we obtain the desired

equality of classes in K0(Cl, X)/([OX [Cl]]).
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Remark. The statements used in the above proof can also be found in Nori’s

paper [12].

The following table summarizes the astounding analogies mentioned at the be-

ginning of this appendix. While the left hand column refers to the situation of

the main part of this paper, the right hand column refers to the situation of this

appendix and of Section 4 in [7]. The entries in the table are of a very sym-

bolic nature; more detailed explanations can be found in Section 5 of [7]. For

instance, τ l : K0(X)→ K0(Cl, X) and τ l
ext : K0(X)→ K0(Cl, X

l) denote the l-th

tensor-power operation and l-th external-tensor-power operation, respectively.

ψp = F ∗X ψl = τ l

relative Frobenius F : X → X ′ diagonal ∆ : X → X l

f is smooth f is smooth

⇒ F is flat ⇒ ∆ is regular

⇒ We have F∗ : K0(X)→ K0(X ′) ⇒ We have ∆∗ : K0(Cl, X)→ K0(Cl, X
l)

f ′ : X ′ → Y f l : X l → Y

J∗ : K0(X)→ K0(X ′) τ l
ext : K0(X)→ K0(Cl, X

l)

Base change: F ∗Y f∗ = (f ′)∗J
∗ Künneth formula: τ lf∗ = f l

∗τ
l
ext

F ∗X = F ∗J∗ τ l = ∆∗τ l
ext

θp(Ωf ) = F ∗(F∗(OX)) θl(Ωf ) = ∆∗(∆∗(OX))

F∗(θ
p(Ωf )−1) = 1 ∆∗ (θp(Ωf )−1) = 1

The statements displayed in each of the two columns imply the Adams-Riemann-

Roch theorem, see Section 3 of this paper and Section 4 of [7]. These two im-

plications are entirely analogous to each other (see also [7, Proposition 5.5]) and

they are purely formal, i.e. no further ingredients are needed.

All these analogies suggest that there should be a common reason or a general

framework both of the two situations are special cases of. This hope is however

tarnished by a certain discrepancy we are now going to explain.

While it is fairly easy to prove that F∗(OX) is invertible in K0(X)[p−1] (see

Lemmas 3.1 and 3.3), the corresponding statement that ∆∗(OX) is invertible in

K0(Cl, X
l)[l−1]/(OXl [C l]) follows in the absolute case (i.e. when Y = Spec(k),

k a perfect field) from rather involved K-theoretical results (see Section 2 of

Nori’s paper [12]) which unfortunately don’t have a counterpart in the situation

13



of the left hand column and which seem not to generalize to the general (relative)

case. While the last statement in the left hand column of the above table is an

immediate consequence of the penultimate formula and of the fact that F∗(OX)

is invertible in K0(X)[p−1] (see Remark after Lemma 3.3), the analogous proof of

the last formula in the right hand column (see [7, Theorem 3.1]) is in particular

not (yet?) available in general.
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